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"Sois satisfait des fleurs, des fruits, même des feuilles,

Si c’est dans ton jardin à toi que tu les cueilles !

Puis, s’il advient d’un peu triompher, par hasard,

Ne pas être obligé d’en rien rendre à César,

Vis-à-vis de soi-même en garder le mérite,

Bref, dédaignant d’être le lierre parasite,

Lors même qu’on n’est pas le chêne ou le tilleul,

Ne pas monter bien haut, peut-être, mais tout seul !"
— Edmond Rostand – Cyrano de Bergerac
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Introduction

With the advent of modern computing power, the use of mock-up experiments for reactor
design is now extensively completed by computer simulations and numerical modeling.
However, even the best models can only be as accurate as their input parameters. As
a result, there is an increasing demand from the nuclear industry, research and safety
authorities for best estimates of design and performance parameters (for instance, the
keff ), as well as the confidence interval where the computed estimates are reliable.

In reactor physics, we are confronted with the problem of neutron transport over long
distances involving strong attenuations of the flux. The evolution and transport of the
neutrons are governed by the Boltzmann equation. From a neutronics point of view, the
medium in which the neutron is emerged and interacts with is defined by its dimensions,
composition, geometrical layout of its diverse components and its initial conditions. It
is therefore clear that to model correctly the reactor behavior, one must have a good
understanding of the properties of neutron interactions, over the large range of energies
concerned (some thirteen orders of magnitude), with the medium where the interaction
takes place. Here emerges the need for a deep verification and validation of the nuclear
data used and the treatment methodology that awaits it to become usable by the trans-
port code. Of course, the data format used varies with the transport code used, due to
different treatments of the resonances, treatments for anisotropy, and the nature of the
transport solution (deterministic or Monte Carlo). With each such treatments, the base
data is transformed into another format, while at the same time, an error is introduced.

For transport computations, there exists a number of various cross section evaluations
prepared by various laboratories across the world: ENDF (United States), JEFF (Euro-
pean Union), JENDL (Japan), BROND (Russia), CENDL (China), etc. What has been
often suggested is that a user should not combine different evaluations in the same com-
putation. Implicitly included in this advice is the admittance of the important role that
error treatment, propagation and compensation play, and that all the present evaluations
are, to a certain measure, only approximations. Accordingly, for a viable determination
of performance parameters (such as the keff ) that are representative of the physical en-
vironment, it is not only sufficient to uniquely perform computations and simulations of
the system under question, but also required is the validation of the computational tools
and the underlying base data. This point is imperative in industrial projects where a
knowledge of the associated uncertainties in the neutronics calculation is vital.

This study involves the problems of modeling of physical systems, solving the neu-
tron transport equation, cross section treatments, and error propagation, with a focus

1



on sensitivity (and uncertainty) analysis using deterministic codes, multi-group libraries
and nuclear data. This study has required the development of methods and tools, that
are applied to, and validated with integral experiments (benchmarks). Complementary
to differential measurements, integral experiments are used in particular, for studying
critical configurations, with the primary goal of validating the coherence between the
microscopic and the integral data. Comparing the predictions given by a method or a
simulation tool with results of an integral experiment not only permits the verification
of the code and the base data, but also provides an evaluation of the coherence with the
cross section library, the estimated nuclear data uncertainties and the accuracy of the
transport solution.

The analysis of sensitivities using perturbation theory is one of the tools that has
proven its efficiency to quantify the importance/weight of the physical phenomena at
play in the reactor. Such a study permits for a better understanding of the various
approximations that are inherently accompanied with the applied physical models. Per-
turbation theory methods, as applied to neutron transport for sensitivity analysis, allow
expressing in a systematic way the effects from a variation in the operators of the Boltz-
mann equation originating from an uncertainty in the base data, on an integral parameter
such as keff , reactor power, reaction rates, source worth, fuel burn-up, etc. Starting from
a sensitivity computation, the process of the propagation of uncertainties offers a powerful
means to link the uncertainty in the base data, usually expressed in terms of covariance
matrices, to variations in integral parameters.

Amongst other applications, a sensitivity/uncertainty analysis permits to identify the
nuclear reactions and their energy domains most relevant to an integral parameter. Such
an analysis also allows for the identification of the corresponding uncertainties and permits
for multiple applications in the process of design and validation. Effectively, a sensitivity
and uncertainty analysis can be used to track the nuclear data, whose improvement can
bring an increased precision to the computation. In this way, a sensitivity and uncer-
tainty analysis provides a rational guide for the conception of future experiments aimed
at further improvement of the data.

This thesis is structured as follows: in chapter 1, nuclear data, with an emphasis on
covariance matrices, is described and a theoretical overview of the process involved in
neutron transport, modeling and the sensitivity approach to nuclear data uncertainty
propagation is provided. Next, chapter 2 provides a brief presentation of the currently
available methodology and codes as well as the developments that have been necessary
for performing nuclear data uncertainty propagation with the code DRAGON. Chapter 3
presents the conceptual developments that were required to perform an accurate compu-
tation of the sensitivity and uncertainty in the transport computation. Finally, chapter
4 provides a validation for the methodology and developments presented in chapters 2
and 3 by applying the developed tools to the three problems outlined by the OECD
in the framework of Uncertainty Analysis and Criticality Safety Assessment (UACSA)
benchmark.
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Chapter 1

Theoretical Foundations

This chapter provides a theoretical overview of the process involved in the sensitivity
approach to nuclear data uncertainty propagation as applied to transport computations.
It serves to familiarize the reader with the notions, theory and terminology that are nec-
essary for the remainder of this work.

We begin with a discussion of nuclear data, and the uncertainties that are inherently
associated with it. Here, we discuss the concept of covariances, as related to nuclear data
uncertainty propagation, followed with a discussion on the data currently available in
the form of cross section evaluation files. The data contained in these evaluations is the
backbone of any physics computation. It can be thought of as the first step of the physics
computation.

Having introduced the concept of nuclear data and its uncertainties, the remainder
of the chapter progresses to illustrate how one can relate the nuclear data uncertainties,
associated with and available in cross section evaluation files, to integral parameters (such
as the keff , or a reaction rate) computed by the transport code. To do this, we proceed
as follows:

- Starting with the transport equation, we will derive the integral form of the trans-
port equation.

- We will then advance to discretize the obtained equations and arrive at the concep
of the collision probability.

- Subsequently, we will introduce the concept of adjoint operators, and derive the
adjoint form of the transport equation. Here, we reach the concept of the adjoint
flux, a quantity that is essential to performing sensitivity and uncertainty analysis
for reactivity (keff ).

- We will then introduce the concept of generalized adjoints, and the equations as-
sociated with them, which are fundamental for deriving perturbation expressions
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corresponding to integral responses such as reaction rates and breeding ratios.

- Having introduced the adjoint formulation of the Boltzmann equation, we proceed
to derive perturbation expressions for reactivity and linear ratios of the flux.

- Using the perturbation expressions for performance parameters such as reactivity
and linear ratios of the flux, we define the concept of sensitivity functions and
present sensitivity formulas which relate the sensitivity of these performance pa-
rameters to the base data.

- We then present the law of propagation of errors, used to propagate the uncertainties
in the base data to the uncertainty on a performance parameter of interest.

1.1 Nuclear Data

A good knowledge of nuclear data is essential in reactor physics computations. In this
work, we will focus on data regarding the interaction of neutrons with nuclei. This data,
presented under the form of nuclear cross sections, describes the possible modes of inter-
action of the neutron with the target nuclei. Amongst these reactions, we can distinguish
two types of interactions, interactions through scattering in which the final state after the
interaction between the two particles is composed of the same two particles, and absorp-
tion which results in the disappearance of the incident neutron. Absorption, additionally,
can be divided into other reactions which may result in fission or emission of secondary
particles (gamma, proton, alpha).

It is of course without doubt that one must resort to quantum mechanics in order to
describe the underlying behaviours which govern the interaction of the neutron with the
medium. However, an exact solution to the general N body Schrodinger equation is still
beyond our reach, notably due to our poor understanding of the nuclear forces and the
internal structure of the neutron. Therefore, we cannot address the process of neutron-
nuclei interaction without resorting to various approximations and physical models, each
of which is only valid within a specific range of conditions. Examples of such models is
the R-matrix collision theory in the resolved resonance range, the Lane-Lynn approach
in the unresolved range, the optical model, etc. These models are used to establish the
systematic behaviours of the neutron-nuclei interaction, per reaction and for various fam-
ilies of isotopes. These behaviours are then in turn generalized and applied to nuclei for
which experimental data does not exist.

To determine the numerical value of cross sections, with the precision which is essential
in reactor computations, only measurements can assure the quality of the data. Since
the 1960s numerous experiences, both differential and integral, have been performed, as
an answer to the needs of the nuclear community. After the 1980s, a decline of efforts
is witnessed due to the the general disinterest in reactor technology that followed the
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Chernobyl and TMI nuclear accidents. Since some years now does one find a new interest
for nuclear applications. We can therefore expect new demands for nuclear data, required
to answer the needs which will arise during the design process of new reactors.

1.2 Covariances and Covariance Matrices

A physical value is characterized by its average < q > and its distribution function
around its mean P (q), which determines its uncertainty. In the case where the variable
q is discrete, with only a finite number of possible values qi and a respective probabil-
ity distribution function P (q) (which by definition satisfies the normalization condition
�

i P (qi) = 1), then the mean value of q is defined by:

�q� =
�

i

qiP (qi) (1.1)

The accuracy/precision of q is judged by the difference between its mean and the distri-
bution of its associated probability, i.e. the square root of the variance:

σ2
q = var(q) = (Δq)2 =

�

(q− < q >)2
�

=
�

i

(δqi)
2 1

N
(1.2)

where δqi ≡ qi − �q�, and N is the number of possible values qi. The value Δq is called
the standard deviation.

Some examples of probability distribution functions P (q) are:

• Normal Distribution:

P (q) =
1

(Δq)
√

2π
exp

�

−1

2

(δq)2

Δq

�

(1.3)

• Uniform Distribution:

P (q) =







1
2a

for a > q > −a

0 else
(1.4)

• Log-Normal Distribution:

P (q) =
1

qΔq
√

2π
exp

�

−ln(q) − �q�
2Δq2

�

(1.5)

It is clear that for practical reasons, we cannot discuss all distributions in great details.
To explicitly propagate all possible distributions would be cumbersome, even for today’s
computers. However, the Central Limit theorem states that a distribution of a great num-
ber of random and independent variables tends towards a normal Gaussian [1]. In most
cases, this convergence is rapid. We note that applying a normal (Gaussian) distribution
P (q) may not always be appropriate. In particular, for the case of a small number of
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samples, a Gaussian is not an accurate representation of the real statistical distribution.
However, the advantage of this practice is considerable, since it permits us to represent
the entire distribution with only two values, the mean and the standard deviation.

In the case of multi-variables, characterizing the multi-variate probability distribution
function P (�q) requires not only knowledge of the deviation and the mean, but also of the
correlations between the obtained samples. Here �q = (qi)

N
i=1 is a vector composed of the

N variables qi. We note that it is possible for the different variables qi to have correlations
between them, which is normally represented in matrix notation by the covariance matrix

V = (Vij):

V =
�

(�q − ��q�) · (�q − ��q�)T
�

(1.6)

where T stands for vector transposition and with the matrix elements Vij defined as:

Vij = �(qi − �qi�) · (qj − �qj�)� = �δqi · δqj� (1.7)

Note that the diagonal elements of the matrix reduce to the variances:

Vii =
�

δqi
2
�

= var(qi) (1.8)

The correlation matrix C is defined to have the elements given by:

Cij =
Vij

�

ViiVjj

=
�δqi · δqj�
ΔqiΔqj

(1.9)

where Δqi =
√

Vii is the standard deviation. We see that the quantities on the diagonal of
the correlation matrix always equal to unity, i.e. Cii = 1, and that the non-diagonal terms
lie between being completely anti-correlated and completely correlated, i.e. −1 ≤ Cij ≤ 1.

Some useful mathematical properties of the covariance matrix are:

- The covariance matrix is symmetric, i.e. Vij = Vji

- Covariance matrices corresponding to independent physical observables are positive
definite, i.e. (∀�x ∈ Rdim(V) and �x �= �0) then �xT · V�x > 0 where T stands for vector
transposition.

The covariance matrix takes into account both the uncertainties in the data as well as the
correlations that exist between them. The correlations may originate from the nature of
the experiment through which the cross sections were measured (for example, using the
same equipment will propagate the uncertainties associated with the calibration of the
instrument to the different measured parameters), or through the use of integral measure-

ments where many parameters are measured simultaneously, or the subsequent analysis
of the experimental data such as the normalization that was used in the measurement
(for example using a reference reaction rate as normalization). It should be noted that
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these correlations often play an important role in the computed overall uncertainty (see
chapter 4).

Finally, we should note that while in reactor physics we typically interest ourselves
to integral quantities (such as keff , or a reaction rate), due to the complexity of the
system, the large energy range that is encountered, and the aggregate composition of the
system, different reactions play different roles at different energies due to differences in
the underlying physical processes. As a consequence, a complete evaluation of covariances
should take into account all the diverse correlation terms, which vary as a function of
energy, reaction, and material.

1.2.1 Cross Section Libraries and Corresponding Covariance
Files

The cross section values originate from physical measurements as well as physical mod-
els. However, before they can be used with confidence in computations, they must be
validated. The goal of the validation process is to show that the obtained results from
the measurement or model are coherent and complete. It is also crucial to present the
obtained data in a standard format, this of course is essential for facilitating communi-
cation between the various laboratories involved, and use by the users. This process of
the evaluation and validation of the ensemble of nuclear data, and their placing in the
standard format involves many steps.

Firstly, we have seen that evaluations are based on experimental measurements, which
are subjected to a critical analysis. The results of the measurements, accompanied with
reports of evaluations are public in the form of an international experimental database
called EXFOR. The evaluation report specifies the details of the experiment, and should
include a complete estimation of the uncertainties due to the experimental technique used.
However, this practice is often not followed or incomplete. In the EXFOR data base for
example, we often find that only the statistical errors are being reported and systematic
uncertainties are rarely reported, and as a result, the correlations between the measured
nuclear data are neglected. This makes often the construction of the variance-covariance
matrices difficult, sometimes requiring some detective work.

The experimental data can not cover the entire range of energies, reactions and iso-
topes. This missing information is completed by using various physical models. Finally,
they are put in a prescribed format called the Evaluated Nuclear Data File (ENDF format
[2]). These data files, called evaluations, are then validated with the help of criticality
experiments.

The evaluation of cross sections are performed by many organisms in the world and
are proposed under the format of a cross section library evaluation, updated periodi-
cally. Amongst the recent evaluations, prepared at different laboratories in the world,
we can cite a few such as: ENDF/B-VII (United States), JEFF 3.1 (EU), JENDL 4.0
(Japan), BROND (Russia), CENDL (China), and TENDL (Holland). To be able to use
the different evaluations in the same computational code with the goal of comparison, it
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is convenient to present the data under a standardized format.

The Evaluated Nuclear Data File (ENDF), is the standard digital format under which
these files are provided. Today, we can reproach some historical faults associated with
this format; the fact that the base structure was defined in the 1960s - an epoch where
computing power was much less powerful than today. To note a few: the limitation of
80 columns (characters) per line, the numbering of the lines appearing in the evaluation,
the limitation of the precision of the values presented. The main reason that we still use
this format today, which other than a few cosmetic modifications remains relatively the
same today, is the enormous cost that a complete change in format would require. We
have therefore learned to live with these inconveniences, with the hope that some day the
inconveniences associated with the format become constraining to a level where we are
obligated to redefine it.1

At present however, this format fulfils its role sufficiently well. The most limiting
constraint is the precision of the stored values, 12 characters maximum, including the ex-
ponential and its sign. The advantage of the format is that all the evaluations mentioned
above give their data in this format, which allows their treatment with the same code,
an advantage which is essential to spread use and compare differences in obtained results.

Covariance Matrices

The area of covariance matrix generation was for a long time and in particular since
the Three-Mile Island accident neglected. In recent years, the situation is improving
rapidly and important efforts are being invested in the development of mathematical
methods for error propagation aimed at producing more reliable, complete and consistent
cross-section covariance matrices. Modern mathematical techniques are applied based on
Bayesian error propagation approach for combining the uncertainties of different origins
involved in the nuclear data evaluation process. In particular, since the evaluation of
cross-sections combines experimental measurements (differential, but in some cases also
integral measurements) and nuclear model calculations, the covariance matrices must re-
flect the uncertainties coming from both measurement and nuclear models. Uncertainties
from measurements can be found in the EXFOR database [4] (although the data are
sometimes considered as incomplete, particularly with regard to the correlations).

Except for a few cases (for example, the Watt-spectra [5]), most nuclear models are
non-linear, therefore Monte Carlo methods have been proposed to account for their pa-
rameter uncertainties [6], [1]. Monte Carlo methods can, in principle, reach an arbitrary
level of accuracy and are particularly suitable for the study of error propagation in com-
plex nuclear reaction systems, due to their easy implementation and their generality.
However, the main problem that still remains is that the error propagation calculation
necessitates knowledge of the input errors of model parameters and their probability dis-
tribution function prior to the Monte Carlo computation itself.

1Indeed, in 2012, an activity on defining a new format was initiated within the OECD/NEA WPEC
Subgroup 38 on "A modern nuclear database structure beyond the ENDF format" [3].
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Examples of recent modern covariance matrices include the data included in the
JENDL-4.0, TENDL, ENDF/B-VII and JEFF-3.1 cross-section evaluations.

1.3 Computational Neutron Transport

Neutron transport in a reactor is a diffusive process. A neutron is born at high energies,
travels throughout the reactor while being slowed down by elastic and inelastic scattering
collisions. During this process, it can be lost due to leakage or captured either by inter-
action through parasitic capture reactions, or interact in a neutron producing reaction
such as (n, 2n), (n, 3n), etc. or the more probable case of fission (n, f). This process is
called the neutron life cycle [7], defined as the period starting with the emission of the
fission neutron and ending with the capture or escape of these neutrons.2 The parameter
of interest in describing this system is the neutron population density N(ρ̄) in (cm−3 sr−1

eV−1) or the more common neutron flux φ(ρ̄) (in cm−2 s−1 sr−1 eV−1). The Boltzmann
equation, also called the neutron transport equation, is an equation of conservation char-
acterizing the neutron population for a relatively small number of neutrons colliding in
a vast sea of nuclei that compose the domain D with the boundary ∂D.

1.3.1 The Boltzmann Equation

In its integro-differential form [8], assuming that neutrons are emitted isotropically from
fission and that interaction probabilities are invariant under rotations, the time- indepen-
dent neutron transport equation takes the form:

Ω̂ · �∇φ(�r, Ω̂, E) + Σ(�r, E)φ(�r, Ω̂, E) = Q(�r, E, Ω̂) + Qe(�r, Ω̂, E) (1.10)

with the collision source Q(�r, E, Ω̂) defined as:

Q(�r, E, Ω̂) =
�

Ω̂�

dΩ̂
�
�

E�

dE �q(�r, Ω̂
� → Ω̂, E � → E) (1.11)

and the collision density q(�r, Ω̂� → Ω̂, E � → E) defined such that:

q(�r, Ω̂
� → Ω̂, E � → E) =

Fission density
� �� �

χ(�r, E)

4πkeff

ν(E �)Σf (�r, E �)φ(�r, Ω̂
�, E �)

+

Scattering density
� �� �

Σs(�r, Ω̂
� → Ω̂, E � → E)φ(�r, Ω̂

�, E �) (1.12)

where :

- φ(�r, Ω̂, E): the neutron angular flux at the point �r, in the direction Ω̂ and at the
energy E.

2In deterministic calculations, one could think of the average neutron cycle
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- Σ(�r, E): the total macroscopic cross section at point �r and energy E.

- Σf (�r, E �): the macroscopic fission cross section at point �r and energy E�.

- ν: the average number of neutrons produced by fission.

- χ(�r, E): the neutron fission spectrum at point �r and energy E; note that we have
assumed fission neutrons to be emitted isotropically, and all fissile isotopes have the
same spectrum.

- Σs(�r, Ω̂� → Ω̂, E � → E): the differential scattering cross section for a neutron of

energy E � and in direction Ω̂� to be scattered to a neutron at energy E + dE and
direction Ω̂ + dΩ̂.

- keff : the multiplication factor.

- Qe(�r, Ω̂, E): the steady state neutron source

Equation 1.10 is an equation of conservation with the term on the left representing the
neutrons lost due to leakage and collisions, and the term on the right representing the neu-
tron source such as neutrons released during the the fission process or the down scattered
from higher energies3, or emitted from a physical fixed source Qe. When the physi-
cal fixed source Qe of the equation 1.10 is non-zero, imposing a steady state condition
keff = 1 is implied. In the case where Qe is zero, equation 1.10 represents an eigen-
value problem with the eigenvalue λ = 1

keff
corresponding to the fundamental mode.

The keff value in this case provides a measure of balance between neutrons lost from
the system (due to leakage, and absorption) and the neutrons entering the system or
produced by fission. For the rest of this work, we will assume that the source Qe is equal
to zero. This assumption is consistent with the typical keff search in lattice computation.

Boundary Conditions

In order to solve equation 1.10, boundary conditions quantifying the flux behaviour at
the boundary ∂D are required. Assuming that no neutron sources exist on the boundary
∂D, we can take the incoming flux at the surface ∂D to have the form [9]:

φ(�ρ−) = β[φ] =
�

∂D+

β(�ρ�
+ → �ρ−)φ(�ρ�

+)dρ̄�
+ (1.13)

where ρ̄− = (�r, Ω̂, E) ∈ ∂D− and ρ̄+ = (�r�, Ω̂�, E �) ∈ ∂D+ are points in the phase space

located on the boundary ∂D, with Ω̂ and Ω̂� correspond to the incoming and out going
directions respectively. Here, φ(ρ̄−) refers to the neutron flux entering the volume at the

3Note that at thermal energies, up-scattering can be possible.
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boundary ∂D, and φ(ρ̄+) refers to the neutron flux leaving the surface boundary ∂D.

The five-dimensional surface element d�ρ�
+ = dA�dΩ̂�dE � involves the surface element dA�

on the boundary ∂D, the solid angle dΩ̂� and the energy differential dE �. The kernel
β(�ρ�

+ → �ρ−) of the integral equation 1.13 relates the incoming and out going neutron
fluxes; a variety of conditions can be represented including void, isotropic reflection, and
specular/mirror reflection. The most common conditions used in practical calculations
are representative of local reflection, or void, for which the kernel β(�ρ�

+ → �ρ−) takes the
form [9]:

β(�ρ�
+ → �ρ−) =







0 void condition
1
π
β(�r, E � → E)(Ω̂� · n̂)δA(�r� − �r) isotropic reflection

β(�r, E � → E)δ(Ω̂� · Ω̂R − 1)δA(�r� − �r) specular reflection

(1.14)

where :

- β(�r, E � → E): local albedo matrix

- δA: the delta function that reduces volume integration to an integral over the surface
∂D

- Ω̂R = Ω̂ − 2(Ω̂ · n)n̂ corresponding to the mirror reflection angle

Numerical Solutions

Except for the simplest cases [10], equation 1.10 cannot be solved analytically so that a
numerical formalism must be used. Several numerical methods exist for the resolution of
the above equations, some of which include [11] :

- The SN method involving the discretization in angle and energy of equation 1.10

- The PN method involving the expansion of the angular flux in its spherical har-
monics.

- The BN method using the spatial and energy separability of the flux with the
buckling approximation, and a spherical harmonics treatment for the angular flux.

- The Method of Characteristics (MOC) involving the solution of the integral Boltz-
mann equation on its characteristic lines.

- The Method of Collision Probabilities (CP) involving volume discretization of the
integral equation.

- Monte Carlo methods.

The Method of Characteristics and the method of Collision Probabilities are available
in the code DRAGON [12] which is the main code used in this work. The remainder
work will be limited to the method of Collision Probabilities; this is concurrent with the
current methodology used in the French and Canadian industries.
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1.3.2 Anisotropy and the Transport Correction

In the absence of a fixed source (i.e. Qe = 0), the left hand side of equation 1.10 becomes:

Ω̂ · �∇φ(�r, Ω̂, E) + Σ(�r, E)φ(�r, Ω̂, E) = Q(�r, E, Ω̂)

=
�

E�

dE �
�

Ω̂�∈4π
dΩ̂

�q(�r, Ω̂
� → Ω̂, E � → E) (1.15)

As seen, the collision source Q(�r, E, Ω̂) appearing on the right hand-side of equation 1.15

has a dependence on the angular component Ω̂. Since most observables in reactor physics
can be reduced in terms of reaction rates, the main component of interest is the angle
integrated scalar flux φ(�r, E) =

�

Ω̂∈4π φ(�r, E, Ω̂)dΩ̂. The common assumption [12] is to
assume that the collision source appearing in equation 1.15 is isotropic. While this is
certainly true for the case of fission4 at the energies encountered in reactor physics (E<
20 MeV), scattering anisotropy must somehow be accounted for. This is typically done
by modifying the total and scattering cross sections into their transport corrected form
according to the procedure presented below.

