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Quels processus physiologiques pilotent l’acidité de la banane dessert (sp. Musa) en pré 

et post récolte? 

Modélisation écophysiologique et analyse expérimentale de l’effet du génotype et des 

conditions de croissance du fruit. 
 

RESUME  

Chez la banane dessert, les saveurs sucrée et acide, caractéristiques importantes pour 

les consommateurs, sont pilotées par les teneurs en acides citrique et malique. Ce travail a 

donc porté sur l’étude des processus physiologiques qui pilotent l’accumulation de ces acides 

dans la pulpe de banane (Musa sp. AA) en combinant analyse expérimentale et modélisation 

écophysiologique. Nous nous sommes notamment intéressés à l’effet du génotype et des 

conditions de croissance du fruit en adoptant une approche intégrative liant les phases pré et 

post récolte. 

Les effets de la charge en fruit, de la fertilisation potassique, et du stade de récolte 

sur l’accumulation du citrate et du malate dans la pulpe ont été étudiés expérimentalement. La 

variabilité génotypique a été prise en compte en choisissant trois génotypes présentant des 

acidités contrastées à maturité. Des différences d’évolution des teneurs en acides, dues à des 

modifications métaboliques, ont été observées entre les génotypes pendant les phases pré et 

post récolte. Le stade de récolte a eu un effet significatif sur les teneurs en acides des fruits 

pendant la maturation post récolte. La charge en fruit et la fertilisation potassique n’en ont eu 

aucun.  

Des modèles écophysiologiques ont été développés pour prédire différents critères 

d’acidité de la banane en pré et post récolte. Le pH et l’acidité titrable ont été prédits par un 

modèle d’équilibres acido-basiques, la teneur en malate par un modèle de stockage 

vacuolaire, et la teneur en citrate par un modèle du cycle de Krebs. Ces modèles ont permis 

d’identifier les processus physiologiques clés qui pilotent l’acidité de la banane. Des 

paramètres génotypiques ont été identifiés liés à l’activité de l’enzyme malique 

mitochondriale et à celle des transporteurs mitochondriaux du malate pour le modèle citrate, 

et à l’activité des pompes à protons vacuolaire ATPases pour le modèle malate. Ces modèles 

ont également permis de disséquer l’effet des conditions de croissance du fruit sur l’acidité de 

la banane.  

L’intégration des modèles développés dans un modèle d’élaboration de l’acidité et son 

utilisation potentielle pour l’amélioration variétale sont discutées.  

 

Mots-clés: Acidité ; banane ; écophysiologie ; génotype ; modélisation ; pré et post récolte  
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Which physiological processes control banana acidity (sp. Musa) during pre and post-

harvest stages? 

Ecophysiological modeling and experimental analysis of the effects of genotype and fruit 

growth conditions. 
 

ABSTRACT 

Citric and malic acids determine the sourness and sweetness of banana pulp, which are 

the two main determinants of consumer preferences. The present work focused on the 

physiological processes controlling the accumulation of citric and malic acids in banana pulp 

(Musa sp. AA) using experimental analysis and ecophysiological modeling. We chose an 

integrative approach linking the pre and post-harvest stages, and focused on the effect of 

genotype and fruit growing conditions.  

Experiments were conducted to study the effect of fruit load, potassium 

fertilization and fruit age at harvest on the accumulation of citrate and malate in banana 

pulp. To account for genotypic variability, three genotypes with contrasting acidity at the 

eating stage were studied. Major differences in the pattern of citrate and malate accumulation 

were found in the three cultivars both during growth and post-harvest ripening and were 

shown to be the result of metabolic changes. The harvest stage had a significant effect on the 

concentrations of acids during post-harvest ripening. Fruit load and potassium fertilization 

had no effect. 

Ecophysiological models were developed to predict several banana acidity criteria 

during the pre and post harvest stages. pH and titratable acidity were predicted by a model of 

acid-base reactions; malate content by a model of vacuolar storage; and citrate content by a 

model of the TCA cycle. These models led to the identification of the key physiological 

processes that control banana acidity. Genotypic parameters were identified, which were 

related to the activity of the mitochondrial malic enzyme and of the malate mitochondrial 

carriers in the citrate model, as well as to the activity of the vacuolar proton pump, ATPase,  

in the malate model. The two models were also used to analyze the effects of fruit growth 

conditions on banana acidity. 

Combining the three models in a global model of banana acidity, and the possible use 

of this model for varietal improvement are discussed. 
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Introduction Générale 

1 Contexte de la thèse 

La banane dessert est la deuxième production fruitière mondiale (106 millions de 

tonnes (MT) en 2011) et la première production agricole des Antilles françaises (298 000 T en 

2011) (FAOSTAT). La filière banane dessert des Antilles françaises, qui comprend 

essentiellement des variétés du sous-groupe Cavendish (Musa spp AAA), est exportée en 

totalité au sein de l’Union européenne (Loeillet, 2008), et se caractérise donc par des phases 

de production et de maturation bien distinctes. On parle ainsi de phase pré récolte pour 

décrire la période de croissance du fruit sur la plante, et de phase post récolte pour décrire 

la période de transport, stockage et maturation des fruits après récolte (Fig. 1). La banane 

étant un fruit climactérique, l’initiation de la maturation après récolte est déclenchée par un 

traitement à l’éthylène.  

La filière banane dessert des Antilles doit faire face à plusieurs enjeux : d’une part une 

concurrence accrue avec les pays d’Amérique latine et d’Afrique (Maillard, 2002), et d’autre 

part une pression parasitaire importante due à la sensibilité du sous-groupe Cavendish aux 

cercosporioses jaune et noire, deux maladies fongiques foliaires importantes du 

bananier présentes aux Antilles (Jeger et al., 1995). Dans ce contexte, la création de variétés 

de banane dessert présentant des qualités gustatives différentes de celle du standard 

Cavendish (Bugaud et al., 2011) et une résistance aux principales maladies (Abadie et al., 

2007) apparaît comme une voie privilégiée pour accroître la viabilité et la durabilité de la 

filière. Depuis une vingtaine d’années, le Centre de Coopération Internationale en Recherche 

Agronomique pour le Développement (CIRAD) travaille donc sur la création d’hybrides 

alliant ces deux caractéristiques, mais  les hybrides proposés jusqu’ici ont été rejetés par les 

consommateurs pour cause de défauts sensoriels. Il apparaît alors nécessaire de comprendre 

les mécanismes impliqués dans l’élaboration de la qualité sensorielle de la banane afin de 

pouvoir proposer des hybrides répondant aux exigences des consommateurs. 

 Les saveurs sucrée et acide jouent un rôle crucial dans l’acceptabilité des fruits par les 

consommateurs (Mehinagic et al., 2012). Récemment, une étude multivariétale a montré 

l’importance de ces saveurs dans l’expression de la diversité sensorielle de variétés de 

bananes dessert (Bugaud et al., 2011). Chez de nombreux fruits, et notamment la banane, les 

saveurs sucrée et acide sont principalement pilotées par les concentrations en acides 

organiques (Esti et al., 2002; Harker et al., 2002; Tieman et al., 2012), essentiellement le 

malate et le citrate (Bugaud et al., 2013; Seymour et al., 1993). La compréhension de 
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l’élaboration de la qualité sensorielle de la banane passe donc par l’étude des mécanismes 

impliqués dans l’accumulation de ces deux acides organiques. 

La majeure partie du citrate et du malate stockés dans les cellules de la pulpe des fruits 

est synthétisée au sein du fruit (Bollard, 1970; Sweetman et al., 2009; Ulrich, 1970).  Ces 

deux acides sont impliqués dans de nombreuses voies métaboliques et jouent donc un rôle 

important dans la physiologie du fruit. Le malate et le citrate sont synthétisés et dégradés au 

travers de différentes voies métaboliques localisées dans différents compartiments cellulaires. 

Dans la mitochondrie se déroule le cycle de Krebs, une des voies métaboliques centrales pour 

la vie cellulaire, et au sein duquel le malate et le citrate peuvent être produits ou dégradés 

(Sweetlove et al., 2010). Dans le cytosol, le malate est produit par la carboxylation du 

phosphoénolpyruvate (PEP), un intermédiaire de la glycolyse, et est dégradé en PEP, par la 

voie métabolique inverse, ou bien en pyruvate (Sweetman et al., 2009). Dans le cytosol, le 

citrate peut être dégradé au travers de deux voies cataboliques : le GABA shunt qui conduit à 

la synthèse du γ-aminobutirate (Bown and Shelp, 1997), et la voie de synthèse de l’acetyl-

CoA conduisant in fine à la synthèse de flavoinoids et isoprenoids (Fatland et al., 2002). Dans 

le glyoxysome se déroule le cycle du glyoxylate dont la fonction finale est de convertir les 

acides gras en glucose et au sein duquel le malate et le citrate participent en tant 

qu’intermédiaires (Pracharoenwattana and Smith, 2008). La localisation de ces voies 

métaboliques dans différents compartiments cellulaires implique l’existence de mécanismes 

de transports permettant aux métabolites de transiter entre chacun d’eux. Ainsi, chez les 

plantes, plusieurs types de transporteurs ont été mis en évidence sur la membrane  

mitochondriale interne (Haferkamp and Schmitz-Esser, 2012), ainsi que sur la membrane du 

glyoxysome (Rottensteiner and Theodoulou, 2006). Le citrate et le malate sont stockés dans la 

vacuole des cellules de la pulpe du fruit grâce à un système de transports membranaires 

extrêmement complexe gouverné par les lois thermodynamiques de transport de solutés au 

travers d’une membrane biologique et faisant intervenir différentes types de transporteurs 

(Shiratake and Martinoia, 2007). La compréhension des mécanismes d’accumulation du 

citrate et du malate dans le fruit nécessite donc d’étudier le métabolisme et le stockage 

vacuolaire de ces acides afin d’identifier les principaux processus contrôlant leurs 

accumulation. 

Plusieurs études ont mis en lumière le rôle des facteurs génétiques sur l’accumulation 

du citrate et du malate dans la pulpe des fruits (cf. (Etienne et al., 2013b)). Chez de 

nombreuses espèces de fruits, des phénotypes dits « doux » et « acides » ont été identifiés et 

des études de transcriptomique, protéomique, ou encore métabolomique ont mis en évidence 

certains gènes et enzymes potentiellement à l’origine de ces différences phénotypiques 
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(Berüter, 2004; Chen et al., 2009; Sadka et al., 2000a; Yao et al., 2009). Concernant la 

banane, il a été montré que les concentrations en malate et citrate de la pulpe varient de 

manière significative entre cultivars (Bugaud et al., 2013), ce qui met en évidence une forte 

composante génétique dans la détermination de l’acidité de la banane. Cependant, il n’existe 

à ce jour aucune information sur les origines physiologiques d’une telle variabilité 

génotypique. 

L’accumulation des acides organiques dans la pulpe des fruits est sous l’influence de 

facteurs agro-environnementaux. Ainsi, il a été montré que la température ainsi que la 

disponibilité hydrique avaient une influence sur l’acidité de fruits tels que la tomate (Veit‐

Köhler et al., 1999), la pomme (Mills et al., 1996) ou encore les agrumes (Kallsen et al., 

2011; Thakur and Singh, 2012). Certaines pratiques culturales, telles que la manipulation du 

rapport feuille : fruit et la fertilisation potassique, ont également une influence sur l’acidité 

des fruits tels que la pêche (Wu et al., 2002), la mangue (Léchaudel et al., 2005b), l’ananas 

(Spironello et al., 2004), ou encore le citron (Alva et al., 2006). Plusieurs études ont révélé 

l’influence des facteurs pré récolte sur l’acidité de la banane pendant la maturation post 

récolte. Ainsi, il a été montré que l’altitude de même que le site et la période de production 

ont un effet significatif sur les concentrations en citrate et malate dans la banane mûre après 

récolte (Bugaud et al., 2006; Bugaud et al., 2009). Ramesh Kumar et Kumar (2007) ainsi que 

Vadivel et Shanmugavelu (1978) ont observé que la fertilisation potassique des bananiers 

entraînait une diminution significative de l’acidité titrable des bananes mûres après récolte. 

L’âge physiologique du fruit à la récolte semble aussi avoir un effet sur l’accumulation des 

acides pendant la maturation post récolte puisque une étude a montré que les fruits mûrs 

(après maturation post récolte) récoltés plus tôt avaient des concentrations plus élevées en 

malate et moins élevées en citrate que les fruits récoltés plus tard (Bugaud et al., 2006). Il 

semble donc que les conditions de production en pré récolte peuvent affecter les 

concentrations en citrate et malate dans la pulpe de banane après récolte, d’où 

l’importance d’adopter une approche intégrative liant les phases pré et post récolte (Fig. 1). 

L’acquisition de connaissances sur les facteurs pré récolte qui influencent l’acidité de la 

banane au cours de la maturation post récolte est nécessaire pour innover en matière de 

pratiques culturales permettant d’obtenir des fruits mûrs présentant un niveau d’acidité 

satisfaisant. 

Depuis quelques années, l’utilisation de modèles écophysiologiques se révèle être un 

outil puissant pour étudier les effets du génotype et de l’environnement sur la physiologie de 

la plante (Génard et al., 2007; Hammer et al., 2006; Struik et al., 2005). Les modèles 

écophysiologiques ont pour but de décomposer une variable très intégrative en processus 
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élémentaires et permettent ainsi d’identifier les mécanismes physiologiques qui pilotent cette 

variable et de voir à quels niveaux jouent les facteurs environnementaux. Les modèles 

écophysiologiques contiennent un certain nombre de paramètres indépendants de 

l’environnement et pouvant prendre des valeurs différentes selon le génotype, et sont donc un 

outil intéressant pour analyser la variabilité génotypique d’un trait (Quilot and Génard, 2005; 

Wu et al., 2012). A l’échelle du fruit, plusieurs modèles écophysiologiques ont été proposés 

permettant de prédire différents critères de sa qualité tels que l’accumulation des sucres (Dai 

et al., 2009; Génard and Souty, 1996), de la matière sèche (Léchaudel et al., 2005a; 

Lescourret et al., 1998) et de l’eau (Fishman and Génard, 1998; Léchaudel et al., 2007; Liu 

and Génard, 2007). Bien que l’acidité soit un critère important de la qualité du fruit, plus rares 

sont les modèles qui s’attachent à décrire son élaboration. A ce jour, aucun modèle décrivant 

la variabilité génotypique et environnementale de l’acidité de la banane n’a été proposé. 

Cependant, des modèles écophysiologiques permettant de prédire les concentrations en citrate 

et malate dans le fruit ont été développés chez la pêche. Ils représentent de manière simplifiée 

les principaux mécanismes cellulaires impliqués dans l’accumulation de ces deux acides 

(Lobit et al., 2006; Lobit et al., 2003; Wu et al., 2007) et permettent de prédire les 

changements de teneurs en acides au cours du développement du fruit en réponse à certains 

facteurs agro-environnementaux. Ils peuvent donc constituer une base pour la construction 

de tels modèles adaptés aux particularités liées à l’espèce Musa et à son mode de 

production. L’utilisation de ces modèles pourra permettre d’apporter des éléments de 

réponse sur les origines de la variabilité génotypique et sur les déterminants physiologiques 

de l’accumulation du malate et du citrate dans la pulpe de banane au cours de la 

croissance et de la maturation post récolte du fruit.  
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Figure 0-1 Cultural practices might affect organic acids concentrations both during the pre and 
postharvest stages of banana development.  

 

2 Objectifs de la thèse 

Mon travail de thèse a porté sur la compréhension des processus physiologiques 

impliqués dans l’accumulation du citrate et du malate chez la banane dessert. Les facteurs 

génotypiques et agro-environnementaux pouvant avoir une forte influence sur l’acidité des 

fruits (cf. Contexte de la thèse), je me suis notamment intéressée à leur influence sur 

l’accumulation des acides organiques chez la banane dessert. La démarche choisie dans ce 

travail a été de combiner analyse expérimentale et modélisation, en adoptant une approche 

intégrative liant les phases pré et post récolte (associée à la phase de consommation). L’accent 

a été mis sur l’étude de l’effet de la charge en fruit, de la fertilisation potassique et du stade de 

récolte, trois facteurs agronomiques couramment manipulés par les producteurs de banane et 

connus pour affecter l’acidité des fruits (cf. Contexte de la thèse).  

Dans un premier temps, des connaissances ont donc été acquises sur l’effet de ces trois 

pratiques agronomiques sur l’accumulation du citrate et du malate dans la pulpe de banane 

durant les phases pré et post récolte, au travers d’expérimentations agronomiques. Afin de 

prendre en compte la variabilité génotypique, trois génotypes de banane dessert présentant des 

acidités contrastées à maturité ont été étudiés.  
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Dans un deuxième temps, l’intégration des données expérimentales acquises dans des 

modèles écophysiologiques de prédiction des concentrations en citrate et malate dans la pulpe 

de banane, a permis de proposer des hypothèses sur les origines des différences génotypiques 

au niveau cellulaire et sur l’effet des facteurs agronomiques observés expérimentalement. Les 

modèles ont été construits sur la base de ceux proposés par Lobit et al. (2006; 2003; 2002) 

pour la pêche. L’étude a porté à la fois sur les phases pré et post récolte afin de voir quels 

pourraient être les origines physiologiques des différences de profils d’accumulation en acides 

organiques entre ces deux phases.  

La finalité de cette thèse est d’apporter des éléments de compréhension sur les 

mécanismes de régulation de l’accumulation du citrate et du malate chez la banane dessert, et 

notamment de fournir des pistes sur l’origine de la variabilité génotypique. 

 

3 Plan de la thèse 

Cette thèse est organisée en trois chapitres principaux. Le chapitre I est une synthèse 

bibliographique sur les mécanismes cellulaires impliqués dans l’accumulation du citrate et 

du malate dans les cellules de la pulpe des fruits. L’objectif de cette synthèse est d’identifier 

les processus qui pilotent l’accumulation du citrate et du malate dans les cellules de la pulpe 

du fruit. Les effets de différents facteurs agro-environnementaux (température, disponibilité 

hydrique, charge en fruit, fertilisation) sur l’acidité des fruits sont également analysés pour 

tenter de comprendre sur quels mécanismes cellulaires ils agissent. Les conclusions de cette 

synthèse seront mobilisées par la suite pour la construction des modèles écophysiologiques. 

Le chapitre II présente les résultats expérimentaux des effets de la charge en fruit, de 

la fertilisation potassique et du stade de récolte sur l’accumulation du citrate et du malate chez 

trois génotypes de banane dessert présentant des acidités contrastées. Cette étude nous a 

permis de voir si ces facteurs influencent les teneurs en acides organiques de la même manière 

chez les trois cultivars, et quelles phases de développement, à savoir croissance et/ou 

maturation post récolte, sont affectées. 

Le chapitre III décrit le développement de modèles écophysiologiques permettant de 

prédire différents critères d’acidité du fruit. Cette approche, basée sur l’intégration des 

données expérimentales acquises, a permis de proposer des hypothèses sur les processus 

physiologiques qui pilotent l’acidité de la banane et sur les origines de la variabilité 

génotypiques au niveau cellulaire. L’étude a porté à la fois sur les phases pré et post récolte 

afin de voir quels pourraient être les origines physiologiques des différences de profils 

d’accumulation en acides organiques entre ces deux phases. Ce chapitre est organisé en trois 
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parties. La première partie présente un modèle de prédiction du pH et de l’acidité titrable 

de la pulpe de banane à travers la représentation des équilibres acido-basiques (Lobit et al., 

2002). La deuxième partie présente un modèle d’accumulation du malate dans la pulpe de 

banane basé sur une représentation simplifiée du mécanisme de transport du malate dans la 

vacuole (Lobit et al., 2006). La troisième partie présente un modèle d’accumulation du 

citrate dans la pulpe de banane basé sur une représentation simplifié du cycle de Krebs dans 

la mitochondrie. 

Enfin, la conclusion générale des travaux présentés débouche sur des perspectives 

ouvertes. L’intégration des trois modèles développés est présentée et son utilisation 

potentielle est abordée. L’utilisation d’un tel modèle écophysiologique, combiné à des 

données génétiques, dans le cadre de la sélection variétale est discutée. 
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4 Publications et communications scientifiques 

Publications dans des revues scientifiques soumises à comité de lecture 

Etienne A., Génard M., Lobit P., Mbéguié-A-Mbéguié D., Bugaud C., 2013.  What controls 

fleshy fruit acidity? A review of malate and citrate accumulation in fruit cell. Journal of 

Experimental Botany; 64(6):1451-1469. 

Etienne A., Génard M., Bancel B., Benoit S., Nonone M., Bugaud C., 2013. A model 

approach revealed the relationship between banana pulp acidity and composition during 

growth and post-harvest ripening. Scientia Horticulturae; 162:125-134. 

Etienne A., Génard M., Bancel B., Benoit S., Bugaud C., (accepté dans Scientia 

Horticultuare). Citrate and malate accumulation in banana fruit (Musa sp. AA) is highly 

affected by genotype and fruit age, but not by cultural practices. 

Etienne A., Génard M., Bugaud C., (soumis à Plant Physiology). A model of TCA cycle 

functioning to analyze citrate accumulation in pre and post-harvest fruits: application to 

banana fruit (Musa sp. AA).  

Etienne A., Génard M., Lobit P., Bugaud C., (à soumettre en février-mars). Modeling the 

vacuolar storage of malate shed lights on malate accumulation in pre and post-harvest banana 

(Musa sp. AA). 

 

Communication orale 

Etienne A., Génard M., Bancel B., Benoit S., Nonone M., Barre F., Bugaud C., 2012. 

Modeling changes in pH and titratable acidity during the maturation of dessert banana. 2nd 

International Symposium on Horticulture in Europe - SHE2012, Angers, France, July 1-5 

2012.  
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Objectifs 

Ce chapitre est une synthèse bibliographique sur les avancées faites dans la compréhension 

des mécanismes cellulaires impliqués dans l’accumulation du citrate et du malate dans les 

cellules de la pulpe des fruits charnus, en mettant l’accent sur les origines possibles des 

différences variétales ainsi que sur l’influence des facteurs agro-environnementaux. Les 

conclusions de cette synthèse seront mobilisées par la suite pour la construction des modèles 

écophysiologiques. Ce chapitre a fait l’objet d’une publication dans Journal of Experimental 

Botany sous la forme d’une review intitulée « What controls fleshy fruit acidity? A review of 

malate and citrate accumulation in fruit cells ».  

 

Principaux résultats 

•  L’accumulation du citrate et du malate dans la pulpe des fruits est le résultat de 

l’interaction complexe entre métabolisme et stockage vacuolaire. 

•  L’accumulation du citrate semble être pilotée par le cycle de Krebs et donc par la 

respiration, alors que l’accumulation du malate semble être pilotée par le stockage 

vacuolaire.  

•  Plusieurs facteurs environnementaux (température et disponibilité en eau) et pratiques 

culturales (charge en fruit, fertilisation potassique) affectent l’acidité des fruits en 

agissant sur différents mécanismes cellulaires (métabolisme, stockage vacuolaire, 

accumulation d’eau).  
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Abstract 

Fleshy fruit acidity is an important component of fruit organoleptic quality and is mainly due 

to the presence of malic and citric acids, the main organic acids found in most ripe fruits. The 

accumulation of these two acids in fruit cells is the result of several interlinked processes that 

take place in different compartments of the cell and appear to be under the control of many 

factors. This review combines analyses of transcriptomic, metabolomic, and proteomic data, 

and fruit process-based simulation models of the accumulation of citric and malic acids, to 

further our understanding of the physiological mechanisms likely to control the accumulation 

of these two acids during fruit development. The effects of agro-environmental factors, such 

as the source: sink ratio, water supply, mineral nutrition, and temperature on citric and malic 

acid accumulation in fruit cells have been reported in several agronomic studies. This review 

sheds light on the interactions between these factors and the metabolism and storage of 

organic acids in the cell.  
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1 Introduction  

Fleshy fruit acidity, as measured by titratable acidity and/or pH, is an important component of 

fruit organoleptic quality (Bugaud et al., 2011; Esti et al., 2002; Harker et al., 2002). Fruit 

acidity is due to the presence of organic acids, and malic and citric acids are the main acids 

found in most ripe fruits (Seymour et al., 1993). Understanding the factors that influence the 

concentration of these acids in fruit cells is thus of primary importance for fruit quality 

improvement.   

The predominant organic acid in ripe fruit varies among species. Malic acid is 

dominant in apple (Yamaki, 1984), loquat (Chen et al., 2009), and pear (Lu et al., 2011), 

whereas citric acid is dominant in citrus fruits (Yamaki, 1989). In many fruit species, 

differences in total acidity or in the balance of organic acids among cultivars are also 

observed, e.g. in loquat (Yang et al., 2011), peach (Etienne et al., 2002), pear (Lu et al., 

2011), citrus (Albertini et al., 2006), pineapple (Saradhuldhat and Paull, 2007), apricot 

(Gurrieri et al., 2001) and banana (Bugaud et al., 2011).  

The processes involved in the metabolism and accumulation of malic and citric acids 

in mesocarp cells are under both genetic and environmental control. Transcriptomics (Cercos 

et al., 2006; Deluc et al., 2007; Etienne et al., 2002), metabolomics (Deluc et al., 2007; Katz 

et al., 2011), proteomics (Famiani et al., 2005; Katz et al., 2007), and QTLs (Lerceteau-

Köhler et al., 2012; Schauer et al., 2006; Xu et al., 2012) studies have helped decipher some 

of the mechanisms that control acidity, and intervene at cellular level. Many agronomic 

studies have shown the impacts of cultural practices, including irrigation (Thakur and Singh, 

2012; Wu et al., 2002), mineral fertilization (Cummings and Reeves, 1971; Ramesh Kumar 

and Kumar, 2007; Spironello et al., 2004), thinning (Léchaudel et al., 2005b; Souty et al., 

1999; Wu et al., 2002), and environmental factors like temperature (Burdon et al., 2007; 

Gautier et al., 2005; Wang and Camp, 2000), on fruit acidity, but how they affect malic and 

citric acid accumulation in the cell is still not clear.  

In the last few years, process-based simulation models (PBSMs) of fruit have been 

increasingly used to simulate the metabolic and biophysical aspects of cell behavior (Martre 

et al., 2011) and appear to be a powerful tool to study genotype x environment interactions 

(Bertin et al., 2010). Fruit PBSMs of the accumulation of citric acid (Lobit et al., 2003; Wu et 

al., 2007) and malic acid (Lobit et al., 2006) have been developed to predict citric and malic 

acid concentrations in the whole fruit during development in peach. 

The aim of this review is to elucidate the physiological mechanisms that probably 

control citric and malic acid accumulation during fruit development and their possible 
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regulation by genetic and agro-environmental factors. To this end, the review combines 

analyses of transcriptomic, metabolomic, and proteomic data related to malic and citric acid 

metabolism, and also the PBSMs of citric and malic acids. The three first sections describe 

the cell mechanisms involved in malic and citric acid accumulation and their regulation. The 

last section deals with the effects of agro-environmental factors (source: sink ratio, mineral 

fertilization, water supply, and temperature) on citric and malic acid accumulation and the 

related cell mechanisms they may affect. 

In this review, the terms “malate” and “citrate”, which usually describe the conjugate 

base of malic and citric acids, refer to all physiological forms of each compound. 

 

2 Several pathways exist for malate and citrate metabolism in the mesocarp 

cells of fleshy fruits 

Even though some organic acids are supplied by the sap, variations in the acidity of fleshy 

fruits are mainly due to the metabolism of malate and citrate in the fruit itself (Bollard, 1970; 

Sweetman et al., 2009; Ulrich, 1970). This section presents the metabolic pathways involved 

in the metabolism of the dicarboxylate malate and the tricarboxylate citrate. We first describe 

the pathways responsible for the initial formation of organic acids (carboxylation of 

phosphoenolpyruvate (PEP) in the cytosol), then the pathways responsible for the degradation 

of organic acids (decarboxylation of malate and oxaloacetate (OAA) in the cytosol), and 

finally those that allow conversion between tri- and di-carboxylates (the TCA cycle in the 

mitochondria, the glyoxylate cycle in the glyoxysome, and citrate catabolism in the cytosol) 

(Fig. I.1).  

 

2.1 First step in organic acids synthesis: PEP carboxylation in the cytosol 

Formation of acidity involves the synthesis of organic acids, mostly malate and citrate, which 

can be stored in the vacuole in large amounts. As citrate is produced from dicarboxylates 

(mostly malate) (see following section), the first step in the development of acidity is the 

synthesis of dicarboxylates, namely malate and OAA. These require fixation of CO2 on a 

carbon skeleton derived from hexose catabolism (Hardy, 1968; Young and Biale, 1968), 

which is achieved by the carboxylation of PEP, catalyzed by the phosphoenolpyruvate 

carboxylase (PEPC). This reaction takes place in the cytosol, since PEP is an intermediate of 

the glycolysis pathway, and produces OAA, which can then be reduced into malate by the 

cytosolic NAD-dependant malate dehydrogenase (NAD-cytMDH) (Givan, 1999) or supplied 

the TCA cycle if replenishment is necessary (Leegood and Walker, 2003)  (Fig. I.1).  
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Figure I-1 Citrate and malate metabolic pathways in fruit mesocarp cells. Only the enzymes 
described in the paper are shown. ACO: aconitase; ATP-CL: ATP-citrate lyase; CS: citrate 
synthase; ICL: isocitrate lyase; MS: malate synthase; NAD-MDH: NAD-malate dehydrogenase; 
NAD-ME: NAD-malic enzyme; NAD-IDH: NAD-isocitrate d ehydrogenase; NADP-ME: NADP-
malic enzyme; NADP-IDH: NADP-isocitrate dehydrogenase; PDH: pyruvate dehydrogenase; 
PEPC: phosphoenolpyruvate carboxylase; PEPCK: phosphoenolpyruvate carboxykinase; 
PPDK: pyruvate orthophosphate dikinase. The probable direction of reversible reactions is 
indicated by the large arrow. Dashed blue arrows indicate malate and citrate transport. Names 
in orange are dicarboxylates and names in red are tricarboxylates. 
 

Multiple PEPC isoforms have been detected in fruits and are possibly the result of 

transcriptomic (Sweetman et al., 2009; Yao et al., 2009) and/or post-translational regulations 

(Sweetman et al., 2009). PEPC is controlled by both cytosolic pH and malate concentration 

(Davies, 1986; Lakso and Kliewer, 1975a; Possner et al., 1981) in a way that stabilize the 

cytosolic pH (Smith and Raven, 1979). In grape berries, transcriptomic analysis (Or et al., 

2000; Terrier et al., 2005) and measurement of enzymatic activity (Diakou et al., 2000; 

Hawker, 1969; Ruffner et al., 1976) pointed to the role of PEPC in malate accumulation 

throughout fruit development. Several studies based on analyses of transcriptomic and 

enzymatic activity suggest that PEPC is not responsible for the difference in malate content 

between low and high acid peach cultivars (Moing et al., 2000), apple (Yao et al., 2009), and 

loquat (Chen et al., 2009).  
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NAD-cytMDH catalyzes the reversible conversion of malate into OAA, the most 

likely direction being the synthesis of malate (Sweetman et al., 2009; Yao et al., 2011). Even 

if a mitochondrial form is also present in fruit cells (see following section), it has been shown 

in several fruits that NAD-cytMDH represents 70% to 80% of total NAD-dependant MDH 

(Abou-Zamzama and Wallace, 1970; Taureilles-Saurel et al., 1995), explaining why total 

NAD-dependant MDH activity is generally related to malate synthesis in fruits (Chen et al., 

2009; Martınez-Esteso et al., 2011; Zhao et al., 2007). Yao et al. (2011) showed that over 

expression of the apple MdcyMDH gene encoding NAD-cytMDH resulted in an increase in 

malate, fructose and sucrose content, suggesting its direct involvement in malate synthesis. 

Over expression of MdcyMDH also resulted in the up regulation of several malate-related 

genes/enzymes, suggesting an indirect role in malate accumulation. 

 

2.2 Organic acids degradation: malate and OAA decarboxylation in the cytosol 

Loss of acidity implies decarboxylation of carboxylates, which can occur through the 

conversion of tricarboxylates into dicarboxylates (described later in the review), but also 

through decarboxylation of the dicarboxylates malate and OAA leading to the degradation of 

organic acids (Fig. I.1). Decarboxylation of OAA and malate allows the production of PEP 

and is linked to the activation of gluconeogenesis (Sweetman et al., 2009). Gluconeogenesis 

is a metabolic pathway that results in the generation of glucose from PEP. It occurs mostly 

during fruit ripening when sugars accumulate rapidly (Sweetman et al., 2009). In the past few 

years, proteomics (Katz et al., 2011), transcriptomics and metabolite (Carrari et al., 2006; 

Deluc et al., 2007; Fait et al., 2008) analyses have provided evidence for a shift from the 

accumulation of organic acids to sugar synthesis during the final stage of development in 

several fruit species. 

PEP can originate from OAA through the activity of phosphoenol carboxykinase 

(PEPCK) which catalyzes the reversible reaction, the most likely direction being the synthesis 

of PEP (Leegood and Walker, 2003). This reaction requires a source of OAA that could be 

supplied by the oxidation of malate by NAD-cytMDH. This hypothesis is supported by the 

fact that PEPCK is involved in the dissimilation of malate in the flesh of several fruits 

(Famiani et al., 2005) and possibly in the lack of malate in low acid apple cultivars (Berüter, 

2004). 

PEP can also originate from the conversion of pyruvate through pyruvate 

orthophosphate dikinase (PPDK) activity (Sweetman et al., 2009). The pyruvate required for 

PPDK may be supplied through the carboxylation of malate by cytosolic NADP-dependant 

malic enzyme (NADP-cytME), which catalyzes a reversible conversion, the most likely 
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direction being the decarboxylation of malate (Sweetman et al., 2009). NADP-cytME appears 

to be involved in the decrease in malate content during the ripening of several fruit species 

(Chen et al., 2009; Dilley, 1962; Goodenough et al., 1985; Sweetman et al., 2009). 

Involvement of NADP-cytME during the early stage of fruit growth differs between species. 

Thus, in young tomato and apple fruits, NADP-cytME does not appear to play an important 

role in malate accumulation (Dilley, 1962; Goodenough et al., 1985) whereas in young grape 

berries the use of a proteomics approach suggested the opposite (Martınez-Esteso et al., 

2011). The contribution of NADP-cytME to the lack of malate in ripe pulp of low acid 

cultivars has been demonstrated in apple (Yao et al., 2009), and loquat (Chen et al., 2009). 

Studies of different fruit species suggest that NADP-cytME is regulated at the post 

translational level (Bahrami et al., 2001; Famiani et al., 2000; Yang et al., 2011; Yao et al., 

2009) by cytosolic pH and malate concentration, among others (Davies, 1986; Lakso and 

Kliewer, 1975a; Possner et al., 1981).  

Decarboxylation of malate and OAA may also be linked to fermentative  metabolism 

as it can occur in ripening fruit if the cytosol becomes too acidic (for review see (Sweetman et 

al., 2009)). 

 

2.3 Conversions between di- and tri-carboxylic acids: multiple compartments, multiple 

pathways  

Once malate and OAA have been synthesized in the cytosol, they can be converted into 

tricarboxylates, mostly citrate, or other dicarboxylates through two metabolic pathways, the 

TCA cycle and the glyoxylate cycle. In its turn, citrate can be converted into dicarboxylates 

via several pathways (TCA cycle, glyoxylate cycle, GABA shunt, and acetyl CoA 

catabolism). All these conversion reactions can modify the acidity of fruit cells. 

 

2.3.1 The TCA cycle in the mitochondria: conversions between di- and tricarboxylates  

The TCA cycle results in the oxidation of pyruvate into CO2 and a reduction in co-enzymes 

through a series of conversions between organic acids including malate and citrate (Fig. I.1). 

The cycle begins with the condensation of OAA and acetyl CoA, the latter provided by the 

action of pyruvate dehydrogenase on mitochondrial pyruvate. The input of acetyl CoA allows 

the TCA cycle to maintain a cyclic flux mode under which it is not able to catalyze net 

synthesis of cycle intermediates. Therefore, export of intermediates implies non-cyclic flux 

modes that are known to occur in plants and have been evidenced in citrus fruit (Katz et al., 

2011), and are likely to be controlled by ATP demand (Sweetlove et al., 2010). The 
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maintenance of the pools of TCA cycle intermediates implies that for each metabolite 

exported, one is imported and vice versa. These exchanges are achieved by a variety of 

mechanisms mediated by mitochondrial carrier proteins (for review see (Haferkamp and 

Schmitz-Esser, 2012; Laloi, 1999)) that obey the general principles behind the transport of 

ionic species across a biological membrane (Fig. I.2 and I.3). In fruits, mitochondrial 

dicarboxylate/tricarboxylate transporters have been characterized at the gene level in citrus 

(Deng et al., 2008) and grape berry (Regalado et al., 2013), and at the protein level in citrus 

(Katz et al., 2007). 

 

 

Figure I-2 Mechanisms of transport of ionic species across a biological membrane. Membrane 
transport is mediated by three types of membrane proteins: channels, carriers, and pumps. 
Channels function as selective pores through which molecules or ions can diffuse across the 
membrane. Carriers catalyze either the transport of a single solute, or the coupled transport of 
two solutes. Pumps catalyze the coupled transport of a solute with a chemical reaction. Three 
mechanisms allow the transport of an ionic species (X-) across a biological membrane (from 
compartment 1 to compartment 2) and are governed by a general principle of thermodynamics 
stating that the variation in free energy of the transport reaction (∆G1-2) has to be negative. (i) 
Diffusion (simple or facilitated) is mediated by channels (A) in the case of simple diffusion, or by 
carriers (B) in the case of facilitated diffusion. This kind of transport allows the spontaneous 
movement of X- down its electrochemical-potential gradient (∆G(X-)1-2<0), which depends on the 
electric potential gradient of the membrane (∆ψ) and on the gradient of concentrations of X- on 
the two sides of the membrane. ∆G1-2= ∆G(X-)1-2 = zF∆ψ + RTln([X -]2/ [X

-]1) <0 where z is the 
electric charge of the ionic species transported; F is Faraday’s constant; R is gas constant; T is 
temperature. (ii) Primary active transports are mediated by a specific class of proteins called 
pumps (C). This kind of transport allows the movement of X- against its electrochemical-
potential gradient (∆G(X-)2-1 >0) using the energy released from the hydrolysis of ATP or PPi 
(∆GATP (or PPi) <0). ∆G2-1=∆GATP (or PPi) + ∆G(X-)2-1 <0. (iii) Secondary active transports are 
mediated by two types of carrier proteins: antiports (D) and symports (E). This kind of 
transport allows the movement of X- against its electrochemical-potential gradient (∆G(X-)2-1 >0) 
using the energy dissipated by the downhill movement of a molecule across the membrane 
(∆G(B)1-2 <0 in the case of antiport, ∆G(C)2-1 <0 in the case of symport). Antiport: ∆G2-1= ∆G(X-

)2-1 + ∆G(B)1-2 <0. Symport: ∆G2-1= ∆G(X-)2-1 + ∆G(C)2-1<0. 
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Figure I-3 Mitochondrial carriers involved in citra te and malate transport. CTP: citrate 
transport protein; DTC: dicarboxylate-tricarboxylat e carrier; DTP: dicarboxylate transport 
protein; OAT: oxaloacetate-malate transporter; OMT: oxoglutarate-malate translocator; PiC: 
phosphate carrier. The orange arrow represents the inhibition of malate efflux through the OAT 
by OAA. The electrochemical potential gradient of protons (green triangle) generates an electric 
potential gradient (negative inside) and a pH gradient (alkaline inside) that both play a role in 
the transport of organic acids between the cytosol and the mitochondria. 
 

