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Nomenclature
Total polysaccharides (mg/g)
Backscattered electron detector, in ESEM
Central composite design
Dilute acid hydrolysis
Dextrose equivalent
Détente Instantanée Contrélée (French for "Instant controlled pressure drop")
Degree of polymerization
Activation energy (kJ/mol)
(Environmental) Scanning Electron Microscopy/ micrograph
Hydroxymethyl furfural
High performance liquid chromatography
Hot water extraction, hot water extracts
Rate constant (in s™ or min™)
Low molecular weight oligosaccharides
One factor at a time
Relative humidity (%)
Response Surface Methodology
Secondary electron detector, in ESEM
Sago pith waste
Thermal gravimetric analysis
Initial moisture content (%)
DIC First vacuum cycle
DIC Second vacuum cycle
Treatment time (min. or sec.)
Acid concentration (molar)
Treatment pressure or temperature (°C)

X-ray diffraction
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Abstract

Present state of art related to biomass conversion technology so far was found to
concentrate on an enzymatic process, coupled with thermal pretreatment on biomass rich in
cellulose. Biomass that rich in crude starch is also important in terms of strategic and
economic point of view. The main objective of this study is to adopt a new strategy for a
single step conversion of a crude starch material into oligosaccharide and glucose utilizing
DIC technology. In contrast to existing thermal based pretreatment, DIC technology involves
two vacuum cycles; first vacuum cycle was to increase steam accessibility on biomass and to
reduce generation of steam condensate thus avoid losing of monosaccharide and
hemicelluloses, while second vacuum cycle was to reduce potential thermal degradation of
glucose. Distributions of products formed were found to be closely associated with severity
of treatment on crude starch material. At lower DIC severity, pretreatment favors the
formations of high oligosaccharide composition with small fraction of glucose; while at high
DIC severity, pretreatment favors formation of high glucose as a major end product. During
an exploratory study to establish the relevant reaction factors; vacuum cycle and moisture
content were the two main factors influencing the conversion of crude starch into glucose.
DIC starch conversion into glucose was found to be moisture dependent. Both factors were
combined together to optimize the other three factors: pressure/temperature, treatment
times, and acid concentration. High DIC severity treatment alone could convert nearly 50%
of crude starch into glucose. During DIC optimization, an experimental design was developed
and tested with DIC pretreatment in order to obtain a second order polynomial
mathematical model that was then applied for response surface methodology (RSM). The
interaction nature of above factors was examined and was found they depend on DIC
treatment severity. Two experimental designs with low and high DIC severity were
developed; Low DIC severity (acid: 0.01-0.05 molar, time: 0.5-3.0 min) and High DIC severity
(acid: 0.05-0.20 molar, time: 3.0-10.0 min) with similar temperature range (144-165°C) were
used. Data mining operation was done on RSM model to develop a kinetic model at both
treatment severities. Kinetic data, including rate constant and activation energy were
calculated from kinetic models of both severities to compare with actual dilute acid
hydrolysis kinetic studies on two DIC treated samples. It was found that activation energy (Ea)
for glucose generation at High DIC severity (Ea: 59.44 kJ/mol) was lower than at optimum
dilute acid hydrolysis (Ea: 91.30 kJ/mol); while for glucose degradation, Ea was higher with
High DIC severity (Ea: 144.12 kJ/mol) if compared to dilute acid hydrolysis (Ea: 45.14 kJ/mol).
This indicates that glucose generation with DIC requires less energy while its degradation
needs high energy. This combination was required to maximize glucose generation and
minimize glucose degradation. Further studies with non-isothermal state during DIC and
dilute acid hydrolysis support this finding. In normal polysaccharide conversion to low
molecular weight (LMW) oligosaccharides and glucose procedures; two process steps were
involved, namely the first process involved thermal pretreatment followed by a second
process with dilute acid hydrolysis. In the present work, attempt was made to exclude dilute
acid hydrolysis stage in order to establish that DIC process alone is sufficient for total
polysaccharides conversion into LMW mainly glucose fraction. Information gathered from
quantitative and statistical analysis on (i) exploratory studies, (ii) kinetic models from RSM of
DIC process and (iii) kinetic data based on experimental works during dilute acid hydrolysis
study; support the assumption that DIC treatment alone is sufficient for the total conversion
required.
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Résumeé

L'état actuel de l'art lié a la technologie de conversion de la biomasse a, jusqu'a présent,
principalement concerné les méthodes enzymatiques, éventuellement couplées a des
prétraitements thermomeécaniques ; les biomasses concernées sont généralement riches en
cellulose, mais le matériel a haute teneur en amidon brut est également important des deux
points stratégique et économique. Notre nouvelle stratégie est une contribution a I’étude de
ce dernier type de biomasses riches en amidon, en vue d’une conversion comportant une
seule étape de transformation en oligosaccharide et en glucose, a I'aide de la technologie
thermo-mécanique de Détente Instantanée Controlée DIC. Cette opération a été étudiée,
analysée, modélisée et optimisée. Contrairement a un traitement thermique conventionnel,
la technologie DIC comporte deux étapes incluant l'instauration d’un vide capable
d'accroitre I'accessibilité de la vapeur dans la biomasse, puis d’'une étape de vide final en vue
de réduire la génération de molécules de dégradation thermique du glucose. L'analyse des
composés (oligosaccharides, glucose...) a été réalisée ; elle a pu démontrer que le process
était étroitement associée a la sévérité du traitement brut. Le prétraitement DIC de faible
sévérité meéne a des rendements élevés en fractions oligosaccharidiques avec une petite
fraction de glucose. Par contre, le traitement DIC de haute sévérité permet d’accéder au
glucose comme principal produit final. Au cours de I'étude exploratoire, le cycle de vide et de
haute pression d'humidité a été établi, avec comme facteur de réponse le taux de
conversion de I'amidon en glucose brut. Les deux facteurs de pression de vapeur d’eau et de
vide ont été combinés ensemble afin d'optimiser trois autres facteurs opératoires: la
concentration d'acide, le couple de pression/température et le temps de traitement. Le
traitement DIC de haute sévérité a été démontré comme étant capable de convertir pres de
50% d'amidon brut en glucose a I'étape du simple et unique traitement thermomécanique.
Une autre étape du processus a été impliquée : il s’agit de I'hydrolyse a I'acide dilué, souvent
a la suite du prétraitement DIC. Au cours de I’étape d'optimisation du prétraitement DIC, la
méthodologie de surface de réponse a été utilisée pour aider au développement de modeles
cinétiques auto-hydrolysés DIC. D'autre part, les modéles empiriques de la cinétique ont été
développés. Dans le cas de faible sévérité, le modele aboutit a des réponses étroitement
associées aux deux limites inférieures et supérieures de la concentration acide et du temps
de traitement. Par contre, ces modeles quand ils sont obtenus a de niveaux de traitement
grande sévérité, ont été jugés seulement associés aux valeurs supérieures de ces parametres
operatoires. Cette observation a été déduite de I'’équation polynomiale utilisée, tandis que
les modeles cinétiques ont été basés sur une série exponentielle. Une série polynomiale de
plus grand ordre serait donc nécessaire pour pouvoir explorer avec précision les données de
la surface de réponse pour ce genre d'analyse approfondie a tous les niveaux des facteurs.
Lors de |'étape d'optimisation de I’hydrolyse dans une solution d'acide dilué, le premier
modéle cinétique consécutive a été développé pour étudier les mécanismes de conversion
des polysaccharides totale en glucose et en ses produits de dégradation. Le modeéle
empirique de surface de réponse a été utilisé pour étudier les effets de facteurs pendant le
processus opératoire. La teneur en humidité et le cycle de vide ont été des facteurs
communs. Plus le temps de traitement est court et plus la température est élevée, et plus la
génération du glucose est importante. Cette étude montre que le traitement DIC de haute
sévérité est capable de convertir les polysaccharides totaux en glucose avec une faible
dégradation du glucose. Les produits solides résiduels pourraient également faire I'objet
d'un traitement enzymatique.
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Brief overview