The Transport Correction

Assuming rotational invariance, and representing the differential scattering cross section
in its Legendre Polynomial form we have [13, 14] :

Σs(�r, Ω̂ · Ω̂
�, E � → E) =

1

2π
Σs(�r,

µ
� �� �

Ω̂ · Ω̂
�, E � → E) =

1

2π
Σs(�r, µ, E � → E) (1.16)

Σs(�r, µ, E � → E) =

zeroth term
� �� �

1

2
Σs,0(�r, E � → E) +

first term
� �� �

3

2
Σs,1(�r, E � → E) µ (1.17)

where we have limited ourselves to a first order expansion (P1) to derive the P0 trans-
port corrected form of the scattering source (this is consistent to what is computed in

DRAGON). Here, µ = Ω̂ · Ω̂� is the cosine of the scattering angle. The zeroth order
coefficient Σs,0 and the first order coefficient Σs,1 are defined as:

Σs,0(�r, E � → E) =
� 1

µ=−1
dµΣs(�r, µ, E � → E) (1.18)

Σs,1(�r, E � → E) =
� 1

µ=−1
dµµΣs(�r, µ, E � → E) (1.19)

The goal is to modify the P0 component in order to account for the anisotropy introduced
by the P1 term. We therefore add a forward peak component to the zeroth order Legendre
Expansion so that

Σs(�r, Ω̂ · Ω̂
�, E � → E) =

1

2
Σ̄s,0 + ΔΣtrδ(µ − 1) (1.20)

4Note that at high neutron incident energies, the angular distribution for the neutrons emitted from
fission is slightly anisotropic.
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where Σ̄s,0 is the modified P0 coefficient and the additional term ΔΣtrδ(µ − 1) accounts
for the forward peak in the scattering angle associated with anisotropic scattering. Multi-
plying equation 1.20 by the Legendre Polynomials (P0(µ) = 1 and P1(µ) = µ), integrating
over µ and comparing with equation 1.17 we see that [14]:

for l=0 Σ̄s,0(�r, E � → E) + ΔΣtr(�r, E � → E) = Σs,0(�r, E → E �) (1.21)

for l=1 ΔΣtr(�r, E � → E) = Σs,1(�r, E � → E) (1.22)

so that equation 1.20 reduces to:

Σs(�r, E � → E, µ) =
1

2
(Σs,0(�r, E � → E) − Σs,1(�r, E � → E))

+ Σs,1(�r, E � → E)δ(µ − 1) (1.23)

substituting the scattering cross section defined by equation 1.23 into the transport equa-
tion given by equation 1.15, we have [14]:

Ω̂ · ∇φ(�r, E, Ω̂) + Σ(�r, E)φ(�r, E, Ω̂) −
� ∞

0
dE �

Σs,1(�r, E � → E)φ(�r, E �
Ω̂)

= Q̄(�r, E) (1.24)

where the transport corrected collision source is defined as:

Q̄(�r, E) =
� ∞

0
dE �q(�r, E � → E)

=
1

4π

� ∞

0
dE � (Σs,0(�r, E � → E) − Σs,1(�r, E � → E)) φ(�r, E �)

+
χ(�r, E)

4πkeff

� ∞

0
dE �νΣf (�r, E �)φ(�r, E �) (1.25)

where the 1/4π coefficient appearing in the first term is due to the definition given

in equation 1.16. Simplifying the term
�∞

0 dE � Σs,1(�r, E � → E)φ(�r, E �Ω̂) appearing on
the right hand side of equation 1.24 requires an additional approximation. The micro-

reversibility approximation, valid in the thermal domain, states that the neutrons are in
quasi-equilibrium with the nucleus [14], so that:

Σs,1(�r, E � → E)φ(�r, E �, Ω̂) = Σs,1(�r, E → E �)φ(�r, E, Ω̂) (1.26)

from substitution of equation 1.26 into the transport equation 1.24, we have [14]:

Ω̂ · ∇φ(�r, E, Ω̂) + Σ̄(�r, E)φ(�r, E, Ω̂) = Q̄(�r, E) (1.27)

where [14]:

Σ̄(�r, E) = Σ(�r, E) − ΔΣtr(�r, E) (1.28)

Σ̄s,0(�r, E � → E) = Σs,0(�r, E � → E) − δ(E� − E)ΔΣtr(�r, E) (1.29)

ΔΣtr(�r, E) =
� ∞

0
dE �

Σs,1(�r, E → E �) (1.30)
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Equation 1.27, partially takes into account the effect from linearly anisotropy of the scat-
tering cross section while removing the angular dependence of the collision source. By
reducing the total cross section to the transport corrected cross section defined by equa-
tion 1.28, the diffusion length of the neutron is increased. This mimics the actual efffect
from linear anisotropy of scattering; the scattered neutron, due to the linear anisotropy
of the scattering cross section in the laboratory frame, has a higher chance of continuing
in the forward direction (defined as the initial direction of the incident neutron). We
note that in the sections that follow, we will assume that the total and scattering cross
sections are transport corrected as defined by equations 1.29 and 1.28 without explicitly
using the overhead bar notation. Similarly, the source Q will correspond to the transport
corrected collision source (which is now isotropic) given by equation 1.25.

1.3.3 Integral formulation

The Green’s function formalism for the Boltzmann equation is one of the most elegant
representations of the transport equation. A good cover of the various formalisms that
exist for the transport equation can be found in [10]. In this section, to arrive at the
definition of the first flight kernel, we will mimic the derivation of the Green’s function
provided in [10]. In the Green’s function formalism, first the domain of the transport
equation is extended to the infinite plane. To do this, the collision source of equation 1.27
is modified by adding a surface source chosen so that the extended flux outside of the
original domain vanishes. The extended flux can then be represented as a convolution
of the Green’s function with the modified collision source over the extended domain. By
doing so, the integro-differential equation 1.27 is transformed into an integral equation
corresponding to a Fredholm integral equation of the second kind [13, 10].

The Extended Flux

The extended flux φ̃(ρ̄) = ΘD(ρ̄)φ(ρ̄) can be thought of as the neutron flux over the
domain extended to infinity. The characteristic function ΘD(�r) is defined as:

ΘD(�r) =

�

1 �r ∈ D
0 else

(1.31)

Multiplying the flux φ(ρ̄) by ΘD(�r) assures that the extended flux φ̃(ρ̄) vanishes to zero
on the exterior of the domain D. Substituting the extended flux φ̃(ρ̄) = ΘD(�r)φ(ρ̄) into
the integro-differential transport equation 1.10 gives [10]:

�

Ω̂ · ∇ + Σ(�r, E)
�

φ̃(�r, E, Ω̂) =Qm(�r, Ω̂, E) (1.32)

with the modified collision source Qm(�r, Ω̂, E) is defined as [10]:

Qm(�r, Ω̂, E) =
�

E�

dE �q(�r, E � → E) +

Surface Source
� �� �

φ(�r, Ω̂, E)Ω̂ · �∇ΘD(�r) (1.33)
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note that the collision source Q(�r, E) (or q(�r, E � → E)) is defined by equation 1.25.

The last term of equation 1.33 involving the gradient of the characteristic function
ΘD(�r) is obtained by invoking the Leibniz’s differentiation rule for Ω̂ ·∇(φ(�r, Ω̂, E)ΘD(�r))
with the gradient of the characteristic function ΘD(�r) interpreted as a delta function. As
will be seen in integral formulation given by equation 1.39, this term corresponds to
the equivalent surface source required to have the modified flux φ̃ vanish outside of the
domain D [10].

The Green’s Function

The Green’s function (also called the first flight kernel) I(E; �r� → �r) for the Boltzmann
equation 1.10 satisfies [15] :

�

Ω̂ · �∇ + Σ(�r, E)
�

I(E; �r� → �r)

= δ(�r − �r�) (1.34)

with lim
|�r|→∞

I(E; �r� → �r) = 0 and lim
|�r�|→∞

I(E; �r� → �r) = 0 (1.35)

We can convert equation 1.34 to an ordinary differential equation by tracing the

neutron’s trajectory along the direction Ω̂ =
�r�−�r

|�r�−�r|
. Multiplying equation 1.34 by the

delta function δ

�

Ω̂ − �r−�r�

|�r−�r�|

�

, we have:

δ

�

Ω̂ − �r − �r�

|�r − �r�|

�
�

Ω̂ · �∇ + Σ(�r, E)
�

I(E; �r� → �r)

= δ

�

Ω̂ − �r − �r�

|�r − �r�|

�

δ
�

�r − �r�
�

(1.36)

The streaming term Ω̂ · ∇ of equation 1.36 along the trajectory Ω̂ =
�r�−�r

|�r−�r�|
simplifies to:

Ω̂ · �∇ =
d

ds
=

∂�r�

∂s
· �∇�r� (1.37)

where we have used the parametrization �s = sΩ̂ = �r� − �r with s = |�r� − �r|. The left hand
side of equation 1.37 can be inverted by multiplying both sides with the integrating factor

e−τ(|�r−�r�|). Here τ(|�r − �r�|) =
� �r

�r� Σ(�s)ds is the optical length of the neutron, appearing in
the exponential integration factor to account for the attenuation of the neutron population
along the trajectory �r� = �r + sΩ̂, resulting from interactions with the medium (hence the
dependence on the total cross section). Inverting the operator d

ds
appearing in equation

1.36 gives [15]:

I(E; �r� → �r) =
exp

�

− � �r
�r� dsΣ(�s, E)δ

�

�s
s

− �r−�r�

|�r−�r�|

��

|�r − �r�|2
(1.38)

The first flight kernel I(E; �r� → �r) represents the probability that a neutron leaving �r�
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will reach, uncollided, the interval d�r around �r. The neutron’s trajectory is along the

path �s = sΩ̂ where Ω̂ = �r−�r�

|�r−�r�|
is the direction of the neutron.

By using the first flight kernel J, the integral equation for the extended neutron flux
φ̃(ρ̄) appearing in equation 1.32 can be written as:

φ(�r, E, Ω̂) · ΘD(�r) =
�

�r�

d�r�

�

Ω�∈4π
dΩ̂

�I(E; �r� → �r)δ(Ω̂ − �r − �r�

|�r − �r�|
) · Qm(�r�, Ω̂�, E) (1.39)

where the collision source Qm(�r�, Ω̂�, E) was defined by equation 1.33. Equation 1.39,
which can be verified from direct substitution of φ̃ into equation 1.32, states that the
contribution of the neutron flux at the point �r is the contribution of the spatial sum of
the neutrons emitted from the modified collision source Qm at the point �r� weighted by
the Green’s function I(E; �r� → �r); the Green’s function I(E; �r� → �r) is the probability

that a neutron at point �r� will reach the point �r. The delta function δ(Ω̂ − �r−�r�

|�r−�r�|
) assures

that only those neutrons traveling towards the point �r (i.e. in the direction Ω̂ =
�r�−�r

|�r−�r�|
)

contribute to the flux φ(�r, E, Ω̂) at point �r.

Properties of the Green’s function

An important property of the first flight kernel, which we will benefit from later in section
1.4.2 when discussing the theorem of reciprocity, is its symmetrical nature. In an infinite
medium, it is clear that the first flight kernel I(E; �r� → �r) is symmetric (since in this
case I(E; �r� → �r) = I(E; |�r� −�r|)). It is possible to show [16] that I is symmetric for any
system. This can be done as such; writing the Green’s function for two points �r1, �r2 ∈ D
in the domain D we have [16]:

�

Ω̂ · �∇ + Σ(�r, E)
�

I(E,�r1 → �r) = δ(�r − �r1) (1.40)
�

Ω̂ · �∇ + Σ(�r, E)
�

I(E,�r2 → �r) = δ(�r − �r2) (1.41)

multiplying equation 1.40 by I(E,�r2 → �r) and equation 1.41 by I(E,�r1 → �r), integrating

over �r ∈ D while noting that the terms containing the Ω̂ · ∇ can be integrated by parts,
and subtracting the two obtained equations, we see that the terms appearing on the left
hand side of equations 1.40 and equations 1.41 will be identical and vanish by subtraction
so that: �

�r
I(E, �r2 → r)δ(�r − �r1)d�r =

�

�r
I(E, �r1 → r)δ(�r − �r2)d�r (1.42)

Integration over the remaining terms, which involve the delta functions gives [16]:

J(E,�r1 → �r2) = J(E,�r2 → �r1) (1.43)

The relation given by equation 1.42 states that [17] the angular density at �r2 due to an
isotropic unit source at �r1 is the same as the angular density at �r1 due to an isotropic unit
source at �r2. A number of relations can be derived from expression 1.43 which are called
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"reciprocity theorems". These relations use the symmetrical nature of the first flight kernel
with respect to the spatial variables �r, and �r� and make it possible (in mono-energetic
cases) to solve a simpler problem than the original problem, and then relate the obtained
solution to the solution of the original problem [17]. In the numerical computation of
equation 1.34, the theorems are useful as they provide a closing relationship for the
numerically computed first flight kernel. The interested user is referred to [17] for a more
detailed discussion of the subject.

Boundary Conditions

It is beneficial at this point to integrate directly the flux boundary conditions into equation
1.39. We note that by using the divergence theorem, the term in the modified collision
source Qm, containing the gradient can be simplified to [10]:

�

�r�∈all space
d�r�φ(�r�, Ω̂

�, E �)I(E;�r� → �r)Ω̂� · �∇ΘD(�r�) = (1.44)

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿0

�

S∞

dAS�n̂S� · Ω̂
�φ(�r�, Ω̂

�, E �)I(E; �r� → �r)ΘD( �rS�) −
�

�r�∈D
d�r�Ω̂

� · ∇�r�(φ(�r�, Ω̂
�, E �)I(E;�r� → �r))

where n̂S is the outward normal of the surface S�. Note that for a finite domain, the
first integral appearing on the right hand side cancels to zero by the definition of the
characteristic function (i.e. limrS� →rS∞

ΘD(�rS�) = 0 ) and for an infinite domain the
integral renders to zero by the boundary condition given in equation 1.35. Applying once
more the divergence theorem to the the second term of equation 1.31 gives [10]:

�

�r�∈D
d�r�Ω̂

� · ∇�r�(φ(�r�, Ω̂
�, E �)I(E; �r� → �r)) = −

�

∂D
dAsn̂S · Ω̂

�φ(�r�, Ω̂
�, E �)I(E; �r� → �r)

(1.45)
where dAS is the surface element on the surface ∂D with the outward normal n̂S. Equa-
tion 1.39 can then be written as [10]:

φ(�r, E, Ω̂) · ΘD(�r) =
�

�r�

d�r�

�

E�

dE �
�

Ω�∈4π
dΩ̂

�I(E; �r� → �r)δ(Ω̂ − �r − �r�

|�r − �r�|
) · q(�r�, E � → E)

+
�

Ω̂�∈4π
dΩ̂

�
�

�r�∈∂D
dAsn̂S · Ω̂

�φ( �r�
S, Ω̂

�, E)I(E; �r�
S → �r)δ(Ω̂ − �r − �r�

S

|�r − �r�
S|

) (1.46)

where the incoming flux, φ( �rS, Ω̂�, E �) for n̂S · Ω̂ < 0, is assumed to be known or related to

the outgoing flux, φ( �rS, Ω̂�, E �) for n̂S · Ω̂ > 0, by a boundary conditions such as equation
1.13. The unknown outgoing flux can be found by approaching the boundary from inside
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the medium (�r → �rS,+). Setting �r = �rS,+ in equation 1.46 gives [10]:

φ(�rS,+, E, Ω̂) · ΘD(�r) =
�

�r�

d�r�

�

E�

dE �
�

Ω�∈4π
dΩ̂

�I(E; �r� → �rS,+)δ(Ω̂ − �rS,+ − �r�

| �rS,+ − �r�|
) · q(�r�, E � → E)

+
�

Ω̂�∈4π
dΩ̂

�
�

�r�∈∂D
dAsn̂S · Ω̂

�φ( �r�
S, Ω̂

�, E)I(E; �r�
S → �rS,+)δ(Ω̂ − �rS,+ − �r�

S

| �rS,+ − �r�
S|

) (1.47)

Equations for the Scalar Flux

To obtain the scalar flux, we can integrate equation 1.46 over all angular directions
Ω̂ ∈ 4π. First, parameterizing the spatial vector �r� = �r−sΩ̂��, with s = |�r� −�r| and noting
that:

inside the domain: d�r� = s2dsdΩ̂
�� (1.48)

on the surface: (n̂S · Ω̂
��)dAS = s2

SdΩ̂
�� (1.49)

equation 1.46 is simplified to:

φ(�r, E, Ω̂) · ΘD(�r) =

=
�

E�

dE �
�

Ω�∈4π
dΩ̂

�
�

s2dsI(E; (�r − sΩ̂) → �r) · q(�r�, E � → E)

+
�

Ω̂�∈4π
dΩ̂

�
�

Ω̂∈4π
dsS s2

Sφ(�r − sSΩ̂, Ω̂
�, E)I(E; (�r − sSΩ̂) → �r)δ(Ω̂ − Ω̂

�) (1.50)

where we have used the fact that the Ω̂�� integration over delta function δ(Ω̂ − �r−�r�

|�r−�r�|
) =

δ(Ω̂ − Ω̂��), appearing in equation 1.47, collapses the Ω̂� to Ω̂. To obtain the scalar flux

φ(�r, E) =
�

Ω̂∈4π dΩ̂φ(�r, Ω̂, E), we integrate equation 1.50 over Ω̂ ∈ 4π and, once more,
use equations 1.48 and 1.49 to arrive at [12]:

�φ(�r, E) =

Contribution from the collision source
� �� �
�

�r�∈D

exp(−τ(s, E))

s2
q(�r�, E � → E)d3�r�

+

Contribution from the surface source
� �� �
�

�r�∈∂D

exp(−τ(ss, E))

s2
S

�

Ω̂ · n̂−

�

φ−(�rS, E, Ω̂
�)d2r� (1.51)

Here φ−(�r, E, Ω̂�) denotes the incoming angular flux at the surface ∂D with the inward
normal n̂−, for the neutrons entering the volume D.

The first term of equation 1.51 represents the contribution from the collision source
to the flux, convoluted with the exponential attenuation factor that appeared through
the first flight kernel defined in equation 1.38; since the first flight kernel was interpreted
as the probability that a neutron leaving �r� will reach the interval d�r around the point �r,
the convolution appearing in the first integral represents the contribution of the collision
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source q to the neutron flux at the point �r. Similarly, the second term is the contribution
of all neutrons entering the surface φ− to the flux at point �r. The second term has been
obtained by noting that since the point �r lies inside the surface, given the concavity of
the surface, the only set of possible directions for which a neutron at the surface can
contribute to the point �r are those who are entering the volume at its boundary ∂D (i.e.

Ω̂·n̂− > 0 with n̂− being the inward normal of the surface ∂D). This is taken into account

during the integration by the delta function δ(Ω̂ − �r−�r�

|�r−�r�|
) = 0 for Ω̂ · n̂− < 0 - neutrons

that leave the volume do not contribute to the flux at �r.5

Through use of the first flight kernel I(E; �r� → �r), equation 1.10 has been transformed
into equation 1.39 which is a Fredholm equation of the second kind [13]. A great benefit of
this integral approach is the flexibility for the types of geometries which can be modeled.
The only requirement on the geometry type being the concavity of the boundary ∂D. The
interested reader is referred to [10] for an in-depth discussion of the various formalisms
associated with the Boltzmann equation.

1.4 Discretized Form

In this section, we will present the discretized form of the integral transport equation and
arrive at the concept of the collision probability, which is used to derive the numerical form
of the transport equation 1.51. To solve equation 1.51 numerically requires discretization
in energy, angle and space. We will first use the multi-group approximation to discretize
over energy, and arrive at the multi-group form of the transport equation 1.51. We will
then proceed to discretize over angle and space. This gives rise to the concept of the
Collision Probability. Using the collision probabilities, we will present the numerical
form of the integral transport equation 1.51, referred to as the current-interface method,
and used by the code DRAGON.

1.4.1 Energy discretization: the multi-group approximation

The multi-group approximation [18, 14, 10] begins with the partitioning of the total
energy interval into G groups of interest with the energy interval ΔEg = [Eg, Eg−1].
Partitioning the energy integrals over the energy domain into sums of integrals, we have:

�

E�

dE �q(�r, E � → E) =
G�

g=1

�

ΔEg

dE �q(�r, E � → E) (1.52)

5Note that the boundary conditions enter the equations through the surface term appearing in equa-
tion 1.51

19



Integrating equation 1.27 over the energy group ΔEg results in a system of equations of
the form:

Ω̂ · �∇
�

ΔEg

dEφ(�r, Ω̂, E) +
�

ΔEg

dEΣ(�r, E)φ(�r, Ω̂, E) =

G�

g�=1

�

ΔEg

dE
�

ΔEg�

dE �q(�r, E � → E) for g = 1, ..., G (1.53)

The multi-group approximation reduces to assuming that the flux is separable in terms
of a fast varying fine flux f(E), and a slow varying group flux φg(�r, Ω̂) (representing the
asymptotic behavior of the flux), i.e.

φ(�r, Ω̂, E) = f(E)φg(�r, Ω̂) (1.54)

where f(E) is assumed to be piecewise smooth and satisfies the normalization condition
[10]:

�

ΔEg

f(E)dE = 1 (1.55)

Using the multi-group approximation, equation 1.10 then becomes [10]:

Ω̂ · �∇φg(�r, Ω̂) + Σg(�r)φg(�r, Ω̂) =

1

4π

G�

g�=1

�

dΩ̂
�
Σs,g→g�(�r)φg�(�r) +

1

4πkeff

χg

G�

g�=1

νg�Σfg�(�r)φg�(�r) (1.56)

with the group parameters defined as [10]:

Σg(�r) =
�

ΔEg

dEf(E)Σ(�r, E) (1.57)

Σs,g→g� =
�

ΔEg

dE
�

ΔEg�

dE �
Σs(�r, E � → E)f(E�) (1.58)

νgΣfg(�r) =
�

ΔEg

dEf(E)ν(E)Σf (�r, E) (1.59)

χg =
�

ΔEg

dEχ(E) (1.60)

Repeating the procedure of the previous section for the system of equations defined by
equation 1.56, gives the multi-group form of equation 1.46:

φg

�

�r, Ω̂

�

· ΘD (�r) =

G�

g�=1

�

�r�

d�r�

�

Ω�∈4π
dΩ̂

�Ig

�

�r� → �r
�

δ

�

Ω̂ − �r − �r�

|�r − �r�|

�

· qg�→g(�r)

+
�

Ω̂�∈4π
dΩ̂

�
�

�r�∈∂D
dAsn̂S · Ω̂

�φg

�
�r�
S, Ω̂

�
�

Ig

�
�r�
S → �r

�

δ

�

Ω̂ − �r − �r�

|�r − �r�|

�

(1.61)
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with the group to group collision source qg�→g and the first flight kernel Ig are defined as:

qg�→g(�r)φg(�r) =
χg(�r)

4πkeff

νg�Σfg� (�r) φg� (�r) ΘD(�r) (1.62)

+
1

4π
Σs,g�→g (�r) φg� (�r) ΘD (�r)

Ig

�

�r� → �r
�

=
exp

�

− � �r
�r� dsΣg(�s)δ

�

�s
s

− �r−�r�

|�r−�r�|

��

|�r − �r�|2
(1.63)

Similarly, the multi-group form of equation 1.47 for the out-going flux is given by:

φg(�rS,+, Ω̂) · ΘD(�r) =
NG�

g�=1

�

�r�

d�r�

�

Ω̂�∈4π
dΩ̂

�Ig(�r� → �rS,+) · qg�→g(�r�)

+
�

Ω̂�∈4π
dΩ̂

�
�

�r�
S∈∂D

dAsn̂S · Ω̂
�φg(�r�

S, Ω̂
�)Jg(�r�

S → �rS,+)δ

�

Ω̂ − �r − �r�

|�r − �r�|

�

(1.64)

The multi-group approximation, as defined in equation 1.54, is the base of nearly all de-
terministic reactor codes [10]. However, due to the large domain in energy (from 10−5eV
to 20 MeV) and the non-regular behavior of the cross sections in the resonance region,
the choice of the functions f(E) is not evident. We will now discuss the choice for the
function f(E) in the frame work of the narrow resonance approximation.

