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ABSTRACT  

Permanent production and use of organic chemicals for many purposes has resulted in their 
introduction and accumulation in the environment. Depending on their physicochemical 
properties they can be transported by different ways from the source to very remote regions of 
the planet. Many organic chemicals are used in agriculture as pesticides for cultures 
protection or nutrient. Residues of these chemicals can always be found in fields, and under 
the effect of precipitations they leach and pass in streams and rivers. Pharmaceuticals and 
personal health care products and other house holding chemicals are continuously introduced 
in the environment through municipal wastewaters. These substances exhibit, in most of the 
cases, perturbation effects towards the living organisms, moreover the effect of many of them 
is not known yet. Despite their concentration in water is low, the exposure of organisms for 
long periods can lead to negative consequences, but these effects cannot be measured 
instantly.  

In order to reduce or avoid the pollution of water with chemicals many water treatment 
methods has been developed like adsorption of pollutants on adsorbents, membrane filtration, 
microbiological treatment, chemical oxidation with oxidizing agents and advanced oxidation 
processes. 

Most of the methods used in waste water treatment plants (WWTP) do not completely destroy 
the organic contaminants or they only separate the contaminants from water. Then they have 
to be deposed somewhere else remaining always a potential source of contamination. 
Advanced oxidation processes and in particular electrochemical advanced oxidation processes 
are methods developed later and are proven as more effective as they can completely oxidize 
the organic matter in water. 

The subject of this thesis is the use of electro-Fenton, an electrochemical advanced oxidation 
process for efficient destruction of organic pollutants in aqueous medium. In this method, 
organic pollutants are eliminated by hydroxyl radicals (high oxidation power species) which 
are produced in situ through the Fenton’s reagent (H2O2 + Fe2+) itself generated in the 
solution electrochemically and continuously. In this process, the electrode material is of 
fundamental importance in order to have an efficient process, so we have studied at large 
extent the influence of both cathode and anode material in this work.  

Firstly a systematic study on the oxidation capacity of the process of amoxicillin (AMX) as 
model pollutant with several anodes materials: BDD, Pt, DSA, PbO2 Carbon felt, Graphite 
and Carbon fibre was realised. In all cases a stainless steel electrode was used as cathode. The 
degradation of AMX was followed by HPLC analysis whereas the mineralization efficiency 
ot the process was measured by total organic carbon analyser (TOC). This revealed that BDD 
was the most efficient anode for AMX oxidation and DSA was the weakest one. Carbon felt 
showed a characteristic behaviour; it was very efficient on AMX oxidation but it could not 
transform AMX to CO2 and H2O.  

Afterwards four anodes were tested for their influence on electro-Fenton process efficiency 
namely Pt, BDD, DSA and Carbon felt, the cathode was always carbon felt. Sulfamethazine 
(SMT) was used as model pollutant. Apparent rate constants have given only moderate values 
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of mineralization for currents lower than 100 mA. Here again the BDD anode was 
distinguished for its excellent mineralization capacity owing to the additional hydroxyl 
radicals and other oxidizing species introduced in the system. When electro-Fenton applied 
good degradation and mineralization results were obtained even with the DSA anode. 
Carboxylic acids and inorganic ions released during electrolysis were also analysed. Complete 
removal of carboxylic acids could be reached with BDD anode, whereas they could still be 
measured at the end of treatment in the Pt/Carbon felt and particularly in DSA/Carbon felt 
cell. Inorganic ions were almost quantitatively released in the BDD/Carbon felt and Pt/Carbon 
felt systems but their concentrations in the solution were much lower for DSA/Carbon felt 
system. 

Finally the cell composed of Carbon sponge cathode of five different porosities, and carbon 
felt, stainless steel and platinum anode was studied for their effect on the electro-Fenton 
process efficiency for oxidation of SMT. Kinetic analysis and TOC measurements 
demonstrated that carbon sponge of porosity 45 ppi (pore per linear inch) was the most 
efficient cathode compared to others to be used in electro-Fenton process. Then SMT 
oxidation experiments were brought about in the electrolytic cell constituted of the best anode 
estimated BDD and carbon sponge 45 ppi cathode, where the mineralization degree was 
remarkable.  

As conclusion, the results obtained in this study showed clearly that the cathode material has a 
great effect on the efficiency of electro-Fenton process, and this process constitute an efficient 
method for treatment of organic pollutants in aqueous medium.  

Key words: electro-Fenton, anode, cathode, oxidation, hydroxyl radicals, degradation, 
mineralization, amoxicillin, sulfamethazine, water treatment.  
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RESUME 

La production ainsi que l’utilisation massive des produits chimiques pour divers usages, a 
résulté à leur introduction et accumulation dans l’environnement. Ces produits peuvent se 
transporter par différentes façons de leur source à des régions très lointaines de la planète, ce 
qui dépend de leur propriété physico-chimiques. Une quantité et variété importante de 
composés organiques sont utilisées dans l’agriculture comme pesticides, afin de protéger les 
cultures et augmenter les rendements. Les résidus de ces produits peuvent toujours se trouver 
dans les champs, puis sous l’effet des précipitations ils passent par lixiviation dans les fleuves 
et d’autres system aqueux. Les produits pharmaceutiques et les produits de soins personnels 
sont introduits dans l’environnement de façon continue par les eaux usés municipales. Ces 
substances manifestent, dans la plus part des cas, des effets perturbants sur les organismes 
vivants. Malgré leur concentration faible dans les eaux naturelles, le contact permanent des 
organismes aquatiques peut avoir des conséquences négatives telles que la modification du 
comportement sexuel observé chez les poissons d’eaux douce.  

Dans le but de réduire ou éliminer la pollution chimique des eaux des nombreuses méthodes 
ont vu le jour, telles que: l’adsorption des polluants sur des adsorbants, la filtration 
membranaire, le traitement microbiologique, l’oxydation chimique et les procédés 
d’oxydation avancée. 

La plus part des méthodes utilisées dans les stations d’épuration des eaux ne détruisent pas 
efficacement les contaminants organiques. L’utilisation des méthodes physiques permet de les 
séparer de l’eau, ce qui nécessite des opérations supplémentaires pour leur élimination. Au 
contraire, les procédés d’oxydation avancée et en particulier les procédés électrochimiques 
d’oxydation avancée (méthodes développées récemment) se montrent plus efficace dans 
l’élimination des polluants toxiques et non-biodégradables, car ces procédés sont capables à 
conduire jusqu’à minéralisation totale de la matière organique. 

Le sujet de cette thèse repose donc sur l’application du procédé électro-Fenton qui est un 
procédé électrochimique d’oxydation avancée pour la destruction des contaminants 
organiques dans l’eau. Cette méthode fait appel aux radicaux hydroxyles (espèces très 
oxydantes et extrêmement réactives) pour l’élimination des polluants récalcitrants, qui sont 
produit in situ à travers le réactif du Fenton (H2O2 + Fe2+). Ce réactif est généré in situ 
électrochimiquement. . Dans ce procédé la nature du matériau de l’électrode a une importance 
cruciale. Ainsi nous avons étudié dans ce travail l’influence du matériel de l’anode et de la 
cathode sur l’efficacité du procédé électro-Fenton.  

Dans un premier temps nous avons étudié de manière systématique le pouvoir d’oxydation 
d’anode  comme de différentes matériaux d’anodes tels que : BDD, Pt, DSA, PbO2, Feutre de 
carbone, Graphite et Fibre de carbone dans l’oxydation de l’antibiotique amoxicilline (AMX). 
Dans tous les cas une électrode d’acier inox a été utilisée comme cathode. La dégradation de 
AMX a été suivie par l’analyse CLHP alors que la minéralisation de ses solutions par 
l’analyseur du carbone organique totale (COT). Il s’est avéré que l’anode BDD a était l’anode 
la plus puissante pour l’oxydation de l’AMX tandis que l’anode DSA a présenté les 
performances les plus faibles. D’autre part, le feutre de carbone a présenté un comportement 
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caractéristique; il était très efficace sur l’oxydation de l’AMX mais ces performances en 
minéralisation étaient médiocres. 

Dans l’étape suivante, quatre anodes (Pt, BDD, DSA and Feutre de carbone) ont été testées 
pour élucider leur influence sur l’efficacité du procédé électro-Fenton, en utilisant toujours 
une cathode de feutre de carbone. L’antibiotique sulfamethazine (SMT) a été choisi comme 
polluant modèle. Ici encore l’anode BDD a été distingué pour son excellent pouvoir de 
minéralisation due à sa capacité de généré une quantité de radicaux hydroxyles très 
importante et d’autres oxydants. Le taux minéralisation a été important aussi pour l’anode 
DSA Nous avons aussi effectué l’analyse des acides carboxyliques et des ions inorganiques 
libérés durant l’électrolyse. Une destruction totale des acides carboxyliques a été atteinte avec 
l’anode BDD. Par contre, dans le cas des anodes Pt et DSA on a observé une concentration 
résiduelle de ces acides même en fin du traitement. Quant aux ions inorganiques, ils ont été 
quasiment quantitativement libérés dans les cellules BDD/Feutre de carbone et Pt/Feutre de 
carbone, ce qui n’était pas le cas de la cellule DSA/Feutre de carbone. 

Finalement, nous avons étudié l’efficacité de l’oxydation du procédé électro-Fenton dans 
l’élimination de SMT dans en utilisant l’éponge de carbone de différentes porosités. L’analyse 
cinétique et les mesures de COT ont montré que la porosité de 45 ppi (pore per linear inch) 
donne de meilleurs résultats en termes de cinétique de dégradation et de l’efficacité de 
minéralisation.  

En conclusion, les résultats obtenus dans ce travail ont clairement montré que la nature du 
matériel d’anode et de cathode a une grande effluence sur le procédé électro-Fenton, et que ce 
procédé constitue une méthode très efficace pour le traitement des polluants organiques en 
milieux aqueux.  

Mots clés: électro-Fenton, anode, cathode, oxydation, radicaux hydroxyles, dégradation, 
minéralisation, amoxicilline, sulfamethazine, traitement des eaux. 
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RESUME ETENDU 
 

La présence des produits chimiques dans l’environnement et très évidente et ne cesse 

pas à croitre de jour au jour. A l’origine de cette pollution il y a l’activité anthropique. Les 

besoins humanitaires pour les produits alimentaires, de construction, immobilière, de transport 

et beaucoup d’autres, étant en croissance permanente ont engendré de nouveau sources de 

pollution et l’intensification de ceux existant. Beaucoup de ces substances sont dangereuses. 

Une bonne partie de ces substances dangereuses sont directement introduites dans les milieux 

aquatiques. Parmi les sources de pollution chimique des eaux on peut citer la décharge directe 

d’effluents industrielles et d’autres déchets chimiques dans des différents sites 

environnementales, l’utilisation des produits chimiques tels que pesticides dans l’agriculture, 

l’utilisation des médicaments dans la médicine humaine et vétérinaire ect. L’abondance des 

produits chimiques qui s’échappe de ces sources a mené à la contamination des eaux 

superficielles et sous terraines avec de nombreux polluant inorganiques et organiques.  

Il y a plusieurs polluants organiques persistent (POP) de différentes classes des 

produits chimiques répandu dans l’environnement tels que les hydrocarbures aromatiques 

chloré, les polychlorobiphényles (PCB), les dioxines, les furanes  et les pesticides 

organochlorés (DDT, lindane, aldrine…) ou triazines etc. Des polluants organiques persistants 

fréquemment trouvés dans l’eau sont des phénols et des chlorophénols. Ces substances sont 

généralement peu solubles dans l’eau et par conséquent ils se dispersent dans la matière solide 

et notamment dans la matière organique du sol. Les POPs sont plus ou moins volatiles et 

proviennent dans l’atmosphère des sols, des eaux et de la végétation, et ensuit sont transportés 

par des courants, pouvant être ainsi amenés à des très longues distances avant précipitations 

sous forme de dépôt sec ou humide (pluie, neige). Ainsi les POPs ont été détecté même en 

Arctique et aux très hautes montagnes, aux différentes pays où les températures basses ont 

favorisée la condensation des nuages. Les précipitations atmosphériques jouent ainsi un rôle 

très important dans le transfert des POPs plusieurs travaux ont montré leur présence dans la 

neige des hautes et des basses montagnes. 

Les pesticides sont une classe des produits chimiques utilisés largement dans 

l’agriculture. Par conséquent elles se trouvent dans les champs des plantes cultivé où elles 

sont directement appliqué, ainsi que dans les rivières et les fleuves, les lacs, les sédiments et 

dans les eaux souterraines. Elles y arrivent par lixiviation sous l’effet des précipitations.  
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Une autre classe de polluants organiques omniprésent dans les eaux et les sols sont les 

produits pharmaceutiques dont la présence a été souvent signalée. Leurs sources sont les 

effluents de l’industrie pharmaceutique, et des hôpitaux, les déchets municipales, te les fermes 

(médicine vétérinaire), etc.    

Les composes organique synthétique produites pour différentes utilisations ainsi que 

leur produits secondaires qui les accompagnent, les composé résiduelles formés durant les 

processus de combustion, etc. ne sont pas des constituent naturels de l’environnement. Donc, 

ils sont suspectés de causer un impact négatif sur l’environnement. Ils peuvent entrer  dans la 

chaine alimentaire, en particulier les POPs, passant ainsi d’un niveau trophique à un autre. Il a 

été prouvé que les POPs sont impliqués dans la perturbation de l’endocrine chez les poissons 

et chez l’Homme. Mis à part des effets sur la reproduction, de nombreuses POPs sont 

suspectés d’être carcinogènes. Des études sur la toxicité des pesticides ont révélées que 

plusieurs d’eux étaient cancérigènes pour animaux, ceux qui suscite de l’inquiétude pour les 

humains. Ils sont aussi toxique pour les microorganismes photo trophique, les poissons et les 

crustacées, la micro fora, les abeilles, les oiseaux et d’autre organismes non ciblés.  

Les médicaments comme une large classe des produits chimiques ont été détecté aux 

concentrations non très élevé mais ils sont introduits continuellement dans les eaux naturelles. 

Certain travaux ont été consacré à leur influence sur la vie aquatique. Les médicaments sont 

des substances bioactives destinées à combattre les microorganismes pathogènes ; cependant 

ils peuvent avoir des effets négatifs non prévus. La concentration des produits 

pharmaceutiques dans les eaux superficielles est généralement inférieure à celle qui conduirait 

à une toxicité aiguë des organismes aquatiques. Néanmoins, des effets métaboliques, 

reproductives et d’autres perturbations sur les organismes aquatiques sont possibles dans le 

cas d’un contact chronique. 

Afin de faire face au problème de la pollution de l'eau et son protection, beaucoup 

d'efforts ont été fait. Il s’agit des règlementations administratives pour les composées toxiques 

et/ou persistants et le développement de méthodes de traitement des eaux usé avant qu’elles 

soient livrées dans le réseau de l'eau naturelle. Malgré l’amélioration considérable de qualité 

de l’eau après traitement dans les stations de traitement des eaux usées, il s’est avéré que 

certains polluants chimiques peuvent s’y échapper comme par exemple les produits 

pharmaceutiques. Face aux à la difficulté des stations de traitement conventionnels, la 

communauté scientifique a fait d'efforts considérable afin de développer des technologies plus 
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efficaces. Parmi les procédés développés dans ce contexte, les procédés d’oxydation avancé 

(POA) et en particulier les procédés électrochimiques d'oxydation avancée (PEOA) sont 

avérés d'être très efficaces dans l'élimination des polluants organiques; ils sont capables de 

minéraliser quasi-totalement la matière organique présente dans l'eau. 

Ainsi le but des travaux effectués dans le cadre de cette thèse est de rechercher des 

conditions amélioration la performance d'un  procédé électrochimique d’oxydation avancée, 

le procédé électro-Fenton (EF). Ce procédé, comme dans tous les POA, fait appel aux 

radicaux hydroxyles (•OH) crée in situ dans la solution sous traitement. Ces radicaux sont 

produits par le réactif de Fenton (H2O2 + Fe2+) qui est généré électrochimiquement : H2O2 est 

formé par la réduction bi électronique de l'O2 de l'air (comprimé). L'ion ferreux est régénéré à 

partir d'une quantité catalytique d'un sel soluble de fer ferrique par réduction mono-

électronique. Les radicaux formés par la réaction entre ces deux réactif (réactif de Fenton) 

sont des espèces chimiques très oxydantes (E° = 2.80 V/ESH) et permettent une élimination 

efficace des polluants organique de l'eau par leur transformation total ou en CO2 et H2O.  

L’efficacité du procédé électro-Fenton dépend fortement des paramètres 

expérimentaux dont la nature du matériel d’électrode qui exerce un effet crucial sur la 

cinétique d'oxydation/minéralisation de la matière organique. Dans ce travail nous avons 

étudié le comportement de différents matériaux d'anode et de cathode lors d'application du 

procédé électro-Fenton à la destruction de deux composés pharmaceutiques fréquemment 

présentes dans les eaux polluées, la sulfamethazine [SMT] et l'amoxicilline [AMX] qui ont été 

choisies comme polluants modèle. 

Ce mémoire de thèse est constitué de cinq chapitres: l’introduction, suivit par une 

discussion générale sur les méthodes courantes de traitement des eaux polluées et les procédés 

d'oxydation avancée et les procédés électrochimique d'oxydation avancée (PEOA). Le 

deuxième chapitre décrit le matériel et les techniques analytiques utilisés lors de la réalisation 

de cette thèse. Dans le troisième chapitre, sont présentés les résultats obtenus sur l’efficacité 

d'abattement d’AMX avec différentes anodes telles que platine (Pt), diamant dopé au bore 

(BDD), anode dimensionnellement stable (DSA), dioxyde de plomb (PbO2), graphite, feutre 

(F C)de carbone et fibre de carbone (Fib C). Dans le quatrième et le cinquième chapitre l’effet 

de diffèrent matériaux d’anode et de cathode sur l'efficacité du procédé électro-Fenton a été 

recherché en prenant la sulfamethazine come polluant model. 
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LES METHODES DE TRAITEMENT DES EAUX 

On peut regrouper les technologies de traitements de l'eau en deux groupes: les 

méthodes non destructives et les méthodes destructives. Les méthodes non destructives 

permettent de séparer les polluants de l'eau sans changer leur nature chimique, c’est-à-dire les 

polluants sont transférés d’une phase à une autre tout en conservant leurs propriétés physico-

chimiques. Parmi ces méthodes on peut citer: l’Adsorption, l’extraction, la séparation 

membranaire, la distillation etc. Malgré leur efficacité plus ou moins élevée, ces méthodes 

n’offrent pas une solution définitive car les polluants ainsi séparés doivent être soit enfouis 

(une nouvelle pollution), soit traités par une méthode thermique (incinération) ou chimique 

(oxydation avancée).  

Les méthodes destructives, contrairement à celles non destructives, transforment la 

matière organique chimiquement. Pour cela des oxydants chimiques comme le chlore ou 

l'ozone sont utilisés. Le traitement microbiologique est aussi souvent utilisé dans les stations 

d’épuration des eaux. Dans la technologie microbiologique ceux sont les bactéries qui 

oxydent la matière organique an se servant d’elle comme source d’alimentation. La matière 

organique est transformée en CO2, H2O et en biomasse qui précipite au fond du réacteur. Le 

traitement biologique nécessite de log temps et souvent la minéralisation reste partielle, 

notamment lorsqu’il s’agit des molécules réfractaires à la biodégradation (POPs) ou toxiques 

aux bactéries. L’incinération thermique est effective pour le traitement des solutions 

concentrées (concentra de l'osmose inversée ou nano-filtration), mais c’est une méthode très 

couteuse et peut émettre des composés toxiques tels que des dioxines.  

 

Les procédés d’oxydation avancée (POAs) 

Les POAs et plus récemment les PEOA sont des méthodes chimiques destructives s 

caractérisées par la génération des radicaux hydroxyles, une espèce chimique extrêmement 

réactive et très fortement oxydante. Ils peuvent oxyder les molécules organiques jusqu’à la 

minéralisation totale ou quasi-totale grâce à leur potentiel d'oxydation très élevé (2.80 

V/ESH). Les POAs utilisent des réactifs chimiques tels que TiO2, O3, H2O2 seul ou combiné à 

l'irradiation UV afin de produire les •OH. Par contre les PEOAs génèrent ces radicaux soit 

directement par l'oxydation de l'eau à la surface d'une anode appropriée, soit indirectement 
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dans la solution à partir du réactif de fenton généré électrochimiquement. Un schéma des 

POAs est é ci-dessous (Figure 1). 

 

 

 

 

 

 

 

 

                            Fig. 1. Schéma des procédés d’oxydation avancé (POA). 

 

Les procédés d’électrochimiques d'oxydation avancée (PEOAs) 

Oxydation Anodique 

La dégradation des polluants organiques se fait dans une cellule électrochimique munie 

de deux électrodes (anode et cathode) et un électrolyte de support pour assurer la conductivité 

électrique. L'application d'un courant électrique entre les deux électrodes à travers la solution  

l'évolution de l’oxygène est d’une importance particulière. Le mécanisme de la réaction 

d’oxydation de l’eau sur anode conduisant à l'évolution d’oxygène moléculaire dépend de la 

nature du matériel de l’anode utilisé. Cela implique une surtension du dégagement d’O2 qui 

est différente d'une anode à l'autre. Les anodes présentant une surtension élevée, comme le 

diamant dopé au bore (DDB), permettent la génération des radicaux hydroxyles comme 

espèces intermédiaires. Dans ce cas les radicaux formés sont physisorbés à la surface de 
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l'anode, sont quasi-libres (mobiles) et donc très réactives. Une fois générés (Eq. 1) ces 

radicaux régissent avec la matière organique et l'oxyde jusqu’à sa transformation en CO2 et 

H2O (Eq. 2): 

M + H2O � M (•OH) + H+                                                                             (1) 

M(•OH) + R � � � M + CO2 + H2O                                                             (2) 

M représente la nature de l’anode. La génération d'autres espèces oxydantes est aussi possible 

sur les anodes de haute surtension dégagement d’oxygène, telles que : O3, H2O2 et S2O8
2-, 

HOCl originaire de l’oxydation de l’électrolyte support. Ces espèces oxydantes participent à 

l'oxydation par le biaus de l'oxydation médité (en solution). 

Quant aux anodes possédant une faible surtension de dégagement d'O2, elles présentent 

généralement un faible pouvoir d'oxydation. Les anodes  DSA (RuO2-IrO2 dans ce travail) et 

Pt font partie de ce type d'anodes. La structure électronique d’iridium permet les états 

d’oxydation plus élevé lorsqu’il est soumis au potentiel très positif (Eqs. 3 – 5): 

 M + H2O � MOx(OH) + H+ + e-                                                                  (3) 

 MOx(OH) � MOx+1 + H+ + e-                                                                      (4) 

 MOx+1 � MOx + ½ O2(g)                                                                              (5) 

Ensuite, l’oxyde de métal formé peut oxyder les molécules organiques, mais celle-ci est une 

réaction beaucoup plus lente que celle avec le M(•OH). La réaction (5) devient dominante aux 

potentiels très positif, ce qui amène à la perte de l’énergie. 

 

Electro-Fenton 

C’est une méthode électrochimique indirecte pour l’abattement des polluants organiques 

en milieu aqueux. La base de la technologie électro-Fenton est la chimie du réactif du Fenton 

(H2O2 + Fe2+). Ce réactif fut utilisé pour la première fois par H.J.H. Fenton en 1894 pour 

oxyder l'acide tartrique. Mais cette réaction n'a été utilisée dans le traitement de l'eau 

qu'environ un siècle après sa première mise en application. Les radicaux hydroxyles (•OH) 

ainsi formé (Eq. 6) en milieu homogène s'attaquent la matière organique conduisant à sa 

minéralisation (Eq. 7):  
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 H2O2 + Fe2+ � Fe3+ + •OH + OH-                                                       (6) 

 R + •OH 
��� CO2 + H2O                                                                 (7) 

L’utilisation du réactif de Fenton (H2O2 + Fe2+) est beaucoup moins efficace comparée  

à l’électro-Fenton, car la régénération du catalyseur Fe2+ est très lente. D'autre part, les acides 

carboxyliques formés lors d'oxydation de la matière organique  forme des complexes avec 

l’ion ferrique contribuant donc à l’empêchement de son régénération en Fe2+; ce qui aboutit 

au ralentissement de la production des •OH et donc de dégradation de polluants organiques. 

Le fer est aussi perdu par la précipitation sous forme d'hydroxyde ferrique (formation de 

boues de process). Contrairement du procédé Fenton, dans l’électro-Fenton H2O2 est produit 

électrochimiquement à la cathode (Eq. 8): 

 O2 + 2H+ + 2e- � H2O2                                                                             (8) 

L’oxygène est fourni à la solution par le bullage de l’air comprimé. Quant aux ions Fe2+ 

(catalyseur), ils sont ajoutés initialement à la solution en très petite quantité (catalytique)  et 

ensuite sont régénérés électrochimiquement (Eq. 9):   

 Fe3+ + e- � Fe2+                                                                                        (9) 

Ainsi, le réactif de Fenton, et par conséquent les radicaux hydroxyles sont produits 

continuellement dans le système et attaquent les polluants organiques conduisant à leur 

oxydation jusqu'à la minéralisation. La génération efficace de H2O2 et la régénération de Fe2+ 

évite les inconvénients du système Fenton tels qu'une cinétique de dégradation rapide, 

élimination des réactions parasitiques et empêchement de la formation de boues d'hydroxyde 

ferrique, ce qui fait l’électro-Fenton largement plus performant que le procédé de Fenton 

chimique. Ainsi le procédé électro-Fenton constitue  une technologie remarquable pour la 

destruction des micropolluants organiques en milieu aqueux. 

Le procédé électro-Fenton est influencé par des conditions expérimentales telle que : le pH, la 

concentration du catalyseur, la température, l’intensité du courant et le matériel de l’électrode. 

La valeur optimale du pH pour ce procédé est 2.8-3, la concentration du catalyseur 0.1-0.2 

mM. La vitesse de la réaction de Fenton augment avec la température mais au-delà de 35-40 

°C la réaction parasitique de la décomposition de H2O2 est accélérée. Le matériel de 

l’électrode est d’une importance fondamental. Platine et diamant dopé au bore sont les anodes 

couramment utilisées ainsi que feutre de carbone, cathode à diffusion de l’O2 etc comme 
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cathode. Dans ce travail une étude comparative de l'effet du matériel d'électrode (anode et 

cathode) sur l'efficacité du procédé électro-Fenton a été réalisée. Les résultats obtenus seront 

présentés ci-dessous.  

 

 Tableau 1. Les constantes apparentes de l'oxydation d’AMX par les radicaux 

hydroxyles produits par l'oxydation anodique en fonction de l’intensité de courant appliquée 

et du matériel de l’anode utilisé. 

 

L’influence du matériel de l'anode sur l’oxydation anodique de l'amoxicilline 

(AMX)  

Sept différentes anodes ont été étudiées afin de comparer leur pouvoir oxydant pour 

dégrader l’AMX. Pour cela nous avons effectué les expériences de dégradation (la 

transformation simple de la molécule en sous-produit de d'oxydation) et de minéralisation de 

la solution aqueuse d'AMX. La cinétique de dégradation oxydante d’AMX a été suivie par la 

chromatographie liquide à haute performance (HPLC), alors que sa minéralisation a été suivie 

par les mesures du carbone organique totale (COT) contenu dans la solution, avec un  

analyser TOC.  

Les constantes apparentes (kapp) de la réaction de l'oxydation de l'AMX avec les radicaux 

hydroxyles obtenues par analyse cinétique des courbes d’oxydation avec différents courants 

appliqués sont présentées dans la Tableau 1. Les expériences ont été réalisées dans les 

conditions suivantes: [AMX] = 0.1 mM, [Na2SO4] = 50 mM, V = 250 ml. La cathode était en 

acier inoxydable de surface égale à celle de l'anode (24 cm2). Vu les valeurs des constantes 

apparentes on constante que la vitesse d’oxydation d’AMX augmente avec l’intensité du 

courant, mais leurs valeurs varies beaucoup d’une anode à l’autre. On observe que l'anode 

DSA est celle la moins efficace pour la dégradation d’AMX suivit par le graphite et les fibres 

Anode         DDB              Pt             DSA           PbO2          Graph        F C           Fib C 

I (mA)                                                     kapp (min-1) 

50                0.02             0.02           0.0006         0.02              0.01          0.05           0.02 

100              0.03             0.03           0.003           0.03              0.01          0.08           0.02 

300              0.06             0.04           0.003           0.05              0.02          0.2             0.03 

500              0.11             0.03           0.008           0.04              0.02          0.09           0.02 
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de carbone. Les valeurs des kapp pour Pt et PbO2 sont entre celles pour fibre de carbone, feutre 

de carbone  et DDB, cette dernière étant la plus performante notamment pour les courants 

élevés. On peut observer un comportement caractéristique du feutre de carbone; il manifeste 

une capacité d'oxydation plus élevée que les autres anodes en carbone tel que le graphite et 

fibres de carbone. Cela peut être expliqué par sa surface spécifique qui est largement plus 

grande que les autres anodes, puisqu'il s'agit d'un matériau poreux trois dimensionnel. . 

Néanmoins les valeurs de kapp chutent rapidement pour le courant 500 mA à cause de sa 

combustion. Par contre dans le cas de DDB la valeur de kapp devient la plus importante pour 

l'intensité du courant de 500 mA. 

 

Le tableau 2 résume l'efficacité de minéralisation d'une solution aqueuse de l'AMX 

pour les différentes anodes. 

 

  Tableau 2. Taux de minéralisation de 250 ml d’AMX en fonction de l’intensité de 

courant et du matériel d'anode après le temps de traitement de 6 h.  

 

Les taux de minéralisation les plus élevés sont atteintes avec l'anode DDB suivit par 

PbO2, Pt et DSA. Le graphite qui présentait un pouvoir oxydant élevé, conduit aux taux de 

minéralisation faible au faibles courants (43  et 37.3% pour les courants 150 et 50 mA) et il 

devient incapable de minéraliser AMX pour des courants supérieur à 150 mA puisqu'il est 

endommagé aux courants élevés. Il faut noter que le graphite donne des résultats de 

minéralisation comparables à celui e platine et légèrement mieux que le DSA aux faibles 

courants. La fibre de carbone et le feutre de carbone sont endommagés (combustion) même 

aux faibles courants en donnant un couleur noir à la solution.  

Contrairement ses bons résultats à l'oxydation, le feutre de carbone ne peut pas être 

utilisé pour la minéralisation car il s’oxyde même aux faibles  courants sur les temps de 

traitement prolongés. En revanche, avec DDB des taux de minéralisation de 86.9, 92.2 et 

Anode        BDD            Pt             DSA            PbO2          Graph           F C             Fib C 

I (mA)                                                TOC removal (%) 

300             86.9            29.8            9.7               62.5             0                   0                   0 

500             92.2            41.3            13.8             81.2             0                   0                   0 

1000           96.3            47.4            22.0             90.6             0                   0                   0 
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96.3% ont été atteintes pour les courants de 300, 500 et 1000 mA. Une efficacité de 

minéralisation aussi élevée de DDB est due à la production intense des radicaux hydroxyles 

grâce à son surtension de dégagement d’O2 très élevée. Les radicaux hydroxyles se forment 

aussi à la surface de Pt, PbO2 et DSA mais en quantités beaucoup moins importantes. En plus 

ils sont chemisorbés, donc moins disponibles. La génération des autres espèces oxydantes : 

S2O4
2-, O3, H2O2, joue aussi un rôle important dans le cas d'anode DDB. 

 

 L’effet du matériel de l’anode sur le procédé électro-Fenton  

Afin d’estimer l’effet du matériel de l’anode sur le procédé électro-Fenton des expériences de 

dégradation et de minéralisation de SMT ont été effectuées. Puis l’analyse des acides 

carboxyliques et des ions minérales provenant des hétéroatomes présents da la molécule de 

SMT a aussi été effectuée. Les conditions expérimentales étaient comme suivants: [SMT] = 

0.2 mM, [Fe2+] = 0.2 mM, V = 300 ml, pH = 3. La surface des anodes été 2 x 24 cm2, alors 

que la cathode été toujours un feutre de carbone avec les dimensions 23 x 6 x 0.5 cm. Les 

échantillons de SMT électrolysé ont été analysés par HPLC. L'enlèvement du COT de la 

solution traitée a été suivi par mesures de COT. Les acides carboxyliques ont été analysés par 

la chromatographie de l’exclusion et les ions minéraux par la chromatographie ionique. 

Les constantes apparentes de d'oxydation de SMT par les radicaux hydroxyles sont 

pour les différents systèmes électrolytiques son donné dans le Tableau 3. 

Tableau 3. Les constantes apparentes de dégradation de SMT lors de traitement 

électro-Fenton en fonction de l’intensité du courant appliqué et du matériel de l’anode. 

 

 

 

 

 

Cellule            Pt                    DSA                   DDB                  F C 

I (mA)                                         kapp / min-1 

50                    0.08                 0.06                    0.07                 0.22 

100                  0.15                 0.09                    0.12                 0.31 

200                  0.19                 0.14                    0.18                 0.37 

300                  0.27                 0.20                    0.24                 0.44 

400                  0.37                 0.27                    0.27                 0.43 

500                  0.40                 0.27                    0.25                 0.43 
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 Tableau. 4. Les constantes apparentes de l'oxydation de SMT par radicaux hydroxyles 

produits par l'oxydation anodique, en fonction de l’intensité de courant et du matériel de 

l’anode. 

Cellule                   Pt                   DSA                    DDB                    FC 

I (mA)                                     kapp 

100                   0.02                 0.01                     0.02                   0.22 

500                   0.04                 0.02                     0.06                   0.29 

 

La vitesse de dégradation de SMT augmente avec le courant appliqué dans toutes les 

cellules électrolytiques. Lorsque le courant augmente la production de H2O2 et la régénération 

de Fe2+ sont plus rapides et par conséquence la dégradation de SMT aussi. Cette amélioration 

de la dégradation est jusqu’à une valeur de l’intensité de courant optimale 400 mA, au-delà de 

cette valeur la vitesse de dégradation ces de croitre. Cette limite du courant est due aux 

réactions parasitiques telles que le dégagement de l’O2 sur anode et le dégagement de l’H2 sur 

cathode, qui s’accélèrent aux courants élevés. Les constantes apparentes (Tableau 3) calculées 

à partir de courbes [SMT] = f(t) qui correspondent à une cinétique de pseudo-première ordre, 

montre une différence légère entre les anodes utilisées, mise à part le feutre de carbone. Dans 

le Tableau 4 sont montré les kapp pour l’oxydation anodique, c’est-à-dire en absence du 

catalyseur Fe2+. On peut remarquer clairement la grande différence entre électro-Fenton et 

l’oxydation anodique. La dégradation de SMT est nettement plus rapide avec électro-Fenton 

grâce aux radicaux hydroxyles générés par la réaction de Fenton (en plus ceux générés à la 

surface d'onde). Les kapp obtenues avec le feutre de carbone sont nettement plus grandes que 

celles obtenues avec les anodes Pt, DDB, et DSA. Dans le cas de DDB/Feutre de carbone la 

dégradation du SMT est légèrement plus lente que la cellule Pt/Feutre de carbone. Le DDB 

étant une anode à grand pouvoir d'oxydation, il génère des S2O8
2-, qui vont oxyder le Fe2+ en 

Fe3+ (Eq. 10) diminuant ainsi [Fe2+] et par conséquent la vitesse de production des radicaux 

hydroxyles.  

 S2O8
2- + Fe2+ � 2SO4

2- + Fe3+                                                                   (10)  

Finalement une dégradation similaire de SMT dans des différentes cellules (anodes) est due 

au fait que la dégradation de SMT par les radicaux hydroxyles provenant de la réaction 

électro-Fenton est dominante par rapport à la contribution de l’oxydation anodique. 
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 Les kapp pour le feutre de carbone sont remarquables, elles sont beaucoup plus grandes 

que les trois autres anodes, grâce à sa large surface trois dimensionnelle. 

 Les expériences de minéralisation ont été effectuées aux mêmes conditions que celles 

de la dégradation. Les pourcentages d’abattement du COT sont présentés dans le Tableau 5. 

 

Tableau 5. L’abattement du COT en fonction de l’intensité du courant et du matériel 

d'anode  lors de minéralisation d'une solution de SMT par procédé électro-Fenton. 

Cellule                Pt                          DSA                     BDD                     C F 

I (mA)                                     % d'abattement de COT à 2h / 6h        I (mA)  %COT (2h/6h) 

100             35.5/69.6                  25.5/62.2                57.2/91.9         50          33.6/68.2   

300             55.9/83.9                 34.1/71.1                 76.4/96.8        100         44.4/70.2 

500             71.5/90.3                 41.9/76.1                 84.7/97.9 

700             61.4/81.7                 14.8/75.2                 88.2/97.2 

1000           54.7/75.8                 26.3/46.1                 90.1/98.5 

 

 

Tableau 6. L’abattement du COT en fonction de l’intensité du courant appliqué et du 

matériel de l’électrode (oxydation anodique). 

Cellule                  Pt                     DSA                  DDB               F C 

I (mA)                                 % d'abattement de COT à 2h/6h 

100               12.5/15.8            5.2/8.3             48.7/88.1                  0/0 

500               25.7/36.8            9.6/10.8            69.4/94.6                 0/0 

1000             24.0/41.4            9.8/9.8              80.9/97.4                 0/0 

 

Les résultats sur la minéralisation mettent en évidence un comportement très diffèrent 

comparé aux résultats de dégradation. Si l’efficacité de dégradation était similaire pour Pt, 

DDB et DSA, une différence évidente apparait dans le cas de minéralisation. La 

minéralisation de SMT augmente avec le courant jusqu’à une valeur limite qui n’est pas la 

même pour toutes les anodes. Dans les configurations Pt/Feutre de carbone et DSA/Feutre de 

carbone cette limite est de 500 mA. On peut voir aussi que dans le cas de DSA/Feutre de 

carbone l’abattement du COT avec 300 et 500 mA est très proche l’un de l’autre, ce qui veux 
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dire qu’à partir de 300 mA les réactions parasites deviennent important. Pour 700 et 1000 mA 

la minéralisation est même plus faible que pour 500 mA dans les cellules Pt/Feutre de carbone 

et DSA/Feutre de carbone à cause de ralentissement de la production du réactif du Fenton sur 

cathode, mais aussi à cause de inhibition de l’oxydation anodique de SMT. Le meilleur 

abattement de COT est obtenu avec l'anode DDB, le taux d'abattement atteigne quasiment 

100% au bout de 6 h de traitement. Dans le system DDB/Feutre de carbone, il y a deux source 

de radicaux hydroxyles: les •OH qui se forment par la réaction de Fenton dans le sein de la 

solution et ceux qui se forment sur la surface de l’anode amenant à une efficacité de 

minéralisation remarquable. Il est important de noté que la limite du courant optimale pour le 

DDB n’est pas à 500 mA, comme le tableau 5 le montre la minéralisation peut être effectué 

efficacement  jusqu’à 1000 mA. Le DDB ayant une haute surtension de dégagement d’O2 la 

formation des •OH est favorisée. Dans le cas de Pt et particulièrement DSA les •OH peuvent 

oxyder le métal à l’état d’oxydation plus élevé en formant un oxyde. L’oxyde de son tour 

libère l’O2 ou il réagit faiblement avec les molécules organiques au potentiel moins élevé. 

Néanmoins au-delà de 500 mA, l’augmentation de l’abattement du COT avec augmentation 

du courant devienne plus faible même avec DDB, ce qui met en évidence le fait que le 

dégagement d’O2 constitue toujours un obstacle important. 

 En comparant la minéralisation électro-Fenton avec oxydation anodique il est facile de 

conclure électro-Fenton est une procédé largement plus efficace quand il s’agit des systèmes 

Pt/Feutre de carbone et DSA/Feutre de carbone. Dans le cas du system DDB/Feutre du 

carbone la différence est moins importante, cela probablement à cause de l’exclusion d’une 

quantité du catalyseur du system électro-Fenton déjà mentionné.  

 L’analyse des acides carboxyliques montre aussi la supériorité de DDB sur Pt et DSA. 

Durant l’électrolyse les acides carboxyliques identifiés étaient  les acides: oxalique, 

glyoxylique, pyruvique et formique. A la fin de l’électrolyse tous les acides carboxyliques 

sont détruits. Dans la cellule Pt/Feutre de carbone les acides carboxyliques identifiés étaient: 

les acides oxalique, glyoxylique, formique, fumarique, maléique et acétique. A la fin de 

traitement il reste encore de l’acide oxalique et formique dans la solution. Quant à la cellule 

DSA/Feutre de carbone, les acides carboxyliques identifiés étaient : oxalique, glyoxylique, 

formique, maléique, malonique, oxamique et tartronique. A la fin du traitement, il reste 

toujours des acides oxalique, formique, glyoxylique et oxamique en quantité résiduelle. 
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 Puisque la SMT contient les atomes N et S dans sa structure, leur libération dans la 

solution sous forme d'ions inorganiques NO3
-, NH4

+ et SO4
2- est attendue. Dans le cas de 

l'anode Pt, l’analyse par chromatographie ionique monter que 90.2% de l'azote contenu dans 

la molécule initiale est libéré en forme de NO3
- (majoritairement) et NH4

+, alors que SO4
2- est 

complètement libéré dans les premier 30 min du traitement. La concentration des ions NO3
- et 

NH4
+ est plus bas avec l’anode DSA, 62% de l'azote est libérée sous  forme de nitrate et 

ammonium. Une partie de l'azote est probablement perdue sous forme des produits gazeux. 

En revanche 96.7% de l’azote initial est libéré quand BDD été utilisé comme anode, la somme 

des ions de nitrate et d’ammonium libérée, est quasiment égale à la totalité de l'azote présent 

dans la molécule. Quant à SO4
2- il est quantitativement libéré dans la solution.  

 

Influence du matériel de a cathode sur l'efficacité du procédé électro-Fenton  

Afin d’étudier l’effet du matériau de cathode sur le procédé électro-Fenton, nous avons 

effectué des expériences de dégradation de SMT dans une cellule d'électrolyse de 250 ml. Les 

cathodes testées sont : éponge de carbone de différent porosité, feutre de carbone et acier 

inoxydable de dimensions 6 x 3.5 cm. L’anode été toujours le platine. Le pH de la solution a 

été ajusté à 3, la solution a été constamment agitée et barbotée par l’air comprimé tout au long 

de l'électrolyse. Les échantillons prélevés aux intervalles réguliers de temps été analysé par 

HPLC et TOC. 

La production de H2O2 constitue un paramètre d'efficacité d'une cathode pour le procédé 

d'électro-Fenton. Pour cela le dosage de H2O2 est effectué pour les cathodes : éponge de 

carbone 45 ppi, éponge de carbone 80 ppi, feutre de carbone et acier inoxydable en prenant le 

platine comme anode. Les courants appliqué ont été : 50, 100, 200, 300, 400, 500 mA. La 

solution à électrolyser contenait de l’eau pure avec 50 mM de l’électrolyte de support au pH 3 

sous le barbotage permanent de l’air comprimé.  

Pour les courants de 50-200 mA, la concentration maximale est atteinte au bout de 40 

mins dans la cellule Pt/ éponge de carbone 45 ppi. Cette concentration a été 3.5 mM pour 100 

mA, ce qui représente la valeur la plus élevée des courants appliqués. La concentration de 

H2O2 augmente avec le courant jusqu’à 100 mA puis elle devient de plus en plus faible avec 

l'augmentation du courant appliqué. Au courants de 300, 400 et 500 mA la concentration de 

H2O2 arrive à son niveau maximale très rapidement (au bout de 10 minutes). 
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Le même comportement est observé pour les autres cathodes aussi la valeur maximale 

de la production de H2O2 est obtenue avec 100 mA et se détériore au-delà de cette limite. La 

concentration maximale avec éponge de carbone de 80 ppi est 2.5 mM, quant à feutre de 

carbone le maximum de la concentration de H2O2  est 1.2 mM. La cellule Pt/acier inoxydable 

produit une concentration maximale de H2O2 de seulement 0.04 mM avec des courants de 50 

et 100 mA. Les résultats obtenus pour le dosage de H2O2 sont bien cohérent avec les résultats 

obtenus pour l'oxydation et la minéralisation de SMT. Les cathodes pouvant produire une 

concentration élevée de H2O2 permettent aussi un abattement efficace de SMT. Il est aussi à 

noter que même si l’accumulation de H2O2 est maximum au 100 mA la vitesse de dégradation 

de SMT augmente avec le courant jusqu’à 300 mM. Cela s’explique avec le fait qu'en 

présence de SMT et l'ion ferreux, le H2O2 formé est immédiatement consommé par la réaction 

de Fenton sans avoir le temps de se détruire par les réactions parasites. 

