J. Chang, W. Hsieh, and W. Tsai, Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn???Co oxide electrodes, Journal of Alloys and Compounds, vol.461, issue.1-2, pp.667-674, 2008.
DOI : 10.1016/j.jallcom.2007.07.092

]. C. Lin, J. A. Ritter, and B. N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors, Journal of The Electrochemical Society, vol.145, issue.12, pp.4097-4103, 1998.
DOI : 10.1149/1.1838920

V. Srinivasan and J. W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation, Journal of Power Sources, vol.108, issue.1-2, pp.15-20, 2002.
DOI : 10.1016/S0378-7753(01)01012-6

T. C. Liu, W. G. Pell, and B. E. Conway, Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochimica Acta, vol.44, issue.17, pp.2829-2842, 1999.
DOI : 10.1016/S0013-4686(99)00002-X

]. L. Cao, F. Xu, Y. Liang, and H. Li, Preparation of the Novel Nanocomposite Co(OH)2/ Ultra-Stable Y Zeolite and Its Application as a Supercapacitor with High Energy Density, Advanced Materials, vol.14, issue.20, pp.1853-1857, 2004.
DOI : 10.1002/adma.200400183

W. Wang, S. Yang, D. G. Zhang, X. Evans, and . Duan, Synthesis and Electrochemical Characterization of Co???Al Layered Double Hydroxides, Journal of The Electrochemical Society, vol.152, issue.11, pp.2130-2137, 2005.
DOI : 10.1149/1.2041107

]. V. Gupta, S. Gupta, and N. Miura, Potentiostatically deposited nanostructured CoxNi1???x layered double hydroxides as electrode materials for redox-supercapacitors, Journal of Power Sources, vol.175, issue.1, pp.680-685, 2008.
DOI : 10.1016/j.jpowsour.2007.09.004

Y. Zhang, F. Zhao, H. Tao, and . Li, Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitor, Journal of Power Sources, vol.161, issue.1, pp.723-729, 2006.
DOI : 10.1016/j.jpowsour.2006.03.041

]. V. Shinde, S. Mahadik, T. Gujar, and C. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Applied Surface Science, vol.252, issue.20, pp.7487-7492, 2006.
DOI : 10.1016/j.apsusc.2005.09.004

H. Kim, T. Seong, J. Lim, W. I. Cho, and Y. Soo-yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, Journal of Power Sources, vol.102, issue.1-2, pp.167-171, 2001.
DOI : 10.1016/S0378-7753(01)00864-3

]. F. Tronel, L. Guerlou-demourgues, M. Ménétrier, L. Croguennec, L. Goubault et al., New Spinel Cobalt Oxides, Potential Conductive Additives for the Positive Electrode of Ni???MH Batteries, Chemistry of Materials, vol.18, issue.25, pp.5840-5851, 2006.
DOI : 10.1021/cm060175t

URL : https://hal.archives-ouvertes.fr/hal-00123369

P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, Journal of Power Sources, vol.8, issue.2, pp.229-255, 1982.
DOI : 10.1016/0378-7753(82)80057-8

]. M. Butel, L. Gautier, and C. Delmas, Cobalt oxyhydroxides obtained by 'chimie douce' reactions: structure and electronic conductivity properties, Solid State Ionics, vol.122, issue.1-4, pp.271-284, 1999.
DOI : 10.1016/S0167-2738(99)00076-4

]. A. Van-der-ven, D. Morgan, Y. S. Meng, and G. Ceder, Phase Stability of Nickel Hydroxides and Oxyhydroxides, Journal of The Electrochemical Society, vol.153, issue.2, pp.210-215, 2006.
DOI : 10.1149/1.2138572

R. J. Hill, J. R. Craig, and G. V. Gibbs, Systematics of the spinel structure type, Physics and Chemistry of Minerals, vol.59, issue.4, pp.317-339, 1979.
DOI : 10.1007/BF00307535

N. K. Appandairajan, B. Viswanathan, and J. Gopalakrishnan, Lithium-substituted cobalt oxide spinels LixM1???xCo2O4 (M = Co2+, Zn2+; 0 ??? x ??? 0.4), Journal of Solid State Chemistry, vol.40, issue.1, pp.117-121, 1981.
DOI : 10.1016/0022-4596(81)90369-8

S. Holgersson and A. Karlsson, ??ber Einige neue Kobaltite vom Spinelltypus, Zeitschrift f??r anorganische und allgemeine Chemie, vol.7, issue.7, pp.384-394, 1929.
DOI : 10.1002/zaac.19291830128

]. D. Pyke, K. K. Mallick, R. Reynolds, and A. K. Bhattacharya, Surface and bulk phases in substituted cobalt oxide spinels, Journal of Materials Chemistry, vol.8, issue.4, pp.1095-1098, 1998.
DOI : 10.1039/a707092f

S. A. Makhlouf, Magnetic properties of Co3O4 nanoparticles, II.8. Références [1], pp.184-190, 2002.
DOI : 10.1016/S0304-8853(02)00050-1

]. F. Grillo, M. M. Natile, and A. Glisenti, Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface, Applied Catalysis B: Environmental, vol.48, issue.4, pp.267-274, 2004.
DOI : 10.1016/j.apcatb.2003.11.003

Y. Wang, C. Zhao, D. Gao, and . Liu, Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation, Catalysis Letters, vol.45, issue.14, pp.136-142, 2007.
DOI : 10.1007/s10562-007-9099-4

]. M. Irfan, J. H. Goo, and S. D. Kim, Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process, Applied Catalysis B: Environmental, vol.78, issue.3-4, pp.267-274, 2008.
DOI : 10.1016/j.apcatb.2007.09.029

L. Li, J. Xu, and . Chen, Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors, Advanced Functional Materials, vol.105, issue.5, pp.851-857, 2005.
DOI : 10.1002/adfm.200400429

