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Introduction

I.1 Multi-scale arrangements in materials

Multi-scale organization can be observed for most materials. For example, concrete is studied as

a structural beam or as a plate from an engineering point of view. At that macroscopic scale,

i.e. the length scale on which objects are of a size that is observable by the naked eye, the me-

chanical behavior of concrete is generally modeled as isotropic, continuous, and homogeneous.

Under the elasticity hypotheses, it is characterized by its Young’s modulus and its Poisson’s ra-

tio. To understand this macroscopic behavior, smaller scales can be explored. Concrete appears

to be built from aggregates surrounded by a cement paste. The material at that scale is discon-

tinuous and non homogeneous. Each constituent can be assumed as isotropic, continuous, and

homogeneous. To characterize the hydrated cement paste, we look at it from a microscopic scale.

The cement paste is composed of different constituents: calcium hydroxide CH, calcium silicate

hydrate CSH, and calcium aluminate hydrates CAH. A challenging endeavor is to describe CSH

gel [PKS+09, DvB11]. The CSH gel is made up of nuclei and electrons. The study of the nuclei

provides information on the behavior of the gel. The behavior of the nuclei themselves depends

on the interactions created by the nuclei network and the electronic cloud. The most refined

model for a mechanical description consists in looking into the behavior of the electrons.

Similarly, an alloy can be seen as a homogeneous material from an engineering point of

view, an assembly of grains at a microscopic scale, an assembly of atoms with a periodic or

quasiperiodic arrangement or as a nuclear network surrounded by an electronic cloud. As a third

example, the layered structures of a clay are detailed in Table 1.
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Homogeneous Heterogeneous Mesoscopic scales Atomic scale

Macroscopic scale
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Granulates and Ettringite (SEM) A molecular model of CSH [PKS+09]:
cement paste [vHWvdK03] : oxygen, : hydrogen (water molecules),

: inter and : intra-layer calcium ions,
: silicon, : oxygen (silica tetrahedra).

A
l
l
o
y

Austenite grains (OM) [NMCO08] Al111 crystal (HRTEM) [RJR+07]

C
l
a
y

Kaolinite layers (SEM) A kaolinite layer (modified from [Gri62])

Table 1: Different organization scales of concrete, alloy and clay (OM: Optical Microscope, SEM: Scanning Electron Microscope,

HRTEM: High-Resolution Transmission Electron Microscope)
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In many application fields, such as aeronautics and civil engineering, engineers have to deal

with design problems in which the structures can be several meters large. For these problems,

only the structure is of interest, so what could motivate engineers to give a special attention on

the electronic scale?

I.2 Scale of the electrons in the mechanical behavior of materials

To study the mechanical behavior, the scales of interest are between the macroscopic scale

and the electronic scale depending on the quantity of interest. At the lowest scale, mechanical

characteristics are due to atom displacements associated with the rearrangement of electronic

density, especially the density of valence electrons that are involved in chemical bonding. Explor-

ing the intranuclear properties is not needed. Information acquired at the nanoscale is crucial for

enhancing strength and interfacial performance of materials. For example, [Tho11] shows that

the properties of functional ceramics are largely linked with the local microstructure (defects,

grain boundaries, intergranular films, or other precipitations) and with the distribution of these

microstructural entities at the mesoscopic or the macroscopic scale. Therefore, electronic studies

are useful to obtain a detailed view of classical engineering materials. In addition to these tradi-

tional purposes, electronic studies cannot be bypassed to explore new systems that are entirely

at the nanoscale.

Nowadays, miniaturization of industrial devices is an important process in manufacturing.

Micro-electro-mechanical systems (MEMS) [GD09] and nano-electro-mechanical systems (NEMS)

[DBD+00] are expected to significantly impact many areas of technology and science. For those

systems, the largest scale is the nanometric one and atomic studies are essential. DNA molecules

or nanotubes, whose nanometric structures are presented in Figure 1, are other examples of

nanostructures.

Beyond understanding the behavior of materials, nanoscience allows the creation of new ma-

terials whose characteristics are dedicated to a specific load or environment. For example, self

cleaning glass has been produced; titanium oxyde coats glass and breaks down organic and
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SEM image of CNT Carpet TEM image of graphene layers in CNT

Figure 1: Images of carbon nanotubes (CNT) [BMB09]
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Figure 2: Timeline of microscopy development
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Figure 3: Order of length observable depending on the microscope technologies [FPZ95]
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inorganic air polluants by photo-catalytic process [BSI11].

Despite these promising potentialities, the electronic scale has been explored only for the last

century due to the difficulties of its observation.

I.3 How to obtain electronic information?

Electronic systems can be examined by physical experiments or numerical simulations.

Atomic characteristics can be provided by physico-chemical analyses or by observations using

a microscope. Appendix A describes the different microscopy technologies invented during the

20th century (Figure 2) with increasing resolution (Figure 3). These devices allow currently the

observation of atomic structures. Unfortunately, they generally imply cost prohibitive facilities

and require a specific environment, including an air-conditioning system and a large area to

install them. They must be handled by specialized scientific experts, and the sample preparation

prior to observation is a long and strenuous task.

Numerical simulations and experiments can complement each other. Simulations are based

on quantum mechanics theory. They appear as an appealing alternative but they face strong

limitations. Because of the high amount of computer memory needed, the problems which can be

solved by simulations are still very simple systems. They are interesting for physical studies, but

too limited from a mechanical point of view. In recent years, the performance of computational

methods and tools increased dramatically, and representative electronic calculations can now be

achieved [Ced10].

I.4 Objectives and outline of this dissertation

This work deals only with numerical simulations of electronic systems. The goal is to collect

mechanical information of a material at the nanoscale. These properties of the material are

derived from the ground state of any system, i.e. the state of the material for which its energy is

the lowest. At the atomic level, this ground state is determined by the Schrödinger equation, but
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this problem cannot be solved exactly for most systems. We employ the Hartree-Fock methods

to simplify the problem. Here we propose to employ localized trial functions, and particularly

the finite element method, to approximate the solution. This numerical tool has been widely

used in other areas and offer ripe numerical background and tools. We provide error estimates

for different quantities of interest with respect to both modeling and numerical sources of error.

The outline of this document is as follows:

• Chapter 1 begins with a brief introduction of nanoscale potentialities and quantum theory.

Then, we expose the scope of our study. The exact quantum problem cannot be solved

even numerically. The usual methods and approximations to make this problem numerically

computable are described.

• Chapter 2 concentrates on the Hartree-Fock hypotheses we chose to approximate the prob-

lem. It is shown how the Schrödinger equation is turned into the Hartree-Fock system, and

introduces the different post-Hartree-Fock methods, which are derived from the Hartree-

Fock method to compute more accurate solutions.

• Chapter 3 begins with a review of the numerical methods proposed in the literature to

solve the Hartree-Fock system. These methods are evaluated with respect to their ability

to be coupled with larger scales models, the accuracy of their solutions, and their ability to

handle large systems. This evaluation hints at using the finite element method. The core

of this chapter deals with the details of the numerical strategy that we propose.

• Chapter 4 presents the results obtained for isolated systems: atoms and molecules. En-

ergies of the systems, equilibrium of internuclear distances, and mechanical and electrical

properties are computed.

• Chapter 5 focuses on error estimation. The results obtained in Chapter 4 are approximate

due to the approximations made to get a computable problem (detailed in Chapter 2) and

the employment of numerical tools (detailed in Chapter 3). The goal of the last chapter is

to estimate errors with respect to both model and numerical approximations.



Chapter 1

An ab initio perspective for modeling

the mechanical behavior of materials

We discuss, in this chapter, how considering the atomic scale can be relevant to study the

mechanical behavior of materials. The choice of this scale influences the selection of the models

to work with. Two major classes of models can be considered: either quantum mechanics models

or classical mechanics models. We detail the tools employed and the possibilities offered by

each class. We opt to utilize quantum models, and expose the framework of our study. The

mathematical problem modelizing the system cannot be solved exactly. A brief presentation of

the different solution methods proposed in the literature concludes this chapter.

1.1 Interest of the nanoscale

This work looks at materials from the atomic point of view. This scale allows the understanding

of the local properties which cannot be analyzed by simply studying materials at larger scales

e.g. the interfaces between two grains, or two materials, the atomic defects, etc. We see in

Table 1.1 that the atomic systems have nanometer-order sizes.
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Van der Waals radiusa of a H-atom 1, 2.10−10 m [Bon64]

Covalent radiusb of a H-atom 3, 2.10−9 m [PA08]

Length of the O-H bond in the H20 molecule 0, 957854.10−10 m [CCF+05]

Size of the elementary cell of LiH crystal 4, 0834.10−10 m [SM63]

Average grain size in a decarburized steel 2, 0.10−6 m [Jao08]

aradius of a conventional sphere modeling the atom
bhalf of the distance between two nuclei of identical atoms linked by a covalent bond

Table 1.1: Orders of magnitude of different electronic systems

Throughout this dissertation, we aim at characterizing the mechanical properties of materials

at the nanometer level. The size of the numerical samples are in the order of 10−8 m. At that

scale, we can investigate the distribution of nuclei and electrons but not the physical phenomena

inside the nuclei, which are beyond the scope of mechanical approaches.

Versatility is an advantage of the electronic approach. At this level, the same entities can

describe all types of materials, and a unique framework can define the different characteristics of

the material, such as mechanical behavior [NFP+11], electrical behavior [DGD02] or magnetic

behavior [LMZ91].

1.1.1 Mechanical quantities of interest

We can develop the concept of stress at the atomistic level [Wei02], and derive the mechanical

properties of a material at that scale from its total energy E [Sla24, NM85a, God88, IO99].

From uniform displacements δXNj
of the nuclei initially located at XNj

, we define the homog-

enized deformation tensor of the nuclear network as:

δXNj
= ε

(
XNj

)
. (1.1)

The stress tensor σ and the elasticity tensor C can be defined as the derivative of the energy

density with respect to the deformation of the nuclear network ε at the first order and at the
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second order [LC88, GM94], respectively:

σ =
1

Ω

∂E

∂ε
, (1.2)

C =
1

Ω

∂2E

∂ε∂ε
, (1.3)

where Ω denotes the volume associated with energy E.

Quantum mechanics provides the total energy of a system at the nanoscale. Provided one can

calculate the derivative of the energy with respect to the deformation ε and associate a volume Ω

to the energy E computed beforehand, we can derive both mechanical properties from nanoscale

calculations [NM85b, SB02, HWRV05].

1.1.2 Electrical quantities of interest

Besides mechanical properties, we can also benefit from quantum computations to estimate

electrical properties such as the dipole moment or the polarizability tensor [RMG65, JT03, AF05].

Similarly as before, these quantities can be derived from the total energy E when the electric field

is taken into account in the Schrödinger equation. The dipolar moment p and the polarizability

tensor α can be defined as the derivative of the energy with respect to the electric field E
el at

the first order and at the second order respectively:

p =
∂E

∂Eel
, (1.4)

α =
∂2E

∂Eel∂Eel
. (1.5)

Here, these material quantities are predicted by solving an atomic problem and determining the

ground state of the system, for which the energy is the lowest. They have to be seen as nanoscale

quantities because defects and mesoscale organization create some scale effects between nanoscale

and macroscale.

1.2 Modelization at the nanoscale

At the atomic scale, two kinds of models can be considered: either quantum mechanics models

or classical mechanics models.
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Nucleus

Electron

X1

X2

x1 x2

x3

x4

x5

Figure 1.1: Scheme of a nanoscopic system (scale is not respected)

Two-dimensional field Isolevel surfaces

Figure 1.2: Probability of the presence of ground-state electrons in the H2 molecule (length in

Bohr radius)
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1.2.1 Quantum mechanics model

The quantum mechanics problem is only briefly introduced here. The reader is referred to [AF05]

or [SO96] for general and detailed presentations, or to [Fou06] for an introduction of the quantum

problem in the context of materials science.

Historically, to simulate the system at the nanoscale, the key issue was to establish accurate

tools to describe the system. It appeared that at the electronic scale, Newtonian mechanics is not

satisfied. The electrons cannot be seen as particles and deterministic mechanics is not accurate.

In 1924, Louis de Broglie [de 24] showed that matter exhibits wave properties at the nanoscale.

The quantum mechanics models, also called ab initio models, are based on this concept and on

the Schrödinger equation.

The wave function of the system

At the nanometer scale, any material reveals its atomic structure (Figure 1.1). Generally, the

number and the nature of atoms in the system are a priori known. Each atom is composed of

a nucleus surrounded by a number of electrons known from the periodic table (Appendix B).

Thus, the entire system is composed of Nn nuclei located at Xj and Ne electrons located at xk.

We represent electrons as particles in Figure 1.1 for the sake of simplicity. But, in the context

of quantum mechanics, the positions cannot be known in a deterministic manner.

The system formed by the nuclei and electrons is described by the wave function Ψ defined

from the 3(Nn +Ne)-dimensional space into the space of complex numbers:

Ψ : x = (Xj , xk) 7−→ Ψ(x)

R
3(Nn+Ne) −→ C.

(1.6)

The value of the wave function Ψ(x) has no physical meaning in itself, but the square of the

absolute value of the function provides the probability to find each nucleus j at Xj and each

electron k at xk [Bor26]:

P (x) = Ψ∗(x)Ψ(x) = |Ψ(x)|2, (1.7)
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where Ψ∗(x) denotes the conjugate of Ψ(x). Figure 1.2 represents the field of probability of

presence in a two-dimensional and a three-dimensional space for the hydrogen molecule. As the

square of its value represents the probability of presence, the wave function must have finite

values, but it is not necessarily smooth. Because the probabilities that the system is in each

possible state should add up to 1, the norm of the wave function over the whole space must be

equal to unity:
w

R3(Ne+Nn)
|Ψ|2dx = 1. (1.8)

The wave function must be squared-integrable over the whole space. Therefore, it is defined in

the function space W, subspace of square-integrable function space L
2. The wave function can be

multiplied by any constant factor eik without affecting the values of the probability pf presence

P (x) = Ψ∗e−ikΨeik = Ψ∗Ψ. This property has no effect on the physical results.

The wave function of a system provides a complete description of the associated physical

system. All the other quantities can be derived from it.

In 1926, Schrödinger published several landmark papers [Sch26a, Sch26b]. He established an

axiomatic empirical relationship to define the wave function of a system depending on its electric

environment: the Schrödinger equation.

The Schrödinger equation

Any non-relativistic system composed of Nn nuclei and Ne electrons is described by its wave

function Ψ which satisfies the Schrödinger equation:

− ~
2

2mn
∆XnΨ− ~

2

2me
∆xeΨ+ VΨ = i~

∂Ψ (x, t)

∂t
(1.9)

where ~ is the reduced Planck constant or Dirac constant (~ = 1.054572 10−34 J.s), V is the

interaction potential, me and mn are the masses of the electrons and the nuclei respectively. The

first Laplacian depends on the positions of the nuclei and the second one on the positions of the

electrons. They depend respectively on a 3Nn- and a 3Ne-dimensional vector. This model does

not suppose a local equilibrium but a global one. The Schrödinger equation cannot be written

on a portion of space but only on the global space containing all electrons.
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For stationary cases which will be detailed in section 1.3.1, Ψ (x, t) = Ψ (x) e−
E
~
it, the Schrödinger

equation defines the eigenpair wave function/energy of the system {Ψ, E}:

− ~
2

2mn
∆XnΨ− ~

2

2me
∆xeΨ+ VΨ = EΨ. (1.10)

When using atomic units (Appendix C), the stationary Schrödinger equation reads

− me

2mn
∆XnΨ− 1

2
∆xeΨ+ VΨ = EΨ. (1.11)

Wave functions appear as eigenmodes of this equation. The solution is not unique. The wave

function related to the lowest energy is called the ground state. The others are called excited

states. The ground-state system is in a stationary state whereas the lifetime of excited states is

in the order of 10−10 s [FCC96].

If Ψ1 and Ψ2 are solutions of the Schrödinger equation with the same energy E, any linear

combination λ1Ψ1 + λ2Ψ2 is also a solution of this equation. The superposition principle may

be applied to the wave functions.

Potential energies

The wave function constituting a system depends on its environment, which is described by

the interaction potential energy V . It is the sum of the internal and the external interaction

potential energies. Particles inside the system determine the internal potential energy. The

external potential one is due to external particles and electric or magnetic fields.

Internal potential energy Internal potential energy can be divided into three contributions:

interactions between nuclei Vnn, between electrons and nuclei Ven, or between electrons Vee.

Nuclei are characterized by their positionXj and their atomic number Zj . Electrons are described

by their position xk. Their charge is the elementary charge e, equal to one atomic unit. For the

sake of clarity, we do not write it explicitly here, but two electrons interact only if they have the

same spin-eigenvalue.

Considering only cases when interaction potentials between particles are Coulomb potentials

[Cou84], the expressions of the different potential energies are as follow:

Vnn(Xi, Xj) =
e2ZiZj

4πε0|Xi −Xj |
,
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Ven(Xj , xk) =
−e2Zj

4πε0|Xj − xk|
,

Vee(xk, xl) =
e2

4πε0|xk − xl|
.

In atomic units, the internal potential energies are expressed in Hartree (1 Ha = 4.360×10−18 J,

see Appendix C). They are estimated by

Vnn(Xi, Xj) =
ZiZj

|Xi −Xj |
, (1.12)

Ven(Xj , xk) =
−Zj

|Xj − xk|
, (1.13)

Vee(xk, xl) =
1

|xk − xl|
. (1.14)

Potential energies tend to vanish when the distance between two particles tends to infinity.

Potential energy is positive when both particles have the same charge sign (repulsion), whereas

it is negative when they have opposite charges (attraction).

External potential energy The only external source studied here is the application of a

uniform external electric field E
el. V el

e is the potential energy caused by the interactions between

the external electric field and the electrons:

V el
e (xk) = exk.E

el. (1.15)

V el
n is the potential energy caused by the interactions between the external electric field and the

nuclei:

V el
n (Xj) = eZjXj .E

el. (1.16)

In atomic units, for a uniform electric field, the expressions of the external electric field potential

energies [AF05] read

V el
e (xk) = xk.E

el, (1.17)

V el
n (Xj) = ZjXj .E

el. (1.18)

Non uniform fields would involve interaction with higher multipoles.
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The magnetic potential of a system under the application of an external magnetic field B is,

similarly as before [NLK86]:

V mag
e (xk) = e i (∇xk

. ∧B)xk, (1.19)

V mag
n (Xj) = e i Zj (∇xk

. ∧B)Xj . (1.20)

These expressions evaluate the “load” borne by each particle of the system. As stated previ-

ously, the total energy is the key information to derive the mechanical properties of the material.

The total energy of the system

From (1.11), satisfying the normality condition (1.8) and using integration by parts, we get:

E =
w

R3(Ne+Nn)

(

1

2

∣
∣
∣
∣

me

mn
∇xnΨ

∣
∣
∣
∣

2

+
1

2
|∇xeΨ|2 + V |Ψ|2

)

dx. (1.21)

The terms
r
R3(Ne+Nn)

1

2

∣
∣
∣
∣

me

mn
∇xnΨ

∣
∣
∣
∣

2

dx and
r
R3(Ne+Nn)

1

2
|∇xeΨ|2dx represent respectively the ki-

netic energies of the nuclei and the electrons. The term
r
R3(Ne+Nn) V |Ψ|2dx represents the po-

tential energy.

The total energy appears as the eigenvalue of the Schrödinger equation. The spectrum of

eigenvalues can be very large. The mathematical properties of the spectrum are studied in

Section 2.1.3. Because some eigenvalues can be degenerated, the dimension of the eigenspace is

not necessarily equal to the number of eigenvalues. Hence the system is completely described by

its eigenmodes rather than by its eigenvalues.

The ground-state energy provided by these quantum models can be used to define the equi-

librium positions of the nuclei or to derive some mechanical, electrical, or magnetic properties,

as presented in section 1.1. These models provide advantageously the accurate tools to analyze

the electronic properties. Moreover, they do not need - at least theoretically - empirical param-

eters but only fundamental physical constants. Their major drawback is that they are quite

complicated numerically. Therefore, computable systems have a small number of atoms and a

small time scale. For stationary cases, simulations are limited to systems of 100 or 1000 atoms

[CLM06]. Dynamic simulations are very time consuming, and only short time scale on the order

of one picosecond (10−12 s) can be computed [CLM06].
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Real-world problems are immensely large quantum systems. Therefore, solving problems with

a quantum approach requires special strategies [You01]. An attractive alternative is to use

empirical models based on classical mechanics.

1.2.2 Classical mechanics model

The most usual empirical simulations use molecular dynamics [MH09]. The atoms are considered

as material points satisfying Newtonian mechanics [Fre71, Fey99]. Empirical potentials represent

interactions between particles. The expressions of the potentials between two electrons Vee are

established through preliminary quantum computations or experimental data. Depending on the

model refinement, the energy contribution from each pair of interacting particles is considered

as a 2-body potential:

Vee =

Ne∑

i=1

Ne∑

j=i+1

f2b (xi, xj) , (1.22)

as a 3-body potential:

Vee =

Ne∑

i=1

Ne∑

j=i+1

f2b (xi, xj) +

Ne∑

i=1

Ne∑

j=1
j 6=i

Ne∑

k>j

f3b (xi, xj , xk) , (1.23)

or generally as a N-body potential. The force exerted on a given particle is given by the derivative

of the energy with respect to the position of that particle:

Fi = −
Ne∑

j=1

∂

∂xi
f2b (xi, xj)−

Ne∑

j=1

Ne∑

k>j

∂

∂xi
f3b (xi, xj , xk) . (1.24)

This type of model has several drawbacks. Because it uses empirical parameters, it requires a

preliminary study of the molecules considered. Therefore, it cannot predict the behavior of new

molecular systems, either easily simulate chemical reactions, during which wave functions, and

so potentials, are largely modified. In addition, it cannot provide electronic information.

Its major advantage is that it is easier to solve numerically, allowing one to compute a large

number of atoms, up to several millions for stationary cases [CWWZ00, KOB+02, HTIF06]. This

large number of atoms or molecules can be used in the context of statistical physics.
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To sum up, the major difference between ab initio and empirical models is that ab initio

models provide a quantum description due to the wave function of the system, whereas empirical

models provide a classical description due to the position and the velocity of the particles. The

coexistence of these two models raises two issues. The first is the compatibility between the two

modelizations, and the second is how to couple these approaches to benefit from their strong

points and minimize their shortcomings.

Ehrenfest’s theorem [NP06] states that classical mechanics equations can be derived from

quantum mechanics equations by considering particles as localized wave packets [CDL73, BD06].

This hypothesis is satisfied for most macroscopic systems. Thus, quantum mechanics can be seen

as a more general theory than classical mechanics. However quantum mechanics is quite special

because it requires some concepts of classical mechanics to express some of its principles.

From a numerical point of view, different strategies can be performed to “couple” quantum

and empirical models. Praprotnik et al. propose a solver equipped with a flexible simulation

scheme changing adaptively the model in certain regions of space on demand. Model coupling

is a very active research domain which proposes various strategies depending on the problem

characteristics. For instance, change of scale from nanoscale to macroscale can be performed by

providing information for larger scale models [PSK08], by homogenization [Le 05], by statistical

models through Boolean schemes [Mor06], or by an energetic volume coupling method such as

the Arlequin method [Ben98]. Brown et al. [BTS08] propose a “one-way coupling” of these

different models: he performs an ab initio calculation to estimate local potentials between some

molecules, and then used these potentials as input data in an empirical model. To our knowledge,

no “two-way coupling” model has been proposed in the literature until now.

To derive the mechanical properties of materials from the electronic scale, we implement a

quantum model whose framework is detailed hereafter.
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1.3 Our framework

Because the aim of this research is to collect mechanical information, we only focus on stationary

cases.

1.3.1 Stationary cases

Note that, in the context of quantum mechanics, stationary states involve wave functions de-

pending on time, but whose probability of presence is independent of time:

∂Ψ (x, t)

∂t
6= 0 but

∂|Ψ (x, t) |2
∂t

= 0. (1.25)

Therefore, |Ψ (x, t) |2 = |Ψ(x) |2. The general form of the wave function is Ψ (x, t) = Ψ (x) eiαt.

For stationary cases, the total energy E of the system is constant with respect to time. Therefore,

the general form of such a solution is Ψ (x, t) = Ψ (x) eiαt where α = −E
~

. This dissertation

examines only the amplitude of the wave function that we also denote by Ψ.

1.3.2 Non-relativistic electrons

We suppose electrons to be non-relativistic. This assumes that the speed of electrons is largely

smaller than the speed of light, and therefore the kinetic energy of electrons is negligible compared

to the mass energy of electrons Em = mec
2 (c = 299, 792.458 m.s−1).

To compute electrons of heavy atoms, and especially their core electrons whose speed is the

most important, we would have to apply relativistic models. Desclaux et al. [DDE+03] survey the

different approaches of relativistic models. The most used one is the Dirac-Fock model [IV01].

The Dirac equation [Dir28] is

(
mnc

2β +mec
2β − i~cγ∇Xn − i~cγ∇xe

)
Ψ = i~

∂Ψ (x, t)

∂t
(1.26)

where β and γ are Dirac’s matrices. For stationary cases, the equation turns into

(
mnc

2β +mec
2β − i~cγ∇Xn − i~cγ∇xe

)
Ψ = EΨ. (1.27)

Using the Schrödinger equation, a relativistic approach has been proposed by some authors

using a pseudopotential [LCT72] or by an a posteriori perturbation [PJS94].
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1.3.3 Absolute zero temperature

We only focus on systems at 0 K temperature, so that entropy is at a minimum. This hypothesis

assumes that the system would be fully removed from the rest of the universe, since it does not

have enough energy to transfer to other systems. At this temperature, the wave functions that

are solutions of the system are those with the lowest energy.

At a temperature different from 0 K, the system produces a thermal radiation i.e. electro-

magnetic waves [GH07]. To extend to these cases, not only the ground state must be computed

but also other states, with higher energies, called excited states. The effect of temperature is

described through a statistical distribution between these different states [Kit04, LL05]. Two

major statistical distributions are employed depending on the value of the average intermolecu-

lar distance with respect to the average de Broglie wavelength. The de Broglie wavelength λB is

the ratio between the Planck constant h and the norm of the momentum of particles p: λB =
h

|p| .

