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Spécialité : Informatique
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Présentée par

Zhengjie FAN
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Abstract:

There are many data sets being published on the web with Semantic Web tech-
nology. The data sets contain analogous data which represent the same resources
in the world. If these data sets are linked together by correctly building links, users
can conveniently query data through a uniform interface, as if they are querying
one data set. However, finding correct links is very challenging because there are
many instances to compare. Many existing solutions have been proposed for this
problem. (1) One straight-forward idea is to compare the attribute values of in-
stances for identifying links, yet it is impossible to compare all possible pairs of
attribute values. (2) Another common strategy is to compare instances according
to attribute correspondences found by instance-based ontology matching, which can
generate attribute correspondences based on instances. However, it is hard to i-
dentify the same instances across data sets, because there are the same instances
whose attribute values of some attribute correspondences are not equal. (3) Many
existing solutions leverage Genetic Programming to construct interlinking patterns
for comparing instances, while they suffer from long running time.

In this thesis, an interlinking method is proposed to interlink the same instances
across different data sets, based on both statistical learning and symbolic learning.
The input is two data sets, class correspondences across the two data sets and
a set of sample links that are assessed by users as either “positive” or “negative”.
The method builds a classifier that distinguishes correct links and incorrect links
across two RDF data sets with the set of assessed sample links. The classifier is
composed of attribute correspondences across corresponding classes of two data sets,
which help compare instances and build links. The classifier is called an interlinking
pattern in this thesis. On the one hand, our method discovers potential attribute
correspondences of each class correspondence via a statistical learning method, the
K-medoids clustering algorithm, with instance value statistics. On the other hand,
our solution builds the interlinking pattern by a symbolic learning method, Version
Space, with all discovered potential attribute correspondences and the set of assessed
sample links. Our method can fulfill the interlinking task that does not have a
conjunctive interlinking pattern that covers all assessed correct links with a concise
format.

Experiments confirm that our interlinking method with only 1% of sample links
already reaches a high F-measure (around 0.94-0.99). The F-measure quickly con-
verges, being improved by nearly 10% than other approaches.

Keywords: Interlinking, Ontology Matching, Machine Learning



Résumé :
De nombreux jeux de données de données sont publiés sur le web à l’aide des tech-
nologies du web sémantique. Ces jeux de données contiennent des données qui
représentent des liens vers des ressources similaires. Si ces jeux de données sont
liés entre eux par des liens construits correctement, les utilisateurs peuvent facile-
ment interroger des données à travers une interface uniforme, comme s’ils interro-
geaient un jeu de données unique. Mais, trouver des liens corrects est très difficile
car de nombreuses comparaisons doivent être effectuées. Plusieurs solutions on-
t été proposées pour résoudre ce problème : (1) l’approche la plus directe est de
comparer les valeurs d’attributs d’instances pour identifier les liens, mais il est im-
possible de comparer toutes les paires possibles de valeurs d’attributs. (2) Une
autre stratégie courante consiste à comparer les instances selon les attribut corre-
spondants trouvés par l’alignement d’ontologies à base d’instances, qui permet de
générer des correspondances d’attributs basés sur des instances. Cependant, il est
difficile d’identifier des instances similaires à travers les ensembles de données car,
dans certains cas, les valeurs des attributs en correspondence ne sont pas les mêmes.
(3) Plusieurs méthodes utilisent la programmation génétique pour construire des
modèles d’interconnexion afin de comparer différentes instances, mais elles souffrent
de longues durées d’exécution.

Dans cette thèse, une méthode d’interconnexion est proposée pour relier les
instances similaires dans différents ensembles de données, basée à la fois sur
l’apprentissage statistique et sur l’apprentissage symbolique. L’entrée est consti-
tuée de deux ensembles de données, des correspondances de classes sur les deux
ensembles de données et un échantillion de liens “positif” ou “négatif” résultant
d’une évaluation de l’utilisateur. La méthode construit un classifieur qui distingue
les bons liens des liens incorrects dans deux ensembles de données RDF en utilisant
l’ensemble des liens d’échantillons évalués. Le classifieur est composé de correspon-
dances d’attributs entre les classes correspondantes et de deux ensembles de données,
qui aident à comparer les instances et à établir les liens. Le classifieur est appelé mo-
tif d’interconnexion dans cette thèse. D’une part, notre méthode découvre des corre-
spondances potentielles entre d’attributs pour chaque correspondance de classe via
une méthode d’apprentissage statistique : l’algorithme de regroupement K-medoids,
en utilisant des statistiques sur les valeurs des instances. D’autre part, notre solution
s’appuie sur un modèle d’interconnexion par une méthode d’apprentissage symbol-
ique : l’espace des versions, basée sur les correspondances d’attributs potentielles
découvertes et l’ensemble des liens de l’échantillon évalué. Notre méthode peut
résoudre la tâche d’interconnexion quand il n’existe pas de motif d’interconnexion
combiné qui couvre tous les liens corrects évalués avec un format concis.

L’expérimentation montre que notre méthode d’interconnexion, avec seulement
1% des liens totaux dans l’échantillon, atteint une F-mesure élevée (de 0,94 à 0,99).
La F-mesure converge rapidement, ameliorant les autres approches de près de 10%.
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Chapter 1

Introduction

Nowadays, many organizations and individuals publish their data sets on the web
for sharing information with other users. There are countless RDF1 data sets that
are published2, and they tend to be more and more heterogeneous. Integrating
heterogeneous data sets can help search web data efficiently. For example, without
interlinking across library databases, a librarian has to manually browse different
library databases to find a requested book, easily leading to response delay and
mistakes. Hence, it is important to provide an easy-to-use and effective method to
interlink the same instances across different data sets.

In the interlinking method defined in this thesis, the input is two data sets, class
correspondences [Euzenat 2007] across the two data sets and a set of sample links
that are assessed by users as either “positive” or “negative”. Class correspondences
help find out the same instances from two classes. The set of assessed sample links
helps build a classifier that distinguishes correct links and incorrect links across two
data sets. The classifier is called an interlinking pattern in this thesis, which can
help compare instances of two corresponding classes and generate links. The output
of the interlinking method of this thesis is an interlinking pattern.

In this thesis, we assume that class correspondences of two data sets are available.
The way to find out the same instances is computing a similarity value by compar-
ing attribute values of instances from two corresponding classes [Suchanek 2012],
where attributes refer both to value-oriented attribute (i.e., property) and to object-
oriented attribute (i.e., relation). This requires to find out which attribute to com-
pare and how to generate a similarity value. Nevertheless, it is not necessary to
compare each attribute of an instance with each attribute of another instance. Only
some attributes should be compared. Assume that we are going to compare in-
stances of two data sets that describe people. It is useful to compare instances by
comparing people’s names. But it is useless to compare instances by comparing
people’s age with people’s address. Thus, it is better to compare attributes when
the attributes have similar semantics and overlapping ranges. The attributes with
similar semantics and overlapping ranges are corresponding attributes, which can
form attribute correspondences.

Attribute correspondences may be obtained from an alignment between at-
tributes. Instance-based ontology matching works [Dhamankar 2004, Berlin 2002,
Kang 2003, Bilke 2005, Nottelmann 2005, Tran 2011, Qin 2007] can help generate

1http://www.w3.org/RDF/
2http://lod-cloud.net/

http://www.w3.org/RDF/
http://lod-cloud.net/
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attribute correspondences. However, quality alignments are difficult to obtain. Some
existing interlinking approaches [Nikolov 2010, Ngonga Ngomo 2011c] explore at-
tribute correspondences based on sample links, while they are subject to the as-
sumption that some sample correct links should be known beforehand.

In order to solve the problems illustrated above, the interlinking method in
this thesis will build attribute correspondences by analyzing value features of each
attribute. Since attributes that have similar value features are more likely to be at-
tribute correspondences, this thesis utilizes a clustering method to classify attributes
of each class into several groups by value features. The thesis proposes an ontology
matching approach of constructing attribute correspondences by classifying the at-
tributes of each class with a K-medoids clustering algorithm [Kaufman 1987]. Then,
attributes of different classes are mapped together as potential attribute correspon-
dence, if they have similar value features. The ontology matching method in the
thesis can largely reduce the number of attribute pairs that are not corresponding
with each other and the number of undiscovered attribute correspondences.

Nevertheless, even if attribute correspondences across two corresponding classes
are discovered, correct links cannot be generated by comparing all instances accord-
ing to all attribute correspondences. Due to the irregularity of instance structure in
RDF data sets, correct links may contain different attribute correspondences. If two
attribute values of two instances that formed one correct link are equal, we assume
that the attribute correspondence that is built with the two attributes is contained
in such a correct link. Therefore, two instances cannot be simply judged as a correct
link even though all attribute correspondences are compared. Besides discovering
attribute correspondences, an interlinking pattern should be constructed. The in-
terlinking pattern helps compute the similarity value of two attribute values with
respect to each attribute correspondence of two instances, and combines the sim-
ilarity values of all attribute correspondences into one value, which represents the
similarity of two compared instances. Two instances are generated as a link if their
similarity is above a pre-defined threshold. But usually the interlinking pattern
cannot be obtained easily without referring to correct links. A learning model is
required to improve the interlinking pattern with assessed links from users. The
interlinking method in this thesis employs the Version Space model [Mitchell 1982],
a symbolic learning method that searches the interlinking pattern precisely, to con-
struct such an interlinking pattern that is composed of all attribute correspondences,
so as to generate a link set across two RDF data sets.

To summarize, this thesis proposes an interlinking method which helps interlink
RDF data sets with high F-measure, according to the in-depth analysis of instances’
attribute value features. The interlinking method in this thesis adopts two machine
learning steps mixing statistical and symbolic learning [Hastie 2001, Mitchell 1997]:
(1) construct attribute correspondences by classifying the attributes with K-medoids
clustering; (2) generate interlinking patterns with Version Space.

The key contributions of this thesis are thus:

• Attribute Clustering Algorithm: A K-medoids clustering is implemented to
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find out all potential attribute correspondences across corresponding classes.
The K-medoids method is able to classify large data sets like attribute set of
each class with statistics. Specifically, K-medoids classifies attributes of each
class in a class correspondence into several groups, based on a set of statistical
features of instance values. Statistical feature is a kind of value feature that
reflects attribute values’ characteristics with statistics. Then, each group of
one corresponding class is mapped to a group of the other corresponding class
that contains the most similar features. Potential attribute correspondences
are obtained by mapping attributes across the matched groups. In other word-
s, in each potential attribute correspondence, one attribute comes from one
group, the other attribute comes from a group which is mapped to the for-
mer group. Hence, attribute pairs that are not corresponding with each other
are largely avoided. The final output of the clustering algorithm is a set of
potential attribute correspondences.

• Version Space Algorithm: After the clustering step, an interlinking pattern is
constructed based on the Version Space model. The Version Space method is
able to construct an interlinking pattern when the input is a set of symbols
(i.e., potential attribute correspondences). Nevertheless, the Version Space
model suffers from a limitation for the interlinking problem. It can only build
the interlinking pattern that is represented by a conjunctive pattern, which is a
conjunction of attribute correspondences that are contained in all correct links.
If there is no such a conjunctive pattern, the Version Space cannot produce
any interlinking pattern. It outputs a null result. Disjunctive Version Space
is one model that is designed to overcome such a limitation. It is a method
that is able to express cases that cannot be represented by a conjunctive
pattern into a disjunction of conjunctive patterns. When there are several
conjunctive patterns each of which satisfies only some but not all correct links,
the interlinking pattern can be expressed into a disjunction of conjunctive
patterns by Disjunctive Version Space. However, the interlinking pattern it
learns is a long expression, which will largely increase the interlinking running
time. In this thesis, an Extended Version Space algorithm is proposed to build
the interlinking pattern that includes (excludes) correct links (incorrect links),
with a more concise expression than Disjunctive Version Space. Such a concise
expression in turn speeds up the interlinking process, in that the more concise
an interlinking pattern is, the shorter running time the interlinking process
requires to produce a link set. The final output of the Extended Version
Space algorithm is an interlinking pattern than help generate a link set of two
RDF data sets.

The interlinking method of this thesis is evaluated against a set of large-scale
data sets, by comparing to related works. Experiments confirm that the interlinking
solution with only 1% sample links can already return a fairly precise link set. The
F-measures quickly converge to a higher level by nearly 10% than other state-of-
the-art approaches.
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This thesis is supported by the Datalift3 project. It is a project that weaves
data sets of various domains and formats into linked data [Scharffe 2012]. There are
several modules within the Datalift platform. The content of this thesis contributes
to the interlinking module, which interlinks RDF data sets.

The remainder of the thesis is organized as follows. The thesis formulates the
interlinking problem in Chapter 2. Thereafter, related works are introduced in
Chapter 3. Chapter 4 presents the proposed solution and a system overview. The
K-medoids clustering method is presented in Chapter 5, in order to explore attribute
correspondences across corresponding classes. The transforming rules that trans-
forms ontology alignment into executable interlinking scripts are shown in Chapter
6, which are not only used to generate a set of sample links that are assessed by users
for constructing and improving an interlinking pattern, but also used to generate
a set of links across two corresponding classes. Chapter 7 describes the Extended
Version Space method, which is used to generate an interlinking pattern with a
concise disjunctive expression. Chapter 8 presents the experimental results based
on real-world data sets. Finally, conclusions as well as future work are summarized
in Chapter 9.

3http://datalift.org/

http://datalift.org/


Chapter 2

The Data Interlinking Problem

Contents
2.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Interlinking Problem . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Three Main Research Tasks . . . . . . . . . . . . . . . . . . . 10

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

In this chapter, a general scenario for interlinking is presented first, in Section
2.1. Then, the interlinking problem is defined in Section 2.2. Finally, three main
research tasks required to solve the interlinking problem are illustrated in Section
2.2.1.

2.1 Scenario

Many data sets on the web are expressed in RDF. The Resource Description Frame-
work (RDF) is a W3C standard language that organizes data into a set of triples.
Each triple is made up of subject, predicate, and object. Subject can be a Uniform
Resource Identifier (i.e., URI 1) or a blank node. Object can be a URI, a blank node
or a data value such as a string or an integer. Predicate is a relationship between
the subject and the object. A predicate can be an object-oriented property, which
is usually called relation. Its range is a set of entities. It also can be a data-oriented
property, which is usually called property. Its range is a set of values. The domain of
a predicate is always a set of entities. Each RDF data set can be built an ontology2.
It is a schema that specifies classes, relations, and properties in the data set. A class
usually has several relations and properties. Each relation has one or several classes
as its domain. It also has one or several classes as its range. Each property has one
or several classes as its domain. It also has one data type as its range. In the data
set, all entities which are created conforming to the structure of a class are called
instances of the class [Antoniou 2008].

Interlinking data sets is highly required in web applications, such as data search-
ing and querying. Users would like to weave all data sets into a web, so as to query
them easily. For example, a person would like to buy a computer on the web. In
order to buy the computer with a relatively cheaper price, he needs to browse all

1http://www.w3.org/TR/uri-clarification/
2http://semanticweb.org/wiki/Ontology

http://www.w3.org/TR/uri-clarification/
http://semanticweb.org/wiki/Ontology
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appliance shopping web sites. But, it is probably a heavy task to search one desired
computer several times on different web sites, due to the fact that the information
of the same computer is described in different data sets. If we interlink the data set
of each shopping site together, users can obtain the prices of the computer in all
shopping sites only from one shopping site’s querying portal on the web.

Interlinking is a task that attaches the same instances from different da-
ta sets together by comparing instances. Given two different data sets, we
can compare instances’ URIs or property values to find the same instances.
It is not easy to compare instances’ URIs. Usually, URIs are not expressed
with the same prefix. For example, all instances of geographical RDF da-
ta set INSEE are named with the prefix http://rdf.insee.fr/geo/2010/. In-
stance http://rdf.insee.fr/geo/2010/DEP_38 is the department “Isère” of France
in INSEE. All instances of geographical RDF data set EUROSTAT are named
with the prefix http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/. Instance
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 is the department
“Isère” in France in EUROSTAT. Thus, different prefixes make the comparison of
URIs quite difficult [Nikolov 2010]. Nevertheless, it is easier to compare property
values of instances. Each instance has one or more property values. The values are
either strings or numbers. They do not contain prefixes. They can help compare
instances. Instances’ relations also can help compare instances. Here, relations’ sub-
jects are the compared instances. The comparison is not executed upon the URIs
of relations’ objects, but the property values of relations’ objects. The comparison
also can be executed upon property values of relations’ subjects, when relations’ ob-
jects are the compared instances. In one sentence, it is easier to compare instances’
property values rather than their URIs.

An interlinking example is given here to illustrate the interlinking process of this
thesis. We are going to interlink two geographical data sets. One is INSEE, and the
other is EUROSTAT. There are instances that describe departments in France in
both data sets. The interlinking task is to compare the property values of instances
in order to find out links, such as http://rdf.insee.fr/geo/2010/DEP_38 owl:sameAs
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714. owl:sameAs3 is a
property that defines a link across two instances that refer to the same resource
in the world.

Figure 2.1 shows the corresponding classes of “department” as well as their
corresponding attributes in both data sets. A class correspondence is com-
posed of two classes that have similar semantics and instances. A attribute
correspondence is composed of two attributes that have similar semantics and
overlapping ranges. In this thesis, “attribute” refers to both “relation” and
“property” in RDF data sets. There are three correspondences in this exam-
ple. They are class correspondence insee:Departement↔eurostat:NUTSRegion,
property correspondence insee:nom↔eurostat:name, and relation correspondence
insee:subdivision−1↔eurostat:hasParentRegion. Here, ·−1 means the reverse rela-

3http://www.w3.org/TR/owl-ref/#sameAs-def

http://www.w3.org/TR/owl-ref/#sameAs-def
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Departement NUTSRegion
=

nom

code_departement

subdivision-1

name

code

label

hasParentRegion

=

=

level

Figure 2.1: Correspondences of Departments in INSEE and EUROSTAT

tion. Thus, relation eurostat:hasParentRegion is corresponding to the reverse rela-
tion of relation insee:subdivision.

In order to link the same instances of class “department” in both data sets,
we need to compare instances’ property values rather than instances’ URIs. Class
insee:Departement has two attributes. They are property insee:nom and relation
insee:code_departement. It is also the object of the relation insee:subdivision. The
following is an instance of the class “Department” in the data set INSEE, which
is http://rdf.insee.fr/geo/2010/DEP_38. It represents the department “Isère” in
France.

<insee:Departement rdf:about="DEP_38">
<insee:code_departement>38</insee:code_departement>
<insee:nom xml:lang="fr">Isère</insee:nom>

</insee:Departement>

In contrast, the class eurostat:NUTSRegion has five attributes. They are
property eurostat:level, property eurostat:name, property eurostat:code, prop-
erty rdfs:label, and relation eurostat:hasParentRegion. The following is an
instance of the class “Department” in the data set EUROSTAT, which is
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714. It also represents
the department “Isère” in France.

<NUTSRegion rdf:about="FR714">
<level rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">3</level>
<hasParentRegion rdf:resource="FR71"/>
<code>FR714</code>
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<name>Isère</name>
<rdfs:label>FR714 - Isère</rdfs:label>

</NUTSRegion>

In order to build a link between the same instances, we should compare in-
stances’ property values according to the attribute correspondences of the two cor-
responding classes to which the instances belong. Intuitively, all property values of
each instance in the class insee:Departement should be compared with all prop-
erty values of each instance in the class eurostat:NUTSRegion. However, most
of the comparisons are not useful for assessing whether two instances are iden-
tical or not. For example, it is meaningless to compare the value of the prop-
erty insee:code_departement with the value of the property eurostat:name. Be-
cause in each correct link like http://rdf.insee.fr/geo/2010/DEP_38 owl:sameAs
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714, the similarity of the
two values is 0. Such a similarity value cannot help us to evaluate
whether the instance http://rdf.insee.fr/geo/2010/DEP_38 and the instance
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 are the same or not.
The reason is that the property insee:code_departement and the property euro-
stat:name do not have similar semantics and overlapping ranges. The property
insee:code_departement denotes the codes of the departments in France in the data
set INSEE. While the property eurostat:name denotes the names of the departments
in France in the data set EUROSTAT. There is not an attribute correspondence be-
tween the two properties. Thus, a comparison of two attributes is only useful when
there is an attribute correspondence that can be built with the two attributes.

There are only two comparisons that should be done for evaluating the
two instances that refer to the department “Isère”, because there are two at-
tribute correspondences of the two corresponding classes insee:Departement
and eurostat:NUTSRegion. One comparison is executed between the value of
the property insee:nom in the class insee:Departement with the value of the
property eurostat:name in the class eurostat:NUTSRegion. That is to say,
insee:nom’s value, Isère, of the instance http://rdf.insee.fr/geo/2010/DEP_38
should be compared with eurostat:name’s value, Isère, of the instance
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714. Anoth-
er comparison is executed between property values of the relation in-
see:subdivision’s subjects in the class insee:Departement with property
values of the relation eurostat:hasParentRegion’s objects in the class eu-
rostat:NUTSRegion. As for the two instances referring to Isère, instance
http://rdf.insee.fr/geo/2010/REG_82 is the subject of the relation insee:subdivision
when the object is the instance http://rdf.insee.fr/geo/2010/DEP_38. Instance
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR71 is the object of the
instance http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 ’ relation
eurostat:hasParentRegion. The two instances are shown below.

<insee:Region rdf:about="REG_82">
<insee:code_region>82</insee:code_region>
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<insee:nom xml:lang="fr">Rhône-Alpes</insee:nom>
<insee:subdivision>

<insee:Departement rdf:about="DEP_38">
<insee:code_departement>38</insee:code_departement>
<insee:nom xml:lang="fr">Isère</insee:nom>

</insee:Departement>
</insee:subdivision>

</insee:Region>

<NUTSRegion rdf:about="FR71">
<level rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">2</level>
<hasParentRegion rdf:resource="FR7"/>
<code>FR71</code>
<name>Rhône-Alpes</name>
<rdfs:label>FR71 - Rhône-Alpes</rdfs:label>

</NUTSRegion>

Since it is difficult to compare URIs of the above two instances, property values of the
instance http://rdf.insee.fr/geo/2010/REG_82 should be compared with property
values of the instance http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR71.
Therefore, the property insee:nom’s value, Rhône-Alpes, of the in-
stance http://rdf.insee.fr/geo/2010/REG_82 should be compared with
the property eurostat:name’s value, Rhône-Alpes, of the instance
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR71. Based upon the two
similarities of property values, the instance http://rdf.insee.fr/geo/2010/DEP_38
and the instance http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 are
assessed as “the same”. The link http://rdf.insee.fr/geo/2010/DEP_38 owl:sameAs
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 is built with the two
instances.

From the example above, the scenario of the interlinking process can be formu-
lated in this way. A RDF graph g is a set of triples made over a set of URIrefs U ,
blanks, and literals V, which is described by ontology o. Similarly, g′ is another set
of triples made over a set of URIrefs U ′, blanks, and literals V ′, which is described
by ontology o′. There is an alignment between classes of two ontologies o and o′,
i.e., a set of class correspondences < e,=, e′ > over entities e and e′ such that e ∈ U ,
e′ ∈ U ′. If two instances i ∈ U and i′ ∈ U ′ actually reflect the same object in the
world, we call there is a link between them, denoted as i owl:sameAs i′.

In order to find out correct links across each pair of corresponding classes in two
data sets, it is required to construct a classifier that distinguishes correct links and
incorrect links. Such a classifier is called an interlinking pattern in this thesis. An
interlinking pattern combines all attribute correspondences of the two corresponding
classes into an expression that satisfies correct links and dissatisfies incorrect links.
With the interlinking pattern, we can compare instances and generate links. Users
need a method that can generate such an interlinking pattern that helps interlink
the data sets. Therefore, the interlinking problem to be solved in this thesis is
formulated below.
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2.2 The Interlinking Problem

Given two data sets being RDF graphs g and g′ described by ontology o and o′ and
an alignment between classes of two ontologies o and o′, the objective is to find an
interlinking pattern that covers a set of links L ∈ U × U ′ such that instance pair
< i, i′ >∈ L if and only if i owl:sameAs i′.

Since there are many existing effective ontology matchers that can generate class
correspondences, we assume that there are a set of class correspondences already giv-
en for two interlinking data sets. However, many ontology matchers cannot provide
qualified attribute correspondences of two interlinking data sets. So the attribute
correspondences between two ontologies are unknown in the problem formulation of
this thesis.

2.2.1 Three Main Research Tasks

According to the interlinking scenario and problem definition described in the last
two sections, an interlinking pattern that is composed of attribute correspondences
across two corresponding classes is required to generate links between two RDF data
sets.

Since the interlinking pattern satisfies correct links and dissatisfies incorrec-
t links, it is a classifier that is composed of the set of attribute correspon-
dences that exist in each correct link. Moreover, it is also a classifier that
does not contain the set of attribute correspondences that exist in any incorrec-
t link. If two attribute values of two instances that form a link is similar, we
assume that the attribute correspondence built with the two attributes is con-
tained in the link. For instance, in the example of Section 2.1, the set of at-
tribute correspondences of the correct link http://rdf.insee.fr/geo/2010/DEP_38
owl:sameAs http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714 is {in-
see:nom↔eurostat:name, insee:subdivision−1↔eurostat:hasParentRegion}. So the
interlinking pattern of the example should contain such a set of attribute correspon-
dence in order to generate the correct link http://rdf.insee.fr/geo/2010/DEP_38
owl:sameAs http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR714.

Without knowing some correct and incorrect links, it is hard to construct an in-
terlinking pattern that is able to distinguish links. Different links usually have differ-
ent sets of attribute correspondences. Assume that there are n attribute correspon-
dences in a pair of corresponding classes. There are totally C1

n+C2
n+. . .+Cnn = 2n−1

sets of attribute correspondences. Since we cannot estimate which sets exist in cor-
rect links, we do not know which sets of attribute correspondences are needed to
build the interlinking pattern. We also have no idea how many sets of attribute
correspondences are needed to build the interlinking pattern. Similarly, we cannot
estimate which sets exist in incorrect links, we do not know which sets of attribute
correspondences should not be put into the interlinking pattern.

Here we give an example to illustrate the difficulty of constructing an interlink-
ing pattern across two corresponding classes in two RDF data sets. Assume that
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there are three links of two RDF data sets. One is a correct link, which has a set
of the attribute correspondences {ACi, . . . , ACj}. The second is also a correct link,
which has a set of attribute correspondences {ACk, . . . , ACl}. The third is an in-
correct link, which has a set of attribute correspondences {ACp, . . . , ACq}. Here,
ACi, . . . , ACj , ACk, . . . , ACl and ACp, . . . , ACq are attribute correspondences of the
two corresponding classes. If we do not know the first link, we cannot estimate the
set {ACi, . . . , ACj}. If we do not know the second link, we cannot estimate the set
{ACk, . . . , ACl}. Therefore, we may do not put those two sets of attribute corre-
spondences in the interlinking pattern, so as to let the pattern disable to cover the
two correct links. Similarly, if we do not know the third link, we cannot estimate the
set {ACp, . . . , ACq}. Therefore, we may put this set into the interlinking pattern,
so as to let the pattern disable to filter the third incorrect link. Therefore, in order
to produce as many correct links as possible in the link set and reduce the num-
ber of incorrect links in the link set, some assessed links are needed. The assessed
links are links marked as either “correct” or “incorrect” by users. Since interlinking
pattern should be constructed by extracting the sets of attribute correspondences
from assessed links, the process of constructing the interlinking pattern can be a
Machine Learning process that improves the interlinking pattern by referring to
assessed links. The definition of Machine Learning is below.

Machine Learning builds a classifier for a task with an amount of training data so
as to classifier other data. Assume that we are going to train a robot to distribute
mails in France into different boxes that represent different departments. Some
training mails are collected to teach the robot to which box each mail should be
distributed. The robot then learns the relationships between cities in the addresses
of the training mails and departments that are represented by the boxes. Based on
the relationships, the robot can distribute other mails into the corresponding boxes
of departments. In this example, the training data are the training mails. The
classifier is the relationships between cities and departments that the robot learns.
Generally speaking, there are four types of learning methods, Supervised Learning,
Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning.

1 Supervised Learning is a method that builds a classifier with labeled exam-
ples [Kotsiantis 2007].

2 Unsupervised Learning is a method that builds a classifier with unlabeled
examples [Ghahramani 2004, Hinton 1999]. Clustering is a widely-used Unsu-
pervised Learning method. It divides unlabeled examples into several groups
according to some characteristics of the examples [Xu 2005].

3 Semi-supervised Learning is a method that builds a classifier with both la-
beled and unlabeled examples [Zhu 2005, Chapelle 2006]. Self-training is a
commonly-used semi-supervised Learning method. It first builds a classifier
with the available labeled examples. Then it classifies the rest unlabeled ex-
amples with the classifier. After classification, the most reliable examples are
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selected to improve the classifier with their predicting labels. The classifier is
prone to stay in the local optimum.

4 Reinforcement Learning is a method that builds a classifier by collecting
feedback from the environment where the task takes place [Gosavi 2009,
Kaelbling 1996].

According to the definition of Machine Learning, the process of constructing the
interlinking pattern is a supervised learning process. The learned classifier is the
interlinking pattern across two corresponding classes in two RDF data sets. The
labeled examples are assessed links.

There are several learning methods that fall into the classification of Supervised
Learning.

i Support Vector Machine is a learning method that builds a linear classifier
of classifying the examples into two categories according to the information
extracted from the labeled examples [Cristianini 2000, Burges 1998]. The lin-
ear classifier combines all conditions that each positive example satisfies into
a linear function.

ii Neural Network is a learning method that builds a classifier composed of a
group of artificial neurons for parsing the input information. Usually it is an
adaptive system, which can change its structure according to the information
it processes [Haykin 1998, Stergiou 1996, Chow 2007]. Such a structure shows
the relationship between the labeled examples and the target effect.

iii Naive Bayesian classifier [Witten 2005] is a probabilistic method that classifies
the examples according to their probabilities of several relevant variables. The
probabilities are computed according to the Bayes’ Theorem.

iv Decision Tree is a tree-structured classifier that classifies the examples accord-
ing to their feature values [Murthy 1997, Safavian 1991].

v The k-Nearest Neighbor method classifies data by considering the label of their
nearest labeled example [Jiang 2007, Bhatia 2010].

vi Rule learning extracts a set of rules from the labeled examples that reflect the
logic relationships of several relevant variables [Piatetsky-Shapiro 1991].

vii Version Space is a learning process that maintains two boundaries for separat-
ing labeled positive examples and labeled negative examples [Mitchell 1982,
Mitchell 1997]. After all labeled examples are learned, the two boundaries are
merged into one. It is the classifier that distinguishes positive and negative
examples.

To summarize, there are three tasks to be done for the interlinking problem of
this thesis.
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1 Discovering Attribute Correspondences
This task is to find out all attribute correspondences of each pair of corre-
sponding classes across two interlinking data sets.

2 Generating Links
This task is to generate a set of assessed links that can be used to construct
and improve the interlinking pattern with a supervised learning method.

3 Constructing and Improving the Interlinking Pattern with Assessed Links
This task is to construct and improve the interlinking pattern with the assessed
links that are collected in the second task.

2.2.1.1 Discovering Attribute Correspondences

All attribute correspondences of each pair of corresponding classes are demanded
for interlinking. In order to judge whether two instances are the same or not, in-
stances’ attribute values should be compared. But, it is a heavy task to compare
each attribute value of one instance with each attribute value of another instance.
It is better to reduce the number of comparisons as many as possible. In fact,
there is no need to compare attributes that do not correspond with each other.
For example, it is meaningless to compare values of the property insee:nom in the
class insee:Departement with values of the property eurostat:code in the class eu-
rostat:NUTSRegion. The former property refers to departments’ names in France.
The latter property refers to departments’ codes in France. The two properties
do not have similar semantics and overlapping ranges, so it is a waste of time to
compare their values. The first task is defined as follows:

Given two classes C and C ′, find out at least one attribute correspondence
(AC ) A↔A′ on attribute A of class C and attribute A′ of class C ′ such that
range(A)∩range(A′)6= ∅, where range(x) represents the range of attribute x.

2.2.1.2 Generating Links

After finding out all attribute correspondences, a set of assessed links should be
generated. They are used to extract the sets of attribute correspondences for con-
structing and improving the interlinking pattern with a supervised learning method.
Without knowing some assessed links, the interlinking pattern is hard to be con-
structed, because it is difficult to estimate which and how many sets of attribute
correspondences are required for the interlinking pattern. So the task is defined as:

Given n attribute correspondences AC1, . . . , ACn of two corresponding classes,
a set of assessed links {l1, . . . , ln} are generated to help construct and improve the
interlinking pattern that can distinguish links precisely.
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2.2.1.3 Constructing and Improving the Interlinking Pattern with As-
sessed Links

Based on assessed links, a learning model can be applied here to construct an in-
terlinking pattern P and improve it into a new one P ′. As illustrated before, the
interlinking pattern cannot be built precisely without extracting the set of attribute
correspondences from assessed links produced from Task 2.2.1.2. After learning the
sets of attribute correspondences of the assessed links, the number of correct links
in the link set produced by the new interlinking pattern P ′ will be bigger than the
one of the link set produced by the old interlinking pattern P , or the number of
incorrect links in the link set produced by the new interlinking pattern P ′ will be
smaller than the one of the link set produced by the old interlinking pattern P .