M. Thackeray, S. Baker, K. Adendorff, and J. Goodenough, Lithium insertion into Co3O4: A preliminary investigation, Solid State Ionics, vol.17, issue.2, pp.175-181, 1985.
DOI : 10.1016/0167-2738(85)90069-4

]. D. Larcher, G. Sudant, J. Leriche, Y. Chabre, and J. Tarascon, The Electrochemical Reduction of Co[sub 3]O[sub 4] in a Lithium Cell, Journal of The Electrochemical Society, vol.149, issue.3, pp.234-241, 2002.
DOI : 10.1149/1.1435358

]. C. Lin, J. A. Ritter, and B. N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors, Journal of The Electrochemical Society, vol.145, issue.12, pp.4097-4103, 1998.
DOI : 10.1149/1.1838920

]. S. Xiong, C. Yuan, X. Zhang, B. Xi, and Y. Qian, Nanostructures with Tunable Morphology for Application in Supercapacitors, Chemistry - A European Journal, vol.153, issue.21, pp.5320-5326, 2009.
DOI : 10.1002/chem.200802671

]. H. Yang, Y. Hu, X. Zhang, and G. Qiu, Mechanochemical synthesis of cobalt oxide nanoparticles, Materials Letters, vol.58, issue.3-4, pp.387-389, 2004.
DOI : 10.1016/S0167-577X(03)00507-X

D. Y. Kim, S. H. Ju, H. Y. Koo, S. K. Hong, and Y. C. Kang, Synthesis of nanosized Co3O4 particles by spray pyrolysis, Journal of Alloys and Compounds, vol.417, issue.1-2, pp.254-258, 2006.
DOI : 10.1016/j.jallcom.2005.09.013

T. Sugimoto, E. Matijevic, and J. Inorg, Colloidal cobalt hydrous oxides. Preparation and properties of monodispersed Co3O4, Journal of Inorganic and Nuclear Chemistry, vol.41, issue.2, pp.165-172, 1979.
DOI : 10.1016/0022-1902(79)80506-0

J. Feng and H. C. Zeng, Nanocubes, Chemistry of Materials, vol.15, issue.14, pp.2829-2835, 2003.
DOI : 10.1021/cm020940d

B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Sol???Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures, Chemistry of Materials, vol.9, issue.11, pp.2544-2550, 1997.
DOI : 10.1021/cm970268y

]. Y. Jiang, Y. Wu, B. Xie, Y. Xie, and Y. Qian, Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation, Materials Chemistry and Physics, vol.74, issue.2, pp.234-237, 2002.
DOI : 10.1016/S0254-0584(01)00463-1

]. Titirici, M. Antonietti, and A. Thomas, A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach, Chemistry of Materials, vol.18, issue.16, pp.3808-3812, 2006.
DOI : 10.1021/cm052768u

]. C. Aymonier, A. Loppinet-serani, H. Reverã³n, Y. Garrabos, and F. Cansell, Review of supercritical fluids in inorganic materials science, The Journal of Supercritical Fluids, vol.38, issue.2, pp.242-251, 2006.
DOI : 10.1016/j.supflu.2006.03.019

URL : https://hal.archives-ouvertes.fr/hal-00102072

]. D. Larcher, G. Sudant, R. Patrice, and J. Tarascon, Some Insights on the Use of Polyols-Based Metal Alkoxides Powders as Precursors for Tailored Metal-Oxides Particles, Chemistry of Materials, vol.15, issue.18, pp.3543-3551, 2003.
DOI : 10.1021/cm030048m

]. R. Tsukamoto, K. Iwahori, M. Muraoka, and I. Yamashita, Nanoparticles Using the Cage-Shaped Protein, Apoferritin, Bulletin of the Chemical Society of Japan, vol.78, issue.11, pp.2075-2081, 2005.
DOI : 10.1246/bcsj.78.2075

M. Pourbaix, Atlas d'équilibres électrochimiques, 1963.

]. F. Tronel, L. Guerlou-demourgues, M. Ménétrier, L. Croguennec, L. Goubault et al., New Spinel Cobalt Oxides, Potential Conductive Additives for the Positive Electrode of Ni???MH Batteries, Chemistry of Materials, vol.18, issue.25, pp.5840-5851, 2006.
DOI : 10.1021/cm060175t

URL : https://hal.archives-ouvertes.fr/hal-00123369

M. Douin, L. Guerlou-demourgues, M. Ménétrier, E. Bekaert, L. Goubault et al., Effect of Thermal Treatment on the Electronic Conductivity Properties of Cobalt Spinel Phases Synthesized by Electro-Oxidation in Ternary Alkaline Electrolyte (KOH, LiOH, NaOH), Chemistry of Materials, vol.20, issue.21, pp.6880-6888, 2008.
DOI : 10.1021/cm801775g

URL : https://hal.archives-ouvertes.fr/hal-00348669

]. M. Douin, L. Guerlou-demourgues, M. Ménétrier, E. Bekaert, L. Goubault et al., Effect of Thermal Treatment on the Electronic Conductivity Properties of Cobalt Spinel Phases Synthesized by Electro-Oxidation in Ternary Alkaline Electrolyte (KOH, LiOH, NaOH), Chemistry of Materials, vol.20, issue.21, pp.6880-6888, 2008.
DOI : 10.1021/cm801775g

URL : https://hal.archives-ouvertes.fr/hal-00348669

]. T. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2, Ultramicroscopy, vol.81, issue.3-4, pp.263-270, 2000.
DOI : 10.1016/S0304-3991(99)00189-8

]. R. Gummow, M. Thackeray, W. David, and S. Hull, Structure and electrochemistry of lithium cobalt oxide synthesised at 400??C, Materials Research Bulletin, vol.27, issue.3, pp.327-337, 1992.
DOI : 10.1016/0025-5408(92)90062-5

]. Y. Shao-horn, S. Hackney, C. Johnson, A. Kahaian, and M. Thackeray, Structural Features of Low-Temperature LiCoO2and Acid-Delithiated Products, Journal of Solid State Chemistry, vol.140, issue.1, pp.116-127, 1998.
DOI : 10.1006/jssc.1998.7873