Much information has been published in international scientific publications and conference
proceedings about the topics related to this work, i.e. thermal processing [1, 2], DIC
technologies [3-5], dilute acid hydrolysis [6, 7], enzymatic hydrolysis [8, 9], biomass waste
utilizations (specific for reference in present work, including cellulose, starch and sago pith
waste [10, 11]). Due to the vast information and subject need to be covered, it is very
important to piece together the existing accumulated knowledge and its significant
information in order to appreciate the present intention to utilize DIC treatment for biomass
physicochemical changes. This will cover some topic on present the challenges and prospects
to enhance the potential of biomass waste for industrial application and food uses.
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Thesis Organization

There are six main topics covered in this thesis: (1) polysaccharides and cellulose materials,
sources and applications, (2) present state of the-arts of thermal processes to assist the
lignocelluloses/ biomass materials utilization, (3) review of DIC technology and its current
applications (4) dilute acid process for polysaccharides-cellulose-sugar conversion with some
insight into existing competitive enzymatic processes (5) introduction to the main
experimental techniques used in this dissertation and its association for the lignocelluloses
properties and (6) application of DIC as a pretreatment process on waste materials for dilute
acid hydrolysis of polysaccharides to glucose.

Results obtained from the present work presented in publication’s ready style that covers
the main aspects of our research works including process optimization, hydrolysis and
autohydrolysis of sago waste materials, kinetics of DIC pretreatment and dilute acid
hydrolysis.

This thesis is further organized into parts as follows:

Part 1: Literature Review that discusses in depth details of the theoretical background of
thermal treatment and state-of-art of thermal processing, polysaccharides autohydrolysis
processes, current state of biomass application in polysaccharides to glucose.

Part 2: Materials and Methods. It is divided into small chapter that covers all aspects of
material’s information, preparation and characterization. Work scopes, including initial work
to establish final research plan, laboratory and pilot scale works. Chapters that described
test protocol including several background works for validation, experimental design and
modeling of the process are included and presented in details with its results.

Part 3: Result and Discussions is divided into several small chapters that cover the specific
needs of specific process project being investigated. Each chapter is prepared as part of a
journal publication style with respective results and discussion of specific topic.

Part 4: Conclusion and Perspectives. The first chapter covers overall conclusion in this work
and summary against existing technology application. The second chapter covers some
interesting aspects of concluded work, and some insights related to associated works for
future process enhancement, pilot and industrial application.
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Problems Review

This work was related to the utilization of DIC technology to produce glucose from
agricultural waste. Compared with existing thermal based biomass pretreatment, DIC
technology utilizes medium steam pressure technology, between 0.7 and 0.9 MPa and
different treatment regime [3-5]. Current technology uses high saturated steam supply such
as for Steam Explosion between 1.5 MPa to 3.0 MPa [12, 13], while Ammonia Fiber
Expansion (AFEX) was using liquid ammonia at a moderate temperature (100-140°C) for
pretreatment [1]. Several systems related to biomass pretreatment will be discussed for
comparison purpose and summarized of important points are highlighted.

Generally, there are three factors that correlated to each other in any chemical process
industries: good input materials, output products and processing technology being used [1].
For the present work, the specific interest for treatment technology was on thermal based
technology, with specific reference on DIC technology and main response for output was
glucose. In order to achieve a high composition of glucose at the end of processing stage; a
high polysaccharide composition in biomass will eventually ensure a high quantity and
quality glucose down the processing line. Factors related to the success of biomass
utilizations, including the ability of the process to hydrolyze crystalline parts of materials, the
accessibility of chemical or enzyme into biomass internal structures and to overcome lignin
that bind together the lignocelluloses materials [2, 14]. Other success factors, including the
availability of high surface area to immediately enable chemical and enzyme reaction,
combined with substrates are free from toxic composition that may block enzyme
accessibility [15]. This was very important if the ultimate usage of the end product were
associated with enzymatic reactions.

In general, three thermo-chemical routes can be used to convert biomass materials into low
molecular weight (LMW) polysaccharides: (1) gasification to syngas, (2) pyrolysis or
liguefaction to bio-oils and (3) through hydrolysis to sugars and lignin [1, 16]. The third route,
through dilute acid hydrolysis to sugars and lignin was the main interest in this work.

Due to biomass complexity, the degree of cellulose crystallinity and morphology present
before and after pretreatment, the kinetics of the pretreatment reactions and its chemical
linkages present were of this work interest. Determination of those parameters will give
unprecedented insight into biomass structure and composition. All knowledge obtained
from the work will guide modified pretreatment techniques and conversion technologies to
increased sugar’s yields and also to limit inhibitor’s formation. Data obtained also can be
used to develop a structured modeling approach to explain the structural and chemical
contributions that are most prone to the pretreatment process.

To summarize general solution for high level of product quality and quantity, ultimately; a
pretreatment will be required to make biomass polysaccharides available for hydrolysis or
even within the same processing step to break down polysaccharides into monosaccharide.
Two stage processes will be employed; in first stage, biomass material will be pre-treated to
break down ultra cellular components and its cell walls structures. The second step involved
with the depolymerization of polysaccharides to monosaccharide, either through acid or
enzyme hydrolysis. For this particular work, dilute acid hydrolysis will be employed. In our
study, single stage treatments were enough to convert polysaccharides of interest into high
sugar concentrate with very low glucose degradation.
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Goals and Objectives of the Thesis

This work deals with two-steps conversion of sago pith wastes also known as crude starch
into high sugar concentrate through DIC treatment and low acid concentration hydrolysis.
Objectives of the thesis were:

e Development of new process based on DIC thermal processing at lower steam
pressure and temperature treatment regime compared to existing biomass thermal
pretreatment process.

e Development of a dilute acid hydrolysis kinetic model and test it against
experimental data.

e Optimization of DIC pretreatment with response surface methodology (RSM).

e Development of a single high solid autohydrolysis process using DIC technology to
produce concentrated glucose syrup from sago waste material (SPW).

e Improvement of steam diffusion into porous materials through vacuum application
thus improves the accessibility of materials for the second process of dilute
hydrolysis.

e Kinetic study and its application for understanding the kinetics at isothermal and
non-isothermal processing stage.

This work will concentrate on the optimization of processes, through experimental design
approach and process kinetics that generate minimum glucose degradation. Preliminary
investigation was conducted to establish direct DIC and dilute acid hydrolysis parameters
and its treatment levels. Thermal processes with nearly complete hydrolysis of
polysaccharides content with crude starch or sago pith waste (SPW) were demonstrated.
Ultimate objective as described earlier was to develop a process with the ability to control
the intermediate stages, improve the generation of glucose (including oligosaccharides and
its lower degree of polymerization components), and decrease the amount of total glucose
degradation products (such as furfural, levulinic acid). Main responses of the operation
studied in this thesis were the amount of glucose to maximize and the glucose degradation
products to minimize.

