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Résumé de la thèse 

 

I. INTRODUCTION. 

Les propriétés structurales et de dynamique de réseau (instabilités de type ferroélectriques) d’oxydes 

fonctionnels complexes sont ici étudiées par méthodes de premiers principes, approches 

phénoménologiques, et par construction d’un potentiel modèle. 

Plus particulièrement, les systèmes étudiés peuvent être décrits comme des super-réseaux basés sur 

des titanates de structure perovskiteATiO3 (A=Ba, Sr, Pb) et des oxydes binaires de formulation AO, à 

structure type NaCl. Certains de ces super-réseaux existent naturellement (phases de Ruddlesden-

Popper), les autres peuvent être dérivées de ces structures naturelles en insérant des plans AO 

supplémentaires à l’interface entre couches de type pérovskite, ou encore être conçus comme des 

intercroissances de phases à cation A différent.  

En jouant sur ces paramètres compositionnels et structuraux, ainsi que sur les effets de 

dimensionnalité et de contraintes aux interfaces, il est envisagé de pouvoir moduler les propriétés 

ferroélectriques des ces systèmes nano-structurés, et de voir émerger de nouveaux phénomènes 

et/ou des propriétés ferroélectriques exotiques.  

II. OUTILS THEORIQUES 

L’essentiel des calculs fait appel à la théorie de la fonctionnelle de la densité, pour établir en 

particulier les courbes de dispersion de phonons (les phonons d’énergie négative indiquent et 

décrivent une instabilité structurale), les énergies associées aux distorsions mis en évidence, les 

constantes de force inter-atomiques.  

Par ailleurs, un effort important est dédié à la construction de potentiels modèles, mettant en jeu les 

paramètres évalués par les calculs DFT. L’idée est d’évaluer ces paramètres sur des systèmes simples, 

de construire un modèle transférable aux systèmes à structure de complexité arbitraire, et de 

pouvoir accéder aux effets de la température par des approches statistiques (algorithmes de Monte-

Carlo). Les phénomènes dépendant de la température (en particulier, les transitions de phase), 

peuvent ainsi, dans le cas idéal, être étudiés pour des structures complexes avec une précision 

équivalente à celle des calculs de premiers principes. 

Enfin, une approche phénoménologique de type Landau-Devonshire est appliquée au cas des réseaux 

PbTiO3/SrTiO3 de période minimale, permettant de tester le modèle minimal requis pour reproduire 

des données expérimentales originales obtenues dans la littérature pour ce système. Des 

phénomènes non attendus et originaux, offrant d’intéressantes perspectives,  ont par ailleurs été mis 

en évidence par cette approche.  

III. Le super-réseau PbTiO3/SrTiO3 (1/1) 

Le super-réseau PbTiO3/SrTiO3 (1/1) est constitué de couches pérovskites simples (épaisseur d’un 

octaèdre TiO6) et a fait l’objet de travaux expérimentaux précis, montrant de la ferroélectricité de 

type impropre. En accord avec l’expérience, les calculs DFT montrent bien que l’instabilité 

ferroélectrique fait ici intervenir trois paramètres d’ordre (un mode polaire et deux modes de 



rotations d’octaèdres). Les résultats expérimentaux (notamment, évolution linéaire de la polarisation 

avec la température, et non-divergence de la constante diélectrique à la transition) sont bien 

reproduits par une modèle phénoménologique macroscopique de type Landau, et l’introduction de 

températures critique distinctes pour les trois paramètres d’ordre révèle un comportement 

inattendu (conservation du comportement linéaire de la polarisation vs. T), ouvrant le champ d’une 

ferroélectricité impropre de type exotique (Figure 1).  

 

Figure 1. Amplitude des modes de distorsion polaires Pz et de rotation Φzi et Φzo en fonction de la température, 

et constante diélectrique relative, calculées par une approche de type Landau-Devonshire, et reproduisant les 

résultats expérimentaux pour le système PbTiO3/SrTiO3 (1/1).  

 

La construction d’un potentiel modèle microscopique, associé à une simulation de type Monte-Carlo, 

permet de retrouver le comportement diélectrique attendu, et de révéler la signature d’autres 

condensations de modes à basse température (Figure 2). Ce modèle doit être affiné, mais permet 

d’ors et déjà d’envisager son application à l’étude des transitions de phase au sein de systèmes 

beaucoup plus complexes, et faisant intervenir le couplage de plusieurs paramètres d’ordre. Enfin, 

les effets du champ électrique appliqué et des contraintes (pression chimique / effets de substrat) 

ont pu être abordés et montrent que le comportement diélectrique peut être ainsi modulé de façon 

contrôlée dans ces systèmes. 



 

Figure 2. Amplitude des modes de distorsion polaires Pz et de rotation Φzi et Φzo en fonction de la température, 

calculée par un potentiel modèle couplé à une simulation de type Monte-Carlo, pour le système PbTiO3/SrTiO3 

(1/1). 

 

IV. Super-réseaux ABO3/AO artificiels et de type Ruddlesden-Popper. 

Le propos est ici de déterminer la délimitation appropriée entre « interface » et couche centrale dans 

les structures de type Ruddlesden-Popper ou apparentées, afin de pouvoir traiter séparément ces 

deux sous-parties, et d’obtenir in fine une description des propriétés du système complet avec une 

précision équivalente aux premiers principes.   

Les calculs de dispersion et densité d’états de phonons, de charges effectives de Born, de potentiel 

de Hartree, des constantes de forces inter-atomiques, du tenseur diélectrique ont été effectués par 

DFT. Il est montré que, vis-à-vis des propriétés structurales et diélectriques, l’effet de l’interface est 

limité à la première couche d’octaèdres du bloc pérovskite. Au-delà, quelque soit le système étudié 

ici (A = Ba, Sr, Pb), la dynamique de réseau et la structure adoptent le comportement de la pérovskite 

cubique. Seule l’instabilité ferroélectrique dans la direction perpendiculaire à l’interface nécessite 

une longueur de corrélation suffisante, quoique réduite, pour apparaître. Cette convergence très 

rapide des grandeurs étudiées vers les valeurs caractéristiques de la pérovskite, en fonction de la 

distance à l’interface, permet d’envisager une partition efficace, robuste et transférable des super-

réseaux en couches centrales et interfaces. La connaissance « premiers principes » des propriétés de 

la pérovskite et d’une interface réduite doit alors permettre une description précise des propriétés 

de super-réseaux complexes. 



V. Super-réseaux PbTiO3/SrTiO3 (m/n). 

Les densités d’états de phonons et les constantes de forces inter-atomiques ont été calculées par 

DFT pour les super-réseaux PbTiO3/SrTiO3 (3/1) et (1/3), puis mises en regard des mêmes grandeurs 

obtenues pour les pérovskites et pour le système PbTiO3/SrTiO3 (1/1). Il est démontré que ce dernier 

système décrit très correctement le comportement de l’interface dans les systèmes (3/1) et (1/3), et 

que la tri-couche centrale possède le même comportement que la pérovskite correspondante (Figure 

3). Ces résultats confirment qu’à l’aide d’une partition (interface vs. cœur) et d’un potentiel modèle 

(dont les paramètres sont calculés par DFT, sur systèmes simples) adaptés, il est possible de décrire 

le comportement diélectrique de super-réseaux complexes avec une précision égale aux approches 

de premiers principes, et d’aborder de la même manière les phénomènes aux températures finies. 

 

Figure 3. Comparaison des densités d’états de phonons calculées pour SrTiO3, PbTiO3 et pour le système 

PbTiO3/SrTiO3 (1/1), avec les densités d’états partielles obtenues pour le cœur et l’interface des systèmes 

PbTiO3/SrTiO3 (3/1) et (1/3). 

 

VI. Conclusion 

Ce travail conduit à une méthodologie pour l’étude théorique des propriétés structurales et 

ferroélectriques de systèmes complexes de type super-réseaux. Cette méthodologie s’appuie tout 

d’abord sur une partition adaptée des systèmes en régions interfaciales et de cœur. Il est démontré 

que cette partition est simple, grâce à la convergence rapide des grandeurs calculées lorsqu’on 

s’éloigne de l’interface. Dans un second temps, il est montré qu’un potentiel modèle peut être 

construit sur la base de paramètres issus de calculs de premiers principes. Ce potentiel, qui reste à 

affiner, permet alors l’étude fine de super-réseaux complexes, et de leur comportement en 



température via un traitement statistique. Enfin, une approche phénoménologique a permis de 

reproduire des données expérimentales relatives à une transition de phase ferroélectrique de type 

impropre, c’est-à-dire faisant intervenir un paramètre d’ordre principal différent de la polarisation. 

Cette approche montre que des transitions de phase ferroélectriques exotiques, de type impropre, 

peuvent être mises en évidence en fonction des couplages entre plusieurs paramètres d’ordre, et de 

leurs températures critiques.  

Ce travail ouvre la voie à l’étude de systèmes complexes de type super-réseau, avec une précision 

équivalente à celle des méthodes de premiers principes (restreintes habituellement à des systèmes 

relativement simples), et en incluant l’effet de la température. De plus, la méthodologie proposée 

peut être affinée (potentiel modèle aussi robuste et transférable que possible), et la pertinence des 

phénomènes exotiques mis en évidence pourra être évaluée par des études théoriques ou 

expérimentales. Il a été aussi montré des dépendances intéressantes et exploitables des propriétés 

diélectriques en fonction du champ électrique appliqué et des contraintes.  
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Introduction

Ferroelectricity has attracted intensive research interest since it was discovered in

1920. With the time passing, various ferroelectric materials were identified. There

exists a huge experimental data and different theories were proposed to describe

and explain this phenomenon. Nowadays, ferroelectric materials are widely used

in technological applications, from space shuttles to Iphone 5... Perovskite type

compounds of chemical formula ABO3, is an important group of materials that exhibit

ferroelectric properties for B=Ti, Nb, Ta..... Perovskite materials also exhibit plenty

of other behaviors, like superconducting properties, ferromagnetism, multiferroism

etc., that attracted much interest during the recent years.

The aim of the present thesis is to investigate, from first-principles, the ferroelectric

properties and related phase transition behaviors in perovskite type compounds. We

will not focus only on the bulk perovskite systems, but also on related layered super-

lattices where the interface may play an important role and induce new phenomena.

Our study is organized as follows.

In a first part, we will overview the general framework of the present thesis. In

Chapter 1, we will briefly introduce the background knowledge on ferroelectricity

in perovskite compounds, from bulk systems to different types of layered systems.

Different types of ferroelectricity will be introduced, including proper ferroelectricity,

improper ferroelectricity and hybrid improper ferroelectricity. In Chapter 2, the

theoretical scheme that was used for all the calculations in this thesis will be discribed,

including the density functional theory (DFT) and a new type of first-principles based

model atomic potentials.

In Chapter 3, we will focus on the investigation of the ferroelectric phase transition

behaviors of PbTiO3/SrTiO3 superlattices. Based on the data of DFT calculations,

a Landau type model will be developed and a new model atomic potentials will be

fitted providing access to finite temperature properties.

1
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In Chapter 4, based on the DFT calculations for different types of ABO3/AO super-

lattices, we will study the possibility of transferring our model potential from short

period superlattices to larger systems. Our investigation will mainly focus on the

dynamical properties of these systems. Finally, we will apply a similar approach to

thicker PTO/STO(m/n) systems in Chapter 5.



Chapter 1

General background

1.1 Introduction

The main object of this thesis is to investigate from first-principles the ferroelectric

properties of superlattices derived from well known titanium based ABO3 compounds

and to explore the possibility of building effective potentials providing access to the

finite temperature properties of short and long period superlattices. The aim of this

chapter is to briefly introduce the background of the present thesis. First, we will

introduce some aspects of the microscopic origin of the ferroelectric instability. Then

we will briefly introduce the ABO3 series of compounds from bulk systems to super-

lattices, We will highlight the competition between different structural instabilities

yielding different phase transitions sequences. In the third part, we will introduce

some theoretical approaches commonly used in this field. At last, we will explain our

motivation and the organization of the present thesis.

1.2 Microscopic origin of ferroelectricity

A theoretical explanation of the microscopic origin of ferroelectricity was first pro-

posed by Cochran [2] in 1960: the soft phonon mode concept was first introduced and

became the central quantity to describe the lattice instability and phase transition.

In the framework of the soft mode picture, the ferroelectric phase transition is driven

by a polar transverse optical mode which progressively softens and finally condenses

into the structure below the phase transition temperature. As a consequence, a finite

3
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polarization occurs, that can be characterized by an hysteretic loop under an applied

electric field.

The lattice dynamical equation of a crystal can be writen as follows, under the

harmonic approximation:

∑

κ′β

D̃κα,κ′β(�q)γm�q(κ
′β) = ω2

m�qγm�q(κα) (1.1)

where κ and κ′ indicate different atoms, α and β label the displacement direction,

ωm�q is the phonon frequency of mode m with the wave vector of �q, γm�q is the phonon

eigenvector which corresponds to the phonon displacement ηm�q =
√
Mγm�q. The

dynamical matrix D̃κα,κ′β is defined as:

D̃κα,κ′β(�q) =
1√

MκMκ′

C̃κα,κ′β(�q) (1.2)

Here, C̃κα,κ′β(�q) is the Fourier transform of the interatomic force constants (IFC ) in

real space [3].

Cκα,κ′β(l, l
′) =

∂E2

∂τκα(l)∂τκ′β(l′)
(1.3)

where l and l′ label the unit cells, τ is the displacement of the atom κ in unit cell l

along the directions labeled by α and β.

In a stable phase, the atomic positions will correspond to a minimum of energy. The

curvature of energy vs. any displacement and consequently the value of ω2 of all

phonon modes are positive. In this case any atomic motion will increase the total

energy of the lattice. When a phase is unstable, the curvature for some peculiar

atomic motions and the related value of ω2 are negative. Here, the frequency ω will

consequently be imaginary. The computation of phonons for a high symmetry phase

allows identifying the lattice instabilities and reveals an important technique in the

research for phase transitions in ferroelectrics.

In BaTiO3, first-principles calculations reproduce an unstable polar mode in the cubic

phase. This mode has an overlap of 99% with the atomic distortion taking place at

the phase transition from the cubic to the tetragonal phase, illustrating the relevance

of the soft mode theory of Cochran in this class of compounds.
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Cochran further explained the origin of the instability of the ferroelectric soft mode

from a competition between short-range forces stabilizing the cubic structure and

long-range electrostatic interactions destabilizing the structure. This basic idea was

checked and validated at the first-principles level in perovskite compounds. In that

context, it appeared that the giant Born effective charges related to dynamical trans-

fer of charges between O 2p and B atom d levels in perovskite compounds was a key

ingredient to produce a dipolar interaction sufficiently large to destabilize the crystal.

1.3 The ABO3 family of compounds

The widely investigated ABO3 cubic perovskite compounds have crystal structures

related to the mineral perovskite CaTiO3 which was discovered by Gustav Rose in

1839 and named as perovskite in honor of the eminent Russian mineralogist, Count

Lev Alexevich von Perovski [4]. Figure 1.1 shows the basic structure of ideal ABO3

compounds, which is cubic with space group Pm3̄m(221). This cubic phase observed

in most compounds at high temperature is paraelectric. When the temperature

decreases, these compounds may undergo different types of polar or non-polar struc-

tural phase transitions. In this part, we will briefly introduce the background of

ABO3 compounds, from bulk to superlattices.

Figure 1.1: The ideal structure of ABO3 perovskite compounds
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1.3.1 Simple perovskite ABO3 compounds

The broad range behavior of ABO3 compounds refers to different types of A and B

site cations. As it is reviewed in Refs. [1, 5, 6], the ABO3 family compounds present

various physical properties, from insulator to conductor and superconductor, from

ferroelectric (FE ) to ferromagnetic and multiferroic, from antiferro-distorted (AFD)

to orbital ordered etc. In this present thesis, we will mainly focus on the ferroelectric

property of perovskite material.

Figure 1.2: Simple ABO3 perovskite compounds cited from Ref.[1].

There are two basic types of atomic motions in perovskite materials that correspond

to these phase transitions (shown in Figure1.3). The first one is the atomic po-

lar motion, where cations move against oxygens (the ferroelectric phase transition);

the second one is the tilts of oxygen octahedra, which correspond to the non-polar

antiferro-distorted phase transition. We will introduce, in more details, these two

types of motions in Chapter 3.
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Figure 1.3: Three types of atomic distortions in perovskite. (a) Polar motion
along z axis; (b) in-phase octahedra rotation along z axis; (c) out-of-phase octa-

hedra rotation along z axis.

The tendency of perovskite compounds to be either ferroelectric or antiferrodistorted

is related to the so-called Goldschmidt tolerance factor:

t =
RA +RO√
2(RB +RO)

(1.4)

where RA, RB and RO are the ionic radii of A, B and O atoms. Generally, as it

is shown in Figure 1.4: t=1 leads to the ideal cubic perovskite structure; distorted

perovskite exist in the range 0.85<t<1.1, beyond those limits the system will be in

other structures. In the range of 0.85<t<1.1: when t > 1, the B site atom is relatively

small so that the system has a tendency to develop a polar distortion; when t < 1,

the A site atom is relatively small and the tilting of the oxygen octahedra will be

favored.

BaTiO3 is a well known perovskite material, the ferroelectric property of which was

found accidentally in 1945 [7]. Three phase transitions are observed: i) at T≃130℃,

the system switches from cubic (Pm3̄m(221)) to tetragonal (P4mm(99)) phase in

which the spontaneous polarization appears along z axis; ii) an orthorhombic phase

(Pmm2(25)) is observed below T≃0℃ where the spontaneous polarization is along

the [011] direction; iii) when the temperature decreases below T≃-80℃, the rhom-

bohedral phase appears and the polarization will be switched to the [111] direction.
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Figure 1.4: Structure evolutions in terms of Goldschmidt tolerance factor t.

Another perovskite compound, KNbO3, shows the same phase transitions sequence

starting at 710 K [7]. PbTiO3 has a ferroelectric ground state as well, but it is of

tetragonal symmetry.

SrTiO3 is another remarkable perovskite material, the ground state of which is char-

acterized by the tilts of oxygen octahedra, i.e. a non-polar antiferro-distorted (AFD)

state. At the temperature T≃100 K, SrTiO3 is switched from cubic to a AFD non-

polar tetragonal phase in which the octahedra rotates around the tetragonal axis.

Nevertheless, SrTiO3 can transform to a ferroelectric phase under strain at room

temperature [8]. The suppressed ferroelectric phase transition under zero strain is

due to quantum fluctuations [9]. This non-polar behavior also appears in other ABO3

compounds e.g. CaTiO3 [10, 11], KTaO3 [12, 13]...which are called incipient ferro-

electrics (or quantum ferroelectrics).

These two types of ferroic orders can coexist in some perovskite material e.g. BiFeO3

[14, 15] and CaMnO3 [16]. It is worth to mention that, in CaMnO3, the ferroelectricity

and the magnetism are not necessarily exclusive but can be driven by the same cation.

Moreover, other type of atomic distortions can exist in ABO3 perovskite compounds

such as the anti-ferroelectric phase of PbZrO3 [17, 18].
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1.3.2 Layered perovskites

Beyond the bulk phases, layered perovskites, in which oxides with different composi-

tions or structures are stacked together, can also exhibit rich interesting phenomena.

Some of the properties in complex superlattices are bulk-like while some of them

are completely new and specific. Typically, interfaces play a key role in driving new

physics in superlattices by modifying the electrostatic boundary condition, breaking

symmetry, inducing epitaxial strain etc. [1, 19–21].

For instance, at any interface between two materials which have different chemical

potentials, charge transfer will be allowed. Charge transfer in CaMnO3/CaRuO3

systems results in a ferromagnetic interface from which finite charge transfer be-

tween these layers can be deduced [22]. It is interesting to see that without real

charge transfer, geometric control of virtual charge exchange can completely alter

the magnetic properties [19, 23, 24]. Furthermore, the interface between materials

with different valence states at the B site in the superlattice composed of SrTi4+O3

and LaTi3+O3 makes the system exhibit metallic behavior [25]. In LaAlO3/SrTiO3

(LAO/STO) systems, a “2-dimensional-electron-gas” (2DEG) appears at the inter-

face on the STO side when the LAO film thickness exceeds 3 unit cells [26]. These

experimental results have attracted a lots of interest and research activity [27] and

many exciting properties related to this 2DEG have been observed [26, 28, 29].

Due to the strong polarization-strain coupling in perovskite compounds, the superlat-

tice system is highly sensitive to the epitaxial strain generated at the interface when

the two basic materials have different lattice parameters. It has been preliminarily

demonstrated that epitaxial strain can be used to induce ferroelectricity [8], multifer-

roicity [16], and to create strongly coupled multiferroics [30]. Strain engineering has

become a popular method for controlling the lattice instabilities, atomic distortions

and tuning the ground state between different phases [31–34].

Here, we would like to briefly introduce the selected types of layered perovskites

which are relevant in the present thesis.

Ruddlesden-Popper compounds

Ruddlesden-Popper(RP) compounds form a series of naturally layered perovskites

(intrinsic superlattices) with the general formula (ABO3)n/(AO) as first proposed by
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S.N. Ruddlesden and P. Popper in 1958 [35]. As it is shown in Figure 1.5, the typical

structure of Ruddlesden-Popper((ABO3)n/(AO)) compounds is based on perovskite

layers connected by a single unit cell rock-salt layer. At each interface, the ABO3 layer

is shifted along [110] direction by (1/2, 1/2) lattice constant. Bulk ABO3 compounds

can be considered as the RP compound with infinite value of n. The first member

(n=1) corresponds to the K2NiF4-type structure.