Non-cyclic flux modes allow conversion of di- and tricarboxylates (Steuer et al., 2007; 

Sweetlove et al., 2010) and are sustained by the activities of the TCA cycle enzymes. The 

enzymes that directly control citrate synthesis are the mitochondrial citrate synthase (mtCS), 

and citrate degradation, the mitochondrial aconitase (mtACO), and the mitochondrial NAD-

dependant isocitrate dehydrogenase (NAD-mtIDH) (Fig. I.1). mtCS activity is positively 

correlated with citrate accumulation in citrus (Sadka et al., 2001; Wen et al., 2001) and 

strawberry (Iannetta et al., 2004), but transcriptomics and protein studies suggested that this 

enzyme is not responsible for the difference in citrate content between low and high acid 

cultivars of several fruit species (Canel et al., 1996; Etienne et al., 2002; Sadka et al., 2001; 

Saradhuldhat and Paull, 2007; Tang et al., 2010). The involvement of mtACO, which  

catalyzes the conversion of citrate into isocitrate (the most likely direction in mitochondria 

due to the way the cycle functions), in citrate accumulation has been described by Sadka 
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(2000a). He showed that in sour lemon, mtACO activity decreases in the early stage of fruit 

growth and could thus be responsible for the increase in citrate concentration observed during 

fruit growth. Two forms of isocitrate dehydrogenase, an NADP-dependant form (NADP-IDH) 

and an NAD-dependant form (NAD-IDH) can catalyze the conversion of isocitrate into 2-

oxoglutarate (the most likely direction in mitochondria like for mtACO). NAD-IDH is only 

found in mitochondria but has rarely been characterized in fruits and no links with citrate 

accumulation have been found (Sha et al., 2011). NADP-IDH is mainly localized in the 

cytosol (NADP-cytIDH), but is also found in mitochondria (NADP-mtIDH) and peroxisomes 

(Chen, 1998; Gálvez and Gadal, 1995). In sour lemon, Sadka (2000a) observed that NADP-

mtIDH activity decreased in the early stage of fruit growth in parallel with a decrease in 

mtACO activity (Sadka et al., 2000a; Sadka et al., 2000b). This could reflect a general 

reduction in citrate metabolism in the mitochondria. Malate can be oxidized in fruit 

mitochondria either in OAA by mitochondrial NAD-dependant malate dehydrogenase (NAD-

mtMDH) (the most likely direction in mitochondria (Sweetman et al., 2009)), which feeds the 

cycle, or in pyruvate by mitochondrial NAD-dependant malic enzyme (NAD-mtME), which 

interrupts the cycle (Macrae and Moorhouse, 1970) (Fig. I.1). These two competing metabolic 

pathways affect fruit acidity in different ways. While malate oxidation by NAD-mtMDH 

leads mainly to citrate production (Steuer et al., 2007; Sweetlove et al., 2010), hence affecting 

the malate:citrate ratio of fruit cells, malate oxidation by NAD-mtME leads to the degradation 

of acidity since organic acids must be imported into the mitochondria to compensate for the 

loss of malate. Malate metabolism in the mitochondria therefore depends on NAD-mtMDH 

and NAD-mtME activity, both of which are regulated by the concentration of NADH and the 

pH (Day et al., 1984; Douce, 1985; Palmer et al., 1982). In young tomato fruit, the majority 

of malate degradation could be due to NAD-mtME (Bahrami, 2001). Transcriptomics and 

proteomics analyses suggest that NAD-mtMDH is involved in malate degradation during 

grape berry ripening (Martınez-Esteso et al., 2011; Sweetman et al., 2009). 

 

2.3.2 Catabolism of citrate in the cytosol: conversion of citrate into dicarboxylates 

Once citrate has been produced by the TCA cycle, it can be degraded in the cytosol through 

two metabolic pathways. One is the gamma-aminobutyrate (GABA) synthesis pathway, also 

called GABA shunt, which leads to succinate synthesis, and the other is cleavage into OAA 

and acetyl-CoA (Fig. I.1). As these two pathways produce dicarboxylic acids, they are 

responsible for a decrease in fruit acidity.  
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The GABA synthesize pathway is a part of the amino acid metabolism since it 

produces two amino acids (glutamate and GABA). This pathway also leads to the production 

of succinate that can then enter the TCA cycle. Two major enzymes are involved in the 

catabolism of citrate through the GABA shunt: cytosolic aconitase (cytACO), which catalyzes 

the reversible conversion of citrate into isocitrate, and cytosolic NADP-dependant isocitrate 

dehydrogenase (NADP-cytIDH), which catalyzes the reversible conversion of isocitrate into 

2-oxoglutarate (Fig. I.1). The involvement of the GABA shunt in citrate degradation during 

the ripening of citrus fruits was evidenced by proteomics and metabolite analyses (Katz et al., 

2011), gene expression analyses (Cercos et al., 2006; Sadka et al., 2000b) and enzymatic 

activity analysis (Degu et al., 2011; Sadka et al., 2000b). Activation of the GABA shunt could 

partially account for the lack of citrate in sweet lemon since activation of the genes involved 

in the degradation of 2-oxoglutarate, the precursor for GABA synthesize, was observed 

(Aprile et al., 2011). Activation of the GABA shunt also appears to occur during post-harvest 

ripening of banana since an increase in 2-oxoglutarate content, NADP-IDH activity, mainly 

attributable to the cytosolic form (Chen and Gadal, 1990), and total ACO gene expression, 

was observed (Liu et al., 2004; Medina-Suárez et al., 1997). It is likely that the rate of citrate 

degradation through the GABA shunt is mainly controlled by cytACO and NADP-cytIDH 

activities. In several genotypes of citrus, the pattern of expression of two genes encoding 

cytACO was associated with the timing of acid content reduction in fruits (Terol et al., 2010). 

In tomato fruit, genetic and transgenic approaches demonstrated the key role of cytACO in 

the control of citrate content in ripe fruit (Morgan et al., 2013). In sour lemon, NADP-cytIDH 

gene expression and NADP-cytIDH activity increase during fruit development and could thus 

be involved in the decrease in citrate content (Sadka et al., 2000a). 

The alternative citrate breakdown pathway cleaves citrate into OAA and acetyl-CoA 

through the activity of the ATP-citrate lyase (ATP-CL) and leads to the synthesis of 

flavonoids and isoprenoids (Fig. I.1). During ripening, these compounds accumulate in the 

fruit (Giovannoni, 2004), so it is likely that citrate catabolism through this pathway is 

activated during this phase. Evidence for such activation was found in mango fruit. Indeed, 

ATP-CL activity increased considerably during ripening while there was a decrease in citrate 

content (Mattoo and Modi, 1970). Proteomics analysis identified ATP-CL in mature citrus 

fruit (Katz et al., 2007). However, this result is in contradiction with the decrease in the levels 

of mRNA in this gene during ripening of citrus fruits observed by Cercos (Cercos et al., 

2006). Thus, the role of this pathway in the decrease in acid in citrus fruit requires further 

investigation. 
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2.3.3 The glyoxylate cycle: conversion of succinate and malate 

The function of the glyoxylate cycle is to convert the acetyl CoA produced in the peroxisomes 

by β-oxidation of fatty acids into succinate via a series of reactions involving malate and 

citrate (Fig. I.1). Succinate is then converted into malate through the TCA cycle 

(Pracharoenwattana and Smith, 2008). Malate can then enter the gluconeogenesis pathway to 

produce glucose. In this way, the glyoxylate cycle decreases fruit acidity since it leads to the 

consumption of malate. 

The five key enzymes involved in this metabolic pathway are located in either 

glyoxysome (citrate synthase, isocitrate lyase (ICL), malate synthase (MS)) or cytosol 

(cytACO, NAD-cytMDH) (Pracharoenwattana and Smith, 2008) (Fig. I.1). The location of 

the enzymes requires several intermediates of the cycle to cross the glyoxysomial membrane, 

but which transport systems are involved is still not clear (Rottensteiner and Theodoulou, 

2006).  

The glyoxylate cycle is possibly involved in malate accumulation in young grape berry 

and ripening banana fruit (Pua et al., 2003; Terrier et al., 2005). Activation of the glyoxylate 

cycle during post harvest ripening of banana fruit could be a way to provide substrates for 

gluconeogenesis at a period when sugar accumulation is high (Liu et al., 2004; 

Surendranathan and Nair, 1976). However, the involvement of the glyoxylate cycle in organic 

acid accumulation during fruit development could be specific to certain fruit species since no 

ICL proteins were detected in the flesh of several berry fruits at any stage of development 

(Famiani et al., 2005). 

 

3 The complex mechanism of vacuolar storage of organic acids 

Most of the citrate and malate content of fruit is found in the vacuole (Moskowitz and 

Hrazdina, 1981; Yamaki, 1984), which occupies 90% of most mature fruit cells (Etxeberria et 

al., 2012; Fontes et al., 2011). This section is devoted to the mechanisms allowing their 

transport in and out of the vacuole.  

 

3.1 The “acid trap” mechanism  

The mechanism that allows the accumulation of citrate and malate in the vacuole has been 

described as the “acid trap”, and is enabled by the fact that these two weak acids can 

dissociate (Martinoia et al., 2007). In the cytosol, at neutral or slightly alkaline pH, almost all 

malate is in the form of dianion and almost all citrate in the form of trianion. In the vacuole, 

where the pH is acidic, the dominant species is either the protonated form or the monoanion 
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(a significant proportion of the acids may remain in the dianion form, or even in the trianion 

form in the case of citrate, only in fruits with high vacuolar pH). Only dianion malate and 

trianion citrate can be transported into the vacuole (Lüttge and Ball, 1979; Oleski et al., 1987; 

Rentsch and Martinoia, 1991) because the transport systems involved are specific to these 

chemical forms (Brune et al., 1998; Martinoia et al., 2007). Once they have crossed the 

tonoplast and reached the acidic vacuole, they are immediately protonated, which maintains 

their electrochemical-potential gradient and allows their continuous transport into the vacuole 

(Fig. I.4.A). It should be pointed out that trapping efficiency depends on both vacuolar pH and 

on the electric potential gradient across the tonoplast (∆ψ). On one hand, the lower the pH, the 

more effective the protonation and trapping mechanism, on the other hand, the ∆ψ contributes 

strongly to the electrochemical potential gradient of the di- and trianion. Efflux of the 

protonated forms of malate and citrate probably occurs through specific carriers, but little is 

known on this subject (see following sections).  

The sustained transport of organic anions must be accompanied by a simultaneous 

influx of the equivalent amount of cations to maintain the electroneutral state of the vacuole. 

This is achieved by the transport of either mineral cations (mostly potassium) or protons 

(released from the dissociation of weak acids in the cytosol), only the latter being responsible 

for the acidification of the vacuole.  

 

3.2 Malate crosses the tonoplast by facilitated diffusion 

Vacuolar dianion malate uptake occurs by facilitated diffusion (Maeshima, 2001; Rea and 

Sanders, 1987) (Fig. I.2.B). In Arabidopsis, vacuolar malate transport is mediated at least by a 

tonoplast malate transporter (AttDT) (Emmerlich et al., 2003) (Fig. I.4.A, n°1) and two 

members of the aluminium-activated malate transporter (ALMT) family, the AtALMT9 and 

AtALMT6 channels (Kovermann et al., 2007; Meyer et al., 2011) (Fig. I.4.A, n°2). An AttDT 

homolog has been identified in grape berries and could play a role in malate transport (Terrier 

et al., 1998). ALMTs may be responsible for vacuolar malate transport in fruits since four 

candidate genes homologous to AtALMT9 have been identified in grape berry (Rongala, 

2008), and two ALMT-like genes have been discovered in apple (Bai et al., 2012). 
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Figure I-4 (A) “Acid trap” mechanism  of vacuolar organic acid storage in fruit cells. Several 
tonoplastic carriers are involved in the transport of malate and citrate across the tonoplast. 
Once the dianions or trianions have crossed the tonoplast, they are immediately protonated due 
to the acid pH of the vacuole according to the following equations: Malate: H2Mal ↔ HMal - + 
H+
↔ Mal2- + 2H+, (pKa1~3.40, pKa2~5.10). Citrate: H3Cit ↔ H2Cit + H+ 

↔ HCit 2- + 2H+ ↔ Cit3- 
+ 3H+, (pKa1~3.10, pKa2~4.70, pKa3~6.40). The two vacuolar proton pumps are responsible for 
the acid pH of the vacuole and for the electric potential gradient across the tonoplast (∆ψ). The 
cation channel is also involved in the regulation of the ∆ψ. (B) Theoretical changes in citrate 
(orange line) and malate (blue line) concentrations in the vacuole as a function of the pH of the 
vacuole. The concentrations were calculated using the Nernst equation (that is ∆GMal

2- and 
∆GCit

3-
 are equal to zero, assuming that the dianion malate and trianion citrate are in 

thermodynamic equilibrium across the tonoplast) and the dissociation equations of the two 
organic acids with a vacuolar pH ranging from 4.5 to 6, and a ∆ψ equal to 30 mV (Martinoia et 
al., 2007). We did not consider any limitation by tonoplastic carriers. 
Nernst equations:  

�������	�
 � �������
�
 ∗ ���
�∗�∗∆�
�∗�  

���
���	�
 � ���
���
�
 ∗ ���
�∗�∗∆�
�∗�  

Dissociation equations: 
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where ∆ψ is the tonoplastic electric potential gradient; (Mal2-)cyt is the cytosolic activity of the 
dianion malate that is equal to the product of the cytosolic concentration and activity coefficient 
of the dianion malate; (Cit3-)cyt is the cytosolic activity of the trianion citrate; [Mal 2-]vac is the 
vacuolar concentration of the dianion malate; [Cit3-]vac is the vacuolar concentration of the 
trianion citrate; F is Faraday’s constant; R is gas constant; T is temperature; K’m1, K’ m2, are 
apparent acidity constants of malate; K’c1, K’ c2, K’ c3, are apparent acidity constants of citrate; 
h=10-pH (Lobit  et al., 2002). Since malate and citrate are stored in the vacuole, their cytosolic 
concentrations are low and were set at 1 mM (Gout et al., 1993; Lobit et al., 2006). (C) 
Theoretical changes in citrate (orange line) and malate (blue line) concentrations in the vacuole 
as a function of the ∆ψ. The concentrations were calculated using the same equations as in (B), 
with the vacuolar pH set at 5, and the ∆ψ ranged from 20 to 30 mv. 
 

Malate currents through AtALMT9 and AtALMT6 are strongly inward-rectifying, that 

is, malate transport occurs only in the presence of a ∆ψ (positive inside the vacuole) 

(Epimashko et al., 2004; Hafke et al., 2003; Hurth et al., 2005; Meyer et al., 2011). As ∆ψ is 

expected to decrease with a decrease in vacuolar pH (see following section), these channels 

may close at low vacuolar pH when the acid trap mechanism would be most effective, 

perhaps as a mechanism to prevent over-acidification of very acidic vacuoles. AttDT appears 

to play a role in the import and export of malate (Hurth et al., 2005), consequently, this 

transporter could be less rectifying than the malate channel. AttDT also appears to be 

involved in the regulation of cytosolic pH homeostasis (Hurth et al., 2005).  

 

3.3 Citrate crosses the tonoplast by facilitated diffusion and secondary active transport  

In most species of fleshy fruit, vacuolar trianion citrate uptake occurs by facilitated diffusion 

(Fig. I.2.B), possibly through the malate channel (Oleski et al., 1987; Rentsch and Martinoia, 

1991) (Fig. I.4.A, n°2).The thermodynamic conditions are more favorable for the uptake of 

citrate than of malate at any vacuolar pH and ∆ψ (Fig. I.4.B and I.4.C). Thus, citrate appears 

to be easily transported into the vacuole as soon as its cytosolic concentration increases 

sufficiently (Gout et al., 1993). AttDT could also play a role in the transport of citrate into the 

vacuole, but according to Hurth et al. (2005) it is not the main tonoplast citrate carrier since 

AttDT knock-out vacuoles contain much more citrate than wild-type vacuoles, and the 

transport rate of citrate was higher in AttDT knock-out plants. In citrus, several authors 

proposed that an ATP-dependant citrate pump may operate in addition to the malate channel. 

However, further investigation is needed to provide complete evidence that citrate transport is 

coupled to ATP hydrolysis though a single transporter and not through the tonoplastic pH 
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gradient (∆pH) and ∆ψ setting up by the V-ATPase (see following section) (Brune et al., 

1998; Canel et al., 1995; Ratajczak et al., 2003).  

Citrate content generally decreases during fruit ripening (Léchaudel et al., 2005b; 

Saradhuldhat and Paull, 2007; Shimada et al., 2006; Wu et al., 2005) meaning that citrate is 

exported from the vacuole. The existence of a symporter involved in citrate efflux has been 

evidenced in citrus (Fig. I.2.E). This carrier (CsCit1) is able to mediate the electroneutral co-

transport of H+ and CitH2- outside the vacuole of juice cells (Shimada et al., 2006) (Fig. I.4.A, 

n°3). 

 

3.4 Setting up the electric potential and pH gradient across the tonoplast 

The main determinants of malate and citrate accumulation in the vacuole are vacuolar pH 

(always acidic) and the inside-positive ∆ψ, with values commonly ranging between 20 and 30 

mV (Taiz and Zeiger, 2010). Proton pumping into the vacuole contributes to the generation of 

both acid vacuolar pH and positive ∆ψ (Fig. I.4.A, n°4 and 5). Two types of proton pumps are 

present in fruit vacuoles: the H+-ATPase (V-ATPase) (Ratajczak, 2000), characterized in 

several fruit species (Müller et al., 1997; Müller et al., 1996; Suzuki et al., 2000; Terrier et 

al., 1998), and the H+-PPiase (V-PPase) (Maeshima, 2000), also characterized in several fruit 

species (Suzuki et al., 2000; Terrier et al., 1998). These enzymes catalyze chemiosmotic 

coupling between the hydrolysis of a high energy phosphate bond (ATP or pyrophosphate 

(PPi)) and proton transport into the vacuole. The thermodynamic conditions of these reactions 

are determinant for the activity of the pumps. Protons can be pumped into the lumen only if 

the variation in free energy of the chemiosmotic coupling (∆G) is negative (Fig. I.2.C).  

∆$ = ∆$%&'	)*	''+ + ∆$,- ≤ 0 (Equation 1) 

where ∆GATP and ∆GPPi are the free energy of the substrate hydrolysis, and ∆GH+ is the free 

energy of proton transport. ∆GH+ can be written (derived from the diffusion equation of ionic 

species, see Fig. I.2) as:   

∆$,- = 0�123 + 2.378∆9:� (Equation 2), 

where ∆ψ = ψvac –ψcyt , ∆pH = pHcyt - pHvac , and n is the coupling ratio (that is, the number of 

protons transported during the hydrolysis of one phosphate bond).  

The thermodynamic constraints impose a limit on the ∆ψ that can be achieved at a given ∆pH, 

as shown by combining Equation 1 and 2:  

∆3 ≤ �∆;<=>	?@	>>ABC − E.FG&C ∆9:  (Equation 3) 

The free energy of the substrate hydrolysis (∆GATP and ∆GPPi) are negative but may fluctuate 

with the cytosolic concentrations of their substrates (Davies et al., 1993). The coupling ratio 
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(determined by electrophysiology experiments) is 1 for the V-PPase (Maeshima et al., 1994). 

For the V-ATPase, the coupling ratio is variable and decreases with an increase in ∆pH 

(Davies et al., 1994; Rienmüller et al., 2012). In lemon fruits, Müller et al. (2002) also 

reported for the V-ATPase a coupling ratio that decreases from 2 to 1 with an increase in 

∆pH. Assuming a model cytosol with a composition assumed to be representative of a plant 

cell, Davies et al. (1993) modeled the ∆pH obtained as a function of ∆ψ and showed that both 

pumps are able to sustain vacuolar pH as low as in the most acidic fruits, but that ∆ψ dropped 

to zero. 

Apart from these thermodynamic limitations, various mechanisms are involved in 

regulating the proton pumps, including gene expression and substrate availability. Several 

studies of organic acid-related genes and enzymes suggested that the difference in organic 

acid content between species and between cultivars of fruits could be linked to differences in 

their proton pumps (Echeverria et al., 1997; Etienne et al., 2002; Lu et al., 2011; Yang et al., 

2011). The contribution of the V-ATPase and V-PPase to proton pumping also varies during 

fruit development. In the grape berry and in pear, the V-PPase is most active in young tissues, 

but subsequently decreases, and the V-ATPase dominates during fruit ripening (Shiratake et 

al., 1997; Suzuki et al., 2000; Terrier et al., 2001). The high V-PPase activity in young fruits 

may be explained by the need to scavenge the PPi, a by-product and inhibitor of several 

polymerization reactions (synthesis of RNA, proteins, cellulose, and starch) (Maeshima, 

2000). In mature tissues, PPi production may decrease as these syntheses slow down while 

ATP is constantly supplied by cell respiration. 

The transport of potassium (K+) across the tonoplast also plays a role in the regulation 

of the ∆ψ and of the vacuolar pH. Since the concentration of cytosolic K+ is controlled 

homeostatically (Leigh, 2001) and because of the small size of the cytosol, most of the K+ 

supplied to the fruit cell has to be transported to the vacuole. Facilitated diffusion through 

vacuolar cation channels is the most likely mechanism (Isayenkov et al., 2010). However, in 

fruit with a high K+ content like banana, it can be calculated using the Nernst equation (Fig. 

I.4.B), with a cytosolic concentration of K+ of around 100 mM (Leigh, 2001), and a ∆ψ of 30 

mV (Martinoia et al., 2007), passive transport accounts for accumulation of up to 30 mM of 

K+ in the vacuole. This is very far from the 80 mM found in ripe banana (Chandler, 1995). 

Thus, in such fruits, active transport is required. The most likely mechanism is a K+/H+ 

antiport, as identified in the tonoplast of tomato plants (Leidi et al., 2010). Cation channels 

help reach a positive ∆ψ (Isayenkov et al., 2010), since the passive influx of K+ 

hyperpolarizes the tonoplast (Fig. I.4.A, n°6). In contrast, the K+/H+ antiport, which mediates 

an electroneutral exchange, has no effect on ∆ψ. Concerning acidity, transporting K+ as the 
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balancing charge for organic anions is equivalent to storing not the acid, but its conjugated 

base, which leads to an increase in pH. In the case of the K+/H+ antiport, there is an additional 

effect on pH due to protons leaving the vacuole. 

 

4 Citrate accumulation could be driven by metabolism and malate 

accumulation by vacuolar storage 

In the previous sections, we showed that both metabolism and vacuolar storage play a role in 

the accumulation of malate and citrate in fruit cells. A relevant question is whether their 

accumulation in fruit cells is primarily controlled by metabolism or vacuolar storage. 

Concerning malate, we showed that the thermodynamic conditions of its transport into 

the vacuole may limit its accumulation. Therefore, one can hypothesize that malate 

accumulation in fruit cells is mainly controlled at the level of vacuolar storage, and that 

metabolism responds appropriately to regulate the cytosolic concentration of malate since it 

plays a fundamental role in the regulation of cytosolic pH (Smith and Raven, 1979). Several 

authors agree with this hypothesis. When comparing two apple cultivars with different 

acidity, Berüter and al. (2004) reported higher vacuolar accumulation of 14C labeled malate in 

the high-acid cultivar. The higher rate of malate degradation in the low-acid cultivar may only 

be a consequence of its impaired capacity to store malate. In interspecific introgression lines 

of tomato, Schauer et al. (2006) showed that the V-PPase gene colocalized with the QTL for 

malate content. In apple, Bai et al. (2012) suggested that one of the two ALMT-like genes 

discovered, Ma1, could be the major determinant of malate content in fruit. The relation 

between malate accumulation and vacuolar functioning has been modeled in peach by Lobit et 

al. (2006). The model predicts malate accumulation in peach based on the calculation of the 

thermodynamic constraints on both proton and malate transports, and model results were in 

good agreement with experimental data, thus reinforcing the hypothesis of control by 

tonoplastic transports. 

Concerning citrate, we showed that its accumulation in the vacuole is unlikely to be 

limited by thermodynamic conditions. However, the rate of citrate transport into the vacuole 

may be limited by the activity of its transport system, given that the malate channel transports 

citrate much more slowly than malate (Hafke et al., 2003). Thus, it is likely that citrate 

accumulation in the vacuole is controlled by its cytosolic concentration and consequently by 

its metabolism. Among several possible pathways related to citrate metabolism, the TCA 

cycle is the only one that allows citrate synthesis, so that citrate accumulation is likely 

controlled by respiration. A fruit PBSM based on a representation of the TCA cycle reactions 
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and their responses to temperature and respiration (Lobit, 1999; Wu et al., 2007) led to 

predictions that were in agreement with observed data. In particular, this model reproduced 

the increase in citrate content during the early stage of fruit development and the subsequent 

decrease during the later stage (Albertini et al., 2006; Léchaudel et al., 2005a; Saradhuldhat 

and Paull, 2007; Wu et al., 2005). The fact that citrate synthesis is positively linked to fruit 

respiration during the green stage, and negatively during ripening may reflect a change in the 

respiratory substrates used by the TCA cycle from malate (or other intermediates) to citrate. It 

should be noted that dilution due to pulp growth is required to explain the variations in the 

concentration of organic acids (Wu et al., 2007). 

 

5 Influence of agro-environmental factors on malate and citrate 

accumulation in the mesocarp cells of fleshy fruits  

The literature shows that the plant source: sink ratio, mineral fertilization, water supply, and 

temperature are the agro-environmental factors that have the most impact on fruit acidity. 

This section focuses on their effects on malate and citrate accumulation in fruits considering 

the mechanisms described above. 

 

5.1 The source: sink ratio influences fruit acidity by modifying the supply of sugars  

Orchard management practices like fruit thinning, plant pruning or defoliation affect the 

source: sink ratio of the plant, which usually results in altered sugar supply and fruit growth. 

These practices also affect fruit acidity (Table I-1). In peach and mango it has been observed 

that an increase in the source: sink ratio increases citrate content early in fruit development, 

and decreases it near maturity (Léchaudel et al., 2005b; Souty et al., 1999; Wu et al., 2002). 

The opposite effects have been reported for malate, with a decrease during early stages 

followed by an increase near maturity (Léchaudel et al., 2005b; Wu et al., 2002).  

It can be hypothesized that during the green stages, large amounts of sugars imported 

from the leaves are available for the production of malate via glycolysis and its conversion to 

citrate via the TCA cycle. It is well known that fruits grown with a high sugar supply, due to a 

high source: sink ratio, are bigger and consequently have a higher respiration rate. Therefore, 

in these stages, an increase in fruit respiration due to a high supply of sugars may stimulate 

glycolysis and conversion of malate into citrate. In contrast, during ripening, sugars may no 

longer be available for respiration since they are stored in the vacuole (Coombe, 1976), 

causing a shift from sugars to organic acids (in particular citrate) as respiratory substrate. 

During this stage, an increase in respiration (due to bigger fruit in response to the high source: 



Chapitre I  Synthèse bibliographique sur l’acidité des fruits 
 

47 
 

sink ratio) may stimulate the conversion of citrate into malate to maintain the pool of TCA 

cycle intermediates constant. This behavior has been represented in the PBSM of citrate 

accumulation (Lobit et al., 2003; Wu et al., 2007), the results of which are in agreement with 

observations made in field trials (Génard and Bruchou, 1993; Génard et al., 1991; Génard et 

al., 1999; Génard et al., 1994).  

 

5.2 Different but strong effects of mineral fertilization on fruit acidity 

Potassium fertilization has an impact on fruit acidity, but agronomic observations are 

contradictory (Table I-1). Some authors reported that potassium fertilization increased fruit 

titratable acidity (TA) (which is the amount of weakly bound hydrogen ions that can be 

released from the acids by NaOH titration) (Alva et al., 2006; Du Preez, 1985; Embleton et 

al., 1978; Spironello et al., 2004), others that potassium fertilization decreased fruit acidity 

(Ramesh Kumar and Kumar, 2007; Vadivel and Shanmugavelu, 1978), and still others that it 

had no significant effect (Cummings and Reeves, 1971). At cellular level, different 

mechanisms allow K+ to affect the metabolism and storage of organic acids. Organic anions 

are synthesized in the vegetative parts to buffer the excess of organic cations absorbed from 

the soil (Lopez-Bucio et al., 2000). As a result, the K+ supplied to the fruit by the sap is 

necessarily accompanied by an equivalent amount of organic anions, mostly malate, and to a 

lesser extent, citrate (Burström, 1945). Without any further metabolism in the fruit, this would 

amount to adding conjugated bases to the fruit, increasing pH, which is consistent with the 

positive correlation found between K+ content and pH of grape berry juice (Mpelasoka et al., 

2003). However, in this case, TA would not be affected, since no protonated forms would be 

added to the fruit. Thus, a modification in fruit TA in response to the supply of K+ implies 

that K+ affects the synthesis or the vacuolar storage of organic acids within the fruit itself. The 

regulation of tonoplastic transport may be an essential contributor to the effect of K+. In fruits 

that contain little K+, K+ transport is probably passive and thus contributes to the ∆ψ (Allen 

and Sanders, 1997), which in turns stimulates the transport of organic anions into the vacuole. 

In fruits with a high concentration of K+, K+ transport is probably mediated by an 

electroneutral K+/H+ antiport (Leidi et al., 2010). In this case, increasing K+ accumulation 

would no longer increase the ∆ψ but instead increase vacuolar pH, reducing the transport of 

organic anions. Finally, K+ is known to be involved in the regulation of various enzymes 

(including the tonoplastic proton pumps), either directly (Maeshima, 2000; Wyn Jones and 

Pollard, 1983) or by modifying cytosolic pH (Wyn Jones and Pollard, 1983). However, this is 

unlikely to play an important role, because of the homeostasis of cytosolic K+ (Leigh, 2001). 
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Table I-1 Impact of agro-environmental factors (source: sink ratio, mineral fertilization, water 
supply, and temperature) on malate and citrate concentrations, and titratable acidity (TA) in the 
ripe fruits of several species. Citrate content, malate content, and TA are expressed in meq/100 g 
FW. The protocol of each study is summarized as two contrasted treatments applied (A and B). 
Differences between treatment A and B are either significant at p<0.05 (*) or non-significant 
(NS). Concerning mineral fertilization, the total quantity of K, Mg, N or P applied during the 
experimental period is given. 
 
 Protocol Malate content Citrate content TA References 
  

 
A B A B A B  

 
SOURCE:SINK RATIO 

       

Peach  

(cv. Suncrest) 

A: 30 leaves/fruit         

B: 10 leaves/fruit 

8.8* 7.8* 1.5* 3.5*   Wu et al., 
2002                 
(data from 
1997) 

A : 30 leaves/fruit        
B : 6 leaves/fruit 

9.0* 8.4* 1.2* 4.9* 9.5* 7.4* Souty et al., 
1999 

Mango  
(cv. Lirfa) 

A :100  leaves/fruit      

B: 10  leaves/fruit 

0.04 
(NS) 

0.04 
(NS) 

0.08* 0.12*   Lechaudel et 
al., 2005 

 
POTASSIUM FERTILIZATION 

       

Pineapple  
(cv. Smooth 
Cayenne) 

A: 0 g of K/plant          
B: 19.1 g of K/plant  

    9.6* 13.8* Spironello et 
al., 2004 

Peach  
(cv. Elberta) 

A: 90 g of K/tree          
B: 600 g of K/tree 

    6.1 
(NS) 

6.9 
(NS) 

Cummings 
and Reeves, 
1971 

Banana  
(cv. Ney Poovan) 

A: 0% SOK spray        
B: 1.5% SOK spray 

    6.0* 3.4* Ramesh 
Kumar et al., 
2007 

Banana  
(cv. Robusta) 

A: 0 g of K/plant          
B: 274 g of K/plant 

    6.1* 3.4* Vadivel et 
al., 1978 

Citrus  A: 65 kg of K/ha 
B: 230 kg of K/ha  

    10.9* 11.7* Alva et al., 
2006 

MAGNESIUM FERTILIZATION        

Peach  
(cv. Elberta) 

A: 14 g of Mg/tree       
B: 220 g of Mg/tree 

    6.7 
(NS) 

6.3 
(NS) 

Cummings 
and Reeves, 
1971 

NITROGEN FERTILIZATION        

Peach  
(cv. Redhaven) 

A:150 g of N/tree         
B: 610 g of N/tree 

    7.2 
(NS) 

6.3 
(NS) 

Cummings 
and Reeves, 
1971 

Apricot  
(cv. Canino) 

A: 213 g of N/tree        
B: 400 g of N/tree 

    26.0* 31.4* Radi et al., 
2003 

Orange  
(cv. Valencia) 

A: 540 g of N/tree        
B: 1000 g of N/tree 

    13.7* 14.7* Reitz et al., 
1957 

Pineapple  
(cv. Smooth 
Cayenne) 

A: 0 g of N/plant          
B: 23 g of N/plant 

    14.5* 11.4* Spironello et 
al., 2004 

 
PHOSPHOROUS FERTILIZATION 

       

Peach  
(cv. Loring) 

A: 0 kg of P/ha             
B: 141 kg of P/ha 

    8.2* 8.4* Cummings 
and 
Reeves,1971 
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Pineapple  
(cv. Smooth 
Cayenne) 

A: 0 g of P/plant           
B: 10 g of P/plant 

    13.0 
(NS) 

12.5 
(NS) 

Spironello et 
al., 2004 

 
WATER SUPPLY 

       

Peach  
(cv. Suncrest) 

A: Irrigated 
B: Non irrigated 

7.9 
(NS) 

8.9 
(NS) 

3.4 
(NS) 

3.1 
(NS) 

  Wu et al., 
2002 

Pear  
(cv. Williams) 

A: No water stress        
B: Early water stress  

0.26 
(NS) 

0.1 
(NS) 

2.2 
(NS) 

3.4 
(NS) 

3.3 
(NS) 

3.6 
(NS) 

Hudina et 
al., 2000 

Tomato  
(cv. Vanessa) 

A: Watered to 70% 
maximum water 
holding capacity 
B: Watered to 50% 
maximum water 
holding capacity 

    5.1* 6.0* Veit Khöler 
et al., 1999 

Apple  
(cv. Braeburn) 

A: Irrigated                   
B: Non irrigated 

    6.7* 7.5* Mills et al., 
1996 

Mandarin  
(cv. Satsuma) 

A: Well watered           
B: Severely drought 
stress 

    29.6* 46.9* Yakushiji et 
al., 1998 

Nectarine  
(cv. Spring Bright) 

A: Irrigated                   
B: Deficit irrigation 
(33% of irrigation in 
“A”) 

4.6* 3.1* 4.7 
(NS) 

4.7 
(NS) 

  Thakur et 
al., 2012           

Clementine  
(cv. de Nules) 

A: Irrigated                   
B: Deficit irrigation 
(reduced to 25% of 
crop 
evapotranspiration) 

    13.1* 17.1* Gonzales-
Altozano et 
al., 1999           
(data from 
1995) 

Orange 
(cv. Navel) 

A: Irrigated 
B: Late water stress 

    17.2* 21.9* Kallsen et 
al., 2011 
(data from 
2007) 

Grape  
(cv. Monastrell) 

A: Irrigated                   
B: Non irrigated 

    7.3* 8.9* De La Hera 
Orts et al., 
2005 

Grape 
(cv. Sauvignon 
Blanc) 

A: No water stress 
B: Water stress 

2.2* 3.4*   7.0* 9.2* Des  
Gachons et 
al., 2005  
(data from 
1998) 

TEMPERATURE        

Tomato 
(cv. Cervil) 

A: Not heated               
B: Heated (fruit 
temperature: +1,1°C 
during the day, 
+1,3°C during the 
night) 

    11.7* 10.5* Gautier et 
al., 2005 

Strawberry  
(cv. Kent) 

A: 18/12 day/night 
temperature (°C)          
B: 25/22 day/night 
temperature (°C) 

    14.0* 12.5* Wang et al., 
2000 
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The PBSM proposed by Lobit et al. (2006), which is based on the assumption that malate 

accumulation is controlled by vacuolar pH, only takes the contribution of K+ to the acid-basic 

reactions in the vacuole into account. The model predicted that at low vacuolar pH (in the 

early stages of fruit growth), an increase in K+ content would reduce malate accumulation, 

while at higher pH (during fruit ripening) it would stimulate it. 

Contradictory effects of nitrogen nutrition on fruit acidity have also been reported 

(Table I-1). Some authors found a negative correlation between nitrogen nutrition and TA 

(Spironello et al., 2004), others found a positive correlation between nitrogen nutrition and 

both TA (Reitz and Koo, 1960) and organic acid content (Jia et al., 1999; Radi et al., 2003; 

Ruhl, 1989), and still others that it had no significant effect (Cummings and Reeves, 1971). 

Nitrogen fertilization may have an indirect impact on fruit acidity by stimulating the 

vegetative growth of plants. Increased vegetative growth may affect the fruit in various ways: 

by shading them (which would lower their temperature and reduce transpiration), or by 

diverting assimilates towards vegetative growth (which would reduce the supply of 

assimilates to the fruits). The effect of nitrogen on fruit acidity may also depend on the form 

of nitrogen applied (NO3
- or NH4

+). NO3
- fertilization is likely to have a positive impact on the 

concentration of organic anions in the phloem sap since nitrate assimilation in the leaves 

requires the coordinated synthesis of organic acids (Benzioni et al., 1971; Scheible et al., 

1997; Smith and Raven, 1979), which are then transported in the phloem sap together with 

K+. Conversely, NH4
+ fertilization does not cause the synthesis of organic anions, and may 

affect cation uptake by roots, like K+, as observed in banana (Sathiamoorthy and 

Jeyabaskaran, 2001).  