Important aspects of the experimental work in this study were the first DIC vacuum stage,
which helps increasing steam diffusion within the porous microstructure of biomass
followed by the dilute acid autohydrolysis. Both process stages were used to maximize
whole glucose production. Initially, this work established different treatments with vacuum
and no vacuum during DIC process to enhance diffusion into micro porous material and to
increase glucose amount from the process.
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Strategy and Planned Solutions

It was understood that chemical processing usually involved with complex systems, and
since this work deals with thermal pretreatment operation, several strategies need to be
implemented to ensure good understanding of the system, process reaction and finally to
control of the product output quality. A simple but consistent with a high-yield pretreatment
process that suitable for a wide range of lignocelluloses feedstock is one of the most critical
steps in realizing an efficient and cost-effective biorefinery [17]. Preliminary investigation
shows that DIC technology can offer such a simple but efficient operation for biomass
pretreatment [18]. DIC as a thermal treatment is greatly different from existing thermal
treatment regime currently being used elsewhere. This work is designed with an industrial
objective for offering relevant alternative steam pressure pretreatment. The following
summarized several important aspects and strategies in this study:

e Selection of materials to match the thermal treatment regime was very important
to ensure maximum glucose while minimizing the potential inhibitors’ generation.

e In this work, DIC thermal processing was applied to increase the porosity of
lignocelluloses materials in order to increase surface area for the hydrolysis.

e Optimization of the process was carried out to ensure complete hydrolysis of
starch into glucose while minimize glucose generation. This was done via careful
selection of experimental design parameters, and their ranges. Complete
autohydrolysis of starch was important for industrialization and total recovery of
polysaccharides.

e |dentification of the impact of vacuum cycles in DIC to concentrate only one
treatment type.

e Modeling of the hydrolysis kinetic for glucose generation and degradation.

Final outputs from this research work, as well as during exploratory and developmental
works were outlined as follows:

e |dentification of main process parameters that affect directly to the generation of
glucose from biomass. This including trial and selection of biomass for actual
laboratory work, determined its composition and suitability with research strategy.

e Setting of the minimum and maximum limit of each parameter during DIC and
post-DIC treatment to meet material pretreatment requirement, and to ensure
homogeneous supply of materials in every step of research work. It is very
important to keep the material supply to be very homogenous to achieve good
working model for industrial work.

Most of the above trials were conducted based on published methodologies and perfected
through several trial runs during establishment of limits for treatment factor and processes.
Only final testing methodologies were used throughout research work presented in this
thesis. Bulk of this work result was from experimental runs based on optimized process and
test methodology and was done according to designed experiments. Results obtained were
modeled using response surface methodology or first order kinetic.
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PART L.
STATE OF ART

This literature review was to cover all basic theoretical and experimental backgrounds
necessary to achieve the main objectives outlined in the major work. By providing a review
of both relevant current associated research in the literature and certain past work, we
could get the basis which were essential to develop key theories of this work. A critical
evaluation on important finding will be discussed and summarized to give good insight of
previous, present and potential application of this technology.

This review will focus on the product of interest, source of product, present state-of-art of
technologies and processes being utilized, optimization process through experimental design,
instrumentations for test and on the modeling of the results.
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PART I. CHAP 1.
REVIEW: GLUCOSE INDUSTRY AND BIOMASS

1.1.1. Brief overview

Apart of the increasing need in fuels and energy for industrial uses, the requirements to
recover, value and use agro-industrial wastes are growing mainly for environmental reasons.
Indeed, the presence of large quantities of non-degradable or toxic biomass feedstock waste
has led to a large variety of environmental pollution problems, which have stimulated
research on different recovering processes such as the utilization of biomass as an
alternative source of energy through adequate chemical operations, which should provide a
way out of the current fossil fuel sources situation.

Contributing factors besides industrial market forces as suggested more than 10 years ago
were the beginning of stricter environmental laws that shift the responsibility of ecological
damage to the producer, thereby connecting biocompatibility to the costs of production [19].
This has shifted the operator to look for much more environmental friendly solutions.
Majority of industrially utilized cellulose to date finds its application in the industry related
to a pulp and paper. Large amounts of cellulose waste however, currently find no application
and are treated as waste by-products, being either burned or naturally rotted on the
plantation site.

I.1.2. Conversion of biomass to glucose

In principle, biomass containing cellulose, hemicelluloses and starch can be used to produce
glucose with some modification of a certain initial process to ensure high quality of final
products. Currently, the technologies that utilize cellulose as polysaccharides sources are
progressing to be commercially significant [20, 21]. There still a lot of challenges need to be
overcome in order to make the technology become commercially available. Wyman and
Cutler (2004) [21] has made some cost comparison for the production of ethanol from sugar
crops, starch and lignocelluloses material together with energy balance for each process.
They concluded that substantially research was needed to advance the technologies and
high attention would be focused on overcoming perceived risk and capital investment.

The conversion of biomass into certain valuable chemicals was one of the main research
interests in almost every chemical based research laboratories progressing from the first
generation of biofuel technologies [22-24]. It was very crucial for the second generation
biofuel technologies to utilize lignocelluloses materials and has become a trend now to
exploit non-food biomass [1, 25] for some projects related to bio-ethanol/ biodiesel to avoid
competition with food demand.

The basic needs of the process are still, however concentrating on finding an effective
method to disrupt biomass integrity before it can be optimally utilized. Cumulative
challenges comprise of reduction in cost for material collection (logistic), conversion process,
(high enzyme cost and high material cost for reactor construction), waste accumulation, as
well as in optimizing and process integration.
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Present research work was designed to study the interim thermal processing gap with
materials containing polysaccharides (cellulose, traces of hemicelluloses, and starch); with as
the principal objective to convert them into glucose. Based on above analysis, this work will
focus on the area of a specific feedstock (sago pith waste), and thermal pretreatment
process carried out at various operating conditions to study the characteristic of material
and acid hydrolysis output.

Pretreatment is one of the critical steps in biomass utilization, with high impact on a
downstream process. It was suggested to contribute about 18% of total production cost of
ethanol production. Pretreatment with dilute sulfuric acid has been the subject of research
for more than two decades, particularly for work related to bioenergy research. It was
reported that it helps to recover 80% to 90% hemicelluloses in hot water extract after the
pretreatment [26].

The integration of DIC pretreatment into biomass utilization process is done to capitalize DIC
as a unique process with fast heating (due to saturated steam) and exceptionally fast cooling
(due to a pressure drop towards a vacuum). Combinations of both steps were useful for fast
starch to glucose hydrolysis and fast stopping the degradation of glucose from occurs.

Major progress and challenges for the conversion of biomass into sugar were reviewed and
summarized in the following table.

Table I-1: Summary of major research areas, progress and challenges for the conversion of biomass into sugars
(adapted from [27])

Area Description Progress Challenges

Feedstock Use and modification of Initial analyses of feedstock Reducing collection/feedstock
biomass sources: yields and collection costs; costs; determination of desired
agricultural, forestry or compositional analyses; feedstock characteristics;
municipal waste, or research into cell wall genetic modification of
dedicated energy crop biosynthesis and chemistry feedstock to maximize value

Pretreatment | Mechanical and chemical Evaluation of effectiveness Reducing capital expenses and
treatments to facilitate of different pretreatment input costs; reducing energy
conversion of lignocelluloses | processes on variety of inputs; recycling/usage of
biomass to fermentable feedstock; characterization waste streams; process
sugars of inhibitors of downstream integration

processes
Enzymatic Enzymatic conversion of Reduction in cost of cellulase | High enzyme costs; poor
hydrolysis cellulose and hemicelluloses | enzymes; understanding of activity/long incubation times;

polymers to fermentable
sugars

T. reesei and A. niger
cellulases

optimized enzyme mixtures for
specific feedstock/processes

Fermentation

Conversion of fermentable
sugars to ethanol or other
fuels and bio-products

Characterization of C5/C6
sugar fermenting organisms;
analysis of tolerance to
inhibitors in fermentation

Organisms with rapid growth,
improved tolerance to
inhibitors and fermentation of
multiple sugars under
industrial conditions

Process
engineering

Engineering designs to
enable economic biomass
processing at commercial
scale

Process models constructed,
tested and revised

Optimized process integration;
incorporating best (sometimes
proprietary) data into models

I.1.3. Summary of economic factors in this work

Extensive research work for the conversion of biomass materials into glucose was done by
various research groups [28-32] utilizing different model materials such as cotton linters,
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biomass waste, filter paper and even pure cellulose, with a majority of them utilized enzyme
at the second stage. Two large companies specialized in enzyme technology, Novozyme and
Genencor have estimated that the cost of enzyme for cellulose and hemicelluloses
conversion to glucose would be 40 to 100 times higher than an enzyme for starch hydrolysis
to glucose [33]. At the very beginning, cost of enzyme was reported to be USD 5-10 per
gallon of ethanol produced, and reduced to USD 0.50/gallon in 2010 against the current
ethanol production cost estimated at USD 2.0/gallon[20]. Genencor further estimated that
within next several years, cost of enzyme would be reduced to USD 0.20-0.30/ gallon
ethanol.