It is interesting to see that Ruddlesden-Popper compounds can exhibit properties

distinct from these of related ABO3 materials. The rock-salt interface breaks the

continuity of the B-O bond chains along z and suppresses ferroelectric instabilities

in these series of superlattices, along the stacking direction. In (CaTiO3)n/(CaO)

and (SrTiO3)n/(SrO) series of compounds, no tendency to ferroelectric behavior is

observed for short periodic members (mentioned in Ref. [36]). To reactivate the

ferro electric order, one option is to increase the thickness of perovskite layers; an-

other method is to modify the structure of the interface as demonstrated in the

(SrTiO3)n/(SrO) series from first-principles [37]. The series of (SrRuO3)n/(SrO)

compounds is another interesting member of Ruddlesden-Popper type superlattices;

the n=1 member is an unconventional superconductor [38], the n=2 member exhibits

metamagnetism and quantum criticality [39–41], and for higher value of n, ferromag-

nets with rather complicated magnetic and transport properties are found [42–44].

Similar interesting phenomena were observed in the (CaRuO3)n/(CaO) series com-

pounds as well[45–49].

Besides those example, some other interesting observation in Ruddlesden-Popper

compounds are worth mentioning here: the first member of the (SrTiO3)n/(SrO)

series compounds was reported having a large dielectric constant [50]; the first mem-

ber of (PbTiO3)n/(PbO) series was predicted having in-plane ferroelectric properties

[36]; hybrid improper ferroelectricity is predicted in (CaMnO3)n/(CaO) from first

principles [51].

(ABO3)n/(AO)m superlattices

In close connection with the Ruddlesden-Popper compounds, the artificially designed

(ABO3)n/(AO)m (m>1 ) compounds alternate perovskite and rock-salt materials.

The basic structure is shown in Figure 1.5. The Ruddlesden-popper compounds can

be considered as the m=1 members of this series.
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Figure 1.5: The structure of Ruddlesden-Popper(at the right side) and artificially
designed perovskite/rock-salt compounds(at the left side), the number of perovskite

layer in each unit cell is from n=1 to 3 .

It has been experimentally demonstrated that perovskite compounds can be grown

on silicon substrates [52]. The case m=6 and n=5 for (BaTiO3)n/(BaO)m and

(SrTiO3)n/(SrO)m has been investigated from first-principles [53]. The authors con-

cluded that, at the interface, epitaxial strain exists and the atomic rumpling is local-

ized in this region. There was no ferroelectric behavior predicted in this system. Fur-

thermore, the ferroelectric and antiferroelectric instabilities in (BaTiO3)n/(BaO)m

was studied later from first-principles [54]; it was shown that different ferroic orders

compete in such superlattices. In this work, (BaTiO3)n/(BaO)m was assumed to be

grown on a SrTiO3 substrate thus fixing the in-plane lattice constant as the one of

bulk SrTiO3, so that in-plane strain was induced. It was concluded that although

BaTiO3 is ferroelectric at bulk level, such type of superlattices can present an anti-

ferroelectric ground state at short BaTiO3 thicknesses due to the depolarizing field,

inherent to the electrical boundary conditions. The epitaxial strain plays also as a

key role by tuning the competition between ferroelectric and antiferroelectric orders.
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ABO3/A’B’O3 superlattices

ABO3/A’B’O3 artificial superlattices is another series of remarkable and widely in-

vestigated system, based on the same perovskite structure but different compositions.

Often ferroelectric and paraelectric compounds are combined. Different options pro-

vide an exciting opportunity for the design of artificial materials with tunable prop-

erties.

BaTiO3/SrTiO3 is an interesting example which has been widely discussed in the

literature [55–61]. It was proposed from first-principles that, when the in-plane lat-

tice constant is fixed to the bulk SrTiO3 value, the compressive strain enhances the

out-of-plane polarization in BaTiO3 layers [62, 63]. A uniform polarization then de-

velops in the whole superlattice, BaTiO3 forcing a polarization in SrTiO3, since any

polarization mismatch at interface would cause large depolarization fields with a large

energy cost. This homogeneous polarization phenomenon is expected in short period

superlattices [64] while various domain patterns can appear in larger systems. It is

also observed that the in-plane component of polarization can appear in SrTiO3 lay-

ers under specific strain conditions [56, 65–67]. Similar investigations and arguments

were applied to KNbO3/KTaO3 superlattices [68, 69]. It is worth to mention that

in (KNbO3)n/(KTaO3)n, when n<6, KNbO3 layers are strongly coupled with each

other while they behave essentially independently when n is larger than 12, which is

confirmed both theoretically and experimentally [70, 71].

The PbTiO3/SrTiO3 system is another remarkable ferroelectric/paraelectric super-

lattice which can be grown experimentally using molecular beam epitaxy (MBE) [72]

and off-axis radio frequency (RF) magnetron sputtering [73]. Different types of in-

stabilities compete in perovskite compounds. Usually, at the bulk level, only one

type of distortion appears in the ground state as in PbTiO3, which has a purely fer-

roelectric ground state, and in SrTiO3, which has an anti-ferrodistorted ground state

[74], although both ferroelectric and anti-ferroelectric instabilities coexist in the high

symmetry phase of the two bulk materials [9, 75].

Large period PTO/STO superlattices exhibit a ferroelectric behavior, with a cou-

pling between PTO layers and a domain structure dependent of the STO layer

thickness [76]. In the limit of small STO thicknesses, a uniform polarization can

develop through the whole superlattice. The amplitude of this polarization decreases

with the PTO content and is expected to vanish below a critical PTO thickness.

Surprisingly, an unexpected recovery of ferroelectricity was observed in ultra-short
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period PTO/STO superlattices[20]. Bousquet et al. attributed this behavior to the

emergence of a new type of ferroelectricity arising from an unusual trilinear coupling

between the ferroelectric mode and two distinct antiferrodistortive motions. Con-

sequently, the coupling of lattice modes in oxide superlattices has generated a lot

of attention. The concept of “hybrid improper ferroelectricity” further discussed in

the next Section was introduced [51] and rationalized [77]. Guiding rules have been

proposed to identify alternative hybrid improper ferroelectrics [78]. The emergence

of ferroelectricity in rotation-driven ferroelectrics was also widely discussed [79]. Still

many questions remain regarding the finite temperature behavior of such systems like

the structural phase transition sequence and the ferroelectric switching mechanism.

1.4 Different types of ferroelectricity

Ferroelectricity was discovered in 1920 by Valasek [80] who observed in Rochelle salts

a spontaneous polarization which is switchable under an external electric field. This

ferroelectric materials are a group of insulators characterized by a reversable sponta-

neous polarization in which the coupling between the electric field and polarization

gives rise to an electric hysteresis loop as shown in Figure 1.6. With the time passing,

various ferroelectric materials were used in technological applications. In the present

thesis, we will mainly focus on the ferroelectric properties of perovskite compounds, in

which ferroelectricity was first observed in BaTiO3 in 1945 [7]. Ferroelectric materials

usually undergo a structural phase transition from a non-polar centrosymmetric para-

electric phase to a polar noncentrosymmetric ferroelectric phase when decreasing the

temperature. However, the phase transition mechanism is different for conventional

proper ferroelectricity, improper ferroelectricity and hybrid improper ferroelectricity,

as it will be briefly introduced in this section.

1.4.1 Proper ferroelectricity

In conventional proper ferroelectrics like BaTiO3 and PbTiO3, the polarization is in-

duced directly by the condensation of unstable polar mode which acts as the primary

order parameter. In such systems, the evolution of the energy with the polarization

around the paraelectric structure (P=0 ) is characterized by a typical double-well

shape (the blue curve in Figure 1.7). We can expand the internal energy around the

paraelectric structure in terms of the order parameter P as:



Chapter 1. General background 14

Figure 1.6: Hysteresis loop in ferroelectric materials. E refers to the external
electric field and P refers to the polarization. Pup and Pdown correspond to two
equivalent spontaneous polarized states with opposite polarization directions. Ec

is the depolarization field.

E =
1

2
A0P

2 +
1

4
B0P

4 (1.5)

In proper ferroelectrics, A0 < 0. This negative energy curvature is associated to

the presence in the paraelectric phase of an unstable polar mode with an imaginary

frequency (A0 ∝ ω2) which appears at the first-principles level as the fingerprint of

the proper ferroelectric behaviors.

1.4.2 Improper ferroelectric

Improper ferroelectricity is another distinct behavior which was first proposed in

1974 [81]. In this kind of materials, contrary to conventional proper ferroelectrics,

the ferroelectric phase transition is not driven by an unstable polar phonon mode but

by another non-polar mode, let’s say φ1. The polarization P is no more the primary

driving force for the ferroelectric phase transition but is the slave of another order

parameter which couples with it through an energy term linear in P. As example, let

us mention the spin-driven improper ferroelectric TbMnO3 [82–84] and the structural

driven improper ferroelectric YMnO3 [85]. In TbMnO3, there is a bi-linear coupling

between the polarization and the magnetic primary order parameters so that the

system is also refered to as a pseudo-proper ferroelectric [86, 87]. As discussed in [85],

in YMnO3, there is no unstable polar mode at the zone center. The phase transition
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Figure 1.7: Energy curve in terms of P, for proper ferroelectric state (blue color)
and non-ferroelectric state (red color).

is driven by an unstable non-polar ‘trimerization’ mode (K3=φ1), the condensation

of which produce the appearence of P through a coupling term.

The expansion of the energy in terms of φ1 and P in systems like YMnO3 takes the

form:

E =
1

2
A0P

2 +
1

4
B0P

4 +
1

2
A1φ

2
1 +

1

4
B1φ

4
1 + C01φ

3
1P (1.6)

A0 is positive and A1 is negative since P is a stable mode while φ1 is an unstable mode.

The condensation of φ1 will act as a geometric field that will shift the polarization

well to lower energy through the coupling term C01φ
3
1P as illustrated in Figure 1.8.

Contrary to proper ferroelectricity, the polarization well remains a single well with

direct consequences on the ferroelectric properties. First, the switching of P requires

the concomitant switching of φ1 (see Figure 1.8) providing a unusual strong link

between the two degrees of freedom. Second, in the absence of softening of a polar

mode, there is no divergence of the dielectric constant and related dielectric properties

at the phase transition. Finally, the system is less sensitive to depolarizing field issues

and can preserve a finite spontaneous polarization, even in open-circuit electrical

boundary conditions [77].
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Figure 1.8: Energy curver in terms of P for non-ferrelectrics (red line) and
improper ferroelectrics (green line, solid and dashed).

1.4.3 Hybrid improper ferroelectricity

Things are still slightly more complex for ‘hybrid improper ferroelectricity’ which was

first proposed for PTO/STO(1/1) system in Ref [51]. The energy curve in terms of P

is a shifted single-well as in improper ferroelectricity. However, as it is shown in the

energy expansion 1.7, there are now two independent non-polar order parameters,

φ1 and φ2, linearly coupled with polar mode P through the trilinear coupling term

λφ1φ2P . Here, φ1 and φ2 work together as an hybrid mode to induce the polarization.

To switch the polarization in this kind of systems requires switching either φ1 or φ2.

Besides, the condensation of two distortion modes will automatically condense the

third one.
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2
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(1.7)

The investigation of such hybrid improper ferroelectricity recently appeared as a

field of increasing interest. Such ferroelectrics may display different phase transition

behaviors from conventional improper ferroelectrics. Also the coupling with other

properties like the magnetism offer a pathway to electric switching of the magnetiza-

tion [51, 88].
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1.5 Technical approaches

In the present thesis, our investigations will rely on the density functional theory, ef-

fective Hamiltonian methods and phenomenological Landau-Devonshire theory. The

purpose of this section is to briefly introduce our technical approach; more details

will be found in following chapters.

1.5.1 First-principles calculations

Density Functional Theory (DFT) is widely used for the calculation of electronic

structure and properties of complex oxides [89]. In the case of ABO3 ferroelectric

compounds, a large amount results from DFT calculations have been reported in

recent years. Here, we just select some of them as examples not only in bulk systems

like BaTiO3 , PbTiO3[90], KNbO3 [91], but also for superlattices such as PTO/STO

[20], BTO/STO [62, 63].

As it is mentioned in Ref [89], the first-principles calculations can be very accurate at

predicting structural parameters, which is an important complement to experimental

structure determination. The phonon calculations based on first-principles proved

an efficient way to explain the infrared and Raman spectroscopy data. Furthermore,

phonon calculations in high-symmetry phases can be used to identify the lattice in-

stabilities related to the atomic distortions in the low symmetry phase. We need

to notice that, within DFT calculations, some approximation may cause errors. For

instance, the local-density-approximation (LDA) calculations systematically under-

estimate the lattices volume to which the ferroelectric properties are sensitive. In

this case we need to be very carefully in treating the DFT results for ferroelectricity.

All first-principle calculations performed in this present thesis were done using the

open source code package ABINIT [92]. There are many other available packages

within DFT, Hartree-Fock or hybrid: VASP [93–96], SIESTA [97], CRYSTAL [98],

WIEN2k [99], and PWscf[100]. The basics of DFT will be introduced in Chapter 2.

1.5.2 Effective Hamiltonian methods

In ferroelectric ABO3 compounds, the temperature evaluations of the structure and

functional properties is a key issue. Unfortunately, DFT calculations are typically
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restricted at zero Kelvin. First-principles molecular dynamics simulations are a pri-

ori possible but restricted in practice to very small systems and time scales. In this

context, an effective Hamiltonian approach to structural phase transitions was pro-

posed by Rabe and Joannopoulos [101, 102] in which the thermal average of the

quantities of interest were calculated by a standard Metropolis Monte Carlo method,

and the parameters of the Hamiltonian were determined from first-principles calcu-

lations. This effective Hamiltonian method was first applied to GeTe [101, 102] and

then generalized to the perovskite BaTiO3 [103, 104], opening the door to the in-

vestigation of temperature dependence of phase transitions in perovskite materials.

However, the ‘Effective Hamiltonians’ are restricted to a small set of relevent ionic

degrees of freedom, which is not sufficient for PTO/STO(1/1) where many phonon

instabilities coexist in the reference high-symmetry phase. As a natural expansion,

a new ‘model potential’ was suggested by Wojde et. al. [105] that properly includes

all ionic degrees of freedom. This new method will be briefly introduced in Chapter

2 and applied to PTO/STO(1/1) superlattices in Chapter 3.

1.5.3 Phenomenological Landau-Devonshire Theory

At the macroscopic level, the most popular method to describe the temperature phase

transition behavior is the phenomenological Landau-Devonshire theory [106]. Here,

we will simply introduce the basic theory of this instead of listing a vast literature.

Based on Landau theory, the phase transition behavior is described in terms of or-

der parameters which correspond to the symmetry breaking process. Below the

Curie phase transition temperature TC , the order parameter has a finite value which

vanishes when temperature reaches TC . In this framework, the free energy of the

material is written as a Taylor expansion in terms of selected order parameters, as

the polarization P in the case of ferroelectric phase transitions:

F (T, P ) = AP 2 +BP 4 + CP 6 (1.8)

This expansion is typically truncated at the sixth order, A, B, C being independent

parameters. C is always positive to guarantee that the P which minimize F is finite.

According to the Landau theory, the sign of B determines the order of the phase

transition. Cases where B>0 corresponds to second order transition. A should be
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positive when T>TC since the minimum should be found at P=0 and be negative

when T<TC . The simplest choice is:

A = a(T − TC) (1.9)

with a>0. We notice that A ∝ ω2 where ω is the frequency of the polar mode

condensing at the phase transition. So that this temperature dependence of A is

a perfect agreement with the soft mode theory of Cochran that postulates ω2 =

ω2
0(T − TC) and so well suited to describe ferroelectricity. With such parameters,

when T>TC , the energy curve has a single well with the minimum value at P=0. For

T<TC , the energy curve will be a double well in which the minimum points are found

at P=±P0 where P0=
√

a(TC−T )
2B

. Similar analysis can be used for first order phase

transitions by fixing B to a negative value [7, 107]. In this case the phase transition

takes place at T0 >TC and the polarization switches discontinuously from zero to a

finite value at the transition point.

1.6 Motivation

As it is introduced above, the first-principles methods based on DFT efficiently work

but is restricted to zero Kelvin systems. Effective Hamiltonian methods, based on

parameters issued from DFT, can describe the temperature dependence of phase

transitions but mainly for bulk ferroelectric materials (BaTiO3 [103, 104], SrTiO3,

PbTiO3 [108]). Specifically, for the short period PTO/STO(1/1) superlattice, it

is observed that different modes of atomic distortions are coupled. However, it is

difficult to identify from DFT calculations which one is the primary order that drive

the phase transition. In this case, elaborating a model for superlattices beyond the

bulk level becomes meaningful.

The first motivation for the present thesis is to investigate the possibility of building

an effective model for perovskite superlattices. Based on the effective Hamiltonian

approach, we aim at building an effective model for short periodic PTO/STO(1/1)

superlattice, that can describe the temperature dependence for each mode of atomic

distortion. DFT calculations will be performed as the first step and will provide

the parameters in effective Hamiltonian, which will be developed to include all the

relevant phonon modes. The detail of this approach will be introduced in Chapter 3.
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Furthermore, to go beyond the short periodic system, we need to extend our model

to thick superlattices, this is our second motivation. Directly calculating the phonon

behavior of large periodic systems from first-principles become rapidly untraceable.

In this case we wish to develop another model method based on accurate calculations

on simple materials, e.g bulk, short periodic superlattices. This will be presented in

Chapter 4.



Chapter 2

Theoretical approach

2.1 Introduction

Many properties of materials can nowaday be determined from first-principles, pro-

viding key new insights into critical problems in physics, chemistry and material

sciences. In this chapter, we will give a brief overview of first-principles methods

we used in our research. We will describe the general framework, equations and the

main approximation we used without mathematical details.

Density Functional Theory (DFT), which is based on quantummechanics, has become

one of the most widely used first-principles approach. In this chapter, we will first

introduce the Schrödinger equation for many-body systems and the widely used

Born-Oppenheimer approximation. Then, we will describe the framework and the

basic equations of DFT and briefly introduce Density Functional Perturbation Theory

(DFPT). In the next section, the main approximations used in DFT calculations will

be presented including different exchange-correlation approximations, the plane wave

expansions, the k-grid for Brillouin zones and the so-called pseudopotentials. At last,

a finite temperature theory so-called ‘effective model potential’ will be introduced.

2.2 Many-body Hamiltonian

In quantum mechanics, the physics of a stationary system is described by the time-

independent Schrödinger equation:

21
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Hψ = Eψ (2.1)

where ψ is the wave function of the many-body system, H is the Hamiltonian oper-

ator and E is the corresponding energy. The Hamiltonian for a many-body system

with the interaction of electrons and nuclei can be written as:

H(�R,�r) = TN(�R) + Te(�r) + VNN(�R) + Vee(�r) + VeN(�R,�r) (2.2)

where �R refers to all the nuclear coordinates �RI and �r refers to all the electronic

coordinates �ri . TN and Te are the kinetic energy operator of nuclei and electrons,

VNN , Vee and VeN are the electrostatic potential energy operator between nuclei,

electrons and electrons and nuclei:

TN = −�
2

2

∑

I

1

MI

∂2

∂ �R2
I

(2.3)

Te = − �
2

2m

∑

i

∂2

∂�r2i
(2.4)

VNN =
e2

2

∑

I �=J

ZIZJ∣∣∣�RI − �RJ

∣∣∣
(2.5)

Vee =
e2

2

∑

i �=j

1

|�ri − �rj|
(2.6)

VeN = e2
∑

iJ

ZJ∣∣∣�ri − �RJ

∣∣∣
(2.7)

ZI is the charge of nuclei I with mass MI , m is the mass of electron and -e is the

elementary charge.

The Born-Oppenheimer approximation arises from the fact that the mass of nuclei is

much larger than electron’s, so that the kinetic energy of the nuclei can be neglected

and the wave function of the electron system can be treated separately, considering

nuclei positions �RI as parameters :
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H(�R,�r) = Te(�r) + VNN(�R) + Vee(�r) + VeN(�R,�r) (2.8)

This basic simplification reduces the many-body problem to the study of interacting

electrons in some potential background of the nuclei. However, the problem remains

complex due to the electron-electron interactions. Besides, there are about 1023

electrons in the material so that it remains, in practice, impossible to solve the

Schrödinger equations and further simplifications are required, in order to retrieve

a set of single particle wave functions, and, for example, to take advantage of the

translation symmetry in crystals.

2.3 Density Functional Theory

DFT was first proposed in 1960’s by Hohenberg and Kohn [109] and Kohn and Sham

[110]. The first paper showed that the physical properties of the ground state for a

many-body electron system can be considered as a unique functional of the electronic

density n(�r). It provides the possibility to avoid seeking directly for the complex

many-body wave function, considering different point of view in which the electronic

density is a simpler scalar function of position. But in this paper, the authors did

not introduce any explicit form for this functional.

In the second paper, Kohn and Sham provided an ansatz formulation of the density

functional theory in which the interacting electronic system is replaced by a non-

interacting particle system with exactly the same ground-state electronic density, by

introducing a external potential. In this framework, the electronic density(n(�r)) can

be obtained by single particle wave functions and the potential can be efficiently

approximated as discussed below.