M. Douin, L. Guerlou-demourgues, M. Ménétrier, E. Bekaert, L. Goubault et al., Improvement by heating of the electronic conductivity of cobalt spinel phases, electrochemically synthesized in various electrolytes, Journal of Solid State Chemistry, vol.182, issue.5, pp.1273-1280, 2009.
DOI : 10.1016/j.jssc.2009.02.018

URL : https://hal.archives-ouvertes.fr/hal-00382826

]. W. Roth, The magnetic structure of Co3O4, Journal of Physics and Chemistry of Solids, vol.25, issue.1, pp.1-10, 1964.
DOI : 10.1016/0022-3697(64)90156-8

]. H. Shirai, Y. Morioka, I. Nakagawa, and J. , Infrared and Raman Spectra and Lattice Vibrations of Some Oxide Spinels, Journal of the Physical Society of Japan, vol.51, issue.2, pp.592-597, 1982.
DOI : 10.1143/JPSJ.51.592

]. L. Schumacher, I. B. Holzhueter, I. R. Hill, and M. J. Dignam, Semiconducting and electrocatalytic properties of sputtered cobalt oxide films, Electrochimica Acta, vol.35, issue.6, pp.975-984, 1990.
DOI : 10.1016/0013-4686(90)90030-4

]. B. Lefez, P. Nkeng, J. Lopitaux, and G. Poillerat, Characterization of cobaltite spinels by reflectance spectroscopy, Materials Research Bulletin, vol.31, issue.10, pp.1263-1267, 1996.
DOI : 10.1016/0025-5408(96)00122-5

]. H. Lutz, B. Müller, and H. Steiner, Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides, Journal of Solid State Chemistry, vol.90, issue.1, pp.54-60, 1991.
DOI : 10.1016/0022-4596(91)90171-D

J. Preudhomme and P. Tarte, Infrared studies of spinels???III, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.27, issue.9, pp.1817-1835, 1971.
DOI : 10.1016/0584-8539(71)80235-0

]. M. Vuurman, D. J. Stufkens, A. Oskam, G. Deo, and I. E. Wachs, , NiO, CoO) catalysts under dehydrated conditions, J. Chem. Soc., Faraday Trans., vol.94, issue.17, pp.3259-3265, 1996.
DOI : 10.1039/FT9969203259

]. J. Tyczkowski, R. Kapica, and J. Lojewska, Thin cobalt oxide films for catalysis deposited by plasma-enhanced metal???organic chemical vapor deposition, Thin Solid Films, vol.515, issue.16, pp.6590-6595, 2007.
DOI : 10.1016/j.tsf.2006.11.056

]. Y. Wei, Z. F. Huang, C. Wang, W. Liu, G. Chen et al., films prepared via Pechini method, The European Physical Journal Applied Physics, vol.23, issue.2, pp.111-115, 2003.
DOI : 10.1051/epjap:2003045

L. Ai and J. Jiang, Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method, Powder Technology, vol.195, issue.1, pp.11-14, 2009.
DOI : 10.1016/j.powtec.2009.05.006

]. D. Gallant, M. Pézolet, and S. Simard, Optical and Physical Properties of Cobalt Oxide Films Electrogenerated in Bicarbonate Aqueous Media, The Journal of Physical Chemistry B, vol.110, issue.13, pp.6871-6880, 2006.
DOI : 10.1021/jp056689h

J. E. Spanier, R. D. Robinson, F. Zhang, S. Chan, and I. P. Herman, nanoparticles as studied by Raman scattering, Physical Review B, vol.64, issue.24, p.245407, 2001.
DOI : 10.1103/PhysRevB.64.245407

W. Huang and R. Frech, Solid State Ionics, pp.86-88, 1996.

]. T. Watanabe, H. Uono, S. Song, K. Han, and M. Yoshimura, Direct Fabrication of LiCoO2 Films on Various Substrates in Flowing Aqueous Solutions at 150??C, Journal of Solid State Chemistry, vol.162, issue.2, pp.364-370, 2001.
DOI : 10.1006/jssc.2001.9412

]. L. Mendoza, R. Baddour-hadjean, M. Cassir, and J. Pereira-ramos, Raman evidence of the formation of LT-LiCoO2 thin layers on NiO in molten carbonate at 650??C, Applied Surface Science, vol.225, issue.1-4, pp.356-361, 2004.
DOI : 10.1016/j.apsusc.2003.10.026

C. M. Burba, K. Shaju, P. G. Bruce, and R. Frech, Infrared and Raman spectroscopy of nanostructured LT-LiCoO2 cathodes for Li-ion rechargeable batteries, Vibrational Spectroscopy, vol.51, issue.2, pp.248-250, 2009.
DOI : 10.1016/j.vibspec.2009.06.002

]. C. Mockenhaupt, T. Zeiske, and H. D. Lutz, Crystal structure of brucite-type cobalt hydroxide ??-Co{O(H,D)}2 ??? neutron diffraction, IR and Raman spectroscopy, Journal of Molecular Structure, vol.443, issue.1-3, pp.191-196, 1998.
DOI : 10.1016/S0022-2860(97)00388-8

]. C. Tessier, L. Guerlou-demourgues, C. Faure, A. Demourgues, and C. Delmas, Structural study of zinc-substituted nickel hydroxides, Journal of Materials Chemistry, vol.10, issue.5, pp.1185-1193, 2000.
DOI : 10.1039/a908517c

A. L. Goodman, E. T. Bernard, and V. H. Grassian, Spectroscopic Study of Nitric Acid and Water Adsorption on Oxide Particles:?? Enhanced Nitric Acid Uptake Kinetics in the Presence of Adsorbed Water, The Journal of Physical Chemistry A, vol.105, issue.26, pp.6443-6457, 2001.
DOI : 10.1021/jp003722l