If the average intermolecular distance R̄ is smaller than the thermal de Broglie wavelength

λB, the Fermi-Dirac distribution is considered. At the absolute temperature T , the number ni

of electrons in state i, with energy Ei and degenerate degree gi, is given by:

ni =
gi

exp

(
Ei − µ

kBT

)

+ 1

(1.28)

where µ is the chemical potential and kB is Boltzmann’s constant.

If the average intermolecular distance R̄ is much greater than the average thermal de Broglie

wavelength, the Maxwell-Boltzmann distribution is applied. Among the Ne electrons of the

system, the number ni of electrons in state i, with energy Ei and degenerate degree gi, is given

by the following expression:

ni = Ne
gie

−
Ei

kBT

∑Ne

j=1 gje
−

Ej
kBT

. (1.29)

The effect of temperature is beyond the scope of this dissertation. We only compute the ground

state of the system from Equation (1.11). This equation, defined in a very large space, requires

some simplifications to be solvable for most systems.
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1.3.4 Born-Oppenheimer’s hypothesis

In the Schrödinger equation (1.11), the Laplace operators depend on the 3 (Nn +Ne)-dimensio-

nal vector x which represents the positions of all the particles in the system. The first Laplacian

depends on the positions of the nuclei and the second one on the positions of the electrons.

Each nucleus is composed of protons and neutrons. A proton and a neutron are 1836 and 1839

times heavier than an electron, respectively. Therefore, nuclei are much heavier than electrons,

between 103 and 105 times depending on the atom. The Born-Oppenheimer hypothesis [BO27]

assumes electron motion to be independent of nuclei motion. The kinetic energy of the nuclei

− me

2mn
∆xnΨ can thus be omitted with respect to the kinetic energy of the electrons −1

2
∆xeΨ.

The Schrödinger equation turns into:

− 1

2
∆xeΨ+ VΨ = EΨ. (1.30)

Under Born-Oppenheimer’s hypothesis, the wave function is still defined in a 3 (Ne +Nn)-

dimensional space. It is only the dimension of the space of the Laplacian derivation that is

reduced.

It is common to extend this hypothesis to break the global wave function down into two

independent ones defined in smaller spaces.

1.3.5 Breaking down the wave function

We generally assume the global wave function of the system as the product of a 3Nn-dimensional

nuclear wave function Ψn and a 3Ne-dimensional electronic wave function Ψe [Thi03, CLM06]:

Ψ(Xj , xk) = Ψn(Xj)Ψe(xk), (1.31)

Ψ : R
3(Ne+Nn) → C

Ψn : R
3Nn → C

Ψe : R
3Ne → C.

Under this assumption, these two wave functions can be solved independently. The nuclear

problem is solved using classical mechanics, whereas the electronic problem requires quantum

mechanics.
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Nuclear problem solved by classical mechanics

The Nn nuclei are modeled by non-quantum particles characterized by their atomic number Zj .

They are described by their positionXn and not by a wave function. Each nucleus has a mass mn.

It is submitted to a force Fn derived from the nuclear Coulomb potential Vn = Vnn + Ven + V el
n :

Fn = −∇XnVn = mn
∂2Xn

∂t2
. (1.32)

The positions Xn are estimated using classical deterministic mechanical laws, and the acceler-

ations are estimated by molecular dynamics. To determine the ground state of the system, we

minimize the energy functional of the system in which the nuclei positions appear as parameters.

The nuclear problem is a geometric optimization on R
3Nn [CLM06].

Electronic wave function

The Ne electrons are elementary quantum particles. They are described by a wave function

Ψe, which obeys the following electronic Schrödinger equation (in atomic units) defined from a

3Ne-dimensional space:

HeΨe = −1

2
∆xeΨe + VeΨe = EeΨe (1.33)

where Ve stands for the electronic Coulomb potential: Ve = Ven + Vee + V el
e and He is the

electronic Hamiltonian operator of the system.

Let us examine the properties of the electronic wave function. From equation (1.7), we can

establish that the probability distribution of the presence of electrons is the square of the absolute

value of the electronic wave function:

Pe(xe, t) = |Ψe(xe, t)|2. (1.34)

From equation (1.8), we deduce that the electronic wave function must satisfy a normality con-

dition over the 3Ne-dimensional space:

w

R3Ne
|Ψe|2dx = 1. (1.35)
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The exclusion principle, also called the Pauli principle [Pau25], states that two non-identical

electrons may not occupy the same quantum state simultaneously. To satisfy this principle, the

electronic wave function solution is chosen as an anti-symmetric function with respect to the

permutation of the positions of the electrons xi:

Ψe(xσ(1), . . . , xσ(Ne)) = sg (σ)Ψe(x1, . . . , xNe) (1.36)

where σ is a permutation on [1, Ne] and sg(σ) is its signature.

The electronic quantum problem is a partial differential equation defined in R
3Ne , for which

the positions of the nuclei appear only as parameters. Considering this framework, the total

energy E of the system can be divided into a nuclear part En and an electronic one Ee:

E = En + Ee. (1.37)

Considering the kinetic energy of nuclei to be negligible with respect to the kinetic energy of

electrons, the nuclear contribution is only due to the potential energy:

En = Vnn + V el
n . (1.38)

Along the same line as previously (section 1.2.1), we can express the electronic energy Ee as

Ee =
w

R3Ne

(
1

2
|∇xeΨe|2 + (Ven + Vee + V el

e )|Ψe|2
)

dx+
1

2

w

∂Ωe

(∇neΨe,Ψ
∗
e) dx. (1.39)

Therefore, from the electronic Schrödinger equation (1.33), we can estimate the electronic wave

function but this equation can be solved analytically only for very simple cases like the hy-

drogenoid and the H+
2 ions, systems with only one electron. For general systems, the equation is

defined on a highly multi-dimensional domain and cannot be easily solved, even numerically. We

briefly present in the next section the different approximations proposed to tackle this problem.

1.4 Methods to tackle the quantum electronic problem

Three major families of methods have been proposed to approximate the electronic solution:
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• the Hartree-Fock method, where the wave function Ψe is assumed to be the product of

one-electron wave functions ϕi. It is referred to as a “rigorous energy/approximate wave

function approach” in [DL97];

• the density functional theory, which describes the system through a unique three-dimensional

electron density. It is referred to as a “rigorous density/approximate energy approach” in

[DL97];

• the Monte-Carlo method, which relies on repeated random sampling and allows for the

estimation of the high-multidimensional global wave function.

A classification of these methods and their derivatives is represented in Figure 1.3. Saad et

al. [SCS10] give a comparative overview of them.

1.4.1 Hartree-Fock’s methods

The Hartree-Fock method has been developed around 1930. Because it is generally solved using

a self-consistent algorithm, it was formerly called self-consistent field method (SCF) [SO96].

Assuming electrons are essentially independent, the form of a determinant is imposed to the

global electronic wave function [Sla29]. The resulting solutions behave as if each electron was

submitted to the mean field created by the external potential and all the other particles.

Its major drawback is that it disregards the correlation between electrons and it does not

guarantee size consistency, i.e. it does not guarantee the additivity of energies: for two non-

interacting systems A and B, the estimation of the energy of the supersystem A-B will not be

equal to the sum of the energy of A plus the energy of B taken separately. The post-Hartree-Fock

methods were proposed later to reduce these estimation errors.

The Hartree-Fock methods are detailed in Chapter 2.

1.4.2 Density functional theory

In 1964, Hohenberg and Kohn [HK64] proved that the electron density:

ρ (x) = Ne

w

R3(Ne−1)
|Ψe|2 dx2 . . . dxNe (1.40)
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Schrödinger equation

Wave function methods

Monte Carlo methods

Density functional theory

Hartree-Fock

Multiconfiguration

Variational Monte Carlo
Diffusion Monte Carlo
Path integral Monte Carlo
Auxiliary field Monte Carlo

Thomas-Fermi

Kohn-Sham

Møller-Plesset
perturbation methods
Configuration interaction
Coupled cluster

LDA
LSD
GGA
Meta GGA
Hybrid functionals

Figure 1.3: Classification of electronic calculation methods (inspired from [CDK+03])

LDA: Local-density approximation - LSD: Local spin density - GGA: Generalized gradient ap-

proximation
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can thoroughly describe a system. Based on this idea, density functional theory does not evaluate

the wave function Ψe itself but the electronic density. Therefore, the first advantage of this

method is to handle a unique three-dimensional function to describe any system. It is less time-

consuming than the Hartree-Fock approach. Another great advantage of this method is that it

takes into account the correlation effects, leading to accuracy improvement.

The fundamental state is computed by minimizing the electronic energy functional EDFT
e ,

which depends on the electronic density. This energy functional includes the kinetic energy of

the electrons Ec[ρ(x)], the electron-nucleus potential, possibly the potential due to an external

electric field, and the Coulomb interactions between the electrons:

EDFT
e [ρ(x)] = Ec[ρ(x)] +

w

R3
ρ(x)Ven(x)dx+

1

2

w

R3

w

R3

ρ(x1)ρ(x2)

|x1 − x2|
dx1dx2 + Exc[ρ(x)]. (1.41)

The last term Exc[ρ(x)], called the exchange-correlation energy functional, cannot be exactly

estimated. Establishing the approximate expression of this term is the main difficulty in the

DFT method and the key to improve the accuracy of the results [RC04, TCA08b]. The simplest

approximation is the local-density approximation (LDA). It is based on the interaction energy for

a uniform electron gas. Therefore, it describes the exchange-correlation energy as an analytical

function of the electron density ρ.

Generalized gradient approximations (GGA) consist in writing the energy as a function of

the electron density ρ and the gradient ∇ρ [PBE96].

Meta GGAs methods consider dependence on ρ, ∇ρ, and higher derivatives of ρ. Becke

proposed to improve the DFT estimation by including the Hartree-Fock exchange in a DFT

exchange-correlation functional [Bec93]. Nowadays, such hybrid functionals are largely employed

[HCA12].

DFT allows the computation of large systems. Therefore, this method is intensely employed in

materials science, both fundamental and industrial research [HWC06]. Improving the accuracy

of this method requires material expertise and should be considered for each material specifically.



26 Chapter 1

1.4.3 Quantum Monte Carlo calculations

Quantum Monte Carlo calculations have been the less used until now, despite being apparently

very powerful. They are adapted to quantum problems since they offer an easy method to

integrate over highly multidimensional space. They sample statistically the integrand and average

the sampled values. They are suitable for parallel algorithms and can easily be applied to systems

containing a thousand or more electrons.

Several quantum Monte Carlo methods exist, some of them are reviewed in [AGL03]. Va-

riational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) are generally the most em-

ployed [FMNR01]. They calculate the ground-state wave function of the system and are based

on a chosen trial wave function.

Based on the Schrödinger equation (1.33), VMC uses a stochastic integration method over

the 3Ne-dimensional space. Let R be a 3Ne-dimensional vector where ri is the position of the

ith electron. Any value of R is called a walker, a configuration, or a psip in the literature.

The probability density of finding the electrons in the configuration R is P (R). We define

{Rm : m = 1,M} as a set of independent configurations distributed according to the probability

distribution P (R). Considering the trial wave function ΨMC
e , the electronic energy

EMC
e =

r
ΨMC∗

e (x, P )HeΨ
MC
e (x, P )dRr

ΨMC∗

e (R)ΨMC
e (R)dR

(1.42)

can be estimated by the set of independent configurations through:

EMC
e ≈ 1

M

M∑

m=1

ΨMC−1

e (R)HΨMC
e (R). (1.43)

The accuracy of the results relies on the initial trial wave function, the probability distribution

P (R) and the number of walkers.

DMC enhances the predictions using a projection technique with a stochastic imaginary-

time evolution to improve the accuracy of the ground-state component of the starting trial wave

function.

Path integral Monte Carlo and auxiliary field Monte Carlo compute the density matrix. They

can be used to compute systems with many electrons, possibly at finite temperature.
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1.5 Summary

In this chapter, we have presented the general framework of our study. We will only consider

stationary systems at 0 K temperature. We decompose the unique wave function of the system

into a nuclear one and an electronic one. The nuclear problem is solved through classical me-

chanics. The electronic wave function is defined in a 3Ne-dimensional space and it is estimated

using the Schrödinger equation.

This equation can be solved analytically only for very simple cases. Even numerically, it

requires a set of hypotheses to be solved for general cases. DFT methods would allow the

computation of large systems, but the establishment of accurate exchange-correlation energy

functionals requires high-level materials science background. We choose to solve it using the

Hartree-Fock approach which is detailed in Chapter 2.
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Hartree-Fock’s models

Chapter 1 introduced the Schrödinger model. The Schrödinger solution Ψe defined from a 3Ne-

dimensional space satisfies the following equations:






EeΨe = −1

2
∆xΨe + VeΨe

Ψe(xσ(1), . . . , xσ(Ne)) = sg (σ)Ψe(x1, . . . , xNe)

r
R3Ne |Ψe|2dx = 1.

(2.1)

This set of equations is defined in a high-dimensional space. This chapter concentrates on the

Hartree-Fock methods. They provide a set of hypotheses which allow the Schrödinger equation

to be solved numerically. These methods rely on a reduction of the solution space due to specific

forms of trial functions.

The ground state of the systems can be found by minimizing the energy functional defined by

Equation (1.39), by solving the strong form defined by Equation (2.1), or by solving the weak

form of the problem that will be written below. The numerical reasons to compute the solution

by the finite element method will be exposed in Chapter 3. When choosing this discretization

method, we approximate the weak form of the problem on a finite-dimensional space, which will

be described in the second part of this chapter.
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Figure 2.1: Amplitude in the plane z = 0 of some one-electron wave functions describing the

BeH2 molecule. The positions of the nuclei Be, H and H are given by (0, 0, 0), (0, 2.52, 0), and

(0, -2.52, 0), respectively.
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2.1 State of the art

The Schrödinger solution Ψe, being an anti-symmetric function, can be expressed as an infinite

series of Ne ×Ne-dimensional determinants the so-called Slater determinants [Fri03].

2.1.1 Slater determinants

The Hartree-Fock methods approximate the Schrödinger solution by a finite series of determi-

nants, called the Slater determinants:

Ψe ∼ ΨMC
e =

Nd∑

A=1

αAΨA =

Nd∑

A=1

αA√
Ne!

det
[

Φ̃A
]

(2.2)

where Nd is the number of determinants involved in the series. The determinants denoted ΨA,

A = 1, . . . , Nd, are defined in R
3Ne ; each determinant is built from a matrix, denoted Φ̃A, derived

from a vector ΦA such as:

ΨA =
1√
Ne!

det
[

Φ̃A
]

, Φ̃A(x1, . . . , xNe) =
[
ΦA (x1) , · · · ,ΦA (xNe)

]
, ΦA (x) =








ϕA
1 (x)
...

ϕA
Ne

(x)







.

Each component of the vectors ΦA is defined in R
3 and only depends on the coordinates of one

electron. These components are called the one-electron wave functions. Figure 2.1 illustrates

some one-electron wave functions which can be used to compute the BeH2 molecule.

For two functions a : Ω → C and b : Ω → C, we define the scalar product:

(a, b) =
w

Ω
a (x) b∗ (x) dx (2.3)

where b∗ is the conjugate of b. To satisfy the normality of the wave function solution defined

by equation (2.1), the determinants are normalized and the coefficients αA are computed so

that
∑

A

|αA|2 = 1. The Slater determinants generally inherit normalization from the orthonor-

malization of the one-electron wave functions. The series is usually composed of determinants

that are orthogonal to each other, but some authors propose series of non-orthogonal determi-

nants [Low55].
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The simplest linear combination defined by equation (2.2) is the Hartree-Fock trial func-

tion [Sla29], which is constructed from a unique matrix Φ̃(xe) = [Φ (x1) ...Φ (xNe)] of a set Φ of

Ne electronic wave functions ϕi:

ΨHF
e (xe) =

1√
Ne!

det
[

Φ̃(xe)
]

, Φ (x) =








ϕ1 (x)
...

ϕNe (x)







. (2.4)

The Hartree-Fock approximation leads to the calculation of Ne one-electron wave functions. The

single determinant of the Hartree-Fock model does not allow the accurate representation of the

interaction between electrons. The necessary accuracy depends on the phenomena being studied.

For instance, bond breaking phenomena need a very accurate energy estimation, which can be

provided by post Hartree-Fock methods.

2.1.2 The post Hartree-Fock methods

The configuration interaction (CI) method and the multiconfiguration (MC) method enlarge the

series of determinants defined by equation (2.2). In MC problems, both coefficients αA and

matrices Φ̃A are simultaneously computed. In CI problems, the matrices Φ̃A are determined

first, and then the coefficients αA are optimized. These two methods will be detailed in the

second part of this chapter. They do not guarantee size consistency. Size-consistency means

that the energy of two molecules that do not interact (at large distance) calculated directly

would be the sum of the energies of the two molecules calculated separately. It is essential to

use a size-consistent model to look into bond dissociation in a chemical context. Coupled cluster

and perturbation methods are alternatives to supply a series of determinants respecting size

consistency. However, these methods are not variational, i.e. the solution is not provided by an

optimization in a solution space. It thus follows that the total energy obtained can be lower than

the true energy.

The coupled cluster method [PB82, BM07, Sch09] relies on an exponential parameterization

of a reference wave function. For single-reference coupled cluster method, the reference function

is the Hartree-Fock solution ΨHF
e , and the coupled cluster trial function is ΨCC

e = expT
(
ΨHF

e

)
.
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The cluster operator T acts on the Hartree-Fock wave function to create a linear combination

of determinants with excitation rank inferior or equal to n: T = 1 +
n∑

1
Ti. The operator Ti

is responsible for creating all i-rank excitations. For instance, T1 =
Ne∑

i=1

NV∑

j=1
t
j
i det

(

Φî,Φĵ
V

)

,

and T2 =
Ne∑

i,j=1

NV∑

k,l=1

tklij det
(

Φîj ,Φk̂l
V

)

. The exponential operator is expanded into Taylor series

eT = 1 + T +
T 2

2
+ ... and the coefficients t are solved through a non-linear system.

The coupled cluster method provides size extensivity of the solution, i.e. correct scaling of the

method with the number of electrons. Size consistency depends on the reference wave function.

The Hartree-Fock estimation can also be improved by the perturbation method referred by

physicists to as the Møller and Plesset method [MP34, DGG09]. The perturbed wave functions

and energies at the order k are series

{

Ψp =
k∑

i=0
λiΨi

p , Ep =
k∑

i=0
λiEi

p

}

where the Hartree-Fock

solution {ΨHF
e , EHF

e } are considered as the zero-order perturbation {Ψ0
p, E

0
p} and λi are real

coefficients.

2.1.3 A mathematical viewpoint of the Hartree-Fock’s models

An important research activity has arisen around the existence and the uniqueness of the so-

lution for the different quantum problems. The proof of the existence of a minimizer of the

Hartree-Fock equations is presented in [LS77]. The uniqueness of the ground-state minimizer is

still an open problem [DL97]. Concerning the spectrum of solutions, Lions proved the existence

of infinitely many excited states [Lio87]. Leon also proved the existence of excited states [Leo88]

for different definitions of the excited states. One of them defines an excited state as the solution

of the minimization of the Hartree-Fock energy functional on a set of normalized Slater deter-

minant wave functions, which are orthogonal to the approximate ground state. The existence

of an energy minimum in the multiconfiguration method was established by Friesecke [Fri03].

Lewin proposed another proof for its existence, and proved the existence of saddle points for

multiconfiguration methods [Lew02, Lew04]. The application of the Hartree-Fock model for the

crystalline phase is studied in [LL05]. Despite of these numerous works, it remains a long list of

open problems [DL97].
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2.2 The Galerkin method for Hartree-Fock models

The Hartree-Fock problem can be solved either by minimizing the Hartree-Fock energy func-

tional [CH95, Szc01], by solving the associated Euler-Lagrange equations, or by solving the weak

form of the Euler-Lagrange equations. The Euler-Lagrange equations are generally favored, since

algorithms to solve them are more efficient and versatile than optimization techniques in terms of

computational effort at least when we are not too far from a solution. However, these algorithms

do not ensure convergence a priori.

The Galerkin approximation has been formulated and analyzed for density functional theory

in [LOS10]. We develop hereafter the weak form of the Hartree-Fock problems to solve them by

a Galerkin approach, which will be described and justified in Chapter 3.

2.2.1 The weak form of the Schrödinger problem

The weak form of the Schrödinger problem can be obtained by multiplying the Schrödinger

equation (eq.2.1) by the virtual term δΨe, integrating by parts the kinetic term and introducing

test multipliers with respect to the normality and anti-symmetry constraints.

Find {Ψe, Ee, λσ} ∈ W ×W
Ee ×W

λ such that:

1

2
(∇xΨe,∇xδΨe) + (VeΨe, δΨe) = Ee (Ψe, δΨe) +

δEe

2
[(Ψe,Ψe)− 1]

+ δλσ
[
Ψe(xσ(1), . . . , xσ(Ne))− sg (σ)Ψe(x1, . . . , xNe)

]

+ λσδ
(
Ψe(xσ(1), . . . , xσ(Ne))− sg (σ)Ψe(x1, . . . , xNe)

)
,

∀δΨe ∈ W, ∀δEe ∈ W
Ee , ∀δλσ ∈ W

λ, (2.5)

where the test Lagrange multiplier δEe is associated with the constraint ‖Ψe‖ = 1 and the test

Lagrange multiplier δλσ imposes the anti-symmetry of the approximate solution.

This equation cannot be solved exactly in general. We apply the Galerkin approach to ap-

proximate the solution.
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2.2.2 The Galerkin approximation for the Schrödinger problem

Using the Galerkin method, the weak problem is solved in a finite-dimensional basis. The exact

solution {Ψe, Ee} is approximated by an eigenpair {ΨG, EG} where

ΨG =
∑

A

αAΨA. (2.6)

The projection of the eigenfunction on each basis function is αA = (ΨG,ΨA). The normality of

ΨG is imposed through the normalization of each ΨA and a constraint on the coefficients αA.

Consequently, the problem reads:

Find {ΨG, EG, µ, λσ, λ
AB} such that:

∑

A

αA

[
1

2
(∇ΨA,∇δ (αBΨB)) + (VeΨA, δ (αBΨB))

]

= EG

∑

A

αA (ΨA, δ (αBΨB))

+ δµ

[
∑

A

|αA|2 − 1

]

+ δλσ
[
ΨA(xσ(1), . . . , xσ(Ne))− sg (σ)ΨA(x1, . . . , xNe)

]

+ λσδ
(
ΨA(xσ(1), . . . , xσ(Ne))− sg (σ)ΨA(x1, . . . , xNe)

)

+ tr
[

δλAB ·
((w

ΨA ⊗Ψ∗
B

)

− δABI
)]

,

∀δαB ∈ W
α, ∀δΨB ∈ W, ∀δλσ ∈ W

λσ , ∀δµ ∈ W
µ, ∀δλAB ∈ W

λAB

, (2.7)

where tr denotes the trace of a square matrix and δAB is the Kronecker delta, i.e. δAB = 1 if

A = B and δAB = 0 if A 6= B. The test Lagrange multiplier δλσ imposes the anti-symmetry of

the solution, δλAB imposes the orthonormalization of the basis wave functions, and δµ constraints

the coefficients αA to satisfy
∑

A

|αA|2 = 1. Now the problem can be decomposed as follows:

Find {ΨA, αA, µ, λσ, λ
AB} such that:

∑

A

αAαB

[
1

2
(∇ΨA,∇δΨB) + (VeΨA, δΨB)

]

+ αA

[
1

2
(∇ΨA,∇ΨB)X + (VeΨA,ΨB)X

]

δαB

= EG

∑

A

αAαB (ΨA, δΨB) + EG

∑

A

αA (ΨA,ΨB)X δαB + δµ

[
∑

A

|αA|2 − 1

]

+ δλσ
[
ΨA(xσ(1), . . . , xσ(Ne))− sg (σ)ΨA(x1, . . . , xNe)

]
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+ λσδ
(
ΨA(xσ(1), . . . , xσ(Ne))− sg (σ)ΨA(x1, . . . , xNe)

)

+ tr
[

δλAB.
((w

ΨA ⊗Ψ∗
B

)

− δABI
)]

,

∀δΨB ∈ W, ∀δλAB ∈ W
λAB

, ∀δλσ ∈ W
λσ , ∀δαB ∈ W

α, ∀δµ ∈ W
µ. (2.8)

It can be seen from (2.8) that the coefficients αA are the eigenvalues of the matrix HGAB
defined

by HGAB
=

[
1

2
(∇ΨA,∇ΨB)X + (VeΨA,ΨB)X

]

.

2.2.3 Weak formulation of the multiconfiguration problem

We consider first the MC which gives a general approach and will derive next the Hartree-Fock

(HF) and Configuration Interaction (CI) from it. The multiconfiguration model considers the

trial function ΨMC
e :

ΨMC
e =

Nd∑

A=1

αAΨA, (2.9)

where ΨA are determinants built from one-electron wave functions:

ΨA =
1√
Ne!

det
[

Φ̃A
]

. (2.10)

Consequently the constraint of anti-symmetry of the basis functions associated with the Lagrange

multipliers δλσ is satisfied. Both the set of coefficients αA and the one-electron wave functions

ΦA are computed simultaneously [WM80, MMC90].

General form of the equations system

As presented in equation (2.8), the coefficients αA are computed as eigenvalues of the matrix

HG. To guarantee a priori the orthonormality of the functions ΨA and the normality of the

solution ΨMC
e , we impose through Lagrange multipliers on the one-electron wave functions:

w

R3
ΦA ⊗ ΦB = δABI. (2.11)

From equation (2.8), we compute the one-electron wave functions ΦA by:

∑

A

αAαB

[
1

2

(

∇detΦ̃A,∇δdetΦ̃B
)

+
(

VedetΦ̃A, δdetΦ̃B
)]

= EG

∑

A

αAαB

(

detΦ̃A, δdetΦ̃B
)

X
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+ δ

[

tr

(
ΛAB

2
.
(w

R3
ΦA ⊗ ΦB − δABI

))]

. (2.12)

From elementary algebra, we can show that:

δdetΦ̃ =

Ne∑

q=1

det (Φ (x1) , . . . , δΦ (xq) , . . . ,Φ (xNe)) . (2.13)

Because of the orthonormality of the one-electron wave functions, the products
(

detΦ̃A, δdetΦ̃B
)

vanish. Problem (2.12) can thus be reduced to:

Find {ΦA,ΛAB} ∈ W
Φ ×W

Λ such that:

Nd∑

A=1

αAαB

[
1

2

(

∇xedetΦ̃A,∇xeδdetΦ̃B
)

xe

+
(

(Ven + Vee) detΦ̃A, δdetΦ̃B
)

xe

]

=
(
ΛABΦA, δΦB

)

xe

+ tr

[
δΛAB

2
.
(w

R3
ΦA ⊗ ΦB − δABI

)]

,

∀δΦB ∈ W
Φ, ∀δΛAB ∈ W

Λ. (2.14)

Computations of the integrals over R
3

Integrals defined on R
3Ne are turned into integrals defined on R

3 due to the form of the multi-

configuration trial functions.