 

 Tableau 7 montre les valeurs de kapp de la réaction d'oxydation de SMT par les �OH 

pour les cathodes étudiées. Ces valeurs sont calculées toujours à partir des droites semi-

logarithmiques ln (C0/Ct) = f (t). Les valeurs de kapp révèlent que la dégradation de SMT est la 

plus rapides avec l’éponge de carbone, en particulier avec l’éponge de carbone de porosité 45 

ppi. On peut voir aussi que les plus basses valeurs des kapp pour l'éponge de carbone sont 

nettement plus élevées de celle obtenues avec le feutre de carbone et notamment celles 

obtenues avec acier inoxydable.  

Tableau 7. Constantes apparentes de dégradation de SMT abstenu avec différentes 

cathodes. 

 

Cell.          EC  30 ppi        EC 45 ppi        EC 60 ppi       EC 80 ppi       EC 100 ppi         F C             Ac Inox 

I (mA)                                               kapp /min-1  

50                  0.11                0.19                  0.19                 0.19                0.19                0.06                 0.03 

100                0.22                0.34                  0.28                 0.28                0.29                0.07                 0.04 

200                0.36                0.49                  0.43                 0.42                0.38                0.14                 0.06 

300                0.41                0.60                  0.50                 0.43                0.39                0.16                  0.07 

400                0.43                0.61                  0.48                 0.41                0.37                0.11                  0.07 

500                0.37                0.57                  0.38                 0.33                0.31                0.09                  0.06 
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On peut expliquer les grandes valeurs des kapp pour l’éponge de carbone avec sa large surface 

grâce à sa porosité qui permet une production plus intense du réactif du Fenton. Le feutre de 

carbone est aussi une cathode trois dimensionnelle et très poreuse, et donc avec grande 

surface mais sa capacité de dégrader le SMT est beaucoup plus faible que celle d’éponge de 

carbone. Le feutre de carbone est un matériau très souple et beaucoup plus dense que l’éponge 

de carbone, ce qui défavorise la circulation de la solution dans le sein de la cathode, donc le 

transport de masse de l’O2 et Fe2+ est entravé. Tandis que l’éponge de carbone est moins 

dense et très rigide permettant un transport de masse plus favorable. De même façon, on peut 

expliquer les différences entre les éponges de carbone de différente porosité. Quant à l’acier 

inoxydable il a une surface spécifique comparativement très petite, donc la production du 

réactif du Fenton y est très faible. 

 Les pourcentages de l’abattement du COT de la solution SMT sont présentés dans le 

tableau 8. 

Tableau 8. Les pourcentages de l’abattement de COT en fonction de curant et de matériau de 

cathode.   

Cell.      EC 30 ppi     EC 45 ppi      EC 60 ppi     EC80 ppi    EC 100 ppi       FC     Ac Inox 

I (mA)                                    % d'abattement de COT à 8 h  

50            46.5            63.4                62.1                54.8             54.1             43.4          20.9 

100          67.7            76.6                74.3                69.7             69.7             49.7          29.9 

300          80.2            91.1                91.2                83.9             82.6             55.6          37.2 

500          79.5            90.1                83.6                83.3             80.7             56.6          41.2 

 

L’abattement du COT suit le même ordre que l'oxydation. La cathode la plus performante est 

l’éponge de carbone 45 ppi dont l'abattement de COT est 91,1% avec le courant de 300 mA. 

Cette valeur est la limite du courant optimale. Les autres porosités de l'éponge de carbone 

présentent aussi de très bonnes efficacités de minéralisation. Tandis que le feutre de carbone 

est moins efficace. L’acier inoxydable est nettement la cathode la moins efficace pour 

l'abattement du COT.  

Finalement après avoir identifié l’éponge de carbone come la meilleure cathode pour 

le procédé électro-Fenton, nous avons réalisé des expériences avec cette cathode en utilisant 

le DDB comme la meilleure anode déjà constaté. Les expériences ont été effectuées dans les 
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mêmes conditions que celles réalisées pour mesurer l'efficacité des cathodes. Les constantes 

apparentes et les pourcentages d’abattement du COT sont donnés dans le tableau 9. 

 

Tableau 9. Valeurs des constantes apparentes (kapp) et les pourcentages d'abattement 

de COT obtenus avec la cellule DBB/Eponge de carbone 45 ppi. 

I (mA)                       kapp/min-1           Enlevement %COT t à6 h 

50                                    0.12                          77.7 

100                                  0.21                           82.6 

200                                  0.35                           ----- 

300                                  0.38                            95 

400                                  0.36                           ----- 

500                                  0.35                            98 

 

La vitesse de dégradation de SMT augmente avec le courant jusqu’à 300 mA, grâce à 

l’accélération de la réaction du Fenton, puis elle diminue, indiquant la limite du courant 

optimale. En comparant les kapp obtenus avec DDB/Eponge de carbone 45 ppi on peut 

conclure qu’elles sont plus faibles que celles obtenues avec le système Pt/Eponge de carbone 

45 ppi et nettement plus élevées que les kapp obtenues avec les cellules Pt/Acier inoxydable et 

Pt/Feutre de carbone. Contrairement la minéralisation est beaucoup plus efficace avec la 

cellule DDB/éponge de carbone, ce qui s’explique par les radicaux hydroxyles 

supplémentaires provenant de la surface de l'anode DDB par oxydation de l'eau.  
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PËRMBLEDHJE 
 

Prezenca e substancave kimike në ambient është shumë evidente dhe ka një rritje të 

pandërprerë si rezultat i aktiviteteve antropogjene. Nevojat e njerëzve për produkte 

ushqimore, të banimit, të transportit e të tjera, duke qenë gjithmonë në rritje kanë dërguar në 

formimin e burimeve të reja të ndotjes si dhe në intensifikimin e emitimit të kemikaljeve nga 

ato ekzistuese.  Shumë nga këto substanca janë të rrezikshme dhe një numër i madh i tyre 

futen direkt në mjediset ujore. Nga burimet kimike të ndotjes mund të përmendim: shkarkimin 

direkt të mbetjeve kimike industriale dhe të llojeve të tjera në hapësirat e ambientit, 

përdorimin  e produkteve kimike  të tilla si pesticidet në agrikulturë, përdorimin e 

medikamenteve në mjekësi dhe veterinari etj. Si pasojë e sasive të mëdha të këtyre 

substancave që rrjedhin nga këto burime të ndotjes ka ardhur deri te kontaminimi me 

substanca kimike inorganike dhe organike të ujërave sipërfaqësor dhe nëntokësor. 

 Ekzistojnë një numër i madh i ndotësve organik rezistent (NOR) që rrjedhin nga disa 

klasa komponimesh kimike të shpërndarë në ambient, të tillë si: hidrokarburet aromatike të 

kloruara, poliklorobifenilet (PCB), dioksinat, furanet dhe pesticidet e kloruara (DDT, lindani, 

aldrini,...) apo triazinat etj. Si ndotës organik rezistent që shpesh gjenden në ujëra janë fenolet 

dhe fenolet e kloruara. Këto substanca janë përgjithësisht pak të tretshme në ujë dhe si pasojë 

shpërndahen në materien e ngurtë e veçanërisht në materien organike të dheut. NOR-të janë 

pak a shumë të avullueshëm dhe nga toka, uji dhe bimët mund të kalojnë në atmosferë prej 

nga barten me rrymat e ajrit deri në distanca shumë të largëta dhe pastaj bien në tokë nën 

veprimin e reshjeve atmosferike. Kështu që NOR-të janë gjetur madje edhe në Antarktik dhe 

në male të larta, në vende të ndryshme ku temperaturat e ulta kanë favorizuar kondensimin e 

mjegullave. Kështu reshjet atmosferike luajnë një rol shumë të rëndësishëm në transportin e 

NOR-ve, gjë që është vërtetuar nga shumë hulumtime shkencore të cilat tregojnë për 

prezencën e tyre në borën e maleve të larta dhe të ulta. 

 Pesticidet janë një klasë e komponimeve kimike që përdoren gjerësisht në agrikulturë 

dhe si pasojë gjenden gjithandej në fushat me kultura bimore ku janë përdorur për trajtimin e 

bimëve, në lumenj, liqene, sedimente dhe ujëra nëntokësor ku arrinë si pasojë e shpërlarjes 

nën veprimin e të reshurave. 
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 Një klasë tjetër e ndotësve organik të zakonshëm në ujëra dhe tokë paraqesin produktet 

farmaceutike, prania e të cilave është raportuar shpesh. Burim i tyre janë mbetjet e industrisë 

farmaceutike, spitalet, ujërat e zeza si dhe fermat e shtazëve, etj. 

 Komponimet organike sintetike që prodhohen për qëllime të caktuara ashtu si dhe 

produktet sekondare që i shoqërojnë ato, mesproduktet e formuara gjatë proceseve të djegies 

etj, nuk janë përbërës natyror të mjedisit kështu që pritet të kenë një efekt negativ mbi të. Ato 

mund të futen në zingjirin ushqimor, në veçanti NOR-të, duke kaluar nga një nivel trofik në 

tjetrin. Në fakt është vërtetuar që NOR-të janë të implikuara në çrregullimet e gjëndrrave 

endokrine te peshqit dhe te njeriu. Pastaj, pos efekteve të tyre mbi procesin e reprodukimit 

shumë NOR dyshohen të jenë kancerogjene. Disa studime mbi toksicitetin e pesticideve kanë 

zbuluar që shumë prej tyre janë kancerogjene për kafshët, gjë që është shqetësuese edhe për 

njerëzit. Ato janë poashtu toksike edhe për mikroorganizmat fototrofik: peshqit, mikroflora, 

bletët, zogjët dhe organizma të tjerë që nuk janë cak i tyre. 

 Medikamentet si klasë shumë e gjerë e komponimeve kimike janë gjetur në ujëra në 

përqëndrime jo shumë të larta por ato futen në ujëra në mënyrë permanente, kështu që një 

numër i konsiderueshëm punimesh u është kushtuar atyre. Medikamentet janë substanca 

bioaktive të destinuara për t’i luftuar mikroorganizmat patogjen, megjithatë ato mund të kenë 

efekte negative të papritura. Përqëndrimi i substancave farmaceutike në ujëra sipërfaqësor 

zakonisht është nën përqëndrimin i cili do të shkaktonte helmimin akut të organizmave ujorë. 

Megjithatë efektet metabolike, të riprodhimit e të tjera, janë të mundshëm mbi organizmat 

ujorë në rast të ekspozimit kronik të tyre.  

 Me qëllim të përballimit të problemit të ndotjes së ujit si dhe mbrojtjes së tij, janë bërë 

shumë përpjekje, duke përfshirë rregullime administrative për komponimet toksike dhe/ose 

rezistente dhe zhvillimin e metodave të trajtimit të ujërave hedhurinë para se ato të hidhen në 

rrjetin e ujërave natyror. Por përkundër përmirësimit të konsiderueshëm të kualitetit të ujit pas 

trajtimit në stacione të trajtimit të ujrave hedhurinë, është vërejtur që disa ndotës kimik si për 

shembull produktet farmaceutike, mund të kalojnë pa pësuar transformim ose si pjesërisht 

transformuara. Duke parë këto vështirësi apo të meta të trajtimit klasik, komuniteti shkencor 

ka bërë përpjekje të konsiderueshme me qëllim të zhvillimit të teknologjive më efikase. Mes 

metodave të zhvilluara në këtë kontekst, metodat e oksidimit të avancuar të (MOA) dhe 

veçanërisht metodat elektrokimike të oksidimit të avancuar (MEOA) janë shumë efikase në 
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eliminimin e ndotësve organik; ato mund të mineralizojnë pothuajse plotësisht materiet 

organike që gjenden në ujë.  

 Kështu që punimet e realizuara në këtë temë të doktoratës kanë për qëllim gjetjen e 

kushteve optimale të veprimit të një metode elektrokimike të oksidimit të avancuar, metodës 

elektro-Fenton (EF). Kjo metodë, ashtu si edhe të gjitha MOA-të e tjera, bazohet në 

reaktivitetin e lartë të radikaleve hidroksile (•OH) të formuara in situ në tretësirën që trajtohet. 

Këto radikale përfitohen nga reaktivi i Fentonit (H2O2 + Fe2+) i cili prodhohet 

elektrokimikisht: H2O2 formohet në katodë nga reduktimi elektrokimik i O2 që futet në 

tretësirë përmes ajrit të komprimuar. Joni ferror rigjenerohet në katodë nga joni ferrik i shtuar 

në sasi katalitike në formë të një kripe të tretshme të hekurit hekurit. Radikalet e formuara nga 

reaksioni i këtyre dy reagjentëve (reagjenti i Fentonit) janë specie kimike me veti  shumë 

oksiduese (E° = 2.80 V/ESH) dhe mundësojnë eleminimin efikas të ndotësve organik nga uji 

duke i transformuar ata në CO2 dhe H2O. 

 Efikasiteti i procesit elektro-Fenton varet shumë nga parametrat eksperimental si: 

natyra e materialit të elektrodës që ka rëndësi themelore në kinetikën e 

oksidimit/mineralizimit të materieve organike. Në këtë hulumtim kemi studiuar  sjelljen e 

materialeve të ndryshme të anodës dhe katodës gjatë aplikimit të metodës elektro-Fenton në 

shkatrrimin e dy komponimeve farmaceutike që gjenden shpesh në ujërat e ndotura, 

Sulfametazina (SMT) dhe amoksicilina (AMX), të cilët janë zgjedhur si ndotës model. 

 Kjo temë e doktoratës përbëhet nga pesë kapituj: hyrja, që pasohet nga një diskutim i 

përgjithshëm mbi metodat që aplikohen në trajtimin e ujrave të ndotura, proceset e oksidimit 

të avancuar (POA) dhe proceset elektrokimike të oksidimit të avancuar (PEOA). Në kapitullin 

e dytë përshkruhen materiali dhe teknikat analitike të përdorura gjatë këtij hulumtimi. 

Kapitulli i tretë përshkruan rezultatet e fituara mbi efikasitetin e shkatërrimit të AMX me anë 

të anodave të ndryshme si platina (Pt), diamanti i dopuar me bor (boron doped diamon 

(BDD)), anoda dimenzionalisht stabile (dimensionaly stable anode (DSA)), dioksidi i plumbit 

(PbO2), grafiti, karboni shpuzor (carbon felt (KF)), dhe fibrat e karbonit (FK). Në kapitullin e 

katërt dhe të pestë është studiuar efekti i materialeve të ndrshme të anodës dhe katodës në 

procesin elektro-Fenton, duke pasur si model sulfametazinën. 
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METODAT E TRAJTIMIT TË UJËRAVE 

Teknologjitë e trajtimit të ujërave mund të ndahen në dy grupe: metodat destruktive 

dhe jo destruktive. Metodat jo destruktive mundësojnë ndarjen e ndotësve nga uji pa 

ndryshuar natyrën e tyre kimike, dmth. ndotësit vetëm transferohen nga një fazë në fazën 

tjetër. Në kuadër të këtyre metodave mund të përmendim: adsorbimin, ekstraktimin, ndarjen 

membranore, distilimin etj. Përkundër efikasitetit pak a shumë të madh, këto metoda nuk 

ofrojnë zgjidhjen përfundimtare pasi që ndotësit e ndarë në këtë mënyrë duhet të vendosen 

diku tjetër (rindotje), ose duhet të trajtohen me ndonjë metodë termike (djegie) apo kimike 

(oksidim i avancuar). 

 Metodat destruktive, ndryshe nga ato jo destruktive, e transformojnë kimikisht 

materien organike. Për këtë qëllim përdoren oksidant kimik si klori apo ozoni. Trajtimi 

mikrobiologjik gjithashtu përdoret shpesh për pastrimin e ujërave ku agjent shkatërrues i 

materieve organike janë bakteriet të cilat e përdorin atë si lëndë ushqese. Materia organike 

transformohet në CO2, H2O dhe biomasë e cila fundërrohet në fund të reaktorit. Trajtimi 

biologjik kërkon shumë kohë si dhe shpeshherë mineralizimi është vetëm i pjesshëm, e 

sidomos kur bëhet fjalë për molekula refraktare ndaj biodegradimi (NOR) apo toksike ndaj 

bakterieve që përdoren për trajtim. Djegia është metodë efektive për trajtimin e tretësirave të 

përqëndruara (pas trajtimit membranor), por është e kushtueshme dhe mund të lirojë 

komponime toksike të tilla si dioksinat. 

 Proceset e oksidimit të avancuar (POA-të) 

 POA dhe më vonë PEOA janë metoda kimike destruktive që karakterizohen nga 

përfitimi i radikaleve hidroksile, të cilat janë specie kimike me reaktivitet ekstrem dhe mjete 

të fuqishme oksiduese. Ato mund t’i oksidojnë molekulat organike deri në mineralizimin e 

tyre të plotë ose kuazi të plotë duke iu falënderuar potencialit të tyre të oksidimit shumë të 

lartë (2.80 V/ESH). Në POA përdoren reaktiv kimik si: TiO2, O3, H2O2 të vetëm apo të 

kombinuar me rrezatim UV më qëllim të prodhimit të •OH. Për dallim nga POA, në PEOA 

radikalet hidroksile përfitohen qoftë në mënyrë direkte nga oksidimi i ujit në sipërfaqen e një 

anode të caktuar, ose në mënyrë indirekte në tretësirë nga reaktivi i Fentonit i prodhuar 

elektrokimikisht. Një skemë e POA është dhënë në vazhdim (fig. 1) 
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                                   Fig. 1. Skema e proceseve të oksidimit të avancuar (POA) 

  

 Proceset elektrokimike të oksidimit të avancuar 

 Oksidimi anodik 

 Degradimi i ndotësve organik bëhet në një celulë elektrokimike të pajisur me dy 

elektroda (anodë dhe katodë) dhe një elektrolit bartës për të përmirësuar përqueshmërinë 

elektrike. Gjatë kalimit të rrymës elektrike nëpër tretësirë, lirimi i oksigjenit në anodë ka një 

rëndësi të veçantë. Mekanizmi i reaksionit të oksidimit të ujit në anodë që qon në lirimin e 

oksigjenit molekular varet nga natyra e materialit të anodës të përdorur. Kjo implikon një 

mbipotencial të lirimit të oksigjenit që ndryshon nga një anodë te tjetra. Anodat që kanë një 

mbipotencial të lartë, si psh diamanti i dopuar me bor (BDD), mundësojnë gjenerimin e 

radikaleve hidroksile si specie intermediare. Në këtë rast radikalet e formuara janë të 

adsorbuara fizikisht në sipërfaqe të anodës potuajse të lira e kështu shumë reaktive. Këto 

radikale reagojnë menjëherë sapo janë formuar me molekulat organike duke i transformuar 

ato në CO2 dhe H2O (Ek. 2): 
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M + H2O � M (•OH) + H+                                                                             (1) 

M(•OH) + R � � � M + CO2 + H2O                                                           (2) 

M paraqet natyrën e anodës. Gjithashtu është i mundshëm formimi i specieve të tjera 

oksiduese në anodat me mbipotencial të lartë të oksigjenit si: O3, H2O2 et S2O8
2-, HOCl që 

vinë nga oksidimi i elektrolitit bartës. Këto specie marrin pjesë gjithashtu në oksidim 

(oksidimi indirekt). 

Ndërsa anodat që kanë mbipotencial të ulët të lirimit të oksigjenit kanë aftësi të ulët 

oksiduese. Në këtë grup bëjnë pjesë andat DSA (RuO2-IrO2 në këtë punim) dhe Pt. Struktura 

elektronike e iridiumit lejon gjendje të oksidimit më të larta kur ai i nënshtrohet potencialit të 

lartë pozitiv (Ek 3-5): 

            M + H2O � MOx(OH) + H+ + e-                                                                  (3) 

 MOx(OH) � MOx+1 + H+ + e-                                                                      (4) 

 MOx+1 � MOx + ½ O2(g)                                                                               (5) 

Pastaj oksidi i metalit i formuar mund t’i oksidoj molekulat organike, por ky është një 

reaksion shumë më i ngadalshëm se ai me M(•OH). Në potenciale të larta reaksioni (5) bëhet 

dominant dhe qon në humbje të energjisë. 

Elektro-Fentoni 

Është një metodë elektrokimike indirekte për shkatërrimin e ndotësve organik në 

mjedis ujor. Baza e teknologjisë elektro-Fenton është reaktivi i Fentonit (H2O2 + Fe2+). Ky 

reaktiv është përdorur për herë të parë ng H.J.H. Fenton në vitin 1894 për oksidimin e acidit 

tartarik. Por ky reaksion është përdorur për trajtimin e ujërave vetem pas afër një shekulli nga 

përdorimi i tij i parë. Radikalet hidroksile (•OH) të formuara kështu (Ek. 6) në mjedis 

homogjen sulmojnë materien organike deri në mineralizimin e saj (Ek. 7): 

            H2O2 + Fe2+ � Fe3+ + •OH + OH-                                                              (6) 

 R + •OH 
��� CO2 + H2O                                                                         (7) 

Përdorimi i reaktivit të Fentonit (H2O2 + Fe2+) është shumë më pak efektiv në krahasim me 

atë elektro-Fenton, sepse rigjenerimi i katalizatorit Fe2+ është shumë i ngadalshëm. Në anën 

tjetër acidet karboksilike të krijuara gjatë oksidimit të molekulave organike formojnë 
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komplekse me jonin Fe3+ gjë që pengon regjenerimin e tij në Fe2+ dhe shkakton ngadalsimin e 

prodhimit të •OH pra dhe atë të degradimit të ndotësve organik. Një sasi e joneve të hekurit 

humbet gjithashtu si pasojë e precipitimit në formë të hidroksidit ferrik (formimi i 

fundërrinave gjatë procesit). Ndryshe nga procesi Fenton, në rastin elektro-Fenton H2O2 

përfitohet elektrokimikisht në katodë (Ek. 8): 

O2 + 2H+ + 2e- � H2O2                                                                             (8) 

Oksigjeni futet në tretësirë duke gurgulluar ajër të komprimuar nëpër të. Ndërsa jonet Fe2+ 

(katalizatori) shtohen në fillim në tretësirë në sasi shumë të vogla (katalitike) dhe pastaj 

rigjenerohen elektrokimikisht (Ek. 9): 

 Fe3+ + e- � Fe2+                                                                                            (9) 

Në këtë mënyrë reaktivi i Fentonit dhe rrjedhimisht radikalet hidroksile gjenerohen pa 

ndërprerje në sistem dhe degradojnë materien organike deri në mineralizimin e saj. Përfitimi 

efikas i H2O2 dhe rigjenerimi i Fe2+ eviton të metat e sistemeit Fenton, pra kemi një kinetikë 

të shpejtë të degradimit, eliminimin e reaksioneve parazite dhe pengimin e formimit të 

fundërrinës së hidroksidit ferrik, gjë që e bënë procesin elektro-Fenton shumë më efikas se 

procesi kimik Fenton. Prandaj metoda elektro-Fenton përbën një teknologji të dalluar për 

shkatërrimin e mikrondotësve organik në mjedis ujor. 

 Procesi elektro-Fenton varet nga kushtet eksperimentale si: pH, përqëndrimi i 

katalizatorit, temperatura, intensiteti i rrymës dhe materiali i elektrodave. Vlera optimale e pH 

është 2.8-3 dhe përqëndrimi i katalizatorit 0.1-0.2 mM. Shpejtësia e reaksionit Fenton rritet 

me rritjen e temperaturës, por përtej 35-40°C përshpejtohet reaksioni i zbërthimit të H2O2 gjë 

që e ngadalson procesin. Materiali i elektrodës ka një rëndësi fundamentale. Platina dhe 

diamanti i dopuar me bor janë anoda që përdoren shpesh ndërsa karboni sfungjeror, katoda me 

difuzion oksigjeni etj si katoda. Në këtë punim është realizuar një studim krahasues i efektit të 

materialit të elektrodës (anodës dhe katodës) ndaj efikasitetit të procesit elektro-Fenon.  

Rezultatet e fituara do të prezantohen këtu poshtë. 

Efekti i materialit të anodës në oksidimin anodik të amoksicilinës (AMX) 

Shtatë anoda të ndryshme janë studiuar me qëllim të krahasimit të aftësisë së tyre 

oksiduese ndaj degradimit të AMX. Për të realizuar këtë studim janë bërë eksperimente të 

degradimit (transformimi i thjeshtë i molekulës në nënprodukte të oksidimit) dhe 
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mineralizimit të tretësirave ujore të AMX. Kinetika e degradimit oksidativ të AMX është 

përcjellur me anë të kromatografisë së lëngët me performancë të lartë (high performance 

liquid chromatography (HPLC)), ndërsa mineralizimi është bërë me matje të karbonit organik 

total (KOT) në tretësirë me anë të një analizuesi të karbonit organik total (total organic carbon 

analyser (TOC)). 

 Në tabelën 1 janë dhënë konstantet e dukshme (kd) , të fituara nga analiza e lakoreve 

kinetike të oksidimit në intensitete të ndryshme të rrymës, të reaksionit të oksidimit të AMX 

me radikale hidroksile. Eksperimentet janë bërë në këto kushte: [AMX] = 0.1 mM, [Na2SO4] 

= 50 mM, V = 250 ml, si katodë është përdorur çeliku i paoksidueshëm (stainless steel) me 

sipërfaqe të njëjtë si të anodës (24 cm2). Duke u bazuar në vlerat e konstanteve të dukshme të 

shpejtësisë së reaksionit, konstatojmë që shpejtësia e oksidimit të AMX rritet me rritjen e 

intensitetit të rrymës, por vlerat e tyre ndryshojnë shumë nga një anodë te tjetra. Shohim se 

DSA, është anoda më së paku efikase për degradimin e AMX, e pasuar nga ajo e grafitit dhe 

fibrave të karbonit. Vlerat e kd për Pt dhe PbO2 janë mes atyre të gjetura për fibrat e karbonit, 

karbonit shpuzor dhe BDD, ku kjo e fundit është më efikasja e veçanërisht në intensitete të 

larta të rrymës. Karbon felt shihet se ka një sjellje më karakteristike; kjo anodë ka kapacitet 

më të lartë oksidues se anodat tjera të karbonit si grafiti dhe fibrat e karbonit. Kjo mund të 

spjegohet me sipërfaqen e saj specifike që është shumë më e madhe se e anodave tjera, meqë 

ajo është një material poroz tre dimensional. Megjithatë verat e kd zvogëlohen shumë për 

intensitet të rrymës 500 mA për shkak të djegies së saj si anodë. Përkundrazi në rastin e BDD 

vlera e kd rittet më së shumti në 500 mA. 

 

Tabela 1. Konstantet e dukshme të shpejtësisë së degradimit të SMT gjatë trajtimit me 

procesin elektro-Fenton, si funksion i intensitetit të rrymës së aplikuar dhe materialit të 

anodës. 

 

Anoda       BDD              Pt           DSA            PbO2         Grafiti         KF              FK 

I (mA)                                                     kd /min-1 

50                0.02             0.02          0.0006         0.02           0.01            0.05           0.02 

100              0.03             0.03          0.003           0.03           0.01            0.08           0.02 

300              0.06             0.04          0.003           0.05           0.02            0.2             0.03 

500              0.11             0.03          0.008           0.04           0.02            0.09           0.02 
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Në tabelën 2 janë përmbledhur rezultatet e fituar për efikasitetin e mineralizimit të një 

tretësire të AMX me anoda të ndryshme.  

Tabela 2. Përqindja e mineralizimit të 250 ml tretësirë të AMX si funksion i intensitetit 

të rrymës dhe materialit të anodës pas 6 orë trajtimi. 

 

Përqindjet më të larta të mineralizimit janë arritur duke përdorur anodën BDD pastaj atë të 

PbO2, të Pt dhe të DSA. Anoda e grafitit që kishte aftësi relativisht të mirë oksidimi ndaj 

AMX deri në 500 mA, e mineralizon atë deri në 43% dhe 37% për rrymat 150 përkatësisht 50 

mA, dhe dështon plotësisht në rryma mbi 150 mA për shkak të diegjes së saj në potencial më 

pozitiv. Vlenë të theksohet se grafiti si anodë në rryma të ulëta jep rezultate të mineralizimit të 

krahasueshme me platinën dhe pak më të mira se DSA edhe kur në këto elektroda applikohen 

intensitete rryme më të larta. Fibrat e karbonit dhe karbon felt dëmtohen (oksidohen) madje 

edhe në rryma të ulëta, duke i dhënë ngjyrë të zezë tretësirës. 

 Përkundër rezultateve të mira të oksidimit të fituara me karbon felt, kjo anodë nuk 

mund të përdoret për mineralizim të ndotësve organik sepse oksidohet madje edhe në rryma të 

ulëta për kohë të gjatë të elektrolizës. Përkundrazi, në rastin e BDD janë arritur përqindje të 

mineralizimit 86.9, 92.2, dhe 96.3 % për rrymat 300, 500, 1000 mA. Një shkallë aq e lartë e 

mineralizimit e arritur me këtë anodë, është rrjedhojë e formimit intenziv të radikaleve 

hidroksile për shkak të mbipotencialit të lartë të lirimit të O2 mbi të. Radikalet hidroksile 

formohen gjithashtu edhe në Pt, PbO2 dhe DSA por në përqëndrim shumë të vogël. Poashtu 

një rol të rëndësishëm në shkatrrimin e AMX luajnë edhe oksidantët tjerë si S2O4
2-, O3, H2O2 

që formohen në anodë. 

  Efekti i materialit të anodës në procesin elektro-Fenton 

 Për të parë efektin e materialit të anodës në procesin elektro-Fenton ngjajshëm si më 

lart, janë realizuar eksperimente të degradimit dhe mineralizimit të ndotësit model SMT. 

Anoda          BDD         Pt              DSA           PbO2        Grafiti         K F            FK 

I (mA)                                  Eliminimi i KOT pas (%)  6h 

300             86.9            29.8            9.7               62.5             0               0                 0 

500             92.2            41.3            13.8             81.2             0               0                 0 

1000           96.3            47.4            22.0             90.6             0               0                 0 
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Pastaj është bërë analiza e acideve karboksilike dhe joneve minerale që formohen gjatë 

oksidimit nga heteroatomet që gjenden në strukturën e sulfametazinës. Kushtet 

eksperimentale kanë qenë: [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, V = 300 ml, pH = 3, sipërfaqja 

e anodës ka qenë 2 x 24 cm2, ndërsa si katodë gjithmonë është përdorur karbon felt (KF) me 

dimenzione 23 x 6 x 0.5 cm. Mostrat e tretësirës së SMT që iu kanë nënshtruar elektrolizës 

janë analizuar me HPLC. Eliminimi i karbonit total (TOC) nga tretësira e elektrolizuar është 

përcjellur me anë të matjeve me analizues TOC. Analiza e acideve karboksilike është bërë me 

kromatografi të përjashtimit të joneve dhe jonet minerale me kromatografi jonike. 

Konstantet e dukshme të shpejtësisë së oksidimit të SMT  me radikalet hidroksile në 

sisteme të ndryshme elektrolitike janë dhënë në tabelën 3. 

Tabela 3. Konstantet e dukshme të shpejtësisë së degradimit të SMT gjatë trajtimit me 

procesin elektro-Fenton, si funksion i intensitetit të rrymës së aplikuar dhe materialit të 

anodës. 

 

 

 

 

 

 

 

Tabela 4. Konstantet e dukshme të shpejtësisë së degradimit të SMT me radikalet 

hidroksile të formuara me oksidim anodik, si funksion i intensitetit të rrymës së aplikuar dhe 

materialit të anodës. 

 

                   

 

 

Cel.                  Pt                  DSA                      BDD             KF 

I (mA)                                         kd / min-1 

50                    0.08                 0.06                    0.07                 0.22 

100                  0.15                 0.09                    0.12                 0.31 

200                  0.19                 0.14                    0.18                 0.37 

300                  0.27                 0.20                    0.24                 0.44 

400                  0.37                 0.27                    0.27                 0.43 

500                  0.40                 0.27                    0.25                 0.43 

Cel.                   Pt                   DSA                    BDD                    K F 

I (mA)                                     kd/min-1 

100                   0.02                 0.01                     0.02                   0.22 

500                   0.04                 0.02                     0.06                   0.29 
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Nga vlera e kd në tabelë shihet qartë se shpejtësia e degradimit të SMT rritet me intensitetin e 

rrymës në të gjitha celulat elektrolitike. Me rritjen e intensitetit të rrymës shpejtësia e 

prodhimit të H2O2 dhe rigjenerimit të Fe2+ është më e madhe dhe si pasojë shpejtësia e 

degradimit të SMT rritet. Një rritje e tillë e shpejtësisë së degradimit ndodhë deri në një 

intensitet optimal të rrymës 300-400 mA mbi të cilin intensitet shpejtësia e degradimit nuk 

rritet më. Ky limit i intensitetit të rrymës mbi të cilin nuk ka përshpejtim të reaksionit të 

degradimit, paraqitet si rezultat i reaksioneve parazite të cilat intensifikohen  në rryma të 

(potenciale) larta. Këto reaksione janë lirimi i O2 në anodë dhe lirimi i H2 në katodë. 

Konstantet e dukshme kinetike (tabela 3) të llogaritura nga lakoret [SMT] = f(t), tregojnë një 

ndryshim të vogël më mes anodave të përdorura, me përjashtim të karbon felt. Në tabelën 4 

janë paraqitur kd-të për oksidimin anodik, domethënë në mungesë të katalizatorit Fe2+. 

Vërehet qartë ndryshimi i madh në mes procesit elektro-Fenton dhe atij të oksidimit anodik. 

Shpejtësia e degradimit është shumë më e madhe në rastin elektro-Fenton duke iu falenderuar 

radikaleve hidroksile të formuara nga reaksioni i Fentonit (pos atyre të formuara në anodë). 

kd-të e fituara me karbon felt janë ndjeshëm më të mëdha se ato të fituara me anodat Pt, DDB, 

et DSA. Në rastin e sistemit elektrolitik BDD/Karbon felt shpejtësia e degradimit të SMT 

është pak më e vogël se në rastin Pt/Karbon felt. BDD duke qenë një anodë me fuqi të madhe 

oksiduese, i oksidon jonet SO4
2- në S2O8

2-, pastaj joni peroksodisulfat oksidon jonin ferror 

(Ek. 10), pra eliminon një sasi të katalizatorit duke zvogëluar kështu shpejtësinë e prodhimit 

të radikaleve hidroksile. 

S2O8
2- + Fe2+ � 2SO4

2- + Fe3+                                                                   (10) 

Së fundi fakti që shpejtësia e degradimit të SMT ndryshon shumë pak mes celulave të 

ndryshme, shpjegohet duke pasur parasysh se sasia e molekulave të SMT që oksidohen nga 

radikalet hidroksile që vijnë nga reaksioni elektro-Fenton është dominante ndaj atyre që 

oksidohen si kontribut i oksidimit anodik. 

 Konstantet e dukshme të shpejtësisë së degradimit janë shumë të mëdha në celulën 

Karbon felt/Karbon felt, si dhe janë më të mëdha se në të gjitha celulat tjera elektrolitike. 

 Eksperimentet e mineralizimit janë bërë në të njëjtat kushte si ato të degradimit dhe 

përqindjet e eliminimit të karbonit organik total janë prezantuar në tabelën 5. 
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Tabela 5. Eliminimi i KOT si funksion i intensitetit të rrymës dhe materialit të anodës 

gjatë mineralizimit të një tretësire të SMT me anë të procesit elektro-Fenton. 

Cel.                Pt                          DSA                     BDD                  K F 

I (mA)                      Eliminimi i KOT pas (%) 2h / 6h                     I (mA)  %KOT (2h/6h) 

100             35.5/69.6                  25.5/62.2                57.2/91.9         50          33.6/68.2   

300             55.9/83.9                 34.1/71.1                 76.4/96.8        100         44.4/70.2 

500             71.5/90.3                 41.9/76.1                 84.7/97.9 

700             61.4/81.7                 14.8/75.2                 88.2/97.2 

1000           54.7/75.8                 26.3/46.1                 90.1/98.5 

 

Tabela 6. Eliminimi i KOT si funksion i intensitetit të rrymës së aplikuar dhe 

materialit të anodës (oksidim anodik). 

Cel.                 Pt                     DSA                  BDD                      KF 

I (mA)                      Eliminimi i KOT (%) pas 2h/6h 

100               12.5/15.8            5.2/8.3             48.7/88.1                  0/0 

500               25.7/36.8            9.6/10.8            69.4/94.6                 0/0 

1000             24.0/41.4            9.8/9.8              80.9/97.4                 0/0 

 

Rezultatet nga eksperimentet e mineralizimit tregojnë një sjellje krejt të ndryshme nga njëra 

celulë elektrolitike në tjetrën, në krahasim me ato të degradimit. Këtu vërejmë një ndryshim 

shumë të qartë në efikasitetin e mineralizimit në mes anodave të ndryshme. Shkalla e 

mineralizimit të SMT rritet me intensitetin e rrymës deri në një limit të intensitetit optimal, që 

nuk është i njëjti për të gjitha anodat. Në sistemet Pt/Karbon felt dhe DSA/Karbon felt ky 

limit është 500 mA. Shihet gjithashtu që eliminimi i KOT në celulën DSA/Karbon shpuzor në 

300 dhe 500 mA nuk ndryshon shumë, që do të thotë se reaksionet parazite (të përmendura 

më lartë) intensifikohen ndjeshëm duke filluar nga 300 mA. Në celulat Pt/Karbon felt dhe 

DSA/Karbon felt përqindja e mineralizimit për 700 dhe 1000 mA është madje edhe më e ulët 

se për 500 mA, kjo për shkak të ngadalsimit të gjenerimit të reagjentit të Fentonit në katodë, 

porë gjithashtu për shkak të inhibimit të oksidimit anodik të SMT. Përqindja më e lartë e 

mineralizimit është arritur me anodën BDD, në tabelën 5 shihet se mineralizimi arrin gati në 

100%  pas 6 orë trajtimi. Në sistemin BDD/Karbon felt ka dy burime të radikaleve hidroksile: 

ato që formohen nga reaksioni i Fentonit në tretësirë dhe ato që formohen në sipërfaqe të 
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anodës, gjë që mundëson një efikasitet të mineralizimit shumë të lartë. Gjithashtu limiti 

optimal i intensitetit të rrymës për anodën BDD nuk është 500 mA, siç shihet mineralizimi 

mund të bëhet me efikasitet deri në 1000 mA. BDD duke pasur mbipotencial të lartë të O2 

favorizon formimin e radikaleve hidroksile madje edhe në 1000 mA. Në rastin e anodave Pt 

dhe veçanërisht DSA radikalet hidroksile mund ta oksidojnë metalin në gjendje më të larta 

duke formuar okside. Oksidi pastaj liron oksigjenin ose reagon ngadal me molekulat organike 

në potenciale më të ulëta. Megjithatë përtej 500 mA, rritja e eliminimit të KOT me rritjen e 

rrymës bëhet më e vogël edhe në rastin e BDD, që do të thotë se lirimi i oksigjenit është 

gjithmonë një pengesë serioze. 

 Duke krahasuar mineralizimin me metodën elektro-Fenton dhe oksidimin anodik lehtë 

vërehet se elektro-Fenton është një proces shumë më efikas kur bëhet fjalë për sistemet 

Pt/Karbon felt dhe DSA/Karbon felt. Në rastin e sistemit BDD/Karbon felt diferenca është më 

pak e rëndësishme, kjo me sa duket për shkak të eliminimit nga sistemi elektro-Fenton i një 

sasie të katalizatorit tashmë të përmendur. 

 Edhe analiza e acideve karboksilike dëshmon superioritetin e BDD ndaj DSA. Acidet 

karboksilike të identifikuara gjatë elektrolizës në celulën BDD/Karbon felt ishin: acidi 

oksalik, glioksilik, piruvik dhe formik, dhe të gjitha këto acide u shkatërruan plotësisht në 

fund të elektrolizës. Në celulën Pt/Karbon felt acidet karboksilike të identifikuara ishin: acidi 

oksalik, glioksilik, formik, fumarik, maleik dhe acetik. Në fund të trajtimit mbetet ende një 

sasi e acideve oksalik dhe formik në tretësirë. Ndërsa në celulën DSA/Karbon felt acidet e 

identifikuara ishin: acidi oksalik, glioksilik, formik, maleik, malonik, oksamik dhe tartronik. 

Acidet që mbesin në përqëndrime të ulta pa u shkatërruar në fund të elektrolizës janë acidi 

oksalik, formik, glioksilik, dhe oksamik. 

 Me që SMT përmban heteroatomet N dhe S në strukturën e saj, pritet të gjenden në 

tretësirë jonet përkatëse inorganike NO3
-, NH4

+ dhe SO4
2-. Në rastin e anodës Pt, analiza me 

kromatgrafi jonike tregon që 90.2% e azotit të përmbajtur në molekulën fillestare lirohet në 

formë të NO3
- (pjesa më e madhe) dhe NH4

+, ndërsa SO4
2- është liruar në 30 minutat e parë të 

elektrolizës. Përqëndrimi i joneve NO3
- dhe NH4

+ i gjetur në tretësirën e elektrolizuar është 

shumë më i vogël - 62% e përqëndrimit fillestar - kur përdoret DSA si anodë, ndërsa joni 

sulfat lirohet plotësisht. Ndërsa pothuajse i gjithë azoti prezent në tretësirë në molekulën e 

SMT lirohet në formë të NO3
- dhe NH4

+, përkatësisht 96.7% e tij. Kurse sulfuri edhe në këtë 
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rast lirohet në sasi kuantitative si në rastet e mëparme.  Një sasi e azotit me sa duket humbet 

në formë të produkteve të gazta. 

Ndikimi i materialit të katodës në efikasitetin e procesit elektro-Fenton 

Njëjtë si më parë, eksperimente të degradimit dhe mineralizimit janë bërë për të 

studiuar efektin e materialit të katodës në proesin elektro-Fenton. Eksperimentet janë 

zhvilluar në një celulë me vëllim 250 ml, përqëndrimi [SMT] = 0.2 mM ndërsa ai i elektrolitit 

ndihmës [Na2SO4] = 50 mM dhe pH e tretësirës është rregulluar në 3. Katodat e testuara: 

Karbon shpuzor (KSH) me porozitet të ndryshëm, karbon felt (KF), dhe qelik i pa 

oksidueshëm (S steel) . 6 x 3.5 cm. Si anodë është përdorur gjithmonë platina. Nëpër tretësirë 

është gurgulluar ajër gjatë gjithë kohës së elektrolizës. Analiza e mostrave të marrura në 

intervale kohore të caktuara është bërë me anë të HPLC dhe TOC. 

Prodhimi i H2O2 përbën një parametër  të efikasitetit të një katode në procesin elektro-

Fenton. Për këtë arsye është bërë përcaktimi i H2O2 gjatë elektrolizës me katodat: karbon 

shpuzor 45 ppi, karbon shpuzorë 80 ppi, karbon felt dhe çelik të paoksidueshëm duke lidhur 

Pt si anodë. Intensitetet e rrymës së aplikuar ishin: 50, 100, 200, 300, 400, 500 mA. Tretësira 

për elektrolizë përmbante ujë të distiluar me 50 mM elektrolit ndihmës në pH 3 nën gurgullim 

të përhershëm të ajrit. 