Based on above information and the stoichiometric reaction of one mole of glucose (C¢H1,05)
will produce two moles of ethanol (CH3;CH,0H) and carbon dioxide (CO,) respectively; we
can deduce that enzyme cost for biomass conversion into glucose was about USD 0.086/ kg
glucose. In reality, it may cost more due to impossible to achieve 100% conversion, as small
portion will be utilized by the microorganism for their growth.

In another estimate by Wyman & Cutler (2004) [21], ethanol production cost from sugarcane
in Brazil was about USD0.006 to 0.007/liter for labor, USD0.004 to 0.006/liter for
maintenance, USDO0.002/liter for chemicals, USD0.002 to 0.003/liter for energy,
USDO0.004/liter for other items, and USD0.127 to 0.134/liter for sugar. The total cost of
ethanol was about USDO0.167 to 0.185/liter. The overall capital investment was about
USDO0.52/annual liter of capacity for a process that operates for 150 days/year making about
240,000 liters of ethanol per day. Allowing another USD0.04 to 0.06/liter for interest on
capital, capital recovery, and other fix costs, the total cost including return on capital as
applied in Brazil is about USD0.21 to 0.25/liter at the plant gate.

However, the actual problem was lies with the logistic operation and transportation of waste
material from waste generation site to the hydrolysis plant. In some report, the cost to
transport the material was very expensive due to high water content, as high as 500% on the
dry basis of solid material. This was further associated with low bulk density (on dry basis) of
material, and availability of material at different location contributed to high logistic cost for
the final products [21]. The solution for the burden in logistic was including to re-locate the
hydrolysis plant next to its raw material source such as at the plantation specifically
produced raw material for fuel such as sugarcane, corncob and cornstalk [27].

I.1.4. Carbohydrate and Glucose

1.1.4.1. Presentation and main properties

Glucose, the main character in this work was part of carbohydrate family. It has been always
an ideal substrate and energy source for most microorganism’s metabolism as well as the
main resource of carbon for variety of products such as biopolymers, antibiotics and bio-
ethanol [34]. Selected properties of glucose were presented in Table I-2 as reference.

Carbohydrates are polyhydroxy compounds of nature that exists as small molecules or as
macromolecules. Unit of carbohydrate was glucose or sugar, which was formed as a product
of photosynthesis of carbon dioxide and water. Sugars act as a source of energy, while
certain polysaccharides such as starch fulfill the need as storage or reserved until utilized.
Cellulose and hemicelluloses contributing to the strength of the plant cell walls.
Carbohydrate can be further classified into three groups: monosaccharide (common plant’s
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monosaccharides -glucose, mannose, galactose, xylose and arabinose); oligosaccharides
(linkage of monosaccharides into di-, tri-, tetra-saccharides, limited to unit of
monosaccharide less than ten units); and polysaccharides (complex molecules composed of
a large number of monosaccharide units joined by glycosidic linkages) [35].

Table I-2. Properties of glucose (Merck Index, 13th Ed)

Physical properties Values

Molar mass 180.16 g/mol

Melting point 146°C oD Glucose, 1500C B-D Glucose

Entalphy of formation (298°C) -1,271 kJ/mol

Entalphy of combustion (298°C) -2,805 kJ/mol

Optical Rotation [o]D +112.2° — +52.7°

Index of Refraction: np20 10% solution 1.3479

Density: dq;7517.5 of water solutions 5% (w/v) =1.019
10% (w/v) = 1.038
20% (w/v) = 1.076
30% (w/v) = 1.113
40% (w/v) = 1.149

Glucose is the most common carbohydrate, aldose monosaccharide also known as hexose
sugars, made up of six carbon component. All hexose sugars have five hydroxyl groups (-OH)
made them soluble in water [36]. It was synthesized using carbon dioxide by chlorophyll in
plants with sunlight as an energy source, and further converted to starch for storage.
Glucose can exist in open-chain form and cyclic form with un-branched backbone of six
carbon atoms or in cyclic form [34]. Since it contains alcohol and aldehyde or ketone
functional groups, the straight-chain form can easily transformed into chair form also known
as hemiacetal ring structure. This was done through conversion of C5 -OH group into ether
linkage and closing the ring with C1. Scheme of association is presented in Figure I-1.

Figure I-1: Glucose exists in the aldehyde ring forms with C1 as centre of asymmetry. Two isomers exist as either a-D-
Glucose or -D-Glucose from open-chain form. f position is when (-OH) on C#1 on same side of cyclic ring
of C#6 (on horizontal projection), a position is on different side (on downward position). [34]

1.1.4.2. Commercial glucose production from starch

Presently, the technology for glucose production very much depends on starch with two
main hydrolysis processes to obtain glucose, i.e. acid hydrolysis and enzymatic hydrolysis
[21]. Enzymatic hydrolysis was the most preferable way currently with starting starch
materials from corn, potatoes, wheat, rice, cassava.... etc. The process has been reviewed
extensively in publications [21, 34, 37]. Commercial glucose production process was
presented in the Figure I-2.

Enzymatic hydrolysis process starts with starch milk emulsion preparation, followed by
double injecting process to liquidize emulsion and enzyme saccharification into glucose.
Purification steps include removal of remaining solids, discoloring and filtering. lon exchange
process is devoted to recover back the enzyme, followed by a vacuum process to
concentrate the solution. At final stage, crystalline glucose is dried, separated and packed.

-10-
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Starch milk liquefaction is a continuous process, while saccharification was a batch process
at pH 4.0 - 4.5 for optimum amylase reaction. Saccharification will cut starch chains into
several dextrose equivalents (DE) materials based on requirements. Theoretically, liquefied
starch with 8-12 DE can be hydrolyzed completely by the glucoamylase mixture of 100 DE at
low solid concentrations. Mixture was purified and concentrated after obtaining a solution
with 95-97% glucose, 1-2% maltose and 0.5-2% (w/w) isomaltose, followed by a drying stage.

m _ MNative starch .-m
e - — - ——
::m ’ t: ' Modified starch “‘:_:-
Starch rmilk -:__

Glucose syrup

Figure I-2:  Processing chart for glucose production from starch obtained from cereals. [Adapted from -
http://'www.tereos.com/en-gb/activites/filieres/cereales.html]

Acid hydrolysis process follow similar route with modification at saccharification step and
acid neutralization. Acid process is used to manufacture intermediate conversion products
from 35 to 55 DE. Intermediate and higher conversion products for special purposes can be
made by substituting acid with enzymes, in similar two step process as described above.
(Note: DE scales refers 100 DE as pure glucose (glucose is also known as dextrose) and a 0 DE
as pure starch).

Enzymatic reaction became the preferred choice due to; with enzymes process alone (a-
amylase and amyloglucosidase) is possible to produce 28 to 98 DE syrups. Another product,
High Fructose Starch-based Syrups (HFSS) can be produced immediately after obtained high
DE syrups in a resin fix-bed isomerase enzyme for conversion of glucose to fructose. Simple
sugars and series of dextran molecules produced from this process have a range of
molecular weight from 180 to 2.4 X 10 and diameter of molecules from 8 to 1600 A.