• First, we concentrate on the product
(

∇xedetΦ̃A,∇xeδdetΦ̃B
)

xe

. It is recast using the

one-electron wave functions as:

εiεj

[

(
ϕA
i1 (x1) , ϕ

B
j1 (x1)

)
. . .

(

∂ϕA
im

(xm)

∂xm
,
∂δϕB

jm
(xm)

∂xm

)

. . .
(

ϕA
iNe

(xNe)ϕ
B
jNe

(xNe)
)

+
(
ϕA
i1 (x1) , ϕ

B
j1 (x1)

)
. . .

(

∂ϕA
im

(xm)

∂xm
,
∂ϕB

jm
(xm)

∂xm

)

. . .

. . .
(
ϕA
in (xn) , δϕ

B
jn (xn)

)
. . .
(

ϕA
iNe

(xNe) , ϕ
B
jNe

(xNe)
)]

.

Due to the orthogonality of the one-electron wave functions, the first term of this sum va-

nishes. The second remains non zero only if A = B and ik = jk, ∀k ∈ [1;Ne]. Therefore, we

find:
(

∇xedetΦ̃A,∇xeδdetΦ̃B
)

xe

=
(
∇xΦ

A,∇xδΦ
A
)

x
. (2.15)
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• Secondly, we focus on the interactions between nuclei and electrons
(

Ven (XM , xq) detΦ̃A,

δdetΦ̃B
)

and write them using the one-electron wave functions:

εiεj

(

ϕA
i1
(x1) , ϕ

B
j1
(x1)

)

. . .
(

Ven (xM , xq)ϕ
A
iq
(xq) , δϕ

B
jq
(xq)

)

. . .
(

ϕA
iNe

(xNe) , ϕ
B
jNe

(xNe)
)

.

The orthonormality of the one-electron wave functions (eq. 2.11) leads to A = B, im = jm

∀m ∈ [1;Ne] and :

(

Ven (XM , xq) detΦ̃A, δdetΦ̃B
)

=
(
Ven (xM , x) Φ

B, δΦB
)
.

• Thirdly, we turn to the interactions between electrons
(

Vee (xp, xq) detΦ̃A, δdetΦ̃B
)

and

establish it can be written as:
((

ΦA (xp)

|xp − xq|
,ΦB (xp)

)

xp

ΦA (xq) , δΦ
B (xq)

)

xq

−
((

ΦA (xp)

|xp − xq|
⊗ ΦB (xp)

)

ΦA (xq) , δΦ
B (xq)

)

.

We introduce the interaction matrix GAB whose terms are:

GAB (x) =
w

R3

ΦA∗

(y)⊗ ΦB(y)

|x− y| dy. (2.16)

Therefore,

(

Vee (xp, xq) detΦ̃A, δdetΦ̃B
)

=
((

tr
(
GAB

)
I −GAB

)
ΦA (xq) , δΦ

B (xq)
)

xq
.

We note that the interaction matrix G is a convolution with a Coulomb kernel. It can be

defined as the solution of Green’s partial differential equations:

tr
[

∇GAB · ∇δGABT
]

= 4π tr
[(

ΦA ⊗ ΦB∗
)

· δGABT
]

, ∀δGAB ∈ W
G. (2.17)

Finally, the multiconfiguration system reads:

Find
{
αA,Φ

A,ΛAB, GAB
}

such that:

∑

A

αAαB

[
1

2

(
∇ΦA,∇δΦB

)

x
+
(
VenΦ

A, δΦB
)

x

]

+
((

tr
(
GAB

)
I −GAB

)
ΦA, δΦB

)

x
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+ αA

[
1

2
(∇ΨA,∇ΨB)X + (VeΨA,ΨB)X

]

δαB − EMC
e

∑

A

αA (ΨA,ΨB)X δαB

+ δµ

[
∑

A

|αA|2 − 1

]

−
(
ΛABΦA, δΦB

)

x
+ tr

[
δΛAB

2
.
(w

R3
ΦA ⊗ ΦB − δABI

)]

+ tr
[

∇GAB · ∇δGABT
]

− 4π tr
[(

ΦA ⊗ ΦB∗
)

· δGABT
]

= 0,

∀δαB ∈ W
Φ, ∀δΦB ∈ W

Φ, ∀δΛAB ∈ W
Λ, ∀δGAB ∈ W

G, ∀δµ ∈ W
µ. (2.18)

The set
{
δαA, δΦ

A, δΛAB, δGAB
}

denotes the test functions. ΛAB appears as a Lagrange

multiplier associated with the unit norm of the determinants ΨA. This system of non-

linear eigenmatrices will be solved by an iterative numerical scheme introduced in the next

chapter.

• Finally, the approximate energy for the multiconfiguration approximation is obtained as:

EMC
e =

Nd∑

A=1

Nd∑

B=1

c∗AcB

(

Hedet
[

Φ̃A (x)
]

, det
[

Φ̃B (x)
])

. (2.19)

This model has also been presented in [Fri03] and in [Lew04]. It involves a very large number

of degrees of freedom and is often restricted to the Hartree-Fock trial function.

2.2.4 The weak form of the Hartree-Fock problem

We specify now the multiconfiguration formulation to Hartree-Fock as a special case. The

Hartree-Fock method considers a single Slater determinant as the trial function (see defini-

tion (2.4)). The Hartree-Fock solution ΨHF
e is derived from a unique vector Φ of Ne one-electron

wave functions. {Φ,Λ} satisfy the following system which is derived directly from the above

multiconfiguration equations:

Find {Φ,Λ} such that:






1

2
(∇Φ,∇δΦ) + (((Ven + tr (G)) I −G) Φ, δΦ) = (ΛΦ, δΦ) , ∀δΦ ∈ W

Φ,

tr
[(
I −

r
R3 Φ⊗ Φ∗

)
· δΛT

]
= 0, ∀δΛ ∈ W

Λ,

(2.20)

where Λ appears as a matrix of Lagrange multipliers associated with the orthonormalization

of the one-electron wave functions, and δΛ as a test Lagrange-multiplier. We have to solve
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a self-consistent integro-differential system where the diagonal of the matrix Λ contains the

eigenvalues. Appendix F details how this weak form is directly established. The terms of the

interaction matrix G are:

G (x) =
w

R3

Φ∗(y)⊗ Φ(y)

|x− y| dy (2.21)

that can also be defined as the solution of Laplace’s partial differential equations:

tr
[
∇G · ∇δGT

]
= 4π tr

[
(Φ⊗ Φ∗) · δGT

]
, ∀δG ∈ W

G. (2.22)

The Hartree-Fock strategy considers a system of Ne independent wave functions. Even if

it is only a result of the mathematical hypotheses, this approach reveals expressions of the

electronic energies. The diagonal of the matrix Λ contains the energies of the modes. They

can be linked approximately to the ionization energies by Koopman’s theorem. The accuracy of

this approximation depends on the specific system. The term 1
2 (∇Φ,∇Φ) represents the kinetic

energies of the wave functions. The term (VenΦ,Φ) represents the electrostatic interactions

between nuclei and electrons. Inter-electron repulsion is embedded in the term (tr (G) Φ,Φ). The

term (−GΦ,Φ) has a quantum origin: it comes from the anti-symmetry of the wave function.

The terms tr (G) and G are commonly noted J and K and are referred to as the Coulomb

operator and the exchange operator. The Hartree-Fock electronic energy reads:

EHF
e =

(

−1

2
∇Φ,∇Φ

)

+ Ven|Φ|2 + [tr (G) I.Φ−G.Φ]Φ. (2.23)

The strong form of the Hartree-Fock problem is classic and is obtained from the weak form (2.20)

as (see Appendix G):







−1

2
∆xeΦ+ VenΦ+ [tr (G) I −G] Φ = ΛΦ

△xG = −4πΦ⊗ Φ∗

r
R3 Φ⊗ Φ∗ dx = I.

(2.24)

Remark: The influence of an electric potential can be incorporated into the Hartree-Fock

equation. To investigate interactions between electrons and an external electric field creating an
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external potential energy V el
e , the Hartree-Fock system reads:







(

−1

2
∇Φ,∇δΦ

)

+
(((

Ven + V el
e + tr (G)

)
I −G

)
Φ, δΦ

)
= (ΛΦ, δΦ) , ∀δΦ ∈ W

Φ,

tr
[
∇G · ∇δGT

]
= tr

[
(4πΦ⊗ Φ∗) · δGT

]
, ∀δG ∈ W

G,

tr
[
(I −

r
R3 Φ⊗ Φ∗) · δΛT

]
= 0 ∀δΛ ∈ W

Λ.

(2.25)

Remarks about spins

Two electrons interact only if they have the same spin eigenvalue. For the sake of clarity, the

spin eigenvalues are not made explicit in this dissertation, but they are taken into account in

computations. Each electronic wave function ϕi is characterized by its spin eigenvalue σi, which

can be
1

2
or −1

2
. Since electrons are fermions, two different electrons (one with the spin eigenvalue

1

2
and the other one with the spin eigenvalue −1

2
) can occupy the same eigenmode. For some

systems, since all eigenmodes are occupied by two electrons, the Hartree-Fock system can be

simplified. The system of Ne electrons can be described by
Ne

2
pairs of electrons. The Hartree-

Fock system is simplified into the Restricted Hartree-Fock (RHF) system of
Ne

2
components.

Systems describable by this restricted model have necessarily an even number of electrons, but

all systems with an even number of electrons cannot be described by this model, e.g. the Oxygen

atom. Electronic structures for which the Hartree-Fock system cannot be simplified must be

described by Ne wave functions and the Unrestricted Hartree-Fock (UHF) system.

Among the different eigenmodes solutions of the Hartree-Fock system, we know from the

aufbau principle that the eigenmodes which are occupied by electrons are those with the low-

est eigenvalues [AF05]. The list of occupied modes is called the electron configuration. For

our computations, the electron configuration is established using the literature. It imposes the

number of wave functions defining the system and the model describing the system, either the

restricted Hartree-Fock or the unrestricted Hartree-Fock model. Appendix D lists the electron

configurations of the isolated atoms.



42 Chapter 2

Solving the Hartree-Fock problem

Computing an arbitrary number of virtual functions

Deriving some determinants from these two sets of functions

Computing coefficients αA

Estimating the CI energy

Figure 2.2: Scheme of the configuration interaction strategy
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Properties of the Hartree-Fock solutions

The Hartree-Fock system has symmetric properties. Let C be an orthogonal matrix, the trans-

formation Φ̃ = CΦ transforms the system (2.24) into a system of the same form, Λ being replaced

by CΛCT . One can always find a C such that the transformed Λ becomes a diagonal matrix.

Let us examine two distinct wave functions ϕk and ϕl (with k 6= l and (k, l) ∈ [1;Ne]
2),

which are assumed solutions of the Fock system (2.24). We multiply the k-th equation by ϕ∗
l

and the l-th equation by ϕ∗
k. Integrating over R

3 the difference of both terms and considering

the basis in which Λ is a diagonal matrix, we show that if Λkk 6= Λll, for k 6= l, then ϕk and ϕl

are necessarily orthogonal.

A way to improve the estimate of the Hartree-Fock problem without solving a problem as

complex as the multiconfiguration one is computing the configuration interaction problem.

2.2.5 Weak formulation of the configuration interaction problem

The configuration interaction approach is in fact a two-stage scheme for MC where the one-

electron wave functions are computed first as in HF, new trial waves are computed from them

and the associated αi are finally computed. The configuration interaction strategy uses the same

trial function as the multiconfiguration problem:

ΨCI
e =

1√
Ne!

Nd∑

A=1

αAdet
[

Φ̃A
]

. (2.26)

The one-electron wave functions ΦA are determined separately from the coefficients αA. The

coefficients αA are obtained by equation (2.8). The determination of the vectors ΦA is simplified

when compared with the multiconfiguration problem. It is divided into three steps:

• First, the Hartree-Fock problem (eq.2.20) is solved, the first vector Φ1 contains its solution.

• Then, an auxiliary vector containing any number Nv of one-electron wave functions is

computed.

• Finally, the vectors ΦA (for A ∈ ]1;Nd]) are built combining some one-electron wave

functions of Φ1 and some components of the vector ΦV .
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The one-electron wave functions ϕV i contained in the vector ΦV are called virtual wave func-

tions. The pair {ΦV ,ΛV } is defined as the solution of:







(

−1

2
∇ΦV ,∇δΦV

)

+
((
(Ven + tr (G)) I −GV

)
ΦV , δΦV

)
=
(
ΛV ΦV , δΦV

)
, ∀δΦV ∈ W

Φ,

tr
[

∇xeG
V · ∇xeδG

V T
]

= tr
[(
4πΦV ⊗ Φ∗

)
· δGV T

]

, ∀δGV ∈ W
G,

tr
[(
I −

r
R3 Φ

V ⊗ ΦV ∗) · δΛV T
]

= 0, ∀δΛV ∈ W
Λ,

(2.27)

where ΛV appears as a Lagrange multiplier associated with the orthonormalization of the one-

electron virtual wave functions, and δΛV as a test Lagrange-multiplier. The diagonal of the

matrix ΛV contains the eigenvalues related to the electron energies of the virtual modes ϕV
i . The

virtual wave funcions ϕV
i are orthogonal between each other, and orthogonal to the Hartree-Fock

wave functions ϕi.

The vectors ΦA are constructed by replacing some one-electron wave functions of vector Φ by

some virtual wave functions. For instance, considering a system described by three one-electron

wave functions, three vectors ΦA can be:

Φ1 (x) =








ϕ1 (x)

ϕV
1 (x)

ϕ3 (x)







, Φ2 (x) =








ϕ1 (x)

ϕV
1 (x)

ϕV
2 (x)







, Φ3 (x) =








ϕV
2 (x)

ϕV
1 (x)

ϕ3 (x)







.

Using two virtual wave functions, 18 vectors ΦA could be built: 6 vectors involve only one

virtual wave function and 12 vectors involve both virtual wave functions simultaneously. Then,

the determinants are derived from the matrices Φ̃A built from the vectors ΦA. The Slater

determinants constructed using k virtual wave functions are called excited states at the order k.

Since the one-electron wave functions are orthonormal, the determinants derived from these

are orthonormal. The maximum number of determinants Nd,max involved in the series depends

on the number of components of the vector Φ and on the number of virtual wave functions.

Using the maximum number of available determinants guarantees size consistency (see page 32).

The configuration interaction strategy is summed up by Figure 2.2. First, the Hartree-

Fock problem is solved, then a number of virtual functions is chosen, and these functions are
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computed. Some determinants are derived from the wave functions contained in the vectors Φ

and ΦV . Finally, the coefficients α are computed, and the approximate energy is estimated by

equation (2.19).

2.3 Summary

In this chapter, we have presented the family of Hartree-Fock methods, also called the wave

function methods. Supposing that the wave function has the form of Slater determinants, the

Hartree-Fock strategy turns a unique equation defined from a very large space into several equa-

tions defined only from a three-dimensional space. Regrettably, it neglects electronic correlation.

The post-Hartree-Fock methods were introduced to improve results by increasing the space of

trial functions. In that case, trial functions are linear combinations of Slater determinants with

the Hartree-Fock determinant included.

The Hartree-Fock method has been used to solve quantum mechanics problems since the 1930s.

During the first decades, only small systems with very few electrons could be solved using this

method because the Hartree-Fock system is non-linear and can involve a large number of degrees

of freedom. To solve it for general cases, it requires an efficient numerical strategy. In the next

chapter, we present different numerical methods to overcome these difficulties.

The post-Hartree-Fock methods provide a hierarchy of trial functions to estimate the electronic

state of any system. Considering the hierarchy of the different solution spaces WHF ⊂ W
CI ⊂ W,

the exact energy Ee is lower than the multiconfiguration energy ECI
e which is lower than the

Hartree-Fock energy EHF
e :

Ee 6 ECI
e 6 EHF

e . (2.28)

Energy estimates become more accurate when the trial function space is enlarged. In Chap-

ter 5, we construct error estimation tools to compare the accuracy of the different trial function

spaces.
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Numerical strategy

In this work, we apply the Hartree-Fock and the configuration interaction methods (introduced

in Chapter 2) to approximate solutions of the Schrödinger equation. For the sake of simplicity,

the numerical strategy is presented here for the Hartree-Fock system considered as the reference

problem. The same tools and approach are used to solve the configuration interaction problem.

As discussed in the previous chapter, the Hartree-Fock problem is a non linear eigenvalue prob-

lem and involves a large number of degrees of freedom. Therefore, solving it requires powerful

numerical tools to ensure convergence, to tackle large systems and to provide accurate approx-

imations of the solutions. The first part of this chapter overviews the different strategies set

up in the literature to tackle the problem. Most involve a variational discretization based on a

finite-dimensional space of trial functions. The evaluation of the different basis sets aims at using

the finite element method to solve the Fock system. The second part of this chapter details our

finite element strategy to solve efficiently the weak form of the Fock system.

3.1 State of the art

As mentioned before, solving the Hartree-Fock problem can be done by several approaches:

minimizing the Hartree-Fock energy functional, solving the strong form of the problem, or solving

the weak form of the system. Whatever the approach, the solver requires anNb-finite-dimensional
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BeH2: ϕ1 BeH2: ϕ2 BeH2: ϕ3

H: ϕ1 H: ϕV
1 Be1: ϕ1

Be1: ϕ2 Be2: ϕ1 Be2: ϕ2

Figure 3.1: Some atomic orbitals relative to the Be and the H atoms (in blue) which can be

employed as a basis set to compute the BeH2 molecule whose one-electron eigenfunctions are

represented in red. All the wave functions are represented on the axis z (i.e. {x = 0, y = 0}
considering the following positions of the atoms: H(0;0;7.48), Be(0;0;10), and H(0;0;12.52).
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space ν. Each wave function ϕj is expanded as a linear combination of basis functions {χi}i∈[1;Nb]

of ν:

∀j ∈ [1;Ne], ϕj =

Nb∑

i=1

Cjiχi where Cji = (χi, ϕj)R3 . (3.1)

C is a matrix that contains the coefficients of the linear combination of χi to build ϕj .

The choice of the basis functions and their number Nb will affect the accuracy of the numerical

results. In order to optimize the convergence, Cancès et al. [CLM06] highlight the importance

of adapting the basis functions to the problem at hand. In the literature, different sets of trial

functions have been proposed.

3.1.1 Basis functions

As quantum operators are Hermitian, eigenfunctions form a basis on which all the solutions can

be developed. Using this idea, the first atomic simulations were developed on atomic orbitals

sets. Such an approach can be related to the Rayleigh-Ritz method which is very often used in

mechanics [Gou95].

Atomic orbitals

Atomic orbitals χa are eigenfunctions of isolated atoms. Figure 3.1 shows a set of atomic orbitals

relative to the Be and the H atoms which can be used as a basis set to compute the BeH2 molecule.

These trial functions are centered on each nucleus, and their number Nb is greater or equal to

the number of fundamental wave functions for the isolated atoms considered. In addition to the

atomic orbitals centered on real atoms, some authors introduce ghost atoms and ghost atomic

orbitals to enlarge the discretization basis [OM76].

Atomic orbitals can be described by different mathematical functions, such as hydrogen-like

atomic orbitals, Gaussian orbitals or Slater-type orbitals, which are detailed below.

For molecular or crystal simulations, atomic orbitals can be employed as a basis set to build

molecular orbitals [Hal91]. The Linear Combination of Atomic Orbitals (LCAO) method defines

molecular orbitals χmol as:
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χmol =
∑

a

Ciaχa. (3.2)

The coefficients Cia of the linear combination are determined by a variational approach [SO96,

AF05].

In the following paragraphs, we list some mathematical functions proposed in the literature to

approximate atomic orbitals.

Slater-type orbitals In 1930, Slater introduced Slater-type orbitals, also called STOs [Sla30,

Sla32]. They are generally divided in a radial and an angular part expressed in cylindrical

coordinates (r, θ, ϕ). These two parts are independent, and are solved separately.

The angular part is usually the real part of spherical harmonics Y m
l . The radial part χr

STO

is assumed to decay exponentially at long range, and has the following form:

χSTO (r) = CSTO|r|n−1e−ζ|r| (3.3)

where CSTO is a normalization constant, and n is the principal quantum number defined in the

brief introduction to quantum numbers in Appendix E. Models for atoms and molecules allow

the determination of the effective nuclear charge ζ [OPNZ00].

For example, Crystal [Cry11] is a commercial software that provides the solution of the

Hartree-Fock system using a basis of Slater-type orbitals.

Gaussian functions In 1950, Boys [Boy50] proposed Gaussian functions as atomic orbitals.

They can be called Gaussian orbitals, Gaussian type orbitals or GTOs. Alike STOs, they are

divided into independent radial and angular parts and the real part of the spherical harmonics

is used as the angular part. The radial part has the following form:

χGTO (r) = CGr
le−αr2 (3.4)

where CG is a normalization constant, and l is the angular quantum number (defined in Ap-

pendix E).

Crystal [Cry11], Jaguar [Sch11] and Gaussian [Gau11] are examples of software that solve

the Hartree-Fock system with a Gaussian basis.
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Without using atomic orbitals i.e. eigensolutions of atomic problems, trial functions can also

be mathematical constructs suitable for the Hartree-Fock simulations.

Plane or spherical waves

The electronic problem can be expanded on an orthonormal basis of plane waves [dLPZ79]. The

basis functions χPW are expressed as a function of the Cartesian coordinate x in case of plane

waves:

χPW (x) =
∑

k

cke
ikx (3.5)

where ck are normalization constants. Spherical waves are functions of the distance r between

the electron and the nucleus:

χSW (r) =
∑

k

cke
ikr. (3.6)

For localized systems, such as the first row elements or transition metals, where the vacuum area

can be large, this method generally requires a large number of basis functions. To solve this

problem, some authors propose to employ adaptive coordinates. General curvilinear coordinates

are arranged in order to be dense where the wave functions are localized [DCAJ94].

The software VASP [VAS11] is equipped with such a basis set.

Wavelets

Some authors [CAJL93] suggest a basis of wavelets. These oscillations provide an orthonormal

basis with respect to the inner product defined by eq.(2.3), localized in both real and Fourier

spaces [Cha05].

DFT++ [Cor11], MADNESS [Com11] or BigDFT [Eur11] can solve the electronic problem

with wavelets basis.

Finite element basis functions

The finite element method (FEM) provides another approach to build a basis of localized trial

functions. This discrete numerical method is widespread in the contexts of structural mechanics,

fluid mechanics, acoustics, among other domains in which partial differential equations need to
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be solved. Approximate solutions are found from discretization of the weak form of the problem.

This method is detailed in [ZT05] or in [Joh09].

The domain Ω of the FEM is segmented into M tetrahedra (in 3D). Polynomials ωp
j of order

p are defined on each tetrahedron j. They constitute a basis of local functions, continuous on Ω.

Numerical solutions ϕp
i , approximation of the exact solutions ϕi, are estimated on this partition

{

ω
p
j , j ∈ [1,M ]

}

:

ϕi ≈ ϕ
p
i =

M∑

j=1

Cij ω
p
j . (3.7)

0

j − 1 j j + 1

1

Figure 3.2: A FEM basis function: ω1
j of order 1

We use Lagrangian finite elements. Each polynomial takes the value 1 only at a certain

node and all the other basis functions vanish for the considered node. Therefore, approximate

functions are continuous piecewise polynomials on subdomains called “finite elements”. The

coefficients Cij are the values of the approximate wave functions ϕi at the corresponding nodes.

They are estimated numerically applying the Galerkin method to the weak form of the Hartree-

Fock electronic problem presented in Chapter 2. The quality of finite element approximations

depends on the form and the density of the mesh involved.

3.1.2 Evaluation of the different functions basis

Tsuchida and Tsukada [TT98] list the properties required for an ideal basis set: simplicity,

sparsity, high parallelizability, possibility to use non-periodic boundary conditions, possibility to

expand wave functions in real space efficiently, with non-uniformity, with computational effort

scaling linearly with the number of variables.
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First, let us compare the different atomic orbitals between them. The general form of the

Gaussian functions is not as accurate as the form of Slater-type orbitals. Therefore, they gen-

erally require a larger number of basis functions and are not widely used for atomic or crystal

computations.

For molecular cases, a drawback of Slater-type orbitals is the fact that products of two Slater-

type orbitals of distinct atoms are difficult to compute. Gaussian orbitals are preferred because

the product of two Gaussian functions centered on different atoms can be expressed as a Gaussian

function centered on a point along the axis connecting the two atoms.

Now, let us compare atomic orbitals with other basis functions. Any kind of atomic or mo-

lecular orbitals is disadvantageous because it needs preliminary knowledge of the expressions of

atomic orbitals, specific to the atoms considered. Moreover, any atomic orbital, such as hydrogen-

like atomic orbitals, Slater-type orbitals, Gaussians or exponential-type orbitals, imposes a gene-

ral form to the approximate wave functions over the entire domain. To estimate the total energy

of the system, the most influential area is in the neighborhood of the nuclei. Such methods tend

to represent accurately the wave functions in these areas and to poorly represent them far from

the nuclei. Globally defined basis sets cannot improve the estimation of the wave functions near

the nuclei without causing effects far from them. This limitation encourages the use of locally

defined basis sets.

The finite element method and wavelets do not impose a special form of the wave function and

use real-space computations. Therefore, they allow for a local refinement of the approximate wave

function. A fine discretization is used near the nuclei where the potential varies rapidly [LS85].

Moreover, algorithms using localized basis functions provide a linear scaling complexity [GP92,

MGC93, ODMG95]. Besides, in the long term, coupling a FEM microscale or mesoscale model

with a FEM nanoscale model appears more natural than coupling a FEM microscale or mesoscale

model with a nanoscale model based on atomic orbitals.