 Për rrymat 50-200 mA përqëndrimi maksimal i H2O2 në celulën Pt/karbon shpuzor 45 

ppi është arritur pas 40 minutave. Për I = 100 mA përqëndrimi maksimal ishte 3.5 mM dhe 

paraqet përqëndrimin më ta lartë nga të gjitha intenstitet e aplikuara të rrymës. Përqëndrimi i 

H2O2 rritet me rritjen e intensitetit deri në 100 mA, pastaj fillon të zvogëlohet për rryma më të 

mëdha. Për intenstitet të rrymës 300, 400 dhe 500 mA përqëndrimi i H2O2 të përfituar në 

tretësirë arrin nivelin e tij maksimal shumë shpejtë (pas rreth 10 minutave). 

 Ngjajshëm sillen edhe katodat tjera, përqëndrimi maksimal i H2O2 në tretësirë arrihet 

në intensitetin e rrymës I = 100 mA dhe në rryma më të larta ky përqëndrim është më i vogël. 

Përqëndrimi maksimal i H2O2 me karbon shpuzor 80 ppi është 2.5 mM, kurse ai i fituar me 

karbon felt është 1.2 mM. Në celulën Pt/çelik i paoksidueshëm në rastin me të mirë (I = 50, 

100 mA) përfitohen vetëm 0.04 mM H2O2. Këto rezultate të përcaktimit të H2O2 janë 

koherente me rezultatet e eksperimenteve të degradimit dhe mineralizimit të SMT. Katodat që 

prodhojnë sasi më të mëdha H2O2 bëjnë të mundur gjithashtu një shkatërrim më efikas të 

SMT. Një fakt për tu vërejtur është se edhe pse përqëndrimi maksimal i H2O2 i arritur është në 
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100 mA, shpejtësia e degradimit të SMT rritet deri në 300 mA. Kjo ndodhë për shkak se në 

prezencë të SMT dhe Fe2+ H2O2 i formuar konsumohet menjëherë pa pasur kohë të zbërthehet 

në reaksionet parazite. 

Tabela 7 tregon vlerat e kd të reaksionit të oksidimit të SMT me radikalet •OH për 

katodat e studiuara. Si edhe më parë këto vlera janë llogaritur nga drejtëzat ln (C0/Ct) = f (t). 

Konstantet kinetike tregojnë që degradimi i SMT është më i shpejtë kur merret karboni 

shpuzor si katodë, e veçanërisht katoda me porozitet 45 ppi (pore per linear inch). Shihet qartë 

se vlerat më të ulëta të kd për karbonin shpuzor që janë ato për 100 ppi, janë shumë më të lartë 

se ato të fituara me karbon felt e sidomos se ato me çelik të paoksidueshëm. 

Tabela 7. Konstantet e dukshme të shpejtësisë së degradimit të SMT të fituara me 

katoda të ndryshme. 

 

Vlerat e mëdha të kd për karbonin shpuzor mund të spjegohen me faktin që kjo anodë ka 

sipërfaqe të madhe duke iu falënderuar prozitetit të lartë, i cili mundëson prodhimin intenziv 

të reagjentit të Fentonit. Katoda karbon felt ka gjithashtu porozitet të lartë pra sipërfaqe të 

madhe, por aftësia e saj për ta shkatërruar SMT është shumë më e vogël se e karbonit shpuzor. 

Karbon felt është material shumë elastik dhe shumë më i dendur se karboni shpuzor, gjë që 

vështirëson qarkullimin e tretësirës në brendi të katodës, pra ptransporti i masës së O2 dhe 

Fe2+ është shumë më i ngadalshëm. Ndërsa karboni shpuzor është më pak i dendur dhe më 

rigjid, strukturë kjo e cila favorizon transportin e masës. Në të njëjtën mënyrë mund të 

shpjegohen edhe ndryshimet e kd në mes katodave të karbonit shpuzor me porozitete të 

ndryshme. Ndërsa çeliku i paoksidueshëm ka një sipërfaqe specifike shumë të vogël, prej nga 

gjenerimi i reaktivit të Fentonit është shumë i dobët. 

 Përqindjet e eliminimit të KOT të tretësirës së SMT janë dhënë në tabelën 8. 

Cel.         KSH  30 ppi      KSH 45 ppi      KSH 60 ppi     KSH 80 ppi    KSH 100 ppi         KF              S steel    

I (mA)                                                                     kd /min-1  

50                   0.11                 0.19                   0.19                  0.19                  0.19                  0.06                 0.03 

100                 0.22                 0.34                   0.28                  0.28                  0.29                  0.07                 0.04 

200                 0.36                 0.49                   0.43                  0.42                  0.38                  0.14                 0.06 

300                 0.41                 0.60                   0.50                  0.43                  0.39                  0.16                 0.07 

400                 0.43                 0.61                  0.48                   0.41                  0.37                  0.11                 0.07 

500                 0.37                 0.57                  0.38                   0.33                  0.31                  0.09                 0.06 
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Tabela 8. Përqindjet e eliminimit të KOT në funksion të intnsitetit të rrymës dhe 

materialit të katodës. 

Cel.       KSH30 ppi   KSH 45 ppi    KSH 60 ppi  KSH 80 ppi  KSH 100 ppi    KF        S steel   

I (mA)                                            Eliminimi i KOT (%) pas 8 h  

50              46.5              63.4                62.1                54.8            54.1             43.4           20.9 

100            67.7              76.6                74.3                69.7            69.7              49.7          29.9 

300            80.2              91.1                91.2                83.9            82.6              55.6          37.2 

500            79.5              90.1                83.6                83.3            80.7              56.6          41.2 

 

Eliminimi i KOT ndjek të njëjtin rend si oksidimi. Katoda më efikase është karboni shpuzor 

me porozitet 45 ppi, me përqindje të eliminimit të KOT 91.1% në 300 mA. Kjo vlerë është 

optimumi mineralizimit në intensitetin optimal të rrymës. Katodat tjera të karbonit shpuzorë 

japin gjithashtu rezultate shumë të mira të mineralizimit, ndërsa karbon felt është më pak 

efikase. Qeliku i paoksidueshëm është treguar si katoda më jo efektive nga të githa të tjerat. 

  Dhe në fund pas identifikimit të katodës më të mirë për procesin elektro-Fenton, janë 

bërë eksperimente me këtë katodë duke përdorur si anodë BDD që tashmë është parë si anoda 

më e mirë. Eksperimentet janë realizuar në të njëjtat kushte si ato për matjen e efikasitetit të 

katodave. Konstantet kinetike të dukshme të shpejtësisë dhe përqindjet e eliminimit të KT 

janë dhënë në tabelën 9. 

Tabela 9. Vlerat e konstanteve kinetike të dukshme dhe përqindjet e eliminimit të KOT 

të fituara në celulën BDD/Karbon shpuzorë 45 ppi. 

I (mA)                       kd/min-1           Eliminimi i %KOT pas 6 h 

50                                    0.12                          77.7 

100                                  0.21                           82.6 

200                                  0.35                           ----- 

300                                  0.38                            95 

400                                  0.36                           ----- 

500                                  0.35                            98 

 

Shpejtësia e degradimit të SMT rritet me rrymën deri në 300 mA, falë përshpejtimit të 

reaksionit të Fentonit, pastaj ajo zvogëlohet, që tregon se është arritur niveli ptimal i 
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intensitetit të rrymës. Nëse i krahasojmë kd e fituara me BDD/Karbon shpuzorë 45 ppi, mund 

të përfundojmë se ato janë pak më të vogla se ato të fituara me Pt/Karbon shpuzorë 45 ppi e 

shumë më të mëdha se kd e fituara me Pt/Qelik i paksidueshëm dhe Pt/Karbon felt. 

Përkundrazi mineralizimi është shumë më efikas në celulën BDD/Karbon shpuzorë 45 ppi, gjë 

që shpjegohet me radikalet hidroksile shtesë që vijnë nga sipërfaqja e anodës BDD nga 

oksidimi i ujit. 
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INTRODUCTION TO METHODS FOR POLLUTED WATER 
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1.1 INTRODUCTION 
 

Nowadays the issue of the polluted water is becoming the more and more serious. There are 

many sources of pollutants in waters: the discharge of industrial effluents and other waste 

materials in different environmental sites, the usage of chemicals like pesticides, herbicides, 

insecticides, etc. in agriculture, sanitary activities, the usage of medicaments in human and 

veterinary medicine etc. The abundance of different chemicals escaping from these sources, 

has led to the contamination of surface and ground waters with many inorganic and organic 

pollutants. There are many persistent organic pollutants (POPs) coming from different classes 

of chemicals, present in the environment1,2,3,4,5,6,7,8,9,10,11,12. Among them are chlorinated 

aromatics including polychlorinated biphenyls (PCBs) dibenzo-p-dioxines (PCDD), furans, 

polybrominated diphenyl ethers (PBDEs) and different organochlorine pesticides such as 

DDT, aldrine, HCH (hexachlorocyclo hexane), etc.. Other frequently occurring POPs are 

phenols and chlorinated phenols. These substances are slightly water soluble so, in aquatic 

environment, they disperse strongly in solids especially in organic matter. POPs are 

moderately volatile at ambient temperature, thus they can volatilise from soils, water bodies 

and vegetation, being resistant in atmospheric conditions they can be transported by air 

currents to long distances before settling on the ground. So POPs have been found even at 

Antarctic13,14,15,16,17,18 and high mountains19,20,21 in different countries where low temperatures 

favoured the condensation of POP’s vapours. Precipitations play an important role on the 

POPs settling too22,23, several papers have reported their presence in high and low mountain’s 

snow24,25,26,27. Pesticides are a class of compounds widely used in agro-culture. They are 

found in fields where directly applied and also in rivers, lakes, sediments and ground waters 

where they reach by leaching under the action of precipitations28,29,30,31,32,33,34,35,36,37. Among 

organic pollutants, pharmaceuticals are ubiquitous contaminants of water and soils and their 

presence in these media have been often reported38,39,40,41. Their sources are pharmaceutical 

industry effluents, hospital effluents, municipal sewage and farms. 

Synthetic organic compounds produced for certain purposes and their accompanying 

by products along with the species generated during combustion processes are not natural 

constituents of the environment, whereby, they are suspected to alter the normal course of 

events in the nature. They can enter the food chain42,43,44 so passing from one trophic level of 

organisms to the other. There has been evidence for POPs to be implicated into endocrine 

disruption in humans and animals45,46,47. Apart from reproductive effects many organic 

pollutants are suspected as carcinogens48. Investigation on toxicity of pesticides have revealed 
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that many of them are carcinogenic towards animals thus raising concern for the humans49,50. 

They are also toxic to phototrophic microorganisms51,52, fishes and crustaceans53 micro flora, 

bees, birds and other non-targeted organisms 54.  

Pharmaceuticals as wide class of chemicals are found at low concentration but 

permanently entering water systems. Some papers dealt with their influence on aquatic 

life55,56,57. Pharmaceuticals are bioactive substances intended for action against pathogenic 

microorganisms, but they can also have unintended effects58. The concentration of 

pharmaceuticals in surface waters is below the concentration for which acute toxicity on 

aquatic organisms has been proven to occur. However, the development of induced antibiotic 

resistance59,60, metabolic, reproductive and other perturbations on aquatic organisms are 

possible for chronic exposure57,61. 

The permanent and increasing quantities of organics entering the environment and 

their ability to influence the biology of living organisms have raised much concern to humans. 

To face the pollution problem many efforts have been done in terms of making administrative 

regulation62,63,64,65 of toxic compounds and also by developing methods for the treatment of 

waste waters before releasing them in the nature. Some classical methods which are currently 

in use in waste water treatment plants (WWTP) will be described briefly in the following 

sections along with emerging technologies. It has been reported that many organic pollutants 

can escape the treatment process in the classical WWTP66,67,68,69,70,71,72 as many have been 

found in their effluents and areas where these effluents pass through. The difficulties to come 

across when polluted waters are treated by classical methods makes the scientific community 

to search for other more effective technologies, which have resulted with the development of 

many new methods for organic pollutants removal from waters. The efforts done have led to 

the development of AOPs as more effective methods for organic contaminants destruction. 

And most recently the electrochemical advanced oxidation processes (EAOPs) seems to be 

very promising technology for environmental applications. 

This thesis is devoted to the relatively recently developed EAOPs for organic 

pollutants removal from contaminated water, namely "electro-Fenton process". This is a 

method based on the electrochemically monitored Fenton’s reagent (H2O2 + Fe2+) which 

produces hydroxyl radicals that are capable of destroying any organic matter. The 

particularity of this technique consists in the efficient electrochemical generation of these 
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reagents (H2O2 and Fe2+). As it is an electrochemical method the role of electrode material is 

crucial, so this work was realised in order to estimate its effect. 

This thesis is constituted of five chapters: the introduction where current water 

treatment technologies are discussed in general. A brief description of the principle of non-

destructive methods will be given. AOPs and EAOPs will be treated more rigorously. 

The second chapter describes the chemicals used during this study as well as the 

analytical methods applied to analyse samples from treated solutions. 

In the third chapter a comparative study between several anodes on the degradation 

and mineralization of a model pollutant amoxicillin is realised. 

The fourth and fifth chapters have been devoted to the effect of anode and cathode 

material on the electro-Fenton process efficiency. Sulfametazine, a pharmaceutical of 

antibiotic class, was used as model pollutant. The degradation and mineralization experiments 

were realized comparatively, and the formation and evolution of short-chain carboxylic acids 

and inorganic ions were investigated. 

1.2. WATER TREATMENT METHODS 
 

The socio-economic development of the countries is closely related to the chemical 

industry and to the production of many chemicals which causes the problem of water 

pollution. So in this frame many efforts have been done during decades in order to find 

effective technologies for the removal of toxic substances from contaminated waters. The 

current water technologies can be divided in two general groups; non-destructive (or 

separative) and destructive ones. We will describe briefly the non-destructive methods for 

polluted water treatment, whereas the destructive methods will be discussed in more details, 

since the topic of this work is about a destructive method for the removal of toxic organic 

compounds from polluted waters.  
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1.2.1. NON-DESTRUCTIVE METHODS 
 

The non-destructive methods consist on the removal of toxic substances from the polluted 

water without changing the nature of compounds, that means that these species pass from one 

phase to another but their initial chemical and physical properties remain unchanged. These 

are separation techniques. Separated pollutants are in a concentrated phase and will be treated 

by another technique for final elimination. Some of these techniques are as follows.  

 

1.2.1.1. Adsorption  
 

Adsorption is a process of separation of a substance from the liquid phase on a solid one, 

called adsorbent. The adsorption is based on the specific interactions between the adsorbent 

material surface and the molecules to be adsorbed. This is a separation technique used very 

frequently in chemical industry and in pollutants removal from waters73,74,75,76. The adsorption 

capacity of the adsorbent depends on the specific surface of the solid material, the pollutant 

concentration in solution and the affinity to interact between adsorbent surface and pollutant 

molecules.  

 One of the most exploited adsorbents in industry and in water remediation particularly, 

is the active carbon77,78,79 which can be obtained from many raw materials as for instance: the 

coco nuts, the wood, the bituminous oil etc. These materials are first carbonised and then 

activated. Activated carbon has very good textural (high porosity, large specific surface) and 

physicochemical (surface chemistry) properties that make it possible to explain its excellent 

adsorption ability80,81,82,83. Nonetheless, there are some difficulties accompanying water 

treatment with activated carbon related to the saturation of adsorbent and its elimination after 

use. Whereas it’s thermal or chemical regeneration is very expensive. 

1.2.1.2. Extraction 
 

Extraction is a separation technique based on the solubility difference of a pollutant in 

two immiscible liquid phases as for instance water and an organic phase, or liquid-solid84,85,86. 

The solvents can then be regenerated by distillation or consecutive extraction. The 

concentrated products after treatment can be recycled or burned. 
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1.2.1.3. Membrane filtration 
 

Undesirable compounds can also be removed from the water by membrane 

processes87,88,89,90,91,92,93,94,95. A membrane is a mediator which controls the transport of 

chemical species between two liquid phases it separates. When a driving force is applied over 

the fluids in a given direction the membrane will behave differently towards the transport of 

different species through it, depending on membrane and species properties. The pollutants 

separation is based on their affinity for the membrane, their dimensions (pore size) and 

electrical charge of molecules and ions. Among membrane processes we can distinguish 

microfiltration96,97, ultrafiltration98,99, nano-filtration100,101,102 and reverse osmosis100,103,104 

which differ in the ability to retain particles of different size. So, the choice of type of the 

membrane is related directly with the size of species to be retained on it. 

 Membrane filtration processes or physical separation and their efficacy depend on 

their porosity and permeability, its nature, and also on the size of the particles to be removed. 

There are several advantages attributed to membrane processes; the separations need small 

quantities of chemicals, automatable procedures, good selectivity and better water quality. 

But, some molecules, especially pesticides cannot be retained by all membranes105 thus 

representing a disadvantage. The relatively high cost of the membrane treatment is another 

inconvenience. Certain membranes retain bacteria but not viruses (except nanofilters) which 

are smaller than their porosity. 

1.2.1.4. Membrane distillation 
 

Membrane distillation is a separation technique employing a hydrophobic membrane which 

serves as a selective barrier for contaminants removal from water106,107,108,109. The driving 

force through the membrane is the pressure difference between the two sides of the membrane 

pores. The difference of partial vapour pressure is provided by the difference in the 

temperature. Volatile compounds evaporate, diffuse or convect across membrane pores and 

are condensed or removed on the opposite side of the system (pure water), whereas non-

volatile compounds are rejected (pollutants). Unlike in membrane filtration, in membrane 

distillation process no mechanical force is needed. In comparison with common distillation 

lower temperatures and pressures are required to attain a significant flux of mater through the 

membrane. Typical feed temperatures varies in the range 30°C -60°C, thus permitting the 

exploitation of waste or low-grade energy, as well as the use of alternative energy source such 

as solar or wind energy110.  
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1.2.2. DESTRUCTIVE METHODS 
 

These methods are called destructive methods because the organic pollutants are chemically 

transformed on other species then the initial compounds, generally the transformation 

proceeds until their conversion into carbon dioxide (CO2) and water (H2O). Commonly 

applied destructive methods include biological, thermal and chemical (AOPs) treatments. 

 

1.2.2.1. Biological methods 
 

 In the biologic technology the acting agent are bacteria that consume organics in the 

solution which serve as their nutrition source. Then, through the metabolism the organic 

material is transformed into cellular biomass which settles on the bottom of the reactor. There 

are two types of biological treatment; aerobic treatment111,112,113,114 which takes places in the 

presence of air and utilizes the bacteria (called aerobes) demanding molecular oxygen for the 

conversion of the organics into CO2, H2O and biomass, and anaerobic treatment115,116,117  

which is realised in the absence of air by bacteria (called anaerobes) which do not require the 

molecular oxygen to assimilate the organic impurities. The final products of organic 

destruction by anaerobic treatment are methane, carbon dioxide and biomass. This technology 

requires long residence time for microorganisms to degrade the pollutants particularly when 

pollutants show toxic activity118,119,120.  

 

1.2.2.2. Thermal method (incineration) 
 

Thermal treatment consists on the incineration of toxic wastes and it is a very effective 

method especially in case of small concentrated volumes. Nevertheless it is very expensive, 

needs storage and transport to incinerators, and presents considerable emission of hazardous 

compounds121. 

 

1.2.3. ADVANCED OXIDATION PROCESSES (AOPs) 
 

Other technologies to be mentioned are oxidation methods such as wet oxidation 

(which uses air or oxygen as oxidation agent), treatment using oxidizing agents like potassium 

permanganate, chlorine, hydrogen peroxide, and the so called advanced oxidation processes 

(AOPs) and electrochemical advanced oxidation processes (EAOPs) that are based on the in 
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situ production and reaction of a highly oxidizing agent, the hydroxyl radical. We will not 

discuss here about all these techniques, except for the two last ones which have been proven 

to be very effective on organic pollutants degradation in waters and especially the later that is 

related to the indirect electrochemical oxidation technique for polluted water remediation, 

called electro-Fenton process, which is the subject of this thesis. So, the following 

section/subsections will be devoted to the description of advanced oxidation processes giving 

the principal of work of each technique. 

 

1.2.3.1. THE REACTIVITY OF HYDROXYL RADICALS 
 

  Non-destructive methods do not give a complete solution for pollutants elimination 

because the material charge separated (concentrate) from contaminated water must be treated 

by thermal or chemical techniques, or be deposited somewhere, thus representing another 

problem of pollution to deal with. Considering this fact, efforts have been done to find more 

effective methods to improve the overall treatment process of pollutants. In this frame the 

advanced oxidation processes (AOPs)122,123,124,125,126,127,128,129 have emerged as effective and 

versatile techniques for environmental applications. There exist many advanced oxidation 

processes; all of them are based on the production and action of hydroxyl radicals, very 

oxidizing species that attack the most of organic compounds. Thus, they are distinguished 

only in the way of generation of hydroxyl radicals. These radicals are extremely unstable and 

react with organics130,131,132,133,134 in solution transforming them in less harmful products, like 

oxygenated organic compounds and low molecular organic acids. They are characterised with 

high non-selectivity which is an advantage for an oxidant used in wastewater treatment and 

pollution problems, but their application becomes difficult in case of the treatment of waters 

containing inorganic scavenging material. The rate constants for degradation reactions of 

organics with hydroxyl radical range between 107 mol-1 s-1 and 1010 mol-1 s-1. 

 Hydroxyl radicals are also found in the natural conditions, actually it was proven that 

the oxidation of hydrocarbons in troposphere involves the action of hydroxyl radicals as key 

oxidants135. Solar radiations on iron hydroxide complexes136, direct photolysis of nitrate and 

nitrite137,138 in natural waters and hydrogen peroxide139 can be natural sources of hydroxyl 

radicals. But the concentrations of these radicals are low at natural conditions in waters. 
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 Among the most powerful oxidizing agents used in polluted water remediation 

hydroxyl radicals have been selected as the most suitable one because they fully comply with 

some important environmental and practice requirements: 

 They do not introduce secondary pollution problems 

 They do not manifest any kind of toxicity 

 They are not corrosive for equipment 

 They are very powerful oxidizing agent  

 The control of their production is relative simple, especially in case of EAOPs. 

 Hydroxyl radical is one of the most oxidizing agents among the oxygenated radicals 

(Eo = 2.8 V/SHE in acidic media at 25oC). In high alkaline medium it is present in the form of 

its conjugated base O•-, pKa = 11.9 (reaction 1)140, and reacts slowly as a nucleophile whereas 

in acidic media it reacts as an electrophile. Its maximum absorption wave-length is at 225 nm 

with a molar extinction coefficient of 540 L mol-1 cm-1 at 188 nm140. These species diffuse 

very slowly and its diffusion coefficient is of the order of 2 x 10-5 cm2 s-1 140. 

 •OH + OH- �   O•- + H2O                                                                             (1) 

It is considered that hydroxyl radicals react in three types of reactions with organic, 

organometallic and inorganic materials which will be described further. 

1.2.3.1.1. Reaction type and mechanism of hydroxyl radicals 
 

 Advanced oxidation processes, principally are based on the chemistry of hydroxyl 

radicals (•OH) which are the principal intermediate reactive species responsible of oxidation 

of organic compounds. They react by three different mode of reaction141: 

 

•  Hydrogen abstraction (dehydrogenation)  

 Hydroxyl radicals can oxidize the organic compounds by abstraction of hydrogen 

atoms from saturated hydrocarbon chains creating radical sites. Then these sites can be 

attacked by oxygen. This process leads to a homolytic split of a C – H bond and the formation 

of the alkyl radical following to equation 2: 
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 RH + •OH � R• + H2O                                                                             (2) 

The R• radical generated this way react with molecular oxygen to give peroxide radicals 

ROO•, initiating a degradation reaction sequence that leads to the mineralisation of RH d140: 

 R• + O2 � ROO•                                                                                       (3) 

 ROO• + n (•OH/O2) � xCO2 +yH2O                                                       (4) 

 

•  Electrophilic addition on unsaturated bonds (hydroxylation) 

Hydroxyl radicals attack high electron density regions, like unsaturated bonds of 

aromatic compounds, alkenes and alkynes: 

ArX + •OH � HOArX•                                                                             (5) 

HOArX• + n (O2/
•OH) � HX + xCO2 + yH2O                                        (6) 

We can predict the possible hydroxylation sites of aromatic organic compounds 

according to orientation rules of electrophilic aromatic substitution given in the Table 1. 

Table 1. The orientation of hydroxylation reaction by substituents in aromatic 

compounds142. 

 

•  Electron transfer (oxydo-reduction) 

The electron transfer leads to the ionisation of the molecule. This mechanism becomes 

important when hydrogen abstraction and electrophilic addition are inhibited by multiple 

halogen substitution or steric obstruction. These reactions produce organic radicals which, by 

addition of O2, give peroxyle radicals initiating oxidative chain reactions that result in the 

mineralization of the initial compound: 

Orientation groups on ortho and 
para positions 

Orientation groups on meta positions 

Moderate and strong activators Strong desactivators 

-NH2, -NHR, -NR2, -NHCOR,  
-OH, -OR 

-NO2, -CF3, -NR3
+, -COOH,  

-COOR, -COR, -SO3H, -CN 
Weak activators Weak deactivators 

Alkyles, phenyls -F, -Cl, -Br, -I  
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RX + •OH � RX•+ + OH-                                                                       (7) 

RX•+ + n (O2/
•OH) � HX + xCO2 + yH2O                                             (8) 

 

1.2.3.1.2. Reaction rate constant between •OH and organic compounds 
 

The reaction of hydroxyl radicals with organic substrate (S) obeys the second order 

low of kinetics: 

S + •OH � R• + (OH-/H2O)                                                                    (9) 

So we can write, for decay rate of S, a differential equation describing the decay of the 

substrate concentration with the time as follows: 

 − ����

��
= ��	
•����                                                                                   (10) 

Where k is the reaction rate constant between hydroxyl radicals and organic substrate, S. 

The rate determining step during the process of organics oxidation is the generation of 

hydroxyl radicals, because this reaction is relatively sluggish in comparison with their 

consumption by organic molecules and intermediate products created during the degradation 

of the initial compound. These reactions are very fast with reaction rate constants of 107 mol-1 

L s-1 to 1010 mol-1 L s-1 

 Under these conditions the hydroxyl radical concentration can be considered to be 

quasi-constant with the time so we can write: 

 
���•�

��
= 0                                                                                                 (11) 

The concentration of •OH being constant we can rewrite the equation (10) in this way: 

 − ����

��
= �������                                                                                      (12) 

where kapp is the apparent rate constant as follows: 

 ���� = ��	
•�                                                                                        (13) 

If we rearrange the equation (12) and integrate it; 
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 − �
����

���
�

��
= ���� � ��

�
�                                                                            (14) 

we obtain the equation which describes the kinetics of degradation of a given substrate S by 

hydroxyl radicals •OH: 

 ��
���

����
= −�����                                                                                    (15) 

S and S0 are the concentration of S at time t = 0 and at a giving time t. The plot of ��
���

����
 

versus � gives a straight line. Then, from the slope of this line we can estimate experimentally 

the pseudo-first order apparent rate constant kapp for the oxidation reaction of S. 

 The second order reaction rate constant (the absolute rate constant of the reaction 

between S and •OH) can be then determined by the competition kinetic method. It is based in 

the competition for •OH radicals between the substrate S with a constant ks to be determined 

versus a reference compound S’ for which the rate constant ks
’ is well known143. Assuming 

that the degradation of both compounds S and S’ results only from the •OH the decrease of 

concentrations can be given by following equations: 

− ����

��
= �����	
•����                                                                             (16) 

− �����

��
= �′����	
•���′�                                                                           (17) 

After we have integrated these equations we can combine and arrange them to obtain the 

following one: 

 ��
����

����
= ��

��
� 	��

!��
� "

!��
�"

                                                                                       (18) 

Thus, knowing ks
’ the rate constant for substrate S, ks can be calculated from the slope of the 

graph  ��
����

����
 versus ��

!��
� "

!��
�"
. This method will be employed to determinate the absolute rate 

constant for the reaction of pollutant by •OH. 

 Some rate constant values for the reaction of •OH with organic compounds are given 

in the table 2144. 
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Table 2. Rate constants of the reactions of some organic compounds with hydroxyl radicals.  

 

 

 According to this table, hydroxyl radicals react more rapidly with unsaturated 

compounds than with aliphatic organic acids that appear in the solution as by-products of the 

oxidation of compounds with higher molecular mass. The attack of hydroxyl radials on 

aromatic compounds results in the formation of cyclohexadyenyl radicals. The most easily 

attacked positions of aromatic ring that contain an electron donor substituent are the ortho and 

para positions of an electron donor substituent. It is also important to emphasise that hydroxyl 

radical can react with inorganic substances and water treatment reactive either. But generally 

the reaction with inorganic compounds is slower than that with organic ones (Table 3). 

 

 

 

Compound k (mol-1 L s-1) 

2.4.6-Trinitrotoluene (TNT) 2.06x1010 

2-Methylphenol 1.1x1010 

4-Methylphenole 1.2x1010 

N-Phenylhydroxylamine 1.5x1010 

Azobenzene 2x1010 

Benzene 7.9x109 

Toluene 5.1x109 

Phenol 6.6x109 

4-Nitrophenol 3.8x109 

Aniline 1.5x109 

Atrazine 2.4x109 

Phtalic anhydride Anhydride Phtalique  9.1x108 

Glyoxilic acide  2.3x108 

Oxalic acide  1.4x107 

Formic acide  8.2x107 

Acetic acide  2.8x107 
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Table 3145,146 Reaction rate constants of hydroxyl radicals with some inorganic compounds. 

 

 

  

 

 

 

 

Moreover, the oxidation pathway of organic compounds is very complex including many 

types of reactions: 

(I) Initiation reaction where radical species R• are generated; 

RH + •OH � R• + H2O                                                   (19) 

(II)  Propagation stage where radicals react with other organic molecules or 

with dissolved oxygen in the solution; 

R• + R’H � RH + R’•                                                     (20)          

R• + O2 � ROO• 

 

(III)  Termination stage when radicals recombine between them; 

R• + R• � R–R                                                                (21) 

R• + •OH � R–OH                                                          (22)  
•OH + •OH � H2O2                                                         (23) 

 

 Other oxidants like; H4RnO6, XeF, OF2 are extremely reactive, harmful in their 

reduced state and tend to form carcinogenic trihalomethanes with organic materials147,148. 

Thus only oxygen based oxidants which do not contain neither metal nor halogens are suitable 

for water treatment. 

 

 

 

Compound k (mol-1 L s-1) 

HSO4
- 3.5-1.7x109 

Cl- 4.3x109 

ClO- 8.8x109 

Cu2+ 3.5x108 

Fe2+ 3.2x108 

H2O2 2.7x107 
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AOP

Heterogeneous 
photocatalysis

TiO2 / UV

Ozonation

O3

O3 / UV

O3/H2O2, 
O3/H2O2/UV ,

O3/Fe2+, O3/Fe2+/UV

Hydrogen peroxide 
based AOP

H2O2/UV

H2O2 / Fe2+

(Fenton's reaction)

H2O2 / UV / hνννν
(Photo-Fenton)

Electrochemical 
advanced oxidatin 

processes

Anodic oxidation

Electro-Fenton

1.2.3.2. METHODS FOR HYDROXYL RADICAL GENERATION: A OPs 

As already pointed out, there exist several ways to generate hydroxyl radicals. The 

possibility to generate •OH in different ways makes AOPs very versatile techniques because a 

proper technique can be applied in order to comply with the specific treatment requirements. 

Nonetheless, AOPs make generally use of chemical reagents as H2O2 or O3, more economical 

ways of treatment must be considered123. A combination of AOPs with other economically 

more acceptable water treatment technologies as with biological techniques can be also 

applied149,150,151. 

Concerning the possibility of AOPs application pollution load, generally expressed as 

chemical oxygen demand (COD), is a very important factor because it indicates if waste water 

with a given content of COD can be suitably treated by AOPs. In fact, only wastes with 

relative low COD (5.0 g L-1or less)123 can be effectively treated by means of AOPs since 

wastes with higher COD content will consume large amounts of reactants. 

A classification scheme of advanced oxidation processes is given below (Fig. 1) and 

then the description of each AOP model separately, comprising their principles and the 

reaction mechanisms. AOPs can be divided in four principal groups depicted in the schema 

below. 
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                          Fig. 1. Tentative classification of advanced oxidation processes. 

 

1.2.3.2.1. Heterogeneous photocatalysis (TiO2/UV)  
 

This technique makes use of semi-conductors and UV light to generate hydroxyl 

radicals (•OH) as active reagent in pollutants degradations152. According to the band theory of 

solids there are available energy levels for electrons in valence band of solids. These bands 

are created from atomic orbitals such as 1s, 2s, 2p orbitals and so on. If a band is created from 

partially filled orbitals in separated atoms, the resulting band will be only partially filled too. 

So, there will be a number of unfilled orbitals in the band for electrons to move into. The 

electrons can easily move from one orbital to another, and the solid will be an electrical 

conductor. If the highest occupied band in a crystal is completely filled and the band gap 

energy is too high, there will be no way for electrons to move and the crystal will be an 

insulator.  

Unlike insulators, in semi-conductors there is a lower band gap between the highest 

energy of the filled band in the ground state and the lowest energy of the upper band that is 

empty in the ground state. If the band gap is not larger compared with kBT (kB Boltzmann 

constant, T temperature), some electrons from lower-energy band will occupy states from 

upper band and the crystal will conduct some electricity. This characteristic of semi-

conductors enables them to be suitable for different applications. In this section will be 

discussed their involvement as catalyst in photo catalytic degradation  of pollutants. 

Heterogeneous photocatalytic degradation of organic pollutants, as the case of 

TiO2/UV, has been subject of many studies153,154. Among many catalysts tested so far, TiO2 

seems to be the most attractive owing to some attributes such as good performance, low cost 

and high stability155,156,157. As mentioned above the electronic structure of semi-conductors is 

constituted of available energy levels called bands; the lower one which is filled with 

electrons is called the valence band and the upper one called the conducting band. If the semi-

conductor particles are exposed to an energy source as UV radiation exceeding the energy of 

band gap the electrons will be excited from the valence band to the conducting band leaving a 

positive hole (h+) in the valence band and an electron (e-) in the conducting band. This process 

is shown on the figure 2. 
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Fig. 2. Hole-electron pair generation during heterogeneous photocatalysis with TiO2 

and the mechanism of action on organic molecules. 

 

TiO2 + hν � e- + h+                                                                               (24) 

The photon energy must be exactly of the value needed to excite electron to the 

conducting band in order to avoid its interaction with other matters in the solution. The band 

gap energy for TiO2 is 3.02 eV which is equivalent to a 400 nm radiation wavelength152. 

 The hole in the valence band can react with adsorbed water or hydroxide ions at the 

surface to form hydroxyl radicals (reactions (25) and (26)). On the other hand, conducting 

band electron can reduce adsorbed oxygen to form hydroperoxide radicals which further are 

transformed into hydroxyl radicals123,158. 

 TiO2(h
+) + H2O(ads) � TiO2 + •OH(ads) + H+                                          (25) 

 TiO2(h
+) + OH-

(ads) � TiO2 + •OH(ads)                                                   (26) 

Whereas from the O2
•- produced in reaction (27) hydrogen peroxide can also be generated 

(reaction (29): 
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TiO2(h
+) + O2 � TiO2 + O2

•-
(ads)                                                            (27) 

O2
•-

(ads) + H+ � HO2
•
(ads)                                                                        (28) 

2HO2
•
(ads) � H2O2(ads) + O2                                                                    (29) 

Thus, more hydroxyl radicals can be produced from H2O2 generated this way159,160: 

 H2O2 + hν � 2 •OH                                                                                (30) 

 H2O2 + O2
•- � •OH + OH- + O2                                                             (31) 

 H2O2 + e- � •OH + OH-                                                                          (32) 

Some adsorbed substrate can be directly oxidized by electron transfer at the catalyst (TiO2) 

surface, because the e- and h+ potentials are sufficient to oxidise many organic molecules; 

+0.5 V to -1.5 V versus SHE and +1 to 3.5 V versus SHE respectively156,161. 

 TiO2(h
+) + S(ads) � TiO2 + S•+

(ads)                                                            (33) 

Unfortunately a considerable part of electron-hole pairs recombine reducing the quantum 

yield. 

 TiO2 has been largely studied at concentration of order 1g L-1 to 5 g L-1. This catalyst 

can be utilised in suspension form or immobilised162,163. It is biologically and chemically 

inert, insoluble and cheaper than other catalyst as ZnO, Fe2O3, CdS and ZnS. Currently there 

are many research on the fixation of TiO2 on various support to avoid its separation from 

water after treatment. 

1.2.3.2.2. UV-photolysis  
 

The degradation of organics in solutions can be also realised by exposing the sample 

to UV irradiation source164,165. Direct photolysis involves the interaction of pollutant 

molecules with light to bring about their fragmentation in intermediates as follows; 

R + hν � S                                                                                               (34) 

S + hν � CO2 + H2O                                                                               (35) 

It has been shown rapid degradation of organic pollutants in dilute solutions166. However, the 

most of these methods require long residence time and considerable energy consumption. 



 62  

 

They are less effective than methods where radiation is combined with hydrogen peroxide, 

ozone or heterogeneous catalyst. 

 

1.2.3.3. METHODES BASED ON OZONE 

1.2.3.3.1 Ozonation 

 The development of large scale ozone generators along with reduced operating cost 

has enabled its use for the treatment of effluents containing hazardous pollutants167,168,169,170. 

Compared to some other oxidizing agents it is more efficient and not harmful for most of 

living organisms, because no intruder substances are added in the treated water. 

 Ozone is an oxygen allotrope (O3). It boils at -112 oC and is an explosive and highly 

reactive endothermic blue gas (∆fG
o = +163 kJ mol-1). It decomposes into molecular oxygen; 

 2O3(gas) � 3O2(gas)                                                                                 (36) 

but this reaction is thermodynamically non spontaneous in the absence of UV light or a 

catalyst since it requires energy to occur. 

 Ozone has a sharp odour from which is derived its Greek name “Ozein” that means “to 

smell”. It is a diamagnetic molecule. The ozone molecule is angular and has a bond angle of 

117o 171. Gaseous ozone is blue, liquid ozone is blue-black, and solid zone is violet-black. 

Ozone has low water solubility and it is relatively unstable in water undergoing a pretty fast 

decomposition. Its half life time at 20 oC is between 20-30 min 172, in basic media this 

decomposition is accelerated by the presence of OH- 173. 

Ozone is a very strong oxidant with a redox potential of 2.07 V/SHE (at 25oC). It is 

exceeded in oxidising power only by F2, 
•O, •OH and perxenate (XeO6

4-) ions. Thus ozone can 

oxidize many organic compounds and this makes it very useful in water treatment.  

 O3 + 2H+ � H2O + O2                                                                           (37) 

But for the usage of ozone it must be produced over site where it will be used in order to 

avoid the transportation risks as it is explosive. Its formation reaction can be written; 

 3O2(gas) � 2O3(gas)                                                                                   (38) 
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This reaction is endothermic and some energy is required to bring it about. As the ozone is 

unstable at high temperatures the energy must be provided from a radiation or electricity 

source. In practice it is produced by electrical discharges. 

 The degradation mechanism of organics by O3 in waters depends on the pH. At low 

pH the direct oxidation will take place whereas at higher pH the indirect process by 

intermediate of hydroxyl radicals is present158,160. If the ozonation is developed under acidic 

conditions the decomposition of ozone which is caused by OH- ions160,174, will be slower and 

consequently the production of hydroxyl radicals will be limited. So the main pathway in 

organics destruction remains the direct oxidation which is selective and quite slow with 

kinetic rate constants of 1-103 mol-1 L s-1. In direct oxidation, ozone reacts with organic’s 

functional groups through electrophilic, nucleophile, and dipolar addition reactions160,174. The 

indirect oxidation is developed through hydroxyl radical formation which reacts immediately 

and non-selectively with organic matter. This process is initiated by hydroxide anions 

(reaction (39) and is much more rapid than the direct oxidation and occurs at high pH values 

following a very complex pathway described below160; 

 Initial stage: 

 O3 + OH- � HO2
- + O2                              k = 70 mol-1 L s-1                       (39) 

 O3 + HO2
- � •OH + O2

•- + O2                   k = 2.8 x 106 mol-1 L s-1             (40) 

 Propagation stage:  

 O3 + O2
•- � O3

•- + O2                             k = 1.6 x 109 mol-1 L s-1                 (41) 

 O3
•- + H+ �    HO3

•                                       pKa = 6.2                                   (42) 

 HO3
• � •OH + O2                                   k = 1.1 x 108 mol-1 L s-1                (43) 

 •OH + O3 � HO4
•                                    k = 2.0 x 109 mol-1 L s-1               (44) 

 HO4
• � HO2

• + O2                                  k = 2.8 x 104 mol-1 L s-1                (45) 

 HO2
• �   O2

•- + H+                                     pKa = 4.8                                      (46) 

 Termination stage: 

 •OH + CO3
2- � OH- + CO3

•-                    k = 4.2 x 108 mol-1 L s-1                (47) 
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 •OH + HCO3
- � OH- + CO3

•                   k = 1.5 x 107 mol-1 L s-1                (48) 

 Pollutants degradation:  

 R + •OH � S (reaction intermediates)                                                            (49) 

 S + •OH � CO2 + H2O                                                                                   (50) 

Normally, at pH < 4 the direct oxidations dominates, at 4 < pH < 9 both mechanism are 

present, and at pH higher than 9 the indirect pathway is the principal reaction. Further, 

intermediate’s nature will depend on that whether the degradation will be brought about by 

direct or indirect pathway. Ozonation for water treatment is limited by ozone low solubility in 

water and its explosive nature. 

1.2.3.3.2. Ozone photolysis (O3/UV) 
 

This is an effective method for the abatement of refractory and toxic compounds as 

many works have shown so far175,176,177,178,179,180,181. In this method ozone saturated aqueous 

solutions are irradiated with UV-C light of λ = 254 nm in order to produce the hydroxyl 

radicals. The molar absorption coefficient of ozone is 3600 L mol-1cm-1 much higher than the 

molar absorption coefficient of hydrogen peroxide, thus allowing a quantitative interaction 

between ozone and UV radiation. 

 Photolysis of ozone will lead to the formation of the hydrogen peroxide (reaction (51)) 

which is decomposed into 2 hydroxyl radicals under UV-C irradiation (reaction (52)): 

 H2O + O3 + hν � H2O2 + O2                                                                   (51) 

 H2O2 + hν � 2•OH                                                                                   (52) 

Moreover, hydrogen peroxide intensifies the ozone decomposition into hydroxyl radicals160: 

 2O3 + H2O2 � 2•OH + 3O2                                                                       (53) 

 This method depends on the quantity of ozone supplied into the solution and the wave 

length of radiation182. It is limited by the turbidity of the solution since the light will be 

prevented to come in contact fully with the solution leading to some loss of the radiation. 
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 1.2.3.3.3. Ozonation combined with homogeneous catalysis (O3/H2O2, O3/H2O2/, 
O3/Fe2+, O3/Fe2+/UV) 
 

 The oxidizing power of ozone and ozone/UV reagents can be enhanced considerably 

by the use of some catalysts. The addition of homogeneous catalyst as; H2O2, has led to the 

shorter residence time for the treatment of pollutants183,184,185,186,187. Ozone reacts with H2O2 

when it is present in solution in the form HO2
- to give hydroxyl radicals, whereas its reaction 

with the undissociated form H2O2 is very sluggish (k < 0.01 mol-1 Ls-1) so it can be neglected. 

 O3 + HO2
- � •OH + O2

- + O2                                                                   (54) 

H2O2 + O3 � H2O + 2O2                                                                         (55) 

Other interesting catalysts to be combined with ozone are iron (II) and iron (III) in absence or 

presence of UV light188,189,190. 

1.2.3.4. HYDROGEN PEROXIDE BASED AOPs 

1.2.3.4.1. Hydrogen peroxide photolysis (H2O2/UV) 
 

 Both, H2O2 and UV irradiation can be used separately to achieve the degradation of 

some contaminants, but their combination gives a more effective mean for water contaminants 

treatment191,192. UV irradiation of 200-280 nm (with λmax = 260 nm) possesses the necessary 

energy to induce the homolytic decomposition of hydrogen peroxide193,194 producing hydroxyl 

radicals. 