1.1.4.3. Biorefinery concept and glucose production from biomass

Present application of glucose from starch was mainly for the food, and considered
expensive for other industrial applications. In order to develop a competitive glucose
manufacturing process utilizing biomass resource, several strategies were employed. One of
the strategies was developed based on a novel biorefinery concept. American National
Renewable Energy Laboratory (NREL) explained this concept as “A biorefinery is a facility
that integrates biomass conversion processes and equipment to produce fuels, power, and
chemicals from biomass. The biorefinery concept was analogous to today's petroleum
refineries, which produce multiple fuels and products from petroleum.”[38]. NREL's further
explain their biorefinery concept is built on two different "platforms" (1) "sugar platform"
and (2) "syngas platform", in Figure 1-3 which respectively are based on biochemical
processes with focus on sugar fermentation and based on thermo-chemical processes with
focus on biomass gasification. The concept also has been extensively reviewed [39], since
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the very beginning of first generation of biofuel. It was evolved into its current state of
development with second generation of biofuel. Detail explanation for each process route
was presented in various publications [1, 16] and summarized further in Figure I-4.

Biorefinery Concept

Sugar Feedstocks

Sugar Platform
“Biochemical™

Residues

Combined Fuels,
Heat 8- Chemicals,

Biomass g
Power & Materials

Clean Gas

Syngas Platform

"Thermochemical™
. Conditioned Gas

Figure I-3: Novel biorefinery concept with biomass as feedstock (adapted from [38].

The following general equation of the conversion describe conversion of biomass
composition into several chemicals of interest [40].

Lignocellulose + H,0 - Cellulose + Hemicellulose + Lignin (+ Starch)
Hemicellulose + H,O0 - Xylose

Xylose (CsH100s) , + Catalyst + H,O - Furfural (CsH;005) + 3H,0
Cellulose (CgH1106), + Catalyst + H,0 - Glucose (CsH1,0¢)

Starch (C¢H110g),, + Catalyst + H,O —> Glucose (CgH1,06)

with n normally > 10,000 unit of glucose or other monosaccharide.

Details of products based on sugar conversion process and its related products can be
further explained as in the following diagram.

Physical pretreatment
Steam exploszon, milling
5 Enzymatic a1 -
Lignocellulose | J Dilute acid » | nydroiysis of Conversiomn of
e el cellulose sugars to ethamol
[ J
X | Fermentation |
Hydrolysate with Hydrolysate with |
hemicellulose sugars cellulose sugars
Stage 1: Conversion of biomass to l
fermentable sugars
hd Erhanol recovery

Remowval of lignm

Figure I-4: Stages of conversion of biomass materials into bioethanol (adapted from [41])
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The use of biomass for energy, fuel and chemicals as being develop in this work is parallel to
the concept of biorefinery as described earlier. Stoichiometry reaction for sugar to ethanol
was established as:

Sucrose Cy,H5,04; + H,0 = 4C,HsOH +4C0O, with sucrose as its source.
Glucose CgH1,06 + H,0 = 2C,H;OH +2C0O, with glucose as its source.

More than ethanol, glucose also can be used to produce other important products mainly
food, amino acids and organic acids.

Typically, this concept needs the integration of various processes to fractionate biomass into
various end products. This review and our work will concentrate on the sugar platform with
concentration on the thermal pretreatment and dilute acid hydrolysis process. It initially
combined mechanical and thermal fractionation processes followed by chemical,
biochemical or thermo-chemical conversion process. Generally, there are three main stages
of operation in biorefinery:

e The first step involves the sizing of materials; biomass will need to be cut into
suitable size for effective thermal pretreatment. These operations will increase the
overall available surface area for next operation due to formation of internal micro
porous material. In this stage also, thermal treated material will be extracted and
its component such as lignin, hemicelluloses, extractive and cellulose will be
transformed into individual components as suggested in above general equations.

e In the second stage, individual component separated earlier will undergo several
processes to separate it into its monomers. Several processes need to be employed
at this stage such as primary hydrolysis (acid or enzyme), followed by its secondary
process such as glucose fermentation into bioethanol.

e The third stage will involve the purification of products of each individual product.
If the final product of interest is purified glucose, several steps such as extraction of
other intermediate of products such as levulinic acid, furfural and other acid such
as formic and acetic acid are taking place at this stage. In the frame of our present
work, we will not detail every step of the process necessarily.

I.1.5. Lignocellulosic Biomass

The existence of large supplies of lignocellulosic biomass should offer opportunities to
address a significant fraction of fuel and energy needs. Economically, biomass may offer an
advantage because it can be produced quickly and at significantly lower cost than food crops
[42]. However, most of the processes for converting biomass to fuels are yet fully developed
for commercialization [1, 21, 39, 42]. Most recently, it was reported that research was done
for fundamental understanding of the physical and chemical transformations at various
stages of processing and is yet ready for commercialization [43].

Lignocellulosic biomass materials are the most abundant material in the world. Its sources
range mainly from forest and agricultural residues. Lignocelluloses is the collective name for
the three main components of plant material, namely cellulose, hemicelluloses and lignin
[35, 44]. Another term that is coined for lignocelluloses material was biomass, which can be
defined as a renewable material, including those of trees and wood and its residues,
agricultural plant and crop residues, energy crops, aquatic plants and wastes generated from
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all above [23]. Biomass terms in any case will not included food crops, even though in some
cases, biomass was a component of food crops such as the non edible parts or waste
generated from the process to extract the edible part. Such non edible parts and wastes
sometimes pose a big problem for their disposal and contribute to a major environmental
crisis.

In most cases, biomass waste is coming from extraction of edible materials such as in case of
sugar canes, palm fruit bunches, wheat and corn stalks, sun flowers and sago barks. In other
aspect, biomass waste also can be found from industrial waste such as waste from particle
and hardboard operation. Preparation and treatment of these materials are other challenges
before their potential to be harvested [30]. Major compositions of biomass include: cellulose,
hemicelluloses, lignin, starch and extractives [35, 36, 44]. The first four components
contribute to higher mass component and exist as high molecular weight molecules, while
extractives usually consist of a number of small molecular weight materials and only
available in small quantity. Collectively, cellulose, starch and hemicelluloses can be referred
as polysaccharides and can be hydrolyzed into their monosaccharide components through
enzymatic or acid hydrolysis.

Cellulose is homopolymer of glucose with [3,1-4 linkage, while starch is a glucose
homopolymer build of glucose with o,1-4 linkage and hemicelluloses is a heteropolymer
containing both hexose and pentoses [35, 44]. Lignin on the other hand was highly irregular
polymers with three dimensional structures build up from oxygenated phenyl propane units
interlinked via B, 0-4 and a, 0-4 aryl ether linkage. Hemicelluloses and lignin behave as a
shield to both starch and cellulose in plant cell walls. Extractives which are soluble in neutral
organic solvents or water is non-structural wood component comprise of an extraordinarily
large number of individual compounds of both lipophilic and hydrophilic types [35, 44]. Main
purpose of above cell wall polysaccharides was to behave as structural component and to
provide certain function such as transport of water, [45, 46].

There are two types of wood classification: hardwood or softwood. Hardwood refers to
wood from broad-leaved (mostly deciduous) or angiosperm trees (plants that produce seeds
with some sort of covering). Softwood on the other hand refers to wood from gymnosperm
trees (plants having seeds with no covering). In the case of palm trees such as sago and oil
palm which comes from the monocotyledon plants, it was covered under the classification of
hardwood with some similarity to hardwood such as the existence of high xylose content
[35, 44].

Polymers have different reactivity to thermal, chemical and bio processing; and different
biomass compounds have different polymer composition making it much more difficult to
deal with. Biomass will require a different utilization strategy versus its composition and
utilization needed; we always can expect that optimization result in the field of thermal
processing will not have the same effect if utilized in the field of chemical process or on
another way around. In most cases, different biomass species will require distinctive
optimization strategy even in the same thermal processing regime [26, 47].