2.3.1 Kohn-Sham equations

In the single particle type Kohn-Sham framework, the total energy is given by:

EKS = −1

2

∑

i

〈
ψi| ∇2 |ψi

〉
+
1

2

∫
n(�r)n(�r′)

|�r − �r′| d�rd�r′+Exc [n(�r)]+

∫
Vext(�r)n(�r)d�r+ENN

(2.9)
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where the first term corresponds to the electronic kinetic energy of the non-interacting

particles, the second one is the classical Coulomb energy (Hartree energy) related to

the electronic density n(�r). The third term relates the exchange and correlation

energy between electrons. The fourth one corresponds to the interaction between

electrons and the external electron-ion potential Vext. The last one is the potential

energy between nuclei. All these terms are defined explicitely except the exchange

and correlation energy Exc[n(�r)]. The electronic density is given by:

n(�r) =
∑occ

i
ψ∗
i (�r)ψi(�r) (2.10)

For a given set of atomic positions, the ground-state can be obtained by minimizing

Eq. 2.9 under the following orthonormalization constraints:

〈ψi|ψj〉 = δij (2.11)

By using the Lagrange multiplier method, the minimization of Eq. 2.9 with the

constraints can be achieved by minimizing the following equation:

F [ψi] = E [ψi]−
occ∑

i,j

Λij(〈ψi|ψj〉 − δij) (2.12)

In which Λij are the Lagrange multipliers. The corresponding Euler-Lagrange equa-

tion is:

H |ψi〉 =
∑

j

Λij |ψj〉 (2.13)

where the Hamiltonian is

H = −1

2
∇2 + vext + vH + vxc (2.14)

The Hartree and exchange-correlation potentials are respectively defined as the func-

tional derivative of the Hartree and exchange-correlation energy with respect to the

density:
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vH =
δEH [n]

δn(�r)
(2.15)

and

vxc =
δExc [n]

δn(�r)
(2.16)

The solution of Eq. 2.13 is not unique since we can always apply a unitary transfor-

mation U to the wave functions of the occupied states:

|ψi〉 →
occ∑

j

Uij |ψj〉 (2.17)

by keeping the same energy nor the density which is so-called gauge transformation.

Since the Hamiltonian is a hermitian operator, we can always work within the so-

called diagonal gauge where the Lagrange multiplier matrix is diagonal

Λij = 〈ψj|H |ψi〉 = εδij (2.18)

In practice, alternatively to solving Eq. 2.9, the ground state of the system can also

be determined by solving self-consistently the following set of Kohn-Sham equations

by a self-consistent procedure (as it is done in ABINIT).

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
−1

2
∇2 + vs

]
|ψi〉 = εi |ψi〉

vs(�r) = vext(�r) +
∫ n(�r1)

|�r1−�r|
d�r + δExc[n]

δn(�r)

n(�r) =
∑occ

i ψ∗
i (�r)ψi(�r)

(2.19)

The starting point of this procedure is a given set of atomic positions and a guess for

the electronic density n(�r). After solving Eq. 2.19, the obtained new density n′(�r) is

used to compute vs(�r) and Exc. This procedure is repeated until self-consistency is

achieved.
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2.3.2 Density Functional Perturbation Theory

Numerous physical properties (mechanical, dielectric, dynamical,...) depend on the

derivative of the total energy with respect to perturbations i.e. strain, external elec-

tric field, atomic displacements... This can be calculated by freezing the system into

finite values of the perturbation, and extracting derivatives from a finite difference

technique (so-called frozen-phonon approach). It is also possible to access these by

merging the DFT and perturbation theory in a systematic way. Density Functional

Perturbation Theory (DFPT) was first reported by Baroni, Giannozzi and Testa

[111–114]. A different way to calculate the energy-derivatives was proposed by X.

Gonze, Allan and Teter [115–119], based on a variational principle rather than solv-

ing the Sternheimer equation. It gives access also to non-linear responses thanks to

the (2n+1) theorem [115].

Let us consider a small external perturbation labeled by the parameter λ, which can

refer to the atomic displacements R, homogeneous strain η or homogeneous electric

field ξ. Then the energy E [λ] can be expanded around the ground-state (λ=0)

according to:

E [λ] = E (0) +
∑

i

∂E

∂λi

∣∣∣∣
0

λi +
1

2

∑

i,j

∂2E

∂λi∂λj

∣∣∣∣
0

λiλj + ... (2.20)

If we truncate this expansion to the second order, the related physical quantities are

reported in Table 2.1. The first order derivatives with respect to atomic displacement

are related to the atomic forces (F ), the first order derivatives with respect to strain

can provide the stress tensor (σ) and the spontaneous polarization (P) can be ob-

tained from the first order derivatives with respect to electric field. The interatomic

force constants (C ), the optical dielectric tensor (ǫ∞), the elastic constant (c0), the

Born effective charges tensor (Z�), the piezoelectric tensor (e0) and the internal strain

coupling parameters (γ) can be accessed from the second order derivatives of the to-

tal energy. In this framework, additional physical quantities can be obtained as well,

i.e. the phonon dispersion curves, the piezoelectric and elastic tensors, the LO-TO

splitting, etc.
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Table 2.1: Physical quantities obtained from the first and the second order deriva-
tives of the total energy with respect to atomic positions R, homogeneous strains

η and electric field ξ.

λ 1storder 2ndorder
R η ξ

R F C γ Z�

η σ γ c0 e0

ξ P Z� e0 ǫ∞

2.4 Practical implementation

In principle, DFT provides us the possibility to access different physical quantities

from first-principles in an accurate way. However, we have to introduce several ap-

proximations to our practical calculation in order to achieve the balance between the

accuracy and the computation cost [120]. In this section, we will introduce the ba-

sic approximations in practical DFT calculations including the exchange-correlation

functional, the plane wave expansion and related truncation, the grid of the Brillouin

zone and the pseudopotentials.

2.4.1 Exchange-correlation energy

In the Kohn-Sham approach, the interacting many-body system is replaced by a

non-interacting type description in which fictitious independent particles move in

an effective potential produced by the ions and all the other particles. In practice,

only the form of exchange-correlation energy Exc[n] is unknown and must be approx-

imated. It is worth to point out that the exchange-correlation energy is expected

to be a universal functional of the whole electronic density. However, some meth-

ods of approximation consider local development of the density and provide accurate

results.

2.4.1.1 Local Density Approximation

The first proposed and simplest approximation is the Local Density Approximation

(LDA) [110] in which it is assumed that the exchange-correlation energy of each

particle at point �r, εxc(�r), only depends on the density at this point. In this case,

exchange-correlation energy is equivalent to the one for an homogeneous electron gas

with the same density:
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ELDA
xc [n] =

∫
εhomxc [n(�r)]n(�r)d�r (2.21)

The exchange part can be obtained analytically according to:

εhomx [n] = − 3

4π
(3π2n)

1/3 (2.22)

The correlation part εhomc was accessed by Monte-Carlo simulation of the homoge-

neous electron gas. There are various formulations (Wigner, X-alpha, Gunnarson-

Lundqvist, Perdew-Zunger, Perdew-Wang, Teter...) that are referred to as local

density approximations. They have the same exchange part but slightly different

correlation parts.

Such a simple approximation works well in many cases with surprising accuracy [121],

which make it become the most widely used on in solid state simulations. Typical

error of LDA respect with experimental values is about 1% on atomic positions and

lattice constants and about 5% on phonon frequencies. Well known exceptions are

on the electronic band gap which is systematically largely underestimated. The 1%

error on the lattice constants can have dramatic consequences in perovskite oxides,

in which the ferroelectric instability is very sensitive to strain.

2.4.1.2 Generalized Gradient Approximation

An alternative and connected approach is labelled as Generalized Gradient Approx-

imation(GGA) [122–125]. Here the exchange-correlation functional depends not only

on the local density at �r, but also on its gradient or higher order derivatives. It is

expanded as follows:

EGGA
xc [n] =

∫
n(�r)εGGA

xc

[
n(�r); |∇n(�r)| ;∇2n(�r)

]
d�r (2.23)

This GGA approach can improve the computed value of the cohesive energy and

consequently can better predict the bond-length and lattices constant. However, this

kind of approximation does not work well for dielectric constants since this quasi-local

approximation does not include any long-range interaction [126–128].
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Besides, there are several alternative available approximations such as the weighted

density approximation (WDA) [129], and so-called hybrid functionals were also de-

veloped to improve greatly the accuracy but at significantly larger computational

cost.

2.4.2 Plane-wave basis set

In an infinite periodic solid, by imposing well known Born-Von Karman periodic

boundary conditions, the wave function can be written in the Bloch form as the

product of a plane wave by a cell function:

ψn,�k(�r) =
1√
Ω
un(�k, �r)e

i�k·�r (2.24)

where Ω is the cell volume, �k is the wave-vector in the reciprocal space and n is

the band index. In practical calculations, Bloch functions are expanded in a Fourier

expansion:

ψn,�k(�r) =
1√
Ω

∑

G

Cn,k( �G)ei(
�k+ �G)·�r (2.25)

This Fourier transformation of the Bloch functions involves infinite number of plane-

wave terms. In practice, a cut-off energy Ecut has to be chosen to truncate this

expansion as:

�
2

2m

∣∣∣�k + �G
∣∣∣
2

≤ Ecut (2.26)

This kind of truncation will introduce an error that can be controlled by increasing

the value of Ecut, a convergence procedure is needed in practical calculations.

2.4.3 Brillouin zone grid

The electronic density is obtained from an integration procedure of the square mod-

ulus of previously mentioned Bloch type wave functions over the Brillouin zone in

reciprocal space, which is be done over a group of selected �k points. In this case, a
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finite number selection of �k point is needed so that the integration procedure can be

replaced by a sum over limited number of �k points. In this thesis, we will use the

techniques developed by Monkhorst and Pack [130]. The related physical quantities

obtained from DFT are strongly depends on the set of �k points especially for metals.

For a perovskite oxide such as SrTiO3 we used a 6×6×6 k-grid. For some conductors,

larger density of k-grid is required to precisely define the Fermi surface.

This kind of error induced by the k-grid of Brillouin zone is a numerical error, the

amplitude of which can be decreased by improving the density of �k points in Brillouin

zone.

2.4.4 Pseudopotentials

The plane wave basis set has some difficulties in describing the core electrons and

the valence electrons in the core region, since a large number of plane wave are re-

quired, which increases the cost of the practical calculation. To solve this problem,

the pseudopotential technique [131] was developed by introducing the following ap-

proximations: i) the electronic properties in solid state mainly depend on the valence

electrons while the core electrons can be isolated and treated equivalently with the

ones in an independent atom. ii) The strong oscillations of the valence electron state

inside the core region can be replaced by a smooth function while keeping the same

behavior out-side the core region.

The first approximation is so-called frozen-core approximation: the core electrons are

not involved in the chemical bonding directly which will be slightly modified by the

changed atomic environment. In this situation, it is reasonable to expect that the

core electrons can be treated as the ones in a isolated atom.

In the second approximation, the ionic potential screened by the core electrons is

replaced by a fictitious potential such that the valence wave functions remain un-

changed beyond a given cut-off radius, with a smoothly varying function inside the

core region. In practice, a reference calculation will be performed on a isolated atom,

and then an analytical pseudopotential is fitted to reproduce the previous calculation.

The pseudopotential approximation significantly decreases the number of plane waves

involved in the Bloch wave expansion and the number of electrons to be considered

in the Kohn-Sham equations, therefore the practical calculation can be much less

time consuming at practically low cost for accuracy. It is needed to mentioned that
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various types of pseudopotential approximations are available [132]. In our work,

we used Teter pseudopotentials [133] in all LDA calculations and optimized (RRKJ)

pseudopotentials in our GGA WC calculations [125].

2.5 Effective model potential

As mentioned in Chapter 1, “Effective Hamiltonians” were developed to investigate

the finite temperature behavior of materials [101–104], but only a small set of phonon

modes are selected as the basis, which can not well discribe the system such as

PTO/STO(1/1). In order to solve such problems, a new effective model potential

was developed recently [105] which will be summarized in this part.

The “model potential” has the same general form as “Effective Hamiltonians”: the

model energy is spread into different terms, written as a low-order Taylor expansion

in terms of atomic and strains degrees of freedom:

Eeff ({ui}, η) = Ep({ui}) + Es(η) + Esp({ui}, η) (2.27)

Here we use the subscript ‘eff’ to distinguish between the energy from our potential

and the energy obtained from our first-principles calculations; ui refers to the atomic

position of atom i and η refers to the strain applied on the lattice. At the right side

of (2.27), the first term is the energy change due to atomic displacements (here p

refers to the phonon), the second term is the energy change from the strain only and

the third term refers to the contribution from strain-phonon coupling. Each term

will be discussed below:

2.5.1 Ep({ui})

Usually, theEp({ui}) term can be splitted into two parts, the harmonic part (Ehar({ui}))
and the anharmonic part (Eanh({ui})). Here the phonon term is written as a Taylor

series around the reference structure (RS) as:
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Ep({ui}) =
1

2

∑

iαjβ

K
(2)
iαjβuiαujβ +

1

6

∑

iαjβkγ

K
(3)
iαjβkγuiαujβukγ +O(u4) (2.28)

The tensor K(n) is formed as:

K
(n)
iαjβ =

∂nEeff

∂uiα∂ujβ...

∣∣∣∣
RS

(2.29)

The RS structure is a stationary point of energy surface so that K(1)=0. Besides

it is needed to point out that this phonon term can be equivalently expanded as a

function of displacement differences as:

Ep({ui}) =
1

2

∑

ijkh
αβ

K̃
(2)
ijkhαβ(uiα − ujα)(ukβ − uhβ)+

1

6

∑

ijkhrt
αβγ

K̃
(3)
ijkhrtαβγ(uiα − ujα)(ukβ − uhβ)(urγ − utγ) +O(u4)

(2.30)

It is obvious that Ep does not change for a rigid displacement of the material which

make Ep to achieve the Acoustic sum rule(ASR) automatically. The harmonic part

(K(2)), the force-constant matrix, can be obtained directly from our DFT calculations,

which includes all phonon branches. Anharmonic terms (K(n), n>2), are determined

by a fitting procedure aimed at obtaining a model that reproduces a training set of

first-principle results.

2.5.2 Es(η) and Esp({ui}, η)

For the elastic energy Es(η), we use a Taylor expansion as:

Es(η) =
N

2

∑

ab

C
(2)
ab ηaηb +

N

6

∑

abc

C
(3)
abcηaηbηc +O(η4) (2.31)
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where

C
(m)
ab... =

1

N

∂mEeff

∂ηa∂ηb...

∣∣∣∣
RS

(2.32)

and N is the number of cells in the crystal. The harmonic term C(2) in this series

corresponds to the elastic constants which can be obtained directly from our first-

principles calculations. The anharmonic terms (C(m), m>2) are suppressed since they

are not required for semi-quantitative results.

For the strain-phonon interaction term, we can write:

Esp({ui}, η) =
1

2

∑

a

∑

iα

Λ
(1,1)
aiα ηauiα +

1

6

∑

a

∑

iαjβ

Λ
(1,2)
aiαjβηauiαujβ

+
1

6

∑

ab

∑

iα

Λ
(2,1)
abiαηaηbuiα +O(η4)

(2.33)

The Λ(1,1) term describes the forces that act on the atoms as a consequence of ho-

mogeneous strain. As in the case of Ep, an alternative expression of Esp can be used

as:

Esp({ui}, η) =
1

2

∑

a

∑

ijα

Λ̃
(1,1)
aijαηa(uiα − ujα) +

1

6

∑

a

∑

ijhkαβ

Λ̃
(1,2)
ijhkαβηa(uiα − ujα)(ukβ − uhβ)+

1

6

∑

ab

∑

ijα

Λ̃
(2,1)
abijαηaηb(uiα − ujα) +O(η4)

(2.34)

where Λ̃(m,n) parameters achieve the ASR automatically. The leading harmonic term

Λ̃(1,1) is directly calculated from first-principles. For the anharmonic term we will use

the following method: one runs DFPT calculations for the RS structure subject to a

small strain δη, so that the force-constant matrix can be written in our model as:

K
(2)
iαjβ

∣∣∣
δη

= K
(2)
iαjβ +

∑

a

Λ
(1,2)
iαjβδηa (2.35)

which will allow us to obtain the targeted couplings.
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2.5.3 Approximation and simulation details

As mentioned above, the harmonic term can be obtained from first-principles. The

parameters of higher-order coupling, ie. K̃(n) (n>2) and Λ̃(m,n) (m+n>2), are ob-

tained from a fitting procedure to reproduce a training set of first-principles results.

In the PTO/STO(1/1) case, the training set was composed of low-energy phases that

are more stable that RS. The fitting procedure has been discussed in Ref. [105].

It is worth noticing also that, When working with insulators, it is convenient to split

the energy term into short-range and long-range parts as:

K(n) = K(n)sr +K(n)lr (2.36)

Λ(m,n) = Λ(m,n)sr + Λ(m,n)lr (2.37)

Where the long-range part corresponds to the Coulomb interaction which has a well

known analytic form in terms of the Born effective charges (Z�) and the optical

dielectric constants (ε∞ ) in the limit of long distances. For K(2), the long-range part

is directly provided from first-principles codes as ABINIT. In order to obtain models

for fast simulation, we do not include the long-range part for anharmonic terms, by

simply assuming that K̃(n)lr = Λ̃(m,n)lr = 0 and fitting the harmonic terms K̃(n)sr

and Λ̃(m,n)sr to reproduce the training set from of first-principles results.



Chapter 3

PbTiO3/SrTiO3(1/1) superlattices

3.1 Introduction

The coupling between different lattice modes in ABO3 series superlattices opens

a feasible path toward the engineering of new multifunctional materials [134–136].

(PbTiO3)m/(SrTiO3)n (PTO/STO(m/n)) superlattices is one of the most studied

system in recent literature, and is considered as a good example where the balance

between different phonon instabilities can yield unusual phenomena that were theo-

retically predicted and experimentally observed [73, 137].

In short-period PTO/STO(1/1) superlattices, an unexpected recovery of ferroelec-

tricity appears, as reported in Ref.[20], which is not a purely ferroelectric state, but

rather a coupling between the polarization(FEz) and two antiferrodistorted (AFD)

modes, corresponding to in-phase (φzi) and out-of phase (φzo) rotations of the oxy-

gen octahedra along the polarization direction (shown in figure 3.2). This involves

a trilinear coupling term between FEz, φzi and φzo which is the “fingerprint” of a

so-called “hybrid improper ferroelectricity” behavior.

“Improper ferroelectricity” is a well known although rare phenomenon. In so-called

“proper ferroelectrics”, the polarization is the primary order parameter of the phase

transition while in “improper ferroelectrics” the polarization is the slave of another

non-polar primary order parameter, responsable for the phase transition and induc-

ing the polarization through an energy term linear in P [81]. Example of that type

are the spin-driven improper ferroelectricity in TbMnO3 [82] and the structurally

driven improper ferroelectricity in YMnO3 [85]. Things are still more complex in

35
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PTO/STO(1/1) superlattices, where the polarization couples with two distinct rota-

tional modes. The combined two rotational modes, which have different symmetries,

are treated like an hybrid mode coupling to a linear power of polarization. As it is

discussed in Refs.[51] and [77] by analogy with usual improper ferroelectrics, people

suggested to call such a system as hybrid improper ferroelectric.

Since then, the coupling of lattice modes in perovskite layered structures has gener-

ated an increasing interest, appearing also in magnetic superlattices as a promizing

pathway to achieve electric control of the magnetization[138]. The concept of “hybrid

improper ferroelectricity” has been rationalized [77], guiding rules to identify alter-

native hybrid improper ferroelectrics have been proposed [139], and the emergence

of ferroelectricity in rotation-driven ferroelectrics was discussed [79]. Still many fun-

damental questions remain regarding the behavior of hybrid improper ferroelectrics.

For instance, the mechanism of their structural phase transtition is not clearly es-

tablished : does the primary and secondary distortions really condense at the same

temperature or do we have instead consecutive phase transitions ? Also, the switch-

ing of the polarization mandatorily requires the concommitant switching of one of

the rotational modes and the switching path is difficult to anticipate. Up to now, cal-

culations were restricted to first-principles calculations at zero Kelvin. To go further

and investigate these issues, a finite temperature theory is needed.

In the 90’s, an “Effective Hamiltonian” method was developped to access the finite

temperature properties of perovskite oxides [101–104], in which the energy of high-

symmetry reference structure is written as a low order Taylor expansion in terms of

the most relevant phonon modes and strains. The coefficients are directly determined

from ab initio calculations and the finite temperature properties are accessed from

Monte Carlo simulations. This Effective Hamiltonian has achieved good results for

many oxide materials. However, in our PTO/STO system, it is difficult to identify

a small subset of phonon modes defining the relevant degrees of freedom. Thus we

need to go further and build a new model potentials including all the atomic degrees

of freedom as recently proposed in Ref.[105].

In this chapter, we will describe the basic dynamics of high-symmetry PTO/STO

systems by using first-principles calculations and we will introduce a simple model

by using Laudau type energy expansion. Then we will apply the new model potential

to our system to investigate the finite temperature behavior and discuss the results.
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3.2 Technical Details of DFT Calculations

All first-principles calculations were done with the ABINIT package within Den-

sity Functional Theory (DFT) and the local-density approximation (LDA) for the

exchange-correlation energy. Teter’s pseudopotentials were employed, with the fol-

lowing electrons treated as valence states: the 5d, 6s and the 6p states of Pb, the 4s,

4p and 5s states of Sr, the 3s, 3p, 3d and 4s states of Ti and the 2s and 2p states

of O. Electronic wave functions were expanded in a plane-wave basis and an energy

cutoff of 45 hartrees was used.

Figure 3.1: Structure of the PTO/STO(1/1) superlattice. (a) 10 atoms unit cell
used in structure optimization and DFPT calculations. (b) 40 atoms super-cell
used in the calculation of condensing the Mxy mode. (c) 20 atoms super-cell used
for condensing most of the unstable phonon modes at the Brillouin zone boundary.

As it is shown in Figure 3.1, a 10-atoms cell was used for the calculation of high-

symmetry reference structure. In order to condense unstable rotation modes, a 20-

atoms super cell was employed. We used tetragonal Monkhorst-Pack meshes of 8×8×
4 to compute integrals in the Brillouin-zone of the 10-atoms cell and 6×6×4 k-point
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grid was used for the 20-atoms super cell. For the strained system, 6× 6× 4 k-point

mesh was used for 10-atoms cell as well. In structural relaxations, atomic positions

were optimized until the residual force on atoms were below 3×10−4Hartree/Bohr.