]. M. Ménétrier, I. Saadoune, S. Levasseur, and C. Delmas, The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study, Journal of Materials Chemistry, vol.9, issue.5, pp.1135-1140, 1999.
DOI : 10.1039/a900016j

]. D. Carlier, I. Saadoune, M. Menetrier, and C. Delmas, Lithium Electrochemical Deintercalation from O2-LiCoO[sub 2], Journal of The Electrochemical Society, vol.149, issue.10, pp.1310-1320, 2002.
DOI : 10.1149/1.1503075

]. M. Thackeray, W. David, P. Bruce, and J. Goodenough, Lithium insertion into manganese spinels, Materials Research Bulletin, vol.18, issue.4, pp.461-472, 1983.
DOI : 10.1016/0025-5408(83)90138-1

]. K. Kanamura, H. Naito, and Z. Takehara, as Electrochemical Insertion Materials for Rechargeable Lithium Batteries, Chemistry Letters, vol.26, issue.1, pp.45-46, 1997.
DOI : 10.1246/cl.1997.45

]. S. Levasseur, M. Ménétrier, E. Suard, and C. Delmas, Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies, Solid State Ionics, vol.128, issue.1-4, pp.11-24, 2000.
DOI : 10.1016/S0167-2738(99)00335-5

]. M. Ménétrier, D. Carlier, M. Blangero, and C. Delmas, On ???Really??? Stoichiometric LiCoO[sub 2], Electrochemical and Solid-State Letters, vol.11, issue.11, pp.179-182, 2008.
DOI : 10.1149/1.2968953

X. Xue and M. Kanzaki, Proton Distributions and Hydrogen Bonding in Crystalline and Glassy Hydrous Silicates and Related Inorganic Materials: Insights from High-Resolution Solid-State Nuclear Magnetic Resonance Spectroscopy, Journal of the American Ceramic Society, vol.92, issue.12, pp.2803-2830, 2009.
DOI : 10.1111/j.1551-2916.2009.03468.x

]. M. Butel, L. Gautier, and C. Delmas, Cobalt oxyhydroxides obtained by 'chimie douce' reactions: structure and electronic conductivity properties, Solid State Ionics, vol.122, issue.1-4, pp.271-284, 1999.
DOI : 10.1016/S0167-2738(99)00076-4

]. B. Ammundsen, D. J. Jones, J. Roziere, and G. R. Burns, Mechanism of Proton Insertion and Characterization of the Proton Sites in Lithium Manganate Spinels, Chemistry of Materials, vol.7, issue.11, pp.2151-2160, 1995.
DOI : 10.1021/cm00059a024

]. B. Ammundsen, J. Rozière, and M. S. Islam, Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates, The Journal of Physical Chemistry B, vol.101, issue.41, pp.8156-8163, 1997.
DOI : 10.1021/jp971413y

B. Ammundsen, D. J. Jones, J. Rozière, H. Berg, R. Tellgren et al., Ion Exchange in Manganese Dioxide Spinel:?? Proton, Deuteron, and Lithium Sites Determined from Neutron Powder Diffraction Data, Chemistry of Materials, vol.10, issue.6, pp.1680-1687, 1998.
DOI : 10.1021/cm9800478

]. D. Simon, E. Kelder, M. Wagemaker, F. Mulder, and J. Schoonman, Characterization of proton exchanged Li4Ti5O12 spinel material, Solid State Ionics, vol.177, issue.26-32, pp.2759-2768, 2006.
DOI : 10.1016/j.ssi.2006.03.057

I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B Structural Science, vol.41, issue.4, pp.244-247, 1985.
DOI : 10.1107/S0108768185002063

P. Wasserscheid and W. Keim, Ionic Liquids???New ???Solutions??? for Transition Metal Catalysis, Angewandte Chemie, vol.15, issue.75, pp.3772-3789, 2000.
DOI : 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

]. Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam, Journal of Power Sources, vol.195, issue.6, pp.1757-1760, 2010.
DOI : 10.1016/j.jpowsour.2009.09.048

M. Pourbaix, Atlas d'équilibres électrochimiques, 1963.

]. W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou et al., Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement, Journal of Power Sources, vol.196, issue.8, pp.4123-4127, 2011.
DOI : 10.1016/j.jpowsour.2010.12.003

P. Oliva, J. Leonardi, J. Laurent, C. Delmas, J. Braconnier et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, Journal of Power Sources, vol.8, issue.2, pp.229-255, 1982.
DOI : 10.1016/0378-7753(82)80057-8

]. Kong, J. Lang, M. Liu, Y. Luo, and L. Kang, Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors, Journal of Power Sources, vol.194, issue.2, pp.1194-1201, 2009.
DOI : 10.1016/j.jpowsour.2009.06.016

]. L. Wang, X. Liu, X. Wang, X. Yang, and L. Lu, Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials, Current Applied Physics, vol.10, issue.6, pp.1422-1426, 2010.
DOI : 10.1016/j.cap.2010.05.007

]. J. Xu, L. Gao, J. Cao, W. Wang, and Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochimica Acta, vol.56, issue.2, pp.732-736, 2010.
DOI : 10.1016/j.electacta.2010.09.092

Z. Yu, D. Ying, and C. Wen, Porous Films for Electrochemical Capacitors, Journal of the Chinese Chemical Society, vol.127, issue.3A, pp.423-428, 2010.
DOI : 10.1002/jccs.201000063

]. Y. Li, K. Huang, S. Liu, Z. Yao, and S. Zhuang, Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors, Journal of Solid State Electrochemistry, vol.186, issue.3, pp.587-592, 2011.
DOI : 10.1007/s10008-010-1128-3

B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications, Kluwer Academic, 1999.
DOI : 10.1007/978-1-4757-3058-6

C. De-pauli and S. Trasatti, Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts, Journal of Electroanalytical Chemistry, vol.396, issue.1-2, pp.161-168, 1995.
DOI : 10.1016/0022-0728(95)03950-L