There are three measures that can be used to evaluate the link set. They are
Precision, Recall, and F-measure. Precision is a ratio of the number of generated
correct links on the number of all generated links in a link set. Recall is a ratio of the
number of generated correct links on the number of all correct links in an interlinking
task. Nevertheless, neither Precision nor Recall gives a comprehensive view of the
link set. The reason is that Precision only shows the interlinking performance of
filtering incorrect links, while Recall only shows the interlinking performance of
generating correct links. In other words, an interlinking pattern with high precision
may be unable to produce some correct links. An interlinking pattern with high
recall may also produce some incorrect links. F-measure is a balancing measure of
Precision and Recall, which is defined based on the two measures. Its definition is

Fβ = (1 + β2) · Precision ·Recall
β2 · Precision+Recall

(2.1)

Usually F1 measure (i.e., β = 1) is applied to evaluate the generated link set.
So the last task is defined as:
Given a set of assessed links {l1,. . .,ln} and a learning model F such that

F (l1, l2, . . . , ln, P ) = P ′, where A(P ′) > A(P ). A(x) is a measure of evaluating
the pattern x. A(x) can be Precision, Recall, or F-measure.

2.3 Conclusion

This chapter defines the interlinking problem of this thesis, which is to find out the
interlinking pattern for generating a link set of two RDF data sets.

The research problem can be divided into three tasks.

• Discovering Attribute Correspondences

• Generating Links

• Constructing and Improving the Interlinking Pattern with Assessed Links
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In the next chapter, we will introduce related works of the interlinking process.
The works will be introduced according to techniques that are used for interlink-
ing. Afterwards, the works are analyzed according to the tasks that they make
contributions to.
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This chapter analyzes related works of the interlinking process. First, a brief
overview of the related works is given in Section 3.1. The related works are intro-
duced according to the techniques that are used for interlinking. Second, related
works are presented to show the state of the art on the three tasks for the inter-
linking problem of this thesis. They are, related works on discovering attribute
correspondences (Section 3.2), related works on generating links (Section 3.3), and
related works on constructing and improving the interlinking pattern with assessed
links (Section 3.4).

3.1 Interlinking

Interlinking technologies for heterogeneous data sets have been studied for years.
Although domain specific [Raimond 2008, Sleeman 2010] and dataset specif-
ic [Auer 2009, Hassanzadeh 2009] interlinking methods have already been proposed,
it is not enough to interlink new-coming RDF data sets from various domains, such
as Geographical Information System or bioinformatics. In the following text, we are
going to introduce the interlinking works that are able to interlink data sets from
various domains. The works are presented with respect to the techniques that are
used for interlinking.
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3.1.1 Record Linkage

In the Database field, Record Linkage [Cao 2011] is similar to the interlinking prob-
lem of RDF data sets. It is to find out the same records across two tables of
the database [Winkler 2006]. It is also called object identification [Tejada 2001,
Tejada 2002], approximate matching/joins [Gravano 2003, Guha 2004], and entity
resolution [Whang 2009, Benjelloun 2009]. Record Linkage is needed in the tasks
Data Cleaning [Guha 2004] and Merging [Ananthakrishna 2002].

Some definitions of database can be applied for interlinking RDF data sets.
One is inverse functional property [Niu 2012, Hogan 2010, Hu 2011], the other is
key [Atencia 2012, Song 2011, Song 2013].

3.1.1.1 Inverse Functional Property

Inverse Functional Property is used to identify instances within a RDF data set. An
inverse functional property is a property that whenever an object is the property’s
value of a subject, there is no other subject whose property’s value is the same
object. It also means that the subject is the one and the only subject that has
the object as the property value. In RDF data set, inverse functional property’s
subjects are URIs. Inverse functional property’s objects are data values. If one
value is given, an instance is identified uniquely [Niu 2012, Hogan 2010, Hu 2011].
So inverse functional property is used to identify instances of one data set. If inverse
functional properties across two data sets can be matched, the same instances are
uniquely identified in both data sets. Then, a link can be built.

Niu et al. [Niu 2012], Hogan et al. [Hogan 2010] and Hu et al. [Hu 2011] all
compute inverse functional properties so as to find links across two RDF data sets.
Attribute correspondences are built between inverse functional properties of two
RDF data sets to help compare instances.

Specifically, Niu et al. [Niu 2012] apply the Expectation-Maximization algorith-
m to discover frequent-used attribute correspondences that are built with inverse
functional properties. The paper assumes that there are several available assessed
correct links, which are utilized to mine potential attribute correspondences across
data sets. The paper constructs a graph M showing the relationships between
available assessed links and each potential attribute correspondence. Each node
represents an instance, and each edge refers to an available assessed correct link
between two neighboring instances. The weight of each edge shows the confidence
of the link. The likelihood function is an approximate precision of the graph when
each correspondence exists, which is a ratio of the number of connected instances in
the graph on the total number of edges in the graph. Besides, there is one parame-
ter, support, denoting the probability of each correspondence in all available correct
links. In the paper, support is set to 10 empirically. The paper states that such a
value needs to be tuned according to different mining tasks with a small amount of
training data.

Hogan et al. [Hogan 2010] build attribute correspondences for interlinking, based
on not only inverse functional properties but also functional properties and cardi-
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nality restrictions of data sets. Functional property is a property that each subject
has a unique object as the property’s value. It is possible that several subjects have
the same object. Cardinality is used to restrain the number of objects of a subject’s
property.

Hu et al. [Hu 2011] introduce a method to learn discriminative property-value
pairs that identify an instance in a RDF data set with some available assessed correct
links. Such a concept of property-value pairs is similar to the definition of inverse
functional property that identifies instances uniquely.

To conclude, inverse functional property can be used to build attribute corre-
spondences, which in turn help identify the same instances across two RDF data
sets. Intuitively, inverse functional property identifies instances in a RDF data set.
There should be two mapped inverse functional properties from both RDF data
sets, so that instances of both data sets can be identified and linked. If there is
no attribute correspondence that is formed by one inverse functional property of
one data set and one inverse functional property of the other data set, the same
instances cannot be identified by inverse functional properties.

3.1.1.2 Key

Key is also used to identify instances for interlinking. In relational databases,
each table has at least one key. The key identifies each record in a table of
database. If keys across two data sets can be matched, the same instances are
uniquely identified in both data sets. Then, a link can be built. Related work-
s [Atencia 2012, Scharffe 2012, Pernelle 2013, Song 2011, Song 2013] on key for in-
terlinking are presented as follows.

Pernelle et al. [Pernelle 2013] introduce KD2R, a method that interlinks data
sets by two steps. The first step finds out all minimal keys in each class of each
data set. The second step discovers mapped keys across two mapped classes of
two data sets by referring to a set of available attribute correspondences. This
work assume that class correspondences and attribute correspondences across two
data sets are available. In order to find out the minimal keys, all combinations
of attributes within a class should be considered. Nevertheless, there are 2n − 1

attribute combinations to be evaluated, if there are n attributes in a class. In order
to reduce the number of evaluated attribute combinations, the method computes two
set of attribute combinations before finding out minimal keys. One set is composed
of maximal undetermined keys. The other set is composed of maximal non keys. In
each undetermined key, there are some attributes that have the same value in at least
two instances. Furthermore, remaining attributes within each undetermined key
cannot be used to identify instances, because they do not have values in all instances.
The paper assumes that if an attribute combination is part of any maximal non
key or any maximal undetermined key, it is not a key. Thus, the method only
evaluates the attribute combinations that are not part of any maximal non key
and any maximal undetermined key. If there are not two instances that have the
same attribute values on an attribute combination, such an attribute combination
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is recognized as a key. The method finally choose the keys that contain the least
attributes as the minimal keys of a class.

Atencia et al. [Atencia 2012, Scharffe 2012] broaden the definition of key. Since
there are many erroneous, redundant and irregular data in large RDF data sets,
not all RDF data sets have keys. The authors define a key to be a property or a
group of properties that can identify most of the instances in a RDF data set. This
contrasts with the definition of key in relational database, which is a property or a
group of properties that can identify each instance in a RDF data set. They call
such an extended key pseudo-key. The pseudo-key of a RDF data set is discovered
in several steps. First, a partition on subjects is computed according to the objects
of each property. For each property, there is a subject partitioning. Subjects that
have the same object of one property are classified into the same partitioned group.
Second, the paper treats any property or a set of properties to be candidate keys.
A property is a key only if the number of partitioned groups, which contain only
one subject, is larger than a threshold. It means that the property is a key only
when it is able to identify a pre-defined proportion of instances. In order to judge
whether a property set is a key, an extra operation is needed before counting the
number of instances that are distinguished by the property set. The operation is that
computing the intersection set of all properties’ partitioned groups in the property
set. The intersection set consists of the partitioned groups that are distinguished by
all properties in the property set respectively. A property set is considered as a key
only when the number of partitioned groups, which contain only one subject, in the
intersection set is larger than a threshold. It means that only when a property set
is able to distinguish a pre-defined proportion of instances in the RDF data set, it
is regarded as a key. The definition of pseudo-key makes the interlinking work more
easily executed on various data sets, especially for the interlinking data sets that do
not have any key. Based on the pseudo-keys of each RDF data set, instances are
identified with regard to the properties in the key of each data set. If each property
of a key in one class can be mapped to a property or several properties in a key in the
corresponding class, the same instances are identified by only comparing properties
within two pseudo-keys.

Song and Heflin [Song 2011] make use of unsupervised learning to find out keys.
There are three measures being used for discovering keys. Discriminability is defined
as a ratio of a property’s range size on the number of triples that contains the
property. Coverage is a ratio of the number of instances that have a property
on the number of instances in the RDF data set. FL is the harmonic mean of
Discriminability and Coverage.

FL =
2 ∗Discriminability ∗ Coverage
Discriminability + Coverage

If a key’s FL is lower than a pre-defined threshold, it will not be regarded as a key.
The work searches the key by evaluating each property. If there is no property that
can be the key of the data set, each set of any two properties is evaluated. The
key-discovering process will continue by evaluating each set of any three properties,
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if there is no key that consists of two properties. This key-discovering process will
stop until the FL of one property or one property set is higher than the pre-defined
threshold. When interlinking data sets, the paper compares instances according to
the properties of two keys across two corresponding classes. If each property of a
key in one class can be mapped to a property or several properties in a key in the
corresponding class, the same instances are identified by only comparing properties
within two keys. Yet, the work does not compare all instances. It applies inverted
index [Baeza-Yates 1999] to reduce the number of instance comparisons. A set of
instances are selected if each of them has at least one property value, which contains
a token that appears in the range of one property in the key. Only these instances
are compared and evaluated to be the same or not.

[Song 2013] is an improved work of [Song 2011]. The paper assumes that corre-
sponding classes and a set of attributes are pre-known. The method in the paper
first computes distinguishable attributes of the instances, which form the keys of
each corresponding class. Then, a group of comparable instances are picked out
to compare according to the distinguishable attributes. These two steps are simi-
lar with the work of [Song 2011]. The improvement is that instances are not only
compared on property values, but also compared on relations’ URIs or properties’
values at the end of each attribute path [Scharffe 2009]. An attribute path is a
sequence of attributes. The first attribute of the path must be a relation. The last
attribute of the path is a relation or a property. The object of each attribute in the
path is the subject of the following attribute. In the implementation of the paper,
the depth of each attribute path is 2, which means that only the attribute paths
that have one or two relations are used to compare instances. This work does not
build attribute correspondences for comparing instances. Each attribute path of an
instance in one corresponding class is compared with all attribute paths of another
instance in the other corresponding class. The similarity values between paths are
computed. The pair of attribute paths that has the highest similarity value of all
comparisons is selected. Then, the similarity value is multiplied with a weight. It is
the average weight of two attribute paths. The weight of each path is determined
by two parameters P and F. The definition of path weight is below.

Wpath =

depth(path)∏
i=1

Pi ∗ Fi

Pi represents the discriminability of a triple i in the path. Its definition is

Pi =
| set of distinct objects of property i |
| set of triples that use property i | ∗Pmax

Pi is a normalized ratio. Fi represents the importance of a triple to an object node.
If the object node has three attributes, Fi equals to 1

3 . If the object node has five
attributes, Fi equals to 1

5 . When all similarity values are generated on each selected
pair of attribute paths according to the above equations, an average value of all
similarity values is computed to represent the similarity of two compared instances.
The average value is used to judge whether two instances are a link or not.
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To conclude, when key is used for interlinking, both classes of a class correspon-
dence should have at least one key. Furthermore, the two keys must be mapped. In
other words, each property of one key should have one or more mapping properties
in the other key. It also means that there is a surjective function between the two
mapped keys. Assume that there are two corresponding classes about persons in two
data sets. One corresponding class has a key containing three properties “identity
number”, “name” and “birth date”. The other corresponding class has a key that
also consists of three properties “identity number”, “name” and “address”. But, the
two keys cannot be mapped completely. Specifically, the first two properties of both
classes can be mapped as two attribute correspondences, but the property “birth
date” cannot be mapped to the property “address”. There is no surjective function
between the two keys, because there is a property in one key that cannot be mapped
to any property in the other key. Therefore, the same instances cannot be identified
according to the two keys. Links cannot be built.

3.1.1.3 Conclusion

The techniques of Record Linkage have been used for interlinking RDF data set
in many related works. Once the inverse functional properties or keys of two cor-
responding classes are found, they can be used to identify instances within each
data set. If attribute correspondences can be built between inverse functional prop-
erties or keys of two corresponding classes, the same instances can be identified
by only comparing instances’ property values according to the attribute correspon-
dences. But, there is an assumption when applying the two definitions. As for
inverse functional property, there should be at least one property correspondence
that is composed by two inverse functional properties of two corresponding classes
respectively. If there is no attribute correspondence, instances cannot be identified
uniquely. As for the key, a similar assumption is held, too. That is, all properties
in a key of one corresponding class can be mapped to all properties in a key of the
other corresponding class. It means that the alignment of two keys is a surjective
function. Otherwise, the two mapped keys cannot help identify the same instances
and further build links of two data sets.

3.1.2 Trust Propagation

Interlinking RDF data sets can also be executed by inferring correct links and in-
correct links in the RDF graph of the data set with some available assessed links.
Such a method is called trust propagation [Cudré-Mauroux 2009, Demartini 2012].

The method in [Cudré-Mauroux 2009] interlinks RDF data sets in a decentral-
ized setting. In such a setting, there are many users who provide assessed correct
links, the qualities of which are diverse. The author designs a framework that d-
educes the correct links and incorrect links with trust metrics on each user who
provides assessed links. Yet, it is not easy to interlink data sets at runtime with
this interlinking method, because getting feedback from various users requires a lot
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of time.
[Demartini 2012] is an improved work based on [Cudré-Mauroux 2009]. It solves

the problem of how to combine the links that are generated by an automatic inter-
linking method with user-provided links. A large collection of users is appealed to
help assess the links or provide manual links across RDF data sets. There are two
sub-problems that should be taken into account. One is how to merge these “crowd-
sourcing” [Brabham 2008] links with the links that are generated by machines. The
other is how to infer other correct links from these known correct links. Probabilistic
reasoning is applied to find out the best way of utilizing links from both sides. The
authors state that although their framework does not perform interlinking in real-
time, it can be utilized by the automatic interlinking tools to improve the Precision,
Recall and F-measure of the generated link set.

To conclude, the works of applying trust propagation on interlinking are likely
to provide a blueprint of future interlinking platform. For the sake of interlinking
the large data sets on the web, the related works focus on improving the Precision,
Recall and F-measure of generated link set by inferring correct links from assessed
links. Yet, those frameworks are not easy to be realized at runtime, because a lot
of time is required to obtain assessed links from various users when interlinking.

3.1.3 Statistical technique

Statistical technique is also used to interlink RDF data sets [Shen 2005,
Suchanek 2012]. If there are many correct links that are formed by instances that
have similar values of two attributes, these two attributes can be recognized as an
attribute correspondence. It is easy to infer that if two attributes’ values share
similar features or constraints, the two attributes probably forms an attribute cor-
respondence. Suchanek et al. [Suchanek 2012] design a framework that involves
interlinking and ontology matching. The two processes provide feedback for improv-
ing the results of each other. Attribute correspondences are computed by referring
to the probabilities of equivalent instances and equivalent property values. The
work mentioned in [Shen 2005] takes advantage of the Expectation Maximization
algorithm [Dempster 1977] and the relaxation labeling algorithm [Marshall 1992] to
find out semantic constraints of attribute values, so as to build attribute correspon-
dences. Besides, Hu et al. [Hu 2011] and Hogan et al. [Hogan 2010] use statistical
technique to find out frequently-appeared attribute correspondences in assessed cor-
rect links. Statistical technique also acts as an auxiliary when other techniques are
used to link RDF data sets [Demartini 2012, Niu 2012, Cudré-Mauroux 2009].

To conclude, statistical technique is used to summarize value features or con-
straints of attributes or discover similar instances and property values in order to
build attribute correspondences or extract attribute correspondences from available
assessed correct links. It is also used with other techniques to interlink RDF data
sets. The weak point of the statistical technique is that usually the infrequent in-
formation cannot be discovered by the statistical technique, because the statistical
technique usually extracts frequently-appeared information. For example, assume
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that there are 10 assessed correct links. 9 links contain an attribute correspondence
AC1. 1 link contains an attribute correspondence AC2. Both of the two correspon-
dences can be extracted from assessed correct links. But, the correspondence AC1 is
more likely to be recognized as an attribute correspondence than the correspondence
AC2 by the statistical technique, because most of the assessed correct links contain
the correspondence AC1. The mining process of [Hu 2011] may ignore less frequent
attribute correspondences that are contained in some correct links. It will in turn
cause the interlinking framework not to generate some correct links that contain
such less frequent attribute correspondences.

3.1.4 Ontology Matching

Ontology Matching is used to discover attribute correspondences for comparing in-
stances [Fan 2012]. It is more likely to build link with instances from corresponding
classes. It is also more easy to compare two instances by comparing their corre-
sponding attributes’ values.

Ontology matching is the process of defining corresponding classes, properties,
and relations between two ontologies [Euzenat 2007]. Basically, methods of ontology
matching can be classified into two categories. The first one is element-level match-
ing and the other one is structural-level matching. Element-level methods align the
ontologies by analyzing each entity and their instances independently, without con-
sidering the relations with other entities and instances [Euzenat 2007]. In contrast,
structural-level methods align the ontologies by analyzing the structures of ontolo-
gies as well as the relations among entities [Euzenat 2007]. The existing literature
[Euzenat 2007] shows that structural-level techniques are often more efficient. This
is due to the fact that the structural-level methods match ontologies by compar-
ing the relations among entities and recursively propagating the similarity within
neighboring entities. Accordingly, structural-level methods have been extensively
investigated for years.

In the literature, there are many existing structural-level techniques, such as
graph-based technique, taxonomy-based technique, repository-of-structure based
technique, model-based technique, data-based technique, and statistics-based tech-
nique. Graph-based technique treats each of the two ontologies as a labeled graph
(or weighted graph) and tries to match their entities based on the positions in
the graphs. Taxonomy-based techniques not only treat an ontology as a labeled
graph but also take into account the taxonomical relationships between concepts.
Repository-of-structure-based techniques matches the ontologies by estimating the
similarity of two ontologies’ structures. Model-based technique matches the ontolo-
gies based on their similar interpretations. The techniques based on data-based
and statistics both match ontologies by leveraging the population or distribution of
instances.

Among all techniques of structural-level ontology matching, data-based tech-
niques are more useful for interlinking, because the corresponding attributes that
are used for interlinking should be comparable. Compared attributes of two inter-
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linked instances that should have overlap ranges. The interlinked instances must
have some similar attribute values of those attributes, which can form attribute
correspondences. In one sentence, attribute correspondences that are used for in-
terlinking should be built according to the values of attributes. Therefore, ontology
matching that applies data-based techniques are introduced primarily in this section.

Attribute correspondences can be discovered by analyzing instances or available
correct links. Since attributes of each attribute correspondence have overlapping
ranges, instance-based ontology matching is used to find out attribute correspon-
dences [Dhamankar 2004, Berlin 2002, Kang 2003, Bilke 2005, Nottelmann 2005,
Tran 2011, Qin 2007]. Some interlinking methods extract attribute correspon-
dences from available correct links [Nikolov 2010, Ngonga Ngomo 2011c, Isele 2013,
Niu 2012].

3.1.4.1 Instance-based Ontology Matching

In this subsection, we first discuss the related works of instance-based ontology
matching systems, and then present related works of instance-based ontology align-
ment algorithms.

There are many instance-based ontology matching systems. T-
tree [Euzenat 1994], CAIMAN [Lacher 2001], FCA-merge [Stumme 2001],
GLUE [Doan 2004], SBI [Ichise 2003, Ichise 2004] and oPLMap [Nottelmann 2006]
only build class correspondences [Euzenat 2007]. iMAP [Dhamankar 2004], Au-
tomatch [Berlin 2002], Kang and Naughton [Kang 2003], Dumas [Bilke 2005] and
sPLMap [Nottelmann 2005] are works that discover attribute correspondences.

iMAP [Dhamankar 2004] introduces a semi-automatic matcher that finds out
attribute correspondences. It employs a set of searchers to find out potential corre-
spondences according to attributes’ types. There are totally five searchers: Numeric
Searcher, Category Searcher, Schema Mismatch Searcher, Unit Conversion Searcher,
and Date Searcher. Numeric Searcher finds out correspondences that are composed
of numeric properties. Category Searcher exploits correspondences that are com-
posed of category properties that either have boolean values or have a range with
a few numerated values. The Schema Mismatch Searcher searches correspondences
that are composed of properties and relations. The Unit Conversion Searcher discov-
ers correspondences that require conversions on property values. The Date Searcher
finds out correspondences that are composed of date properties. Each searcher only
maps properties and relations that satisfy the types of the searcher. Once the 1-to-1
correspondences are constructed, K correspondences with the highest similarities
are selected to construct complex correspondences. Such a method of constructing
complex correspondences is called beam search [Russell 1996]. The matching pro-
cess will stop when the difference between the highest similarity of the current round
and the one of the last round is below a pre-specified threshold δ. Furthermore, the
ontology matcher of this paper also exploits a group of context information, such
as past complex matches, domain integrity constraints and overlap data, to help
evaluate candidate attribute correspondences. The past complex matches are the
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correspondences of similar or relevant schemas. The domain integrity constraints
are the restrictions of the attributes in the mapped schemas. The overlap data
refer to the correct links that are generated as a by-product by the five searchers
introduced above. Based on the context information above, the method proposes
a user-interaction process to evaluate candidate attribute correspondences. There
are two features of this system that prevents it from being applied for discovering
attribute correspondences of interlinking at runtime. First, the ontology matching
method in this system relies on some available information, such as past complex
matches and domain integrity constraints, which takes time to be obtained. Second,
the ontology matching system also should spend some time to tune the pre-specified
threshold δ.

Automatch [Berlin 2002] is a matcher that discovers property correspondences.
The paper assumes that an attribute dictionary is provided by domain experts, in
which each attribute is represented by a set of selected values from their ranges and
a estimated probability. The value that are selected should contain the features of
the properties. The authors utilize three feature selection [Guyon 2003] algorithm-
s. They are Mutual Information, Information Gain, and Likelihood Ratio. When
matching two ontologies, they first match the properties of each ontology to the
attributes in the dictionary. Each property correspondence has a score, which is a
probability of the set of selected values that exist in both properties of the corre-
spondence. Based on the score, attributes from one class can be mapped to the ones
from another class which are also mapped to the same attribute in the dictionary.
They are potential property correspondences. Afterwards, the authors introduce
a directed graph to describe the alignments between two mapped ontologies and
the dictionary, so as to apply Minimum Cost Maximum Flow network [Ahuja 1993]
for picking out the final property correspondences. The reason of describing the
potential property correspondences into a directed graph is below. If the proper-
ty correspondence is picked out when it has the highest score among all property
correspondences mapped to the same property in the dictionary, it will easily lead
to ambiguous property correspondence. The weak point of this ontology matcher is
that it relies on one external information, attribute dictionary, to fulfill the match-
ing task. However, such an attribute dictionary takes time to be obtained from
domain experts. Thus, this ontology matching system cannot discover attribute
correspondences for interlinking at runtime.

Kang and Naughton [Kang 2003] introduce a matching method based on in-
stances, which maps opaque properties that are hard to be interpreted. This match-
ing method builds correspondences by exploiting the dependencies between proper-
ties. They make use of two concepts of information theory [Cover 1991], Entropy
and Mutual Information, to discover the dependencies between properties. Entropy
is a measure that presents uncertainty of a property’s values. Mutual information
is a measure that presents the reduction of a property’s uncertainty when the infor-
mation of another property is given. It shows the amount of information, which is
contained in one attribute, of another attribute. Afterwards, the matching method
construct a graph with all properties within a class. Each node in the graph presents
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a property. Each edge represents a dependency relationship between two properties.
All nodes and edges have weights. A node’s weight is the entropy. An edge’s weight
is the mutual information of two connected properties. Property Correspondences
are constructed according to the graph structure of both ontologies by a graph
matching algorithm. The algorithm is implemented to optimize the distance metric
that is computed on entropy and mutual information of properties. To conclude,
such an ontology matching system builds correspondences by comparing dependen-
cies between properties across data sets’ ontologies. Nevertheless, the dependencies
do not always exist in each ontology. Thus, this ontology matching system cannot
provide correspondences for ontologies that do not have dependencies between prop-
erties. It also means that this matching system cannot provide correspondences for
all interlinking tasks.

Dumas [Bilke 2005] presents an ontology matching algorithm that extracts prop-
erty correspondences from some duplicate instances. The algorithm first generates
K duplicate instances from two mapped ontologies. The method treats the property
values of one instance as a string. Each token of the string is analyzed with a com-
puted weight based on TFIDF scheme [Euzenat 2007]. There are two advantages
of using TFIDF. First, it is order-independent. Second, it will give high weights
to the infrequent tokens that have higher identifying power. Then, the WHIRL
algorithm [Cohen 1998] is used to find out several fuzzy duplicate instances. The al-
gorithm selects duplicate instances that have tokens of high TFIDF weights. Then,
the property correspondences are extracted by comparing each property value from
one duplicate instance with each property value from the other duplicate instance.
The weak point of this ontology matching system is that it only discovers property
correspondences. It cannot discover relation correspondences. Thus, this system is
not applicable for the interlinking tasks that require relation correspondences for
comparing instances.

sPLMap [Nottelmann 2005] builds property correspondences across different on-
tologies based on Horn Predicate Logic and Probability Theory. The system uses
several classifiers to predict the probability of each instance that has one property
when the instance has another property. Then a set of potential property corre-
spondences are generated based on the probability of each instance that contains
the properties. The most likely property correspondences are selected if their prob-
abilities are the highest ones among all correspondences. This system is subject to
two assumptions. First, all data types of properties are known in advance. Sec-
ond, data transformation operations are also known between any two data types.
Therefore, such a matching system cannot provide attribute correspondences for the
interlinking task, if the data types of properties and data transformation operations
of data types are not known before interlinking.

In addition to instance-based ontology matching systems, there are also many
instance-based ontology alignment algorithms. Not all algorithms detect attribute
correspondences across data sets, such as [Duan 2012] and [Schopman 2012]. Our
analysis focuses on the works of detecting attribute correspondences.

In [Tran 2011], the authors design a clustering method for ontology matching.
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They define five measures to compute the similarities between classes and prop-
erties. They are string edit distance of classes names’ lexical similarity, semantic
similarity of classes names’ in WordNet, profile similarity of classes’ id, label and
comments, structure of classes, and instances of classes. Similarities of classes and
properties are computed according to each measure. After that, this ontology match-
ing method uses K-means [Jain 1999], which is a widely-used clustering method
in many domains [Oyelade 2010, Fausett 2013, Ray 1999, Sree 2014, Wang 2005,
Lu 2004, Broder 2014, McCallum 2000, Di 2013, Xing 2003, Lu 2012], to classify
the compared class/property pairs of each measure into two groups: matching or
non-matching. Then, the matching pairs will be extracted to be final correspon-
dences according to the occurrence of each matching pair in the matching group
of each measure. However, this ontology matching method cannot discover relation
correspondences. Therefore, such an ontology matching method cannot be applied in
the interlinking tasks that require relation correspondences for comparing instances.

Qin et al. [Qin 2007] design an iterative process to find out both class correspon-
dences and attribute correspondences. There are two steps in the matching process:
finding potential correspondences and verifying correspondences by counting the
number of links that contain the correspondences. The first step finds potential
correspondences by applying three methods. Class correspondences are discovered
by comparing names of the classes. Property correspondences are discovered by
comparing both names and data types of the properties across two corresponding
classes. Relation correspondences are extracted by referring to the correct links that
are produced by the method introduced in [Dong 2005]. Once a set of potential cor-
respondences are built, correspondences are organized into groups. Each group is
composed of a class correspondence and all related attribute correspondences. The
paper utilizes and optimizes a query strategy named FARMER [Nijssen 2003] to
evaluate the correspondences. A threshold K is given. If there are more than K

links that contain the correspondences in each query, all correspondences in the
query are the final correspondences. This matching method relies on some available
correct links for building relation correspondences. However, available correct links
are difficult to obtain, since users need to compare all instances of one corresponding
class with all instances of the other corresponding class. It means that users should
do many comparison on instances, in order to find out correct links of two corre-
sponding classes. Therefore, such an ontology matching method cannot be applied
for interlinking at runtime.

There is also an ontology matching work that do not generate ontology align-
ment from scratch [Rivero 2011]. [Rivero 2011] assumes there are a set of available
correspondences. The work makes use of chase algorithm [Deutsch 2008] to produce
a closure of the available correspondences. For example, if attribute A is corre-
sponding to attribute A′, then A’s subject class C should correspond to A′’s subject
class C ′. However, the assumption of the method is that some correspondences are
already given before the matching process. There should be at least one available
attribute correspondence. Otherwise, there will be no class correspondence that can
be generated by this work. Thus, such an ontology matching method is not applica-
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ble for the interlinking task, if there is no available attribute correspondences across
ontologies of the two interlinking data sets.

To summarize, instance-based ontology matching is a commonly used method
for discovering attribute correspondences of two data sets for interlinking. There
are many instance-based ontology matching works, but only some of them produce
attribute correspondences [Dhamankar 2004, Berlin 2002, Kang 2003, Bilke 2005,
Nottelmann 2005, Qin 2007]. Among which, most of the works only generate prop-
erty correspondences, while do not generate relation correspondences [Berlin 2002,
Kang 2003, Bilke 2005, Nottelmann 2005, Tran 2011]. The works that are able
to generate relation correspondences all require external information to fulfil-
l the matching process [Dhamankar 2004, Nottelmann 2005, Qin 2007, Rivero 2011],
which is hard to help interlinking data sets at runtime.

3.1.4.2 Extracting Correspondences from Available Correct Links

There are interlinking works that extract attribute correspondences from available
correct links [Nikolov 2010, Ngonga Ngomo 2011c, Isele 2013, Niu 2012, Hu 2011].

[Nikolov 2010] is a work that extracts class correspondences and property cor-
respondences from available correct links. It first computes a transitive closure on
all available correct links. Second, this work classifies instances of each available
correct link according to their belonging classes and the classes of the instances that
are linked to. For example, assume that there is a correct link i owl:sameAs i′. i is
an instance of class C. i′ is an instance of class C ′. Thus, the instances i and i′ are
classified into the group of the class C. They are also classified into the group of
the class C ′. The similarity of two classes are computed according to the equation
below.

sim(A,B) =
| c(A) ∩ c(B) |

min(| c(A) |, | c(B) |)

where c(A) and c(B) are classified groups of class A and class B respectively. | c(x) |
is the number of instances in the group c(x). The similarity of two classes is a ratio
of the number of instances that exist in both classified groups c(A) and c(B) on the
minimum number of instances between the classified groups c(A) and c(B). The
similarity of two properties are computed according to the equation below.

sim(r1, r2) =
| c(X) |
| c(Y ) |

In the set c(X), there are two instances that have equivalent values of property
r1 and property r2; c(Y ) is a set of instances which have values of property r1 or
property r2. The similarity of two properties is a ratio of the size of c(X) on the
size of c(Y ). If the similarity value of two classes/properties is above a pre-defined
threshold, the two classes/properties can form a correspondence. This ontology
matching method cannot produce relation correspondences.

Ngonga Ngomo et al. [Ngonga Ngomo 2011c] extract class correspondences from
available correct links. This work maps two classes if there are two instances from
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both classes that can form an available correct link. It maps two properties if the
two properties have overlapping ranges. The work does not build relation corre-
spondences.