We choose to use the FEM. In the next section, we give an overview of the works which solve

quantum problems by the FEM.
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3.1.3 The FEM in quantum mechanics

The FEM is traditionally employed to compute the deformations of materials. Works on the

application of the FEM to atomic problems first appeared in 1975 [Ask75]. Askar presented an

approach to solve the stationary problem of the hydrogen atom using finite elements. He com-

pared theoretically this method with the finite difference method and Rayleigh-Ritz’s method,

and computed the energies of the ground state and the first excited states for the hydrogen atom

within 0.1 % error.

Then, several authors performed FEM solution of one- or two-dimensional problems [FRRT78,

NB76]. In 1985, Levin and Shertzer published the first work applying the FEM to three-

dimensional problems [LS85]. They solved the Helium ground state with a 324-node three-

dimensional grid. Their low error on the average positions of the electrons 〈xe〉 and
〈
x2e
〉
, as

compared to the literature, offered promising perspectives for the FEM in the quantum context.

The memory of their computer limited the accuracy of their results for large systems. Braun et

al. [BSH93] also computed the Helium atom ground state and some excited states of spherical

symmetry. They used parallelepipedal elements, and took advantage of wave functions’ sym-

metry or antisymmetry to reduce the domain by half. They reached around 23 000 degrees

of freedom, and noted a strong dependence of the results on the number of nodes considered.

Contrary to the results obtained by other methods, they showed that the relative error on 〈xe〉
and

〈
x2e
〉

is not consistently larger than the relative error on energies.

Ackerman [Ack95] tested the influence of R, the radius of the two-dimensional FEM domain.

For Helium ground state, the effect of R on the results is obvious between 6.0 a0 and 9.0 a0

but there is not any significant influence of the domain radius on the results between 12.0 a0

and 15.0 a0. He also performed three-dimensional computations for the Helium atom and the

hydrogen ion H−, and faced instability of the Gaussian numerical integration and a divergence

of the results due to the singularity of the potential term. He proposed to solve this problem

by changing the coordinate system into Hylleraas coordinates sij , tij and uij defined from ri

and rj the first polar coordinates of the electrons i and j: sij = ri + rj , tij = ri − rj and uij

the distance between the electrons i and j [KM93, Rui05a, Rui05b]. Scrinzi [Scr95] studied the

influence of the coordinate system and showed the substitution r into exp (iαr) where 0 < α < π
2
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provides a higher accuracy with many fewer basis functions when comparing to classical FEM

computations. Other authors [AR93, AER94] proposed an alternative by using self-adaptive

meshes.

Tsuchida and Tsukada used the FEM, in LDA framework (see page 25), to solve the hydrogen

molecule [TT95b] and performed some pseudopotential calculations for silicium in the diamond

structure [TT95a]. They took advantage of the FEM to compute systems with large vacuum

regions, where a rough mesh is well adapted. These authors improved the method by using

non-uniform grids thanks to the adaptive curvilinear coordinates [TT96, TT98]. A review on

the use of the FEM to solve the Kohn-Sham equations of density functional theory was written

by Pask and Sterne [PS05].

In 1990, Sundholm and Olsen employed the FEM to compute only the radial part of the

electronic wave function in the framework of the Hartree-Fock method [SO90a]. They used this

numerical strategy to calculate the nuclear quadrupole moments of different systems [SO90b,

SO93, TSP98], and the electron affinities of various elements like manganese [SO95]. Alizadegan

et al. [AHM10] applied a “divide and conquer” algorithm to the finite element Hartree-Fock

calculations to supply parallelization and explore larger systems in the future.

The FEM has also been employed to solve directly the Schrödinger equation for lithium ground

state in a six-dimensional space [ZYD04].

Since the FEM has been so widely used in other areas, including in the industry, there is a

lot of expertise on the corresponding numerical solvers, optimization,... so numerical tools and

background are very ripe. The major drawback of the FEM is the need for extensive computer

core memory. The FEM also needs bounded domains whereas the quantum problem is defined

on an unbounded domain. In the following section, we present how we set up the finite element

method to solve the Hartree-Fock problem.
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3.2 The FEM strategy for the Hartree-Fock model

Chapter 2 detailed how the Galerkin approximation allows the reduction of the Schrödinger prob-

lem into the Hartree-Fock problem. Using the finite element method, the Galerkin approximation

is applied a second time to solve the Hartree-Fock problem in a finite-dimensional space.

3.2.1 Galerkin approximation

The unknowns {Φh,Λh, Gh} are estimated solving the weak form of the system in the finite-

dimensional spaces W
Φ, WΛ and W

G:

1

2
(∇Φh,∇δΦh)+(((Ven + tr (Gh)) I −Gh) Φh, δΦh)−(ΛhΦh, δΦh)+tr

[(

I −
w

R3
Φh ⊗ Φ∗

h

)

· δΛT
h

]

+ tr
[
∇Gh · ∇δGT

h

]
− 4π tr

[
(Φh ⊗ Φ∗

h) · δGT
h

]
= 0,

∀δΦh ∈ W
Φ, ∀δΛh ∈ W

Λ, ∀δGh ∈ W
G. (3.8)

An a priori analysis implies that this method converges to the solution [CLM06]. This

problem is a discrete nonlinear “eigenmatrix” problem. Here, the trial functions are based on

Lagrange polynomial functions of degree 2, and the numerical integration is done using Gaussian

integration [Joh09]. We detail in the following section the iterative solution method.

3.2.2 Newton method

The ideal algorithm to solve the Hartree-Fock problem should ensure global convergence with

a fast convergence rate and a low memory requirement. A lot of works have been done in this

domain to analyze and evaluate the existing algorithms and propose new alternatives [Can98].

Here we briefly overview the current propositions. We refer to [CLM06] for an introduction to

the topic, or to [DDE+03] for detailed explanations.

Two main types of solvers have been proposed to solve the quantum problem. The first is

the fixed-point methods such as Roothan’s algorithm [Roo51], level-shifting algorithm [SH73]

or DIIS algorithm [P.P82]. They are based on a generalized eigenvalue problem where for two

matrices R and M the eigenpair {λ, x} satisfies:

R.x = λM.x with x 6= 0.
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Roothan’s algorithm was historically the first algorithm used to tackle quantum problems. It

either converges towards a stationary point or oscillates between two states, none of them being

solution to the HF system. Currently, the most commonly used algorithm is the Direct Inversion

in the Iterative Subspace (DIIS) algorithm. It turns out to be very efficient in most cases, but

does not converge for some cases without rigorous explanation for that [CDK+03].

The second category of algorithms has been developed to solve the constraint optimization

problem. Different optimization algorithms are proposed in [CLM06]. They all consist in building

a sequence of iterates x which converges to the global minimizer of E. The next iterate xn+1

from xn is based on two choices: the choice of the direction dn, and the choice of the length tn

along this direction. These algorithms always converge but rarely towards the global minimum

for large systems or large function bases.

Full Newton method

Here we propose to apply Newton’s method to solve the system (3.8). The Newton method has

already been used by [FMS73] as an alternative to classical algorithms for solving the eigenvalue

problem . We detail the algorithm hereafter. For the sake of clarity, we describe it in the case of

the strong form of the system.

Starting from initial values
{
Φ0,Λ0, G0

}
, the iterative process consists in building a series of

increments 0, 1, 2, . . . , n while convergence is not reached. We present here how the increments

are defined at the step n+ 1 from the values of the unknowns at step n. Let us first define the

residuals at iteration n:







rnΦ = −1

2
∆xΦ

n + VenΦ
n + (tr (Gn) I −Gn) Φn − ΛnΦn,

Rn
G = −∆Gn − 4πΦn∗ ⊗ Φn,

Rn
Λ =

r
R3 Φ

n∗ ⊗ Φn − I.

(3.9)

The Newton method stems from a linearization of the system around the last iterate {Φn,Λn, Gn}.
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At step n+ 1, the small increments {dΛ, dΦ, dG} must satisfy:






0 = rn+1
Φ = rnΦ + dΛ (Φn) + Λn (dΦ) +

1

2
∆xdΦ− VendΦ− (tr (dG) I − dG) Φn

− (tr (Gn) I −Gn) dΦ,

0 = Rn+1
G = Rn

G +∆GdG+ 4π
(
dΦ⊗ Φn∗

+Φn ⊗ dΦ∗
)
,

0 = Rn+1
Λ = Rn

Λ −
r
R3

(
dΦ⊗ Φn∗

+Φn ⊗ dΦ∗
)
dx.

(3.10)

The problem consists in finding {dΛ, dΦ, dG} while
|dΛ|+ |dΦ|+ |dG|
|Λ|+ |Φ|+ |G| ≥ tol

max where |Λ| =
√

tr (Λ.ΛT ) and |G| =
√

tr (G.GT ).

The increments {dΛ, dΦ, dG} are defined from the solution of the linear system at step n. For

more clarity, we suppress indexes n:

Find {dΛ, dΦ, dG} such that:






−dΛ (Φ) + (tr (dG) I − dG) Φ +

(

−1

2
∆x •+VenI + tr (G) I −G− Λ

)

︸ ︷︷ ︸

F

.dΦ = rΦ,

∆GdG+ 4π (dΦ⊗ Φ∗ +Φ⊗ dΦ∗) = RG,

r
R3 (dΦ⊗ Φ∗ +Φ⊗ dΦ∗) dx = RΛ.

(3.11)

where F is the operator underlined in eq.(3.11). It is possible to eliminate successively dG:

dG = −∆−1
G RG −∆−1

G (4π (dΦ⊗ Φ∗ +Φ⊗ dΦ∗)) = GR +GΦ (dΦ) . (3.12)

The increment dG has two origins: GR the inverse Green function of the residual RG, and

GΦ (dΦ) an increment proportional to the increment dΦ. Then, the increment dΦ can also be

eliminated:

dΦ = F−1 (rΦ + dΛ (Φ)− (tr (dG) I − dG) Φ) = Φr +ΦG +ΦΛdΛ. (3.13)

It has three origins: Φr the image of the residual rΦ by the inverse of the Fock operator, ΦG an

increment linked with the increment dG and ΦΛ (dΛ) an increment proportional to the increment

dΛ. Finally, dΛ reads:

w

R3
(ΦΛdΛ)⊗s Φ dx = RΛ −

w

R3
(Φr +ΦG)⊗s Φ dx. (3.14)
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These loops are iterated until the convergence target error tol
max is reached. We generally

consider tolmaxgr = 10−6. One of the difficulties to solve the Hartree-Fock system is the very large

number of degrees of freedom. Figure 3.3 represents the number of functions to be evaluated

for atomic systems. For an unrestricted Hartree-Fock (UHF) strategy (see page 41), it increases

proportionally to the number of electronsNe asN1.6
e . This drastic increase is due to the numerous

interaction terms Gij . For cases where a restricted Hartree-Fock (RHF) strategy can be set up,

the increase is reduced and proportional to N1.3
e . For instance, the study of Chlorine, an atom

of 17 electrons, requires a UHF strategy and the estimation of 97 functions. Computing the

fundamental state of Argon, an atom of 18 electrons, requires only the estimation of 46 functions

by the RHF strategy.

Number of electrons

N
um

b
er

of
fu

nc
ti

on
s

(ϕ
i,
G

ij
) Unrestricted HF

Restricted HF
•
•

• • • •
• •

• • •

•

•

•

•
•

•
•

•

•

0

20

40

60

80

100

0 5 10 15 20

Figure 3.3: Number of degrees of freedom in three-dimensional computations depending on the

number of electrons for atomic systems in RHF or UHF conditions

Staggered Newton method

Due to the number of unknowns, stiffness matrices associated with the vector Φ and the matrix G

are very large and their consideration in linear solvers can demand a lot of memory. A staggered

strategy is set up to reduce memory requirements. For each step towards convergence,
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initial mesh, Φ0, Λ0, G0 = f
(
Φ0
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, i = 1, n = 1, m = 1

Calculate the group i: ϕ
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ij , G
n,m
ij ∀ j ≤ i
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Figure 3.4: Scheme of the numerical strategy applied to the Hartree-Fock problem
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the variables related to the same wave function i {ϕi,Λji, Gji if j 6 i} are lumped together in

Ngr groups.

Hn+1
11 Φn+1

1 +Hn
12Φ

n
2 = Λn+1

1 Φn+1
1

Hn
12Φ

n
1 +Hn+1

22 Φn+1
2 = Λn+1

2 Φn+1
2

Each group is estimated independently from the other ones. Therefore, the submatrices to be

inverted are much smaller. For the same memory cost, the number of nodes of the mesh can be

increased, and the accuracy of the results is improved. To optimize the accuracy of the results,

we can impose a constant number of functions by group and increase the number of groups, but

this alternative leads to an increase of the computation time.

It is important to note that all the components of the stiffness matrix relative to the matrix

G are identical. Memory requirement is reduced by saving the stiffness matrix and solving

simultaneously for different right-hand sides of the equation.

Figure 3.4 sums up the solution strategy. We use a staggered strategy and begin any com-

putation by determining the number of segregation groups Ngr. Then, three loops follow one

another. The first one estimates the unknowns relative to each group, when the other ones have

a fixed expression; the superscript m numbers the iteration, and the loop is stopped when the

error is inferior to the target error tolmaxgr . Once all the groups have been computed separately,

the error is estimated over all the unknowns. The second loop is iterated until the convergence

target error tol
max is reached. The iterations are numbered by n. The last loop controls the

number of degrees of freedom used to estimate any field ϕi or Gji and forces it to be superior to

dof
min.

Fixing the convergence criteria is a delicate task. Even if some authors propose results with

a high precision such as [OT11] which present results to the nearest 10−15 Ha, in most of the

litterature, energy estimates are provided experimentally or numerically to the nearest 10−3 Ha

[TCA08a, MHH12]. Usually, we choose tol
max
gr = 10−6, tolmax = 10−7 and dof

min = 100000, and

provide results to the nearest 10−4 Ha.

We now turn to the initial guesses applied to the iterative numerical method.
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Figure 3.5: Individual probability of presence for some eigenmodes of the H2 molecule
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Starting values of the unknowns

It has been proven that the Hartree-Fock system has a discrete spectrum of several eigenvalues

and eigenfunctions [Lio87]. The Newton method used here provides only one solution. The

algorithm does not guarantee that this solution is the ground state solution. Fonte et al. proved

in [FMS73] the existence and the local uniqueness of a solution of the Hartree-Fock equations by

the Newton iteration algorithm in some specific mathematical conditions which depend on the

modes provided as initial guesses. We can check a posteriori that approximate wave functions

are the ground-state solution by examining the number of nodes of the solutions i.e. the number

of points where the wave function has minimal amplitude. If the approximate solution is not

the ground state, it can be any eigenmode of the eigenmode spectrum. Figure 3.5 illustrates

different eigenmodes of the H2 molecule.

In the case of atoms or molecules with ionic bonds, we impose as initial guesses the ground

state hydrogen-like atomic orbitals. We list them below using the spherical coordinate system and

denoting Zeff the effective nuclear charge that is the positive charge experienced by an electron

taking into account the shielding effect due to the other electrons:

Mode 1s: χ1s (r) =
1√
π

Z
3
2
eff

exp (−Zeff r),

Mode 2s: χ2s (r) =
1

2
√
2π

Z
3
2
eff

(

1− Zeff r

2

)

exp

(

−Zeff r

2

)

,

Mode 2px: χ2px (r, θ, ϕ) =
1

4
√
2π
rZ

5
2
eff

exp

(

−Zeff r

2

)

sin θ cosϕ,

Mode 2py : χ2py (r, θ, ϕ) =
1

4
√
2π
rZ

5
2
eff

exp

(

−Zeff r

2

)

sin θ sinϕ,

Mode 2pz: χ2pz (r, θ) =
1

4
√
2π
rZ

5
2
eff

exp

(

−Zeff r

2

)

cos θ,

Mode 3s: χ3s (r) =
1

3
√
3π

Z
3
2
eff

(

1− 2Zeff r

3
+

2Z2
eff
r2

27

)

exp

(

−Zeff r

3

)

,

Mode 3px: χ3px (r, θ, ϕ) =
4

27
√
2π

Z
3
2
eff

(

Zeff r −
Z2

eff
r2

6

)

exp

(

−Zeff r

3

)

sin θ cosϕ,

Mode 3py: χ3py (r, θ, ϕ) =
4

27
√
2π

Z
3
2
eff

(

Zeff r −
Z2

eff
r2

6

)

exp

(

−Zeff r

3

)

sin θ sinϕ,

Mode 3pz: χ3pz (r, θ) =
4

27
√
2π

Z
3
2
eff

(

Zeff r −
Z2

eff
r2

6

)

exp

(

−Zeff r

3

)

cos θ.
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For molecules with covalent bonds, we can apply a linear combination of hydrogen-like or-

bitals, but predicting this linear combination is cumbersome for complex systems. Therefore,

initial values of the unknowns for molecules with covalent bonds are obtained as solutions of the

linearized system. The non-linear part is introduced gradually increasing the coefficient α from

0 to 1 like in a continuation method and we get for each α, {Φ(α),Λ(α), G(α)} defined by:







(

+
1

2
∇Φ,∇δΦ

)

+ ((Ven + α (tr (G) I −G)) Φ, δΦ) = (ΛΦ, δΦ) , ∀δΦ ∈ W
Φ,

tr
[
∇G.∇δGT

]
= tr

[
(4πΦ⊗ Φ∗) .δGT

]
, ∀δG ∈ W

G,

tr
[(
I −

r
R3 Φ⊗ Φ∗

)
.δΛT

]
= 0, ∀δΛ ∈ W

Λ.

(3.15)

The first computation is made with α = 0. Then, the solution obtained is used as the initial

values of the functions for a computation considering α = δα. Iteratively, solutions obtained

when α = (n − 1) δα are used as initial values for computations with α = n δα until α = 1.

Generally, we impose δα = 0.2.

3.2.3 Artificial boundary conditions

The Hartree-Fock system is a set of equations defined on a three-dimensional unbounded space

whereas the FEM is conventionally designed to work on bounded domains. Even if infinite

elements [Ast00, Kum00], or generalized finite element method [NB76] can be possible strategies

to solve such problems, we choose to apply the FEM on bounded domains with special boundary

conditions.

For isolated systems, the FEM domain Ω is a sphere whose radius is R. To reduce parasite

effects of the external boundaries, the spherical boundary of the domain is chosen to be far from

the different nuclei. To limit the volume of computation to a sphere not too large, we introduce

artificial boundary conditions [EM77].

Far from the nuclei, we approximate wave functions as spherical waves:

ϕi|r→∞ = ϕ0 exp
ikir . (3.16)
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Neglecting the effect of Coulombian potentials in this area, we establish from the Hartree-Fock

system (2.24) that k2i = 2Λii. Therefore, in cases of materials at ground state (with negative

electronic energies), the boundary conditions for the wave functions Φ are:

∂ϕi

∂r

∣
∣
∣
∣
r→∞

= −
√

−2Λiiϕi. (3.17)

The interaction terms Gij are approximate solutions of Laplace’s equations whose second terms

involve themselves the wave functions ϕi and ϕj . The radial approximation at the boundary is

difficult to establish. We write it from the convolution form defined by eq.(2.16):

∂Gij

∂r

∣
∣
∣
∣
r→∞

=
(

−
√

−2Λii −
√

−2Λjj

)

Gij . (3.18)

External boundary conditions imply some parasite effects, especially when the size of the FEM

domain gets smaller. In Table 3.2, we compare the energy estimates for the Helium atom applying

aforesaid conditions and Dirichlet conditions that impose approximate wave functions to vanish

on the spherical boundary. In the case of the Helium atom, we conclude that a radius greater

than 20 a0 is large enough to cancel the effect of the type of boundary conditions. However, the

boundary can have an effect due to the estimation of the energy defined by the integral on a

bounded domain of Equation (2.23), whereas the quantum problem is defined on an unbounded

domain.

Radius of the domain (a0) Order of magnitude of the difference

in estimates of electronic energy

between radiative and Dirichlet conditions (Ha)

5 10−4

10 10−9

15 10−15

≥ 20 < 10−15

Table 3.2: Influence of the boundary conditions on the estimation of the energy of the Helium

atom for different radii of the FEM domain



66 Chapter 3

3.2.4 Mesh and adaptivity

We use tetrahedrons to partition the three-dimensional FEM domain. For axisymetrical modes as

explained below, triangular elements mesh the FEM domain. With real-space methods, localized

refinement seems appealing to optimize the number of degrees of freedom, and perform large

scale ab initio calculations. As wave functions present a singularity near the nuclei, we impose

an initial mesh refined in these critical zones. Another approach would be to use generalized

finite element method [NB76].

Adaptive coordinate transformations [TT96, TT98] or self-adaptive meshing [AR93] allow

to locally refine the estimation of the wave functions. To improve the quality of the numerical

solution, we employ a mesh adaptivity method and ensure that a minimum number of degrees

of freedom dof
obj is used to estimate any function. The mesh is optimized with respect to the

local error.

Adaptivity can be set up for different quantities of interest and different norms. We use the

L2 norm. The mesh and so the results depend on the quantity considered to refine the mesh.

(a) Initial mesh (b) Adaptivity on (c) Adaptivity on (d) Adaptivity on

all the unknowns the 2s mode the 2pz mode

19 453 dof 109 081 dof 150 017 dof 131 621 dof

Figure 3.6: Meshes of adaptive computations for the Neon atom on a FEM domain of radius 40 a0:

Initial mesh (a) and different meshes obtained after two adaptive iterations (b,c,d)

Figure 3.6 presents different meshes obtained after two iterative steps for different quantities
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of interest. Considering all unknowns, new nodes are evenly added into the FEM domain.

Considering a localized wave function such as the 2s mode, the new nodes are localized in a

small area near the nucleus. For a less localized wave function such as the 2pz mode, nodes are

added in a larger area around the nucleus. Considering the error on the interaction terms Gij ,

the mesh is refined far from the nucleus.

As the error estimator is not unique, the choice of an accurate estimator is crucial. Chapter 5

focuses on this topic. For the first calculations presented here, error is estimated with respect to

all unknowns using the Euclidian norm based on the local residual.

3.2.5 Symmetry simplifications for atoms and linear molecules

In the case of atoms and linear molecules i.e. molecules in which all bond angles are 180 degrees,

all one-electron wave functions can be broken up into two independent functions: in-plane func-

tions ϕrz
i depending on the two dimensions r and z, and axial functions ϕθ

i depending only on

the angle θ [Bre30]:

ϕi(r, θ, z) = ϕθ
i (θ)ϕ

rz
i (r, z). (3.19)

In these cases, axial functions ϕθ
i are spherical harmonics that depend on the magnetic quantum

number mi (defined in Appendix E) of the wave function considered:

ϕθ
i (θ) = eimiθ. (3.20)

For more general cases, a spherical harmonics development would be possible. The “building-

up” principle, also called the Aufbau principle, allows for the knowledge a priori of the second

quantum number mi of each one-electron wave function, and so the electron configuration of the

different atoms (Appendix D).

The FEM domain can be reduced to a two-dimensional one, a half-disk whose radius is denoted

R: Ω = {(r, z), r ≥ 0,
√
r2 + z2 6 R}. In some peculiar cases, due to the symmetry of the wave

functions, we could use only a quarter of a disk.
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Figure 3.7: Number of degrees of freedom by node in two-dimensional computations depending

on the number of electrons for atomic systems in RHF or UHF conditions

Axial Boundary Conditions

∂Φ(0, z)

∂r
= 0

∂G(0, z)

∂r
= 0

Artifical External Boundary Conditions

∂ϕi(r, z)

∂ρ
=

√
−2Λii ϕi

∂Gij(r, z)

∂ρ
= r

(√
−2Λii +

√
−2Λjj

)
Gij

Figure 3.8: Boundary conditions considered on the 2D FEM domain
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In the two-dimensional space (r, z), find (ϕrz
i ,Λij) such that:

(
Ne∑

j=1
ei(mj−mi)θΛijϕ

rz
j , δϕ

rz
i

)

= −1

2

[

(∇rzϕ
rz
i ,∇rzδϕ

rz
i )−

(
m2

i

r2
ϕrz
i , δϕ

rz
i

)]

+

((

Ven + trGrz −
Ne∑

j=1
Grz

ji

)

ϕrz
i , δϕ

rz
i

)

,

tr
(

∇rzG
rz
ij .∇rzδG

rz
ij

)

− (mi −mj)
2

r2

(

Grz
ij , δG

rz
ij

)

= tr
((

4πϕrz
i ⊗ ϕrz∗

j

)

.δGrzT
ij

)

,

tr
((

Iij − ei(mi−mj)
r
R3 ϕ

rz
i ⊗ ϕrz∗

j

)

.δΛT
ij

)

= 0,

∀δϕi ∈ W
ϕ, ∀δGij ∈ W

Gij , ∀δΛij ∈ W
Λij .

(3.21)

The derivation of the weak formulation in two-dimensional space is detailed in Appendix H.

We have calculated systems for which the second quantum number is equal to -1, 0 or 1. These

three values of the second quantum number match three degenerate eigenmodes. The equations

are identical for the values +m or −m of the second quantum number. We choose to calculate

only the eigenmodes for the non-negative values of mi. This strategy leads to a decrease of the

number of functions to be computed and to get rid of degeneracy between the three modes.

Figure 3.7 shows how the number of unknowns is reduced considering only the positive values

of mi.

For instance, to compute the fundamental state of argon, the number of functions to be

evaluated is reduced from 46 to 35. Figure 3.9 shows how the three-dimensional solutions are

built once the two-dimensional modes have been computed.

For the axial boundary (r = 0), supposing ϕi = eimiθϕrz
i (r, z), the boundary conditions

depend on the parity of mi for the one-electron wave function ϕi:






∃k ∈ N mi = 2k
∂ϕi(0, z)

∂r
= 0,

∃k ∈ N mi = 2k + 1 ϕi(0, z) = 0.

(3.22)

and for the components Gij of the matrix G:






∃{k, k′} ∈ N
2, mi = 2k and mj = 2k′,

∂Gij(0, z)

∂r
= 0,

else, Gij(0, z) = 0.