3.3 High-symmetry reference structure

3.3.1 Relaxed reference structure

In this part, the high-symmetry tetragonal PTO/STO(1/1) system, which is of space

group P4/mmm (No.123), will be investigated. In-plane refers to the x-y direc-

tions and out-of-plane refers to the perpendicular z direction. We assume that the

PTO/STO(1/1) superlattice is grown on a SrTiO3[001] substrate, so that the in-plane

lattice constant is fixed to the theoretical bulk cubic SrTiO3 value (3.845 Å).

Figure 3.2: Unstable phonon modes that correspond to the atomic motion po-
larized or rotated along z axis in the PTO/STO(1/1) system. (a) The polar mode
along z axis(FEz) in which O atoms move against cations. (b) The in-phase rota-
tion φzi where the two octahedras along z axis rotate in the same direction. (c)
The out-of-phase rotation φzo where the two octahedras along z axis rotate in the

opposite directions.

After full relaxation, the atomic positions and the out-of-plane lattice constants were

obtained and reported and compared with the experimental values in Table 3.1. From
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there we can see that, comparing with the experimental values, the LDA approxima-

tion under-estimates the lattice constant by 1∼2% error. In addition, the out-of-plane

thickness of the perovskite layer is close to the lattice constant of bulk cubic PbTiO3

(0.1% error), which means that the perovskite unit cell has been pulled a little along

z direction and there is compressive epitaxial in-plane strain on the PbTiO3 cell.

Table 3.1: Relaxed lattice constants (in Å) of PTO/STO(1/1) superlattices, bulk
PbTiO3 and bulk SrTiO3 from calculations and experiment

PTO/STO PbTiO3 SrTiO3

a c/2 cubic Exp.a cubic Exp.a

3.845 3.876 3.880 3.969 3.845 3.905
aReference[140]

In addition, we calculated the total energy of the high-symmetry phase unit cell by

appling different k-grids. The results are reported in Table 3.2. We take the 8×8×8

k-grid case as the reference and report the energy difference between it and other k-

grid cases. The energy of each case was renormalized equivalently to the 10 atoms

unit cell. From Table 3.2, we can see that the energy differences are lower than

1meV/f.u., within our error tolerance, except for the 4× 4× 4 k-grid case.

Table 3.2: Energy convergence of PTO/STO(1/1) superlattice with different k-
grid (in meV/f.u.). The energy is reported as the value relative to the 8 × 8 × 8

k-grid case.

k-grid Atoms per cell ∆E (meV/f.u.)
8× 8× 8 10 0.00
8× 8× 4 10 -0.10
6× 6× 4 10 -0.82
6× 6× 4 20 -0.11
4× 4× 4 20 -1.89

3.3.2 Phonon dispersion curves

The phonon dispersion curves of PTO/STO(1/1) superlattice were obtained by ap-

pling the DFPT formalism as implemented in ABINIT. The phonon dispersion curves

are shown in Figure 3.3 and exhibit many phonon instabilities in Brillouin zone.

These unstable phonon modes might drive the phase transition, so our investigation

will mainly trace these modes. We report the frequency of each unstable mode in

Table 3.3. The high symmetry points of the Brillouin zone are labelled as follows:
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Γ(0, 0, 0), X(1/2, 0, 0), M(1/2, 1/2, 0), R(1/2, 1/2, 1/2), Z(0, 0, 1/2) and W(0,

1/2, 1/2) in units of the reciprocal lattice unit vectors.

Figure 3.3: Phonon dispersion curves of the (PTO/STO)(1/1) superlattice. The
phonon frequencies are presented in the unit of cm−1. The imaginary values are

reported as negative ones.

The lowest phonon frequency is found at M point at which four unstable phonon

modes are found overall which propagate in the x-y plane. By examining the eigen-

vector of the lowest one, an antiferrodistortive mode corresponding to octahedra out-

of-phase rotations along z axis (φzo, shown in figure 3.2(c)) is revealed which means

along the rotation axis, two consecutive octahedra rotating in opposite directions.

The second and the third lowest modes have the same frequency and correspond

to an oxygen atoms rotation along x or y direction and combines additional dis-

placements of Pb, Sr and Ti atoms. These two modes stiffen up rapidly when going

away from the M point. The fourth lowest mode reveals an antiferro-distortion mode

which corresponds to octahedra in-phase rotation along the z axis (φzi, shown in fig-

ure 3.2(b)), which means along the rotation axis, two consecutive octahedra rotating

in the same direction. The φzo and φzi modes remain unstable at R point and along

M-R branch with little dispersion: the φzo mode stiffens up a little and the φzi mode

becomes softer.
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There are three unstable phonon modes at Γ point. The first and the second have

same frequency and correspond to in-plane atomic polar motion along x or y (Px

or Py) where the cations and the oxygen atoms move along opposite directions.

The third one reveals a ferroelectric polar mode along z direction (Pz, shown in

figure 3.2(a)). The Px and Py modes remain unstable at Z point and along Γ-Z

branch with a significant dispersion. Besides, an unstable φyi mode is found at X

point as well.

Table 3.3: Frequency (in cm−1) of each unstable phonon mode, at the center and
boundaries of Brillouin zone, for PTO/STO(1/1) superlattice under zero strain.

The imaginary values are reported as negative ones.

Z Γ X M R
1st -28.18 -55.00 -59.34 -110.67 -102.26
2nd —— -55.00 —— -101.68 -90.74
3rd —— -44.88 —— -101.68 ——
4th —— —— —— -80.64 ——

3.3.3 Strain effects

Strain engineering is known to be used to tune different ferro orders in perovskite

systems. In our PTO/STO(1/1) superlattice, we induced strain in two ways, in-plane

and out-of-plane. Here a 10 atoms unit cell and a 6 × 6 × 4 k-grid were used. The

evolution of some selected phonon mode frequencies, including Pz, Px modes at Γ

point and φzi, φzo modes at R point, under different epitaxial strain are shown in

figure 3.4.

We clearly see that the Pz mode is strongly strain-dependent while the other three

selected modes are less sensitive to the strain. For tensile out-of-plane strain (ηz >

0), the Pz mode is unstable and rapidly softening. Its frequency increases under

compressive out-of-plane strain (ηz < 0) and become stable at a critical epitaxial

strain ηz = −0.4%. The other three modes remain unstable under compressive and

tensile out-of-plane strain. The Px mode decreases smoothly under tensile out-of-

plane strain and increase first at compressive out-of-plane strain but starts to decrease

again at ηz = −1%. φzi and φzo are softening smoothly under tensile out-of-plane

strain and stiffen up slowly under compressive epitaxial strain while the φzo mode

always remains the lower frequency mode.
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Figure 3.4: Phonon frequency (in cm−1) of selected modes, under different
strains, including Pz(black), Px(red) modes at Γ point and φzi(green), φzo(blue)
modes at R point. The imaginary values are reported as negative ones. (a) Strain
applied along z direction while the in-plane lattice constant is fixed at the bulk
SrTiO3 value. (The strain is defined as ηz = (cs − c0)/c0 where c0 is the relaxed z
component lattice constant of PTO/STO(1/1) and cs is the z component lattice
constant of PTO/STO(1/1) after strain is applied). (b) In-plane strain applied
under relaxed c (solid line) and fixed c (dashed line). (The strain is defined as
ηxy = (as − a0)/a0 where a0 is the x component lattice constant which is fixed
to the bulk cubic SrTiO3 value and as is the x component lattice constant of

PTO/STO(1/1) after epitaxial strain is applied).
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For the relaxed c parameters, we can see that all the selected modes are more sensitive

to the in-plane epitaxial strain when compared to the case of out-of-plane strain. For

tensile epitaxial strain(ηxy > 0), the Px mode frequency decreases rapidly whereas the

Pz mode frequency increases significantly until it becomes stable at a critical strain

value ηxy = 0.5%. For compressive epitaxial strain, a similar behavior is observed but

here the Pz mode frequency decreases and the Px mode frequency becomes stable

at ηxy = −1.3%. The frequencies of φzi and φzo mode are unstable and decrease

for compressive epitaxial strain while they increase for tensile epitaxial strain until

they become stable at ηxy = 2.1% for φzi and ηxy = 2.8% for φzo. For the fixed

c value, the behaviors of all the selected modes are similar to the ones for relaxed

c parameter. The only exception is the Pz mode which decreases smoothly under

compressive epitaxial strain and increases first at tensile epitaxial strain but start

to decrease again at ηxy = 1%. This is similar to the Px modes behavior under

out-of-plane strain.

From figure 3.4 we can see the ferroelectric (in-plane and out-of-plane) and antiferro-

distortion phonon instability coexist under small epitaxial strain (| η |< 1%) espe-

cially when the lattice constant perpendicular to the direction of epitaxial strain is

fixed.

3.4 Relevant degrees of freedom in ground state

3.4.1 Energy landscape

It is observed from the phonon dispersion curves that there are many phonon insta-

bilities in the P4/mmm phase of PTO/STO(1/1) system. To determine the ground

state, we performed full relaxation initialized by condensing each unstable phonon

mode independently and condensing some of selected modes together under zero in-

plane strain. Then we obtained each intermediate phase and report their energy

relative to the P4/mmm high symmetry reference phase in Table 3.6. From there

we can see that when we condense each unstable mode individually, the Rz phase

(P4/nbm), in which only φzo mode exists, provides the lowest energy.

It is also shown in Table 3.6 that when we combine some unstable modes and condense

them, lower energy phases appear. For instance, we can see that the RzMzPz (P4bm)

phase which was defined as the ground state in Ref.[20], has a lower energy than the
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Table 3.4: Amplitude of Pz φzi and φzo atomic motions for each selected phase
(corresponding to the polar or rotation motion along z axis) and energy gain (in
meV/f.u.) with respect to the P4/mmm phase of PTO/STO(1/1) superlattice.

Pz φzi φzo Energy (meV )

(C/m2) (degree) (degree) 10 atoms cell 20 atoms cellb

Pz(P4mm) 0.13 0 0 -0.53 -3
Mz(P4/mbm) 0 4.86 0 -9.64 -28
Rz(P4/nbm) 0 0 6.43 -32.53 -73
RzMzPz(P4bm) 0.19 3.15 5.04 -34.4 -81
bReference.[20]

Rz phase whereas the φzo, φzi and Pz atomic distortions are coexisting. In-plane

strain effects have been tested in previous work [141] which showed that the ground

state of the PTO/STO(1/1) system will be the RzMzPz phase under compressive in-

plane strain and be RxyMzPxy (Pmc21) phase under tensile strain, where the system

prefers the in-plane component distortions as shown in figure 3.5. It is also indicated

in Ref.[141] that for small strain, the in-plane and out-of-plane distortions could

coexist which means that the RxyzMzPxyz (Pc) phase is the ground state under small

strain. These conclusions are in agreement with our results that under zero in-plane

strain, the RxyzMzPxyz phase has the lowest energy and RxyMzPxy lies at higher

energy than RzMzPz. Our results in figure 3.4 also support that the in-plane polar

motion (Px) is more unstable than the out-of-plane one (Pz) under tensile strain.

The Pz mode even can be stable when we relax the lattice constant along z.

From Table 3.6 we notice that the energy difference between RxyzMzPxyz phase and

RzMzPz is in fact extremely small (∆E < 1 emV ) and below the limit of accuracy of

our calculations. Consistently, the contribution of in-plane distortions is negligible so

that the main physics is dominated by RzMzPz consistently with Ref. [20]. We will

try to build a simple model by just considering the Rz Mz and Pz degrees of freedom

in the next section.

3.4.2 Landau type model

We report the energy relative to the P4/mmm of the Pz, Mz, Pz and PzMzRz phase

in Table 3.4 under fixed z component lattice constant. These values are consistent

with those reported in Ref. [20]. The energy gain of each phase are smaller than the

values in Ref. [20]. These differences can be traced back in the different accuracy
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Figure 3.5: The space groups for ground state of PTO/STO(1/1) superlattices
under different in-plane strain. The strain is given with respect to the lattice

constant of cubic SrTiO3 under zero strain.

for structure relaxation and in the subsequent different lattice constants at which the

calculations have been performed. These four phases indicate local minima points

(or maybe saddle) in the global energy landscape. We take Pz, φzi and φzo order

parameters as the basis to build the energy space and describe the energy surface by

using the Landau type energy expansion as follows:

E(Pz, φzi, φzo) = α1P
2
z + β1P

4
z + α2φ

2
zi + β2φ

4
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zo + β3φ

4
zo
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2
z φ
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2
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2
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ziφ

2
zo

+ λPzφziφzo

(3.1)

The first line in (3.1) corresponds to the double-well potential of each individual

mode. The second line provides the biquadratic coupling between each two modes.

The third line is the trilinear coupling which was previously identified as key to a

novel type of improper ferroelectricity in PTO/STO(1/1) systems. We report the

polarization (along z ) and the angle of octahedra rotation in Table 3.4 as well, on

the basis of which we obtain each parameter ( reported in Table 3.5) in energy

expansion (3.1):

Here we label following points. G1 refers to (0.13, 0, 0), G2 refers to (0, 4.84, 0), G3

refers to (0, 0, 6.43) and G0 refers to (0.19, 3.15, 5.04). α1, α2 and α3 have negative
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Table 3.5: Parameters of the model described in the text in the standard unit.

α1 α2 α3 β1 β2 β3 γ12 γ13 γ23 λ
-62.722 -0.816 -1.574 1855.680 0.017 0.019 7.252 14.520 0.082 -12.256

values confirming the double-well shape when individual modes are condensed (as

shown in figure 3.6 (a),(b),(c)), the minimum in energy are found at G1, G2 and

G3 point. Values of γ12, γ13 and γ23 indicates that the coupling between two of

these modes are different, and the one between φzi and φzo is relatively smaller. The

amplitude of λ is similar to γ13 which implies that the contribution of the trilinear

coupling between Pz, φzi and φzo is important in the energy surface behavior.

Figure 3.6: The 1D total energy (inmeV/f.u.) curve E(Pz, φzi, φzo) with respect
to only one degree of atomic motion: (a) E(Pz, 0, 0); (b) E(0, φzi, 0); (c) E(0, 0,
φzo); In the case for which two of these degrees are fixed at the ground state value:

(d) E(Pz, 3.15, 5.04); (e) E(0.19, φzi, 5.04); (f)E(0.19, 3.15, φzo).

The global minimum energy is observed at G0 point. When we fix the values of two

modes and change the other one, a single-well energy curve is obtained as shown in

Figure 3.6 (d), (e), (f). Taking (d) as an example, the lowest energy of the single-well

energy curve is found at an non-zero polarization point which is the key character

of improper ferroelectrics. Similar behaviors are found, which correspond to other

rotation modes.

When we suppress Pz (set Pz=0), we will obtain the 2D contour plot of the energy

landscape shown in figure 3.7(a), from where we can see that φzi and φzo modes are
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Figure 3.7: The 2D total energy (in meV/f.u.) plot E(Pz, φzi, φzo) with respect
to two degrees of atomic motion:(a) E(0, φzi, φzo); (b) E(Pz, 0, φzo); (c) E(Pz,

φzi, 0);(d) E(0.19, φzi, φzo); (e) E(Pz, 3.15, φzo); (f)E(Pz, φzi, 5.04).

unstable, and the condensation of one of them will quickly suppress the instability

with respect to the other. The lowest energy corresponds to the pure φzo mode.

Similar features are shown in figure 3.7(b) and (c) which correspond to the cases of

φzi=0 and φzo=0.

If we fix the value of Pz to its value at the global minima point (Pz=0.19) and plot

the 2D energy landscape (as shown in figure 3.7(d)), two equivalent local minima

are found at (0.19, 3.15, 5.04) and (0.19, -3.15.-5.04). In this case, φzi and φzo do

not suppress each other when one of them is condensed, the other one will condense

automatically. Similar results occur when we fix φzi as 3.15 or φzo as 5.04, as shown

in figure 3.7(e) and (f)

In figure 3.8, we change the amplitude of one mode and report the other behavior of

two modes and the energy as well. We also report the energy curve in terms of one

distortion mode by suppressing the other two modes. It is observed in figure 3.8(a)

that, when Pz=0, φzi is suppressed, only φzo exists, which confirms the results of

figure 3.7 and is consistent with what was reported in Ref.[20]. As Pz increases,

φzo will decrease, φzi will increase to a maximum value and decrease. φzo and φzi

will vanish all together. Similar observations are done when exchanging these three
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Figure 3.8: The amplitude of each distortion mode, in degree for rotation mode
(left side) and in C/m2 for polar mode (right side): (a) the amplitude of φzi (blue)
and φzo (purple) modes; (b) the amplitude of Pz (red) and φzo (purple) modes; (c)
the amplitude of φzi (blue) and Pz (red) modes;(d),(e),(f) energy when the three

modes coexist (black) and when only one mode exist (brown).

modes. According to our results, only one distortion mode can survive at high energy

and the other two will start to condense at some point when energy decreases. This

coupling will decreases energy which is confirmed in figure 3.8, in which the energy

is lower when these three modes coexist.

3.4.3 Temperature dependent Landau model

The model discussed above is valid at zero Kelvin. In order to describe the phase

transition behavior, we introduce the temperature factor to the quadratic terms as

usual in Landau theory:

E(Pz, φzi, φzo) = α′
1(T − T1)P
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(3.2)

where Tj (j=1,2,3) are the phase transition temperatures at which each single order

distortion will condense in the system (Pz at T1, φzi at T2 and φzo at T3). In order
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to provide the right behavior at T= 0, α′
j (j=1,2,3) are defined as: αj = −α′

jTj ,

where αj are the parameters in Equation 3.1.

The temperature evolution of Pz, φzi and φzo can change drastically depending of

the choice of the Tjs. However, it is observed that this model can well reproduce

the experimental results in [20] from some specific choices. When we set T1=52K,

T2=500K and T3=500K, as shown in Figure 3.9, the three order parameters condense

together at 500K. The polarization exhibits linear behavior with T and evolves toward

value 0.19C/m2 comparable to experiment at T= 0 and there is no divergence of the

dielectric constant at the phase transition temperature. The system is in P4/mmm

phase above T3 and in P4bm phase below T3. It shows that this simple model can

well describe the PTO/STO(1/1) system which includes many order parameters. It

can confirm that such a system can exhibit a typical improper ferroelectric behavior

(linear evolution of P and no divergence of dielectric constant). This is however

reproduced for a specific choice T2 = T3. This is not imposed by symmetry. It can

only be coincidental and seems rather unlikely. Now, it is very interesting to observed

that the improper ferroelectric behavior seems not restricted to that case.

It is observed in Figure 3.9 that, if we set T1=50K, T2=490K and T3=500K, there are

two critical points. φzo mode appears first at T3=500K and Pz appears then together

with φzi at around T2=490K. The polarization keeps its linear behavior and the

dielectric constant does not exhibit divergence around phase transition temperatures.

The system is in P4/nbm phase in a small temperature range (490K<T<500K ). It

demonstrates that φzi does not have to condense with φzo, in order to reproduce an

improper ferroelectric behavior. This appears as an unexpected and seems a very

important result.

Although T1 and T2 does not have to condense at the same temperature, we see that

the system can continue to behave as an improper ferroelectric as long as they remain

sufficiently close to each others.

This is more likely what happens experimentally. We notice that only Pz has been

measured and that both φzi and φzo as only the latter appear at the same temperature.

We also notice that the fact we have one or two consecutive phase transitions might

also depend on the strength of the trilinear term. In case it is large enough it could

produce an avalanche transition even when T2 �== T3. The key point here is that the

trilinear behavior of P appears rether robust and seems not restricited to the specific

case T2 = T3.
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Figure 3.9: Different values for T1, T2 and T3 in equation 3.2: (a) The amplitude
of each atomic distortion mode for polarization mode (right axis) and for rotation
mode (left axis) under different temperatures when we set T1=52K, T2=500K and
T3=500K ; (b) The amplitude of each atomic distortion mode for polarization mode
(right axis) and for rotation mode (left axis) under different temperatures when we
set T1=50K, T2=490K and T3=500K ; (c) Dielectric constant under different tem-
peratures when we set T1=52K, T2=500K and T3=500K ; (d) Dielectric constant
under different temperatures when we set T1=50K, T2=490K and T3=500K.

It is worth to point out that the above investigations have been performed at the phe-

nomenological level. It is interesting to confirm such a possibility at the microscopic

level. To study this issue from first-principles, a finite temperature model potential

approach is needed, which will be introduced in the next section.

3.5 Model potential

As discussed above, the limitations of our Landau model approach arise mainly from

two aspects: i) only Pz, Mz and Rz are considered while other degrees of freedom ex-

ist; ii) the parameters are fitted on first-principles results at 0 K and the temperature

dependence can only be introduced in a phenomenological way. In order to access
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Table 3.6: Energy (in meV/f.u.) of PTO/STO(1/1) superlattice, for P4/mmm
phase, and intermediate phases in the case of relaxed and fixed z component lattice
constants under zero in-plane strain. the values are obtained by DFT calculations
(using the LDA approximation) and from the effective model potential Eeff . The

error between them is in the last column.