Isele and Bizer [Isele 2013] extract property correspondences from available cor-
rect links. The work maps two properties that exist in two instances of any available
correct link, if the two properties have overlapping ranges. The method first tok-
enizes and lowercases each property value. Then, similarity measure Levenshtein is
used to compare one property’s range with another property’s range. If there are
two tokens that appear in both ranges, the two properties form a property corre-
spondence. The work does not build relation correspondences from available correct
links.

Niu et al. [Niu 2012] also map classes and properties with available correct links.
Their work is introduced in Section 3.1.1.1.

Hu et al. [Hu 2011] apply association rule to mine frequently-used attribute cor-
respondences from available correct links. The attribute correspondences whose
attribute ranges are not overlapping will be deleted from the set of candidate at-
tribute correspondences. The rules are built based on the frequency of the attribute
correspondences in the available correct links with respect to a pre-defined thresh-
old. In the paper, the threshold is set to 0.98 (98% of correct links). The threshold
should be tuned according to different ontology matching tasks.

To conclude, all these related works extract correspondences from some available
correct links. They assume that users are able to provide them some correct links.
Nevertheless, it is not easy for users to provide correct links. Assume that there
is a class correspondence across two RDF data sets. There are m instances of one
corresponding class. There are n instances of the other corresponding class. Thus,
users should compare m∗n pairs of instances to find out the same instances in order
to build links. It is a heavy task for users.

3.1.4.3 Conclusion

To summarize, instance-based ontology matching methods and the methods that ex-
tract correspondences from available correct links are all used to discover attribute
correspondences across two correspondences classes in two data sets. However, both
two kinds of methods have their weak points. As for instance-based ontology match-
ing methods, only a few works produce attribute correspondences [Dhamankar 2004,
Berlin 2002, Kang 2003, Bilke 2005, Nottelmann 2005, Qin 2007]. Among which,
works that generate property correspondences cannot generate relation correspon-
dences [Berlin 2002, Kang 2003, Bilke 2005, Nottelmann 2005]. The works that
generate both property correspondences and relation correspondences all require
external information [Dhamankar 2004, Nottelmann 2005, Qin 2007]. Those ex-
ternal information usually take some time to be obtained. Therefore, there
is no instance-based ontology matching work that can be applied for discov-
ering attribute correspondences at runtime for the interlinking process. Be-
sides the works of instance-based ontology matching, some interlinking method-
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s [Nikolov 2010, Ngonga Ngomo 2011c, Isele 2013, Niu 2012] build attribute corre-
spondences based on some available correct links. Yet it is non-trivial to collect
correct links from users, because users should compare a lot of pairs of instances so
as to find out correct links across two RDF data sets. Therefore, extracting attribute
correspondences from available correct links also cannot help interlinking data sets
at runtime.

3.1.5 Machine Learning

Some Machine Learning methods are also used to find out links across da-
ta sets. The interlinking process is not completed successfully with a first in-
terlinking pattern, because usually the first interlinking pattern does not cov-
er enough correct links. It means that the interlinking pattern should be
improved iteratively. A general method is selecting a small set of assessed
links. By learning the assessed links, the interlinking pattern are improved
so as to generate more correct links. There are a group of related works
that make use of machine learning [Nikolov 2008, Shen 2005, Hu 2011, Niu 2012,
Song 2011, Isele 2011a, Ngonga Ngomo 2011c, Ngonga Ngomo 2011a, Rong 2012,
Nikolov 2012, Ngonga Ngomo 2013, Isele 2013] for improving the interlinking pat-
tern.

Genetic Programming is a supervised learning method that is used for learn-
ing interlinking patterns in some interlinking methods [Ngonga Ngomo 2012b,
Isele 2013, Ngonga Ngomo 2013, Isele 2011a]. It leverages two biological concepts,
crossover and mutate, in the learning process, so as to improve the interlinking pat-
terns by making changes on fragments of the interlinking patterns [Banzhaf 1998].
This learning method first generates k interlinking patterns, where k is a number
that is defined before the learning process. Second, these interlinking patterns are
evaluated with the F-measures of their generated link sets. Third, k− l interlinking
patterns are selected to be improved in the next round if their evaluations are the
best ones of all interlinking patterns. The selected patterns are changed by crossing
over some randomly selected fragments with each other, or by mutating some ran-
domly selected fragments. Fourth, the changed interlinking patterns are evaluated
again, and only k − 2 ∗ l patterns are selected to be improved in the next round.
The algorithm will stop until there are no more than l patterns left.

A genetic programming algorithm is proposed in the interlinking method of
[Ngonga Ngomo 2012b]. The method changes the selected interlinking pattern with
all possible aggregation methods like “average” and “max” for constructing a better
interlinking pattern. Nevertheless, Genetic Programming is not a method suitable
for interlinking at runtime. In each learning round, all candidate interlinking pat-
terns should be evaluated. The method of evaluating the interlinking patterns is
to interlink the data sets with the interlinking patterns and compute the Precision,
Recall and F-measure of the generated link sets. When interlinking data sets with
each interlinking pattern, the machine should query the two interlinking data sets
at least once in order to get instances and instances’ attribute values. The queries
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require I/O operations of the machine, which take a lot of time. It means that a lot
of time will be spent on link generation.

One of the most recent works on interlinking is proposed by Ngonga Ngomo et al.
[Ngonga Ngomo 2013]. The method uses not only Genetic Programming but also
Active Learning to construct and improve the interlinking pattern of two RDF data
sets. Active Learning is a learning strategy that actively chooses unlabeled exam-
ples which bring the biggest information and change to the classifier [Alajlan 2014,
Fu 2013, Druck 2011, Ebert 2012, Rashidi 2011, Guyon 2012, Settles 2009,
Saar-tsechansky 2004, John 1996, Lewis 1994, Brain 2003, Dagan 1995]. Usually
Active Learning is embedded in the learning process of other learning methods. Ac-
tive Learning helps speed up the learning process when there are a large amount
of assessed examples to be learned. The interlinking approach in this paper out-
performs many other solutions like [Isele 2011a] and [Ngonga Ngomo 2012b]. The
F-measure of generated link set grows higher with the same amount of assessed links
than [Isele 2011a] and [Ngonga Ngomo 2012b].

Another recent work on interlinking by learning the interlinking pattern is pro-
posed by Isele et al. [Isele 2013]. It utilizes Genetic Programming to initialize
a set of candidate interlinking patterns. A variety of changes are permitted to
be applied on the selected patterns when crossing over and mutating fragments
of the patterns. Moreover, it exploits two active learning strategies, query-on-
committee [Seung 1992] and uncertainty learning [Fu 2013], to select the most in-
formative sample links and send to users to assess. Its convergence speed on many
data sets is very fast.

[Ngonga Ngomo 2011c] is another interlinking work that uses Active Learning for
interlinking. The author selects some sample links for users to assess so as to extract
a set of class correspondences and property correspondences for comparing instances.
Then, the authors design a linear classifier and a boolean classifier to distinguish
correct links and incorrect links that are assessed by users. A linear classifier is
composed of an attribute correspondence. The boolean classifier is a conjunction of
several linear classifiers. It means that the interlinking classifiers in this work only
can generate correct links by a set of attribute correspondences. As for each link,
there are two instances. If a pair of attribute values across the two instances are the
same, we assume that the two attributes form an attribute correspondence in the
link. So if a link have the same set of attribute correspondences that is contained in
the boolean classifier, such a link can be generated as a correct link. In other words,
the interlinking classifiers of this work cannot produce the correct links that do not
have the same set of attribute correspondences that is contained in the boolean
classifier. However, there are many interlinking tasks whose correct links do not
share the same set of attribute correspondences. Therefore, this method cannot
interlink the data sets that cannot be classified by such a boolean classifier.

In addition to the works on generating and improving the interlinking pattern for
interlinking, there are works on improving the parameters of the interlinking pattern,
such as, transformation between property values [Ngonga Ngomo 2012a]. However,
only these works are not able to generate an interlinking pattern for interlinking.
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To conclude, most works of interlinking RDF data sets with Machine Learn-
ing focus on constructing and improving the interlinking pattern. These work-
s all have their weak points. The interlinking method of [Ngonga Ngomo 2011c]
cannot be applied for all kinds of interlinking tasks, because its classifiers on-
ly can generate correct links that have the same set of attribute correspon-
dences. They cannot generate links for the interlinking tasks that have sev-
eral sets of attribute correspondences. The works that make use of Genet-
ic Programming take higher running time for improving the interlinking pat-
tern [Ngonga Ngomo 2012b, Isele 2013, Ngonga Ngomo 2013, Isele 2011a]. There-
fore, a learning method that costs shorter time and is able to generate interlinking
patterns for all interlinking tasks is required.

3.1.6 Conclusion

Interlinking RDF data sets is executed by many techniques. They are Record Link-
age, Trust Propagation, Statistical Technique, Ontology Matching and Machine
Learning. As interlinking is similar to the record linkage in Database, researchers
usually leverage key and inverse functional property for identifying instances when
comparing instances. Meanwhile, from the perspective of web, interlinking is treat-
ed as a decentralized task that finds links across data sets by reasoning on available
correct links either generated by machines or provided by users with regard to the
trust of link sources. Such a method is called Trust Propagation. Statistical tech-
niques mostly assist other techniques to extract correspondences and enhance the
Precision, Recall and F-measure of the generated link set. Furthermore, Ontology
Matching is used to generate correspondences for comparing instances of the inter-
linking process. Machine Learning is applied for interlinking by constructing and
improving the interlinking pattern.

According to the analysis, no technique can solve the interlinking problem com-
pletely. All these different techniques have pros and cons, so they are better to be
used together. In the following section, they are presented in their corresponding
involved tasks respectively.

3.2 Discovering Attribute Correspondence

Discovering attribute correspondence is highly required for comparing instances
when interlinking two RDF data sets. During the interlinking process, any two
instances across two different data sets should be compared on their attribute val-
ues, so that they can be judged to be the same or not. Intuitively, any two instances
that come from classes across which there is a class correspondence are likely to be
identical to each other. Besides, any two instances that hold more similar attribute
values are more likely to be links than the ones with less similar attribute values.
Most of the time, similar attribute values exist in the two instances across which
there is an attribute correspondence. Therefore, an ontology alignment is better to
be explored first before comparing instances. It is necessary to narrow the instances
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to be compared to a small range, so as to avoid comparing attributes which are not
corresponding with each other.

Related works that are introduced in Section 3.1.1, Section 3.1.3 and Section
3.1.4 all make contributions to discover attribute correspondences. Nevertheless,
each of them has weak points.

• Key and Inverse Functional Property: In order to build attribute correspon-
dences for interlinking, there should be a surjective function between one
key/inverse functional property of a class with one key/inverse functional
property of the corresponding class. Otherwise, the same instances cannot
be identified and further form links.

• Statistical Technique: Attribute correspondences that do not appear frequent-
ly may not be discovered by Statistical Technique.

• Instance-based Ontology Matching and Correspondences Extraction from
Available Correct Links: These works require external information or avail-
able correct links for discovering attribute correspondences, which takes time
to obtain or demand users to compare many pairs of instances.

By introducing related works of discovering attribute correspondences, we find
that the interlinking process requires a correspondence discovering method that
can produce attribute correspondences at runtime according to instances’ attribute
values without requiring external information.

3.3 Generating Links

Since we are going to learn the interlinking pattern for two data sets iteratively
with assessed links, a set of assessed links should be obtained in advance. Most
of research assumes that users are able to provide a portion of correct links as the
assessed links, such as [Nikolov 2010, Ngonga Ngomo 2011c, Isele 2013, Niu 2012].
In general, letting users themselves to find correct links is a huge burden for users.
They should compare all instances of one corresponding class with all instances of
the other corresponding class. There are many comparison that should be done by
users. Therefore, it is better to provide a set of sample links for users to assess.

Isele and Bizer [Isele 2013] propose a method to produce a group of sample links
for users to assess. This sample link production algorithm queries all values for
each property in both data set. Each property value is separated into several tokens
according to the MultiBlock blocking method of [Isele 2011b]. An index is created
for each token that appears in any property value of either data set. If two instances
both fall into at least 5 indexes, the two instances are chosen to construct a sample
link. It is a method that can create a set of sample links with a fast speed. However,
only a few property values of each instance are useful for comparing instances. There
are only a small portion of property values in each instance that are useful to judge
whether two instances are the same or not. They are property values of attribute
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correspondences. Thus, the link production method of this paper may do a lot
of computation on building indexes for tokens that only appear in the ranges of
properties that do not have corresponding properties. These tokens will in turn help
create a lot of sample links that are not correct across two corresponding classes.
These sample links will be useless for constructing and improving the interlinking
pattern, because they do not contain any attribute correspondence.

Ngonga Ngomo et al. [Ngonga Ngomo 2012b, Ngonga Ngomo 2013] generate
sample links by comparing instance’s property value of “rdfs:label” or some pre-
defined interlinking pattern. Such a sample link process cannot be applied in all
kinds of interlinking tasks, because not all data sets have the property “rdfs:label”
or a predefined interlinking pattern.

Therefore, we need a sample link generating process that produce less irrelevant
sample links that do not contain attribute correspondences and can be applied for
different interlinking tasks without external information.

3.4 Constructing and Improving the Interlinking Pat-
tern with Assessed Links

After attribute correspondences are obtained, they need to be organized into an
interlinking pattern to generate links by learning assessed links with a learning
method. Thus, this section is to illustrate how to build an interlinking pattern.

It is not a straight-forward process to construct an interlinking pattern that is
able to produce correct links. [Song 2013, Ngonga Ngomo 2011c] build an inter-
linking pattern by combining all attribute correspondences into a conjunction of all
attribute correspondences. Yet, it is not a universal interlinking pattern that can
generate correct links for all interlinking tasks. Here is an example. Assume that
we interlink two data sets D and D′. There are two correct links l1 and l2. Link
l1 has three attribute correspondences AC1, AC2 and AC3. It means that attribute
values of each attribute correspondence across two linked instances of the link l1
are the same. Moreover, link l2 has an attribute correspondence AC3. If the inter-
linking pattern is a conjunction of attribute correspondences AC1, AC2, and AC3,
the link l2 cannot be generated. The reason is that the link l2 does not have all
attribute correspondences in the interlinking pattern. Since it is hard to estimate
which and how many sets of attribute correspondences are required for constructing
an interlinking pattern, we need some assessed links to learn the sets of attribute
correspondences.

The reasonable way of constructing an interlinking pattern is to improve the pat-
tern iteratively with assessed links. It is a supervised learning process. Thus, there
are two elements for constructing an interlinking pattern. One is a set of assessed
links, the other is a supervised learning method. The related work of producing
the assessed links is illustrated in Section 3.3. The related works of constructing
and improving the interlinking pattern are introduced in Section 3.1.5. According
to the analysis in Section 3.1.5, related works of constructing and improving the in-
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terlinking pattern by learning have several weak points. Some interlinking methods
cannot be applied for all kinds of interlinking tasks. Some interlinking methods take
longer running time. Therefore, a learning method that costs shorter running time
and is able to generate interlinking patterns for all interlinking tasks is required to
construct and improve the interlinking pattern.

3.5 Conclusion

From the analysis above, Record Linkage, Trust Propagation, Statistical Techniques,
Ontology Matching and Machine Learning are all used to interlink RDF data sets.
Ontology Matching and Machine Learning are two primary techniques for interlink-
ing. The reasons are below.

• First, Ontology Matching is needed to discover attribute correspondences
across two corresponding classes. Interlinking is the process which aims to find
out links by comparing instances. URIs of instances are difficult to compare
due to the naming differences, so links are generated by comparing instances’
attribute values. Nevertheless, there are a lot of comparisons of attribute val-
ues across two compared instances. Most of the comparisons are useless for
evaluating the similarity of two instances, because these comparisons are exe-
cuted on attributes that are not corresponding with each other. Accordingly,
discovering attribute correspondences is a necessary step.

• Second, Machine Learning is used to improve the linking pattern. It is not e-
nough to compare instances with attribute correspondences to find out correct
links, in that different correct links usually have different attribute correspon-
dences. The interlinking pattern needs to be constructed and improved with
assessed links by a supervised machine learning method, so as to cover more
correct links.

The related works on interlinking by applying Ontology Matching and Machine
Learning still have some points to improve.

• As for the works on Ontology Matching, instance-based ontology matching
requires external information to find out attribute correspondences. Other
related works on interlinking rely on some available assessed links provided
by users to extract attribute correspondences. Both kinds of related works
take long running time to produce attribute correspondences, because external
information and available assessed links take time to be obtained. Thus, it
is required to design an ontology matching method that discovers attribute
correspondences at runtime without external information.

• As for the machine learning techniques that are used for interlinking, most
related works utilize Genetic Programming. Genetic Programming costs long
running time on evaluating candidate interlinking patterns when improving
the interlinking pattern. Hence, the interlinking process requires a supervised
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learning method that can improve the interlinking pattern with short running
time and is able to generate interlinking patterns for all interlinking tasks.
Furthermore, in order to improve the interlinking pattern, a set of sample links
should be generated for the user to assess. The related works on generating
sample links either produce many irrelevant sample links that are useless for
constructing and improving the interlinking pattern, or cannot be applied for
all interlinking tasks. Therefore, the required link production method should
produce fewer irrelevant sample links and can be applied for all interlinking
tasks.

Next chapter will introduce the solutions of the three tasks for the interlinking
problem of this thesis. They are:

• Discovering attribute correspondences by classifying attributes of each class
according to attributes’ value features with the K-medoids clustering method
and matching attributes with regard to the clustered groups that share similar
value features.

• Generating links by constructing a sample interlinking pattern with a disjunc-
tion of discovered potential attribute correspondences and sending sample links
to users for assessing.

• Constructing and improving the interlinking pattern of two RDF data sets
with assessed links and the Version Space learning method.
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For the sake of overcoming the weak points of the related works introduced in
Chapter 3, an interlinking method is proposed for the interlinking problem of this
thesis, especially for all three tasks, to be discussed briefly in Section 4.2, Section
4.3 and Section 4.4 respectively.

4.1 The Interlinking Process

The interlinking process can be fulfilled by running an interlinking script that is
transferred from an interlinking pattern with a semi-automatic interlinking tool.
As it is introduced in Chapter 2, an interlinking pattern can be constructed to
help compare instances’ attribute values and generate links of two RDF data sets.
The interlinking pattern is composed of the set of attribute correspondences of
each correct link. Furthermore, it aggregates all these sets together. With the
interlinking pattern, we can design a JAVA program to compare instances’ attribute
values according to the attribute correspondences in the interlinking pattern and
aggregate all similarities of compared attribute values into one final value. The final
value represents the similarity of two compared instances. Then, we can evaluate
whether two compared instances are the same or not according to the final value.
Nevertheless, there are already some tools that have the same function of such a
program, such as semi-automatic interlinking tool Silk1 and LIMES2. The tools
require users to specify an interlinking script that expresses the interlinking pattern
in a specific syntax as well as a group of comparison methods for different property
data types. In this thesis, we choose Silk to generate links since it is a open-source

1http://www4.wiwiss.fu-berlin.de/bizer/silk/
2http://aksw.org/Projects/LIMES.html

http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://aksw.org/Projects/LIMES.html
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tool. Furthermore, Silk provides a rich set of comparison methods and aggregation
methods.

To conclude, in order to find out links across two RDF data sets, we should
first find out all attribute correspondences across two corresponding classes. We
should second aggregate all attribute correspondences into an interlinking pattern
that distinguish correct links and incorrect links. Finally, we should transfer the
interlinking pattern into an executable interlinking script, so that Silk can generate
a link set of the two RDF data sets.

4.2 Discovering Attribute Correspondences

The interlinking process requires an ontology matching method that discovers at-
tribute correspondences across two corresponding classes at runtime without exter-
nal information. According to the analysis of discovering attribute correspondences
by instance-based ontology matching works and other interlinking works in Section
3.1.4 of Chapter 3, either extracting attribute correspondences from available correct
links or matching attributes with regard to external information is not applicable
for the interlinking process. Thus, an intuitive method is to match all attributes of
a corresponding class with all attributes of the other corresponding class.

It is difficult to build attribute correspondences across two corresponding classes
by matching all attributes of one corresponding class with all attributes of another
corresponding class. From one hand, it is hard to select a threshold of similarity to
evaluate whether two attributes are similar enough to form a correspondence. If the
threshold of similarity is set to a high value, there will be a lot of attribute correspon-
dences being undiscovered. If the threshold of similarity is set to a low value, there
will be a lot of attribute pairs that are not corresponding being produced as attribute
correspondences. From the other hand, there will be a big number of comparisons on
attributes for detecting attribute correspondences. The attribute correspondences
are not only composed of properties of the corresponding classes, but also composed
of attribute paths of the corresponding classes. An attribute path is a sequence
of attributes. It begins with one relation and ends with either one relation or one
property. The object of each attribute in the path is the subject of the following at-
tribute. Since URIs are difficult to be compared for finding links, we do not consider
attribute paths that end with a relation. We only consider attribute paths that end
with a property. For example, in data set INSEE, there is an attribute path for
the class insee:Departement, which is insee:subdivision−1/insee:nom. It denotes the
name of an instance whose subdivision is an instance of the class insee:Departement.
Assume that there are m properties and attribute paths of one corresponding class.
There are n properties and attribute paths of the other corresponding class. Conse-
quently, the number of attribute comparisons is m×n. It is not applicable to detect
correspondences by comparing each property/attribute path of one corresponding
class with each property/attribute path of the other corresponding class.

Classification is one strategy to avoid many comparisons on attributes. If at-
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tributes are classified by their features, the attribute correspondences will only be
discovered among attributes that share similar features. There are many kinds of
features, such as structure feature and value feature. Since we are going to find
out corresponding attributes that have overlapping ranges, it is intuitive to use at-
tributes’ value features for classification. For example, the value feature of properties
that denote email addresses is that each property value contains a symbol @. The
value feature of numerical properties is that there is no letter in each property value
except e and E. Thus, if we classify attributes according to their value features,
we only need to compare attributes with similar value features. Consequently, the
properties that denote email addresses will not be mapped to numerical proper-
ties like people’s age. Therefore, attribute pairs that are not corresponding will be
largely reduced.

Clustering is a strategy for classification. It is a classification method that re-
quires no external information. For the interlinking method of this thesis, K-medoids
clustering is utilized to classify properties and attributes paths into several groups
according to value features. K-medoids clustering algorithm is a clustering algorith-
m that is easy to implement. It is applicable for clustering large data sets. What is
important is that it is tolerable when there is irregular data in the data set. Irregu-
lar data is a widely-existing problem of RDF data set. Irregular data may contain
spelling or punctuation errors. It also may be incomplete or outdated data. As for
the clustering task on attributes, there is no special requirement on the shape of
clustered groups. Thus, there is no need to apply other clustering methods.

K-medoids is an improving clustering method based on K-means. K-means is
a clustering algorithm that classify a set of sample points in the Euclidean space
into several groups. It selects the center of each clustering group by computing the
average coordinate of all sample points in the group. The K-means clustering centers
are easy to be impacted by the irregular data. Since irregular data usually have
different features with other regular sample data, its coordinate in the Euclidean
space is usually far away with the ones of other regular points. If there is an irregular
sample point in the set of sample points, the center may probably be computed as
a point that is far away from regular sample points. To contrast, K-medoids selects
one sample point among all sample points within the same clustered group as the
center. Such a sample point has the smallest sum of distance between its coordinate
and each other sample point. Since irregular data is scarce in each clustered group,
it is less likely to be selected as the group center. Thus, the center of each clustered
group will not be far away from the regular sample points. That is the reason
that K-medoids can cluster sample points without being influenced too much by the
irregular sample points.

The discovered attribute correspondences are expressed in Expressive and
Declarative Ontology Alignment Language (EDOAL)3 [Scharffe 2009, David 2011],
which is used to express various kinds of correspondences.

The details of the clustering process can be found in Chapter 5.

3http://alignapi.gforge.inria.fr/edoal.html

http://alignapi.gforge.inria.fr/edoal.html
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4.3 Generating Links

It is appropriate to generate a sample link set for users to assess for constructing
the interlinking pattern. There are two methods of obtaining assessed links. First,
let users compare instances and provide links. It is time-consuming to find links
manually. Since each instance of one class should be compared with each instance
of the corresponding class, there are a lot of instance pairs that should be assessed.
Alternatively, the other method explores some sample links and send them to users
to compare. The second method is better than the first one, in that it sets users
free from a big number of comparisons on instances. We will use the second method
in the interlinking method of this thesis to generate assessed links.

In order to produce a sample link set with Silk, we need to design transformation
rules that transfer class correspondences and attribute correspondences into queries
in a Silk script. With the discovered attribute correspondences of Section 4.2, a
sample link set can be generated by constructing a sample interlinking pattern,
transferring the sample interlinking pattern into an executable script, and running
the script with Silk. Since Silk is a semi-automatic tool, it can only produce links
based on an executable script. The script is a file, which is composed of all sets of
attribute correspondences in the interlinking pattern and some comparison methods
for comparing corresponding attributes’ values across two instances. The script is
expressed with the syntax of Silk script. Silk compares instances of two RDF data
sets by comparing attributes’ values with regard to each attribute correspondence
in the interlinking pattern. Attributes’ values are obtained by querying RDF data
sets. Hence, in a Silk script, each attribute correspondence is expressed as a pair of
queries. To conclude, in order to obtain a sample link set for assessing and a link
set of two RDF data sets, a set of transformation rules is demanded for transferring
the correspondences that are expressed in EDOAL into the queries of Silk script.

The sample links should be produced by a sample interlinking pattern that is
expressed as a disjunction of all discovered potential attribute correspondences, so
that all correct links that contain any potential attribute correspondence are gen-
erated as sample links to be assessed. From the solution of Section 4.2, we have
a set of discovered potential attribute correspondences. However, we have no idea
which potential attribute correspondence is an attribute correspondence and which
potential attribute correspondence is not. We also do not know which set of at-
tribute correspondences is contained in correct links. Thus, we design the sample
interlinking pattern as a disjunction of all potential attribute correspondences. It
means that any instance pair that have at least one discovered potential attribute
correspondence should form a sample link. Here, if two compared instances have
similar attribute values of one discovered potential attribute correspondence, we say
that the two compared instances have such a discovered potential attribute cor-
respondence. We also say that the sample link that is formed by the compared
instances has such a discovered potential attribute correspondence. Therefore, the
sample link set contains all correct links, if in each link there is at least one attribute
correspondence. Then, the interlinking pattern can cover more correct links and fil-
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ter more incorrect links after learning the set of attribute correspondences of each
assessed sample link. Comparing to the related work that is introduced in Section
3.3, this sample link generation process creates much less irrelevant sample links
than the method in [Isele 2013]. The reason is that the number of tokens will be
definitely much larger than the number of discovered potential attribute correspon-
dences. Comparing to [Ngonga Ngomo 2012b], such an algorithm does not require
any external information for generating sample links. Thus, it can be applied in
different interlinking tasks.

The details of the solution will be presented in Chapter 6.

4.4 Constructing and Improving the Interlinking Pat-
tern with Assessed Links

The interlinking pattern of two RDF data sets should be improved with a supervised
learning method. As illustrated in Chapter 2, the interlinking pattern usually can-
not be built correctly the first time. The interlinking pattern should be improved
iteratively with some assessed links. The iterative process is executed according to a
supervised learning method. The method ought to enhance the interlinking pattern
to cover more correct links and filter more incorrect links.

Expressing the interlinking pattern as a disjunction of sets of attribute correspon-
dences is applicable for most interlinking tasks. There are two kinds of interlinking
pattern. The first one is a conjunction of all attribute correspondences that appear
in all correct links. In this case, all correct links of two data sets have the same set
of attribute correspondences, so that a conjunctive expression satisfies all correct
links. It means that if any two instances have these set of attribute correspondences,
a link can be built between them. The second one is a disjunction of all conjunc-
tive expressions. Each conjunctive expression only satisfies some correct links. In
this case, the interlinking pattern is a disjunctive expression that combines all con-
junctive expressions. It means that if any two instances have any set of attribute
correspondences in the disjunctive expression, a link can be built between them.
Since most RDF data sets are not regular, not all correct links share the same set
of attribute correspondences. Thus, disjunctive expression is more applicable than
conjunctive expression for most interlinking tasks.

Since the interlinking pattern distinguishes correct links and incorrect links, as-
sessed links play a very important role during learning. Each link can be expressed as
a conjunction of several attribute correspondences. Formally, such an expression is in
the form of ACi

⋂
. . .
⋂
ACj , where ACi, . . . , ACj are attribute correspondences that

exist in the link. Therefore, the interlinking pattern is an expression that combines
all assessed correct links’ expressions disjunctively. Formally, the expression of the
interlinking pattern is in the form of (AC1

i

⋂
. . .
⋂
AC1

j )
⋃
. . .
⋃

(ACnk
⋂
. . .
⋂
ACnl ).

In the expression, AC1
i , . . . , AC

1
j are attribute correspondences that exist in the

assessed correct link No.1. ACnk , . . . , AC
n
l are attribute correspondences that exist

in the assessed correct link No.n. That is why the expression of the interlinking
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pattern can be constructed based on the assessed links.
In the thesis, Version Space is chosen as the supervised learning method to build

and improve the interlinking pattern into a disjunctive expression with assessed
links. Compared to other learning methods, the main advantages of Version Space
are:

• It is a learning method that is able to build classifiers for various kinds of
learning tasks. It can not only build the classifier expressing conjunctive ex-
pressions, but also the classifier expressing a disjunction of conjunctive ex-
pressions. It means that Version Space can build a classifier which is the
composition of all classifiers, each of which only covers some correct links. Yet
the composition covers all correct links. In contrast, other learning methods
such as Support Vector Machine and Neural Network cannot build a classifier
expressing a disjunction of conjunctive expressions.

• Comparing to the previous interlinking pattern, the interlinking pattern is
always improved whenever a new assessed link is learned. It will in turn en-
hance the F-measure of the generated link set. Any revision on the interlinking
pattern in the Version Space is based on the set of attribute correspondences
in new-coming assessed links. The interlinking pattern of Version Space n-
ever turns bad when more assessed links are learned, if the links are not as-
sessed wrongly. Other learning methods such as Genetic Programming are
non-deterministic. The interlinking pattern may be different, if the learning
process is executed several times with the same set of assessed links. The in-
terlinking pattern may turn bad when more assessed links are learned, which
cover less correct links or filter less incorrect links. The reason is that the
random changes of chromosome by crossing over or mutating in Genetic Pro-
gramming may degrade the interlinking pattern. It will in turn decrease the
Precision, Recall and F-measure of the generated link set.

Besides a supervised learning method, a sample link selection method is required.
There are lots of links in the sample link set to be assessed. According to the Active
Learning method, links that possess the most information should be assessed first,
because they can help the Version Space model find out the final interlinking pattern
with fewer learning rounds. In our interlinking problem, the information is the set of
attribute correspondences that exist in a sample link. Thus, all links in the sample
link set can be classified by their set of attribute correspondences. Links that have
the same set of attribute correspondences are classified into the same group. When
one link of a classified group is assessed and used to improve the interlinking pattern,
the improved interlinking pattern can distinguish all links that have the same set of
attribute correspondences as the selected sample link. Therefore, it is only necessary
to select one sample link per classified group to assess and improve the interlinking
pattern.

The details of the Version Space learning method are described in Chapter 7.
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1. Preliminary Data Processing

2. Cluster Attributes with K-medroids Clustering and Match Clustered Groups

6. Select Links for Users to Assess (One Link per Group) 

7. Construct/Improve the Interlinking Pattern with 

Assessed Sample Links by Version Space

8. Transfer the Interlinking Pattern into a Silk Script and Generate Links

Return Links

5. Transfer the Sample Interlinking Pattern into a Silk Script 

and Generate Sample Links

Class Correspondence

Potential Attribute Correspondence

4. Build a Sample Interlinking Pattern based on Potential 

Attribute Correspondences 

Sample Links Grouped by

 Sets of Potential Attribute Correspondences

no

Assessed Sample Links

The Interlinking Pattern of Two RDF Data Sets

Sample Interlinking Pattern

3. Express Correspondences in EDOAL

Potential Attribute Correspondence Expressed in EDOAL

There is Unlearned Sample Link Group?

yes

Figure 4.1: Eight Steps of Interlinking Data Sets
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4.5 System Overview

I propose eight steps for interlinking instances across two data sets with the inter-
linking method of this thesis, as shown in Figure 4.1.

1 Step 1 generates a set of class correspondences based on the ontologies of
two data sets. This step can be implemented by leveraging some ontology
matching methods like [Ngo 2012], such that some class correspondences are
determined.

2 Step 2 uses the K-medoids clustering method to cluster all attributes in each
class of a class correspondence according to attributes’ value features. Then,
each clustered group of one class is matched with a clustered group of the
corresponding class, if their value features are similar. Potential attribute
correspondences are attribute pairs across two matched clustered groups.

3 Step 3 expresses class correspondences and potential attribute correspondences
discovered by preceding steps into correspondences in EDOAL.

4 Step 4 builds a sample interlinking pattern into a disjunction of all potential
attribute correspondences that are discovered by the K-medoids clustering
method.