(3.23)
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2D 1st and 2nd modes =⇒ 3D 1st and 2nd modes (|ϕ1|2 = 0.13)

2D 3rd and 4th modes =⇒ 3D 3rd and 4th modes (|ϕ3|2 = 0.13)

2D 5th and 6th modes =⇒ 3D 5th and 6th modes (|ϕ5|2 = 0.13)

2D 7th and 8th modes =⇒ 3D 7th and 8th modes (|ϕ7|2 = 0.13)

Figure 3.9: Probability of presence of the different modes of the Oxygen atom in two-

dimensional (r, z) and three-dimensional (r, θ, z) spaces
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For the circular external boundary (ρ = R), as developed for three-dimensional cases, we use a

plane wave approximation far from the nuclei and we subject the one-electron wave functions ϕi

to the following boundary condition:

∂ϕi(r, z)

∂ρ
=
√

−2Λii ϕi, (3.24)

and the components Gij of the matrix G, solution of Laplace’s equations, to:

∂Gij(r, z)

∂ρ
= r





√

m2
i

r2
− 2Λii +

√

m2
j

r2
− 2Λjj



Gij . (3.25)

Figure 3.8 illustrates the boundary conditions for the vectors Φ and G in the particular case of

all the wave functions have a second quantum number which equals 0.

3.3 Summary

In this chapter, the finite element method strategy used to solve the Hartree-Fock system is

presented. This numerical method combines the advantages of both basis-oriented and real-

space-grid approaches. We choose as the iterative method the Newton method and evaluate

residuals at each step. The calculation is stopped when convergence on a quantity of interest

(such as the total energy, or the wave function itself. . . ) is obtained.

Difficulties in solving the Hartree-Fock system lie in the number of degrees of freedom, the

singularities of the wave functions and the different eigenfunctions which can be solution of

the system. To overcome difficulties due to the number of degrees of freedom, the algorithm

integrates a staggered solver and mesh adaptivity. Initial guesses are hydrogen orbitals or the

solutions of the linearized problem. But, the algorithm does not guarantee to provide a global

optimizer. The number of nodes of the solution wave functions is checked a posteriori for being

equal to the number of nodes of the expected modes.

This chapter has introduced the numerical strategy for the Hartree-Fock problem. The same

approach is used to compute the virtual modes and estimate the CI energy. The CI model is used

to increase the accuracy of the estimation and needs a large FEM domain, and a large number

of degrees of freedom to be pertinent. But, with a large radius of the FEM domain, it is difficult

to obtain convergence of the virtual modes.
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Figure 3.10: Fields computed for the Hartree-Fock modelization of the ground state of the BeH2

molecule
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Figure 3.10 shows the different two-dimensional fields computed to characterize the BeH2

molecule (composed of three atoms and six electrons): three one-electron wavefunctions ϕ1, ϕ2,

ϕ3 and six interaction terms G11, G22, G33, G12, G13 and G23.

3.4 Large scale perspectives

The Hartree-Fock or post-Hartree-Fock problems are generalized eigenvalues problems. These

problems have cubic complexity, which is the bottleneck in dealing with many electron systems.

Different strategies have been developed to overcome this difficulty [CA08].

To circumvent the curse of dimensionality, a reduced basis approximation method is suggested

by Maday and Razafison [MR08]. They consider a space of approximation smaller than the

usual Hartree-Fock space, it is spanned by a small number of well chosen solutions. Other

authors propose a separated representation strategy [AMCK06a, AMCK06b, AC08] or Proper

Generalized Decomposition [Nou10]. This strategy can be seen as elaborate derivative of the

decomposition on atomic orbitals basis.

By a modal analysis, a first strategy consists in computing only the significant modes. Only

the modes that can participate in the formation of chemical bonds are involved in material prop-

erties, they are called valence modes [vBG80]. Modes that are not perturbed by the surrounding

atoms such as the first mode of the Beryllium atom (Figure 3.11) are called core modes. An

idea to reduce the complexity of the calculation is to compute only the valence modes. Core

electrons are included into nuclear potentials through pseudopotentials or core effective poten-

tials [Pic89]. These potentials are established by preliminary computations on isolated atoms.

Technical aspects of this method are explained in [PTA+92].

Solutions of electronic problems are generally localized and pertinent information is only given

by the valence modes outside the regions surrounding nuclei [YC82]. To take advantage of this

property, Slater proposed in 1937 a localized model refinement called the muffin-tin approxima-

tion to treat periodic materials [Sla37]. Potentials between nuclei and electrons were supposed to
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Figure 3.11: Core and valence modes: core modes are not very perturbed by the surrounding

atoms such as the first mode of the Be atom (individual probabilities of presence for the one-

electron modes of the Be atom, the H atom and the BeH2 molecule)
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be spherically symmetrical within spheres surrounding the atoms, and constant outside. Wave

functions were expanded in spherical harmonics and radial solutions of the wave equations within

the spheres, and in plane waves outside the spheres, joining continuously at the surface.

Recently, Barrault [Bar05, BCHLB07] applied a technique of domain decomposition and

turned the unique problem into several localized minimization problems under constraint. He

showed a localized convergence of the algorithm, scalability up to 1000 processors in 1D and

possible extension to 2D/3D domains. The domain decomposition method provides linear com-

plexity with respect to the number of electrons in the system.





Chapter 4

Ab initio quantities of interest

This chapter is devoted to the numerical results obtained by the Hartree-Fock method described

in Chapter 2 and the numerical strategy detailed in Chapter 3. First, we focus on the individual

electronic wave functions that completely describe any atomic system. Then, we exploit them to

provide other physical information: mechanical quantities such as bonding forces, bond stiffness,

or electric properties such as dipolar moment and polarizability tensor.

4.1 The one-electron wave functions

Quantum mechanical computations provide the wave function of the system. In the case of the

Hartree-Fock model, we compute the one-electron wave functions. In two-dimensional computa-

tions, each one-electron wave function is described by its field in the plane (r, z) and its magnetic

quantum number.

We only examine the one-electron wave functions of the ground state.

4.1.1 Geometrical distribution of the individual wave functions

Figure 4.1 and Figure 4.2 represent, respectively, the probability of presence of the one-electron

wave functions of the Beryllium and the Oxygen atoms. In both cases, the nucleus of the atom

is located in (0; 0). We note that all individual wave functions are localized in an area near the

nucleus. The probability of presence decreases rapidly to almost vanish far from the nucleus. To
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1st and 2nd modes (m1=m2=0) 3rd and 4th modes (m3=m4=0)

e1 = e2 = −4.7297 Ha e3 = e4 = −0.3155 Ha

R99,1 = R99,2 = 1.11 a0 R99,3 = R99,4 = 5.53 a0

Figure 4.1: Individual probability of presence for the ground-state modes of the Beryllium atom

(HF model)
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1st and 2nd modes (m1=m2=0) 3rd and 4th modes (m3=m4=0)

e1 = −20.7343 Ha e3 = −1.4293 Ha

e2 = −20.6594 Ha e4 = −1.0939 Ha

R99,1 = R99,2 = 0.4959 a0 R99,3 = 2.3880 a0

R99,4 = 2.4796 a0

5th and 6th modes (m5=m6=0) 7th (m7=1) and 8th (m8=−1) modes

e5 = −0.6265 Ha e7 = e8 = −0.6335 Ha

e6 = −0.5389 Ha

Figure 4.2: Individual probability of presence for the different modes of the Oxygen atom

(HF model)
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e1 = −4.7297 Ha e2 = −0.3155 Ha

m1 = 0 m2 = 0

Be atom

e1 = −20.7343 Ha e3 = −1.4293 Ha e5 = −0.6265 Ha e7 = e8 = −0.6335 Ha

e2 = −20.6594 Ha e4 = −1.0939 Ha e6 = −0.5389 Ha

m1 = 0 m2 = 0 m3 = 0 m4 = 1

O atom

Figure 4.3: Profiles of the one-electron wave functions in the r direction (in blue) and in the z

direction (in red) for the Beryllium atom and the Oxygen atom (HF model)
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characterize the extent of the modes, we define a distance R99 as the radius of a sphere in which

the probability of presence of all the electrons is 99%.

The Beryllium atom comprises four electrons whereas the Oxygen atom contains eight elec-

trons. We can see that when the number of electrons in the atom increases, the new occupied

modes are more diffused far from the nucleus.

Comparing the different modes of a same atom in Figure 4.3, we observe that the more

diffused modes are those with the highest eigenvalues. The number of nodes, zeros of the wave

functions, increases with the frequency of the stationary system and so with the energy of the

modes.

Among all the stable natural elements, we focus our study on the isolated atoms of the elements

between the hydrogen and calcium atoms in the periodic table because these elements are pre-

ponderant in the chemical makeup of traditional materials. Results are introduced in Table 4.1.

For instance, let us examine the estimation for the Helium atom. The energy of the Helium

atom is estimated to be −2.86412 Ha which is far from the experimental estimation −2.901

Ha [DHC91] considered as “exact” estimation. The configuration interaction approximation im-

proves the estimation to −2.86413 Ha using 10 determinants. Comparing with other numerical

solutions of the Hartree-Fock problem (−2.8552 Ha [JGP93] and −2.8612 Ha [Kob12]), we can

see that our result is in concordance with the literature data. A better accuracy would need a

refined model considering dynamic and relativistic effects. For other atoms, the comparison is

similar. For instance, [JGP93] provides for the Lithium atom the HF total energy 7.4314 Ha

whereas our estimation is 7.4351 Ha (experimental estimation: 7.47821 Ha [DHC91]).

Beyond isolated atoms, we investigate the one-electron wave functions of systems in which

different nuclei are linked to form an isolated molecule.

4.1.2 Individual wave functions in bonds

In the case of molecules, the one-electron wave functions allow for an understanding of the

bonding state of the molecule and how the different electrons are involved in the bond. In
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Atom Z 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode

H 1 -0.5000

He 2 -0.9185

Li 3 -2.4786 -0.1983

Be 4 -4.7297 -0.3155

B 5 -7.69275 -0.5033 -0.3208

C 6 -11.3263 -0.7077 -0.4389

N 7 -15.6539 -0.9595 -0.5477

O 8 -20.6969 -1.2616 -0.5996

F 9 -26.32485 -1.5571 -0.746125

Ne 10 -32.8242 -1.9622 -0.8082

Na 11 -40.3591 -2.7646 -1.6000 -0.1868

Mg 12 -49.4694 -4.1683 -2.6193 -0.1263

Al 13 -58.3814 -4.8939 -3.3419 -0.4027 -0.2379

Ar 18 -118.6267 -12.3322 -9.4544 -1.2929 -0.5867

Ca 20 -152.941 -17.0782 -13.4365 -2.2930 -1.3202 -0.2127

Table 4.1: Estimation of the electronic energy for ground-state one-electron modes for isolated

atoms (in hartree) considering R = 2000 a0 and 200 000 dof by function



Ab initio quantities of interest 83

Figures 4.4, 4.5, 4.6 and 4.7, we represent respectively the one-electron wave functions of the

LiH, HF, C2 and BeH2 molecules, and of the isolated atoms that compose them.

Some one-electron wave functions in the molecules have a very similar shape and energy to

those of the isolated atoms. The electrons associated with those wave functions are core electrons

of the atoms which are very stable and little disturbed by their surroundings. On the other hand,

some modes in the molecule have been largely disturbed when compared with those of isolated

atoms. The electrons associated with those modes are the valence electrons; they create the

bond between the atoms to form the molecule. The way the valence electrons behave to form the

bond characterizes the material. For prevailing covalent character of the bond, the one-electron

wave functions are “shared” between atoms (for instance in C2, BeH2 or O2 molecules). If some

one-electron wave functions initially centered around one nucleus are delocalized around another

nucleus, the bond is considered as ionic such as in the HCl, NaH or HF molecules.

Studying the one-electron wave functions is cumbersome due to the number of fields to be

examined, and assessment of the results is strenuous. To overcome these problems, we can focus

on the global electronic density of the system.

4.2 The electronic density

The electron density defined by equation (1.40) provides a unique field to analyze and understand

the bonding state of the system. Its approximation by the Hartree-Fock model reads:

ρHF (x) = |Φ|2. (4.1)

Using the CI model (see Chapter 2), it is evaluated by:

ρCI (x) =

Nd∑

k=1

|αk|2|Φk|2 +
Nd∑

K=1

Nd∑

L=1
L 6=K

αKα
∗
LδϕK

1 ϕL
1
. . . ϕK

a ϕ
L∗

a . . . δϕK
Ne

ϕL
Ne
. (4.2)

where δϕK
i ϕL

i
= 1 if ϕK

i = ϕL
i and δϕK

j ϕL
i
= 0 if ϕK

i 6= ϕL
i . Figure 4.9 illustrates these electronic

densities, and so the bonding character, in the H2, LiH, BeH2, HF, NaH, HCl, and C2 molecules.

It can be compared with experimental results obtained by analyzing diffraction results. New

techniques are developped to measure directly the wave functions [LSP+11]. We present here

only results for isolated systems, for which we cannot provide diffraction results.
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H atom LiH molecule Li atom

H

Li

H

Li

1st mode 1st and 2nd modes 1st and 2nd modes

e1 = −0.5000 Ha e1 = e2 = −2.4469 Ha e1 = −2.4871 Ha

e2 = −2.4700 Ha

Li

H

Li

3rd and 4th modes 3rd and 4th modes

e3 = e4 = −0.3062 Ha e3 = −0.1983 Ha

Figure 4.4: Individual probability of presence for the different modes of the H atom, the Li atom

and the LiH molecule (HF model)
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H atom HF molecule F atom

H

F

H

F

1st mode 1st and 2nd modes 1st and 2nd modes
e = −0.5000 Ha e = −26.3504 Ha e = −26.3249 Ha

F

H

F

3rd and 4th modes 3rd and 4th modes
e3 = e4 = −1.6264 Ha e3 = e4 = −1.5571 Ha

F

H

F

5th and 6th modes 5th and 6th modes
e5 = e6 = −0.7970 Ha e5 = e6 = −0.6831 Ha

F

H

F

7th, 8th, 9th and 10th modes 7th, 8th and 9th modes
e7 = e8 = e9 = e10 = −0.5858 Ha e7 = e8 = e9 = −0.8092 Ha

Figure 4.5: One-electron probability of presence of the H atom, the F atom and the HF molecule

(HF model)



86 Chapter 4

H atom BeH2 molecule Be atom

H

Be

H

H

Be

1st mode 1st and 2nd modes 1st and 2nd modes

e1 = −0.5000 Ha e1 = e2 = −4.6685 Ha e1 = e2 = −4.7297 Ha

Be

H

H

Be

3rd and 4th modes 3rd and 4th modes

e3 = e4 = −0.5020 Ha e3 = e4 = −0.3155 Ha

Be

H

H

5th and 6th modes

e5 = e6 = −0.4510 Ha

Figure 4.6: Covalent bond: individual probability of presence for the modes of the Be atom, the

H atom and the BeH2 molecule (HF model)
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C atom C2 molecule C atom

C C

C C

1st and 2nd modes 1st and 2nd modes 1st and 2nd modes

e1 = −11.3487 Ha e1 = e2 = −11.3653 Ha e1 = −11.3487 Ha

e2 = −11.3038 Ha e2 = −11.3038 Ha

C C

C C

3rd and 4th modes 3rd and 4th modes 3rd and 4th modes

e3 = −0.8303 Ha e3 = e4 = −11.3287 Ha e3 = −0.8303 Ha

e4 = −0.5851 Ha e4 = −0.5851 Ha

C C

C C

5th mode 5th and 6th modes 5th mode

e5 = −0.4420 Ha e5 = e6 = −0.9321 Ha e5 = −0.4420 Ha
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C
C

C C

6th mode 7th and 8th modes 6th mode

e6 = −0.4358 Ha e7 = e8 = −0.4321 Ha e6 = −0.4358 Ha

C

C

9th, 10th, 11th and 12th modes

e9 = e10 = e11 = e12 = −0.4283 Ha

Figure 4.7: Individual probability of presence for the different modes of the C atom and the C2

molecule (HF model)



Ab initio quantities of interest 89

We focus on the energy of the system to determine the nuclei positions at equilibrium.

4.3 Prediction of molecular geometry

We compute the total energy of the system by the Hartree-Fock model and by the configuration

interaction model. The positions of the nuclei at equilibrium match the minimum of the total

energy.

For instance, for an isolated molecule of H2, Figure 4.8 represents the total energy of the

H2 molecule as function of the bond length. We estimate the equilibrium bond length would

be 1.41 a0, which is in concordance with literature data [DG89]. We note that to determine

the equilibrium bond length to the nearest 0.01 a0, we need estimate of the total energy of the

system to the nearest 10−4 Ha. To predict this quantity to the nearest 0.001 a0, we should need

estimation of the total energy of the system to the nearest 10−6 Ha.

1 1.2 1.4 1.6 1.8 2

−1.14

−1.12

−1.1

−1.08

−1.06

Bond length (a0)

T
ot

al
 e
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rg

y 
(H

a)

Figure 4.8: Total energy of the H2 molecule as function of the bond length (R = 2000 a0 and

dof = 200000)
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H

H

Li

H

Be

H

H

H2 LiH BeH2

H

F

H

Na

H

Cl

HF NaH HCl

C

C

C2

Figure 4.9: Computed electronic density for different molecules by HF
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4.4 Mechanical properties

The first mechanical quantity we derive from quantum computations is the stress tensor defined

by equation (1.2). To evaluate the derivative of the energy with respect to the deformation, we

can compute the fundamental energy for different positions of the nuclei near the equilibrium

position, as illustrated on Figure 4.8. The value of the energy is estimated in each case and a

plot of energy vs deformation is obtained. The slope of this curve is the derivative of the energy

with respect to the deformation. The shortcoming of this method is the need to compute many

times the same molecule for different bond lengths.

4.4.1 Stress computation

Computing the forces at a given configuration without calculating at neighboring configura-

tions can be done from the perturbation expression of the energy using the Hellmann-Feynman

theorem [Fey39]. The stress tensor σ is defined as:

δE

Ω
= tr (σ.ε)

where E is the total energy of the system, Ω the volume associated with this energy and ε is

the homogenized deformation due to the nuclei displacements δXNj
such that δXNj

= ε
(
XNj

)
.

From equation (1.33), a variation of the total Hamiltonian δH implies a variation of the wave

function δΨ and of the total energy δE which satisfies:

(H − E) δΨ+ (δH − δE)Ψ = 0. (4.3)

As Ψ is the normalized solution of the Schrödinger problem, considering the product of equa-

tion (4.3) with Ψ∗, we have:

δE = (δHΨ,Ψ) . (4.4)

Considering there is no external electric field, the variation of the total energy of the system is

expressed as a function of the variation of the total hamiltonian:

δH = δVen + δVnn =

Nn∑

C=1






∇XC

VCe +

Nn∑

K=1
K 6=C

∇XC
VCK , ε (XC)






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where XC is the coordinate of the nucleus C. The interaction potentials (defined page 14) reads

VCe =
−ZC

|x−XC |
and VCK =

ZCZK

|XC −XK | . The gradients read:

∇XC
VCe = −ZC

x−XC

|x−XC |3
and ∇XC

VCK = ZCZK
XC −XK

|XC −XK |3 . (4.5)

Therefore,

δE =

Nn∑

C=1







w

R3Ne
−ZC

x−XC

|x−XC |3
|Ψe|2dx+

Nn∑

K=1
K 6=C

ZCZK
XC −XK

|XC −XK |3 , ε (XC)






. (4.6)

We see through this formula that the variation of the nucleus-electron interaction energy due

to the deformation is the mean of the Coulomb potential gradient with respect to the deformation

weighted by the probability of presence of the particles. To identify the stress tensor, we express

the variation of the energy as the trace of a tensor:

δE = tr







Nn∑

C=1







w

R3Ne
−ZC

x−XC

|x−XC |3
|Ψe|2dx+

Nn∑

K=1
K 6=C

ZCZK
XC −XK

|XC −XK |3







⊗ ε (XC)






. (4.7)

As a⊗A(b) = [a⊗ b] .AT , the stress tensor reads:

σ =
1

Ω

Nn∑

C=1







w

R3Ne
−ZC

x−XC

|x−XC |3
|Ψe|2dx+

Nn∑

K=1
K 6=C

ZCZK
XC −XK

|XC −XK |3







⊗S XC . (4.8)

The stress tensor is built-up from three effects:

• the interaction between nuclei,

• the interaction between nuclei and electrons,

• the interaction between nuclei and the external electric field.

Considering the Hartree-Fock approximation, it can be expressed as:

σHF =
1

Ω

Nn∑

C=1







(

−ZC
x−XC

|x−XC |3
|Ψe|2Φ,Φ

)

+

Nn∑

K=1
K 6=C

ZCZK
XC −XK

|XC −XK |3







⊗S XC . (4.9)
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This can be computed easily from the HF available integrals. Additionnally, using the configu-

ration interaction approximation, we have:

σCI =
1

Ω

Nn∑

C=1







Nd∑

A=1

Nd∑

B=1

αAα
∗
B

(

−ZC
x−XC

|x−XC |3
|Ψe|2ΦA,ΦB

)

+

Nn∑

K=1
K 6=C

ZCZK
XC −XK

|XC −XK |3






⊗SXC .

(4.10)

We get thus the following result: Provided nuclei positions and the solution of the Schrödinger

equation, the stress tensor σ can be estimated from nucleus-nucleus and nucleus-electron dipoles.

As a generalization from atomic electrostatics, the dipoles are added for each atomic particle but

are weighted by the probability of presence for electrons.

4.4.2 Elasticity tensor computation

The elasticity tensor describes the linear elastic behavior of the material:

σ = C (ε) .

It can be computed from the second-order variation of the energy of the system submitted to

an homogeneous deformation defined before, and appears as the coefficient of the quadratic

expansion of the strains:

δ2E = tr [C (ε) .ε] .

As Ψe is the normalized solution of the Schrödinger equation, it can be shown from Equation (4.3)

that:

δ2E = 2
(

(δH − δE) δΨ⊥,Ψ
)

+
(
δ2HΨ,Ψ

)
(4.11)

where δΨ⊥ = − (H − E)−⊥ (δV − δE)Ψ and (H − E)−⊥ stands for the orthogonal inverse of

this operator.

δ2E = −2
(

(∇XN
VNK , ε (XN ))− ((∇XN

VNe, ε (XN ))Ψ,Ψ)2 (H − E)−⊥Ψ,Ψ
)

+
(
D2

XNXM
(VNK + VNe) (Ψ,Ψ) (ε (XN )) , ε (XM )

)

The elasticity tensor C is calculated by the following expression:
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C = +
1

Ω

(

−2

((

ZNZM
XN −XM

|XN −XM |3 , XN

)

−
((

−ZC
x−XN

|x−XN |3
Ψm

Em − E0
Ψm

)

,Ψm

)

Ψ0

)

+
(
D2

XNXM
VΨ,Ψ

))
⊗ (XN ⊗XM ) . (4.12)

The elasticity tensor requires a configuration interaction computation. It reads:

C = +
1

Ω

(

−2

((

ZNZM
XN −XM

|XN −XM |3 , XN

)

−
(

α0αm

(

−ZN
x−XN

|x−XN |3
Φm

Em − E0
,Φm

)

αmΦm

)

α0Φ
0

)

+
(
D2

XNXM
V αAΦ

A, αBΦ
B
))

⊗ (XN ⊗XM ) . (4.13)

We obtain thus the following result: C is built up from quadrupole contributions, with clas-

sical terms for the atoms and weighted by the wave functions for the electrons. The quadrupole

tensors are defined by:

D2
XNXM

VNe =
ZN

|x−XN |3/2
(

I − 3

2

x−XN

|x−XN | ⊗ 1

)

, (4.14)

D2
XNXM

VNM =
ZNZM

|XN −XM |3/2
(

I − 3

2

XN −XM

|XN −XM | ⊗
XN −XM

|XN −XM |

)

. (4.15)

At that scale, σ depends on the Hessian matrices of the interaction potential with respect to

the position of the nuclei. Thus, the elasticity properties of the systems depends on quadripoles.

They are derived from an elastic potential, and all materials are hyperelastic. The remaining

problem is to define the volume Ω in which the energy E is localized. For crystal cases, this

volume can be considered to be the elementary cell volume. For molecule cases, the problem is

more difficult. A priori, molecular wave functions are defined in an unbounded domain. Stress

field cannot be established locally, therefore we do not evaluate, in that case, the stress and

elasticity tensors, but the bond force and the bond stiffness.

4.5 Numerical results

Table 4.2 presents our numerical results for H2, LiH, BeH2 molecules.

4.6 Three-dimensional computations

To tackle more complex systems, we need to perform three-dimensional computations. We test

the feasibility of such computations. For instance, Figure 4.10 illustrates the three modes of
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the BeH2 molecule computed in a three-dimensional domain. These computations require high-

performance computers and long computation time.

4.7 Summary

In this chapter, we have computed the ground state of isolated systems by determining their one-

electron wave functions which match the mimimal energy of the system. From this information,

we have derived different characteristics: the electronic energy, the positions of the nuclei, the

mechanical and electrical properties of the molecules. Comparing the results with the literature,

the proposed numerical approach seems promising.

We face two main challenges: increase the accuracy of the results and tackle large systems.

As presented in Chapters 2 and 3, we have applied twice the Galerkin method and reduce the

solution space to ΩCI∩Ωh. To increase the accuracy of the results, the two major options consists

in enlarging the space ΩCI by adding determinants to the linear combination, or in enlarging the

space Ωh by increasing the radius of the FEM domain, adding nodes to the mesh or by increasing

the order of the trial function polynomials.

To estimate the accuracy of our results and to optimize computations, i.e. to get the best

estimation possible without increasing too much the computational cost, we propose a posteriori

error estimates in the next chapter.

We have presented in Chapter 3 the main possibilities to tackle large systems. Here, we focus

only on results for some isolated atoms and molecules, but most systems interact with their

environment. Appendix J provides details of the method that is applied to model perfect solid

crystals.