The degree of elastic or viscoelastic properties in a paper depends largely on environmental
conditions of moisture and temperature. There is a well defined transition zone between
elastic (“glass-like”) and viscoelastic behavior. It is defined by the glass-transition
temperature or “T,.” Below the T, temperature, dry cellulose will behave as an elastic
material, and above its T, it will exhibit viscoelastic behavior. For dry biomass materials,
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related T, temperatures are: cellulose at 240°C, hemicelluloses at 190°C, and lignin at 150°C
[48]. For the forest products industries, lignin is the major barrier to efficient extraction of
cellulose fibers for pulp and paper production. For the bioenergy industries, lignin was a
barrier to saccharification for production of liquid biofuel. However, on higher side lignin
was with an average of 2.27 kJ/g, i.e. 30% more than the energy of cellulosic carbohydrate
could provide [49].

Above information was vital for the development of our theory in this work. In order to have
good deconstruction of biomass material, thermal property of lignin need to be overcome
first, followed by good extraction and hydrolysis. In this work, thermal treatment in the
range of 144 to 175°C was use to exceed minimum T, of lignin, i.e. to overcome its
saccharification barrier on hemicellulose and cellulose.

1.1.5.1. Biomass Physical and Chemical Compositions

Weight percentage of four main lignocelluloses component has been reported in various
publications about different raw materials and summarized in Table I-3 and Figure I-5.

Table I-3: Chemical composition of some typical cellulose-containing materials (adapted from [46])
Composition (%)
Source - - -
Cellulose Hemicelluloses Lignin Extractive

Hardwood 43-47 25-35 16-24 2-8
Softwood 40-44 25-29 25-31 1-5
Bagasse 40 30 20 10
Coir 32-43 1-20 43-49 4
Corncobs 45 35 15 5
Corn stalk 35 25 35 5
Cotton 95 2 1 0.4
Flax (retted) 71 21 2 6
Flax (unretted) 63 12 3 2
Hemp 70 22 6 2
Hennequen 78 4-8 13 4
Istle 73 4-8 17 2
Jute 71 14 13 p
Kenaf 36 21 18 2
Ramie 76 17 1 6
Sisal 73 14 11 2
Sunn 80 10 6 3
Wheat straw 30 50 15 5

Due to the nature of this work, it is important to review the potential effect of chemical
treatments vis-a-vis cellulose and the creation of new cellulose material with novel
properties. In the following paragraphs, we will see how biomass subunits become a barrier
towards utilization. Biomass needs to be pre-treated and further hydrolyzed before it can be
used. Understanding on internal chemical structure will reveal the importance of
pretreatment for the conversion of chemicals in biomass.
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Figure I-5: Composition of biomass including cellulose, hemicelluloses, lignin, extractive and ash and its respective
degradation products. Starch was not included in this figure; normally represent certain percentage in
biomass that follow similar process steps as cellulose.

There are two types of polysaccharides: structural polysaccharides and storage

polysaccharides. Both have very distinct properties due their main function even though the

compositions of these two types are similar. Important structural polysaccharide was
cellulose, while for storage polysaccharide was starch.

1.1.5.1.1. Cellulose

Cellulose is the major chemical component of fibrous lignocelluloses material followed by
hemicelluloses and lignin. Representation of lignocelluloses materials at various levels is
presented in Figure I-6. Cellulose microfibrils situated in the plant cell walls were made of
linear glucose polymer units, forming chain known as glucan chains. These anhydroglucose
units are bound together by B-(1,4)-glycosidic linkages [35, 50]. Due to this linkage, smaller
sub-unit, or cellobiose was established as a repeat unit for cellulose chains (Figure I-7). Each
unit of D-anhydroglucopyranose in cellulose possesses hydroxyl groups at C2, C3, and C6
positions, are capable of undergoing reactions similar to primary and secondary alcohols.

Chemical and physical properties of cellulose are very much depending on the properties of
its monomer and binding properties. To illustrate the stability of cellulose it was proposed
that cellulose exists in the form of dense crystals with an extensive van der Waals’ attractive
forces as well as hydrogen bonds as presented in Figure I-8 [44]. However, cellulose crystals
possess flexibility unlike other crystal materials that is rigid due to its polymeric nature in the
forms of microfibrils and fibrils of cellulose. The formation of linear cellulose fibrils and
microfibrils from combination of several hundred to thousands of cellulose ribbon chains
creates the structure of the fiber walls in plant that have a very strong modulus due to bonds
described earlier.

Cellulose linkage B-(1, 4) glycosidic was very different from a-(1, 4) glycosidic that present in
starch and glycogen. This makes cellulose properties to become different from other
carbohydrate, insoluble in water and most organic solvents. Cellulose, like starch is a
monomer chain of glucose with nearly 12,000 glucose unit bind together by 3-D, (1, 4)
glycosidic bond. Glucose in starch (helical amylase and branched amylopectin) bonded
together by a-D, (1, 4) glycosidic bond. The difference in a-D, (1, 4) and B-D, (1, 4) glucose
linkage of starch and cellulose respectively makes it impossible for the starch digesting
enzymes to digest cellulose, that led to an enzymatic process exclusive to each other.
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Bioenergy Crop
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Figure I-6: Plant cell structure. An overview of science (Adapted from Bioenergy Research Center)
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Figure I-7: Cellulose drawing that shows numbering of carbon atoms, non-reducing and reducing ends groups with n-

number of glucose repeating units linked by f—1,4-glycosidic link. Cellulose chain with cellobiose unit as its
repeating units has a length of 1.03 nm within the cellobiose unit (adapted from [35]).

Figure I-8: Cellulose chain composed of four f-D-glucopyranose residues (cellotetraose) in three different views. The
upper image, viewed perpendicular to the flat surface of the molecule, shows the covalent bonds and electron
clouds around the atoms. The dotted lines indicate hydrogen bonds between the O6-H and the O2 atoms and
between the O3-H and the O5 atoms. Disregarding the ending hydroxyl hydrogen atoms, the molecule has the
twofold helical conformation and hydrogen bonding typical of some proposed structures of crystalline
cellulose. The middle image shows a view of the long edge of the molecule, and the bottom image shows the
end of the molecule (adapted from [44])
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Several experiments has confirmed that amorphous region between the crystallites was
easily accessible to water or heavy water as well as to small molecules, causing it to swell,
leading to an exchange of hydrogen between the cellulose hydroxyl groups with deuterium
of the heavy water [51, 52]. However, the penetration of small molecules into the crystal
lattice is much more difficult and needs more time to open and widen the lattice of cellulosic
structure [46].

Above information was very important for our work, due to the nature of DIC thermal
treatment combined with autohydrolysis that is required to achieve our objectives. Further
information on cellulose hydrolysis into glucose will be discussed in dilute acid hydrolysis
mechanisms together with degradation mechanisms involved.

1.1.5.1.2. Hemicelluloses

Hemicelluloses consisting of several heterogeneous groups of polysaccharides and exist in an
amorphous form. Hemicelluloses were suggested to be fully integrated into the structure of
the cellulose and located within and between the cellulose fibrils and lignins as depicted in
Figure 1-6. The main feature that differentiates hemicelluloses and cellulose was that it has
branches with short lateral chains consisting of different monosaccharide. This
monosaccharide includes pentose (five carbon sugar: xylose, rhamnose, and arabinose),
hexoses (six carbon sugar: glucose, mannose, and galactose), and uronic acids (e.g., 4-o-
methyl glucuronic, D-glucuronic, and D-galacturonic acids) [35, 44]. The backbone of
hemicelluloses was either a homopolymer or a heteropolymer with short branches linked by
-(1, 4)-glycosidic bonds and occasionally B-(1, 3)-glycosidic bonds. The sugars are highly
substituted with acetic acid. The branched nature of hemicelluloses renders it amorphous
and relatively easy for hydrolyzed to its constituent sugars compared to cellulose. When
hydrolyzed, the hemicelluloses from hardwoods release products high in xylose (a five-
carbon sugar). The hemicelluloses contained in softwoods, by contrast, yield more six-
carbon sugars.