5 Step 5 expresses the sample interlinking pattern in Silk syntax and generates
a sample link set. These sample links are classified into groups according to
their sets of attribute correspondences.

6 Step 6 selects links out of classified groups (one link per group) and assess them
as correct or incorrect links one by one based on users’ dynamic feedback over
time.

7 Step 7 constructs (1st learning round) or improves (2nd, 3rd, . . . , learning
round) the interlinking pattern by learning the sets of attribute correspon-
dences of assessed sample links. If there is unlearned sample link group, the
learning process continues. Otherwise, it stops.

8 With the interlinking pattern improved in the last step, a script is built and
run by Silk in Step 8.

Step 2, 4, 5, 7 and 8 are the solutions to the three tasks of the interlinking
problem in this thesis. Specifically, Step 2 fulfills the task Discovering Attribute
Correspondence. Step 4, 5 and 8 complete the task Generating Links. Step 7
accomplishes the final task Constructing and Improving the Interlinking Pattern with
Assessed Links. The three steps play the key roles in determining the F-measures
of the generated link set, which will be the focus in the thesis.
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4.6 Conclusion

This chapter introduces the interlinking method of this thesis. In detail, three solu-
tions are given for each task of the interlinking process. First, K-medoids clustering
is used to discover potential attribute correspondences across corresponding classes.
Second, a set of sample links should be generated to help construct the interlinking
pattern. The links are produced with a Silk script that is transformed from a sample
interlinking pattern, which is expressed as a disjunction of all discovered potential
attribute correspondences. Third, Version Space is applied to construct and improve
an interlinking pattern that is able to produce correct links across two RDF data
sets by learning user-assessed sample links. Finally, a system overview is presented
to show the data flow of the interlinking method.

The following chapters will introduce the solutions of the three tasks in detail.
Specifically, next chapter will introduce the solution of discovering attribute corre-
spondences across two corresponding classes in two RDF data sets. K-medoids is
used to classify attributes of each class into several groups according to attributes’
value features. Then, clustered groups are mapped if their value features are simi-
lar. Attribute pairs across mapped clustered groups are considered to be potential
attribute correspondences.
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The work for discovering the attribute correspondences by K-medoids clustering
is introduced in this chapter. First, the chapter presents how to classify attributes
of each class with K-medoids clustering in Section 5.1. Second, clustered groups are
mapped by their statistical value features in Section 5.2. This section also shows
how to map attributes of a clustered group to attributes of the mapped clustered
group, generating a set of potential attribute correspondences. Third, an example
is given in Section 5.3.

5.1 Clustering Attributes of Each Class

Before constructing an interlinking pattern for each class correspondence, it is nec-
essary to specify a group of attribute correspondences across two corresponding
classes by clustering. Clustering reduces the size of potential attribute correspon-
dences considered in the interlinking task, significantly reducing the computation
workload. Otherwise, all attributes of a class should be compared with all attributes
of the corresponding class. Since attributes of each attribute correspondence share
similar value features, we can justify the attribute correspondences by matching
attributes with similar value features. Value feature is a characteristic or pattern
of values. For example, value feature of dates is “XXXX-XX-XX”. It means that
there are 8 numbers and the two symbols “-” in each date. Value feature of email
addresses is that there is a symbol “@” in each email address. Thereafter, clustered
groups from two corresponding classes can be mapped according to their value fea-
tures. The potential attribute correspondences are attribute pairs across mapped
clustered groups.



50
Chapter 5. Discovering Attribute Correspondences by K-medoids

Clustering

Since there may be irregular data in the RDF data sets on the web, we choose
K-medoids clustering to classify attributes of each class. It is a clustering method
that is tolerable when there is irregular data in the data set. In other words, the
clustering results will not influenced much by the irregular data if K-medoids is
applied. Irregular data is a kind of data that does not have the same value feature
with the other regular data. Regular data is a kind of data that is created according
to the schema of the data sets. In Euclidean space, the coordinates of irregular data
are usually far away from the ones of regular data.

K-medoids clustering is an unsupervised learning method [Kaufman 1987], which
is able to partition a large-scale data set into Voronoi cells [Okabe 2000] based on the
coordinates of the data in the Euclidean space. The time complexity of K-medoids
clustering is O(n2). n is the data size. Two information should be given before
executing K-medoids. One is the number of clustering groups k, and the other one
is the initial centers of these k clustering groups. In practice, K-medoids clustering
effect differs a lot, with different k and different initial centers of clustering groups.

In the interlinking setting of this thesis, each attribute of a class is treated as
a sample point to be clustered based on value features. Each sample point has an
coordinate in the Euclidean space. There are d dimensions constructed by d value
features, thus each coordinate is a d-tuple. The ith item in a d-tuple for an attribute
is the value of the ith feature based on the instances of the attribute.

It is intuitive to cluster attributes according to type features. Type feature
is a kind of value feature that describes the values of the same type. There are
several type features that can be used for constructing attribute coordinates. For
example, the type feature of numeric attributes is that there is no letter (except the
letter e and E indicating exponent) but only numbers. The type feature of people’s
name and book’s title is that the first letter is always capitalized. If we count the
type features of all attributes in a RDF data set, there will be a lot. There are
many types of attributes that describe the resources in the world. Moreover, type
features can only distinguish attributes of different types. They cannot be used to
distinguish attributes of the same type. Thus, we assume that there are two types of
attributes of each class in general: numeric and non-numeric. For attributes of the
same type, we define four statistical features, which is a kind of value feature that
reflects attribute values’ characteristics with statistics, to distinguish attributes of
the same type.

If an attribute is a number, the statistical features are

1 The maximum value of the attribute’s range

2 The minimum value of the attribute’s range

3 The average value of the attribute’s range

4 The deviation of the attribute’s range

These four statistical features are used to distinguish attributes according to
attribute values’ distribution. Assume that there are two properties. One is about
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people’s age, the other is about people’s height. Assume that the values of the above
four statistical features of people’s age (in years) are 1, 100, 40, 20. The values of
the above four statistical features of people’s height (in centimeters) are 30, 210,
170, 20. In the Euclidean space, these two points (1,100,40,20) and (30,210,170,20)
are relatively far. Therefore, these two properties will be clustered into different
attribute groups, so that they can be distinguished.

If an attribute is a string (a sequence of characters), the statistical features are

1 The ratio of the values that capitalize the first letter

2 The ratio of the values that contains special symbols, such as “@” or “$”

3 The average length of the values

4 The average number of words in the values

These four statistical features are used to distinguish attributes according to the
characteristics of different non-numeric attributes. For example, properties about
address usually do not have a first capitalized letter like properties about people’s
name and book’s title. Properties about email and currency can be distinguished
by the second statistical feature from other properties (using the special symbols
like “@” or “$”). Properties about people’s name can be identified by 3rd and 4th

statistical features, because usually people’s names are shorter than properties like
book’s title. Besides, the words of people’s names are fewer than the words of book’s
titles.

Thus, before clustering, attributes of each class are divided into two sets. One
is composed of numerical attributes, and the other is composed of non-numerical
attributes. Then, values of each attribute are collected to compute the coordinate
of the attribute according to the four statistical features defined before. The nu-
merical attributes and non-numerical attributes are both clustered based on their
coordinates, but they are clustered in two different Euclidean spaces.

Figure 5.1 shows how to cluster some non-numerical attributes in the example
of Chapter 2. In the figure, there are two corresponding classes that refer to the
departments in France. We are going to cluster the attributes of each class. For each
class, there are three non-numerical attributes, {insee:nom, insee:code_departement,
insee:subdivision−1/nom} for the class insee:Departement ; {eurostat:name, euro-
stat:code, eurostat:hasParentRegion/name} for the class eurostat:NUTSRegion. All
attribute values are collected to compute the coordinate for each attribute (i.e.,
Step 1© and 2©). In the figure, three statistical features are evaluated. They are
the ratio of the values that capitalize the first letter, the average number of word-
s in the values, and the average length of the values, which denote X, Y , and
Z respectively. With the K-medoids clustering, all non-numerical attributes of
each class are classified into several groups based on the coordinates (Step 3© in
Figure 5.1). Afterwards, each clustered group of non-numerical attributes in one
class is mapped to one clustered group of non-numerical attributes in the corre-
sponding class whose center is the closest one. In Figure 5.1, the clustered group
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Class   Departement Class   NUTSRegion

Property: nom

Property: code_departement

Relation: subdivision
-1

/nom

……

Property: name

Property: code

Relation: hasParentRegion/name

……

Instance set of class Departement Instance set of class NUTSRegion

{nom , code_departement , subdivision
-1

/nom} {name , code , hasParentRegion/name}

(Cher , 18 , Centre) ( Paris , FR101 , Île de France )

(Eure-et-Loir , 28 , Centre) ( Seine-et-Marne , FR102 , Île de France )

(Indre , 36 , Centre) ( Yvelines , FR103 , Île de France )

…… ……

Coordinate Computing1 2

nom

code_departement

subdivision
-1

/nom

(1.00 , 2.72 , 12.04)

(0 , 0.02 , 0.04)

(0.96 , 2.92 , 14.69)
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code

hasParentRegion/name

(0.85 , 2.19 , 13.39)

(1.00 , 1.00 , 4.66)

(0.91, 2.02, 13.63)

3

(0,0,0)

X          Y          Z X         Y         Z

X

Y

Z

code_departement

subdivision
-1

/nom

nom
name
code

Clustering groups

hasParentRegion/name

Figure 5.1: Constructing Euclidean Space for Clustered Non-numerical Attributes
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{insee:subdivision−1/insee:nom, insee:nom} is mapped to the clustered group {eu-
rostat:hasParentRegion/eurostat:name, eurostat:name, eurostat:code}. Finally, all
attribute pairs across mapped groups are treated as potential corresponding at-
tributes. The potential attribute correspondences in the figure are listed below.

• insee:subdivision−1/insee:nom↔eurostat:name

• insee:subdivision−1/insee:nom↔eurostat:hasParentRegion/eurostat:name

• insee:subdivision−1/insee:nom↔eurostat:code

• insee:nom↔eurostat:name

• insee:nom↔eurostat:hasParentRegion/eurostat:name

• insee:nom↔eurostat:code

Besides a set of sample points, there are two other information that should be
given before applying K-medoids. One is the initial centers of the clustering groups.
The other is the number of clustering groups. In order to optimize the clustering ef-
fect, the two information is given in the following way. First, the initial central point
of each clustering group is created several times with the Forgy method [Forgy 1965].
According to the illustration in [Hamerly 2002], the Forgy method is suitable for the
clustering scenario than other initialization methods. There are a lot of initial sets
of centers created, and the most suitable set of centers is the one that has the best
convergence effect. It means that the total distance between each sample point and
its center is the smallest one. Second, in order to make the sample points evenly
distributed, a merging operation is used to merge nearby clustering groups if the
distances of their centers are relatively smaller than the average distance between
centers. If a merging operation is applied, all sample points should be re-clustered
because the centers are changed. The clustering process stops until either of the
following two conditions is satisfied. One condition is that there are only two clus-
tered groups left, which means that there is no need to merge. The other condition
is that the distances between any two centers are relatively the same.

In order to compute the distance between any two coordinates, two distance
measures are applied. One is Euclidian distance, and the other is Cosine similari-
ty. Euclidean distance represents the absolute distance between two sample points
in the Euclidean space. Cosine similarity shows the orientation similarity of two
sample points. The two measures are combined here to show the distance between
two coordinates with an all-round perspective. Thus, the distance of two points is
computed as the average value of the two measures. First, values of both measures
are normalized. So the values are both in the range [0, 1]. When the Euclidean
distance is 1, it means that the two coordinates are far away. In contrast, when the
Cosine similarity is 1, it means that the two coordinates have the same orientation.
So second, values of the Cosine similarity should be reversed to show the same map-
pings from the decimals in [0, 1] to the distances as the mappings of the Euclidean
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distance. Each value of the Cosine similarity is reversed by 1−v, where v represents
the value of the Cosine similarity. Third, the average value of the two measures is
computed to show the distance of two coordinates.

A formal definition of K-medoids clustering is below.

1 Input: the set M of sample points representing numerical/non-numerical
attributes in a class, initial number (N) of clustered groups, the iteration
times T=30 for finding an optimized set of initial centers;

2 Output: a set of clustered groups of numerical/non-numerical attributes in
each class.
1: C = the set of N centers computed by the Forgy method;
2: Clustering sample points into the nearest centers with KMedoids(M ,C);
3: Compute TD ;
4: t = 1;
5: while (t<T ) do
6: Cnew = the set of N centers computed by the Forgy method;
7: Clustering sample points into the nearest centers with

KMedoids(M ,Cnew);
8: Compute TDnew;
9: if TDnew<TD then
10: TD=TDnew;
11: C = Cnew;
12: t++;
13: while (|C|>2) do
14: Clustering sample points into the nearest centers with KMedoids(M ,C);
15: Compute new centers Cnew of each clustering group;
16: Compute ad ;/*Compute the average distance between centers*/
17: C = Cnew;
18: if (∃ ci,cj∈C, distance(ci,cj)<1

2 ·ad) then
19: C=MergeCenters(C,12 ·ad);/*Merge nearby centers in C*/
20: if (|C|<2) then
21: break;
22: else
23: break;
24: Output C.

Algorithm 1: K-medoids Clustering

The goal of the K-medoids clustering algorithm is to cluster numerical/non-
numerical attributes into several groups based on the coordinates of the attributes,
such that the total distance between each sample point and its center (denoted by
TD) is minimized. In this algorithm, KMedoids(M ,C) represents the K-medoids
clustering algorithm on the sample point set M and the set of centers C. Experi-
ments indicate that the initial number of centers (denoted by N) is set to 20, if the
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total number of attributes is equal to 50 or more than 50. If the total number of
attributes is lower than 50, N is set to the total number of attributes. T denotes
the iteration times of optimizing the initial set of centers with the Forgy method.
The set of initial centers that is used for clustering is the one that has the smallest
TD. distance(ci,cj) denotes the distance between two group centers ci and cj . ad
represents the average distance of any two centers in C. If the distance of any two
centers is smaller than 1

2 ·ad, they should be merged as one center. The centers’
groups are merged into one group accordingly. The new center is a sample point in
the new group, such that the sum of distances between this sample point and other
sample points in the new group is the smallest one.

The whole process of the K-medoids clustering (Algorithm 1) is summarized as
follows. Firstly, the Forgy method is run T times to find out the most distributed
set of centers M (line 1–12). Second, all sample points are clustered to the centers
which are the closest centers from them (line 14). Third, two relatively close centers
(according to 1

2 ·ad) will be merged (line 18–19). The new group’s center is a sample
point of the new group that has the smallest sum of distance between the point and
each other point in the group (line 19). Fourth, a new K-medoids clustering will
be performed based on the new set of centers (line 14). The merging operation will
repeat until the distance between any two centers is larger than 1

2 ·ad or there are
only two groups left.

5.2 Group Matching of Attributes Across Two Classes

After the attributes of each class are classified into several groups via the clustering
step, potential attribute correspondences are built easily between mapped clustered
groups of corresponding classes C and C ′. Each clustered group of the class C can be
mapped to one clustered group of the class C ′, based on the coordinates of the group
centers. Note that numerical attributes and non-numerical attributes of each class
are clustered separately. Thus, numerical attribute groups of each class are only
mapped to numerical attribute groups of the corresponding class. Non-numerical
attribute groups of each class are only mapped to non-numerical attribute groups
of the corresponding class.

Here is the illustration of how to build mappings for different groups of at-
tributes across the two corresponding classes and how to build potential attribute
correspondences across mapped groups. Assume there are p groups of non-numerical
attributes in class C, denoted by G1, G2, ..., Gp. There are four statistical features
for building coordinates of the attributes. The coordinate of a clustered group’s
center is denoted by (xi, yi, zi, wi), where i=1,2,· · · ,p. Assume that there are q
groups of non-numerical attributes in class C ′, denoted by G′1, G′2, . . . , G′q. The co-
ordinate of a clustered group’s center is (x′j , y

′
j , z
′
j , w

′
j), where j=1,2,· · · ,q. Then,

the distance between Gi and G′j is reflected by the distance of their coordinates,
denoted by D(Gi, G

′
j). The mappings of groups can be determined by the formu-

la, {arg min
{(i,j)}

D(Gi, G
′
j)}, where arg min indicates the index value (i,j) with minimal
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D(Gi, G
′
j). It means that for each group Gi of the class C, the mapping group is the

group Gj of the corresponding class C ′ that has the closest center with the group
Gi. According to the mapped groups, all attributes from one group of class C are
matched with the attributes from the mapping group of class C ′. Therefore, a set
of potential attribute correspondences can then be produced.

To conclude, the K-medoids clustering algorithm can discover several types of
attribute correspondences as follows. They are expressed in Expressive and Declar-
ative Ontology Alignment Language (EDOAL)1 [Scharffe 2009, David 2011], which
is defined to express complex attribute correspondences.

• a property P is corresponding to a property P ′

<Cell>
<entity1>

<edoal:Property rdf:about="P"/>
</entity1>
<entity2>

<edoal:Property rdf:about="P’"/>
</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a property P is corresponding to a path that is composed of one or several
relations R′1, . . . , R′n and a property P ′, where n ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property rdf:about="P"/>
</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation rdf:about="R_1’" />
...
<edoal:Relation rdf:about="Rn’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a property P is corresponding to a path that is composed of a reverse relation
R′−1 and a property P ′

<Cell>
<entity1>

<edoal:Property rdf:about="P"/>

1http://alignapi.gforge.inria.fr/edoal.html

http://alignapi.gforge.inria.fr/edoal.html
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</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a property P is corresponding to a path that is composed of a reverse relation
R′−1, one or several relationsR′1, . . . , R′m and a property P ′, wherem ∈ [1,+ ∝
)

<Cell>
<entity1>

<edoal:Property rdf:about="P"/>
</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Relation rdf:about="R1’" />
...
<edoal:Relation rdf:about="Rm’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of one or several relations R1, . . . , Rn and a property
P is corresponding to a path that is composed of one or several relations
R′1, . . . , R

′
m and a property P ′, where n ∈ [1,+ ∝), m ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation rdf:about="R1" />
...
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<edoal:Relation rdf:about="Rn" />
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation rdf:about="R1’" />
...
<edoal:Relation rdf:about="Rm’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of one or several relations R1, . . . , Rn and a property
P is corresponding to a path that is composed of a reverse relation R′−1 and
a property P ′, where n ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation rdf:about="R1" />
...
<edoal:Relation rdf:about="Rn" />
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of one or several relations R1, . . . , Rn and a property
P is corresponding to a path that is composed of a reverse relation R′−1,
one or several relations R′1, . . . , R′m and a property P ′, where n ∈ [1,+ ∝),
m ∈ [1,+ ∝)
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<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation rdf:about="R1" />
...
<edoal:Relation rdf:about="Rn" />
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Relation rdf:about="R1’" />
...
<edoal:Relation rdf:about="Rm’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of a reverse relation R−1 and a property P is corre-
sponding to a path that is composed of a reverse relation R′−1 and a property
P ′

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R" />
</edoal:inverse>

</edoal:Relation>
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>
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</edoal:Relation>
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of a reverse relation R−1, one or several relations
R1, . . . , Rn and a property P is corresponding to a path that is composed of
a reverse relation R′−1 and a property P ′, where n ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R" />
</edoal:inverse>

</edoal:Relation>
<edoal:Relation rdf:about="R1" />
...
<edoal:Relation rdf:about="Rn" />
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of a reverse relation R−1 and a property P is corre-
sponding to a path that is composed of a reverse relation R′−1, one or several
relations R′1, . . . , R′m and a property P ′, where m ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
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<edoal:inverse>
<edoal:Relation rdf:about="R" />

</edoal:inverse>
</edoal:Relation>
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
</edoal:inverse>

</edoal:Relation>
<edoal:Relation rdf:about="R1’" />
...
<edoal:Relation rdf:about="Rm’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

• a path that is composed of a reverse relation R−1, one or several relations
R1, . . . , Rn and a property P is corresponding to a path that is composed of a
reverse relation R′−1, one or several relations R′1, . . . , R′m and a property P ′,
where n ∈ [1,+ ∝),m ∈ [1,+ ∝)

<Cell>
<entity1>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R" />
</edoal:inverse>

</edoal:Relation>
<edoal:Relation rdf:about="R1" />
...
<edoal:Relation rdf:about="Rn" />
<edoal:Property rdf:about="P" />

</edoal:compose>
</edoal:Property>

</entity1>
<entity2>

<edoal:Property>
<edoal:compose rdf:parseType="Collection">

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="R’" />
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</edoal:inverse>
</edoal:Relation>
<edoal:Relation rdf:about="R1’" />
...
<edoal:Relation rdf:about="Rm’" />
<edoal:Property rdf:about="P’" />

</edoal:compose>
</edoal:Property>

</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>

5.3 Example

As for the interlinking scenario 2.1 in Chapter 2, potential attribute correspondences
are generated below. There are three types of attributes that are clustered. They
are property, relation/property and relation−1/property.

In the class insee:Departement, the attributes being clustered are:

string insee:nom

string insee:code_departement

number insee:subdivision−1/insee:code_region

string insee:subdivision−1/insee:nom

The clustered group for numerical attributes is

Group 1 {insee:subdivision−1/insee:code_region};
coordinate: (94.00, 1.00, 43.85, 905.75)

The clustered groups for non-numerical attributes are

Group 1 {insee:code_departement};
coordinate: (0.00, 0.00, 0.02, 0.04)

Group 2 {insee:nom, insee:subdivision−1/insee:nom};
coordinate: (0.96, 0.00, 2.92, 14.69)

In the class eurostat:NUTSRegion, the attributes being clustered are:

string eurostat:label

string eurostat:name

string eurostat:code

number eurostat:level

string eurostat:hasParentRegion/eurostat:label
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string eurostat:hasParentRegion/eurostat:name

string eurostat:hasParentRegion/eurostat:code

number eurostat:hasParentRegion/eurostat:level

string eurostat:hasParentRegion−1/eurostat:label

string eurostat:hasParentRegion−1/eurostat:name

string eurostat:hasParentRegion−1/eurostat:code

number eurostat:hasParentRegion−1/eurostat:level

The clustered groups for numerical attributes are

Group 1 {eurostat:level};
coordinate: (3.00, 0.00, 1.50, 1.25)

Group 2 {eurostat:hasParentRegion/eurostat:level};
coordinate: (2.00, 0.00, 1.00, 0.67)

Group 3 {eurostat:hasParentRegion−1/eurostat:level};
coordinate: (3.00, 1.00, 2.00, 0.67)

The clustered groups for non-numerical attributes are

Group 1 {eurostat:hasParentRegion/eurostat:code};
coordinate: (1.00, 0.00, 1.00, 3.70)

Group 2 {eurostat:name, eurostat:hasParentRegion/eurostat:name,
eurostat:hasParentRegion−1/eurostat:name, eurostat:code,
eurostat:hasParentRegion−1/eurostat:code};
coordinate: (0.92, 0.00, 2.27, 15.01)

Group 3 {rdfs:label, eurostat:hasParentRegion/rdfs:label,
eurostat:hasParentRegion−1/rdfs:label};
coordinate: (1.00, 0.00, 3.02, 22.54)

The mapped groups on numerical attributes are:

• {insee:subdivision−1/insee:code_region}↔{eurostat:level}

The mapped groups on non-numerical attributes are:

• {insee:code_departement}↔{eurostat:hasParentRegion/eurostat:code}

• {insee:nom,insee:subdivision−1/insee:nom}↔{eurostat:name,
eurostat:hasParentRegion/eurostat:name,
eurostat:hasParentRegion−1/eurostat:name, eurostat:code,
eurostat:hasParentRegion−1/eurostat:code}
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Thus, potential attribute correspondences that are produced after mapping clus-
tered groups are:

• insee:subdivision−1/insee:code_region↔eurostat:level

• insee:code_departement↔eurostat:hasParentRegion/eurostat:code

• insee:nom↔eurostat:name

• insee:nom↔eurostat:hasParentRegion/eurostat:name

• insee:nom↔eurostat:hasParentRegion−1/eurostat:name

• insee:nom↔eurostat:code

• insee:nom↔eurostat:hasParentRegion−1/eurostat:code

• insee:subdivision−1/insee:nom↔eurostat:name

• insee:subdivision−1/insee:nom↔eurostat:hasParentRegion/eurostat:name

• insee:subdivision−1/insee:nom↔eurostat:hasParentRegion−1/eurostat:name

• insee:subdivision−1/insee:nom↔eurostat:code

• insee:subdivision−1/insee:nom↔eurostat:hasParentRegion−1/eurostat:code

5.4 Conclusion

In this chapter, K-medoids is exploited to discover potential attribute correspon-
dences across two corresponding classes.

First, several statistical features of attributes are defined. If attribute values are
numbers (a sequence of digits), the features are maximum value of the attribute’s
range, minimum value of the attribute’s range, average value of the attribute’s range,
and deviation of the attribute’s range. If the attribute values are strings (a sequence
of characters), the features are ratio of the attribute values that contain special sym-
bols, ratio of the attribute values that capitalize the first letter, average number of
words, and average length of the attribute values. These statistical features effective-
ly distinguish attributes of a class.

Second, the coordinate of each attribute in each class are computed according
to the features defined above. Then, both numerical and non-numerical attributes
are classified into groups by K-medoids clustering algorithm respectively.

Third, with respect to a class correspondence, the groups in one class are mapped
to the groups in another class. Among which, each group is mapped to the group
that has the closest euclidian center with its own. It also means that each group
is mapped to a group which has the most similar features. Groups of numerical
attributes in one class are mapped to the groups of numerical attributes in the
corresponding class. Groups of non-numerical attributes in one class are mapped to
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groups of non-numerical attributes in the corresponding class. Potential attribute
correspondences are attribute pairs across the mapped groups.

Next chapter will introduce two works. One work is the transformation rules
that transfer EDOAL correspondences into graph patterns and form a Silk script
for generating links across data sets. The other work is the method of generating
sample links for users to assess.
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This chapter introduces how to utilize the potential attribute correspondences
that are produced by the K-medoids clustering step to generate a set of sample
links that can be assessed by users. First, it introduces expressive correspondence
language EDOAL and semi-automatic interlinking tool Silk in Section 6.1. Second,
it presents the translation rules that interpret the correspondences expressed in
EDOAL into an executable Silk script in Section 6.2. Finally, it illustrates how to
produce a set of sample links to be assessed and learned in Section 6.3.

6.1 EDOAL and Silk Link Scripting Language

After attribute correspondences are discovered by the K-medoids clustering algo-
rithm, they should be transformed from EDOAL alignment into a Silk script, which
are processed by Silk for generating link sets.

6.1.1 Expressive and Declarative Ontology Alignment Language
(EDOAL)

Correspondences that are found by an ontology matcher should be expressed
in a language. There is an alignment format1 that expresses simple corre-
spondence like 1-to-1 attribute correspondence. For example, the attribute

1http://alignapi.gforge.inria.fr/format.html

http://alignapi.gforge.inria.fr/format.html
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correspondence insee:nom↔eurostat:name is a 1-to-1 attribute correspondence.
However, the alignment format cannot express complex attribute correspon-
dences like insee:subdivision↔eurostat:hasParentRegion−1. It means that the re-
lation insee:subdivision is equivalent to the inverse relation of the relation euro-
stat:hasParentRegion. Therefore, Expressive and Declarative Ontology Alignment
Language (EDOAL)2 [Scharffe 2009, David 2011] is defined to express complex at-
tribute correspondences.

EDOAL expresses the attribute correspondence in-
see:subdivision↔eurostat:hasParentRegion−1 as

<Cell>
<entity1>

<edoal:Relation rdf:about="&insee;subdivision" />
</entity1>
<entity2>

<edoal:Relation>
<edoal:inverse>

<edoal:Relation rdf:about="&eurostat;hasParentRegion"/>
</edoal:inverse>

</edoal:Relation>
</entity2>
<measure rdf:datatype=’&xsd;float’>1.</measure>
<relation>=</relation>

</Cell>

measure 1 indicates that the similarity between these two attribute correspon-
dences is 1. relation = indicates that the relationship of the two attributes is equiv-
alence, rather than subsumption or disjointness.

Departement

NUTSRegion

3 level

=

=

Figure 6.1: Class Correspondence of the concept “Department” in INSEE and EU-
ROSTAT

EDOAL can also express constructed class correspondences. For instance, the
following EDOAL correspondence expresses the correspondence in Figure 6.1:

<Cell>
<entity1>

<edoal:Class rdf:about="&insee;Departement" />
</entity1>

2http://alignapi.gforge.inria.fr/edoal.html

http://alignapi.gforge.inria.fr/edoal.html
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<entity2>
<edoal:Class>

<edoal:and rdf:parseType="Collection">
<edoal:Class rdf:about="&eurostat;NUTSRegion"/>
<edoal:AttributeValueRestriction>

<edoal:onAttribute>
<edoal:Property rdf:about="&eurostat;level"/>

</edoal:onAttribute>
<edoal:comparator rdf:resource="&xsd;equals"/>
<edoal:value>3</edoal:value>

</edoal:AttributeValueRestriction>
</edoal:and>

</edoal:Class>
</entity2>
<measure rdf:datatype=’&xsd;float’>1.</measure>
<relation>=</relation>

</Cell>

it expresses the equivalence between the class insee:Departement in the INSEE data
set with the class eurostat:NUTSRegion whose eurostat:level is equal to 3 in the
EUROSTAT data set.

The EDOAL grammar is summarized below:
For class expressions:
C ::= u

| ¬C | C ∩ C | C ∪ C
| occ(A, cp, n)

| dom(R,C)

| type(P, t)
| val(A, cp, v)

For property expressions:
P ::= u

| ¬P | P ∩ P | P ∪ P | R ◦ P
| dom(C)

| type(t)
| val(cp, v)

For relation expressions:
R ::= u

| ¬R | R ∩R | R ∪R | R ◦R
| reflex(R) | sym(R) | R | R−1
| dom(C)

| coDom(C)

For instance & value expressions:
I ::= u

v ::= I | literal
C denotes a class. u denotes a URI. A denotes a property or a relation. P denotes

a property. R denotes a relation. I denotes an instance. ∪,∩,¬, ◦, dom and coDom
denote union, intersection, complement, composition, domain, and range restriction
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respectively. t denotes a data type. type(P, t) specifies that the data type of a class’
property P is t. type(t) specifies that a property’s data type is t. v denotes a value
expression. cp denotes a comparator. n denotes an integer. R−1, sym(R), R, and
reflex(R) denotes the inverse, the symmetric closure, the transitive closure, and
the identity relation respectively. occ(A, cp, n) is a cardinality restriction on a class’
attribute A. val(A, cp, v) denotes the value restriction on the attribute A of a class.
val(cp, v) denotes the value restriction of a property.

6.1.2 Linkage Specifications

An interlinking specification is a script that describes necessary information on
comparing attributes of two given classes for judging whether two instances of the
given classes must be linked. It is written with the syntax of interlinking tools.
Briefly, the tools require the following information for generating links.

1 Where to get the data sets

2 From which classes to get the instances

3 Which attributes to compare

4 With which comparison method to compare attribute values

5 How to aggregate the similarities

6 How to store the generated links

There are not many differences between these tools. In this thesis, Silk is chosen
to execute interlinking and generate a link set, because it is an open source tool.
Therefore, this thesis only introduces Silk in order to give a brief introduction to
the semi-automatic interlinking tools.

Silk provides a declarative language LSL for specifying which conditions two
instances must fulfill in order to be interlinked [Jentzsch 2012]. Assume that we
would like to find links on departments of two geographical data sets INSEE 3 and
EUROSTAT 4. INSEE is a data set that describes geographical data in France.
EUROSTAT is a data set that describes geographical data in Europe. insee and
eurostat are two prefixes that name resources of two data sets respectively. Both
data sets describe departments in France. So the interlinking specification written
in LSL can be expressed below.

<?xml version="1.0" encoding="utf-8" ?>
<Silk>

<Prefixes>
<Prefix id="rdf" namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />
<Prefix id="rdfs" namespace="http://www.w3.org/2000/01/rdf-schema#" />

3http://rdf.insee.fr/geo/index.html
4http://datahub.io/dataset/eurostat-rdf

http://rdf.insee.fr/geo/index.html
http://datahub.io/dataset/eurostat-rdf
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<Prefix id="insee" namespace="http://rdf.insee.fr/geo/" />
<Prefix id="eurostat" namespace=
"http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#" />

</Prefixes>

<DataSources>
<DataSource id="insee" type="sparqlEndpoint">

<Param name="endpointURI" value="http://localhost:8080/datalift/sparql" />
</DataSource>

<DataSource id="eurostat" type="sparqlEndpoint">
<Param name="endpointURI" value="http://localhost:8080/datalift/sparql" />

</DataSource>
</DataSources>

<Interlinks>
<Interlink id="departement">

<LinkType>owl:sameAs</LinkType>

<SourceDataset dataSource="insee" var="a">
<RestrictTo>

?a rdf:type insee:Departement .
</RestrictTo>

</SourceDataset>

<TargetDataset dataSource="eurostat" var="b">
<RestrictTo>

?b rdf:type eurostat:NUTSRegion .
</RestrictTo>

</TargetDataset>

<LinkageRule>
<Aggregate type="average">

<Compare metric="Levenshtein">
<TransformInput function="lowerCase">

<Input path="?a/insee:nom" />
</TransformInput>
<TransformInput function="lowerCase">

<Input path="?b/eurostat:name" />
</TransformInput>

</Compare>
<Compare metric="Levenshtein">

<TransformInput function="lowerCase">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="lowerCase">

<Input path="?e2/id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
</Aggregate>

</LinkageRule>

<Filter />
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<Outputs>
<Output type="sparul" >

<Param name="uri" value=
"http://localhost:8080/openrdf-sesame/repositories/lifted/statements"/>
<Param name="parameter" value="update"/>

</Output>
</Outputs>

</Interlink>
</Interlinks>

</Silk>

In the above script, the information for interlinking is specified as follows:

1 Where to get the data sets
Both data sets are queried through Datalift’s SPARQL endpoint
http://localhost:8080/datalift/sparql.