]. M. Toupin, T. Brousse, and D. Bélanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide, Chemistry of Materials, vol.14, issue.9, pp.3946-3952, 2002.
DOI : 10.1021/cm020408q

]. Y. Wang, Z. Zhong, Y. Chen, C. Ng, and J. Lin, Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect, Nano Research, vol.3, issue.7, pp.695-704, 2011.
DOI : 10.1007/s12274-011-0125-x

]. L. Cao, M. Lu, and H. Li, Preparation of Mesoporous Nanocrystalline Co[sub 3]O[sub 4] and Its Applicability of Porosity to the Formation of Electrochemical Capacitance, Journal of The Electrochemical Society, vol.152, issue.5, pp.871-875, 2005.
DOI : 10.1149/1.1883354

]. S. Ardizzone, G. Fregonara, and S. Trasatti, ???Inner??? and ???outer??? active surface of RuO2 electrodes, Electrochimica Acta, vol.35, issue.1, pp.263-267, 1990.
DOI : 10.1016/0013-4686(90)85068-X

]. C. Xu, J. Sun, and L. Gao, Controllable synthesis of triangle taper-like cobalt hydroxide and cobalt oxide, CrystEngComm, vol.111, issue.5, pp.1586-1590, 2011.
DOI : 10.1039/C0CE00311E

]. R. Boggio, A. Carugati, and S. Trasatti, Electrochemical surface properties of Co3O4 electrodes, Journal of Applied Electrochemistry, vol.124, issue.4, pp.828-840, 1987.
DOI : 10.1007/BF01007821

]. E. Hosono, S. Fujihara, I. Honma, M. Ichihara, and H. Zhou, Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property, Journal of Power Sources, vol.158, issue.1, pp.779-783, 2006.
DOI : 10.1016/j.jpowsour.2005.09.052

J. Deng, J. Deng, Z. Liu, H. Deng, and B. Liu, Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide, Journal of Solid State Electrochemistry, vol.150, issue.8, pp.1387-1394, 2009.
DOI : 10.1007/s10008-008-0701-5

]. X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang et al., Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance, Electrochimica Acta, vol.56, issue.14, pp.4985-4991, 2011.
DOI : 10.1016/j.electacta.2011.03.118

]. D. Wang, Q. Wang, and T. Wang, Nanostructures for Application in Supercapacitors, Inorganic Chemistry, vol.50, issue.14, pp.6482-6492, 2011.
DOI : 10.1021/ic200309t

]. C. Yuan, L. Yang, L. Hou, L. Shen, F. Zhang et al., Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors, Journal of Materials Chemistry, vol.151, issue.45, pp.18183-18185, 2011.
DOI : 10.1039/c1cc10462d

Q. Duan and . Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochimica Acta, vol.64, pp.154-161, 2012.
DOI : 10.1016/j.electacta.2012.01.004

]. X. Wang, A. Sumboja, E. Khoo, C. Yan, and P. S. Lee, with Superb Electrochemical Energy Storage, The Journal of Physical Chemistry C, vol.116, issue.7, pp.4930-4935, 2012.
DOI : 10.1021/jp211339t

G. G. Amatucci, J. M. Tarascon, and L. C. Klein, CoO[sub 2], The End Member of the Li[sub x]CoO[sub 2] Solid Solution, Journal of The Electrochemical Society, vol.143, issue.3, pp.1114-1123, 1996.
DOI : 10.1149/1.1836594

]. T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen et al., Systems, Chemistry of Materials, vol.19, issue.21, pp.5063-5066, 2007.
DOI : 10.1021/cm0702464

G. W. Simmons, A. Vertes, M. L. Varsanyi, H. Leidheiser, and J. , Emission Mo??ssbauer Studies of Anodically Formed CoO[sub 2], Journal of The Electrochemical Society, vol.126, issue.2, pp.187-189, 1979.
DOI : 10.1149/1.2129003

]. S. Palmas, F. Ferrara, A. Vacca, M. Mascia, and A. Polcaro, Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium, Electrochimica Acta, vol.53, issue.2, pp.400-406, 2007.
DOI : 10.1016/j.electacta.2007.01.085

]. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, issue.5794, pp.1760-1763, 2006.
DOI : 10.1126/science.1132195

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nature Materials, vol.84, issue.4, pp.306-310, 2012.
DOI : 10.1038/nmat3260

URL : https://hal.archives-ouvertes.fr/hal-00853251

]. V. Pralong, A. Delahaye-vidal, B. Beaudoin, J. B. Leriche, J. Scoyer et al., Bismuth-Enhanced Electrochemical Stability of Cobalt Hydroxide Used as an Additive in Ni/Cd and Ni/Metal Hydride Batteries, Journal of The Electrochemical Society, vol.147, issue.6, pp.2096-2103, 2000.
DOI : 10.1149/1.1393491

]. F. Tronel, L. Guerlou-demourgues, L. Goubault, P. Bernard, and C. Delmas, Study of the electro-oxidation of CoO and Co(OH)2 at 90??C in alkaline medium, Journal of Power Sources, vol.179, issue.2, pp.837-847, 2008.
DOI : 10.1016/j.jpowsour.2008.01.005

URL : https://hal.archives-ouvertes.fr/hal-00270303

]. A. Pandolfo and A. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, vol.157, issue.1, pp.11-27, 2006.
DOI : 10.1016/j.jpowsour.2006.02.065

H. Y. Lee and J. B. Goodenough, Supercapacitor Behavior with KCl Electrolyte, Journal of Solid State Chemistry, vol.144, issue.1, pp.220-223, 1999.
DOI : 10.1006/jssc.1998.8128

]. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier et al., Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors, Journal of The Electrochemical Society, vol.153, issue.12, pp.2171-2180, 2006.
DOI : 10.1149/1.2352197

]. C. Xu, F. Kang, B. Li, and H. Du, Recent progress on manganese dioxide based supercapacitors, Journal of Materials Research, vol.25, issue.08, pp.1421-1432, 2010.
DOI : 10.1557/JMR.2010.0211

]. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A, vol.150, issue.4, pp.599-606, 2006.
DOI : 10.1007/s00339-005-3401-3

M. A. Liu and . Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors, Journal of The Electrochemical Society, vol.143, issue.1, pp.124-130, 1996.
DOI : 10.1149/1.1836396

K. R. Prasad and N. Miura, Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode, Applied Physics Letters, vol.85, issue.18, pp.4199-4201, 2004.
DOI : 10.1063/1.1814816

H. Y. Lee and J. B. Goodenough, Ideal Supercapacitor Behavior of Amorphous V2O5??nH2O in Potassium Chloride (KCl) Aqueous Solution, Journal of Solid State Chemistry, vol.148, issue.1, pp.81-84, 1999.
DOI : 10.1006/jssc.1999.8367

]. S. Xiong, C. Yuan, X. Zhang, B. Xi, and Y. Qian, Nanostructures with Tunable Morphology for Application in Supercapacitors, Chemistry - A European Journal, vol.153, issue.21, pp.5320-5326, 2009.
DOI : 10.1002/chem.200802671

J. Chang, C. Wu, and I. Sun, Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications, Journal of Materials Chemistry, vol.114, issue.18, pp.3729-3735, 2010.
DOI : 10.1039/b925176f

L. Kong, M. Liu, J. Lang, M. Liu, Y. Luo et al., Porous cobalt hydroxide film electrodeposited on nickel foam with excellent electrochemical capacitive behavior, Journal of Solid State Electrochemistry, vol.101, issue.3, pp.571-577, 2011.
DOI : 10.1007/s10008-010-1125-6

]. V. Shinde, S. Mahadik, T. Gujar, and C. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Applied Surface Science, vol.252, issue.20, pp.7487-7492, 2006.
DOI : 10.1016/j.apsusc.2005.09.004

]. R. Tummala, R. K. Guduru, and P. S. Mohanty, Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique, Journal of Power Sources, vol.209, pp.44-51, 2012.
DOI : 10.1016/j.jpowsour.2012.02.071

J. M. Ko, D. Soundarajan, J. H. Park, S. D. Yang, S. W. Kim et al., ??-Ray-induced synthesis and electrochemical properties of a mesoporous layer-structured ??-Co(OH)2 for supercapacitor applications, Current Applied Physics, vol.12, issue.1, pp.341-345, 2012.
DOI : 10.1016/j.cap.2011.07.029

]. G. Wang, H. Liu, J. Horvat, B. Wang, S. Qiao et al., Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices, Chemistry - A European Journal, vol.20, issue.36, pp.11020-11027, 2010.
DOI : 10.1002/chem.201000562

]. L. Hou, C. Yuan, L. Yang, L. Shen, F. Zhang et al., Biomolecule-assisted hydrothermal approach towards synthesis of ultra-thin nanoporous ??-Co(OH)2 mesocrystal nanosheets for electrochemical capacitors, CrystEngComm, vol.51, issue.20, pp.6130-6135, 2011.
DOI : 10.1039/c1ce05752a

]. L. Gong, X. Liu, L. Su, and L. Wang, Synthesis and electrochemical capacitive behaviors of Co3O4 nanostructures from a novel biotemplating technique, Journal of Solid State Electrochemistry, vol.14, issue.1, pp.297-304, 2012.
DOI : 10.1007/s10008-011-1327-6

]. T. Zhu, J. S. Chen, and X. W. Lou, Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors, Journal of Materials Chemistry, vol.15, issue.33, pp.7015-7020, 2010.
DOI : 10.1039/c0jm00867b

G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu et al., Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods, The Journal of Physical Chemistry C, vol.113, issue.11, pp.4357-4361, 2009.
DOI : 10.1021/jp8106149

C. Yuan, X. Zhang, L. Hou, L. Shen, D. Li et al., Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors, Journal of Materials Chemistry, vol.155, issue.48, pp.10809-10816, 2010.
DOI : 10.1016/j.jssc.2010.07.030

S. K. Meher and G. R. Rao, for High-Performance Supercapacitor Applications, The Journal of Physical Chemistry C, vol.115, issue.31, pp.15646-15654, 2011.
DOI : 10.1021/jp201200e

J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li et al., Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes, ACS Applied Materials & Interfaces, vol.3, issue.1, pp.99-103, 2011.
DOI : 10.1021/am1009887

]. C. Lin, J. A. Ritter, and B. N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors, Journal of The Electrochemical Society, vol.145, issue.12, pp.4097-4103, 1998.
DOI : 10.1149/1.1838920

]. S. Kandalkar, D. Dhawale, C. Kim, and C. Lokhande, Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application, Synthetic Metals, vol.160, issue.11-12, pp.1299-1302, 2010.
DOI : 10.1016/j.synthmet.2010.04.003

V. Srinivasan and J. W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation, Journal of Power Sources, vol.108, issue.1-2, pp.15-20, 2002.
DOI : 10.1016/S0378-7753(01)01012-6

]. S. Kandalkar, J. Gunjakar, and C. Lokhande, Preparation of cobalt oxide thin films and its use in supercapacitor application, Applied Surface Science, vol.254, issue.17, pp.5540-5544, 2008.
DOI : 10.1016/j.apsusc.2008.02.163

]. Y. Li, K. Huang, Z. Yao, S. Liu, and X. Qing, Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors, Electrochimica Acta, vol.56, issue.5, pp.2140-2144, 2011.
DOI : 10.1016/j.electacta.2010.11.074

T. Hu and . Hsu, Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides, Electrochimica Acta, vol.53, issue.5, pp.2386-2395, 2008.
DOI : 10.1016/j.electacta.2007.09.060

S. G. Kandalkar, H. Lee, H. Chae, and C. Kim, Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications, Materials Research Bulletin, vol.46, issue.1, pp.48-51, 2011.
DOI : 10.1016/j.materresbull.2010.09.041