Due to its composition, hemicelluloses are not chemically homogeneous and exist in
different composition percentage. Hardwood hemicelluloses contain mostly xylose or xylans,
while softwood hemicelluloses contain mostly glucomannans [42]. Xylans are the most
abundant hemicelluloses with backbone of [-D-xylopyranose units. Degree of
polymerization of hardwood xylans (150 - 200) is higher than in softwoods.

1.1.5.1.3. Lignin

Lignin, the other important biomass constituents acts as a barrier to water penetration and
as “glue” that holds tree components in the form of a matrix that also reinforces the tree by
fills spaces in the cell wall between cellulose, hemicelluloses and pectin components. Lignin
was made up of 3-dimensional amorphous polymer by a basic structural phenylpropane unit
as presented in Figure 1-10. Lignin behaves as an amorphous thermoplastic polymer, if
heated beyond its glass transition temperature, it becomes rubbery similar to chain motion
in polymer to enable some structural movements. Once extracted from wood, lignin loses its
thermo-plasticity, due to severe degradation that subjected to its high molecular weight and
3-dimensional structure. Thermal treated lignin will normally appear on a surface of cellular
structure of biomass.
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Figure I-10:  Basic unit of phenylpropane that built lignin [53].

Lignin also acts as a bulking agent, and with its rigidity and stiffness, lignin imparts strength
to the cell wall and it’s surrounding. Lignin was insoluble and not hygroscopic in nature. It
also reduces the dimensional changes that occur with moisture changes in the cell wall. The
followings chemical structure (Figure 1-10) shows the basic building unit of lignin while in
next figure (Figure I-11) was the model of very complex lignin structures.
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Figure I-11:  Lignin structure still viewed as a contemporary model due to its complexity as presented above.

The linkage between polysaccharides and lignin as lignin-polysaccharides complex was
proposed as due to the connecting links between lignin to the polyoses side group of
arabinose, galactose and 4-O-methylglucoronic acid. This was made possible due to their
sterically favored positions [44]. With this composition linkage, it was understood the reason
why lignin cannot be totally separated from woody materials.

A set of strategy such as thermal treatment followed by alkalline extraction was normally
employed to separate lignin from other cellulosic component.
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Figure I-12:  Representation of (a) Schematic and (b) detail representation of linkage for lignin and polysaccharides
(adapted from [44])

Above information is vital for the development of our theory in this work. In order to have
good deconstruction of biomass material, the cementous thermal property of lignin needs to
be overcome first, followed by good extraction and hydrolysis.

1.1.5.1.4. Starch

Starch or amylum was a carbohydrate consisting of a large number of glucose units joined
together by glycosidic bonds to become the most common storage polysaccharides for
plants. Starch was contained in large amounts in such staple foods such as potatoes, wheat,
maize (corn), rice, and cassava. Organs and tissues containing starch granules include pollen,
leaves, stems, woody tissues, roots, tubers, bulbs, rhizomes, fruits, flowers, and the pericarp,
cotyledons, embryo and endosperm of seeds [54]. Starch synthesis takes place during
development and maturation of storage organs, such as tubers, fruits and seeds.

There are two types of starch polymers: amylose and amylopectin that exists in nature as
composition of 10% to 30% and 70% to 90% respectively. Amylose was a linear
homopolymer of glucose with 1, 4 a-glycosidic bond, while amylopectin was a highly
branches starch polymer with linear linkage of 1, 4 a-glycosidic bond and its branch was in
the formed by 1, 6 a-glycosidic bond. Both types were having reducing and non-reducing
ends and having poor solubility in water. Some information about starch was described
earlier as a comparison to cellulose. Two types of starch materials were presented in the
following table.

Table [-4: Properties of amylose and amylopectin in starch (adapted from [54])

Properties | Amylose | Amylopectin
General structure Linear Branched

Color with iodine Dark blue Purple

Average chain length (glucosyl units) 100 - 10,000 20-30

Degree of polymerization 100 - 10,000 10,000 - 100,000
Solubility in water Variable Soluble

Starch in its native form was a versatile product, and the raw material for production of
many products, sweeteners and ethanol. Russian chemist G.S.C. Kirchhoff has discovered
that starch could be transformed into a sweet substance by heating with dilute acid in 1811
when he was trying to develop a substitute for the gum arabic. First starch syrups plant were
established twenty years later in 1831, and in 1866, production of D-glucose (dextrose) from
starch was realized. This was followed by a number of glucose syrups manufacturing plants
establishment in Europe during the 1800s followed by the manufacture of crystalline
dextrose in 1882.
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1.1.5.2. Products of Starch and Glucose

Starch was not only consumed as a food, but also built its reputations into various other
industrial applications. Since 1930s; carbohydrate chemists have developed numerous
products that have greatly expanded starch use and utility; including: (1) waxy corn starch
with different starch properties and uses; (2) high-amylose starch primarily used by candy
manufacturers due to its high-strength gels that give candy shape and integrity; (3) chemical
modified starch gives appropriate texture, quality and shelf life for processed foods, such as
frozen, instant, dehydrated, encapsulated and heat-and-serve products.

The success in starch technology was due to the advance in enzyme technology during 1940s
and 1950s that enable the precise control of its end products through the adjustment in
conditions of hydrolysis. At the same time, purification techniques to develop a high purity
syrups were successfully developed. That advancement helps to expand the range and utility
of glucose syrup products. Isomerizes enzyme coupled with immobilize enzyme technology
was successfully convert glucose into sweeter fructose, and led to the introduction of high-
fructose syrup (HFS) in 1967. Refinements in production processes further produced liquid
sweetener that could replace liquid sucrose on a one-to-one basis. There was a major
disruption in the world sugar market at the time also led the major sugar users to seek such
an alternative for their product manufacturing. Glucose syrups are easily fermented by yeast
to ethanol. According to an estimation, 32 pounds (14.5 kg) of starch in a bushel of corn, will
be produced about 2.5 gallons (9.5 liters) of ethanol [54]. Hydrogenation of sugars produces
a class of materials known as sugar alcohols or polyols. Major commercial sugar alcohols
include mannitol, sorbitol (D-glucitol), malitol, and xylitol and syrups are related to these
products.

Another important food and industrial product from starch and glucose was an organic acid,
including citric, lactic, malic and gluconic acids have become large-scale food and industrial
ingredients. Originally produced from fermentation of sucrose or sugar by-products, they are
now mainly produced from fermentation of dextrose. Fermentation technology also has
enabled a number of amino acids productions from glucose such as lysine, threonine,
tryptophan, methionine and cysteine.

1.1.5.3. Comparison: Starch and Cellulose

In many ways, cellulose and a-amylose share the same linear homopolymer of D-glucose
units. However, due to the difference in glycosidic bonds for glucose unit: cellulose with
B,(1,4) and a-amylose with a,(1,4); both polymers posses different structure and
conformation as shown in Figure 1-13. The hydrogen bonding that present in such an
extended structures of cellulose was responsible for the great strength of tree trunks and
other cellulose-based materials. On the other hand, helical conformation of starch amylose
makes it suitable as storage materials in plant.