 H2O2 + hν � 2 •OH                                                                                (56) 

In this case the main oxidant acting on pollutants degradation is hydroxyl radical, implying 

that the rate of oxidation depends on the •OH production rate. But this reaction is limited by 

the low absorption coefficient of H2O2 (ɛ = 18.6 mol-1 L cm-1 at λmax = 260 nm) However, it 

was found that the rate of H2O2 photolysis is pH dependent and it increases at high pH values. 

This happens because at high pH the peroxide anion HO2
- may be formed which shows a 

higher molar absorption coefficient (ɛ = 240 mol-1L cm-1) 195 at 254 nm than H2O2. 

 HO2
- + hν � •OH + (1/2)O2

•-                                                                  (57) 

The presence of other species in the solution which absorbs the radiation and turbidity reduce 

the quantum yield of reactions (56) and (57) and consequently the efficacy of pollutants 

removal. 
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This method has already been commercialised because of its relatively low economical 

cost.  

 

1.2.3.4.2. Fenton’s reaction 
 

This technique is based on hydrogen peroxide action including catalytic amounts of 

Iron (II) salts. The use of this mixture of reagents originates from early works of Fenton196 

concerning the oxidation of tartaric acid. When in the tartaric acid solution was added iron 

sulphate and hydrogen peroxide followed by alkalisation it got violet coloured. So, Fenton 

proposed this reaction as an identification test for tartaric acid. But the use of this mixture of 

reagents, H2O2/Fe2+ nowadays called the Fenton’s reagent, is considered for the oxidation of 

organic compounds began later by 1930s after a radical mechanism for the decomposition of 

H2O2 was proposed197. Afterwards, the Fenton’s reagent for the use in destruction of toxic 

organic compounds became very frequent132,198,199,200,201,202,203,204.  

It has been accepted that Fenton’s reaction includes a series of reactions initiated by 

the principal reaction between H2O2 and Fe2+ in acid medium given below; 

H2O2 + Fe2+  � Fe3+ + •OH + OH-                       k = 63 L mol-1 s-1       (58) 

The generation of hydroxyl radicals (•OH) during this reaction has been defined205 and 

confirmed by different methods such as chemical probes or spectroscopic techniques namely 

spin-trapping206,207. Also by means of pulse radiolysis, many works concerning rate constants 

of the reactions involved in Fenton’s chemistry have been carried out208. 

 For the Fenton’s reaction to take place, only small quantities of iron salts are needed 

because iron (II) is regenerated from the so-called Fenton-like reaction between excess of 

hydrogen peroxide and iron (III) formed by reaction (59): 

 Fe3+ + H2O2 � Fe2+ + HO2
• + H+                                                          (59) 

This is not a direct reaction as iron (III) firstly forms an adduct with hydrogen peroxide, 

reaction (60) and then this species gives the regenerated iron (II) and hydroperoxyl radical 

HO2
• (reaction (61)): 

 Fe3+ + H2O2 � [Fe(HO2)]
2+ + H+                k = 3.1x10-3 L mol-1 s-1      (60)   

 [Fe(HO2)]
2+ � Fe2+ + HO2

•                         k = 2.7x10-3 L 3mol-1 s-1     (61) 
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Hydroxyperoxyl radicals HO2
• produced in this reaction have less oxidation power compared 

•OH and do not react strongly with organic molecules209. Considering reaction rate constants 

we can see that reaction (59) is much slower than Fenton’s reaction (58), and consequently 

Fe2+ regeneration due to this reaction is not very rapid. Anyways, Fe2+ ion can be regenerated 

due to some other very rapid reactions: as Fe3+ reduction by HO2 
• reaction (62), a reaction 

(63) with an organic radical formed during initial organic molecule degradation by •OH and a 

reaction (64) with a superoxide anion (O2
•-) 198,210.  

 Fe3 + HO2
• � Fe2+ + O2 + H+                       k = 2x103 L mol-1 s-1           (62) 

 Fe3+ + R• � Fe2+ + R+                                                                               (63) 

 Fe3+ + O2
•- � Fe2+ + O2                               k = 5x107 L mol-1 s-1             (64) 

The species which contribute in Fe2+ regeneration are produced in reactions denoted 

below140,211,212: 

 H2O2 + •OH � H2O + HO2
•-                       k = 2.7x107 L mol-1 s-1           (65) 

 HO2
•- � H+ + O2

•-                                       pKa = 4.8                               (66) 

 RH + •OH � R• + H2O                               k = 107-109 L mol-1 s-1            (67) 

 ArH + •OH � ArHOH•                              k = 108-1010 L mol-1 s-1           (68) 

ArHOH• + O2 � ArOH + HO2
•-                                                                (69)   

Although these reactions enable the Fenton’s reaction to proceed for a period of time, some of 

them play also a negative role towards the Fenton’s reaction rate. In the reactions (59) and 

(65) Fe3+ and •OH act as scavengers of H2O2 destroying it in competition with reaction (58). 

The organic radical R• participates in Fe2+ regeneration but also in Fe2+ oxidation by reaction 

(70), along with dimerization reaction (71):  

 R• + Fe2+ + H+ � RH + Fe3+                                                                   (70) 

 R• + R• � R-R                                                                                        (71) 

Some other reactions involved in Fenton’s chemistry are also141: 

 Fe2+ + •OH � Fe3+ + OH-                            k = 3.2x108 dm3mol-1s-1         (72)  
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 Fe2+ + HO2
• + H+ � Fe3+ + H2O2               k = 1.2x106 L mol-1 s-1         (73) 

 Fe2+ + O2
•- + 2H+ � Fe3+ + H2O2               k = 1.0x107 L mol-1 s-1          (74) 

 O2
•- + HO2

• + H+ � H2O2 + O2                  k = 9.7x107 L mol-1 s-1        (75) 

 HO2
• + HO2

• � H2O2 + O2                         k = 8.3x105 L mol-1 s-1       (76) 

 HO2
• + •OH � H2O + O2                            k = 7.1x109 L mol-1 s-1       (77) 

 O2
•- + •OH � OH- + O2                              k = 1.01x1010 L mol-1 s-1      (78) 

 •OH + •OH � H2O2                                    k = 6.0x109 L mol-1 s-1        (79) 

The inhibiting role of these reactions restrict the values of several experimental variables, for 

instance the occurrence of reaction (72) decreases the concentration of Fe2+ ions in the 

medium213,214 and along with the reaction (65) they are the major parasitic reactions that 

decrease the oxidation power of Fenton reagent. Other reactions (75-79) are not significant 

because of the relatively low presence of radical species in the solution in comparison with 

other non-radical molecules. 

 It has been proven that radical scavengers play an important role in the rate of 

Fenton’s reaction. Such species are chloride, sulphate and nitrate ions215. Anyways, in many 

studies this behaviour has not been observed. The presence of some other oxidizing agents has 

also been pointed out216. There have been some experimental works which have brought some 

evidence over the existence of high-oxidation state iron complexes under certain 

conditions217. So, the formation of mononuclear Fe4+ oxo-complex was proposed218, which 

can oxidise organics only by electron transfer: 

 Fe2+ + H2O2 � [Fe(OH)2]
2+ � Fe3+ + •OH + OH-                                          (80) 

Thus, researchers found an agreement between hydroxyl radical and ferryl ion-complex 

mechanisms predominating one or other depending on the particular operating conditions. 

The co-generation of •OH and high-oxidation state oxo-iron complex has been demonstrated 

by time-resolved laser flash photolysis spectroscopy219: 

 [Fe3+-OOH]2+ � (Fe3+-O• �   Fe4+=O) + •OH                                                   (81) 
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The [Fe3+-OOH]2+ is an excited state species and the overall reaction can be interpreted as an 

intraligand reaction. On the basis of these results it has been proposed that ferryl formation in 

secondary reactions under classical Fenton condition cannot be ruled out. 

The Fenton process efficiency is depended of many experimental variables141, as: pH, 

[Fe2+], [H2O2] and temperature. The concentrations of Fe2+ and H2O2 are the most 

fundamental parameters. The efficiency of the process is strongly related to the solution pH. 

The most favourable pH values for the Fenton reaction to proceed are 2.8 ≤ pH ≥ 3.0 because 

at these values the majority of the total iron species in the medium are present in the form of 

Fe2+. When the pH is lower than 2.8 the predominant species of iron present in the solution is 

Fe3+ as [Fe(H2O)6]
3+ or barely Fe3+, deteriorating reaction efficiency. At pH = 1 oxygen 

concentration does not change, and this probably because of the stabilisation of H2O2 with H+ 

in H3O2
+ (solvation of H+ with H2O2) which reduces the reaction with Fe2+. The Fenton’s 

reaction will also slow down when the pH exceeds the 0 value of pH 3.5. In the case of pH > 

5.0, iron ions will precipitate as Fe(OH)3 thus the catalyst will be removed from the solution 

and consequently the Fenton reaction efficiency slows down. At pH = 4.0 hydroperoxy 

complexes such as [Fe(HO2)2]
+ and [Fe(OH)(HO2)]

+ are the dominant forms of iron. 

Temperature is another influencing parameter. The rate of Fenton’s reaction increases with 

the temperature but simultaneously the degradation of hydrogen peroxide in O2 and H2O does. 

The optimum concentrations of catalyst Fe2+ and H2O2 are depended on each other and 

experiments are done in the basis of optimisation of their ratio instead of studying them 

separately.  

There are some advantages141,220,221  related to the Fenton treatment of polluted waters, 

among them we can mention the following advantages: 

•  Simple and easy operation. 

•  Easy to handle chemicals. 

•  No energy consumption. 

Whereas as disadvantages can be highlighted the followings:  

•  Relatively high cost and risks related to the transport and storage of H2O2. 

•  High amounts of chemicals to acidify the effluents at favourable pH for the 

Fenton reaction and neutralise the effluent after the treatment. 

•  High iron sludge quantities at the end of treatment. 
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•  The complete mineralisation is not attained because of the formation of some 

iron (III) complexes with carboxylic acids that cannot be destroyed by bulk 

hydroxyl radicals. 

Anyways, some of these drawbacks can be reduced. Iron sludge can be prevented by using 

solid iron-coating catalysts such as zeolites, alumina, iron-modified clays, ion-exchange resins 

etc. On the other hand to improve the efficiency of Fenton's process can be coupled with other 

techniques such as biological oxidation, membrane filtration, coagulation and light assisted 

Fenton (photo-Fenton) process222,223,224,225,226. 

1.2.3.4.3. Photo-Fenton (H2O2/Fe2+/hv) 
 

Fenton’s process for polluted water treatment can be improved by combining with UV 

photolysis in order to enhance the degradation reaction rate227,228,229. When the solution under 

treatment with Fenton’s reagent is irradiated with UV light, supplementary hydroxyl radicals 

are obtained from reaction (56) resulting to the formation of more radicals in the medium. 

Apart this Fe2+ liberated from [Fe(OH)]2+ will catalyse the Fenton’s reaction (reaction (82)) 
230: 

[Fe(OH)]2+ + hν � Fe2+ + •OH                                                                    (82) 

thus avoiding large accumulation of Fe3+ and providing Fe2+ necessary. This reaction allows 

maintaining Fenton’s reaction operative for longer time. The quantum yield for the reaction 

(82) was found to be 0.14-0.19 at 313 nm 136. 

 Additionally, UV irradiation can degrade some oxidation by-products or break down 

the bonds (reaction 83) 230 in complexes formed between iron and carboxylic acids supporting 

the regeneration of Fe2+. 

 Fe(OOCR)2+ + hv � Fe2+ + CO2 + R•                                                          (83) 

For example complexes that iron(III) can form with carboxylic acids such as Fe(C2O4)
+, 

Fe(C2O4)2
- and Fe(C2O4)3

3- can be decomposed by irradiation of wavelengths 250-280 nm 

according to the reaction (84) 141: 

 2 Fe(C2O4)n
(3-2n) + hv � 2 Fe2+ + (2n-1)C2O4

2- + 2 CO2                               (84) 

 The use of irradiation lap (to provide artificial light) with restricted life time is a 

drawback of this process as well as considerable hydrogen peroxide concentration needed. Its 
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cost can be reduced if the UV radiation is replaced with solar light as it has been shown in 

some works231,232,233. 

 

1.2.3.5. ELECTROCHEMICAL METHODS 
 

Electrochemical destruction of pollutants in aquatic medium involves, in the destruction 

process, the action of electrons, coming from a current source. The electrochemical treatment 

is brought about in an electrochemical cell without the use of specific expensive and relatively 

dangerous reagents. This permits a very good compliance with environmental requirements. 

Two electrochemical methods are distinguished:  

I. Direct oxidation of organic molecules on the anode surface which includes two 

mechanisms234 (explained below).  

II.  Indirect oxidation realized by in-situ generation Fenton’s reagent on the cathode 

compartment called electro-Fenton process235. 

These two methods constitute the subject of this thesis and will be discussed in the two 

subsequent sections. 

1.2.3.5.1. Anodic oxidation 
 

During the anodic oxidation of organic pollutants the molecules can be oxidized by 

two principal mechanisms; direct electrochemical reaction via electron transfer between 

electrode (anode) and molecule, and indirect oxidation via oxidants generated on the anode, 

called also mediated oxidation236. The direct electrochemical oxidation occurs below the 

oxygen onset potential and it subsides above it. At the oxygen evolution potential, organics 

oxidation proceeds in competition with oxygen evolution reaction (OER). Thus, the 

degradation of pollutants will depend on the mechanism of OER which strongly varies with 

the electrode (anode) material237,238,239. Generally, anodes exhibiting a high overpotential for 

OER show better efficiency on organics degradation. Many electrode materials have been 

studied for their electro-catalytic properties towards organics oxidation 

efficiency240,241,242,243,244,245,246,247,248,249. One of the anodes representing low overpotential for 

OER is iridium dioxide IrO2 based dimensionally stable anode (DSA)250. The evolution of 

oxygen on these types of anodes is thought to occur in three steps and involves the change of 

oxidation state of the metal oxide during water discharge according to the simple reactions 
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(85) - (87)251. The first step is the charge transfer by the discharge of water, with the 

formation of active species on active sites of the anode surface: 

M + H2O � MOx(OH) + H+ + e-                                                                (85) 

The second step is a second electron transfer step with the deprotonation of the adsorbed 

hydroxy species: 

 MOx(OH) � MOx+1 + H+ + e-                                                                    (86) 

And the third one is the formation of oxygen molecules and the regeneration of two active 

sites on the surface: 

 MOx+1 � MOx + ½ O2(g)                                                                             (87) 

In another work252 a similar scheme for the oxidation of isopropanol on IrO2 based anodes 

was proposed. Firstly the IrO2 is oxidised to IrO3 via hydroxyl radicals according to the global 

reaction (88): 

 (IrO2)s + H2O � (IrO3)s + 2H+ + 2e-                                                           (88) 

Then the chemical oxidation of adsorbed isopropanol to acetone by the electrogenerated IrO3, 

reaction (89): 

 (IrO3)s + (CH3CHOHCH3)ads � (IrO2)s + (CH3COCH3)ads + H2O           (89) 

And also, oxygen evolution in competition with reaction (89) via decomposition of surface 

IrO3 according to the reaction (90): 

 (IrO3)s � (IrO2)s + ½ O2(g)                                                                            (90) 

The OER is the prevailing process leading to low degradation efficiencies and loss of 

electrical energy.  

 At high oxygen evolution potential electrodes the organics oxidation process follows a 

different mechanism. The most remarkable high oxygen evolution overpotential electrode is 

boron doped diamond (BDD)253. This electrode is prepared by chemical vapour deposition of 

methane mixed with metallic boron or B(OCH3)3 as dopant254,255. Titanium, niobium and 

silicon and other materials can be used as substrate for the diamond deposition242,256,257. The 

water discharge on BDD electrode is thought to occur through a path giving hydroxyl radicals 
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as intermediate species258. A simplified mechanism for the organics oxidation on boron doped 

diamond electrodes has also been proposed259: 

 First the discharge of water molecules producing hydroxyl radicals physisorbed on 

BDD surface as very reactive oxidising agents (reaction (91)): 

 BDD + H2O � BDD(HO•) + H+ + e-                                                              (91) 

Then the oxidation of organic molecules: 

 BDD(HO•) + R � BDD + ROH• (or R• + H2O)                                             (92) 

And the competitive oxygen evolution reaction: 

BDD(HO•) � BDD + ½ O2 + H+ + e-                                                              (93) 

BDD electrode is considered a high overpotential oxygen evolution anode, so the oxygen 

evolution reaction is much less intensive in comparison with case of DSA type anodes. 

Nevertheless, a considerable electrical energy is wasted because of OER. Hydroxyl radicals 

generated cannot oxidize diamond neither they are chemically adsorbed on diamond surface 

but they are physically adsorbed. The fact that they are loosely adsorbed on the electrode 

surface let them quasi free so that they can react with other substances which are found in the 

vicinity of the electrode. So the oxidation of organic pollutants by hydroxyl radicals takes 

place only at the electrode surface because the diffusion coefficient of hydroxyl radicals is 

very low140 (because of its high reactivity).  

The pollutant’s degradation takes place in the bulk solution also via other oxidants generated 

on the anode260,261. Other oxidants originate from the supporting electrolyte. If sodium 

sulphate is used as supporting electrolyte the peroxydisulphate anions will be present in the 

solution, following the reaction (94)262: 

 2SO4
2- � S2O8

2- + e-                                                                                    (94) 

Whereas when the supporting electrolyte is sodium chloride, Cl- is expected to be oxidized262 

either by direct electron transfer at anode surface or by a reaction with •OH in the vicinity of 

electrode, reactions (94)-(101): 

 2Cl- � Cl2 + 2e-                                                                                           (95) 

 •OH + Cl- � ClOH•-                                                                                     (96) 
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 ClOH•- � Cl• + OH-                                                                                     (97) 

 Cl• + Cl- � Cl2
•-                                                                                           (98) 

 Cl2
•- + •OH � HOCl + Cl-                                                                            (99) 

 Cl2 + H2O � HOCl + H+ +  Cl-                                                                   (100) 

 HOCl � H+ + OCl-                                                                                      (101) 

Therefore BDD electrode has very interesting properties which make it versatile. Its use in 

polluted water treatment is outstanding and many works have been dedicated on it263,264,265,266. 

 

1.2.3.5.2. Electro-Fenton process (Indirect electrochemical oxidation)  
 

The Electro-Fenton process is an indirect electrochemical method for the destruction 

of toxic and/or persistent micro-pollutants in contaminated waters141,235. This method is based 

on the Fenton’s reaction chemistry198,266. As described in one of the previous sections 

Fenton’s reagent (H2O2 + Fe2+) is used to produce very reactive hydroxyl radicals •OH that 

are used to eliminate toxic organic compounds from contaminated waters. In the classical 

Fenton process, H2O2 and Fe2+ are externally added to the reaction medium and the 

concentration of target molecules is monitored until the depletion of oxidising agents. As 

already mentioned the complete mineralisation of pollutants is not achieved because of the 

Fe3+ inactivation by ligand action of carboxylic acids267, but also because of the mere 

Fenton’s reagent consumption. Whereas in the electro-Fenton method, Fenton’s reagent is 

produced directly in the polluted water to be treated141,200,201,268,269,270,271,272,273. Fe2+ is added 

in the solution in a catalytic quantity as an iron salt and it is continuously regenerated on the 

cathode surface via the one electron transfer) (reaction (102)) from Fe3+ formed during 

Fenton’s reaction (58):  

 Fe3+ + e- � Fe2+                                                                                      (102) 

On the other side H2O2 is also electro-generated at the cathode from the two electron 

reduction of oxygen in acidic media (pH≈3) according to the reaction (103): 

 O2 + 2H+ + 2e- � H2O2                                                                          (103) 

Whereas its reduction to water by reaction (104) is avoided by choosing a potential (or 

current) more positive than that of this second reduction step of O2. 
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 O2 + 4H+ + 4e- � 2H2O                                                                          (104) 

The oxygen needed for this reaction is introduced in the solution by bubbling compressed air 

(or oxygen). Thus, the oxygen reduction includes the dissolution of oxygen gas in the 

solution, its transportation to the cathode and finally the reduction to hydrogen peroxide. 

Some oxygen also comes from the naturally oxygen dissolution in water according to the 

Henry’s law and the oxygen evolution on the anode from water discharge (reaction (107)): 

 H2O � ½ O2 + OH- + e-                                                                         (105)  

Once H2O2 and Fe2+ produced as described above, they react following to the Fenton’s 

reaction (reaction (58)) to give hydroxyl radicals which in turn oxidize organics. Afterwards, 

Fe3+ generated in reaction (58) reduced to Fe2+ according to reaction (102). On the other hand 

H2O2 keeps being produced electrochemically at the cathode. So, the Fenton’s reagent is 

continuously supplied in the electrochemical cell in a catalytic way.  

Apart the electrogeneration reactions of Fenton’s reagent, parasitic reactions exist too 

and their intensity depends on electrochemical cell configuration and other operation 

conditions. For example in an undivided cell Fe2+ can be electrochemically oxidized to Fe3+ at 

the anode: 

 Fe2+ � Fe3+ + e-                                                                                         (106) 

Fe3+ can precipitate in the very vicinity or in the pores of three dimensional cathodes as 

Fe(OH)3 because of the basic conditions created by water reduction.  

Hydrogen peroxide accumulation in the system and its stability depends on working 

conditions141. Some usual parasitic reactions are reactions (104) and itself decomposition to 

oxygen and water274 (reaction (109)): 

 2H2O2 � O2 + 2H2O                                                                                  (107) 

A parasitic reaction related to the cell configuration is its oxidation on the anode if an 

undivided cell is used. This reaction involves hydroperoxyl radicals as intermediates: 

 H2O2 � HO2
• + H+ + e-                                                                              (108) 

 HO2
• � O2 + H+ + e-                                                                                   (109) 
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So all possible parasitic reactions make the accumulation of hydrogen peroxide be lower than 

levels expected from its electrogeneration. Its identification and dosage in the solution can be 

done by different methods, one of them is the spectrophotometric determination based in the 

Ti(IV)-H 2O2 complex which gives a yellow colour and absorbs at 410 nm 275.  

It is worth noting that all parasitic and regeneration reactions of H2O2 and Fe3+ 

involved in the Fenton’s chemistry can account for the electro-Fenton process also. However, 

some parasitic reactions as those between •OH and H2O2, 
•OH and Fe2+ which are the most 

important ones are reduced or eliminated. 

 

1.2.3.5.3. Influence of the experimental parameters on the electro-Fenton process 
 

Many experimental parameters affect the electro-Fenton efficiency process. Among 

them the most important ones are: solution pH, catalyst concentration, electrode material, 

applied current, temperature and oxygen or air feed rate. 

 

•  The influence of pH 

Electro-Fenton process efficiency is strongly dependent on solution pH as already 

discussed for the Fenton’s chemistry. Several works have shown that the optimal pH value is 

2.8-3 where a maximum generation of hydroxyl radicals was observed276,277. For pH > 3.5 the 

rate of mineralisation of organics starts to slow down because a part of Fe3+ precipitates as 

Fe(OH)3. At pH < 1 it becomes very slow since Fe2+ forms complexes with H2O2 and SO4
2-. 

The nature of acid utilised for pH adjustment as well as the nature of supporting electrolyte 

affects also the rate of pollutants degradation via the acid and salt anions involvement in the 

oxidation processes277,278. At low pH the formation of iron complexes with Cl- and ClO4
- is 

also possible whereas SO4
2- apart the complexion action scavenges hydroxyl radicals too. It 

has been found that the removal rate of orange II decreases with the acids utilised for pH 

adjustment in the order: ClO4
- > Cl- >> SO4

2- 279.  

 

•  Catalyst concentration 

The catalyst is one of two fundamental reagents of the electro-Fenton process and its 

importance is crucial213,280. The rate of degradation reaction increases with the catalyst 

concentration until a given value owing to the intensification of Fenton’s reaction (58). Then 
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after a certain concentration a reverse effect is observed because of the parasitic reaction (72) 

which consumes hydroxyl radicals in competition with organics oxidation following the 

reactions (67)-(68). Thus, an optimal concentration of catalyst is required in order to attain the 

maximum rate of contaminants oxidation. This optimum concentration depends on the nature 

of the cathode utilized in the process. If a carbon felt cathode is utilized the optimum 

concentration for Fe2+ is 0.1-0.2 mmol L-1 at pH = 3 271,281, whereas higher concentration is 

required in case of carbon-PTFE gas diffusion electrodes (GDE), namely 0.5-1.0 mmol L-1 

Fe2+ range is the optimum276,282. Greater concentration of catalyst for the GDE electrodes is 

necessary because of their lower ability of Fe2+ regeneration in comparison with carbon felt 

cathodes. Moreover, H2O2 is produced in greater extent at GDEs so a greater concentration of 

Fe2+ is required to intensify reaction (58), otherwise parasitic reaction (65) with the 

production of HO2
•- (week oxidant) can become important. 

 

•  Applied current 

Fenton’s reaction driven by electrical current makes electro-Fenton a remarkable 

method for polluted water treatment. The current applied produces and maintains H2O2 and 

Fe2+ concentrations during electrolysis269,283. The variation of current affects the production 

rate and the concentration of H2O2 and Fe2+ and consequently the rate of degradation of 

organic molecules. When the current intensity is increased the quantity of H2O2 in the solution 

increases owing to the acceleration of reaction (103). An increase of current intensity results 

in a more effective Fe2+ regeneration too (102). Since the concentration of both H2O2 and Fe2+ 

is increased with the current intensity, the quantity of hydroxyl radicals will be higher and as a 

consequence faster organics removal are achieved284,285,286,287. Nevertheless, the acceleration 

of organics degradation reaction rises until a certain current intensity beyond which no 

improvement of the efficacy of process is observed288,289,290. This limiting degradation current 

is a consequence of parasitic reactions which compete with O2 reduction to H2O2 (reaction 

(103)) namely the hydrogen evolution reaction on cathode. At high current intensities mass 

transport of O2 and Fe3+ towards cathode becomes the rate determining step of the 

electrochemical reactions of production of H2O2 and Fe2+, thus any increase in current 

intensity beyond this limit will lead to a loss of energy without any improvement in the 

treatment process. Low current intensities give pollutants removal with higher electricity 

effectiveness but longer electrolysis, and if the current intensity is considerably low no 

significant remediation of water is attained. 
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The use of other catalysts other than Fe2+ is also possible. Among them Co2+, Cu2+ and 

Mn2+ have been tested showing that optimal concentrations vary from one to other213,291. 

 
•  Temperature and oxygen or air feed141  

Oxygen is feed continuously in the solution by introducing compressed air or oxygen. 

This provides a saturated solution with oxygen to reach maximum H2O2 production. 

Temperatures up to 35-40°C enhance hydroxyl radical formation, but higher temperatures 

enhance at the same time hydrogen peroxide decomposition and other parasitic reactions141. 

•   Electrode material 
 

Electrode (cathode and anode) material plays a very important role on electro-Fenton 

process since the principal reagents (oxidants) are generated on. Thus, this thesis is devoted to 

study the role of electrode material on electro-Fenton treatment of polluted waters. Many 

cathodes have been studied so far for their performance in the electro-Fenton technology for 

water treatment, such as: graphite292,293, mercury294, carbon-PTFE O2 gas diffusion295,296,297, 

carbon felt132,285,298, reticulated vitreous carbon (RVC)299, carbon sponge283 and carbon 

nanotubes300,301. However, to the best of our knowledge, there has been no a systematic study 

to compare the performance of these materials to find the better one for the process. 

Therefore, such a study constitutes the subject of this thesis. 

A cathode material for electrochemical water treatment must have some characteristics 

that make them fit to the electro-Fenton process. A cathode must have high hydrogen 

evolution overpotential in order to provide high hydrogen peroxide yield with high current 

efficiencies, low catalytic activity for hydrogen peroxide decomposition, chemical and 

physical stability, good electrical conductivity and low economical cost. Some materials like 

mercury support H2O2 production, however they are very toxic so not useful for water 

treatment.  

Carbon is a very appropriate material for environmental application as it does not 

show any toxic effect towards living beings and represents all the characteristics required for 

electrochemical water remediation. Considering the fact that oxygen is poorly soluble in water 

three dimensional large surface area cathodes are needed to obtain reasonable current 

efficiencies in pollutants removal. Such electrodes are GDEs with thin and porous structure 

favouring the circulation of injected oxygen through its pores until the solution electrode 
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interface. These electrodes allow fast O2 reduction to have H2O2 accumulation owing to high 

number of active sites on their surface. GDEs are constituted of carbon particles bonded with 

PTFE in a cohesive layer.  

Carbon felt is a three dimensional large specific surface cathode where the Fenton’s 

reagent generation takes place very rapidly. In comparison with GDEs there is a lower 

accumulation of the H2O2 because its H2O2 generation ability is lower than that of 

GDEs235,295. Contrarily, the regeneration of Fe2+ at carbon felt is faster than at GDEs286 

leading to lower accumulation of H2O2 because hydroxyl radicals are immediately produced 

through Fenton’s reaction.  

Anode material is another source of oxidants that participate in oxidation of organic 

matter. Different anodes used in direct anodic oxidation can be used for electro-Fenton. When 

a high overpotential oxygen evolution anode is used hydroxyl radicals can be generated from 

the water discharge along with other oxidants like S2O8
2-, ClO- etc. depending on the 

supporting electrolyte present in the solution. In fact, the supporting electrolyte plays always 

an important role in pollutant degradation279 in extents varying from anode material. An 

anode providing high concentration of hydroxyl radicals is boron doped diamond (BDD) 

which is widely being used in environmental studies and also for the particular case of 

electro-Fenton145,288,302,303,304,305, thanks to its distinguished performance for water 

remediation. Nobel metals represent interesting materials to be used for water remediation 

owing to their resistivity in the very oxidising medium in the electrochemical reactor for 

organic contaminants destruction. Platinum is one of the preferred anodes as it does not leave 

toxic ions in the solution200,235,306,307. Organics are oxidized directly on its surface by electron 

transfer or by hydroxyl radicals generated in low quantities, or by other oxidants in the bulk. 

Parasitic reactions restrict the efficiency of oxidation on anodes too. Beyond a given potential, 

O2 evolution prevails greatly, reducing the organics oxidation at the anode. 

In this work, for the comparative study on the degradation efficiency of different 

electrodes tested, two organic molecules namely amoxicillin (AMX) and Sulfamethazine are 

taken as models which will be described in the following sub-section. 
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1.3. MODEL MOLECULES 
 

Sulfamethazine [SMT] and amoxicillin [AMX] has been taken as model pollutants to 

estimate the effectiveness of their removal from aqueous solution when a certain electrode 

system is utilized. 

The occurrence of antibiotics in the environment has been firmly reported in several 

papers40,41,308,309,310. World production and consumption of pharmaceuticals has been steadily 

increasing. After the metabolic cycle in humans or animal’s organisms that have been treated 

metabolites of medicaments pass in the environment40,41. As medicaments remains partially 

unchanged during their metabolism in the organism, they leave the body and can be found in 

the environment as well40,308. The main source of antibiotics in the environment is 

anthropogenic input from wastewater discharge, manure disposal and aquaculture308. Classical 

waste water treatment plants sometimes are not sufficient enough thus becoming a source of 

contamination. Some authors311 have reported that 80% of used antibiotics enter the 

environment despite the use of various processes in waste water treatment plants. Once they 

are released, they come in contact with living organisms threatening their normal life course. 

A very serious effect is that the continuous exposure of bacteria to antibiotics can provoke 

genetic transformation leading to the antibiotic resistant bacterial species312,313,314 being 

harmful for human’s health and the natural order, and difficult to treat. 

1.3.1. Sulfamethazine  
 

Sulfamethazine (SMT) is an antibiotic of sulphonamides class and is used in human 

and veterinary medicine. Sulphonamides are synthetic antibiotics with a broad spectrum of 

action against Gram-positive and Gram-negative bacteria. They have also been used as 

animals feed as growth promoters315. SMT is one of the most commonly used sulphonamides 

thus widely present in natural systems308,316,317,318. It has been observed that SMT represents 

toxic effects to daphnia magna and synergism in the presence of sulfametazine55, fertility 

effects in mice319 and thyroid hormone homeostasis in rats320. Physicochemical properties of 

SMT are given in the table 4 below. The EC50 and LC50 are the effects observed at times 

given in the table. 
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Table 4. General properties of sulfamethazine 

Chemical structure 

 

  

Molecular weight      278.33 gmol-1   
CAS No      57-68-1   
Solubility 1.5 gl-1  321    
pKa1  2.65 (aromatic amine) 322    
pKa2 7.65 (sulfonamide nitrogen)       
Log Kow 0.89  322    
Koc     60-208.3  322     
Vapor preasure 8..62x10-9 mm Hg at 25°C  323      
Half-life in 
environment 

1% after 64 days in loamy sand and 
clay silt  324  

  

Toxicity (acute) 
(mg L-1)  

Vibrio fischeri (bacteria) 5 min luminescence 
inhibition EC50 

303.0325  

 Algae (pseudokirchneriella       
subcapitata   

72 h growth EC50 8.7 326  

 Duckweed (lemna gibba) 7 days wet weight 
EC50 

1.277327  

  Invertebrate (daphina manga) 48 h immobilization 
EC50 

105  328  

 Fish (oryrzas latipes) 48 h survival LC50 >100 
325  

 

 

The removal of SMT from waters has been studied in several works. Its adsorption on coal 

and coconut based activated carbon has been studied where similar removal efficiencies were 

deduced for both types of activated carbon329. Treatment of SMT by aerobic sludge and 

isolated Achromobacter sp. S-3 330 showed relative good removal efficiency and COD, 

depending on sludge retention time where it increased from 25.9% SMT and 25% COD to 

83.9% SMT and 59.1% COD when retention time increased from 0.5 h to 4.0 h. Garcia-Galan 

studied the removal of SMT from sewage sludge by the white-rot fungus Trametes 

versicolor331. Chemical oxidation332 and electro-Fenton biodegradability improvement have 

been also considered333. 

NH2

S

O

O NH

N N

CH3
CH3
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1.3.2. Amoxicillin 
 

Amoxicillin (AMX) is an antimicrobial proscribed for the treatment of different 

disease and is considered as the most important β-lactam antibiotics. About 80% of the AMX 

leaves the body unmetabolised334 whereby it is expected to be found frequently in municipal 

waters. Watkinson335 reported its presence in hospital effluents, WWTP influents, WWTP 

effluents and environmental waters at maximal concentrations of 0.9, 6.94, 0.05 and 0.2 µg L-

1 respectively. AMX presence in the environment336,337,338,339,340,341,342 and its 

fate343,344,345,346,347 has been reported in several other papers. Diverse effects on Synechocystis 

sp. (algae) have been reported348; addition of AMX at the levels of mg L-1 significantly 

inhibited O2 evolution of Synechocystis sp., where treatment with 150 mg L-1 AMX for 24 h 

led to 80.5% inhibition in O2 evolution. Toxicity towards several other non-targeted species is 

evident and has been considered up now in several studies349,350,351,352. The phenomenon of 

genetic modifications due to the AMX presence, in bacteria which results with antibiotic 

resistance, has been observed as well353. 

Several AMX removal methods from aqueous solution have been studied. Watkinson 

assessed the removal of 28 human antibiotics by mean of activated sludge and 

microfiltration/reverse osmosis where he remarked that low quantities of antibiotics remained 

in the solution after treatment354. Photocatalytic degradation using UV/TiO2 could remove 

only partially the initial concentration of AMX355. Whereas H2O2 addition (UV/H2O2/TiO2) 

improved significantly the efficacy leading to complete removal after 20 min treatment, but 

leaving still high COD. It has been demonstrated that biodegradability of AMX can be 

improved if it is pre-treated by the photo-Fenton process356. Some other methods for AMX 

removal include Fenton process357, sulphate radicals under ultrasound irradiation358, 

Ozonation359. 
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Table 5.360 General properties of amoxicillin. 

 

  

Chemical structure 
(C16H19N3O5S) 

OH

NH2

O

NH

N
O

S

O
OH

H

 

  

Molecular weight 365.4 g mol-1   
CAS No 26787-78-0   
Solubility in water 3430 mg L-1 at 35 °C   
pKa  2.8   
    
Log Kow 0.87   
Koc 8650.5   
Vapor pressure 4.69 E-14 (mm Hg)   
Half life time in environment 30% degradation after 3 months in 

laying hen feces 
34% degradation after 8 day broiler feces 

  

Toxicity (acute) (mg L-1)  Microcystic aeruginosa Growth 
EC50 

0.0037  

 Oncorhynchus mykiss Hepatocyt
e toxicity 

24 h EC50 

182.7 

 Lemna gibba Wet 
weight, 
chlorophyl
l seven 
day LOEC 

1 

 Vibrio fischeri IC50 5 min 1.32 
 Daphina manga EC50 24 h >1.000 
 Moina marocopa EC50 24 h >1.000 
 Oryzias latipes EC50 24 h >1.000 
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CHAPTER 2 

MATERIALS AND ANALYTICAL METHODS 
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2.1. CHEMICALS 
 

Chemicals used in this work were all analytical grades and has been used without further 

purification. Pure water obtained from a Millipore Mill-Q system with resistivity > 18 MΩ 

cm-1 at room temperature was used for the preparation of all investigated solutions and for 

HPLC measurements. A list of all chemicals used during this work is given in the table 6. 

 

Table 2.1. List of chemicals used in this thesis work. 

Chemical                               Marque                             CAS N°                        Molar masse (g/mol) 

Sulfamehazine ≥ 99 %           Sigma                               57-68-1                             278.33  

Amoxicilline ≥ 97 %              Fluka                                26787-78-0                       365.41 

FeSO4�7H2O 99 %                 Acros                                7782-63-0                        278.01 

Na2SO4 ≥ 99 %                      Sigma-Aldrich                   7757-82-6                         142.04 

K2SO4 ≥ 99 %                        Chimie-Plus                      7778-80-5                         174.26 

NaOH ≥ 98 %                        Fluka                                 1310-73-2                         40.00 

NaCl ≥ 99.5 %                        Fluka                                7647-14-5                         58.44 

KC ≥ 99 %                              Fluka                                7447-40-7                         74.56 

FeCl3 97 %                              Sigma-Aldrich                 7705-08-0                         162.21 

Na2CO3 ≥ 99.8 %                    Riedel-de Haën                497-19-8                           105.99 

NaHCO3 ≥ 99.7 %                   Fluka                               144-55-8                            84.007 

(NH4)2C2O4 99 %                    Acros                               1113-38-8                          124.10 

NaNO3 ≥ 99.0 %                     Sigma-Aldrich                 7631-99-4                          84.99 

H2O2 ≥ 30 %                            Fluka                               7722-84-1                          34.02 

TiCl4 99.9 %                            Acros                               7550-45-0                          189.71 

H2SO4 98 %                             Acros                               7664-93-9                          98.08 

H3PO4 ≥ 85 %                          Fluka                                7664-38-2                          98.00 

HCl 37 %                                  Fluka                                7647-01-0                          36.46 

Acetic acid 99.8 %                    Riedel-de Haën                 64-19-9                             60.05 

Benzoic acid 99.7 %                 Prolabo                              65-85-0                            122.12 

Glycolic acid 99 %                   Acros                                79-14-1                              76.05 

Glyoxylic acid 98 %                 Acros                                563-96-2                            92.05 

Formic acid 99 %                      Acros                                64-18-6                             46.02 

Fumaric acid 99 %                    Acros                                110-17-8                           116.07 

Oxalic acid 97 %                       Fluka                                144-62-7                           90.03 

Oxamic acid 98 %                     Alfa Aesar                        471-47-6                           89.05 

Pyruvic acid 98 %                     Aldrich                             127-17-3                            98  

Malic acid 99 %                         Acros                               617-48-1                            134.09 

Maleic acid 99 %                      Sigma                               110-16-7                             116.07 



 86  

 

Malonic acid 99 %                    Fluka                               141-80-2                             104.06 

Succinic acid 99 %                    Acros                              110-15-6                             118.09 

Tartronic acid 97 %                   Fluka                               80-69-3                              120.06 

Methanol 99.9 %                       Sigma Aldrich                 67-56-1                              32.04 

2-propanol 99.8 %                     Sigma Aldrich                 67-63-0                              60.1 

 

2.2. ELECTROCHEMICAL CELL  
 

Three electrochemical cells of different volumes have been used to perform the 

electrolysis experiments: a 300 mL glass of 7.7 cm diameter, 250 mL of 6.6 cm and 250 mL 

of 5.7 cm. In each case the cell was equipped with two electrodes, and the stirring magnetic 

bar to provide good mass transport conditions. A glass tube was put in the cell to purge 

compressed air to maintain the solution saturated with oxygen during the experiment. For 

anode testing experiments, a carbon felt cathode (Carbone Lorraine) of dimensions 23 cm x 7 

cm x 0.5 cm was used to test the comparative efficiency of the anodes: boron doped diamond 

(BDD), Platinum, (Pt) DSA/RuO2-IrO2 and carbon felt of 2 x 24 cm2. The carbon felt cathode 

covered the inside walls of the cell whereas the anode was situated in the centre of the cell. 

For cathode tests, a platinum anode was used and cathodes (Carbon sponge 6 cm x 3.5 cm x 1 

cm and carbon felt 6 cm x 3.5 cm x 0.5 cm) were altered. Amoxicillin oxidation trials were 

performed using a stainless steel cathode of 24 cm2 and the corresponding anode of the same 

surface area placed in the electrolytic cell in a distance of 3.5 cm between them. 

Solutions of SMT of 0.2 mM concentrations were prepared for electro-Fenton 

experiments. 0.2 mM catalyst (Fe2+) was added as iron sulphate (Fe2SO4) as well as 50 mM 

sodium sulphate (Na2SO4) as supporting electrolyte. In the case of SO4
2- analysis by ionic 

chromatography Na2SO4 was replaced by NaCl and Fe2SO4 by FeCl3 in order to avoid the 

SO4
2- interference which comes from the supporting electrolyte. Similarly for the analysis of 

NH4
+, K2SO4 was added instead of Na2SO4 as the retention times of NH4

+ and Na+ are close 

and some possible overleap of NH4
+ peak by the Na+ peak is possible because of the high 

concentration of the Na+ of the supporting electrolyte. Once the solution prepared it was 

acidified at pH = 3 (optimal conditions for Fenton’s reaction) with sulphuric or hydrochloric 

acid solution. 

AMX solutions for anodic oxidation experiments were prepared at 0.1 mM 

concentration whereas supporting electrolyte Na2SO4 was 50 mM without pH adjustment.  
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These solutions were electrolysed for different current intensities using an electric 

power supply model Hameg Triple Power Supply HM804030. Samples to be analysed were 

withdrawn in regularly time scales. 

 

2.3. ANALYTICAL TECHNIQUES 
 

In order to follow the kinetics of degradation of targeted model chemical and the 

composition of the solution during electrolysis several analytical techniques have been 

employed. 

2.3.1. High Performance Liquid Chromatography (HPLC) 
 

High performance liquid chromatography is a separation analytical technique largely 

applied for the analysis of organic substances. It is based on different interactions of 

molecules with a solid phase, called stationary phase, fixed in a column and a liquid phase 

which flows through the column and is called the mobile phase. The separation of different 

molecules of a mixture is related to their affinity versus stationary and mobile phases. If the 

column is packed with a nonpolar stationary phase and the sample is eluted with a polar 

eluent, molecules of higher polarity will be attracted more by the eluent and those less polar 

will be retained on the stationary phase. This means the analyte species will be retarded to 

pass through the column depending on the retention time in the column. This differential 

affinity of phases in contact towards different polarity molecules leads to the separation so 

they will come out of the column one after other. Then separated molecules enter the detector 

and the signal is presented with a chromatogram where separated peaks at different retention 

times are observed for all the sample constituents. In this way good separation and analysis 

can be achieved by varying the composition of mobile phase (eluent). 