2 From which classes to get the instances
Instances in INSEE come from the class insee:Departement. Instances in
EUROSTAT come from the class eurostat:NUTSRegion.

3 Which attributes to compare
The property insee:nom should be compared with the property eurostat:name.
The property insee:nom of the class that has the relation insee:subdivision
should be compared with the property eurostat:name of the class that is the
object of the relation eurostat:hasParentRegion.

4 With which comparison method to compare attribute values
Property values will be compared with the method Levenshtein, which is a
string metric for measuring the difference between two strings. It is used here
because all values of the properties insee:nom and eurostat:name are strings.

5 How to aggregate the similarities
The similarities of both attribute pairs will be aggregated by the method
average into one similarity value.

6 How to store the generated links
The links will be stored in the public SPARQL endpoint of the Datalift platfor-
m. It is http://localhost:8080/openrdf-sesame/repositories/lifted/statements.

As an expressive language, LSL provides several comparison methods for at-
tribute values. For strings, the set of comparison methods are levenshteinDistance,
levenshtein, jaro, jaroWinkler, equality, inequality, jaccard, dice, and softjaccard.
For numbers, there is a comparison method named num. For time, the compari-
son methods are date and dateTime. For geographical coordinates, the comparison
method is wgs84.

LSL also provides several aggregation methods to transfer similarities of attribute
values into one similarity value. They are, average, max, min, quadraticMean, and
geometricMean.
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Operator Syntax Description
/ < path > / < prop > Leads the query passing

from the entity variable
as the subject
to its object entity

\ < path > \ < prop > Leads the query passing from
the entity variable as the
object to its subject entity

[ ] < path > [< prop >< comp >< val >] Acts as a filter which only
< path > [@lang =< val >] passes the values that satisfy

the expression defined inside.
comp can be one of
>,<,>=,<=,=, ! =

Table 6.1: Silk navigation operators: forward navigation, backward navigation and
condition.

Silk offers XPath5-inspired navigation operators as presented in Table 6.1. These
are used to access the property values of instances.

6.2 From EDOAL to Silk scripts

The goal of this section is to specify how Silk scripts are generated from EDOAL
alignments.

First, we present how each component of a Silk script is generated from an
alignment:

1. Generating graph patterns from EDOAL expressions allows to fill the Source
and Target data set sections (a.k.a., data set parts) of Silk scripts, which selects
instances to compare (Section 6.2.1). It does not actually compare resources.

2. Generating linkage rules which actually compare the instances (Section 6.2.2).
The linkage rule specifies how to compare the instances selected before.

Then we consider how to assemble a Silk script from these components (Section
6.2.4).

Relating expressive alignments and SPARQL has already been the topic of previ-
ous papers [Euzenat 2008, Rivero 2011]. However, these papers are concerned with
transferring data with alignments, not interlinking them.

6.2.1 Generation of Source and Target Data Sets

From the correspondence of Figure 6.1, it is required to generate automatically the
following graph patterns which respectively extract the two corresponding sets of
instances:

5http://www.w3.org/TR/xpath20/

http://www.w3.org/TR/xpath20/
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?r rdf:type insee:Departement .

and

?n rdf:type nuts:NUTSRegion .
?n nuts:level 3^^xsd:int .

These graph patterns will be used in the Silk script as SourceDataset and Tar-
getDataset selectors. In the data set part of a Silk script, the pair of classes to be
compared are defined. The graph patterns of classes are specified here.

In EDOAL, the expressions can be constructed by using the operators or de-
fined through restrictions. Based on the specification of EDOAL expressions with
the grammars of Section 6.1.1, all of the concepts are transferred into graph pattern-
s. This transformation depends on the type of entity (Class, Property, Relation),
the operations (conjunctions, union, negation, compose, etc.) and the restrictions
(domains, values, types, occurrences) they are built from. Each expression (entity)
will be translated into a graph pattern.

Silk does not support SPARQL 1.1. Besides, dealing with negation would lead
to too many comparisons on instances. Although correspondences with negations
(¬C) are considered when designing most of the translation rules, they are not
implemented when generating Silk script.

EDOAL translation is designed for the graph pattern T which is described in
the following sections. There is one section for each entity types according to the
EDOAL grammar.

6.2.1.1 Translation of class expressions

For class expressions, the function Ts(C) takes as argument C the expression to
convert and s the entity typed by this class. When invoking T , s is usually a
variable.

A class C can be constructed through one of the three operators and, or, not. A
class can also be identified by using its URI or defined through a restriction:

• AttributeDomainRestriction which restricts the values of relations to be in a
particular class;
• AttributeTypeRestriction which restricts the values of properties to be in a

particular type;
• AttributeValueRestriction which restricts the value of properties or relations

to a particular value;
• AttributeOccurrenceRestriction which constrains the cardinality of a property

or relation.

In the following, operators are identified that require SPARQL 1.1. As operation
is also used, !x may generate a new variable (?x) or a blank (_:x) depending of the
context. Here it will always generate a new variable.
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Ts(u) = s rdf:type 〈u〉.
Ts(¬C) = MINUS {Ts(C)} (SPARQL 1.1)

Ts(C ∪ C ′) = Ts(C) UNION Ts(C
′)

Ts(C ∩ C ′) = Ts(C) Ts(C
′)

Ts(dom(R,C)) = Ts,!o(R) T!o(C)

Ts(occ(A, cp, n)) = Ts,!o(A) FILTER(COUNT(!o) cp n) (SPARQL 1.1)

Ts(type(P, t)) = Ts,!o(P ) FILTER(datatype(!o) = t)

Ts(val(A,=, v)) = Ts,v(A)

Ts(val(A, cp, v)) = Ts,!o(A) FILTER(!o cp v)

Example: value restriction class

Entity (EDOAL) Graph Pattern (SPARQL)
Ts(u) = ?s rdf:type <u> .
Ts(val(A, cp, v)) = Ts,o(A)

FILTER(?o cp v)
Ts,o(u) = ?s <u> ?o .

<Class>
<and rdf:parseType="Collection">

<Class rdf:about="#Person" />
<AttributeValueRestriction>

<onAttribute>
<Property rdf:about="#age">

</onAttribute>
<comparator rdf:resource=
"&edoal;#greater-than" />
<value>

<Literal edoal:type="xsd;integer"
edoal:string="17" />

</value>
</AttributeValueRestriction>

</and>
</Class>

?x rdf:type <humans:Person> .
?x <humans:age> ?age .
FILTER ( <xsd:integer>(?age) > 17 )

6.2.1.2 Translation of property expressions

For the property expressions, the translation function Ts,o(P ) is used such that s is
the subject and o is the object in a SPARQL triple pattern, and the predicate P
establishes a relationship between the subject s and the object o.

Properties correspond to data properties in OWL. Property expressions can be
constructed using one of the operators and, or, not and compose. They can also be
identified by using their URIs or defined through a restriction:

• PropertyDomainRestriction which restricts the subjects of properties to be in
a particular class;
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• PropertyTypeRestriction which restricts the values of properties to be in a
particular type;
• PropertyValueRestriction which restricts the value of properties to a particular

value.

Ts,o(u) = s 〈u〉 o.
Ts,o(¬P ) = MINUS {Ts,o(P )} (SPARQL 1.1)

Ts,o(P ∪ P ′) = Ts,o(P ) UNION Ts,o(P
′)

Ts,o(P ∩ P ′) = Ts,o(P ) Ts,o(P
′)

Ts,o(R ◦ P ) = Ts,!x(R) T!x,o(P )

Ts,o(dom(C)) = Ts(C)

Ts,o(type(t)) = FILTER(datatype(o) = t)

Ts,o(val(cp, v)) = FILTER(o cp v)

Example: type restriction property

Entity (EDOAL) Graph Pattern (SPARQL)
Ts,o(type(t)) =

FILTER(datatype(?o) = t)
<Property>

<PropertyTypeRestriction>
<datatype>

<Datatype rdf:about=
"&xsd;integer"/>

</datatype>
</PropertyTypeRestriction>

</Property>

FILTER( datatype(?o) = xsd:integer)

6.2.1.3 Translation of relation expressions

For the relation expressions, the translation function Ts,o(R) is used such that s is
the subject and o is the object in a SPARQL triple pattern, and the predicate R
establishes a relationship between the subject s and the object o.

Relations correspond to object properties in OWL. Relation expressions can be
constructed using one of the operators and, or, not and compose as well as closure
operators inverse, symmetric, transitive and reflexive. They can also be identified
by using their URIs or defined through a restriction. There are two types of relation
restrictions (RelationDomainRestriction and RelationCoDomainRestriction).
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Ts,o(u) = s 〈u〉 o.
Ts,o(¬R) = MINUS {Ts,o(R)} (SPARQL 1.1)

Ts,o(R ∪R′) = Ts,o(R) UNION Ts,o(R
′)

Ts,o(R ∩R′) = Ts,o(R) Ts,o(R
′)

Ts,o(R ◦R′) = Ts,!x(R) T!x,o(R
′)

Ts,o(R
−1) = To,s(R)

Ts,o(sym(R)) = Ts,o(R) UNION To,s(R)

Ts,o(R) = s R ∗ o. (SPARQL 1.1)

Ts,o(reflex(R)) = Ts,o(R) UNION FILTER(s = o)

Ts,o(dom(C)) = Ts(C)

Ts,o(coDom(C)) = To(C)

Example: transitive relation using the path property (+, *) of SPARQL 1.1

Entity (EDOAL) Graph Pattern (SPARQL)
Ts,o(R) = ?s R* ?o

<Relation>
<transitive>

<Relation rdf:about="&wine;loc" />
</transitive>

</Relation>

?s <wine:loc>* ?o .

6.2.2 Generation of linkage rules

The strategy followed by Silk is made up of four steps, each one corresponding to a
different operation:

navigating to the parts of the instances to compare (Input);

transforming them to make them comparable (TransformInput);

comparing them (Compare); and

aggregating the results of their comparison into a single similarity between the
two instances (Aggregate).

These steps are first presented through an example before presenting the systematic
generation of linkage rules.
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6.2.2.1 Example

These steps are presented in the following LinkageRule generated for the example:

<LinkageRule>
<Compare metric="levenshteinDistance">

<TransformInput function="lowerCase">
<Input path="?a/insee:nom[@lang=’fr’]" />

</TransformInput>
<TransformInput function="lowerCase">

<Input path="?b/eurostat:name" />
</TransformInput>

</Compare>
</LinkageRule>

The example starts from the two classes to compare. One is insee:Departement,
the other is eurostat:NUTSRegions. For that purpose, the parts of these instances
to compare are defined. This is achieved by finding attribute correspondences in the
alignment which match these parts. This can be given by the following:

<map>
<Cell>

<entity1>
<edoal:Property rdf:about="&insee;nom"/>

</entity1>
<entity2>

<edoal:Property rdf:about="&eurostat;name"/>
</entity2>
<relation>equivalence</relation>
<measure>1.0</measure>

</Cell>
</map>

If for a class correspondence, there is at least one attribute correspondence, then
a linkage rule can be generated for the Silk script. In the example, insee:nom is a
property applying to the class insee:Departement and eurostat:name is a property
applying to the class eurostat:NUTSRegion, so the values of these properties can be
used to compare the instances. From there, the four steps of the LinkageRule can
be generated:

navigation the nom property should be inserted into the input path with the
same variable that appears in the source data set section. When there is value
restriction, it is translated as a constraint, such as ?a/insee:nom[@lang=’fr’].
When there is no value restriction, it is simply translated as a path, such as
?b/eurostat:name.

transformation when two values of the LinkageRule cannot be compared imme-
diately because of coding or format difference, they may be transformed. A
transformation function should be set for changing the values into a uniform
format. In EDOAL, the transformation may be described in each correspon-
dence. For example, “replace” can change certain letters in a string to other
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letters, “lowerCase” can change all letters into lower case. In Silk, the trans-
formation can be defined recursively6.

comparison uses particular metrics to compare the values extracted by the paths.
If values are strings, they will use a string comparison method, “levenshteinDis-
tance”; if they are geometric points, the method could compare coordinates (as
the “wgs84” method). The choice of metrics is made according to the range of
properties. Other optional parameters can be set such as “required”, “weight”
or “threshold”. It is possible, for instance, to assign weights depending on the
coverage degree of properties.

aggregation is finally performed for issuing one value between two instances from
the values obtained by comparing their properties. It can be the “average”
which computes the weighted average result of comparing results. It also
can be “max” to set the final aggregation value to be the maximum similar-
ity of returned comparing results. Other optional parameters are “required”
and “weight”. Weights could be set based on the confidence in the property
correspondence.

Silk offers a whole battery of operations:

• navigation operators, inspired from the XPath language are provided in Table
6.1;
• transformation functions (lowerCase, etc.);
• comparison functions (levenshteinDistance, etc.);
• aggregation operators (max, min, average, etc.).

6.2.2.2 Aggregation generation

For each pair of corresponding classes in the alignment A, a linkage rule will be
generated aggregating the similarities of all the properties. It is possible to select
the relevant properties to compare through a learning algorithm by learning assessed
links.

Currently, given two class URIs u and u′, we generate the comparisons of all
attributes and compute the average value of their comparison results:

Rs,s′(u, u
′,A) = Average〈a,a′,=,tr〉∈K(u,u′,A)Cs,range(a),s′,range(a′)(a, a

′, tr)

K(u, u′,A) is the set of property or relation correspondences related to the class u
and the class u′ in A, i.e., those whose domains are u and u′ respectively. s, s′ are
two variables that will be bound to instances of the classes u and u′. The datatypes
associated to the properties are passed to the transformation. The transformation
tr if available in the EDOAL correspondence is also passed as argument.

6https://www.assembla.com/spaces/silk/wiki/Transformation

https://www.assembla.com/spaces/silk/wiki/Transformation
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Because class description in EDOAL may be non-atomic, it is specified below
how the compound expressions are compared:

Rs,s′(C ∩ C ′, C ′′,A) = Min(Rs,s′(C,C
′,A), Rs,s′(C

′, C ′′,A))

Rs,s′(C ∪ C ′, C ′′,A) = Max(Rs,s′(C,C
′,A), Rs,s′(C

′, C ′′,A))

Rs,s′(C,C
′ ∩ C ′′,A) = Min(Rs,s′(C,C

′,A), Rs,s′(C,C
′′,A))

Rs,s′(C,C
′ ∪ C ′′,A) = Max(Rs,s′(C,C

′,A), Rs,s′(C,C
′′,A))

Rs,s′(¬C,C ′,A) = ∅
Rs,s′(C,¬C ′,A) = ∅

Rs,s′(C, occ(A, cp, n),A) = ∅
Rs,s′(C, dom(R,C ′),A) = ∅
Rs,s′(C, type(P, t),A) = ∅

Rs,s′(C, val(A, cp, v),A) = ∅
Rs,s′(occ(A, cp, n), C ′,A) = ∅
Rs,s′(dom(R,C), C ′,A) = ∅
Rs,s′(type(P, t), C

′,A) = ∅
Rs,s′(val(A, cp, v), C ′,A) = ∅

here ∅ values have no influence on operators Min, Max or Average. It only means
that no comparison is generated in this case. These constraints are usually used
in the expression of the data sources and thus are not necessary anymore in the
comparison.

6.2.2.3 Comparison generation

The comparison between two attributes is generated by Cs,t,s′,t′(a, a′, tr) which lit-
erally means: generate the comparison of instances s and s′ attributes a and a′ of
types t and t′, knowing that a transformation tr may be useful for converting a units
into a′’s.

This comparison is generated in two distinct ways depending on whether the
attribute expressions are structural, i.e., built from constructors ¬, ∩, ∪ or sym, or
navigational, i.e., built from constructor ◦, −1, ·, reflex or constraints dom, coDom,
type or val. In the former case, C will aggregate the comparison of subcomponents,
while in the latter it will generate paths for applying the comparison.

The comparisons are applied to attributes based on their correspondences. It is
assumed that they are in a form P ∩̇X in which P is a path in inverted normal form,
i.e., in which all converses are set at the lower level, and X is the set of constraints
on the extremities of attributes. This can be achieved by the normalization function
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N :

N(u) = u

N(u−1) = u−1

N((A−1)−1) = N(A)

N((¬A)−1) = ¬N((A−1))

N((A ∩A′)−1) = N(A−1) ∩N(A′−1)

N((A ∪A′)−1) = N(A−1) ∪N(A′−1)

N((R ◦R′)−1) = N(R′−1) ◦N(R−1)

N(sym(R)−1) = sym(N(R))

N(reflex(R)−1) = reflex(N(R−1))

N(R
−1

) = N(R−1)

N(dom(C)−1) = coDom(N(C))

N(coDom(C)−1) = dom(N(C))

and separating at each nesting levels, the constraints from the paths.
The main navigational part is considered:

Cs,t,s′,t′(¬a, a′, tr) = ∅
Cs,t,s′,t′(a,¬a′, tr) = ∅

Cs,t,s′,t′(a
′ ∩ a′′, a, tr) = Min(Cs,t,s′,t′(a

′, a, tr), Cs,t,s′,t′(a
′′, a, tr))

Cs,t,s′,t′(a
′ ∪ a′′, a, tr) = Max(Cs,t,s′,t′(a

′, a, tr), Cs,t,s′,t′(a
′′, a, tr))

Cs,t,s′,t′(a, a
′ ∩ a′′, tr) = Min(Cs,t,s′,t′(a, a

′, tr), Cs,t,s′,t′(a, a
′′, tr))

Cs,t,s′,t′(a, a
′ ∪ a′′, tr) = Max(Cs,t,s′,t′(a, a

′, tr), Cs,t,s′,t′(a, a
′′, tr))

Cs,t,s′,t′(a, sym(a′), tr) = Max(Cs,t,s′,t′(a, a
′, tr), Cs,t,s′,t′(a, a

′−1, tr))

Cs,t,s′,t′(sym(a), a′, tr) = Max(Cs,t,s′,t′(a, a
′, tr), Cs,t,s′,t′(a

−1, a′, tr))

This works with ¬, ∪, ∩ and sym at the topmost level. Min is used to compare
values when there is a ∩ constructor, because the comparison should satisfy both
components. Max is used to compare values when there is a ∪ constructor, because
the comparison only has to satisfy one of the components. In case of symmetric
closure, Max is used as well because it is sufficient that one of the component be
satisfied.

When none of the above equations can be made to work, the expression is ex-
panded in a comparison. The way it is expanded depends on the value at the
extremity of the path, i.e., if the correspondence is between properties or relations.

In case of relations, i.e., if t and t′ are classes, then the extremities of the paths
are, in turn, compared as instances:

Cs,t,s′,t′(a, a
′, tr) = Rtr(s/P (a)),s′/P (a′)(t, t

′,A)
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In case of properties, if t and t′ are datatypes, then the paths are directly com-
pared:

Cs,t,s′,t′(a, a
′, tr) = Mt,t′(tr(s/P (a)), s′/P (a′))

These operations require:

• reducing each member of the comparison to a path (P );
• replacing the comparison by a concrete operator (Mt,t);
• using the transformation (tr) if necessary.

The transformation operation tr, originating from the correspondence, is here
only applied to the first element. It is possible, in EDOAL, to define transformations
of the second element as well. In such a case, it should be applied to the second
element.

Some transformations, such as concat are available in both EDOAL and
Silk, some other have to be converted, such as &fn;safe-divide which is convert-
ed into divide, some other are external such as the EDOAL web service calls,
e.g.,“http://www.google.com/finance/converter ”.

The comparison operator (Mt,t′) is chosen depending on the datatype of the
values to be compared:

Mt,t′ = “levenshtein”

if t = t′ = string

= “jaccard”

if t = token or t′ = token

= “num”

if t = t′ = integer | float | other number types,
= “date”

if t = t′ = YYYY-MM-DD

= “dateT ime”

if t = t′ = xsd:dateTime

= “wgs84”

if t = t′ = coordinate

6.2.3 Navigation generation

Silk offers XPath-inspired navigation operators as presented in Table 6.1. The func-
tion P generates a path corresponding to a property or relation definition from a



6.2. From EDOAL to Silk scripts 83

node s.

P (u) = /u

P (u−1) = \u
P (R ◦A) = P (R) P (A)

P (P ∩̇X) = P (P )[Q(X)]

P (reflex(R)) = s/(Ps(R)− s/|\)
P (R̄) = P (R)∗

Silk cannot express the restrictions of dom(C), coDom(C), type(t) and val(cp, v)

(except numeric operator and language tag operator), so the XPath syntax is used
here to express them.

Q(dom(C)) = parent :: C (NoSilk)

Q(type(t)) = child :: t (NoSilk)

Q(coDom(C)) = child :: C (NoSilk)

Q(val(cp, v)) = child :: node() cp v

Here, NoSilk means there is no corresponding expression in Silk for the expres-
sions in EDOAL.

6.2.4 Generation of Silk scripts

After setting the source and target data sets and the linkage rules, there are a few
other information to be provided for obtaining a complete Silk script.

• All used prefixes should be specified, especially the prefixes of the two data
sets. This can be directly obtained from the prefixes that are contained in the
correspondence expressions in EDOAL.
• The data set source and target source can be a local file or a SPARQL endpoint.

They are obtained from the information provided by the user.
• The output of the link set can also be a local file or a SPARQL endpoint.
• A parameter named “limit” may restrain how many links are going to be

returned after the comparison. If it is not set, all links will be returned7.

A Silk script can thus be created formally as in Algorithm 2.
The input of the algorithm is an alignment between the data sets. The out-

put is the Silk script. For all class correspondences in the alignment, if there
exists an attribute correspondence belonging to the classes of any class corre-
spondence, a Silk script is created. The script is mainly composed of three
parts. One is the source data set SourceDataset(T?s(e)). Another one is the
target data set TargetDataset(T?s′(e′)). The last is the linkage rule section

7https://www.assembla.com/spaces/silk/wiki/Link_Specification_Language

https://www.assembla.com/spaces/silk/wiki/Link_Specification_Language
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Input: A
Output: Silk script

1 for all < e, e′, r >∈ A do
2 if ∃ < a, a′, r >∈ A,
3 such that {?s a ?o. ?s rdf:type e.} and {?s′ a ?o′. ?s′ rdf:type e′.} then
4 generate Interlink section with SourceDataset(T?s(e));
5 TargetDataset(T?s′(e′));
6 LinkageRule(R?s,?s′(e, e

′,A));
7 end
8 end
9 return the LinkageRule;

Algorithm 2: The Silk Script Building Algorithm

LinkageRule(R?s,?s′(e, e
′,A)) of all attribute correspondences belonging to the class

correspondence.
So, the final Silk script for the example in Figure 6.1 is:

<?xml version="1.0" encoding="utf-8" ?>
<Silk>

<Prefixes>
<Prefix id="rdf" namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />
<Prefix id="rdfs" namespace="http://www.w3.org/2000/01/rdf-schema#" />
<Prefix id="xsd" namespace="http://www.w3.org/2001/XMLSchema#" />
<Prefix id="dc" namespace="http://purl.org/dc/elements/1.1/" />
<Prefix id="cc" namespace="http://creativecommons.org/ns#" />
<Prefix id="owl" namespace="http://www.w3.org/2002/07/owl#"/>
<Prefix id="dcterms" namespace="http://purl.org/dc/terms/" />
<Prefix id="xmlns" namespace=
"http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#" />
<Prefix id="insee" namespace="http://rdf.insee.fr/geo/" />
<Prefix id="eurostat" namespace=
"http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#" />

</Prefixes>

<DataSources>
<DataSource id="insee" type="sparqlEndpoint">

<Param name="endpointURI" value="http://localhost:8080/datalift/sparql" />
</DataSource>
<DataSource id="eurostat" type="sparqlEndpoint">

<Param name="endpointURI" value="http://localhost:8080/datalift/sparql" />
</DataSource>

</DataSources>

<Interlinks>
<Interlink id="region">

<LinkType>owl:sameAs</LinkType>

<SourceDataset dataSource="insee" var="a">
<RestrictTo>

?a rdf:type insee:Departement .
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</RestrictTo>
</SourceDataset>
<TargetDataset dataSource="eurostat" var="b">

<RestrictTo>
{ ?b rdf:type eurostat:NUTSRegion .

?b eurostat:level 3^^xsd:int . }
</RestrictTo>

</TargetDataset>

<LinkageRule>
<Compare metric="levenshteinDistance">

<TransformInput function="lowerCase">
<Input path="?a/insee:nom[@lang=’fr’]" />

</TransformInput>
<TransformInput function="lowerCase">

<Input path="?b/eurostat:name" />
</TransformInput>

</Compare>
</LinkageRule>

<Filter />

<Outputs>
<Output type="sparul" >

<Param name="uri" value=
"http://localhost:8080/openrdf-sesame/repositories/lifted/statements"/>
<Param name="parameter" value="update"/>

</Output>
</Outputs>

</Interlink>
</Interlinks>

</Silk>

6.2.5 Conclusion

The transformation from an EDOAL alignment file to a Silk script has been theo-
retically defined and implemented. This allows for generating links across two RDF
data sets.

6.3 Sample Link Generation by Silk

A set of sample links can be produced by executing a Silk script that is transferred
from an interlinking pattern that combines all potential attribute correspondences
into a disjunction expression. The interlinking pattern is shown in Figure 6.2. In the
figure, AC1, AC2, . . . , ACl stand for l potential attribute correspondences resulting
from the K-medoids clustering step. Ai and A′i are two attributes in the attribute
correspondence ACi, where i = 1, 2, . . . , l. In order to obtain the sample link set,
the graph queries of potential attribute correspondences are aggregated with the
aggregation method “max”. Since the aggregation method “max” helps select all
links each of which contains at least one potential attribute correspondence, any
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correct link that contains at least one potential attribute correspondences will be
generated. Here, if there are two similar attribute values across two compared
instances, we assume that the two attributes form an attribute correspondence in
the link that is formed by the two compared instances. With such a sample link set,
users are able to assess the links of the set.

Other aggregation methods are not suitable for generating the sample link set. In
fact, Silk also can generate a set of links for the two data sets with other aggregation
methods, such as “average”. Unlike the aggregation method “max”, the aggregation
method “average” returns the mean value of all similarities on attribute values, which
are normalized into the range [-1,1]. As specified by Silk, one link is generated if
and only if the similarity between two instances fall in [0, 1]. For example, in or-
der to compare two instances between which there are three pairs of corresponding
attributes (e.g., derived by K-medoids), Silk can help compute similarities for the
three pairs of corresponding attributes. Assume that their similarity values are -0.9,
-0.6, and 0.6 respectively, then, the aggregation method “max” and the aggregation
method “average” return max{-0.9,-0.6,0.6}=0.6 and −0.9+(−0.6)+0.6

3 =−0.3 respec-
tively. Hence, according to the aggregation method “max”, this pair of instances can
be viewed as a link, while it cannot be treated as a link according to the aggrega-
tion method “average”. Obviously, the aggregation method “max” represents a more
relaxed similarity restriction than the aggregation method “average” in generating
different sets of presumed links.

Figure 6.3 shows the interlinking result by using two different aggregation meth-
ods. In the figure, there are two potential attribute correspondences. One is
insee:code_departement↔eurostat:code, which is incomparable. The other is in-
see:nom↔eurostat:name, which is comparable. The fragment for comparing these
two attribute correspondences are expressed in LSL. Obviously different aggre-
gation methods will result in different interlinking results. If the aggregation
method is “max”, the correct link http://rdf.insee.fr/geo/2010/DEP_75 owl:sameAs
http://ec.europa.eu/eurostat/ramon/rdfdata/nuts2008/FR101 is produced, because
there is an attribute correspondence insee:nom↔eurostat:name that exists across
the two instances. Property insee:nom’s value “Paris” equals to property euro-
stat:name’s value “Paris”. The aggregation method “max” recognizes two instances
as a correct link when there is one attribute correspondence existing between the
two instances. But such a link will not be produced if the aggregation method “av-
erage” is used, because it requires more than one attribute correspondence existing
between the two instances, otherwise the two instances will not be recognized as the
same.

Thus, the sample link set of the example presented in Section 2.1 of Chapter 2
is generated by the following Silk script, which is transferred from the interlinking
pattern that is expressed as a disjunction of potential attribute correspondences.

<?xml version="1.0" encoding="utf-8" ?>
<Silk>

<Prefixes>
<Prefix id="rdf" namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />
<Prefix id="rdfs" namespace="http://www.w3.org/2000/01/rdf-schema#" />
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Specify the locations 

of the data sets

<?xml version="1.0" encoding="utf-8" ?>

<Silk>

    <Prefixes>

        <Prefix id=" prefix id " namespace=" namespace URI " />

        ……
    </Prefixes>

    <DataSources>

        <DataSource id=" data source id of g " type=" data source type ">

            <Param name=" parameter name " value=" parameter value " />

        </DataSource>

        <DataSource id=" data source id of g′ " type=" data source type ">

            <Param name=" parameter name " value=" parameter value " />

        </DataSource>

    </DataSources>

    <Interlinks>

        <Interlink id=" interlink id ">

            <LinkType>owl:sameAs</LinkType>

            <SourceDataset dataSource=" data source id of g " var=" resource variable name ">

                <RestrictTo> SPARQL query on instances in class C </RestrictTo>

            </SourceDataset>

            <TargetDataset dataSource=" data source id of g′ " var=" resource variable name ">

                <RestrictTo> SPARQL query on instances in class C′ </RestrictTo>

            </TargetDataset>

            <LinkageRule>

                <Aggregate type=" max ">

                    <Compare metric=" similarity metric ">

                            <Input path=" RDF path of A1 in AC1 " />

                            <Input path=" RDF path of A′1 in AC1 " />

         </Compare>

                   ……

                    <Compare metric=" similarity metric ">

                            <Input path=" RDF path of Al in ACl " />

                            <Input path=" RDF path of A′l in ACl " />

         </Compare>

                </Aggregate>

            </LinkageRule>

            <Outputs>

                <Output type=" output type " > 

         <Param name=" parameter name " value=" parameter value "/> 

     </Output>

            </Outputs>

        </Interlink>

    </Interlinks>

</Silk>

Specify the location 

of the generated link set

Extract instances from 

two corresponding classes

Specify a group of comparisons on 

potential attribute correspondences

Figure 6.2: Silk Script of the Interlinking Pattern that Generates Sample Links
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<Aggregate type="max|average">

<Compare metric="levenshteinDistance">   
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Figure 6.3: Two Consequences of Using Different Aggregation Methods



6.3. Sample Link Generation by Silk 89

<Prefix id="owl" namespace="http://www.w3.org/2002/07/owl#" />
<Prefix id="id2" namespace=
"http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#" />
<Prefix id="id1" namespace="http://rdf.insee.fr/geo/" />

</Prefixes>

<DataSources>
<DataSource id="id1" type="file">

<Param name="file" value=
"C:/Zhengjie/study/eclipse3/SILKscript2/regions-2010.rdf"/>
<Param name="format" value="RDF/XML" />

</DataSource>

<DataSource id="id2" type="file">
<Param name="file" value=
"C:/Zhengjie/study/eclipse3/SILKscript2/nuts2008_complete.rdf"/>
<Param name="format" value="RDF/XML" />

</DataSource>
</DataSources>

<Interlinks>
<Interlink id="no1">

<LinkType>owl:sameAs</LinkType>
<SourceDataset dataSource="id1" var="e1">

<RestrictTo>
?e1 rdf:type id1:Departement .
</RestrictTo>

</SourceDataset>
<TargetDataset dataSource="id2" var="e2">

<RestrictTo>
?e2 rdf:type id2:NUTSRegion . ?e2 id2:level ?ov1 . FILTER (?ov1=3) .
</RestrictTo>

</TargetDataset>
<LinkageRule>

<Aggregate type="max">
<Compare metric="levenshtein">

<Input path="?e1\ id1:subdivision/id1:code_region" />
<Input path="?e2/id2:level" />

</Compare>
<Compare metric="levenshtein">

<Input path="?e1/id1:code_departement" />
<Input path="?e2/id2:hasParentRegion/id2:code" />

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:nom" />
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</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2\ id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:name" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:code" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:name" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2\ id2:hasParentRegion/id2:code" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2\ id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">
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<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:code" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2\ id2:hasParentRegion/id2:code" />
</TransformInput>

</Compare>
</Aggregate>

</LinkageRule>

<Filter />

<Outputs>
<Output type="file">

<Param name="file" value=
"C:/Zhengjie/study/eclipse3/trunk-test/accepted_links.xml"/>
<Param name="format" value="alignment"/>

</Output>
</Outputs>

</Interlink>

</Interlinks>
</Silk>

6.4 Conclusion

In this chapter, a set of translation rules are presented to show how to translate E-
DOAL correspondences into graph patterns. A Silk script can be built for generating
links across two RDF data sets with these graph patterns.