96 Chapter 4

Table 4.2: Numerical results

Molecule H2 LiH BeH2

HF bond length (in a0) 1.41 2.98 2.52

HF total energy (in Ha) -1.1343 -7.9905 -2.052

HF bonding forces (in a.u.) F z
H1

= −0.2467 F z
Li = −1.3239 F z

Be = 0.0001

F z
H2

= 0.2467 F z
H = 60.562768 F z

H = 84.3572

HF dipolar moment (in debye) 0.00 6.84 0.00

Figure 4.10: Surfaces of isoprobability of presence |ϕi|2 = 0.03 for the ground-state modes of

the BeH2 molecule (positions of the atoms: H(0;−2.52; 0) Be(0; 0; 0) H(0; 2.52; 0))
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Error indicator for quantum mechanics

quantities of interest

Chapter 4 provides estimation of some nanometric characteristics using the Hartree-Fock or the

post Hartree-Fock equations and the finite element method. The goal was to describe molecular

systems through their wave functions, and to determine their mechanical characteristics.

As for experimental approach, this numerical simulation cannot provide exact information.

Estimating the accuracy of the results is of great interest to assess their reliability. Defining

the sources of error allows the optimization of the modeling and the numerical strategy, and the

achievement of a compromise between model accuracy and computational costs.

In the first part of this chapter, we list the difference sources of error in our numerical compu-

tations. Then, we briefly present available tools for error estimation, and overview the previous

works about error estimation for ab initio computations. In the last part of this chapter, we

apply the dual-weighted residual method to estimate the computational errors.

5.1 How exact are our results ?

The accuracy of a computation is estimated through some quantities of interest. Quantum

computations can provide various quantities, and the accuracy of the computation can differ
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with the quantity considered.

5.1.1 Different quantities of interest

The goal of quantum computations is to describe a system by its wave function. To encapsulate

this description into a unique quantity, we concentrate on the average weighted by the probability

of presence of the electrons of any function F (x) of the distribution of the electrons and assume

that the corresponding function is bounded:

〈F (x)〉 =
w
F (x)P (x) dx. (5.1)

Thus, we consider the average of the function F0(x) = 1 weighted by the probability of presence

of the electrons, i.e. the electronic energy of the system:

〈 1 〉 =
w
Ψ∗

e (x) .Ψe (x) dx = Ee, (5.2)

or the average of the functions F1(x) = x, F2(x) = x2 or F3(x) = x3 weighted by the probability

of presence of the electrons:

〈x 〉 =
w
Ψ∗

e (x)xΨe (x) dx, (5.3)

〈
x2
〉
=

w
Ψ∗

e (x)x
2Ψe (x) dx, (5.4)

〈
x3
〉
=

w
Ψ∗

e (x)x
3Ψe (x) dx. (5.5)

Error estimates can be established for quantities of major interest in a special context e.g. the

mechanical properties, or it can focus on the most penalizing quantity to qualify a computa-

tion used for different applications. Whatever the quantity considered, we require a reliable

assessment strategy.

Our results can be evaluated by comparing them with literature data. This comparison can

qualify the accuracy but it is difficult to make profit from it to improve the accuracy, or to

optimize the computer effort. To improve our estimations, we should identify the sources of

errors and evaluate the influence of each source.
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Quantum computations do not involve empirical parameters but rely on several approximations

(see Chapter 2 and Chapter 3). In the next section, we investigate the different origins of error,

and how important they seem to be in our computations.

5.1.2 The various origins of error

[ZY04] underlines three main sources of error in FEM models of quantum problems. The first

one is the spectrum approximation of the Schrödinger spectrum due to the bounded domain.

The second one is the error due to the finite-dimensional piecewise basis, and the third one is

due to the iterative algorithm.

We can detail more precisely the different sources of errors solving the quantum mechanics

problems by the strategy introduced in Figure 5.1.

Real Problem

Schrödinger equation

Non-relativistic electronic Schrödinger equation

Hartree-Fock or post Hartree-Fock system

Solution of the Numerical Problem

Modeling erSchrö

Non-relativistic and Born-Oppenheimer approaches ersimpl

Reduction of the solution space erCI

Solving the numerical problem by FEM erR + erdof + eriter

Figure 5.1: From the real problem to the numerical solution

A first source of error erSchrö comes from the Schrödinger modelization of the real problem.

Then, the Schrödinger problem is simplified using the Born-Oppenheimer hypothesis and the non-

relativistic assumption; what induces an error ersimp. The solution of the simplified Schrödinger
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equation is approximated by the Hartree-Fock system, the solution space is reduced, and an error

erCI is induced. Physicists called this error correlation energy. In HF solution, the probability

of finding simultaneously the electron 1 in x1 and the electron 2 in x2 reads as the product of

two probabilities P12 (x1, x2) = |Φ1 (x1) |2|Φ2 (x2) |2, thus these two random events are mathe-

matically non correlated. The Hartree-Fock problem is defined on an unbounded domain, but

we solved it by FEM on a bounded one. We denote erR the error due to the bounded domain.

We denote respectively erdof and eriter the errors due to the approximation by discretization

on the FEM domain, and to the iterative method aiming at convergence.

To describe these numerous sources of error, we can contemplate them in the classical model

verification and validation process illustrated by Figure 5.2.

Reality of interest

Computer model Conceptual model

Simulation Outcomes Modeling

Software Implementation
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Modeling and Simulation Activities

Assessment Activities

Figure 5.2: Simplified view of the model verification and validation process [Sch79, Sar09]
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The real problem is modelized by a mathematical problem, which is implemented to get a

computer model. This computer model is supposed to output simulation describing the real

system. Here, the part of the error due to the modelization of the problem is the sum of erSchrö,

ersimpl, and erCI. The validation of the Schrödinger model is out of the scope of our work. The

software implementation of the simplified Hartree-Fock model involves error due to the FEM

numerical characteristics: erFEM = erR + erdof + eriter. We can notice that using ab initio

models, contrary to classical models, no empirical parameters are involved in the computations

and in the source of errors.

In Chapter 4, we have compared our estimation to the literature and show their concordance

(see page 81). Here, we vary the FEM numerical characteristics to observe their impact on

the results. Figures 5.3, 5.4 and Table 5.1 provides the energy estimation of the Helium atom

for different numerical parameters: the number of degrees of freedom, the radius of the FEM

domain, and for different numbers of determinants in the CI expansion.
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 R =500 a0

Figure 5.3: Estimation of the helium ground-state electronic energy with respect to the number

of degrees of freedom used for each function for different FEM domain radii: Ee (R, dof)

On Figure 5.3, we note that the energy estimation converges when the number of degrees of

freedom is increased. We increase enough the number of nodes to obtain an estimation of the
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electronic energy to the nearest 10−5Ha. Figure 5.4 shows the influence of the FEM domain

radius on the energy estimation.
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Figure 5.4: Estimation of the helium ground-state electronic energy with respect to the FEM

domain radius: Ee (R)

Between the FEM radii of 1000 a0 and 1250 a0, the estimation varies by 2.10−4 Ha. Between

the FEM radii of 1250 a0 and 1500 a0, the estimation varies by 10−4 Ha. We conclude a FEM

radius of 2000 a0 allows to get consistent results at the nearest 10−4 Ha imposing a minimum

number of 180000 nodes. Using a larger radius would need a larger number of nodes. For

instance, a radius of 2500 a0 requires 230 000 nodes to get a result at the nearest 10−4 Ha.

We examine the different terms of electronic energy separately on Figure 5.5. We can see

that the influent term on the dependance on the FEM radius is the term involving the electron-

electron interaction, i.e. Gij terms. – As introduced in Chapter 2, a third way to improve result

accuracy is by enlarging the CI solution space. Table 5.1 presents the electronic energy estimation

for different CI linear combinations. The exactitude of the results is improved by increasing the

number of determinants.

These results show the variability of the numerical estimation. To improve the estimation, we

have increased the solution space, which implies to increase the computation time, and the
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Figure 5.5: Influence of the FEM domain radius on the different terms of the helium ground-state

electronic energy

1 det -2.86412

5 det -2.86415

15 det -2.86432

Table 5.1: Estimation of the helium ground-state electronic energy (in Ha) for different numbers

of determinants involved in the CI linear combination (R = 2000 a0)
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memory requirement. Error estimation is an efficient tool to evaluate results, and so decide if

it is pertinent to refine the model or not, and which strategy is more convenient. In the next

section, we briefly overview some error estimation techniques.

5.2 A very short overview of the state of the art

The error estimation state of the art is only briefly presented here. Details can be provided

by [AO00].

5.2.1 Error estimate

The goal of error estimate is to compare the exact problem Ax = b, defining the solution x by the

operator A and the right-hand side b with the approximate problem Ahxh = bh, which defines

the approximate solution xh by the approximate operator Ah and the approximate right-hand

side bh. We call approximation error the quantity e = x − xh, it cannot be computed as the

exact solution x is unknown.

A priori error estimation methods deal with the truncaton error τ = Ah (x− xh). They

assume some stability properties of the surrogate operator Ah, but also interpolation errors.

Here, we apply a posteriori error methods based on the residual ρ = A (x− xh). In that case,

some stability properties of the unperturbed operator A are required.

Main error estimators proposed in the literature can be classified into four categories:

• methods based on equilibrium residuals [BR78a, BR78b];

• methods based on error in mechanical behaviour relationship [Lad95];

• methods based on dual analysis [BR01];

• methods based on hierarchical basis [BS93].

These different methods are detailed in [Ver96]. We choose an approach based on dual

analysis and develop it hereafter.



Error indicator for quantum mechanics quantities of interest 105

Traditionally, error estimate aimed at evaluating effects of numerical approximations, for in-

stance error estimate due to the approximation of the continuous exact operator A by a discrete

approximated one Ah.

Error in model qualifies error due to the simplification of a reference mathematical model to a

simplified mathematical one [Cha07]. A cascade of hierarchized models can be defined [OVM99],

and the reference model can be chosen among this hierarchy. Some casual reference models

and their surrogate models are given by Table 5.2. The analysis of model error can be made

with respect to a specific quantity of interest [CO97, VO01, OP02, OBN+05], or with a global

standpoint [OZ97, Ain98]. Model and discretization errors cand be handled separately or simu-

latenously [BE03].

Reference model Simplified model

heterogeneous model homogeneous model [OZ97, OVM99, VO01]

3D model 2D model [CO97]

viscoelastic model elastic model [Cha07]

atomic model continuum model [PBO06, KM12]

Schrödinger model Hartree-Fock model

Multiconfiguration model Hartree-Fock model [Fri03, Lew04]

CI model Hartree-Fock model

Table 5.2: Some examples of simplication of reference model

Beyond error estimate theory developped in a mathematical framework, error estimates have

been proposed specifically for many disciplines. Hereafter, we focus on works about error estimate

in the context of atomic computations.

5.2.2 Error estimate for ab initio computations

The accuracy of the first quantum computations was examined using the virial theorem [Huo65].

In the case of HF, numerical errors have been analyzed in [MT03] and modeling errors as com-

pared with the Thomas-Fermi model have already been studied in [Bac92]. The intention is to
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extend such estimation techniques of the modeling error to more sophisticated approximations

such as CI approximation. Without error estimation, some methods have actually been proposed

to optimize CI estimations in [CRS+98, BMT05, FB60], but these methods are rather heuris-

tic or limited to symmetric configurations. [Fri03] and [Lew04] introduce relevant mathematical

results about CI optimization in the multiconfiguration strategy context.

The objective here is to propose a general approach taking advantage of the recent progress

in error estimation techniques [BE03, OP02, OPW+03]. The goal is not to develop new solution

techniques for the calculation of electronic structures of materials, a research topic of high interest

and actively being studied (see for example [SCS10] and references therein) but to propose a new

strategy that would help optimizing the precision of the calculation with respect to its complexity.

5.3 A first investigation of error indicators with respect to me-

chanical and quantum quantities of interest

In the subsequent paragraphs we explore the approach based on duality arguments to investigate

different quantities of interest [BR01, BR03]. Because of time limitations we have not been able

to perform the associated computations but we believe that the theoretical aspects discussed

below deserve to be presented here.

We shall consider three quantities : the ground energy, the probability of presence and finally

the evaluation of mechanical stresses.

5.3.1 Error indicator for the ground energy

For the sake of simplicity, exact solutions or solutions obtained from a refined model will be used

without any subscript and approximate solutions will be equipped with the subscript h. Thus

the wave function Ψ and ground energy E are exact solution of the Schrödinger equation whose

weak form is:
1

2
(∇xΨ,∇xδΨ) + (VΨ, δΨ) = E (Ψ, δΨ) + δE

(
1− |Ψ|2

)
,

and the approximate solutions Ψh and Eh are solutions of the following weak form on a smaller
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function space according to the Galerkin approximation:

1

2
(∇xΨh,∇xδΨh) + (VΨh, δΨh) = Eh (Ψh, δΨh) + δEh

(
1− |Ψh|2

)
.

Ψh may either come from the Hartree-Fock solution or the CI scheme or from a finite element

approximation.

To find a representation of the error in ground energy, we use the following functional:

J (E,Ψ) = E|Ψ,Ψ|2 (5.6)

which is equal to E according to the normalization of the wave function. Associated with this

functional, we consider the following Lagrangian L with adjoint state (z, Ez):

L (E,Ψ, Ez, z) = J (Ψ) +
1

2
(∇ψ,∇z) + (VΨ, z)− E (Ψ, z) + Ez (1− (Ψ,Ψ)) . (5.7)

If we write the optimality equations for this Lagrangian: δL = 0, we find the following equations:






(Ψ,Ψ) = (Ψ, z)

E = Ez

z = Ψ

(5.8)

which means that here, for the ground energy estimation, the adjoint state is equal to the wave

function itself. But more interestingly, the following error representation is easily obtained:

E − Eh = L (Eh,Ψh, Eh,z,Ψh,z)− L (E,Ψ, Ez, z) . (5.9)

A Taylor expansion of the Lagrangian around the approximate solution is performed. Rannacher

shows that the residual term is usually of the third order and may be neglected. We will assume

that this is actually the case, although this term may be fully computed in our case. Thus, to

first order, we obtain by computing the first order derivative of the Lagrangian:

E − Eh =
1

2
((E − Eh) ((Ψh,Ψh)− (Ψh, zh))− Eh (Ψ− δΨh, zh))

+
1

2
(∇ (Ψ− δΨh) ,∇zh) + (V (Ψ− δΨh) , zh)

+2 (Eh − Ezh) (Ψ− δΨh,Ψh)− Eh (Ψh, z − δzh)

+
1

2
(∇Ψh,∇ (z − δzh)) + (VΨh, z − δzh) + (Ez − δEzh) (− (Ψh,Ψh) + 1) +Rh
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with Rh the so-called residual term. Taking into account the stationarity equations, the preceed-

ing equation is simplified to:

E − Eh = −Eh (Ψh, z − δzh) +
1

2
(∇Ψh,∇ (z − δzh)) + (VΨh, z − δzh) +Rh (5.10)

where δzh is any quantity belonging to the reduced space of approximation because of the

Galerkin projection property. We identify the right hand side of the above equation as the

a posteriori residual of the approximate solution Ψh tested on the difference between the exact

adjoint z and any test function δzh belonging to the space of approximation.

In the finite element literature, it is classical to choose δzh as the interpolant of z and then

to rely on interpolation errors. But from a practical point of view, the test function z − δzh is

usually chosen on a refined mesh during post-processing. Here we are satisfied by invoking a

refined model: for instance if the zh solution has been obtained via the Hartree-Fock scheme,

z − δzh will be obtained by the CI formulation where wave functions orthogonal to the original

approximation are built. Let us call z⊥h this wave function. Then the following error indicator is

obtained:

|E − Eh| ≤
∣
∣
∣
∣

1

2

(

∇Ψh,∇z⊥h
)

+
(

VΨh, z
⊥
h

)
∣
∣
∣
∣
. (5.11)

It should be noted that although the multidimensional Schrödinger equation is used, the quan-

tities in the right hand side may be computed by the Hartree-Fock approach and the associated

integrals. Let us assume for instance that Ψh has been computed from a HF approach:

Ψh =
1√
Ne!

det
[

Φ̃h

]

. (5.12)

Then z⊥h is computed on the CI basis with Nv virtual modes and Nd determinants:

z⊥h =

Nd∑

A=1

αAdet
[

Φ̃A
v

]

, (5.13)

and the indicator is computed correspondingly by :

1

2

(

∇Ψh,∇z⊥h
)

+
(

VΨh, z
⊥
h

)

=

Nd∑

A=1

αA

[
1

2

(
∇Φh,∇Φv

Ah

)
+
(
VneΦh,Φ

v
Ah

)
−
(
(Gh − trGhI) (Φh) ,Φ

v
Ah

)
]

(5.14)

where the orthogonality between Ψh and z⊥h has been taken into account.
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5.3.2 Error indicator for the probability of presence

We continue with error representation with another quantity, the wave function Ψ itself. To

reach this goal still following the dual-weighted residual method argument, we choose among

many possibilities the following functional:

J (Ψ) =
w

Ω
|Ψ|2dx (5.15)

intended to estimate the electronic density on a given subdomain Ω chosen eventually close to a

given stack of nuclei to investigate bonding. We have:

(
J ′ (Ψ) , δΨ

)
=

w

Ω
(ΨδΨ∗ +Ψ∗δΨ) dx. (5.16)

The same formal Lagrangian L is used:

L (E,Ψ, Ez, z) = J (Ψ) +
1

2
(∇ψ,∇z) + (VΨ, z)− E (Ψ, z) + Ez (1− (Ψ,Ψ)) , (5.17)

and the stationarity of L provides the following equations:







−1

2
∆z + V z − Ez = 2EzΨ− J ′ (Ψ)

(Ψ, z) = 0

Ez =
1

2
(J ′ (Ψ) ,Ψ) =

1

2

r
Ω |Ψ|2dx.

(5.18)

The dual Lagrange multiplier Ez is equal to half the probability of presence. The adjoint

state z, which is now distinct from Ψ, should satisfy the following Schrödinger equation with a

right hand side:

− 1

2
∆z + V z − Ez = J (Ψ)Ψ− J ′ (Ψ) . (5.19)

We can define JΨ⊥

= J ′ (Ψ) − (J ′ (Ψ) ,Ψ)Ψ as the right hand side of the adjoint state

equation. It is important to notice that the second stationary equation implies that z must be

chosen orthogonal to Ψ so that the adjoint problem of the Schrödinger equation is well posed,

at least if the ground state is not degenerated (non-multiple eigenvalue). We will assume that

such is the case here and we remark that Larson has published an approach to deal with error

estimate for degenerated eigenmodes [Lar00].
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We can proceed with error representation of the electronic density, in a similar way as above,

by developing the difference between the exact and approximate Lagrangian:

J − Jh = L (Eh,Ψh, Eh,z, zh)− L (E,Ψ, Ez, z) . (5.20)

By taking into account simultaneously the stationarity of the Lagrangian and the Galerkin prop-

erty, we arrive at:

J (Ψ)− J (Ψh) =
1

2

[
1

2

(

∇Ψh,∇δz⊥h
)

+
(

VΨh, δz
⊥
h

)

− Eh

(

Ψh, δz
⊥
h

)]

+
1

2

[

−
(

δΨ⊥
h , J

′ (Ψh)−
(
J ′ (Ψh) ,Ψh

)
Ψh

)

+
1

2

(

∇δΨ⊥
h ,∇zh

)

+
(

V δΨ⊥
h , zh

)

− Eh

(

δΨ⊥
h , zh

)]

(5.21)

where, apart from the third order term Rh, two a posteriori residuals appear: the first one with

respect to the direct and approximate wave Ψh and the other one with respect to the approximate

dual state zh. It is interesting to simplify the right hand side for the adjoint state:

−
(

δΨ⊥
h , J

′ (Ψh)−
(
J ′ (Ψh) ,Ψh

)
Ψh

)

= −
(

δΨ⊥
h , J

′ (Ψh)
)

= −
w

Ω

(

δΨ⊥Ψ∗
h + δΨ⊥∗

h Ψh

)

dx

(5.22)

where orthogonality between different states has been accounted for. It should be pointed that

the last integral does not vanish only for two waves δΨh and Ψh which are not orthogonal on

the domain Ω.

This equation leads to the error indicator:

|J (Ψ)− J (Ψh) | ≤
1

2

∣
∣
∣
∣

(

Ψ⊥
h , J

Ψ⊥

h

)

+
1

2

(

∇Ψ⊥
h ,∇zh

)

+
(

VΨ⊥
h , zh

)

− Eh

(

Ψ⊥
h , zh

)
∣
∣
∣
∣

+
1

2

∣
∣
∣
∣

1

2

(

∇Ψh,∇z⊥h
)

+
(

VΨh, z
⊥
h

)

− Eh

(

Ψh, z
⊥
h

)
∣
∣
∣
∣

(5.23)

where Ψ⊥
h , z⊥h are appropriate test functions orthogonal to the original approximate solution.

We have seen that the CI scheme for instance just provide such orthogonal waves which can thus

be employed to indicate the error on the functional when the HF approximation is looked for.

We would like to remark again that all the integrals involved in the evaluation of both

residuals are integrals of the same type as the one involved in the HF or MC formulations and

thus can be evaluated similarly.
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5.3.3 Error indicator for the mechanical stresses

We conclude this chapter with the estimation of error for mechanical quantities such as the

stresses whose expression has been derived in the preceeding chapter. To reach this goal we

choose the following quadratic functional where a is any constant vector and a summation is

implied with respect to the nuclei XA:

J (Ψ) = ((∇XA
V (XA) , a)Ψ,Ψ) . (5.24)

This functional allows to explore error on each component of the mechanical stress, or on a

criterium such as the Von-Mises criterium. The gradient J’ is given by:

(
J ′ (Ψ) , δΨ

)
=

w

R3Ne
(∇XA

V, a) (ΨδΨ∗ +Ψ∗δΨ) dx. (5.25)

It is recalled that the gradient with respect to the nuclei position XA of the Coulomb potential

acts actually as a dipole:

∇XA
V = − x−Xa

|x−XA|3
.

Here we consider only the component of the stresses which contribute to its estimation

through the wave function, where the electrostatic dipole is weighted by the square of the wave

function. This is thus a quadratic functional which is now used. The Lagrangian is built along

the same lines, as mentionned now several times:

L (E,Ψ, Ez, z) = J (Ψ) +
1

2
(∇ψ,∇z) + (VΨ, z)− E (Ψ, z) + Ez (1− (Ψ,Ψ)) . (5.26)

Its stationarity implies that:







Ez =
1

2
(J ′ (Ψ) ,Ψ) =

1

2
J (Ψ)

−1

2
∆z + V z − Ez = J (Ψ)Ψ− J ′ (Ψ)

(Ψ, z) = 0.

(5.27)

Now the dual Lagrange multiplier Ez is equal to half the studied stress component. Another

interesting result is obtained: The adjoint state is orthogonal to the direct wave and its right

hand side is given by a dipole potential minus its average probability.
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Following similar computations as above the following error indicator is provided:

|J (Ψ)−J (Ψh) | ≤
1

2

∣
∣
∣
∣
−
(

δΨ⊥
h , J

′ (Ψh)
Ψ⊥

h

)

+
1

2

(

∇δΨ⊥
h ,∇zh

)

+
(

V δΨ⊥
h , zh

)

− Eh

(

δΨ⊥
h , zh

)
∣
∣
∣
∣

+
1

2

∣
∣
∣
∣

1

2

(

∇Ψh,∇δz⊥h
)

+
(

VΨh, δz
⊥
h

)

− Eh

(

Ψh, δz
⊥
h

)
∣
∣
∣
∣

(5.28)

where it is recalled that the chosen functional J used gives the quantum mechanics contribution

to the stress tensor through the dipole.

Similar considerations may be developped for the elasticity tensor but will be omitted here.

It should be noted one more time that although the multidimensional Schrödinger equation

is used, the quantities in the right hand side may be computed by the Hartree-Fock approach

and the associated integrals.



Conclusions and Perspectives

This dissertation introduces an original approach to model the behavior of a material at the

nanoscale. At the bottom of the scale ladder for mechanics of materials, this scale allows the

exploration of local defects, interfaces,... It does not satisfy Newtonian mechanics, but quantum

mechanics. This work proposes to solve the Schrödinger equation by applying twice the Galerkin

approach. First, the Schrödinger equation is solved in the Hartree-Fock or the configuration

interaction solution space. Second, both these electronic problems have been implemented to

be variationally solved in a finite-dimensional space by the FEM. This FEM approach allows

the computation of the electronic structure in a real-space basis and the local refinement of the

basis where it is most needed. The numerical model is solved by Newton’s method. From the

approximate wave functions, the behavior of the system has been mechanically characterized

at the nanoscale. The numerical strategy has been validated for simple and isolated systems:

atoms and linear molecules. To evaluate the accuracy of the results and optimize computation

efforts, error estimates have been proposed for both numerical and model approximations and

for different quantities of interest. The finite element strategy in this context is promising to

optimize computations.

To conclude this exploratory dissertation at the frontier between mechanics, physics, and

applied mathematics, many perspectives can be proposed. They can be classified into three

main categories. The first goal is to optimize the existent tool, the second one to transform it

into a muti-scale tool, and the last one to design a numerical tool able to tackle “real-world”

problems.

113
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Optimization of the numerical tool

The model can be numerically optimized for two objectives: increasing the accuracy of the results

or increasing the size of the modelized systems.

To gain in acuracy, error estimate could be improved to better optimize our computations,

and to propose other dedicated error estimates for various quantities of interest and possibly a

local model refinement.

To gain in terms of memory requirement and tackle large systems, different strategies detailed

in Section 3.4 could be explored to reduce the number of degrees of freedom. A first strategy

reduces the number of unknowns by computing only the valence modes, knowing the core modes

from previous computations of isolated atoms. A second strategy simplifies the test functions

using proper generalized decomposition. The last proposition consists in reducing the size of the

stiffness matrix by applying domain decomposition, or localized model refinement.

Multi-scale modeling

The Hartree-Fock method is appropriate to study systems of several atoms. To study larger

electronic systems, DFT or Monte Carlo methods would be more convenient. Therefore, we plan

to equip our numerical tool with DFT or Monte-Carlo solvers.

Then, these different methods could be coupled to study large systems providing precision of

the Hartree-Fock method, or to determine efficiently some DFT functionals by solving an inverse

problem from a Hartree-Fock solution.

This multi-scale simulation would find great interest in using methods such as the Arlequin

method, a superposition method that uses energetic and volume coupling of the information

provided by different scales or models. This strategy can couple two continuum models, or even

a discrete atomic model with a continuum one [PCDB09]. With a same approach, coupling a

continuum electronic model with a discrete atomic model could be proposed.