Slowing Down in a Homogeneous Medium: the Narrow Resonance Approxi-
mation

Let us consider an infinite homogeneous mixture, composed of a single resonant nuclide of
atomic density Nr and other non-resonant nuclides of density Nk for k �= r. Let us further
assume that the cross sections for the non-resonant nuclides are constant, and purely due
to scattering (i.e. no absorption takes place). In this case the total cross section of a non-
resonant isotope σk is equal to its scattering cross section σs,k. Furthermore, integrating
over all angular directions, we have:

Σs(E
� → E) = Σs(E

�)P (E � → E) (1.65)

with:

P (E � → E) =

�
1

(1−α)E� E ≤ E � ≤ E/α

0 else
(1.66)
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where α =
�

A−1
A+1

�2
, and A is the atomic number of the isotope in question. The Boltzmann

equation 1.27 corresponding to the homogeneous mixture is written as [19, 20]:



Nrσr(E) +
�

k �=r

Nkσs,k



φ(E) =

Scattering Source due to the resonant isotope
� �� �

1

1 − αr

� E/αr

E
Nrσs,r(E

�)φ(E�)
dE �

E �

+
�

k �=r

1

1 − αk

� E/αk

E
Nkσs,kφ(E �)

dE �

E �

� �� �

Scattering Source due to the non-resonant moderator

(1.67)

The factor 1
1−αk

with αk =
�

A−1
A+1

�2
appears due to the energy transfer function presented

in equation 1.66. We note that in equation 1.67, only the cross section for the resonant
isotope is assumed to have an energy dependence with the cross sections for the non-
resonant isotopes assumed to be constant and equal to their potential cross section [19].

Simplifying the second term appearing on the right hand side of equation 1.67, requires
additional assumptions. The narrow resonance approximation consists of assuming that
the resonance width of the resonant nuclide r is narrow in comparison to the average
energy loss of the neutron per collision. This implies that most neutrons that appear
near the resonance peak energy are coming from outside of the resonance peak due to
scattering from energies much higher than the resonance. If we assume that the neutron
flux outside of the resonant region (the second integral on the right hand side of equation
1.67) has a 1

E
shape, the sum in equation 1.67 simplifies to [20, 19]:

�

k �=r

1

1 − αk

� E/αk

E
Nkσs,kφ(E �)

dE �

E �
=
�

k �=r

Nkσs,k

1 − αk

� E/αk

E
φ(E �)

dE �

E �

∼
�

k �=r

Nkσs,k

1 − αk

� E/αk

E

1

E �

dE �

E �

=
�

k �=r

Nkσs,k
1

E
(1.68)

The first term appearing on the right hand side of equation 1.67 can be simplified by
assuming that the scattering cross section of a resonant nuclide outside of its resonance
is constant, and that the flux spectrum has a 1/E shape outside of this region. This term
simplifies to:

1

1 − αr

� E/αr

E
Nrσs,r(E

�)φ(E�)
dE �

E �
∼ Nrσs,r

1 − αr

� E/αr

E
φ(E �)

dE;

E �

∼ Nrσs,r

1 − αr

� E/αr

E

1

E �

dE �

E �
= Nrσs,r

1

E
(1.69)
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substitution of equations 1.69 and 1.68 into equation 1.67 gives:



Nrσr(E) +
�

k �=r

Nkσs,k



φ(E) =
Nrσs,r +

�

k �=r Nkσs,k

E
(1.70)

so that:

φ(E) =
Nrσs,r +

�

k �=r Nkσs,k

Nrσr(E) +
�

k �=r Nkσs,k

1

E

=
σs,r + σ0

σr(E) + σ0

1

E
(1.71)

where σ0 =
�

k �=r
Nk

Nr
σs,k is called the background/dilution cross section of the homoge-

neous mixture.

Equation 1.70 provides an analytical formulation for the form of the energy depen-
dence of the neutron flux. We note that the absolute value of the neutron flux is not
necessary as it enters equations 1.57 to 1.60 as a ratio (f(E) = φ(E)/φg). Finally, note
that to arrive at the energy flux given by equation 1.71, we assumed that:

1. Only one resonant isotope is present (or more generally, no resonance overlap exists).

2. Scattering is elastic and the neutron energy is much higher than the thermal energy.

3. Non-resonant nuclide have a constant scattering cross section.

4. The resonant nuclide has a constant scattering cross section above the resonance.

5. The energy dependence of the neutron flux outside of the resonance has a 1
E

shape
(valid in the epithermal region).

6. The neutron source in the resonance region is due to neutrons coming from outside
of the resonance (the resonance is narrow).

Slowing Down in a Heterogeneous Medium: Equivalence Theory

In heterogeneous systems, equivalence theory methods can be used to provide a relation
between the slowing down flux in the heterogeneous medium and the slowing down flux
in a homogeneous medium. This point will be further discussed in chapter 3. Typically,
tabulated values of the group parameters defined in equations 1.57-1.60 are calculated
using the fine flux function f(E) of an infinite homogeneous medium for several different
ratios of a dilution cross section σ0 using the flux similar to that given in equation
1.71. Resonant self-shielding methods based on an equivalence principle [21] between a
heterogeneous and a homogeneous geometry are then used during the lattice calculation
to evaluate the equivalent group parameters corresponding to the homogeneous case. The
methods usually involve expressing the fine flux (or the more useful resonance integral I)
of the heterogeneous case fHET (E) as a linear combination of homogeneous fine-structure
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functions fHOM
n each corresponding to a specific concentration of the resonant isotope so

that [21]: 6

f(E) =
N�

n=1

αn(E)fHOM
n (E) (1.72)

The treatment can be quite accurate, with [21] reporting an average error of 1.5% (using
22 groups over the resonance region) on the absorption rate when comparing against
hyper fine (with 1561 groups over the resonance region) calculations.

1.4.2 Discretized Flux Equations

Discretization

To obtain a numerical solution for the transport equation 1.61, we divide the domain D
into NV regions with volume Vi, and the external boundary ∂D into NS surfaces Sα. We
first define the scalar flux φi,g for energy group g, inside the region i as the average of the
flux φg(�r) over the region so that:

φi,g =
1

Vi

�

Vi

φg(�r)d3r (1.73)

Next, we will assume that the cross sections and the collision source operator within each
volume region are constant, so that [12]:

Σ
g
x(�r) = Σ

g
x,j for �r ∈ Vj and reaction type x (1.74)

qg�→g(�r) = qg�→g
j =

�

g�

�

χg,j

4πkeff

νΣ
g�

f,j + Σ
g�→g
s,j

�

φj,g� for �r ∈ Vj (1.75)

Next, the surface flux φ+,g and φ−,g which appear in equation 1.51 and 1.64 are approx-

imated by a series expansion in terms of the half-range spherical harmonics ψν(Ω̂, n̂±),
so that [92, 12]:

φ±,g( �rS, Ω̂) =
1

4π

Nν�

ν=0

φν
±,g(�rS)ψν(Ω̂, N̂±) (1.76)

where we have truncated the series at Nν = 3. The half-range spherical harmonics
ψν(Ω̂, N̂±) which appear in equation 1.76 are defined as [92, 12]:

ψν(Ω̂, N̂±) =







1 for ν = 0√
2(3Ω̂ · N̂1

± − 2) for ν = 1

2Ω̂ · N̂2
± for ν = 2

2Ω̂ · N̂3
± for ν = 3

(1.77)

with the normal vector N̂1
± = N̂± being the inward normal to the surface Sα, and the

6Usually the relation is given in terms of the Resonance integral IHOM
(n,ABS) =

C
�

E
dEΣ(n,ABS)(E)φ(E) 1

E
, as in reality, this is the parameter available in the library and what

is interpolated.

24



vectors N̂2
±, and N̂3

± chosen such that
�

N̂1
±, N̂2

±, N̂3
±

�

forms a three dimensional orthogonal
bases on the surface Sα. The half-range spherical harmonics satisfy the orthogonality
relation given by [92, 12]:

�

(Ω̂·N̂±)>0
(Ω̂ · N̂±)ψν(Ω̂, N̂±)ψµ(Ω̂, N̂±)dΩ̂ = πδν

µ (1.78)

where δν
µ is the Kronecker delta function. Taking the inner product of equation 1.76 with

the half range spherical harmonic ψν(Ω̂, N̂±) over the surface element Sα, we can see that
the average angular flux components φ

ν,α
±,g in the energy group g is defined as [12, 92]:

φ
ν,α
±,g =

4

Sα

�

Sα

dASα

�

(Ω̂·N̂±)>0
dΩ̂(Ω̂ · N̂−)ψν(Ω̂, N̂±)φ±,g(�rS, Ω̂) (1.79)

where dASα
is the differential surface element on the surface Sα. Integrating the integral

form of the transport equation given by equation 1.61, and using equation 1.73 and
equation 1.79 for the average flux inside the region j and on the surface Sα respectively,
we arrive at the discretized form of the integral transport equation [12]:

Viφi,g =
NS�

α=1

Nν�

ν=0

φ
ν,α
−,g

�

�r∈Vi

�

�rS∈Sα

e−τg(sS)

4πs2
S

(Ω̂ · N̂−)ψν(Ω̂, N̂−)d�rdASα

+
�

g�

NV�

j=1

qg�→g
j

�

�r∈Vi

�

�r�∈Vj

e−τg(s)

s2
d�r�d�r (1.80)

The discretized form of equation 1.64 can be obtained by taking the average of outgoing
angular flux over the surface Sα; integrating over the surface Sα we have [12]:

Sα

4
φν

+,g =
NS�

β=1

Nν�

µ=0

φ
µ,β
−,g

�

Sα

�

Sβ

e−τg(sS)

4πs2
S

(Ω̂ · N̂+)ψν(Ω̂ · N̂+)ψµ(Ω̂ · N̂−) dASβ
dASα

+
NV�

j=1

qg�→g
j

�

Sα

�

�r�∈Vj

e−τg(s)

s2
(Ω̂ · N̂−)ψν(Ω̂, N̂+)ψν(Ω̂, N̂+) d�r� dASα

(1.81)

Equations 1.80 and 1.81 are the discretized form of the integral transport equation given
by equations 1.61 and 1.64. We will now proceed to put equations 1.80 and 1.81 in their
matrix form by defining the concept of the collision probability.

Reduced Collision Probabilities

The reduced collision probability is the space or surface integrated form of the first flight
kernel J presented in equation 1.63. From equations 1.80 and equation 1.81, we see that
we can separate four types of coefficients, all of which involve space or surface integrals
of the first flight kernel J. These coefficients are called the reduced collision probabilities
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and can be defined as [12]:

pg
ij =

1

Vi

�

�r∈Vi

�

�r�∈Vj

e−τg(s)

s2
d�r�d�r (1.82)

pν,g
iα =

1

Vi

�

�r�∈Vi

�

Sα

e−τg(sS)

4πs2
S

(Ω̂ · N̂−)ψν(Ω̂, N̂−)d�r�dASα
(1.83)

pν,g
αi =

4

Sα

�

Sα

�

�r∈Vi

e−τg(s)

s2
(Ω̂ · N̂+)ψν(Ω̂, N̂+)dAsα

d�r (1.84)

pνµ,g
αβ =

4

Sα

�

Sα

�

Sβ

e−τg((sS)

4πs2
S

(Ω̂ · N̂−)(Ω̂ · N̂+)ψν(Ω̂, N̂+)ψµ(Ω̂, N̂+)dASα
dASβ

(1.85)

Rewriting equations 1.80 and equation 1.81 by using the definitions for the reduced
collision probabilities defined in equations 1.82 to 1.85 gives [12]:

φi,g =
NS�

α=1

Nν�

µ=0

pµ,g
iα φ

µ,α
−,g +

NV�

j=1

NG�

g�=1

pg
ijQj,g (1.86)

φ
ν,α
+,g =

NS�

β=1

Nν�

µ=0

pνµ,g
αβ φ

µ,β
−,g +

NG�

g�=1

NV�

j=1

pν,g
αj Qj,g (1.87)

where Qj,g =
�

g� qg�→g
j is the neutron source in volume j and energy group g.

The reduced region to region collision probabilities pg
ij represent the probability that

a neutron in region i will reach region j. Similarly for the reduced region to surface,
surface to region, and surface to surface collision probabilities pg

iα, pg
αj, and pg

αβ which
represent the probability of the neutron at the region/surface denoted by the first index
will reach the region/surface denoted by the second index.

Theorems of Reciprocity

From the symmetry principle of the first flight kernel given by equation 1.43 it is possible
to derive directly the following reciprocity relations for the reduced collision probability
[12]:

Vipij = Vjpji (1.88)

Vip
ν
iα = Sαpν

αi (1.89)

Sαpνµ
αβ = Sβpµν

βα (1.90)
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Multiplying equation 1.86 by the volume Vi, and equation 1.87 by the surface area Sα

and using equations 1.94-1.90 we have:

Viφi,g =

contribution from the incoming surface current
� �� �

NS�

α=1

Nν�

µ=0

Sαpµ,g
αi φ

µ,α
−,g +

contribution from the collision source
� �� �

NV�

j=1

NG�

g�=1

Vjp
g
jiQj,g (1.91)

Sαφ
ν,α
+,g =

NS�

β=1

Nν�

µ=0

Sβpνµ,g
βα φ

µ,β
−,g

� �� �

Contribution from the incoming surface current

+
NG�

g�=1

NV�

j=1

Vjp
ν,g
αj Qj,g

� �� �

Contribution from the collision source

(1.92)

Noting that the volume D and the boundary ∂D were partitioned into the sub-volumes
Vi and surfaces Sα (i.e. D =

�NV

i=1 and ∂D =
�NS

α=1 Sα), we see that equation 1.91 and
1.92 represent conservation laws for the volume integrated flux and the surface integrated
current. Equation 1.91 states that the volume integrated flux in volume i at group g is
the sum of the surface integrated incoming current (weighted by the probability that
the incoming neutron will reach volume i) and the volume integrated collision source
(weighted by the probability that the neutron born from the collision source will reach
volume i). Similarly, equations 1.92 states that the total surface integrated outgoing
current at surface Sα is the sum of the neutron current entering volume D (weighted
by the probability that these neutrons will reach the surface Sα) and the total volume
integrated neutron source inside the volume D (weighted by the probability that these
neutrons will reach the surface α).

Matrix Form

In matrix notation, equations 1.86 and 1.87 can be written as:

�φ = PVS
�J− + PVV

�Q (1.93)

�J+ = PSS
�J− + PSV

�Q (1.94)

Here, �J+ and �J− refer to the vectors of the outgoing and incoming currents respectively,
the flux vector �φ refers to the vector containing the region-energy flux components, and
the source �Q = (

�

g� qj,g�→g) is the vector containing the neutron source in region j and

energy group g. The flux vector �φ and the collision source �Q are therefore of the size
NV ×NG and the vectors �J− and �J+ are of the size (Nν +1)×NS ×NG. Here NG refers to
the number of energy groups available on the multi-group library. The matrix PVV is then
composed of NG energy blocks of (NV × NV ) matrices containing the volume to volume
reduced collision probabilities pg

ij. Similarly, the matrix PSV is composed of NG energy
blocks of (Nν + 1) × NS × NV matrices containing volume to surface reduced collision
probabilities (pν,g

αj ), PSS is composed of NG blocks of ((Nν +1)×NS)2 matrices containing
the surface to surface reduced collision probabilities pµµ,g

αβ , and PVS is composed of NG

energy blocks of (NV ×(Nν +1)×NS)2 matrices containing the surface to volume collision
probabilities pµ,g

iα .
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Boundary Conditions

Associated with the transport equation 1.86 and 1.87 are boundary conditions of the
form given by equation 1.13. In this work, we will cover the two most common boundary
conditions when performing lattice computations: void boundary conditions and specular
reflective boundary conditions. For both of these cases, the transport equation 1.86 and
1.87 can be greatly simplified.

• Void BC In the case of void boundary conditions, the incoming current �J− = 0 at
the surface boundary so that equation 1.93 reduces to:

�φ =✘✘✘✘✘✿0
PVS

�J− + PVV
�Q = P �Q (1.95)

where the equivalent collision probability matrix P is defined as P = PV V .

• Specular Reflection In the case of reflective boundary conditions, two options
can be used:

1. The incoming current �J− is equal to the outgoing current �J+. Substituting
�J+ = �J− into equation 1.94 and solving for �J− we arrive at:

�φ = P · �Q (1.96)

where the new collision probability matrix P is defined to as [12]:

P = (PVV + PVS · (I − PSS)−1 · PSV) (1.97)

2. The more common (and more accurate) method which avoids the finite expan-
sion for the angular flux in terms of the half range spherical harmonics given by
equation 1.76 is to unfold the cell and compute the collision probability matrix
P = PVV for the unfolded cell (infinite geometry). The flux then satisfies:

�φ = P · �Q (1.98)

The key point being that in both cases, the boundary conditions can be taken directly
into account by defining an equivalent collision probability matrix P so that:

�φ = P · �Q (1.99)

Standard Form

The standard form of the transport equation refers to the eigenvalue problem usually
written as:

(A − λB) · �φ = 0 (1.100)

where λ = 1
keff

and A and B are the corresponding operators of the Boltzmann equation.

Equation 1.100 is the difference between the net neutrons lost (due to leakage and net
absorption), and the neutrons gained from fission. To write equation 1.99, we first note
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that the collision source �Q is by definition given as:

�Q = (S + λF) · �φ (1.101)

Here, S is the scattering matrix and F is the fission matrix. These matrices are composed
of NV × NV blocks of (NG × NG) matrices and are dense in energy and diagonal in space,
have components corresponding to the regional scattering matrix Si = (Σs,g�→g)i and the

fission matrix Fi = (
−→
χT ·

−−→
νΣF )i = (χgνΣf,g�)i for i = 1, NV . The matrix equation satisfied

by the flux is then:
�φ = P(Σ) (S + λF) �φ (1.102)

where Σ = (Σg)i is the regional total cross section matrix (diagonal in energy and space)
and has been included in the formula to note the explicit dependence of the collision
probability matrix on the total cross section Σ. We note that the total cross section and
the scattering matrix S appearing in equation 1.102 are transport corrected according to
procedure outlined in section 1.3.2. The standard form of the transport equation given
by equation 1.102 is then:

(A − λB) �φ = 0 where (1.103)

A = I − P(Σ)·S (1.104)

B = P(Σ) · F (1.105)

here I refers to the (NV × NG)2 identity matrix.

1.5 Adjoint Equations

The adjoint formalism is the basis for the sensitivity approach to uncertainty analysis.
In this section, we begin with the definition of adjoint operators in infinite dimensional
vector spaces, followed by the equivalent form of the operators in finite dimensional vector
spaces. We will then present a discussion on the physical interpretation of the adjoint
function, at which point we will proceed to derive the adjoint equations corresponding to
the integral and integro-differential forms of the Boltzmann equation and the relationship
between the two.

1.5.1 Adjoint Operators

In mathematics, an inner product space V [23] is a vector space equipped with an inner
product ��,�� satisfying the conditions of symmetry (or conjugate symmetry if com-
plex spaces are considered), linearity, and positive-definiteness. Given any two functions
f(ρ̄) ∈ V† and g(ρ̄) ∈ V, belonging to the vector spaces V†, and V respectively, the inner
product �f(ρ̄), g(ρ̄)� : V† ×V → R can be thought of as a mapping from the set of direct
products V† × V to the real numbers. Here V† denotes the dual space of V. The vector
space of our interest is the space of all differentiable and uniformly bounded functions
over the domain D.
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Adjoint Operators in Infinite Dimensional Vector Spaces

In reactor physics, the principle observable is a detector reading which is usually expressed
in terms of a reaction rate so that the inner product can be defined as:

�f(ρ̄), g(ρ̄)� =
�

ρ̄
dρ̄f(ρ̄)g(ρ̄) (1.106)

where ρ̄ = (�r, Ω̂, E) and the integration is over the region �r ∈ D, and all angular directions

Ω̂ ∈ 4π and all energies E ∈ [0, ∞). Considering a linear operator A acting on the
function g(ρ̄), we can think of a corresponding adjoint operator A† acting on the dual
space V † such that:

�f(ρ̄), Ag(ρ̄)� =
�

A†f(ρ̄), g(ρ̄)
�

(1.107)

Based on the definition 1.107, it is possible to derive expressions for adjoint operators. In
particular, for the inner product defined in 1.106, provided that conditions at the bound-
ary of domain ∂D are chosen so as to eliminate any surface terms that may appear, we
can derive adjoints for various operators. For differential operators, the adjoint operator
can be derived from integration by parts and satisfies:

Ag ≡ ∇αg → A†f = (−1)α∇αf (1.108)

where α ∈ N. From definition 1.107, adjoint of convolution operators can be obtained by
a simple change in the order of the convolution, so that:

Ag(ρ̄) =
�

dρ̄�J(ρ̄� → ρ̄)g(ρ̄�) → A†f(ρ̄) =
�

dρ̄�J(ρ̄ → ρ̄�)f(ρ̄�) (1.109)

The adjoint of scalar operators is identical to the original operator by merit of equation
1.107.

Adjoint Operators for Finite Dimensional Vector Spaces

In section 1.4.1, using the multi-group approximation, we discretized the energy domain
into NG energy groups. Similarly, in section 1.4.2 we discretized the spatial dimension
into NV volumes. Functions and distributions in space and energy (such as the cross
section and the scalar flux) were then discretized as vectors of dimension RNG×NV , and
took the form:

�F =

NG
� �� �






NV
� �� �

F 1
1 , ..., F 1

NV
, ...,

NV
� �� �

F G
1 , ..., F G

NV







(1.110)

�D =

NG
� �� �






NV
� �� �

D1
1, ..., D1

NV
, ...,

NV
� �� �

DG
1 , ..., DG

NV







(1.111)
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The spatial and regional components of a distribution D(�r, E) can be defined to be the
integral of their values over the energy groups, and averages over regions, i.e.

D(�r, E) → 1

Vi

�

�r∈Vi

d�r
� Eg−1

Eg

dED(�r, E) ≡ Dg
i (1.112)

for example, the flux represents such a distribution function.

Similar to the multi-group approximations, we note that a function F (�r, E) (such as
a cross section) can be discretized in space and in energy, using the weighting given by
the distribution D(�r, E):

F (�r, E) → 1

Dg
i

� Eg−1

Eg

dEF (�r, E)D(�r, E) (1.113)

Integrals in energy can then be discretized as sums in energy, and integrals in space can
be discretized into sums of the average value over the regional volume Vi. Using equations
1.112 and 1.113, the vector inner product corresponding to the reaction rate then becomes
[24]:

�F (�r, E), D(�r, E)� ≡
�

E�

dE �
�

�r�∈D
d�r (F (�r, E)D(�r, E))

−→
NG�

g=1

NV�

i=1

F g
i ViD

g
i = �F T · V · �D ≡

�

�F , �D
�

(1.114)

To preserve the inner product, we can then define the adjoint operator as [15, 24]:

A† = V−1 · AT · V (1.115)

where T refers to matrix transposition. It can be seen that with the adjoint A† of the
operator A defined by 1.115 satisfies [24]:

�

A† �F , �D
�

=
�

V−1 · AT · V · �F
�T

· V · �D

= �F T ·
�

V · A · V−1
�

· V · �D

= �F T · V · A · �D =
�

�F , A · �D
�

(1.116)

where the second equality was obtained from the diagonal nature of the volume matrix
(V = VT).

1.5.2 The Classical Adjoint

Importance: the Adjoint Function

In describing physical observables, one must consider the fashion in which the experiment
is conducted to measure the observable of interest (i.e. the nature and the configuration
of the detectors used to measure the observable). For each observable - be it criticality,
a detector reading, etc. we can think of a form of measurement/a hypothetical detector,
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which can be used to measure the observable at a specific time tf . We note that a neutron
at earlier time t < tf can contribute to this detector reading either by interacting directly
with the detector at time tf or through its progenies who can also interact with the
detector and contribute to the detector reading. The progeny of a neutron being defined
as all those neutrons who trace back their life-cycle to the original neutron (i.e. the
neutrons that are created from the interaction of the original neutron with the medium).
We can define an importance function φ† (called a detector distribution function [25])
which provides a measure of the importance/contribution of a neutron to the detector
reading [25]. A key principle in perturbation theory, introduced by Usachev [7] and
discussed by Lewins [25], is the principle of the conservation of importance which states
[7, 25]:

Axiom. Conservation of Importance: A neutron is as important as its progenies.

The axiom of conservation of importance ensures that a particle at time t contributes to
the detector reading at the later time tf only through its progenies, and that the impor-
tance of these neutrons is conserved [25].

The basic properties of this importance function φ† can then be derived from the
properties under which the hypothetical experiment (or detector) operates. For example,
since the detector reading depends on the population of the neutrons in the reactor (i.e.
the neutron flux φ(ρ̄)), we can expect the detector importance function φ† to depend
solely on the same variables that the neutron flux φ(ρ̄) depends on. Also, since we should
not expect to measure any observables other than those expressed in terms of the neu-
tron flux, we should not expect the importance function φ† to depend on any variables
other than those that the neutron flux depends on, so that φ† = φ†(ρ̄). Similarly, our
knowledge of the detector importance function φ†(ρ̄) is limited to the domain D in which
the neutron population is computed (i.e. the region where the experiment takes place).
A neutron outside of this domain does not contribute to the detector reading so that the
importance function φ†(ρ̄) should vanish outside of D. The boundary conditions for the
detector distribution can also be derived from the behavior of the neutron population
at the boundary; if the conditions at the boundary are such that a neutron leaving the
domain, will not enter (i.e. �J−,∂D = 0 where �J−,∂D is the incoming current at the domain
boundary ∂D), then the importance for the neutrons leaving the boundary ∂D vanishes
so that J†

+,∂D = 0. Here, J†
+,∂D denotes the net importance of the neutrons leaving the

surface.