Furthermore, the chapter also proposes the method of generating a set of sample
links for users to assess. Each link in the set satisfies at least one potential attribute
correspondence that is discovered by Chapter 5. These sample links will be sent to
users to assess. The assessed sample links will assist a learning method to construct
and improve the interlinking pattern that covers correct links across two data sets.

Next chapter will introduce a learning method to construct and improve the
interlinking pattern of two interlinking RDF data sets with the assessed sample
links, so as to find out a link set with high F-measure.
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This chapter introduces the learning method of constructing and improving the
interlinking pattern. First, it introduces the definition of Version Space (VS), as well
as its pros and cons in Section 7.1 and Section 7.2. Second, it shows an improvement
on Version Space, Extended Version Space (EVS), in Section 7.3. Thirdly, it presents
the way to construct and improve the interlinking pattern with Extended Version
Space in Section 7.4.

7.1 Preliminary Definition

Version Space [Mitchell 1982, Mitchell 1997] is a supervised learning method that
constructs and improves a classifier by learning labeled examples one by one. Fig-
ure 7.1 shows the learning process of Version Space. The entire objective is to build
a composition of some conditions such that all labeled examples are compatible
with, which is called a hypothesis. During the learning process, there are two sets
of hypotheses always being maintained. One is the set of the most strict composi-
tions of the conditions that cover all learned positive examples, and they are called
Specialized Hypotheses. The other is the set of the most general compositions of
conditions that cover all learned negative examples, and they are called Generalized
Hypotheses. With more positive examples being learned, the specialized hypotheses
become more general. When more negative examples are learned, the generalized
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hypotheses become stricter. After learning all labeled examples (including positive
ones and negative ones), the two sets finally converge into one set in Version Space.

The Version Space learning process can be used to build an interlinking pattern
which is able to precisely justify all links across the data sets. The interlinking
pattern is the hypothesis in the interlinking process. More specifically, given a set
of sample links assessed as either positive or negative by users, it is required to
construct an interlinking pattern with attribute correspondences. Consequently,
the interlinking pattern is compatible with all of positive links (i.e., assessed correct
links) and conflicting to all of negative links (i.e., assessed incorrect links).

Since the learning process is to put the set of potential attribute correspondences
of each sample link that is assessed by users into the interlinking pattern, the set of
potential attribute correspondences of each sample link should be discovered. There
are two instances that form a sample link. If two attribute values of two linked in-
stances is the same, we assume that these two attributes form a potential attribute
correspondence in the sample link. For each pair of instances i and i′ that forms
a sample link, we use an l-tuple (B(j)), j = 1, . . . , l with a sequence of bit values
to denote the similarity value between their attribute values, where the bit value
(denoted by B(j)) is defined in Formula (7.1). In Formula (7.1), ≡ and 6≡ refer to
similarity and non-similarity between two property values i.pj and i′.p′j respectively.
Each attribute comparison is determined by some similarity metric (such as “Leven-
shtein” [Levenshtein 1966] and “Jaccard” [Jaccard 1912]). The bit value is equal to 0
or 1 (denoted by 0|1 in the following text), representing non-similarity and similarity
respectively. For example, if there are three attribute correspondences across two
corresponding classes, l is equal to 3, and then there will be eight possible tuples of
similarity values, (0,0,0),(0,0,1),· · · ,(1,1,1) for all instance pairs between these two
classes.

B(j) =

{
1 i.pj ≡ i′.p′j
0 i.pj 6≡ i′.p′j

where j = 1, . . . , l (7.1)

For each potential attribute correspondence across two corresponding classes via
the K-medoids clustering, its similarity value is either 1 if the two attribute values v
and v′ on a user-assessed link are similar based on a similarity metric or 0 otherwise.
Then, a binary similarity sequence (BSS) for the attribute pairs is shown below.

(AC1, AC2, . . . , ACl)

Binary Similarity Sequence = (0|1, 0|1, . . . , 0|1) (7.2)

In Formula (7.2), AC1, AC2, . . . , ACl stand for l potential attribute correspon-
dences generated by the clustering method of Chapter 5. So the input of the
Version Space learning step is a set of binary similarity sequences. The out-
put of the Version Space learning step is an interlinking pattern composed
of binary similarity sequences, which can cover all positive links and filter out all
negative links simultaneously. In machine learning [Mitchell 1982], the input and
output of a supervised learning algorithm are expressed with instance language and
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Figure 7.1: Learning Process of Version Space
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generalization language respectively. With respect to the interlinking problem of
this thesis, the instance language of Version Space is a binary similarity sequence.
Each bit of the instances’ binary similarity sequences is either 0 or 1. The gener-
alization language is also a binary similarity sequence. Each bit of such a binary
similarity sequence is 0, 1 or ×, where × means either 0 or 1.

In general, the computed similarity of two attribute values may not exactly be
equal to 0 or 1, but another decimal in the range [0,1], such as 0.75. In our design,
we always convert the similarity value to a binary value with a threshold T . If the
computed similarity value is larger than T , we assume that the similarity is 1. If the
computed similarity value is equal to or lower than T , we assume that the similarity
is 0.

7.2 Pros and Cons of Version Space

The key advantage of adopting Version Space is that it can precisely find out an
interlinking pattern that distinguishes the positive and negative links. As for the
interlinking process, the Version Space method traverses all hypotheses that can
satisfy the labeled examples (or assessed links) [Mitchell 1982], and creates two sets
of patterns. The first one is called a set of specialized patterns (denoted as PatS),
each of which is composed of as many restrictions as possible. The other one is called
a set of generalized patterns (denoted as PatG), each of which just takes into account
the least-restricted conditions. More specifically, PatS only covers all positive links,
while PatG is able to covers any links except negative links. Each PatS must be
subsumed by one PatG. Each PatG must subsume one PatS . Both of the two sets
of patterns can cover all positive links, and do not cover any negative link. For the
Version Space method, the two sets of patterns will eventually converge to a set of
binary similarity sequences after learning all assessed links, which is called a set of
conjunctive patterns, if there exist several qualified binary similarity sequences, or
converge to a null pattern otherwise. The conjunctive pattern is a conjunction of
attribute correspondences across two corresponding classes, which is represented as
a binary similarity sequence with bit values 0, 1 and ×.

In practice, there are many cases in which a set of conjunctive patterns cannot
be built, i.e., it is possible that there is no conjunctive pattern that can cover
all positive links and filter all negative links. In this situation, some conjunctive
patterns can be built and each of them can only cover a portion of the positive links
and filter all negative links, while none of them can cover all positive links. Thus,
generalized patterns for such cases can be built by combining all these conjunctive
patterns, so that all positive links can be covered. An example is shown below, where
AC1, AC2, AC3, AC4, AC5 denote potential attribute correspondences resulted from



7.3. Extended Version Space 97

K-medoids clustering.

Link No. Type AC1 AC2 AC3 AC4 AC5

1 Positive (0, 1, 1, 0, 0)

2 Positive (0, 0, 1, 1, 0)

3 Negative (1, 0, 1, 0, 0)

4 Negative (0, 0, 1, 0, 0)

(7.3)

In this example, with the two positive links, there is only one specialized pattern
can be produced, which is (0,×,1,×,0), where × = 0|1. Given a negative link, we
can derive generalized patterns by traversing all binary similarity sequences that
are conflicting to the negative link with at least one bit (e.g., attribute correspon-
dence AC i). In Example (7.3), based on the third assessed link (a negative link),
the candidate generalized patterns are binary similarity sequences: (0,×,×,×,×),
(×,1,×,×,×), (×,×,0,×,×), (×,×,×,1,×), (×,×,×,×,1), where ×=0|1. Then, the
generalized pattern with the first three links is supposed to be (0,×,×,×,×), in that
only (0,×,×,×,×) contains the specialized pattern. When combining the fourth as-
sessed link, however, a conflict will be induced, because there will be no feasible
binary similarity sequence that can cover all the positive links and filter out all the
negative links simultaneously.

Disjunctive Version Space (DVS) [Mitchell 1997, Sebag 1996] adopts disjunctive
constructor to solve the above problem. The instance language of Disjunctive Ver-
sion Space is a binary similarity sequence, which is the same with the one of Version
Space. Each bit of the instances’ binary similarity sequences is either 0 or 1. The
generalization language is a disjunction of these binary similarity sequences. How-
ever, its output is represented in a more complicated format with a large number of
binary similarity sequences, because the binary similarity sequences in the pattern
cannot induce a more concise expression, if there is only one bit difference between
them. In contrast, we design an Extended Version Space, which can not only cover
all positive links and filter all negative links simultaneously, but we show that its
expression is in a very concise representation.

7.3 Extended Version Space

We present how to build an interlinking pattern by Extended Version Space in this
section in details.

The instance language of Extended Version Space is a binary similarity sequence,
which is the same with the ones of Version Space and Disjunctive Version Space.
Each bit of the instances’ binary similarity sequences is either 0 or 1. The gener-
alization language is a disjunction of binary similarity sequences. Each bit of the
instances’ binary similarity sequences is 0, 1 or ×.

A disjunctive pattern that is generated by Extended Version Space can be re-
cursively represented as Formula (7.4), where (B(j)) represents a binary similarity
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sequence with l bits, where j = 1, . . . , l.

Pattern ::= (B(j)) | Pattern ∪ (B(j)) (7.4)

In this formula, ∪ denotes an union operation (or disjunction) in the set theory.
This formula means that a pattern is either a binary similarity sequence, or a union
of such sequences. We give a simple example based on the definition. Assume that
there are two data sets which are represented in English and French respectively,
and we are given two sample links, each of which connects two instances and there
are three potential attribute correspondences generated by the K-medoids clustering
step (name↔nom, sex↔gender, and supervisor↔directeur) to compare, i.e., three
bits per binary similarity sequence. Assume that these two links can be repre-
sented as binary similarity sequences (1,1,0) and (1,1,1) respectively, and they are
both assessed as positive by users, implying that they are correct links. Then, the
disjunctive pattern that satisfies these two links simultaneously can be written as
(1,1,0)∪(1,1,1), or in a concise format (1,1,×) where × = 0|1. A disjunctive pattern
can be represented with a disjunction of multiple binary similarity sequences, as de-
fined in Formula (7.4). Such a pattern can take over the cases Version Space cannot
handle. As for Example (7.3), the disjunctive expression of the generalized pattern
can be written as (0,1,×,×,×)∪(0,0,1,1,×), where × represents 0|1. This pattern can
cover all positive links and filter all negative links. This solution is called Extended
Version Space. Note that neither the specialized pattern nor the generalized pattern
of Extended Version Space is a set of interlinking patterns, each one maintains only
one specialized pattern and one generalized pattern whenever a new assessed link is
learned. The reason is that when the disjunction operator is applied, we can always
find out the most strict/general pattern whenever an assessed link is learned. The
pseudo-code of the Extended Version Space method is shown in Algorithm 3 and
the description appears thereafter.

Algorithm 3 aims at generating a disjunctive pattern in the form of Formula
(7.4). It separately processes assessed links one by one. The whole algorithm is split
into two parts, based on whether the checked sample link is assessed as positive or
not. The details are described below. Note that whatever the given assessed link
is (either line 5-9 or line 10-19), the first step always checks whether it is included
by current patterns. The pattern PatOri is the generalized pattern of Disjunctive
Version Space whose binary similarity sequences are induced into a concise format.
It is not the generalized pattern of Extended Version Space. It is used to evaluate the
F-measure and running time of merged Disjunctive Version Space in the experiments
that are described in Chapter 8.

• If the current link is assessed as a positive one, the algorithm will check if
it is covered by the current specialized pattern (PatS). If yes, the specialized
pattern and the current generalized pattern (PatG) will stay unchanged. If
not, we will merge the link represented in the form of binary similarity sequence
(denoted as BSS link in the following text) into PatS such that the newly added
link can be included by PatS . In the meantime, PatS will be reconstructed
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1 Input: Binary Similarity Sequences of All Assessed Links
2 Output: The Generalized Pattern PatG

1: PatS=∅; /*empty set*/
2: PatG=U=(ϕ(i)), where ϕ(i)=×, i = 1, 2, . . . , l; /*universal set*/
3: PatOri=U=(ϕ(i)), where ϕ(i)=×, i = 1, 2, . . . , l;
4: for (each assessed link (denoted as BSS link)) do
5: if (BSS link is the binary similarity sequence of a positive link) then
6: if BSS link 6∈PatS then
7: PatS=Merge(PatS , BSS link);
8: if BSS link 6∈PatG then
9: PatG=Merge(PatG, BSS link);
10: if (BSS link is the binary similarity sequence of a negative link) then
11: if BSS link∈PatOri then
12: if (∃ BSS, BSS link⊆BSS, BSS∈PatOri) then
13: PatOri−BSS ;
14: for (BSSnew∈Com(BSS, BSS link)) do
15: PatOri=Merge(PatOri, BSSnew);
16: if (PatS⊆PatOri) then
17: PatG = Reselect(PatOri, PatS);
18: else
19: PatG = ∅.
Algorithm 3: Building Pattern via Extended Version Space
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if the newly added link can induce a more concise expression, for example,
replacing (0,1,1,1,0) and (1,1,1,1,0) by (×,1,1,1,0). Note that we should also
revise PatG to make sure PatS ⊆ PatG. So we should also merge BSS link
into PatG, if it cannot be included by PatG. Finally, we reconstruct PatG to
be more concise as the way that PatS is done.

• If the current link is assessed as a negative one, we need to check if it can be
included by PatOri. If not, PatS and PatOri stay the same. We delete BSS link
from PatOri, if the negative link can be included by PatOri. The delete opera-
tion is fulfilled by picking out the complement of BSS link, which is a set of all
possible binary similarity sequences that have at least one bit difference with
BSS link and are contained in PatOri. It is not a binary similarity sequence
that is created by negating each bit of BSS link. The complement operation is
executed below. 1) pick out BSS, which is one binary similarity sequence in
PatOri that contains BSS link. 2) delete BSS from PatOri. − in the line 13 is
the difference operation on sets that removes BSS from the set of binary simi-
larity sequences that are represented by PatOri. 3) the complement of BSS link
is computed with regard to BSS. It is a set of all binary similarity sequences
in BSS except BSS link. Afterwards, we can merge the complement of BSS link
into PatOri such that BSS link can be excluded by the new PatOri without
losing other binary similarity sequences. Then, PatOri should be reconstruct-
ed further into a more concise expression (if possible). Finally, a Reselect
step is executed to remove from PatOri the binary similarity sequences that
cannot cover any binary similarity sequence in PatS , otherwise the number of
binary similarity sequences in PatG would increase exponentially when more
negative links are learned. Silk will perform quite slowly if too many binary
similarity sequences are transformed in the script.

In this algorithm, we assume that there is no intersection between all positive
links and all negative links. It means that users never mark wrongly. Therefore, all
positive links are included by PatOri, no matter whether they are included by PatS .
Similarly, all negative links are not included by PatS , no matter whether they are
included by PatOri. Therefore, when a positive link is not included by PatS , we do
not need to merge the link into PatOri. Similarly, when a negative link is included
by PatOri, we do not need to merge its complement into PatS .

As follows, a discussion of why PatS is not used as the final pattern is given.
Note that if PatS is used in the Silk script, the link set produced by the Silk script
is only the links that have the same binary similarity sequences with the ones of
positive links that have been learned. However, if PatG is used for generating links,
other correct links that do not have the same binary similarity sequences with the
ones of positive links that have been learned are also generated. Since the operation
RESELECT picks out binary similarity sequences in PatOri that contains any
binary similarity sequences in PatS , the correct links that have the same binary
similarity sequences with the learned links can also be covered by PatG of Extended
Version Space. Therefore, the generated link set of PatG contains more correct links
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than the one of PatS .
The key operations appearing in Algorithm 3 are described below.

7.3.1 Complement operation

The Complement operation (denoted as Com(BSS,BSS link)) aims to generate a
set of binary similarity sequences that are contained in BSS, each of which are
in conflict with the negative link’s binary similarity sequence BSS link. It can be
formally defined as follows, where BSS link is referred to as the given negative link,
BSS is referred to as the binary similarity sequence in the generalized pattern PatOri
that contains the negative link’s binary similarity sequence BSS link. BSSnew is the
binary similarity sequence that is contained in BSS and conflict with the negative
link’s binary similarity sequence BSS link. α(k) represents the kth bit in the BSSnew
(k = 1, 2, · · · , l). β(k) represents the kth bit in the BSS link (k = 1, 2, · · · , l). δ(k)
represents the kth bit in the BSS (k = 1, 2, · · · , l).

Com(BSS,BSS link) =

Com(BSS link), if Pat=U=(ϕ(i)), where ϕ(i)=×, i = 1, 2, . . . , l

∅, if BSS=BSS link⋃
(γ(k)), if BSSnew∈Com(BSS link), BSS∩BSSnew 6=∅

where γ(k) =

{
δ(k), if δ(k) 6=×, α(k)=×
α(k), other conditions

(7.5)

Com(BSS link) = Com(BSS link, β(1)) ∪Com(BSS link, β(2)) ∪ . . .∪
Com(BSS link, β(l)),

where Com(BSS link, β(k)) = (β(1), . . . , β(k−1), (1− β(k)),×, . . . ,×)

(7.6)

The Complement function (denoted as Com(BSS link)) is used to compute the
complement of a negative link, so that it can be merged into PatOri (as shown in
Algorithm 3). For instance, as for the fourth negative link BSS link = (0,0,1,0,0) in
Example 7.3. Com(BSS link) can be represented as follows.

Com(BSS link) = (1,×,×,×,×)∪
(0, 1,×,×,×)∪
(0, 0, 0, ×,×)∪
(0, 0, 1, 1, ×)∪
(0, 0, 1, 0, 1)

(7.7)

Obviously, the Complement representation shown in Formula (7.7) complies with
all the possible links that are conflicting to the given negative link (0,0,1,0,0) on at
least one bit.

When learning the negative link BSS link = (0,0,1,0,0) in Example (7.3), there
is one binary similarity sequence in PatOri that contains such a binary similari-
ty sequence. It is BSS=(0,×,×,×,×). Thus, Com(BSS,BSS link) is computed as
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below.
Com(BSS,BSS link) = (0, 1,×,×,×)∪

(0, 0, 0,×,×)∪
(0, 0, 1, 1,×)∪
(0, 0, 1, 0, 1)

(7.8)

The Complement representation shown in Formula (7.8) complies with all the
possible links that are contained in PatOri and conflicting to the given negative
link’s binary similarity sequence (0,0,1,0,0) on at least one bit. Such an expression
can be merged into PatOri, so that PatOri can filter the fourth negative link. The
merge operation is introduced in the next subsection.

7.3.2 Merge operation

The Merge operation (denoted by Merge(Pat, BSS link)) is used to check if the
newly added BSS link is supposed to be inserted and merged with some binary sim-
ilarity sequences in the pattern (denoted by BSS iPat), such that the whole pattern
can be represented in a more succinct way. In order to formally define this operation,
two other operations should be introduced.

• The first one is denoted by BSSMerge(BSS iPat, BSS
j
Pat), with respect to two

binary similarity sequences, such as BSS iPat and BSS jPat. Its formal definition
is shown below.

BSSMerge(BSS iPat,BSS
j
Pat) = (b1, b2, · · · , bl)

where bk = BitMerge(β
(k)
i , β

(k)
j )

=

{
β
(k)
i , if β(k)i = β

(k)
j

×, if β(k)i 6= β
(k)
j

(7.9)

where β(k)i denotes the kth bit of the pattern BSS iPat. BitMerge in the above
formula is a critical operation. Two examples are given to illustrate it here.
(1) If BSS iPat = (×,1,1,1) and BSS link = (0,1,1,1), then BitMerge(BSS iPat,
BSS link) = (×,1,1,1). (2) If BSS iPat = (0,×,1,1) and BSS jPat = (1,×,1,1), then
BitMerge(BSS iPat, BSS

j
Pat) = (×,×,1,1). Obviously, the core of BitMerge

is to construct a concise pattern which is compatible with the given binary
similarity sequences.

• The second one is called Diff operation, also with respect to two binary
similarity sequences, such as BSS iPat and BSS jPat. Diff(BSS iPat,BSS

j
Pat) is

a function to compute the number of different bits between the two binary
similarity sequences. For example, Diff((0,1,1,1),(0,1,0,1)) = 1 and Dif-
f((0,0,×,1),(0,1,0,0)) = 3.

Based on the definitions of BSSMerge and Diff, Merge(Pat,BSS link) can
be formally represented as a recursive function below. Some examples are given to
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illustrate it later on.

Merge(Pat,BSS link) =

Pat, if ∃BSS iPat∈Pat, Diff(BSS iPat,BSS link) = 0

Pat ∪ BSS link,
if ∀BSS iPat∈Pat, Diff(BSS iPat,BSS link)≥2

Merge(Pat− BSS iPat,BSSMerge(BSS iPat,BSS link)),
if ∃BSS iPat∈Pat, Diff(BSS iPat,BSS link) = 1

Pat ∪ BSS link, if Pat=∅

(7.10)

In Formula (7.10), the notation “−” means the difference operation (a.k.a., tak-
ing away) on sets. In the above formula, if there exists a binary similarity sequence in
the pattern which is equal to the link’s binary similarity sequence, then the pattern
stays unchanged. This means that the link is covered by the pattern. If all binary
similarity sequences in the pattern that have more than one different bit with the
link’s binary similarity sequence, then the link should be inserted into the pattern.
If there exists one binary similarity sequence in the pattern that has one different
bit with the link’s binary similarity sequence, then the link should be merged with
such a binary similarity sequence. The newly produced binary similarity sequence
should be further merged with other binary similarity sequences in the pattern if
possible. If the pattern is an empty set, the link should be inserted into the pattern
directly. The computation is recursively performed until there are no binary simi-
larity sequences to merge. Finally, the new produced binary similarity sequence is
inserted into the pattern.

Here, several examples are given to illustrate the computation of
Merge(Pat,BSS link), supposing the current pattern Pat = (0,1,1,×,×)∪(1,0,1,0,0).

• If BSS link = (1,0,1,0,0), since there exists one binary similarity sequence
(1,0,1,0,0) in the current pattern such that Diff((1,0,1,0,0),BSS link)=0, the
returned new pattern stays unchanged (i.e., the first situation in Formula
(7.10)).

• If BSS link = (1,1,1,0,1), since Diff value is always no less than 2 for any
binary similarity sequence in the current pattern, the new pattern should be
represented as Pat∪BSS link = (0,1,1,×,×)∪(1,0,1,0,0)∪(1,1,1,0,1).

• If BSS link = (1,1,1,0,0), since Diff((1,0,1,0,0),BSS link) = D-
iff((1,0,1,0,0),(1,1,1,0,0)) = 1, the new pattern should be
(0,1,1,×,×)∪(1,×,1,0,0).

• If BSS link = (0,1,1,1,×), it also belongs to the third situation because
Diff((0,1,1,×,×),(0,1,1,1,×))=1, then the new pattern can be derived as:

Merge(Pat,BSSlink) = Merge(Pat− (0, 1, 1,×,×), (0, 1, 1,×,×))

= Pat

= (0, 1, 1,×,×) ∪ (1, 0, 1, 0, 0).
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7.3.3 Reselect operation

The Reselect operation selects from PatOri the binary similarity sequences that
cover any binary similarity sequence in PatS . It can be formally defined as follows,
where BSSPatOri

and BSSPatS are referred to as the binary similarity sequence in
PatOri and the binary similarity sequence in PatS respectively.

Reselect(PatOri, PatS) =

{BSSPatOri
| ∃ BSSPatS ,BSSPatS ⊆ BSSPatOri

} ∪
{BSSPatS | 6 ∃ BSSPatOri

,BSSPatS ⊆ BSSPatOri
} (7.11)

The Reselect operation is used to reduce the size of PatG: the binary similar-
ity sequence in PatOri can be maintained if and only if it covers at least one binary
similarity sequence belonging to PatS . Although the existence of other irrelevant
binary similarity sequences in PatOri does not break the relationship PatS⊆PatOri,
too many irrelevant binary similarity sequences will degrade the Silk interlinking
speed. Hence, it is necessary to intensively pick the relevant binary similarity se-
quences in PatOri and filter out less informative ones meanwhile. Besides, the
binary similarity sequences in PatS that are not subsumed by any binary similarity
sequence in PatOri should also be added into PatG, in order to keep the relationship
PatS⊆PatG. This operation is the key difference between Extended Version Space
and Disjunctive Version Space, which makes the interlinking pattern be represented
in a concise format.

In the end of Algorithm 3, the converged generalized pattern will act as the final
output. The optimality and correctness of Algorithm 3 is proved as follows.

Theorem 1. The output pattern of Algorithm 3 covers all positive links and excludes
all negative links, with a concise representation format.

Proof. This proof shows the soundness of the Extended Version Space algorithm. In
the proof, we first prove that the output pattern PatG of Algorithm 3 is a complete
pattern which covers all positive links and excludes all negative links, and then
prove its representation is in a concise format.

To prove that the output PatG covers all positive links: On one hand,
the algorithm traverses all positive links (line 5 in Algorithm 3). On the other hand,
the four separate situations in the Merge function (i.e., Formula (7.10)) covers all
cases of the pattern’s representation. Note that the operation in each of the four
cases always makes sure BSS link∈Pat, hence, the returned PatG must include the
positive link.

To prove that the output PatG excludes all negative links: We just need
to prove that the lines 14-15 in Algorithm 3 must be able to exclude the negative link
BSS link. This can be derived from the definition of Complement, i.e., Formula
(7.5) and Formula (7.6). A good example is illustrated in Formula (7.7) and Formula
(7.8) which is easy to understand.
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To prove that the output PatG is in a concise representation :
The third situation in Merge function (Formula (7.10)) will merge the sim-
ilar binary similarity sequences that only have one bit difference into one bi-
nary similarity sequence. Therefore, the size of each pattern PatEVS (i.e.,
PatG in Algorithm 3) in Extended Version Space must be equal or smaller
than the size of each pattern PatDVS in Disjunctive Version Space. It mean-
s that |PatEVS|≤|PatDVS|, where |Pat| is the number of binary similarity se-
quences in the pattern Pat. As for Example (7.3), the interlinking pattern
(i.e., PatG) of Extended Version Space is (0,1,×,×,×)∪(0,0,1,1,×). |PatEVS|
is 2. In contrast, the interlinking pattern of Disjunctive Version Space is
(0,0,0,0,0)∪(0,0,0,0,1)∪(0,0,0,1,0)∪(0,0,0,1,1)∪(0,0,1,0,1)∪(0,0,1,1,0)∪(0,0,1,1,1)∪
(0,1,0,0,0)∪(0,1,0,0,1)∪(0,1,0,1,0)∪(0,1,0,1,1)∪(0,1,1,0,0)∪(0,1,1,0,1)∪(0,1,1,1,0)∪
(0,1,1,1,1)∪(1,0,0,0,0)∪(1,0,0,0,1)∪(1,0,0,1,0)∪(1,0,0,1,1)∪(1,0,1,0,1)∪(1,0,1,1,0)∪
(1,0,1,1,1)∪(1,1,0,0,0)∪(1,1,0,0,1)∪(1,1,0,1,0)∪(1,1,0,1,1)∪(1,1,1,0,0)∪(1,1,1,0,1)∪
(1,1,1,1,0)∪(1,1,1,1,1). |PatDVS| is 30. Obviously, |PatEVS|<|PatDVS|.

The above proof proves the soundness of the algorithm. We did not prove
whether if there exist a pattern, the algorithm will find it (completeness). We
did not encounter a case when doing interlinking experiments that are described in
Chapter 8, in which the algorithm does not find a pattern while there exist one.

The time complexity of Algorithm 3 is analyzed as follows. Assume that there are
nP positive links and nN negative links assessed. The complexity of Merge(PatS ,
BSS link) can be derived as O(m2

S), where mS denotes the maximum number of
binary similarity sequences in the specialized pattern PatS . The derivation of O(m2

S)
is given as follows. When a new correct link is learned, this link has to be compared
with each binary similarity sequence in the PatS to determine which of the four
situations it belongs to in Formula (7.10). The number of comparisons is mS . If
the newly assessed link is merged with one binary similarity sequence of PatS , then
the newly generated binary similarity sequence has to be compared with each of the
rest binary similarity sequences in PatS , and the number of comparisons is mS−1.
The merging procedure continues until there is no newly generated binary similarity
sequence or there is only one binary similarity sequence left in PatS . So, the time
complexity of Merge(PatS , BSS link) is equal to the maximum total number of
comparisons mS ·(mS+1)

2 , i.e., O(m2
S). Similarly, the complexity of Merge(PatG,

BSS link) is equal to O(m2
G), where mG denotes the maximum number of binary

similarity sequences in the generalized pattern PatS .
Let us compute the values of mS and mG as follows. Since each binary similarity

sequence has l bits and any two binary similarity sequences (e.g., BSS i and BSS j)
with Diff(BSS i,BSS j) = 1 has to be merged as one binary similarity sequence in
PatS , there must be at most 2l−1 binary similarity sequences in each Pattern PatS .
That is, mS=2l−1. Here are two examples to illustrate mS . If l=2, the most com-
plicated pattern is (0,1)∪(1,0), that is, mS=22−1=2; if l=3, the most complicated
pattern is (0,0,1)∪(0,1,0)∪(1,1,1)∪(1,0,0), that ismS=23−1=4. Similarly, mG is also
2l−1.
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On the other hand, the complexity of Reselect operation is the maximum
number of binary similarity sequences in the pattern PatOri, which is denoted as
mOri, and the maximum number of binary similarity sequences in the pattern PatS .
Similarly, mOri is also 2l−1. The complexity of Complement operation is the
number of potential attribute correspondences (i.e., l). Then, the total complexi-
ty of Algorithm 3 is equal to O(nP ·(m2

S+m
2
G)+nN ·(l2·m2

Ori+mOri+mS)). So the
computational complexity of Extended Version Space is O(22l).

It is obvious that the number of potential attribute correspondences that are
generated by K-medoids is a key factor to impact the computational complexity
of Extended Version Space. That is, the effectiveness of K-medoids clustering is
supposed to be helpful to reduce the computational complexity of Extended Version
Space.

In comparison to the Extended Version Space, the functions Merge and Rese-
lect are not required in Disjunctive Version Space. The computational complexity
of Disjunctive Version Space is O(nP+nN ·l2). So, the computation of Extended
Version Space should be more expensive than that of Disjunctive Version Space.

7.4 Link Generation with Extended Version Space

In the implementation, each interlinking pattern (Formula (7.4)) is represented in
the form of Silk script and executed by Silk. The potential attribute correspon-
dences, that are discovered by K-medoids in Step 2 and 3 shown in Figure 4.1, will
be organized and put into the interlinking pattern in the following way: 1) Attribute
correspondences in each binary similarity sequence, whose similarity is 1, will be ag-
gregated by the aggregation method “average” to generate links that have the same
set of attribute correspondences with the learned binary similarity sequence. If there
is only one attribute correspondence in a binary similarity sequence, there is no need
to aggregate the attribute correspondence with such an aggregation method. 2) all
binary similarity sequences in the interlinking pattern will be aggregated by the
aggregation method “max”. It means that two compared instances that form any
binary similarity sequence in the interlinking pattern will be treated as a link.

After generating the interlinking pattern, we can convert the interlinking pattern
into a Silk script with the transformation rules in Chapter 6. As for Example (7.3),
the linkage rule segment of the Silk script can be expressed in Figure 7.2.

In Figure 7.2, AC2 is a correspondence between the attribute A2 and the at-
tribute A′2. AC3 is a correspondence between the attribute A3 and the attribute
A′3. AC4 is a correspondence between the attribute A4 and the attribute A′4. The
Silk script means that two compared instances can form a link only if the two in-
stances satisfy one of two conditions. One condition is that attribute values of A2

and A′2 are similar. The other condition is that not only attribute values of A3 and
A′3 are similar, but also attribute values of A4 and A′4 are similar.