Very few studies have been conducted on the effects of other mineral elements on fruit 

acidity (Table I-1). However, magnesium has been shown to have no significant effect on 

fruit acidity (Cummings and Reeves, 1971), and phosphorous nutrition appears to have little 

effect on fruit acidity (Cummings and Reeves, 1971; Spironello et al., 2004). 

 

5.3 Water supply influences fruit acidity probably due to modifications in fruit water 

content and osmotic adjustment 

The impact of water supply on fruit acidity has been widely studied (Table I-1). In most cases, 

water supply was shown to be negatively correlated with TA, and organic acid content in ripe 

fruits (Gonzales-Altozano and Castel, 1999; Hudina and Stampar, 2000; Kallsen et al., 2011; 

Mills  et al., 1996; Veit‐Köhler et al., 1999; Wu et al., 2002; Yakushiji et al., 1998). However, 

some authors reported a positive relationship between water supply and both TA and organic 
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acid content in ripe fruits (De la Hera-Orts et al., 2005; des Gachons et al., 2004; Esteban et 

al., 1999; Thakur and Singh, 2012). Even if water supply modifies fruit acidity, there is 

apparently no change in the seasonal patterns of the accumulation of organic acids (De la 

Hera-Orts et al., 2005; Thakur and Singh, 2012; Wu et al., 2002). Taken together, these data 

suggest that water stress tends to increase organic acid content and TA in ripe fruits through a 

simple dilution/dehydration effect (Gonzales-Altozano and Castel, 1999). Another mechanism 

through which the plant water status may interfere with fruit acidity is osmotic adjustment: 

under water stress, all plant tissues accumulate solutes, mainly sugars and organic acids 

(Hummel et al., 2010), to lower their osmotic potential and prevent a drop in cell turgor 

pressure. As water stress increases the accumulation of organic acids in the leaves and xylem 

fluid (Andersen, 1995; Hummel, 2010), it may also increase imports of organic acids to the 

fruit. 

 

5.4 Temperature influences fruit acidity by affecting both metabolism and vacuolar 

storage of organic acids 

 Increasing the temperature during fruit growth or storage decreases fruit TA (Gautier et al., 

2005; Kliewer, 1973; Rufner, 1982; Wang and Camp, 2000) (Table I-1) as well as malate and 

citrate concentrations, as shown in the grape berry (Buttrose et al., 1971; Kliewer, 1973; 

Rufner, 1982) and in banana (Bugaud et al., 2009). Nevertheless, all organic acids do not 

appear to be equally sensitive to temperature (Rufner, 1982; Wang and Camp, 2000). 

Modifications in organic acid metabolism in response to temperature probably result 

from the impact of temperature on the reaction rates of glycolysis and of the TCA cycle 

(Araujo et al., 2012) by modifying enzyme activities (Lakso and Kliewer, 1975b), and also on 

the kinetic properties of the mitochondrial transport systems involved (Halestrap, 1975). The 

main effect of increasing temperature would be to stimulate respiration, with the above 

mentioned effects on citrate metabolism (increasing citrate production during green stages 

and decreasing citrate production during ripening) (see previous section). Results of the fruit 

PBSM developed by Lobit et al. (2003), which models net citrate production as a function of 

temperature, fruit mesocarp weight, and respiration, were in good agreement with 

experimental data. Further simulations showed that temperature can affect fruit acidity in 

different ways depending on the fruit cultivar or species (Wu et al., 2007).  

Temperature probably affects vacuolar storage of organic acids via several 

mechanisms. Temperature is a key variable in the thermodynamic equations that limit the 

operation of the proton pumps and the diffusion of organic anions through the tonoplast. In 
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the PBSM of malate accumulation in fruit developed by Lobit et al. (2006), increasing the 

temperature reduced the ability of the fruit to accumulate malate, which is in accordance with 

observations made in agronomic studies. Temperature also affects membrane fluidity by 

modifying lipid properties (Murata and Los, 1997). Thus, high temperatures may change the 

tonoplastic permeability of fruit cells, which could increase leakage of solutes like protons, or 

protonated forms of organic acids. The increase in tonoplastic permeability could explain the 

increased activity of vacuolar proton pumps observed in grape berry cells in response to an 

increase in temperature (Terrier et al., 1998). The increase in proton pump transport activity 

may compensate for the leakage of solutes, which is known to occur during grape berry 

ripening (Terrier et al., 2001), but only partially, resulting in a net efflux of malic and citric 

acid to the cytosol and their further degradation (because of the cytosolic pH homeostasis), 

leading to a decrease in fruit acidity. 

 

6 Conclusions  

This review showed that accumulation of malate and citrate is the result of interactions 

between metabolism and vacuolar storage, and identified the main mechanisms likely to drive 

them. It also showed that agro-environmental factors affect the acidity of fleshy fruit by 

acting on various cellular mechanisms. To increase our understanding of the development of 

acidity in fleshy fruit, we believe that integrative approaches would be particularly 

appropriate (Génard et al., 2010; Struik et al., 2005). The combination of PBSMs and 

molecular data, as a tool for model parameterization, could advance our understanding of the 

response of citrate and malate accumulation to environmental fluctuations and genetic control. 
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Objectifs 

Dans ce chapitre, sont présentés les effets du génotype et des conditions de croissance du fruit 

(charge en fruit, fertilisation potassique, stade de récolte) sur l’accumulation du citrate et du 

malate dans la pulpe de banane pendant les phases pré et post récolte. La concentration en 

acides organiques dans la pulpe résulte à la fois de l’accumulation en eau, de l’accumulation 

en matière sèche (composés de stockage tels que l’amidon et les sucres), et du métabolisme et 

stockage vacuolaire des acides, et peut donc être décomposée en trois composantes : la teneur 

en eau de la pulpe, la teneur en matière sèche non structurale, et la concentration de chaque 

acide par gramme de matière sèche structurale. L’effet des différents facteurs agronomiques 

sur chaque composante est quantifié. Ce chapitre a été accepté par le journal Scientia 

Horticulturae  sous la forme d’un article intitulé «Citrate and malate accumulation in banana 

fruit (Musa sp. AA) is highly affected by genotype and fruit age, but not by cultural 

practices».  

 

Principaux résultats 

•  D’importantes différences de profils d’accumulation du citrate et du malate existent entre 

les trois génotypes étudiés aussi bien pendant la croissance que pendant la maturation 

post récolte des fruits.  

•  Une diminution de la charge en fruit et un niveau élevé de fertilisation potassique ont un 

effet positif sur la croissance des fruits mais n’ont pas d’effet sur les concentrations en 

citrate et malate, aussi bien pendant la croissance que pendant la  maturation post récolte. 

•  Une date de récolte tardive augmente légèrement la concentration en citrate dans les fruits 

mûrs après récolte, et diminue celle en malate. 
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Abstract 

Sourness and sweetness are major drivers of consumer preference for banana fruits and are 

mainly linked to the presence of citrate and malate. The objectives of the present work were to 

determine how agro-environmental and genotypic factors affect the concentrations of citrate 

and malate in banana pulp during growth and post-harvest ripening. Changes in citrate and 

malate concentrations in the pulp during the development of the fruit were investigated in 

relation to fruit age, fruit load, and potassium fertilization in three cultivars of dessert banana 

presenting contrasted acidity at the eating stage. Major differences in the pattern of citrate and 

malate accumulation were found in the three cultivars both during growth and post-harvest 

ripening. The fruit growth rate was greater when the fruit load was reduced, but this treatment 

had no effect on the accumulation of organic acids in any of the three cultivars. A high 

potassium supply increased fruit growth but had no effect on organic acid accumulation in 

any of the three cultivars. Late harvested fruits had higher citrate and lower malate 

concentrations in the pulp at the eating stage. Our results showed that the concentration of 

organic acids in banana pulp is mainly controlled by genotype and that this may be an 

interesting trait to target in breeding programs to improve the organoleptic quality of new 

cultivars. The physiological mechanisms likely to control the accumulation of citrate and 

malate during banana fruit development are discussed.  
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1 Introduction 

Banana is an important high-value food crop but the international banana market is almost 

completely restricted to the Cavendish variety, which is sensitive to the main diseases of 

banana. The breeding history of banana has therefore focused on disease resistance (Yellow 

Sigatoka Disease and Black Leaf Streak Disease), without taking sensory characteristics into 

consideration. As a result, new hybrids have been rejected by consumers owing to sensory 

shortcomings among other characteristics. To improve the sensory characteristics of new 

hybrids it is crucial to understand the determinants of the organoleptic quality of banana 

fruits. 

Sourness and sweetness are major drivers of consumer preference for banana fruits, 

and these characteristics are mainly linked to the presence of organic acids in fruit cells (Esti 

et al., 2002; Harker et al., 2002; Tieman et al., 2012). Citrate and malate, the most abundant 

acid metabolites in banana fruit, have been shown to be good predictors of pulp sourness and 

sweetness (Bugaud et al., 2013). Banana fruit has the particularity of having separate growth 

and ripening phases, during which significant changes in the concentration of organic acids 

take place in the fruit. Banana fruits accumulate both citrate and malate during growth and 

these determine fruit acidity at harvest (Jullien et al., 2008). The concentrations of organic 

acids still change considerably during post-harvest ripening with an increase in pulp acidity 

(Etienne et al., 2013a; Mustaffa et al., 1998; N'Ganzoua et al., 2010), and considerable 

variations in the acidity of ripe fruits among dessert banana cultivars (Bugaud et al., 2013). 

Thus, any attempts to understand the determinants of banana pulp acidity must include a 

study of the dynamics of organic acid concentrations during fruit growth but also during post-

harvest ripening. 

The concentrations of organic acids in fruit pulp are the result of several processes. 

First, the transport and metabolic processes of organic acids, which involve several 

interconnected metabolic pathways and transport mechanisms through several compartments, 

control the amount of citrate and malate in the pulp (Etienne et al., 2013b). Second, the 

accumulation of water and dry matter in the fruit influences the concentration of organic acids 

in the pulp due to dilution (Léchaudel et al., 2005b; Souty et al., 1999). Dilution by dry matter 

is the result of the import of assimilates in the fruit that are used for the storage of starch, 

sugars and organic acids. However, the imported assimilates can also be used to produce cell 

walls. Hence, the ratio of storage compounds (also called non-structural dry matter) to cell 

wall material (also called structural dry matter) plays a major role in the concentration of 

organic acids in the pulp (Léchaudel et al., 2005b).  
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Agro-environmental factors, including fruit load, water supply, mineral fertilization 

and temperature, are known to affect fruit acidity by acting on the transport and metabolic 

processes of organic acids (Etienne et al., 2013b), and/or by modifying the water content of 

the pulp (Léchaudel et al., 2002). Only a few studies have been conducted on the effect of 

orchard management on banana pulp acidity. They showed that potassium fertilization 

decreased the titratable acidity of ripe banana fruits (Ramesh Kumar and Kumar, 2007; 

Vadivel and Shanmugavelu, 1978), but these studies provided no information on the direct 

effect of potassium fertilization on the concentration of organic acids.  

The objectives of the present work were to advance our understanding of the roles 

played by agro-environmental factors and genotype in the concentrations of citrate and malate 

in banana pulp during growth and post-harvest ripening. To this end, we studied the effect of 

fruit age, fruit load, and potassium fertilization on the accumulation of malate and citrate in 

three cultivars of dessert banana with contrasting acidity at the eating stage. To better 

understand how cultural practices and genotype affect organic acid concentrations in the pulp, 

we analyzed changes in concentrations of citrate and malate by breaking them down into 

components related to transport and metabolic processes, and to the accumulation of water 

and dry matter. This approach was shown to be a good way to study the influence of irrigation 

and of the ratio of leaf to fruit on mango fruit quality (Léchaudel et al., 2005b).  

 

2 Materials and methods 

2.1 Field experiment and treatments 

Three dessert banana cultivars (Musa spp.) diploids AA, differing in predominant organic 

acid at eating stage: Indonesia 110 (IDN), Pisang Jari Buaya (PJB), and Pisang Lilin (PL) 

were studied during the 2011 and 2012 growing seasons (Appendix 1). All the bananas were 

grown at the Pôle de Recherche Agroenvironnementale de la Martinique (PRAM, Martinique, 

French West Indies; latitude 14°37N, longitude 60°58W, altitude 16 m) on continental 

alluvial soil. In the two growing seasons, irrigation was adjusted to the amount of rainfall to 

supply at least 5 mm of water per day, and non-systemic fungicide was applied to control 

foliar diseases. During the first period of bunch growth (March–November 2011) the mean 

daily temperature was 27 °C ± 1.2 °C. During the second period of bunch growth (February-

August 2012) the mean daily temperature was 26 °C ± 0.9 °C. Bunches were left uncovered in 

both growing seasons. 
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2011 experiment: Effect of fruit load on banana pulp acidity  

For each cultivar, 36 plants were randomly chosen and tagged at inflorescence emergence. 

Two contrasted fruit loads were used: 18 plants of each cultivar were used as the control 

treatment i.e. high fruit load, and 18 other plants were highly pruned i.e. low fruit load. In the 

control treatment, the number of leaves and hands left on the plants were calculated in order 

to have the same leaf area: fruit ratio among cultivars (approximately equal to 0.5 cm² leave. g 

fruit-1). Thus, 15 days after inflorescence emergence, 8, 6, and 5 leaves were left on the plant 

for cultivars IDN, PL, and PJB respectively, and the top 10, 5 and 7 hands were left on the 

bunch for cultivars IDN, PL, and PJB respectively. To ensure the situation was the same 

among the three cultivars, fruit pruning in low fruit load treatment was calculated to increase 

the leaf area: fruit ratio by approximately 2.5. Consequently, 15 days after inflorescence 

emergence, the top 4, 2, and 3 hands were left on the bunch for cultivars IDN, PL, and PJB 

respectively. Banana plants received 12 g of nitrogen, 1.7 g of phosphorus, and 23 g of 

potassium at 4-week intervals during fruit growth. 

 

2012 experiment: Effect of potassium fertilization on banana pulp acidity 

Two plots containing 50 banana plants of each cultivar were planted. Two contrasted levels of 

potassium fertilization were started six months before the beginning of fruit sampling. For 

each cultivar, one plot received 124 g of potassium per plant (high potassium fertilization) at 

4-week intervals, while the other received no potassium at all. All the banana plants received 

12 g of nitrogen and 10 g of phosphorus at 4-week intervals. Twenty-four plants of each 

cultivar were randomly chosen in each plot and tagged at inflorescence emergence. At 15 

days after inflorescence emergence, 9, 7, and 9 leaves were left of cultivars IDN, PL, and PJB 

respectively, which corresponds to the average leaf number in 2012, and the top 10, 5, and 7 

hands were left on the bunch of cultivars IDN, PL, and PJB respectively, which correspond to 

a high fruit load. Leaf and soil analyses were performed at the beginning and end of the 

experiment. In each plot, lamina 3 of 10 randomly selected banana plants was sampled 

according to the international reference method (Martin-Prével, 1977). In each plot, ten soil 

samples evenly distributed throughout the plot were collected. Soluble K, Mg, and Ca 

concentrations in the leaves and soil were determined by mass spectrometry (Martin-Prével et 

al., 1984), the concentration of Cl was determined by potentiometry using a Titroline alpha 

automatic titrator (Walinga et al., 1995), and soluble phosphorus was determined by 

colorimetry (Martin-Prével et al., 1984). 

 

 



Chapitre II Effets du génotype et des pratiques culturales sur l’acidité de la banane  
 

61 
 

2.2 Fruit sampling procedure 

Monitoring fruit growth  

In the two growing seasons, six bunches of each cultivar-treatment combination were 

selected. At 15 day intervals, one fruit located in the internal row of the second proximal hand 

was collected for analyses. Natural ripening on standing plants, i.e. when the first yellow 

finger appeared, determined the end of sampling.  

 

Monitoring post-harvest fruit ripening 

In the 2011 experiment, two harvest stages were studied. For each cultivar, the harvest stages 

were calculated to be 70% and 90% of the average “flowering-to-yellowing time” of the 

bunch on the tree. Previous observations in the field informed us about the average flowering-

to-yellowing time of each cultivar. For each harvest stage, six bunches per cultivar and per 

treatment were harvested. In the 2012 experiment, only one harvest stage was studied. For 

each cultivar, the harvest stage was calculated for each cultivar to be 75% of the average 

flowering-to-yellowing time of the bunch on the tree. Six bunches per cultivar and per 

treatment were harvested. 

After the bunches were harvested, the second proximal banana hand on each bunch 

was rinsed and dipped in fungicide (bitertanol, 200 mg.L−1) for 1 min. The fruits were placed 

in a plastic bag with 20 µm respiration holes and stored in boxes for 6 days at 18 °C. The 

fruits were then stored in a room at 18 °C and underwent ethylene treatment (1 mL.L−1 for 24 

h) to trigger the ripening process. After 24 h, the room was ventilated. Bananas were 

maintained at 18 °C for 13 days and a banana fruit was sampled before ethylene treatment 

(day 0), and at day 3, 6, 9 and 13. The fruit storage potential – called the green life – was 

estimated as the time between harvest and the climacteric rise (Chillet et al., 2008). 

 

2.3 Determination of banana pulp composition  

The fresh pulp of each fruit sampled was weighed. Dry matter was determined by freeze-

drying the pulp and then weighing it. The dried pulp was then mixed to obtain a dry powder 

and citrate and malate concentrations were determined according to the method described in 

Etienne et al. (2013a). Concentrations of starch and soluble sugars (glucose, fructose, sucrose) 

were assessed according to Gomez et al. (2007) using an enzymatic method and a microplate 

reader. Soluble K, Mg, and Ca in the pulp were determined by mass spectrometry and soluble 

phosphorus was measured by colorimetry (Martin-Prével et al., 1984). 
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The concentration of malate and citrate was considered to be the product of three 

components obtained from the following equation:  

HI = JKCJ = LJCJ ∗ JKLJ = LJCJ ∗ MLJLJ ∗ JKMLJ = N1 − JJCJ P ∗ N1 − QMLJLJ P ∗ JKMLJ                           (1) 

where Cx is the concentration (in g.100g FW-1) and Wx is the weight (in g) of the compound x 

in fruit pulp; FW is fresh weight, DW is dry weight, WW is water weight, SDW is structural 

dry weight, and NSDW is non-structural dry weight of the pulp (in g).  

The ratio of water weight to fresh weight represents the water content of the pulp and is 

related to water dilution; the ratio of non-structural to total dry weight is related to the 

accumulation and storage of compounds; and the ratio of the weight of compound x to 

structural dry weight is related to the transport and metabolic processes of organic acids. 

Water weight was calculated as the difference between fresh and dry weight. Non-structural 

dry weight was calculated as the difference between dry weight and structural dry weight. 

Structural dry weight was calculated as the difference between dry weight and the sum of the 

weights of the main non-structural compounds (soluble sugars, starch, acids).  

In order to compare the dynamics of organic acid concentrations among cultivars 

during fruit growth, fruit age was expressed as a percentage of the flowering-to-yellowing 

time of the bunch.  

 

2.4 Statistical Analysis 

 Linear mixed-effects models [LMMs (Gałecki and Burzykowski, 2013)] were used to 

examine the relationship between response variables (pulp citrate and malate concentration) 

and explanatory variables (fruit age, cultivar, treatment), and interactions. We used quadratic 

and cubic terms of fruit age when the curve passed through a maximum and had an 

asymmetrical shape. We used the lme function in the ‘nlme’ library (Pinheiro et al., 2013) in 

the statistical program R 2.14.0. “Banana plant” was treated as a random effect because 

banana plants were assumed to contain unobserved heterogeneity which is impossible to 

model. A temporal correlation structure was used to account for temporal pseudo-replication. 

Model selection was made using the top-down strategy (Zuur et al., 2009): starting with a 

model in which the fixed component contains all the explanatory variables and interactions, 

we found the optimal structure of the random component. We then used the F-statistic 

obtained with restricted maximum likelihood (REML) estimation to find the optimal fixed 

structure. Finally, the significance of each factor kept in the optimal model was assessed using 

the F-statistic obtained with REML estimation. 
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3 Results and discussion 

3.1 Fruit age and cultivar strongly affected the accumulation of organic acids during 

fruit growth  

Organic acid concentrations in the pulp can be broken down into three components, pulp 

water content, the ratio of non-structural to total dry weight, and the ratio of organic acids to 

structural dry weight. In 2011 and 2012, fruit age had a significant effect on these three 

components, and consequently on the concentrations of malate and citrate in the pulp (Table 

II-1).  

The concentration of malate in the pulp and the ratio of malate to structural dry weight 

increased throughout fruit growth (Fig. II.1.B, D, H, J). In a previous paper, we suggested that 

malate accumulation in the fruit is controlled at the level of vacuolar storage, and that, in 

response, malate metabolism maintains the cytosolic pH constant (Etienne et al., 2013b). 

Thus, the increase in the concentration of malate during banana fruit growth may be due to 

more favorable thermodynamic conditions for the transport of malate into the vacuole as the 

fruit grows. Lobit et al. (2006) showed that the concentration of malate in the vacuole of fruit 

cells is determined by vacuolar pH and by the electric potential gradient across the tonoplast 

(∆ψ). The tonoplast proton pumps are the main contributors to ∆ψ and vacuolar pH 

(Martinoia et al., 2007) and could thus be responsible for the accumulation of malate during 

banana fruit growth.  

The concentration of citrate in the pulp and the ratio of citrate to structural dry weight 

increased throughout fruit growth (Fig. II.1.A, C, G, I). Citrate is produced through the TCA 

cycle, a metabolic pathway located in the mitochondria that is responsible for the oxidation of 

respiratory substrates that drive ATP synthesis (Sweetlove et al., 2010). We suggested that 

citrate accumulation in the fruit is controlled by the TCA cycle and consequently by fruit 

respiration rate (Etienne et al., 2013b). The increase in the concentration of citrate during 

banana fruit growth implies that the TCA cycle is acting in a non-cyclic flux mode that 

probably converts malate into citrate. Citrate production during banana growth may be due to 

an increase in mitochondrial citrate synthase activity (Iannetta et al., 2004; Sadka et al., 2001; 

Wen et al., 2001), and/or to a decrease in cytosolic and/or mitochondrial aconitase activity 

(Morgan et al., 2013; Sadka et al., 2000a).  

Pulp water content decreased linearly up to 50% of flowering-to-yellowing time, then 

decreased slowly between 50% and 80% of flowering-to-yellowing time, and finally 

increased slightly until the end of growth as previously reported by Bugaud et al. (2012) (Fig. 

II.1.E and K). The ratio of non-structural to total dry weight increased markedly up to 50% of 
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flowering-to-yellowing time and then only slightly (Fig. II.1.F and L). Thus, in the second 

half of the flowering-to-yellowing period, dilution by water and by the accumulation and 

storage of compounds, (mainly starch) (Jullien et al., 2001b), did not play an important role in 

the determination of the concentration of organic acids in the pulp. 

There were significant differences among cultivars in the patterns of citrate and malate 

accumulation in the pulp in both 2011 and 2012. The PL cultivar had significantly higher 

citrate and malate concentrations in the pulp than the IDN and PJB cultivars (Table II-1, Fig. 

II.1.A, B, G and H). There were major differences in the ratio of citrate and malate to 

structural dry weight among cultivars, and slight differences in pulp water content and in the 

ratio of non-structural to total dry weight (Table II-1, Fig. II.1.C, D, E, F, I, J, K and L), 

meaning that differences among the three cultivars in the accumulation of organic acids 

during fruit growth were mainly the result of differences in the metabolism and/or vacuolar 

storage of organic acids. Based on total citrate and malate concentrations, the PL cultivar had 

a much higher total organic acid concentration than the PJB and IDN cultivars. As citrate is 

mainly produced from malate through the TCA cycle, this means that malate production in 

the cytosol was highest in the PL cultivar. Concerning the ratio of citrate to malate 

concentrations, the IDN and PJB cultivars had twice to three times higher concentrations of 

citrate than of malate, whereas in the PL cultivar, the ratio was close to one. As citrate is more 

easily transported into the vacuole than malate (Etienne et al., 2013b), there may be an 

advantage for fruit cells to store citrate rather than malate. The particularity of the PL cultivar 

in storing equal amounts of citrate and malate may be the consequence of differences in 

vacuolar transport and/or in the rate of conversion of malate into citrate through the TCA 

cycle.  
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Figure II-1 Seasonal variations in pulp citrate concentration (A, G), pulp malate concentration 
(B, H), ratio of citrate to structural dry weight (C, I), ratio of malate to structural dry weight (D, 
J), water content (E, K), and ratio of non-structural to total dry weight (F, L) during the 2011 
and 2012 experimental period in the three cultivars (IDN, PJB, and PL). Each symbol represents 
a fruit. Lines are those of the fitted linear mixed model.  
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Table II-1 LMM analysis of banana pulp fresh weight (g), citrate concentration (g.100 g FW-1), 
malate concentration (g.100 g FW-1), water content (%), non-structural: total dry weight ratio 
(NSDW: DW), citrate: structural dry weight ratio (c itrate: SDW), and malate: structural dry 
weight ratio (malate: SDW) during fruit growth. The factors studied were fruit age, cultivar and 
pruning treatment in the 2011 experiment, and fruit age, cultivar and potassium fertilization 
treatment in the 2012 experiment. 
 

   F-value a and significance b 

Year Factors c 

Pulp 

fresh 

weight 

Citrate 

concentration 

Malate 

concentration 

Water 

content 

NSDW : 

DW 

Citrate : 

SDW 

Malate : 

SDW 

2011         

 c 67*** 16*** 79*** Ns 16*** Ns 17*** 

 p 32*** Ns Ns 8** Ns Ns Ns 

 a 6117*** 2703*** 1599*** 3738*** 1655*** 1493*** 702*** 

 a² 262*** 184*** 44*** 967*** 399*** 224*** 87*** 

 a3 9** Ns 9** 14*** 40*** 6* Ns 

 p : a 36*** Ns Ns Ns Ns Ns Ns 

 c : p Ns Ns Ns Ns Ns Ns Ns 

 c : a 76*** 7*** 155*** Ns 4* 14*** 50*** 

 c: p : a Ns Ns Ns Ns Ns Ns Ns 

2012         

 c 13*** 28*** 92*** 18*** 7* 6** 22*** 

 f Ns Ns Ns Ns Ns 6* 4* 

 a 4043*** 1603*** 560*** 3562*** 520*** 936*** 362 3*** 

 a² 106*** 142*** 70*** 950*** 115*** 233*** 145***  

 a3 34*** Ns 6** Ns 5* 21** Ns 

 c : f Ns Ns Ns Ns Ns 3* 2* 

 c : a 15*** 8*** 54*** 19*** Ns 3* 19*** 

 f: a Ns Ns Ns Ns Ns Ns Ns 

 c: f: a 6*** Ns Ns Ns Ns Ns Ns 

 
a The F-value is given only for the factors kept in the optimal model.  
b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05 ; Ns : not significant.  
c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age (in % of flowering-to-yellowing time); 

f=potassium fertilization treatment.  
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3.2 Ripening stage and cultivar strongly affected the accumulation of organic acids 

during post-harvest fruit ripening  

During post-harvest ripening, the ripening stage and the cultivar had a significant effect on the 

ratio of organic acids to structural dry weight and pulp water content in 2011 and 2012. The 

ratio of non-structural to total dry weight was significantly affected by the cultivar only in 

2011, and by the ripening stage and the cultivar in 2012 (Table II-2). Consequently, the 

ripening stage and the cultivar had a significant effect on the concentrations of malate and 

citrate in the pulp in 2011 and 2012. Differences in the concentrations of total organic acids in 

the pulp in the three cultivars at the eating stage (day 6 to 13) were greater than 0.3 g.100g 

FW-1, which is sufficient for a detectable difference in sourness and sweetness (Bugaud et al., 

2013).  

The patterns of citrate concentration in the pulp and the ratio of citrate to structural dry 

weight were the same in the IDN and PL cultivars with an overall decrease during ripening, 

whereas there was an overall increase in the PJB cultivar (Fig. II.2.A, C, G and I). At the end 

of ripening, PJB had the highest citrate concentration and PL the lowest. Several mechanisms 

may explain the decrease in citrate concentration observed in the PL and IDN cultivars during 

ripening. One could be the activation of the GABA shunt, a cytosolic pathway of citrate 

catabolism known to occur during banana ripening (Chen and Gadal, 1990; Liu et al., 2004; 

Medina-Suárez et al., 1997). Another possible reason for the decrease in the concentration of 

citrate could be a shift from the use of malate to citrate as respiratory substrate by the TCA 

cycle. The different pattern of citrate accumulation observed in the PJB cultivar may be due to 

the use of malate as respiratory substrate instead of citrate, or to less active catabolism of 

citrate in the cytosol.  

The patterns of malate concentration in the pulp and the ratio of malate to structural 

dry weight were the same in all three cultivars with an increase from day 0 to day 6, and a 

slight decrease after that (Fig. II.2.B, D, H and J). At the end of ripening, the PL cultivar had 

the highest concentration of malate, followed by the PJB and IDN cultivars. The 

accumulation of malate from day 0 to day 9 may be due to more favorable thermodynamic 

conditions for malate transport into the vacuole or to a higher capacity for malate synthesis. 

The slight decrease in malate concentration at the very end of ripening could be due to an 

increase in tonoplast permeability leading to leakage of anions, as observed during grape 

berry ripening (Terrier et al., 2001). It is known that membrane permeability increases during 

banana ripening (Sacher, 1966). The malate arriving in the cytosol from the vacuole could be 

further degraded by pH homeostasis leading to a decrease in the concentration of malate.  
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Figure II-2 Variations in pulp citrate concentration (A, G), pulp malate concentration (B, H), 
ratio of citrate to structural dry weight (C, I), r atio of malate to structural dry weight (D, J), 
water content (E, K), and ratio of non-structural matter to total dry weight (F, L) during post-
harvest ripening of banana in 2011 and 2012 in the three cultivars (IDN, PJB, and PL). Each 
symbol represents a fruit. Lines are those of the fitted linear mixed model.  
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Differences in pulp malate concentration among cultivars may be related to differences in 

tonoplast proton pump activity or to differences in the activities of the enzymes involved in 

malate metabolism (Etienne et al., 2013b).  

The increase in pulp water content during post-harvest ripening in all three cultivars 

was due to osmotic migration of water from peel to pulp because of the higher concentration 

of sugar in the latter (John and Marchal, 1995). Dilution by water was lower in PJB and thus 

widened the gap in the concentration of citrate in the pulp between PJB and the two other 

cultivars (Fig. II.2.E and K). The ratio of non-structural to total dry weight remained constant 

during ripening and there was little difference among the three cultivars, meaning that this 

component did not play an important role in the determination of organic acid concentrations 

(Fig. II.2.F and L). 

 

3.3 Fruit age at harvest affected the accumulation of organic acids during post-harvest 

fruit ripening 

The two harvest stages studied corresponded to very contrasted fruit age since at 90% of 

flowering-to-yellowing time, the IDN, PJB, and PL cultivars had a green life of 9±6, 17±2, 

and 8±3 days respectively, whereas at 70% of flowering-to-yellowing time, the IDN, PJB, and 

PL cultivars had a green life of 37±7, 42±14, and 50±10 days respectively (data not shown). 

In accordance with the patterns of citrate and malate accumulation during fruit growth, fruits 

harvested later had higher citrate and malate concentrations at harvest (day 0) (Fig. II.3). Fruit 

age at harvest had a significant effect on the ratio of organic acids to structural dry weight, 

and to a lesser extent on water content and on the ratio of non-structural to total dry weight 

during ripening (Table II-2).  Consequently, fruit age at harvest had a significant effect on the 

concentrations of malate and citrate in the pulp during post harvest ripening. Concerning 

malate concentrations, there were additional effects of fruit age at harvest x ripening stage 

interaction, and of fruit age at harvest x cultivar interaction. 

The concentration of citrate in the pulp and the ratio of citrate to structural dry weight 

(data not shown) were higher throughout ripening in fruits harvested at 90% of flowering-to-

yellowing time (Fig. II.3.A, B and C). These results are in agreement with those obtained by 

Bugaud et al. (2006) in the Cavendish cultivar. These authors reported that the concentration 

of citrate in the pulp of ripe fruit increased with fruit age at harvest. Lobit et al. (2003) 

showed that citrate accumulation in peach pulp can be predicted by a model linked to pulp 

citrate concentration at harvest, fruit pulp respiration, temperature, and pulp weight. During 

banana ripening, the temperature remained constant as did the pulp weight, since the banana 
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fruit was detached from the plant. Pulp weight and pulp respiration were higher in fruits 

harvested later (data not shown). So this model means that the harvest stage probably affected 

citrate concentration in banana pulp by impacting both citrate metabolism and dilution during 

post-harvest ripening.  

 

 

Figure II-3 Variations in pulp citrate (A, B, C) and malate (D, E, F) concentrations during post-
harvest ripening of banana in 2011 vs. fruit age at harvest (90% and 70% of flowering-to-
yellowing time (FYT)) in the three cultivars (IDN, PJB, and PL). Each symbol represents a fruit. 
Lines are those of the fitted linear mixed model.  

 

The concentration of malate in the pulp and the ratio of malate to structural dry weight 

(data not shown) were higher in fruits harvested at 90% of flowering-to-yellowing time until 

day 3 in the IDN cultivar and until day 9 in the PJB cultivar, after which the trend reversed 

(Fig. II.3.D and E). In the PL cultivar, the malate concentration and the ratio of malate to 

structural dry weight were higher throughout ripening in fruits harvested at 90% of flowering-

to-yellowing time but the effect decreased with time (Fig. II.3.F). These results are in 

agreement with the results obtained by Bugaud et al. (2006) in the cultivar Cavendish.  
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Table II-2 LMM analysis of banana pulp fresh weight (g), citrate concentration (g.100 g FW-1), 
malate concentration (g.100 g FW-1), water content (%), non-structural: total dry weight ratio 
(NSDW: DW), citrate: structural dry weight ratio, a nd malate: structural dry weight ratio 
during post-harvest fruit ripening. The factors studied were ripening stage, fruit age at harvest, 
cultivars and pruning treatment in the 2011 experiment, and ripening stage, cultivars and 
potassium fertilization treatment in the 2012 experiment. 
 

  F-value a and significance b 

Year Factors c 
Pulp fresh 

weight 

Citrate 

concentration 

Malate 

concentration 

Water 

content 

NSDW : 

DW 

Citrate : 

SDW 

Malate : 

SDW 

2011         

 c 39*** 496*** 284*** 24*** 8** 249*** 100*** 

 p 10** Ns Ns 12** Ns Ns Ns 

 a 98*** 23*** 11** Ns 8** 24*** 14*** 

 r 44*** 21*** 327*** 1509*** Ns 13*** 227*** 

 r² Ns 45*** 241*** 161*** Ns 44*** 161*** 

 r3 Ns 5* Ns 23*** Ns Ns Ns 

 p :a Ns Ns Ns Ns Ns Ns Ns 

 p :c Ns Ns Ns Ns Ns Ns Ns 

 p :r 7** Ns Ns 5* Ns Ns Ns 

 a :c 5** Ns 15*** 4** Ns Ns 11*** 

 a :r 6* Ns 15*** 37*** Ns Ns 12*** 

 c :r 5** 212*** 50*** 56*** Ns 94*** 34*** 

 p :a :c Ns Ns Ns Ns Ns Ns Ns 

 p:a:r Ns Ns Ns Ns Ns Ns Ns 

 a:c:r Ns Ns Ns Ns Ns Ns Ns 

 p:a:c:r Ns Ns Ns Ns Ns Ns Ns 

2012         

 c 37*** 252*** 73*** Ns 13*** 88*** 39*** 

 f Ns Ns Ns Ns Ns Ns Ns 

 r 29*** 6*  386*** 1533*** 43*** 10** 343*** 

 r² 5* 29*** 184*** 80*** Ns 25*** 130*** 

 r3 Ns Ns Ns 7** Ns Ns Ns 

 c : f Ns Ns Ns Ns Ns Ns Ns 

 c : r Ns 104*** 51*** 16*** Ns 74*** 48*** 

 f : r Ns Ns Ns Ns Ns Ns Ns 

 c:f : r Ns Ns Ns Ns Ns Ns Ns 
a The F-value is given only for the factors retained from the optimal model.   
b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05 ; Ns : not significant.  
c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age at harvest; r=ripening stage; f=potassium 

fertilization treatment.   
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These authors reported that the concentration of malate in the pulp of ripe fruit decreased with 

fruit age at harvest. The higher concentration of malate in late harvested fruits during the first 

days of ripening may be due to more favorable vacuolar storage conditions leading to a higher 

accumulation of malate in the vacuole. As we found no differences in pulp pH between the 

two harvest stages in the three cultivars (data not shown), we suggest that differences in ∆ψ 

may be responsible for the differences in malate accumulation. At the end of ripening, late 

harvested fruits had a lower concentration of malate, which may be the consequence of a 

higher rate of malate leakage across the tonoplast.  

 

3.4 Fruit load affected fruit growth but had no effect on the accumulation of organic 

acids  

As expected, low fruit load significantly increased the pulp fresh weight during fruit growth 

in all three cultivars (Bugaud et al., 2012; Jullien et al., 2001b) (Table II-1, Fig. II.4.A, B and 

C). The same result was observed during post harvest ripening (Table II-2). The pruning 

treatment had no significant effect on pulp citrate and malate concentrations in the pulp 

during fruit growth and ripening in all three cultivars (Table II-1 and II-2). Considering the 

different components of Equation 1, it appeared that only the water content of the pulp was 

significantly reduced by the pruning treatment during fruit growth and ripening. However, the 

effect was very limited since the pruning treatment only decreased pulp water content by 4% 

on average at the end of fruit growth and by 3% on average during ripening (data not shown) 

and consequently had no impact on the concentration of organic acids in the pulp. Several 

agronomic studies reported an effect of the leaf: fruit ratio on the malate and citrate 

concentrations of pulp fruits, probably linked to modifications in fruit respiration. During 

mango growth, a high leaf: fruit ratio decreased malate and citrate concentrations in the pulp 

(Léchaudel et al., 2005b), whereas it had no effect during post-harvest ripening (Joas et al., 

2012). Lechaudel et al. (2005b) showed that a high leaf: fruit ratio decreased pulp water 

content, had no effect on the ratio of non-structural to total dry weight, and reduced the ratio 

of citrate and malate to structural dry weight. In peach, a high leaf: fruit ratio increased pulp 

citrate concentration early in fruit development, but decreased it near maturity. The opposite 

effects were observed for malate (Souty et al., 1999; Wu et al., 2002). In the present study, the 

fruit load was only increased by a factor of 2.5 whereas in the studies mentioned above it was 

increased by at least a factor of 4, which could explain why in our case, the pruning treatment 

had no effect on citrate and malate concentrations in banana pulp. However, a physiological 

explanation is also possible. In fruit containing a lot of starch, like banana at the green stage, 



Chapitre II Effets du génotype et des pratiques culturales sur l’acidité de la banane  
 

73 
 

it is likely that organic acids play an important role as osmoticum since very few soluble 

sugars are stored in the vacuole. Thus, we hypothesize that the accumulation of organic acids 

in the vacuole is tightly linked to water accumulation, meaning that their concentration cannot 

vary significantly with pulp fresh weight. 