  

2.3.2. Analysis of SMT and AMX 
 

The samples withdrawn regularly were analysed by a Merc-Hitachi high performance 

liquid chromatograph, Lachrom-Elite model, controlled by EZchrom elite software. It was 

composed of a quaternary pump MH L-7100, a diode array detector L-7455 and a 

thermostated Merck column L-7360 with thermostat. 
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 Injections of aliquots of 20 µL were done in the column which was thermostated at 

40°C. Conditions of HPLC analysis for SMT and AMX are summarised in the table 7. 

Table 2.2. HPLC conditions for the analysis of sulfamethazine and amoxicillin. 

 

2.3.3. Analysis of Carboxylic acids  
 

The evolution of carboxylic acids has been followed by ion exclusion 

chromatography. An HPLC chromatograph equipped with pomp Alltech (Model 426) and a 

column Supelcogel H, 25 cl x 4.66 mm coupled to a detector Dionex AD20 was used. The 

eluent was a solution of sulphuric acid 9 mM. Flow rate was adjusted to 0.25 mL min-1. 

Detection wave length for carboxylic acids was 220 nm and measures were done at 30 °C The 

system is connected with an acquisition and data treatment unit commanded by analytical 

Chromeleon SE software.  

2.3.4. Analysis of inorganic ions  
 

Ionic chromatography is a separation analytic method which allows the separation of 

ions and polar molecules based on their charge. The stationary phase in ion chromatography is 

an electrically charged material so the separation of ions depends on their density charge. 

Usually the stationary phase is an ion exchange resin that contains charged functional groups 

                                                    SMT                                                        AMX 

Column                                       C18 Purosphere RP 18                             C18 Purosphere RP 18  

                                                    (5mm, 250 mm x 4.6 mm)                      (5mm, 250 mm x 4.6 mm) 

Detector                                      DAD-UV-VIS L-7455                           DAD-UV-VIS L-7455 

Pomp                                           L-7100                                                    L-7100 

Temperature                                40 °C                                                       40 °C 

Flow                                            0.8 mL min-1                                            0.5 mL min-1 

Mobile phase                              CH3OH: 10%                                          (H2O 99% + CH3COOH 1%)97 %  

                                                    (H2O 99-H3PO4 1): 90%                          CH3OH 3 %    

Pressure                                      156 bar                                                    

Injection volume                         20 ml                                                        20 ml 

Wave length                               244 nm                                                      233 nm 

Retention time                            13.8 min                                                   8.4 min 
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that interact with oppositely charged ions of the sample. Ions with different charge density 

will be retained more or less in the column what makes them emerge in different scale times 

from the column. 

 In this work ion chromatography was used to identify and quantify inorganic ions 

evolved from the heteroatoms contained in the structure of the molecule which are 

electrolyzed. These ions are SO4
2-, NO3

- and NH4
+.The ion chromatograph was a system 

Dionex ICS-1000. The data acquisition was done by Chromeleon software. This system is 

equipped either with a column cationic (CS12A) or anionic (AS4A-SC) of 4 mm diameter and 

25 cm length coupled with a conductometric detector DS6. In the case of cation detection the 

mobile phase was 9 mM sulphuric acid, the flow rate was 1 mL min-1. The applied current in 

the suppressor SRS (Self Regenerating Suppressor) needed to prevent the influence of the 

eluent ions in the detector signal was 30 mA. The suppressor acts in the way that cancel the 

conductivity of the eluent which otherwise is very high and disturbs seriously the analysis. 

For anions measurements the mobile phase contained 1.8 mM Na2CO3 and 1.7 mM NaHCO3. 

The flow rate was fixed to 2 mL min-1. The suppressor current was 30 mA.  

 The analysis of ions coming in the solution because of the decomposition of the initial 

organic compound during electrolysis was done by standard curves prepared with: ammonium 

oxalate for ammonium determination, sodium nitrate for nitrate and sodium sulphate for 

sulphate anion determination.  

 

2.4. TOTAL ORGANIC CARBON  
 

Total organic carbon (TOC) is a very important parameter for the estimation of the 

level of pollutant abatement in the aquatic solution. Namely, it represents the quantity in mg 

of carbon present only in organic molecules. If the oxidation of the organic matter proceeds 

until carbon dioxide the gas will escape from the solution resulting to a diminution of TOC 

content. 
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                      Fig. 2.1. Total organic carbon analyzer – TOC-VCSH. 

The principle of TOC analysis of a sample consists on complete conversion of atoms 

of an organic molecule in CO2 which is then measured. The combustion of organic matter is 

realized in high temperature chamber (680 °C) in the presence of platinum containing catalyst 

under pure oxygen gas flux. The combustion of the organics produces carbon dioxide which is 

measured by infrared spectroscopy at the exit of the oven where the combustion takes place. 

For the TOC analysis in this study a Shimadzu VCSH TOC analyzer equipped with a 

manual injector was used. Samples were acidified with 1% hydrochloric acid to remove the 

mineral CO2 coming from sources other than organic molecules under investigation. The total 

volume injected was 50 µlL. The apparatus did three measures for each sample and gave the 

average value. Calibration curves were prepared from standard solutions of potassium 

hydrogen phthalate. 

 

2.5. HYDROGEN PEROXIDE DOSAGE 
 

Hydrogen peroxide production was studied for the cathodes tested for their 

performance in electro-Fenton process. Spectrophotometry was used as method for H2O2 

analysis. This technique refers to the absorption of light in the ultraviolet visible region (UV-
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VIS) by analyte molecules. The absorption of UV-VIS light causes electronic transitions in 

molecules. The logarithm of fraction of incident light intensity and transmitted light intensity 

is called absorbance (A). A is linearly related to the concentration and is expressed by the 

Beer-Lambert low. 

# = 	$	%	�                                                                                  (2.1) 

Where c is the concentration of analyte l is the length of the path which light passes through 

and ɛ is molar absorptivity or extinction coefficient. 

 The spectrophotometric dosage of H2O2 was realized by the method of titanium. The 

reaction between Ti4+ and H2O2 gives a yellow complex in the acidic media, the pertitanic 

acid, the absorbance of which is measured by means of a spectrophotometer.  

The experiments were done in an electrolytic cell containing a platinum anode and the 

cathode to be investigated, in pure aqueous medium in the presence of Na2SO4 as supporting 

electrolyte. Aliquots of 5 ml were withdrawn at given time scales and were put in a flask of 25 

mL. In each aliquot were added 2 mL of TiCl4 solution previously prepared in a 1 M H2SO4 

(10 mL TiCl4 in  L of H2SO4 1M), 2 mL of concentrated H2SO4 (18 M) and the rest was filled 

with the pure water. Then the sample was measured at the maximum wave length of 

adsorption at 423 nm in a quartz vessel of 1 cm optic path. The absorptivity coefficient of 

complex formed between H2O2 and Ti4+ was calculated from the slope of the calibration curve 

prepared with standard solutions of H2O2. Finally, the concentration was calculated according 

to the Beer-lambert law. The spectrophotometer for analysis was PERKIN ELMER UV/VIS 

spectrometer Lambda 10.  
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                                         CHAPTER 3 

EFFECT OF THE ANODE MATERIAL ON THE 

ELECTROCHEMICAL OXIDATION OF AMOXICILLIN (AMX) 
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3.1. KINETICS OF THE DEGRADATION AND MINERALIZATION OF A MX  

  3.1.1 Effect of the current intensity 
 

The electrochemical data with different anode materials were obtained in an aqueous 

solution of 0.1 mM (36.54 mg L-1) AMX and 50 mM Na2SO4 as supporting electrolyte. A 

stainless steel cathode was used in order to avoid hydrogen peroxide production (as stainless 

steel cathode is known to produce very little quantities of H2O2) which could contribute in the 

whole oxidation of AMX, Figure 3.1 shows the decay in the concentration of AMX with time 

during the electrolysis of an AMX solution with DSA and BDD anodes at different current 

intensities ranging from 50 to 500 mA.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Effect of current intensity on the oxidation of 0.1 mM AMX at room temperature 

with BDD (a) and DSA (b) anodes. Cathode: S Steel, Vs = 250 mL, [Na2SO4] = 50 mM. 

As it can be observed in figure 3.1, there is a strong influence of the anode material on 

the oxidation rate of AMX, being the BDD anode much faster than the DSA in the oxidation 

of AMX. In fact, the total depletion of AMX is attained with the BDD electrode at 20 and 40 
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min with applied current intensity of 500 and 300 mA respectively and almost complete 

depletion at 90 min with 100 mA. Whereas the AMX concentration decay is less than 40% of 

initial concentration at 60 min even for the higher current value of 500 mA under same 

operating conditions in the case of DSA anode. As expected, the higher the current density, 

the higher the oxidation rate of AMX for both electrodes.  

In the figure 3.2 are presented the degradation curves [AMX] = f (t) for five other 

anodes. It can be seen that PbO2 and Pt are faster than carbon fiber and graphite, whereas 

carbon felt is the fastest. AMX degradation percentage, under 300 mA constant current, for 

other anodes is: Pt (96.1), PbO2 (99.14), Carbon fiber (76.2), Graphite (58) and Carbon felt 

(99.5). From these values of abatement it can be observed that in addition to the very fast 

initial decay of the concentration of model pollutant with carbon felt, very small quantities 

still remain in the solution after 60 min electrolysis with other anodes. Similar tendency of 

AMX depletion is observed also for other currents. For carbon fiber and graphite the rates of 

AMX removal are lower than all other anodes apart from DSA type anode for which the 

concentration decay is the lowest one. 
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Fig. 3.2. Effect of applied current intensity on the oxidation of 0.1 mM AMX with (a) Pt, (b) 

PbO2, (c) carbon felt, (d) carbon fiber, and (e) graphite anodes. Cathode: S Steel, Vs = 250 

mL, [Na2SO4] = 50 mM. 
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Changes in the concentration of AMX are important, but it is worth to take into account 

that depletion of AMX does not mean total removal of the pollution problem. It only means 

an oxidation of the mother molecule (addition of –OH group or electron transfer) to its 

oxidation intermediates. For this reason the TOC removal is a much more significant 

parameter, because it clearly indicates the mineralization of the pollutants, that is, the 

complete destruction of the starting molecule and its transformation into carbon dioxide and 

water. 

Figure 3.3 informs about the mineralization of the AMX aqueous solutions. As it can be 

seen, the reaction times (and, consequently, current charges passed) required are much higher 

in these experiments than in the electrolysis shown in Fig. 3.1 and 3.2.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Effect of current intensity on the mineralization degree of AMX with BDD and (a) 

and DSA (b) anodes at room temperature. Cathode: S Steel, Vs = 250 mL, [Na2SO4] = 50 

mM. 
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Thus, in the case of AMX, 98 electrons are needed for the mineralization of the 

molecule up to carbon dioxide (Eq. (3.1)), while a simple one-electron transfer can transform 

the AMX into another molecule, and this explains the largest electrolysis times in the case of 

the mineralization study.  

C16H19N3O5S + 40 H2O → 16 CO2 + 3NO3
- + SO4

2- + 99 H+ + 94 e-  (3.1) 

Figure. 3.1a clearly indicates that BDD anode is faster than DSA in the mineralization of the 

AMX, and that for both anodes the higher the current density, the faster is the mineralization 

rate. However, effect of current density is much less significant than in the case of the simple 

oxidation of AMX (shown in Fig. 3.1), suggesting that much more complex processes may be 

occurring during the mineralization process. Reaction times required to mineralize completely 

the AMX are above 6 h for BDD anode. However, for this reaction time, less than 25% of 

mineralization is obtained for the electrolysis with DSA anode under the highest current 

density. 

The rest of results on mineralization with other anodes are given below in the figure 3.4. 

At the difference of the simple oxidation of the molecule, where among all the anodes tested 

(each of them showing different oxidation capacities), all of them could not be used for the 

mineralization where much longer time of treatment is required. Thus, only BDD, DSA, PbO2 

and Pt electrodes gave significant mineralization results in the range of current intensities 

applied, whereas graphite could be used only for current intensities of 150 mA and lower. 

Two other carbon based anodes, carbon felt and carbon fiber burned at the beginning of 

electrolysis and led to the failure of the electrochemical cell. 
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Fig. 3.4. Effect of current intensity on the mineralization of AMX with Pt (a), PbO2 (b) and 

graphite (c) anodes. Cathode: S Steel, Vs = 250 ml, [Na2SO4] = 50 mM. 
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BDD and DSA are usually employed as model anodes to perform the electrolysis of 

many organic pollutants because they use to show two opposite behaviors. Thus, BDD 

behaves as a high-efficiency electrode for the oxidation of organics. It promotes the 

mineralization of the organics with high efficiency, and usually few intermediates are 

observed during the treatment. In addition, it promotes the production of high amount of 

hydroxyl radicals due its high O2 evolution overvoltage. On the contrary, DSA electrodes are 

known as low-efficiency electrodes for the oxidation of organics. These anodes promote a soft 

oxidation of organics, with a great amount of intermediates (most aromatics treated by these 

anodes are slowly degraded due to the generation of hardly oxidizable carboxylic acids), 

small mineralization and in some cases (particularly, under high concentration of pollutants) 

with production of polymers236. They produce a very low current efficiency and consequently 

small perspectives of application. On the other hand these anodes promote the formation of 

oxidant HClO if the solution contains chlorine ions. The use of the platinum and carbon based 

electrodes as anode in electro-oxidation to be included into this second type of electrodes 

because they usually exhibit low-efficiency for the oxidation of organics compared to BDD 

electrode. Low efficiencies are even more significant with the use of carbon-based materials 

as anode because during the electrochemical process they can also be electrochemically 

incinerated (transformed into carbon dioxide) when using high voltages or currents to oxidize 

organic pollutants. On the other side, the lead dioxide behaves as BDD and performs high 

efficiency oxidations.  

 

3.2. Mineralization current efficiency 

 

An estimation of energy consumption during electrochemical mineralization of organic 

pollutants can be done by calculating the mineralization current efficiency (MCE). MCE in 

percentage can be calculated from the following equation305: 

 

 MCE	% = *+,-∆/0123456

7.9:	5	;�<	=>?
	x	100                                               (3.2) 

Where n is the number of electrons exchanged per molecule (following equation 3.1), F is the 

faraday constant, Vs the solution volume, ∆(TOC) the experimental TOC decay, 4.32 x 107 is 
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the conversion factor to homogenize the units ( = 3600 s h-1 x 12.000 mg of C mol-1), m the 

number of carbon that the molecule contains, I is the current intensity applied and t is time 

when sample was withdrawn. For the mineralization of 1 mol of AMX, 98 mole of electron 

(n) are needed for its complete transformation to CO2 and H2O and after substituting other 

constants and experimental variables the MCE were calculated and plotted against specific 

charge Q (Ah/L). The percentage of MCE versus specific charge is given in the figure 3.5.  
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Fig. 3.5. Mineralization current efficiencies for the mineralization of AMX  (a) Pt/S Steel, (b) 

DSA/S Steel, (c) PbO2/S Steel, (d) BDD/S Steel, (e) Graphite/S steel, Vs = 250 ml, [Na2SO4] 

= 50 mM. 
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It is obvious that MCE has higher values at lower current intensities as less energy is 

consumed by wasting reactions. When current intensity is increased more TOC is removed for 

a given time interval since more charge passes through the cell, but this leads also to the 

lowering of MCE. The most efficient anode for AMX oxidation was BDD. For example, we 

can see that the highest MCE value is 11% at 0.5 h electrolysis for 300 mA (Fig. 3. 5). The 

mineralization efficiency undergoes a continuous decay as electrolysis is prolonged as a result 

of the formation intermediate species more difficult to oxidize, particularly carboxylic acids. 

The MCE decay is also a result of simple pollutant depletion in the solution, so that according 

to the fundamental kinetic considerations the rate of a reaction decreases as reactant 

concentration is lowered. When the concentration of AMX is low, for a constant current 

intensity a smaller part of charge will be used for its oxidation as less of AMX molecules are 

available to be degraded. The MCE decreases with the current intensity too; in the case of 

BDD we can see lower initial MCE values (11, 7.2 and 4.7 for 300, 500 and 1000 mA 

respectively). This decay is as a consequence of energy wasting rations such as O2 release on 

the anode instead of •OH formation. Moreover, OER will compete with the formation of other 

oxidizing agents lowering their contribution to mineralization. 

The MCE varies significantly with the anode material. MCE is very low for the DSA 

anode (Fig. 3.5a) whereas Pt and PbO2 (Figs. 3.5a and 3.5c) give medium efficiency 

compared to BDD ((Fig. 3.5d) and DSA (Fig. 3.5a). Such extremely low MCE values for the 

DSA anode are explained by the mechanism of organics oxidation on Ir(VI) oxide formed on 

DSA surface as a weak oxidant. This oxide allows very easily the release of oxygen (as DSA 

is low oxygen evolution overpotential anode) and at higher current intensities it becomes the 

main reaction leading to smaller values of MCE. As already seen, graphite could only be used 

for 150 mA and lower. However better mineralization current efficiencies and even better 

TOC removal was achieved with graphite (Fig. 3.5e) than with Pt and DSA. 

 

3.3. Comparison of the oxidation capacity of different anode materials 
 

To compare the performance of different anodes studied in this work namely BDD, 

DSA, PbO2, Pt, carbon-felt, carbon-graphite and carbon-fiber for the particular case of the 

oxidation of AMX, the time course during electrolysis were fitted to a pseudo-first order 

kinetic model. Table 3.1 shows the apparent (or observed) rate constants (kapp) for electro-

oxidation of AMX obtained by mathematical fitting of experimental results, respectively. It 
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has to be remarked that the linear approach was only for the initial stage of the oxidation, 

where AMX oxidation does not compete with the oxidation of intermediates. Thus, in the 

semi-logarithmic plot, it can be clearly observed two zones (not shown in Figures) 

corresponding to the electrolysis in which AMX does not compete and the zone in which 

significant concentration of intermediates are present in the system and compete with AMX 

for •OH. The later cannot be used in the calculation of thekapp. 

Regarding the oxidation rate constants, it can be clearly observed that the reaction rate 

increases with the current intensity in every case (except for the carbon-felt in which a strange 

shape can be observed), but the slopes (kapp) are very different depending on the nature of the 

anode material tested.  

Table 3.1. Apparent rate constants of the degradation of AMX by anodic oxydation with 

different anode materials. 

 

The rate of oxidation of AMX with the current intensity is increased as more electrons 

are transferred from anode to the pollutant molecule. But more significant is the role of 

heterogeneous hydroxyl radicals M(•OH) which are generated at the anode surface on AMX 

oxidation, their quantity increases with the current intensity and consequently the oxidation 

rate of pollutant too. The ability of an anode to produce •OH is related to its oxygen 

overpotential evolution. An anode showing high oxygen evolution overpotential provides high 

quantity of •OH even for higher current intensities whereby higher oxidation rate constants. 

Thus, this explains the order of abatement efficiencies for anodes tested (table 3.1), being the 

BBD the most powerful one and DSA the weakest one.  

As oxidant species like S2O8
2-, O3 and H2O2, are generated on the anode, but the later 

(H2O2) is essentially generated at the cathode, their contribution in the overall value of the 

rate constant cannot be neglected. So the modification of kapp with current intensity can be 

explained also by an increase in the concentration of oxidants at the pseudo-steady state or by 

Anode       BDD           Pt            DSA              PbO2       Graphite   Carbon Felt   Carbon fibre 

I (mA)                                                     kapp (min-1) 

50                0.02             0.02          0.0006         0.02           0.01            0.05           0.02 

100              0.03             0.03          0.003           0.03           0.01            0.08           0.02 

300              0.06             0.04          0.003           0.05           0.02            0.2             0.03 

500              0.11             0.03          0.008           0.04           0.02            0.09           0.02 
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the action of more powerful oxidants with higher kinetic constants. This means that 

differences between the oxidation rates of AMX shown in Table 3.1 should not be explained 

only in terms of the direct electro-oxidation of AMX but also by the action of mediated 

electro-reagents formed on the surface of the electrode. According to this, the production of 

these electro-reagents promoted at large current densities with most materials except for 

graphite and carbon-fiber (in which not a clear increase is observed). Likewise, it can be 

observed that production of oxidants that can oxidize the AMX is promoted with carbon-felt, 

BDD and Pt anodes, but this production is almost negligible for DSA anode. Therefore, it is 

worth to remind that no chlorides are present in the reaction media and that mediated 

oxidation of organics with DSA is only promoted in the presence of chlorides. Graphite and 

carbon-fiber electrodes have behaviors something in between both behaviors, maybe because 

of the production of a softer oxidants and the possibility of film formation as light orange 

color could be observed on the surface.  

Compared with other works in literature, the huge reaction rates observed for carbon-

felt electrode are surprising, especially if one takes into account that it consists of sp2-carbon. 

These values are not in agreement with the low mineralization rates observed for this material 

and can only be explained in terms of a double effect: the enhanced direct-like processes 

because of the higher surface area of carbon felt (as compared with the other electrodes 

assessed) and also the production of a soft oxidant (most probably hydrogen peroxide), 

activating the oxidation of AMX but not enough strong for depletion till carbon dioxide of 

sp2-carbon of the electrode. The decrease in the kinetics constant observed for larger current 

densities is due to the destruction of the electrode (it will be discussed later). 

Changes of the oxidation power of anodes are important for the initial oxidation of the 

AMX but they should be even more important for the complete mineralization process. In this 

case, very different results are obtained with respect to the oxidation of AMX as it is shown in 

Table 3.2. The percentages of AMX abatement at 6 h treatment in sp2-carbon based materials 

(including carbon-felt) fall to an almost nil values and only diamond, platinum and lead 

dioxide exhibit appreciable values of both parameters. 
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Table 3.2. TOC removal percentages at 6 h electrolysis. 

Anode           BDD            Pt             DSA            PbO2        Graph        C Felt       C Fibre 

I (mA)                                                TOC removal (%) 

300                 86.9            29.8            9.7               62.5             0               0                  0 

500                 92.2            41.3            13.8             81.2             0               0                  0 

1000               96.3            47.4            22.0             90.6             0               0                  0 

 

Comparing the abatement percentages of the oxidation and mineralization of AMX, it 

can be observed that the oxidation of AMX is easier to be achieved than mineralization. This 

is important because it clearly exhibits that these parameters with a very different meaning, 

mineralization being the main goal in the efficient removal of pollutants from wastewaters, 

and much more difficult to attain that depletion of the AMX by transformation into its 

oxidation intermediates. The high efficiencies obtained for BDD, apart from hydroxyl 

radicals, should be explained in terms of the production of large amount of oxidant as it has 

been widely described in literature. Hence in addition to hydrogen peroxide and ozone, 

persulfates are expected to play an important role in the oxidation of organic pollutants. 

Production of the persulfates is also possible with Pt and PbO2 anodes but in a lesser extent.  

Table 3.3. TOC removal percentages at 6 h for low current intensities with carbon 

anodes. 

Anode            Graphite                 Carbon felt                  Carbon fibre     

I (mA)                                TOC remval (%) 

50       37.3                              0                                     0 

150                  42.9                              0                                     0 

 

Table 3.3 shows percentages of the mineralization obtained at low current densities 

with sp2-carbon based electrodes indicating that only graphite is robust enough against 

incineration in the range of low current densities. This is important because carbon-fiber and 

carbon-felt are not able to mineralize the AMX while they oxidize AMX to its intermediates. 

That means oxidation intermediates are recalcitrant to the mineralization with these anode 

materials. In the case of carbon-felt, the difference is remarkable. It performs very well in the 

initial oxidation of the AMX but it is not able to attain a higher oxidation. This confirms the 

significance of the active area of the electrode and the potential formation of soft oxidants 
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(such as hydrogen peroxide) which help in the initial stages but are not able to mineralize this 

complex pollutant. An important fact is that graphite can mineralize AMX almost with the 

same efficiency as Pt and is almost two times better than DSA, applying much lower current 

intensities, what means less energy consumed for same or more TOC removal. Previous 

results obtained with BDD electrodes with different ratios sp3/sp2 during the degradation of 

enrofloxacin showed that sp2 carbon in diamond promoted the formation of intermediates361.  
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3.4. Conclusions 
 

A systematic study on the efficiency of the electrode materials such as carbon-felt, carbon-

fiber, carbon-graphite, Pt, DSA (Ti/RuO2-IrO2), PbO2, and BDD was studied through 

different electrochemical parameters in the oxidative degradation of the drug AMX. First it 

was evidenced that BDD electrode is more efficient than that of DSA to oxidize AMX 

achieving the total mineralization of the antibiotic in less than 100 min while less than half of 

the initial AMX was mineralized with DSA anode in the same period for the best 

experimental conditions. Then, the apparent rate constants of the oxidation reaction of AMX 

were determined in function of current intensity for several anodes. The results showed that 

apart from BDD electrode, carbon-felt exhibits a better performance for low and moderate 

current density values. On the other side, in particular in terms of mineralization, obtained 

results highlighted that the BDD anode is the best anode material for the large current 

densities due to generation of large amount of different oxidants: hydroxyl radicals, but also 

hydrogen peroxide, ozone and persulfates, that permits not only the oxidation of AMX but 

also its complete mineralization. 
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CHAPTER 4 

EFFECT OF THE ANODE MATERIAL ON THE ELECTRO-FENTON 
PROCESS EFFICIENCY 
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KINETIC STUDY OF THE DEGRADATION AND MINERALIZATION  OF 

SULFAMETHAZINE (SMT) BY ELECTRO-FENTON PROCESS USIN G 

DIFFERENT ANODE MATERIALS 

 

To estimate the effect of anode material on the electro-Fenton process efficiency as an 

electrochemical advanced oxidation processes (EAOPs), the SMT was chosen as a model 

pollutant. Degradation of SMT was performed under different current intensities and the 

apparent rate constants kapp and TOC removal percentages are studied for each anode, the 

cathode being always the carbon-felt. 

 

4.1. Kinetics of SMT oxidation during electro-Fenton treatment 

 

Electrochemical oxidative degradation of SMT was brought about in an electrolytic cell 

of 300 mL capacity and equipped with two electrodes. The cathode was a carbon felt piece of 

dimensions 23 cm x 6 cm x 0.5 cm whereas the anodes were Pt, BDD, DSA (RuO2-IrO2) and 

C F (carbon felt) of 24 cm2 area each side. The pH of the solution was adjusted with sulfuric 

acid to 3, the optimal pH for electro-Fenton process. Na2SO4 (50 mM) was added as 

supporting electrolyte to provide a good conductivity in the electrolytic cell. The 

concentration decay with time was followed by withdrawing samples at regularly time 

intervals and analyzing by HPLC. 

During the analysis of electrolyzed samples, SMT showed a well-defined 

chromatographic peak at 13.8 min which diminished progressively with the time until 

complete disappearance. After electrolysis begins, the chromatogram showed also other peaks 

indicating the formation of many intermediate products during the degradation of the initial 

compound. The intermediate’s peaks continued to increase until a certain moment and then 

they started to diminish until their disappearance. 

Fig. 4.1 shows the effect of current intensity on the concentration decrease of SMT with 

time in the Pt/Carbon felt system. It can clearly be observed that the concentration diminishes 

with time exponentially, following a pseudo-first order reaction kinetics almost until the 

complete disappearance of the target molecule. The pseudo-first order kinetics for the 

pollutant degradation can be adopted taking in consideration the fact that for a given current 

intensity, the quantity of hydroxyl radicals •OH produced in the solution by time unit (•OH 



 110  

 

formation rate) is constant. The experimental degradation curves seem to fit very well this 

consideration. 

The plot below Fig 4.1(a) depicts the variation of degradation rate in a range of current 

intensities from 50 to 500 mA. An increase in the current intensity leads neatly to an increase 

in the decay rate of the SMT concentration. The acceleration of the degradation reactions 

comes due to the intensification of the electrochemical reactions of hydrogen peroxide 

production (reaction 3.1) and catalyst (Fe2+) generation (reaction 4.2) on the cathode:  

O2 + 2H+ + 2e- � H2O2                                                                       (4.1) 

Fe3+ + e- � Fe2+                                                                                   (4.2) 

As H2O2 concentration increases with the current and the catalyst is faster regenerated, the 

Fenton’s reaction accelerates too, resulting in a higher •OH production rate in the medium 

which leads to a faster degradation of the pollutant. Another important fact to be observed is 

that the improvement of degradation can only be achieved until a certain current value. In this 

case we can see that an optimal abatement current is attained at 300 mA. For 400 and 500 mA 

no more increase on degradation rate is gained, indicating that side wasting reactions begins 

to become prevalent. There are two principal parasitic reactions that waste the current for high 

potentials:  

Oxygen reduction on the cathode until H2O according to the reaction (104) (chapter 1) which 

leads to less production of H2O2 and hydrogen evolution (reaction (4.3)) which compete with 

oxygen reduction and oxygen evolution on the anode (reaction (4.4)) which compete with the 

production of M(•OH) and SMT direct oxidation on the anode surface: 

2H+ + 2e- � H2                                                                                     (4.3) 

2H2O � O2 + 4H+ +4e-                                                                        (4.4) 
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Fig. 4.1. The effect of current intensity on the kinetics of degradation of SMT using the 

Pt/Carbon felt electrode couple. (a) electro-Fenton and (b) anodic oxidation. Vs = 300 mL, pH 

= 3, [Na2SO4] = 50 mM, [Fe2+] = 0.2 mM for electro-Fenton and 0.0 mM for anodic 

oxidation.  

To see the contribution of direct oxidation without the effect of electro-Fenton process in the 

whole result, two experiments without adding the catalyst Fe2+ were done and they are 

presented in figure 3.1b. As can be seen, much more longer time are needed to reach complete 

oxidation (disappearance) of SMT. Actually even after 90 min of electrolysis at 500 mA there 

are still some traces of the SMT remaining in the solution. In contrast, in the case of electro-

Fenton process, in only 20 min treatment no SMT could be detected in the solution under 

same experimental conditions. Whereas at 100 mA applied current, 91.8% of SMT was 

oxidized at 90 min by anodic oxidation against100% by electro-Fenton process. 

(a) 

(b) 
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 The DSA/Carbon felt electrolytic cell was tested in the same conditions and results are 

presented in the Fig. 4.2. Similarly, for higher current intensities the rate of oxidation 

increases until a limiting value is attained at 400 mA. The degradation efficiency seems to be 

similar to that of Pt/Carbon felt system (slightly slower) for the case of electro-Fenton 

treatment of the solution, but it changes more for the direct anodic oxidation. 70 and 30 

minutes are needed for complete transformation of SMT from the solution when current 

intensities were 100 and 500 mA, respectively, during the electro-Fenton process. But, by 

applying a current intensity of 100 mA for the anodic oxidation only 66.4% of SMT could be 

oxidized after 90 min, while for a 500 mA current intensity this process is enhanced and 

reaches the value of 90.1% of oxidation of SMT.  

A better performance of Pt anode in comparison with DSA can be explained with the 

oxygen evolution overpotential. As the overpotential of oxygen evolution is higher for Pt for 

DSA, generation of hydroxyl radicals is better for the former anode. It means also that for a 

given operation potential the quantity of oxygen evolution is lower on Pt electrode so more 

organics can be transformed on the anode. Moreover, polymeric films can be created on the 

DSA anode which inhibits the organics oxidation. When the catalyst is added to the medium, 

hydroxyl radicals will be generated and they will attack the polymeric film releasing more 

active sights on the anode surface. DSA anode is more efficient on organics oxidation only in 

the presence of chlorides, when a chloride containing salt is used as supporting electrolyte or 

when the pollutant under treatment contains chlorine as heteroatoms. 
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Fig. 4.2. The effect of current intensity on the kinetics of degradation of SMT using the 

DSA/Carbon felt electrode cuple: (a) electro-Fenton, (b) anodic oxidation. Vs = 300 mL, pH = 

3, [Na2SO4] = 50 mM, [Fe2+] = 0.2 mM (electro-Fenton only). 

 

 In figure 4.3, is presented the concentration decay of SMT for the electrolytic system 

BDD/Carbon felt with time for different current intensities for both electro-Fenton and anodic 

oxidation. There is always an exponential pseudo-first order kinetic decay of concentration for 

the whole range of applied currents.  

 

 

(a) 

(b) 
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Fig. 4.3. The effect of current intensity on the kinetics of degradation of SMT using the 

BDD/Carbon felt electrode couple: (a) electro-Fenton, (b) anodic oxidation. Vs = 300 mL, pH 

= 3, [Na2SO4] = 50 mM, [Fe2+] = 0.2 mM (only for electro-Fenton).  

The rate of SMT abatement still increases until the optimal current intensity that is about 300 

mA. If we do a comparison between electro-Fenton and direct anodic oxidation, a remarkable 

difference is observed. For the electro-Fenton treatment the complete depletion in SMT is 

attained at 30 min for 500 mA and at 60 min for 100 mA. For the anodic oxidation there still 

remain traces of SMT at 90 min for 500 mA, whereas 91.3% of SMT is oxidized with 100 

mA at the same time. According to the degradation curves, BDD is slightly faster than DSA 

for 50, 100, 200 and 300 mA but it is slightly slower than Pt for the whole range of current 

intensities.  

(a) 

(b) 
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 The results obtained with carbon felt as anode and carbon felt again as cathode, show a 

much more different comportment. These results are shown in the Fig. 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. The effect of current intensity on the kinetics of degradation of SMT using the 

Carbon Felt /Carbon felt electrode couple: (a) electro-Fenton, (b) anodic oxidation Vs = 300 

mL, pH = 3, [Na2SO4] = 50 mM, [Fe2+] = 0.2 mM (for electro-Fenton only).  

Figure 4.4a shows that in the electro-Fenton process, once the current starts to pass through 

the circuit, the concentration of the pollutant (here SMT) decreases rapidly up to zero value at 

about 15 min for the current higher than 100 mA while traces of the pollutant can be found 

until 50 min or more for the current intensity of 50 mA and 100 mA. For 300-500 mA, SMT 

disappearance kinetics curves have similar shapes, since the anode underwent combustion 

reactions for high current values. Thus the effect of increasing current was inhibited by the 

loss in the electrode surface from its partial combustion.  
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When anodic oxidation only is brought about, the oxidation of SMT is slower what 

lets more time for oxidation of anode (carbon-felt) to advance. At a moment the anode has 

been considerably damaged and SMT concentration lowered, oxidation rate of SMT became 

very slow. This is probably manifested with the prolongation of degradation curves until 90 

min, despite that it descends almost to zero in 20 min.  

Hydroxyl radicals are known for their extreme reactivity and non-selectivity towards 

organic molecules. Once created in the solution they react immediately with whatever 

molecule that they come across first. This very short life time prevents them to accumulate in 

the medium. For a constant current intensity a constant rate of •OH production is obtained, so 

a quasi-stationary state is attained for their concentration, whereby a pseudo-first order 

kinetics can be established for the reaction of oxidation of organics. Now considering the 

section dealing with the reactivity of hydroxyl radicals, for the reaction of the degradation of 

SMT we can write: 

��
��BC��

��BC��
	 = ���� 	 ∙ �	                                                                 (4.5) 

So the slope of the plot of ��
��BC��

��BC��
= E/�3 gives a straight line with the slope equal to 

kapp(apparent rate constant) for the reaction of the oxidation of sulfamethazine with hydroxyl 

radicals. In the figure 4.5 is given the example for the system Pt/Carbon felt, and the same 

method was applied for all the other electrolytic cells. 
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Fig 4.5. Semi-logarithmic plots for the determination of apparent rate constants (kapp) of the 

reaction of degradation of SMT with •OH in the Pt/Carbon felt electrolytic cell: Vs = 300 mL, 

pH = 3, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM. 

 

The apparent rate constants calculated from pseudo-first order kinetics are given in the 

Table 4.1 

 

Table 4.1. Apparent rate constants in function of anode material and current intensity 

for electro-Fenton process with carbon felt cathode. 

 

 

 

 

 

 

 

 

Cell                  Pt                  DSA                   BDD                C F 

I (mA)                                         kapp / min-1 

50                    0.08                 0.06                    0.07                 0.22 

100                  0.15                 0.09                    0.12                 0.31 

200                  0.19                 0.14                    0.18                 0.37 

300                  0.27                 0.20                    0.24                 0.44 

400                  0.37                 0.27                    0.27                 0.43 

500                  0.40                 0.27                    0.25                 0.43 
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Table 4.2. Apparent rate constants in function of anode material and current intensity 

for anodic oxidation. The cathode is carbon felt. 

Cell                   Pt                   DSA                    BDD                    C F 

I (mA)                                     kapp/min-1 

100                   0.02                 0.01                     0.02                   0.22 

500                   0.04                 0.02                     0.06                   0.29 

 

According to apparent rate constants obtained for the SMT oxidation in different electro-

Fenton electrolytic systems, no very important difference exist between them, except for the 

carbon felt anode which represents considerably high kapp values. If we consider this 

difference towards the organic molecules oxidation between anodes studied, kinetic data 

range the DSA anode as the weakest one followed by BDD which is a little more efficient, 

then Pt and finally carbon felt as the most powerful one. In all cases the degradation rate 

increases with the current until an optimal current intensity of about 300-400 mA. Concerning 

the optimal current intensity, a more characteristic behavior is observed for the carbon felt 

anode, for which an optimal current intensity is attained at 300 mA. Namely when current 

intensity increases from 50 mA to the optimal value 300 mA, the kapp increases less than for 

other anodes and kinetic curves stay closer to each other. This behavior can be explained by 

partial combustion of the anode material. When the current intensity is lower the oxidation of 

anode itself is less intensive, whereas the increase of I favors the Fenton’s reaction but at the 

same time accelerates the anode oxidation. These two opposite actions cancel at certain 

degree each other making the kapp increase slower with the current intensity. 

 The anodic oxidation rate constants given in the table 4.1 and also the graphs of anodic 

oxidation given below to every electro-Fenton plot (figs. 4.1-4.4), show a difference in the 

order of kapp values for BDD and Pt anodes alone when compared to electro-Fenton. Unlike in 

electro-Fenton process, in direct anodic oxidation, BDD anode oxidizes faster SMT than Pt. 

This trend is normally expected for the BDD anode having a higher overpotential for OER 

makes more possible generation of higher hydroxyl radical and other oxidizing species than 

Pt. In the case of electro-Fenton process, the electrogenerated oxidizing agents formed in the 

solution can play a slight negative role too. Since Na2SO4 was used as supporting electrolyte 

in electrolysis experiments, the main electrogenerated oxidizing specie created on the anode is 

the persulphate anion S2O8
2- which can oxidize the catalyst Fe2+ to Fe3+ (reaction (4. 6))286 

which do not react with H2O2 in the same way as Fe2+.  
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 S2O8
2- + Fe2+ � 2SO4

2- + Fe3+                                                             (4.6) 

Actually Fe3+ ions reacts with H2O2 giving hydroxyperoxyl radicals HO2
• according to the 

reaction (59) which are relatively weaker oxidants compared to �OH, and do not oxidize 

effectively the organic molecules. Another reason might be the higher potential of BDD than 

Pt for a given constant current which also contributes to higher oxidation of Fe2+ to Fe3+. In 

fact it has been confirmed that Fe2+ accumulates much more in a cell employing Pt as anode 

than in that of BDD286. Accordingly we can say that the slightly better performance of Pt than 

BDD is because of the removal of a part of catalyst from the electro-Fenton cycle in the 

BDD/Carbon felt cell.  

 Finally, the slight difference between kapp for Pt/Carbon felt, BD/Carbon felt and 

DSA/Carbon felt, in electro-Fenton process, can be explained with the overwhelming effect of 

hydroxyl radicals generated from electro-Fenton process (as kinetic curves show, the 

contribution of only anodic oxidation is far lower from that of electro-Fenton). High 

quantities of •OH are formed in the bulk of solution and rapidly degrade the organic 

molecules resulting in high degradation rate constants. Thus, a part of anode effect is hidden 

by the dominating electro-Fenton action, in particular at high applied current intensities. 

The best performance of Carbon felt/Carbon felt cell is a result of much more larger surface 

area of the carbon felt material owing to its high porosity and three dimensional geometry. A 

high surface area enhances the rate of electrochemical reactions (formation of H2O2 and 

regeneration of Fe2+) and also facilitates the contact of organic molecules with the anode due 

to better mass transport conditions leading to a greater contribution to the overall oxidation 

rate of pollutant to be degraded. It is important to emphasize that the carbon felt anode 

provides good oxidation efficiency at low current densities but it is not suitable for high 

currents densities that lead to its combustion. 

 In order to determine the absolute rate constant of the oxidation of SMT, we have used 

as before the method of competition kinetics277 and the experiment was done in the Pt/Carbon 

felt cell at current intensity of 50 mA. As we have emphasized before this method consists on 

simultaneously degradation of the compound of concern and a standard compound 

(competitor) with a known absolute rate constant of its reaction with hydroxyl radicals. 
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 p-Hydroxy benzoic (pHBA) acid was used as standard competitor for the 

determination of the absolute rate constant of SMT oxidation by hydroxyl radicals. Assuming 

that hydroxyl radicals react only with SMT and pHBA we can write: 

 − ���BC�

��
= 	 ��BC��FG�	�	
•�                                                             (4.7) 

 − ���HI�

��
= ���J	K#��	
•�                                                               (4.8) 

As the hydroxyl radicals are very reactive they have a very short life and a stationary state for 

their concentration can be considered. After integrating and arranging equations (4.70) and 

(4.8) we obtain: 

 �� ��BC��

��BC��
= 	 �LMN

�OPQR
	�� ��HI��

��HI��
                                                                 (4.9) 

where [SMT]0 and [pHBA]0 are the concentrations of sulfamethazine and p-hydroxy benzoic 

acid before the beginning of electrolysis. [SMT]t and [pHBA]t are the concentration of the 

sulfamethazine and the p-hydroxy benzoic acid after a time t of electrolysis.  

 Therefore knowing that the absolute rate constant of pHBA with hydroxyl radicals is 

kpHBA = 2.19 x 109 M-1 s-1, we can calculate that for the oxidative degradation of SMT from the 

slope of the graph �� ��BC��

��BC��
= E/	��

��HI��

��HI��
	3. 

The concentration decay of SMT and pHBA was followed and measured by high performance 

liquid chromatography at a given time. The above written function for the absolute rate 

constant determination of SMT is presented in Fig. 4.6. 

The slope of the linear curve shown in the Fig. 4.6, multiplying it by kpAHB = 2.19 x 109 M-1 s-

1 we obtain the absolute rate constant of SMT oxidation by hydroxyl radicals which results to 

be kSMT = 2.9 x 109 M-1 s-1. It is a high value indicating high reactivity of •OH towards SMT. 

This value is of the same order as absolute rate constants for oxidation of several aromatic 

organic compounds by hydroxylation with •OH, indicated in the Table 1 (chapter 1). 
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Fig. 4.6. Kinetic analysis for the absolute reaction rate constant for oxidation of SMT with 
�OH. Electro-Fenton cell: Pt/Carbon felt, Vs = 300 mL, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, 

I = 50 mA, pH = 3. 

 4.2. Comparison of the mineralization efficiency 
 

The degradation of organic pollutants is necessary because they have various adverse 

effects on the environment. When an initial organic pollutant degrades during an AOPs, it can 

produce other molecular species which may be more or less harmful or not harmful at all for 

the environment. Unfortunately the byproducts of the degradation by AOPs are very often 

even more dangerous for the living organisms than the mother pollutant. For this reason the 

oxidative degradation of the toxic chemicals must continue until their complete 

transformation on CO2 and H2O (mineralization). The complete mineralization of organics is 

a complicated oxidation process and a level of depollution is considerably hard to be 

achieved. Probably one of the most powerful methods to mineralize the organic matter in 

aqueous solution is the electro-Fenton process that provides high total organic carbon removal 

(TOC). Furthermore the extent of the organics mineralization with electro-Fenton technology 

depends on several parameters, one of the most crucial being the anode material. This section 

will give an insight on the effect of anode material on the mineralization degree by explaining 

the results gained with anode materials tested for the degradation of SMT in the previous parts 

of this chapter. 

As it can be seen in figure 4.7a) the mineralization of SMT is improved with the 

current intensity for the Pt/Carbon felt cell. 
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Fig. 4.7. Effect of applied current intensity on the extent of TOC removal of SMT aqueous 

solution in the cell Pt/Carbon felt during (a) Electro-Fenton and (b) anodic oxidation. Vs = 

300 ml, pH = 3, , [Na2SO4] = 50, mM[Fe2+] = 0.2 mM (for electro-Fenton).  