]. J. Wu, Y. Lin, X. Xia, J. Xu, and Q. Shi, Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film, Electrochimica Acta, vol.56, issue.20, pp.7163-7170, 2011.
DOI : 10.1016/j.electacta.2011.05.067

P. K. Nayak and N. Munichandraiah, Cobalt Hydroxide as a Capacitor Material: Tuning Its Potential Window, Journal of The Electrochemical Society, vol.155, issue.11, pp.855-861, 2008.
DOI : 10.1149/1.2977976

X. Yuan, J. Xia, X. Wu, Y. Huang, J. Pei et al., Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application, Electrochemistry Communications, vol.13, issue.10, pp.1123-1126, 2011.
DOI : 10.1016/j.elecom.2011.07.012

S. Chou, J. Wang, H. Liu, and S. Dou, Electrochemical Deposition of Porous Co(OH)[sub 2] Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors, Journal of The Electrochemical Society, vol.155, issue.12, pp.926-929, 2008.
DOI : 10.1149/1.2988739

]. V. Gupta, T. Kusahara, H. Toyama, S. Gupta, and N. Miura, Potentiostatically deposited nanostructured ??-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochemistry Communications, vol.9, issue.9, pp.2315-2319, 2007.
DOI : 10.1016/j.elecom.2007.06.041

. Ragone, énergie, ont été établis pour les différentes cellules étudiées La puissance moyenne P moyenne et l'énergie moyenne E moyenne ont été déterminées à partir de cyclages galvanostatiques réalisés entre 0,5 et 1,6 V, à des courants compris entre 0,2 et 5 A/g. La méthode est la suivante. P moyenne est défini par la relation (V-6), avec ?V = (V max +V min, max et V min respectivement les tensions de fin de charge et de fin de décharge (V), I le courant appliqué (A), et m la masse totale de matériau actif dans la cellule (kg) : (V-6)

L. Résultats-obtenus-sont-illustrés-dans-la-figure and V. , Les données relatives à une cellule symétrique AC/AC, et enregistrées dans les mêmes conditions, sont également reportées On constate tout d'abord que globalement les densités d'énergie des supercondensateurs AC/SP-initial sont supérieures à celles de la cellule AC/AC. A bas régime, les valeurs des quatre supercondensateurs hybrides sont proches (autour de 20 Wh/kg pour une densité de puissance de 209 W/kg) ? comme l'étaient leur capacité ? et deux fois plus élevées que celles de la cellule symétrique

. Les-diagrammes-de, Ragone montrent enfin que les énergies les plus élevées sont obtenues avec le supercondensateur AC/SP-initial préparé avec R = 1,25

V. Chapitre, Assemblage d'un supercondensateur hybride carbone activé

]. K. Jurewicz, E. Frackowiak, and F. Béguin, Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials, Applied Physics A, vol.532, issue.7, pp.981-987, 2004.
DOI : 10.1016/S0022-0728(02)00750-7

]. L. Demarconnay, E. Raymundo-pinero, and F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor, Journal of Power Sources, vol.196, issue.1, pp.580-586, 2011.
DOI : 10.1016/j.jpowsour.2010.06.013

M. S. Hong, S. H. Lee, and S. W. Kim, Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor, Electrochemical and Solid-State Letters, vol.5, issue.10, pp.227-230, 2002.
DOI : 10.1149/1.1506463

]. T. Brousse, M. Toupin, and D. Belanger, A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte, Journal of The Electrochemical Society, vol.151, issue.4, pp.614-622, 2004.
DOI : 10.1149/1.1650835

]. V. Khomenko, E. Raymundo-pinero, and F. Béguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, Journal of Power Sources, vol.153, issue.1, pp.183-190, 2006.
DOI : 10.1016/j.jpowsour.2005.03.210

]. Q. Qu, Y. Shi, S. Tian, Y. Chen, Y. Wu et al., A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources, vol.194, issue.2, pp.1222-1225, 2009.
DOI : 10.1016/j.jpowsour.2009.06.068

]. C. Xu, H. Du, B. Li, F. Kang, and Y. Zeng, Asymmetric Activated Carbon-Manganese Dioxide Capacitors in Mild Aqueous Electrolytes Containing Alkaline-Earth Cations, Journal of The Electrochemical Society, vol.156, issue.6, pp.435-441, 2009.
DOI : 10.1149/1.3106112

]. Q. Qu, L. Li, S. Tian, W. Guo, Y. Wu et al., A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2??0.6H2O, Journal of Power Sources, vol.195, issue.9, pp.2789-2794, 2010.
DOI : 10.1016/j.jpowsour.2009.10.108

]. Gao, A. Lu, and W. Li, Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor, Journal of Power Sources, vol.196, issue.8, pp.4095-4101, 2011.
DOI : 10.1016/j.jpowsour.2010.12.056

]. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning et al., Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density, Advanced Functional Materials, vol.48, issue.12, pp.2366-2375, 2011.
DOI : 10.1002/adfm.201100058

L. Chen, Q. Lai, Y. Hao, Y. Zhao, and X. Ji, Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes, Journal of Alloys and Compounds, vol.467, issue.1-2, pp.465-471, 2009.
DOI : 10.1016/j.jallcom.2007.12.017

J. Lang, L. Kong, M. Liu, Y. Luo, and L. Kang, Co[sub 0.56]Ni[sub 0.44] Oxide Nanoflake Materials and Activated Carbon for Asymmetric Supercapacitor, Journal of The Electrochemical Society, vol.157, issue.12, pp.1341-1346, 2010.
DOI : 10.1149/1.3497298

]. C. Tang, Z. Tang, and H. Gong, Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors, Journal of The Electrochemical Society, vol.159, issue.5, pp.651-656, 2012.
DOI : 10.1149/2.074205jes

L. Wang, Y. Cheng, and . Xia, Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, Journal of Power Sources, vol.153, issue.1, pp.191-196, 2006.
DOI : 10.1016/j.jpowsour.2005.04.009