 

 

Figure II-4 Seasonal variations in pulp fresh weight in the three cultivars (IDN, PJB, and PL) vs. 
fruit load (LL=low fruit load; HL=high fruit load) during the 2011 growing season (A, B, C), 
and potassium fertilization (HF=high level of potassium fertilization; NF=no potassium 
fertilization) during the 2012 growing season (D, E, F). Each symbol represents a fruit. Lines are 
those of the fitted linear mixed model. 
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3.5 Potassium fertilization affected fruit growth but had no effect on the accumulation of 

organic acids  

The K concentrations found in the soils sampled in the different blocks were in the low range 

of values found in other soils in Martinique (Bugaud et al., 2009) (Table II-3). Soils in the 

blocks with the high potassium fertilization treatment had a higher K concentration than soils 

in the blocks with no potassium fertilization, which had an impact on banana plant nutrition 

since leaves from plants in the blocks with high potassium fertilization had higher K 

concentrations than leaves from plants in the blocks with no potassium fertilization (Table II-

4). The concentrations of K in the leaves of all three cultivars were in the range found by 

Moreira and al. (1986) in 42 cultivars of dessert bananas.  

There was a significant effect of the interaction between potassium fertilization, 

cultivar, and fruit age on pulp fresh weight during fruit growth (Table II-1). Thus, fruits from 

PJB and PL cultivars grown with high potassium fertilization treatment had higher pulp fresh 

weight than fruits from the same cultivars grown with no potassium fertilization, whereas the 

opposite was the case for fruits from the IDN cultivar (Fig. II.4.D, E and F). However, the 

effects were low since, at the end of fruit growth, potassium fertilization only decreased pulp 

fresh weight by 7% in the IDN cultivar, and increased pulp fresh weight by 16% in the PJB 

and by 10% in the PL cultivars. As a consequence, in the fruits from plots with high 

potassium fertilization and no potassium fertilization harvested at 75% of flowering-to-

yellowing time there was no significant difference in pulp fresh weight in the three cultivars 

(Table II-2). The positive effect of potassium supply on the pulp fresh weight in the PL and 

PJB cultivars is in agreement with several studies on fruits (Ashraf et al., 2010; Hunsche et 

al., 2003; Lester et al., 2010; Quaggio et al., 2011). Low potassium supply is known to 

decrease the translocation of carbohydrates from leaves to banana fruit, and to reduce their 

conversion into starch (Martin-Prével, 1973). Concerning the negative effect of potassium 

supply on the pulp fresh weight in the IDN cultivar, the decrease was very small, and could 

simply be due to a sampling artifact. IDN banana plants may be less sensitive to potassium 

shortage than PL and PJB plants, and IDN fruits may be able to reach their full potential 

growth using the potassium already present in the soil.  

During fruit growth, among the three components that determine the concentrations of 

organic acids in banana pulp, only the ratio of organic acids to structural dry weight was 

significantly affected by potassium fertilization and by its interaction with the cultivar (Table 

II-1). In the IDN cultivar, fruit from plots with high potassium fertilization had a lower ratio 
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of organic acids to structural dry weight than fruit from plots with no potassium fertilization, 

whereas there was no difference in fruits from the PJB and PL cultivars (Fig. II.5). 

 

Figure II-5 Seasonal variations in the ratios of citrate content to structural dry weight (A, B, C) 
and of malate content to structural dry weight (D, E, F) in the three cultivars (IDN, PJB, and 
PL) vs. potassium fertilization (HF=high level of potassium fertilization; NF=no potassium 
fertilization) during the 2012 growing season. Each symbol represents a fruit. Lines are those of 
the fitted linear mixed model.  
 

However, the effects observed in the IDN cultivar were very small and consequently did not 

affect the concentrations of organic acids in the pulp. Fruits from the PL cultivar grown with 

the high potassium fertilization treatment had a significantly higher  concentration of K in the 

pulp (16%) than fruits from the PL cultivar grown with no potassium treatment, and the same 

trend was observed in the PJB cultivar even if the difference was not significant (Table II-4). 

Therefore, it appears that in the PL and PJB cultivars, potassium fertilization slightly 

increased the accumulation of K in fruit pulp but had no effect on the concentration of organic 

acids. As mentioned previously, K and organic acids are the main osmoticums in green 

banana fruit and this possibly explains why their concentrations cannot vary significantly with 

potassium supply since their concentrations are tightly linked to water accumulation. In 
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contrast, the concentration of K in the pulp of fruits grown with high potassium fertilization or 

no potassium fertilization were the same in the IDN cultivar (Table II-4), meaning that 

potassium fertilization had no effect on K accumulation in the fruit. Thus, the decrease in the 

ratio of organic acids to structural dry weight in IDN fruits grown with high potassium 

fertilization can probably not be attributed to potassium fertilization and is consequently 

difficult to explain. 

During post-harvest ripening, potassium fertilization had no effect on the 

concentration of organic acids in the pulp, or on the components of Equation 1, which is in 

accordance with the results observed during fruit growth (Table II-2). These results are in 

contradiction with those of studies by Ramesh Kumar and Kumar (2007), and Vadivel and 

Shanmugavelu (1978), who reported a decrease in titratable acidity in ripe banana fruit grown 

with a high potassium supply. These contradictory results are difficult to explain since the 

same levels of potassium fertilization were applied in the study of Vadivel and in ours, so 

further studies are needed to clarify this issue. 

 

Table II-3 Soil chemical properties of the blocks used in the 2012 experiment. Values are the 
means of the two sampled dates ±s.d, except for the blocks HF of cultivar PJB and for the 
calcium content of blocks NF for cultivar IDN for which there was only one sample date. 
 

Cultivar Treatment a pH Cation-exchange capacity  K Ca Mg 

   (mEq.100g-1) 

IDN 
HF 5.4±0.3 41.9±9.2 0.96±0.2 16.2±0.6 7.18±1.2 

NF 5.4±0.2 44.1±5.3 0.44±0.1 13.1 6.46±0.8 

PJB 
HF 5.7 49.0 0.87 16.1 6.65 

NF 5.4 35.6 0.48±0.1 14.0 5.96 

PL 
HF 5.5±0.3 35.2±3.5 0.75±0.1 16.6±0.3 7.58±1.2 

NF 5.5±0.1 44.9±1.3 0.40±0.0 16.0±0.8 7.24±1.2 

 
a Code for treatment: HF= high potassium fertilization; NF=no potassium fertilization 
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Table II-4 Soluble mineral content of leaves (g.100 g DW-1) and fruit pulp (g.100 g FW-1) for the 
three cultivars (IDN, PJB, and PL) and the two treatments, high potassium fertilization (HF) 
and no potassium fertilization (NF) in the 2012 experiment. For leaves, values are the mean of 
two sampling dates ±s.d. For fruit pulp, values are the mean of six fruits at harvest (green fruit) 
±s.d. For fruit pulp, letters ‘a–b’ indicate results of Tukey’s HSD test at p = 0.05 for a given 
mineral element. 
 

 

a Code for treatment: HF= high potassium fertilization; NF=no potassium fertilization 

 

4 Conclusions 

The concentrations of citrate and malate in the pulp of banana fruits were significantly 

affected by genotype and fruit age, but not by cultural practices. However, it is important to 

note that these results were obtained under particular soil and climatic conditions, and now 

need to be confirmed by further studies in other sites. Nevertheless, the results of this study 

strongly suggest that the concentration of organic acids in banana pulp is mainly determined 

by genetic factors. Consequently, banana pulp acidity probably has high heritability and may 

be an interesting trait to target in breeding programs aimed at improving the organoleptic 

quality of new cultivars. 

 

 

 

 

 

Organ  Cultivar  Treatment a  K Ca Mg P Cl 

Leave        

 
IDN 

HF 2.86±0.4 1.52±0.6 0.38±0.0 0.17±0.1 0.97±0.2 

 NF 2.38±0.3 1.09±0.1 0.35±0.1 0.19±0.0 0.87±0.2 

 
PJB 

HF 2.76±0.0 1.74±0.7 0.29±0.0 0.18±0.1 1.01±0.4 

 NF 1.96±0.2 1.37±0.1 0.40±0.1 0.18±0.0 0.95±0.1 

 
PL 

HF 2.59±0.4 1.75±0.6 0.29±0.0 0.20±0.0 1.19±0.3 

 NF 1.84±0.2 1.56±0.1 0.39±0.2 0.18±0.0 1.05±0.2 

Pulp fruit 

at harvest 
       

 
IDN 

HF 0.30±0.02 b 0.03±0.02 a 0.02±0.01 a 0.02±0.0 a - 

 NF 0.30±0.01 b 0.02±0.02 a 0.02±0.01 a 0.02±0.0 a - 

 
PJB 

HF 0.32±0.03 ab 0.02±0.01 a 0.02±0.01 a 0.01±0.0 b - 

 NF 0.28±0.03 b 0.02±0.02 a 0.02±0.01 a 0.01±0.0 b - 

 
PL 

HF 0.35±0.03 a 0.03±0.01 a 0.02±0.01 a 0.01±0.0 b - 

 NF 0.30±0.01 b 0.02±0.01 a 0.03±0.00 a 0.01±0.0 b - 
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Chapitre III Modélisation écophysiologique de l’acidité 

de la banane (Musa sp. AA) en pré et post récolte 
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Dans ce chapitre, des modèles écophysiologiques permettant de prédire différents 

critères d’acidité du fruit (pH, acidité titrable, concentrations en malate et citrate de la pulpe) 

sont développés afin de comprendre les processus qui pilotent l’acidité de la banane et de 

proposer des pistes sur les origines de la variabilité observée entre génotypes (c.f. Chapitre 

II). L’analyse de sensibilité de ces modèles a permis de simuler l’effet de certains facteurs 

agro-environnementaux sur l’acidité de la banane. L’étude porte à la fois sur les phases pré et 

post récolte afin de voir quelles pourraient être les origines physiologiques des différences 

d’acidité observées entre ces deux phases (c.f. Chapitre II).  

Un premier modèle utilisé (Lobit et al., 2002) prédit le pH et l’acidité titrable  de la 

pulpe, deux paramètres importants de la qualité organoleptique de la banane (Bugaud et al., 

2013), à travers la représentation des équilibres acido-basiques de la vacuole.  

Pour prédire la concentration en malate dans la pulpe de banane, nous nous sommes 

basés sur l’une des conclusions de la synthèse bibliographique (c.f. chapitre I) qui est que 

l’accumulation du malate dans le fruit est pilotée par les conditions de son stockage dans la 

vacuole. Le modèle d’accumulation du malate présenté est donc basé sur une représentation 

simplifiée du mécanisme de transport du malate dans la vacuole et adapté du modèle de Lobit 

et al. (2006). Ce modèle intègre le modèle de prédiction du pH.  

Enfin, pour prédire la concentration en citrate dans la pulpe de banane, nous nous 

sommes basés sur l’une des conclusions de la synthèse bibliographique (c.f. chapitre I) qui est 

que l’accumulation du citrate dans le fruit est pilotée par le fonctionnement du cycle de Krebs 

dans la mitochondrie. Le modèle d’accumulation du citrate présenté est donc basé sur une 

représentation simplifiée de ce cycle. 
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1 Modélisation du pH et de l’acidité titrable de la pulpe 

par un modèle d’équilibres acido-basiques 

 

Objectifs 

Dans cette partie, la relation entre la composition (acides et minéraux solubles) et l’acidité de 

la pulpe (mesurée par le pH et l’acidité titrable) a été étudiée en adaptant le modèle de Lobit 

et al. (2002) développé sur la pêche. Les évolutions du pH et de l’acidité titrable chez trois 

génotypes de banane dessert contrastés en acidité ont pu ainsi être prédites en modélisant les 

équilibres acido-basiques présents dans la vacuole. La contribution des différents composés 

pris en compte par le modèle à l’acidité de la banane a été évaluée par une analyse de 

sensibilité à différents stade de développement du fruit. Cette partie a fait l’objet d’une 

publication dans Scientia Horticulturae sous la forme d’un article intitulé «A model 

approach revealed the relationship between banana pulp acidity and composition during 

growth and post harvest ripening ».  

 

Principaux résultats 

•  Les prédictions du pH et de l’acidité titrable sont meilleures pendant la maturation post 

récolte que pendant la croissance. 

•  Durant la croissance de la banane, les principaux déterminants de l’acidité sont le citrate, 

le malate, l’oxalate et le potassium.  

•  Durant la maturation post récolte de la banane, les principaux déterminants de l’acidité 

sont le citrate, le malate et le potassium.  
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A model approach revealed the relationship between banana pulp acidity 

and composition during growth and post harvest ripening 

 

A. Etienne1, M. Génard2, D. Bancel2, S. Benoit1, C. Bugaud1 

 
1 Centre de Coopération International en Recherche Agronomique pour le Développement 
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Abstract 

Titratable acidity and pH are important chemical traits for the organoleptic quality of banana 

since they are related to the perception of sourness and sweetness. Banana fruit has the 

particularity of having separate growth and ripening stages, during which pulp acidity 

changes. A modeling approach was used to understand the mechanisms involved in changes 

in acidity during pulp growth and post harvest ripening. Changes in pH and titratable acidity 

were modeled by solving a set of equations representing acid/base reactions. The models were 

built using data from growth and post harvest ripening of three dessert banana cultivars with 

contrasting acidity. For each model, calculated values were compared to observed values. 

These models allowed the prediction of pH (R²=0.34; RMSE=0.75, biais=0.05) and of 

titratable acidity (R²=0.81, RMSE=2.05, biais=-1.44) during fruit growth and post harvest 

ripening. The sensitivity analyses showed that among acids, malic, citric and oxalic acids are 

the main contributors to banana pulp acidity, and that among soluble minerals, potassium also 

plays an important role. Studying the factors that affect the accumulation of organic acids 

(citric, malic, and oxalic acids) and potassium in banana pulp could be a relevant area of 

research with the objective of modifying banana fruit acidity. 
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1.1 Introduction 

Fruit acidity is a topic of primary importance in improving fruit quality since it influences the 

perception of both sourness and sweetness (Bugaud et al., 2011; Esti et al., 2002). These two 

attributes are major drivers of consumer preferences for fruit (Lyon et al., 1993), and are thus 

important traits to consider in breeding programs. Understanding the elaboration of fruit 

acidity is also important because acidity controls numerous enzyme activities (Madshus, 

1988).  

Fruit acidity is commonly measured using two chemical parameters: titratable acidity 

(TA) i.e. the amount of weakly bound hydrogen ions that can be released from the acids, and 

pH, the activity of free hydrogen ions. Fruit acidity is due to the acidity of the vacuole which 

represents about 90% of the volume of most mature fruit cells (Etxeberria et al., 2012). The 

acidity of the vacuole is the result of its ionic composition, mainly organic acids and mineral 

cations that determine the vacuolar pH and TA (Etienne et al., 2013b). Banana pulp contains 

three major organic acids, malic acid, citric acid, and oxalic acid, whose concentrations 

undergo marked changes during growth and ripening (John and Marchal, 1995; Jullien et al., 

2008) and  phosphoric acid (Bugaud et al., 2013). Banana pulp contains soluble minerals, 

mainly potassium (K), and to a lesser extent magnesium (Mg), calcium (Ca), and chloride 

(Cl) (John and Marchal, 1995). During post harvest ripening, mineral content can still change 

due to migration between the peel and the pulp (Izonfuo and Omuaru, 1988). 

There are considerable differences in pH and TA among dessert banana cultivars and 

among post-harvest ripening stages (Bugaud et al., 2013; Chacón et al., 1987), and the origins 

of these differences remain unclear. Quantifying the relations between pulp acidity and pulp 

ionic composition using a modeling approach, would advance our understanding of the 

determinants of banana acidity. Models of pH and TA predictions have been developed for 

peach (Lobit et al., 2002) and proved to be powerful tools to understand the mechanisms 

underlying changes in acidity during peach development. The objective of the present work 

was to apply and validate these models on banana fruit, in which other ionic species than 

those found in peach need to be taken into account, and to throw light on the determinants of 

the changes in pH and TA that occur during the life of the banana pulp, i.e. from growth on 

the plant through post harvest ripening.  
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1.2 Materials and methods 

1.2.1 Model Development 

1.2.1.1 pH model 

The model used for pH prediction was adapted from Lobit et al. (2002). Banana pulp can be 

considered as a concentrated aqueous solution of weak acids, mainly malic, citric, oxalic and 

phosphoric acids, and mineral cations, mainly potassium, magnesium, calcium and chloride. 

Other acids can be found in banana pulp but were not taken into account in the present study. 

Weak acids are partly in free form and partly dissociated to form salts with monovalent 

cations. Proton exchange reactions occur between acids and bases until equilibrium state is 

reached, which determines the pH and the concentrations of all ionic species. So, to predict 

the pH of banana pulp solution, the concentrations of the different chemical forms of the weak 

acids need to be calculated.  

 

Acid/base equilibrium 

The equilibrium state of a solution containing several acid/conjugate base pairs and cations in 

known amounts can be computed by solving a system consisting in the following sets of 

equations: 

 

- Equations of conservation  

The total amount of an acid is equal to the sum of the concentrations of all the ionic species 

formed by its dissociation: 

Citric acid: [Cit] = [H 3Cit] + [H 2Cit -] + [HCit 2-] + [Cit 3-]                                                (1a) 

Malic acid: [Mal] = [H 2Mal] + [HMal -] + [Mal 2-]                                                            (1b) 

Oxalic acid : [Oxa] = [H 2Oxa] + [HOxa -] + [Oxa 2-]                                                         (1c)   

Phosphoric acid: [PO4] = [H 3PO4] + [H 2PO4 
-] + [HPO 4 

2-] + [PO 4 
3-]                              (1d) 

 

 - Equations of dissociation  

The dissociation reactions of the weak acids considered in the model are the following: 

Citric acid: H3Cit ↔ H2Cit + H+ 
↔ HCit2- + 2H+ ↔ Cit3- + 3H+                                        (2a) 

(pKa1~3.10, pKa2~4.70, pKa3~6.40) 

Malic acid: H2Mal ↔ HMal- + H+
↔ Mal2- + 2H+                                                               (2b) 

(pKa1~3.40, pKa2~5.10) 

Oxalic acid: H2Oxa ↔ HOxa- + H+
↔ Oxa2- + 2H+                                                              (2c) 

(pKa1~1.23, pKa2~4.19) 
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Phosphoric acid: H3PO4 ↔ H2PO4 + H+ 
↔ HPO4

 2- + 2H+ ↔ PO4
3- + 3H+                       (2d) 

(pKa1~2.12, pKa2~7.21, pKa3~12.67) 

 

If HA/A - is an acid/base pair characterized by an acidity constant Ka, the equilibrium between 

the concentrations of the protonated and the dissociated form can be written as a function of 

pH and of the activity of the ionic species involved in the reaction:	RS = �T��ℎ/�:T�, where 

(HA) and (A-) are the activities of the conjugated acid and base, respectively; h=(H+)=10-pH 

is the hydrogen ion activity, and Ka=10-pKa is the acidity constant. 

In diluted solutions (concentrations below 10-2 mol.L-1), activities can be considered equal to 

concentrations. In more concentrated solutions like fruit juice, they are less than 

concentrations: (HA)=aHA[HA]  and (A-)=aA-[A
-] , where [HA] and [A-] are the concentrations 

of the acid and its corresponding base respectively, and aHA and aA- are the activity 

coefficients, which depend on the ionic composition of the solution. So, the dissociation 

equilibrium can be written by introducing an apparent acidity constant: [T�]ℎ/[:T] = RW′, 
where K’a  is the apparent constant of acidity defined as: 

RS� = RSW,%/W%Y                                                                                                                      (3) 

 

- Activity coefficient of ions 

The activity coefficients of each acid and conjugated base have to be computed to estimate the 

apparent acidity constants. In a solution that contains n ionic species Si with electric charges zi 

and at concentrations Ci1<i<n , an ion S with a charge z has an activity coefficient as that 

depends on the ionic strength (µ) of the medium. The ionic strength of the solution is the total 

concentration in ionic species, given by the following equation: 

Z = 1/2�∑ \+E+ H+�                                                                                                                    (4) 

In the case of an aqueous solution with a ionic strength of up to 1 M, as can be calculated by 

the equation of Davies (1962): 

log�W`� = −0.509\E��√Z/�1 + √Z�� − 0.3Z�                                                                       (5) 

 

- Ionic balance  

The neutrality of the electrical solution in pulp cell implies that the algebraic sum of cationic 

and anionic charged must be null: 

[H2Cit-] + 2*[HCit 2-]  + 3*[Cit 3-]                                                                                           (6) 

+ [HOxa-] + 2*[Oxa 2-] 

+ [Hmal-] + 2*[Mal 2-] 

+ [H 2PO4
-] + 2*[HPO 4

2-] + 3*[PO 4
3-] + [OH -] 
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+ [Cl -] - [H +]-[K +]-2*[Mg 2+]-2*[Ca 2+] =0 

 

[OH-] is expressed as a function of the pH: [OH-] =10(pH-14) 

 

Algorithm of the pH model 

Combinations of equations 1 and 2 give the following set of equations that all depend on the 

apparent acidity constants and the pH: 

[HdeFY] = �Rf+gh� Rf+gE� Rf+gF� /�ℎF + ℎERf+gh� + ℎRf+gh� Rf+gE� + Rf+gh� Rf+gE� Rf+gF� ��[Hde]              (7a) 

[:HdeEY] = �ℎRf+gh� Rf+gE� /�ℎF + ℎERf+gh� + ℎRf+gh� Rf+gE� + Rf+gh� Rf+gE� Rf+gF� ��[Hde]                 (7b) 

[:EHde�] = �ℎERf+gh� /�ℎF + ℎERf+gh� + ℎRf+gh� Rf+gE� + Rf+gh� Rf+gE� Rf+gF� ��[Hde]                       (7c) 

[:FHde] = �ℎF/�ℎF + ℎERf+gh� + ℎRf+gh� Rf+gE� +Rf+gh� Rf+gE� Rf+gF� ��[Hde]	                                (7d) 

 

[iWjEY] = �RkSlh� RkSlE� /�ℎE + ℎRkSlh� + RkSlh� RkSlE� ��[iWj]                                           (7e) 

[:iWj�] = �ℎRkSlh� /�ℎE + ℎRkSlh� +RkSlh� RkSlE� ��[iWj]                                                 (7f) 

[:EiWj] = �ℎE/�ℎE + ℎRkSlh� +RkSlh� RkSlE� ��[iWj]                                                         (7g) 

 

[mnWEY] = �R)ISh� R)ISE� /�ℎE + ℎR)ISh� + R)ISh� R)ISE� ��[mnW]                                            (7h) 

[:mnW�] = �ℎR)ISh� /�ℎE + ℎR)ISh� + R)ISh� R)ISE� ��[mnW]                                                  (7i) 

[:EmnW] = �ℎE/�ℎE + ℎR)ISh� + R)ISh� R)ISE� ��[mnW]                                                          (7j) 

 

[ompFY] = �Rqr)h� Rqr)E� Rqr)F� /�ℎF + ℎERqr)h� + ℎRqr)h� Rqr)E� + Rqr)h� Rqr)E� Rrq)F� ��[omp]          (7k) 

[:ompEY] = �ℎRqr)h� Rqr)E� /�ℎF + ℎERqr)h� + ℎRqr)h� Rqr)E� + Rqr)h� Rqr)E� Rrq)F� ��[omp]    (7l) 

[:Eomp�] = �ℎERqr)h� /�ℎF + ℎERqr)h� + ℎRqr)h� Rqr)E� + Rqr)h� Rqr)E� Rrq)F� ��[omp]          (7m) 

[:Fomp] = �ℎF/�ℎF + ℎERqr)h� + ℎRqr)h� Rqr)E� + Rqr)h� Rqr)E� Rrq)F� ��[omp]                     (7n) 

 

So, combining equations 3, 4, 5, 6 and 7, it is possible to calculate the ionic strength (µ) and 

the pH of the pulp by solving a system of two equations with two unknowns (pH and µ). 

1h�Z, 9:� =tT0du0v −tHWedu0v = 0 

1E�Z, 9:� = Z − 1/2t\+E [T+] = 0 

 

1.2.1.2 TA model 

The TA of banana pulp was predicted by computing the amount of base (NaOH) needed to 

bring its pH to 8.1 (usual norm). Knowing the total concentrations of each acid and cation, 
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and the pH of the pulp (equal to 8.1), it is possible to calculate the ionic strength (µ) and the 

TA of the pulp by solving a system of two equations with two unknowns (NaOH and µ): 

1h�Z, wWm:� =tT0du0v −tHWedu0v = 0 

1E�Z, wWm:� = Z − 1/2t\+E [T+] = 0 

 

1.2.1.3 Model solving 

The input data of the models were the acid and cation concentrations of the banana pulp, and 

the acidity constants of the malic, citric, phosphoric and oxalic acid. The models were 

computed using R software (R Development Core Team, http://www.r-project.org). For each 

sampling date, the system was solved to calculate the pH of the pulp sample (pH model) or 

the amount of NaOH added to reach a pH of 8.1 (TA model), using the “nleqslv” function of 

the R software (http://cran.r-project.org/web/packages/nleqslv/index.html). 

 

1.2.2 Model Validation  

1.2.2.1 Field experiment 

Three dessert banana cultivars (Musa spp.) diploids AA, with different predominant organic 

acid at the eating stage were used in this study: Indonesia 110 (IDN 110), Pisang Jari Buaya 

(JB), and Pisang Lilin (PL). All bananas were grown at the Pôle de Recherche 

Agroenvironnementale de la Martinique (PRAM, Martinique, French West Indies; latitude 

14°37N, longitude 60°58W, altitude 16 m) on continental alluvial soil.  

Plants received 12 g of nitrogen, 1.7 g of phosphorus, and 20 g of potassium at 4-week 

intervals during fruit growth. Irrigation was adjusted to the amount of rainfall to supply at 

least 5 mm of water per day. The other cultural practices (desuckering, bunch management) 

were similar to those used in standard Cavendish production. During the period of bunch 

growth (March–November 2010) the mean daily temperature was 27 ± 1.2 °C. Non-systemic 

fungicide was applied during the experiment to control foliar diseases. For each cultivar, 

plants were tagged at inflorescence emergence. Bunches were not covered. 

 

1.2.2.2 Preparation of samples 

Monitoring fruit growth  

Six bunches corresponding to six replicates of each cultivar were selected. One fruit located 

in the internal row of the second proximal hand was collected for analyses every 15 days. 
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Sampling before natural ripening on standing plants, i.e. when the first yellow finger appears, 

determined the end of monitoring.  

 

Monitoring post-harvest fruit ripening  

For each cultivar, six bunches were harvested between May and November 2011. For each 

cultivar, the harvest stage was calculated to be 70% of the flowering-to-yellowing time of the 

bunch on the tree. The second proximal banana hand per bunch was rinsed and dipped in 

fungicide (bitertanol, 200 mg L−1) for 1 min. The fruits were placed in a plastic bag with 20 

µm respiration holes and stored in boxes for 6 days at 18 °C. The fruits were then stored in a 

room at 18 °C and underwent ethylene treatment (1 mL L−1 for 24 h) to trigger the ripening 

process. After 24 h the room was ventilated and bananas were maintained at 18 °C for 13 

days. A banana fruit was sampled at day 0 (before ethylene treatment), 3, 6, 9 and 13.  

 

1.2.2.3 Chemical analyses 

Pulp of the sampled fruit was freeze dried and mixed to obtain a dry powder. TA and pH were 

measured after dilution of 1 g of dry powdered banana pulp in 30 mL of distilled water. TA 

was determined by titration with NaOH (0.1N) at pH 8.1 and expressed in milli-equivalents of 

acid (mEq) per 100 g of fresh weight (FW). Two analytical replicates per sample were 

performed for each analysis. Citric acid and malic acid were extracted with a mixture of 

solvents (methanol/water/chloroform) and purified with PVPP according to Gomez et al. 

(2007). Starting from initial conditions described by Bergmeyer (1983), enzymatic assays 

were adapted to be performed in each well of a 96 well Microplate using a robotic platform 

(Freedom EVO 75, TECAN) equipped with a microplate reader (Infinite 200, TECAN). All the 

following preparations were done for one microplate. Citric acid assay:  a mixture was 

prepared containing 115 µg of malic acid dehydrogenase, 0.51 mg of lactate dehydrogenase 

and 5 mg of NADH in 12 mL of 0.6 mol L-1 glycylglycine buffer (pH 7.8). Then 100 µL of 

the mixture and 180 µL of extract or standard solution of citric acid (4 to 50 mg L-1) were 

mixed in each well. Ten minutes later, absorbance was read at 340 nm (DO A) before 20 µL 

of citric acid lyase (6.4 U mL-1) were added. The microplate was incubated for 3 h at room 

temperature and regularly shaken, before a second reading (DO B). Malic acid assay: a 

mixture was prepared with 6 mL of water and 6 mL of a 0.6 mol L-1 glycylglycine buffer (pH 

10). Then 100 µL of the mixture, 20 µL of NAD (18 mg mL-1), 20 µL of GOT (66.7 mg L-1) 

and 100 µL of extract or standard malic acid solution (4 to 50 mg L-1) were mixed in each 

well. Ten minutes later, absorbance was measured at 340 nm (DO A) before 20 µL of malic 
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acid dehydrogenase (33 µg mL-1) were added. For the next 2h45min, the microplate was 

incubated at room temperature and shaken twice, after which absorbance was measured at 340 

nm (DO B). The concentration of soluble oxalic acid was determined using the LIBIOS 

Oxalic acid assay kit. Soluble K, Mg, and Ca concentrations were determined by mass 

spectrometry (Martin-Prével et al., 1984), and Cl concentration was determined by 

potentiometry using the automatic titrator TitroLine alpha (Walinga et al., 1995). The 

concentration of phosphoric acid was estimated from soluble phosphorus (P) determined by 

colorimetry (Martin-Prével et al., 1984). 

 

1.2.2.4 Statistical Analysis 

 Linear mixed-effects models [LMMs (Gałecki and Burzykowski, 2013)] were used to 

examine the relationship between the response variables (pulp acidity and composition) and 

the explanatory variables (fruit age, cultivar), and their interactions. We used quadratic and 

cubic terms of fruit age when the curve passed through a maximum and had an asymmetrical 

shape. We used the lme function in the ‘nlme’ library (Pinheiro et al., 2013) in the statistical 

program R 2.14.0. “Banana plant” was treated as a random effect because banana plants were 

assumed to contain unobserved heterogeneity that cannot be modeled. A temporal correlation 

structure was used to account for temporal pseudo-replication. Model selection was made 

using the top-down strategy (Zuur et al., 2009): starting with a model where the fixed 

component contains all explanatory variables and interactions, we found the optimal structure 

of the random component. Then, we used F-statistic obtained with REML estimation to find 

the optimal fixed structure. Finally, the optimal model is presented in this paper, using REML 

estimation.  

The predictive quality of the pH and TA models was evaluated by the bias (mean of 

the difference between observed and predicted values), and the root mean squared error 

(RMSE), which describes the mean distance between simulation and measurement data 

(Kobayashi and Salam, 2000). The RMSE design was: 

7ixy = z�∑�{dq − {dk�²�0  

Where yip is the predicted value of the fruit i, and yim is the measured value of the fruit i. n is 

the data number. 

A sensitivity analysis of the pH and TA models was performed at two different stages 

of fruit development- green (before ethylene treatment) and ripe (9 days after ethylene 

treatment), according to the method of Monod et al. (2006). First, border values of each of the 
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eight input factors of the models were estimated as the extremes values of the dataset 

corresponding to the fruit stage considered for the sensitivity analysis. Then, for each input 

factor, their range of values was divided into five equal levels and a 58 factorial simulation 

design was created. Next, an analysis of variance (ANOVA) was performed on the model 

responses to study the contribution of each input factor to pH and TA variability. A sensitivity 

index (SI) of each input factor was calculated by dividing its sum of squares by the total sum 

of squares (Monod et al., 2006). 

 

1.3 Results 

1.3.1 Changes in pulp acidity  

Fruit age and the cultivar had a significant effect on pH and TA during fruit growth (Table 

III-1 ). Throughout fruit growth, PL had the most acidic fruits (TA=3.5 meq 100 g FW-1 ±0.22; 

pH=5.5 ±0.13), IDN 110 fruits were intermediate (TA=2.8 meq 100 g FW-1 ±0.31; pH=5.7 

±0.17), and JB had the least acidic fruits (TA=2.3 meq 100 g FW-1 ±0.27; pH=5.9 ±0.28) (Fig. 

III.1.A and B). In all three cultivars, TA decreased slightly during the early stages of fruit 

growth and then increased slightly. pH increased throughout fruit growth in the three cultivars 

but most in JB. 

Fruit age and the cultivar had a significant effect on pH and TA during post harvest 

fruit ripening (Table III-1). The general patterns of TA and pH during post harvest ripening 

were similar in the three cultivars (Fig. III.2.A and B): TA increased from day 0 to day 6 and 

then decreased slightly until day 13. pH showed the opposite trend. There were strong 

significant differences between the three cultivars in the levels of TA and pH at the end of 

ripening (Fig. III.2.A and B). At day 13, JB had the highest acidity (TA=12 meq 100 g FW-1 

±0.46; pH=4.3 ±0.05), followed by PL (TA=6 meq 100 g FW-1 ±0.32; pH=4.8 ±0.08) and 

lastly IDN 110 (TA=3.8 meq 100 g FW-1 ±0.43; pH=5.4 ±0.09).  

 

1.3.2 Changes in organic acid and mineral contents  

During fruit growth, citric and malic acid contents increased linearly in the three cultivars but 

at different rates leading to significant differences among cultivars (Fig. III.1.C and D, Table 

III-1 ).Thus, at the end of fruit growth, JB had the highest citric acid content (0.4 g 100 g FW-1 

±0.03), followed by PL (0.34 g 100 g FW-1 ±0.005) and IDN 110 (0.33 g 100 g FW-1 ±0.001). 

Concerning malic acid content, PL had the highest content (0.23 g 100 g FW-1 ±0.01) at the 

end of fruit growth, followed by JB (0.15 g 100 g FW-1 ±0.003) and IDN 110 (0.14 g 100 g 

FW-1 ±0.01). Soluble oxalic acid content decreased linearly during fruit growth in all three 
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cultivars (Fig. III.1.E, Table III-1). PL had a significantly lower soluble oxalic acid content 

than JB and IDN throughout fruit growth (Table III-1). K was the main mineral present in 

banana pulp in the three cultivars and K content increased during fruit growth (Fig. III.3.A, 

Table III-1).   

 

 
Figure III-1 Changes in TA (A), pH (B), citric acid content (C), malic acid content (D), and 
soluble oxalic acid content (E) of the pulp during fruit growth of the three cultivars of dessert 
bananas: Pisang Jari Buaya (JB), Pisang Lilin (PL), and Indonesia 110 (IDN 110). Each symbol 
represents a bunch. Lines are those of the fitted linear mixed model.  
 

There were significant differences among cultivars (Table III-1): JB had the highest K content 

(0.30 g 100 g FW-1 ±0.02), followed by PL (0.26 g 100 g FW-1 ±0.03), and IDN 110 (0.25 g 

100 g FW-1 ±0.02). The other mineral elements were present in lesser amounts (about ten 

times less) in banana pulp. Cl content increased from 0.05 to 0.07 g 100 g FW-1 during fruit 

growth and no differences were observed among the three cultivars whereas P content 
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decreased during fruit growth in all three cultivars (Fig. III.3.B and C, Table III-1). There 

were significant differences among cultivars throughout fruit growth and IDN 110 had a 

significantly higher P content (0.02 g 100 g FW-1 ±0.002) than JB (0.01 g 100 g FW-1 ±0.003) 

and PL (0.01 g 100 g FW-1 ±0.003) (Fig. III.3.C, Table III-1). Mg content decreased 

significantly during fruit growth in the three cultivars but most in PL (Fig. III.3.D, Table III-

1). Throughout fruit growth, JB (0.03 g 100 g FW-1 ±0.001) and IDN 110 (0.03 g 100 g FW-1 

±0.004) had a significantly higher Mg content than PL (0.02 g 100 g FW-1 ±0.005). No clear 

pattern of Ca content was observed during fruit growth since the values varied greatly among 

bunches even within the same cultivar (Fig. III.3.E, Table III-1). 

 

 

Figure III-2 Changes in TA (A), pH (B), citric acid content (C), malic acid content (D), and 
soluble oxalic acid content (E) of the pulp during post harvest ripening of the three cultivars of 
dessert bananas (JB, PL, and IDN 110). Each symbol represents a bunch. Lines are those of the 
fitted linear mixed model. 
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Table III-1 Linear mixed model analyses of TA, pH, malic acid content, citric acid content, 
soluble oxalic acid content, and mineral content during fruit growth and fruit post harvest 
ripening in relation to fruit age and the three cultivars used in this study.  
 