In his 1965 book [25], based on the variational principle, Lewins provides a comprehen-
sive formulation that discusses the logical equality between the adjoint function and the
detector importance function. The integro-differential adjoint function, which minimizes
the energy density for the variational form of the Boltzmann equation, is interpreted as
the importance of the neutron to the hypothetical detector reading/observable.

We will see in the following passages, that depending on the specific formalism used
for the Boltzmann equation, the physical interpretation of the adjoint function will be
somewhat different.
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Integro-differential Formulation

The integro-differential form of the Boltzmann equation was presented earlier in equation
1.10. In the absence of the fixed source Qe, and using the transport corrected form of the
scattering and total cross sections so as to remove the angular dependence of the collision
source we have:

Ω̂ · �∇φ(�r, Ω̂, E) + Σ(�r, E)φ(�r, Ω̂, E)

= Q(�r, E) =
�

dE �q(�r, E � → E) (1.117)

where q was defined as:

q(�r, E � → E) =
χ(�r, E)νΣf (�r, E �)

4πkeff

φ(�r, E �)

+
1

4π
Σs(�r, E � → E)φ(�r, E �) (1.118)

by using the relations given by equations 1.108 and 1.109, the adjoint of equation 1.117
is derived to be [8]:

−Ω̂ · ∇φ†(�r, Ω̂, E) + Σ(�r, E)φ†(�r, Ω̂, E) =
�

E�

dE �q†(�r, E � → E) (1.119)

where:

q†(�r, E � → E) =
χ(�r, E �)νΣf (�r, E)

4πkeff

φ(�r, E �)

+
1

4π
Σs(�r, E → E �)φ(�r, E �) (1.120)

φ†(�r, Ω̂, E) is the adjoint flux pertaining to the solution of the integro-differential Boltz-

mann equation 1.117. Lewins [25] interprets the adjoint flux φ†(�r, Ω̂, E) as the total
number of neutrons added ultimately to the critical reactor originating from one neutron
source at the phase space position ρ̄ = (�r, Ω̂, E), i.e. the sum of all the progenies of
the neutron at the phase space ρ̄; The function φ† is generally called [25, 15] the source

importance function. Weighting the source importance function by the neutron flux, i.e.�

φ†(ρ̄), φ(ρ̄)
�

gives the ultimate contribution of the neutron flux to the total neutron

density [25].

Integral Formulation

The integral equation for the neutron flux was given by equation 1.39 and can be written
as:

φ(�r, E) =
�

�r�

d�r�

�

Ω̂∈4π
dΩ̂

�

E�

dE � I(E; �r� → �r)δ(Ω̂ − �r − �r�

|�r − �r�|
) · q(�r, E � → E) (1.121)
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where for simplicity we have ignored the surface source appearing in equation 1.33. The
neutron source appearing q(�r, E � → E) is defined by equation 1.118 and the first flight
kernel I(E; �r� → �r) was given in equation 1.38 as:

I(E; �r� → �r) =
exp

�

− � �r
�r� dsΣ(�s, E)δ

�

�s
s

− �r−�r�

|�r−�r�|

��

|�r − �r�|2
(1.122)

with the parameterization �s = sΩ̂. By using relations 1.108 and 1.109, it can be seen
that the adjoint of the integral Boltzmann equation 1.121 satisfies [15]:

ψ†(�r, E) =
�

�r�

d�r�

�

Ω̂�∈4π
dΩ̂

�

E�

dE �I(E �;�r → �r�)δ(Ω̂ − �r − �r�

|�r − �r�|
) · q†(�r�, E � → E) (1.123)

where q† was defined in equation 1.120.

It has been noted by Lewins [25] that the adjoint of the integral Boltzmann equation
has a different physical interpretation than the adjoint of the integro-differential Boltz-
mann equation. In particular, the adjoint of the integral equation, ψ†(�r, E), also called
the flux importance function, is interpreted to be the total flux of neutrons added to
the critical reactor as a result of a unit flux of neutrons at the phase space ρ̄ [26, 15].
Equation 1.123 is then an equation of conservation of importance. It states that the flux
importance function at position ρ̄ is the sum of the flux importances of all those neutrons
which have scattered from energies E to energy groups E� and traveled from the point �r
to �r� (i.e. the sum of all the progenies); this is represented as the product of the first flight
kernel with the collision source. Weighting the flux importance function with the flux
φ(ρ̄), i.e.

�

ψ†(�r, E), φ(�r, E)
�

, and using equation 1.123 gives the ultimate contribution of

the neutron source to the total neutron flux in the reactor [15, 25].

Relation between the flux importance and the source importance function

The source importance function φ†(�ρ) was interpreted as the contribution of a unit neu-
tron source at the phase space ρ̄ to the total neutron density. The flux importance
function ψ† was interpreted as the contribution of a unit flux at phase space ρ̄ to the
total flux density. Since the neutron flux φ(ρ̄) is the product of the neutron source N(ρ̄)
with the velocity, it is then clear that:

�

1, φ†(ρ̄)
�

�1, ψ†(ρ̄)� =
1

v̄
(1.124)

where v̄ is the average neutron velocity. The two importance functions then satisfy [15]:

φ†(�r, E) =

1

v̄

�

Ω̂∈4π
dΩ̂

�

�r�∈D
d�r�I(E;�r → �r�)δ

�

Ω̂ −
�r� − �r

|�r� − �r|

�

ψ†(�r�, E) (1.125)
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taking the inner product of 1.125 by the collision source
�

E� dE �q(�r, E � → E), and re-
arranging some of the integrals, we have:

�

φ†(�r, E),
�

E�

dE �q(�r, E � → E)
�

(1.126)

=
1

v̄

�
�

Ω̂∈4π
dΩ̂

�

�r�∈D
d�r�I(E;�r → �r�)δ

�

Ω̂ −
�r� − �r

|�r� − �r|

�

ψ†(�r�, E �),
�

E�

dE �q(�r, E � → E)φ(�r, E)

�

=
1

v̄

�

E
dE

�

d�r�ψ†(�r�, E)

φ(�r�,E) by equation 1.121
� �� �
�

dΩ̂

�

d�r
�

E�

dE �I(E;�r → �r�)δ

�

Ω̂ −
�r� − �r

|�r� − �r|

�

q(�r, E � → E)φ(�r, E �)

� �� �

total flux contribution

=
�

ψ†(�r, E), φ(�r, E)
� 1

v̄

where the spatial integrals are over the entire space �r ∈ D and �r� ∈ D and all solid angles
Ω̂ ∈ 4π.
Equation 1.126 can be interpreted as such: the first flight kernel I(E, �r� → �r) transforms
the collision source q(�r�, E � → E) into the flux φ(�r�, E). Weighting this by the flux
importance function ψ† gives the contribution of the neutron source to the total neutron
flux. Dividing by the average neutron velocity gives the contribution of the neutron source
to the total neutron density which was the interpretation given to φ†(ρ̄).

1.5.3 Discretized Form of the Adjoint Equations

We will now proceed to present the discretized form of the integral adjoint equation.

The Integral Adjoint- The Flux Importance Function

The matrix equation satisfied by the flux �φ was given in equation 1.102 as:

�φ = P(Σ) · (S + λF) · �φ (1.127)

where the matrices S and F are dense in energy and diagonal in space so that:

S · V = V · S (1.128)

F · V = V · F (1.129)

The collision probability matrix P was shown to be dense in space and diagonal in energy.
Note that the reciprocity relation of equation 1.91 given as Vip

g
ij = Vjp

g
ji is written in

matrix form as:
V · P = PT · V (1.130)

where we have used the diagonal nature of the regional volume matrix V. Taking the
adjoint of equation 1.127, with the discretized adjoint operator defined by equation 1.115,
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gives [24]:

�ψ† = V−1 · (ST + λFT) · PT · V · �ψ†

= V−1 · (ST + λFT) · V · P · �ψ†

= (ST + λFT) · P · �ψ† (1.131)

where the second equality was obtained by merit of the reciprocity law given by equation
1.130. The third equality was obtained by virtue of the diagonal nature of the scattering
operator S and the fission operator F in space as is presented in equations 1.128 and

1.129 respectively. We note that the transpose of the fission operator F =
−→
χT · �νΣF is

given by:

FT =
−−−→
(νΣ)T · −→χ = (νgΣgχg�) (1.132)

Standard Form for the Flux Importance Function

The standard form of the integral adjoint can be derived from equation 1.131 as:

(A† − λB†) · �ψ† = 0 where (1.133)

A† = I − ST · P (1.134)

B† = FT · P (1.135)

Relation with the Source Importance

In equation 1.131, we obtained the equation for the flux importance to be given as:

�ψ† = (ST + λFT) · P · �ψ† (1.136)

In equation 1.125 we saw that the source importance function (i.e. the adjoint of the
integro-differential Boltzmann equation) was given as the convolution of the first flight
kernel with the flux importance function. Multiplying equation 1.136 by the collision
probability matrix P we have:

P · �ψ† = P · (ST + λFT) · P · �ψ† (1.137)

defining �φ† = P(Σ) · �ψ† then gives:

φ† = P(Σ) · (ST + λFT) · �φ† (1.138)

Equation 1.138 is the matrix equivalent to equation 1.125 (ignoring the normalization
1
v̄
), which is satisfied by the adjoint of the integro-differential Boltzmann equation. It is

also easier to solve for the adjoint φ†, given the similarity of equation 1.138 to the flux
equation 1.127. Indeed, the sole modification needed to be made to the code for solving
the adjoint flux given by equation φ† is to transpose matrices Σs → Σ

T
s and F → FT,

along with some additional book keeping, given the different form of the scattering matrix
due to reversing the group orders [24].
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1.6 Generalized Adjoints

The formalism that was presented in the previous section and the related interpretations
were those corresponding to the classical adjoint. As discussed in the next section, the
classical adjoint [8] can be used to derive a perturbation formula for reactivity. However,
one of the main goals behind lattice computations is the generation of two group cross
sections for use with a diffusion code. Perturbation expressions for two group cross sec-
tions involve the computation of the generalized adjoint [7] which will be presented in this
section. These adjoints are the particular solution to the non-homogeneous Boltzmann
equation, with the non-homogeneous source S† chosen based on the response of interest.
We will discuss some features about them below.

The Generalized Adjoint

Consider the response/functional of the form:

R[φ] =
�Hn, φ�
�Hd, φ� (1.139)

where φ is the neutron flux that satisfies the Boltzmann equation:

(A − λB) · φ = 0 (1.140)

and the functions Hn = Hn(ρ̄, q̄), Hd = Hd(ρ̄, q̄) are functions which can have a depen-
dence on phase space ρ̄ as well as on other parameters q̄. Examples of such functionals are
reaction rates (normalized), or the breeding ratios or few group cross sections. For these
responses/observables, the functions Hn and Hd will be cross sections. For example, a
breeding ratio in a PWR would have: Hn = Σ

238U
(n,capture) as the 238U capture cross section

while Hd =
�

I∈fissile ΣI
(n,f) as the sum of the fission cross sections for all fissile elements I

present in the system.

The adjoint source S†, for which the non-homogeneous Boltzmann adjoint is solved,
is chosen based on the response of interest R. For reasons which will be explained in
the next section, it is defined as the functional derivative [13] of the response R[φ] with
respect to the flux φ, so that:

S† =
∂R

∂φ
=

Hn

�Hd, φ� − R
Hd

�Hd, φ� (1.141)

The generalized adjoint corresponding for the integral form of the Boltzmann equation
is then defined to satisfy [15, 24]:

Γ
† = (ST + λFT) · P · Γ

† + S† (1.142)
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or in standard form:

(A† − λB†) · Γ
† = S† where (1.143)

A† = I − ST · P(Σ) (1.144)

B† = FT · P(Σ) (1.145)

Some interesting observations can be noted about the generalized flux Γ†. First, note
that the class of functions Γ† represents the solution to a non-homogeneous Boltzmann
equation, which has the singular operator A† − λB† (with ψ† being its solution). There-
fore, the class of sources for which equation 1.142 has a solution is limited. In particular,
since the neutron flux is positive at all the phase space points ρ̄ (i.e. there are no negative
neutrons), a completely positive source would result in an ever increasing flux, while a
negative source would result in an ever decreasing flux so that a steady state solution of
equation 1.142 cannot exist. Taking the inner product of equation 1.141 with the neutron
flux φ(ρ̄) we see that:

�

S†, φ
�

= 0 (1.146)

Equation 1.146, also known as the Fredholm alternative [27] restricts the possible set of
sources S† to those that are orthogonal to the flux φ. As seen, all responses of the form R
given by equation 1.139 (ratios of linear functionals of φ) satisfy this condition. However,
linear ratios of the flux such as an unnormalized reaction rate (R ≡ �Σ, φ�) do not satisfy
this condition. The restriction is consistent with the physical property of the Boltzmann
equation: in a reactor, described by the Boltzmann equation 1.140, the flux level that is
measured by a detector can have in principle any value. A detector describes the physical
state of the reactor only once it has been normalized by some factor (i.e. calibrated).
Regardless of the normalization factor used for the detector, the ratios of two readings is
always uniquely defined. The condition of the need for a flux normalization translates to
the condition of having a response of the form given by equation 1.142, and therefore a
source S† that always satisfies equation 1.146. For such responses, a generalized adjoint
Γ† always exists [15, 28].

Next, note that the solution Γ† to equation 1.142 is not unique. This is of course true
for any non-homogeneous differential equation; If Γ†

p is the particular solution of equation
1.142, then for all α ∈ R, we also have:

Γ
† = Γ

†
p + αψ† (1.147)

as a solution. Here ψ† refers to the flux importance function defined as the Homogeneous
solution of the Boltzmann equation 1.142. It is important to eliminate most of the homo-
geneous component ψ† from the function Γ† so that it will not dominate the information
related to the source S† [74].

Numerical Solution

The method suggested by Usachev [7] to solve for the Generalized Adjoint is the Neumann
Series Method. The convergence can always be speed up using an Euler-Knopp accel-
eration routine [28, 10]. A unique solution for the Generalized Adjoint can be obtained
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from the series [7] :

Γ
† =

∞�

n=0

Γ
†
n (1.148)

where:

A†
Γ

†
0 = S† (1.149)

A†
Γ

†
n = λB†

Γ
†
n−1 (1.150)

In the formalism of Usachev [7], the series given by equation 1.148 represents the sum of
the importances over all generations7 up to and including the present generation8. Taking
the inner product of the first equation with the flux φ we see that the solutions Γn of
these equations satisfy:

0 =
�

S†, φ
�

=
�

A†
Γ

†
0, φ

�

=
�

Γ
†
0, Aφ

�

=
�

Γ
†
0, λBφ

�

=
�

λB†
Γ

†
0, φ

�

=
�

A†
Γ

†
1, φ

�

= ....

=
�

A†
Γ

†
n, φ

�

=
�

λB†
Γ

†
n, φ

�

(1.151)

so that the solutions Γ†
n are orthogonal to the fission source. The orthogonality conditions

are equations of conservation of importance. B†Γ†
n is the response of the detector at n

generations before the detector reading, weighted by the probability (per unit path) of
the birth of neutrons from fission. However, the total detector response is zero by virtue
of the orthogonality relation between the source S† and the flux φ, so that by virtue of
equation 1.146 and the equalities given in 1.151, the total importance is conserved [15].
The method suggested by Stacey [28, 24] is to remove the projection along the fission
source from the function Γ†, i.e.

Γ
† = Γ

† −
�

Γ†, B · φ
�

�φ†, B · φ� (1.152)

This method ensures that the generalized adjoint Γ† will converge towards the unique
generalized adjoint which is orthogonal to the fission source, i.e. satisfies the chain of
equalities appearing in equation 1.151.

Generalized Adjoint for the Integro-Differential Boltzmann Equation

To obtain the generalized adjoint corresponding to the adjoint of the integro-differential
non-homogeneous Boltzmann equation, we multiply equation 1.142 by the collision prob-
ability matrix P(Σ), so that:

P(Σ) · Γ
† = P(Σ) · (ST + λFT) · P(Σ) · Γ

† + P(Σ) · S† (1.153)

defining Γ∗ = P(Σ) · Γ†, and S∗ = P(Σ) · S† we arrive at the equation satisfied by the
generalized adjoint Γ∗ of the integro-differential Boltzmann equation which also satisfies

7Note that one is moving backwards in time.
8The first generation is defined as n=0.
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[24]:
Γ

∗ = P(Σ) · (ST + λFT) · Γ
∗ + S∗ (1.154)

1.7 Perturbation Theory

Perturbation theory in reactor physics is usually used and presented in terms of the
integro-differential formulation of the transport equation. This use of perturbation theory
is convenient for two reasons:

1. The integro-differential form of the transport equation is the more commonly en-
countered form of the transport equation when performing computations. Of the
computational methods for resolving the transport which were mentioned in section
1.3.1, the integro-differential formulation of the transport equation corresponds to
the SN , the PN and the BN methods, which are the more widely used approaches
for resolving the transport equation.

2. The perturbations in the operators appearing in the integro-differential form of the
transport equation are linear in terms of perturbations in the underlying physical
parameters (in our case, the nuclear data). This makes sensitivity expressions de-
rived from perturbation formulas using the integro-differential form of the transport
equation easier to use than their integral counter parts.

However, a perturbation theory formulated using the integral form of the transport equa-
tion is also of interest, principally for two reasons [15] :

1. First is the capacity of integral transport methods to compute accurate solutions
in heterogeneous systems. This property, which is unique to integral transport
methods, allows for an accurate computation of reactivity worths of small samples
inserted within the core, or for an accurate account of the heterogeneity of the
reactor system.

2. When using the integral formulation of the transport equation, perturbations in the
operators appearing in the integral transport equation (see equations 1.103-1.105)
become non-linear in terms of perturbations in the underlying physical parameters.
It can be shown that use of the adjoint function for the unperturbed system is
more accurate when using the integral formulation of the transport equation than
its integro-differential formulation [26, 15].

Khairallah and Storrer [29] investigate this second property in application to computing
Doppler reactivity coefficients for fast reactors. Their method is based on the collision-
probability formulation of perturbation theory, which is also discussed in [26]. In [26],
while discussing the features of perturbation theory using the collision probability method,
McGrawth and Fischer also discuss the physical differences in the meaning/interpretation
of the adjoint function which arise from the various formulations of integral transport the-
ory. In the previous section, we provided their interpretation in relation to the collision
probability method, which can also be found in [25], and [15]. In [15], Greenspan provides
a survey of the collision probability method, the birth rate density formulation, and the
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fission rate density formulations and discusses in detail the accuracy of each formulation.

In this section, we will first derive perturbation formulas expressing the resultant
perturbation in R (in our case reactivity and two-group cross sections) in terms of per-
turbations in the operators of the Boltzmann equation. We then proceed to discuss kernel
perturbations - a concept necessary in the integral formalism of the transport equation
to relate perturbations in the operators of the integral form of the Boltzmann equation
to perturbations in the base data.

1.7.1 Perturbation Expressions

There are three main approaches to derive perturbation expressions:

• The approaches based on physical considerations, such as that taken by Usachev
[7], and Lewins [25]. In this approach, the importance functions are tracked in
generations to derive a resultant perturbation (the perturbation affects all cycles).

• The standard approach [30, 15] is based on deriving perturbation expressions start-
ing from the reference and perturbed Boltzmann equations.

• The variational approach, developed by Pomraning [31], with a comprehensive trea-
tise is presented by Stacey in [28], starts with a functional related to the specific
parameter of interest. Equations are then derived for the adjoint flux which mini-
mizes this functional.

In this section we will review the standard approach for deriving perturbation formulas.

First Order Perturbation

Suppose that we have solved the Boltzmann equation 1.100 corresponding to a specific
system and obtained the eigenvalue λ and the scalar flux φ. We shall refer to this sys-
tem as our reference system whose values depend on a number of physical parameters qi

such as the moderator temperature, the fuel enrichment, the value of a microscopic cross
section within a specific energy range, etc. We can now imagine a perturbation δq in one
of the parameters q → qp = q + δq where q is the parameter for the reference state, δq is
the perturbation and qp is the system parameter for the new perturbed system. Here, the
subscript p refers to the perturbed system.

Next, we note that the perturbation in the base parameter q will result in perturba-
tions δA and δB in the operators of the standard form of the transport equation (such
as the operators appearing in equation 1.100). Similarly, the perturbation δq will result
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in the perturbations δλ and δφ in the eigenvalue and flux of the reference state, so that:

A → Ap ≡ A + δA (1.155)

B → Bp ≡ B + δB (1.156)

φ → φp ≡ φ + δφ (1.157)

λ → λp ≡ λ + δλ (1.158)

where the index p stands for the new perturbed system. In the rest of this work, we will
assume that the perturbations are of first order. That is, we will ignore all second order
terms such that δXδY = 0 for X, Y = {A, B, δφ, δλ}. This is a standard assumption
[7, 30, 28, 15, 24] for problems encountered in reactor physics9 as well as in many other
research fields.

Perturbation Expressions for Reactivity

Suppose that a perturbation in the base system parameter q → q + δq results in the
perturbations in the operators A, B, λ, and φ according to equations 1.155-1.158. The
Boltzmann equations for the reference and perturbed system are then given by:

reference : A · φ = λB · φ (1.159)

perturbed : Ap · φp = λpBp · φp (1.160)

reference adjoint: A† · φ† = λB† · φ† (1.161)

Note that the adjoint flux φ† is the solution to the adjoint of equation 1.159 - we have
not made any concrete statement or assumption regarding the specific formalism of the
Boltzmann equation.

Expanding equation 1.160, ignoring all the second and higher order terms and sub-
tracting from equation 1.159 we have:

(A − λB) · δφ + (δA − λδB) · φ = δλB · φ (1.162)

Taking the inner product with the adjoint equation φ† and solving for δλ we obtain:

δλ =

�

✘✘✘✘✘✘✘✘✿ 0

(A† − λB†)φ†, δφ

�

�φ†, B · φ� +

�

φ†, (δA − λδB) · φ
�

�φ†, B · φ�

=

�

φ†, (δA − λδB) · φ
�

�φ†, B · φ� (1.163)

where the first term was simplified by using the definition of the adjoint operator given
by equation 1.107, so that:

�

φ†, (A − λB) · δφ
�

=
�

(A† − λB†) · φ†, δφ
�

9Stacey [28] suggests higher order perturbation theory for deep penetration and radiation shielding
problems.
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and by noting that the adjoint flux satisfies equation 1.161. Equation 1.163 presents
the perturbation in the eigenvalue λ in terms of perturbations in the operators of the
Boltzmann equation. To compute the perturbation in λ requires the flux φ, its adjoint
φ† and the perturbations in the operators δA and δB. In this way, we avoid the need for
the computation of the perturbation δφ in the flux, which would otherwise require a new
solution of the transport equation for each perturbation δq.

Perturbation Expressions for Linear Ratios of the Flux

We will now proceed to derive perturbation formulas for linear ratios of the flux. Let R
be a linear ratio of the flux (see equation 1.139):

R[φ] =
�Hn, φ�
�Hd, φ� (1.164)

where Hn(ρ̄, q̄) and Hd(ρ̄, q̄) are functions which may have a dependence on the phase
space ρ̄ and the base parameters q̄. Here, q̄ denotes the vector containing all parameters
q. The distribution φ(r̄, E) is the flux for our reference state. i.e.

(A − λB) · φ = 0 (1.165)

Let us also assume that we solved equation 1.142 for the generalized adjoint Γ† which
satisfies:

Γ
† = (ST + λBT) · P · Γ

† + S† (1.166)

with the source S† defined by equation 1.141 so that:

S† =
∂R

∂φ
=

Hn

�Hd, φ� − R
Hd

�Hd, φ� (1.167)

Given a perturbation in a base parameter q → q + δq, we have the Boltzmann equation
for the perturbed system:

(Ap − λBp) · φp = 0 (1.168)

with the perturbed response Rp satisfying:

Rp[φp] =
�Hn,p, φp�
�Hd,p, φp� (1.169)

where Hn,p = Hn(ρ̄, q̄ + δq̄) and Hd,p = Hd(ρ̄, q̄ + δq̄). To first order, the perturbation in
δR of R is then given by:

δR =









Direct Perturbation in R
� �� �

�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ�









+









Resultant Perturbation from δφ
� �� �

�Hn, δφ�
�Hd, φ� − R ·

�Hd, δφ�
�Hd, φ�









(1.170)

=
�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ� +

�

S†, δφ
�

(1.171)
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where the last equality was obtained by merit of equation 1.168. Note that the first term
appearing on the right hand side of equation 1.170 is the resultant perturbation in the
functional R due to the direct dependence of the functions Hn and Hd on the parameter
q̄, and the second term appearing on the right hand side of equation 1.170 is the resultant
perturbation in the functional R due to its implicit dependence on q through the explicit
dependence of R on the neutron flux φ.