L. Kong, M. Liu, J. Lang, Y. Luo, and L. Kang, Asymmetric Supercapacitor Based on Loose-Packed Cobalt Hydroxide Nanoflake Materials and Activated Carbon, Journal of The Electrochemical Society, vol.156, issue.12, pp.1000-1004, 2009.
DOI : 10.1149/1.3236500

]. Kong, M. Liu, J. Lang, Y. Luo, and L. Kang, Erratum: Asymmetric Supercapacitor Based on Loose-Packed Cobalt Hydroxide Nanoflake Materials and Activated Carbon [J. Electrochem. Soc., 156, A1000 (2009)], Journal of The Electrochemical Society, vol.157, issue.5, pp.9-9, 2010.
DOI : 10.1149/1.3372528

L. Wang, Y. Yu, and . Xia, Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni(OH)[sub 2]???Carbon Nanotube Composites and Activated Carbon, Journal of The Electrochemical Society, vol.153, issue.4, pp.743-748, 2006.
DOI : 10.1149/1.2171833

L. Lang, M. Kong, Y. Liu, L. Luo, and . Kang, Asymmetric supercapacitors based on stabilized ??-Ni(OH)2 and activated carbon, Journal of Solid State Electrochemistry, vol.45, issue.8, pp.1533-1539, 2010.
DOI : 10.1007/s10008-009-0984-1

]. A. Yuan, X. Wang, Y. Wang, and J. Hu, Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano-MnO2/activated carbon supercapacitor, Energy Conversion and Management, vol.51, issue.12, pp.2588-2594, 2010.
DOI : 10.1016/j.enconman.2010.05.024

]. X. Du, C. Wang, M. Chen, Y. Jiao, and J. Wang, /Activated Carbon Supercapacitor Using KOH Electrolyte Solution, The Journal of Physical Chemistry C, vol.113, issue.6, pp.2643-2646, 2009.
DOI : 10.1021/jp8088269

Y. Horiba-labram and H. , Les spectres ont été enregistrés entre 115 et 4000 cm -1 en utilisant une longueur d'onde incidente de 752 nm et une puissance de 10 ?W afin d'éviter toute dégradation du matériau Aucune préparation particulière de l'échantillon n'a été nécessaire Afin de suivre l'évolution ex situ du matériau SP-initial en fonction de la température, les spectres ont été normalisés par rapport à l'intensité intégrée de la bande vers 694 cm -1 . Cette dernière peut être supposée constante dans les matériaux chauffés si l'on admet qu'elle ne dépend que de la quantité de cobalt. Il faut noter cependant que d'autres facteurs peuvent influer

. Raman, les spectres ont été normalisés (ici par rapport à l'intensité de la bande à 568 cm -1 dans ce cas) et ajustés avec des fonctions peudo-Voigt, Annexes, vol.204

D. 3. Les-mesures-de, R. Mas-ont-Été-réalisées-sur-un-spectromètre-bruker-avance, and I. Équipé, Les spectres ont été enregistrés au moyen d'une sonde MAS (rotation à l'angle magique) standard Bruker 2,5 mm en rotation à 25 kHz. Des séquences de pulse d'écho de Hahn synchronisées avec le rotor ont été utilisées (temps de refocalisation : 40 ?s, i.e. 1 période du rotor), avec des pulses à 90° de 1 ?s pour la RMN du 1 H à 100 Mhz et 1,3 ?s pour la RMN du 7 Li à 39,93 Mhz. 2048 scans (séquences de pulses) ont été accumulées pour le proton et entre 6400 et 9600 pour le lithium ; un temps de recyclage d'1 s séparait chaque séquence de pulses, Les spectres obtenus ont été référencés par rapport au TMS (0 ppm) pour le proton et à une solution aqueuse de LiCl 1M

E. Annexe, Texture des matériaux E.1. Conditions expérimentales Les mesures de surface spécifique ont été réalisées sur un appareil Quantachrome Instruments Autosorb-1. Pour chaque échantillon, environ 30 mg de matériau est dégazé à 150 °C pendant 15 h sous helium, puis une isotherme d'adsorption, p.99

. Dans-le-cas-du-matériau, SP-initial (synthétisé suivant le même protocole que SP ternaire,x9OH ), caractérisé par une densité de 6,071 g/cm 3 (déterminée plus haut) et une surface spécifique de 200 m 2 /g

. Dans-les-matériaux-nanométriques, tels que les spinelles au cobalt étudiés dans ce travail de thèse, les particules sont constituées d'un nombre limité de couches d'atomes, si bien que la proportion d'atomes en surface n'est plus du tout négligeable. Nous nous proposons ainsi d

]. J. Rodriguez, Satellite Meeting on Powder Diffraction of the XV IUCr Congress, p.127, 1990.

]. T. Itoh, H. Sato, T. Nishina, T. Matue, and I. Uchida, In situ Raman spectroscopic study of LixCoO2 electrodes in propylene carbonate solvent systems, Journal of Power Sources, vol.68, issue.2, pp.333-337, 1997.
DOI : 10.1016/S0378-7753(97)02539-1

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.320, issue.1, pp.70-76, 2002.
DOI : 10.1002/mrc.984

]. P. Emmett and S. Brunauer, The Use of Low Temperature van der Waals Adsorption Isotherms in Determining the Surface Area of Iron Synthetic Ammonia Catalysts, Journal of the American Chemical Society, vol.59, issue.8, pp.1553-1564, 1937.
DOI : 10.1021/ja01287a041

]. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.
DOI : 10.1021/ja01145a126

]. M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y. Matsumaru, Development of a Pasted Nickel Electrode with High Active Material Utilization, Journal of The Electrochemical Society, vol.136, issue.6, pp.1590-1593, 1989.
DOI : 10.1149/1.2096974

]. V. Vivier, Microélectrode à Cavité -Principe, développement et applications pour l'étude de la réactivité de matériaux insolubles, 2009.