Parameter Fruit stage F-value and significance 

  t  c  t²  t3  t:c 

TA growth 12.1*** 126*** 29.8*** 7.0* Ns  

ripening 179*** 73.6*** 49.4*** 4.4* 66.5*** 

pH growth 222*** 69.9*** 51.2*** Ns  16.0*** 

ripening 184*** 64.4*** 79.4*** Ns 46.2*** 

Citric acid content growth 602*** 7.2** Ns Ns 20.7*** 

ripening 9.90** 93.1*** 11.1** 5.1* 65.9*** 

Malic acid content growth 451*** 98.4*** Ns Ns 16.6*** 

ripening 220*** 59.1*** 126*** Ns 20.3*** 

Oxalic acid content growth 240*** 24.5*** Ns Ns Ns 

ripening 162*** 10.5** 58.9*** 13.2*** 12.3*** 

K content growth 38.7*** 20.6*** Ns Ns Ns 

ripening Ns Ns Ns Ns Ns 

P content growth 66.6*** 24.2*** Ns Ns Ns 

ripening Ns 47.0*** Ns Ns Ns 

Cl content growth 76.0*** Ns Ns Ns Ns 

ripening 21.4*** 8.5** 8.3** Ns Ns 

Mg content growth 15.6** 5.1* Ns Ns Ns 

ripening Ns 5.4* Ns Ns Ns 

Ca content growth Ns Ns Ns Ns Ns 

ripening Ns Ns Ns Ns Ns 

a All models included one random effect: “plant”. Codes for effects: t = fruit age; c = cultivar. *** p-

value < 0.001; ** p-value < 0.01; * p-value<0.05 ; ns: not significant 
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During post harvest ripening, there were significant differences in the pattern of citric 

acid accumulation among the three cultivars (Fig. III.2.C, Table III-1). Citric acid 

accumulation was the same in IDN 110 and PL with an overall decrease during ripening, 

whereas in JB there was a significant increase until day 9 and a slight decrease at the end of 

ripening. As a consequence, JB had a significantly higher level of citric acid (0.68 g 100 g 

FW-1 ±0.06) than IDN 110 (0.21 g 100 g FW-1 ±0.03) and PL (0.05 g 100 g FW-1 ±0.003) at 

the end of ripening. The three cultivars showed the same pattern of malic acid accumulation 

with an increase from day 0 to day 6, followed by a slight decrease (Fig. III.2.D). There were 

significant differences among cultivars (Table III-1), so that at the end of ripening, PL had the 

highest malic acid content (0.71 g 100 g FW-1 ±0.05), followed by JB (0.43 g 100 g FW-1 

±0.04) and IDN 110 (0.34 g 100g FW-1 ±0.02). Soluble oxalic acid content was highest at the 

pre-climacteric stage (day 0) in all three cultivars with JB having a significantly higher oxalic 

acid content (0.19 g 100 g FW-1 ±0.05) than PL (0.14 g 100 g FW-1 ±0.09) and IDN 110 (0.08 

g 100 g FW-1 ±0.03) (Fig. III.2.E, Table III-1). From day 3, soluble oxalic acid content 

decreased rapidly in all three cultivars to become inexistent at the end of ripening. K was the 

main mineral found in banana pulp during post harvest ripening with a mean K content of 

0.30 g 100 g FW-1 ±0.05 (Fig. III.4.A). K content remained constant during ripening and there 

were no significant differences among cultivars (Table III-1). The other mineral elements 

such as Cl, Ca, Mg, and P were present in lower amounts (about ten times less) in the banana 

pulp. Cl content decreased slightly during ripening in all three cultivars and was significantly 

lower in PL (0.05 g 100 g FW-1 ±0.006) than in JB (0.07 g 100 g FW-1 ±0.008) and IDN 110 

(0.06 g 100 g FW-1 ±0.01) (Fig. III.4.B, Table III-1). P content remained constant during 

ripening in the three cultivars, IDN 110 had a significantly higher P content (0.02 g 100 g 

FW-1 ±0.002) than PL (0.01 g 100 g FW-1 ±0.001) and JB (0.01 g 100 g FW-1 ±0.002) (Fig. 

III.4.C, Table III-1). Mg content remained constant during ripening in all three cultivars. PL 

had a significantly lower Mg content (0.02 g 100 g FW-1 ±0.005) than IDN 110 (0.03 g 100 g 

FW-1 ±0.005) and JB (0.03 g 100 g FW-1 ±0.004) (Fig. III.4.D, Table III-1). There was no 

clear pattern in Ca content during fruit ripening since there was significant variability between 

bunches belonging to the same cultivar (Fig. III.4.E, Table III-1).  
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Figure III-3 Changes in K (A), Cl (B), P (C), Mg (D), and Ca (E) pulp content during fruit 
growth of the three cultivars of dessert bananas (JB, PL, and IDN 110). Each symbol represents 
a bunch. Lines are those of the fitted linear mixed model.   
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Figure III-4 Changes in K (A), Cl (B), P (C), Mg (D), and Ca (E) pulp content during post 
harvest ripening of the three cultivars of dessert bananas (JB, PL, and IDN 110). Each symbol 
represents a bunch. Lines are those of the fitted linear mixed model. 
 

1.3.3 Model predictions and sensitivity analysis 

Overall, the pH model predicted banana pulp pH with an average bias of 0.05 pH units and a 

R² of 0.34 (Fig. III.5.A and B). The RMSE, quantifying the goodness-of-fit, was acceptable 

with a mean value of 0.7 pH unit (Table III-2). However, the predictions were better for JB 

and PL than for IDN, and better during ripening than during fruit growth. For pH above 5, the 
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Overall, the TA model allowed prediction of banana pulp TA with an average bias of -1.44 

meq 100 g FW-1 and a R² of 0.81 (Fig. III.5.C and D). Thus, the model underestimated TA 

most of the time. The RMSE was satisfactory with a mean value of 2 meq 100 g FW-1 (Table 

III-2 ). The predictions were better during ripening than during fruit growth. 
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Every input factor considered in the sensitivity analysis had a significant effect on pH 

and TA at both green and ripe stages (Table III-3). The sensitivity indices (SI) calculated 

represent the percentage of pH or TA variability explained by the factor considered. For both 

pH and TA, citric acid (SI=48% for pH and 63% for TA) and malic acid (SI=25% for pH and 

21% for TA) were the most influential acids at the ripe stage, whereas phosphoric acid had 

little effect (SI=5.6% for pH and TA), and oxalic acid had almost no effect (SI=0.3% for pH 

and SI=0.2% for TA). In contrast, at the green stage oxalic acid was the most influential acid 

(SI=44% for pH and 48% for TA), whereas citric acid (SI=4.5% for pH and 6.9% for TA), 

malic acid (SI=0.9% for pH and 1.3 for TA), and phosphoric acid (SI=0.5% for pH and TA) 

had very little effect. Among soluble minerals, K was the main contributor to changes in pH 

at both stages, but its effect was more pronounced at the green stage (SI=39%) than at the ripe 

stage (SI=14%). K was also the main contributor to TA at the green stage (SI=37%), but its 

effect was greatly reduced at the ripe stage (SI=6.9%). Other soluble minerals had only a 

limited effect on pH and TA since they accounted for a total of 11% of their variability at the 

green stage and for a total of 6% and 3% for pH and TA respectively at the ripe stage.  

 

Table III-2 Quality of prediction (RMSE and bias) of the pH and TA models. 
 

Cultivar Fruit stage pH TA 

  
RMSE  

(units pH) 

bias 

(units pH) 

RMSE 

(meq.100g FW-1) 

bias 

(meq.100g FW-1) 

PL 
growth 0.5 -0.2 1.5 -1.2 

ripening 0.5 -0.1 2.6 -1.9 

JB 
growth 0.6 0.1 1.3 -1.1 

ripening 0.6 -0.2 2 -1 

IDN 110 
growth 1 0.3 1.8 -1.5 

ripening 1 0.4 2.4 -1.7 

All 

cultivars 

growth 0.8 0.1 1.6 -1.3 

ripening 0.7 0 2.3 -1.5 

All 

cultivars 
All stages 0.7 0.05 2 -1.4 
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Figure III-5 Comparison between observed and predicted pH during fruit growth (A) and post 
harvest ripening (B), and between observed and predicted TA during fruit growth (C) and post 
harvest ripening (D) of the three cultivars of dessert bananas (JB, PL, and IDN 110). 
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Table III-3 Results of the sensitivity analysis of the pH and TA models for green (before ethylene 
treatment) and ripe fruits (9 days after ethylene treatment).  
 

 Borders of the input factors pH TA 

 
Min. value 

(g.100 g FW-1) 

Max. value 

(g.100 g FW-1) 

SI  

(%) 

SI  

(%) 

Ripe fruit 

Citric acid 0.04 1.02 48.4*** 62.9*** 

Malic acid 0.05 0.93 25.6*** 21.3*** 

Oxalic acid 0.00 0.19 0.28*** 0.16*** 

Phosphoric acid 0.01 0.03 5.59*** 5.64*** 

Potassium 0.13 0.43 13.9*** 6.89*** 

Chloride 0.03 0.10 1.47*** 0.71*** 

Magnesium 0.01 0.04 1.99*** 0.99*** 

Calcium 0.00 0.05 2.76*** 1.38*** 

Green fruit 

Citric acid 0.05 0.41   4.55*** 
 

6.91*** 

Malic acid 0.04 0.35 0.96*** 1.31*** 

Oxalic acid 0.02 0.29 43.7*** 48.2*** 

Phosphoric acid 0.00 0.02 0.5*** 0.55*** 

Potassium 0.22 0.33 39.3*** 36.7*** 

Chloride 0.05 0.08 2.81*** 2.80*** 

Magnesium 0.01 0.03 2.55*** 2.59*** 

Calcium 0.00 0.04 5.84*** 5.92*** 

The table gives the borders of the input factors, and the sensitivity indices (SI) with their significance. 

*** p-value < 0.001 
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1.4 Discussion 

1.4.1 Quality of prediction of the models  

For the pH model, the lower the pH, the better the predictions, which explains why pH 

predictions were better during ripening than during fruit growth. This is due to the logarithm 

function of the pH which increases the sensitivity of the pH to input parameters with an 

increase in pH. Thus, imprecision in the determination of the chemical elements that are the 

main contributors to banana pulp acidity (organic acids and K) may be responsible for the 

difference between observed and predicted data, especially at high pH. For example, we 

calculated that for a pulp sample with a measured pH of 6, overestimating the K content by 

10% impacts the prediction by about 2 pH units. In addition, some approximations were used 

for modeling, for example, considering that all the soluble phosphorus is in the form of 

phosphoric acid whereas in reality it is probably also present in the form of several other 

acidic compounds than phosphoric acid. We also considered that the acid content of banana 

pulp could be estimated by malic acid, citric acid, oxalic acid and phosphoric acid content 

only. pH has been previously modeled using the same approach to predict acidity of ripe 

harvested peaches (Lobit et al., 2002). Predictions were a little better than those obtained in 

the present study which can be explained by the fact that pH of ripe peaches was below 4.5, 

and thus within the range where the model predictions are best. 

For the TA model, predictions were on average 1.5 meq lower than observed values. 

This is presumably because we did not consider free amino acids in the model and these can 

reach 0.1 g 100 g FW-1 and 0.15 g 100 g FW-1 in green and ripe bananas respectively (John 

and Marchal, 1995). Indeed, as the standard procedure is to measure TA at a pH of 8.1, not 

only carboxyl groups of amino acids are titrated but also some amine groups, probably 

leading to overestimation of the quantity of non-dissociated acids in fruit pulp. For ripe 

peaches, TA predictions were a little better than the ones obtained in the present study, 

probably due to the fact that amino acids were considered and approximated by the soluble 

nitrogen content of the pulp in the form of asparginine (Lobit et al., 2002). The authors 

calculated that at a pH of 8.1, free amino acids account for 8% of TA in ripe peach pulp. The 

better prediction of banana pulp TA during ripening was due to the fact that TA ranged from 

3 to 15 meq 100 g FW-1 during this stage, whereas it only varied between 2 and 4 meq 100 g 

FW-1 during growth. 

 



Chapitre III Modélisation de l’acidité de la banane 

104 
 

1.4.2 Link between banana pulp acidity and composition 

The elaboration of banana fruit acidity is a continuous process that takes place throughout 

fruit growth and post harvest ripening. During its growth on the plant, the banana fruit 

accumulates both acids and minerals that determine the TA and pH of the pulp. Sensitivity 

analysis showed that during this phase, oxalic acid, which is present in large amounts, is the 

main determinant of banana pulp acidity because of its low pKas. Sensitivity analysis also 

showed that, among soluble minerals, K is the main contributor to banana acidity. K content 

increased during banana fruit growth, as also observed in mango (Léchaudel et al., 2005b), 

and was the major mineral found in banana pulp in accordance with results of previous 

studies (John and Marchal, 1995). It is interesting to note that K, which is the main cation 

present in all fruit cell, affects fruit acidity not only by participating in the acid/base reactions 

but also by acting on enzyme regulation and vacuolar storage of organic acids (Etienne et al., 

2013b).  

During post harvest ripening, banana pulp acidity underwent its greatest changes and there 

were marked differences among the three cultivars. JB and PL appeared to have a higher 

acidity than IDN 110 at the end of ripening, which is in accordance with the classification of 

dessert bananas cultivars made by Bugaud et al. (2011). According to Bugaud’s classification, 

JB and PL belonged to the sourest cluster whereas IDN 110 belonged to the least sour cluster. 

The marked changes in pulp acidity during post harvest ripening are mainly the result of 

changes in malic and citric acid contents as shown by the results of the sensitivity analysis. 

Indeed, as the fruit ripened, soluble oxalic acid content decreased dramatically, hence its 

contribution to banana fruit acidity. While oxalic acid disappears during ripening, malic and 

citric acids become the main acids in banana pulp and hence the main contributors to its 

acidity. The decrease in soluble oxalic acid content during banana fruit ripening is probably 

linked to starch hydrolysis. Indeed, Osuji et al. (2005) observed that oxalic acid was mainly 

present in the form of calcium oxalate crystals inside the starch grains in the pulp of unripe 

banana fruit. As the fruit ripened, the starch grains were destroyed and calcium oxalate 

released, probably leading to oxalate catabolism. The same pattern of oxalic acid content has 

been observed in kiwi fruit with a maximum at early stages and a gradual decrease during 

fruit growth and also during storage (Watanabe and Takahashi, 1998). The major role of 

malic and citric acids in the acidity of ripe fruit has been reported in many species (Etienne et 

al., 2013b). Marked differences in the pattern of citric acid content were observed among the 

three cultivars. Thus, there was a significant increase in citric acid content in JB throughout 

fruit ripening while there was a decrease in PL and IDN 110. The pattern of malic acid 

content was the same in the three cultivars although differences were observed, with PL 
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accumulating more malic acid than JB and IDN 110. Citric and malic acids are involved in 

the respiratory metabolism of fruit pulp cells through their involvement in the glycolysis and 

TCA cycle pathways (Etienne et al., 2013b). As banana fruit, which is a climacteric fruit, 

showed a significant rise in their respiration rate in the first days after ethylene treatment, 

differences in pulp acidity among cultivars during ripening could be linked to respiratory 

metabolism. During post harvest ripening, K, P and Mg contents remained constant in all 

three cultivars, whereas Cl content decreased slightly. Migration of minerals from the pulp to 

the peel can occur in response to loss of water by the peel due to transpiration, but it is also 

possible that some minerals migrate with the water from the peel to the pulp (John and 

Marchal, 1995). In the present study, it appears that osmotic adjustment only significantly 

affected Cl content. There was a large variability of the soluble Ca content observed during 

ripening and growth but this is consistent with the high coefficient of variation of pulp Ca 

content that we found in previous studies. However, we showed that Ca did not play a major 

role in the determination of pH and TA, and so even if there was a large variability among 

samples in the measured Ca contents it did not have important repercussions on the 

predictions of the pH and TA models. 

 

1.5 Conclusions 

This study, which presents a model of banana pulp acidity for the first time, showed that 

among acids, malic, citric and oxalic acids are the main contributors to banana pulp acidity, 

and that among soluble minerals, K also plays an important role. Consequently, studying the 

factors that affect malic acid, citric acid, oxalic acid, and K accumulation in banana pulp 

appears to be an appropriate area of research to ultimately modify banana fruit acidity. In 

future work, the pH model will be incorporated in a more complex process-based simulation 

model to predict banana acidity. Process-based simulation models are powerful tools to study 

genotype*environment interactions and to design ideotypes adapted to consumer taste 

(Génard et al., 2010; Quilot-Turion et al., 2011). 
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2 Etude de l’accumulation du malate par un modèle de 

stockage vacuolaire  
 

Objectifs 

Dans cette partie, l’accumulation du malate dans la pulpe de banane a été modélisée dans le 

but (i) de comprendre les processus physiologiques qui pilotent la concentration en malate 

dans la pulpe de banane pendant la croissance et la maturation post récolte, (ii) de proposer 

des hypothèses sur les origines des différences génotypiques au niveau cellulaire, et (iii) 

d’étudier l’effet des conditions de croissance du fruit sur l’accumulation du malate. 

L’hypothèse de base de ce travail de modélisation est que l’accumulation du malate dans la 

pulpe est pilotée par les conditions de son stockage dans la vacuole (c.f. Chapitre I). Ainsi, un 

modèle mécaniste décrivant de manière simplifiée le stockage du malate dans la vacuole a été 

utilisé (Lobit et al., 2006). Cette partie a été rédigée sous la forme d’un article intitulé 

«Modeling the vacuolar storage of malate shed lights on malate accumulation in pre and post-

harvest banana (Musa sp. AA)» en vu d’être soumis à Plos One. 

 

Principaux résultats 

•  Ce modèle permet de prédire la concentration en malate dans la pulpe pendant la 

croissance et la maturation post récolte de la banane et de décrire la variabilité entre 

génotypes. 

•  Le stockage vacuolaire du malate apparaît comme un processus clé de l’accumulation du 

malate dans la banane. 

•  Ce modèle suggère que les concentrations en acides organiques et potassium ont un effet 

important sur l’accumulation du malate dans la vacuole. 

•  Ce modèle suggère un effet négatif de la température sur le stockage du malate dans la 

vacuole pendant les phases pré et post récolte. 

•  La variation d’énergie libre d’hydrolyse de l’ATP et le pH vacuolaire pourraient être des 

déterminants important de l’accumulation du malate et pourraient expliquer les 

différences de concentrations en malate observées entre génotypes et entre les phases pré 

et post récolte. 
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Abstract 

Malate concentration is a crucial determinant of the perception of banana sourness and 

sweetness, two major drivers for consumer preferences. Banana fruit has the particularity of 

having separate growth and ripening stages, with contrasting evolutions of pulp malate 

concentration. Our objective was to simulate these evolutions by adapting the mechanistic 

model of malate vacuolar storage by Lobit et al. (2006). The model was calibrated and 

validated using data sets from three cultivars of dessert banana contrasting in terms of malate 

accumulation, grown under different fruit load and potassium supply, and harvested at 

different stages. It predicted the post-harvest dynamic of malate concentration with a fairly 

good accuracy for the three cultivars (mean RRMSE=0.25), but was less good during banana 

growth (mean RRMSE=0.42). The sensitivity of the model to parameters and input variables 

was analyzed. According to the model, vacuolar composition, in particular potassium and 

organic acids concentrations, had an important effect on malate accumulation. The model 

suggested that raising temperature depressed malate accumulation. The model also helped to 

dissect differences of malate concentration among cultivars and between the pre and post-

harvest phases by highlighting the likely importance of proton pumps activity and in 

particular of the free energy of ATP hydrolysis and vacuolar pH. Finally, the present 

adaptation of the malate model initially developed on peach, to banana fruit highlights the 

possible generic quality of the model and its suitability for fleshy fruit. 
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2.1 Introduction 

In banana, malate is the most abundant organic acid present in the pulp together with citrate 

(Etienne et al., 2013a; Jullien et al., 2008), and is a good predictor of pulp sourness and 

sweetness (Bugaud et al., 2013), two major drivers of consumer preferences. Malate 

concentration varies considerably among banana cultivars (Bugaud et al., 2013). Malate 

accumulation in fruit cells is a complex phenomenon because it involves several metabolic 

pathways and transport mechanisms across different compartments, mainly cytosol, 

mitochondria, and vacuole (for review see (Etienne et al., 2013b)). Several transcriptomic, 

metabolomic, proteomic, and QTL studies have begun to elucidate the complexity of this 

system (for review see (Sweetman et al., 2009)), but much remains unclear. Given the 

complexity of the processes, ecophysiological process-based simulation models (PBSMs) 

could advance our understanding of the mechanisms underlying malate accumulation in 

banana and their interactions. PBSMs could also help to elucidate the differences in malate 

accumulation among cultivars, as was the case for sugar accumulation in peach (Wu et al., 

2012), and grape berry (Dai et al., 2009). 

Despite the importance of pulp malate concentration for fruit quality, attempts to 

mechanistically model it are rare. To our knowledge, the only PBSM was proposed by Lobit 

et al. (2006) to simulate malate concentration in peach. This model, which was based on the 

assumption that malate accumulation was controlled at the level of vacuolar storage, is in 

agreement with several later studies (for review see (Etienne et al., 2013b)), and still appears 

to be a good framework to study malate accumulation in fleshy fruit.  

In the present study, we adapted Lobit’s model to banana fruit in order to study the 

accumulation of malate in banana using a mechanistic model-based analysis. Banana fruit has 

the particularity of having separate growth and post-harvest ripening stages, during which 

malate concentration undergoes substantial changes (Etienne et al., 2013a). For this reason, 

we modeled the dynamics of malate concentration during both the pre and post-harvest stages. 

The concentration of malate in banana pulp varies greatly among genotypes (Bugaud et al., 

2013; Etienne et al., 2014). The physiological age of the fruit at harvest is also known to 

affect the concentration of malate in the pulp of banana during post-harvest ripening (Bugaud 

et al., 2006). Fruit pruning and potassium fertilization, two cultural practices commonly used 

by the banana growers, can also impact the concentration of malate in fleshy fruits (for review 

see (Etienne et al., 2013b)). Consequently, we chose to calibrate and validate the model on 

three cultivars with contrasting acidity under different fruit loads, potassium supplies, and 

harvest stages. To study how these factors could affect malate accumulation, we analyzed the 

sensitivity of the model to parameters and input variables. The model enabled us to: improve 
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our understanding of malate accumulation during growth and post-harvest ripening of banana 

fruit; propose a possible explanation for differences in malate accumulation among cultivars; 

study the possible effects of fruit growth conditions on malate accumulation.  

 

2.2 Material and Methods 

2.2.1  Model description  

The model of malate accumulation proposed by Lobit et al. (2006) assumes that the 

accumulation of malate in fleshy fruits is mainly determined by the conditions of its storage in 

the vacuole of pulp cells. The model provides a simplified representation of the functioning of 

the tonoplast (Fig. III.6). 

The transport of malate across the tonoplast is passive and occurs by facilitated 

diffusion of the di-anion form through specific ion channels (De Angeli et al., 2013; 

Kovermann et al., 2007; Meyer et al., 2011) and transporters (Emmerlich et al., 2003; Terrier 

et al., 1998). It follows the electrochemical potential gradient of the di-anion across the 

tonoplast, defined as follows: 

ΔG����Y = −2FΔψ + RTln���������Y ���������Y ��                                                                                       (1)  

where (Mal2-
cyt) and (Mal2-

vac) are the activities of the di-anion malate in the cytosol and in the 

vacuole respectively (mol.L-1), ∆ψ is the electric potential gradient across the tonoplast (ψvac-

ψcyt; V), T is temperature (K), R is the gas constant (J.mol-1.K-1), and F is Faraday’s constant 

(C.mol-1). 

This implies that the accumulation of malate in the vacuole is controlled mainly by the ratio 

of the di-anion malate activity across the tonoplast and the ∆ψ.  

The activity of the di-anion is the product of its activity coefficient aMal
2-

 (dimensionless) and 

of its concentration [Mal2-] (mol.L-1):  

�MalE�� = a����Y ∗ [MalE�]                                                                                                    (2) 

In the cytosol, the concentration of the di-anion malate is unlikely to vary much because it 

plays a fundamental role in the regulation of cytosolic pH (Smith and Raven, 1979). In 

addition, its activity coefficient, which depends only on the ionic strength of the cytosol, is 

also unlikely to vary much (Lobit et al., 2006). Therefore, in the model, (Mal2-
cyt) is 

considered as a constant.  
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Figure III-6 Schematic representation of the model of vacuolar malate storage proposed by 
Lobit et al. (2006). State variables: [Malfruit ] = concentration of malate in the pulp; [Malvac] = 
concentration of malate in the vacuole; pHvac = vacuolar pH; ∆ψ = electric potential gradient 
across the tonoplast; n = coupling ratio of the proton pump ATPase. Model parameters: pHcyt = 
cytosolic pH; ∆GATP = free energy of ATP hydrolysis; α, β, and n0 = fitted parameters of the 
coupling ratio equation (Eq. 5); (Mal2-

cyt) = cytosolic activity of the di-anion malate. 
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In the vacuole, the activity coefficient of the di-anion malate (aMal
2-

vac) is related to the 

concentration of all ionic species (Etienne et al., 2013a), while its concentration is 

proportional to the total malate concentration and is controlled by the dissociation equation, 

since malate is a weak acid: 

[Mal���E� ] = [Mal���] ∗ ����������������	� ��	�                                                                                          (3) 

where [Malvac] is the total concentration of malate in the vacuole (mol.L-1), h=10-pHvac, and 

K’ 1 and K’2 are the apparent acidity constants of malate (mol.L-1). 

In plant cells, ∆ψ is mainly generated by the tonoplastic proton pumps, which catalyze 

the active transport of protons into the vacuole. Two types of pumps are present on the 

tonoplast of fruit cells: the ATPase (Ratajczak, 2000) and the PPiase (Maeshima, 2000), 

which respectively hydrolyze ATP and PPi as a source of energy. Both are known to be active 

in most fruits (Müller et al., 1997; Suzuki et al., 2000; Terrier et al., 1998), but for the sake of 

simplicity, only ATPase was taken into account in the model. Proton pumping can occur only 

if the variation in free energy of the chemiosmotic reaction ∆GATPase defined below is 

negative: 

ΔG������ = ΔG��� + nFΔψ − nRTln�10� ∗ �pH��� − pH����                                               (4) 

where ∆GATP is the free energy of ATP hydrolysis (J.mol-1), n is the coupling ratio i.e. the 

number of protons pumped by hydrolyzed ATP, pHvac and pHcyt are vacuolar and cytosolic 

pH respectively.  

The pH gradient across the tonoplast plays a role in this equation, both directly, and because it 

affects the coupling ratio n. Lobit et al. (2006) fitted the following equation to the data of 

Davies et al. (1994) to calculate the coupling ratio: 

n = n� + α�pH��� − 7� + β10�£¤����¥�                                                                                  (5) 

where n0, α, and β are fitted parameters. 

The approach used in this model is to represent changes in vacuolar composition as a 

succession of stationary states during which malate concentration, pHvac, and ∆ψ can be 

considered to be constant. The assumption is that the transport of the di-anion malate and 

protons operate in conditions close to their respective thermodynamic equilibrium.  

Assuming that the di-anion malate is at thermodynamic equilibrium across the tonoplast 

implies that ∆GMal
2-=0. So rewriting and combining equations 1, 2 and 3 gives: 

[Mal���] = h�¦�§����Y ∗ �������������������� ∗ ¨Mal���E� © ∗ exp�¬­®¯°                                                            (6) 

Assuming that proton transport occurs at thermodynamic equilibrium implies that ∆GATPase=0. 

So, rewriting and combining equations 4 and 5 gives: 
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Δψ = �±²³°´�µ¶�·�£¤����¥��¸h��¹º���Y»�	�¼+ ½�¼ ln�10� ∗ �pH��� − pH����                                       (7) 

The acid/base composition of the vacuole determines aMal
2-

vac, K’1, K’2, and pHvac. 

These variables are calculated using a model of pH prediction that was described and 

validated on banana fruit in a previous paper (Etienne et al., 2013a). As input variables, the 

model requires the concentrations of the three main organic acids present in banana pulp, 

citrate, malate, and oxalate (oxalate being present in large amounts at the green stage (Etienne 

et al., 2013a)), and of the main soluble mineral elements, namely potassium, magnesium, 

chloride, calcium, and phosphorus.  

Solving the malate model means solving a system of equations with two unknowns, 

[Malvac] and pHvac, and six parameters, pHcyt, (Mal2-
cyt), ∆GATP, n0, α, and β. Once the 

concentration of malate in the vacuole is determined, the concentration of malate in the pulp 

can be calculated by assuming that the volume of water in the vacuole is equal to the water 

mass of the pulp: 

[Mal¾¿ÀÁ�] = [Mal���] ∗ ¼Â�ÃÂ¼Â ∗ 1000                                                                                    (8) 

where [Malfruit] is the concentration of malate in the pulp (mmol.Kg FW-1), FW and DW are 

the pulp fresh weight and pulp dry weight respectively (g). 

 

2.2.2 Changes in ∆GATP during banana development 

According to the sensitivity analysis of the model performed by Lobit et al. (2006) on peach, 

malate accumulation is strongly dependent on ∆GATP. According to the literature, ∆GATP can 

vary considerably depending on cytosolic conditions (Davies et al., 1993; Roberts et al., 

1985), so that one may expect ∆GATP to vary during banana development. The possible 

variation of ∆GATP required (according to the model) to sustain malate accumulation during 

banana growth and post-harvest ripening was assessed by reorganizing and combining 

equations 6 and 7, and by assuming that pHcyt=7 (common notion of a neutral cytosol), (Mal2-

cyt) = 0.001 mol.L-1 (reasonable value according to Lobit et al. (2006)), aMal
2-

vac =0.3 (average 

value found by the banana pH model (Etienne et al., 2013a)), and parameters n0=4, α=0.3, and 

β=-0.12 (to calculate n with equation 5) (Lobit et al., 2006). 

ΔG��� = nRTln�10� ∗ ¨pH��� − pH���© − µ½�E ln Ä ������ [������]�¦�§����Y
��������������� �N�������Y PÅ                            (9) 

Changes in ∆GATP over time, calculated with equation 9 and using 12 datasets including three 

cultivars, two developmental stages (pre- and post-harvest stage), and 2 years, were plotted. 

During fruit growth, ∆GATP varied little (Fig. III.7.A) whereas during post-harvest ripening, 

there was a negative relationship between ∆GATP and the number of days after ethylene 
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treatment in all three cultivars (Fig. III.7.B). Thus, we considered ∆GATP as a constant during 

fruit growth and simulated the observed relationship with days after ethylene treatment during 

ripening by the following function: 

ΔG��� = Gh ∗ DAEE + GE ∗ DAE + GF                                                                                  (10) 

where DAE is the day after ethylene treatment, and G1 (J.mol-1.day-2), G2 (J.mol-1.day-1), and 

G3 (J.mol-1) are fitted parameters. 

 

 

Figure III-7 Variations in ∆GATP as a function of (A) days after bloom during fruit growth, and 
(B) days after ethylene treatment during post-harvest ripening for cultivars IDN, PJB, and PL.  
These values were calculated with equation 9 using the data for the three cultivars for 2011 and 
2012.  
 

2.2.3 Model inputs 

The input variables required were temperature (T; K), pulp fresh weight (FW; g), pulp dry 

weight (DW; g), pulp potassium content (K; mol.L-1), pulp magnesium content (Mg; mol.L-1), 

pulp phosphorus content (P; mol.L-1), pulp calcium content (Ca; mol.L-1), pulp chloride 

content (Cl; mol.L-1), pulp citrate content (mol.L-1), and pulp oxalate content (mol.L-1).  

 

2.2.4  Plant materials and experimental conditions 

All experiments were conducted at the Pôle de Recherche Agroenvironnementale de la 

Martinique (PRAM, Martinique, French West Indies; latitude 14°37N, longitude 60°58W, 

altitude 16 m) using three cultivars of dessert banana (Musa spp.) diploids AA, differing in 

predominant organic acid at the eating stage: Indonesia 110 (IDN), Pisang Jari Buaya (PJB), 
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and Pisang Lilin (PL). Experiments were conducted during the 2011 and 2012 growing 

seasons on continental alluvial soil. In both growing seasons, irrigation was adjusted to the 

amount of rainfall to supply at least 5 mm of water per day, and non-systemic fungicide was 

applied to control foliar diseases. During the first period of bunch growth (March–November 

2011) the mean daily temperature was 27 ± 1.2 °C. During the second period of bunch growth 

(February-August 2012) the mean daily temperature was 26± 0.9 °C.  

 

2011 experiment: effect of fruit load on banana pulp acidity  

For each cultivar, 36 plants were randomly chosen and tagged at inflorescence emergence. 

Two contrasted fruit loads were used: 18 plants of each cultivar were used as the control 

treatment i.e. high fruit load, and 18 other plants were highly pruned i.e. low fruit load. In the 

control treatment, the number of leaves and hands left on the plants were calculated in order 

to have the same leaf area: fruit ratio among cultivars (approximately equal to 0.5 cm² leave. g 

fruit-1). Thus, 15 days after inflorescence emergence, 8, 6, and 5 leaves were left on the plant 

for cultivars IDN, PL, and PJB respectively, and the top 10, 5 and 7 hands were left on the 

bunch for cultivars IDN, PL, and PJB respectively. To ensure the situation was the same 

among the three cultivars, fruit pruning in low fruit load treatment was calculated to increase 

the leaf area: fruit ratio by approximately 2.5. Consequently, 15 days after inflorescence 

emergence, the top 4, 2, and 3 hands were left on the bunch for cultivars IDN, PL, and PJB 

respectively. Banana plants received 12 g of nitrogen, 1.7 g of phosphorus, and 23 g of 

potassium at 4-week intervals during fruit growth. 

 

2012 experiment: effect of potassium fertilization on banana pulp acidity 

Two plots containing 50 banana plants of each cultivar were planted. Two contrasted levels of 

potassium fertilization were started six months before the beginning of fruit sampling. For 

each cultivar, one plot received 124 g of potassium per plant (high potassium fertilization) at 

4-week intervals, while the other received no potassium at all. All the banana plants received 

12 g of nitrogen and 10 g of phosphorus at 4-week intervals. Twenty-four plants of each 

cultivar were randomly chosen in each plot and tagged at inflorescence emergence. At 15 

days after inflorescence emergence, 9, 7, and 9 leaves were left on cultivars IDN, PL, and PJB 

respectively, which corresponded to the average leaf number in 2012, and the top 10, 5, and 7 

hands were left on the bunch of cultivars IDN, PL, and PJB respectively, which corresponded 

to a high fruit load.  
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Monitoring fruit growth  

In the two growing seasons, six bunches were selected for each cultivar*treatment 

combination. One fruit located in the internal row of the second proximal hand was collected 

for analyses every 15 days. Natural ripening on standing plants, i.e. when the first yellow 

finger appears, determined the end of sampling.  

 

Monitoring post-harvest fruit ripening  

In the 2011 experiment, two harvest stages were studied. The stages were calculated so that 

each cultivar was at 70% and 90% of the average flowering-to-yellowing time (FYT) of the 

bunch on the tree. At each harvest stage, six bunches per cultivar and per treatment were 

harvested. In the 2012 experiment, only one harvest stage was studied. For each cultivar, this 

stage was calculated to be 75% of the average FYT of the bunch on the tree. Six bunches per 

cultivar and per treatment were harvested. After the bunches were harvested, the second 

proximal banana hand per bunch was rinsed and dipped in fungicide (bitertanol, 200 mg.L−1) 

for 1 min. The fruits were placed in a plastic bag with 20 µm respiration holes and stored in 

boxes for 6 days at 18 °C. The fruits were then stored in a room at 18 °C and underwent 

ethylene treatment (1 mL.L−1 for 24 h) to trigger the ripening process. After 24 h, the room 

was ventilated. Bananas were maintained at 18 °C during 13 days. One banana fruit was 

sampled before ethylene treatment, and at day 3, 6, 9 and 13 after ethylene treatment. 

  

2.2.5  Biochemical measurements 

The fresh and dry pulp of each sampled fruit was weighed. The dried pulp was then ground to 

obtain a dry powder for biochemical measurements. Citric acid and malic acid concentrations 

were determined according to Etienne et al. (2013a) using an enzymatic method and a 

microplate reader. The soluble oxalic acid concentration was determined using the LIBIOS 

Oxalic acid assay kit. Pulp soluble K, Mg, and Ca concentrations were determined by mass 

spectrometry, and soluble P was measured by colorimetry (Martin-Prével et al., 1984). The Cl 

concentration in the pulp was determined by potentiometry using the automatic titrator 

TitroLine alpha (Walinga et al., 1995).  

 

2.2.6  Model solving and parameterization 

The model was computed using R software (R Development Core Team, http://www.r-

project.org). For each sampling date, the system was solved to calculate the concentration of 

malate in the pulp, using the “nleqslv” function of the R software, which solves a system of 
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non-linear equations using a Broyden method (http://cran.r-

project.org/web/packages/nleqslv/index.html). (Mal2-
cyt) was set at 0.001 mol.L-1 which is 

within the range mentioned by Lobit et al. (2006). pHcyt was set at 7 according to the common 

notion of a neutral cytosol. For parameters n0, α, and β, which define the stoechiometry of the 

pump ATPase, Lobit et al. (2006) estimated values very close to those found by fitting 

equation 5 to the data of Davies et al. (1994) and Kettner et al. (2003). This suggests that 

these parameters correspond to a structural characteristic of ATPase and are unlikely to vary 

much, so we chose to set them to the values found by Lobit et al. (2006) (Table III-4).   

 

2.2.7 Model calibration 

Parameter ∆GATP was estimated by fitting the model to observed values of the pre-harvest 

2011 dataset separated by cultivar. Parameters G1, G2, and G3 were estimated by fitting the 

model to ∆GATP values calculated according to equation 9 from the 2011 post-harvest dataset 

separated by cultivar. The harvest stage was not taken into account since there were no 

differences in the variations in ∆GATP calculated with equation 9 between fruits harvested at 

70% and 90% of FYT (data not shown). Parameters were estimated using the “hydroPSO” 

function of R software (Zambrano-Bigiarini et al., 2013). The hydroPSO function uses the 

computational method of particle swarm optimization (PSO) that optimizes a problem 

by iteratively trying to improve a candidate solution with regard to a given measure of quality. 

Parameters were estimated by minimizing the following criterion: 

 ∑ ∑ �xÁÉ − yÁÉ�EÁÉ                                                                                                                      (14) 

where xij is the predicted value and yij is the observed value of the fruit of the jth banana plant 

at date ti. 

 

2.2.8 Goodness of fit and predictive quality of the model 

The goodness of fit of the model was evaluated using two commonly used criteria, the root 

mean squared error (RMSE) and the relative root mean squared error (RRMSE), to compare 

the mean difference between simulated and observed results (Kobayashi and Salam, 2000). 

The smaller the value of RMSE and RRMSE, the better the fit.  

RMSE = Ì�∑�ÍÎ�ÏÎ�²�µ                                                                                                           (15) 

where Yi is the predicted value of the fruit i, and Xi is the measured value of the fruit i. n is 

the data number. 