Expanding equation 1.166, and ignoring higher order terms, we have:

(A − λB) · δφ = (δλB + λδB − δA) · φ (1.172)

Taking the inner product of equation 1.172 with the generalized adjoint given by equation
1.143, and noting the orthogonality relation given by equation 1.146 between the source
S† with the flux φ, we have:

�

Γ
†, (A − λB) · φ

�

=
�

(A† − λB†) · Γ
†, δφ

�

=
�

S†, δφ
�

=
�

Γ
†, (δλB + λδB − δA) · φ

�

(1.173)

Substituting equation 1.173 into equation 1.171, we arrive at:

δR =









Direct Perturbation in R
� �� �

�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ�









+

equivalent perturbation from δφ
� �� �
�

Γ
†, (δλB + λδB − δA) · φ

�

(1.174)

we could think that to compute δR requires knowledge of δλ and thus knowledge of the
adjoint flux φ†. However, by virtue of the chain of equalities given by equation 1.151, we
have:

δR =

�

�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ�

�

+
�

Γ
†, (λδB − δA) · φ

�

(1.175)

The above equation provides a convenient formulation for calculating the effects of a
given perturbation in the input parameter q on the response R. We note that for each
perturbation in the input parameter q, the parameters which appear in equation 1.170
could be computed directly. However, most analysis usually involves calculating effects
that come from all sorts of system alterations in the input data, so that a direct approach
for each parameter would require a direct calculation for each input parameter, thereby
making such an approach very costly in computer power and simulation time.

By using the generalized adjoint function Γ†, we have removed the need for the com-
putation of the flux perturbation δφ (which would otherwise have to be computed for
each perturbation in q̄). Thus the computation of δR requires only the computation of
the function Γ†, the flux φ, and the perturbation in the operators δA and δB.
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1.7.2 Kernel Perturbations

The operators in the perturbation expressions using the integral formalism of the Boltz-
mann equations are different than their counterparts which appear in the integro-differential
formalism. In particular, perturbations in the operators of the integro-differential formal-
ism can always be expressed in terms of linear perturbations in the underlying nuclear
data (the operators are linear with respect to the cross sections). This is not the case when
the integral formulation of the Boltzmann equation is used so that the perturbations in
the operators must be somehow accounted for. In [32, 26, 29], due to the one-dimensional
nature of the geometries considered, an analytical formula for the CP could be obtained
so that the perturbations can be computed. Another approach is to provide an approxi-
mation accounting for the perturbation in the first flight kernel in terms of a perturbation
in the total cross section [24]. These two options will be discussed in this section.

Perturbations in the First Flight Kernel

The operators A and B for the integral formulation are given by equations 1.104 and
equations 1.105 as:

A = I − P(Σ)·S (1.176)

B = P(Σ) · (
−→
χT ·

−−→
νΣF ) (1.177)

To use equation 1.163 (or equation 1.175) with the integral adjoint ψ† (or the generalized
integral adjoint Γ†) requires knowledge of the perturbations in the operators A and B.
To first order, these perturbations are given by:

δA = −(δP · S + P · δS) (1.178)

δB = (δP · F + P · δF) (1.179)

As observed from equation 1.178, the perturbation in δA depends on the perturbation in
the CP matrix δP which depends on the perturbation in the first flight kernel I.

In equation 1.38, we defined the first flight kernel I to be:

I(E; �r� → �r) =
exp

�

− � �r
�r� dsΣ(�s, E)δ

�

�s
s

− �r−�r�

|�r−�r�|

��

|�r − �r�|2
(1.180)

where �s = sΩ̂. The perturbation in this kernel due to a perturbation δΣ in the total cross
section is then given as [32, 15]:

δI(E; �r� → �r) ≡ I(E; �r� → �r)

�

exp

�

−
� �r

�r�

dsδΣ(�s, E)δ

�

�s

s
− �r − �r�

|�r − �r�|

��

− 1

�

(1.181)

Equation 1.181 shows that the perturbation in the first flight kernel I depends on the
perturbation in the total cross section. Integrating equation 1.181 over the volumes Vj
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and Vi we see that the resultant perturbation in the reduced collision probability pij is
given by:

δpg
ij =

1

Vi

�

�r∈Vi

�

�r�∈Vj

�

Ω̂∈4π
d�rd�r�dΩ̂

I(Eg; �r� → �r) ·

�

exp

�

−
� �r

�r�

dsδΣ
g
T (�s, E)δ

�

�s

s
− �r − �r�

|�r − �r�|

��

− 1

�

(1.182)

Computation of this integral is difficult, and requires modification in the integration
subroutines of DRAGON. We note that performing this integration would also be com-
putationally expensive, considering the time consuming nature of the collision probability
integration and the need to perform the integration for each δΣ

g
T - per group and per

mixtures, and would somewhat defeat the purpose of using perturbation theory. There-
fore, we have not investigated this option. We will now present a solution introduced by
Takahashi [33] to compute the perturbation in the collision probability δP.

The P0 Approximation for the Kernel Perturbation

The approximation suggested by Takahashi [33] and implemented in DRAGON by T.
Courau consists in replacing the perturbation in the total cross section which appears on
the left hand side of the integro-differential Boltzmann equation by an equivalent source
in the in-group scattering term.

Let us consider the integro-differential form of the transport equation:
�

Ω̂ · ∇ + Σ

�

φ(�r, Ω̂, E) = (S + λF) · φ(�r, E) (1.183)

the integral equation for the flux is then:

�φ = P(Σ) · (S + λF) · �φ (1.184)

let us now add δΣ to both sides of equation 1.183 so that the integro-differential and the
integral equation will now satisfy:

�

Ω̂ · ∇ + Σ + δΣ

�

φ(�r, Ω̂, E) = (S + λF) · φ(�r, E) + δΣ · φ(�r, Ω̂, E) (1.185)

�φ(�r, E) = P(Σ + δΣ) · (S + λF) φ(�r, E) + P(Σ + δΣ) · δΣ · φ(�r, E) (1.186)

we note that the flux remains unchanged since we have added the operator δΣ to both
sides of the equation. If the flux is now isotropic, so that φ(�r, Ω̂, E) � 1

4π
φ(�r, E), then we

see that [34]:

φ(�r, E) � P(Σ + δΣ) · [S + λF + δΣ] · φ(�r, E) (1.187)

Expanding P(Σ + δΣ) � P(Σ) + δP and substituting in 1.187 while ignoring the second
order term δP · δΣ, we have [34]:

− P · δΣ · φ = δP · (S + λF) · φ (1.188)
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Let us now consider the perturbation expression appearing in equation 1.163 for the
eigenvalue λ:

δλ =

�

ψ†, (δA − λδB)φ
�

�ψ†, Bφ� (1.189)

Substituting equations 1.178 and 1.179 into equation 1.189 and using the approximation
given by equation 1.188 for δP · (S + λF) we have:

δλ = −
�

ψ†, {P · (δS + λδF) + δP · (λF + S)} · φ
�

�ψ†, P(Σ) · Fφ�

= −
�

PT(Σ) · ψ†, {−δΣ + λδF + δS} · φ
�

�PT(Σ) · ψ†, Fφ�

=

�

φ†, (δΣ − δS − λδF)φ
�

�φ†, Fφ� (1.190)

where the last equality was obtained by using the relation between the integral and the
differential adjoint (i.e. φ† = P · ψ† ). We see from equation 1.190 that by expressing the
resulting perturbation δP in the collision probability matrix in terms of the change in the
total cross section, and by assuming that the flux is isotropic, we arrive at the equivalent
sensitivity expression corresponding to the integro-differential form of the perturbation
formulas.

1.8 Sensitivity Functions

In nuclear data uncertainty propagation, a sensitivity function can be thought of as
a linear transformation that represents the relative change in the reactor performance
parameter R resulting from a relative change in the nuclear data q. These sensitivity
functions provide the basis to the sensitivity approach of uncertainty propagation. The
sensitivity function can be thought of as the first order derivative or slope of the response
R with respect to a relative change δq/q in the input variable q:

Sq
R(ρ̄) =

δR

R
/

δq(ρ̄)

q(ρ̄)
(1.191)

where ρ̄ stands for the phase space variables (r̄, E, Ω̂). R is usually a functional of the
flux with a dependence on q that could be (and in most cases is) non-linear (see equation
1.164). Therefore, the sensitivity function Sq

R (expressed in %/%) represents the relative
change in R due to small relative changes in q.

In this section, we derive sensitivity formulas for reactivity and linear functionals
of the flux, which were presented in equation 1.164. The sensitivities formulas that we
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present here express the sensitivity of the response (criticality or a linear ratio of the flux)
to the multi-group cross sections that appear in the multi-group form of the transport
equation. These sensitivities are typically referred to as explicit sensitivity as they ignore
any additional feedback from the perturbation in the fine flux. We mentioned in sec-
tion 1.4.1 that to compute the multi-group cross sections which appear in the transport
equation requires a self shielding computation, whose goal is the computation of the fine
flux f(E) appearing as the weighting function in equations 1.57 to 1.60. A change in the
nuclear data (such as a resonance parameter), can be expected to result in a perturbation
in the fine flux f(E) → f(E) + δf(E). In chapter 3, we will show that this resulting
perturbation (which is ignored when computing the explicit sensitivity) can be accounted
for by an additional sensitivity. This additional sensitivity is called the implicit sensitivity

as it originates from the implicit dependence of multi-group cross sections (and therefore
the computed flux) on the fine flux function f(E).

1.8.1 Sensitivity Formulas for Reactivity

In the case where the flux is isotropic (we will discuss flux anisotropy in chapter 3),
replacing λ = 1

keff
in equation 1.190 gives:

δ(
1

keff

) =

�

φ†, (δΣ − δS − 1
keff

δF) · φ
�

�φ†, Fφ� (1.192)

noting that δ( 1
keff

) =
−δkeff

keff
· 1

keff
we have:

δkeff

keff

=

�

φ†, (keffδS + δF − keffδΣ) · φ
�

�φ†, Fφ� (1.193)

multiplying equation 1.193 by q/δq we obtain the sensitivity Sq
keff

of the keff to the
parameter q, given by:

Sq
keff =

q

keff

δkeff

δq
=

�

φ†, (

GAIN
� �� �

qkeffδqS + qδqF −
LOSS

� �� �

qkeffδqΣ) · φ

�

�φ†, Fφ� (1.194)

where q ∈
�

νg, χg, σ(n,el),g, σ(n,inel),g, σ(n,f),g, ...
�

is a multi-group parameter and δq ≡ ∂
∂q

.

Computation of Sq
keff using equation 1.194 requires computation of the inner products

appearing in the nominator and the fission source normalization factor appearing in
the denominator. Computation of the latter can be avoided by noting the sum of the
sensitivities of the fission yields will reduce to identity. What is usually done is to compute
the unnormalized sensitivities appearing in the nominator of equation 1.194 for the various
multi-group parameters and then normalize by the total sum of the ν̄ sensitivities [37].

48



1.8.2 Sensitivity Formulas for Linear Functionals of the Flux

For a response R[φ] of the form given by equation 1.139:

R[φ] =
�Hn, φ�
�Hd, φ� (1.195)

we have from equation 1.175:

δR =

�

�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ�

�

+
�

Γ
†, (λδB − δA) · φ

�

(1.196)

where Γ† was the generalized adjoint to the integral form of the non-homogeneous Boltz-
mann equation given by equation 1.166. In the case where the flux is isotropic, and using
the relation between the integral adjoint Γ† and the differential adjoint Γ∗ along with
equations 1.178-1.179 and 1.188 for the Kernel perturbation, we have:

δR =

�

�δHn, φ�
�Hd, φ� − R ·

�δHd, φ�
�Hd, φ�

�

+ �Γ∗, (λδF + S − δΣ) · φ� (1.197)

The sensitivity Sq
R of the response R to the nuclear data q can then be computed by:

Sq
R ≡ q

R

δR

δq
=

q

R

��

�δqHn, φ�
�Hd, φ� − R ·

�δqHd, φ�
�Hd, φ�

�

+ �Γ∗, (λδqF + δqS − δqΣ) · φ�
�

(1.198)

1.9 Uncertainty Propagation

In this work, we assume that the nuclear data q is with uncertainties and correlations
supplied under the form of a covariance matrix V, where V is in relative units (i.e.
in (%)2). We can thus propagate the uncertainties of the base data to compute the
uncertainties on the integral parameter R. This work can be done using law of propagation

of errors:
�

ΔR

R

�2

= �ST · V · �S =
�

i

�

j

Sqi

R VijS
qj

R (1.199)

where the sensitivities Sqi

R represent the variation of the response R to a variation in the
base nuclear data qi. The ensemble of sensitivity coefficients as a function of nuclear
reaction and energy are denoted by the vector �S. Here, T refers to matrix transposition.
In the case where we are interested in more than one response Ri, the sensitivities are
expressed in matrix form with elements Sij given by [1]:

Sij = Sqi

Rj
=

qi

Rj

∂Rj

∂qi

(1.200)
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Chapter 2

Methodology: Part I
Codes used and General
Development

In this section, we provide a quick overview of the codes we have used in our analysis, as
well as the general developments that we have made both in data processing and related
to performing the sensitivity analysis. The computations related to this work which lies
in the domain of the sensitivity approach to nuclear data uncertainty propagation can be
divided into two major tasks. First, while the idea of supplying covariance matrices along
with evaluations dates back to the 1960s, it is only recently that we are seeing an effort
by evaluators to systematically include covariance matrices in their evaluated data files.
Even where matrices are available, the task of arriving at the data that is in accordance
with the needs of the transport or the sensitivity code is not evident. The second task
is performing the sensitivity computation and uncertainty analysis itself. Currently, the
capacity to perform such a computation today exists in few codes and outside of this
work, is not available in DRAGON.

2.1 DATA & DATA Processing

We present in this section the NJOY nuclear data processing code, which we use to
generate continuous energy and multi-group cross section data for use with the WIMS
libraries [38]. We then proceed to describe the WIMS format.

2.1.1 NJOY

Before the nuclear data provided in the Evaluated Nuclear Data File can be used by
codes such as DRAGON, the data must be processed by a nuclear data processing code.
The code NJOY [39] is used in our work for this purpose.

The NJOY program has a modular approach, with the output of one module (called
an NJOY tape) being the input for the next module. A typical NJOY computation rele-
vant to this work is as follows:
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• The RECONR module of NJOY is used to represent the cross section data in
continuous energy form for the temperature available on the Evaluated Nuclear
Data File (usually the cross section data is provided at 293◦ K).

• The BROADR module is used to Doppler Broaden the resonances at temperatures
corresponding to those requested by the user in the input file.

• The UNRESR module produces average cross section values in the unresolved res-
onance region as a function of a background/dilution cross section σ0 which is
requested by the user in the input file (see equation 1.71).

• The GROUPR module is used to calculate the slowing down flux as a function of
energy in an infinite homogeneous medium for the background dilution cross section
σ0 requested by the user in the input file. It then uses the computed slowing down
flux as the weighting function to generate the multi-group cross sections given by
equations 1.57 to 1.60.

• The module WIMSR produces multi-group parameters in a format compatible with
the WIMS code. This format is described in the next section.

The NJOY outputs containing the continuous spectrum energy cross section files is called
PENDF (outputs of RECONR, BROADR, UNRESR), and the GROUPR output which
contains the multi-group cross sections is called GENDF.

ERRORR

The module ERRORR of NJOY [40] is the incorporation of the covariance processing
code ERRORRJ in NJOY [41] and can be used to process nuclear data covariance files
available in the ENDF to covariances in multi-group format for:

• resonance parameters (provided under mt 32 in the ENDF)

• multi-group cross sections (under mt 33 in the ENDF)

• secondary angular and energy distributions (under mt 34 & 35 in the ENDF)

In order to propagate covariances from resonance parameters to covariances for group-wise
cross sections, the derivative ∂σg

∂Γi
of the group wise cross section σg(E; �Γ) with respect to

the resonance parameter Γi must be computed. The derivative is computed in ERRORR
by using a direct perturbation approach; for example, if N resonance parameters (Γi)

N
i=1

are provided in the ENDF, then N derivatives must be computed. The derivative ∂σg

∂Γi

is computed as the average over the continuous energy interval of the continuous energy
cross section σ(E; �Γ) (note that in NJOY, energy increases with increasing group number).

Here, we have explicitly included the vector of resonance parameters �Γ = (Γi)
N
i=1 in our

notation for the continuous cross section σ(E; �Γ) to emphasize its dependence on the N
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resonance parameters. The derivative of the continuous energy cross section is computed
by direct perturbation using a central difference scheme so that [40]:

∂σg

∂Γi

=
1

ΔE

� Eg+1

Eg

dE
∂σ(E; �Γ)

∂Γi

(2.1)

=
1

ΔE

� Eg+1

Eg

dE
σ(E; Γ1, .., Γi−1, Γi + ΔΓi, Γi+1, ..) − σ(E; Γ1, .., Γ−1, Γi − ΔΓi, Γi+1, ..)

2ΔΓi

Once the derivatives ∂σg

∂Γi
for all the N resonance parameters are computed, the covariance

matrix for the multi-group cross sections can be computed using the law of propagation
of errors given by equation 1.199.

2.1.2 ANGELO & LAMBDA

In computing the response uncertainty contributions using the sandwich rule given by
equation 1.199, the covariance matrices that we use must be consistent in energy mesh-
ing and in reaction definition with the sensitivities that we have computed. The reaction
definition requires additional treatment and is discussed in chapter 3. The collapse/ex-
pansion of the energy mesh can be performed by the code ANGELO [43]. For example,
the covariances provided with the SCALE 5/6 code [42], hence referred to as SCALE
5/6 covariances, are given in a 44 energy group format and correspond to covariances for
individual channel reactions/partial cross sections (i.e. (n,elastic), (n,inelastic), (n,2n),
...). In this work, we use ANGELO to transform the SCALE 44 group matrices to the
WIMS 172-group grid. ANGELO constructs a union grid and uses a flat flux interpola-
tion routine to extend the uncertainties and the correlation matrices to the union grid.1

The uncertainty vectors and correlation matrices are then collapsed to the WIMS 172-
group grid, defined as their lethargy average over each group. The produced covariances
correspond to individual channel/partial reaction covariances given in 172×172 format.

Once the covariances are processed by ANGELO, the program LAMBDA [43] is used
to check the mathematical properties of the multi-group covariance matrices. The cor-
relation matrices are tested to determine if any element exceeds unity. Furthermore,
the number of positive, negative and zero eigenvalues are computed and the matrix is
classified on this basis [43].

2.2 WIMS Libraries

WIMS-D (Winfrith Improved Multi-group Scheme-D) is a lattice physics cell code re-
leased by Winfrith Technology Center in the UK [44, 45]. At its time, WIMS was one
of the few codes available to the public on non-commercial terms and was widely used
in many laboratories for thermal research reactor and power reactor computations [38].
Before the 1990s, the libraries associated with WIMS was the 69 group library generated

1Note that the energy meshing between the new grid and the original grid should not be drastically
different.
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in the United Kingdom based on evaluations dating back to the 1960s.

In the 2001, in collaboration with the Jozef Stefan Institute, the IAEA released a new
version of libraries, in (a slightly modified) WIMS format, which were based on the most
recent nuclear data files available at the time. Today, the libraries exist in 69 group and
172 group format and are freely available at [46, 38].

ENERGY Meshing

In this work, we use the 172 group WIMS libraries released by the IAEA [46]. The energy
meshing corresponds to the XMAS-172 group energy grid [47] and contains:

• 45 fast groups (E= 1.11378 ∗ 104 eV to 1.96403 ∗ 107 eV)

• 47 resonance groups (E= 4.12925 eV to 1.11378 ∗ 104 eV)

• 80 thermal groups (E=1.0 ∗ 10−5 to 4.12925 eV )

2.2.1 WIMS-D Format

WIMS uses the collision probability method to solve the Boltzmann equation in lattice
configurations. It therefore requires the group-wise transport cross section, the fission
cross section σf,g, the absorption cross section σABS,g, the group to group transfer scat-
tering matrix σs,g�→g, the fission yield ν̄g, and the fission spectrum χ̄g. We note that for
thermal neutrons, the bound atom scattering matrices must be provided as a function of
temperature. Self shielded cross sections are provided in terms of the resonance integral,
defined using the intermediate resonance approximation with the intermediate resonance
(Goldstein-Cohen) factor λ (provided for each group) as input for NJOY.

Absorption and Scattering Cross Sections

Except for a few isotopes (namely 1H, 2H, 12C, and 16O) only the P0 component for scat-
tering matrices are provided on the WIMS library so that we will limit our discussion to
isotropic scattering.

The group to group Σ
g�→g
(n,SCAT ) of the lumped scattering transfer matrix available in

the WIMS libraries (one matrix per isotope) is defined as [38]:

Σ
g�→g
(n,SCAT ) = σ

g�

(n,el)P
g�→g
(n,el) + σ

g�

(n,inel)P
g�→g
(n,inel) + 2σ

g�

(n,2n)P
g�→g
(n,2n) + 3σ

g�

(n,3n)P
g�→g
(n,3n) (2.2)

where σ
g�

(n,x) refers to the microscopic cross section in the energy group g� for the chan-

nel/partial reaction (n, x) with x ∈ {(n, el), (n, inel), (n, 2n), (n, 3n)}. Here, P g�→g
(n,x) refers

to the secondary energy distribution for reaction (n, x) and presents the probability that
an incoming neutron at energy group g�, which interacts with the nuclei via the chan-
nel (n, x), results in a neutron at energy g. The lumped scattering cross section in the
WIMS library is reconstructed from the scattering matrix by summing over the out-going
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neutron energies g of the group to group transfer matrix S = (Σg�→g) whose components
were defined by equation 2.2. i.e. [38]

σ
g�

(n,SCAT ) =
NG�

g=1

Σ
g�→g
(n,SCAT ) (2.3)

Similarly, a lumped absorption cross section is defined as the sum of all reactions which
result in the capture of a neutron. To preserve the total cross section σ = σ(n,ABS) +
σ(n,SCAT ), the σ(n,2n) cross section and 2σ(n,3n) cross sections are subtracted from the
lumped absorption cross section. i.e. [38]

σ
g
(n,ABS) =

�

x∈(n,abs)

σ
g
(n,x) − σ

g
(n,2n) − 2σ

g
(n,3n) (2.4)

where the summation index x appearing in equation 2.4 refers to all neutron absorbing
reactions x ∈ {(n, γ), (n, p), (n, α), (n, f), ...}.2 This is an intelligent way to store the data

required by the transport code;3 by storing the matrix Σ
g�→g
n,SCAT , defined by equation 2.2,

and the cross sections defined by equations 2.3 and 2.4, one avoids storing unnecessary
data and performing redundant computations, that would otherwise, in the case where
individual channel reactions had been provided, have to be performed.

Self Shielded Cross Sections

WIMS uses equivalence theory and the intermediate resonance approximation to compute
the effective dilution factor σb representative of the heterogeneous geometry (see chapter
3.1). In the case of a homogeneous mixture composed of one resonant isotope with density
Nr, and a moderator of density Nm, the dilution cross section is defined as [38]:

σb = λrσ
r
p + σ0 (2.5)

where λr (provided as input in the NJOY WIMSR module) is the intermediate resonance
factor for the resonant isotope, σr

p is the potential scattering cross section for the reso-

nant isotope, σ0 = Nm

Nr
σm

p is the potential scattering cross section of the moderator per
resonant atom.

The self-shielding data available on the WIMS libraries is tabulated as a function of
temperature and the dilution factor σb given by equation 2.5. The choice for the dilution
cross section σb is provided as user input for the NJOY WIMSR module. The "resonance
integral" in terms of which the self shielding data is provided in the WIMS libraries is
defined as [38]:

Ix(T, σb) ∼ σbσx(σb)

σb + σa(σb)
(2.6)

where Ix is the resonance integral for reaction x ∈ {(n, ABS), (n, f)}, and σb is the di-
lution cross section of the corresponding homogeneous mixture. The resonance integral

2These correspond to the reactions under the mt number mt=102, .., 150 on the NJOY GENDF tape
3For example, the JEFF 3.1 evaluation of 238U, processed by NJOY to WIMS 172 group mesh, the

GENDF tape has a size of 5.0 Mb while the WIMSR output has a size of 335 Kb
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I(T, σb) provides a monotone increasing function (as a function of σb) for which interpo-
lation over σb is both easy and accurate. The cross section σx(σb) can be recovered from
the resonance integral by [38]:

σx(σb) ∼ σbIx(T, σb)

σb − Ia(T, σb)
(2.7)

Transport Correction

In the WIMS libraries, a row transport correction is used for the thermal groups and a
column transport correction is used for the fast groups. For the 172 group energy grid,
the group transport correction is defined as [38]:4

σ
g
s,1 =







�172
h=1 σ

g→h
s,1 , for the thermal groups h ∈ [80, 172] ∩ N

�172

h=1
σ

h→g
s,1 Jh

�172

h=1
Jh

, for the epithermal and fast groups h ∈ [1, 80] ∩ N
(2.8)

where Jh is the neutron current in group h, and the σ
g→h
s,1 refers to the g to hth term of

the P1 (first Legendre coefficient) group to group scattering matrix. Here the first index
refers to the incident neutron energy and the second index refers to the outgoing neutron
energy. During the construction of the WIMS libraries, Jh is taken to be the current �J
of a "typical" PWR [38] cell and is provided as input for the NJOY WIMSR module.