Engineering applications

In the long term, it would be of great interest to provide a tool sharp enough to be used as

a foundation stone to model complex materials. This challenge will be possible only with a
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highly-optimized tool and a high-performance computer. Many engineering applications could

be explored. As detailed in Introduction, this nanoscale information could be for instance useful

to take into account defects in crystallized materials, to explore interfacial performances or to

model complex nano-structures such as concrete.

To conclude the work presented here which have focused only on the numerical simulations,

we highlight that for “real-world” applications, numerical simulations should be employed in

parallel with experimental studies. The laboratory MSSMat offers a high expertise in nanoscopic

experimentation as well using scanning electron microscopy, transmission electron microscopy,

atomic force microscopy, tunneling effect microscopy, nanoindentation, or X-ray diffractometry.

In a such context, a numerical tool exploring that scale could allow a dialog between experiments

and simulations.
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Appendix A

A brief description of microscopes

To investigate experimentally the structure of a material, there are two main approaches available

which are microscopy or physico-chemical analyses. In this Appendix, we present a brief summary

of the different families of microscopes employed to obtain images of samples.

Optical microscopy

Historically, the first technique developped was optical or light microscopy. It uses visible light

transmitted through or reflected from the sample. A single or multiple lenses magnify the view of

the sample. Optical microscopy has three major limitations. Only dark and strongly refracting

objects can be observed. The resolution is limited by diffraction approximately around 0, 2µm

(and to 2000× magnification). Points outside the focal plane give an unfocused image which

reduces the clarity of the picture.

Because resolution depends on the wavelength of the input wave according to Bragg’s law,

an idea was to develop microscopes with a low-wavelength input wave. X-ray microscopy has a

better resolution than optical microscopy, but it is less common than electron microscopy which

has a better resolution.
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Electron microscopy

Electron microscopes produce electronically magnified images of samples. They use an electron

beam, which is focused by electrostatic and electromagnetic fields used as “lenses”. The wave-

length of electrons is about 100,000 times shorter than the visible light wavelength. Therefore,

the diffraction limit is lower and their magnification is better. It can go to 2,000,000×.

The original form of electron microscopes is the transmission electron microscope (TEM). It

uses a high-voltage electron beam (40 to 400 keV) which is partially scattered by the specimen.

The transmitted electron beam contains information about the structure of the specimen. It

is projected onto a viewing screen coated with a fluorescent material, such as phosphorus, or

scintillating material such as zinc sulfide.

The resolution of TEM is limited by spherical aberration. However, hardwares correcting

this aberration have been developed to create the High Resolution TEM (HRTEM). This new

technology gives images with resolution below 0, 5.10−10 m.

With the scanning electron microscope (SEM), the electron beam does not contain information

about the specimen. The electron beam loses energy in contact with the specimen which converts

it into other forms such as the emission of low-energy electrons (conventionally used signal), light

emission (cathodoluminescence) or X-ray emission. The SEM maps the intensity of any of these

signals.

Its resolution is generally about one order of magnitude poorer than the one of a TEM.

However, SEMs are interesting since they provide a great depth of field, and give a good three-

dimensional representation of the sample.

TEMs and SEMs are the most widely used electron microscopes. Among other electron mi-

croscopes, the Reflection Electron Microscope (REM) detects the reflected beam of elastically

scattered electrons. The Low-Voltage Electron Microscope (LVEM) uses a relatively low electron

voltage of 5 kV. The weakness of the voltage improves the contrast of the image, which reduces

or even eliminates the need to stain polymers to enhance contrast. Generally, the samples need

to be thinner (20-65 nm) than samples for TEM microscopes.
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Electron microscopes require stable high-voltage supplies, stable currents for electromagnetic

lens, pumped vacuum systems, cooling water circulation through the lenses, and special devices

to cancel the external magnetic field.

Beyond light or electrons, other particles can be used to ray the sample. Particle accelerators

use magnetic and electric fields to propel charged particles to high speed. They provide high

quality wave source: high intensity, large wavelength spectrum, high stability. With X-ray

diffraction, they allow for the study of cristallography. To get a high resolution, the atomic

de Broglie microscope is currently being developed. It will use neutral Helium atoms as probe

particles and will give a nanometer-order resolution [DGR+99].

Another microscopy is the scanning probe microscopy.

Scanning probe microscopy

Scanning probe microscopes are based on atomic-scale interactions. It does not focus on the

interaction between a wave and the sample, but between a probe and the sample. A probe tip

scans the sample in the vicinity of it to collect information and build a picture of it.

The resolution varies depending on the technique used. It is limited by the size of the volume

of interaction between the probe and the sample, which is largely dependent on the size of the

probe. Currently, probes with a tip radius of 5-10 nm can be produced.

Scanning tunneling microscopy (STM) relies on quantum tunneling. It allows the aquisition of

the map of the electronic densities for conductor materials. According to [Bai00], a good STM

resolution is 0.1 nm lateral resolution and 0.01 nm depth resolution.

Atomic force microscopy (AFM) gives the topography of the surface of the sample. It is

based on the attractions and repulsions between the atoms of the surface of the sample and

the probe tip. Depending on the application, it can be used in contact (static) modes or in

non-contact (dynamic) modes where the cantilever is vibrated. The resolution is about 10 nm

lateral resolution and 0.1 nm depth resolution. It can be used for non-conductor materials.
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Scanning near-field optical microscope collects evanescent waves at the vicinity of the sample

(at a distance much smaller than the wavelength of the light). With this technique, the critical

parameter is the size of the detector aperture. The resolutions are about 20 nm for lateral

directions and 2-5 nm for the vertical direction.
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Periodic Table

The periodic table is a tabular presentation of the 118 known chemical elements. Although there

were precursors, the periodic table is generally credited to Mendeleev [Men69].

Elements are presented by increasing atomic number, the number of protons in the nucleus.

By definition, each element has a specific atomic number. For uncharged atoms, the number of

electrons is equal to the atomic number. Thus, provided the number and the nature of atoms

to be simulated, this table allows for the determination of the total number of electrons in the

system.

The horizontal rows are called periods. The vertical columns lump together elements with

similar properties e.g. alkali metals, halogens, noble gases. Therefore, the horizontal rows contain

some gaps.



1
4
8

A
p
p
e
n
d
ix

B

1H 2He

3Li 4Be 5B 6C 7N 8O 9F 10Ne

11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar

19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr

37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe

55Cs 56Ba 57La 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn

87Fr 88Ra 89Ac

58Ce 59Pr 60Nd 61Pm 62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68Er 69Tm 70Yb 71Lu

90Th 91Pa 92U 93Np 94Pu 95Am 96Cm 97Bk 98Cf 99Es 100Fm 101Md 102No 103Lw

Table B.1: Periodic table of the elements
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Atomic units

Using the international system of units is cumbersome to describe the nanoscale quantities. It

is more convenient to employ the so-called atomic units system.

Two families of atomic units exist: the Hartree atomic units and the Rydberg atomic units,

which differ in the choice of the mass unit and the charge unit. In the Hartree system, the mass

unit and the charge unit are respectively the electron rest mass me and the elementary charge e.

In the Rydberg system, they are 2me and
e√
2
. In this dissertation, we use only the Hartree

system.

Table C.1 specifies the physical constants chosen as the fundamental units in the Hartree

system.

Dimension Name Symbol Value in SI units

Mass Electron rest mass me 9, 110.10−31 kg

Charge Elementary charge e 1, 603.10−19 C

Angular momentum Reduced Planck’s constant ~ = h
2π 1, 055.10−34 J.s

Electric constant Coulomb’s constant κ = 1
4πε0

8, 988.109 kg.m3.s−2.C−2

Table C.1: Fundamental units of the Hartree atomic system
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We highlight that all the elementary quantities (length, time, mass, electric current, thermo-

dynamic temperature, amount of substance and luminous intensity) not have an atomic unit.

For example, for electromagnetic studies, the atomic units system is complemented by some SI

units or cgs units.

From the four fundamental atomic units, we can derive other units. Table C.2 mentions some

derived atomic units.

Dimension Name Symbol Expression Value in SI units

Length Bohr radius a0
4πε0~2

mee2
5, 292.10−11 m

Energy Hartree energy Ha ~2

mea20
= me

(
e2

4πε0~

)2
4, 360.10−18 J

Time ~

Eh
2, 419.10−17 s

Electric field Eh

e.a0
5, 142.1011 V.m−1

Force Eh

a0
8, 239.10−8 N

Pressure Eh

a30
2, 942.1013 Pa

Table C.2: Derived units of the atomic system
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Electron configurations of the atoms

Appendix B contains the periodic table, which gives the number of protons specific to each

chemical element. For uncharged systems, the number of electrons in the electronic cloud is equal

to the number of protons in the nucleus. Beyond the number of electrons, the key information is

the electron configuration, i.e. the distribution of the electrons in the spectrum of the one-electron

eigenmodes.

The electron configuration can be established by the Aufbau principle, also called the “building-

up” principle. This Appendix lists the electron configurations of the 94 atoms which occur

naturally on Earth.

Among all the electrons of the electronic cloud, the chemical properties are determined by

the valence electrons, i.e. the electrons related to the outermost modes far from the nucleus.

Therefore, atoms with the same valence configuration exhibit similar properties.
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Element Z Electron Element Z Electron

Configuration Configuration

Hydrogen H 1 1s1 Cadmium Cd 48 [Kr] 5s2 4d10

Helium He 2 1s2 Indium In 49 [Kr] 5s2 4d10 5p1

Lithium Li 3 1s2 2s1 Tin Sn 50 [Kr] 5s2 4d10 5p2

Beryllium Be 4 1s2 2s2 Antimony Sb 51 [Kr] 5s2 4d10 5p3

Boron B 5 1s2 2s2 2p1 Tellurium Te 52 [Kr] 5s2 4d10 5p4

Carbon C 6 1s2 2s2 2p2 Iodine I 53 [Kr] 5s2 4d10 5p5

Nitrogen N 7 1s2 2s2 2p3 Xenon Xe 54 [Kr] 5s2 4d10 5p6

Oxygen O 8 1s2 2s2 2p4 Caesium Cs 55 [Xe] 6s1

Fluorine F 9 1s2 2s2 2p5 Barium Ba 56 [Xe] 6s2

Neon Ne 10 1s2 2s2 2p6 Lanthanum La 57 [Xe] 6s2 5d1

Sodium Na 11 1s2 2s2 2p6 3s1 Cerium Ce 58 [Xe] 6s2 4f1 5d1

Magnesium Mg 12 1s2 2s2 2p6 3s2 Praseodymium Pr 59 [Xe] 6s2 4f3

Aluminium Al 13 1s2 2s2 2p6 3s2 3p1 Neodymium Nd 60 [Xe] 6s2 4f4

Silicon Si 14 1s2 2s2 2p6 3s2 3p2 Promethium Pm 61 [Xe] 6s2 4f5

Phosphorus P 15 1s2 2s2 2p6 3s2 3p3 Samarium Sm 62 [Xe] 6s2 4f6

Sulfur S 16 1s2 2s2 2p6 3s2 3p4 Europium Eu 63 [Xe] 6s2 4f7

Chlorine Cl 17 1s2 2s2 2p6 3s2 3p5 Gadolinium Gd 64 [Xe] 6s2 4f7 5d1

Argon Ar 18 1s2 2s2 2p6 3s2 3p6 Terbium Tb 65 [Xe] 6s2 4f9

Potassium K 19 [Ar] 4s1 Dysprosium Dy 66 [Xe] 6s2 4f10

Calcium Ca 20 [Ar] 4s2 Holmium Ho 67 [Xe] 6s2 4f11

Scandium Sc 21 [Ar] 4s2 3d1 Erbium Er 68 [Xe] 6s2 4f12

Titanium Ti 22 [Ar] 4s2 3d2 Thulium Tm 69 [Xe] 6s2 4f13

Vanadium V 23 [Ar] 4s2 3d3 Ytterbium Yb 70 [Xe] 6s2 4f14

Chromium Cr 24 [Ar] 4s1 3d5 Lutetium Lu 71 [Xe] 6s2 4f14 5d1
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Manganese Mn 25 [Ar] 4s2 3d5 Hafnium Hf 72 [Xe] 6s2 4f14 5d2

Iron Fe 26 [Ar] 4s2 3d6 Tantalum Ta 73 [Xe] 6s2 4f14 5d3

Cobalt Co 27 [Ar] 4s2 3d7 Tungsten W 74 [Xe] 6s2 4f14 5d4

Nickel Ni 28 [Ar] 4s2 3d10 Rhenium Re 75 [Xe] 6s2 4f14 5d5

or [Ar] 4s1 3d9

Copper Cu 29 [Ar] 4s1 3d10 Osmium Os 76 [Xe] 6s2 4f14 5d6

Zinc Zn 30 [Ar] 4s2 3d10 Iridium Ir 77 [Xe] 6s2 4f14 5d7

Gallium Ga 31 [Ar] 4s2 3d10 4p1 Platinum Pt 78 [Xe] 6s1 4f14 5d9

Germanium Ge 32 [Ar] 4s2 3d10 4p2 Gold Au 79 [Xe] 6s1 4f14 5d10

Arsenic As 33 [Ar] 4s2 3d10 4p3 Mercury Hg 80 [Xe] 6s2 4f14 5d10

Selenium Se 34 [Ar] 4s2 3d10 4p4 Thallium Tl 81 [Xe] 6s2 4f14 5d10 6p1

Bromine Br 35 [Ar] 4s2 3d10 4p5 Lead Pb 82 [Xe] 6s2 4f14 5d10 6p2

Krypton Kr 36 [Ar] 4s2 3d10 4p6 Bismuth Bi 83 [Xe] 6s2 4f14 5d10 6p3

Rubidium Rb 37 [Kr] 5s1 Polonium Po 84 [Xe] 6s2 4f14 5d10 6p4

Strontium Sr 38 [Kr] 5s2 Astatine At 85 [Xe] 6s2 4f14 5d10 6p5

Yttrium Y 39 [Kr] 5s2 4d1 Radon Rn 86 [Xe] 6s2 4f14 5d10 6p6

Zirconium Zr 40 [Kr] 5s2 4d2 Francium 87 Fr [Rn] 7s1

Niobium Nb 41 [Kr] 5s1 4d4 Radium Ra 88 [Rn] 7s2

Molybdenum Mo 42 [Kr] 5s1 4d5 Actinium Ac 89 [Rn] 7s2 6d1

Technetium Tc 43 [Kr] 5s2 4d5 Thorium Th 90 [Rn] 7s2 6d2

Ruthenium Ru 44 [Kr] 5s1 4d7 Protactinium Pa 91 [Rn] 7s2 5f2 6d1

Rhodium Rh 45 [Kr] 5s1 4d8 Uranium U 92 [Rn] 7s2 5f3 6d1

Palladium Pd 46 [Kr] 4d10 Neptunium Np 93 [Rn] 7s2 5f4 6d1

Silver Ag 47 [Kr] 5s1 4d10 Plutonium Pu 94 [Rn] 7s2 5f6





Appendix E

Quantum numbers

In classical mechanics, the characteristics of a material can range continously whereas quantum

mechanics provide the quantization of observable quantities. Quantum numbers describe any

quantum system by a discrete set of integers or half-integers. This Appendix describes briefly

these numbers, for complements we refer to [Hla97, AF05].

Each operator A that commutes with the Hamiltonian (i.e. satisfies the relation AH = HA)

can be associated with a quantum number. An electronic wave function in an atom can be

completely described by a set of four independent quantum numbers, but this set is not unique.

Among the different models, we present here the set proposed by the Hund-Mulliken molecular

orbital theory which describes electrons by the four quantum numbers n, l, m and ms.

The principal or first quantum number n labels the nth eigenvalue of Hamiltonian with the

contribution due to angular momentum left out. Therefore, it always have a positive integer

value.

The azimuthal quantum number l, also known as the angular quantum number or the second

quantum number gives the magnitude of the orbital angular momentum as: L2 = h̄l(l + 1). In

the literature, an eigenmode for which l = 0 is called a s orbital, in the case of l = 1, l = 2 or

l = 3, they are called respectively a p orbital, a d orbital or a f orbital.

The magnetic quantum number m yields the projection of the orbital angular momentum
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along a specific axis Lz. The values of m range from −l to l with integer steps between them.

The spin projection quantum number ms gives the projection of the spin angular momentum

S along the specific axis: Sz = msh̄. For an electronic wave function, the values of ms can be

−1
2 or 1

2 .

According to Hund’s rules, two electrons can never have the same set of quantum numbers.



Appendix F

The weak form of the Hartree-Fock

system

This Appendix presents the calculation to get the weak form of the Hartree-Fock system from the

Schrödinger equation. For the sake of clarity, the calculation is detailed in the case of a system

comprising one nucleus with Z protons located in X, and two electrons located respectively in

x1 and x2. The two electrons are described by the wave function Ψe:

Ψe : x = (x1, x2) 7−→ Ψe (x)

R
6 −→ C.

The eigenpair (Ψe, Ee) is solution of the Schrödinger problem (section 2.5):

1

2
(∇xΨe,∇xδΨe) + ((Ven + Vee)Ψe, δΨe) = Ee (Ψe, δΨe) +

δEe

2
[(Ψe,Ψe)− 1]

+ δλ
[
Ψe(xσ(1), xσ(2))− sg (σ)Ψe(x1, x2)

]
,

∀δΨe ∈ W, ∀δEe ∈ W
Ee , ∀δλ ∈ W

λ, (F.1)

where Ee appears as a Lagrange multiplier associated with the unit norm of Ψe. δEe and δλ are

two test Lagrange multipliers.

The Hartree-Fock method solves the Schrödinger equation in the space W
HF . The wave

function Ψe is approximated by a Slater determinant ΨHF
e built from two orthonormal one-
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electron wave functions ϕ1 and ϕ2 defined in R
3:







Ψe ∼ ΨHF
e =

1√
2

∣
∣
∣
∣
∣
∣
∣

ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣
∣
∣
∣
∣
∣
∣

r
R3 ϕ

∗
1ϕ1 =

r
R3 ϕ

∗
2ϕ2 = 1

r
R3 ϕ

∗
1ϕ2 =

r
R3 ϕ

∗
2ϕ1 = 0

where







ϕ1 : x1 7→ ϕ1 (x1)

R
3 → C

ϕ2 : x2 7→ ϕ2 (x2)

R
3 → C.

(F.2)

The normality and anti-symmetry of the solution is ensured by the form of the Hartree-Fock trial

function. The orthonormalization of the one-electron wave functions is imposed by the Lagrange

multipliers Λ11, Λ22 and Λ12. We denote Φ =




ϕ1

ϕ2



 and Λ =




Λ11 Λ12

Λ21 Λ22



. The Hartree-Fock

problem reads:

1

2

(
∇xΨ

HF
e ,∇xδΨ

HF
e

)
+
(
(Ven + Vee)Ψ

HF
e , δΨHF

e

)
= δ

[

tr

[
Λ

2
·
((w

R3
Φ⊗ Φ

)

− I
)]]

.

We express this problem as a function of the one-electron wave functions. The electronic

kinetic energy reads:

(
∇xΨ

HF
e ,∇xδΨ

HF
e

)
=
(
∇x1Ψ

HF
e ,∇x1δΨ

HF
e

)
+
(
∇x2Ψ

HF
e ,∇x2δΨ

HF
e

)

where

(
∇x1Ψ

HF
e ,∇x1δΨ

HF
e

)
= (∇x1ϕ1 (x1)ϕ2 (x2)− ϕ1 (x2)∇x1ϕ2 (x1) ,∇x1δϕ1 (x1)ϕ2 (x2)

+∇x1ϕ1 (x1) δϕ2 (x2)− δϕ1 (x2)∇x1ϕ2 (x1)− ϕ1 (x2)∇x1δϕ2 (x1))
(
∇x1Ψ

HF
e ,∇x1δΨ

HF
e

)
=

1

2
(∇x1ϕ1 (x1) ,∇x1δϕ1 (x1)) ,

therefore

(
∇xΨ

HF
e ,∇xδΨ

HF
e

)
= (∇xΦ,∇xδΦ) .

Now, we focus on the interactions between the electrons and the nucleus:

(
VenΨ

HF
e , δΨHF

e

)
=

( −Z
|X − x1|

ΨHF
e , δΨHF

e

)

+

( −Z
|X − x2|

ΨHF
e , δΨHF

e

)
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where
( −Z
|X − x1|

ΨHF
e , δΨHF

e

)

=

[ −Z
2|X − x1|

(ϕ1 (x1)ϕ2 (x2)− ϕ1 (x2)ϕ2 (x1)) ,

δϕ1 (x1)ϕ2 (x2) + ϕ1 (x1) δϕ2 (x2)− δϕ1 (x2)ϕ2 (x1)− ϕ1 (x2) δϕ2 (x1)

]

=

( −Z
2|X − x1|

ϕ1, δϕ1

)

+

( −Z
2|X − x1|

ϕ2, δϕ2

)

so
(
VenΨ

HF
e , δΨHF

e

)
=

( −Z
|X − x1|

Φ, δΦ

)

+

( −Z
|X − x2|

Φ, δΦ

)

.

Finally, we look into the interaction between electrons:

(
VeeΨ

HF
e , δΨHF

e

)
=

(
1

|x1 − x2|
ΨHF

e , δΨHF
e

)

=

(
1

2|x1 − x2|
(ϕ1 (x1)ϕ2 (x2)− ϕ1 (x2)ϕ2 (x1)) ,

δϕ1 (x1)ϕ2 (x2) + ϕ1 (x1) δϕ2 (x2)− δϕ1 (x2)ϕ2 (x1)− ϕ1 (x2) δϕ2 (x1)

)

=

( |ϕ1|2
|x1 − x2|

ϕ2, δϕ2

)

+

( |ϕ2|2
|x1 − x2|

ϕ1, δϕ1

)

−
(

ϕ1ϕ2

|x1 − x2|
ϕ2, δϕ1

)

−
(

ϕ1ϕ2

|x1 − x2|
ϕ1, δϕ2

)

= ((tr (G) I −G) Φ, δΦ) .

The orthonormalization of the one-electron wave functions by the Lagrange multipliers leads to:

δ
[
tr
(
Λ
2 ·
((r

R3 Φ⊗ Φ
)
− I
))]

= tr
[
δΛ
2 ·
(r

R3 (Φ⊗ Φ)− I
)]

+ tr
[
Λ
2 ·
(r

R3 (δΦ⊗ Φ) +
r
R3 (Φ⊗ δΦ)

)]

= tr
[
δΛ
2 ·
(r

R3 (Φ⊗ Φ)− I
)]

+ tr
[
Λ ·

r
R3 (Φ⊗ δΦ)

]

= tr
[
δΛ
2 ·
(r

R3 (Φ⊗ Φ)− I
)]

+ (ΛΦ, δΦ) .

Therefore, the weak form of the Hartree-Fock problem reads:

(

−1

2
∇Φ,∇δΦ

)

+ ((Ven + tr (G) I −G) Φ, δΦ) = (ΛΦ, δΦ) + tr
[

δΛ ·
(

I −
w

R3
Φ⊗ Φ∗

)]

,

∀δΦ ∈ W
Φ, ∀δΛ ∈ W

Λ. (F.3)
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Setting up the Hartree-Fock system

This Appendix details the calculation to obtain the strong form of the Hartree-Fock system from

the Schrödinger equation. For the sake of clarity, the calculation is exposed for the case of a

system composed of one nucleus of Z protons located in X and two electrons located respectively

in x1 and x2. The two electrons are described by a unique wave function Ψe:

Ψe : x = (x1, x2) 7−→ Ψe (x)

R
6 −→ C

which is solution of the following system:






−1

2
∆xΨe +

( −Z
|X − x1|

+
−Z

|X − x2|
+

1

|x1 − x2|

)

Ψe = EeΨe,

r
R6 |Ψe|2dx = 1,

Ψe(xσ(1), xσ(2)) = sg (σ)Ψe(x1, x2).

(G.1)

The Hartree-Fock method solves the Schrödinger equation in a reduced space W
HF . The

Hartree-Fock strategy approximates the wave function Ψe by a Slater determinant ΨHF
e built

from two orthonormal one-electron wave functions ϕ1 and ϕ2 defined in R
3:







Ψe ∼ ΨHF
e =

1√
2

∣
∣
∣
∣
∣
∣
∣

ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣
∣
∣
∣
∣
∣
∣

r
R3 ϕ

∗
1ϕ1 =

r
R3 ϕ

∗
2ϕ2 = 1

r
R3 ϕ

∗
1ϕ2 =

r
R3 ϕ

∗
2ϕ1 = 0

where







ϕ1 : x1 7→ ϕ1 (x1)

R
3 → C

ϕ2 : x2 7→ ϕ2 (x2)

R
3 → C.

(G.2)
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By choosing a Hartree-Fock trial function, the conditions of normality and anti-symmetry of the

wave function Ψe are automatically satisfied.

The ground-state eigenpair (ΨHF
e , EHF

e ) minimizes the electronic energy:

EHF
e =

(

−1

2
∆xΨe +

( −Z
|X − x1|

+
−Z

|X − x2|
+

1

|x1 − x2|

)

ΨHF
e ,ΨHF

e

)

.

We express this energy as a function of the one-electron wave functions:

EHF
e =

(

−1

2
∆x

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)) ,

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2))

)

+

( −Z
|X − x1|

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)) ,

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2))

)

+

( −Z
|X − x2|

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)) ,

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2))

)

+

(
1

|x1 − x2|
1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)) ,

1√
2
(ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2))

)

Using the orthonormality of the one-electron wave functions, we can express simply the electronic

energy. The Hartree-Fock problem reads:






min

{

EHF
e = −

(
1

2
∆x1ϕ1(x1), ϕ1(x1)

)

−
(
1

2
∆x2ϕ2(x2), ϕ2(x2)

)

+

( −Z
|X − x1|

ϕ1(x1), ϕ1 (x1)

)

+

( −Z
|X − x2|

ϕ2(x2), ϕ2 (x2)

)

+

((
ϕ1 (x1)

|x1 − x2|
, ϕ1(x1)

)

ϕ2(x2), ϕ2(x2)

)

−
((

ϕ1 (x1)

|x1 − x2|
, ϕ2(x1)

)

ϕ1(x2), ϕ2(x2)

)}

,

1 = (ϕ1, ϕ1) = (ϕ2, ϕ2) ,

0 = (ϕ1, ϕ2) = (ϕ2, ϕ1) .