After learning with Extended Version Space, the interlinking pattern for the
example in Section 2.1 of Chapter 2 is below
<?xml version="1.0" encoding="utf-8" ?>
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<LinkageRule>

    <Aggregate type=" max ">

        <Compare metric=" similarity metric ">

            <Input path=" SPARQL query of A2 in AC2 " />

            <Input path=" SPARQL query of A′2 in AC2 " />

        </Compare>

        <Aggregate type=" average ">

            <Compare metric=" similarity metric ">

                <Input path=" SPARQL query of A3 in AC3 " />

                <Input path=" SPARQL query of A′3 in AC3 " />

            </Compare>

            <Compare metric=" similarity metric ">

                <Input path=" SPARQL query of A4 in AC4 " />

                <Input path=" SPARQL query of A′4 in AC4 " />

            </Compare>

        </Aggregate>

    </Aggregate>

</LinkageRule>

Figure 7.2: Linkage Rule Segment in Silk Script of Example (7.3)

<Silk>
<Prefixes>

<Prefix id="rdf" namespace="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />
<Prefix id="owl" namespace="http://www.w3.org/2002/07/owl#" />
<Prefix id="id2" namespace=
"http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf#" />
<Prefix id="id1" namespace="http://rdf.insee.fr/geo/" />

</Prefixes>

<DataSources>
<DataSource id="id1" type="file">

<Param name="file" value=
"C:/Zhengjie/study/eclipse3/SILKscript2/regions-2010.rdf"/>
<Param name="format" value="RDF/XML" />

</DataSource>

<DataSource id="id2" type="file">
<Param name="file" value=
"C:/Zhengjie/study/eclipse3/SILKscript2/nuts2008_complete.rdf"/>
<Param name="format" value="RDF/XML" />

</DataSource>
</DataSources>

<Interlinks>
<Interlink id="no1">

<LinkType>owl:sameAs</LinkType>
<SourceDataset dataSource="id1" var="e1">

<RestrictTo>
?e1 rdf:type id1:Departement .
</RestrictTo>

</SourceDataset>
<TargetDataset dataSource="id2" var="e2">



108
Chapter 7. Constructing and Improving the Interlinking Pattern with

Assessed Links by Version Space

<RestrictTo>
?e2 rdf:type id2:NUTSRegion . ?e2 id2:level ?ov1 . FILTER (?ov1=3) .
</RestrictTo>

</TargetDataset>
<LinkageRule>

<Aggregate type="max">
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:name" />
</TransformInput>

</Compare>
</Aggregate>

</LinkageRule>

<Filter />

<Outputs>
<Output type="file">

<Param name="file" value=
"C:/Zhengjie/study/eclipse3/trunk-test/accepted_links.xml"/>
<Param name="format" value="alignment"/>

</Output>
</Outputs>

</Interlink>

</Interlinks>
</Silk>

According to the Silk script above, there is only one binary similarity sequence
in the generalized pattern of Extended Version Space in this example. Actually, it
is the concise expression for the generalized pattern of Disjunctive Version Space.
The linkage rule segment in the Silk script of Disjunctive Version Space is below.

<Aggregate type="max">
<Aggregate type="average">

<Compare metric="jaccard">
<TransformInput function="tokenize">

<Input path="?e1/id1:nom" />
</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:name" />
</TransformInput>

</Compare>
<Compare metric="jaccard">

<TransformInput function="tokenize">
<Input path="?e1\ id1:subdivision/id1:nom" />

</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:hasParentRegion/id2:name" />
</TransformInput>

</Compare>
</Aggregate>
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<Compare metric="jaccard">
<TransformInput function="tokenize">

<Input path="?e1/id1:nom" />
</TransformInput>
<TransformInput function="tokenize">

<Input path="?e2/id2:name" />
</TransformInput>

</Compare>
</Aggregate>

It means that each correct link should either have t-
wo attribute correspondences, insee:nom↔eurostat:name and in-
see:subdivision−1/insee:nom↔eurostat:hasParentRegion/eurostat:name, or
have one attribute correspondence insee:nom↔eurostat:name. Thus, no
matter what, each correct link should have the attribute correspondence in-
see:nom↔eurostat:name.

7.5 Conclusion

This chapter introduces the Extended Version Space to learn the interlinking pattern
that can cover all assessed correct links while excluding all assessed incorrect links.
The Extended Version Space has the following feature:

• Concise expression of the interlinking pattern leads to short interlinking time
The MERGE operation and the RESELECT operation of Extended Version
Space make the interlinking pattern more concise than the one of Disjunctive
Version Space, so that the interlinking time that is required by Silk become
shorter. The reason is that each attribute correspondence in the interlinking
pattern will be transformed into a query in the Silk script, which demands
an I/O operation. The less attribute correspondences a Silk script have, the
shorter the interlinking time is. If the interlinking pattern is expressed in a
concise expression, there are fewer attribute correspondences being included
in the Silk script. Consequently, the interlinking time of Silk is shorter.

The next chapter will show the experimental results of the clustering effect of
K-medoids and comparisons between Extended Version Space, Disjunctive Version
Space and other interlinking methods.





Chapter 8

Experiments

Contents
8.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Evaluation on K-medoids Clustering . . . . . . . . . . . . . . 114

8.3 Evaluation on Extended Version Space . . . . . . . . . . . . 117

8.3.1 Coverage Probability of Attribute Correspondence . . . . . . 117

8.3.2 Threshold for Building Binary Similarity Sequence . . . . . . 120

8.3.3 Comparison between Extended Version Space and Disjunctive
Version Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.4 Comparison between Extended Version Space with other re-
lated works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

This chapter evaluates the interlinking method of this thesis. First, experimental
setup is presented. Second, K-medoids is evaluated on its clustering effect. Third,
Extended Version Space is evaluated by comparing the F-measure and running time
of Extended Version Space with the ones of Disjunctive Version Space and other
related works.

8.1 Experimental Setup

The interlinking method in this thesis is evaluated based on some well-known public
data sets mainly downloaded from the IM@OAEI 20101 (data sets Person1 and
Person2 ), IM@OAEI 20122 (data sets Sandbox ) and CKAN3 (geographical data
sets INSEE and EUROSTAT ).

Table 8.1 shows the statistical information of each interlinking task. For each
interlinking task in the table, two statistics are shown. One is the number of
attributes in each class of a class correspondence, the other is the number of
instances in each class of a class correspondence. For example, as for the in-
terlinking task on the data sets INSEE and EUROSTAT, there is a class cor-
respondence insee:Departement↔eurostat:NUTSRegion. The interlinking task of

1http://oaei.ontologymatching.org/2010/im/index.html
2http://www.instancematching.org/oaei/
3http://datahub.io/

http://oaei.ontologymatching.org/2010/im/index.html
http://www.instancematching.org/oaei/
http://datahub.io/
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Interlinking Task Corresponding Classes Number of Number of
Attributes Instances

INSEE and insee:Departement 4 100
EUROSTAT eurostat:NUTSRegion 12 2008
Person1 Person1:Person 8 500

Person2:Person 8 500
Person2 Person1:Person 8 600

Person2:Person 8 400
Sandbox001 owl:NamedIndividual 24 363

owl:NamedIndividual 24 367
Sandbox002 owl:NamedIndividual 24 363

owl:NamedIndividual 24 367
Sandbox003 owl:NamedIndividual 24 363

owl:NamedIndividual 24 367
Sandbox006 owl:NamedIndividual 24 363

owl:NamedIndividual 24 367
Sandbox010 owl:NamedIndividual 24 363

owl:NamedIndividual 25 367
Sandbox011 owl:NamedIndividual 24 363

owl:NamedIndividual 23 367

Table 8.1: Statistics of Each Interlinking Task

the two data sets is finding out similar instances across two corresponding class-
es insee:Departement and eurostat:NUTSRegion. There are 4 attributes and 100
instances in the class insee:Departement. There are 12 attributes and 2008 in-
stances in the class eurostat:NUTSRegion. When interlinking data sets INSEE
and EUROSTAT, properties, attribute paths of the form relation/property and
attribute paths of the form relation−1/property are clustered and used for con-
structing the interlinking pattern. When interlinking other data sets, only proper-
ties are clustered and used for constructing the interlinking pattern. Because these
properties can help gain a high level F-measure for the other interlinking tasks.
In the table, prefix person1 is http://www.okkam.org/ontology_person1.owl#.
Prefix person2 is http://www.okkam.org/ontology_person2.owl#. Prefix owl is
http://www.w3.org/2002/07/owl#.

A set of sample links are created for constructing and improving the interlinking
pattern. These sample links are generated by combining all discovered potential
attribute correspondences into a disjunction of discovered potential attribute corre-
spondences. These links are assessed and used to improve the interlinking pattern
afterwards. Moreover, another set of links are generated by combining all discov-
ered potential attribute correspondences into a conjunction of discovered potential
attribute correspondences. Empirically, this set of links are almost all correct links
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throughout each interlinking task. These links are also used to construct and im-
prove the interlinking pattern, but they do not need to be assessed. Furthermore,
all links that are formed by the same instances of these correct links are deleted
from the set of sample links, so as to reduce the number of links to be assessed by
users. All binary similarity sequence groups that have the same binary similarity
sequence with the correct links are also deleted.

There is a reference link set provided in each pair of interlinking data sets of
IM@OAEI. For the interlinking task on data sets INSEE and EUROSTAT, reference
links are created by running several hand-made Silk scripts.

According to the strategy of Active Learning, the interlinking pattern will be
improved faster with unlearned binary similarity sequences. Thus in each learn-
ing round, different binary similarity sequence groups which have not been learned
before will be selected. In each group, a random link is selected as a sample link
to assess and improve the interlinking pattern. In practice, the sample link will
be assessed by users. In the experiment, such a procedure is simulated as follows:
the sample link will be assessed as positive if it exists in the reference link set, or
negative otherwise.

The F-measure and running time are computed every 10 assessed links. If the
interlinking procedure stops before learning 100 assessed links, we assume that the
F-measure and running time keep at the same level with the ones when the proce-
dure stops, in order to evaluate our interlinking method with other works when the
learning process stops with more than 100 assessed links.

The interlinking data sets are stored in RDF files. The experiments are per-
formed on each data set 5 times in 4 threads and allocated maximally 2GB of
RAM. Since Active Learning is applied to select sample links to be assessed by
users, there are different links that are used to improve the interlinking pattern for
different experiments. Thus, the Precisions and Recalls of generated link sets and
running time of each interlinking task to be shown are the average values under 5
experiments. F-measures of generated link sets are computed with regard to the
average precisions and average recalls of each interlinking task.

All algorithms are implemented in Java 1.6+, and the experiments are performed
on a desktop computer (2.5GHz 8-core CPU, memory size=32GB, 64-bit operating
system). The experimental results are stored in RDF files.

The interlinking method is evaluated in two phases. One is the evaluation of
the K-medoids clustering effect. The other is the evaluation on Extended Version
Space. The chapter compares the F-measures and running time of Extended Version
Space with two well-known related works. One is the Disjunctive Version Space al-
gorithm [Mitchell 1997]. The other one is the approach proposed by Ngonga Ngomo
et al. [Ngonga Ngomo 2013, Ngonga Ngomo 2012b] which exhibits the best results
before our work. As shown in [Ngonga Ngomo 2013], its generated pattern exhibits
prominently high F-measures.
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Ratio of Discovered Potential Ratio of
Attribute Attribute Correspondences on

Correspondences on Attribute Pairs
Attribute Pairs

INSEE and
EUROSTAT 0.25 0.06
Person1 0.37 0.16
Person2 0.37 0.16

Sandbox001 0.49 0.08
Sandbox002 0.49 0.08
Sandbox003 0.49 0.08
Sandbox006 0.49 0.08
Sandbox010 0.49 0.08
Sandbox011 0.49 0.08

Table 8.2: Two Ratios of Attribute Correspondences

8.2 Evaluation on K-medoids Clustering

In this section, the clustering effect is investigated by using the K-medoids
clustering method. For the simplicity of presentation, Figure 8.1 presents the
clustering effect of two statistical features (average number of words and aver-
age length of attribute values) from among the totally four statistical features,
with respect to the non-numerical attributes of the class correspondence in-
see:Departement↔eurostat:NUTSRegion for the two data sets INSEE and EURO-
STAT and the class correspondence owl:NamedIndividual↔owl:NamedIndividual
for the two data sets Sandbox and Sandbox 001. With these two statistical fea-
tures, a clear classification of attributes over data sets is already observed. Each
coordinate in the figures represents the center of a clustered group in a class. In
Figure 8.1 (a), there are two sets of matched centers, whose centers are located
around (1.00, 2.00) and (2.50, 15.00) respectively. In Figure 8.1 (b), there are two
sets of matched groups, whose centers are located around (8.50, 52.00) and (220.00,
1250.00) respectively. As a consequence, it is easy to build potential attribute cor-
respondences across the matched clustered groups from two corresponding classes
for each interlinking task.

Table 8.2 shows two ratios that are related to the potential attribute correspon-
dences that are discovered by the K-medoids clustering step. The ratio of discovered
potential attribute correspondences on attribute pairs is the ratio of the number of
potential attribute correspondences that are discovered by the K-medoids cluster-
ing step on the number of attribute pairs across two corresponding classes. The
ratio of attribute correspondences on attribute pairs is the ratio of the number of
attribute correspondences that exist in the correct links on the number of attribute
pairs across two corresponding classes.

The two ratios are formulated as below. Assume that we are going to find
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similar instances of two corresponding classes across two RDF data sets. There are
n attributes of one corresponding class, which are clustered by K-medoids. There
are n′ attributes of the other corresponding class, which are also clustered by K-
medoids. So the number of attribute pairs is n× n′. There is a set A, each element
is a discovered potential attribute correspondence. Thus, the ratio of discovered
potential attribute correspondences on attribute pairs is |A|

n×n′ . Assume that there is
a set L of correct links across the two corresponding classes. For each link l in the set
L, there is a similarity tuple (B(i)), i = 1, . . . ,m, wherem is the number of potential
attribute correspondences that are discovered by the K-medoids clustering step.
Each item B(i) of the similarity tuple is a similarity value of two attribute values
across two instances that form the link l. If the similarity value is larger than a pre-
defined threshold T , we assume the two attributes form an attribute correspondence
in the link l. We state that the link l has such an attribute correspondence, or such
an attribute correspondence is contained in the link l. Here, we set T = 0.5, in
that according to the analysis of Section 8.3.2, the interlinking running time of the
threshold 0.5 is shorter than the one of other thresholds. Moreover, the F-measure of
the threshold 0.5 is more stable and higher than the ones of other thresholds. Thus,
the number of attribute correspondences across two corresponding classes is the size
of a set C of attribute correspondences that exist in any correct link. Consequently,
the ratio of attribute correspondences on attribute pairs is |C|

n×n′ .

From the table, we observe that many attribute pairs that are not corresponding
are not generated by the K-medoids clustering step. We also observe that there are
still some attribute pairs that are not corresonding being recognized as potential
attribute correspondences by the K-medoids clustering step. According to the first
column of the table, all ratios of discovered potential attribute correspondences on
attribute pairs are below 0.5. It means that the K-medoids clustering step can
reduce at least 50% attribute pairs that cannot help compare instances and produce
links for each interlinking task. The computational complexity of Extended Version
Space is largely reduced, because the computational complexity of Extended Version
Space is influenced by the number of potential attribute correspondences that are
discovered by the K-medoids clustering step. As for the second column of the table,
each ratio of attribute correspondences on attribute pairs are smaller than the ratio
of discovered potential attribute correspondences on attribute pairs in the same row.
It means that some discovered potential attribute correspondences are not attribute
correspondences. It also means that there are still a lot of attribute pairs which are
considered to be attribute correspondences by the K-medoids clustering step. They
will increase the computational complexity of Extended Version Space.

To conclude, K-medoids can effectively cluster attributes so that attribute corre-
spondences of each interlinking task are discovered. The K-medoids clustering step
largely reduces the number of attribute pairs that are not corresponding for com-
paring instances, but there are still some attribute pairs that are not corresponding
are considered to be attribute correspondences.
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Attribute Correspondence Coverage Probability
insee:nom↔eurostat:name 1.00

insee:subdivision−1/insee:nom↔ 0.90
eurostat:hasParentRegion/eurostat:name

Table 8.3: Coverage Probabilities of Attribute Correspondences in INSEE and EU-
ROSTAT

8.3 Evaluation on Extended Version Space

This section presents three evaluations. First, it presents the necessity of applying a
disjunctive pattern for most of interlinking tasks. Second, it evaluates the F-measure
and running time of Extended Version Space when the binary similarity sequences
are built with different thresholds. Third, it compares the F-measure and running
time of Extended Version Space with the ones of Disjunctive Version Space. Fourth,
it compares the F-measure and running time of Extended Version Space with the
ones of other related works.

8.3.1 Coverage Probability of Attribute Correspondence

This section illustrates the necessity to express the interlinking pattern into a dis-
junctive pattern (i.e., disjunction of conjunctions of attribute correspondences)
rather than a conjunctive pattern (i.e., conjunction of attribute correspondences)
for most of interlinking tasks. We compute the coverage probability of each at-
tribute correspondence in each interlinking task, which is a ratio of the number of
correct links that contain the attribute correspondence on the number of all correct
links in the interlinking task. If there is no attribute correspondence whose coverage
probability is 100%, a disjunctive pattern is needed. In other words, there is no
attribute correspondence that exists in all correct links. Therefore, a conjunctive
pattern cannot be used for distinguishing correct links and incorrect links. In the
following, we will show the coverage probabilities of attribute correspondences in
each interlinking task.

The interlinking task INSEE and EUROSTAT does not need a disjunctive
pattern. In this interlinking task, there are two attribute correspondences
which are contained in the correct links. They are, insee:nom↔eurostat:name
and insee:subdivision−1/insee:nom↔eurostat:hasParentRegion/eurostat:name.
According to Table 8.3, the coverage probability of in-
see:nom↔eurostat:name is 100%. The coverage probability of in-
see:subdivision−1/insee:nom↔eurostat:hasParentRegion/eurostat:name is 90%.
Since there is an attribute correspondence whose coverage probability is 100%, a
disjunctive pattern is not needed for this interlinking task.

The interlinking task Person1 does not need a disjunctive pattern. In con-
trast, the interlinking task Person2 needs a disjunctive pattern. The cover-
age probabilities in the interlinking tasks Person1 and Person2 are shown in
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Attribute Correspondence AC1 AC2 AC3 AC4 AC5 AC6

Coverage Probability in Person1 1.00 0.90 0.79 0.98 0.98 0.94
Coverage Probability in Person2 0.93 0.78 0.59 0.86 0.86 0.86

Table 8.4: Coverage Probabilities of Attribute Correspondences in Person1 and
Person2

Table 8.4. In the table, AC1 stands for the attribute correspondence per-
son1:soc_sec_id↔person2:soc_sec_id. AC2 stands for the attribute correspon-
dence person1:date_of_birth↔person2:date_of_birth. AC3 stands for the attribute
correspondence person1:age↔person2:age. AC4 stands for the attribute corre-
spondence person1:given_name↔person2:given_name. AC5 stands for the at-
tribute correspondence person1:surname↔person2:surname. AC6 stands for the
attribute correspondence person1:phone_number↔person2:phone_number. Pre-
fix person1 is http://www.okkam.org/ontology_person1.owl#. Prefix person2 is
http://www.okkam.org/ontology_person2.owl#. Since there is one attribute cor-
respondence whose coverage probability is 100% in the interlinking task Person1,
so a disjunctive pattern is not needed for such a interlinking task. Since there is
no attribute correspondence whose coverage probability is 100% in the interlinking
task Person2, a disjunctive pattern is needed for such a interlinking task.

The interlinking tasks of Sandbox all need a disjunctive pattern. The coverage
probabilities in the interlinking tasks Sandbox001, Sandbox002, Sandbox003,
Sandbox006, Sandbox010, and Sandbox011 are shown in Table 8.5. AC1 stands
for the attribute correspondence sandbox1:amount↔sandbox2:amount. AC2 stands
for the attribute correspondence sandbox1:size↔sandbox2:size. AC3 stands for
the attribute correspondence sandbox1:calling_code↔sandbox2:calling_code.
AC4 stands for the attribute correspondence sand-
box1:article↔sandbox2:article. AC5 stands for the attribute correspondence
sandbox1:gender↔sandbox2:gender. AC6 stands for the attribute correspondence
sandbox1:name↔sandbox2:name. AC7 stands for the attribute correspondence
sandbox1:date_of_birth↔sandbox2:date_of_birth. AC8 stands for the attribute
correspondence sandbox1:form_of_government↔sandbox2:form_of_government.
AC9 stands for the attribute correspondence sandbox1:currency↔sandbox2:currecy.
AC10 stands for the attribute correspondence sandbox1:religion↔sandbox2:religion.
AC11 stands for the attribute correspondence sand-
box1:iso_639_1_code↔sandbox2:iso_639_1_code. Both prefix sandbox1 and
prefix sandbox2 are http://oaei.ontologymatching.org/2012/IIMBTBOX/. Since
there is no attribute correspondence whose coverage probability is 100% in each
interlinking task of the table, a disjunctive pattern is needed for each interlinking
task.

To conclude, a disjunctive pattern is needed to express the interlinking pattern
for most of the interlinking tasks. There are totally 9 interlinking tasks being com-
puted the coverage probabilities of attribute correspondences. Among all these 9
interlinking tasks, 7 interlinking tasks require disjunctive interlinking patterns for
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AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11

Attribute
Correspondence

Coverage 0.02 0.09 0.06 0.88 0.30 0.43 0.19 0.16 0.16 0.02 0.01
Probability

in Sandbox001
Coverage 0.02 0.09 0.06 0.88 0.30 0.43 0.01 0.17 0.16 0.02 0.01
Probability

in Sandbox002
Coverage 0.02 0.09 0.06 0.88 0.30 0.01 0.01 0.16 0.16 0.02 0.01
Probability

in Sandbox003
Coverage 0.02 0.09 0.06 0.86 0.30 0.91 0.19 0.15 0.16 0.02 0.01
Probability

in Sandbox006
Coverage 0.02 0.09 0.06 0.88 0.30 0.98 0.19 0.16 0.16 0.02 0.01
Probability

in Sandbox010
Coverage 0.02 0.09 0.06 0.88 0.30 0.98 0.19 0.16 0.16 0.02 0.01
Probability

in Sandbox011

Table 8.5: Coverage Probabilities of Attribute Correspondences in Sandbox001,
Sandbox002, Sandbox003, Sandbox006, Sandbox010, and Sandbox011
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generating links. Therefore, a disjunctive pattern is highly required for interlinking
various kinds of RDF data sets.

8.3.2 Threshold for Building Binary Similarity Sequence

This section evaluates the thresholds for creating binary similarity sequences of
sample links. According to the illustration of Section 6.3 in Chapter 6, a set of
sample links are created for constructing and improving the interlinking pattern
by Extended Version Space. In order to construct and improve the interlinking
pattern, a binary similarity sequence is created to represent the set of potential
attribute correspondences in each sample link to be learned by Extended Version
Space. The binary similarity sequence is transferred from a similarity tuple (B(i)),
i = 1, . . . ,m, where m is the number of potential attribute correspondences that are
discovered by the K-medoids clustering step. Each item of the similarity tuple (B(i))

is the similarity of two attributes values from two instances that form a sample link.
If the similarity is above a pre-defined threshold T , we assume that the potential
attribute correspondence exists in the sample link. Thus, the threshold T influences
the learning effect of Extended Version Space. It is a parameter of function f that
converts a decimal in the range [0, 1] to a binary value {0, 1}. This function maps
the similarity values of each sample link’s similarity tuple into a binary similarity
sequence.

f(x) =

{
1 if x > T or x = 1.0

0 if x ≤ T (8.1)

Since there are countless decimals in the range [0, 1], we only pick out a few
decimals to be the threshold T in order to evaluate the F-measure and running time
of each interlinking task. They are T = 0.1, 0.3, 0.5, 0.7, 1.0.
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Figure 8.2: F-measure and Running Time of Person1 with Different Thresholds

Figure 8.2 shows the F-measures and running time of the interlinking task on the
data set Person1. According to Figure 8.2 (a), the threshold 0.5 is the best choice
in order to achieve a stable and high F-measure. F-measures of the thresholds
0.3, 0.5, 0.7, and 1.0 are quite similar. F-measures of the threshold 1.0 are much
lower than the ones of other thresholds. The F-measures of the thresholds 0.5,
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0.7 and 1.0 converge faster than the thresholds 0.3 and 1.0. Among the three
thresholds 0.5, 0.7 and 1.0, the threshold 1.0 achieves the highest F-measure when
the interlinking process finishes. However, it has an obvious fall when there are 20
assessed links. It means that F-measures of the threshold 1.0 is less stable than the
ones of the thresholds 0.5 and 0.7. Furthermore, the threshold 0.5 achieves a higher
F-measure than the threshold 0.7 when the interlinking process finishes. Therefore,
the threshold 0.5 is the best choice for gaining a stable and high F-measure for the
interlinking task Person1.

According to Figure 8.2 (b), the threshold 0.5 is the best choice in order to
achieve a stable and high F-measure with a relatively shorter running time. The
running time of the threshold 0.1 is the longest. Furthermore, the running time of
the threshold 0.1 increases faster than the one of other thresholds. The running
time of the thresholds 0.3, 0.5, 0.7 and 1.0 is similar. The thresholds that have the
shortest running time are 1.0 and 0.7. The total running time of the two thresholds
is 30 seconds and 28 seconds respectively. The threshold 0.5 spends 90 more seconds
to finish the interlinking process than the threshold 1.0, but the growth of F-measure
with the threshold 0.5 is more stable than the one of the threshold 1.0. Furthermore,
F-measure of the threshold 0.5 is higher than the one of the threshold 0.7 when the
interlinking process finishes. Thus, the threshold 0.5 is a best choice to obtain a
stable and high F-measure with a relatively shorter running time.

To conclude, the interlinking effect of the interlinking task Person1 is the best
when the threshold is 0.5.
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Figure 8.3: F-measure and Running Time of Person2 with Different Thresholds

Figure 8.3 shows the F-measures and running time of the interlinking task on
data sets Person2. According to Figure 8.3 (a), the threshold 0.7 is the best choice
in order to achieve a stable and high F-measure. In detail, the growth of F-measure
of the threshold 1.0 is the most unstable one among all thresholds, in that there are
two falls when there are 20 and 40 assessed links respectively. The threshold 0.1
has the lowest F-measure of all thresholds when the interlinking process finishes.
The threshold 0.3 has a relatively lower F-measure than the thresholds 1.0, 0.7 and
0.5 when the interlinking process finishes. In contrast, F-measures of the thresholds
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0.5 and 0.7 grow approximately more stably and higher than the ones of other
thresholds. The growth of F-measure when the threshold is 0.7 are better than the
one of the threshold 0.5, because there is a little fall of the threshold 0.5 when there
are 20 assessed links. So the threshold 0.7 is the best choice to gain a stable and
high F-measure.

As for the running time of the five thresholds in Figure 8.3 (b), the threshold 0.1
costs the longest running time than other thresholds throughout the whole interlink-
ing process. The running time of the thresholds 0.3, 0.5, 0.7 and 1.0 is similar. They
spend 258 seconds, 205 seconds, 162 seconds and 114 seconds respectively when the
interlinking process finishes.

Therefore, the interlinking effect reaches the best when the threshold is 0.7 for
the interlinking task Person2.
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Figure 8.4: F-measure and Running Time of INSEE and EUROSTAT with Different
Thresholds

Figure 8.4 shows the F-measures and running time of the interlinking task on
data sets INSEE and EUROSTAT. In Figure 8.4 (a), F-measure reaches 0.99 when
there are 10 assessed links no matter which threshold is used. F-measure stay at
the same level when more assessed links are obtained and used to improved the
interlinking pattern.

In Figure 8.4 (b), the running time of the five thresholds is quite close. The
threshold 0.1 costs the longest time, 16 seconds, for interlinking. The thresholds
0.1, 0.3, 0.5 and 0.7 cost fewer seconds than the threshold 0.1, but the difference is
only a few seconds.

Therefore, the interlinking effects of all thresholds are roughly the same for this
interlinking task.

Figure 8.5 and Figure 8.6 show F-measures and running time of the interlink-
ing tasks Sandbox001 and Sandbox002. As for the F-measures of Sandbox001 and
Sandbox002 in Figure 8.5 (a) and Figure 8.6 (a), the thresholds 0.3, 0.5, 0.7 and 1.0
outperform the threshold 0.1. The threshold 0.1 achieves much lower F-measures
than other thresholds.

According to Figure 8.5 (b) and Figure 8.6 (b), the running time of thresholds
0.1 and 0.3 is longer than the one of the rest thresholds no matter how many assessed
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Figure 8.5: F-measure and Running Time of Sandbox001 with Different Thresholds
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Figure 8.6: F-measure and Running Time of Sandbox002 with Different Thresholds
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links are used to improve the interlinking pattern. In particular, the running time of
threshold 0.1 is roughly two times of the running time of the thresholds 0.5, 0.7 and
1.0 after learning 20 assessed links. Even with longer running time, the threshold
0.1 cannot enhance F-measures to the same level with the ones of the thresholds
0.5, 0.7 and 1.0.

Therefore, the interlinking effect of the interlinking tasks Sandbox001 and Sand-
box002 is the best when the thresholds are 0.5, 0.7 and 1.0.
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Figure 8.7: F-measure and Running Time of Sandbox003 with Different Thresholds

Figure 8.7 shows F-measures and running time of the interlinking task Sand-
box003. As for the F-measures of Sandbox003 in Figure 8.7 (a), the thresholds 0.3,
0.5, 0.7 and 1.0 outperform the threshold 0.1. F-measures of the four thresholds are
0.94 when there are 10 assessed links. In contrast, the F-measure of the threshold
0.1 is only 0.59.

As for Figure 8.7 (b), the running time of the thresholds 0.3, 0.5, 0.7 and 1.0 is
much lower than the one of the threshold 0.1. They are 425 seconds, 432 seconds,
434 seconds and 437 seconds respectively when the interlinking process finishes. The
threshold 0.3 has the shortest running time. However, the difference between these
running time is only a few seconds.

Hence, for the interlinking task Sandbox003, the thresholds 0.3, 0.5, 0.7 and 1.0
are the best choices.

Figure 8.8 shows F-measures and running time of the interlinking task Sand-
box006. As for the F-measures of Sandbox006 in Figure 8.8 (a), the threshold 0.1,
0.3 and 0.5 outperform the other two thresholds. In detail, the three thresholds en-
hance the F-measure up to roughly 0.9 when there are 20 assessed links. In contrast,
F-measure stays at the level of roughly 0.1 when the thresholds are 0.7 and 1.0.

As for the running time shown in Figure 8.8 (b), the thresholds 0.5, 0.7 and 1.0
are the best choices. The threshold 0.1 costs the longest running time after learning
30 assessed links. It uses 876 seconds for interlinking the data sets. The threshold
0.3 costs the second longest running time after learning 30 assessed links. It spends
706 seconds. The thresholds 0.5, 0.7 and 1.0 only cost 439 seconds, 425 seconds and
420 seconds respectively after learning 30 assessed links. Therefore, the thresholds
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Figure 8.8: F-measure and Running Time of Sandbox006 with Different Thresholds

0.5, 0.7 and 1.0 perform the best from the perspective of the running time.
By considering both the F-measure and the running time, the threshold 0.5

perform the best in the interlinking task Sandbox006. Because it uses a relatively
shorter running time to achieve a relatively high F-measure when the interlinking
process finishes.
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Figure 8.9: F-measure and Running Time of Sandbox010 with Different Thresholds

Figure 8.9 shows F-measures and running time of the interlinking task Sand-
box010. As for the F-measures of Sandbox010 in Figure 8.9 (a), the F-measures
are highest when the thresholds are 0.3, 0.5, 0.7 and 1 after learning 10 assessed
links. They reach 0.97 when there are only 10 assessed links. The F-measure of the
threshold 1.0 is less higher, which is 0.94.

According to Figure 8.9 (b), the thresholds 0.5, 0.7 and 1.0 cost shorter running
time than the thresholds 0.1 and 0.3 after learning 20 assessed links. In detail,
the threshold 0.1 costs 80 more seconds than the thresholds 0.5, 0.7 and 1.0 after
learning 20 assessed links. Moreover, the threshold 0.3 costs 40 more seconds than
the thresholds 0.5, 0.7 and 1.0 when there are 20 assessed links. The thresholds 0.5,
0.7 and 1.0 cost roughly the same amount of time throughout the whole interlinking
process. They spend 404 seconds, 401 seconds and 396 seconds respectively when
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the interlinking process finishes.
Therefore, the interlinking effect of the interlinking task Sandbox010 is the best

when the thresholds are 0.5, 0.7 and 1.0.
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Figure 8.10: F-measure and Running Time of Sandbox011 with Different Thresholds

Figure 8.10 shows F-measures and running time of the interlinking task Sand-
box011. As for the F-measures of Sandbox011 in Figure 8.10 (a), the thresholds 0.3,
0.5 and 0.7 perform the best. Their F-measures reach 0.97 when there are only 10
assessed links. With the same amount of assessed links, F-measures of the thresholds
1.0 and 0.1 are 0.12 and 0.93 respectively. The highest F-measures of the thresholds
1.0 and 0.1 are 0.12 and 0.93 respectively when the interlinking process finishes.