RRMSE = ½�ÐÑÒÓ                                                                                                                   (16) 
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where xÓ is the mean of all observed values. 

The predictive quality of the model, which ascertains model validity over various scenarios, 

was quantified by the RMSE and RRMSE calculated using the 2012 data set. 

 

2.2.9  Sensitivity analysis of the model 

The sensitivity of the malate model during banana growth and post-harvest ripening to 

variations in parameter and input values was quantified by normalized sensitivity coefficients, 

defined as the ratio between the variation in malate concentration (∆M) relative to its standard 

value (M), and the variation in the parameter or input value (∆P) relative to its standard value 

(P) (Monod et al., 2006).  

Normalized	sensitivity	coefficient = ±�/�±�/�                                                                          (17) 

The interpretation of the sensitivity coefficient is referred to as local sensitivity analysis since 

these coefficients provide information on the effect of small changes in the parameters on the 

model response. They do not provide information about the effect of simultaneous or large 

parameter changes. Normalized sensitivity coefficients were calculated by altering one 

parameter or input variable by ±0.1% while keeping all other parameters and inputs at their 

default values. Sensitivity analysis of the model to parameters was conducted by considering 

pHvac as known (approximated by the measured pH of the pulp). Sensitivity analysis of the 

model to pulp composition and temperature was conducted by considering the total model, i.e. 

the combination of the malate and pH models. 

 

2.3 Results 

2.3.1 Overview of the effects of the cultivar and of the treatment  

The effects of cultivar and treatments on malate concentration in banana pulp during the pre 

and post-harvest stages are detailed in a previous paper (Etienne et al., 2014), so only the 

main conclusions are presented here. During banana growth, the concentration of malate 

increased and was significantly affected by the cultivar in both 2011 and 2012. During banana 

post-harvest ripening, the ripening stage and the cultivar had a significant effect on the 

concentrations of malate in 2011 and 2012. Fruits harvested later (at 90% of FYT) had 

significantly higher concentrations of malate at the beginning of ripening and lower 

concentrations at the end of ripening. Low fruit load and potassium fertilization significantly 

increased fruit fresh mass but had no effect on malate concentration in the three cultivars 

either during growth or post-harvest ripening.  
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2.3.2 Model calibration and evaluation  

Values of the estimated parameters of the model are summarized in Table III-4. The values of 

∆GATP estimated during banana growth were higher (less negative) than the values commonly 

found in the literature, which range between -50 and -58 KJ.mol-1 (Briskin and Reynolds-

Niesman, 1991; Davies et al., 1993; Rea and Sanders, 1987; Roberts et al., 1985). The ∆GATP 

estimated for the PL cultivar was lower (more negative) than those estimated for the IDN and 

PJB cultivars. During post-harvest ripening, values of ∆GATP calculated from equation 10 

with the estimated values of parameters G1, G2, and G3 were in the range of values found in 

the literature (between -45 and -55 KJ.mol-1) (data not shown). From day 6 to the end of 

ripening, cultivars PJB and PL had a lower (more negative) ∆GATP than cultivar IDN.  

 

Table III-4 Values of model parameters 

Parameter Value Unit Description Origin 

 IDN PJB PL    

pHcyt 7 Unit pH Cytosolic pH Literature 

(Mal2-
cyt) 0.001 mol.L-1 

Cytosolic activity 

of the di-anion 

malate 

Literature 

n0 4 dimensionless Parameters to 

calculate the 

coupling ratio of 

the proton pump 

Literature 

α 0.3 dimensionless Literature 

β -0.12 dimensionless Literature 

∆GATP -36.9*103 -39.1*103 -47.4*103 J.mol-1 

Free energy of 

ATP hydrolysis 

during banana 

growth 

Estimated 

G1 75 69 110 J.mol-1.day-2 Parameters to 

calculate ∆GATP as 

a function of the 

number of days 

after ethylene 

treatment during 

banana post-

harvest ripening 

Estimated 

G2 -1176 -1108 -1959 J.mol.day-1 Estimated 

G3 -45.2*103 -48.9*103 -46.3*103 J.mol-1 Estimated 
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Simulated and observed malate concentrations during banana growth and post-harvest 

ripening are presented in Fig. III.8 and III.9 respectively. For the three cultivars, the goodness 

of fit of predictions of data from 2011 was satisfactory both during banana growth and post-

harvest ripening. During growth, the RMSEs were between 2.86 and 3.43 mmol.Kg FW-1, and 

RRMSEs between 0.25 and 0.38. During post-harvest ripening, the RMSEs were between 

6.07 and 11.08 mmol.Kg FW-1, and RRMSEs between 0.18 and 0.32. However, model 

validation during banana growth was not satisfactory in any of the three cultivars, as revealed 

by the RMSEs and RRMSEs of predictions of data from 2012, whose values ranged between 

3.67 and 5.60 mmol.Kg FW-1, and between 0.40 and 0.74 respectively. Model validation 

during banana post-harvest ripening for the three cultivars was satisfactory, as revealed by the 

RMSEs and RRMSEs of predictions of data from 2012, whose values ranged between 6.55 

and 10.54 mmol.Kg FW-1, and between 0.24 and 0.29 respectively. Statistical analysis 

revealed that the model predicted a large effect of the cultivar and of fruit age, and no effect 

of the fruit load and potassium fertilization on malate concentration during banana growth 

(Appendix 2.1) and post-harvest ripening (Appendix 2.2) which is in accordance with 

observed data. The model predicted a small effect of fruit age at harvest in agreement with 

observed data, but was not able to simulate the minor differences correctly (data not shown). 
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Figure III-8  Measured (symbols) and simulated (lines) malate concentrations in the pulp of 
banana of cultivars IDN, PJB, and PL during fruit growth. The cultivars were grown under two 
contrasted fruit loads in 2011 (LL: low fruit load;  HL: high fruit load), and two contrasted levels 
of potassium fertilization in 2012 (NF: no potassium fertilization; HF: high potassium 
fertilization). Data are means ± s.d (n=6). The RMSE (mmol.100g FW-1) and RRMSE are 
indicated in each graph. 
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Figure III-9 Measured (symbols) and simulated (lines) malate concentrations in the pulp of 
banana of cultivars IDN, PJB, and PL during fruit post-harvest ripening. The cultivars were 
grown under two contrasted fruit loads in 2011 (LL: low fruit load; HL: high fruit load), and 
two contrasted levels of potassium fertilization in 2012 (NF: no potassium fertilization; HF: high 
potassium fertilization). In 2011, fruits were harvested at two different stages: early stage (70% 
of FYT) and late stage (90% of FYT). Data are means ± s.d (n=6). The RMSE (mmol.100g FW-1) 
and RRMSE are indicated in each graph. 
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2.3.3 Sensitivity analysis of the model 

A sensitivity coefficient (SC) was calculated to identify model responses to variations in 

parameters and inputs. A positive and negative sign of SC correspond, respectively, to a 

response in the same or reverse direction as the variation in the parameter or input. The larger 

the absolute value of SC, the more highly sensitive the model is to the parameter or input 

concerned. Since the SC behaved similarly between years with respect to a given cultivar, 

only results in 2011 are presented here. The SCs of model parameters behaved similarly with 

respect to the three cultivars and between banana growth (Fig. III.10.A) and post-harvest 

ripening (Fig. III.10.B). (Mal2-
cyt) had a positive effect on malate concentration. This is as 

expected, since an increase in (Mal2-
cyt) increases the gradient of concentration of the di-anion 

malate in favor of its transport into the vacuole. Malate concentration was greatly influenced 

by pHcyt in a negative way. Malate accumulation decreases when cytosolic pH increases 

because the gradient of pH across the tonoplast increases, which depresses the ∆ψ (see 

equation 7). Increasing ∆GATP, i.e. a less negative ∆GATP, (which means increasing G1, G2, or 

G3 during post-harvest ripening) depressed malate concentration, because it decreased proton 

pumping and consequently the ∆ψ. The parameter n0 had a strong negative effect on malate 

accumulation. This is as expected, since increasing n0 decreases the ∆ψ. The sensitivity to α 

was positive because increasing α increases the ∆ψ. The sensitivity to β was negative because 

increasing β decreases the ∆ψ.  

The SCs of model inputs during banana growth and post-harvest ripening are shown in 

Fig. III.11 and III.12 respectively. Increasing citrate and oxalate concentration strongly 

depressed malate concentration during banana growth in all three cultivars. During post-

harvest ripening, citrate and oxalate concentration also had a negative but less important 

effect on malate concentration. Increasing K concentration had a strong positive effect on 

malate concentration during growth and a lesser effect during post-harvest ripening in the 

three cultivars. Increasing P concentration slightly depressed malate concentration both 

during growth and post-harvest ripening in the three cultivars. Increasing the Mg 

concentration had a positive effect on malate concentration during growth and a lesser effect 

during post-harvest ripening in all three cultivars. Increasing the Ca concentration had a slight 

positive effect on malate concentration both during growth and post-harvest ripening in all 

three cultivars. Increasing the Cl concentration had a negative effect on malate concentration 

during banana growth, and a lesser effect during post-harvest ripening in all three cultivars. 

Increasing temperature depressed malate accumulation during banana growth and post-harvest 

ripening in all three cultivars.  
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Figure III-10  Normalized sensitivity coefficients of the parameters of the malate model during 
(A) banana growth, and (B) post-harvest ripening for cultivar IDN (gray diamonds), PJB (black 
triangles), and PL (white squares). 
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Figure III-11  Normalized sensitivity coefficients of the concentrations of citrate, oxalate, 
potassium (K), magnesium (Mg), phosphorus (P), calcium (Ca), and chloride (Cl) in the pulp, 
and of temperature (T) during banana growth for cultivars IDN, PJB, and PL. 
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Figure III-12  Normalized sensitivity coefficients of the concentrations of citrate, oxalate, 
potassium (K), magnesium (Mg), phosphorus (P), calcium (Ca), and chloride (Cl) in the pulp, 
and of temperature (T) during banana post-harvest ripening for cultivars IDN, PJB, and PL. 
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2.4 Discussion 

2.4.1  Quality of predictions and model simplifications  

The concentrations of malate in the pulp were satisfactorily simulated by the model during 

post-harvest ripening in the two experimental years, whereas model validation during banana 

growth was not convincing. Differences in prediction quality between the pre and post-

harvest stages have several possible explanations. First, the pH model was less accurate 

during banana growth than during post-harvest ripening (Etienne et al., 2013a) which is 

certainly partially responsible for the discrepancies between observed and predicted malate 

concentrations during banana growth. Second, we assumed that the ∆ψ was determined only 

by the ATPase functioning, whereas in reality, ∆ψ may also depend on the transport of 

mineral ions across the tonoplast (which generate currents and/or proton movements) and on 

the contribution of the PPiase to proton pumping (Etienne et al., 2013b). To check if this 

hypothesis is reasonable, we compared the ∆ψ required to reach the thermodynamic 

equilibrium of the di-anion malate across the tonoplast (by inverting equation 6) with the ∆ψ 

predicted by the ATPase model (by inverting equation 7). During post-harvest ripening, the 

changes in both ∆ψ were very similar (Fig. III.13.B). Therefore, the ATPase model appears to 

be adequate for post-harvest ripening. This is consistent with the fact that at this stage, when 

mineral concentrations in the pulp remain constant  (Etienne et al., 2013a), there should be no 

transport of minerals across the tonoplast. In addition, PPiase activity should be negligible 

since starch synthesis, which leads to the synthesis of PPi (Maeshima, 2000), has stopped. 

During banana growth, there were some discrepancies between the variations in the ∆ψ 

calculated with equations 6 and 7, especially for cultivars IDN and PJB, for which malate 

predictions were worst (Fig. III.13.A) and the ATPase model overestimated the ∆ψ required 

to sustain malate accumulation. During banana growth, minerals, especially potassium, 

accumulate in the vacuole of pulp cells (Etienne et al., 2013a), which implies that electric 

currents may alter the ∆ψ. Moreover, starch synthesis is high, so that PPi might be available 

in large quantities and PPiase activity might consequently be important (Maeshima, 2000), 

however, to our knowledge, no information is available concerning the tonoplastic PPiase of 

banana fruit cells. In the future, predictions of malate concentrations during banana growth 

might be improved by taking into account mineral fluxes and the possible contribution of the 

PPiase. Third, we assumed that pHcyt and (Mal2-
cyt) remained constant during banana 

development, whereas in reality they certainly fluctuate in response to the supply of acids and 

bases by the sap, their metabolism, and their vacuolar storage. Since the model was very 
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sensitive to cytosolic pH, one way to improve model predictions during fruit growth would be 

to take these possible fluctuations into account.  

 

 

Figure III-13  Changes in ∆ψ calculated from equation 6 (solid line) and from equation 7 (dashed 
line) during (A) banana growth, and (B) post-harvest ripening for cultivars IDN, PJB, and PL in 
2011 and 2012. 
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the climacteric crisis. Indeed, the dramatic increase in respiration in response to ethylene 

treatment might be associated with an enhanced level of ATP exceeding the needs of the cells 

(John and Marchal, 1995). Consequently, the ratio of ATP to ADP might increase greatly, 

making ∆GATP more negative, which would increase the activity of the proton pumps and the 

accumulation of malate. The predicted increase in the activity of the proton pumps during 

banana ripening is in agreement with the results of Terrier et al. (2001) on grape berry. The 

slight decrease in malate concentration at the end of ripening may be the consequence of a 

higher rate of malate leakage across the tonoplast, as observed in grape (Terrier et al., 2001). 

However, since this phenomenon was not represented in the present model, it resulted in a 

less negative ∆GATP at the end of ripening. The model predicted a significantly less negative 

∆GATP for cultivar IDN than for cultivars PL and PJB, suggesting that the lower 

concentrations of malate in cultivar IDN might be due to lower proton pump activity. 

Differences in malate accumulation between cultivars PL and PJB were not due to differences 

in ∆GATP, but to differences in vacuolar pH. Indeed, cultivar PL had a higher vacuolar pH 

than cultivar PJB during post-harvest ripening (Etienne et al., 2013a). Vacuolar pH has 

contrasting effects on proton pump activity and malate dissociation. On one hand, increasing 

vacuolar pH decreases the di-anion concentration gradient, which reduces malate 

accumulation. On the other hand, it activates the proton pumps, which increases the ∆ψ and 

consequently malate accumulation. Finally, the positive effect on proton pump activity 

appears to prevail over the negative effect on malate dissociation. The possible involvement 

of vacuolar proton pumps in the difference in acidity among cultivars has been reported in 

peach (Etienne et al., 2002) and in apple (Yao et al., 2009). It should be noted that even 

though we assumed a common value of (Mal2-
cyt) among cultivars, this parameter might be 

cultivar dependant, which would explain some of the differences in malate concentrations 

among cultivars. However, when we tried to fit the model with a common value of ∆GATP but 

different values of (Mal2-
cyt) for the three cultivars, predictions were not in good agreement 

with the data (data not shown). This supports a role for ∆GATP in genotypic differences in 

malate accumulation. 

 

2.4.3 Model behavior  

The positive effect of potassium concentration on malate accumulation revealed by the 

sensitivity analysis is in agreement with the positive relationships found in ripe peaches 

between malate content and ash alkalinity, which is closely linked with potassium content 

(Genevois and Peynaud, 1974; Souty et al., 1967). The model did not predict any effect of 

potassium fertilization on malate concentration, which is in agreement with observed data and 
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with the fact that no significant differences in potassium concentration in banana pulp were 

found between the two treatments (Etienne et al., 2014). From a physiological point of view, 

increasing potassium concentration increases vacuolar pH (data not shown), which, according 

to the model, activates malate transport into the vacuole (see section 4.2). According to the 

model, magnesium and chloride concentrations can influence malate accumulation, especially 

during banana growth. Until now, no experiments have been conducted on the effects these 

minerals have on banana acidity, so it would be interesting to check the model predictions 

experimentally. The negative effect of organic acids (citrate and oxalate) on malate 

accumulation is the consequence of the decrease in vacuolar pH (see section 4.2). The 

negative effect of temperature on the concentration of malate predicted by the model is in 

agreement with the results of Lobit et al. (2006), and with some observations made in fields 

experiments on grape (Buttrose et al., 1971; Kliewer, 1973; Rufner, 1982), and banana 

(Bugaud et al., 2009). This is an interesting outcome of the model since temperature can 

easily be adjusted during post-harvest ripening. However, this result needs to be checked 

experimentally in post-harvest conditions. 

 

2.4.4 Model validity  

The model was based on the hypothesis that malate di-anion and proton transport across the 

tonoplast occurs in conditions that are close to their respective thermodynamic equilibrium. 

We can see if these hypotheses are reasonable by checking that a number of conditions are 

met. One condition is that the ∆Ψ calculated under the assumption of the model falls within 

the range expected from data cited in the literature. We found that the ∆ψ calculated with the 

equation of the thermodynamic equilibrium of the di-anion malate across the tonoplast 

(equation 6) or with the ATPase model (equation 7) was between 0 and 25 mV (Fig. III.13), 

i.e. comparable with the expected ∆Ψ, which most authors estimate to be around 30 mV (Taiz 

and Zeiger, 2010). Therefore, the electric conditions of the vacuole appear to be compatible 

with the partitioning of the malate di-anion across the tonoplast in a state of thermodynamic 

equilibrium, and also with ATPase functioning in a state of thermodynamic equilibrium. 

Another condition is that the malate channel and the ATPase are not saturated; otherwise the 

transport of malate and proton would be limited by kinetic considerations and not just by 

thermodynamic considerations. In other words, the observed rate of malate accumulation 

must be lower than the maximum rate of malate transport through the di-anion channel, and 

the observed rate of proton accumulation must be lower than the maximum rate of proton 

transport through the ATPase. Concerning the malate channel, from the literature, Lobit et al. 

(2006) calculated a maximum rate of malate transport of around 20 mmol.jour-1.Kg FW-1. 
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From our data, it can be calculated that the maximum rate of malate accumulation during 

banana development was 15 mmol.jour-1.Kg FW-1. Therefore, the assumption that the activity 

of the malate transport system does not limit its storage appears to be reasonable. Concerning 

ATPase, from the literature, Lobit et al. (2006) calculated a maximum rate of proton transport 

of around 50 mmol.jour-1.Kg FW-1. From our data on titratable acidity (Etienne et al., 2013a), 

it can be calculated that the maximum rate of proton accumulation during banana 

development was 27 mmol.jour-1.Kg FW-1. Therefore, the assumption that the activity of the 

ATPase does not limit proton pumping appears to be reasonable. 

 

2.5 Conclusion 

The model proposed in this study predicted the concentration of malate in banana pulp during 

post-harvest ripening with good accuracy for three cultivars. However, it needs to be 

improved to predict malate concentration during banana growth, maybe by taking into 

account the transport of minerals across the tonoplast, and/or the contribution of the PPiase, 

and/or possible fluctuations in cytosolic pH. The model suggested that the significant increase 

in malate concentration observed after the climacteric crisis could be due to an increase in 

ATPase activity in response to a higher free energy of ATP hydrolysis. The model also helped 

to dissect differences in malate accumulation among cultivars by highlighting the likely 

importance of the free energy of ATP hydrolysis and vacuolar pH. In the future, connecting 

such a model with a model of citrate prediction, and models relating titratable acidity and pulp 

composition (Etienne et al., 2013a), would provide a useful tool to study banana acidity. 

Finally, the present adaptation of the malate model initially developed on peach, to banana 

fruit, highlights the possible generic quality of the model and its suitability for fleshy fruit.  
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3 Etude de l’accumulation du citrate par un modèle de 

fonctionnement du cycle de Krebs  
 

Objectifs 

Dans cette partie, l’accumulation du citrate dans la pulpe de banane a été modélisée dans le 

but (i) de comprendre les processus physiologiques qui pilotent la concentration en citrate 

dans la pulpe de banane pendant la croissance et la maturation post récolte, (ii) de proposer 

des hypothèses sur les origines des différences génotypiques au niveau cellulaire, et (iii) 

d’étudier les possibles effets des conditions de croissance du fruit sur l’accumulation du 

citrate. L’hypothèse de base de ce travail de modélisation est que l’accumulation du citrate 

dans la pulpe est pilotée par le fonctionnement du cycle de Krebs dans la mitochondrie (c.f. 

Chapitre I). Ainsi, un modèle mécaniste décrivant de manière simplifiée le fonctionnement de 

ce cycle a été développé. Cette partie a été rédigée sous la forme d’un article intitulé «A 

model of TCA cycle functioning to analyze citrate accumulation in pre and post-harvest 

fruits: application to banana fruit (Musa sp. AA)» qui a été soumis à Plant Physiology. 

 

Principaux résultats 

•  Ce modèle permet de prédire la concentration en citrate dans la pulpe pendant la 

croissance et la maturation post récolte de la banane et de décrire la variabilité entre 

génotypes. 

•  Le cycle de Krebs apparaît comme un processus clé de l’accumulation du citrate dans la 

banane. 

•  Ce modèle suggère que la respiration et la température affectent la concentration en 

citrate pendant la maturation post récolte de manière différente selon le cultivar. 

•  L’enzyme malique mitochondriale et les transporteurs mitochondriaux du malate 

pourraient être des déterminants importants de l’accumulation du citrate et pourraient être 

à l’origine des différences de concentrations en citrate observées entre génotypes pendant 

les phases pré et post récolte. 
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Abstract 

Citrate concentration is a crucial determinant of banana pulp sourness and sweetness, two 

major drivers for consumer preferences. Banana fruit has the particularity of having separate 

growth and ripening stages, during which pulp citrate concentration changes. Our objective 

was to develop a mechanistic model of citrate accumulation based on a simplified 

representation of the TCA cycle to predict citrate concentration in banana pulp during the pre 

and post-harvest phases. The model was calibrated and validated separately on the pre and 

post-harvest phases, using data sets from three cultivars of dessert banana contrasting in terms 

of citrate accumulation, and incorporating different fruit load, potassium supply, and harvest 

stage. The model predicted the dynamic of citrate concentration in banana pulp with a fairly 

good accuracy for the three cultivars during the pre (mean RRMSE=0.22) and post-harvest 

phases (mean RRMSE=0.26). The sensitivity of the model to parameters and input variables 

were analyzed during the pre and post-harvest phases. According to the model, pulp 

respiration and temperature had no effect on citrate accumulation during the preharvest phase, 

whereas they affected citrate accumulation in a cultivar dependant manner during the post-

harvest phase. Citrate accumulation was sensitive to pulp growth parameters in a cultivar 

dependant manner during the pre and post-harvest phases. The model helped to dissect 

differences of citrate concentration among cultivars during the pre and post-harvest phases. In 

particular, the model suggested major differences of TCA cycle functioning among cultivars 

during post-harvest ripening of banana, and pointed out the potential role of NAD-malic 

enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. 

Finally, the model may be used as conceptual basis to study citrate accumulation in pre and 

post-harvest fleshy fruits. 
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3.1 Introduction 

Citrate is one of the most important organic acids in many fruits (Seymour et al., 1993), and 

its concentration in the pulp plays a critical role in organoleptic properties (Esti et al., 2002; 

Harker et al., 2002; Tieman et al., 2012). The citrate concentration varies considerably among 

cultivars of many fruit species including citrus (Sadka et al., 2001), peach (Moing et al., 

1998), pineapple (Saradhuldhat and Paull, 2007), and banana (Bugaud et al., 2013). The 

accumulation of citrate in fruit cells is a complex phenomenon because it involves several 

metabolic pathways and transport mechanisms across different compartments, mainly cytosol, 

mitochondria, and vacuole (for review see (Etienne et al., 2013b)). Ongoing transcriptomic 

(Cercos et al., 2006), metabolomic (Katz et al., 2011), proteomic (Katz et al., 2007), and QTL 

studies (Schauer et al., 2006) have begun to elucidate the complexity of the mechanisms 

involved in citrate accumulation. However, the regulation of citrate accumulation throughout 

fruit development, and the origins of the phenotypic variability of the citrate concentration 

within fruit species remain to be clarified. Given the complexity of the processes involved, 

ecophysiological process-based simulation models (PBSMs) could advance our understanding 

of the physiological mechanisms underlying citrate accumulation (Martre et al., 2011). 

PBSMs could also help to elucidate the differences in citrate accumulation among and within 

fruit species, as it is the case for sugar accumulation in peach (Wu et al., 2012), and grape 

berry (Dai et al., 2009). 

Attempts to mechanistically model citrate accumulation in fruits are rare. Lobit et al. 

(2003) proposed a mechanistic model to simulate the dynamics of citrate concentration in 

peach fruit. This model was based on the assumption that in fleshy fruits, citrate accumulation 

is driven by the tricarboxylic acid cycle (TCA cycle) located in the mitochondria, which is a 

convincing hypothesis (Etienne et al., 2013b). This model was used to analyze the effects of 

temperature and pulp growth on citrate concentrations in two cultivars of peach (Lobit et al., 

2003; Wu et al., 2007), and appeared to provide a good framework to study citrate 

accumulation in fleshy fruit. However, the approach used to solve the system of equations 

derived from the model led to a simple equation to predict the rate of net citrate production 

with parameters that had lost their real biological meaning. Thus, despite its good predictive 

quality, this model did not allow a complete study of the behavior and regulation of fruit 

mitochondrial citrate metabolism.  

In the present study, we built a new, more mechanistic, model of citrate accumulation, 

with parameters that have biological meaning, based on a simplified representation of the 

TCA cycle adopted by Lobit et al. (2003). This model was developed for banana fruit because 

citrate concentration plays a crucial role in determining banana pulp sourness and sweetness 
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(Bugaud et al., 2013), two major drivers of consumer preferences. Banana fruit has the 

particularity of having separate growth and ripening stages, during which citrate concentration 

undergoes substantial changes (Etienne et al., 2014). We thus modeled the dynamics of citrate 

concentration during both the pre- and post-harvest stages. Because citrate concentration in 

banana pulp varies greatly among genotypes (Bugaud et al., 2013; Etienne et al., 2014), we 

chose to calibrate and validate the model on three cultivars with contrasting acidity. The 

physiological age of the fruit at harvest is known to affect the concentration of citrate in 

banana pulp during post-harvest ripening (Bugaud et al., 2006). Fruit pruning and potassium 

fertilization, two cultural practices commonly used by banana growers, can also impact the 

concentration of citrate in fleshy fruits (for review see (Etienne et al., 2013b)). For that 

reason, we used data sets incorporating different fruit loads, potassium supply, and harvest 

stages to study how these growing conditions affect citrate metabolism (or not). Model 

parameterization, model selection, and test of fit are presented for the pre- and post-harvest 

phases. The sensitivity of the model to the parameters and input variables were analyzed 

during the pre- and post-harvest stages. The model enabled us to (i) advance our 

understanding of citrate metabolism during growth and post-harvest ripening of banana fruit; 

(ii) propose a possible explanation for differences in citrate accumulation among cultivars and 

identify potential genotypic parameters (i.e. genotype-dependant parameters); and (iii) study 

the effects of fruit growth conditions on citrate metabolism. Finally, the model can be used as 

a conceptual basis to study citrate accumulation in pre- and post-harvest stages in fleshy 

fruits. 

 

3.2 Materials and methods 

3.2.1 Model description 

The present model is based on the assumption that citrate accumulation in fleshy fruit is 

driven by the TCA cycle located in the mitochondria (Etienne et al., 2013b). The TCA cycle 

results in the oxidation of pyruvate into CO2 and a reduction in co-enzymes through a series 

of conversions between organic acids including malate and citrate (Fig. III.14.A). The 

maintenance of the pools of TCA cycle intermediates implies that for each metabolite 

exported, one is imported, and vice versa. These exchanges are achieved by a variety of 

mechanisms mediated by mitochondrial carrier proteins (for reviews, see (Haferkamp and 

Schmitz-Esser, 2012; Laloi, 1999)). The model presented here is based on the simplified 

representation of the TCA cycle used in the model of Lobit et al. (2003) (Fig. III.14.B). The 

only metabolites considered, pyruvate, malate and citrate, were chosen because they are at 
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branch points between several reactions and because they are exchanged between the cytosol 

and the mitochondria. Pulp fruit was considered as a single big cell with mitochondrial and 

cytosolic compartments. 

 

 

Figure III-14 (A) Reactions of the TCA cycle in the mitochondria and (B) the simplified 
representation used in the model of Lobit et al. (2003). Enzymes are in italics: ACO, aconitase; 
CS: citrate synthase; NAD-ME, NAD-malic enzyme; NAD-IDH, NAD-isocitrate dehydrogenase; 
NADP-IDH, NADP- isocitrate dehydrogenase; NAD-MDH, NAD-malate dehydrogenase; PDH, 
pyruvate dehydrogenase. Dashed arrows indicate transport across the mitochondrial 
membrane. 
 

Stoichiometric equations: 

Assuming the TCA cycle at steady-state implies that, for any given metabolite, the sum of 

metabolic fluxes that synthesizes it and the sum of metabolic fluxes that degrades it are equal 

(Fig. III.14.B). 

ß�£�¿à�ß� = φp + φF − φh = 0                                                                                                   (1) 

ß�á��à�

ß�
� φâ ! φE D φF D φh � 0                                                                                          (2) 

ß��Á�à�

ß�
� φh D φE D φã � 0                                                                                                    (3) 

The respiratory flux, approximated as the flux of CO2 produced by the TCA cycle, is: 

Resp � φh ! 2φE ! φF                                                                                                            (4) 

where Mpyrmt, Mmalmt, and Mcitmt (mmol) are respectively the amount of pyruvate, malate 

and citrate in the pulp mitochondrial compartment, φi are the metabolic fluxes of the TCA 

cycle (mmol.day-1), and Resp is the respiratory flux of the pulp mitochondrial compartment 

(mmol.day-1). 
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Mathematical representations of metabolic fluxes: 

- Enzymatic reactions: 

The metabolic flux between two compounds is described by enzyme kinetic rate laws, as a 

function that depends on the concentration of the reactants and on the ki parameters called 

rate constants (Schallau and Junker, 2010).  

φh = khCmalá�Cpyrá�                                                                                                            (5) 

φE = kECcitá�                                                                                                                         (6) 

φF = kFCmalá�                                                                                                                       (7) 

where k1 (L
2.day-1.mmol-1), k2 (L.day-1), k3 (L.day-1) are the rate constants, and Cmalmt, 

Cpyrmt, Ccitmt are the concentrations of malate, pyruvate and citrate in the pulp mitochondrial 

compartment, respectively (mmol.L-1).  

 

- Transport reactions: 

Several carriers are present on the inner membrane of plant cell mitochondria and allow the 

exchange of metabolites of the TCA cycle between the cytosol and the mitochondrial matrix 

(for review see (Haferkamp and Schmitz-Esser, 2012)). For the sake of simplicity, we 

assumed that the transport of citrate, malate and pyruvate across the mitochondria depends 

mainly on the concentration gradients of the species transported between the cytosol and the 

mitochondrial matrix. Therefore, the formalism adopted to model the transport reactions was 

derived from Fick’s law, which states that the diffusion flux of a compound is proportional to 

the concentration gradient of this compound across the membrane. 

φp = Kp�Cpyr��� − Cpyrá��                                                                                                    (8) 

φâ = Kâ�Cmal��� − Cmalá��                                                                                                   (9) 

φã = Kã�Ccitá� − Ccit����                                                                                                     (10) 

where K4, K5, K6 are membrane permeability (L.day-1); and Cmalcyt, Cpyrcyt, Ccitcyt are the 

respective concentrations of malate, pyruvate and citrate in the pulp cytosolic  compartment 

(mmol.L-1). 

 

Solving the system and expressing the rate of net citrate production φ6 (mmol.day-1): 

Replacing the expressions of the different metabolic fluxes in equations 1 to 4 gives the 

following system: 

	KpCpyr��� − KpCpyrá� + kFCmalá� − khCmalá�Cpyrá� = 0                                           (11) 

KâCmal��� + kECcitá� − �Kâ + kF�Cmalá� − khCmalá�Cpyrá� = 0                                 (12) 

KãCcit��� + khCmalá�Cpyrá� − �kE + Kã�Ccitá� = 0                                                        (13) 
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2kECcitá� + kFCmalá� + khCmalá�Cpyrá� = Resp                                                           (14) 

where Cpyrmt, Cmalmt, Ccitmt, Ccitcyt are the unknowns of the system, and Ki, ki, Cpyrcyt, 

Cmalcyt are parameters. 

The system was solved by using the software Maple (Maple (16). Maplesoft, a division of 

Waterloo Maple Inc., Waterloo, Ontario). The solutions of Ccitmt and Ccitcyt were put into 

equation 10 which gave the following expression for φ6:  

φã = − hp �çè��é�½��£Fçè��é + hp hç��Fçè��é� �3Kpkh�kF + Kâ�Cpyr��� + Kâkh�2Kâ + 10kF�Cmal��� −
�kF + Kâ�¨18KpECpyr���khkF + 12KpECpyr���khKâ + 8KpKâECmal���kh + 9KpEkFE + 4KpEKâE +
9KpECpyr���E khE + 12KpEkFKâ + 4KâECmal���E khE − 12KpCpyr���khEKâCmal��� +
36KpkFKâCmal���kh + ¨18KpkFkh − 6KpCpyr���khE + 4KpKâkh + 4KâCmal���khE©Resp +
RespEkhE©�� + Kp¨5kFKâ + 3kFE + 2KâE©�                                                                                 (15) 

 

Pulp respiration: 

Pulp respiration during fruit growth was calculated using the growth-maintenance equation 

(Cannell and Thornley, 2000). Growth respiration is considered to be proportional to the 

fruit growth rate and maintenance respiration to dry mass and temperature (Penning de 

Vries and Laar, 1982; Thornley and Johnson, 1990). The effect of temperature is described 

with the Q10 concept. Pulp respiration (mmol CO2.day-1) was calculated as the sum of 

growth and maintenance respiration: 

Resp = qî ßÃÂß� + qáDW	Qh�ѲY�¶�¶                                                                                           (16)  

where qg is the growth respiration coefficient (mmol CO2.g
-1), qm is the maintenance 

coefficient at 20 °C (mmol CO2.g
-1.day-1), Q10 is the temperature ratio of maintenance 

respiration (dimensionless), DW is the pulp dry weight (g) and Ѳ is the temperature (°C). 

Pulp respiration during post-harvest ripening was calculated by considering growth 

respiration equal to zero, since the fruit was detached. 

 

Calculation of the concentration of citrate in the pulp: 

Citrate concentration in the fruit was obtained by integrating φ6 over the monitored period 

starting with citrate content observed at the beginning of the period, and by dividing it by 

the pulp fresh weight. 

Ccit� = h��¼Â� ∗ �Mcit�¶ + ò φãdt���¶                                                                                         (17) 

where Ccit (mmol.100g FW-1) is the citrate concentration in the pulp, Mcitto (mmol.fruit-1) 

is the amount of citrate in the pulp at t0, FW is pulp fresh weight (g), t is the time (days after 
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bloom or days after ethylene treatment), to is the time of the beginning of the experiment, 

and φ6 the rate of net citrate production (mmol.day-1).  

 

Rate constants (ki) and membrane permeability (Ki): 

We hypothesized that ki depends on enzyme activity, and Ki on transporter activity during 

fruit development. The activities of the TCA cycle enzymes and of the mitochondrial organic 

acid transporters can vary or remain constant during fruit growth (Chen et al., 2009; Iannetta 

et al., 2004; Katz et al., 2011; Regalado et al., 2013), and post-harvest ripening (Borsani et 

al., 2009; Jeffery et al., 1984; Liu et al., 2004), suggesting that ki and Ki are likely to vary 

during banana growth and post-harvest ripening. During fruit growth, variations in ki and Ki 

may be due to changes in the number of mitochondria on one hand, and to the regulation of 

enzymes and transporter activities on the other hand. The first source of variation, i.e. the 

number of mitochondria, is likely to increase during fruit growth due to cell division and 

enlargement. Indeed, Winter et al. (1993 and 1994) found a positive linear relationship 

between the section area of the mitochondrial compartment and the section area of the leaf 

cells. Therefore, we chose to symbolize the link between the number of pulp mitochondria, 

and ki and Ki by representing their variations during fruit growth as a function of the 

structural dry weight of the pulp, which represents the constitutive part of pulp cells and is 

therefore an indicator of pulp cell growth. Concerning the second source of variation, it is 

known that mitochondrial enzymes and transporters can be regulated by allosteric and post 

translational regulation, but little information is available on this subject (for review see 

(Araujo et al., 2012)). Therefore, for the sake of simplicity, we included a regulatory factor 

(mi) to modulate the relationship between the ki and Ki, and the structural dry weight of the 

pulp: 

kÁ,î�t� = ó+,ô ∗ �ÐÃÂ���ÐÃÂõö÷�kA                                                                                                      (18) 

KÁ,î�t� = R+,ô ∗ �ÐÃÂ���ÐÃÂõö÷�kA                                                                                                     (19) 

where SDW is the structural dry weight of the pulp (g); SDWref is a reference structural dry 

weight equal to 1 g; ki,g (L.day-1 or L2.day-1.mmol-1), Ki,g (L.day-1), and mi (dimensionless) are 

fixed parameters, with ki,g and Ki,g positives, and mi positive, null or negative. Depending on 

the values of the parameter mi, the patterns of ki,g(t) and Ki,g(t) can remain constant, increase, 

or decrease, as shown in Fig. III.15. 

During post-harvest ripening, the number of mitochondria of the pulp is likely to vary 

little since the fruit is no longer growing. Thus, changes in ki and Ki are likely to be only due 

to the regulation of enzymes and transporters. We chose to represent the putative variations of 
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ki and Ki during banana post-harvest ripening as a function of the number of days after 

ethylene treatment using the following mathematical expression: 

kÁ,¿�t� = ó+,* ∗ � Ã�ÑÃ�Ñõö÷�ÉÎ                                                                                                         (20) 

KÁ,¿�t� = R+,* ∗ � Ã�ÑÃ�Ñõö÷�ÉÎ                                                                                                        (21) 

where DAE is the day after ethylene treatment; DAEref is a reference day after ethylene 

treatment equal to 1; ki,r (L.day-2), Ki,r (L.day-2), and j i (dimensionless) are fixed parameters, 

with ki,r and Ki,r positives, and j i positive, null or negative. Depending on the values of the 

parameter j i, ki,r(t) and Ki,r(t) can remain constant, increase, or decrease during ripening. 