Figure I-13:  Starch, as (a) amylose with «, (1—-4) linkages, prefers to adopt a helical conformation, whereas (b) cellulose,
with B, (1—-4)-glycosidic linkages, adopts a fully extended conformation with alternating 180° flips of the
glucose units.
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1.1.5.4. Energy Value of Biomass

Energy value of biomass component from several sources was summarized in Table I-5 in
order to appreciate the calorific value of biomass waste. Relatively natural biomass has low
calorific value if compared with other sources of energy. Processing it into glucose reduced
further its calorific value, but fermentation into ethanol doubled its total energy value. It was
important that comprehensive strategies for conversion of biomass were formulated in
order to enhance it energy value.

Table I-5: Energy content of biomass composition, products and its by-products together with several fossil fuels for
comparison

Biomass composition Energy (kJ/gram) Reference
Wood (whole materials) 18.6 [55]
Cellulose 17.6 [56]
Lignin 26.4 [56]
Starch 17.5 [56]
Raw fiber 17.6 [56]
Lignin and Extractive (79.8% and 20.2%) 25.45 [57]
Holocellulose 15.45 [57]
Glucose 15.5 [56]
Ethanol 29.7 [56]
Natural gas 53.5 [39]
Gasoline 46.5 [39]
Crude oil 419 [39]
Coal (anthracite) 32.6 [39]
Coal (bituminous) 25.6 [39]

1.1.6. Water Behavior in Biomass

Tree needs water for growth and sustenance of its food. Water transported by the root
system throughout the tree. Once the tree is cut down, water uptake stops and moisture
content in the wood will start to diminished slowly. Existing water content need to be dries
up before biomass can be utilized. Some species of biomass contain a lot of water making it
uneconomic to transport unprocessed biomass due to high amount of water is being shipped
unnecessarily.

There are three types of water in biomass, particularly in the cell wall levels. Water exists as
liqguid water in the lumen, water vapor in the lumen, and bound water in the cell wall. This
will enable the transportation of important nutrient in tree. Besides that, because of the
existence of water biomass material is defined as hydroscopic, i.e. easily adsorbed moisture
after dried to certain extend and exposed back to atmospheric condition.

Bound water in cell wall was due to the water was held strongly to the cell walls compare to
free water and non bound water. Hydrogen bonding forms between water and cell walls will
release some energy, and to release water from hydrogen bonding will require some energy
to overcome that bonding. Bound water will appear first until completely saturated, and the
excess water become non-bound water and free water after several layers of water are
formed. Differential scanning calorimeter (DSC) was a good tool to determine if materials
containing water have freezing and non-freezing bound water and has been successfully
tested on fibers [52, 58]. Moisture content of biomass normally was reported in percentage,
calculated based on weight of water per dry weight of biomass.
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Water in the cell wall is bound to the hydroxyl groups through hydrogen bonding (see Figure
I-8) that exist in the cellulose polymers and its neighboring molecules. It is primarily
associate hydroxyl sites of the cellulose and hemicelluloses. The bound water moisture
content is limited by the number of sorption sites available and by the number of molecules
that can be held on a sorption site [59]. Certain treatments such as thermal and alkaline
treatment was found to increase the percentage of bound water in biomass material
together with an increase in sorption sites and amount of lower DP oligosaccharides [60, 61].

The crystalline regions of cellulose do not allow for water to enter. Their sorption sites are
not accessible because adjacent cellulose molecules are bound to the sites. The bound water
moisture content is dependant on the relative humidity and temperature of the surrounding
air. Recent work shows that even after heating cellulose sample up to 170°C, the absolutely
dry cellulose still cannot be obtained due to small amount of water is very strongly bounded
to cellulose molecules [61].

1.1.7. Brief Overview on Biomass Waste

Currently, a lot of attention has been put on development of a new process for the
utilization of agricultural residues such as sago waste, cassava bagasse, sugarcane bagasse,
sugarbeet pulp, coffee husk and pulp, apple pomace, potato waste and other materials as
feed materials in bioprocesses [62]. Approximately, 3.5 billion tones of agricultural residues
are produced per year throughout the world. However, due to its low in protein content and
very poor digestibility as food materials, their potential utilization is very poor even though
some are rich in carbohydrate content. The conversion of such waste into another form of
food base such as glucose is important to answer the needs to increase world food and feed
consumption supplies.

Based on several reports, Malaysia produced about 32 Mt annually biomass waste in the
form of palm waste, paddy, wood residue and bagasse [63]. Simulated conversion of all
resources was estimated to produce about 4.6 Mt gasoline equivalents or about 60% current
fuel requirement. Currently, some portion of biomass waste produced is burned for steam
and heat supply in palm oil processing plant but in some cases such as paddy stalk, farmers
have a problem to dispose it and most of it was burn during dry season in an open field.

In order to appreciate the profitability of glucose generation from the process developed in
present work, specific raw material and content of its polysaccharides need to be evaluated.
We have decided to concentrate the review on two major sources of polysaccharide’s waste
available in South East Asia region: solid waste from sago and cassava processing plant.

This literature analysis will digest status on present sago and cassava industries, its source of
waste generation (solid and liquid), composition of waste, current methodology of disposal
and to associate this work on the potential utilization of waste for higher value added
products. Only small part of this review will digest on cassava, in order to gain some insight
into the industry for comparison against sago processing industry.

1.1.7.1. Cassava Starch Industry

Small part of this review will concentrate on cassava waste solid or known as cassava
bagasse. Cassava (Manihot esculenta Cranz) was one of most important crops for food after
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rice and corn, especially in tropics. Information collected was to compare with major interest
in this work, i.e. waste from sago starch processing plant.

Cassava was a bushy plant producing tubers and made up of aerial and underground parts.
The aerial parts can be as high as 2-4 meters. Cassava root or the underground part was
made up of two types of roots: the ones responsible for plant nutrition and the other with
axial disposition surrounding the trunk or known as tubers that makes the edible part of
plant. Each plant can grow 5 to 20 tubers with fresh weight few gram to 5 kg [62].

Cassava starch production per hectare was one of the highest and standing as fourth crops
worldwide after rice, wheat and rice. According to FAO estimates, about 600 million peoples
depends their lives of cassava starch especially in Africa, Asia and Latin America [62].
Thailand, Indonesia and Vietnam are the countries with highest planted area with cassava in
South East Asia. Vietnam very much depend on scattered small scale cassava cultivation with
total fresh roots yields of 60,000 to 80,000 tons/year and approximately 100,000 tons of wet
starch/year [64]. Thailand, owns 1.043 million hectare of planted area with nearly 17 million
tons production (about 17.1 tons cassava root/ hectare) in 2005 [65]. Data for Indonesia,
according to FAOSTAT database (FAO) saw an increase of production quantity from 16
million tons in 1990 to 22 million tons with planted area of 1.175 million hectare in 2009
[FAO - through http://data.mongabay.com/commodities-Indonesia]. Statistics on Malaysia,
shows that there was an increase in plantation area of 39,000 hectare in 1990 to 42,000
hectare in 2009 with production of 440,000 tons in 2009, but at much lower yield of about
10.5 tons cassava root/hectare compared to its neighbourhood region [according to FAO —
http://data.mongabay.com/commodities- Malaysia].

Up to now, there have been no domestically and internationally recorded documents on
waste treatment which can be applied directly to address the pollution in the cassava
processing villages in Vietnam. Thailand, the world leader in cassava processing industry, can
only use dried root pulp for animal feed [64].

1.1.7.2. Cassava Processing

Processing of tubers, mainly for isolation of its starch flour from other inedible solid, will
require a lot of water. Cassava tuber will be cleaned with water in low rotating drum once
arrive at the processing plant to remove soil and dirt. Washed tubers will be cut into smaller
pieces with cutting blades and feed into raspers [66].

Slurry of root from raspers is pumped through series of extractors in centrifuge system
separating fine starch from coarse solids. Pulp from coarse solid will be repeatedly extracted
until a minimum amount of starch in coarse solid is left. There are two types of waste
generated: liq