Mode Symmetry
Space Lattice Energy(meV/f.u)

Error(%)
group constant(c) DFT(LDA) Eeff

— P4/mmm 123 0.000 0.000 –

Pz P4mm 99
relaxed -0.68 —— —–
fixed -0.53 -0.49 -7.58

Px Pmm2 25
relaxed -5.83 —— —–
fixed -5.83 -4.33 -25.79

Pxy Amm2 38
relaxed -5.40 —— —–
fixed -5.40 -5.58 3.30

Mz P4/mbm 127
relaxed -10.13 —— —–
fixed -9.64 -9.71 0.77

Mx Pmmm 47
relaxed -3.15 —— —–
fixed -3.00 -2.83 -5.67

Mxy P4/mmm 123
relaxed -3.09 —— —–
fixed -2.93 -2.88 -1.56

Rz P4/nbm 125
relaxed -33.45 —— —–
fixed -32.53 -33.47 2.89

Rx Cmmm 65
relaxed -25.39 —— —–
fixed -24.19 -24.19 0.45

Rxy Pmma 51
relaxed -27.59 —— —–
fixed -26.32 -26.23 -0.34

RzMzPz P4bm 100
relaxed -37.26 —— —–
fixed -34.41 -34.56 0.43

RxyMzPxy Pmc21 26
relaxed -31.48 —— ——
fixed -31.25 -31.95 2.23

RxMzPx Amm2 38
relaxed -26.38 —— ——
fixed -25.99 -26.23 0.93

RxyzMzPxyz Pc 7
relaxed -37.46 —— ——
fixed -35.14 -34.75 -1.11

RxRzMz Cm 8
relaxed -37.44 —— ——
fixed -35.03 —— ——

RxRz C2/m 12
relaxed -33.51 —— ——
fixed -32.76 —— ——

the structural phase transitions in perovskites, a finite temperature microscopic the-

ory, called “Effective Hamiltonian” method was introduced in literature [101–104], in

which the thermal average of the quantities of interest are calculated by a standard

Metropolis Monte Carlo method. However, in this “Effective Hamiltonian” method

only a small set of relevant degrees of freedom are typically considered, which is
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not sufficient for the PTO/STO(1/1) case, since many phonon instabilities coexist

in the reference high-symmetry phase. Recently, a new “model potential” method

was suggested by Wojde et al.[105] that is inspired from the “Effective Hamilto-

nian” approach but includes all the atomic degrees of freedom (briefly summarized

in Chapter 2). In this section, we will apply this new ‘model potential’ method on

our PTO/STO(1/1) system and investigate its finite temperature phase transition

behavior.

In our Monte Carlo simulations, the Metropolis algorithm is applied to obtain the

thermal averages. A 8× 8× 4 supercell was used with periodic boundary conditions

which implies that for each sweep, 8×8×4×10 displacement attempts were included.

Our procedure started from 1000 K to 0 K; 20,000 thermalization sweeps and 20,000

sweeps for averages were performed.

3.5.1 Effective potential training set

Based on our model, we report,in figure 3.10, the energy curve of each intermediate

phase compared with the minimum energy value obtained from first-principles for

each phase. The minimum value of each curve (in figure 3.10) is reported in Table 3.6

as well. These results demonstrate that the first-principles results are well reproduced

by our atomic potentials. It is observed that each phase shows a similar double-well

behavior, and the lowest energy is found for the RxyzMzPxyz almost superimposed to

that of RzMzPz. In addition, Rz, RxyMzPxy and RzMzPz phases all have very low

energy as well. This is consistent with our results from first-principles.

3.5.2 Temperature dependent behavior

The T-dependent behavior of our PTO/STO(1/1) system is studied by running

Monte Carlo simulations in which all the degrees of freedom of atomic displace-

ments and strains are involved. The results are shown in figure 3.10 in which it is

observed that the P4/mmm phase is the stable state at high temperatures. When

the temperature decreases, different atomic distortion modes condense and the am-

plitude of which increases in this anneal procedure. There are three phase transition

temperatures T1 ≈ 330K, T2 ≈ 200K and T3 ≈ 75K which correspond to three main

phase transitions:P4/mmm→P4/nbm→P4bm→Pmc21.
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Figure 3.10: Total energy (in meV ) of each intermediate phase, relative to the
reference P4/mmm phase, with respect to the scaled mode amplitude which are
obtained from model potential. The crosses points indicate the total energy of each

intermediate phase obtained from first-principle calculations.

The Rz mode appears first at T1. The symmetry is broken from P4/mmm to P4/nbm.

The amplitude of related φzo rotation increases rapidly when the temperature de-

creases from T1 to T2. This first phase transition supports the results from our

Landau model at 0 K. It is observed that at T2, Pz and Mz appear together due

to the trilinear coupling. Below T2, the Rz mode exhibits linear behavior while the

other two modes do not. Besides, the amplitudes of related Pz and φzi modes

increase rapidly while the φzo amplitude still increases smoothly. The symmetry is

broken into P4bm in which Pz, Mz and Rz atomic distortions coexist.

When the temperature goes below T3 ≈ 75 K, Px and Rx modes start appearing

and the symmetry is then Pmc21; Rx, Pz, Mz and Rz all coexist below T3 ≈ 75 K.

Besides, at 0 K, the amplitude of each mode matches the results from first-principle.

Figure 3.11 shows that the amplitudes of Pz, φzi and φzo modes are significantly

larger than that of φxo Px which confirms that the main physics of the ground-state

domains in the atomic distortion polarized or rotated along the z axis. The ones

in-plane make negligible contributions, and only appear at very low temperatures.
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Figure 3.11: The amplitude of each atomic distortion mode in (C/m2) for polar-
ization mode(red colour) and in degree for rotation mode(black colour) which are

reported under different temperature (in K ).

This ground state (RxzMzPxz) can be understood as the coexistence of the phases

RzMzPz and RxMzPx where both of them involve the φzi mode atomic distortion.

It suggests the possibility to control the amplitude of in-plane modes (φxo and Px)

by tuning the out-of-plane modes (φzo or Pz) due to these two types of coupling.

Figure 3.12 shows one of the interesting possiblity, that the z component of electric

field can tune the in-plane polarization and rotation modes. It is observed that under

zero external electric field, the PTO/STO(1/1) system has spontaneous in-plane and

out-of-plane polarization while the amplitude of out-of-plane one is significantly larger

than the in-plane one. When we increase the external electric field along z, the out-

of-plane polarization is enhanced and the in-plane one is suppressed. The directions

of these two degrees of polarization are switched by the z component of the electric

field and they have the same value of depolarization field. It seems that Px and Pz are

in competition, one being suppressed by enhancing the other one under an external

electric field along z direction. Similar features happen in the rotation modes. When

there is no external field, φzi, φzo and φxo coexist in PTO/STO(1/1) system. The

increasing z component of electric field will significantly increase φzi and suppress the
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Figure 3.12: The amplitude of in-plane(red) and out-of-plane(blue) atomic dis-
tortion mode under external electric field(in GV/m) along z direction:(a) the am-
plitude of in-plane polarization Px and out-of-plane polarization Pz (in C/m2); (b)
the amplitude of in-plane rotation φxo and out-of-plane rotation φzi and φzo (in

degree).

amplitude of φxo. The amplitude of φzo is not sensitive in comparison with φzi and

φxo, which are slightly decreased under an electric field along z. These phenomenon

imply that under the external electric field along z direction, the PTO/STO(1/1)

system has the tendency to be switched from the Pmc2 1 phase to the P4bm phase,

in which the in-plane atomic distortion mode Px and φxo will be suppressed. This is



Chapter 3. PbTiO3/SrTiO3(1/1) superlattices 56

similar to the effects of in-plane compressive strain.

Figure 3.13: The temperature dependent amplitude of each atomic distortion
mode in (C/m2) for polarization mode (red colour) and in degrees for rotation
mode(black colour) which are reported under -6.9 GPa pressure along z direction.

As previously discussed, the LDA slightly underestmates the lattice constants and

lattice instabilities are very sensitive to strains. For these reasons, it is usual, when

doing effective Hamiltonian calculations, to apply a negative pressure that compen-

sate for the LDA volume underestimate. This typically provides results in close

agreement with the experiments.

Figure 3.13 shows the temperature dependent sequence for the PTO/STO(1/1) un-

der -6.9 GPa pressure. The φxo and Px modes disappear and the ground-state is of

purely P4bm phase. Compared to the previous case under zero external pressure, the

two phase transition temperatures increase and become closer to each other (T1 ≈
360K and T2 ≈ 320K ). It means that under tensile strain, Pz, Mz and Rz modes

have tendency to condense together at same temperature and the P4bm phase exists

in a wider temperature range (from 0 K to 320 K ). It confirms our results shown in

figure 3.4, that under tensile strain, the Pz phonon mode will be more unstable than

Px. In addition, the negative pressure increases the phase transition temperatures T1



Chapter 3. PbTiO3/SrTiO3(1/1) superlattices 57

and T2 which implies that the high symmetry phase of the PTO/STO(1/1) system

is more unstable under tensile pressure. This confirms that the finite temperature

behavior is very sensitive to the parameters, although this should be further inves-

tigated. It suggests that properly compensating for LDA errors might eventually

produce a unique phase transition (T1=T2) as observed experimentally.

3.6 Conclusion and perspectives

In this chapter, we investigated the properties of PTO/STO(1/1) superlattices from

first-principles. At zero Kelvin, the basic dynamical properties have been studied,

including the phonon dispersion curves, the unstable phonon modes at the center

and boundary of the Brillioun zone (BZ) and strain effects. There are different kinds

of unstable oxygen rotational modes at the BZ boundary (φzi, φzo, φxo, φyo) and

unstable ferroelectric polar modes in-plane(Px, Py) and out-of-plane(Pz) at the BZ

center. We noticed that the strain can strongly affect the lattice dynamics of the

system, either softening or stiffening some modes. The different unstable modes also

compete with each others.

The ground state (GS) of epitaxial PTO/STO(1/1) superlattices grown on a STO

substrate was identified as a Pc phase corresponding to RxyzMzPxyz and resulting

from the combination of RzMzPz and RxyMzPxy distortions. However, the RxyPxy

distortion contributes a very small amplitude to that GS and produces a gain of

energy lower than the accuracy of the calculations. So, although our calculations

support the fact that, on a STO substrate, the superlattice is in a configuration

where in-plane and out-of-plane distortions can eventually coexist, it confirms that

the main physics is dominated by the RzMzPz distortion as initially proposed in

Ref.[20].

A simple Landau type model was then developed, which only includes Rz, Mz and Pz

order parameters. This simple model well reproduces the first-principles energy data

of each intermediate phase and highlights the importance of the trilinear coupling

term. Such a simple model well reproduces the experimental results from previous

literature. It also proposes the possibility that these three orders of atomic distor-

tion may not have to appear at the same temperature; the first two primary order

can condense individually, which is different from previous understanding of hybrid

improper ferroelectricity.
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In order to clarify further the temperature behavior of PTO/STO superlattices,

first-principles model potentials have been constructed for this system. Then, us-

ing Monte-Carlo simulations, the temperature-dependent phase transition sequence

was obtained. At high temperature, PTO/STO(1/1) system is in the high-symmetry

P4/mmm phase. When the temperature decreases, different atomic distortions ap-

pear. Specifically, Rz phase appears first, then Mz appears at a lower temperature

together with Pz. Small in-plane Px and Rx distortions finally show up at very low

temperature and the GS at zero Kelvin corresponds to a RxzMzPxz phase.

This first model potentials supports that the system will exhibit consecutive phase

transitions (Rz condensing before Mz and Pz) , contrary to what was reported in

Ref.[20]. However, this first result needs to be taken with caution and to be further

confirmed since, as already highlighted by the Landau model, the temperature be-

havior strongly depends on the parameters. If, for instance, we redo our Monte-Carlo

simulations applying a negative pressure that correct for the typical LDA volume un-

derestimate, Pz and Mz now condense at almost the same temperature as Rz. Also,

in this first model, the oxygen interactions were limited to very short range and it

should be checked if a better description of these interactions eventually affect the

physics of the system.

Although still preliminary, these results attest that the model potentials technique

is a very promising tool to explore the lattice dynamics of complex systems in which

various instabilities couple together. It also provide the opportunity to investigate ex-

otic phenomena. For instance, in the RxzMzPxz phase stable at very low temperature

and in which the in-plane and out of plane components of the polarization coexist,

we have demonstrated that it is possible to switch the in-plane polarization with an

out-of-plane electric field, taking full advantage of the trilinear coupling terms.



Chapter 4

Natural and artificial ABO3/AO

superlattices

4.1 Introduction

In the previous chapter, we discussed the case of a short-period PTO/STO (1/1)

superlattice, which is specific and still relatively easy to study from first-principles

calculations. Now, it would be very interesting also to be able to access the properties

of larger-period systems, with different types of interfaces, for which first-principles

calculations cannot be handled easily. Going further, it would be particularly useful as

well, although even more challenging, to access those properties at finite temperature.

As a natural extension of the previous Chapter, it is very appealing to try facing

these challenges by finding a practical way to extend to larger systems the effective-

potential scheme applied to PTO/STO (1/1) superlattices. To that end, our basic

strategy, illustrated in Figure 4.1, is to divide large-period superlattices into central

layer parts and interface parts and to fit the parameters of both parts separately from

first-principles calculations on bulk and short period superlattices.

Of course the separation into central and interface layers is artificial and defined

arbitrarily and, in order to check how realistic such a strategy could be, we have to

answer the two following and related questions: i) how fast do we recover the bulk

behavior when the thickness of central layer becomes large ? and ii), how thick is the

interface layer to be considered ?

59
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Figure 4.1: Motivation: We try to estimate the dynamics of large period su-
perlattices from the knowledge of bulk and short period superlattices. The thick
superlattices is divided into two parts, the central layer (purple part) and the in-
terface layer (yellow part). We try to demonstrate that we can use the related
quantity of the bulk to approximate the central layer of the thick superlattices,
and use the related quantity from the short period superlattices to approximate

the interface of the thick ones.

In order to answer these questions, in this chapter, we will consider two types

of superlattices, Ruddlesden-Popper (ABO3)n/(AO)1 (RP) and so-called artificial

(ABO3)n/(AO)2 (AF) superlattices, which are shown in Figure 4.2. Both types of

superlattice are composed of perovskite blocks separated by a rock-salt type layer. We

have chosen two titanate series which differ by the A site elements: Ba and Sr. Our

study will mainly focus on the lattice dynamics of these systems including phonon

dispersion curves, phonon density of states (DOS), the inter-atomic force constants

(IFC), the Born effective charges, and also the dielectric constant. Beyond this, the

relaxed structure of some of these systems will be analyzed. Through our discussion,

we will see clearly that the dynamical properties of the superlattices converge very
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quickly to the bulk values when going away from the interface region.

4.2 System of Interest

To define the cell which is periodically repeated in space, the generic formula (ABO3)n/(AO)2

was used for artificial superlattices (AF) while the generic formula (ABO3)n/(AO)1

was used for Ruddlesden-Popper superlattices (RP) (A=Ba,Sr,Pb, B=Ti). Both of

them are labelled by n, where n is the number of ABO3 formula units between two

interfaces. To establish the notation, we will call the plane parallel to the inter-

face the (x,y) plane, while the perpendicular direction will be referred to as the z

axis. In AF superlattices we have two AO layers inserted after every n layers of

perovsite unit cell. In RP superlattices we have one AO layer inserted after every

n layers of perovsite unit cell. According to these notations, the perovsite unit cells

are shifted along x-y direction by (1/2,1/2) lattice constant after each AO interface

in RP superlattices.

Figure 4.2: In the case of AF (left side) and RP (right side) superlattices, we
label each layer, from layer 0 to layer 4 (layer 0 only exists in AF series), and
define the central perovskite layer (orange part), interface perovkite layer (blue

part) and interface rock-salt layer (yellow part).
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The labelling of layers (AO and TiO2) starts from the interface. Layer 1 is the

first AO layer fo the perovskite block. In the AF structures, there is an additional

AO layer in the interface labelled layer 0. As shown in Figure 4.2, layers 1, 2, 3

are labeled together as interface perovskite layer, layers 1, 0 are labeled together as

interface rock-salt layer, layers 3, 4 are labeled as central perovskite layer. In this

case, layer 1 is shared by the interface rock-salt layer and the interface perovskite

layer, and layer 3 is shared by interface perovskite layer and the central perovskite

layer.

4.3 Technical Details of DFT Calculations

First-principles calculations were performed in the framework of density functional

theory (DFT) as implemented in the ABINIT package. The generalized gradient

approximation of Wu and Cohen (GGA WC) was used for the exchange-correlation

potential. It is well known to be quite accurate in predicting the lattice constants.

An energy cutoff of 45 hartree was used for the plane-wave expansions. Optimized

norm-conserving peusdopotentials were employed, treating as valence states the 5s,5p

and 6s states of Ba, the 4s, 4p and 5s states of Sr, the 5d, 6s and the 6p states of

Pb, the 3s, 3p, 3d and 4s states of Ti and the 2s and 2p states of O.

The lattice constants and atomic positions were relaxed while keeping the high-

symmetry tetragonal phase of space group P4/mmm (No.123), and the cubic space

group Pm-3m (No.221) for superlattices and bulk perovskite structures respectively.

For the cubic phase of bulk ABO3, a n-layers super-cell (ABO3)3 was used in order

to compare with the two types of superlattices mentioned above.

4.4 Relaxed Reference Structure

We considered n from 1 to 3 AF and RP superlattices for relaxation without any

epitaxial strain. Relaxed lattice constants are reported in Table 4.1 and compared

with the experimental values for cubic BaTiO3, SrTiO3 and PbTiO3 from Refs.[140]

(in which the lattice constants are reported as 3.996Å for BaTiO3, 3.905Å for SrTiO3

and 3.969Å for PbTiO3). We see that the GGA WC exchange correlation functional

is efficient for lattice constants, predicting cell parameters within 1% error of the
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experimental value. It is observed that by increasing n the in-plane lattice constant

converges to the cubic perovskite value. In the BTO system, the in-plane lattice

constant of RP superlattices is larger than the cubic perovskite value and decreases

when n increases but in other the cases, including AF BTO, AF and RP of STO and

PTO, the in-plane lattice constant is smaller than the cubic value and gets larger when

n is increasing. In previous works[142], the in-plane lattice constant of Sr2TiO4 is

calculated as 3.822Å within DFT calculations, i.e. slightly underestimated due to the

LDA approximation used. For Pb2TiO4, the in-plane lattice constant (3.857Å) and

out-of plane lattice constant (12.70Å) were calculated from DFT-LDA in Refs.[36].

These value are in good agreement with our results, although underestimating the

lattice constants as expected within the LDA.

Tables 4.2 and 4.3 show the atomic rumpling, defined as Raver=(zcat-zO)/2, along z

axis due to relaxation, and corresponding Ti-O bond lengths. Before analyzing the

rumpling in details, we need to label each Ti-O bond and define the average plane of

each layer. As shown in Figure 4.3, the labeling starts from the interface: Ti-O bonds

are labeled as bond 1, 2 and 3 from the interface to the central of perovskite block.

As shown in Figure 4.3, we define the average plane as the average of the cation and

the oxygen z coordinate(zaver=(zcat+zO)/2 ). Then we can define the thicknesses of

the interface perovskite layer as ci=|zaver1-zaver2|, and of the central perovskite layer

as cc=|zaver2′-zaver2|. As shown in Figure 4.3 zaverj and zaverj′ refer to the z atomic

coordinates in layer j and its mirror layer. The values of ci and cc for different n

values are reported in Table 4.1.

The symmetry along z direction is broken by the interface relaxation, since Ti-O

bond 1 is significantly smaller than bond 2, while they have same length in bulk

perovskite. The rumpling can be as large as 0.105Å (in STO RP n=3 ) in layer 1

and gets rapidly smaller in the layers farther away from the interface (in layer 2, the

amplitude is smaller than 0.02Å). This is in agreement with rumpling data reported

in previous works [37] (0.232Å for layer 1, 0.041Å for layer 2 and 0.036Å for layer

3 ).

From Table 4.3, we can see that the Ti atom in the first neighbor perovskite layer

of interface is off-centred along z. Comparing with the central layer in the case n=3,

the interface layer is no longer cubic-like since there is a significant rumpling in layer

1 with an off centred Ti atom in layer 2. In layer 2, the Ti atom moves towards the

interface, which induces two different Ti-O bond lengths. The bond 1 is about 2.5%

shorter than bond 2 in the superlattices of BTO, STO and PTO system. We also
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Figure 4.3: The in-plane lattice constant (a) and out-of-plane lattice (c) are
shown here. We label each bond (from bond 1 to bond 3) and define the average
plane for each layer. The thickness of central perovskite layer (cc) and the one of

interface perovskite layer (ci) are defined as well.

notice that when n=3, the length of bond 3 is close to the average value of bond 1

and bond 2 in BTO and PTO superlattices, while it is close to the length of bond 1

in STO. This means that, in STO, the first neighbor O-Ti-O chain of the interface

is compressed while it is not in BTO and PTO.
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Table 4.1: In-plane lattice constant (a), out-of-plane lattice constant (c), thick-

ness of interface perovskite layer (ci) and the thickness of central perovskite layer

(cc) under zero epitaxial strain of Ba,Sr and Pb based superlattices for AF and

RP types (in Å).

n=1 n=2 n=3 Bulk

a c ci a c ci a c ci cc cubic

BTO

AF 3.978 9.361 3.919 3.984 13.344 3.944 3.986 17.329 3.948 3.968 3.987

RP 3.997 13.257 3.897 3.996 21.230 3.938 3.993 29.206 3.931 3.980 3.987

STO

AF 3.838 8.850 3.870 3.868 12.733 3.874 3.880 16.632 3.873 3.896 3.905

RP 3.886 12.526 3.809 3.900 20.275 3.829 3.903 28.072 3.836 3.898 3.905

PTO

AF 3.852 9.030 3.969 3.888 12.938 3.946 3.901 16.860 3.948 3.948 3.933

RP 3.896 12.856 3.918 3.917 20.690 3.907 3.924 28.549 3.914 3.914 3.933

Table 4.2: Rumpling in interface perovskite layers, which is defined as the dis-

placement along z between cations and oxygen atoms (Raver=(zcat-zO)/2 ), of Ba,

Sr and Pb based superlattices for AF and RP types (in Å).