 

 

Figure III-15 Hypothetical changes in the rate constant k i,g(t) during fruit growth as a function 
of the value of parameter mi. ki,g(t)=ki,g*SDWmi, with ki,g arbitrarily equal to 10 and SDW (pulp 
structural dry weight) taking values of the PL cultivar. The different values of mi correspond to 
the following situations: mi<0: enzyme inhibition exceeds the increase in the number of 
mitochondria; m i=0: enzyme inhibition compensates for the increase in the number of 
mitochondria; 0<mi<1: enzyme inhibition under-compensates for the increase in the number of 
mitochondria; m i>1: activation of enzyme along with the increase in the number of 
mitochondria. 
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3.2.2 Model inputs and initial conditions 

The model used daily pulp fresh weight, and daily pulp structural dry weight as input 

variables. Initial values were the amount of citrate in the fruit pulp on the first date of the 

modeled period. Equation 17 was numerically solved using the ‘lsoda’ function of the 

package ‘dsolve’ of the R software with a one-day time step (Soetaert et al., 2010). 

Daily pulp dry weight was estimated by fitting a growth expolinear function to pulp dry 

weight data (Goudriaan and Monteith, 1990). 

DW = Nøà½àP ∗ ln	�1 + exp¨Rá ∗ �t − tù�©�                                                                       (22) 

where Cm is the maximum absolute growth rate of pulp dry weight (g.day-1), Rm is the 

maximum relative growth rate of pulp dry weight (g.g-1.day-1), tb is the x axis intercept of 

the linear growth phase of pulp dry weight (day). 

Daily pulp fresh weight was estimated using an empirical relationship with pulp dry weight 

(R²=0.99 and n=488): 

FW = 3.12 ∗ DW + 3.47                                                                                                       (23) 

Daily pulp structural dry weight was estimated using an empirical relationship with pulp dry 

weight (R²=0.98 and n=454): 

SDW = 0.69 ∗ DW�.¥F
                                                                                                         (24) 

  

3.2.3 Plant Materials and experimental conditions 

All experiments were conducted at the Pôle de Recherche Agroenvironnementale de la 

Martinique (PRAM, Martinique, French West Indies; latitude 14°37N, longitude 60°58W, 

altitude 16m) using three dessert banana cultivars (Musa spp.) diploids AA, that differ in their 

predominant organic acid at the eating stage: Indonesia 110 (IDN), Pisang Jari Buaya (PJB), 

and Pisang Lilin (PL). Experiments were conducted during the 2011 and 2012 growing 

seasons on continental alluvial soil. For the two growing seasons, irrigation was adjusted to 

the amount of rainfall to supply at least 5 mm of water per day, and non-systemic fungicide 

was applied to control foliar diseases. During the first period of bunch growth (March–

November 2011) the mean daily temperature was 27 ± 1.2°C. During the second period of 

bunch growth (February-August 2012) the mean daily temperature was 26± 0.9°C.  

 

2011 experiment: effect of fruit load on banana pulp acidity  

For each cultivar, 36 plants were randomly chosen and tagged at inflorescence emergence. 

Two contrasted fruit loads were used: 18 plants of each cultivar were used as the control 

treatment i.e. high fruit load, and 18 other plants were highly pruned i.e. low fruit load. In the 
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control treatment, the number of leaves and hands left on the plants were calculated in order 

to have the same leaf area: fruit ratio among cultivars (approximately equal to 0.5 cm² leave. g 

fruit-1). Thus, 15 days after inflorescence emergence, 8, 6, and 5 leaves were left on the plant 

for cultivars IDN, PL, and PJB respectively, and the top 10, 5 and 7 hands were left on the 

bunch for cultivars IDN, PL, and PJB respectively. To ensure the situation was the same 

among the three cultivars, fruit pruning in low fruit load treatment was calculated to increase 

the leaf area: fruit ratio by approximately 2.5. Consequently, 15 days after inflorescence 

emergence, the top 4, 2, and 3 hands were left on the bunch for cultivars IDN, PL, and PJB 

respectively. Banana plants received 12 g of nitrogen, 1.7 g of phosphorus, and 23 g of 

potassium at 4-week intervals during fruit growth. 

 

2012 experiment: effect of potassium fertilization on banana pulp acidity 

Two plots containing 50 banana plants of each cultivar were planted, i.e. each plot contained a 

total of 150 banana plants. Two contrasted levels of potassium fertilization were started six 

months before the beginning of fruit sampling. For each cultivar, one plot received 124 g of 

potassium per plant (high potassium fertilization) at 4-week intervals, while the other received 

no potassium at all. All the banana plants received 12 g of nitrogen and 10 g of phosphorus at 

4-week intervals. Twenty-four plants of each cultivar were randomly chosen in each plot and 

tagged at inflorescence emergence. At 15 days after inflorescence emergence, 9, 7, and 9 

leaves were left of cultivars IDN, PL, and PJB respectively, which corresponds to the average 

leaf number in 2012, and the top 10, 5, and 7 hands were left on the bunch of cultivars IDN, 

PL, and PJB respectively, which correspond to a high fruit load.  

 

Monitoring fruit growth  

In the two growing seasons, six bunches of each cultivar*treatment combination were 

selected. One fruit located in the internal row of the second proximal hand was collected for 

analyses every 15 days. Natural ripening on standing plants, i.e. when the first yellow finger 

appears, determined the end of sampling.  

 

Monitoring post-harvest fruit ripening  

Two harvest stages were studied in the 2011 experiment. The harvest stages were calculated 

for each cultivar to be 70% and 90% of the average flowering-to-yellowing time (FYT) of the 

bunch on the plant. For each harvest stage, six bunches of each cultivar*treatment 

combination were harvested. In the 2012 experiment, only one harvest stage was studied. The 
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harvest stage was calculated for each cultivar to be 75% of the average FYT of the bunch on 

the plant. Six bunches of each cultivar*treatment combination were harvested. After the 

bunches were harvested, the second proximal banana hand per bunch was rinsed and dipped 

in fungicide (bitertanol, 200 mg.L−1) for 1 min. The fruits were placed in a plastic bag with 20 

µm respiration holes and stored in boxes for 6 days at 18 °C. The fruits were then stored in a 

room at 18 °C and underwent ethylene treatment (1 mL.L−1 for 24 h) to trigger the ripening 

process. After 24 h, the room was ventilated. Bananas were maintained at 18 °C for 13 days 

and a banana fruit was sampled before ethylene treatment, and at day 3, 6, 9 and 13 after 

ethylene treatment.  

 

3.2.4 Biochemical and respiration measurements 

For each fruit sampled, the fresh and dried pulp were weighed. The dried pulp was then mixed 

to obtain dry powder and to allow biochemical measurements. Citrate concentration was 

assessed according to the method described in Etienne et al. (2013a) using an enzymatic 

method and a microplate reader. Pulp structural dry weight was calculated as the difference 

between pulp dry weight and the sum of the weights of the main non-structural compounds 

(soluble sugars, starch, acids). To this end, concentrations of malate were assessed according 

to the method described in Etienne et al. (2013a), and concentrations of starch and soluble 

sugars (glucose, fructose, sucrose) were assessed according to Gomez et al. (2007), using an 

enzymatic method and a microplate reader. For measurements of respiration, each sampled 

fruit was placed in a closed plastic jar. The temperature of the room was set at 18 °C. After 1 

hour, CO2 concentration was measured with a gas analyzer (Vigaz, CANAL120). 

 

3.2.5 Model parameterization 

Based on information found in the literature, the value of Cmalcyt was set at 1 mM (Gerhardt 

and Heldt, 1984; Gout et al., 1993), and the value of Cpyrcyt was set at 0.5 mM, (Beaudry et 

al., 1989; Kubicek and Röhr, 1978).  

Parameters of the pulp dry weight growth model (Cm, Rm, tb) were estimated for each 

banana plant using a nonlinear least-squares regression method (Fox, 2002). The model 

explained 99% of the pulp dry weight variance in the three cultivars and in the two years of 

the experiment, and the RRMSE was satisfactory with mean values of 0.1 (Appendix 3).  

According to the literature, the temperature ratio of maintenance respiration Q10 was 

set at 2 (Turner, 1995). The growth respiration coefficient of the pulp (qg) was derived from 

construction cost measurements on banana pulp. In the three cultivars, the total nitrogen, 
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carbon and ash concentration of the banana pulp were measured at three different stages of 

fruit growth. The construction cost (CC; g glucose. g-1) was calculated as a function of the 

carbon (C; g. g DW-1), nitrogen (N; g. g DW-1), and ash (A; g. g DW-1) concentrations of 

banana pulp, and of the energetic costs of N assimilation and carbohydrate translocation 

(Vertregt and Penning de Vries, 1987; Wullschleger et al., 1997): 

CC = �5.39C + 0.80A + 5.64fú�N − 1.191��1 + r��                                                          (25) 

where fNh is the fraction of N used in growth that is assimilated heterotrophically, assumed to 

be equal to 1 for fruits (Wullschleger et al., 1997), and rT is the added cost of translocating 

photosynthetates from sources to sinks, assumed to be equal to 5.3% (Vertregt and Penning de 

Vries, 1987).  

The coefficient qg (mmol CO2.g
-1) was calculated using the following formula (Léchaudel et 

al., 2005a): 

qî = �αøø�ø��û ∗ 1000                                                                                                               (26) 

where αCC is the carbon construction cost (α=0.4 is the concentration of carbon in glucose), 

and MC is the molar mass of carbon equal to 12 g.mol-1. 

The calculated values of qg were found to not significantly differ among cultivars and among 

developmental stages (data not shown). Thus, for qg a value common to all cultivars and 

developmental stages was chosen as the mean value of the calculated values which was qg=13 

mmol CO2.g
-1 ±1. This value is in the range of values found for tomato (9.3 mmol CO2.g

-1; 

(Penning de Vries, 1989)), peach (7.0 mmol CO2.g
-1; (DeJong and Goudriaan, 1989)), and 

mango (3.0 mmol CO2.g
-1; (Léchaudel et al., 2005a)).  

The maintenance respiration coefficient (qm) of the pulp during banana growth and post-

harvest ripening were calculated respectively from measurements of respiration in harvested 

green fruits and in fruits subjected to ethylene treatment in the 2012 experiment (n=180). 

Since the fruits were harvested, the measured respiration corresponded only to maintenance 

respiration because growth respiration was null. Therefore, by inverting equation 16, qm was 

calculated as follows: 

qá = ½��£
ÃÂ	ü�¶ѲY�¶�¶                                                                                                                        (27) 

The value of qm during fruit growth was estimated at qm=0.15 mmol CO2.g
-1.day-1 ±0.02 for 

the three cultivars, a value close to those estimated for tomato (0.27 mmol CO2.g
-1.day-1; 

(Walker and Thornley, 1977)), peach (0.05 mmol CO2.g
-1.day-1; (DeJong and Goudriaan, 

1989)), and mango (0.09 mmol CO2.g
-1.day-1;  (Léchaudel et al., 2005a)).  

The values of calculated qm during post-harvest ripening were plotted as a function of the 

number of days after ethylene treatment. In all three cultivars, qm increased dramatically 
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during the first two days after ethylene treatment, and then remained constant until the end of 

ripening (Appendix 4.A, B and C). An appropriate expression to represent qm was: 

qá = qáh ∗ �1 − qáE ∗ exp�ýàè∗Ã�Ñ�                                                                                 (28) 

where DAE is the day after ethylene treatment, and qm1, qm2, and qm3 are fitted coefficients.  

The values of qm differed significantly among cultivars, so we decided to fit the model of 

equation 28 to the three cultivars separately. Thus, parameters qm1, qm2, and qm3 were 

estimated for each cultivar by using a nonlinear least-squares regression method on the 2012 

data (Fox, 2002) (Table III-5). The model allowed satisfactory prediction of fruit respiration 

during post-harvest ripening (R²=0.72; RRMSE=0.10) (Appendix 4.D). 

 

Table III-5 Estimated parameter values and standard errors (in parentheses) of the qm model 
during post-harvest ripening in cultivars IDN, PJB, and PL. Parameters were estimated using 
the data from 2012 post-harvest ripening. 
 

 

 

 

 

 

 

3.2.6 Model calibration 

Parameters related to reaction rates ki(t) and membrane permeability Ki(t) were estimated 

through the model calibration by fitting the predicted citrate concentrations to observed values 

of the 2011 dataset separately for each cultivar and developmental stage (growth and post-

harvest ripening) using the hydroPSO function of the R software (Zambrano-Bigiarini et al., 

2013). The hydroPSO function uses the computational method of particle swarm optimization 

(PSO) that optimizes a problem by iteratively trying to improve a candidate solution with 

regard to a given measure of quality. Parameters were estimated by minimizing the following 

criterion: 

 ∑ ∑ �xÁÉ − yÁÉ�EÁÉ                                                                                                                      (29) 

where xij is the predicted value, and yij is the observed value of the fruit of the jth banana plant 

at date ti. 

 
qm1   

(mmol CO2.g
-1.day-1) 

qm2   

(dimensionless) 

qm3  

(dimensionless) 

IDN 0.61 (0.01) 0.71 (0.04) 1.08 (0.18) 

PJB 0.48 (0.01) 0.68 (0.05) 0.65 (0.13) 

PL 0.52 (0.01) 0.68 (0.04) 0.87 (0.13) 
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3.2.7 Sensitivity analysis of the models 

Sensitivity analyses were conducted to help select the best model and to analyze the 

sensitivity of the best model to parameters and inputs during the pre- and post-harvest stages. 

The sensitivity of the model to variations in the parameters and input values was quantified by 

normalized sensitivity coefficients, defined as the ratio between variation in the citrate 

concentration (∆C) relative to its standard value (C), and variation in the parameter or input 

value (∆P) relative to its standard value (P) (Monod et al., 2006).  

Normalized	sensitivity	coefficient = ±ø/ø±�/�                                                                           (30) 

The interpretation of the sensitivity coefficient is referred to as local sensitivity analysis since 

these coefficients provide information on the effect of small changes in the parameters on the 

response of the model. They do not provide information on the effect of simultaneous or large 

changes in parameters. Normalized sensitivity coefficients were calculated by altering one 

parameter or input variable by ±0.1% while maintaining all the other parameters and inputs at 

default values.  

 

3.2.8  Model selection 

We compared models to determine the best model to predict the concentration of citrate 

during the pre- and post-harvest stages of banana fruit development and to detect significant 

differences in parameter values among cultivars. We started by searching for the best model 

to predict citrate concentrations during the pre-harvest stage. We tested a full model in which 

all the ki,g(t) and Ki,g(t) varied with SDW and were specific to cultivars (PREHARVEST1). 

Then, based on the values of the estimated parameters and on the sensitivity analysis of this 

full model (see 2.7), we tested a reduced model in which the less sensitive parameters ki,g(t) 

and Ki,g(t) were kept constant throughout fruit growth and in which some of the parameters 

were supposed to be the same for some of the cultivars, thus reducing the number of 

parameters to be estimated (PREHARVEST2). For two models that do not significantly differ 

in fit quality, the one with fewer parameters is always preferred. In the second step, we 

searched for the best model to predict citrate concentrations during the post-harvest stage. 

Since the pre-harvest model did not correctly predict citrate concentration during the post-

harvest stage (data not shown), we changed the equations ki,r(t) and Ki,r(t) (equations 20 and 

21). We thus tested a full model in which all the ki,r(t) and Ki,r(t) varied with the number of 

days after ethylene treatment and were each specific to one cultivar (POSTHARVEST1). 

Then, based on the values of the estimated parameters and on the sensitivity analysis of this 

full model, we tested a reduced model in which the less sensitive parameters ki,r(t) and Ki,r(t) 
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were kept constant throughout fruit ripening and in which some of the parameters were 

assumed to be the same for some of the cultivars (POSTHARVEST2).  

Models were selected using the Akaike information criterion (AIC), which allows the 

comparison of nested and non-nested models. In our case, the number of parameters exceeded 

n/40 (where n is sample size), so a second order derivative AICc, which contained a bias 

correction term for small sample size, was applied, as suggested by Johnson and Omland 

(2004). The model with smaller AICc was preferred. 

AIC� = nln N½ÐÐµ P + 2k� µµ�ç�h�                                                                                              (31) 

where n is the number of observations, RSS is the residual sum of squares, and k is the 

number of estimated parameters of the model. 

 

3.2.9 Goodness-of-fit and predictive quality of the models 

The goodness-of-fit of the pre- and post-harvest models was evaluated using two commonly 

used criteria, the root mean squared error (RMSE) and the relative root mean squared error 

(RRMSE), to compare the mean difference between simulated and observed results 

(Kobayashi and Salam, 2000). The smaller the value of RMSE and RRMSE, the better the fit. 

RMSE = Ì�∑�ÍÎ�ÏÎ�²�µ                                                                                                                (32) 

where Yi is the predicted value of the fruit i, and Xi is the measured value of the fruit i. n is 

the number of data. 

RRMSE = ½�ÐÑÒÓ                                                                                                                       (33) 

where xÓ is the mean of all observed values. 

The predictive quality of the model, which ascertains the validity of the model in different 

scenarios, was quantified by the RMSE and RRMSE calculated on the 2012 data set. 

 

3.3 Results 

3.3.1 Overview of cultivar and treatment effects  

The effects of cultivar and treatments on citrate concentration in banana pulp during the pre- 

and post-harvest stages are detailed in a previous paper (Etienne et al., 2014), so only the 

main conclusions are presented here. During banana growth, citrate concentration increased 

and was significantly affected by cultivar both in 2011 and 2012. During banana post-harvest 

ripening, both the ripening stage and the cultivar had a significant effect on the concentrations 

of citrate in 2011 and 2012. Fruits harvested later (at 90% of FYT) had significantly higher 

concentration of citrate throughout ripening. Low fruit load and potassium fertilization had 



Chapitre III Modélisation de l’acidité de la banane 

150 
 

significant effects on fruit fresh mass but not on citrate concentration during either growth or 

post-harvest ripening in the three cultivars.  

 

3.3.2 Model comparison and calibration 

The full PREHARVEST1 model was fitted to observed data by estimating 24 parameters, and 

predictions were in good agreement with observed data for the three cultivars (mean 

RRMSE=0.19). Sensitivity analysis of the model PREHARVEST1 showed that K5,g and m5 

had strong effects on the concentration of citrate in the three cultivars whereas k1,g, k3,g, K4,g, 

m1, m3, and m4 did not (data not shown). AICc comparison showed that k1,g, k3,g, and K4,g did 

not differ significantly among cultivars, but that K5,g and m5 did (data not shown). Therefore, 

a reduced model (PREHARVEST2) was tested where m1, m3 and m4 were null; k1,g, k3,g, K4,g 

were the same for the three cultivars; and K5,g and m5 were specific to cultivars, thus reducing 

the number of estimated parameters to nine. The PREHARVEST2 model had a lower AICc 

than PREHARVEST1, meaning that the PREHARVEST2 model was the best (Table III-6). 

Values of the estimated parameters of the model PREHARVEST2 are summarized in Table 

III-7 . 

The full POSTHARVEST1 model was fitted to observed data by estimating 24 

parameters, and predictions were in good agreement with observed data for the three cultivars 

(mean RRMSE=0.27). For parameter k1,r(t), sensitivity analysis of the model 

POSTHARVEST1  showed that k1,r and j1 had strong effects on citrate concentration in 

cultivars IDN and PL, but not in cultivar PJB (data not shown). These results suggested that 

k1,r(t) could be assumed to be constant in cultivar PJB (i.e. j1=0). Comparison of AICc 

showed that k1,r differed significantly among the three cultivars, and that j1 differed 

significantly between cultivars IDN and PL (data not shown). For parameter k3,r(t), sensitivity 

analysis showed that k3,r had a strong effect on citrate concentration in the three cultivars, but 

not j3. These results suggested that k3,r(t) could be assumed to be constant in the three 

cultivars (i.e. j3=0). Comparison of AICc values showed that k3,r differed significantly among 

cultivars. For parameter K4,r(t), sensitivity analysis showed that K4,r had a strong effect on 

citrate concentration in the three cultivars but not j4. These results suggested that K4,r(t) could 

be assumed to be constant in the three cultivars (i.e. j4=0). Comparison of AICc values 

showed that K4,r did not significantly differ between cultivars IDN and PL. For parameter 

K5,r(t), sensitivity analysis showed that K5,r had a strong effect on citrate concentration in the 

three cultivars, and that j5 had no effect on citrate concentration in cultivars IDN and PL but 

was highly influential in cultivar PJB. These results suggested that K5,r(t) could be assumed to 

be constant in cultivars IDN and PL (i.e. j5=0). Comparison of AICc values showed that K5,r 
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did not significantly differ between cultivars IDN and PL. For that reason, a reduced model 

(POSTHARVEST2) was tested where j3 and j4 were null for the three cultivars; j5 was null for 

cultivars IDN and PL;  j1 was null for cultivar PJB; and K4,r and K5,r were the same for 

cultivars IDN and PL, reducing the number of estimated parameters to 13. Based on the 

comparison of AICc values, the POSTHARVEST2 model was the best (Table III-6). Values 

of the estimated parameters of the model POSTHARVEST2 are summarized in Table III-7. 

 

Table III-6 Results of model selection using AICc criteria. The superscript names following the 
parameters refer to banana cultivars IDN, PJB and PL. Parameters followed by more than one 
superscript name have the same values as the corresponding cultivars.  
 

Model Estimated parameters  Fixed parameters AICc 

PRE- 

HARVEST1 

k1,g
idn,m1

idn,k3,g
idn,m3

idn,K4,g
idn,m4

idn,K5,g
idn,m5

idn, 

k1,g
pjb,m1

pjb,k3,g
pjb,m3

pjb,K4,g
pjb,m4

pjb,K5,g
pjb,m5

pjb, 

k1,g
pl,m1

pl,k3,g
pl,m3

pl,K4,g
pl,m4

pl,K5,g
pl,m5

pl 

 

-795 

PRE- 

HARVEST2 

k1,g
idn,pjb,pl,k3,g

idn,pjb,pl,K4,g
idn,pjb,pl, 

K5,g
idn,m5

idn, 

K5,g
pjb,m5

pjb, 

K5,g
pl,m5

pl 

m1
idn,pjb,pl=m3

idn,pjb,pl= m4
idn,pjb,pl=0 

-877 

POST- 

HARVEST1 

k1,r
idn,j1

idn,k3,r
idn,j3

idn,K4,r
idn,j4

idn,K5,r
idn,j5

idn, 

k1,r
pjb,j1

pjb,k3,r
pjb,j3

pjb,K4,r
pjb,j4

pjb,K5,r
pjb,j5

pjb, 

k1,r
pl,j1

pl,k3,r
pl,j3

pl,K4,r
pl,j4

pl,K5,r
pl,j5

pl 

 

-180 

POST- 

HARVEST2 

k1,r
idn,j1

idn,k3,r
idn, 

k1,r
pl,j1

pl,k3,r
pl, 

K4,r
idn,pl,K5,r

idn,pl, 

k1,r
pjb,k3,r

pjb,K4,r
pjb,K5,r

pjb,j5
pjb 

j1
pjb=j5

idn,pl=j4
idn,pjb,pl= j3

idn,pjb,pl=0 

-223 
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Table III-7 Estimated parameter values for the cultivars IDN, PJB, and PL according to the best 
models during growth (model PREHARVEST2) and post-harvest ripening (model 
POSTHARVEST2). 
 

 

3.3.3 Evaluation of the PREHARVEST2 and POSTHARVEST2 models 

Citrate concentrations simulated by the models PREHARVEST2 (Fig. III.16) and 

POSTHARVEST2 (Fig. III.17) were in good agreement with values observed in the three 

cultivars. RMSEs and RRMSEs of predictions of data from 2011, quantifying the goodness of 

fit, were satisfactory, with values ranging between 0.14 and 1.08 mmol.100g FW-1, and 

between 0.15 and 0.40 respectively. Model validation was also satisfactory, as revealed by 

RMSEs and RRMSEs of predictions of data from 2012, with values ranging between 0.20 and 

0.98 mmol.100g FW-1, and between 0.17 and 0.35 respectively. Statistical analysis revealed 

that the PREHARVEST2 and POSTHARVEST2 models correctly simulated the strong effect 

of cultivar and fruit age on citrate concentration during banana development (Appendix 5.1 

and 5.2). The PREHARVEST2 and POSTHARVEST2 models predicted little or no effect of 

fruit load and potassium fertilization on citrate concentration during banana development, 

Parameter Unit Value 

  PL IDN PJB 

Model 

PREHARVEST2 
    

k1,g(t) L.day-1 9000 

k3,g(t) L.day-1 2 

K4,g(t) L.day-1 4000 

K5,g(t) L.day-1 0.0048*SDW(t)0.98 0.0012*SDW(t)1.99 0.0017*SDW(t)1.95 

Model 

POSTHARVEST2 
    

k1,r(t) L.day-1 5634*t1.36 4904*t-1.99 9887 

k3,r(t) L.day-1 531 0.17 0.08 

K4,r(t) L.day-1 3965 6889 

K5,r(t) L.day-1 1.0e-04 1.03*t-1.26 
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consistent with observed data. The POSTHARVEST2 model predicted a small effect of fruit 

age at harvest, consistent with observed data, but was not able to simulate the minor 

differences correctly (data not shown). 

 

Figure III-16 Measured (dots) and simulated (lines) citrate concentrations in the banana pulp of 
cultivars IDN, PJB, and PL during fruit growth. The  cultivars were grown under two contrasted 
fruit loads in 2011 (LL: low fruit load; HL: high f ruit load), and two contrasted levels of 
potassium fertilization in 2012 (NF: no potassium fertilization; HF: high level of potassium 
fertilization). Data are means ± s.d (n=6). The RMSE (mmol.100 g FW-1) and RRMSE are 
indicated in each graph. 
 

IDN PJB PL

C
it

ra
te

 (m
m

o
l.1

00
g

 F
W

-1
)

Days after bloom 

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

15 30 5844 72 86 100 112 15 29 44 58 72 86 15 30 45 58 72 87

LL
HL

RMSE=0.17
RRMSE=0.20

RMSE=0.14
RRMSE=0.15

RMSE=0.17
RRMSE=0.15

HF
NF

RMSE=0.29
RRMSE=0.29

RMSE=0.27
RRMSE=0.35

RMSE=0.20
RRMSE=0.17



Chapitre III Modélisation de l’acidité de la banane 

154 
 

 

Figure III-17 Measured (dots) and simulated (lines) citrate concentrations in the banana pulp of 
cultivars IDN, PJB, and PL during fruit post-harvest ripening. The cultivars were grown under 
two contrasted fruit loads in 2011 (LL: low fruit load; HL: high fruit load), and two contrasted 
levels of potassium fertilization in 2012 (NF: no potassium fertilization; HF: high level of 
potassium fertilization). In 2011, fruits were harvested at two different stages: early stage (70% 
of FYT) and late stage (90% of FYT). Data are means ± s.d (n=6). The RMSE (mmol.100g FW-1) 
and RRMSE are indicated in each graph. 
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3.3.4 Predictions of metabolic fluxes  

The metabolic fluxes of the TCA cycle predicted by the models PREHARVEST2 and 

POSTHARVEST2 are presented in Fig. III.18 for the three cultivars. During banana growth, 

all the metabolic fluxes underwent a continuous increase in the three cultivars. φ1, φ2, φ4, and 

φ3 followed the same pattern, but φ3 was a lot lower. φ5 and φ6 followed the same pattern. All 

the metabolic fluxes were highest in cultivar PJB, then in cultivar PL and lastly in cultivar 

IDN. During post-harvest ripening, φ1, φ2, and φ4 dramatically increased in the first two days 

after ethylene treatment and then remained constant in all three cultivars. φ1, φ2, and φ4 were 

highest in cultivar PJB, then in cultivar IDN and lastly in cultivar PL. There were great 

differences in the pattern of φ3, φ5, and φ6 among cultivars during ripening. φ3 increased from 

0 to almost 0.05 mmol.day-1 in cultivar IDN, decreased from 0.12 to almost 0 mmol.day-1 in 

cultivar PL, and was equal to zero in cultivar PJB. φ5 decreased from 1 to almost 0 mmol.day-

1 in cultivar PJB, and was equal to zero in cultivars IDN and PL. φ6 decreased from 1 to 

almost 0 mmol.day-1 in cultivar PJB, increased from -0.1 to 0 in cultivar PL, and decreased 

slightly from 0 to negative values in cultivar IDN. 
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Figure III-18 Metabolic fluxes of the TCA cycle predicted by the citrate model during fruit 
growth and post-harvest ripening for the cultivars IDN, PJB, and PL.  
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3.3.5  Sensitivity analysis of the PREHARVEST2 and POSTHARVEST2 models 

A normalized sensitivity coefficient (SC) was calculated to identify model responses to 

variations in parameters and inputs. A positive and negative sign of SC correspond, 

respectively, to a response in the same or reverse direction as the variation in the parameter or 

input. The larger the absolute value of SC, the more sensitive the model is to the parameter or 

input. Since the SC behaved similarly between years for a given cultivar, only results in 2011 

are presented. For the sensitivity analysis during post-harvest ripening, the SCs behaved 

similarly between the two harvest stages in a given cultivar, so only results for 70% of FYT 

are presented. During banana growth, the SCs of parameters of the PREHARVEST2 model 

showed globally the same pattern among cultivars (Fig. III.19). Parameters Cmalcyt, K5,g and 

m5 greatly influenced citrate concentration in all three cultivars, whereas other parameters had 

little effect. The SCs of Cmalcyt and K5,g increased during the first part of growth and 

remained almost constant at about +1.0 in the second part. The SC of m5 was slightly negative 

in the early stage of growth, and then dramatically increased to reach +1, +3, and +3.5 at the 

end of growth in cultivars PL, IDN and PJB respectively. During post-harvest ripening, the 

SCs of parameters of the POSTHARVEST2 model differed greatly among cultivars (Fig. 

III.20). In cultivar PL, parameters Cpyrcyt, k1,r, j1, and k3,r greatly influenced citrate 

concentration since the absolute value of their SCs reached 2.5 at the end of ripening.  The SC 

of k3,r became more and more negative during ripening, whereas the SCs of Cpyrcyt, k1,r, and j1 

became more and more positive. In cultivar IDN, all the parameters had little influence on 

citrate concentration, except for j1 for which the SC increased to +1 at the end of ripening. In 

cultivar PJB, parameters Cmalcyt, K5,r and j5 were the most influential. The SCs of these three 

parameters were positive and increased during ripening but remained lower than +1.   

During banana growth, growth parameters influenced citrate concentration in a 

cultivar dependant manner (Fig. III.21). The sensitivity of the PREHARVEST2 model to Cm 

was higher in cultivars IDN and PJB, than in cultivar PL. The SC of Cm increased in the first 

part of growth, and remained almost constant thereafter. The PREHARVEST2 model was 

very sensitive to Rm and tb at the beginning of growth, and less at the end. To analyze the 

sensitivity of the POSTHARVEST2 model to pulp growth parameters, we combined the 

models PREHARVEST2 and POSTHARVEST2. We took into account the six days of fruit 

storage at 18 °C between harvest and ethylene treatment, and assumed that, during that 

period, fruit respiration was equal to growth maintenance respiration. During post-harvest 

ripening, Cm had a positive effect on citrate concentration in the cultivar IDN, and a negative 

effect in cultivars PJB and PL (Fig. III.21). Rm had a negative effect on citrate concentration 
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in all three cultivars. tb had a negative effect on citrate concentration in cultivar IDN, and a 

positive effect in cultivars PJB and PL. 

We analyzed the effect of changes in pulp respiration on citrate accumulation by 

studying the sensitivity of the two models to respiration parameters and temperature (Fig. 

III.21). During banana growth, respiration parameters and temperature had no effect on citrate 

concentration in any of the three cultivars. During post-harvest ripening, qm and storage 

temperature greatly influenced citrate accumulation in a negative way in cultivar PL and to a 

lesser extent in cultivar IDN, but had no effect in cultivar PJB. Q10 had a positive effect on 

citrate accumulation in cultivar PL, a limited effect in cultivar IDN, and no effect in cultivar 

PJB.  

 

Figure III-19 Normalized sensitivity coefficients of the parameters of the citrate model during 
fruit growth for the cultivars IDN, PJB, and PL.  
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Figure III-20 Normalized sensitivity coefficients of the parameters of the citrate model during 
fruit post-harvest ripening in the cultivars IDN, PJB, and PL.  
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Figure III-21 Normalized sensitivity coefficients of the growth parameters, temperature (air 
temperature during fruit growth and storage temperature during fruit ripening), and 
respiration parameters during growth and post-harvest ripening in the cultivars IDN, PJB, and 
PL.  
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3.4 Discussion 

3.4.1 Predicted variability in citrate metabolism among cultivars and between pre- and post-

harvest stages 

The model proposed in this study satisfactorily simulated the dynamics of citrate 

concentration during the pre- and post-harvest stages of banana development, despite the fact 

that they do not account for every detailed physiological process involved in citrate 

accumulation (e.g. the GABA shunt (Liu et al., 2004), vacuolar storage (for review see 

(Etienne et al., 2013b)). The main advantage of this model is that it gives a possible 

explanation for differences in citrate accumulation between the pre- and post-harvest stages, 

and among cultivars (Fig. III.22). During banana growth, the model predicted a common 

metabolic scheme for the three cultivars with φ3 close to zero, and consequently φ6 was equal 

to φ5. Thus, during the pre-harvest stage, the import of malate into the mitochondria drove 

citrate production. This result was consistent with the fact that the most influential parameters 

were those related to the transport of malate across the mitochondrial membrane, namely 

Cmalcyt and K5,g(t). The model suggested that differences in citrate accumulation among 

cultivars during banana growth were due to differences in φ5, and in particular in K5,g(t), 

which reflects the activity of malate mitochondrial transporters. In the three cultivars, K5,g(t) 

increased during banana growth but increased more in cultivar PJB than in the two other 

cultivars (data not shown). It is known that the expression of mitochondrial malate 

transporters varies during fruit development (Regalado et al., 2013). The absence of φ3 

suggests that the pyruvate imported into the mitochondria through φ4 could completely satisfy 

the fruit energy demand, with no need to produce any pyruvate via the mitochondrial malic 

enzyme reaction.  

During post-harvest ripening, the model predicted the same metabolic scheme as 

during growth in the cultivar PJB, i.e. φ3 close to zero and thus φ6 equal to φ5. Therefore, in 

cultivar PJB, the import of malate into the mitochondria drove citrate production during post-

harvest ripening, which is consistent with Cmalcyt and K5,g(t) being the most influential 

parameters. In cultivar PJB, K5,g(t) was important at the beginning of ripening and then 

decreased dramatically (data not shown), explaining why the concentration of citrate 

increased significantly in the first days after ethylene treatment and then remained almost 

constant. In cultivars IDN and PL, φ3 was positive and φ5 was equal to zero during post-

harvest ripening. Consequently, φ6 was equal to -φ3 and was therefore negative, explaining 

the decrease in citrate concentration, and the negative sensitivity of the model to k3,r(t). 

Comparison of the models and sensitivity analysis indicated that k3,r(t), which reflects 
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mitochondrial NAD-malic enzyme activity, can be assumed to remain constant during post-

harvest ripening in the three banana cultivars, suggesting that NAD-malic enzyme activity is 

likely to vary little during this stage. Borsani et al. (2009) observed no significant changes in 

NAD-malic enzyme activity during post-harvest ripening in peach. Differences in citrate 

concentrations between cultivars IDN and PL were due to differences in φ3, and in particular 

in k3,r(t). There is no information in the literature concerning the possible involvement of 

mitochondrial NAD-malic enzyme in the difference in acidity among fruit cultivars, but the 

model suggests this could be an interesting avenue to explore. In the end, it appears that 

screening for a genotype with low mitochondrial malate transport activity or high 

mitochondrial NAD-malic enzyme activity could be the most promising way to achieve a low 

citrate concentration in ripe banana fruit.  

 

 

 

Figure III-22 Schematic diagram of the differences in organic acid metabolism in the 
mitochondria predicted by the model between cultivars IDN, PJB, and PL during banana 
growth and post-harvest ripening. The thickness of the arrow shows the importance of the 
metabolic flux. The color of the arrow indicates changes in the metabolic flux over time: blue 
means decrease, red means increase, and black means almost no change.  
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3.4.2 Model behavior  

Citrate concentration was not sensitive to pulp respiration during banana growth, as also 

observed in simulations on peach by Wu et al. (2007) using the citrate model of Lobit et al. 

(2003). Indeed, their simulations showed little or no effect of fruit respiration on citrate 

concentration during the first part of peach growth, i.e. before ripening. During post-harvest 

ripening in our study, the sensitivity of citrate concentration to pulp respiration differed 

among cultivars. In cultivar PJB, citrate concentration was not affected by pulp respiration, 

whereas in cultivars IDN and PL, there was a negative relationship between pulp respiration 

and citrate accumulation in agreement with simulations on peach by Wu et al. (2007). 

According to our model, in these two cultivars, increasing pulp respiration increased φ3 

without replenishment of the pool of mitochondrial malate via φ5. Therefore, citrate must 

have been imported into the mitochondria and converted into malate, leading to a decrease in 

citrate concentration. Temperature, which is one of the parameters that drives pulp respiration, 

negatively affected the concentration of citrate during post-harvest ripening in cultivars IDN 

and PL. This is in accordance with the fact that, as frequently observed in field experiments, 

high temperatures reduce fruit acidity (for review see (Etienne et al., 2013b)). This is an 

interesting outcome of the model since temperature is a variable that is easy to control during 

post-harvest ripening. However, this result first needs to be checked experimentally to see if 

model simulations correctly reproduce the effect of storage temperature in a cultivar 

dependant manner.  

According to the model, increasing fruit loads lead to higher citrate concentrations 

during fruit growth and to lower citrate concentrations during ripening. These predictions are 

in agreement with observations in agronomic experiments on peach (Wu et al., 2002) and 

mango (Léchaudel et al., 2005b). The effects of fruit load predicted by the model varied in 

intensity depending on the cultivar. The simulations performed by Wu et al. (2007) on peach 

using the citrate model of Lobit et al. (2003) also predicted different responses of citrate 

concentration to pulp growth between two cultivars. The effects of fruit load on citrate 

concentration predicted by our model were the result of a modification in pulp growth. In the 

three cultivars, fruits grown under low fruit load had higher Cm, which represents the 

maximum absolute growth rate of the pulp during the pulp cell filling period (Jullien et al., 

2001a) (Appendix 6). In the second part of banana growth, increasing Cm led to an increase in 

pulp fresh weight, and in net citrate production because of the increase in K5,g(t) due to higher 

pulp structural dry weight (data not shown). In the end, the effect of Cm on citrate 

concentration depended on whether the dilution effect was greater than the increase in citrate 

production (or not). If the increase in citrate production is comparable to the increase in pulp 
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fresh weight, the concentration of citrate will not change, which may explain the lack of 

influence of fruit load on citrate concentration observed in our field experiment. During post-

harvest ripening, in addition to increasing the amount of pulp citrate and pulp fresh weight at 

harvest, increasing Cm affected post-harvest citrate metabolism in a cultivar dependant 

manner. In cultivars IDN and PL, increasing Cm increased pulp respiration, which in turn, 

increased citrate degradation. On the contrary, in cultivar PJB, Cm had no effect on citrate 

metabolism because in this case, the model was not sensitive to respiration (data not shown). 