We solve this problem with the Euler-Lagrange equations, and impose the orthonormalization

constraint using the Lagrange multipliers Λ11, Λ12 and Λ22:

L (ϕ1, ϕ2,Λ11,Λ12,Λ22) = EHF
e + Λ11

(

1−
w

R3
ϕ1ϕ

∗
1

)

+ Λ12

w

R3
ϕ∗
1ϕ2

+ Λ12

w

R3
ϕ∗
2ϕ1 + Λ22

(

1−
w

R3
ϕ∗
2ϕ2

)

. (G.3)

Minimizing this Lagrangian, we get:

dL =
∂L
∂ϕ1

dϕ1 +
∂L
∂ϕ2

dϕ2 +
∂L
∂Λ11

dΛ11 +
∂L
∂Λ22

dΛ22 +
∂L
∂Λ12

dΛ12 = 0,
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and then the following system called the Hartree-Fock system:






−1

2
∆xϕ1 −

Z

|X − x|ϕ1 +
|ϕ2(x1)|2
|x1 − x| ϕ1 −

ϕ1(x1)ϕ2(x1)

|x1 − x| ϕ2 − Λ11ϕ1 − Λ12ϕ2 = 0,

−1

2
∆xϕ2 −

Z

|X − x|ϕ2 +
|ϕ1(x1)|2
|x1 − x| ϕ2 −

ϕ1(x1)ϕ2(x1)

|x1 − x| ϕ1 − Λ12ϕ1 − Λ22ϕ2 = 0,

1−
r
R3 ϕ

∗
1ϕ1 = 0,

r
R3 ϕ

∗
1ϕ2 = 0,

r
R3 ϕ

∗
2ϕ1 = 0,

1−
r
R3 ϕ

∗
2ϕ2 = 0.

We denote Φ =




ϕ1

ϕ2



, Λ =




Λ11 Λ12

Λ21 Λ22



, G =




G11 G12

G21 G22



 =







|ϕ1(x1)|2
|x1 − x|

r
ϕ∗
1(x1)ϕ2(x1)

|x1 − x|r
ϕ∗
2(x1)ϕ1(x1)

|x1 − x|
|ϕ2(x1)|2
|x1 − x|







.

The Hartree-Fock system reads:






−1

2
∆xΦ− Z

|X − x|Φ+ (tr (G) I −G)Φ− ΛΦ = 0,

r
R3 Φ⊗ Φ = I.

In the general case of a system with Ne wave functions, we get a similar system with the

following conditions:






L (Φ,Λ) =
(
HΨHF

e ,ΨHF
e

)
+ tr

[
Λ ·
(
I −

r
R3 Φ⊗ Φ∗dx

)]
,

ΨHF
e (x1, ..., xNe) =

1√
Ne!

det [Φ (x1) , ...,Φ (xNe)]i∈[1;Ne]
.
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The Two-dimensional equations

Appendix F introduced how to get the Fock system:
(

−1

2
∇xeΦ,∇xeδΦ

)

+ (VenΦ, δΦ) + ((tr (G) I −G) Φ, δΦ) = (ΛΦ, δΦ) , ∀δΦ ∈ W
Φ,

tr
[
∇xeG · ∇xeδG

T
]
= tr

[
(4πΦ⊗ Φ∗) · δGT

]
, ∀δG ∈ W

G,

tr
[(
I −

r
R3 Φ⊗ Φ∗

)
· δΛT

]
= 0, ∀δΛ ∈ W

Λ.

This system is defined in a three-dimensional space (r, θ, z). For isolated atoms or isolated

linear molecules i.e. molecules in which all bond angles are 180 degrees, we can determine analy-

tically the dependence with respect to θ of each one-electron wave function. For each one-electron

wave function ϕi, it is defined from its magnetic quantum number mi.

We therefore assume that each wave function is the product of an unknown in-plane function

ϕrz
i (r, z) and an a priori known angular function ϕθ

i (θ) = eimiθ:

ϕi(r, θ, z) = eimiθϕrz
i (r, z).

We compute by the FEM the functions ϕrz
i in the plane (r, z). We introduce in this Appendix

how the different equations are modified to be expressed only in the (r, z) plane.

We express the operator nabla ∇x defined in the three-dimensional space (r, θ, z) as a function

analytically known from the differential operator ∇rz defined in the two-dimensional space (r, z):

∇xϕi =
∂ϕi

∂r
er +

∂ϕi

∂θ

eθ

r
+
∂ϕi

∂z
ez,
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∇xϕi = eimiθ

(
∂ϕrz

i

∂r
er +

∂ϕrz
i

∂z
ez

)

+ imie
imiθϕrz

i (r, z)
eθ

r
,

∇xϕi = eimiθ∇rzϕ
rz
i + imie

imiθϕrz
i (r, z)

eθ

r
.

We take the same approach for the Green interaction terms Gij(r, θ, z) = ei(mi−mj)θGrz
ij (r, z):

∇xGij =
∂Gij

∂r
er +

∂Gij

∂θ

eθ

r
+
∂Gij

∂z
ez,

∇xGij = ei(mi−mj)θ

(
∂Grz

ij

∂r
er +

∂Grz
ij

∂z
ez

)

+ i(mi −mj)e
i(mi−mj)θGrz

ij (r, z)
eθ

r
,

∇xGij = ei(mi−mj)θ∇rzG
rz
ij + i(mi −mj)e

i(mi−mj)θGrz
ij (r, z)

eθ

r
.

Therefore, in the two-dimensional space, the Fock system becomes:

(
Ne∑

j=1
ei(mj−mi)θΛijϕ

rz
j , δϕ

rz
i

)

= −1

2

[

(∇rzϕ
rz
i ,∇rzδϕ

rz
i )−

(
m2

i

r2
ϕrz
i , δϕ

rz
i

)]

+(((Ven + tr (G)) I −G)ϕrz
i , δϕ

rz
i ) , ∀δϕrz

i ∈ W
ϕrz
i ,

tr
[

∇rzG
rz
ij .∇rzδG

rz
ij

]

− (mi −mj)
2

r2

(

Grz
ij , δG

rz
ij

)

= tr
[(

4πϕrz
i ⊗ ϕrz∗

j

)

.δGrzT
ij

]

, ∀δGrz
ij ∈ W

Grz
ij ,

tr
[(

Iij − ei(mi−mj)
(r

R3 ϕ
rz
i ⊗ ϕrz∗

j

))

.δΛT
ij

]

= 0, ∀δΛrz
ij ∈ W

Λrz
ij .
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Magnetic properties

We can benefit from quantum computations to estimate magnetic properties such as the magnetic

moment and the magnetizability [Sla51, RSL63, AF05]. We derive them from the total energy

E when the Schrödinger equation takes the magnetic field into account. The magnetic moment

m and the magnetizability tensor ξ can be defined respectively as the opposite of the derivative

of the energy with respect to the magnetic field B at the first order and at the second order:

m = −∂E
∂B

, (I.1)

ξ = − ∂2E

∂B∂B
. (I.2)

The magnetic potential of a system under the application of an external magnetic field B

reads [NLK86]:

V mag
e (xk) = e i (∇xk

. ∧B)xk, (I.3)

V mag
n (Xj) = e i Zj (∇xk

. ∧B)Xj . (I.4)

From equation (1.33), a perturbation of the magnetic field δB leads to a perturbation of the

potential δVe = e i (∇xk
. ∧ δB)xk and a perturbation of the electronic energy:

δEe = ((e i (∇xk
. ∧ δB)xk)Ψe,Ψe) . (I.5)

Thus, the electronic magnetic dipole moment denoted by me and defined by equation (1.4) reads

me = − ((e i (∇xk
. ∧ 1)xk)Ψe,Ψe) . (I.6)
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The magnetic dipole moment describes the torque that a magnetic field can exert on the system

and the force that the system can exert on electric currents. It is expressed in A.m2 or in J.T−1 in

the SI system. Considering the Hartree-Fock approximation and the nuclei as particles without

speed, the magnetic moment can be expressed as follows:

mHF = − ((e i (∇xk
. ∧ 1)xk) Φ,Φ) . (I.7)

Using the configuration interaction approximation, it yields that:

mCI = −
Nd∑

A=1

Nd∑

B=1

αAαB

(
(e i (∇xk

. ∧ 1)xk) Φ
A,ΦB

)
. (I.8)

The magnetizability tensor ξ characterizes the ability of a system to be magnetized by any ex-

ternal magnetic field. It is expressed in m2.A2.s2.kg−1 or in J.T−2 in the SI system, or in e2.a20.m
−1
e

in the atomic system. From equation (4.11), we establish:

δ2E =
((
e i
(
∇xk

. ∧ δ2B
)
xk
)
Ψe,Ψe

)
+ 2 ((e i (∇xk

. ∧ δB)xk)⊗ δΨe,Ψe) (I.9)

therefore the magnetizability tensor defined by equation (I.2) reads:

ξ = − ((e i (∇xk
. ∧ 1)xk)Ψe,Ψe)− 2

(

(e i (∇xk
. ∧ 1)xk)⊗

δΨe

δB
,Ψe

)

. (I.10)

Applying the Hartree-Fock model, it yields that:

ξHF = − ((e i (∇xk
. ∧ 1)xk) Φ,Φ)− 2

(

(e i (∇xk
. ∧ 1)xk)⊗

δΦ

δB
,Φ

)

. (I.11)

With the configuration interaction approximation, it reads:

ξCI = −
Nd∑

A=1

Nd∑

B=1

αAαB

[
(
(e i (∇xk

. ∧ 1)xk) Φ
A,ΦB

)
+ 2

(

(e i (∇xk
. ∧ 1)xk)⊗

δΦA

δB
,ΦB

)]

.

(I.12)
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Crystals: The Bloch theorem

In Chapter 4, we presented numerical results for isolated systems. However, most systems

interact with their surroundings. For instance, atoms in crystals present periodic interactions

with neighboring atoms. This Appendix focuses on the Bloch theorem which is applied to model

and analyze crystal structures.

The periodic atomic arrangement in crystals

A crystal is a solid material, whose constituent atoms are arranged in an orderly repeating

pattern extending in all three spatial dimensions. For example, Figure J.1 represents the LiH

crystal, which is composed of lithium and hydrogen atoms perfectly ordered.

Li atom

H atom

Figure J.1: Scheme of a perfect LiH crystal
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|a1| = |a2| = |a3|
α = β = γ = 90°

(a) simple cubic

|a1| = |a2| = |a3|
α = β = γ = 90°

(b) body-centered cubic

|a1| = |a2| = |a3|
α = β = γ = 90°

(c) face-centered cubic

|a1| = |a2| 6= |a3|
α = β = γ = 90°

(d) simple
tetragonal

|a1| = |a2| 6= |a3|
α = β = γ = 90°

(e) body-centered
tetragonal

|a1| 6= |a2| 6= |a3|
α = β = 90°
γ 6= 120°

(f) simple

monoclinic

|a1| 6= |a2| 6= |a3|
α = β = 90°
γ 6= 120°

(g) base-centered

monoclinic

|a1| 6= |a2| 6= |a3|
α = β = γ = 90°

(h) simple
orthorombic

|a1| 6= |a2| 6= |a3|
α = β = γ = 90°

(i) base-centered
orthorombic

|a1| 6= |a2| 6= |a3|
α = β = γ = 90°

(j) body-centered
orthorombic

|a1| 6= |a2| 6= |a3|
α = β = γ = 90°

(k) face-centered
orthorombic

|a1| 6= |a2| 6= |a3|
α 6= β 6= γ 6= 90°

(l) triclinic

|a1| = |a2| = |a3|
α = β = γ 6= 90°

(m) rhombohedral

|a1| = |a2| 6= |a3|
α = β = 90°
γ = 120°

(n) hexagonal

Figure J.2: The 14 three-dimensional Bravais lattices (parallelograms whose lengths of side are

|a1|, |a2| and |a3|, and the angles between the different sides α, β and γ)
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The periodicity of the lattice is described by a geometrical arrangement and a chemical

arrangement.

The geometrical arrangement is defined by a Bravais lattice [Bra50], which is a regular distri-

bution of points in the space respecting the periodicity of the crystal. Provided the positions X0

of the nuclei of the atoms of one cell of the crystal, the positions Xn of the other nuclei of the

crystal lattice can be obtained by translation of the first cell:

Xn = X0 + niai (J.1)

with ai the direction vectors and ni the number of cells in the direction of ai. The parameters

of the lattice are the lengths |ai| of the primitive vectors and the angles formed by them: α, β

and γ. For example, Figure J.3 represents the cubic Bravais lattice of the LiH crystal.

a1 = a2 = a3 = 2, 042.10−10m

α = β = γ = 90°

Figure J.3: Bravais lattice of the LiH crystal

The Bravais lattice can be considered as a vector space where the scalars ni are only integers.

The basis of the Bravais lattice is a set of vectors ai, which are linearly independent in R
3. This

basis is not unique, but its volume is unique. The fundamental space is constituted by the points

whose coordinates ni belongs to [0, 1[. Generally, it is called the primitive cell.

We can classify lattices with respect to their symmetry group, which describes rotations and

translations that do not disturb the lattice. Therefore, the number of different lattices is infinite

but the number of types of lattices is finite. In a one-dimensional space, only one type of lattice

exists. Five different types of lattice exist in a two-dimensional space and fourteen different types

in a three-dimensional space. They are represented on Figure J.2.
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Because a crystal can be composed of different types of atoms, the distribution of points is not

sufficient to characterize the whole structure. It is necessary to clarify the chemical arrangement

by the description of a periodic cell. The whole structure can be built by translation operations

of this cell. Therefore, the cell represented on Figure J.4(a) can not be considered as a periodic

cell whereas the cells of Figure J.4(b) and Figure J.4(c) are acceptable. The cell represented on

Figure J.4(c) is the elementary cell also called the Wigner-Seitz cell or the Dirichlet zone.

Li atom
H atom

(a) a non-periodic cell (b) a periodic cell (c) the elementary cell

Figure J.4: Different cells of the LiH crystal

Let us consider the electrons of a perfect infinite crystal, the structure is perfectly periodic,

but not the wave function of the system. Lots of efforts could be saved by reducing the FEM

domain from the entire periodic crystal to a primitive cell by applying the Bloch theorem.

The Bloch theorem

Numerical computations aim at taking advantage of the periodicity of the lattice to reduce

computational costs. The Bloch transformation was introduced in 1928 [Blo28], and it is tradi-

tionnally used in the context of solid state physics [AF05]. Nevertheless, this approach is also

appealing to analyze other periodic structures e.g. honeycombs [ACV98, TTAS11].

The perfect crystal is a periodic strucure Ω of space dimension Nc. Let us define a primitive

cell Q0 and a set of basis vectors {ai}i∈[1;Nc]
, called direct cell basis, such that the entire structure
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Ω can be reconstituted by repeating the primitive cell along the three directions of the direct cell

basis. The reciprocal cell Q∗
0, called the first Brillouin zone [Bri53] and the reciprocal cell basis

{a∗i }i∈[1;Nc]
are defined as dual to Q0 and {ai}i∈[1;Nc]

, and satisfy:







a∗i .aj

|ai| |aj |
= δij

|Q0| |Q∗
0| = 1,

(J.2)

where δij stands for the Kronecker delta, and |Q0| and |Q∗
0| are respectively the volumes of the

elementary Wigner-Seitz cell and the volume of the first Brillouin cell.

For any non-periodic function Ψe (x) defined on ΩNe , the Bloch theorem states that, for each

wave vector k of the first Brillouin zone, the Bloch wave functions Ψ̃k
e (x, k) are some periodic

functions with the same periodicity as the crystal Ω, which are defined as:

Ψ̃k
e : (x, k) 7−→ Ψ̃k

e (x, k) =
Nc∑

i=1
Ψe (x+ niai) exp

i(k,x+niai)

ΩNe ×Q∗Ne

0 −→ C,

(J.3)

from the non-periodic function Ψe(x) :

Ψe : x 7−→ Ψe (x)

ΩNe −→ C,

with ni ∈ Z the number of cells in the direction of the vector ai.

The inverse Bloch transformation provides the value of the wave function Ψe at any point x

by integrating the Bloch wave functions Ψ̃k
e (x, k) over the first Brillouin zone Q∗

0:

Ψe (x) =
1

|Q∗
0|

w

Q∗

0

Ψ̃k
e (x, k) exp

−i(k,x) dk. (J.4)

Thus, by virtue of the Bloch theorem, any non-periodic wave function in a periodic crystal

can be decomposed into Bloch wave functions Ψ̃k
e that are periodic with periods ai in the direct

space. The strategy to solve a crystal can be summed up by Figure J.5.
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Direct Space

Known periodic V
Unknown unperiodic Ψe

Reciprocal Space

Known periodic Ṽ = V

Unknown periodic Ψ̃k
e

Solution Ψ̃k
eSolution Ψe

➋ Solving

➊ Ψ̃k
e (x, k) =

3∑

i=1
Ψe (x+ niai) exp

i(k,x+niai)

➌ Ψe (x) =
1

|Q⋆
0|

r
Q⋆

0
Ψ̃k

e (x, k) exp
−i(k,x) dk

Figure J.5: Modeling a perfect crystal

Let us suppose a three-dimensional perfectly periodic crystal, the crystal wave function is

defined in R
3Ne and the Bloch function is defined from a 6Ne-dimensional space, which is the

sum of the x-space and the k-space. The Schrödinger equation is solved in this 6Ne-dimensional

space to provide the function Ψ̃k
e(x, k). From which, we build a posteriori the solution Ψe(x).

Therefore, the problem can be solved only on the elementary cell in the direct space.

To obtain the solution of the problem not only in the elementary cell but also in the whole

crystal, we use the periodicity properties of the Bloch functions:

Ψe (x+ ni.ai) =
1

|Q∗
0|

w

Q∗

0

Ψ̃k
e (x, k) exp

−i(k,x+ni.ai) dk. (J.5)

The periodic problem

From the Schrödinger problem (equation 2.5), we deduce that the periodic wave function Ψ̃e

satisfies:

1

2

(

∇xΨ̃
k
e ,∇xδΨ̃

k
e

)

+

(

i k∇xΨ̃
k
e +

1

2
|k|2Ψ̃k

e + VeΨ̃
k
e , δΨ̃

k
e

)

= Ẽk
e

(

Ψ̃k
e , δΨ̃

k
e

)

+
δẼk

e

2

[(

Ψ̃k
e , Ψ̃

k
e

)

− 1
]

+ δλ̃k
[

Ψ̃k
e(xσ(1), . . . , xσ(Ne))− sg (σ) Ψ̃k

e(x1, . . . , xNe)
]

,
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∀δΨ̃k
e ∈ W̃

k, ∀δẼk
e ∈ W̃

Ek
e , ∀δλ̃k ∈ W̃

λk

. (J.6)

This equation is highly multi-dimensional. To become tractable numerically, we apply the

Hartree-Fock method. The trial function is a Slater determinant built from a vector Φ̃k of

one-electron wave functions ϕ̃k
i . The vector Φ̃k satisfies the following Fock system:

(

−1

2
∇xΦ̃

k,∇xδΦ̃
k

)

+

(

i k∇xΦ̃
k +

1

2
|k|2Φ̃k + VenΦ̃

k +
(

tr(G̃k)I − G̃k
)

Φ̃k, δΦ̃k

)

=
(

Λ̃kΦ̃k, δΦ̃k
)

,

tr
[

∇xG̃
k · ∇xδG̃

kT
]

= tr
[(

4πΦ̃k ⊗ Φ̃k∗
)

· δG̃kT
]

,

tr
[(

I −
r
R3 Φ̃

k ⊗ Φ̃k∗
)

· δΛ̃kT
]

= 0,

∀δΦ̃k ∈ W̃
Φk
, ∀δG̃k ∈ W̃

Gk
, ∀δΛ̃k ∈ W̃

Λk
.

(J.7)

The matrix Λ̃k contains Lagrange multipliers and on its diagonal, yield the individual electronic

energies. Ven is the interaction potential between electrons and nuclei. G̃k is the interaction

matrix due to the interaction between electrons.

Potential to consider The electrons of the elementary cell are submitted to the Coulomb

potential due not only to the particles of the cell, but to all the particles of the crystal. The

interactions between electrons and nuclei are described by a potential that has the perfect peri-

odicity of the Bravais lattice:

Ven(x+ ni.ai) = Ven(x), ∀ni ∈ Z. (J.8)

The interaction between an electron localized in xi and the Nn nuclei of atomic number Zj

localized in Xj and the other electrons localized in xk of the crystal reads:

Ve(xi) =

Nn∑

j=1

−Zj

|Xj − xi|
+

Ne∑

k=1
k 6=i

1

|xk − xi|
. (J.9)

For perfect infinite crystals, the number of nuclei Nn is infinite. The difficulty to estimate

accurately the Coulomb potential is to take into account enough surrounding nuclei.
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Many works have been published on the methods to estimate the Coulomb potential in a

periodic structure [DPRS83]. According to [YDP93], it is essential to take into account long-

range electrostatic interactions. Truncated list methods (direct truncation and “twin-range”

cutoff methods) appear as poor methods. Ewald [Ewa21] proposes to consider the space as

repeating unit cells; details about the Ewald sums are provided in [TJ96, DPLP99]. Darden et

al. [DYP93] compute these sums by a fast N × lg (N) algorithm. Another approach is multipole

calculations. The space is divided into cells, and each cell is represented by a multipole moment

series: charges, dipoles, quadrupoles, octopoles,. . . This method becomes faster than the exact

algorithm when the number of atoms exceeds 300 [DKG92].

The number of eigenmodes is infinite, whereas the electronic density in the crystal is finite.

All the modes cannot be occupied. The occupied modes are determined by computing the Fermi

energy.

The Fermi energy

At 0 K, the energy of the system is the minimum of the energy functional that can admit an

electronic density matching the number of electrons on the elementary cell. This energy is called

the Fermi energy EF :

EF = min
Ee

{w Ee

−∞
ρ (Ee) dEe = Ne

}

. (J.10)

Electrons are fermions so they satisfy the Fermi-Dirac distribution µT (x) =
1

1 + exp−x/kBT

[Fer26, Dir26]. The electronic density reads:

ρ(Ee) =
2

|Ω|
∑

i

w

Q∗

0

µ′T

(

Ee − Ek
ei (k)

)

dk, (J.11)

where the factor 2 is used considering a RHF approach. Ek
ei is the spectrum of eigenvalues, whose

values depend on the wave number k.

ρ(Ee) =
2

|Q∗
0|
∑

i

w

Q∗

0

H ′
(

Ee − Ek
ei (k)

)

dk (J.12)
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where H is the Heaviside function defined by:

H(x) =







0, x < 0,

1, x > 0.

(J.13)

The derivative of this function is a Dirac mass at 0 that we denote δ.

ρ(Ee) =
2

|Q∗
0|
∑

i

w

Q∗

0

δ
(

Ee − Ek
ei (k)

)

dk (J.14)

For insulators at the equilibrium state, the surfaces Ek
ei (k) have dedicated rays and do not

cross the focus of other eigenvalues. Therefore, Ne

2 eigenmodes are fully occupied, the other ones

are void. In case of metals, a value Ee can match several eigenmodes, the determination of the

Fermi energy is a more delicate problem.

For instance, provided the band structure of a one-dimensional crystal illustrated on Figu-

re J.6, if there are two electrons per cell, only the first eigenmode is doubly occupied. Accordingly,

this system is an insulator. If there were three electrons per cell, the first mode is doubly occupied,

and the second and third eigenmodes would be both partially occupied. The crystal would be a

metal.

Ek
e1

Ek
e2

Ek
e3

Ek
e4

Ek
ei

k

Ek
ei

Figure J.6: The band structure of a one-dimensional crystal [Bla00]
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Integration over the Brillouin zone

Once the periodic problem has been solved, the solution Φ (x) is built by integrating the Bloch

functions Φ̃k (x, k) over the Brillouin zone.

To reduce the calculation time, for sufficiently smooth functions, it is possible to perform

the integration by estimating the function only in a carefully selected set of a few points in

the Brillouin zone called special points [Dal96]. Several sets of special points exist depending

on the Bravais lattice and the group symmetry [BSW36]. Historically, the use of the special

points was introduced by Baldereschi in 1973. He showed in [Bal73] that the computation of

the charge density of semiconductors could be performed by using a single point. Chadi and

Cohen [CC73a, CC73b] set up a procedure to generate special-point sets, and proposed sets for

the cubic and hexagonal lattices. Monkhorst and Park [MP76] introduced a more systematic

strategy based on equally spaced points. The application of the special-point method to metals

requires particular care, Methfessel and Paxton deal with this particular case in [MP89].





Abstract

Since performances of experimental and numerical tools have been largely improved, mechanics

of materials can explore smaller and smaller scales. Thus, a better comprehension, or even a

prediction, of local phenomena associated with macroscopic deformations are hoped. This disser-

tation focuses on the smallest scale involved in mechanical behavior of materials, i.e. interactions

between nuclei due to electrons behavior and especially to valence electrons. The originality of

this work is setting up the finite element method as numerical tool to solve this problem. This

approach largely used to solve structural mechanics problems provides powerful numerical tools

to tackle electronic structures. The Hartree-Fock and post-Hartree-Fock models are employed,

and mechanical properties of electronic structures are estimated. These estimates are based on

a set of approximations of both model and numerical origins. Error estimates are proposed to

analyze the accuracy of the results.

Résumé

Grâce à l’amélioration des performances des outils expérimentaux et numériques, la mécanique

des matériaux peut explorer des échelles de plus en plus fines. Une meilleure compréhension,

voire une prédiction, des phénomènes locaux mis en jeu est alors espérée. Cette thèse s’intéresse

à la plus petite échelle impliquée dans le comportement mécanique des matériaux, c.-à-d. les

interactions entre noyaux dues au comportement des électrons, et notamment des électrons de

valence. L’originalité de ce travail est dans la mise en place des éléments finis comme outil

numérique de résolution de ce problème. Cette approche largement utilisée dans le domaine

de la mécanique des structures fournit de puissants outils numériques permettant de résoudre le

problème électronique. Des modèles de Hartree-Fock et post-Hatree-Fock sont implémentés, et les

caractéristiques mécaniques des structures électroniques sont estimées. Ces résultats reposent

sur de nombreuses approximations dues aussi bien à la modélisation qu’aux approximations

numériques. Des estimateurs d’erreur sont développés pour analyser les résultats.
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