The mineralization rate increases with the current intensity until 500 mA where the 

TOC removal efficiency from the solution reaches a maximum. After this optimal current 

intensity contrarily the TOC abatement is even lower. At current intensities of 700 and 1000 

mA, TOC removal curves had almost the same slope as 300 mA, and the 1000 mA curve is 

even worse after 4 h electrolysis ending with the TOC removal as low as for 100 mA. 

Fig. 4.7b) shows mineralization curves for anodic oxidation; it indicates clearly that 

the TOC abatement is very weak compared with the electro-Fenton. Otherwise the anodic 

oxidation follows a similar course except that the slope of the curve for 1000 mA is not very 
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much lower than that for 500 mA, as it happens in the case of electro-Fenton, but it is slightly 

less stepper.  

When working under electro-Fenton conditions at 1000 mA, parasitic reactions such 

as H2 evolution on the cathode, O2 evolution on the anode and four electron reduction of O2 

on the cathode, diminish significantly the rate of hydroxyl radical generation. So the TOC 

removal kinetics tends to be less effective. At 500 mA there is still considerable H2O2 

production high TOC removal values than at 1000 mA in electro-Fenton, and of course, much 

more effective than 500 mA in anodic oxidation.  

During electro-Fenton treatment a very steep decay of the mineralization curve is 

observed for the first part of electrolysis until 4 h, and then it becomes more flat because the 

mineralization slows down. This sluggish mineralization reaction by the end of treatment is 

considered to be due to the carboxylic acids as they accumulate in the solution and react 

slowly with hydroxyl radicals. Carboxylic acids not only are more refractive but they also can 

form complexes with iron inhibiting its role of catalyst. An effect on this sluggishness of the 

mineralization process may have also the diminution of concentration of catalyst due to its 

precipitation in the basic medium created in the pores of carbon felt because of hydrogen 

evolution. This can by visibly detected as very small yellow precipitate particles can be seen 

on the carbon felt cathode. 

For comparison between electro-Fenton and anodic oxidation we can take the 

percentage of the TOC removal at the end of experiment for the optimal current intensity of 

500 mA. For the mineralization with electro-Fenton we have 92.2% of TOC removed at 8 h, 

whereas only 41% TOC removal could be achieved at the same conditions at 8 h with anodic 

oxidation. 

To understand the efficiency of electric current used, mineralization current efficiency 

was calculated for each experiment following the following mineralization reaction of SMT: 

C12H14N4O2S +38H2O � 12CO2 + 4NO3
- + SO4

2- + 90H+ + 84e-              (4.10)  

than the MCE can be obtained from the equation : 

FST	% = U	V	W�	∆/C�X3YZ�

7.9:	Z	;�<	[	\	�
	]	100                                                                      (4.11) 

with units given in precedent chapter. 
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The mineralization current efficiencies in percentage MCE% for the cell Pt/Carbon 

felt are given in the figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. Mineralization current efficiency versus specific charge per volume unit passed 

through the cell, Pt/Carbon felt: (a) Electro-Fenton, (b) anodic oxidation processes. Vs = 300 

ml, pH = 3, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, [Fe2+] = 0.2 mM (for electro-Fenton) 

 

It can be clearly seen that MCE% decreases drastically with the specific charge passed (and 

indirectly with treatment time). At the beginning there is more organic matter in the cell to be 

degraded resulting in higher MCE% values. When the concentration of organic matter 

decreases during electrolysis, the parasitic reactions occur simultaneously and after a certain 

time they become dominant compared to SMT and by products oxidation. Consequently, as 
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the specific charge increases with time, the quantity of organic matter to be oxidized 

decreases continuously making the MCE% falls progressively.  

 In the case of electro-Fenton, the MCE% are very high compared to anodic oxidation, 

for example the starting value for electro-Fenton at 100 mA is 24.5 %, but it is 16.5% for the 

anodic oxidation which is not surprising. This explains the additional role of hydroxyl radicals 

formed in the solution bulk in the presence of the Fe2+. Now, for the same current more 

reactive oxidants are formed giving higher TOC abatement per unit specific charge. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 4.9. Effect of current intensity on the extent of TOC removal in the cell DSA/Carbon felt. 

a) Electro-Fenton, Vs = 300 ml, pH = 3, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM. b) Anodic 

mineralization of SMT: Vs = 300 ml, pH = 3, [Na2SO4] = 50 mM. 
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The experiments with the DSA/Carbon felt system revealed a poorer TOC abatement 

than with Pt/carbon felt. As Fig. 4.9a indicates the TOC decay is improved with the current 

intensity so that 100, 300 and 500 mA curves are closer to each other than when Pt was used 

as anode. This means that the optimal current is attained for lower values for the DSA 

indicating that the OER dominates the SMT oxidation easier than on Pt. Despite this, the TOC 

removal is still good for the electro-Fenton treatment. Anodic oxidation with DSA is very low 

and there is almost no difference between current intensities, Fig. 4.9b). A positive effect of 

higher current on SMT mineralization when electro-Fenton is operating can be attributed to 

the bulk hydroxyl radicals which can destroy organic layers that possibly formed on the DSA 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. Mineralization current efficiency versus specific charge passed through the cell, 

DSA/Carbon felt. (a) Electro-Fenton and b) anodic oxidation processes. Vs = 300 ml, pH = 3, 

[Fe2+] = 0.2 mM (for electro-Fenton only), [Na2SO4] = 50 mM.  
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Just like TOC, the MCE% with DSA electrode is smaller than that of Pt (see Fig. 4.8a) 

. When the solution is treated with electro-Fenton process using DSA anode (Fig. 4.10a), the 

MCE% have more important values than in the case of anodic oxidation. For the current 

intensity of 100 mA, MCE% increases for the early stages of electrolysis because more SMT 

is oxidized, and then after 2 h it decreases sharply with the specific charge. As the oxidation 

of SMT is not efficient with DSA anode, higher currents results mostly in energy loss.  

 Contrarily to oxidation of SMT on BDD anode which was slower than on that of Pt, 

the mineralization process is performed remarkably better on the former one. The oxidation of 

an organic molecule is easier than the mineralization because the mineralization process 

requires several steps and a great number of hydroxyl radicals contrarily to oxidation which 

necessitates the reaction with one mole of this oxidant. As most of the SMT molecules are in 

the bulk they will react quickly with the hydroxyl radicals that are generated from electro-

Fenton process. Taking into account the fact that the concentration of oxidizing species other 

than •OH (as mentioned earlier) in the BDD system is much higher than in Pt system, a lower 

bulk concentration of •OH is expected because of the removal of a quantity Fe2+ by these 

species. That’s why the Pt/Carbon felt is a bit faster in degrading SMT than BDD/Carbon felt. 

When the initial molecule is broken it is transformed in smaller intermediates that react less 

with the hydroxyl radicals in the bulk in the case of Pt/Carbon felt, but when a BDD anode is 

employed high amounts BDD(•OH) are formed on its surface which destroy the organic 

matter. This does not happen with Pt and DSA anodes as they do not generate appreciable 

hydroxyl radical quantities, so the mineralization rate subsides for longer electrolysis time. 

 The effect of current intensity on mineralization of SMT is given in the figure 4.11, 

where a new trend is observed. Unlike with the precedent anodes, in the case of BDD anode, 

the range of current intensities where the oxidation of organic molecule can be accelerated is 

extended. For Pt and DSA anodes the limit of the optimal current intensity was 500 mA, 

whereas for BDD anode, the mineralization efficiency can be improved even at 1000 mA. 
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Fig. 4.11. Effect of current intensity on the extent of TOC removal in the cell BDD/Carbon 

felt during mineralization of SMT aqueous solutionby (a) Electro-Fenton and b) anodic 

oxidation. Vs = 300 ml, pH = 3, [Fe2+] = 0.2 mM (for electro-Fenton only), [Na2SO4] = 50 

mM. . 

This is possible thanks to the high overpotential of OER on BDD which enables the 

generation and accumulation of hydroxyl radicals on its surface. Comparing electro-Fenton 

and anodic oxidation still another different comportment appears for BDD that is not seen for 

Pt and DSA. The TOC abatement does not change much from electro-Fenton to anodic 

oxidation. This result can be related to the fact that in the mineralization process BDD(�OH) 

play a predominant role compared homogeneous �OH in the bulk solution. Basing on this 

consideration and experimental data, the contribution of anodic oxidation on mineralization 

process plays the principal role. 
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Fig. 4.12. Mineralization current efficiency versus specific charge passed per volume unit 

during mineralization of SMT aqueous solution in BDD/Carbon felt cell (a) Electro-Fenton 

and (b) anodic oxidation processes. Vs = 300 ml, pH = 3, [Fe2+] = 0.2 mM (for electro-Fenton 

only), [Na2SO4] = 50 mM.  

Obviously MCE% is higher than for the previous experiments because the wasting 

reactions such as oxygen evolution are not so present (thanks to the high O2 overpotential of 

this anode material) and more TOC is removed per unit specific charge passed in the solution. 

The best mineralization current efficiency is obtained for the current intensity of 100 mA and 

its initial value is 43.3% for electro-Fenton and 35.1% for anodic oxidation, than it falls 

steeply down to 16.1% and 15.6% respectively for electro-Fenton and anodic oxidation. 

MCE% is lower when higher current intensities are applied, due to enhancement of wasting 

reactions.  
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Despite the high overpotential for OER on BDD, oxygen evolution is always a very 

competitive parasitic reaction at high current values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13. Effect of current intensity on the extent of TOC removal in the cell Carbon 

felt/Carbon felt. (a) Electro-Fenton and (b) MCE. Vs = 300 ml, pH = 3, [Fe2+] = 0.2 mM (in 

electro-Fenton), [Na2SO4] = 50 mM.  

The mineralization with carbon felt is not enhanced with high current densities. We 

can see that the mineralization is relatively good for 50 mA. At 100 mA the TOC decays 

quickly from the beginning until 4 h electrolysis, it is almost constant at 6 h and finally it is 

higher at 8 h than at 6 h. This result is something surprising but considering the results 

obtained during degradation experiments, the carbon increase may come from carbon felt 

burning. Also, when the carbon felt is burned this causes more heating in the system which 
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leads to water vaporization and volume diminution resulting in an increase of the total carbon 

concentration. 

  Anyways carbon felt can be an interesting anode material because relatively 

good TOC removal values can be reached using low current intensity. Then a low current 

intensity gives higher mineralization current efficiency as shown in figure 4.12b). 

 Table 4.3 gives some summarized data about the mineralization of SMT with different 

anodes. 

Table 4.3. TOC removal percentages during electro-Fenton treatment as function of 

anode material and current intensity at a treatment time of 2 and 6 h. 

Cell                Pt                          DSA                     BDD                     C F 

I (mA)                                     % TOC removal 2h / 6h                

50                                                                                                             33.6/68.2 

100             35.5/69.6                  25.5/62.2                57.2/91.9              44.4/70.2     

300             55.9/83.9                 34.1/71.1                 76.4/96.8                  

500             71.5/90.3                 41.9/76.1                 84.7/97.9 

700             61.4/81.7                 14.8/75.2                 88.2/97.2 

1000           54.7/75.8                 26.3/46.1                 90.1/98.5 

 

 

Table 4.4. TOC removal percentages as a function of anode material and current 

intensity during anodic oxidation. 

Cell                  Pt                         DSA                      BDD                      C F 

I (mA)                                 %  TOC removal 2 h/6 h 

100               12.5/15.8               5.2/8.3                    48.7/88.1                  0/0 

500               25.7/36.8               9.6/10.8                 69.4/94.6                   0/0 

1000             24.0/41.4               9.8/9.8                    80.9/97.4                  0/0 

 

The mineralization power of anodes according to the %TOC removal values given in 

the table 4.3 can be ranged as following: BDD > Pt > DSA, whereas carbon felt is only 

effective for currents smaller than 50 mA being always more efficient than DSA. The TOC 

abatement improves with current intensity up to 500 mA for Pt and DSA whereas for BDD 
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we can obtain higher percentages of TOC abatement even for that of 1000 mA. It is also 

important to note that although the TOC removal efficiency increases with current intensity 

until 1000 mA, the slope of the curves starting from 500 mA are very close to each other. 

 TOC removal percentages for anodic oxidation are lower than those for electro-

Fenton. This effect is more pronounced for Pt and particularly for DSA electrode and it is less 

observed for BDD electrode.  

The outstanding oxidation power of BDD comes, as we have stated before, from the 

generation of additional hydroxyl radicals on its surface which are weakly physio-sorbed and 

are free to react. In the case of DSA anode, the electronic structure permits higher oxidation 

states for iridium without free hydroxyl radical formation. Thus Ir (IV) in IrO2 passes to Ir 

(VI) as IrO3, now the iridium trioxide oxidizes the organic matter which is rather a slow 

chemical reaction. At high current intensities (or high potentials) the O2 evolution rate from 

IrO3 according to the reaction (90) becomes faster than SMT oxidation by IrO3 lowering its 

oxidation efficiency. Higher oxidation states have been proposed for Pt also362, but as oxygen 

evolution overpotential is higher than on DSA, small quantities of hydroxyl radicals are 

possible.  

 

4.3. Determination and evolution of carboxylic acids during electro-Fenton 
treatment of SMT 
 

The electrochemical degradation of organic compounds is accompanied with the 

intermediate product formation268,363,364. Short chain carboxylic acids214,277 and probably some 

aliphatics, are the lowest organic molecular species formed before complete transformation of 

organic compounds in CO2, H2O and inorganic ions (if the molecule contains heteroatoms). 

Depending on the structure of the molecule to be degraded many carboxylic acids can be 

formed. The electrode material that is used for the oxidation of the pristine compound has also 

an important impact on the carboxylic acids that will be present in the solution as well as their 

concentrations.  

Figure 4.14 shows the experimental curves of different carboxylic acids that are 

obtained during the degradation of the initial product on Pt, DSA and BDD cells. Short chain 

carboxylic acids were identified and quantified for three electrolytic systems. Six of them 

could be quantified for the Pt/Carbon felt cell namely oxalic, glyoxylic, maleic, formic 

fumaric and acetic acids. Some other could not be identified or quantified either because their 
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chromatographic peaks were very close or they were at very low concentration and could not 

be determined. For the BDD/Carbon felt cell oxalic, glyoxylic, pyruvic and formic acids were 

quantified. The DSA/carbon felt system gave more carboxylic acids than two others and in 

that case we have quantified oxalic, oxamic, formic, tartronic, malonic, maleic and glyocylic 

acid.  

It can be seen that carboxylic acids starts to be generated immediately from the 

beginning of the electrolysis In the case of BDD and Pt anode a smaller number of carboxylic 

acids could be determined because of the more oxidizing capabilities of these anodes 

compared to DSA. The concentrations of carboxylic acids accumulated in different systems 

are not the same. The lowest concentrations were measured for the BDD/carbon felt system, 

what explains also the better mineralization efficiency of this couple. In the Pt/Carbon felt 

system there is still some oxalic, acetic and fumaric acid that remains in the solution, whereas 

for the BDD/Carbon felt anodes these acids could not be detected after 300 minutes of 

electrolysis. However some unidentified peaks remained at the end of electro-Fenton 

treatment of SMT, only two/three of them for the BDD whereas their number and area were 

more important for Pt and much more for DSA. 
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Fig 4.14. Time course of carboxylic acids formed during electro-Fenton treatment of SMT 

with different electrolytic cells: (a) Pt/Carbon felt, (b) DSA/Carbon felt and (c) BDD/Carbon 

felt. Vs = 300 ml, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, I = 300 mA, pH = 

3. 
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 Glyoxylic acid appears very quickly and then disappears being transformed in other 

carboxylic acids like oxalic and formic365. Oxalic and formic acids stays longer in the 

solutions because they can be formed from oxidation of other’s acids (glyoxylic, glycolic, 

pyruvic, malonic, succinic, maleic, fumaric etc.) as reported by Oturan et al365. The poorer 

mineralization obtained with DSA/Carbon felt system is manifested with higher carboxylic 

acids accumulation as is shown in Fig 4.13b). There are four remaining carboxylic acids that 

could be quantified in the solution at the end of electrolysis at 8 hours, namely glyoxylic, 

oxalic, oxamic and formic acid. 

4.4. Evolution of inorganic ions during the mineralization of SMT 
 

When the organic molecule contains heteroatoms in its structure, then during 

mineralization, the corresponding inorganic ions will be released to the solution143,144,366,367. 

The release of inorganic ions is another proof that the organic molecule has been mineralized.  

Sulfamethazine is a sulfonamide antibiotic which contains two hetero atoms: Nitrogen 

N and sulfur S. Consequently at least three inorganic ions are expected to be detected in the 

solution: nitrate NO3
-, ammonium NH4

+ and sulphate SO4
2-. The analysis of inorganic ions 

during mineralization has been realized by ionic chromatography in the conditions described 

in the second chapter. The evolution of inorganic ions is presented in the Fig. 4.15 below. 

As the molecule of SMT contains one sulfur atom and four nitrogen atoms, 0.2 mM 

concentration of SO4
2- and 0.8 mM as the sum of NO3

- and NH4
+ are expected to be formed in 

the solution for a complete mineralization. In three cases it can be noticed the characteristic of 

immediate evolution of SO4
2- attaining 100% of its expected value in thirtieth first minutes. 

The very rapid appearance of the quantitative SO4
2- suggests that the SMT degradation starts 

mostly by sulfur extrusion from the molecule. 
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Fig. 4.15. Time course of inorganic ions formed during electro-Fenton treatment of SMT with 

electrolytic cells: (a) Pt/Carbon felt, (b) DSA/Carbon felt and (c) BDD/Carbon felt. For NO3
-: 

Vs = 300 mL, [SMT]0 = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, I = 500 mA, pH = 3. 

For NH4
+: Vs = 300 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [K2SO4] = 50 mM, I = 500 mA. 
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pH = 3. For SO4
2- : Vs = 300 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [KCl] = 50 mM, I = 

500 mA, pH = 3. 

 

 Nitrogen is released in different quantities and rates from SMT, depending on the 

anode used. For the Pt anode the sum of NO3
- and NH4

+ determined in the cell represents 

90.2% of the nitrogen theoretically calculated for the sulfamethazine molecule. At the 

beginning of the experiment NO3
- is slowly evolved than between three and six hours the 

most if it is released. After six hours the curve is almost flat. NH4
+ is released at lower 

concentration and it continues to increase very slowly after six hours. The nitrogen released as 

NO3
- and NH4

+ in the DSA/Carbon felt cell is the lowest as expected from its mineralization 

extent achieved for SMT. A part of it remains in the solution in the form of oxamic acid as it 

is shown in the figure 4.14b. 62% of the theoretic nitrogen could be determined in the 

electrolyzed solution with this system. The highest nitrogen concentration was measured in 

the BDD/Carbon felt cell, where 96.7% of the value expected was determined. The NO3
- and 

NH4
+ are released quickly until 4 h and then a plateau is reached. This value corresponds to 

the high removal percentage of TOC with this anode. Small amounts of nitrogen can also be 

escaped from the solution as ammonia for all three cells. 
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4.5. Conclusions  
 

In this chapter, the effect of four anode materials; Pt, DSA, BDD and Carbon felt, on the 

electro-Fenton efficiency has been treated. Apparent rate constants calculated as a function of 

current intensity revealed that a small difference on the degradation efficiency exist between 

the anodes tested. According to apparent rate constant values the best anode for SMT 

degradation was Carbon felt followed by Pt > BDD > DSA. The absolute rate constant of the 

reaction of hydroxyl radicals with SMT is significantly high and of the order of many 

aromatic compounds. In contrast this order was not observed for the mineralization of SMT 

where it was; BDD > Pt > DSA, where Carbon felt could only be used for low current 

intensity of 50 mA because it burned for higher currents. When BDD was used as anode an 

adverse effect could be observed on the electro-Fenton process because of the oxidation of 

Fe2+ in Fe3+. That is why even that the electro-Fenton supported anodic oxidation with BDD 

is not much more effective than anodic oxidation only (as it is for the case of other anodes).  

 Despite the reduced effect of electro-Fenton process when BDD is used, the best 

mineralization current efficiencies were achieved for the BDD/Carbon felt system. This is due 

to the more TOC removal for the unit specific charge owing to the high production of 

hydroxyl radicals and other oxidants on BDD surface. 

 The analysis of short-chain carboxylic acids showed that a smaller number of them 

were accumulated in a significant quantity to be quantified when a BDD anode was employed 

than for other systems. In the BDD/Carbon felt cell, no more acids could be measured after 

300 min electrolysis, whereas even after 8 h electrolysis there remained still carboxylic acids 

for the Pt/Carbon felt and much more for the DSA/Carbon felt cell. 

 The release of inorganic ions also showed that the BDD anode was the most 

performing anode where nitrogen was released almost quantitatively. Sulphur was released 

completely in all cells and very quickly suggesting the SMT degradation proceeded 

extensively by sulphur extrusion. 
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CHAPTER 5 

THE INFLUENCE OF CATHODE MATERIAL ON ELECTRO-FENTON  
PROCESS EFFICIENCY 
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5. KINETICS OF DEGRADATION AND MINERALIZATION OF SM T WITH 
DIFERENT CATHODES 

 

Since in the electro-Fenton process the Fenton’s reagent that lead to the formation of 

the main oxidizing species, namely •OH is generated on the cathode surface, as discussed in 

the bibliographic section, its nature plays a crucial role on the destruction of organic 

pollutants. In this chapter will be presented the experimental data obtained with different 

cathodes, namely: carbon sponge of five different porosity, carbon felt, and stainless steel. 

Degradation and mineralization experiments were realized using platinum as anode for each 

cathode studied. We have also done the dosage of hydrogen peroxide during electrolysis and 

its dependence on current intensity for all the cathodes. 

5.1. Hydrogen peroxide dosage in different electrolytic cells 
 

Hydrogen peroxide is a fundamental reagent in the electro-Fenton technology for 

polluted water treatment. Its concentration in the solution influences directly the oxidation 

rate of the organic pollutants. 

The dosage of hydrogen peroxide in the electrolytic cells equipped with different 

cathodes has been realized to estimate their capacity in Fenton’s reagent production. This data 

will also help to explain better the results discussed in the proceeding section on degradation 

and mineralization of sulfamethazine as a model pollutant. 

Experiments were realized in 250 mL electrolytic cell, the same used for the study of 

the kinetics of oxidative degradation. It is equipped of the cathode to be studied and the Pt 

anode. Sodium sulphate was added as supporting electrolyte and the pH was adjusted at 3. 

The compressed air was bubbled through the solution for 10 min before starting the 

electrolysis, in order to attain an oxygen saturated solution, the bubbling continued during all 

the experiment as usually. 
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 Figure 5.1 shows the H2O2 evolution with the time ([H2O2] = f(t)) for the carbon 

sponge cathodes of 45 ppi and 80 ppi porosities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Evolution of hydrogen peroxide in the cells containing carbon sponge cathode of (a) 

45 ppi and (b) 80 ppi porosity under continuous compressed air bubbling conditions. Vs = 250 

mL, [Na2SO4] = 50 mM, pH = 3. 

As soon as the electrical current passes through the cell, H2O2 starts to be generated. 

At the beginning of electrolysis the rate of generation of hydrogen peroxide is very rapid until 

reaching plateau and thenremains almost constant. The plateau is attained when the rate of its 

production at cathode equals the rate of destruction according to the reactions 109, 110, 111. 
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For lower current intensities of 50, 100 and 200 mA the plateau is reached at around 1 h 

whereas for 300, 400 and 500 mA it is reached early at 20 minutes. As can be seen in the Fig. 

5.1 the evolution of H2O2 is very rapid, in fact at 20 minutes the most part of hydrogen 

peroxide is formed for all currents. The curves are very close for 10 first minutes where the 

maximum of hydrogen peroxide is already reached for higher currents and they continue to 

increase until 1 h for lower currents. Clearly carbon sponge of 45 ppi gave higher amounts of 

H2O2 than that of the 80 ppi porosity, and this owing to its more favorable macrostructure 

which provides better mass transport conditions. The maximal concentration for both 

cathodes is reached for 100 mA whereas current intensities higher than this value led to 

inferior hydrogen peroxide production. This is because of the enhancement of four electron 

O2 reduction to water (reaction 104) with high current (or potential). Maximal H2O2 

concentrations accumulated in the cell were 3.5 mM for 45 ppi and 2.4 mM for the 80 ppi 

carbon sponge cathodes. 

The results obtained with carbon felt and stainless steel cathodes are given in the Fig. 

5.2. Similarly, the hydrogen production improved with the increasing current from 50 mA to 

100 mA then it was poorer for higher currents. Here also a very important quantity of 

hydrogen peroxide is produced at early stage of electrolysis and after 20 min or 1 h the 

plateau was attained. Carbon felt capacity for H2O2 production was much lower than that of 

carbon sponge cathode, the maximal concentration accumulated for the optimal current 

intensity of 100 mA was 1.2 mM. For stainless steel cathode very low concentrations were 

measured for 50 and 100 mA, beyond 100 mA current intensity hydrogen peroxide only could 

be detected but not quantified because of very low concentrations. 

There is something to be noted when analyzing the hydrogen peroxide evolution and 

degradation of organic compound curves. It is clear that the maximum concentration of H2O2 

is reached at 100 mA; nevertheless the degradation of SMT accelerates until 300 mA or 400 

mA. According to the maximal hydrogen peroxide accumulation in the solution, the maximal 

degradation rate should be achieved at 100 mA. In fact this does not happen because the 

degradation of SMT proceeds until 300 mA. The H2O2 generated at higher currents 

decomposes on cathode and anode and also by the effect of heat, where by lower H2O2 

accumulation.  In the case of SMT degradation the H2O2 generated reacts immediately with 

the catalyst Fe2+ resulting in •OH production, so, there is not much time left for its 

decomposition in other ways. The anodic oxidation improves beyond 100 mA too. This leads 

to higher degradation of SMT at 300 mA.  
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Fig. 5.2. Evolution of the concentration hydrogen peroxide in the cells containing (a) Carbon 

felt and (b) Stainless steel cathodes under continuous compressed air bubbling conditions. Vs 

= 250 mL, [Na2SO4] = 50 mM, pH = 3. 

 

5.2. The effect of current intensity and cathode material on the degradation rate 
of SMT  
 

 To evaluate the effect of cathode material on electro-Fenton process efficiency, 

degradation experiments of SMT were brought about in an electrolytic cell of 250 mL. The 
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cathode dimensions were 6 x 3.5 x 1 cm. The applied current intensities ranged from 50 mA 

to 500 mA; solution pH was adjusted to 3 the optimal value for electro-Fenton process and 

compressed air was bubbled continuously through a glass tube to maintain the solution 

saturated in O2. As usually samples were withdrawn regularly and analyzed by HPLC. 

 Figure 5.3 shows the effect of current intensity on the kinetic curves C = f (t) for the 

degradation of SMT when carbon sponge cathodes of different porosity were used. The 

cathodes were of five porosities; 30, 45, 60, 80 and 100 ppi (pores per linear inch. Clearly the 

slope of curves becomes steeper when I is increased as a result of Fenton’s reagent generation 

in high quantities.  
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Fig. 5.3. Effect of current intensity on the degradation rate of SMT during electro-Fenton 

oxidation using carbon sponge (CS) of five different porosity: (a) Pt/CS30 ppi, b) Pt/CS45 

ppi, c) Pt/CS60 ppi, d) Pt/CS80 ppi and e) Pt/CS100 ppi. Vs = 250 mL, [SMT] = 0.2 mM, 

[Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 
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The shape of concentration decay curves indicates that there is always a pseudo first order 

kinetics that governs the degradation reaction. In fact, all cathodes exhibit excellent 

degradation efficiency, but no very significant difference is observed between them. The 

degradation rate is the lowest with the 30 ppi cathode, then it increase with 45 ppi which is 

even closer with 60 ppi and it decreases slightly for 80 and 100 ppi. An optimal current limit 

for the rate of degradation is attained at 300 mA revealing the intensification of parasitic 

reactions for higher currents. These are the common reactions of four electron oxygen 

reduction instead of two electron reduction for H2O2 production at cathode, as well as 

hydrogen evolution at cathode and oxygen evolution at anode which compete with organics 

oxidation. 

 The effect of the current intensity on oxidation of SMT for the case of carbon felt 

cathode is presented in figure 5.4. The SMT degrades faster when current intensity increases 

from 50 mA to 200-300 mA where the limit of the rate of degradation is attained. This 

happens due to lower H2O2 concentration in the solution at current intensities of 400 and 500 

mA than for than of 200-300 mA. At high current intensities, the contribution of anodic oxidation 

becomes important and compensates the loss of efficiency at cathode due to the wasting reactions. 

Compared to other electro-Fenton cell 400 and 500 mA curves are very much slower than that 

obtained at 200 mA. As it has been shown in previous section, the hydrogen peroxide 

accumulation is the highest at 100 mA. That is why the rate of degradation at 50 and 100 mA 

is not very far from that at 400 and 500 mA. 

 

 

 

 

 

 

 

Fig. 5.4. Effect of current intensity on the degradation rate of SMT in the Pt /Carbon felt cell. 

Vs = 250 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 
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The experiments with the electrolytic system Pt/Stainless steel reveal another behavior 

(Fig. 5.5).   

 

 

 

 

 

 

 

Fig. 5.5. Effect of current intensity on the electro-Fenton degradation rate of SMT in the 

Pt/Stainless steel cell. Vs = 250 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, 

pH = 3. 

 In this graph oxidation curves show a very slow degradation reaction. The 

concentration of SMT decays with the time according to pseudo first order reaction. The 

oxidation is relatively faster for higher current intensities up to 300 mA, and then for 400 and 

500 mA one can observe that the oxidation is almost of the same efficacity. An important 

remark is that traces of SMT could be found even for the most effective currents. 

 To resume the performance of cathodes tested, a summarizing table of rate constants 

for the degradation of SMT obtained from semi-logarithmic plots ln (Co/C) = f (t) is given 

below. 

According to the data given in the table rate constants increase with the current 

intensity until the optimal value of current is reached. The optimal current intensity for which 

highest rate constants are observed varies with different cathodes. It is attained at 300 – 400 

mA for carbon sponge 30 – 60 ppi and at 200 – 300 mA for carbon sponge 80 – 100 ppi and 

carbon felt, 300 mA for stainless steel cathodes. 

 

 



 148  

 

Table 5.1. Apparent rate constants observed during degradation of SMT in an 

electrolytic cell constituted of different electrodes as a function of current intensity. 

Cell             CS30 ppi         CS45 ppi        CS60 ppi            CS80 ppi         CS100 ppi          C F            S Steel 

I (mA)                                               kapp/min-1  

50                  0.11                   0.19                 0.19                   0.19                 0.19                0.06             0.03 

100                0.22                   0.34                 0.28                   0.28                 0.29                0.07             0.04 

200                0.36                   0.49                 0.43                   0.42                 0.38                0.14             0.06 

300                0.41                   0.60                 0.50                   0.43                 0.39                0.16             0.07 

400                0.43                   0.61                 0.48                   0.41                 0.37                0.11             0.07 

500                0.37                   0.57                 0.38                   0.33                 0.31                0.09             0.06 

 

 The best cathode for SMT degradation was found to be carbon sponge 45 ppi, 

exhibiting excellent removal rates. The lowest rate constants were obtained with carbon 

sponge 30 and 100 ppi porosity. In the other side all carbon sponge cathodes were much more 

performing than carbon felt and stainless steel. The poorest degradation could be achieved 

with stainless steel cathode, even with the better current intensity no complete oxidation of 

SMT occurred after 90 min. of electrolysis. This is because of small specific surface which 

gives no significant quantity of hydrogen peroxide. In contrast carbon based cathodes are 

three dimensional and have large surface areas which support hydrogen peroxide production 

at higher quantities.  

 However a big difference between carbon sponge and carbon felt is also evident. This 

can be explained by considering the hydrodynamic conditions in the bulk of cathodes. Carbon 

felt is a very porous material with a large surface area even more porous than carbon sponge 

so that we could expect better performance from it; in fact experiments demonstrate the 

contrary. Carbon felt physical structure being very porous and dens hamper the mass transfer 

in its bulk. Similarly can be explained the difference on degradation rate constants between 

carbon sponge cathodes; starting with 30 ppi the rate constant increases for 45 ppi then owing 

to the increase in the surface area, and then it decreases for 60 ppi and mostly for 80 and 100 

ppi because of unfavorable mass transport conditions. 
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5.3. The effect of current intensity on the mineralization of SMT  
 

Mineralization experiments were also achieved to estimate of oxidizing power of the 

electro-Fenton systems with different cathodes. Experiments have been done under the same 

conditions as degradation experiments. Current intensities of 50, 100, 300, and 500 mA were 

applied. Higher current intensities like 700 and 1000 mA were not applied as when testing 

anodes during mineralization, because the cathodes of small surfaces could not resist to high 

current intensities. The high electric resistances (ohmic drop IxR) led to heating the solution 

and the collapse of the system. The results obtained for five carbon sponge cathodes are given 

in the figure 5.6.  
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Fig. 5.6. Effect of current intensity on the mineralization of SMT in the Pt/Carbon sponge 

cell. a) 30 ppi, b) 45 ppi, c) 60 ppi, d) 80 ppi, e) 100 ppi, Vs = 250 mL, [SMT] = 0.2 mM, 

[Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 
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The TOC decay is exponential with time and varies with current intensity being 

steeper for higher values. Here again the efficiency of abatement follows a similar order as for 

oxidation experiments. The TOC removal is the lowest for 30 ppi carbon sponge cathode, it 

increases for 45 ppi being almost identic with 60 ppi and decreasing for 80 and 100 ppi 

porosities. The TOC removal for 45 ppi cathode at the optimal current was 91.1%. The 

optimal current for TOC abatement for all five cathodes was 300 mA whereas 500 mA was 

showed almost identic results.  

 Lower percentages of mineralization of organic matter were obtained with the carbon 

felt cathode (Fig. 5.7). 55.7% of initial TOC was the maximal value that could be removed 

from the solution at 300 mA. It can be noticed that curves are closer each other than for 

carbon sponge cathodes. This is because for lower current intensities applied here 50 mA and 

100 mA more hydrogen peroxide can be produced where by higher electro-Fenton action. At 

300 mA the anodic oxidation is more intensive and compensates the loss of efficiency of 

cathode for higher currents, and hydrogen peroxide loss at anode. So increasing current 

intensity favors anodic oxidations but reduce the effect of electro-Fenton that is why curves 

are not very different.  

  

 

 

  

 

 

 

Fig. 5.7. Effect of current intensity on the mineralization of SMT in the Pt/Carbon felt cell. Vs 

= 250 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 

The poorest mineralization extent was observed for Pt/Stainless steel cell. Results 

obtained with Stainless steel cathode are given in the figure. 5.8. As it can be seen the curves 

are almost those characteristic for anodic oxidation with Pt which exhibits lower 
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mineralization efficiency seen in chapter 3. Only 37.1% of the initial TOC could be removed 

from the solution with this cell at 300 mA, which is the lowest value obtained than all others. 

 

 

 

 

 

 

 

Fig. 5.8. Effect of current intensity on the mineralization of SMT in the Pt/Stainless steel cell. 

Vs = 250 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 

A resuming table representing TOC removal in percentages at 8 h electrolysis for all the 

cathodes tested is given below. 

Table 5.2. TOC percentage removal from different electrolytic cells as a function of 

current intensity. 

Cell     CP30 ppi    CP45 ppi      CP60 ppi     CP80 ppi     CP100 ppi     C F         S Steel 

I (mA)                                    % TOC removal 8h 

50            46.5            63.4              62.1              54.8          54.1            43.4          20.9 

100          67.7            76.6              74.3              69.7          69.7            49.7          29.9 

300          80.2            91.1              91.2              83.9          82.6            55.6          37.2 

500          79.5            90.1              83.6              83.3          80.7            56.6          41.2 

 

The tabled data reveal that the most effective cathode for the TOC abatement is the 

carbon sponge of porosity of 45 ppi and 60 ppi. Carbon sponge of 80 and 100 ppi porosities 

have very similar performance. All carbon sponge cathodes could remarkably better support 

electro-Fenton process than two others. TOC abatement with stainless steel was the lowest 

whereas carbon felt exhibited mediate TOC removal extent. 
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High surface area, the rigid and porous structure of carbon sponge provided very good 

mass transport conditions leading to higher amounts of H2O2 production and faster catalyst 

Fe2+ regeneration, responsible for high mineralization efficiencies. Stainless steel did not 

provide interesting mineralization percentages because of its small surface are and poor H2O2 

production ability. 

5.4. Mineralization current efficiency 

 

To have an idea of energy consumption when a cathode was used for electro-Fenton 

treatment, mineralization current efficiency was calculated for each cathode and current 

applied. The data obtained are plotted versus specific charge consumed during electrolysis in 

the Fig. 5.9. 
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Fig. 5.9. Mineralization current efficiency of electro-Fenton process during mineralization of 

SMT aqueous solutions using Pt anode and different cathode material: (a) Carbon sponge 45 

ppi, (b) Carbon felt and (c) Stainless steel. Vs = 250 ml, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, 

[Na2SO4] = 50 mM, pH = 3. 

As the anode was always platinum and considering the contribution of Pt(OH) is 

similar for each cell, the difference in MCE changes are only a result of cathode employed. 

The differences between three cathodes are obvious, where carbon sponge 45 ppi is 

distinguished for its better MCE value. The initial mineralization current efficiency for carbon 

sponge 45 ppi is 36.8% when 50 mA is applied, and then it decreases steeply with the specific 

charge passed. MCE decays because of the decrease of organic species in the solution, which 

means that less organic matter is available to be degraded for the same charge passed (as 

current intensity is constant). The production of more persistent at as the formation of 

carboxylic acids along the electrolysis which additionally can form complexes with iron ions 

is another inhibiting factor which reduces the efficiency. The MCE is lower when current 

intensity increases, as already explained at high currents parasitic reactions like oxygen 

evolution on anode and hydrogen evolution on cathode becomes more and more intensive. 

These reactions lower the contribution of anode on SMT oxidation and the production of 

Fenton’s reagent on cathode. 

 MCE is neatly smaller for the case of carbon felt cathode and it is very low for the 

stainless steel. For 50 mA the initial MCE value for carbon felt is 23.3% whereas it is only 

3.9% for stainless steel cathode. It can be noticed that MCE increases with the specific 

charge, (Fig. 5.9c), at the beginning of electrolysis and then it decreases steeply. This increase 
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is because the mineralization of SMT (Fig. 5.8) is slower at the begining then it accelerates 

slightly between 1 and 4 h.  

5.5 Choosing the best electrode material for electro-Fenton process 
 

In the previous chapters it resulted that BDD was the most efficient anode for the 

electro-Fenton process. Then, different cathodes were tested using platinum as anode. We 

used the platinum as anode in order to see better the effect of cathode, because as already 

demonstrated BDD anode can hide to some extent the electro-Fenton process because of 

hampering catalyst regeneration and the additional hydroxyl radicals created on its surface. 

After determining the best anode and cathode (BDD/Carbon sponge 45 ppi) degradation and 

mineralization experiments were realized with this best couple chosen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10. Effect of current intensity on the oxidation of SMT (a) and mineralization of its 

aqueous solution (b) in the BDD/Carbon sponge 45 ppi cell. Vs = 250 mL, [SMT] = 0.2 mM, 

[Fe2+] = 0.2 mM, [Na2SO4] = 50 mM, pH = 3. 
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Fig. 5.11. Mineralization current efficiency during electro-Fenton oxidation of SMT 

usingBDD/Carbon sponge 45 ppi cell. Vs = 250 mL, [SMT] = 0.2 mM, [Fe2+] = 0.2 mM, 

[Na2SO4] = 50 mM, pH = 3. 

In the part (a) of the figure 5.10 are shown the kinetic curves for SMT oxidative 

degradation. The optimal current intensity is attained at 300 mA. The slope of the curves is 

slightly lower compared to those obtained in same conditions with Pt, because the already 

mentioned effect of BDD on the active form of catalyst. In contrast the TOC abatement is 

much higher in the BDD/Carbon sponge 45 ppi cell owing to the action of both very intensive 
•OH production in the solution bulk and those formed on the BDD surface, M(•OH). So, 

complete disappearance of SMT was reached at 60 min. for the lowest current intensity of 50 

mA, and at 15 min under currents of 200-500 mA. On the other hand the TOC removal 

(mineralization) is almost complete (95% of TOC removal) at 4 h electrolysis at 500 mA (Fig. 

5.10b).  

Table. 5.3. Apparent rate constants and TOC percentage removal observed during 

electro-Fenton treatment of SMT aqueous solution with BDD/Carbon sponge 45 pp. cell. 

I (mA)                       kapp/min-1           TOC removal at 6h / % 

50                                    0.12                          77.7 

100                                  0.21                           82.6 

200                                  0.35                           ----- 

300                                  0.38                            95 

400                                  0.36                           ----- 

500                                  0.35                            98 
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Apparent rate constants and TOC removal percentages are given in the Table 5.3 SMT has 

almost completely mineralized at 6 h electrolysis. An effective TOC removal means good 

mineralization efficiency, as shown in figure 5.11. MCE percentages are higher than for the 

same experiments when platinum was used as anode in the same conditions. In fact, from 36.8 

% initial MCE for Pt/Carbon sponge 45 ppi it increased at 44.7 % for BDD/Carbon sponge 45 

ppi when 50 mA were applied. The initial MCE values were 11.7 % for Pt/Carbon sponge 45 

ppi whereas it increased up to 23.5 % in case of BDD/Carbon sponge 45 ppi.  
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5.6 Conclusions  
 

Degradation and mineralization experiments were realized to evaluate the performance 

of different cathodes. Hydrogen peroxide which is obtained during the electrochemical 

reduction was dosed for all electrolytic cells. Finally the best couple anode-cathode was 

selected by performing degradation and mineralization experiments. Between cathode 

materials tested, carbon sponge exhibited the best results. From carbon sponge cathodes the 

most interesting results were obtained with the cathode of porosity 45 ppi. Then the 

comparison with carbon felt and stainless steel gave the following performance order: carbon 

sponge > carbon felt > stainless steel. These results were confirmed by hydrogen peroxide 

dosage experiments where the same rang in its production were found. The better 

performance of carbon sponge 45 ppi can be attributed to its very appropriate mass transport 

conditions. Its high surface is due to high porosity and also hard constitution which is stable 

and allows very god circulation of the solution through it. So molecular oxygen can easily 

reach to its bulk surface, and hydrogen peroxide generated can move freely towards the bulk 

of the solution where it reacts with Fe2+ to give hydroxyl radicals. The transport of O2 and 

H2O2 is hampered in carbon felt because of its more dense structure leading to lower Fenton’s 

reactive generation. Stainless steel has a very small surface compared to carbon sponge and 

carbon felt whereby its very low efficiency for Fenton’s reagent production. 

 So after the determination of the best cathode, it was coupled to the best anode, the 

BDD, determined in the previous experiments for the electro-Fenton processl. The results 

obtained clearly revealed it as the best couple anode cathode to be applied in electro-Fenton 

technology for water remediation. 
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GENERAL CONCLUSIONS 
 

This study has been realised in the frame of treatment of polluted water technologies, 

with the aim of estimating the influence of different electrode (anode and cathode) materials 

on efficiency of the electrochemical advanced oxidation process "electro-Fenton". This is a 

technique based on the in situ production of hydroxyl radicals •OH through the 

electrochemically assisted Fenton’s reaction. To test the efficiency of organic pollutants 

abatement with several electrodes, two model pollutants, namely sulfamethazine SMT and 

amoxicillin AMX has been selected. These two compounds are belonging to antibiotic family 

and are very frequently found in waters and represent disturbing properties for the aquatic life 

(as explained in the introduction).  