The minor effect of potassium fertilization on citrate concentration predicted by the model 

during post-harvest ripening was the result of modifications in pulp growth. Fruits grown 

under contrasted potassium fertilization had different growth parameters (Appendix 7) that 

affected citrate concentration during post-harvest ripening in a cultivar dependant manner 

(see. sensitivity analysis).   

 

3.4.3  Model validation  

Globally, the model presented in this study fairly satisfactorily reproduced the absence of an 

effect of fruit load and potassium fertilization on citrate concentration during the pre- and 

post-harvest stages of banana development, and thus may be adequate for agronomical 

purposes. However, the robustness of the model needs to be tested on further replications of 

study over several years, and with growing conditions that lead to significant differences in 

citrate concentration. The validity of flux predictions could be tested by comparing them to 

experimental measurements of metabolic fluxes. This kind of approach is commonly used to 

model metabolic flux and helps constrain the flux solution space (Sweetlove et al., 2013). 

Moreover, Sweetlove et al. (2013) suggested that metabolic input and output are the key 

drivers of flux distribution, more than enzyme regulation. Consequently, the precise 

determination of the input metabolites considered in our model (cytosolic malate and pyruvate 

concentrations) should help improve metabolic predictions. In the present model, cytosolic 

malate and pyruvate concentrations were assumed to be constant during banana development, 

whereas in reality they certainly fluctuate since they play a role in the regulation of cytosolic 

pH (Smith and Raven, 1979).  

 

3.5 Conclusion 

The model of TCA cycle functioning proposed in this study predicted the concentration of 

citrate in banana pulp with fairly good accuracy in a range of cultivars. The model helped to 

dissect differences in citrate concentration among cultivars. In particular, the model suggested 
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major differences in TCA cycle functioning among cultivars during post-harvest ripening of 

banana, and pointed to the potential role of NAD-malic enzyme and mitochondrial malate 

carriers in the genotypic variability of citrate concentration. In the future, linking such models 

with a model for malate (Lobit et al., 2006), and a model relating titratable acidity and pulp 

composition (Etienne et al., 2013a), would be a useful way to study fruit acidity. Moreover, 

the present model could be incorporated in a biophysical fruit growth model to simulate the 

dynamics of fruit fresh and dry mass (Dai et al., 2008; Fishman and Génard, 1998), the main 

inputs of the model. The integrated model would facilitate identification of the key 

physiological processes responsible for the responses of banana growth and citrate 

concentration to environmental and management conditions. Finally, the model proposed in 

the present study can be used as a conceptual basis for modeling citrate accumulation in other 

fruit species. 
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1 Bilan des connaissances acquises 

Dans ce travail, des approches expérimentales et de modélisation écophysiologiques ont été 

utilisées pour analyser et disséquer les processus qui pilotent l’acidité de la banane en pré et 

post récolte, et étudier les effets du génotype et des conditions de croissance du fruit.  

 

1.1 L’acidité de la banane est fortement influencée par le génotype et peu par les 

conditions de croissance du fruit  

L’approche expérimentale (Chapitre II) a permis de quantifier l’effet de la charge en 

fruit, de la fertilisation potassique et du stade de récolte sur les concentrations en citrate et 

malate dans le fruit au cours des phases pré et post récolte chez trois génotypes contrastés en 

acidité. Nous avons choisi dans cette approche de décomposer la concentration du citrate et du 

malate par gramme de matière fraîche en trois composantes : 

- la concentration par gramme de matière sèche structurale de chaque acide qui est liée au 

métabolisme et transport des acides, 

- le rapport de la matière sèche non structurale sur la matière sèche totale qui permet de 

quantifier la dilution des acides parmi les composés non structuraux stockés dans les cellules 

(sucres, amidon, minéraux,…), 

- la teneur en eau de la pulpe qui permet de quantifier la dilution des acides par accumulation 

d’eau.  

Cette décomposition a permis de disséquer l’effet du génotype et des facteurs agronomiques 

sur l’accumulation des acides dans la pulpe.  

Des différences de profils d’accumulation du citrate et du malate ont été observées 

entre les trois génotypes aussi bien pendant la croissance que pendant la maturation post 

récolte des fruits. La phase de croissance correspond à une phase d’accumulation des acides 

chez les trois génotypes mais à des vitesses différentes. Durant la maturation post récolte, 

d’importantes différences d’évolution des teneurs en acides dans la pulpe sont apparues entre 

génotypes. La teneur en malate a fortement augmenté en début de maturation pour atteindre 

des niveaux différents selon le génotype. La teneur en citrate a quant à elle diminué tout au 

long de la maturation chez deux génotypes (IDN et PL), et a augmenté chez le troisième 

(PJB). La décomposition des teneurs en acides dans la pulpe en trois composantes (décrites 

précédemment) a montré que cette variabilité génotypique était principalement due à des 

différences au niveau du métabolisme et/ou transport des acides. 
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Les effets des facteurs agronomiques sur chacune des composantes décrites 

précédemment ont été les suivants : 

Effet de la charge en fruit : 

•  La teneur en eau a légèrement diminué avec la charge en fruit en pré et post récolte pour 

les trois génotypes. 

•  Le rapport de la matière sèche non structurale sur la matière sèche totale, ainsi que la 

concentration des acides par gramme de matière sèche structurale n’ont pas été affectés 

par la charge en fruit pour les trois génotypes. 

•  Finalement, pour les trois génotypes, la concentration des acides par gramme de matière 

fraîche n’a pas été significativement affectée par la charge en fruit. 

Effet de la fertilisation potassique : 

•  La teneur en eau et le rapport de la matière sèche non structurale sur la matière sèche 

totale n’ont pas été affectés par la fertilisation potassique pour les trois génotypes. 

•  Pour le génotype IDN, la concentration des acides par gramme de matière sèche 

structurale a légèrement diminué dans les fruits des bananiers ayant reçus une dose élevée 

de fertilisation potassique. Pour les génotypes PJB et PL, il n’y a eu aucun effet 

significatif observé. 

•  Finalement, pour les trois génotypes, la concentration des acides par gramme de matière 

fraîche n’a pas été significativement affectée par la fertilisation potassique. 

Effet du stade de récolte : 

•  La teneur en eau des fruits récoltés tardivement a été légèrement plus élevée pour le 

génotype IDN et légèrement plus faible pour les génotypes PJB et PL. 

•  Le rapport de la matière sèche non structurale sur la matière sèche totale a été plus faible 

dans les fruits récoltés tardivement pour les trois génotypes. 

•  Les concentrations des acides par gramme de matière sèche structurale et par gramme de 

matière fraîche ont été affectées par le stade de récolte chez les trois génotypes: en fin de 

maturation post récolte, les concentrations en citrate ont été plus élevées dans les fruits 

récoltés tardivement alors que celles en malate ont globalement été plus faibles. 

 

Ces études indiquent que les concentrations en malate et citrate dans la banane dépendent 

fortement du génotype et peu des conditions de croissance du fruit. Concernant les effets de la 

charge en fruit sur l’acidité des fruits, il n’y a pas eu d’autre étude à notre connaissance 

réalisée sur la banane. Chez la mangue et la pêche, il a été observé un effet du rapport feuille : 

fruit sur les teneurs en malate et citrate pendant la croissance du fruit (Lechaudel, 2005 ; 

Souty, 1999 ; Wu, 2002). Une étude sur la mangue n’a pas mis en évidence d’effet significatif 
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du rapport feuille : fruit sur l’acidité des fruits en post récolte (Joas, 2012). Concernant l’effet 

de la fertilisation potassique, nos résultats sont en désaccord avec ceux de Kumar et Kumar 

(2007) qui ont observé une diminution de l’acidité titrable des bananes mûres en réponse à un 

niveau élevé de fertilisation potassique. Les effets du stade de récolte que nous avons 

observés sur l’acidité des fruits pendant la maturation sont en accord avec les résultats 

obtenus sur Cavendish par Bugaud et al. (2006). Les expérimentations agronomiques 

présentées dans ce travail ayant été réalisées dans des conditions agro-environnementales 

particulières et sur un nombre restreint de génotypes, les résultats obtenus devront être 

confirmés dans d’autres environnements et pour d’autres génotypes.  

 

1.2 Identification des paramètres génotypiques et processus physiologiques qui pilotent 

l’acidité de la banane grâce à la modélisation 

Les données expérimentales acquises ont permis de construire et de valider des 

modèles de prédiction des paramètres d’acidité de la banane (Chapitre III). Un modèle basé 

sur la représentation des équilibres acido-basiques a permis de prédire le pH et l’acidité 

titrable de la pulpe. Ce modèle a montré que les déterminants majeurs de l’acidité de la 

banane sont les teneurs en acides organiques (citrate, malate, oxalate) et en potassium de la 

pulpe. Un modèle d’accumulation du malate, basé sur une représentation simplifiée des 

mécanismes de stockage vacuolaire du malate et faisant appel au modèle pH, a permis de 

simuler l’évolution des teneurs en malate dans la pulpe au cours des phases pré et post récolte 

chez les trois génotypes. Un modèle d’accumulation du citrate, basé sur une représentation 

simplifié du cycle de Krebs, a permis de prédire l’évolution des teneurs en citrate dans la 

pulpe au cours des phases pré et post récolte chez les trois génotypes. 

Cette approche de modélisation a permis d’apporter des éléments de compréhension 

sur les processus physiologiques qui pilotent l’acidité de la banane en pré et post récolte, et 

sur les paramètres génotypiques à l’origine des variations d’acidité entre génotypes. Le 

modèle de fonctionnement du cycle de Krebs a permis de prédire de manière satisfaisante 

l’évolution de la teneur en citrate, indiquant la fonction clé de ce processus dans 

l’accumulation du citrate dans la pulpe des fruits. Le modèle suggère également le rôle 

déterminant de l’enzyme malique mitochondriale et des transporteurs mitochondriaux du 

malate dans les différences de teneurs en citrate observées entre génotypes pendant les phases 

pré et post récolte. Le modèle de stockage vacuolaire a permis de simuler de manière correcte 

la teneur en malate, indiquant la fonction clé de ce processus dans l’accumulation du malate 

dans la pulpe des fruits. Le modèle a mis en évidence le rôle déterminant de la variation 
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d’énergie libre d’hydrolyse de l’ATP et du pH vacuolaire dans les différences de teneurs en 

malate observées entre génotypes et entre les phases pré et post récolte. 

L’analyse de sensibilité des modèles a permis de quantifier l’effet de certains facteurs 

liés aux pratiques pré et post récolte sur les teneurs en acides dans la pulpe. Ainsi, le modèle 

d’accumulation du citrate prédit un effet différent de la température de conservation selon le 

cultivar sur la concentration en citrate pendant la maturation du fruit. Le modèle 

d’accumulation du malate prédit quant à lui un effet négatif de la température sur le stockage 

du malate dans la vacuole pendant les phases pré et post récolte et quelque soit le génotype. 

Ces résultats sont intéressants car la température est une variable facilement manipulable et 

pourrait donc être un facteur sur lequel jouer pour modifier l’acidité des fruits. Cependant, à 

notre connaissance, aucune étude expérimentale n’a été menée a ce jour pour étudier l’effet de 

la température de stockage sur l’acidité de la banane en post récolte. Il serait donc intéressant 

dans le futur de vérifier expérimentalement les simulations des modèles. Le modèle 

d’accumulation du malate suggère que les concentrations en acides organiques et en 

potassium de la pulpe ont un effet important sur l’accumulation du malate dans la vacuole. 

Dans les conditions de notre expérimentation en 2012, la fertilisation potassique n’a pas 

modifié la teneur en potassium dans les fruits, ne nous permettant donc pas de vérifier l’effet 

prédit par le modèle. L’acquisition future de données expérimentales obtenues dans différents 

scénarii agro-environnementaux conduisant à des teneurs en potassium dans les fruits 

contrastées permettrait de tester ces prédictions.  

 

1.3 Hypothèses et limites des modèles écophysiologiques développés 

Les modèles développés ont été construits sur la base des conclusions de la synthèse 

bibliographique réalisée au début de ce travail (Chapitre I). Nous avons ainsi choisi de 

modéliser le cycle de Krebs et le stockage vacuolaire, qui apparaissent comme les processus 

déterminants de l’accumulation du citrate et du malate respectivement. La qualité des 

prédictions des modèles développés nous confortent à posteriori dans le choix de ces 

hypothèses. Dans le futur, avec de meilleures connaissances sur la compartimentation intra 

cellulaire du citrate et du malate dans les cellules du fruit, ces modèles pourraient être 

améliorés en considérant les différents compartiments cellulaires, ce qui permettrait de 

simuler les teneurs en acides dans le cytosol, la mitochondrie et la vacuole. De tels modèles 

qui restent certes beaucoup plus difficiles à construire et à paramétrer, donneraient une image 

globale de la régulation de l’accumulation du citrate et du malate dans le fruit. 

 Une amélioration envisageable du modèle d’accumulation du citrate en post récolte 

pourrait être de considérer le rôle de l’éthylène dans la maturation des fruits climactériques 
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comme la banane. La maturation de la banane est déclenchée par un pic précoce de 

production d’éthylène qui s’accompagne de la conversion de l’amidon en sucre associée à une 

augmentation importante de l’activité respiratoire (Bapat et al., 2010). Plusieurs études ont 

révélé le rôle de l’éthylène dans la régulation de nombreux gènes contrôlant la fermeté, le 

goût, la couleur et les arômes du fruit (Bapat et al., 2010). Il serait peut être donc plus 

pertinent de représenter l’évolution des paramètres ki,r(t) et Ki,r(t) non pas comme une 

fonction du nombre de jours après traitement éthylénique, mais comme une fonction de la 

concentration en éthylène dans le fruit. La prise en compte de l’éthylène pourrait peut-être 

permettre de mieux simuler la variabilité des teneurs en citrate entre les fruits. Evidemment, 

cela nécessiterait de faire des mesures d’émissions d’éthylène des fruits qui seraient utilisées 

comme entrées du modèle (ce que nous n’avions pas dans le cas présent). On pourrait aussi 

imaginer utiliser un modèle pour prédire la concentration en éthylène dans la banane basé, sur 

le modèle ETHY développé sur la pêche par  Génard et Gouble (2005).  

 Concernant le modèle d’accumulation du malate, nous avons uniquement considéré la 

pompe à proton vacuolaire ATPase et négligé la PPiase. A notre connaissance, aucune étude 

n’a été réalisée à ce jour sur l’activité de la PPiase au cours du développement de la banane. Il 

serait donc intéressant d’étudier expérimentalement la contribution des deux types de pompes 

afin de modéliser plus justement la génération du potentiel électrique tonoplastique.  

 

2 Perspectives de recherche 

2.1 Modèle intégré d’élaboration de l’acidité : le modèle MUSACIDE  

Les modèles développés dans ce travail (pH/acidité titrable, malate et citrate) sont 

interdépendants puisque certains ont pour entrées des variables prédites par d’autres modèles. 

Il est donc possible de construire un modèle intégré (MUSACIDE) prédisant les différentes 

composantes de l’acidité de la banane en combinant ces trois modèles. Les relations entre les 

différents modèles intégrés sont présentées dans la Fig. IV.1. Les variables d’entrées du 

modèle MUSACIDE sont le poids frais et sec de la pulpe, la température, et les teneurs en 

oxalate et minéraux de la pulpe.  Les teneurs en citrate et malate prédites sont des entrées du 

modèle de pH et d’acidité titrable. Le pH prédit par ce dernier modèle est une entrée du 

modèle malate.  

Afin de valider le modèle MUSACIDE, il faut vérifier que l’association des différents 

modèles n’entraîne pas une accumulation d’erreurs de prédictions. Pour ce faire, les 

prédictions du modèle MUSACIDE à partir des variables d’entrées des données des 

expérimentations de 2011 et 2012 pour les trois génotypes ont été comparées aux données 
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observées (Fig. IV.2). Le modèle MUSACIDE prédit de manière correcte les concentrations 

en citrate et malate dans la pulpe ainsi que son acidité titrable en pré et post récolte. On peut 

noter que le RRMSE élevé pour les acidités titrables prédites pendant la phase de croissance 

n’est pas du à l’intégration des modèles puisque la qualité des prédictions était la même dans 

le modèle d’acidité titrable simple (cf. Chapitre III.1). 

Le modèle MUSACIDE permet donc de prédire l’évolution de l’ensemble des critères 

d’acidité de la banane en fonction de la croissance de la pulpe, de la température, de la 

nutrition minérale du fruit, et de sa teneur en oxalate. Il peut donc être utilisé pour simuler 

l’effet de ces différents facteurs sur l’acidité de la banane en pré et post récolte chez les 

différents génotypes. Par exemple, nous avons simulé l’effet de la température de 

conservation sur les paramètres d’acidité pendant la maturation post récolte chez les trois 

génotypes étudiés (Fig. IV.3). Le modèle MUSACIDE prédit une diminution des teneurs en 

citrate et malate, et de l’acidité titrable en réponse à une augmentation de la température. Il est 

intéressant de noter que l’effet simulé de la température n’a pas la même intensité selon les 

génotypes. Le modèle MUSACIDE pourrait donc être, sous réserve de sa validation sur 

d’autres jeux de données et pour d’autres génotypes, un outil intéressant pour étudier les 

interactions entre le génotype et l’environnement en pré et post récolte. De plus, ce modèle 

devrait être transposable à d’autres espèces de fruits sous réserve de quelques modifications 

puisque les processus décrits sont communs à tous les fruits.  
 

 

Figure IV-1 Schematic representation of the MUSACIDE model.  
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Figure IV-2 Observed vs. predicted citrate concentrations, malate concentrations, and titratable 
acidity (TA) of banana pulp of cultivars IDN, PJB, and PL during fruit growth and post-harvest 
ripening. Each symbol represents a fruit. The RRMSE is indicated in each graph. 
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Figure IV-3 Simulated responses of pulp citrate concentration, pulp malate concentration and 
pulp titratable acidity to changes in temperature during post-harvest ripening of cultivars IDN, 
PJB, and PL. 
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2.2 Apport du modèle MUSACIDE pour l’étude de la physiologie du fruit  

La démarche de modélisation que nous avons effectuée s’avère bénéfique pour 

différentes disciplines puisqu’elle apporte des informations sur la physiologie du fruit mais 

révèle également des lacunes dans nos connaissances. Pour les généticiens et les 

physiologistes, l’identification des processus et des paramètres importants pour 

l’accumulation du citrate et du malate dans le fruit fournit des pistes de recherche prioritaires. 

Ainsi, dans le but d’étudier les déterminants de l’accumulation du citrate, il serait intéressant 

d’axer les recherches sur les transporteurs mitochondriaux du malate et sur l’enzyme malique 

mitochondriale. Concernant l’accumulation du malate, les recherches pourraient se focaliser 

sur l’étude des pompes à protons vacuolaires, dont l’activité dépend entre autre de l’énergie 

libre d’hydrolyse de l’ATP et du pH vacuolaire. Pour les modélisateurs, il apparait nécessaire 

de se concentrer sur les processus identifiés comme importants pour décrire l’élaboration de 

l’acidité du fruit. Nous avons proposé des modèles décrivant de manière simplifiée le 

fonctionnement du cycle de Krebs et du transport du malate à travers le tonoplaste. Dans 

l’objectif de mieux comprendre la physiologie du fruit, il pourrait être intéressant de 

construire un modèle métabolique décrivant par exemple beaucoup plus finement les 

différents flux du cycle de Krebs. Ce type de modèle pourrait se rapprocher des modèles de 

flux métaboliques proposé par Alvarez-Vasquez et al. (2000) et Williams et al. (2010). 

Cependant, la construction d’un tel modèle requiert des données expérimentales de flux 

métaboliques et ne peut donc se faire sans une collaboration étroite avec les physiologistes.  

Ce travail a donc fait ressortir la nécessité d’une forte coopération entre modélisateurs, 

physiologistes et généticiens. En effet, nous avons été confrontés au manque de données (en 

particulier chez la banane) concernant l’évolution des activités enzymatiques au cours du 

développement du fruit ainsi que le contrôle génétique et environnemental de ces activités. 

L’interaction entre modélisateurs et biologistes moléculaires seraient bénéfique pour les deux 

partis. En effet, cela apporterait aux modélisateurs des renseignements précieux pour 

représenter plus finement les processus physiologiques, et donnerait aux biologistes 

moléculaires une vision intégrée des effets des changements observés au niveau cellulaire 

(gènes, protéines, métabolites) sur le fonctionnement de la plante. Cette approche 

pluridisciplinaire est en train de se développer dans le but de construire de modèles multi-

échelles intégrant des données moléculaires à des modèles de croissance et de développement 

des plantes (Baldazzi et al., 2012).  

 Le modèle MUSACIDE peut être un outil intéressant pour tester des hypothèses 

physiologiques et évaluer la contribution de certains mécanismes sur l’élaboration de 

l’acidité. En effet, en comparant le modèle actuel à des versions plus complexes intégrant des 
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processus supplémentaires, il serait possible de tester l’effet de ces processus sur l’élaboration 

de l’acidité. L’analyse du fonctionnement de modèles écophysiologiques décrivant différents 

processus permet de dégager des propriétés émergentes du système décrit et de mieux 

comprendre les interactions entre processus (Hennig, 2007). L’analyse du modèle 

MUSACIDE devrait donc permettre d’apporter des informations sur les liens entre les 

différents processus interdépendants décrits. Par exemple, on pourra analyser l’effet de la 

concentration cytosolique en malate sur l’accumulation du citrate et du malate puisque ce 

paramètre intervient dans les deux sous-modèles. Le modèle MUSACIDE pourrait être 

également utilisé pour explorer in silico l’effet de mutations sur les mécanismes 

physiologiques liés à l’acidité du fruit. Il s’agirait de faire varier la valeur d’un ou plusieurs 

paramètres pour créer différents mutants virtuels, chacun défini par une combinaison de 

valeurs de paramètres, et voir l’impact de ces mutations sur les différentes variables du 

modèle. Cette approche a notamment été utilisée par Génard et al. (2010) sur le modèle de 

fruit virtuel et par Luquet et al. (2012) sur le modèle Ecomeristem appliqué à la croissance du 

riz. 

Dans le futur, le modèle MUSACIDE pourrait être combiné à des modèles 

écophysiologiques décrivant d’autres critères importants de la qualité de la banane tels que sa 

teneur en sucres et sa teneur en matière sèche (Bugaud et al., 2013). Cela permettrait 

d’obtenir un modèle complet de la qualité de la banane qui serait un outil puissant pour la 

compréhension de l’élaboration de la qualité du fruit du point de vue physiologique comme 

cela a déjà été démontré sur la pêche (Génard et al., 2010). Pour prédire la teneur en matière 

sèche, il faudrait développer un modèle de croissance du fruit prédisant l’accumulation en 

matière sèche et en eau dans la pulpe. Un modèle biophysique d’accumulation de l’eau dans 

le fruit (Fishman and Génard, 1998) a déjà été développé sur la pêche et des travaux sont 

actuellement en cours pour l’adapter au cas de la banane. Un modèle de prédiction du poids 

sec de la pulpe de banane, basé sur une estimation du nombre de cellules de la pulpe et de la 

vitesse de remplissage de celles-ci, a été proposé par Jullien (2000) et pourrait donc être 

utilisé sous réserve de sa validation sur d’autres jeux de données. Pour prédire la teneur en 

sucres, le modèle d’accumulation des sucres proposé par Génard et al. (2003) sur la pêche 

pourrait être utilisé. La banane étant un fruit qui stocke beaucoup d’amidon pendant la 

croissance (Jullien et al., 2001a) contrairement à la pêche, des modifications du modèle initial 

seraient à envisager pour prendre en compte cette particularité.  
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2.3 Apport du modèle MUSACIDE pour l’amélioration varié tale 

Notre travail a montré que le modèle MUSACIDE est un outil intéressant pour 

analyser la variabilité de l’acidité entre génotypes. Nous avons pu identifier des paramètres 

génotype-dépendants ayant une grande influence sur les sorties du modèle (∆GATP et pHvac 

pour la teneur en malate ; K5,g(t), K5,r(t), k3,r(t) pour la teneur en citrate). Ces paramètres sont 

donc des cibles potentiellement intéressantes pour la recherche de QTLs en vue d’améliorer la 

qualité gustative de la banane par sélection assistée par marqueurs. Pour envisager la 

recherche de QTLs de ces paramètres, il sera nécessaire de les estimer chez un grand nombre 

d’individus. La recherche de QTLs de paramètres de modèles écophysiologiques a déjà été 

réalisée avec succès sur la pêche (Quilot et al., 2005) et la tomate (Prudent et al., 2013).  

Ces dernières années, de nombreuses études ont montré l’utilité des modèles 

écophysiologiques combinés à des modèles génétiques pour disséquer les interactions entre le 

génotype, l’environnement et les pratiques culturales, et proposer des idéotypes ayant des 

caractéristiques particulières, adaptés à des conditions spécifiques ou conduisant à des 

systèmes de production durables (Letort et al., 2008; Quilot-Turion et al., 2011; Tardieu, 

2003). Cette approche consiste à estimer la valeur des paramètres du modèle 

écophysiologique pour n’importe quel individu en fonction de l’allèle présent à chaque locus 

associé aux QTLs détectés. Les premiers travaux présentant ce type d’approche ont été 

appliqués à un modèle architectural de l’orge (Buck-Sorlin and Bachmann, 2000). La 

combinaison de modèles génétiques et écophysiologiques permet une bonne prédiction de 

l’association entre le génotype et le phénotype (Hammer et al., 2006). Lifeng et al. (2012) 

sont même allés plus loin en proposant un modèle écophysiologique de croissance du riz 

intégrant un modèle génétique reproduisant les processus de la reproduction sexuelle. Cette 

étude a permis de montrer qu’il était pertinent d’intégrer des modèles QTLs dans les modèles 

écophysiologiques dans une optique de sélection variétale virtuelle. Dans le cas du modèle 

MUSACIDE, si des QTLs sont détectés pour les paramètres génotype-dépendants, on pourrait 

donc envisager de créer un modèle génétique pour calculer les valeurs de ces paramètres en 

fonction de l’allèle présent à chaque locus associé aux QTLs détectés. Ces valeurs de 

paramètres pourraient ensuite être introduites dans le modèle MUSACIDE. La combinaison 

des modèles génétiques et écophysiologiques pourrait alors permettre de définir une stratégie 

d’amélioration de la qualité gustative de la banane, comme cela a été proposé sur la pêche 

(Quilot et al., 2005). Il s’agirait dans un premier temps de définir l’objectif de qualité 

multicritère à atteindre, par exemple des valeurs précises d’acidité titrable et de concentrations 

en acides. Ensuite, il faudrait déterminer grâce au modèle MUSACIDE, les jeux de 

paramètres qui permettent de parvenir à cet objectif. Dans une troisième étape, les génotypes 
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qui permettent d’obtenir ces valeurs de paramètres seraient caractérisés en identifiant les 

combinaisons d’allèles nécessaires aux locus associés à chaque paramètre. Enfin, les 

individus de la population possédant les génotypes caractérisés à l’étape précédente seraient 

identifiés afin de réaliser des croisements pour rassembler les allèles favorables et améliorer la 

qualité gustative de la banane. Si un modèle global de la qualité de la banane est construit 

dans le futur, il pourra également être utilisé pour définir des idéotypes répondant à des 

objectifs multicritères de qualité plus complexes et/ou adaptés à des systèmes de productions 

particuliers (Quilot-Turion et al., 2011).  

 

 

 

Figure IV-4 Combining the QTLs and MUSACIDE models to define ideotypes of dessert 
bananas. The QTLs model would allow prediction of the value of the genotypic parameters of 
the MUSACIDE model for any combination of alleles (1). Then the MUSACIDE model would 
predict the corresponding parameters of acidity (2). Once the combined model (QTLs and 
MUSACIDE) will be validated, it could be potentially used as follow to design ideotypes: First, 
by inverting the MUSACIDE model, the values of genotypic parameters that lead to a certain 
criteria of acidity could be found (3), then the allelic combination leading to this set of 
parameters could be identified (4 and 5). The next step would be to cross the individuals 
carrying the favorable alleles (6) and identifying in the offspring the individuals gathering the 
larger number of favorable alleles (7). 
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Annexes 

Appendix 1 Pictures of the fruits of three cultivars of dessert bananas used in the 2011 
and 2012 field experiments and graphics showing the repartition of the different organic 
acids present in the pulp of ripe banana fruit. 
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Appendix 2 LMM analysis of predicted and measured concentrations of malate (mmol. 

Kg FW -1) during fruit growth and post-harvest ripening. 

Linear mixed-effects models [LMMs (Gałecki and Burzykowski, 2013)] were used to 

examine the relationship between malate concentration and explanatory variables (fruit age, 

cultivar, treatment), and interactions. We used quadratic and cubic terms of fruit age when the 

curve passed through a maximum and had an asymmetrical shape. We used the lme function 

in the ‘nlme’ library (Pinheiro et al., 2013) in the statistical program R 2.14.0. “Banana plant” 

was treated as a random effect because banana plants were assumed to contain unobserved 

heterogeneity, which is impossible to model. A temporal correlation structure was used to 

account for temporal pseudo-replication. Model selection was made using the top-down 

strategy (Zuur et al., 2009): starting with a model in which the fixed component contains all 

the explanatory variables and interactions, we found the optimal structure of the random 

component. We then used the F-statistic obtained with restricted maximum likelihood 

(REML) estimation to find the optimal fixed structure. Finally, the significance of each factor 

kept in the optimal model was assessed using the F-statistic obtained with REML estimation. 
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Appendix 2.1 LMM analysis of predicted and measured concentrations of malate 
(mmol. Kg FW-1) during fruit growth. The factors studied were fruit age, cultivar, and 
pruning treatment in the 2011 experiment, and fruit age, cultivar, and potassium 
fertilization in the 2012 experiment.  
 

F-value a and significance b 

Year Factors c  
Predicted malate 

concentration 

Measured malate 

concentration 

2011    

 c 51*** 79*** 

 p Ns Ns 

 a 78*** 1599*** 

 a² Ns 44*** 

 a3 Ns 9** 

 p : a Ns Ns 

 c : a 10*** 155*** 

 c : p Ns Ns 

 c: p : a Ns Ns 

2012    

 c 77*** 92*** 

 f Ns Ns 

 a 8** 560*** 

 a² 7** 70*** 

 a3 5* 6** 

 c : a Ns 54*** 

 c : f Ns Ns 

 f: a Ns Ns 

 c: f: a Ns Ns 
 

a The F-value is given only for the factors kept in the optimal model.  

b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05 ; Ns : not significant.  

c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age (in % of flowering-to-yellowing time); 

f=potassium fertilization treatment.  
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Appendix 2.2 LMM analysis of predicted and measured malate concentration (mmol. 
Kg FW -1) during post-harvest fruit ripening. The factors studied were ripening stage, 
fruit age at harvest, cultivars, and pruning treatment in the 2011 experiment, and 
ripening stage, cultivars, and potassium fertilization treatment in the 2012 experiment. 
 

F-value a and significance b 

Year Factors 
Predicted malate 

concentration 

Measured malate 

concentration 

2011    

 c 199*** 284*** 
 p Ns Ns 
 a 6* 11** 
 r 363*** 327*** 
 r² 563*** 241*** 
 r3 12*** Ns 
 p : r Ns Ns 
 a : c 4* 15*** 
 a : r Ns 15*** 
 c : r 92*** 50*** 
 p : a Ns Ns 
 p : c Ns Ns 

 a:c:r Ns Ns 

 p :a :c Ns Ns 

 p:a:r Ns Ns 

 p:a:c:r Ns Ns 

2012    
 c 139*** 73*** 
 f Ns Ns 
 r 473*** 386*** 
 r² 341*** 184*** 
 r3 Ns Ns 
 c : f Ns Ns 
 c : r 46*** 51*** 
 f : r Ns Ns 
 c: f : r Ns Ns 

a The F-value is given only for the factors retained from the optimal model.   

b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05; Ns: not significant.  

c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age at harvest; r=ripening stage; f=potassium 

fertilization treatment.  
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Appendix 3 Observed pulp dry weight vs. pulp dry weight predicted by the growth 
expolinear model for cultivars IDN, PJB, and PL in 2011 and 2012. 
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Appendix 4 Variations in the maintenance respiration coefficient qm during post-harvest 
ripening of banana in cultivars IDN, PJB, and PL (A, B, and C), and predicted vs. 
measured fruit respiration (D).  
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Appendix 5 LMM analysis of predicted and measured citrate concentration (g. 100 g 

FW-1) during fruit growth and post-harvest fruit ripeni ng. 

Linear mixed-effects models [LMMs (Gałecki and Burzykowski, 2013)] were used to 

examine the relationship between citrate concentration and explanatory variables (fruit age, 

cultivar, treatment), and interactions. We used quadratic and cubic terms of fruit age when the 

curve passed through a maximum and had an asymmetrical shape. We used the lme function 

in the ‘nlme’ library (Pinheiro et al., 2013) in the statistical program R 2.14.0. “Banana plant” 

was treated as a random effect because banana plants were assumed to contain unobserved 

heterogeneity, which is impossible to model. A temporal correlation structure was used to 

account for temporal pseudo-replication. Model selection was made using the top-down 

strategy (Zuur et al., 2009): starting with a model in which the fixed component contains all 

the explanatory variables and interactions, we found the optimal structure of the random 

component. We then used the F-statistic obtained with restricted maximum likelihood 

(REML) estimation to find the optimal fixed structure. Finally, the significance of each factor 

kept in the optimal model was assessed using the F-statistic obtained with REML estimation. 
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Appendix 5.1 LMM analysis of predicted and measured citrate concentration (g. 100 g 
FW-1) during fruit growth. The factors studied were fruit age, cultivar, and pruning 
treatment in the 2011 experiment, and fruit age, cultivar, and potassium fertilization in 
the 2012 experiment.  
 

F-value a and significance b 

Year Factors c  
Predicted citrate 

concentration 

Measured citrate 

concentration 

2011    

 c 20*** 16*** 

 p 6* Ns 

 a 5649*** 2703*** 

 a² 224*** 184*** 

 a3 Ns Ns 

 p : a 22*** Ns 

 c : a 27*** 7*** 

 c : p Ns Ns 

 c: p : a Ns Ns 

2012    

 c 5* 28*** 

 f Ns Ns 

 a 4239*** 1603*** 

 a² 208*** 142*** 

 a3 15*** Ns 

 c : a 36*** 8*** 

 c : f Ns Ns 

 f: a Ns Ns 

 c: f: a Ns Ns 
 

a The F-value is given only for the factors kept in the optimal model.  

b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05 ; Ns : not significant.  

c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age (in % of flowering-to-yellowing time); 

f=potassium fertilization treatment.  
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Appendix 5.2 LMM analysis of predicted and measured citrate concentration (g. 100 g 
FW-1) during post-harvest fruit ripening. The factors studied were ripening stage, fruit 
age at harvest, cultivars and pruning treatment in the 2011 experiment, and ripening 
stage, cultivars and potassium fertilization treatment in the 2012 experiment. 
 

F-value a and significance b 

Year Factors 
Predicted citrate 
concentration 

Measured citrate 

concentration 

2011    

 c 517*** 496*** 
 p Ns Ns 
 a Ns 23*** 
 r 241*** 21*** 
 r² 36*** 45*** 
 r3 6* 5* 
 p : r 10** Ns 
 a : c 15*** Ns 
 a : r 21*** Ns 
 c : r 1204*** 212*** 
 p : a Ns Ns 
 p : c Ns Ns 
 a:c:r 35*** Ns 
 p :a :c Ns Ns 
 p:a:r Ns Ns 
 p:a:c:r Ns Ns 

2012    
 c 147*** 252*** 
 f Ns Ns 
 r 106*** 6* 
 r² 20*** 29*** 
 r3 7** Ns 
 c : f 6** Ns 
 c : r 564*** 104*** 
 f : r Ns Ns 
 c: f : r Ns Ns 

 

a The F-value is given only for the factors retained from the optimal model.   

b *** p-value < 0.001; ** p-value < 0.01; * p-value<0.05 ; Ns : not significant.  

c Codes for factors: c=cultivar; p=pruning treatment; a=fruit age at harvest; r=ripening stage; f=potassium 

fertilization treatment.  
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Appendix 6 Estimated parameter values and standard errors (in parentheses) of the 
expolinear growth model of pulp dry weight for the three cultivars (IDN, PJB, and PL) 
and two contrasted fruit loads (LL: low fruit load;  HL: high fruit load) in 2011.  

 

Cultivar Fruit load Cm Rm tb 

IDN LL 0.34 (0.02) 0.11 (0.03) 30.1 (2.4) 

IDN HL 0.28(0.02) 0.11 (0.04) 29.7 (3.7) 

JB LL 0.54 (0.03) 0.11 (0.03) 36.1 (3.0) 

JB HL 0.40 (0.02) 0.13 (0.04) 30.4 (2.6) 

PL LL 0.36 (0.02) 0.11 (0.03) 29.9 (2.7) 

PL HL 0.32 (0.02) 0.12 (0.04) 30.92 (3.4) 

 

 

Appendix 7 Estimated parameter values and standard errors (in parentheses) of the 
expolinear growth model of pulp dry weight in the three cultivars (IDN, PJB, and PL) 
and the two contrasted levels of potassium fertilization (NF: no potassium fertilization; 
HF: high potassium fertilization) in 2012.  

 

Cultivar 
Potassium 

fertilization 
Cm Rm tb 

IDN NF 0.29 (0.02) 0.15 (0.08) 26.5 (2.9) 

IDN HF 0.26 (0.03) 0.13 (0.08)  28.5 (5.0) 

JB NF 0.34 (0.02) 0.21 (0.14)  28.4 (2.2) 

JB HF 0.40 (0.04) 0.12 (0.07)  32.5 (5.3) 

PL NF 0.31 (0.02) 0.14 (0.06)  27.2 (3.0) 

PL HF 0.33 (0.02) 0.16 (0.10)  25.2 (3.5) 

 