2.2.2 WILLIE

WILLIE [38] is a program coded in FORTRAN 77 that can be used to create, modify,
and compile WIMS libraries. In this work, we use WILLIE for converting WIMS libraries
from ASCII format to binary format, and PYTHON modules that we have developed for
the manipulation of the library.

2.3 SCALE/TSUNAMI

The Standard Computer Analyses for Licensing Evaluation (SCALE) [48, 49, 50] is a
system code which functions in a modular fashion (SCA 2006). SCALE is composed of
approximately 76 completely integrated modules which allow a large variety of compu-
tations, from treatment of cross sections to criticality safety applications and radiation
shielding experiments.

Accompanying with the SCALE package is the Tools for Sensitivity and Uncertainty
Analysis Methodology Implementation (TSUNAMI) [51, 52, 53]. TSUNAMI is a leading,
state-of-the-art tool-set for nuclear data sensitivity and uncertainty analysis. At present,
the code TSUNAMI is the natural choice for developers to benchmark against and from

4Note that the order of energy groups inverses in multi-group libraries with energy decreasing with
increasing group number.
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which the performance of developed tools can be compared [54, 55, 56].

The SAMS module [57] of TSUNAMI uses adjoint perturbation theory to compute
sensitivities and perform nuclear data uncertainty propagation. The XSDRNPM mod-
ule [49] in TSUNAMI-1D is a deterministic flux solver which solves the SN form of the
transport equation in 1-D geometries. For 2-D geometries, the module NEWT [50] of
TSUNAMI-2D can be used to compute a deterministic solution for the flux and adjoint
using the SN form of the transport equation. Computation for three dimensional ge-
ometries is performed by the KENO module of TSUNAMI-3D that provides multi-group
Monte Carlo flux and adjoint solutions which can be used to compute keff sensitivities. In
2011 [58], the perturbation theory applications of TSUNAMI-1D and TSUNAMI-2D were
extended to include the capacity for sensitivity computation using Generalized Pertur-
bation Theory (with user defined responses at input). GPT capabilities do not currently
exist in TSUNAMI-3D.

2.4 DRAGON

The code DRAGON [12, 59] is an open source, deterministic transport code developed
and freely available at the Institut de Génie Nucléaire (IGN) of the Ecole Polytechnique de
Montréal (EPM). It includes all functions that characterize a lattice cell code, such as in-
terpolation of microscopic cross sections supplied from standard libraries, resonance self
shielding computations, multi-group and multi-dimensional neutron flux computations
which can also take into account neutron leakage, as well as computation and editing of
condensed and homogenized cross sections, and evolution/burn-up computations. The
version of DRAGON used in this work is DRAGON 3.06J which was the most recent
version at the start of this study.

DRAGON is a modular code, composed of twenty six modules each responsible for
a specific type of computation. The modules are called in a sequential format with cus-
tom types of data stored in the memory (called LINKED LIST) and passed from one
module to another. Behind the source code of DRAGON is the GANLIB driver [60] -
a large collection of modules in FORTRAN 77 which are responsible for initializing the
program, reading and checking the input file, memory allocation, handling advanced data
(LINKED LIST), interpreting the input supplied by the user, starting and terminating
one module after the other, and writing output data in several formats, etc. Use of the
GANLIB drivers alleviates many of the set-backs that are typically accompanied with
FORTRAN 77, most notably dynamic memory allocation and the unavoidable need for
common blocks, and allows for a more developer friendly environment. Using the GAN-
LIB driver also provides the user with an environment where complex simulations and
pseudo-code (logical if and iterative DO loops, variable assigning, etc) can be written in
the input file, thereby answering many needs which would otherwise involve source mod-
ification. The modular calculation associated with the GANLIB strategy also ensures
that subsequent developments are easily implemented in a fully-integrated computation
environment, and makes maintenance of the code easier [60].
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A typical computation in DRAGON

DRAGON is capable of solving the Boltzmann equation using the Method of Character-
istics (MOC) or the Collision Probability method (CP). We note that if the CP option
is used, the flux solution is the scalar flux obtained from a CP solution with a transport
corrected isotropic source (see section 1.3.2). This study relies on the CP method; a
typical computation relevant to this work in DRAGON is as follows:

• The module LIB: is used to create or modify a library. It takes in as input the
supplied library (in our case WIMS 172-group libraries) along with the mixture
identification numbers, the isotopic densities and the corresponding temperatures.
A library LINKED LIST structure is then created containing the multi-group pa-
rameters at the default dilution factor σb available on the reference library.5

• The module GEO: is then used to define a geometry. As a benefit of using Integral
Transport Methods, a large range of geometries (with non-centered spatial meshing
permitted) are available in 1D, 2D and 3D.

• Amongst a handful of tracking modules, the modules EXCELT: or NXT: can be
used to set up the integration lines for the computation of the reduced CPs that is
to follow. Defined by the user are the number of integration lines and number of
angles which are then used to discretize the space.

• The module SHI: is responsible for performing the resonance self shielding compu-
tation. The module uses the Generalized Stamm’ler method [21] to compute the
equivalent dilution factor (per group for the 47 resonance groups in the WIMS 172
group library) representative of the input heterogeneous geometry. The library is
then updated with the group parameters interpolated over this dilution factor (i.e.
self shielded cross sections). A Lagrange polynomial interpolation scheme [61, 62]
is used to interpolate over the logarithm of the dilution factor.

• The module ASM: takes as input the self-shielded library generated by SHI: and
the tracking data produced by NXT: /EXCELT:. Using a Gaussian quadrature
integration routine [12, 61], ASM: performs the integrations of the reduced colli-
sion probabilities given by equations 1.82 to 1.85. The integration of the CP matrix
is the most time consuming process during the computation.

• The module FLU: or SAD: can then be used to compute the forward and adjoint
fluxes given by equations 1.102 and 1.138 [24, 34]. If the module SAD: is used,
then the Generalized source S† given by equation 1.141 and the corresponding
generalized adjoint Γ∗ given by equation 1.154 are also computed for multi-group
cross section and reaction rate responses.

• The module SNS:, developed during the course of this study, takes as input the
FLU: or SAD: output to compute sensitivities for reactivity, two group cross sec-
tions and a number of other responses.

5For example, for 238U, the default dilution factor available on the WIMS libraries is σb = 28. barns.
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Once the sensitivities are computed by SNS:, uncertainty propagation can be performed
using the sandwich rule given by equation 1.199. The covariance matrices, appearing in
equation 1.199 are processed by the codes NJOY ERRORR or ANGELO and correspond
to the WIMS 172 group energy grid. The process of uncertainty propagation will be
discussed in more detail in chapter 3.

2.5 SUSD3D

SUSD3D [71, 37, 66, 67] is a sensitivity and uncertainty analysis code, originating from
the code SUSD [64], and further developed by I. Kodeli at IJS [65, 66, 67]. The code uses
first order perturbation theory, with the assumption that the sensitivities are constant
to variations in base parameters within the domain associated with their uncertainties.
This tends to be a general assumption when performing sensitivity analysis for nuclear
data uncertainty propagation.

SUSD3D presents a modular fashion for development by allowing the integration of
results from other codes to compute effectively sensitivities and propagate nuclear data
uncertainties. In this fashion, it is possible to use already available work and avoid
redundant development of tools for transport computation and cross section generation.
At the same time, this approach allows the capacity to update the system of codes, as
one version of this ensemble of codes can be more recent than the rest. SUSD3D was
our first experience in sensitivity analysis. At the start of this work, we successfully
coupled SUSD3D with DRAGON to perform nuclear data uncertainty propagation [63].
Indeed, much of the methodology that we have since coded in the more recent and object
oriented language PYTHON, as well as the underlying algorithms that we have coded
in FORTRAN 77 in the DRAGON module SNS:, result from our study of the SUSD3D
code, so that we present a detailed description of SUSD3D here.

2.5.1 Methodology

Figure 2.1 presents the schematic of the sequences of codes/modules and data used in
the code SUSD3D. The flux and adjoint fluxes used by the code are supplied generally
from Discrete Ordinates SN codes such as DOORS [68], DANTSYS [69] and TORT [70].
The cross sections and covariance matrices that are used by SUSD3D are prepared by
the code NJOY. The covariance matrices can be from the code ANGELO as well. The
codes GROUPR, ERROR34/SEADR (included in SUSD3D) and ERROR-J (which is
now a part of NJOY under ERRORR) are required for the treatment of microscopic
group-wise cross sections and covariance matrices which are used by SUSD3D during the
computation of the sensitivity.
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Figure 2.1: Schematic of the code SUSD3D. The codes DOORS and DANTSYS supply
the forward and adjoint fluxes, the cross sections are computed by NJOY GROUPR, and
the covariance matrices are processed by the code ANGELO or NJOY ERRORR or the
older ERRORJ module. Reproduced from reference [65].

Theory-Review

In the discrete ordinates SN formalism for the transport equation, what is normally
computed by the code is the angular flux. The sensitivity Sx

R(E) of the response R to
the cross section Σx of reaction x at energy E is then given as [71]:
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where the response R is defined as [71]:

R =
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dE ΣD(�r, E) · φ(�r, Ω̂, E) (2.10)

Σx(�r, E) = Total macroscopic cross section for reaction type x, at position �r, and
energy E.
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Σx
s(�r, Ω̂ → Ω̂�, E → E �)= the (n,x) partial scattering macroscopic transfer function

from angle Ω̂ to angle Ω̂� + dΩ̂�, and energy E to energy E � + dE �

ΣD(�r, E) = detector response function and source in adjoint calculation (eg. reac-
tion cross sections, Kerma, damage functions, dose factors, etc)

φ(�r, Ω̂, E) = angular flux

φ†(�r, Ω̂, E) = adjoint flux or generalized adjoint flux (if detector response function
ΣD �= 0).

Discretized Equations

In SN codes, the solid angle Ω̂ ∈ 4π is divided into N partitions. The angular dependence
of the scattering cross section is represented in terms of the cosine of the scattering angle
µ0 = Ω̂ · Ω̂� ∈ [−1, 1] and expanded in terms of Legendre polynomials so that [72, 71]:

ΣS(�r, µ0, E → E �) =
1

4π

L�
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Σ
l
S(�r, E → E �) · Pl(µ0) (2.11)

where the coefficients Σl
s(�r, E → E �) are defined by:

Σ
l
S(�r, E → E �) = 2π · (2l + 1)

� 1

−1
Σs(�r, µ0, E → E �) · Pl(µ0)dµ0 (2.12)

In practice the series appearing in equation 2.11 is truncated after a finite number of
terms with L representing the largest term that is taken into account.

The direct and adjoint flux appearing in equation 2.9 and 2.10 are in reality repre-
sented in their multi-group form using the multi-group approximation, and expanded in
terms of spherical harmonics Yl,m(Ω̂) with the solid angle Ω̂ discretized the angles Ωm

such that ∪N
m=1Ωm = 4π. The discretized form of the forward and adjoint fluxes are given

as:

φg,i,m =
L�

l=0

l�

n=−l

Yl,n(Ωm) · M l,n
g,i (2.13)
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Here g is the group index, i the region, and φg,i,m corresponds to the angular flux over

the angular direction Ωm. The flux and adjoint moments M l,n
g,i and M †l,n

g,i are defined as:
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The discretized form of equation 2.9 is then given as [71]:
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(2.17)

where

σx
g,i = total microscopic cross section for reaction type x, in the space interval i and

energy group g.

σl,g→g�= lth Legendre coefficient of the scattering microscopic cross section from
energy group g to g�.

Vi= volume of the space mesh interval i.

ρi is the isotope’s density in the region Vi.

φg,i,m and φ
†
g,i,m: forward and adjoint fluxes given by equations 2.13 and 2.14.

We finally note that both the flux moments φi,m,g and the angular moments M l,n
g,i appear

in equation 2.17. Whereas in one- and two-dimensional calculations this is an acceptable
approach, in three-dimensional computations, this approach can be unpractical due to
the large number of direct and adjoint angular flux terms [71]. The alternative approach
of the code SUSD3D is to use the flux moments which are given by equations 2.13 and
2.14. This approach tends to considerably reduce the required storage space and slightly
reduce the CPU time as a result of the lower number of arithmetic involved by the code
(the index n appearing in equation 2.17 is removed with this approach), while preserving
the accuracy of the calculation.

Codes Structure

The SUSD3D code computes sensitivities and uncertainties in three sequential steps,
called OVERLAYS:

OVERLAY 1 This is the most computationally demanding part of the calculation.
Here, the flux-adjoint product φg,i,k · φ

†
g�,i,k for k ∈ {0, .., L} and g, g� ∈ {1, .., NG},

appearing in equation 2.17 is computed. The flux moment product is then inte-
grated over regions composed of the same mixture (with NMIX being the number
of mixtures). This volume integrated moment product is called the SUFLUX and
contains: the g × NMIX flux elements required for the computation of the direct
term, the g × NMIX moment products required for the computation of the loss
term, and the g × g × (2L + 1) × NMIX moment products required for the compu-
tation of the scattering gain term. The SUFLUX is then written as a FORTRAN
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Direct Access file (this tends to speed-up access by future modules greatly) at which
point the OVERLAY 1 is terminated.

OVERLAY 2 In this step, the unnormalized sensitivities given by equation 2.17
are computed for each of the requested isotopes. The cross sections for the isotopes
are read by SUSD3D from the NJOY GENDF tape that is supplied as input, along
with the isotopic densities ρi which appear in equation 2.17. The unnormalized loss
and gain terms are then computed according to equation 2.17 and are written in
NJOY GENDF format to an output file.

OVERLAY 3 The unnormalized sensitivity is computed as the difference between
the gain and loss terms which were computed in OVERLAY 2. If the sensitivity
to keff is desired, then the fission normalization

�

φ†, F · φ
�

appearing in equation
1.194 must be computed. This can be avoided by instead dividing by the sum of
all the unnormalized ν̄ sensitivities calculated in OVERLAY 2, i.e. dividing by the
sum

�

g

�

I∈fissile S ν̄
keff ,g given by equation 2.17. Once the unnormalized sensitivities

are normalized in this way, the uncertainty is computed using the Sandwich rule
given by equation 1.199.

2.6 DINASOUR

The code DINASOUR has been developed [54] at McMaster University [54] with the goal
of performing nuclear data uncertainty propagation with DRAGON. To perform uncer-
tainty propagation, DINASOUR performs direct DRAGON simulations based on WIMS
libraries that it generates by sampling the IAEA released WIMS libraries based on the
covariance data (this usually requires several hundred direct simulations for each isotope).
A benefit of the code is that it modifies the WIMS libraries (before the heterogeneous
self-shielding computation) so that implicit sensitivities can be accounted for. Outside of
our work, DINASOUR is one of the only current tool we know of for performing nuclear
data uncertainty propagation using DRAGON. 6

2.7 CASMO-4

CASMO-4 [89] is a standard tool for lattice physics calculation and solves the neutron
transport equation using the Method of Characteristics [11]. Recently, developments have
been performed at VTT in order to incorporate a sensitivity and uncertainty function-
alities in the code [55, 56]. The approach taken at VTT also uses the WIMS libraries
and perturbation theory. In this work, we will provide some comparisons regarding the
differences in our methodology and that of CASMO-4.

2.8 Developments

In this section, we present a brief overview of some of the general tools that we have
developed over the course of this study.

6The only other currently available tool is the Total Monte-Carlo method developed at NRG.
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2.8.1 SAD: and General Developments

Introduction to SAD:

SAD: (Sources Adjoints/Directs) is a module in DRAGON composed of a collection of
subroutines developed by T. Courau in the early 2000s at EPM [24]. The module is
responsible for setting up the source functions of the form given by equation 1.141, and
computing the Generalized adjoints Γ∗ given by equation 1.154. The algorithm of the
module SAD: is as follows:

• After allocation of memory and interpretation of the input geometries and library,
which is performed in the subroutine SAD, the subroutine SADGET is called to
read and interpret the input file.

• The subroutine SADINI is then called to compute the forward and adjoint fluxes
by calling DRAGON’s flux solver FLUDRV 7 to solve equations 1.102 and 1.138.

• Next, the subroutine SADGAS is called, which after allocating the necessary mem-
ory, calls SADDTX to compute the reaction rates (response values) appearing in
equation 1.139. Scattering cross sections, defined as the difference between the total
with the absorption cross section, are computed by SADSCT. Once the reaction
rates are computed, the subroutine SADPSA is called to compute the generalized
source S†, given by equation 1.141, and to write this source to the LINKEDLIST
that is provided as input for SAD:.

• The subroutine SADFLU is then called to compute the generalized adjoint func-
tions Γ∗, appearing in equation 1.154, for each source computed by SADPSA and
writes the results to the flux LINKEDLIST, which is provided as input for SAD:.

Adjoint Sources

While the module SAD: offers a powerful tool for the computation of generalized adjoint
functions, it is not currently functional in versions 3.06x of DRAGON. In version 3.05,
the module is functional. Therefore, our starting point was to adapt the 3.05 source
to the 3.06. After arriving at a functional version, a second set of developments were
made by reprogramming most of SADDTX, SADSCT and SADPSA to allow for simpler
definitions of sources, as well as defining new sources such as breeding ratios, normalized
reaction rates, etc. Note that minor parts of FLU: also needed to be modified for this
purpose.

Flux Re-balancing and Convergence

When solving for the flux given by equation 1.102, the convergence rate is dependent
on the spatial and energy meshing. The first is effectively treated by using variational

7Note that this corresponds to computation using the Collision Probability method.
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acceleration methods [36, 24, 95]. Convergence8 in energy is usually accelerated using
flux re-balancing [24, 35, 14]. Flux rebalancing consists of modifying the obtained re-
gional flux during the iterative process to ensure the conservation of the total reaction
rate in group g (i.e. the total reaction rate in group g should be equal to the collision
source). When computing the flux, re-balancing tends to speed up the acceleration pro-
cess. However, when computing Generalized adjoint flux given by equation 1.154, we see
that re-balancing tends to slow down the convergence rate (this problem was also encoun-
tered during the original development of the module [24]). This is due to the fact that
the generalized adjoint tends to change signs during the convergence process given the
fact that the source is both positive and negative. We note that the positive and negative
nature of the source is dictated by equation 1.146, i.e. the source is orthogonal to the
flux which is non-negative throughout the entire energy range. Since flux re-balancing
does not take into account the sign of the adjoint flux, use of re-balancing tends to slow
down convergence (and sometimes no convergence is reached). Our attempt to answer
this problem was what is recommended in [28, 76]: divide the source in two parts (one
negative and one positive), solve the adjoint corresponding to each source, and recombine
the source and the obtained adjoint fluxes at each outer iteration.

However, while this approach tends to slightly speed up the acceleration for each
source function and ensures convergence with re-balancing, it tends to double the num-
ber of flux solutions so that the final computation time is longer than when not using
re-balancing.

The solution implemented by T. Courau during the original development was to begin
with a slightly contaminated source [24]:

Γ
†
0 = αφ† where α = α0

|S†|

φ†
(2.18)

with the factor α chosen as the ratio of the vector norm of the source to the vector norm
of the adjoint flux and α0 = 10−2 by default. Convergence with this method is almost
always reached if the initial source is contaminated according to equation 2.18, but it is
still slower than when not using re-balancing.

Therefore, regardless of splitting the source in two, or contaminating the flux in the
first few iterations, convergence is usually slower when using flux re-balancing. Finally,
we note that the convergence criteria must be somewhat relaxed (usually two orders of
magnitude than that desired for the flux) when solving for the generalized adjoint Γ∗ [24].
We note that this does not seem to have an effect on the computed sensitivities.

2.8.2 SNS:

The module SNS:, developed in DRAGON as a part of this work, allows for the compu-
tation of sensitivity coefficients to the cross section data available in the WIMS libraries
(independent of the specific evaluation or energy group meshing). Sensitivities for reac-

8Convergence in energy is performed in the inner iterations
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tivity, two group cross sections, reaction rates and breeding ratios to multi-group cross
sections, secondary particle energy distributions and fission yields can be computed using
SNS:. In this section, we provide a brief overview of the structure of SNS:. Our develop-
ment of SNS: is similar to the algorithm used by SUSD3D, so that we will only provide
a short description here and present the additional development in the next chapter. A
typical SNS: computation is as follows:

• After memory allocation and reading the tracking data provided from EXCELT:
or NXT: the subroutine SNSDRV is called to compute the sensitivities.

• The subroutine FLUGFL is then called to read the forward and adjoint flux for all
the responses available on the SAD: output. For each response, once the forward
and adjoint flux have been computed, the subroutine SENSFLX is called to com-
pute the SUFLUX which is then stored in a DRAGON binary file.

• Once the SUFLUX has been computed, the subroutine SNSEIG computes the keff

sensitivities using an algorithm similar to the one used by SUSD3D to compute the
reactivity sensitivities given by equation 1.194.

• The subroutine SNSGPT is then called to compute the sensitivities given by equa-
tion 1.198 for the responses available in the SAD: output.

Once the sensitivities are computed, their profiles, loss and gain terms, gain matrices,
and direct terms are stored in DRAGON format in the SNS: output to be used for
uncertainty analysis. This process will be discussed in further detail in the next chapter.

2.8.3 Data Processing with PYTHON

Behind the developments provided in chapter 3, and our results which are presented in
chapter 4, there is a large collection of PYTHON modules that we have developed, in an
object oriented style, and based on the Numerical PYTHON (NumPy) [96] and Scientific
PYTHON (SciPy)[97] libraries. These modules permit the study and manipulation of
the nuclear data encountered in its various formats and definitions. An Object Oriented
approach in programming is crucial when handling the large quantity of data that is
typically involved in nuclear data uncertainty propagation. The modules that have been
developed, allow one to access and manipulate the nuclear data in its many formats and
definitions, starting with the Evaluated Nuclear Data File, until the two group cross
section data generated by DRAGON for use with a diffusion code. The developed mod-
ules allow one to establish a link between NJOY’s continuous energy spectrum outputs
(PENDF files output by RECONR, BROADR, and RECONR), multi-group cross section
files (GENDF files), multi-group covariance files (ERRORR format), the data available
in the WIMS library (WIMS format), and DRAGON outputs (LCM objects/XSM files).
We note that the concepts being addressed here are not just a question of the difference
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in format, but rather a difference in the definition of what constitutes a cross section. We
provide here a brief description of the developed modules:

GANLIB in PYTHON

As mentioned earlier, the GANLIB driver is a large collection (26 thousand lines of code)
of modules in FORTRAN 77 which perform many tasks including handling (reading and
storing in memory, as well as writing) complex data structures which are used by the
code DRAGON to store its output data. DRAGON output format is very complex [98];
the data is stored as a LCM object in LCM format [60]. The format allows for the data
structure to be stored in terms of directories that can possess data and further subdirec-
tories. While it is a very efficient approach to storing data, to read stored data without
having access to the GANLIB drivers (i.e. outside of FORTRAN 77) is difficult. Indeed,
a large part of the GANLIB driver is dedicated to read and write this complex format.
As a result, accessing the DRAGON generated data necessary for performing sensitivity
analysis and uncertainty propagation becomes a difficult task.

One way to overcome this problem is to rewrite new modules in the new programming
language which would allow for the manipulation of the files. For example, such is the ap-
proach taken by the newly released (2011) graphical LCM object viewer available for use
with DRAGON-4 [99, 100]- a collection of PYTHON modules have been written which
are capable of reading LCM objects in ASCII format and permit graphical manipulation
of the data.

To resolve the problem of manipulation of DRAGON’s output data, we chose to com-
pile the complete GANLIB drivers as a dynamic library (using the publicly available
GFORTRAN compiler) that can then be imported into PYTHON using the ctypes class
[101]. In this way, every module available in the GANLIB drivers can be called and
used (so long as proper memory access is treated). The FORTRAN modules in GANLIB
relevant to this work are:

- LCMOP : open an LCM object data structure

- LCMSIX : move up and down a directory

- LCMGET : get information contained in a subdirectory of an LCM object data
structure

- LCMPUT : put information in a specified subdirectory

- LCMCL: close an LCM object data structure
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To ease use of these modules (which are now imported into PYTHON using the compiled
dynamic library and PYTHON’s ctypes libraries), we have written interface functions
for each of the listed FORTRAN modules. The primary form of data we use is our
exported DRAGON outputs in DRAGON XSM [60] format (this is a compact binary
form of the data), and then use the interface modules with the compiled dynamic library
to access the desired data. Reading and writing files in this way tends to be extremely
fast because the work is being done by the compiled FORTRAN code rather than in
PYTHON (which tends to be slow, particularly at reading ASCII format). It also allows
for a more developer friendly approach where hundreds of files can be manipulated by
writing a simple for loop with a few lines of code.9 The strategy for manipulating the
files is identical to the GANLIB driver. We use the PYTHON equivalent of each of the
modules listed above in the same way (open XSM files, move up and down the directories,
get the data, put the data and close files). This approach also avoids a lot of redundant
coding.