 A systematic study on the anodic oxidation of AMX and mineralization of its aqueous 

solution with anodes Pt, DSA, BDD, PbO2, Graphite, Carbon felt and Carbon fibre showed a 

strong dependence of oxidation efficiency on the anode material. The most efficient anode for 

the anodic oxidation of AMX was BDD due to its high capacity to generate the highly 

oxidizing agent BDD(•OH) from water water oxidation but also the electrogeneretad oxidants 

like S2O8
2-, O3, H2O2 that undergo mediated oxidation in the solution. The generation of such 

oxidants on the BDD surface is due to its high oxygen evolution overpotential, which is not 

the case of the DSA anode. This last anode shows a low efficiency for the degradation and 

mineralization of AMX. DSA presents a low oxygen evolution overpotential, therefore 

generates less quantities of hydroxyl radicals and exhibits lover oxidation power compared to 

BDD anode. In addition, the intensive O2 evolution hampers the production of possible other 

oxidants from electrolyte anions (SO4
2-). Pt, PbO2, Graphite and Carbon fibre represented 

medium efficiencies inAMX abatement. Carbon based anodes showed a more characteristic 

behavior, they could perform the degradation of AMX at lover current intensities, and he only 

graphite could perform the mineralization for currents of 150 mA and lower. The rate of 

AMX oxidative degradation was remarkable with carbon felt, it was even better than that with 

BDD at the beginning of electrolysis but then it slowed down by the end of treatment. This 

was because of the destruction of anode under the effect of electric potential, that led to the 

complete failure in the case of the mineralization of AMX.  

 In terms of energy consumption, mineralization current efficiencies MCE (in 

percentage) were calculated from experimental data for each anode. MCE as a function of 

specific charge showed that the highest mineralization efficiencies were reached with the 

BDD anode with lower current intensities (11.0%, 7.2%, and 4.7% for 300, 500 and 1000 mA 
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respectively) followed by PbO2 > Pt > DSA. It should be remarked that better efficiencies 

were reached with Graphite (7.0 and 14.9% for 50 and 150 mA respectively) than with Pt and 

DSA anodes (Pt/3.0%, 3.2% and 2.0% for 300, 500 and 1000 mA respectively, and 

DSA/0.1%, 0.3% and 0.5% for 300, 500 and 1000 mA respectively). This leads to the 

conclusion that graphite is a material of interest because it is cheap and can be very useful in 

coupled techniques of water treatment (it does not offer high mineralization degrees when 

used as anode, but the level of mineralization attained may be sufficient for a biological post-

treatment).  

 Afterwards, a comparative study was realised with four anodes: Pt, DSA, BDD and 

Carbon felt to assess their influence on electro-Fenton process. The SMT degradation 

experiments revealed that apparent rate constants were almost similar for Pt, DSA and BDD 

although the oxidation capacities of these anodes are very different (as shown by the anodic 

oxidation curves). Taking in consideration the fact that electro-Fenton degradation of SMT 

was remarkably faster than anodic oxidation only, one can explain why the rate of degradation 

is not very different for the different anodes. As the surface of cathode was always the same, 

the same amount of hydroxyl radicals was generated in the solution and this is the main 

oxidizing agent that degrades SMT. As most of SMT molecules are oxidized by •OH radicals 

generated in the bulk of solution (where they are formed) the prevailing effect of electro-

Fenton is only observed. At the contrary, much higher rates of degradation are observed with 

carbon felt than with Pt, DSA and BDD due to much larger surface area of the carbon felt 

electrode. 

 The kinetic analysis realised by the method of competition kinetics taking p-

hydroxybezoic acid as standard competitor revealed that the reaction of SMT with •OH is a 

very fast reaction of order 109 mol-1 L s-1. 

 The mineralization experiments showed a completely different behaviour of these 

anodes. Carbon felt that could perform very well oxidation of SMT could only give medium 

TOC removal for current intensity lower than 100 mA as it was damaged for higher current 

values. The best TOC removal percentages were attained with BDD where the TOC 

abatement of organic content could be improved until 1000 mA. Platinum was less 

performing than BDD but better than DSA. Unlike BDD, Pt and DSA represented an optimal 

limit of current intensity for TOC abatement which was 500 mA. 



161 

 

 The mineralization of SMT was accompanied by oxidation reaction intermediates 

which disappeared during electrolysis after reaching a maximum concentration, nevertheless 

some short chain carboxylic acids and probably some short aliphatic compounds remained at 

the end of treatment in trace concentration level. The ionic chromatography analysis revealed 

the almost quantitative release of heteroatoms in form of inorganic ions such as NO3
-, SO4

2- 

and NH4
+ which fits with the mineralization degree for each anode. 

 After determining BDD as the most efficient anode in electro-Fenton technology, 

some cathodes were also tested for their ability to perform Fenton’s reagent production. 

Carbon sponge of porosities 30, 45, 60, 80 and 100 ppi, Carbon felt and Stainless steel were 

comparatively studied by performing degradation and mineralization experiments of SMT as 

model pollutant. Carbon sponge of 45 ppi porosity was the most performing in both 

degradation and TOC abatement trials. However, the difference of efficiency with other 

carbon sponges and particularly the 60 ppi was not significant. On the other side carbon 

sponge was neatly more efficient than carbon felt and stainless steel which could barely lead 

to SMT mineralization. The dosage of H2O2 as one of the two component of Fenton’s reagent  

corresponded to the previous experiments of SMT abatement. The concentration of H2O2 

attained in the electrolytic cells was in the same order as the degradation and TOC removal 

efficiencies: Pt/Carbon sponge > Pt/Carbon felt > Pt/Stainless steel. Therefore, as expected, 

the highest MCE per unit specific charge was obtained with Carbon sponge 45 ppi cathode. 

 Finally the best anode BDD and the best cathode Carbon sponge 45 ppi were 

connected in the electrolytic cell to see their performance in the electro-Fenton process. 

Comparing BBD and Pt as anodes, the rate of degradation of SMT was slightly lower with 

BDD but the TOC removal was significantly improved. This led to better MCE per unit 

specific charge; from 36.8% initial MCE for Pt/Carbon sponge 45 ppi it increased to 44.7% 

for BDD/Carbon sponge 45 ppi when 50 mA were applied. The MCE decreased with the 

current, but at every current intensity, it was higher than with other anode tested. 

 

 

 

 



 162  

 

                                                           
1 C. Marvin, M. Alaee, S. Painter, M. Charlton, P. Kauss, T. Kolic, K. MacPherson, D. Takeuchi, E. 

Reiner, Persistent organic pollutants in Detroit River suspended sediments: polychlorinated 
dibenzo-p-dioxins and dibenzofurans, dioxin-like polychlorinated biphenyls and polychlorinated 
naphthalens, Chemosphere 49 (2002) 111-120. 

2 R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-Wide survey of polar 
organic persistent pollutants in European river waters, Environmental Pollution 157 (2009) 561-
568. 

3 J.A.V. Jaarsveld, W.A.J.V. Pul, F.A.A.M.D. Leeuw, Modeling transport and deposition of persistent 
organic pollutants in the European region, Atmospheric Environment 31 (1997) 1011-1024. 

4 R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig, F. Werres, P. Balsaa, O. Gans, S. Weiss, L. 
Blaha, M. Bolchi, B.M. Gawlik, Pan-European survey on the occurrence of selected polar organic 
persistent pollutants in ground water, Water Research 44 (2010) 4115-4126. 

5 X. Jiang, D. Martens, K-W. Schramm, A. Kettrup, S.F. Xu, L.S. Wang, Polychlorynated organic 
compounds (PCOCs) in waters, suspended solids and sediments of the Yangtse River, 
Chemosphere 41 (2000) 901-905. 

6 B. Naso, D. Perrone, M.C. Ferrante, M. Bilancione, A. Lucisano, Persistant organic pollutants in 
edible marine species from the Gulf of Naples, Southern Italy, Science of the Total Environment 
343 (2005) 83-95. 

7 M. Ahel, C. Schaffner, W. Giger, Behaviour of alkylphenol polyethoxylate surfactants in the aquatic 
environment-III. Ocurrence and elimination of their persistent metabolites during infiltration of 
river water to groundwater, Water Research 30 (1996) 37-46. 

8 D.de Almeida Azevedo, S. Lacorte, T. Vinhas, P. Viana, D. Barcelo, Monitoring of priority 
pesticides and other organic pollutants in river water from Portugal by gas chromatography-mass 
spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass 
spectrometry, Journal of Chromatography A 897 (2000) 13-26. 

9 P.C. von der Ohe, V. Dulio, J. Slobodnik, E. De Deckere, R. Kühne, R-U. Ebert, A. Ginebreda, W. 
De Cooman, G. Schüürmann, W. Brack, A new risk assessment approach for the prioritization of 
500 classical and emerging organic microcontaminants as potential river basin specific pollutants 
under the European Water Framework Directive, Science of the Total Environment 409 (2011) 
2064-2077. 

10 L.R. Zimmerman, E.M. Thurman, K.C. Bastian, Detection of the persistent organic pollutants in the 
Mississippi Delta using semipermeable membrane devices, The science of the Total Environment 
248 (2000) 169-179. 

11 Z.L. Zhang, H.S. Hong, J.L. Zhou, J. Huang, G. Yu, Fate and assessment of persistent organic 
pollutants in water and sediment from Minjiang River Estuary, Southeast China, Chemosphere 52 
(2003) 1423-1430. 

12 A. Cincinelli, A.M. Stortini, M. Perugini, L. Checchini, L. Lepri, Organic pollutants in sea-surface 
microlayer and aerosol in the coastal environment of Leghom-(Tyrrhenian Sea) Marine 
Chemistry 76 (2001) 77-98. 

13 A. Evenset, G.N. Christensen, T. Skotvold, E. Fjeld, M. Schlabach, E. Wartena, D. Gregor, A 
comparison of organic contaminants in two high Arctic lake ecosystems, Bjornoya (Bear Island), 
Norway, the Science of the Total Environment 318 (2004) 125-141. 

14 C.J. Halsall, Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their 
atmospheric behavior and interaction with the seasonal snow pack, Environmental Pollution 128 
(2004) 163-175. 

15 S-D. Choi, S-Y. Baek, Y-S. Chang, F. Wania, M.G. Ikonomou, Y-J. Yoon, B-K. Park, S. Hong, 
Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean 



163 

 

                                                                                                                                                                                     

Arctic and Arctic research stations: implications for long-range transport and local pollution, 
Environmental Science and Technology 42 (2008) 7125-7131. 

16 J. Klanova, N. Matykiewiczova, Z. Macka, P. Prosek, K. Laska, P. Klan, Persistent organic 
pollutants in soils and sediments from James Ross Island, Antarctica, Environmental Pollution 
152 (2008) 416-423. 

17 B.M. Braune, P.M. Outridge, A.T. Fisk, D.C.G. Muir, P.A. Helm, K. Hobbs, P.F. Hoekstra, Z.A. 
Kuzyk, M. Kwan, R.J. Letcher, W.L. Lockhart, R.J. Norstrom, G.A. Stern, I. Stirling, Persistent 
organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial 
and temporal trends, Science of the Total Environment 351-352 (2005) 4-56. 

18 T.N. Brown, F. Wania, Screening chemicals for the potential to be persistent organic pollutants: a 
case study of Arctic contaminants, Environmental Science and Technology 42 (2008) 5202-5209. 

19 L.G. Franzen, M. Hjelmroos, P. Kallberg, E. Brorström-Lunden, S. Juntto, A-L. Savolainen, The 
“Yellow snow” episode of northen Fennoscandia, March 1991- a case study of long-distance 
transport of soil pollen and stable organic compounds, Atmospheric Environment 28 (1994) 
3587-3604. 

20 L. Rahm, B. Hakansson, P. Larsson, E. Fogelqvist, G. Bremle, J. Valderrama, Nutrient and 
persistent pollutant deposition on the Bothnian Bay ice and snow fields. Water, Air, Soil 
Pollution 84 (1995) 187-201.  

21 H.E. Welch, D.C.G. Muir, B.N. Billeck, W.L. Lockhart, G.J. Burnskill, H.J. Kling, M.P. Olson, 
R.M. Lemoine, Brown snow: a long-range transport event in the Canadian Arctic. Environmental 
Science and Technology 25 (1991) 280-286. 

22 J.T. Hoff, F. Wania, D. Meckay, R. Gillham, Sorpttion of nonpolar organic vapours by ice and 
snow. Environmental Science and Technology 29 (1995) 1982-1989. 

23 T.P. Franz, S.J. Eisenreich, Snow scavenging of polychlorinated biphenyls and polycyclic aromatic 
hydrocarbons in Minesota, Environmental Science and Technology 32 (1998) 1771-1778. 

24 J.L. Jaffrezo, M.P. Clain, P. Masclet, Polycyclic aromatic hydrocarbons in the polar ice of 
Greenland. Geochemical use of these atmospheric tracers, Atmospheric Environment 28 (1994) 
1139-1145. 

25 G. Carrera, P. Fernandez, R.M. Vilanova, J.O. Grimalt, Persistent organic pollutantsin snow from 
European high mountain areas, Atmospheric Environment 35 2001) 245-254. 

26 J.M. Blais, D.W. Schlinder, D.C.G. Muir, L.E. Kimpe, D.B. Donald, B. Rosenberg, Accumulation 
of persistent organochlorine compounds in mountains of Western Canada, Nature 395 (1998) 
585-588. 

27 L.L. McConnell, J.S. LeNoir, S. Datta, J.N. Seiber, Wet deposition of current-use pesticides in the 
Sierra Nevada Mountain Range California, USA. Environmental Toxicology and Chemistry 17 
(1998) 1908-1916. 

28 A. Huber, M. Bach, H.G. Frede, Pollution of surface waters with pesticides in Germany: modeling 
non-point source inputs, Agriculture Ecosystems and Environment 80 (2000) 191-204. 

29 M. Manz, K-D. Wenzel, U. Dietze, G. Schüümann, Persistent organic pollutants in agricultural soils 
of central Germany, The science of the Total Environment 277 (2001) 187-198. 

30 M.P. G. De Llasera, M. Bernal-Gonzalez, Presence of carbamate pesticides in environmental waters 
from the northwest of Mexico: determination by liquid chromatography, Water Research 35 
(2001) 1933-1940. 

31 M.J. Cerejeira, P. Viana, S. Batista, T. Pereira, E. Silva, M.J. Valerio, A. Silva, M. Ferreira, A.M. 
Silva-Fernandes, Pesticides in Portuguese surface and ground waters, Water Research 37 (2003) 
1055-2063. 



 164  

 

                                                                                                                                                                                     
32 A. Claver, P. Ormad, L. Rodriguez, J.L. Ovelleiro, Study of the presence of pesticides in surface 

waters in the Ebro river basin (Spain), Chemosphere 64 (2006) 1437-1443. 
33 N. Xue, X. Xu. Z. Jin, Screening 31 endocrine-disrupting pesticides in water and surface sediment 

samples from Beijing Guanting reservoir, Chemosphere 61(2005) 1594-1606. 
34 E. Herrero-Hernandez, M.S. Andrades, A. Alvarez-Martin, E. Pose-Juan, M.S. Rodriguez-Cruz, 

M.J. Sanchez-Martin, Occurrence of pesticides and some of their degradation products in waters 
in a Spanish wine region, Journal of Hydrology 486 (2013) 234-245. 

35 L.M. Varca, Pesticide residues in surface waters of Pagsanjan-Lumban cathment of Laguna de Bay, 
Philipines, Agricultural Water Management 106 (2012) 35-41. 

36 M. Vighi, E. Funari. Preface. In: M. Vighi, E. Funari, editors, Pesticide risk in ground water. Boca 
Raton, FL, USA: CRC Press/Lewis Publishers, 1995. 

37 G. Giuliano, Ground water vulnerability to pesticides: an overview of approaches and methods of 
evaluation. In: M. Vighi, E. Funari, editors. Pesticide risk in groundwater. Boca Raton, FL, USA: 
CRC Press/Lewis Publishers, 1995. pp. 101-118 (chapter 4). 

38 O.A.H. Jones, N. Voulvoulis, J.N. Lester, Human pharmaceuticals in the aquatic environment a 
review, Environmental Technology 22 (2001) 1383-1394. 

39 Y. Kim, J. Jung, M. Kim, J. Park, A.B.A. Boxall, K. Choi, Prioritizing veterinary pharmaceuticals 
for aquatic environment in Korea. Environmental Toxicology and Pharmacology 26 (2008) 167-
176. 

40 K. Kümmerer, The presence of pharmaceuticals in the environment due to human use – present 
knowledge and future challenges, Journal of Environmental Management 90 (2009) 2354-2366. 

41 E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, R. Bagnati, C. Chiabrando, F. Pomati, C. Rossetti, 
D. Calamari, Pharmaceuticals in the environment in Italy: Causes, occurrence, effects and control, 
Environmental Science and Pollution Research 13 (2006) 15-21. 

42 C.E. Herbert, J.L. Shutt, J.R. Norstrom, Dietary changes cause temporal fluctuations in 
polychlorinated biphenyl levels in herring gull eggs from Lake Ontario, Environmental Science 
and Technology 31 (1997) 1012-1017. 

43 C.E. Herbert, J.L. Shutt, J.R. Norstrom, Dietary changes cause temporal fluctuations in 
polychlorinated biphenyl levels in herring gull eggs from Lake Ontario, Environmental Science 
and Technology 31 (1997) 1012-1017. 

44 M.S. McLachlan, Mass balance of polychlorinated biphenyls and other organochlorine compounds 
in a lactating cow, Journal of Agriculture and Food Chemistry 41 (1993) 474-480. 

45 Kavlock, Research needs for the risk assessment of health and environmental effects of endocrine 
disruptors, Environmental Health Perspective 104 (1996) 715-740. 

46 P.T.C. Harrison, Endocrine disruptors and human health. Current research will establish baseline 
indices, British Medicinal Journal  323 (2001) 1317-1318. 

47 R.M. Sharp, D.S. Ivrine, How strong is the evidence of a link between environmental chemicals and 
adverse effects on human reproductive health? Br. Med. J 328 (2004) 447-451. 

48 Q.Q. Li, A. Loganath, Y.S. Chong, J. Tan, J.P. Obbard, Persistent organic pollutants adverse health 
effects in humans, Journal of Toxicology and Environmental Health 69 (2006) 1987-2005. 

49 S.L. Archibeque-Engel, J.D. Tessari, D.T. Winn, T.J. Keefe, T.M. Nett, T. Zheng, Comparison of 
organochlorine pesticide and polychlorinated biphenyl residues in human breast adipose tissue 
and serum, Journal of Toxicology and Environmental Health 52 (1997) 285-293. 



165 

 

                                                                                                                                                                                     
50 N. Krieger, M.S. Wolf, R.A. Hiatt, Breast cancer and serum organochlorines: A prospective study 

among white, black, and Asian women. Journal of the National Cancer Institute 86 (1994) 589-
599. 

51 C.D. Powers, C.F. Wurster, R.G. Rowland, DDE inhibition of marine algal cell division and 
photosynthesis per cell, Pesticides Biochemistry and Physiology 10 (1979) 306. 

52 G.W. Stratton, Effects of the herbicide atrazine and its degradation products, alone and in 
combination, on phototrophic microorganisms Archives of Environmental Contamination and 
Toxicology 13 (1984) 35-42. 

53 L.E. Castillo, E. De La Cruz, C. Ruepert, Ecotoxicology and pesticides in tropical aquatic 
ecosystems of central America, Environmental Toxiology and Chemistry 16 (1997) 41-51. 

54 H.M.G. van der Werf, assessing the impact of pesticides on the environment, Agriculture 
Ecosystems and Environment 60 (1996) 81-96.  

55 L.H.M.I.M. Santos, A.N. Araujo, A.F.A. Pena, C. Delure-Matos, M.C.B.S.M. Montenegro, 
Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, 
Journal of Hazardous Materials 175 (2010) 45-95. 

56 O.V. Enick, M.M. Moor, Assessing the assessment: Pharmaceuticals in the environment, 
Environmental Impact Assessment Review 27 (2007) 707-729. 

57 E.R.C. Cooper, T.C. Siewicki, K. Phillips, Preliminary risk assessment database pharmaceuticals in 
the environment, Science of The Total Environment 398 (2008) 26-33. 

58 K. Fent, A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquatic Toxicology 
76 (2006) 122-159. 

59 K. Kümmerer, Resistance in the environment. Journal of the Antimicrobial Chemotherapy 54 
(2004b) 311-320. 

60 J. Goldman, D. White, S. Levy, Multiple antibiotic resistance (mar) locus protects Escherichia coli 
from rapid cell killing by fluoroquinolones. Antimicrobial Agents and Chemotherapy 40 (1996) 
1276-1269.  

61 C.G. Daughton, T. Ternes, Pharmaceuticals and personal care products in the environment: Agents 
of subtle change? Environmental Health Perspective 107 (1999) 907-938. 

62 G. Karlaganis, R. Marioni, I. Sieber, A. Weber, The elaboration of the ‘Stockholm Convention’ on 
persistent organic pollutants (POP): A negotiation process fraught with obstacles and 
opportunities, Environmental science and pollution research Environmental Science and Pollution 
Research 8 (2001)216-221. 

63 European Commission (EC), 2006. Directive 2006/118/EC of the European parliament and the 
Council of 12th of December 2006 on protection of ground water against pollution and 
deterioration. Official Journal of European Union, L 372/19, 27/12/2006. 

64 T.CM. Brock, G.HP. Arts, L. Maltby, P.J.V. den Brink, Aquatic risks of pesticides, ecological 
protection goals, and common aims in European Union legislation, Integrated Environmental 
Assessment and Management 2 (2006) e20-e46. 

65 A. Craven, Bound residues of organic compounds in the soil: the significance of pesticide presence 
in soil and water: a European regulatory view, Environmental Pollution 108 (2000) 15-18. 

66 N. Paxeus, Organic pollutants in the effluents of large wastewater treatment plants in Sweden, Water 
Research 30 (1996) 1115-1122. 

67 L.B. Barber, S.H. Keefe, D.R. Leblanc, P.M. Bradley, F.H. Chapelle, M.T. Meyer, K.A. Loftin, 
D.W. Koplin, F. Rubio, Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in 
groundwater contaminated by wastewater treatment plant effluent, Environmental Science and 
Technology 43 (2009) 4843-4850. 



 166  

 

                                                                                                                                                                                     
68 T-T. Pham, S. Proulx, PCB’s and PAH’s in the Montreal urban community (Quebec, Canada) 

wastewater treatment plant and in the effluent plume in the St Lawrence river, Water Research 31 
(1997) 1887-1896. 

69 X. Li, Q. Zhang, J. Dai, Y. Gan, J. Zhou, X. Yang, H. Cao, G. Jiang, M. Xu, Pesticide 
contamination profiles of water, sediment and aquatic organisms in the effluent of Gaobeidian 
wastewater treatment plant, Chemosphere 72 (2008) 1145-1151. 

 
70 P.J. Phillips, S.G. Smith, D.W. Koplin, S.D. Zaugg, H.T. Buxton, E.T. Furlong, K. Esposito, B. 

Stinson, Pharmaceutical formulation facilities as soures of opioids and other pharmaceuticals to 
wastewater treatment plant effluents, Environmental Science and Technology 44 (2010) 4910-
4916. 

71 N.M. Vieno, T. Tuhkanen, L. Kronberg, Seasonal variation in the occurrence of pharmaceuticals in 
effluents from a sewage treatment plant and in the recipient water, Environmental Science and 
Technology 39 (2005) 8220-8226. 

72 M. Rricking, J. Schwarzbauer, J. Hellou, A. Svenson, V. Zitko, Polycyclic aromatic musk 
compoundsin sewage treatment plant effluents of Canada and Sweden-first results, Marine 
Pollution Bulletin 46 (2003) 410-417. 

73 S-H. Lin, R-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and 
low-cost natural adsorbents: A review, Journal of Environmental Management 90 (2009) 1336-
1349. 

74 G. Crini, P-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from 
aqueous solutions by adsorption processes using batch studies: A review of recent literature, 
Progress in Polymer Science 33 (2008) 399-447. 

75 M. Khalid, G. Joly, A. Renaud, P. Magnoux, Removal of phenol from water by adsorption using 
zeolites, Industrial and Engineering Chemistry Research 43 (2004) 5275-5280. 

76 I. Pikaar, A.A. Koelmans, P.C.M. van Nort, Sorption of organic compounds to activated carbons. 
Evaluation of isotherm models, Chemosphere 65 (2006) 2343-2351. 

77 C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated 
carbon prepared from coir pith, an agricultural solid waste, Dyes and Pigments 54 (2002) 47-58. 

78 G.M. Walker, R. Weatherley, Adsorption of acid dyes on to granular activated carbon in fixed beds, 
Water Research 31 (1997) 2093-2101. 

79 I. Bautista-Toledo, M.A. Ferro-Garcia, J. Rivera-Utrila, C. Moreno-Castilla F.J. Vegas Fernandez, 
Environmental Science and Technology 39 (2005) 6246-6250. 

80 G. Newcombe, M. Drikas, R. Hayes, Influence of characterized natural organic material on activated 
carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol, 
Water Research 31 (1997) 1065-1073. 

81 A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by 
activated carbon – a critical review, Chemosphere 58 (2005) 1049-1070. 

82 C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, 
Carbon 42 (2004) 83-94. 

83 G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresource 
Technology 97 (2006) 1061-1085. 

84 J.C. Lopez-Montilla, S. Pandey, D.O. Shah, O.D. Crisalle, Removal of non-ionic organic pollutants 
from water via liquid-liquid extraction, Water Research 39 (2005) 1907-1913. 



167 

 

                                                                                                                                                                                     
85 C. Yang, K.C. Teo, Y.R. Xu, Butane extraction of model organic pollutants from water, Journal of 

Hazardous Materials 108 (2004) 77-83. 
86 X. Li, Y. Du, G. Wu, Z. Li, H. Sui, Solvent extraction for heavy crude oil removal from 

contaminated soils, Chemosphere 88 (2012) 245-249. 
87 A. Sonune, R. Ghate, Developments in wastewater treatment methods, Desalination 167 (2004) 55-

63. 
88 L-L. Hwang, J-C. Chen, M-Y. Wey, The properties and filtration efficiency of activated carbon 

polymer composite membranes for the removal of humic acid, Desalination 313 (2013) 166-175. 
89 S-H. Lin, R-C. Hsiao, R-S. Juang, Removal of soluble organics from water by a hybrid proess of 

clay adsorption and membrane filtration, Journal of Hazardous Materials 135 (2006) 134-140. 
90 T. Lebeau, C. Lelièvre, H. Buisson, D. Cléret, L.W. Van de Venter, P. Côté, Immersed membrane 

filtration for the production of drinking water : combination with PAC for NOM and SOCs 
removal, Desalination 117 (1998) 219-231. 

91 J.I Acero, F.J. Benitez, A.I. Leal, F.J. Real, F. Teva, Membrane filtration technologies applied to 
municipal secondary effluents for potential reuse, Journal of Hazardous Materials 177 (2010) 
390-398. 

92 Y. Kumar, K.M. Popat, H. Brahmbhatt, B. Ganguly, A. Bhattacharya, Pentachlorophenol removal 
from water using surfactant-enhanced filtration through low-pressure thin film composite 
membranes, Journal of Hazardous Materials 154 (2008) 425-431. 

93 R. Allabashi, M. Arkas, G. Hömann, D. Tsiourvas, Removal of some organic pollutants in water 
employing ceramic membranes impregnated with cross-linked silylated dendritic and 
cyclodextrin polymers, Water Research 41 (2007) 476-486. 

94 C. Chiemchaisri, S. Passananon, H.H. Ngo, S. Vigneswaran, Enhanced natural organic matter 
removal in floating media filter coupled with microfiltration membrane for river water treatment, 
Desalination 234 (2008) 335-343. 

95 A. Bodalo, J.L. Gomez, E. Gomez, A.M. Hidalgo, A. Aleman, Viability of different reverse osmosis 
membranes for application in the tertiary treatment of wastes from the tanning industry, 
Desalination 180 (2005) 277-284. 

96 S. Khemakhem, A. Larbot, R.B. Amar, Study of performances of ceramic microfiltration membrane 
from Tunisian clay applied to cuttlefish effluents treatment, Desalination 200 (2006) 307-309. 

97 F. J. Benitez, J.L. Acero, A.I. Leal, Application of microfiltration and ultrafiltration processes to 
cork processing wastewater and assessment of the membrane fouling, Separation and Purification 
Technology 50 (2006) 354-364. 

98 M. Dai, K.O. Buesseler, P. Ripple, J. Andrews, R.A. Belastock, Ö. Gustafsson, S.B. Moran, 
Evaluation of two cross-flow ultrafiltration membranes for isolating marine organic colloids, 
Marine Chemistry 62 (998) 117-136. 

99 E. Aoustin, A.I. Schäfer, A.G. Fane, T.D. Waite, Ultrafiltration of natural organic matter, Separation 
and Purification Technology 22-23 (2001) 63-78. 

100 M.E. Williams, J.A. Hestekin, C.N. Smothers, D. Bhattacharyya, Separation of organic pollutants 
by reverse osmosis and nanofiltration membranes:  mathematical models and experimental 
verification, Industrial and Engineering Chemistry Research 38 (1999) 3683-3695. 

101 G. Chen, X. Chai, P-L. Yue, Y. Mi, Treatment of textile desizing wastewater by pilot scale 
nanofiltration membrane separation, Bioresource Technology 127 (1997) 93-99. 

102 K.V. Plakas, A.J. Karabelas, T. Wintgens, T. Melin, A study of selected herbicides retention by 
nanofiltration membranes – The role of organic fouling, Journal of Membrane Science 284 (2006) 
291-300. 



 168  

 

                                                                                                                                                                                     
103 J. Huang, Q. Guo, H. Ohya, J. Fang, The characteristics of crosslinked PAA composite membrane 

for separation of aqueous organic solutions by reverse osmosis, Journal of Membrane Science 
144 (1998) 1-11. 

104 D.R. Paul, Reformulation of the solution-diffusion theory of reverse osmosis, Journal of Membrane 
Science 241 (2004) 371-386. 

105 R.D. Noble, P.A. Terry, Membranes in: Principles of chemical separation with environmental 
application, Cambridge University Press 9 (2004) 234. 

106 M. Gryta, M. Tomaszewska, K. Karakulski, Waste water treatment by membrane distillation, 
Desalination 198 (2006) 67-73. 

107 K. Gethard, O. Sae-Khow, S. Mitra, Carbon nanotube enhanced membrane distillation for 
simultaneous generation of pure water and concentrating pharmaceutical waste, Separation and 
Purification Technology 90 (2012) 239-245. 

108 Removal of benzene traces from contaminated water by vacuum membrane distillation, Chemical 
Engineering Science 51 (1996) 1257-1265. 

109 ] C. Boi, S. Bandini, G.C. Sarti, Pollutants removal from wastewater through membrane distillation, 
Desalination 183 (2005) 383-394. 

110 E. Curcio, E. Drioli, Membrane distillation and related operations – A review, Separation and 
Purification Reviews 34 (2005) 35-86. 

111 B-R. Lim, X. Huang, H-Y. Hu, K. Fujie, Solid phase aerobic digestion of high strength organic 
wastewater using adsorbent polymer gel, Water Science and Technology 35 (7) (1997) 13-20. 

112 B-R. Lim, H-Y. Hu, K-H. Ahn, K. Fujie, Effect of biodegradable substrates on the removal rate of 
concentrated p-phenol sulphonic acid in the solid phase aerobic biological treatment process, 
Process Biochemistry 40 (2005) 2603-2607. 

113 K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi, Development of microbubble 
aerator for waste water treatment using aerobic activated sludge, Chemical Engineering Science 
66 (2011) 3172-3197. 

114 P. Verlicchi, A. Galletti, M. Petrovic, D. Barcelo, M. Al Aukidy, E. Zambello, Removal of selected 
pharmaceuticals from domestic Wastewater in an activated sludge system followed by a 
horizontal subsurface flow bed-Analysis of their respective contributions, Science of the Total 
Environment 454-455 (2013) 411-425. 

115 H. Gannoun. H. Bouallagui, A. Okbi, S. Sayadi, M. Hamdi, Mesophilic and thermophilic anaerobic 
digestion of biologically pretreated abattoir wastewater in an upflow anaerobic filter, Journal of 
Hazardous Materials 170 (2009) 263-271. 

116 B. Demirel, O. Yenigun, T. Onay, Anaerobic treatment of dairy wastewater: a review, Process 
Biochemistry 40 (2005) 2583-2595. 

117 G. Vidal, Z.P. Jiang, F. Omil, F. thalasso, R. Méndez, J.M. Lema, Continuous anaerobic treatment 
of wastewaters containing formaldehyde and urea, Bioresource Technology 70 (1999) 283-291. 

118 F.P. Van der Zee, S. Villaverde, Combined anaerobic-aerobic treatment of azo dyes – A short 
review of bioreactor studies, Water Research 39 (2005) 1425-1440. 

119 T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent : a 
critical review on current treatment technologies with a proposed alternative, Bioresource 
Technology 77 (2001) 247-255. 

120 Y. Fu, T. Viraraghavan, Fungal decolorization of dye wastewaters: a review, Bioresource 
Technology 79 (2001) 251-262. 



169 

 

                                                                                                                                                                                     
121 M. Bisson, R. Dujardin, M. Rose, C. Lambre, M. Gabarda, Elimination par incinération des déchets 

liés à l’utilisation de médicaments anticancéreux. Agence de l’Environnement et de la Maîtrise de 
l’Energie, Institut national de l’environnement industriel et des risques. Rapport ADEME-94-04-
0223, 1995. 

122 A. Aleboyeh, H. Aleboyeh, Y. Moussa, “Critical” effect of hydrogen peroxide in photocatalytical 
oxidative decolorization of dyes: Acid Orange 8, Acid Blue 74 and Methyl Orange, Dyes and 
Pigments 57 (2003) 67-75. 

123 R. Andreozi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water 
purification and recovery, Catalysis Today 53 (1999) 51-59. 

124 S. Esplugas, J. Ggiménez, S. Contreras, E. Pascual, M. Rodriguez, Comparison of different 
advanced oxidation processes for phenol degradation, Water Research 36 (2002) 1034-1042. 

125 S. Esplugas, D.M. Bila, L.G.T. Krause, Marcia Dezotti, Ozonation and advanced oxidation 
tehnologies to remve endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal 
care products (PPCPs) in water effluents, Journal of Hazardous Materials 149 (2007) 631-642. 

126 L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater 
treatment, Water Research 45 (2011) 4311-4340. 

127 P. Canizares, J. Lobato, R. Paz, M.A. Rodrigo, C. Saez, Advanced oxidation processes for the 
treatment of olive- oil mills wastewater, Chemosphere 67 (2007) 832-838. 

128 I.A. Alaton, I.A. Balciouglu, D.W. Bahnemann, Advanced oxidation of a reactive dyebath effluent: 
comparison of O3, H2O2/UV-C and TiO2/UV-A processes, Water Research 36 (2002) 1143-1154.
  

129 E.J. Rosenfeldt, K.G. Linden, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl 
estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environmental 
Science and Tehnology 38 (2004) 5476-5483. 

130 W.H. Glaze, J.W. Kang, Advanced oxidation processes. Description of a kinetic model for the 
oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a 
semibatch reactor, Industrial and Engineering Chemistry Research 28 (1989) 1573-1587. 

131 W.R. Haang, C.C.D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking 
water contaminants, Environmental Science and Technology 26 (1005-1013). 

132 M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Cmplete destruction of p-nitrophenol in aqueous 
medium by electro-Fenton method, Environmental Science and Technology 34 (2000) 3474-
3479. 

133 P.L. Huston, J.J. Pignatello, Degradation of selected pesticide active ingredients and commercial 
formulations in water by the photo-assisted Fenton reaction, Water Research 33 (1999) 1238-
1246. 

134 C-R. Huang, H-Y. Shu, The reaction kinetics, decomposition pathways and intermediate formations 
of phenol in ozonation, UV/O3 and UV/H2O2 processes, Journal of Hazardous Materials 41 
(1995) 47-64. 

135 R. Atkinson, Kinetics and mechanisms of the gas-phase reactions of hydroxyl radical with organic 
compounds under atmospheric conditions, Chemical Reviews 86 (1986) 69-201. 

136 B.C. Faust, J. Hoigné, Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in 
clouds, fog and rain, Atmspheric Environmen. Part A. General Topics 24 (1990) 79-89. 

137 O.C. Zafiriou, M.B. True, Nitrite photolysis in seawater by sunlight, Marine Chemistry 8 (1979) 9-
32. 

138 S. Nélieu, L. Kerhoas, M. Sarakha, J. Einhorn, Nitrite and nitrate induced photdegradation of 
monolinuron in aqueous solution, Environmental Chemistry Letters 2 (2004) 83-87. 



 170  

 

                                                                                                                                                                                     
139 W.M. Draper, D.G. Crosby, The photochemical generation of hydrogen peroxide in natural waters, 

Archives of Environmental Contamination and Toxicology 12 (1983) 121-126. 
140 G.V. Buxton, C.L. Greenstck, W.P. Helman, A.B. Ross, Critical review of rate constant for 

reactions of hydrated electrons, hydrogen atoms an hydroxyl radicals (HO•/O•-) in aqueous 
solution, Journal of Physical Chemistry Reference Data, 17 (1988) 613-759. 

141 E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies 
based on Fenton’s reaction chemistry, Chemical Reviews 109 (2009) 6570-6631. 

142 K.P.C. Vollhard, N. Schore, Organic Chemistry, Structure and Function, 6th edition, W. H. Freeman 
and Company New York. 

143 S. Hammami, N. Bellakhal, N. Oturan, M.A. Oturan, M. Dachraoui, Degradation of acid orange 7 
by electrochemically generated •OH radicals in acidic aqueous medium using a boron-doped 
diamond or platinum anode: A mechanistic study, Chemosphere 73 (2008) 678-684. 

144 A. Dirany, Studies in oxidation/mineralisation kinetics and mechanism of antibiotics 
Sulfamethoxazol (SMX), Amoxicillin (AMX) and Sulphachloropyridazine (SPC) in aqueous 
media by electrochemical advanced oxidation processes. Measuring and monitoring the evolution 
of toxicity during treatment, Doctorate Thesis 2010 Université Paris Est. 

145 S.R. Cater, K.G. Bricher, R.D.S. Stevens, A second generation enhanced oxidation process for 
groundwater remediation. In: Proceeding of a symposium on advanced oxidation process for the 
treatment of contaminated water and air, Toronto Canada, 1990. 

146 R.W. Haag, C.C. David Yao, Rate constants for reaction of hydroxyl radicals with several drinking 
water contaminants, Environmental Science and Technology, 26 (1992) 1005-1013. 

147 A. Latifoglu, Formation of trihalomethanes by disinfection of drinking water, Indoor and Built 
Environment 12 (2003) 413-417. 

148 J.J. Rook, Formation of haloforms during chlorination of natural waters. Water Treatment and 
Examination 23 (1974) 234-243. 

149 M.C. Yeber, J. Rodriguez, J. Freer, J. Baeza, N. Duran, H. Mansilla, Advanced oxidation of a pulp 
mill bleaching wastewater, Chemosphere 39 (1999) 1679-1688. 

150 L. Bijan, M. Mohseni, Integrated ozone and biotreatment of pulp mill effluent and changes in 
biodegradability and molecular weight distribution of organic compounds, Water Research 39 
(2005) 3763-3772. 

151 S. Parra, V. Sarria, S. Malato, P. Péringer, C. Pulgarin, Photochemical versus coupled 
photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: 
metobromuron and isoproturon, Applied Catalysis B: Environmental 27 (2000) 153-168. 

152 J-M. Hermann, Heterogeneous photocatalysis: fundamentals and applications to the remval of 
various types of aqueous pollutants, Catalysis Today 53 (1999) 115-129. 

153 J-Q. Chen, D.W. Wang, M-X. Zhu, C-J. Gao, Photocatalytic degradation of dimethoate using 
nanosized TiO2 powder, Desalination 207 (2007) 87-94. 

154 U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over 
titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry 
and Photobiology C: Photochemistry Reviews 9 (2008) 1-12. 

155 Y. Ku, R-M. Leu, K-C. Lee, Decomposition of 2-chlorophenol in aqueous solution by UV 
irradiation with the presence of titanium dioxide, Water Research 30 (1996) 2567-2578. 

156 M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of 
semiconductor photocatalysis, Chemical Reviews 95 (1995) 69-96. 



171 

 

                                                                                                                                                                                     
157 K. Rajeshwar, Photoelectrochemistry and the environment, Journal of Applied Electrochemistry 25 

(1995) 1067-1082. 
158 C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three 

advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. Comparative mechanistic and 
kinetic investigatins, Journal of Photochemistry and Photobiology A.Chemistry 130 (2000) 35-
47. 

159 Z. Hua, Z. Manping, X. Zongfeng, G.K-C. Low, Titanium dioxide mediated photocatalytic 
degradation of monocrotophos, Water Research 29 (1995) 2681-2688. 

160 M. Pera-Titus, V. Garcia-Molina, M.A. Banjos, J. Giménez, S. Esplugas, Degradation of 
chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: 
Environment 47 (2004) 219-256. 

161 S. Wen, J. Zhao, G. Sheng, J. Fu, P. Peng, Photocatalytic reactions of phenantrene at TiO2/water 
interface, Chemosphere 46 (2002) 871-877. 

162 M.H. Habibi, H. Vosooghian, Photocatalytic degradation of some organic sulfides as environmental 
pollutants using titanium dioxide suspension, Journal of Photochemistry and Photobiology A 
Chemistry 174 (2005) 45-52. 

163 G.S. Shephard, S. Stockenstrom, D. de Villiers, W.J. Engelbrecht, G.F.S. Wessels, Degradation of 
microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide 
catalyst, Water Research 36 (2002) 140-146. 

164 S. Vilhumen, M. Vilve, M. Vepsalainen, M. Sillanpaa, Removal of organic matter from a variety of 
water matrices by UV photolysis and UV/H2O2 method, Journal of Hazardous Materials 179 
(2010) 776-782. 

165 F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Degradation of selected pharmaceuticals in aqueouse 
solution with UV and UV/H2O2, Water Research 43 (2009) 1766-1774. 

166 A.S. Wong, D.G. Crosby, Photodecompositin of pentachlorophenol in water, Journal of 
Agricultural and Food Chemistry, 29 (1981) 125-130. 

167 M.D. Gurol, Factors controlling the removal of organic pollutants in ozone reaction, Journal 
American Water Works Association 77 (1985) 55-60. 

168 S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies 
to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care 
products (PPCPs) in water effluents, Water Research 149 (2007) 631-642. 

169 R. Broséus, S. Vincent, K. Aboulfadl, A. Daneshvar, S. Sauvé, B. Barebeau, M. Prévost, Ozone 
oxidation of pharmaceuticals, endocrine disrupting and pesticides during drinking water 
treatment, Water Research 43 (2009) 4707-4717. 

170 A. Rodriguez, I. Munoz, J.A. Perdigon-Melon, J.B. Carbajo, M.J. Martinez, A.R. Fernandez-Alba, 
E. Garcia-Calvo, R. Rosal, Environmental optimization of continuous flow ozonation for urban 
wastewater reclamation, Science of The Total Environment 437 (2012) 66-75. 

171 J.J. McCarthy, C.H. Smith, A review of ozone and its application to domestic waste water 
treatment, Journal AWWA 66 (1974) 718-725. 

172 P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, F.A. Armstrong, Inorganic Chemistry, Fifth 
Edition, Oxford University Press 2010. 

173 H. Tomiyasu, H. Fukutomi, G. Gordon, Kinetics and mechanism of ozone decomposition in basic 
aqueous solution, Inorganic Chemistry 24 iss. (19) (1985) 2962-2966. 

174 J. Staehelin, J. Hoigné, Decomposition in water, rate of inhibition by hydroxide ions and hydrogen 
peroxide, Environmental Science and Technology 16 (1982) 676-681. 



 172  

 

                                                                                                                                                                                     
175 H. Kusic, N. Koprivanac, A.L. Bozic, Minimization of organic pollutant content in aqueous 

solution by means of AOPs: UV-and ozone-based technologies, Chemical Engineering Journal 
123 (2006) 127-137. 