AF RP

n=1 n=2 n=3 n=1 n=2 n=3

layer 1 0.031 0.036 0.038 0.032 0.038 0.039

BTO layer 2 —– 0.006 0.008 —– 0.007 0.009

layer 3 —– —– 0.006 —– —– 0.000

layer 1 0.065 0.076 0.078 0.085 0.101 0.105

STO layer 2 —– 0.011 0.013 —– 0.016 0.018

layer 3 —– —– 0.011 —– —– 0.001

layer 1 0.025 0.034 0.038 0.041 0.053 0.059

PTO layer 2 —– 0.003 0.008 —– 0.010 0.014

layer 3 —– —– 0.006 —– —– 0.013

4.5 Phonon Dispersion Curves

In this part, Density Functional Perturbation Theory (DFPT ) was used to obtain

the phonon dispersion curves of the two types of superlattices, and of the bulk simple

cubic phase as well. High symmetry points of the Brillouin zone (BZ ) are labeled as
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Table 4.3: Ti-O bond lengths of Ba,Sr and Pb based superlattices for AF and

RP types (in Å). Each bond is defined in figure 4.3.

AF RP

n=1 n=2 n=3 n=1 n=2 n=3

bond 1 1.99 1.96 1.95 1.98 1.95 1.94

BTO bond 2 —– 2.02 2.03 —– 2.02 2.03

bond 3 —– —– 1.99 —– —– 1.99

bond 1 2.00 1.96 1.95 1.99 1.95 1.95

STO bond 2 —– 1.99 1.99 —– 1.98 1.99

bond 3 —– —– 1.96 —– —– 1.95

bond 1 2.01 1.98 1.97 2.00 1.96 1.95

PTO bond 2 —– 2.00 2.01 —– 2.00 2.01

bond 3 —– —– 1.98 —– —– 1.97

:Γ(0, 0, 0) X(1/2, 0, 0), M(1/2, 1/2, 0), R(1/2, 1/2, 1/2), Z(0, 0, 1/2) and W(0, 1/2,

1/2) in units of the reciprocal lattice unit vectors.

In Figure 4.4-Figure 4.7, we report the phonon dispersion curves and the zero-

frequency isosurface of the lowest unstable phonon branch for cubic BaTiO3, SrTiO3

and PbTiO3. Our results are comparable with the result from Refs.[90] and [143].

The phonon dispersion curves of BTO, STO and PTO systems, both AF and RP

types, are shown here as well. Imaginary phonon frequencies of unstable modes are

represented as negative values. Our analysis will mainly trace these phonon modes in

the Brillouin zone, since they are relevant for phase transitions. The lowest phonon

frequency at some selected points of each structure is reported in Table 4.4.

4.5.1 Barium Compounds

As well known [144], there are three degenerated unstable transverse optic modes at Γ

point for cubic BaTiO3. Examination of the associated eigenvectors reveals that they

correspond to displacements of the atoms Ti toward the O atoms along x, y and z

directions, which drives the ferroelectric phase transition. The instability is visualized

in Figure 4.4 where the zero frequency isosurface of the lowest unstable phonon modes

is plotted out. The unstable region consists in 3 orthogonal sheets region including

Γ. The planar (2D) character of the ferroelectric instability in reciprocal space is

associated to a chain-like character in real space. Since the width of the unstable
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Figure 4.4: Phonon dispersion curves of bulk cubic BaTiO3 (n=∞) and Ba based
superlattices for AF and RP types, n from 1 to 3. The phonon frequencies are
presented in units of cm−1. The imaginary values are reported as negative ones.
The zero frequency isosurface of bulk cubic BaTiO3 is plotted at the right bottom

corner.

planar region in reciprocal space is about 1/4 of the BZ, we can estimate that the

correlation length of Ti motion required to produce the ferroelectric instability is of
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about 4 unit cells.

Similar unstable polar modes appear in AF and RP superlattices already for n=1

but the amplitude is weakened significantly compared to bulk, and the motion of the

atoms is restrained in the x-y plane. This mode remains unstable along Γ-Z line with

very little dispersion. By increasing the value of n, another unstable mode appears

for n=2 and 3 which corresponds to anti-polar atomic motions in the x-y plane. This

anti-polar mode has the second lowest frequency and the polar mode remains the

lowest one. When n≥2, these two modes remain unstable not only at Γ point but

also along the W-Z-Γ-X lines. As clearly shown in Table 4.4, the frequency of the

unstable polar mode converges to the perovskite value when n increases.

In contrast to the case of bulk BaTiO3, there is no unstable mode with atomic

motion along z in the superlattice. On the one hand, the interface layer might act as

a dead layer which enables to preserve the depolarizing field killing the ferroelectric

instability. On the other hand, a correlation length of about 4 Ti atoms is needed

to produce polar and anti-polar instability and this threshold is not reached at n=3.

More discussion on the finite size effect and the “ferroelectric correlation volume“

can be found in previous works [145, 146].

4.5.2 Strontium Compounds

In cubic SrTiO3, two kinds of phonon instabilities appear, one at the Γ(0, 0, 0) point

and the other at the R(1/2, 1/2, 1/2) and M(1/2, 1/2, 0) points. At Γ point, there

are three unstable phonon modes, which have the same frequency and correspond

to a polar motion along x, y and z directions. These unstable polar modes stiffen

up quickly away from the BZ center. The unstable phonon modes at the R point

have the lowest frequencies and drive the antiferro-distortive phase transition. They

correspond to the rotation of the oxygen octahedra along x, y and z axis. One of

them, which corresponds to a rotation along z axis, remains unstable along the R-M

line with significant dispersion. The other two stabilize quickly away from the R

point.

In STO systems, as observed from Figure 4.5, the phonon dispersion curves for AF

and RP superlattices are similar. Both do not have any unstable phonon mode for

n=1, and an instability appears at n=2 in AF and at n=3 in RP superlattices. As

seen in Table 4.4, with increasing n value, the unstable modes at M and R points
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Figure 4.5: Phonon dispersion curves of bulk cubic SrTiO3 (n=∞) and Sr based
superlattices for AF and RP types, n from 1 to 3. The phonon frequency are
in units of cm−1. The imaginary values are reported as negative ones. The zero
frequency isosurface of bulk cubic SrTiO3 is plotted at the right bottom corner.

soften and their frequencies converge to the values for cubic SrTiO3. Examination

of the eigenvectors reveals that these latter modes correspond to oxygen octahedra

rotations along the z axis. When n≥2, two consecutive octahedra along z rotate in
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opposite directions (out-of-phase mode AFDzo). From the zero frequency isosurface of

cubic SrTiO3, showing narrow cylinders along the BZ edges, we can roughly conclude

that, in order to build an instablity based on these rotation modes, we need correlation

of oxygen motions in the plane perpendicular to the rotation axis. Our superlattice

systems exhibit no unstable rotation modes along x or y. Since these rotations would

involve the oxygen in layer 1, where the octahedra is strongly distorted, this AFDxyo

mode can not appear for n=3. Only the unstable rotation mode along z can exist.

The reason why the unstable polar mode does not appear in AF and RP superlattices

can be traced from the zero frequency isosurface of cubic SrTiO3. As discussed above,

Figure 4.5 implies that, to build ferroelectric instability in STO, the shortest chain

length required is around 7∼8 (or more) perovskite unit cells in the directions not

only parallel but also perpendicular to the polarization direction. In our AF and

RP superlattices, the value of n is still far from the required chain length. As it is

discussed int Ref. [37], artificially suppressing the rumpling or applying strain may

tune the coherence length and induce the ferroelectric instability in RP superlattices

of the STO system.

Table 4.4: Phonon frequency of the lowest unstable mode (in cm−1) of Ba,Sr

and Pb based superlattices for AF and RP types.

BTO STO PTO

X Γ R Γ R Γ

cubic -151.96 -188.43 -84.74 -70.12 -79.50 -151.40

n=3 -119.46 -155.05 -80.32 —— -202.79 -187.05

AF n=2 -8.70 -144.45 -31.06 —— -207.68 -185.52

n=1 49.12 -32.41 52.52 —— -206.32 -180.85

n=3 -131.41 -163.81 -58.74 —— -91.52 -141.60

RP n=2 -83.02 -125.91 80.87 —— -89.64 -141.23

n=1 5.94 -77.90 123.20 —— -97.71 -144.17

4.5.3 Lead compounds

In cubic PbTiO3, the phonon behavior has similarities with both cubic BaTiO3 and

SrTiO3. As in the latter, the unstable rotation mode, which corresponds to the

oxygen octahedra rotations along x,y,z axis, appears at M, R points and remains

along the R-M lines with little dispersion and is more dispersive along the R-Γ
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and the M-X line. The unstable polar mode that appears at Γ point and drives a

ferroelectric phase transition, has the lowest phonon frequency as in cubic BaTiO3.

The phonon dispersion curves of PTO AF and RP superlattices are reported in

Figure 4.6, from which we can see large differencies compared to BTO and STO

superlattices. The frequency of the lowest unstable phonon modes do not converge

to the cubic value but keep relatively the same amplitude, which is shown in Table 4.4

as well. In agreement with Ref. [36] Pb based RP structures, when n=2, display a

ferroelectric instability. However, the frequency of this mode is not comparable to

Ref. [36] (96i cm−1). In our calculations, we found more than one unstable mode

at Γ as are reported in the LDA case. The different lattice constants we used might

be the origin of this discrepancy, since the ferroelectric instability is very sensitive to

the lattice volume. It is needed to point out that in the AF case, the eigenvectors

of the lowest unstable phonon mode at Γ point correspond to an in-plane anti-polar

motion of atoms, in which the direction of polarization in layer 0 is opposite to the

one in perovskite slab. The unstable ferroelectric polar mode along z direction (FEz)

appears at the BZ center already from n=1 in AF superlattices. This FEz mode

exists in RP superlattices but only from n=3. We report the frequencies of this FEz

mode in Table 4.5 in which we can see that the FEz instability is weaker that the

one in x-y plane. The frequency converges to the perovskite value when n increases.

It is worth pointing out that, by checking the eigenvectors in AF superlattices of

PTO, layer 0 shows the largest values for polar motions. In Figure 4.7, we plot out

the amplitude of the polar motions for each layer, in the case of n=2 for PTO in

comparison with the BTO system. Here, the amplitude of the polar motion is defined

as

pam =
∑

ij

Z∗
ijηij (4.1)

where the ηij is the eigenvector component of atom i along direction j and Z∗
ij is the

Born effective charge of atom i along the direction j. It is clearly shown in Figure 4.7,

in the case of AF PTO superlattices, that the pam in layer 0 is significantly larger

than in RP PTO and BTO systems. Here, mode 1 refers to the lowest unstable

phonon mode at Γ and mode 2 refers to the second lowest one. Thus the enhanced

ferroelectric phonon instability in AF PTO corresponds to the contribution of layer
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Figure 4.6: Phonon dispersion curves of bulk cubic PbTiO3 (n=∞) and Pb based
superlattices for AF and RP types, n from 1 to 3. The phonon frequency are in
the units of cm−1. The imaginary values are reported as negative ones. The zero
frequency isosurface of bulk cubic PbTiO3 is plotted at the right bottom corner.

0 (PbO layer). In this Pb based AF and RP superlattices, the PbO interface plays

an important role in tuning the ferroelectric instability.
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Table 4.5: Phonon frequency of the FEz and AFDzo mode in PTO(cm−1)

FEz AFDzo

cubic -151.40 -79.50

n=3 -69.12 -97.73

AF n=2 -52.56 -95.21

n=1 -32.59 -107.12

n=3 -22.12 -91.52

RP n=2 —— -80.45

n=1 —— -69.69

Furthermore, as observed from figure 4.6, the phonon instabilities of AF superlattices

are not similar to the one of RP : In the case of RP, the unstable phonon mode with

the lowest frequency is at Γ point while in AF it is found at R points.

There are two main unstable anti-ferrodistortive rotation modes at the R point that

expand to M point with little dispersion in AF and RP structure. The first one

corresponds to the rotation of octahedra along z, which is an out-of-phase mode

(AFDzo). The other one corresponds to the rotation of octahedra along x or y plus

a polar motion along its rotation axis, which can be treated as the combination of

a ferroelectric mode and an anti-ferrodistortive mode (FEx+AFDxo). In AF super-

lattices, the (FEx+AFDxo) mode has the lowest phonon frequency and this does not

change much when we increase the value of n. In Table 4.4 and Table 4.5, it is clearly

shown that the instability amplitude of the (AFDzo) mode is significantly smaller

than the one of the (FEx+AFDxo) mode. In addition, the amplitude of the (AFDzo)

mode does not converge to the perovskite value, and keeps its frequency value close

to 100i cm−1. In RP superlattices, as mentioned before, the lowest unstable phonon

mode appears at the BZ center. At the R point, the (FEx+AFDxo) mode is less

soft than it is in AF structure and its frequency does not change when n increases.

Unlike in the AF stucture, the (AFDzo) mode in RP structure keeps softening when

we increase the value of n, as reported in Table 4.5.

The phonon behavior in PTO superlattices, AF and RP, is more complex than it

is in BTO and STO cases. Due to the contribution of the very polarizable Pb2+,

a different dynamic behavior appears. New phonon instabilities emerge, FEz and

(FEx+AFDxo), in Pb based systems.
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Figure 4.7: Amplitude of unstable polar phonon motion in the arbitrary units.
Here, mode 1 refers the lowest unstable phonon mode and mode 2 refers the second
lowest one. The data are selected from Pb and Ba based superlattices for n=2.
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4.6 Phonon Density of States

In order to study the phonon contribution from each layer, we here report the phonon

density of states (DOS ) of AF and RP superlattices in the case of n=3, and the

phonon DOS of bulk cubic system. For the superlattices phonon DOS, we separate

the contributions of the central perovskite layer and of interface perovskite layers

(which are defined in Figure 4.2), then compare them with the DOS of bulk cubic

perovskite. The results are shown in Figure 4.8, 4.9, 4.10 and 4.11. The region of

negative frequencies are zoomed in the insets.

Figure 4.8: Phonon density of states (DOS ) of Ba based superlattices, in the case
of n=3 for AF and RP types. The region of imaginary frequencies is zoomed in
insets. The gray color part refers the phonon DOS of the bulk cubic BaTiO3, the
red line indicates the phonon DOS contribution of the interface perovskite layer
in superlattices while the blue line indicates the phonon DOS contribution of the

central perovskite layer in superlattices

In BTO superlattices, it is clearly seen in Figure 4.8 that the phonon DOS of the

central perovskite layer reproduces the bulk DOS better than the interface perovskite

layer, both in AF and RP structures. In the positive energy region of bulk DOS,
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there is a peak between 0 eV and 0.02 eV which mainly corresponds to the contribu-

tion of Ba atoms. The DOS of interface perovskite layer does not fully recovers this

peak (i.e. same energy position but lower magnitude). In the region between 0.05 eV

and 0.06 eV, there is a peak which originates from the TiO2 layer. Both the interface

and the central perovskite layer recover this peak nicely in energy and magnitude.

In the negative energy region, the peak position of the interface perovskite layer is

shifted toward higher energies compared with the bulk cubic DOS, while the central

perovskite layer DOS agrees better with the bulk. This confirm that i) the ferroelec-

tric instability of cubic BaTiO3 is weakened in AF and RP superlattices for n=3,

ii) the central perovskite layer provides the main contribution to the ferroelectric

instability, which is suppressed in the interface perovskite layer.

Figure 4.9: Phonon density of states (DOS ) of BaO layer, in the case of n=3
for AF and RP types superlattices. The gray color part refers the phonon DOS of
interface perovskite layer in superlattices, the red line indicates the phonon DOS
contribution of the BaO layer in central perovskite layer in superlattices while the

blue line indicates the phonon DOS contribution of the bulk rock-salt BaO.

The phonon DOS for the BaO layer at the interface and central region are reported as

well. Comparing with the phonon BaO DOS for bulk , we can see from Figure 4.9 that

the BaO layer does not contribute to the unstable modes in the superlattice, which
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confirms that the ferroelectric instability mainly originates from the Ti-O chains in

AF and RP superlattices of BTO. By looking at the position, the magnitude and the

width of the DOS peak, it is obvious that the dynamic behavior of the BaO layer

is similar at the interface and at the center of the perovskite layer. It is however

different in bulk BaO.

Figure 4.10: Phonon density of states (DOS ) of Sr based superlattices, in the
case of n=3 for AF and RP types. The region of imaginary frequencies is zoomed
in insets. The green color part refers the phonon DOS of the bulk cubic SrTiO3,
the red line indicates the phonon DOS contribution of the interface perovskite
layer in superlattices while the blue line indicates the phonon DOS contribution

of the central perovskite layer in superlattices.

The case of STO is similar with BTO in the positive energy region of phonon DOS.

Figure 4.10 shows a peak of large magnitude between 0 and 0.02 eV, which cor-

responds to the contribution of Sr atoms mainly from the central perovskite layer.

Around 0.06 eV, there is a peak originating from the TiO2 layer, also from the central

perovskite layer. In the negative energy region, the phonon DOS of cubic SrTiO3

shows two peaks: the one with lower energy corresponds to the unstable rotation

mode and the other one corresponds to the the ferroelectric instability. There is no

significant contribution from the interface perovskite layer. In the phonon DOS of
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Figure 4.11: Phonon density of states (DOS ) of Pb based superlattices, in the
case of n=3 for AF and RP types. The region of imaginary frequencies is zoomed
in insets. The green color part refers the phonon DOS of the bulk cubic PbTiO3,
the red line indicates the phonon DOS contribution of the interface perovskite
layer in superlattices while the blue line indicates the phonon DOS contribution

of the central perovskite layer in superlattices

central perovskite layer, only one peak appears in the negative energy region, which

corresponds to the unstable rotation modes. This peak is shifted toward higher en-

ergies compared with the one in cubic SrTiO3, and it is confirmed that the anti-ferro

distortion instability is suppressed in the interface perovskite layer.

Figure 4.11 shows the phonon DOS for PTO. Two large amplitude peaks in the DOS

of cubic PbTiO3 are found in the positive energy region. The first one, around 0.01

eV, corresponds to the contribution of Pb atoms. The second one, corresponding

to the contribution of TiO2 layers, is found at around 0.06 eV. The DOS of central

perovskite layer recovers the first peak better in energy and in amplitude. The

phonon DOS for interface and central perovskite layer of RP superlattice recovers

the second peak in energy and magnitude, However in AF series, this peak shifts

toward higher energy in both interface and central perovskite layer. In negative

energy region, the amplitude of instability in interface perovskite layer is larger than
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the bulk cubic, which corresponds to an enhanced ferroelectric instability. The DOS

of central perovskite layer and bulk cubic correspond well.

The phonon DOS reveal that the different layers in superlattices have different dy-

namic behaviors. The fact that the superlattices can not fully reproduce the phonon

properties of bulk cubic perovskites does not mean that the physical quantities in

central perovskite layer can not rapidly converge to the bulk ones. Besides, the in-

teraction between atoms in a single perovskite unit cell might converge to the cubic

value even more rapidly. Thus, it is interesting to evaluate the inter-atomic force

constants in real space, as reported in the next section.

4.7 Interatomic Force Constants

In this section, we will investigate the inter-atomic force constants (IFC ) in real space

for AF and RP superlattices, in the case of n=3. The IFC is defined between each

couple of atoms. As described in literature [144], the force Fα(κ), along α direction,

induced on atom κ by the displacement ∆τβ(κ
′) of atom κ′ along β direction is given

by

Fα(κ) = −Cα,β(κ, κ
′) ·∆τβ(κ

′)

Where Cα,β(κ, κ
′) is the IFC and thus the on-site force constant (Con(κ)) is defined

by κ = κ′. The total force (TT ) between two atoms is defined as the sum of two

parts: the dipole-dipole part (DD) and the short-range part (SR). The dipole-dipole

part corresponds the long-range electric interaction between two atoms, which can be

calculated analytically. We define the remaining force contribution as the short-range

(SR) part, which is sensitive to the atomic distance and nature.

From the definition of the IFC, we can conclude that the on-site force Fon(κ) induced

on atom κ is the interatomic forces Finter(κ, κ
′) summed over all other atoms:

Fon(κ) =
∑

κ′

Finter(κ, κ
′)
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This implies that the dynamic behavior of one atom originally depends on Cinter(κ, κ
′)

(which corresponds to Finter(κ, κ
′)). Two atoms have the same dynamical properties,

if their Cinter(κ, κ
′) values are the same, which is a very strict requirement.

In Table 4.6, we report the on-site force constant Con(κ) (which corresponds to

Fon(κ)) of each atom, in superlattices and in bulk cubic perovskite structures. For Ti

and A site atoms the ‘main axis’ component of each atoms refers to the z direction.

The direction along Ti-O bond was chosen as main axis for O atoms. Oxy and Oz

refer to the equatorial and apical oxygen atoms in the TiO6 octahedra. Ba and Sr

atom have larger mass amd smaller on-site force constant(<0.1 Ha./Bohr2) than Ti

and O, related to low vibration frequencies, which is similar in central and interface

layers.

The values for Oxy and Oz atoms in central layer recover the bulk cubic with small

differences (<10%), while the values for Oz atom in the interface layer show larger

differences (15%∼20%). The on-site force constant values for Ti atoms, in both

interface and central layers, recover the bulk values within ∼5%. Next, we have

checked the Cinter(κ, κ
′) value for the central layer atoms and interface Ti atoms.

In Figure 4.12, we report the total part of Cinter(κ, κ
′) induced on Ti atoms by

its first 100 neighbour atoms given as a function of interatomic distance. The Ti

atom is selected in central and interface perovskite layer of Ba based AF and RP

superlattices, in the case of n=3, and compared with the case of bulk.