NJOY’s GENDF, PENDF and ERRORR formats

Another type of data that is essential for a proper computation of reaction uncer-
tainty contributions, when performing nuclear data uncertainty propagation is NJOY’s
GROUPR outputs. The continuous spectrum format is also useful for performing uncer-
tainty propagation using NRG’s Total Monte Carlo method (see appendix) and TALYS
[102] generated ENDFs. We can not emphasize the importance of verifying the NJOY
outputs when performing this type of computation; the NJOY processed data should be
checked, to ensure proper processing before being used for uncertainty analysis. NJOY’s
outputs are similar to the ENDF output; each line is limited to 80 columns (characters),
including the numbering of the lines, and contains six words (values) of 12 characters
including the exponential and its sign.

Unlike the DRAGON format, the particular difficulty with GENDF and PENDF files
is not their format but rather the quantity of data available in the files; GENDF format
contains the dilution factors, energy meshing, multi-group cross sections including the
Legendre Polynomial coefficients for the scattering cross sections and transfer matrices,
fission yields, fission spectrum, the slowing down flux, bound atom thermal scattering
data, etc. tabulated as a function of dilution and temperature. The PENDF contains
similar data in continuous energy form.

As a part of this work we have developed, in an object oriented approach in PYTHON,
a set of modules which allow for NJOY outputs to be read into memory, as well as to be
written in the original format, with interface functions that allow easy access to a specific
data type. Similarly, subroutines exist for interpolation over dilution and temperature.
This is done by first constructing the resonance integral given by equation 2.6, performing
a spline interpolation of the resonance integral over the logarithm of the dilution factor,
and then transforming the interpolated resonance integral to the cross section by using
equation 2.7. The interpolation in temperature is linear. A good example of application

9See the appendix for an application to uncertainty propagation for evolution computations using
NRG’s Total Monte Carlo method.

68



of subroutines is the construction of multi-group self-shielded covariances, which we per-
form by computing the covariances between the NJOY generated GENDF’s using NRG’s
TALYS generated Evaluated Nuclear Data Files (see Appendix A). Another application
is our treatment of the implicit effect presented in the next chapter.

ERRORR format in PYTHON

In performing uncertainty analysis, the multi-group cross section data (either in GENDF
format or WIMS) are used in the process of computing the sensitivities which appear
in the sandwich formula 1.199. An equally necessary quantity is the covariance matrix
V which appears in the same equation. Therefore, we have developed another set of
modules which allow us to manipulate the cross section covariance files (processed either
by NJOY ERRORR or ANGELO). This set of modules can be used to read and write
covariances in NJOY’s ERRORR format. Other than computing the uncertainty using
the sandwich rule 1.199, another possible application of these libraries is the construction
of lumped covariances, corresponding in reaction definition to the cross sections that are
contained in the WIMS libraries (see chapter 3).

WIMS in PYTHON

Another existing format encountered when performing nuclear data uncertainty prop-
agation with DRAGON is the format of the WIMS library. This is essential if one is
interested in manipulating the library directly (adding or removing cross sections), or
performing direct perturbations - which is a valuable validation tool for the computation
of sensitivities.10 Therefore, another set of modules that we have built are object oriented
modules capable of reading, writing, and manipulating entire WIMS libraries, as well as
NJOY WIMSR outputs. Details of the WIMS format can be found in the FORTRAN 77
source code of the WILLIE [38] program.

PSUSD in PYTHON

PSUSD was our first attempt to develop a sensitivity and uncertainty analysis code for
use with DRAGON. At the time of the development, SUSD3D suffered from two problems:

• The sensitivity computation in SUSD3D was done in single precision (this can have
an important effect when computing heavy isotope (n,el) sensitivities).

• The code used a single dilution factor for all energy groups.

The question of precision, which is important for applications such as βeff sensitivities,
has since been addressed in SUSD3D by I. Kodeli, with the source has been changed to
perform its arithmetics in double precision when using PARTISN as the computed flux

10Indeed, for the principle part of this work, we have used direct perturbations as a means to validate
my obtained results and continue my developments.
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and the adjoint are written in double precision. The second point has been partially ad-
dressed by I. Kodeli; the code now permits for cross section interpolation (for absorption
cross sections), using a single dilution factor for all groups. Note that if the interpolation
is performed over the cross sections (this is what is being done in SUSD3D currently)
rather than the resonance integrals then it is difficult to obtain realistic values for the
scattering cross section.

In all the PYTHON libraries that are described above, all of the arithmetic is per-
formed in double precision. PSUSD uses our PYTHON modules for GENDF files to
interpolate the cross sections at the appropriate temperature and dilution (contained in
the DRAGON output library). It then computes, in a similar fashion to SUSD3D (three
OVERLAYS), the sensitivities in double precision.

2.8.4 Uncertainty Analysis

Once the sensitivities have been computed (either by SNS: or PSUSD), the covariances
are read using our PYTHON module and the related uncertainties are computed using
equation 1.199. This process is discussed in more detail in chapter 3.

2.9 Problem Statement

We have now arrived at a point where we can produce explicit sensitivities similar to
what is currently computed by our colleagues (SUSD3D, CASMO-4, DINASOUR). How-
ever, the sensitivities that we calculate are computed using the scalar flux and adjoint
from a CP solution with a transport corrected source (what is available in DRAGON
with a CP computation). The sensitivities that we compute also differ from SUSD3D
(but similar to what is done in CASMO-4 and DINASOUR) in the sense that they are
response sensitivities to the lumped reactions available in the WIMS libraries.

Limitations of our Computed Sensitivities

Our computed sensitivities with SNS: suffer from two major drawbacks:

• The implicit component of the sensitivity is ignored. This is also true for the
methodology of SUSD3D and CASMO-4; a priori, this sensitivity should always be
considered.

• The computed sensitivities are valid only for the case where the flux is isotropic.
For scattering reactions, this computed sensitivity is accurate for reflected lattices
(the reflective boundary condition promotes flux isotropy) but will be very inaccu-
rate for problems involving anisotropy (such as problems involving leakage, larger
assembly or full core computations). Scattering sensitivities are most affected from
this approximation.
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Limitations of our Computed Uncertainty Contributions

It will be shown in chapter 3 that even when the sensitivity is computed accurately, the
task of uncertainty analysis is not a straight-forward application of equation 1.199 due
to differences that exist in the definition between the reactions available in the WIMS
libraries (lumped reactions given by equations 3.55-3.57), and the reactions in the covari-
ance files (partial reaction cross sections such as (n,n), (n,inel),...). This limitation does
not just apply to the sensitivities computed with SNS: but to all the codes that compute
sensitivities with respect to lumped cross sections such as those computed by CASMO-4
[55, 56] and DINASOUR [54].11

For absorption, this problem can be overcome by constructing covariances for a co-
variance matrix corresponding in definition to lumped absorption cross section (this is
done in chapter 3). However, as it will be further shown in chapter 3, with results pro-
vided in chapter 4, this methodology is not applicable to scattering sensitivities. As a
result, the uncertainty contribution for heavy isotope scattering that is currently being
computed by codes such as CASMO-4 and DINASOUR is not exact. This is quite un-
fortunate as heavy isotope (n,inel) reactions are reported to have high uncertainties and
can contribute greatly to the overall response uncertainty.12

Problem Statement

The remainder of this work, we will progress towards a more accurate computation of
the sensitivity and uncertainty by introducing further developments to account for:

• the implicit sensitivity.

• leakage and anisotropy.

• accurate computation of the uncertainty contribution from heavy isotope scattering
reactions.

11While not discussed here, the ERANOS code also computes sensitivities to such reactions
12For the cases considered in chapter 4, we will see that that uncertainties for 238U (n,inel) cross section

is the dominant contributor to the keff uncertainty originating from 238U.
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Chapter 3

Methodology: Part II
Sensitivity Analysis with DRAGON

This chapter presents some of the more conceptual developments which were made, over
the course of this study, with the code DRAGON in order to respond to the benchmarks
presented in chapter 4. We concentrate on three effects. First, we will introduce an
approximation that permits us to compute the perturbation in the spectral fine flux
due to an underlying perturbation in the nuclear data. This allows us to compute the
implicit sensitivity. Next, we will consider the problem of neutron leakage. By invoking
the buckling formalism, and treating leakage as a standard cross section, we obtain a
sensitivity expression that includes a correction term accounting for neutron leakage.
This permits for an accurate computation of the scattering sensitivity. Finally, we present
our methodology for computing uncertainties using sensitivities obtained in terms of the
data available in the WIMS libraries and the uncertainty data currently available in the
form of covariance matrices.

3.1 Spectral Fine Structure Effects

Sensitivity and uncertainty analysis in reactor physics usually begins with neutron trans-
port computations at the group level, with a multi-group library that has been obtained
through the necessary assumptions applicable to the system. But, as we discussed it
when presenting the narrow resonance approximation introduced in section 1.4.1, a flux
solution can be performed only after the multi-group cross sections corresponding to
the geometry are computed. This is usually done through a self shielding calculation.
The self shielding calculation uses the available information in the multi-group library to
produce multi-group cross sections best representative of the system. In the case where
equivalence methods are used, the self shielding calculation uses various simplifications
to arrive at an equivalence principle between the slowing down flux in an infinite homo-
geneous medium and the slowing down flux in the heterogeneous geometry [73, 21]. The
computed flux and adjoint solutions correspond to the system with these self shielded
cross sections. The sensitivity expressions of equations 1.194 or 1.198 are then calculated
in terms of these cross sections. They represent the % change in the response with respect
to a 1% uniform change in the self shielded cross section.
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However, it should be noted that a change in a nuclear data such as a resonance param-
eter can have a non-negligible effect on the group constants by affecting the weighting
flux spectrum f(E) appearing in equations 1.57 to 1.60. Within the resonance region
where the weighting flux usually has a strong dependence on cross section parameters,
the effect is a concern. This effect is usually accounted for [74, 75] as an additional
sensitivity of the multi-group cross section to a change in the continuous spectrum cross
section. However, it is difficult to compute this change due to the nonlinearity of the self
shielding phenomena and the fact that we do not have access to continuous spectrum
cross sections during the transport calculation.

In this section we proceed to compute the sensitivity of the self-shielded group param-
eter to the nuclear data parameter q. This computed sensitivity is comparable to what
is called the implicit sensitivity [74, 75] in the system code SCALE [48, 49]. To compute
the implicit sensitivity, we will first present a review of equivalence theory methods in
application to the Wigner Cell - an isolated rod, emergent in a sea of moderator.

While this is one of the simpler heterogeneous geometries, it will allow the reader to
become familiar with the notions involved in a self-shielding calculation. We will then
proceed to present the chain rule approach introduced by Greenspan [15], which relates
the perturbation in the self-shielded group parameter of the resonant isotope with the re-
sultant perturbations in the group parameters of all the constituents of the geometry. We
will then proceed to provide an analytical expression for the perturbation in the fine flux,
which can be used with the chain rule approach of Greenspan to compute accurately the
implicit sensitivity in homogeneous geometries. The approximation is more constraining
in heterogeneous geometries and can only be used to predict the implicit sensitivity of a
resonant isotope due to a perturbation in its nuclear data.

3.1.1 Self-shielding and Equivalence Theory

Self shielding calculations involving homogeneous-heterogeneous equivalence theory [77,
21, 73] usually begin with cross sections tabulated as a function of temperature and a
dilution factor σ0. The dilution factor σ0 (barns) provides a measure of the moderator’s
ability to thermalize neutrons past the resonant isotope’s many resonances. The defi-
nition of the dilution factor, depends on the specific approximation formalism that was
used to generate the weighting flux. Each approximation (narrow resonance, intermedi-
ate resonance, etc.) [19] will result in a slightly different definition of the dilution factor σ0.

In this section we will review the homogeneous-heterogeneous equivalence formalism
in application to a simple heterogeneous system: the Wigner cell, using the Narrow Reso-
nance Approximation (NRA) [78]. The approximation that we use in our implementation
is the Intermediate Resonance Approximation (IRA). As will be seen in section 3.1.3, the
NRA formulas can be adapted to the IRA by a change in notation and definition of the
dilution factor.

In the framework of the Narrow Resonance Approximation, the dilution factor in a
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homogeneous mixture with one resonant isotope is defined as [19] :

σ0 =
�

k �=r

Nk

Nr

σp,k (3.1)

where Nk is the atomic density of the non resonant isotope having the potential scattering
cross section σp,k, and Nr is the atomic density of the resonant isotope (atms/cm-barns).
As was discussed in Chapter 1, group parameters are generated by using the weighting
flux corresponding to neutron thermalization/slowing down in an infinite homogeneous
mixture composed of the resonant isotope with a moderator. In the case of the NRA,
the fine flux in the homogeneous medium was defined in equation 1.71 to be [38, 19]:

φHOM(E) =
σp,r + σ0

σr(E) + σ0

1

E
(3.2)

where σr and σp,r are the resonant isotope’s total and potential cross sections respectively.
Note that in equation 3.2 we assumed the scattering cross section to be dominated by
potential scattering.

In equivalence theory methods, flux expressions for a heterogeneous geometry often
involve linear combinations of homogeneous fluxes given by equation 3.2. The goal of the
equivalence method in self shielding computations is then to calculate a dilution factor
σ0 "best" representative of the geometry. This principle is well illustrated by using the
Wigner Cell example - a single rod in a sea of moderator.

The Wigner Cell

We can imagine a two volume system, composed of an isolated fuel rod F immersed in a
moderator region M . The total collision rate in the fuel is given as [19, 20]:

ΣF (E)φF (E)VF = PF →F (E)VF

� ∞

0
dE �

Σs,F (E � → E)φF (E �)

+ PM→F (E)VM

� ∞

0
dE �

Σs,M(E � → E)φM(E �) (3.3)

where ΣF = Σr +
�

k∈F Σk is the fuel macroscopic total cross section, Σr is the macro-
scopic total cross section of the resonant isotope r, Σk is the macroscopic total cross
section of the non-resonant isotope k �= r, φF (E) is the flux in the fuel region, VF is the
volume of the fuel region, Σs,F is the macroscopic scattering cross section in the fuel,
Σs,M is the macroscopic scattering cross section of the moderator, PF →F and PM→F are
the fuel to fuel and moderator to fuel collision probabilities respectively.

Assuming scattering to be only possible by elastic collisions, so that the energy transfer
probabilities can be effectively represented by the form presented in equation 1.66 and
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integrating over the differential scattering cross sections leads to [19, 20]:

ΣF (E)φF (E)VF = PF →F (E)VF

�

k∈F

� E/αk

E

Nkσs,k(E �)φF (E �)

(1 − αk)E �
dE �

+ PM→F (E)VM

�

i∈M

� E/αi

E

Nkσs,i(E
�)φM(E �)

(1 − αi)E �
dE � (3.4)

where the index k ∈ F refers to isotopes in the fuel and the index i ∈ M refers to
isotopes in the moderator. Here, σs,k and σs,i are the microscopic scattering cross section

of isotope k and i with density Nk and Ni, and αk =
�

Ak−1
Ak+1

�2
, and Ak is the ratio of the

mass number of isotope k to the neutron mass. Equation 3.4 can be greatly simplified if
resonances are assumed to be narrow and well separated, so that they do not overlap. In
this case they will have a small contribution to the integrals appearing in equation 3.4.
If a resonance width is small, the neutrons that fall inside the resonant region come from
outside of the resonance where interaction is dominated by the potential cross section.
Outside the resonance, the flux φ(E) has the asymptotic shape of C

E� (where with the
proper normalization, C can be taken to be unity) and the scattering cross section of
the resonant isotope is its potential/background cross section σr,p. We can also assume
that the moderator cross section is constant and dominated by potential scattering so
that σs,k = σp,k. Ignoring the contribution of the flux under the resonance to the energy
integral of equation 3.4, we have [19, 20]:

1

1 − αk

� E/αk

E
Nkσp,kφ(E �)

dE �

E �
= Nkσp,k

1

E
for k �= r (3.5)

1

1 − αk

� E/αr

E
Nrσs,k(E �)φ(E�)

dE �

E �
= Nkσp,k

1

E
for for k = r (3.6)

In the case where only a single resonant isotope is considered, equation 3.4 simplifies to
[20]:

ΣF (E)φF (E)VF =
1

E
(PF →F (E)VF Σp,F + PM→F (E)VMΣp,M) (3.7)

where Σp,F = Nrσp,r +
�

k �=r Nkσp,k is the macroscopic potential scattering cross section
of the fuel, and Σp,M =

�

i∈M Niσp,i is the macroscopic potential scattering cross section
of the moderator.

In the case where only two regions are considered, the reciprocity relation given by
equation 1.88 becomes:

PM→F (E)

VF ΣF (E)
=

PF →M(E)

VMΣM

(3.8)

Using the above reciprocity law, equation 3.7 reduces to [20]:

φF (E) =
1

E

�

(1 − PF →M(E))
Σp,F

ΣM(E)
+ PF →M(E)

�

(3.9)

We note that equation 3.9 requires knowledge of the collision probability PF →M(E). For
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the Wigner cell, the fuel to moderator collision probability PF →M can be expressed as
[78, 20]:

PF →M(E) =
1

ΣF (E)l̄

� ∞

0
(1 − exp(−ΣF (E)l)) dl

=
1

ΣF (E)l̄ + 1
(3.10)

where l̄ = 4V
S

is the average chord length of the fuel geometry of volume V and surface
area S. By merit of equation 3.9 the flux φ(E) of the Wigner cell simplifies to [20]:

φF (E) =
1

E

Σp,F + 1/l̄

ΣF (E) + 1/l̄
(3.11)

=
1

E

Nrσp,r +
�

k �=r Nkσp,k + Σe

Nrσr(E) +
�

k �=r Nkσp,k + Σe

(3.12)

=
1

E

σp,r +

σ0
� �� �

(σ0,F + Σe/Nr)

σr(E) + (σ0,F + Σe/Nr)
� �� �

σ0

(3.13)

with σ0,F =
�

k �=r
Nk

Nr
σp,k and the escape cross section Σe = 1

l̄
defined as the inverse of the

average chord length l̄.

Equation 3.13 is remarkably similar to the slowing down flux given by equation 3.2
for an infinite homogeneous medium with the dilution factor σ0 = σ0,F + Σe/Nr. When
the mean average chord length l̄ is small (i.e. a large escape cross section Σe), as would
be the case for a small rod, neutrons from the moderator can easily reach any point inside
the rod and have a large chance of escaping from the fuel. Therefore, the flux depression
due to the resonant isotope is minimal (the self-shielding effect is small).

Most equivalence theory based methods involve representing the fuel to moderator
collision probability as rational expressions similar to equation 3.10. For complicated
heterogeneous geometries, each formalism uses a number of assumptions regarding the
form of the fine flux structure φF (E) to arrive at a representation of the escape proba-
bility PF →M(E), and Σe which involve sums of rational expressions similar to equation 3.9.

During the computation of PF →M(E), the choice of the nuclear data available is
limited to the data available in the library. Relevant to the self shielding calculation, this
data includes the constant potential cross section σp,r, and the temperature dependent
resonance integral tabulated in terms of the dilution factor σ0. The resonance integral
was defined by equation 2.6 as [38]:

I =
σ(T, σ0)σ0

σ(T, σ0) + σ0

(3.14)

Given the flux depressions under the resonance, the resonance integral I provides a mono-
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tone increasing function (as a function of dilution) for which interpolation over the dilu-
tion and temperature can be performed.1 If the intermediate resonance approximation is
used, an intermediate resonance factor λ ∈ [0, 1] is also provided [79, 80]. The intermedi-
ate resonance factor λ provides a measure of the width of the resonance with λ = 0.0 if
the resonance is large, and λ = 1.0 if the resonance is narrow. The group cross sections
can then be computed by inverting equation 3.14. An iterative procedure over the dilu-
tion factor σ0 is performed to arrive at a set of cross sections that satisfy a representation
of equation 3.4 for all resonant isotopes that are present in the system.

3.1.2 Spectral Fine Structure Effects: Chain Rule Approach of
Greenspan

Returning to the Wigner cell problem and equation 3.13, it can be seen that a change in
the nuclear data q that results in the changes δσp,r, δσr in the cross sections and δσ0 will
cause a change δφ in the weighting flux of equation 3.13 given by:

δφ(E) =
∂φ(E)

∂σp,r

δσp,r +
∂φ(E)

∂σr

δσr +
∂φ(E)

∂σ0

δσ0 (3.15)

The first two terms are perturbations in the weighting spectrum φ(E) from its explicit
dependence on the potential and total cross sections σp,r and σr. The third term con-
taining δσ0 takes into account the implicit perturbation [75] in the weighting spectrum
due to the change in the dilution factor σ0. It should be noted that σ0 depends on
all the cross sections of the other constituents of the assembly. This dependence comes
from the collision probability term PF →M which appears in equation 3.9 and the term
σ0,F =

�

k �=r
Nk

Nr
σp,k which depends on the scattering cross sections of all isotopes present

other than that of the resonant isotope. A change in the parameters of one isotope may
therefore induce a change in the parameters of another isotope, thereby adding new cor-
relations. A good example of this is the correlation between 238U capture and hydrogen
scattering in a LWR where an increase in the hydrogen atomic density will increase the
moderation (increasing the dilution factor), thereby lowering the flux depression and thus
increasing the value for the multi-group absorption cross section.

The group parameter
�

σHET
x,I

�

of isotope I for the heterogeneous geometry can then
be expressed as: �

σHET
x,I

�

= fx,I(σ0, σx(E))σ∞
x,I (3.16)

where σ∞
x,I is the group parameter available in the multi-group library generated using a

1/E weighting spectrum (σ0 = ∞), and the f-factor [74] accounts for the neutron spec-
trum effect on the group constants in the continuous energy region. The f-factor is a
representative correction due to heterogeneity effects and composition. It contains all
information regarding the cross section, the isotopic composition of the geometry and the
heterogeneity of the geometry. In many simple codes, the self shielding problem is han-
dled from tabulated values of f-factors representing various geometries with interpolation

1Computationally, a simple linear interpolation will suffice, although Lagrange interpolation [62] is
used in DRAGON. We use quadratic splines in our PYTHON codes
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over geometric parameters used to generate the case dependent f-factors. In principle, the
self-shielding f-factor of isotope I depends on all the other constituents of the assembly.
The dependence comes from the weighting flux function that was used to generate the
group parameters.

The change in the group constant
�

σHET
x,I

�

due to a change in the nuclear data q is
then given by:

∂
�

σHET
x,I

�

∂q
= fx,I

∂σ∞
x,I

∂q
+ σ∞

x,I

dfx,I

dq
(3.17)

If
�
�
�
�fx,I

∂σ∞

x,I

∂q

�
�
�
� >>

�
�
�σ∞

x,I
dfx,I

dq

�
�
�, then spectral fine structure effects are negligible and can be

ignored so that there is a linear relationship between a change in the cross section σ∞
x

and the self shielded cross section
�

σHET
x,I

�

. However, in the case where
�
�
�σ∞

x,I
dfx,I

dq

�
�
� is

not negligible, the relation between the self shielded cross section and the nuclear data
q becomes more complicated. In particular, since the f-factor fx,I depends on all the
constituents of the assembly, we have [74]:

dfx,I

dq
=

∂fx,I

∂σI
x

∂σI
x

∂q
+
�

J �=I

�

y

∂fx,I

∂σJ
y

∂σJ
y

∂q
(3.18)

with J changing over all isotopes other than I and all reactions y. We note that a change
in the nuclear data parameter q can affect many different f-factors.

Next consider the sensitivity of the response R, due to a perturbation in the input
parameter q. The contribution to the resulting change in the performance parameter R
from a perturbation in q can be via many different channels, including all group constants.
Therefore, df

dq
may no longer be negligible. Taking into account the possible contribution

from all channels we arrive at the chain-rule form of the sensitivity given by Greenspan
as [74]:

SRq ≡ δR

R
/

δq

q

=
�

I

�

x

GI
R,x

� �� �



δR

R
/

δ
�

σHET
x,I

�

�

σHET
x,I

�





P I
x,q

� �� �



δ
�

σHET
x,I

�

�

σHET
x,I

� /
δq

q



 =
�

I

�

x

GI
R,xP I

x,q (3.19)

Here, GI
R,x is the sensitivity coefficient of the performance parameter to the group con-

stant; it is precisely what is being calculated in formulas such as equations 1.194 or 1.198
and is often referred to as the explicit sensitivity since it does not take into account
any change in the fine flux due to the perturbation in the base parameter q. P I

x,q is the
group constant sensitivity coefficient (to the base parameter q) and can be expressed from
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equation 3.17 as [74]:

P I
x,q ≡

δ
�

σHET
x,I

�

�

σHET
x,I

� /
δq

q
=

DI
x,q

� �� �
�

f I
x

δσ∞
x,I

σHET
x,I

�

/

�

δq

q

�

+

QI
x,q

� �� �
�

δf I
x

f I
x

�

/

�

δq

q

�

= DI
x,q + QI

x,q (3.20)

The first term DI
x,q accounts for the direct change in the tabulated group cross section

available in the multi-group library due to a change in the nuclear data q. The second
term QI

x,q accounts for the perturbation in the spectral fine structure which is taken into
account through the change in the self shielding factor δf I

x .