176 F.J. Benitez, J.L. Acero, F.J. Real, Degradation of carbofuran by using ozone, UV radiation and 
advanced oxidation processes, Journal of Hazardous Materials B89 (2002) 51-65. 

177 S. Irmak, O. Erbatur, A. Akgerman, Degradation of 17β-estradiol and bisphenol A in aqueous 
medium by using ozone and ozone/UV techniques, Journal of Hazardous Materials B126 (2005) 
54-62. 

178 T. Garoma, M.D. Gurol,L. Thotakura, O. Osibodu, Degradation of tert-butyl formate and its 
intermediates by an ozone/UV process, Chemosphere 73 (2008) 1708-1715. 

179 F.J. Benitez, J. Beltran-Heredia, J.L. Acero, T. Gonzalez, Degradation of protocatechuic acid by 
two advanced oxidation processes: ozone/UV radiation and H2O2/UV radiation, Water Research 
30 7 (1996) 1597-1604. 

180 M-S. Chou, K-L. Chang, UV/ozone degradation of gaseous hexamethyldisilazane (HMDS), 
Chemosphere 69 (2007) 697-704. 

181 T. Garoma, M.D. Gurol, O. Osibodu, L. Thotakura, Treatment of groundwater contaminated with 
gasolina components by an ozone/UV process, Chemosphere 73 (2008) 825-831.  

182 R. Sauleda, E. Brillas, Mineralisation of aniline and 4-chlorophenol in acid solution by ozonation 
catalyzed with Fe2+ and UVA light, Applied Catalysis B: Environmental, 29 (2001) 135-145. 

183 A. Safarzadeh-Amiri, O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated 
waters, Water Research 35 (2001) 3706-3714. 

184 M.M. Mitani, A.A. Keller, C.A. Bunton, R.G. Rinker, O.C. Sandall, Kinetics and products of 
reactions of MTBE with ozone and ozone/hydrogen peroxide in water, Journal of Hazardous 
Materials B89 (2002) 197-212. 

185 C. Volk, P. Roche, J-C. Joret, H. Paillard, Comparison of the effect of ozone, ozone-hydrogen 
peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution, 
Water Research 31 3 (1997) 650-656. 

186 C. Tizaoui, L. Bouselmi, L. Mansouri, A. Ghrabi, Landfill leachate treatment with ozone and 
ozone/hydrogen peroxide system, Journal of Hazardous Materials 140 (2007) 316-324. 

187 F.J. Beltran, J.M. Encinar, J.F. Gonzalez, Industrial wastewater advanced oxidation. Part 2. Ozone 
combined with hydrogen peroxide or UV radiation, Water Research 31 10 (1997) 2415-2428. 

188 A.C. Quiroz, C. Barrera-Diaz, G. Roa-Morales, P.B. Hernandez, R. Romero, R. Natividad, 
Wastewater ozonation catalysed by iron, Industrial and Engineering Chemistry Research 50 
(2011) 2488-2494. 

189 Z. Zeng, H. Zou, X. Li, B. Sun, J. Chen, L. Shao, Ozonation of phenol with O3/Fe(II) in acidic 
environment in a rotating packed bad, Industrial and Engineering Chemistry Research 51 (31) 
(2012) 10509-10516. 

190 E.M. Rodriguez, G. Fernandez, P.M. Alvarez, F.J. Beltran, TiO2 and Fe(III) photocatalytic 
ozonation processes of a mixture of emergent contaminants of water, Water Research 46 (2012) 
152-166 

191 S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodriguez, Comparison of different advanced 
oxidation processes for phenol degradation, Water Research 36 (2002) 1034-1042. 

192 F.J. Beltran, M. Gonzalez, J.F. Gonzalez, Industrial wastewater advanced oxidation. Part 1. UV 
Radiation in the presence and absence of hydrogen peroxide, Water Research 31 (10) (1997) 
2405-2414. 



173 

 

                                                                                                                                                                                     
193 S.H. Vilhunen, M.E.T. Sillanpaa, Ultraviolet light emitting diodes and hydrogen peroxide in the 

photodegradation of aqueous phenol, Journal of Hazardous Materials 161 (2009) 1530-1534. 
194 B. Xu, N-y. Gao, H. Cheng, S-j. Xia, M. Rui, D-d, Zhao, Oxidative degradation of dimethyl 

phtalate (DMP) by UV/H2O2 process, Journal of Hazardous Materials 162 (2009) 954-959. 
195 W.H. Glaze, J-W. Kang, D.H. Chapin, The chemistry of water treatment processes involving 

ozone, hydrogen peroxide and ultraviolet radiation, The Journal of the International Ozone 
Association 9 (4) (1987) 335-352. 

196 H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron, Journal of Chemical Society 65 
(1894) 899. 

197 F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proceedings of 
the Royal Society A 147 (1934) 332-351. 

198 J.J. Pignatello, E. Oliveros, A. MacKay, Advanced Oxidation Processes for Organic Contaminant 
Destruction Based on the Fenton Reaction and Related Chemistry, Critical Reviews in 
Environmental Science and Technology 36 (1) (2006) 1-84. 

199 J. Ma, W. Ma, W. Song, C. Chen, Y. Tang, J. Zhao, Fenton degradation of organic pollutants in the 
presence of low-molecular-weight organic acids : cooperative effect of quinone and visible light, 
Environmental Science and Technology 40 (2006) 618-624. 

200 M.A. Oturan, N. Oturan, C. Lahitte, S. Trevin, Production of hydroxyl radicals by 
electrochemically assisted Fenton’s reagent. Application to the mineralization of an organic 
micropollutant pentachlorophenol, Journal of Electroanalytical Chemistry 507 (2001) 96-102. 

201 M.A. Oturan, J-J. Aaron, N. Oturan, J. Pinson, Degradation of chlorphenoxyacid herbicides in 
aqueouse media, using a novel electrochemical method, Pesticide Science 55 (1999) 558-562. 

202 E. Brillasa, E. Mura, R. Sauleda, L. Sanchez, J. Peral, X. Domenech, J. Casadoc, Aniline 
mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-
Fenton processes, Applied Catalysis B: Environmental 16 (1998) 31-42. 

203 N.S.S. Martinez, J.F. Fernandez, X.F. Segura, A.S. Ferrer, Pre-oxidation of an extremely polluted 
industrial wastewater by the Fenton’s reagent, Journal of Hazardous Materials B101 (2003) 315-
322. 

204 C.M. Miller, R.L. Valentine, M.E. Roehl, P.J.J. Alvarez, Chemical and microbiological assessment 
of pendimethalin-contaminated soil after treatment with Fenton’s reagent, Water Research 30 
(11) (1996) 2579-2586. 

205 C. Walling, Intermediates in the reactions of Fenton type reagents, Accounts of Chemical Research 
31 (1998) 155-157. 

206 206 R.V. Lloyd, P.M. Hanna, R.P. Mason, The origin of the hydroxyl radical oxygen in the Fenton 
reaction, Free Radical Biology and Medicine 22 (1997) 885-888. 

207 M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical during Fenton oxidation following a 
single addition of iron and peroxide, Chemosphere 41 (2000) 409-417. 

208 J.D. Rush, B.H.J. Bielski, Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2- 
with iron(II)/iron(III) ions. The reactivit of HO2/O2- with ferric ions and its implication on the 
occurrence of the Haber-Weiss reaction, The Journal of Physical Chemistry 89 (23) (1985) 5062-
5066. 

209 B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, Reactivity f HO2/O2
- radicals in aqueous 

solution, Journal of Physical and Chemical Reference Data 14 (1985) 1041-1100. 
210 210 W.G. Rothchild, A.O. Allen, Studies in radiolysis of ferrous sulfate solutions: III. Air-free 

solutions at higher pH Radiation Research 8 (1958) 101-110.  



 174  

 

                                                                                                                                                                                     
211 H. Christensen, K. Sehested, H. Corfitzen, Reactions of hydroxyl radaicals with hydrogen peroxide 

at ambient and elevated temperatures, Journal of Physical Chemistry 86 (1982) 1588-1590. 
212 B.H.J. Bielski, P.C. Chan, Kinetic study b pulse radiolysis of the lactate dehydrogenase-catalyzed 

chain oxidation of nicotinamide adenine dinucleotide by HO2 and O2
- radicals, Journal of 

Biological Chemistry 250 (10) 318-321. 
213 M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical 

oxidation process electro-Fenton using a carbon felt cathode, Applied Catalysis B: Environmental 
83 (2008) 140-149. 

214 A. Özcan, Y. Sahin, A.S. Koparal, M.A. Oturan, Degradation of picloram by the electro-Fenton 
process, Journal of Hazardous Materials 153 (2008) 718-727. 

215 215 J. De Laat, G.T. Le, B. Legube, A comparative study of the effects of chloride, sulfate and 
nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and 
Fe(III)/H2O2, Chemosphere 55 (2004) 715-723. 

216 B. Ensing, F. Buda, P.E. Blöchl, E.J. Baerends, A car-parrinello study of the formation of oxidizing 
intermediates from Fenton’s reagent in aqueous solution, Physical Chemistry Chemical Physics 4 
(2002) 3619-3627. 

217 I. Yamazaki, L.H. Piette, EPR spin-traping study on the oxidizing species formed in the reaction of 
the ferrous ion with hydrogen peroxide, Journal of the American Chemical Society 113 (20) 
(1991) 7588-7593. 

218 M.L. Kremer, Mechanism of the Fenton reaction. Evidence for a new intermediate, Physical 
Chemistry Chemical Physics Physical Chemistry Chemical Physics 1 (1999) 3595-3605. 

219 J.J. Pignatello, D. Liu, P. Huston, Evidence for an additional oxidant in the photoassisted Fenton 
reaction, Environmental Science and Technology 33 (1999) 1832-1839. 

220 P. Bautista, A.F. Mohedano, J.A. Casas, J.A. Zazo, J.J. Rodriguez, Review. An overview of the 
application of Fenton oxidation to industrial wastewater treatment, Journal of Chemical 
Technology and Biotechnology 83 (2008) 1323-1338. 

221 P.C. Vandevivere, R. Bainchi, W. Verstraete, Treatment and reuse of wastewater from the textile 
wet-processing industry: review of emerging technologies, Journal of Chemical Technology and 
Biology 72 (1998) 289-302. 

222 I. Oller, S. Malato, J.A. Sanchez-Pérez, Combination of advanced oxidation proesses and biological 
treatments for wastewater decontamination –A review, Science of the Total Environment 409 
(2011) 4141-4166. 

223 H-L. Wang, W-Z. Liang, Q. Zhang, W-F. Jiang, Solar-light-assisted Fenton oxidation of 2,4-
dinitrophenol (DNP) using Al2O3-supported Fe(III)-5-sulfosalicylic acid (ssal) complex as 
catalyst, Chemical Engineering Journal 164 (2010) 115-120. 

224 M. Pérez, F. Torrades, X. Domènech, J. Peral, Fenton and photo-Fenton oxidation of textile 
effluents, Water Research 36 (2002) 2703-2710. 

225 J.A. Perdigon-Melon, J.B. Carbajo, A.L. Petre, R. Rosal, E. Garcia-Calvo, Coagulation–Fenton 
coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater, Journal of 
Hazardous Materials 181 (2010) 127-132. 

226 F. Feng, Z. Xu, X. Li, W. You, Y. Zhen, Advanced treatment of dyeing wastewater towards reuse 
by the combined Fenton oxidation and membrane bioreactor process, Journal of Environmental 
Science, 22 (11) (2010) 1657-1665. 

227 V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the 
degradation of phenol, Chemosphere 55 (2004) 1235-1243. 



175 

 

                                                                                                                                                                                     
228 X-R. Xu, X-Y. Li, X-Z. Li, H-B. Li, Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and 

UV/Fe2+/H2O2 processes, Separation and Purification Technology 68 (2009) 261-266. 
229 C. Rodrigues-Silivia, M.G. Maniero, S. Rath, J.R. Guimaraes, Degradation of flumequine by the 

Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity, Science of the 
Total Environment, 445-446 (2013) 337-346. 

230 Y. Zou, J. Hoigné, Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric 
water by photolysis of iron(III)-oxalato complexes, Environmental Science and Technology 26 
(5) (1992) 1014-1022. 

231 W. Gernjak, M. Fuerhacker, P. Fernandez-Ibanez, J. Blanco, S. Malato, Solar photo-Fenton 
treatment—Process parameters and process control, Applied Catalysis B: Environmental 64 
(2006) 121-130. 

232 C. Sirtoria, A. Zapata, I. Oller, W. Gernjak, A. Aguera, S. Malato, Decontamination industrial 
pharmaceutical wastewater by combining solar photo-Fenton and biological treatment, Water 
Research 43 (2009) 661-668. 

233 A. Zapataa, T. Velegraki, J.A. Sanchez-Perez, D. Mantzavinos , M.I. Maldonado, S. Malato, Solar 
photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and 
assessment of ecotoxicity and biodegradability, Applied Catalysis B: Environmental 88 (2009) 
448-454. 

234 M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Electrochemical treatment of waste waters 
containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy 
consumption and required electrode area, Electrochemistry Communications 3 (2001) 336-339. 

235 M.A. Oturan, An ecologically effective water treatment technique using electrochemically 
generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 
2.4-D, Journal of Applied Electrochemistry 30 (2000) 475-482. 

236 M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, Chemical 
Reviews 109 (2009) 6541-6569. 

237 M. Panizza, G. Cerisola, Influence of anode material on the electrochemical oxidation of 2-
naphthol. Part 1. Cylic voltammetry and potential step experiments, Electrochimica Acta 48 
(2003) 3491-3497. 

238 C. Bock, B. MacDugall, The influence of metal oxide properties on the oxidation of organics, 
Journal of Electroanalytical Chemistry 491 (2000) 48-54 

239 N.B. Tahar, A. Savall, Electrochemical removal of phenol in alkaline solution. Contribution of the 
anodic polymerization on different electrode materials, Electrochimica Acta 54 (2009) 4809-
4816. 

240 S.A. Neto, A.R. de Andrade, Electrooxidation of glyphosate herbicide at different DSA 
compositions: pH, concentration and supporting electrolyte effect, Electrochimica Acta 54 (2009) 
2039-2045. 

241 S.A. Neto, A.R. de Andrade, Electrooxidation of glyphosate herbicide at different DSA 
compositions: pH, concentration and supporting electrolyte effect, Electrochimica Acta 54 (2009) 
2039-2045. 

242 V. Santos, J. Diego, M.J.A. Pacheco, A. Morao, A. Lopes, Electrochemical degradation of 
sulfonated amines on SI/BDD electrodes, Chemosphere 79 (2010) 637-645. 

243 O. Scialdone, A. Galia, G. Filardo, Electrochemical incineration of 1.2-dichloroethane: Effect of 
the electrode material, Electrochimica Acta 53 (2008) 7220-7225. 



 176  

 

                                                                                                                                                                                     
244 S. Song, L. Zhan, Z. He, L. Lin, J. Tu, Z. Zhang, J. Cheng, L. Xu, Mechanism of the anodic 

oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2-Sb/PbO2 electrodes, 
Journal of Hazardous Materials 175 (2010) 614-621. 

245 P. Canizares, J. Lobato, R. Paz, M.A. Rodrigo, C. Saez, Electrochemical oxidation of phenolic 
wastes with boron-doped diamond anodes, Water Research 39 (2005) 2687-2703. 

246 M. Panizza, G. Cerisola, Electrocatalytic materials for the electrochemical oxidation of synthetic 
dyes, Applied Catalysis B: Environmental 75 (2007) 95-101. 

247 M. Panizza, G. Cerisola, Influence of anode material on the electrochemical oxidation of 2-
naphthol. Part 2. Bulk electrolysis experiments, Electrochimica Acta 49 (2004) 3221-3226. 

248 R. Bellagamba, P.A. Michaud, Ch. Comninellis, N. Vatistas, Electro-combustion of polyacrylates 
with boron-doped diamond anodes, Electrochemistry Communications 4 (2002) 171-176. 

249 Y-q. Wang, B. Gu, W-l. Xu, Electro-catalytic degradation of phenol on several metal-oxide anodes, 
Journal of Hazardous Materials 162 (2009) 1159-1164. 

250 J. Xu. M. Wang, G. Liu, J. Li, X. Wang, The physical-chemical properties and electrocatalytic 
performance of iridium oxide in oxygen evolution, Electrochimica Acta 56 (2011) 10223-10230. 

251 J-M. Hu, J-Q. Zhang, H-M. Meng, J-T. Zhang, C-N. Cao, Electrochemical activity, stability and 
degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 
compounds, Electrochimica Acta 50 (2005) 5370-5378. 

252 E.H. Calderon, J. Hahladakis, G. Foti, A. Katsaounis, Effectiveness factor for isopropanol oxidation 
on IrO2 based electrodes of different loading, Electrochimica Acta 55 (2010) 8215-8219. 

253 P-A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti, Ch. Comninellis, Electrochemical 
oxidation of water on synthetic boron-doped diamond thin film anodes, Journal of Applied 
Electrochemistry 33 (2013) 151-154. 

254 V. Fisher, D. Gandini, S. Laufer, E. Blank, Ch. Comninellis, Preparation and characterization of 
Ti/Diamond electrodes, Electrochimica Acta 44 (1998) 521-524. 

255 X. Chen, G. Chen, F. Gao, P.L. Yue, High-performance Ti/BDD electrode for pollutant oxidation, 
Environmental Science and Technology 37 (2003) 5021-5026. 

256 Z-m. Yu, J. Wang, Q-p. Wei, L-c. Meng, S-m. Hao, F. Long, reparation, characterization and 
electrochemical properties of boron-doped diamond films on Nb substrates, Transactions of 
Nonferrous Metals Society of China 23 (2013) 1334-1341. 

257 I. Gerger, R. Haubner, Gradient layers of boron-doped diamond on titanium substrates, Diamond 
and Related Materials 16 (2007) 899-904. 

258 B. Marselli, J. Garcia-Gomez, P-A. Michaud, M.A. Rodrigo, Ch. Comninellis, Electrogeneration of 
hydroxyl radical son boron-doped diamond electrodes, Journal of The Eletrochemical Soiety 150 
(2003) D79-D73. 

259 A. Kapalka, G. Foti, Ch. Comninellis, Investigation of electrochemical oxygen transfer reaction on 
boron- doped diamond electrodes, Electrochimica Acta 53 (2007) 1954-1961. 

260 K. Serrano, P.A. Michaud, C. Comninelis, A. Savall, Electrochemical preparation of 
peroxidisulfuric acid using boron doped diamond thin film electrodes, Electrochimica Acta 48 
(2002) 431-436. 

261 P. Canizares, C. Saez, A. Sanchez-Carretero and M.A. Rodrigo, Synthesis of novel oxidants by 
electrochemical technology, Journal of Applied Electrochemistry 39 (2009) 2143-2149. 

262 M. Murgananthan, S.S. Latha, G.B. Raju, S. Yoshihara, Role of electrolyte on anodic 
mineralization of atenolol at boron doped diamond and Pt electrodes, Separation and Purification 
Technology 79 (2011) 56-62. 



177 

 

                                                                                                                                                                                     
263 A. Kapalka, G. Foti, Ch. Comninellis, The importance of electrode material in environmental 

electrochemistry. Formation an reactivity of free hydroxyl radicals on boron-doped diamond 
electrodes, Electrochimica Acta 54 (2009) 2018-2023. 

264 J. Iniesta, P.A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, Ch. Comninellis, Electrochemical 
oxidation of phenol at boron-doped diamond electrode, Electrochimica Acta 46 (2001) 3573-
3578. 

265 B. Louhichi, M.F. Ahmadi, N. Bensalah, A. Gadri, M.A. Rodrigo, Electrochemical degradation of 
an anionic surfactant on boron-doped diamond anodes, Journal of Hazardous Materials 158 
(2008) 430-437. 

266 N. Oturan, E. Brillas, M.A. Oturan, Unprecedented total mineralization of atrazine and cyanuric 
acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode, Environmental 
Chemistry Leters 10 (2012) 165-170.  

267 J. Ma, W. Ma, W. Song, C. Chen, Y. Tang, J. Zhao, Y. Huang, Y. Xu, L. Zang, Fenton degradation 
of organic pollutants in the presence of low-molecular-weight organic acids : Cooperative effect 
of quinone and visible light, Envirnmental Science and Engineering 40 (2006) 619-624. 

268 M.A. Oturan, M.C. Edelahi, N. Oturan, K. El Kacemi, J-J. Aaron, Kinetics of oxidative 
degradation/mineralization pathways of the phenylurea herbicides diurion, monuron and fenuron 
in water during application of the electro-Fenton process, Applied Catalysis B: Environmental 97 
(2010) 82-89. 

 
269 E. Brillas, J.C. Calpe, J. Casado, Mineralization of 2,4-D by advanced electrochemical oxidation 

processes, Water Research 34 (8) (2000) 2253-2262. 
270 I. Sirés, N. Oturan, M.A. Oturan, R.M. Rodriguez, J.A. Garrido, E. Brillas, Eletro-Fenton 

degradation of antimicrobials triclosan and triclocarban, Electrochimica Acta 52 (2007) 5493-
5503. 

271 A. Özcan, Y. Sahin, M.A. Oturan, Removal of propham from water by using electro-Fenton 
technology: Kinetics and mechanism, Chemosphere 73 (2008) 737-744. 

272 E. Brillas, M.A. Banos, J.A. Garrido, Mineralization of herbicide 3.6-dichloro-2-methoxybenzoic 
acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton, 
Electrochimica Acta 48 (2003) 1697-1705. 

273 S.S. Martinez, C.L. Bahena, Chlorbromuron urea herbicide removal by electro-Fenton reaction in 
aqueous effluent, Water Research 43 (2009) 33-40. 

274 A.A. Gallegos, Y.V. Garcia, A. Zamudio,  Solar hydrogen peroxide, Solar Energy Materials and 
Solar Cells 88 (2005) 157-167. 

275 G.M. Eisenberg, Colorimetric determination of hydrogen peroxide, Industrial and Engineering 
Chemistry Research 15 (1943) 327-328.   

276 B. Boye, M.M. Dieng, E. Brillas, Degradation of herbicide 4-chlorophenoxyacetic acid by 
advanced electrochemical oxidation methods, Environmental Science and Technology 36 (2002) 
3030-3035. 

277 M. Diagne, N. Oturan, M.A. Oturan, Removal of methyl parathion from water by electrochemically 
generated Fenton’s reagent, Chemosphere 66 (2007) 841-848. 

278 S.L. Ambuludi, M. Panizza, N. Oturan, A. Özcan, M.A. Oturan, Kinetic behavior of anti-
inflamatory drug ibuprofen in aqueous medium during its degradation by electrochemical 
advanced oxidation, Environmental Science and Pollution Research 20 (2013) 2381-2389. 



 178  

 

                                                                                                                                                                                     
279 N. Daneshvar, S. Aber, V. Vatanpour, M.H. Rasoulifard, Electro-Fenton treatment of dye solution 

containing orange II: Influence of operational parameters, Journal of Electroanalytical Chemistry 
615 (2008) 165-174. 

280 A.K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Experimental design 
methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron, 
Applied Catalysis B: Environmental 78 (2008) 334-341. 

281 A. Özcan, M.A. Oturan, N. Oturan, Y. Sahin, Removal of acid orange 7 from wáter by 
electrochemically generated Fentn’s reagent, Journal of Hazardous Materials 163 (2009) 1213-
1220. 

282 I. Sirés, J.A. Garrido, R.M. Rodriguez, P.I.L. Cabot, F. Centellas, C. Arias, E. Brillas, 
Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and 
UVA light on electrogenerated hydrogen peroxide, Journal of The Electrochemical Society 153 
(2006) D1-D9. 

283 A. Özcan, Y. Sahin, A.S. Koparal, M.A. Oturan, Carbon sponge as a new cathode material for the 
electro-Fenton process: Comparison with carbon felt cathode and application to degradation of 
synthetic dye basic blue 3 in aqueous medium, Journal of Electroanalytical Chemistry 616 (2008) 
71-78. 

284 M.A. Oturan, N. Oturan, M.C. Edelahi, F.I. Podvorica, K. El Kacemi, Oxidative degradation of 
herbicide diurion in aqueous medium by Fenton’s reaction based advanced oxidation processes, 
Chemical Engineering Journal 171 (2011) 127-135. 

285 I. Sirés, E. Guivarch, N. Oturan, M. Oturan, Efficient removal of triphenylmethane dyes from 
aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode, 
Chemosphere 72 (2008) 592-600. 

286 I. Sirés, J.A. Garrido, R.M. Rodriguez, E. Brillas, N. Oturan, M.A. Oturan, Catalytic behaviour of 
the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene, Applied 
Catalysis B: Environmental 72 (2007) 382-394. 

287 A. El-Ghenymy, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodriguez, C. Arias, E. Brillas, 
Mineralization of sulfanilamide by electro-Fenton and solar photoelectron-Fenton in a pre-pilot 
plant with a Pt/air-diffusion cell, Chemosphere 91 (2013) 1324-1331. 

288 A. Dirany, I. Sirés, N. Oturan, M.A. Oturan, Electrochemical abatement of the antibiotic 
sulfamethoxazole from water, Chemosphere 81 (2010) 594-62. 

289 A. Özcan, Y. Sahin, M.A. Oturan, Complete removal of the insecticide azinphos-methyl from water 
by the electro-Fenton method – A kinetic and study. Water Research 47 (2013) 1470-1479. 

290 S. Loaiza-Ambuludi, M. Panizza, N. Oturan, A. Özcan, M.A. Oturan, Electro-Fenton degradation 
of anti-inflammatory drug ibuprofen in hydroorganic médium, Journal of Electroanalytical 
Chemistry 702 (2013) 31-36. 

291 B. Balci, N. Oturan, R. Cherrier, M.A. Oturan, Degradation of atrazine in aqueous medium by 
electrochemically generated hydroxyl radicals. A kinetic and mechanistic study, Water Research 
43 (2009) 1924-1934. 

292 S. Yuan, M. Tian, Y. Cui, L. Lin, X. Lu, Treatment of nitrophenols by cathode reduction and 
electro-Fenton methods, Journal of Hazardous Materials B137 (2006) 573-580. 

              293 C-T. Wang, J-L. Hu, W-L. Chou, Y-M. Kuo, Removal of color from real dyeing 
wastewater by electro-Fenton technology using a three-dimensional graphite cathode, Journal of 
Hazardous Materials 152 (2008) 601-606. 

294 T. Tzedakis, A. Savall, M.J. Clifton, The electrochemical regeneration of Fenton’s reagent in the 
hydroxylation of aromatic substrates: batch and continuous processes, Journal of Applied 
Electrochemistry 19 (1989) 911-921. 



179 

 

                                                                                                                                                                                     

              295 A. Da Pozzo, L. Di Palma, C. Merli, E. Petruci, An experimental comparison of a graphite 
electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide, Journal 
of Applied Chemistry 35 (2005) 413-419. 

296 N. Borras, C. Arias, R. Oliver, E. Brillas, Mineralization of desmetryne by electrochemical 
advanced oxidation processes using a boron-doped diamond anode and a oxygen-diffusion 
cathode, Chemosphere 85 (2011) 1167-1175. 

297 E. Isarain-Chavez, P.L. Cabot, F. Centellas, R.M. Rodriguez, C. Arias, Mineralization of 
desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond 
anode and an oxygen-diffusion cathode, Journal of Hazardous Materials 185 (2011) 1228-1235. 

298 S. Hammami, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Oxidative degradation of 
direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the 
experimental design methodology, Journal of Electroanalytical Chemistry 610 (2007) 75-84. 

299 C.P. De Leon, D. Pletcher, Removal of formaldehyde from aqueous solutions via oxygen reduction 
using a reticulated vitreous carbon cathode cell, Journal of Applied Electrochemistry 25 (1995) 
307-314. 

300 B. Vahid,  A. Khataee, Photoassisted electrochemical recirculation system with boron-doped 
diamond anode and carbon nanotubes containing cathode for degradation of a model azo dye, 
Electrochimica Acta 88 (2013) 614-620. 

301 Z. Ai, H. Xiao, T. Mei, J. Liu, L. Zhang, K. Deng, J. Qiu, Electro-Fenton Degradation of 
Rhodamine B Based on a Composite Cathode of  Cu2O Nanocubes and Carbon Nanotubes, 
Journal of Physical Chemistry 112 (2008) 11929-11935. 

302 N. Oturan, M. Hamza, S. Ammar, R. Abdelheidi, M.A. Oturan, Oxidation/mineralization of 2-
Nitrophenol in aqueous medium by electrochemical advanced oxidation processes using 
Pt/carbon-felt and BDD/Carbon-felt cells, Journal of Electroanalytical Chemistry 661 (2011) 66-
71. 

303 K. Cruz-Gonzalez, O. Torres-Lopez, A. Garcia-Leon, J.L. Guzman-Mar, L.H. Reyes, A. 
Hernandez-Ramirez, J.M. Peralta-Hernandez, Determination of optimum operating parameters 
for Acid Yellow 36decolorization by electro-Fenton process using BDD cathode, Chemical 
Engineering Journal 160 (2010) 199-206. 

304 C. Flox, S. Ammar, C. Arias, A.V. Vargas-Zavala, R. Abdelheidi, Electro-Fenton and photoelectro-
Fenton degradation of indigo carmine in acidic aqueous médium, Applied Catalysis B: 
Environmental 67 (2006) 93-104. 

305 M. Skoumal, R.M. Rodriguez, P.L. Cabot, F. Centellas, J.A. Garrido, C. Arias, E. Brillas, Electro-
Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug 
ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes, 
Electrochimica Acta 54 (2009) 2077-2085. 

306 H. Liu, C. Wang, X. Li, X. Xuan, C. Jiang, H. Cui, A Novel Electro-Fenton Process for Water 
Treatment: Reaction-controlled pH Adjustment and Performance Assessment, Environmental 
Science and Engineering 41 (2007) 2937-2942. 

307 M. Murati, N. Oturan, J-J. Aron, A. Dirany, B. Tussin, Z. Zdravkovski, M. Oturan, Degradation 
and mineralization of sulcotrione and mesotrione in aqueous medium by the electro-Fenton 
process: a kinetic study, Environmental Science And Pollution Research 19 (2012) 1563-1573. 

308 K. Kümmerer, Antibiotics in the environment – A review – Part I, Chemosphere 75 (2009) 417-
434. 

309 K. Kümmerer, Antibiotics in the environment – A review – Part II, Chemosphere 75 (2009) 435-
441. 



 180  

 

                                                                                                                                                                                     
310 B. Halling-Serensen, S.N. Nielson, P.F. Lanzky, F. Ingerslev, H.C.H. Lützheft. S.E. Jergensen, 

Ocurrence, fate and effects of pharmaceuticals in the environment – A review, Chemosphere 36 
(1998) 357-393. 

311 F.I. Turkdogan, K. Yetilmezsoy, Appraisal of potential environmental risks associated with human 
antibiotic consumption in Turkey, Journal of Hazardous Materials 166 (2009) 297-308. 

312 S.B. Levy, G.B. FitzGerald, A. B. Macone, Changes in intestinal flora of farm personnel after 
introduction of tetracycline supplemented feed on a farm, New England Journal of Medicine 295 
(1976) 583-588. 

313 J.M. Ling, N.W.S. Lo, Y.M. Ho, K.M. Kam, C.H. Ma, S.C. Wong, A.F. Cheng, Emerging 
resistance in salmonella enterica serotype Typhi in Hong Kong, International Journal of 
Antimicrobial Agents 7 (1996) 161-166. 

314 C. Ding, J. He, Effect of antibiotics in the environment on microbial populations, Applied 
Microbiology and Biotechnology 87 (2010) 925-941. 

315 A.B. Boxall, L.A. Fogg, P.A. Blackwell, P. Kay, E.J. Pemberton (2002) Review of veterinary 
medicines in the environment. R&D Technical Report P6-012/8TR. UK Environmental Agency, 
Bristol. 

316 M-O. Aust, F. Godlinski, G.R. Travis, X. Hao, T.A. McAllister, P. Leinweber, S. Thiele-Bruhn, 
Environmental Pollution 156 (2008) 1243-1251. 

317 K. Ji, S. Kim, S. Han, J. Seo, S. Lee, Y. Park, K. Choi, Y-L. Kho, P-G. Kim, J. Park, K. Choi, 
Ecotoxicology 21 (2012) 2031-2050. 

318 M.D. Liguoro, B. Fioretto, C. Poltronieri, G. Gallina, The toxicity of sulfamethazine to Daphina 
manga and its additivity to other veterinary sulfonamides and trimethoprim, Chemosphere 75 
(2009) 1519-1524. 

319 J.R. Reel, R.W. Tyl, A. Davis-Lawton, J.C. Lamb, Reproductive toxicity of sulfamethazine in 
Swiss CD-I mice during continuous breeding, Fundamental and Applied Toxicology 18 (1992) 
609-615. 

320 L.A. Poirier, D.R. Doerge, D.W. Gaylor, M.A. Miller, R.J Lorentzen, D.A. Casciano, F.F. 
Kadlubar, B.A. Schwetz, An FDA review of sulfamethazine toxicity, Regulatory Toxicology and 
Pharmacology 30 (1999) 217-222. 

321 M.J. O’Neil, The Merk Index – An Encyclopedia of chemicals, Drugs, and Biologicals. 13th  
322 J. Tolls, Sorption of Veterinary Pharmaceuticals in Soils: A review, Environmental Science and 

Technology, 35 (2001) 3397-3406. 
323 US EPA; Estimation Program Interface (EPI) Suite. Ver. 3.12. Nov 30, 2004. Available from, as of 

Apr 18, 2006: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm. (toxnet. nlm.nih.gov/cgi-
bin/sis/search/f?./temp/-QUzVPL:1). 

324 S. Thiele-Bruhn, Pharmaceutical antibiotic compounds in soils – a review, Journal of Plant 
Nutrition and soil Science 166 (2003) 145-167. 

325 Y. Kim, K. Choi, J. Jung, S. Park, P-G. Kim, J. Park, Aquatic toxicity of acetaminophen, 
carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological 
risk in Korea, Environment International 33 (2007b) 370-375. 

326 L-H. Yang, G-G. Ying, H-C. Su, J.L. Stauber, M.S. Adams, M.T. Binet, Growth-inhibiting effects 
of 12 antimicrobial agents and their mixtures on the freshwater microalga pseudokirchneriella 
subcapitata, Environmental Toxicology and Chemistry 27 (2008) 1201-1208. 

327 R. A. Brain, D.J. Johnson, S.M. Richards, H. Sanderson, P.K. Sibley, K.R. Solomon, Effects of 25 
pharmaceutical compounds to lemna gibba using a seven-day staitic-renewal test, Environmental 
Toxicology and Chemistry 23 (2004) 371-382. 



181 

 

                                                                                                                                                                                     
328 G. Gallina, C. Poltronieri, R. Merlanti, M. De Liguoro, Acute toxicity evaluation of four 

antibacterials with Daphina manga, Veterinary Research Comunication 32 (2008) S287-S290. 
329 K.J. Choi, S.G. Kim, S.H. Kim, Removal of tetracycline and sulfonamide classes of antibiotic 

compound by powdered activated carbon, Environmental Technology 29 (2008) 333-342. 
330 K.J. Choi, S.G. Kim, S.H. Kim, Removal of tetracycline and sulfonamide classes of antibiotic 

compound by powdered activated carbon, Environmental Technology 29 (2008) 333-342. 
331 M.J. Garcia-Galan, C.E. Rodriguez-Rodriguez, T. Vicent, G. Caminal, M.S. Diaz-Cruz, D. Barcelo, 

Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and 
identification of intermediate products by UPLC-QqTOF-MS, Science of the Total Environment 
409 (2011) 5505-5512. 

332 M.Ö. Uslu, I.A. Balcioglu, Simultaneous Removal of Oxytetracycline and Sulfamethazine 
Antibiotics from Animal Waste by Chemical Oxidation Processes, Journal of Agricultural and 
Food Chemistry 57 (2009) 11284-11291. 

333 D. Mansour, F. Fourcade, N. Bellakhal, M. Dachraoui, D. Hauchard, A. Amrane, Biodegradability 
improvement of sulfamethazine solutions by means of an electro-Fenton Process 223 (2012) 
2023-2034. 

334 A. Garcia-Reiriz, P.Damiani, A.C. Olivera, Different strategies for the direct determination of 
amoxicillin in human urine by second-order multivariate analysis of kinetic-spectrophotometric 
data, Talanta 71 (2007) 806-815. 

335 A.J. Watkinson, E.J. Murby, D.W. Koplin, S.D. Costanzo, The occurrence of antibiotics in an 
urban watershed: From waste water to drinking water, Science of The Total Environment 407 
(2009) 2711-2723. 

336 D. Fatta-Kassinos, S. Meric, A. Nikolaou, Pharmaceutical residues in environment waters and 
wastewater: current state of knowledge and future research, Analytical and Bioanalytical 
Chemistry 399 (2011) 251-275. 

337 T.B. Minh, H.W. Leung, I.H. Loi, W.H. Chan, M.K. So, J.Q. Mao, D. Choi, J.C.W. Lam, G. Zheng, 
M. Martin, J.H.W. Lee, P.K.S. Lam, B.J. Richardson, Antibiotics in the Hong Kong metropolitan 
area: Ubiquitous distribution and fate in Victoria Harbour, Marine Pollution Bulletin 58 (2009) 
1052-1062. 

338 N. Kemper, veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators 8 
(2008) 1-13. 

339 S. Castiglioni, R. Fanelli, D. Calamari, R. Bagnati, E. Zuccato, Methodological approaches for 
studying pharmaceuticals in the environment by comparing predicted and measured 
concentrations in River PO, Italy, Regulatory Toxicology and Pharmacology 39 (2004) 25-32. 

340 T. Christian, R.J. Schneider, H.A. Färber, D. Skutlarek, M.T. Meyer, H.E. Goldbach, 
Determination of antibiotics residues in manure, soil, and surface waters, Acta Hydrochimica et 
Hydrobiologica 31 (2003) 36-44. 

341 B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal 
care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water 
Research 42 (2008) 3498-3518. 

342 A. Lamm, I. Gozlan, A. Rotstein, D. Avisar, Detection of amoxicillin-diketopiperazine-2’,5’ in 
wastewater samples, Journal of Environmental Science and Health Part A 44 (2009) 1512-1517. 

343 R. Andreozzi, V. Caprio, C. Ciniglia, M. De Champdoré, R. Lo Giudice, R. Marotta, E. Zuccato, 
Antibiotics in the environment : Occurrence in Italian STPs, fate and preliminary assessment on 
algal toxicity of amoxiccillin, Environment Science and Technology 38 (2004) 6832-6838. 



 182  

 

                                                                                                                                                                                     
344 S. Jodeh, H. Staiti, M. Haddad, T. Renno, A. Zaid, N. Jaradat, M. Kharoaf, The fate of leachate of 

pharmaceuticals like amoxicillin, ibuprofen and caffeine in the soil using soil columns, European 
journal of Chemistry 3 (2012) 480-484. 

345 A. Pérez-Parada, A. Agüera, M.D.M. Gomez-Ramos, J.F. Garcia-Reyes, H. Heinzen, A.R. 
Fernandez-Alba, Behavior of amoxicillin in wastewater and river water: identification of its main 
transformation products by liquid chromatography/electrospray quadrupole time-of-flight mass 
spectrometry, Rapid Communications in Mass Spectrometry 25 (2011) 731-742. 

346 I. Gozlan, A. Rotstain, D. Avisar, Amoxicillin-degradation products formed under controlled 
environmental conditions: Identification and determination in the aquatic environment, 
Chemosphere 91 (2013) 985-992. 

347 A. Morse, A. Jackson, Fate of amoxicillin in two water reclamations systems, Water, Air, and Soil 
Pollution 157 (2004) 117-132. 

348 X. Pan, C. Deng, D. Zhang, J. Wang, G. Mu, Y. Chen, Toxic effects of amoxicillin on the 
photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence 
tests, Aquatic Toxicology 89 (2008) 207-213. 

349 H.C.H. Lützhof, B. Halling-Sorensen, S.E. Jorgensen, Algal toxicity of antibacterial agents applied 
in danish fish farming, Archives of Environmental Contamination and Toxicology 36 (1999) 1-6. 

350 Y. Liu, B. Gao, Q. Yue, Y. Guan, Y. Wang, L. Huang, Influence of two antibiotic contaminants on 
the production, release and toxicity of microcystins, Ecotoxicology and Environmental safety, 77 
(2012) 79-87. 

351 M. Gonzales-Pleiter, S. Gonzalo, I. Rodea-Palomares, F. Leganés, R. Rosal, K. Boltes, E. Marco, F. 
Fernandez-Pinas, Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic 
organisms: Implications for environmental risk assessment, Water Research 47 (2013) 2050-
2064. 

352 J-Y. Ji, Y-J. Xing, Z-T. Ma, M. Zhang, P. Zheng, Acute toxicity of pharmaceutical wastewaters 
containing antibiotics to anaerobic digestion treatment, Chemosphere 91 (2013) 1094-1098. 

353 C.T.T. Binh, H. Heuer, N.C.M. Gomes, A. Kotzerke, M. Fulle, B-M Wilke, M. Schloter, K. Smalla, 
Short-term effects of amoxicillin on bacterial communities in manured soil, Federation of 
European Microbiological Societies, 62 (2007) 290-302. 

354 A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of antibiotics in conventional and advanced 
wastewater treatment: Implication for environmental discharge and wastewater recycling, Water 
Research 41 (2007) 4164-4176. 

355 E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin 
antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination 
252 (2010) 48-52. 

356 E. Elmolla, M. Chaudhuri, Improvement of biodegradability of synthetic amoxicillin wastewater by 
photo Fenton process, World Applied Sciences Journal 5 (2009) 53-58. 

357 E. Elmolla, M. Chaudhuri, Optimization of Fenton process for treatment of amoxicillin, ampicillin 
and cloxacillin antibiotics in aqueous solution, Journal of Hazardous Materials 170 (2009) 666-
672. 

358 S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin in aqueous solution using 
sulphate radicals under ultrasound irradiation, Ultrasonic Sonochemistry 19 (2012) 469-474. 

359 R. Andreozzi, M. Canterino, R. Marotta, N. Paxeus, Antibiotic removal from wastewaters: The 
ozonation of amoxicillin. Journal of Hazardous Materials 122 (2005) 243-250. 



183 

 

                                                                                                                                                                                     
360 356 P.K. Mutiyar, A.K. Mittal, Occurrence and fate of an antibiotic amoxicillin in extended 

aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant, 
Desalination and Water Treatment 11 Mar (2013) 1-7. 

361 E. Guinea, F. Centellas, E. Brillas, P. Canizares, C. Saez and M.A. Rodrigo, Electrocatalytic 
properties of  diamond in the oxidation of a persistant pollutant, Applied Catalysis B: 
Environmental 89 (2009) 645-650. 

362 C.A. Martinez-Huitle, S. Ferro, A. De Battisti, Electrochemical incineration of oxalic acid. Role of 
electrode material, Electrochimica Acta 49 (2004) 4027-4034. 

363 I. Sirés, N. Oturan, M.A. Oturan, Eletrochemical degradation of β-blockers. Studies on single and 
multicomponent synthetic aqueous solutions Water Research 44 (2010) 3109-3120.  

364 M.A. Oturan, E. Guivarch, N. Oturan, I. Sirés, Oxidative pathways of malachite green by Fe3+-
catalyzed electro-Fenton process, Applied Catalysis B: Environmental 82 (2008) 244-254.  

365 M.A. Oturan, M. Pimentel, N. Oturan, I. Sirés, Reaction sequence for the mineralization of short-
chain carboxylic acids usually formed upn cleavage of aromatics during electrochemical Fenton 
treatment, Electrochimica Acta 54 (2008) 173-182. 

366 B. Balci, N. Oturan, R. Cherrier, M.A. Oturan, Degradation of atrazine in aqueous medium by 
eetrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study, Water Research 
43 (2009) 1924-1934. 

367 A. Özcan, Y. Sahin, A. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-
Fenton process in the removal of propham from water, Applied Catalysis B: Environmental 89 
(2009) 620-626. 