From Figure 8.10 (b), the threshold 0.1 costs much more seconds than other
thresholds. In particular, it costs 706 seconds to fulfill this interlinking task. The
thresholds 0.3, 0.5, 0.7 and 1.0 require 404 seconds, 398 seconds, 397 seconds and
411 seconds respectively to fulfill the interlinking task. The difference is only a few
seconds.

Therefore, the interlinking effect are the best when interlinking the data sets
Sandbox011 with the thresholds 0.3, 0.5 and 0.7.

To conclude, based on the analysis above, Extended Version Space performs the
best when the threshold is 0.5, because the threshold 0.5 is the best choice for 8
interlinking tasks among all 9 interlinking tasks. The reason of good performance
when the threshold is 0.5 is analyzed as follows.

If the threshold is lower than 0.5, there will be lots of dissimilar attribute values
that are recognized as “similar”. Thereafter, a lot of attribute pairs that are not cor-
responding will be treated as attribute correspondences and added in the interlink-
ing pattern. They will cause the interlinking pattern to cover more incorrect links,
which in turn will reduce the F-measure of the generated link set. Furthermore,
the running time of the interlinking pattern will increase, in that more attribute
pairs that are not corresponding are added into the interlinking pattern. The more
attribute correspondences are contained in the interlinking pattern, the more I/O
operations are required for obtaining attribute values by the Silk script. For exam-
ple, both F-measure and running time are not satisfiable in the interlinking tasks
Person1, Perons2, Sandbox001, Sandbox002 and Sandbox003 when the threshold is
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0.1. Figure 8.11 shows the average precisions, average recalls and F-measures of the
interlinking task Sandbox001 when the threshold is 0.1. The average precision is
only 0.52 when the interlinking process finishes, though the average recall is as high
as 0.92. Consequently, the F-measure is only 0.67. The running time of the inter-
linking task Sandbox001 with the threshold 0.1 is shown in Figure 8.5 (b), which is
much longer than the one of other thresholds when the interlinking process finishes.
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Figure 8.11: Interlinking Effect of Sandbox001 with the Threshold T = 0.1

If the threshold is higher than 0.5, there will be lots of similar attribute values
that are recognized as “dissimilar”. Thereafter, a lot of attribute correspondences
will not be treated as attribute correspondences and not added in the interlinking
pattern. Consequently, there are fewer attribute correspondences in the interlinking
pattern for generating a correct link. It means that the number of restrictions for
generating a correct link is fewer, which will make the interlinking pattern unable
to filter some incorrect links. Therefore, the F-measure of the generated link set
will decrease accordingly. The running time of the interlinking pattern will also de-
crease, because there are less attribute correspondences in the interlinking pattern,
which require less I/O operations for obtaining attribute values by the Silk script.
For example, F-measure is relatively low in the interlinking tasks Sandbox006 and
Sandbox011 when the threshold is 1.0. Figure 8.12 shows the average precisions,
average recalls and F-measures of the interlinking task Sandbox011 when the thresh-
old is 1.0. The average precision is only 0.06 when the interlinking process finishes,
though the average recall is as high as 0.99. So the F-measure is only 0.12. The
running time of the interlinking task Sandbox011 with the threshold 1.0 is shown
in Figure 8.10 (b). The running time of the threshold 1.0 is as short as the one of
other thresholds except the threshold 0.1 after learning 10 assessed links.

Therefore, according to the evaluation of this section, in the following evaluation
sections, we show the F-measures and running time of Extended Version Space by
creating binary similarity sequences with the threshold T = 0.5 for each sample link.
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Figure 8.12: Interlinking Effect of Sandbox001 with the Threshold T = 1.0

8.3.3 Comparison between Extended Version Space and Disjunc-
tive Version Space

This section compares F-measures and running time of Extended Version Space and
the ones of Disjunctive Version Space on different interlinking tasks.

The F-measures and running time of Extended Version Space and Disjunctive
Version Space are computed by executing interlinking with the generalized patterns
of both learning methods when the assessed links are transferred into binary similar-
ity sequences with the threshold 0.5. There is an exception. If there is no assessed
incorrect link’s binary similarity sequence being learned, the generalized pattern is a
universal expression which contains all correct and incorrect links. Thus, it cannot
be used for generating links. In this case, we compute the F-measures by executing
interlinking with the specialized patterns of both methods.

Since the number of binary similarity sequences in the generalized pattern of
Disjunctive Version Space is usually very huge, the running time of executing inter-
linking with such a generalized pattern will be extremely long. For instance, each
interlinking task of Sandbox has 70 potential attribute correspondences that are dis-
covered by the K-medoids clustering step. There are at most 270 binary similarity
sequences in the generalized pattern of Disjunctive Version Space. As for the inter-
linking tasks Person1 and Person2, each of them has around 10 potential attribute
correspondences. There are at most 210 binary similarity sequences in the gener-
alized pattern of Disjunctive Version Space. Therefore, if we generate links with
such a large pattern, there will be a lot of I/O operations that are required by the
Silk script. The reason is that each attribute correspondence of a binary similarity
sequence is transferred into a pair of queries in the Silk script. Each query gets an
attribute value from the interlinking RDF data set, which is an I/O operation for the
computer. Consequently, the more binary similarity sequences in the interlinking
pattern, the more I/O operations are required by Silk.

We do not generate links with the generalized pattern of Disjunctive Version
Space but with a generalized pattern of Disjunctive Version Space after the operation
MERGE of Extended Version Space. The operation is defined in Section 7.3.2 of
Chapter 7. On the one hand, the F-measures of the generated link set by executing
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the generalized pattern after merging are the same with the one before merging.
On the other hand, the running time of the generalized pattern before merging is
definitely longer than the one of the generalized pattern after merging. If we can
show that the running time of the generalized pattern after merging is longer than
the one of Extended Version Space, the running time of Extended Version Space
will definitely be shorter than the one of Disjunctive Version Space.

We implement a merged Disjunctive Version Space as a by-product when imple-
menting Extended Version Space, which is the PatOri in Algorithm 3. There are
two operations that distinguish the generalized pattern of Disjunctive Version Space
from the generalized pattern of Extended Version Space. They are MERGE and
RESELECT. We maintain a copy of the generalized pattern after the binary simi-
larity sequences are merged while before being reselected into a generalized pattern
of Extended Version Space when a new assessed link’s binary similarity sequence is
learned. This pattern is used to evaluate the F-measures and running time of the
merged Disjunctive Version Space.

In the figures of this section, Extended Version Space is denoted as EVS. The
merged Disjunctive Version Space is denoted as DVS.

8.3.3.1 F-measure

This subsection compares the F-measures of Extended Version Space and the ones
of merged Disjunctive Version Space in all 9 interlinking tasks.
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Figure 8.13: F-measure of Person1 and Person2 with EVS and DVS when T = 0.5

Extended Version Space converges faster than merged Disjunctive Version Space
when interlinking Person1 and Person2. In Figure 8.13 (a), Extended Version
Space converges faster than merged Disjunctive Version Space. The F-measure of
Extended Version Space is 0.9 when there are 10 assessed links. In contrast, the
F-measure of merged Disjunctive Version Space is 0.56. Afterwards, the F-measure
of Extended Version Space increases to 0.98 when there are 20 assessed links. While
the F-measure of merged Disjunctive Version Space reaches the similar F-measure
as Extended Version Space when there are 60 assessed links. Extended Version
Space reaches a higher F-measure much quicker than merged Disjunctive Version
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Space. In Figure 8.13 (b), Extended Version Space converges faster than merged
Disjunctive Version Space, too. F-measure of Extended Version Space reaches 0.96
when there are 50 assessed links, but merged Disjunctive Version Space should learn
70 assessed links to gain the same F-measure. Hence, in this figure, the Extended
Version Space converges faster than merged Disjunctive Version Space.
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Figure 8.14: F-measure of INSEE vs. EUROSTAT and Sandbox001 with EVS and
DVS when T = 0.5

The two learning methods converge at the same speed when interlinking the data
sets INSEE and EUROSTAT. In Figure 8.14 (a), Extended Version Space converges
at the same speed with merged Disjunctive Version Space. Both of their F-measure
reach 0.99 when there are 10 assessed links.

Extended Version Space converges faster than merged Disjunctive Version Space
when interlinking Sandbox001. In Figure 8.14 (b), F-measure of merged Disjunctive
Version Space is 0.07 no matter how many assessed links are learned. In contrast,
the F-measure of Extended Version Space reaches 0.94 when there are 10 assessed
links. In this figure, Extended Version Space converges faster to a much higher
F-measure than merged Disjunctive Version Space.
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Figure 8.15: F-measure of Sandbox002 and Sandbox003 with EVS and DVS when
T = 0.5

In the interlinking tasks Sandbox002, Sandbox003, Sandbox006, Sandbox010 and
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Figure 8.16: F-measure of Sandbox006, Sandbox010 and Sandbox011 with EVS and
DVS when T = 0.5
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Sandbox011, Extended Version Space converges faster with a much higher F-measure
than merged Disjunctive Version Space. In Figure 8.15 and Figure 8.16, Extend-
ed Version Space’s F-measures are higher than 0.9 when the interlinking process
finishes, while merged Disjunctive Version Space’s F-measures are only 0.07.
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Figure 8.17: Precision, Recall and F-measure of Sandbox001 with EVS and DVS
when T = 0.5

To conclude, Extended Version Space converges faster than merged Disjunctive
Version Space in 8 interlinking tasks of all 9 interlinking tasks. In other words,
the F-measure of Extended Version Space reaches a high level with fewer assessed
links than the one of merged Disjunctive Version Space. The reason is that, the
interlinking pattern of Extended Version Space is able to filter more incorrect links
than the one of merged Disjunctive Version Space. For example, when interlink-
ing Sandbox001, the average precisions, average recalls and F-measures of merged
Disjunctive Version Space and Extended Version Space are shown in Figure 8.17.
According to Figure 8.17 (a), average precisions and average recalls of Extended
Version Space are both relatively more than 0.9 when learning different amount of
assessed links. In contrast, average precisions and average recalls of merged Disjunc-
tive Version Space are quite different in Figure 8.17 (b). Average recalls of merged
Disjunctive Version Space are very high. It means that the interlinking pattern
of merged Disjunctive Version Space covers most of the correct links of two RDF
data sets. Average precisions of merged Disjunctive Version Space are quite low,
because there are many incorrect links being produced. The generalized pattern of
merged Disjunctive Version Space usually contain more binary similarity sequences
than the one of Extended Version Space. Because there is a Reselect operation
in Extended Version Space that is not required in Disjunctive Version Space, which
picks out binary similarity sequences from the merged generalized pattern so that
each covers at least one binary similarity sequence in the specialized pattern. It also
means that only binary similarity sequences that are relevant to assessed correct
links are maintained in the generalized pattern of Extended Version Space. Howev-
er, the generalized pattern of merged Disjunctive Version Space contains not only
relevant binary similarity sequences but also irrelevant binary similarity sequences
that cover many incorrect links. This is the reason why merged Disjunctive Version
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Space converges slower than Extended Version Space, because it may produce more
incorrect links than Extended Version Space. Only when more assessed incorrect
links are learned, the generalized pattern of merged Disjunctive Version Space can
filter the same amount of incorrect links with the generalized pattern of Extended
Version Space. Moreover, since the F-measure of generated link set that is produced
by executing the generalized pattern of Disjunctive Version Space is the same with
the one of merged Disjunctive Version Space, the F-measure of Extended Version
Space converges faster than Disjunctive Version Space’ F-measure.

8.3.3.2 Running Time

This section compares the running time of Extended Version Space with the one of
merged Disjunctive Version Space in all 9 interlinking tasks.
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Figure 8.18: Running Time of Person1 and Person2

Figure 8.18 confirms that Extended Version Space outperforms Disjunctive Ver-
sion Space with respect to the running time when interlinking Person1 and Person2.
As for both interlinking tasks, Disjunctive Version Space spends far longer running
time than Extended Version Space. By referring to Figure 8.13, Disjunctive Version
Space costs much longer running time in order to reach the same level of F-measure
with Extended Version Space. According to Figure 8.13 (a) and Figure 8.18 (a),
Disjunctive Version Space spends 2300 more seconds to reach the same F-measure
of Extended Version Space when there are 60 assessed links for interlinking Person1.
According to Figure 8.13 (b) and Figure 8.18 (b), Disjunctive Version Space spends
1300 more seconds to reach the same F-measure of Extended Version Space when
there are 70 assessed links for interlinking Person2. Thus, this figure shows that
Extended Version Space converges more quickly to a higher F-measure with shorter
running time than merged Disjunctive Version Space.

The running time of Extended Version Space and the one of merged Disjunctive
Version Space are quite close when interlinking data sets INSEE and EUROSTAT
in each learning round. In Figure 8.19 (a), the running time of Extended Version
Space and the one of merged Disjunctive Version Space are almost the same when
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Figure 8.19: Running Time of INSEE vs. EUROSTAT and Sandbox001

there are 10 assessed links. Both of them spend around 14 seconds to find out
correct links.

There is roughly 100-second difference between the running time of Extended
Version Space and the one of merged Disjunctive Version Space when interlinking
data sets Sandbox001 in each learning round. In Figure 8.19 (b), merged Disjunctive
Version Space is slower than Extended Version Space by nearly 90 seconds in each
learning round. By referring to Figure 8.14 (b), F-measure of Extended Version
Space is always much higher than the one of merged Disjunctive Version Space in
each learning round, although merged Disjunctive Version Space spends longer time
to improve the interlinking pattern. Thus, Figure 8.19 (b) also shows that Extended
Version Space converges more quickly to a higher F-measure with shorter running
time than merged Disjunctive Version Space.
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Figure 8.20: Running Time of Sandbox002 and Sandbox003

The running time of Extended Version Space and the one of merged Disjunctive
Version Space are quite close when interlinking Sandbox002 in each learning round.
There is roughly 180-second difference between the running time of Extended Version
Space and the one of merged Disjunctive Version Space when interlinking data sets
Sandbox003 in each learning round. As for the interlinking task of Sandbox002 in
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Figure 8.20 (a), merged Disjunctive Version Space spends almost the same running
time with Extended Version Space to generate correct links in each learning round.
However, its F-measure is much lower than the one of Extended Version Space in
Figure 8.15 (a). For the interlinking task of Sandbox003 in Figure 8.20 (b), merged
Disjunctive Version Space is slower than Extended Version Space by roughly 180
seconds since there are 20 assessed links. Whereas, F-measure of Extended Version
Space is far higher than the one of merged Disjunctive Version Space in Figure 8.15
(b) in each learning round. Thus, this figure also shows that Extended Version
Space converges more quickly to a higher F-measure with shorter running time than
merged Disjunctive Version Space.
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Figure 8.21: Running Time of Sandbox006, Sandbox010 and Sandbox011

The running time of Extended Version Space and the one of merged Disjunc-
tive Version Space are quite close when interlinking Sandbox006 in each learning
round. There is roughly 100-second difference between the running time of Extend-
ed Version Space and the one of merged Disjunctive Version Space when interlinking
Sandbox010 and Sandbox011 in each learning round. As for the interlinking task
of Sandbox006 in Figure 8.21 (a), the running time of Extended Version Space is
almost the same with the one of merged Disjunctive Version Space in each learning
round, but the F-measure of Extended Version Space is much higher than the one
of merged Disjunctive Version Space in Figure 8.16 (a) in each learning round. In
Figure 8.21 (b) and (c), merged Disjunctive Version Space spends 100 more seconds
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than Extended Version Space. Whereas, F-measure of Extended Version Space is
much higher than the one of merged Disjunctive Version Space in Figure 8.16 (b)
and (c) in each learning round. Thus, this figure also shows that Extended Version
Space converges more quickly to a higher F-measure with shorter running time than
merged Disjunctive Version Space.

To conclude, Extended Version Space converges more quickly to a higher F-
measure with shorter running time than Disjunctive Version Space. From the anal-
ysis of this section, the running time of Extended Version Space is shorter than the
one of merged Disjunctive Version Space except the interlinking task Sandbox006.
Even in the interlinking task Sandbox006, Extended Version Space only spends 1
more second than merged Disjunctive Version Space in each learning round. Since
we are using a merged generalized pattern of Disjunctive Version Space for evalua-
tion, the unmerged generalized pattern of Disjunctive Version Space will definitely
spend much longer running time than Extended Version Space in all 9 interlink-
ing tasks. The reason is that the interlinking pattern of Extended Version Space
is usually more concise than the one of Disjunctive Version Space. The bigger an
interlinking pattern is, the more I/O operations are required for generating links.
Thus, the running time will increase consequently. Therefore, Extended Version S-
pace requires shorter running time than Disjunctive Version Space. Moreover, with
regards to the analysis of F-measure in Section 8.3.3.1, Extended Version Space
achieves much higher F-measures than merged Disjunctive Version Space with the
relatively short running time in most interlinking tasks. Hence, Extended Version
Space converges more quickly to a higher F-measure with shorter running time than
Disjunctive Version Space.

8.3.4 Comparison between Extended Version Space with other re-
lated works

This section compares the F-measures and running time of Extended Version Space
with related works [Ngonga Ngomo 2013, Ngonga Ngomo 2012b] that use Genetic
Programming for interlinking. The protocol of the experiments on Extended Ver-
sion Space in this section is the same as the one of Section 8.3.3, except that the
experiments in this section are performed with a single thread.

Figure 8.22 and Figure 8.23 shows the comparisons on F-measure and running
time. In both figures, our method is denoted as EVS. The three comparative meth-
ods of Ngonga Ngomo et al. are denoted as EAGLE,CL,WD respectively. CL and
WD are two interlinking methods that combine EAGLE with two different Active
Learning methods. Both Active Learning methods classify sample links into sev-
eral groups according to the similarity vectors that are composed of similarities of
attribute values according to each potential attribute correspondence. CL’s Ac-
tive Learning method selects informative links to be assessed by considering the
intra-group correlations of sample links. WD ’s Active Learning method selects in-
formative links to be assessed by considering both the intra-group correlations and
the inter-group correlations of sample links. The figures show the best convergence
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results that are presented in their paper [Ngonga Ngomo 2013]. We compare F-
measures and running time of Extended Version Space with their best F-measures
when the size of initial population of Genetic Programming is 100. We do not im-
plement EAGLE, CL and WD on our own, because the correspondence discovering
method [Ngonga Ngomo 2011b] required by the three methods is not an open-source
method.

Instead, we implement an interlinking method by combining K-medoids, a Ge-
netic Programming method and the Active Learning method in WD. K-medoids is
applied here to find out potential attribute correspondences. Genetic Programming
is used to construct and improve the interlinking pattern. The Active Learning
method in WD is used to select informative links to be assessed and learned by
the interlinking pattern. We name such an interlinking method as KM+WD. The
F-measure and running time of KM+WD are shown when the initial population
of Genetic Programming is 20. The differences between KM+WD and WD of
Ngonga Ngomo et al. [Ngonga Ngomo 2013] are below. First, we use K-medoids
to find out potential attribute correspondences. The correspondence discovering
method [Ngonga Ngomo 2011b] required by the three methods EAGLE, CL andWD
extract correspondences from unstructured data of any content management system.
The paper [Ngonga Ngomo 2011b] states that the usability of their approach relies
heavily on the quality of the knowledge that returned by the automated means.
It means that there are attribute pairs that are not corresponding and discovered
by the correspondence discovering method of [Ngonga Ngomo 2011b]. Second, our
genetic programming method uses only two aggregation methods “max” and “aver-
age”. WD of Ngonga Ngomo et al. uses three aggregation methods “max”, “min”
and “add”. Third, we do not set threshold in the Silk script for each attribute
correspondence with the operations mutation and crossover .

Both Extended Version Space and KM+WD are implemented in Java 1.6+ with
a single thread, and the experiments are performed on a desktop computer (2.5GHz
8-core CPU, memory size=32GB, 64-bit operating system) and allocated maximally
2GB of RAM. In contrast, EAGLE, WD and CL are implemented in Java 1.7+ with
a single thread, and the experiments are performed on a server (2.0GHz 4-core CPU)
and allocated maximally 2GB of RAM. The only difference on execution is that we
use a CPU with a higher main frequency. Since most of running time is spent on
I/O operations, which are required to extract data from data sets, the difference of
CPU does not influence the running time of both interlinking methods.

Figure 8.22 shows the F-measure comparisons on two interlinking tasks Person1
and Person2. With respect to the data set Person1, the final converged F-measures
under EVS and KM+WD are much higher than the best ones of EAGLE, CL and
WD (0.97 and 0.96 versus 0.86, 0.88 and 0.89 respectively). The F-measures of
EVS and KM+WD stay on a high level when there are more than 20 assessed links.
For the interlinking task Person2, the final F-measures of EVS and KM+WD are
0.96 and 0.82 respectively, while the ones of EAGLE, CL and WD are all roughly
0.77. When interlinking Person2, F-measure of Extended Version Space decreases
after learning 20 assessed links. The reason is that some assessed links are classified
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Figure 8.22: F-measures of Extended Version Space and Genetic Programming on
Person1 and Person2

wrongly into binary similarity sequence groups where most of the sample links in
the group have the opposite marks with the assessed link. It means that either an
assessed correct link is classified into a binary similarity sequence group where most
of the sample links are incorrect links, or an assessed incorrect link is classified into
a binary similarity sequence group where most of the sample links are correct links.
With the wrongly classified assessed links, the positive (negative) binary similari-
ty sequence will be recognized as a negative (positive) binary similarity sequence.
Therefore, the improved interlinking pattern cannot cover/filter other sample links
in the same binary similarity sequence group of the learned assessed link. Hence,
F-measure of generated link set will decrease accordingly.

Both Extended Version Space and KM+WD achieve better F-measures in the
interlinking task Person1 and Person2 than EAGLE, CL and WD. We can also ob-
serve that Extended Version Space and KM+WD converge faster than EAGLE, CL
and WD. Extended Version Space has better F-measures than EAGLE, CL and WD
by about 10% in both interlinking tasks when the interlinking process finishes. This
is mainly due to the fact that Extended Version Space builds a disjunctive pattern,
which can cover positive links (i.e., assessed correct links) and filter out negative
links (i.e., assessed incorrect links) more comprehensively. However, the interlink-
ing patterns of EAGLE, CL and WD are change by the operations mutation and
crossover during each learning round, which may make their F-measures decrease
accordingly. The two operations make some changes on some randomly-chosen parts
of the interlinking pattern. This is also the reason that KM+WD sometimes decreas-
es when more assessed links are learned. KM+WD also has better F-measures than
EAGLE, CL and WD by about 10% in the interlinking task Person1. Moreover, it
has better F-measures than EAGLE, CL and WD in the interlinking task Person2
before learning 70 assessed links and after learning 90 assessed links. The reason
that KM+WD achieves better F-measure than the other three works in both data
sets is that K-medoids discovers more attribute correspondences and less attribute
pairs that are not corresponding than the correspondence discovering method in
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[Ngonga Ngomo 2011b]. Consequently, the interlinking pattern of KM+WD covers
more correct link and filters more incorrect links than the ones of EAGLE, CL and
WD.

Note that there are about 10,446 sample links and 6845 sample links for the
two data sets respectively while there are 60 sample links and 80 sample links used
by Extended Version Space for constructing and improving the interlinking pattern
(only 1% of the total sample links), which means a quite high interlinking efficiency.
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Figure 8.23: Running Times of Extended Version Space and Genetic Programming
on Person1 and Person2

Figure 8.23 shows the comparisons of the running time on two interlinking tasks
Person1 and Person2.

Extended Version Space reaches high F-measures with shorter running time than
other related works on both interlinking tasks. As for the interlinking task Person1,
Extended Version Space spends shorter time than other works when there are more
than 10 assessed link. The interlinking procedure stops after learning 60 assessed
links, because there is no more binary similarity sequence groups that have not been
learned. There are totally 57 binary similarity sequence groups in the interlinking
task Person1. The running time of Extended Version Space stays at 78 seconds
with a higher F-measure 0.97 by referring to Figure 8.22 (a). Comparing to other
interlinking methods, Extended Version Space reaches higher F-measures with a
relatively shorter time. As for the data set Person2, the running time of Extended
Version Space is shorter than the ones of other related works. The interlinking
procedure stops after learning 80 assessed links, because there is no more binary
similarity sequence groups that have not been learned. There are totally 71 binary
similarity sequence groups in the interlinking task Person2. The reason for the
efficiency of Extended Version Space is that it maintains a more concise and precise
interlinking pattern that requires less I/O operations for interlinking data sets, so it
can reach higher F-measures with shorter running time in both interlinking tasks.

We also can observe that Extended Version Space spends less time on the inter-
linking task Person1 than the interlinking task Person2. Because there are fewer
binary similarity sequence groups of the interlinking task Person1 than the ones of
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the interlinking task Person2. Since the interlinking pattern is composed of differ-
ent binary similarity sequences of assessed links, the size of the interlinking pattern
is decided by the number of binary similarity sequence groups of correct links. In
Person1, all correct links are transferred into 17 binary similarity sequence groups.
While in Person2, all correct links are transferred into 46 binary similarity sequence
groups. Thus, the interlinking pattern of Person2 will definitely become larger than
the one of Person1 when more assessed links are learned. When the interlinking
pattern is larger, there are more I/O operations that are required by a Silk script
when generating links according to the interlinking pattern. Therefore, the running
time of Person2 becomes longer than the one of Person1 when more assessed links
are learned.

As for the running time of KM+WD, it is shorter than the ones of the works
that use Genetic Programm. The reason is that the initial population of KM+WD
is only 20. But the ones of EAGLE, CL and WD are 100, so more interlinking pat-
terns should be evaluated during each learning round of EAGLE, CL and WD than
KM+WD. Consequently, the running time of EAGLE, CL and WD are longer than
the one of KM+WD. Comparing to Extended Version Space, KM+WD should eval-
uate several interlinking patterns in each learning round. While Extended Version
Space only evaluates one interlinking pattern in each learning round. Therefore,
the running time of Extended Version Space is shorter than the one of KM+WD in
both interlinking tasks.

To conclude, Extended Version Space performs better than other related works
because of the following reasons. Genetic Programming searches for the suitable
interlinking pattern by evaluating more than one interlinking pattern during each
learning round. The evaluation is realized by executing each interlinking pattern
to generate a link set, which will increase the running time by requiring many I/O
operations. Furthermore, crossover and mutation operations of Genetic Program-
ming easily cause the instability of the interlinking pattern, which may make the
F-measure decrease in the meanwhile. In contrast, Extended Version Space does
not need to evaluate more than one interlinking pattern during each learning round.
It does not change the interlinking pattern with crossover and mutation operations
but with informative assessed links. Furthermore, the K-medoids clustering step
of Extended Version Space discovers more attribute correspondences than the cor-
respondence discovering method [Ngonga Ngomo 2011b] of EAGLE, CL and WD,
which also helps increase the F-measure and reduce the running time of Extended
Version Space. Therefore, it reaches high F-measure with shorter time than other
related works.

8.4 Conclusion

This chapter evaluates the interlinking method of this thesis.
First, the chapter shows the clustering effect of K-medoids. K-medoids can

cluster attributes of each class efficiently, so that a lot of attribute pairs that are
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not corresponding are not considered when constructing the interlinking pattern.
Second, the chapter presents the coverage probabilities of attribute correspon-

dences for each interlinking task so as to show the necessity of applying a disjunctive
pattern for most of interlinking tasks.

Third, the F-measure and running time of Extended Version Space are evaluated
when different thresholds are used to create binary similarity sequence of sample
links.

Fourth, Extended Version Space is compared with Disjunctive Version Space on
various data sets. It shows that Extended Version Space can converge to high F-
measures faster than Disjunctive Version Space. It also shows that Extended Version
Space requires less time to interlink two data sets than Disjunctive Version Space,
because the big size of the generalized pattern of Disjunctive Version Space will
lead to many I/O operations by Silk script when generating links. In one sentence,
Extended Version Space generates a concise disjunctive pattern, which can cover
positive links and filter negative links more comprehensively with shorter running
time than Disjunctive Version Space.

Fifth, Extended Version Space is compared with related works that use Ge-
netic Programming for interlinking. Extended Version Space converges to high F-
measures faster than these related works. The reason is that Genetic Programming
searches for the interlinking pattern by evaluating more than one interlinking pat-
tern during each learning round, which requires longer running time. Moreover,
crossover and mutation operations of Genetic Programming easily cause instability
of the interlinking pattern, which may lead to the decrease of F-measures. In con-
trast, Extended Version Space does not need to evaluate more than one interlinking
pattern during each learning round. It does not change the interlinking pattern with
crossover and mutation operations but with informative assessed links. Therefore, it
reaches a high F-measure with shorter running time than other related works when
the interlinking process finishes.

Sixth, we also implement a Genetic Programming-based interlinking method.
It uses K-medoids to discover attribute correspondences between two correspond-
ing classes. It also uses the Active Learning strategy that is applied in the related
work WD to select links to be assessed and learned. The experiments show that
K-medoids effectively finds out more attribute correspondences than the correspon-
dence discovering method that is applied in EAGLE, CL and WD.

The next chapter will conclude the whole thesis.





Chapter 9

Conclusion

This thesis presents an interlinking method that generates links for two RDF data
sets. It is made up of two steps. One step is to discover attribute correspondences
by analyzing the statistical features of attribute values and clustering attributes of
each class into groups with a K-medoids clustering. The other step is to build an
interlinking pattern iteratively with Extended Version Space. These two steps ef-
fectively discover potential attribute correspondences and then build an interlinking
pattern with these discovered potential attribute correspondences and sample links
assessed by users. The thesis proves that the constructed interlinking pattern can
distinguish correct and incorrect links efficiently. Moreover, the thesis proves that
the generated interlinking pattern possesses a concise representation format. The
key findings are summarized below.

• The clustering step helps reduce the number of attribute pairs that are not
corresponding when building the interlinking pattern. It in turns reduce the
computational complexity of Extended Version Space, because the computa-
tional complexity of Extended Version Space is influenced by the number of
potential attribute correspondences. Yet, there are some attribute pairs that
are not corresponding being discovered as attribute correspondences. Thus,
the precision of potential attribute correspondences should be improved fur-
ther.

• Extended Version Space builds the interlinking pattern more comprehensively
than other related works. With only 1% of sample links, Extended Version
Space effectively generates interlinking patterns for the interlinking tasks that
do not have a conjunctive interlinking pattern. If the number of sample links
is big, it may require some assessment work for users. By comparing Extended
Version Space to Disjunctive Version Space and other recent interlinking work-
s, experiments show Extended Version Space converges to a higher F-measure
(at least 0.9) with shorter running time than other related works.

In the future, I plan to do the following works.

• First, discover more value features that can be used to distinguish attributes.
This work is to reduce further the attribute pairs that are not corresponding
and are recognized as potential attribute correspondences by the clustering
step. According to the experiments, although the clustering step reduces a
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lot of attribute pairs that are not corresponding, there are still some attribute
pairs that are incorrectly recognized as attribute correspondences. Thus, var-
ious value features need to be applied in the clustering step to distinguish
attributes more precisely so that the number of attribute pairs that are not
corresponding can be further reduced.

• Second, reduce the number of sample links that are sent to users to assess
and optimize the whole interlinking process to be more automatic. Although
only 1% links are required to improve the interlinking pattern, the number of
links to be assessed may be large if the number of sample links is big. Some
advanced Active Learning methods can be applied here to reduce the number
of sample links to be assessed.

• Third, make the interlinking method of this thesis run on larger web data sets
robustly and efficiently. An efficient interlinking method should be able to find
out links for various data sets. Thus, more interlinking tests on larger web
data sets will be executed to improve the interlinking method of this thesis.

• Fourth, implement the interlinking method in some ontology matchers so as to
improve the results of ontology matchers. Interlinking data sets and Ontology
Matching are two topics that can help improve the results of each other. Thus,
I plan to implement the interlinking method in this thesis in an ontology
matcher to improve the results of the Ontology Matcher.
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Appendix on Implementation

10.1 K-medoids

This clustering method is implemented as a java function called AttriClustering.

10.2 Transferring EDOAL Correspondence into Silk
Script

These translations have been implemented as an alignment renderer following the
AlignmentVisitor class of the Alignment API. The API provides the notion of a visitor
of the alignment cells. These visitors are used in the implementation for rendering
the alignments by traversing inductively EDOAL expressions.

The implementation follows the presentation of Chapter 6: a visitor is able
to generate graph patterns which may be used in a variety of contexts, such as
generating SPARQL queries, and further generate specific uses of the graph patterns.
Some visitors implemented are listed below:

• The EDOALRendererVisitor class traverses EDOAL expressions and trans-
late each EDOAL correspondence into graph patterns. It implements the T
functions (see Section 6.2.1) of Chapter 6.
• The SILKRendererVisitor class finds out attribute correspondences across two

corresponding classes by extending the EDOALRendererVisitor class and gen-
erates Silk script for interlinking the same instances across two corresponding
classes in data sets (see Section 6.2.2, Section 6.2.3 and Section 6.2.4).

10.3 Extended Version Space

This Machine Learning method is implemented as a java function called updateVer-
sionSpace.
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