In the case of bulk BaTiO3, the maximum value of Cinter(κ, κ
′) induced on Ti atoms

corresponds to its first Ti neighbor atom, with a negative value. Cinter(κ, κ
′) values

between Ti and O are weak and positive. Ti-Ba values are in between and are

negative. According to the definition of interatomic force constants, this implies that

all Ti atoms have tendency to move along the same direction along with Ba atoms,

while O atoms move in opposite direction. These interactions in O-Ti-O chains play

an important role in driving the ferroelectric instability in perovskite lattices. Ti-Ti

and Ti-Ba Cinter(κ, κ
′) absolute values decrease when the distance increases. It is

interesting to point out that Cinter(κ, κ
′) for first neighbor Ti atom splits into two

close values although the distances are equal. This arises for the 3-layers cell we

used in our calculation. The error will appear between Ti-Ti in x-y plane and out-of

plane. This kind of error will also appears in our superlattice calculations so that

we can compare the values between bulk cubic and superlattices at the same level of

error. Similar considerations are valid for O and Ba atoms.
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Table 4.6: The z component on-site force constant for Ti and A site atoms

and the component along Ti-O chain of on-site force constant for O atoms (in

Ha./Bohr2) of Ba,Sr and Pb based superlattices in AF and RP types. TT refers

the total part of the force constants and SR refers the short range part. Oxy and

Oz refers to the equatorial and apical oxygen atoms in the TiO6 octahedra.

BTO STO PTO

TT SR TT SR TT SR

Ti 0.15902 0.45660 0.19516 0.53340 0.15507 0.37371

Bulk cubic A 0.08749 0.05730 0.05627 0.02379 0.04033 0.00880

O 0.13909 0.50493 0.20632 0.62003 0.17763 0.44753

AF Central Ti 0.16355 0.38037 0.18813 0.41959 0.13875 0.29417

A 0.08869 0.05987 0.06009 0.02866 0.04316 0.00524

Oxy 0.14475 0.57395 0.22712 0.73212 0.19816 0.47480

Oz 0.13654 0.39734 0.19666 0.48172 0.16366 0.36426

AF Interface Ti 0.17316 0.36996 0.18397 0.39552 0.13125 0.24857

A 0.08701 0.06952 0.07858 0.06328 0.05064 0.03797

Oxy 0.15179 0.54946 0.22984 0.71521 0.19878 0.46815

Oz 0.11921 0.25477 0.16325 0.31807 0.11954 0.21142

RP Central Ti 0.16566 0.39544 0.19554 0.46371 0.14986 0.32858

A 0.08837 0.05835 0.06036 0.02808 0.04407 0.00907

Oxy 0.14064 0.54513 0.21234 0.66720 0.18802 0.46188

Oz 0.13703 0.41126 0.19737 0.51760 0.16607 0.38296

RP Interface Ti 0.17800 0.38831 0.18731 0.43298 0.14047 0.29339

A 0.08692 0.07236 0.09505 0.09072 0.05521 0.05041

Oxy 0.14917 0.51873 0.21485 0.64761 0.18887 0.45390

Oz 0.12251 0.24910 0.15266 0.31750 0.11935 0.22244

In the AF and RP types superlattices, Cinter(κ, κ
′) values for Ti atoms in central

perovskite layers are very similar with the one for bulk cubic. The Cinter(κ, κ
′) val-

ues for the atoms in x-y planes are significantly different from the apical one, due

to the different atomic distances along these directions. These results imply that

the dynamic behavior of Ti atom selected from central perovskite layers of AF and

RP superlattices recovers the bulk behavior. To illustrate this, we report in Fig-

ure 4.13 the difference of total interatomic force constants between Ti atoms in

central perovskite layer of superlattices (CSL) and the one in bulk cubic (CCubic) i.e.

Cdiff = CCubic − CSL. Cdiff values are very small, in the range between -0.01 and

0.01(in Ha./Bohr2), which is smaller than 1% of the Con(T i).
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Figure 4.12: Interatomic Force Constant (IFC ) induced on Ti atom in bulk cubic
BaTiO3 and Ba based superlattices, AF and RP types. The IFC values depend
on different atoms and atomic distances with reference Ti atom. Atoms differ by

colors, green for Ti, blue for Ba and black for O.

Figure 4.13: Difference between the interatomic force constant (IFC ) induced on
Ti atom in bulk cubic BaTiO3 and the ones induced on Ti atom in superlattices.
The values depend on different atoms and atomic distances with reference Ti atom.

Atom differ by colors, green for Ti, blue for Ba and black for O.

It is shown in Figure 4.12 that the Ti atom selected in the interface perovskite

layer shows different IFC values from Ti in bulk cubic. Its first O neighbors have

significantly different Cinter(κ, κ
′) values. Moreover, the second nearest Ba atom

is found at the distance of 4.6 Å while it is found at around 6.6 Å in bulk cubic.

These structure features imply that the dynamic behavior of Ti atom in interface

perovskite layer of AF and RP superlattices is not expected to recover the one for
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bulk perovskite.

IFC values reported above confirm that the dynamics of the superlattices converge

to the bulk behavior very quickly, i.e. only one perovskite layer away from the

interface. Long-range dipole-dipole interactions, which dominate in IFC components

beyond the first coordination shell, are not significantly affected in the x-y directions

of the superlattices; this may explain why the dynamics, at least in these directions,

converge so fast to the bulk behavior. From Table 4.3 and Figure 10, one can readily

figure out that the changes in atomic distances, from the bulk to the superlattices,

are not large enough to drastically change IFC values.

IFC values mentioned above confirm that the dynamics of the superlattices converge

to the bulk behavior very quickly, i.e. only one perovskite layer away from the

interface. The long-range dipol-dipol interaction is proportional to the term 1
r2

which

will not be siganificantly modified by a relatively small displacement under large

atomic distance. From Table 4.3 and figure 4.13, one can readily figure out that the

changes in atomic distances, from the bulk to the superlattices, are not large enough

to drastically change IFC values.

Also, IFC s and related dynamic matrices are key input quantities to determine the

parameters of model potentials [105], so that there is good hope to develop robust

and transferable effective Hamiltonians for simulating the dynamic behavior of more

complex or extended (i.e., larger n values) superlattices.

4.8 Hartree Potential

In order to find more evidences about the effect of rumpling at the interface, we

plot the Hartree potential distribution of 3-layers BTO in Figure 4.14. We keep

the atomic position as they are in cubic and simply move the Ti in the perovskite

layer with a displacement of 0.4 Å along z direction or x direction. It is equivalent

to creating a small dipole in the cell. In Figure 4.14 the hartree potential of these

dipoles are reported as well. It is observed that the hartree potential of these dipoles

are localized in a small region inside one perovskite unit cell even for an amplitude

of the displacement ten times larger than the rumpling (0.04Å) in the two types

superlattices. This means that the rumpling in the interface does not change the

hartree potential of the central layer, and that is why the central layer can recover

the dynamic properties of cubic-like just one layer away from the interface.



Chapter 4. Natural and artificial ABO3/AO superlattices 84

Figure 4.14: Hartree Potential in 3-layers BTO. a) Dipole created by Ti atom
in interface layer, moved along z ; b) Dipole created by Ti atom in central layer,
moved along z ; c) Hartree potential of 3-layers BTO ; d) Dipole created by Ti atom
in interface layer, moved along x ; e) Dipole created by Ti atom in central layer,

moved along x ; f) Structure of 3-layers BTO supercell

4.9 Born effective charges and dielectric constants

The long-range Coulomb part of the interatomic force constants relates to the inter-

action of the Born effective charge (Z�, alias dynamic effective charge) screened by

the optical dielectric constant. These quantities therefore give precious information

in lattice dynamical studies. The Born effective charge is a theoretical concept which

can not be experimentally measured directly. In contrast, the optical dielectric tensor

can be measured in experiments. In this part, we will investigate the Born effective

charge of atoms and the optical dielectric tensor in AF and RP superlattices.
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4.9.1 Born effective charges

As it is discussed in Refs [147] and [148], the definition of the Born effective charge

is distinct from that of the usual static charge. For periodic solids, the Born effective

charge of atom κ is a tensor defined as the coefficient of proportionality at the linear

order and under the condition of zero macroscopic electric field, between the macro-

scopic polarization per unit cell created in direction β and cooperative displacement

of atoms κ in direction α :

Z�
καβ = Ω0

∂Pβ

∂τκα

∣∣∣∣
ε=0

(4.2)

where Ω0 is the unit cell volume. The Born effective charge is therefore a dynamical

concept in the sense that it concerns the response to an atomic displacement. The

Born effective charge must obey a dynamical neutrality condition (i.e. their sum

must vanish over the crystal cell). This neutrality condition was extended to the case

of surface and interfaces [149, 150] showing that Z� can substantially deviate there

from their bulk counterparts.

Table 4.7: Z� in bulk cubic perovskite and rock-salt oxides (in |qe− |), ⊥ refers

the direction perpendicular to the x-y plane, ‖ refers the direction parallel to the

x-y plane.

BTO STO PTO Nominal charge

⊥ ‖ ⊥ ‖ ⊥ ‖
Ti +7.458 +7.458 +7.403 +7.403 +7.328 +7.328 +4

A +2.734 +2.734 +2.552 +2.552 +3.919 +3.919 +2

O -5.903 -2.145 -5.865 -2.045 -6.042 -2.602 -2

BaO SrO PbO Nominal charge

⊥ ‖ ⊥ ‖ ⊥ ‖
A +2.769 +2.769 +2.475 +2.475 +4.718 +4.718 +2

O -2.769 -2.769 -2.475 -2.475 -4.718 -4.718 -2

In Table 4.7, we report the calculated Born effective charges along different directions

for atoms in the superlattices, in the cubic perovskite and in the bulk rock-salt oxides.

⊥ and ‖ refer to the direction perpendicular and parallel respectively to the x-y plane.

Comparing with the nominal charges, anomalously large effective charges appear in
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cubic perovskite structures, especially for the Ti atom and the O atom along the Ti-

O direction. This implies that Ti-O chains can be easily polarized along the chain

direction,in close relation with the ferroelectric instability. It is worth to point out

that the Pb atom in cubic PbTiO3 has anomalous large effective charge as well, which

confirms that the Pb atom can be easily polarized in PbO layer.

Table 4.8: Z� of atoms (in |qe− |) in Ba, Sr and Pb based superlattices of AF

and RP types. ⊥ refers the direction perpendicular to the x-y plane, ‖ refers the

direction parallel to the x-y plane. Notations are defined in the main text.

BTO STO PTO

⊥ ‖ ⊥ ‖ ⊥ ‖
AF Ti2 5.731 7.162 5.761 7.281 6.347 7.246

Ti4 6.041 7.382 5.947 7.391 7.090 7.351

O0 -3.402 -2.634 -3.293 -2.276 -3.821 -3.523

A0 4.148 2.671 3.998 2.296 4.734 3.503

A1 2.801 2.592 2.692 2.363 3.928 3.618

A3 2.295 2.759 2.138 2.572 3.902 3.976

RP Ti2 6.008 7.095 6.203 7.178 6.368 7.114

Ti4 6.313 7.351 6.397 7.315 6.832 7.229

A1 3.239 2.632 3.106 2.356 4.326 3.659

A3 2.382 2.759 2.260 2.573 3.695 3.976

In Tables 4.8 and 4.9 , we report the Born effective charges in AF and RP super-

lattices in the case of n=3. Atom κi refers to atom κ from layer i (see Figure 4.2)

of the superlattice. ‖T i−O refers to the direction along Ti-O bond, ⊥1 and ⊥2 refer

to the other directions perpendicular to ‖T i−O. It can be easily seen that Z� con-

verge to the cubic perovskite values, going from the interface to the central layer.

Especially, the component in the x-y direction is larger than the component along

z (since the infinite Ti-O chain interactions is preserved along x-y only). Therefore

the ferroelectricity can be more easily induced in the x-y planes.

In the layer 0 for AF superlattices, which is of rock-salt type structure, the effective

charges of atoms are different from the one in perovskite structures, and from the one

of bulk rock-salt oxide: the A0 atoms are more easily polarized along the z direction;

the effective charges of O0 atoms along z direction are larger than the one along x-y

plane, but remain weaker than the values in perovskite cells, since they are not in

the same chain than Ti.
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Table 4.9: Z� of O atoms (in |qe− |) in Ba, Sr and Pb based superlattices of AF

and RP types. ‖T i−O refers the direction along Ti-O bond, ⊥1 and ⊥2 refer to the

other two directions perpendicular to ‖T i−O.

BTO STO PTO

‖T i−O ⊥1 ⊥2 ‖T i−O ⊥1 ⊥2 ‖T i−O ⊥1 ⊥2

AF O1 -4.242 -2.252 -2.252 -4.218 -2.105 -2.105 -4.834 -2.828 -2.828

O2 -5.656 -2.150 -1.717 -5.751 -2.037 -1.658 -6.054 -2.569 -2.458

O3 -4.816 -2.172 -2.172 -4.727 -2.082 -2.082 -5.873 -2.726 -2.726

O4 -5.828 -2.157 -1.740 -5.844 -2.050 -1.657 -6.073 -2.588 -2.554

RP O1 -4.347 -2.240 -2.240 -4.415 -2.056 -2.056 -4.960 -2.796 -2.796

O2 -5.602 -2.176 -1.800 -5.672 -2.053 -1.758 -5.947 -2.620 -2.367

O3 -5.034 -2.164 -2.164 -5.082 -2.062 -2.062 -5.696 -2.696 -2.696

O4 -5.602 -2.161 -1.807 -5.784 -2.058 -1.754 -5.974 -2.633 -2.415

The Born effective charges are defined for atoms but are related to the global dynami-

cal behavior of the lattice, and especially to the long-range dipole-dipole interactions.

Our results show that Z� of central perovskite layers in superlattices reproduce well

those of cubic perovskite. For displacement in the x-y plane, the convergence is much

slower along the z direction. At the interfaces, Z� can deviate substantially from the

bulk values.

4.9.2 Optical dielectric tensor

The dielectric tensor is a macroscopic concept related to the macroscopic displace-

ment field D, the macroscopic electric field ξ and the macroscopic polarization P as

follows:

Dα = ξα + 4πPα (4.3)

while the dielectric tensor is introduced as

εαβ =
∂Dα

∂ξβ

∣∣∣∣
ξ=0

(4.4)
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From the definition we can see that the dielectric tensor globally describes the screen-

ing of a macroscopic electric field by a polarizable medium. In solids, both the elec-

trons and the ions may polarize under the action of a macroscopic electric field. In

this part, we will only address the contribution of the electronic polarization to the

dielectric tensor (i.e. the optical dielectric tensors).

In Table 4.10 we report the optical dielectric tensor values of AF and RP super-

lattices, cubic perovskites and bulk rock-salt oxides. εi refers to the component of

the dielectric tensor along i direction. In bulk cubic systems the dielectric tensor

reduces to a scalar. Table 4.10 shows that the dielectric tensor of each AF and RP

superlattice converges to the cubic perovskite values, especially the component along

the x-y plane.

Comparing to the experimental data, the theoretical calculation overestimates the

dielectric constant values of bulk cubic perovskite. The error is around 30% in

BaTiO3, 22% in SrTiO3 and 2% in PbTiO3. The origin of this error is complex

and has been briefly discussed in Ref. [90]. On one hand, it comes at least partly

from the approximation used for the exchange-correlation functional: the GGA ap-

proximation we used, in which the long-range interactions are not included in the

exchange-correlation potential. On the other hand, the cubic structure of BaTiO3

and SrTiO3 observed in experiment is actually the average of local distortions which

depend on the material.

It is worth to mention that the dielectric tensor of superlattices have smaller values

than the cubic perovskite in both BTO and STO systems, while in PTO system

the relation between them is opposite. This may arise from the rock-salt type layer

in superlattices. As it is shown in Table 4.10, the dielectric tensor of bulk cubic is

larger than the one in cubic perovskite in Pb based system, the Pb atom is easily

polarizable in rock-salt type structure. The values for AF and RP superlattice is in

between since they are as combination of these two types of structures.

In order to estimate how each type of structure, perovskite and rock-salt, contributes

to the dielectric tensor of the superlattice, we calculate the effective dielectric tensor

by treating the superlattice as a capacitor arising from the stacking of the perovskite

and rock-salt unit cell. Each component of the effective dielectric tensor ε′ is defined

by the following expressions:
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Table 4.10: Dielectric constant in superlattices, bulk cubic perovskite and bulk

rock-salt oxides. z refers to the component along z and x-y refers to the component

along x-y plane.

n=1 n=2 n=3 Cubic Rock-salt

z x-y z x-y z x-y Theory Exp.[151] AO

BTO AF 4.910 5.099 5.325 5.580 5.599 5.864 6.834 5.24 4.325

RP 5.083 5.386 5.540 5.866 5.833 6.124 6.834 5.24 4.325

STO AF 4.557 4.818 4.984 5.284 5.251 5.548 6.430 5.18 3.871

RP 4.904 5.177 5.355 5.613 5.608 5.835 6.430 5.18 3.871

PTO AF 9.181 10.662 8.980 9.802 8.852 9.521 8.832 8.64 26.666

RP 8.409 9.106 8.371 8.820 8.442 8.777 8.832 8.64 26.666

dsl
ε′z

=
dp
εp(z)

+
dr
εr(z)

(4.5)

ε′xydsl = εp(xy)dp + εr(xy)dr (4.6)

Here, dsl refers to the thickness of the superlattices unit cell, dp and dr refer to the

thickness of perovskite and rock-salt slab respectively. εp(i) and the εr(i) refer to the

dielectric component of the cubic perovskite and bulk rock-salt oxides along direction

i.

Table 4.11: Effective dielectric constant (ε′z), dielectric constant (εz) and the

relative difference between them ((ε′i − εi)/εi) in AF type of Ba, Sr and Pb based

superlattices.

ε′z εz Diff(ε′z) ε′xy εxy Diff(ε′xy)

BTO n=1 5.110 4.910 4.0% 5.375 5.099 5.4%

n=2 5.524 5.325 3.7% 5.808 5.580 4.1%

n=3 5.777 5.599 3.2% 6.043 5.864 3.1%

STO n=1 4.687 4.557 2.8% 4.990 4.818 3.6%

n=2 5.108 4.984 2.5% 5.428 5.284 2.7%

n=3 5.366 5.251 2.2% 5.662 5.548 2.1%

PTO n=1 14.127 9.181 53.9% 18.827 10.662 76.6%

n=2 11.949 8.980 33.1% 15.787 9.802 61.1%

n=3 11.025 8.852 24.6% 14.136 9.521 48.5%
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In Table 4.11 and 4.12, we report the values of effective dielectric tensor of AF and RP

superlattices from n=1 to 3, in which the relative difference is defined as (ε′i− εi)/εi.

When n increases, the difference between ε′ and ε tensors decreases. We can see

that in the Ba and Sr based superlattices, the effective dielectric tensor matches

the dielectric constant value from calculations very well, both in AF and RP cases

(the value difference is below 9% and can decrease below 3% when n increases to 3).

However, in Pb based superlattices, this difference is larger than 18%. Such a big

difference might arise because bulk PbO has a significantly large dielectric constant.

In AF and RP superlattices, the PbO type layer 0 has different Z� value with the one

in bulk PbO, which implies that the PbO layer 0 has different dielectric contribution

to the bulk rock-salt. That is why such big difference arises when we use the value

from the bulk to build the effective dielectric tensor. In the case of Ba, Sr based

superlattices, the layer 0 has similar contribution so that the difference between ε′

and the ε is relatively small. It is worth to point out that all the significant differences

converge to zero in AF and RP structure when n increases.

Table 4.12: Effective dielectric constant (ε′z), dielectric constant (εz) and the

relative difference between them ((ε′i − εi)/εi) in RP type of Ba, Sr and Pb based

superlattices.

ε′z εz Diff(ε′z) ε′xy εxy Diff(ε′xy)

BTO n=1 5.515 5.083 8.5% 5.800 5.386 7.7%

n=2 5.941 5.540 7.2% 6.184 5.866 5.4%

n=3 6.159 5.833 5.6% 6.360 6.124 3.8%

STO n=1 5.107 4.904 4.1% 5.427 5.177 4.8%

n=2 5.534 5.355 3.4% 5.804 5.613 3.4%

n=3 5.761 5.608 2.7% 5.981 5.835 2.5%

PTO n=1 11.954 8.409 42.2% 15.796 9.106 73.5%

n=2 10.560 8.371 26.1% 13.195 8.820 49.6%

n=3 10.020 8.442 18.7% 11.995 8.777 36.7%

4.10 Conclusion and perspectives

The rock-salt interface plays an important role in AF and RP superlattices, by

breaking the long-range Ti-O chain coherence in the direction perpendicular to the

interface. In this case, most phonon instabilities, appearing in bulk cubic perovskites,

and corresponding to atomic motions along z direction, disappear in Ba, Sr, Pb
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based AF and RP superlattices. This suggests the importance of the long-range

interaction between perovskite blocks in periodic lattices for phonon instabilities,

including ferroelectric and anti-ferrodistortive instabilities. To generate the phonon

instabilities of bulk cubic perovskites, we need to reach a size compatible with the

“correlation volume” in superlattices with Ba and Sr. In Pb based superlattices, the

ferroelectric phonon instability is partly driven by the PbO interface, which appears

in bulk PbO as well. This is independent from n and especially enhanced in AF

series. This might indicate a potential possibility to tune further the ferroelectric

properties in Pb based perovskite superlattices.

Although the “correlation volume” is not achieved when n≤3, the dynamical proper-

ties of central perovskite layers has already recovered the one of bulk cubic perovskite,

as shown in our results. Comparing with the ideal structure of bulk cubic perovskite,

significant atomic rumpling appears in the interface perovskite layers, which distorts

the structure of the perovskite unit cell so that the lattice constants and the atomic

bond lengths are affected in this layer. In the central perovskite layer, the unit cell

has similar lattice constant and the atomic positions are cubic-like. Thus, the atomic

rumpling in the interface perovskite layer does not have a long-range effect. It has

been shown that the dynamic properties of cubic perovskite is well reproduced by the

central perovskite layer, including phonon DOS, interatomic force constants and Born

effective charges. We can conclude that these physical quantities converge fast from

the interface to the central perovskite layer, and this requires only one perovskite

layer away from the interface perovskite layer.

The results about the distribution of Hartree potential in Figure 4.14 demonstrate

that the local structure distortion, at least in perovskite series superlattices, is only

efficient in a local region and will not change the dynamics of the next perovskite

layer. This analysis may suggest a way to distinguish the interface part from the

central part in thick superlattices.





Chapter 5

PbTiO3/SrTiO3(m/n)

superlattices

5.1 Introduction

As discussed in Chapter 3, in the very-short period limit, PTO/STO(1/1) superlat-

tices can exhibit unusual couplings between lattice modes, yielding eventually hybrid

improper ferroelectricity. Independently, larger period systems have also been the

topic of intensive studies [152–155]. Strontium titanate is not ferroelectric. Depend-

ing of its thickness, the PTO layers can be more or less electrostatically coupled

or decoupled, yielding different kinds of domain structures. Few first-principles in-

vestigations of such systems have been reported [3,4] but are computationally very

costly. Accessing the dynamical properties of large superlattices using the effective

potentials introduced in Chapter 3 would be very useful. However,we need to clarify

how to fit such a model from first-principles calculations on very simple systems.

Chapter 4 has demonstrated that the dynamical properties converge very quickly to

bulk values when increasing thicknesses. We here check these results explicitly on

PTO/STO(m/n) superlattices.

We will briefly introduce the structure we are interested in and then study the phonon

density of states (DOS ) and the interatomic force constants (IFC ). We do not re-

port the phonon dispersion curves since it is more difficult to distinguish the layers

contribution than in DOS. We will see that the conclusions in Chapter 4 hold in

PTO/STO(1/3) and PTO/STO(3/1) systems as well, which opens the possibility of
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building effective Hamiltonians for thick superlattices, by using the data from short

period superlattices.

5.2 Structures of interest and technical details

Figure 5.1: PTO/STO(m/n) superlattices with different periods. (a)
PTO/STO(1/1); (b) PTO/STO(1/3); PTO/STO(3/1). Layers are labeled from
layer 1 to layer 5 and the Ti-O bonds are labeled from bond 1 to bond 4. Cc refers
to the thickness of central layer, Ci refers to the thickness of interface layer and C

is lattice constant along z.

PTO/STO(1/3) (P1S3 ) and PTO/STO(3/1) (P3S1 ) unit cells are shown in Fig-

ure 5.1, where the superlattices are built by stacking the perovskite unit cells along

the z direction. In P1S3 there is one PbTiO3 unit cell after each block of 3 SrTiO3

unit cells, and vice versa in P3S1. As shown in Figure 5.1, the first AO (A=Pb,Sr)

layer from the interface is labeled layer 1, layer 2 is the next TiO2 layer along z and

so on. In this case we can define layer 1, layer 2 and layer 3 as the ‘interface layer’

while layer 5, layer 4 and layer 3 can be combined as ‘central layer’. Thus, layer 3 is

shared by interface and central layers.

As it is discussed in Chapter 4, we try to estimate the dynamical properties of inter-

face layers from the knowledge of the PTO/STO(1/1) (P1S1 ) system and estimate

the central layer behavior from bulk perovskite. All the results of first-principles
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calculations are obtained by using the ABINIT software package as in previous chap-

ters. 6× 6× 6 k-grid for Brillouin-zone sampling was used for bulk cubic SrTiO3 and

tetragonal PbTiO3 and a 6×6×2 k-grid was applied for P1S3 and P3S1 superlattices,

For P1S1, we used a 6× 6× 4 k-grid.

5.3 Structure Relaxation

All structures in this chapter were fully relaxed along the z axis in high symmetry

phase, and at the same time we fixed the in-plane lattice constant to the value of

cubic SrTiO3. Thus, in-plane strain was induced for PbTiO3. In this case the bulk

PbTiO3 and PTO/STO(m/n) superlattices are in the tetragonal phase of space group

P4/mmm (123).

As in Chapter 4, we define the average plane coordinate for each layer as zaver=(zcat+zO)/2

and the rumpling of each layer as Raver=(zcat-zO)/2. We relaxed the lattice constant

along z of each structure and the thickness of the interface (Ci) and central layers

(Cc) for P1S3 and P3S1 superlattices. In Table 5.1, we observe that the thickness of

each perovskite layers in P1S1 is around the average of cubic SrTiO3 and tetragonal

PbTiO3. The thickness of interface layer in P1S3 and P3S1 perfectly recovers the

value of P1S1 with a difference below 0.1%. The thicknesses of central layer in P1S3

and P3S1 are similar to the values of cubic SrTiO3 and PbTiO3 respectively, with

a difference below 0.1%. The lattice constant along z of P3S1 is significantly larger

than the one of P1S3, since it contains a larger number of tetragonal PbTiO3 unit

cells.

Table 5.1: The lattice constant C (along z ) for PTO/STO(m/n) (P1S3, P3S1

and P1S1 ), bulk cubic SrTiO3 and bulk tetragonal PbTiO3. Thickness of central

layer Cc, and interface layer Ci (in Å).

P1S3 P3S1 P1S1 PbTiO3 SrTiO3

Ci 3.876 3.874 3.875 3.906 3.845

Cc 3.843 3.907 3.875 3.906 3.845

C/(m+n) 3.860 3.891 3.875 3.906 3.845

The PTO/STO(m/n) system shows atomic rumpling as well. In relaxed structures,

the rumpling appears mainly at interface and reduces quickly away from interface

to the central layer. In Table 5.2, we observe that layer 2 (TiO2 type) shows the
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maximum rumpling amplitude which is around 0.016Å in each system. From layer 3

to layer 5, the rumpling of each layer become negligible.

Another related quantity are the Ti-O bond lengths along z, which are reported in

Table 5.3. We can see that in PTO/STO(m/n) systems, the Ti-O bond length in

the PbTiO3 layer is similar to the one in tetragonal bulk PbTiO3 with a difference

below 0.1%. The Ti-O bond length in the SrTiO3 layer nicely recovers the one in

cubic bulk SrTiO3 with a difference also below 0.1%.

Table 5.2: Value of rumpling for each layer in PTO/STO(m/n) superlattices

(P1S3, P3S1 and P1S1 ) (in Å). Each layer is labeled in Figure 5.1.

P1S3 P3S1 P1S1

layer 1 0 0 0

layer 2 -0.016 0.016 -0.015

layer 3 0.001 -0.002 0

layer 4 -0.000 0.000 —

layer 5 0 0 —

These results indicate that the interface breaks the symmetry along the z direction

and leads to atomic rumpling. This kind of effect is localized in the interface region

and does not propagate beyond one perovskite layer (around 4 Å). The Ti-O bond

length relies on the A site atom in each perovskite layer as well.

Table 5.3: Ti-O bond lengths along z in PTO/STO(m/n) superlattices (P1S3,

P3S1 and P1S1 ) and bulk (in Å), Each bond is labeled in Figure 5.1.

P1S3 P3S1 P1S1 PbTiO3 SrTiO3

bond1 1.954 1.921 1.954 1.953 1.922

bond2 1.921 1.955 1.921 1.953 1.922

bond3 1.923 1.953 — 1.953 1.922

bond4 1.922 1.953 — 1.953 1.922

5.4 Phonon density of states

The contribution of each layer to the phonon DOS is divided into central and interface

layer and reported in Figure 5.2. There are mainly two peaks reported in the negative

region (unstable modes). The one with lowest energy corresponds to the unstable
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rotation modes involving O ; the other one with higher energy indicates the unstable

polar modes.

Four narrow peaks with large amplitude, which are related to atomic motions of only

one kind of atom, are found in the positive energy region. The first one, around

0.005eV, corresponds to the contribution of Pb atoms. The second one, around

0.015eV, corresponds to the contribution of Sr atoms. The third and the fourth are

found around 0.07eV and 0.1eV and arise from the contribution of O atoms. The

broad region involves the motion of Ti and O atoms.

Figure 5.2: Phonon density of states(DOS ) of interface and central layer in P1S3
and P3S1 cases and the DOS for bulk. (a) bulk cubic SrTiO3 (orange) and central
layer in P1S3 (green line); (b) bulk tetragonal PbTiO3 (light blue ) and central
layer in P3S1 (brown line); (c) P1S1 case (gray) and the interface layer in P1S3
(pink line); (d) P1S1 case (gray) and the interface layer in P3S1 (dark blue line).

Figure 5.2 shows that the phonon DOS of the central layer in P1S3 and P3S1 re-

produces almost identically the DOS of bulk perovskite; the same conclusion holds

for interface phonon DOS which fully recovers the DOS for P1S1 structures.

These results confirm that the dynamic behavior quickly converge to bulk, and one

perovskite layer away from interface is enough. This can be explained by the fact that
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the central layer has similar atomic positions and lattice constants with bulk. This

explains also that the interface part reproduces well the dynamic behavior of P1S1

superlattices. It is worth to mention that the contribution of unstable polar modes

can be separated into two parts: the in-plane and out-of-plane part. By checking the

atomic motions, we can see that, for the out-of-plane parts, the atomic polar motions

are mainly from O atoms, both in Ti-O chain and in PbO-SrO plane, while the Pb,

Sr and Ti atoms are relatively fixed; for the in-plane part, the atomic polar motions

arise not only from the Ti-O chains but also from the PbO layers.

5.5 Interatomic force constants

As in chapter 4, the interatomic force constant (IFC ) were calculated in view of

simulating the dynamical behavior of superlattices. We will follow the same steps as

above, comparing the central layer of P1S3 and P3S1 with the bulk perovskite, and

the interface perovskite layer of P1S3 and P3S1 with the P1S1 superlattices. We

illustrate our results by reporting the total part IFC of Ti atoms in Figure 5.3.

Figure 5.3: Interatomic force constant (IFC ) for each Ti atom in
PTO/STO(m/n) (P1S3 and P3S1 ) superlattices, bulk cubic SrTiO3 and bulk
tetragonal PbTiO3 and the difference of IFC values. (a) Distribution of IFC for
Ti atom in bulk cubic SrTiO3; (b) Distribution of IFC for Ti atom in central layer
of P1S3 ; (c) Difference of IFC between the Ti values in (b) and the ones in (a);
(d) Distribution of IFC for Ti atom in bulk tetragonal PbTiO3; (e) Distribution
of IFC for Ti atom in central layer of P3S1 ; (f) Difference of IFC between the Ti

values in (e) and the one in (d).
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It is observed that the IFC values for Ti decrease when the atomic distance increases.

The maximum absolute IFC value is found between Ti and its first neighbor Ti, with

a negative value. In Figure 5.3 we can see that the central layer of P1S3 and cubic

SrTiO3 have similar IFC values distribution while the one of for central layer of

P3S1 matches well tetragonal PbTiO3 data. The only difference is that there are two

different atoms (Pb and Sr) found at around 6.4 Å in superlattices, while there is only

one in bulk system. Hopefully this kind of difference may not cause big changes for

the dynamic behavior of selected Ti atom, since the atomic distance is large enough

(more than one perovskite cell) and the amplitude is small (below 0.01 Ha./bohr2).

Considering the differences between the central layer of superlattices and the bulk

material reported in Figure 5.3(c) and (f), we can expect that the Ti atom in central

layer of superlattices will nicely reproduce the dynamic behavior of the one in bulk.

Figure 5.4: Interatomic force constants (IFC ) for each Ti atom in P1S1 (P1S3,
P3S1 and P1S1 ) superlattices, and the difference of IFC between them. (a) Distri-
bution of IFC for Ti atom P1S1 ; (b) Distribution of IFC for Ti atom in interface
layer of P1S3 ; (c) Difference of IFC between the Ti values in (b) and the one in
(a); (d) Distribution of IFC for Ti atom in P3S1 ; (e) Difference of IFC between

the Ti values in (d) and the ones in (a).

For the case of Ti atom in the interface layer of P1S3 and P3S1, we compare IFC

values with the ones in P1S1 superlattices. The difference with the Ti in bulk is

that Pb and Sr atoms are both found at around 3.4 Å. We observed similar IFC

distributions in the amplitude with small differences of IFC value between them

shown in Figure 5.3. Thus, we can expect that these three selected Ti atoms will

have similar dynamic behaviors. IFC for other atoms are not reported here since

they lead to the same conclusions.
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5.6 Conclusion

In this chapter, we studied the relaxed structure of PTO/STO(1/3) and PTO/STO(3/1)

superlattices under fixed in-plane lattice constant at the value of cubic SrTiO3. At the

same time, we took the bulk cubic SrTiO3, tetragonal PbTiO3 and PTO/STO(1/1)

superlattices as the reference structures.

Lattice constant along z, atomic position and Ti-O bond lengths of P1S1 are well

reproduced in the interface region of P1S3 and P3S1. Due to the broken symmetry

along z direction, atomic rumpling appears at interface region of P1S3 and P3S1

superlattices. However, the effect of this additional rumpling is localized at inter-

face region. In the central layer of P1S3 and P3S1 the atomic position and lattice

constants recover well the bulk values. The Ti-O bond lengths recover the bulk val-

ues and the rumpling rapidly become negligible after one perovskite layer away from

interface.

The atomic positions is an important factor for the force induced on each atom. We

investigated the layer dependent dynamic properties of P1S3 and P3S1 and reported

the phonon density of states. Finally we reach similar conclusions than in Chapter

4, that the dynamics of central layers in P1S3 and P3S1 recover the bulk behavior,

while the dynamics of interface layer recover the short periodic P1S1 superlattice.



Conclusions and perspectives

In the present thesis, we investigated the dynamical properties of perovskite com-

pounds from bulk to layered systems. A timely challenge in the field is to succeed

describing the behavior of such systems at finite temperatures. Recently, a new type

of first-principles effective atomic potential was introduced and that provided suc-

cessfully access to the finite temperature properties of some simple bulk perovskite

compounds. On the one hand, in our investigations, we demonstrated that this new

effective potential approach is suitable for more complex systems combining numerous

structural instabilities. On the other hand, since such first-principle effective atomic

potentials are built from the output of first-principles calculations, we explored pos-

sible strategies for extending this to larger superlattices that is not directly accessible

at the first-principles level. Our main results can be summarized as follows.

In Chapter 3, we first investigated the dynamical properties of PTO/STO(1/1) su-

perlattices at ‘zero Kelvin’. It was observed that many lattice instabilities are present

in the Brillouin zone (BZ) of the high-symmetry P4/mmm phase, including in-plane

(Px, Py) and out-of-plane (Pz) atomic polar motions as well as unstable oxygen ro-

tational modes at the BZ boundary (φzi, φzo, φxo, φyo). These unstable phonon

modes typically compete with each others at the bi-quadratic level but can cooperate

through trilinear couplings. Besides, we noticed that strain can strongly affect the

lattice dynamics of the system by stiffening or softening some phonon modes.

We identified the ground state of PTO/STO(1/1) superlattices epitaxially grown on

SrTiO3 substrate, as a PC phase combining RxyzMzPxyz distortions. This ground

state appears as the combination of a strongly dominant RzMzPz distortion with an

almost negligible RxyMzPxy distortion, producing an additional gain of energy at the

limit of our calculation accuracy.

We developed a simple Landau type model in terms of the dominant Rz, Mz and

Pz order parameters. This simple model well reproduced the first-principles energy
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data and highlights the importance of the trilinear coupling between Rz, Mz and Pz.

Furthermore, we phenomenologically investigated the temperature-dependent phase

transition behavior with this model. We demonstrated that such simple model fitted

on first-principles well describes the complex hybrid improper ferroelectric behavior

and reproduces the experimental results from the literature. It also shows that even

in case Rz and Mz condense individually at different temperatures, P can keep its

improper characters.

First-principles model atomic potentials were then constructed for this PTO/STO(1/1)

system to further investigate the temperature dependent behaviors. As the tempera-

ture decreases, consecutive phase transitions were observed: Rz condenses first, then

Mz and Pz appear together due to the trilinear coupling, and finally Rx and Px appear

at very low temperatures. This seems to contradict initial experimental results that

report the simultaneous appearance of Rx, Mx and Px. However, when a negative

pressure is applied (-6.9 GPa) to our model to empirically correct for the LDA vol-

ume underestimation, Mz and Pz show tendency to condense more closely together

with Rz. These have to be considered as preliminary results. They attest of the

ability of the model potentials to describe complex systems. Now, further works are

still needed to confirm these results and to clarify the effects of different approxima-

tions such as the LDA, or the truncation of some atomic interactions. Beyond this,

our work illustrate the interest of such calculations to access many other properties.

For instance, playing with the coexistence of RzMzPz and RxyMzPxy distortions, we

have shown the possibility of tuning the in-plane component of polarization with an

out-of-plane electric field.

In Chapter 4, we studied the convergence of interatomic force constant (IFC ) and

dynamical properties with the layer thicknesses, in natural and artificial Ba, Sr,

Pb-based AO/ABO3 superlattices. It is observed that i) ferroelectric and anti-

ferrodistortive instabilities require relatively long-range correlations. To reproduce

the phonon instabilities of bulk cubic perovskites, the correlation volume must be

achieved in superlattices; ii) the dynamical properties of perovskite layers one unit

cell away from the interface have already recovered the behavior of bulk cubic per-

ovskite, since the atomic rumpling at the interface perovskite layer does not have

a long-range effect. One cell away from the interface, the crystal structure is very

close to the one of the pristine bulk oxide and the dynamical properties are also very

similar to bulk ones, including phonon DOS, interatomic force constants and Born
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effective charges. These investigations demonstrate the possibility to treat the cen-

tral and interface parts separately when building atomic potentials for large periodic

superlattices.

In Chapter 5, we confirmed this conclusion in other systems, PTO/STO(1/3) and

PTO/STO(3/1) superlattices: the dynamics of central layers recover that of the bulk

material due to the short-range interface rumpling, and the dynamics of the interface

part can be estimated from the related short periodic superlattices PTO/STO(1/1),

which can be directly obtained from the first-principles calculations.

This thesis so opens promising perspectives: starting from the first-principles calcula-

tions at zero Kelvin for bulk crystals and short-period superlattices, effective atomic

potentials can be built providing access to describe the temperature dependent phase

transition behaviors and the lattice dynamics of complex systems, in which various

instabilities coexist. This technique does not only work for short period systems,

but can be extended to larger period ones. It will renders possible a theoretical in-

vestigation, based on first-principles, of the dynamics and temperature dependent

phase transition behavior of more complex materials of more direct interest to ex-

perimentalists. Based on these remarks, we can propose some guidelines for future

investigations.

First, as discussed in Chapter 3, our model potentials still need to be taken with cau-

tion and validated, especially testing the approximations that are used. For instance,

the dependence on lattice parameters, since the lattice instabilities are very sensitive

to them. Also, in this preliminary model, the oxygen interactions were limited to

very short range, which should be carefully checked. A better description of these

interactions may eventually be required for properly addressing the physics of the

system.

Second, as it mentioned above, the ability of the first-principles effective atomic

potential is not limited in reproducing DFT results. It opens the door to more physics

such as phase transition behavior, the switching of polarization and various functional

properties at finite temperatures. Taking an example, since the strain can strongly

effect the lattice dynamics, such model will allow us to follow the evolution of physics

vs. epitaxial strain. In the PTO/STO, compressive strain will strongly increase

the instability of out-of-plane polar mode (Pz), that may become eventually more

unstable than the out-of-phase octahedral rotation mode (Rz). This will possibly
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make Pz condense at higher temperatures and some new phase transition behavior

will likely appear.

Beside, since we have already proposed the possibility of extending the effective

atomic potential approach to larger system, it is interesting to concretize this idea, i.e.

on PTO/STO(m/n) and on ABO3/AO series superlattices which have different type

of interfaces, by using the method suggested in Chapter 4 and 5. We plan to make a

combination of the model potential of bulk perovskite ( such as BaTiO3,SrTiO3 and

PbTiO3 ) and the short period system ( PTO/STO(1/1), short period ABO3/AO

member) that can be easily calculated from first-principles.

Last, but not least, as reported in Chapter 4, the series of ABO3/AO superlattices

exhibit many lattice instabilities. It will be interesting to do further investigations in

order to identify the ground states and see what kind of physics will dominate there,

for example, if there will be strong in-plane polarization in Pb based ABO3/AO

superlattices; what is the role of PbO layers in perovskite series superlattices?

To summarize, our investigations in the present thesis open a window to further study

ferroelectricity in perovskite-based materials, not only report benchmark results on

selected systems of interest but also open interesting perspectives for the study of the

finite temperature properties of many other complex layered perovskite compounds.

The spirit of building a model potential for effective Hamiltonian, not only for ‘small’

systems but also ‘larger’ and more complex ones, may also work for other family of

compounds.
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control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys. Rev. B,

88:060102, Aug 2013.

[89] Karin M. Rabe. First-Principles Calculations of Complex Metal-Oxide Mate-

rials. Annual Review of Condensed Matter Physics, 1(1):211–235, 2010.

[90] Ph. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe. Lattice dynam-

ics of BaTiO3, P bT iO3, and PbZrO3: A comparative first-principles study.

Phys. Rev. B, 60:836–843, Jul 1999.

[91] Rici Yu and Henry Krakauer. First-Principles Determination of Chain-

Structure Instability in KNbO3. Phys. Rev. Lett., 74:4067–4070, May 1995.

[92] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese,

L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami,

Ph. Ghosez, J.-Y. Raty, and D.C. Allan. First-principles computation of ma-

terial properties: the {ABINIT} software project. Computational Materials

Science, 25(3):478–492, 2002. ISSN 0927-0256.

[93] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations

for metals and semiconductors using a plane-wave basis set. Computational

Materials Science, 6(1):15–50, 1996. ISSN 0927-0256.

[94] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-

energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186,

Oct 1996.



Bibliography 114

[95] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys.

Rev. B, 47:558–561, Jan 1993.

[96] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-

metal˘amorphous-semiconductor transition in germanium. Phys. Rev. B, 49:

14251–14269, May 1994.
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