Equation 3.20 represents the sensitivity in (%/%) of the group cross section after self

shielding
�

σHET
x,I

�

to a perturbation in the tabulated homogenized cross sections before

self shielding
�

σ∞
x,I

�

. If covariance matrices for group constants are calculated at each

dilution factor appearing in the library (normally, this data is only provided at infinite
dilution), then the uncertainty due to nuclear data q may be calculated in a straight
forward manner.

When q = σ∞
x , the sensitivities

�
δfI

x

fI
x

�

/
�

δσ∞
x

σ∞
x

�

that appear in equation 3.20 are diffi-
cult to calculate given the complexity of the self shielding problem. If equivalence theory
methods are used, the computational time spent on the self shielding calculation is usually
a small fraction of the total computation time of the transport calculation. This is par-
ticularly true for large cases. For core or assembly cases, representative sub-geometries
are chosen for which a self shielding calculation is performed for 3x3 or 4x4 sub-cells
with a different fuel mixture number assigned to each sub-geometry.2 Flux computations
for large cases are then performed using the computed self-shielded cross sections com-

puted for the sub-geometries. Additionally, the sensitivity dfI
x

dσ∞
x

is non-negligible for only

a few isotopes and reactions.3 This suggests that computation of the expression dfI
x

dσ∞

x,I

by

direct simulations (i.e. performing a self shielding calculation) is feasible. This option
has been implemented using our PYTHON modules described in the previous chapter:
the multi-group library is modified, a self shielding computation is performed, and the
resultant implicit sensitivity is computed using equation 3.19. In homogeneous systems
however, a simple analytic expression can be used to compute the resultant perturbation
in the group parameter. In heterogeneous systems, as will be shown in the next section,
an analytical expression can be used to estimate the direct component appearing in the
summation rule given by equation 3.20 (the effect of an isotope on itself). The key point
being that in both cases (a homogeneous system, or the effect of an isotope on itself in a
heterogeneous system), a direct simulation approach can be avoided.

2The reader can imagine the necessity of modeling cells near the reflector, or control rod devices
separately.

3eg. at BOL, for LWRs, the effect is only noticeable for 238U and 1H

80



3.1.3 Implementation

As far as computation is concerned, the only "nuclear data" parameters that appear on
the WIMS multi-group libraries are group constants computed at inifnite dilution, the fis-
sion and absorption resonance integrals I(T, σ0),

4 and the dilution factor σp,I . An option
implemented is then to perturb the group parameters and the resonance integrals and
perform a self-shielding computation with DRAGON. Once the cross section sensitivities
of equation 3.20 are calculated, the sensitivity of the response R defined in equation 3.19
can be calculated using classical perturbation theory for the sensitivity coefficient GI

R,x.
However, this approach requires several self shielding calculations for each isotope and
each reaction. We will now proceed to derive an analytical expression for the perturba-
tion in the fine flux that can be effectively applied to compute the implicit sensitivity in
homogeneous geometries.

WIMSD4 uses the intermediate resonance approximation so that the slowing down
flux for a given dilution factor σ0 is defined as [38]:

φ(E, σ0) =
λσp,r + σ0

σa(E) + λσs,r(E) + λσp,r + σ0

1

E
(3.21)

where σa(E) is the resonant isotope’s absorption cross section and λ is the Golden-
Cohenstein factor used in the intermediate resonance approximation [79]. Since the scat-
tering cross section is proportional to the potential cross section, an � % uniform change
in the cross section implies an � % change in the potential cross section. We can imagine
a uniform change in the scattering cross section, so that:

σp,r → (1 + �)σp,r ⇒ σs,r(E) → (1 + �)σs,r(E) (3.22)

by merit of equation 3.21 the resulting change in the flux is given by:

φ� =
λσp,r + σ0(1 + �)−1

(1 + �)−1σ0 + λrσs,r + λrσp,r + σa(1 + �)−1

1

E

∼ φ(E, σ�
0) · (1 +

�σa

σa(E) + λσs,r(E) + λσp,r + σ�
0

) (3.23)

where σ�
0 ≡ (1 + �)−1σ0. The absorption resonance integral Ia,r is stored in the multi-

group library, tabulated as a function of the dilution factor σb = λσp,r + σ0. The � %
uniform perturbation in the scattering cross section is then equivalent to interpolating
the resonance integrals at the new values of the background cross section:

σ�
b =

σ0

1 + �
+ λσp,r (3.24)

and multiplying the obtained value by the term in the bracket appearing in equation 3.23.

4Only one set of scattering cross sections are provided at the "typical" dilution of a PWR.
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Homogeneous Medium

In a homogeneous system, equation 3.21 provides an analytical approximation for the
fine flux. Similarly, equation 3.23 provide an analytical expression for the change in the
fine flux due to a uniform perturbation in the potential scattering cross section σp,r, and
thus the scattering cross section σs,r of the same isotope. Equation 3.24 expresses this
perturbation in terms of an effective perturbation in the dilution factor. In a similar
manner, a perturbation in the cross sections of an other isotope k �= r in the system can
be accounted for by modifying the dilution cross section. If the Intermediate Resonance
Approximation is used (IRA), the dilution factor defined in equation 3.13 is written as:
σ0,F = Σk∈mλk

Nk

Nr
σp,k (computationally, the total cross section of isotope k �= r is assumed

to be equal to σp,k). Therefore, a perturbation in the cross section of isotope k �= r will
perturb the dilution cross section of isotope r as:

σr
b → σr

b + λk
Nk

Nr

δσp,k (3.25)

In a homogeneous medium, equations 3.24 and 3.25 can be used to provide an estimate
for the perturbation in the group parameter δ

�

σHET
x,I

�

/
�

σHET
x,I

�

. This approximation is

as accurate as the value obtained by direct simulations (this is true to the limit of the
IRA).

Heterogeneous Medium

Glancing back at equation 3.17, we may wonder how much does the heterogeneity of the
system influence the sensitivity δf I

x/f I
x ? The effect of the heterogeneity of the system is

taken into account through the collision probability term of equation 3.7. For the Wigner
cell, the simple expression for the collision probability resulted in the energy independent
escape cross section Σe in equation 3.13. In general, the expressions for the collision
probability are more complicated and require an iterative solution over all isotopes. In
[21], Hebert and Marleau approximate the collision probability as a three term rational
expansion of the fine flux for a homogeneous medium. The resulting expression is shown
to be [21]:

φHET (E) =
3�

n=1

αg
n

λrΣp,r + Σ
g
0,n

Σa,r(E) + λrΣs,r + Σ
g
0,r

1

E
(3.26)

with:

Σ
g
0,n = Nrσ

g
0,n (3.27)

3�

n=1

αg
n = 1 (3.28)

for n = 1, .., 3. The dilution cross sections Σ0,n, along with the coefficients αn, which
satisfy the summation rule given by equation 3.28, provide five degrees of freedom for
approximating the collision probability (or the resulting expression for the heterogeneous
fine flux) using the rational expansion given in equation 3.26. During the self shielding
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computation, a system of equations is solved iteratively to obtain the coefficients αn

and the dilution cross sections σ0,n for each resonant isotope (iterating over the resonant
isotopes). An equivalent dilution factor is then defined as [21]:

Σ
g
eff = Nrσeff =

�

α1(Σ
g
0,1)

1
2 + α2(Σ

g
0,2)

1
2 + α3(Σ

g
0,3)

1
2

�2
(3.29)

which is equivalent to the heterogeneous flux having the shape:

φHET (E) =
λrΣp,r + Σ

g
eff

Σa,r(E) + λrΣs,r + Σ
g
eff

1

E
(3.30)

We can now imagine a uniform � % increase the scattering and potential cross sections
of the resonant isotope, and resulting in a perturbation of δΣg

e in the equivalent group
dependent dilution factor. The fine flux of the perturbed system is then given as:

φ�HET (E) =
λrΣp,r + Σ

g
eff (1 + �)−1(1 + δΣeff/Σeff )

(1 + �)−1Σeff (1 + δΣeff/Σeff ) + λΣs,r + λΣp,r

1

E
(3.31)

Equation 3.31 expresses the perturbed fine flux φ�HET (E) as a change in the equivalent
dilution factor, i.e.:

Σ
g
eff → Σeff (1 + �)−1(1 + δΣeff/Σeff ) (3.32)

The term in the first brackets accounts for the direct dependence of the fine flux on the
cross section σp,r. The second term δΣeff/Σeff is due to the resulting perturbation in
the collision probability of the system (which would result in perturbations (δαn)i=1

3 and

(δσ0,i)
i=1
3 appearing in equations 3.27-3.29). If |δΣeff/Σeff | << 1.0, then the second

bracket can be ignored with equation 3.31 reducing to equation 3.23. This rule can be
expected whenever one attempts to predict the effect of an isotope on itself (i.e. a direct
effect in the self shielding) and the resonances are narrow. In this case, the heavy isotope
scattering reaction is efficient in removing neutrons from under the resonances, so that
the direct term dominates the sensitivity and the second bracket of equation 3.31 can be
effectively ignored. For the benchmarks presented in chapter 4, equation 3.23 is applied
to accurately compute the effect from a perturbation in the 238U(n,el) cross section on the
238U(n, γ) group parameter which is used compute the implicit sensitivity of 238U(n,el)
from equation 3.19.

3.1.4 Verification

In chapter 4, we verify our methodology for computing scattering implicit sensitivities
by comparing them with reference results obtained from SCALE/TSUNAMI-1D and
SCALE/TSUNAMI-3D. Our library is the IAEA released WIMS library [38] based on
the 172-group XMAS energy mesh [47] while the SCALE/TSUNAMI [51] package uses a
238-group energy mesh. Therefore, comparison of implicit sensitivity profiles is difficult
due to the differences in meshing and the numerous resonances that are associated with
heavy isotopes responsible for the implicit effect. Therefore, when comparing profiles,
we average the SCALE sensitivity profiles over the WIMS 172-group structure, by first
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constructing a union grid E383
UNION :

E383
UNION = E172

DRAGON ∪ E238
SCALE (3.33)

composed of the union of the SCALE 238-energy grid E238
SCALE and the DRAGON/WIMS

172-group energy structure E172
DRAGON . The union grid is observed to have 383 energy

groups. The lethargy normalized SCALE sensitivity profile SSCALE
238g /du is then expanded

to this grid. We then perform a flat-flux energy integration of this sensitivity to collapse
to the DRAGON/WIMS 172-group mesh.

3.2 Leakage and Anisotropy

When performing transport computations with lattice codes, the most commonly encoun-
tered geometries are infinite configurations of cells or assemblies. This corresponds to the
keff solution that was discussed earlier in chapter 2 with reflective boundary conditions.
Naturally, since the modeled geometry ignores the loss of neutrons due to leakage, the
k∞ value for such geometries is super-critical. In reality however, the core as well as the
lattices within the core are at critical conditions due to the presence of leakage so that
the leakage rate must be accounted for during the transport computation. The leakage
rate depends on scattering anisotropy and neutron streaming [14]. In LWRs, scattering
anisotropy must always be accounted for due to the hydrogen moderator. The streaming
effect is caused by the presence of strong heterogeneity in the core or the presence of
regions where the total cross section is low (such as for example a voided zone in the
core) [14]. The streaming effect can also be anisotropic if the leakage is in a specific
direction rather than identical in all three spatial directions or if the lattice properties
are not identical over all spatial directions. In sensitivity analysis, we can expect a strong
link between neutron scattering, neutron streaming, and leakage.

In section 1.7.2, we noted that for problems where the neutron flux is anisotropic,
the approximation for the CP matrix given by equation 1.188 is inadequate. This is
particularly true for scattering reactions due to the angular dependence of the scatter-
ing sensitivity gain term

�

φ†, Sφ
�

which appears in the sensitivity formulas (equations

1.194 and 1.198). Courau and Marleau [34] attempted to account for this by introducing
a correction matrix C(Σ), whose elements were computed by direct perturbations (per
mixture). However, as we will shortly see, the problem of the approximation for the
CP matrix can be greatly simpled by reformulating the problem in terms the Buckling
approximation, i.e. by treating leakage as a standard cross section. This approach not
only greatly simplifies the task of approximating the resultant perturbation in the CP
matrix, but also allows for the modeling of critical geometries in 1-D or 2-D, that would
otherwise require 3-D transport solutions, thereby cutting greatly computational costs.

In this section, we will give a short review of the Buckling approximation and the
method SIGMA. We will then derive a correction term in the sensitivity formulas which
results from reformulating the problem in terms of its equivalent leakage problem. Finally,
we will present our algorithm, as implemented in DRAGON, to effectively compute the
sensitivity for critical geometries that can involve flux anisotropy induced by neutron
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leakage.

3.2.1 The Buckling approximation

For a finite size reactor, there exists inside of the reactor a large region where the spatial
variation of the flux is the same for all neutron energies [83]. This is the basis behind the

buckling concept. In the buckling approximation, the spatial dependent flux φ(�r, Ω̂, E)
is assumed to be separable and has the spatial decomposition given by [81]:

φ(�r, Ω̂, E) = ei �B·�rφ(E, Ω̂) (3.34)

In equation 3.34, the spatial component ei �B·�r accounts for the attenuation in the flux as
�r approaches the boundary of the geometry. The spectral component φ(Ω̂, E) can be
thought of as the flux in the corresponding homogeneous infinite medium. Finally, the
buckling coefficient B2 provides a measure of the reactor size. It is inversely proportional
to the size of the reactor and therefore the leakage, i.e. a small reactor will have a large
buckling B2 and therefore a large leakage rate.

Defining µ = Ω̂·k̂ as the cosine of the direction Ω̂ along the z-axis (with unit vector k̂),

expanding the flux φ(E, Ω̂) appearing in equation 3.34 in terms of Legendre Polynomials
and substituting into the transport equation 1.10 gives [83]:

φ(E, µ) ∼
�

l

φl(E)Pl(µ) (3.35)

φl(E) =
1

4π

∞�

n=0

� ∞

E�=0
dE �

Σs,n(E � → E)φn(E �)
�

Ω̂∈4π
dΩ̂

Pn(µ)Pl(µ)

Σ(E) + iBµ

+
χ(E)

4πkeff

� ∞

E�=0
dE �ν(E �)Σf (E �)φ0(E

�)
�

4π
dΩ̂

Pl(µ)

Σ(E) + iBµ
(3.36)

where Σ(E) is the total cross section at energy E, Σs,n(E � → E) is the nth Legendre
coefficient of the scattering matrix, and Pl(µ) refers to the lth Legendre Polynomial [13].
The flux moments φl(E) for l ∈ N are defined as:

φl(E) =
1

4π

�

Ω̂∈4π
dΩ̂φ(E, µ)Pl(µ) (3.37)

The system of equations 3.35-3.36 is called the BN equations. In practice, the series
appearing in equation 3.36 is truncated for values n > N , allowing equation 3.36 to be
solved numerically to obtain the moment flux φl with l = 0, .., N .

An important property of the system 3.36 is the type of coupling that exists between
the moments φl [83]. The flux moments φl are coupled through the scattering source of
the series on the right hand side of equation 3.36. If the higher moments Σs,n of the scat-
tering cross section vanish for n > N , then the computed solution of the first N values
of the moment flux are independent of the (N + 1)th solution (i.e. the system is a lower
diagonal matrix). This property of the BN equations makes the computed flux φ(µ, E)
fairly accurate even when the series is truncated at the zeroth term (i.e. B0 equations) or
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the first term (i.e. B1 equations). We note that this is not the case with the PN equations
where evaluating the values of the higher moments (l > N) alters the components found
by a lower computation (l ≤ N).

The B0 approximation corresponds to truncating the series term in equation 3.36 at
N = 0. In this case, an analytical expression [83] can be derived for the flux and the
current of the system [83]:

�Jg = −idg
0
�Bφg = −dg

0∇ · φg(�r, Ω̂) (3.38)

where �Jg is the neutron current in group g, and φg is the average over group g of the flux
φ(�r, Ω̂) appearing in equation 3.34. The diffusion coefficient dg

0 is defined as [81, 83]:

dg
0 =

1

B

�

1 − Σg

B
tan−1 B

Σg

tan−1 B
Σg

�

=
1

3Σg

�

1 − 4

15

�
B

Σg

�2

+ ...

�

(3.39)

In the case where only the first term appearing in equation 3.39 is used to define the
diffusion coefficient dg

0, equation 3.38 reduces to the familiar Fick’s law of diffusion [81].

Equation 3.38 can be used to obtain/derive an expression for the flux in a critical
system with leakage. A group dependent leakage cross section dgB2 is added to the
absorption cross section to account for the neutrons lost due to leakage. The transport
equation to be solved is then given by [24, 82]:

φ = P(Σ + dB2)




S +

λ=1
����

λ F




φ (3.40)

The above equation is usually solved in an iterative fashion. For a heterogeneous sys-
tem, cross sections for the equivalent homogeneous geometry are defined by weighting
the cross sections of the heterogeneous system by the flux of the reflected heterogeneous
geometry. The leakage term dB2 is then added to the absorption cross section to make
the homogeneous system critical (i.e. λ = 1). However, the obtained buckling coefficient
is not the critical buckling since the homogenized cross sections were calculated using
the weighting flux for the reflected system (no leakage). Therefore, a new flux compu-
tation of the heterogeneous system must be performed with the additional leakage term
dB2 added to the absorption cross section. The process is repeated until convergence for
criticality (keff=1.0) and flux is reached. The interested reader is referred to [83] for a
rigorous discussion of the subject.

If equation 3.40 is to be solved iteratively, a new computation of the collision proba-
bility matrix P(Σ + dB2) must be performed at each iteration. This is computationally
demanding due to the time consuming nature of the collision probability integration. The
method SIGMA [82, 24] consists of replacing the leakage term appearing in the collision
probability matrix by a negative term in the in-group scattering matrix:

Σ
g→g
s → Σ

g→g
s − dg

0B2 (3.41)
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The transport equation to be solved is then [24]:

φ = P(Σ)




S +

λ=1
����

λ F − dB2




φ (3.42)

for the eigenvalue λ = 1. In the case where the flux is isotrpic, and the leakage source
is constant per region, then it can be seen that equations 3.40 and 3.42 are equivalent.
This approach eliminates the necessity of computing the CP matrix at each iteration.

3.2.2 Correction for Leakage

The integral adjoint ψ† satisfies the adjoint of equation 3.42, given by:

ψ† =
�

S† + F† − dB2
�

P†(Σ)ψ† (3.43)

with the differential adjoint satisfying φ† = P†(Σ) ·ψ†. If the leakage term dgB2 is treated
as a standard cross section, equations 3.42 and 3.43 can be used to derive a corrected
sensitivity expression accounting for the perturbation in the collision probability P(Σ)
from neutron streaming and leakage. In a similar fashion to equation 1.188 of chapter
2, the perturbation in the collision probability operator due to a perturbation δΣ in the
total cross section can be approximated as:

δP(Σ) · (S + λF − dB2)φ = −P(Σ) · δΣφ + O(δ2P(Σ)) (3.44)

Ignoring second order terms, and using the relation between the integral and the differ-
ential adjoint, the relative change δk/k can then be expressed as:

δkeff

keff

= keff

�

ψ†, [δP · (λF + S − dB2) + P · (λδF + δS − δ(dB2))] φ
�

�φ†, Fφ� (3.45)

=

�

φ†,




−keffδΣ + keffδS + δF − keff

LEAKAGE TERM
� �� �

δ(dB2)




φ

�

�φ†, Fφ� (3.46)

with the additional term δ(dg
0B2) subtracted from the in-group gain term of scattering

δS. The sensitivity (in %/%) of keff to the nuclear data q is then given as:

q

keff

δkeff

δq
=

�

φ†, [−qkeffδqΣ + qkeffδqS + qδqF − qkeffδq(dB2)] φ
�

�φ†, Fφ� (3.47)

where δqX ≡ δX
δq

.

The benefit of equation 3.46 is that the change in the leakage (which is related to

the current �J by equation 3.38) is now taken into account explicitly through the leakage
term δ(dB2). We can think of the forward and adjoint flux of a critical homogeneous
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system with a void boundary condition. The flux and adjoint flux for this system should
be identical to the flux and adjoint flux5 given by equations 3.42 and 3.43 with the proper
buckling vector B.6 Comparing equations 1.194 and 3.40, we see that the leakage term
δ(dg

0B2) of equation 3.40 can be thought of as a correction term accounting for the re-
sulting perturbation in leakage due to a perturbation δq in the nuclear data q.

The correction term can be computed from direct differentiation of equation 3.39, i.e.

δ(dg
0B2) ∼ δ(

1

3Σg
)B2 = −B2 1

3Σg

δΣg

Σg
(3.48)

where we have ignored the higher order terms which appear in the diffusion coefficient
defined by equation 3.39. 7 The effect of including the higher order terms appearing
in equation 3.39 was studied for the benchmarks that are presented in chapter 4, and
was found to have little effect (lower than 0.1% on the integrated sensitivity) so that the
approximation given by equation 3.48 is sufficient. In the case where the nuclear data
q = σ

g
x,I is the group cross section for reaction x ∈ {(n, scat), (n, f), (n, abs)} of isotope

I ∈ M of mixture M , the leakage term of equation 3.47 reduces to:

keffσ
g
x,Iδq(d

g
0B2) ∼ −keffB2

3Σ
g
M

NIσ
g
x,I

Σ
g
M

(3.49)

where ΣM is the total cross section of the mixture M .

We note that the diffusion coefficient given by equation 3.39 is exact only for the case
where the flux and scattering are isotropic (the base assumption behind B0 theory). More
involved leakage models often yield more complex expressions for the diffusion coefficient
in comparison to equation 3.39. In such cases, equation 3.49 can be thought of as an
estimate for the sensitivity of the diffusion coefficient dg to the multi group parameter σ

g
x,I .

Scattering Anisotropy

If conditions are such that anisotropic scattering is important, the transport corrected
[81] total cross section Σ−Σs,1 may be used in equation 3.39. Here Σs,1 = Δtr corresponds
to the transport correction as given in equation 1.22 (or available in the library). The
transport corrected diffusion coefficient is given by [81]:8

dg
1 =

1

3(Σg − Σ
g
s,1)

(3.50)

5For 2D or 3D problems, we can think of the flux and adjoint averaged over the extra dimension
6This is true away from the reflector and for isotropic scattering
7For heterogeneous geometries, equation 3.48 ignores all indirect terms that arise from the hetero-

geneity of the system. As observed in the next chapter, contribution of this latter term is negligible in
thermal systems with equation 3.48 providing an accurate estimate for the perturbation in the leakage
rate.

8We note that d
g
1 is the transport corrected form of d

g
0 and not the diffusion coefficient corresponding

to a B1 leakage model.
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The perturbation of the leakage term δ(dg
1B2) which appears in equation 3.46 can then

be defined as:

δ(dg
1B2) = − 1

3(Σg − Σ
g
s,1)

δΣg − δΣ
g
s,1

Σg − Σ
g
s,1

B2 (3.51)

Similar to equation 3.49, in the case where the diffusion coefficient dg
1, as defined in 3.50

is used, the leakage term appearing in equation 3.47 reduces to:

keffσ
g
x,Iδq(d

g
1B2) =







− keff B2

3(Σg
M

−Σ
g
s,1,M

)

NIσ
g
x,I

−NIσ
g
s,1,I

Σ
g
M

−Σ
g
s,1;M

, x = (n, scat)

− keff B2

3(Σg
M

−Σ
g
s,1;M )

NIσ
g
x,I

Σ
g
M

−Σ
g
s,1;M

, x ∈ {(n, abs), (n, fiss)}

(3.52)

An interesting observation is the appearance of the transport correction term Σs,1;I =
NIσs,1;I (defined by equation 2.8) which now enters the sensitivity expression 3.46 through
the term δq(d

g
1B2) defined in equation 3.51 (or equation 3.52). For the case where only

the isotropic component of the flux and adjoint are available (which is practically always
the case in DRAGON), use of a transport correction in the sensitivity expression given by
equation 1.194 is redundant. In this case, correcting the total and the in-group scattering
cross section by the transport correction reduces to subtracting and adding the same
term in the sensitivity expression of equation 1.194, with no net effect on the computed
sensitivity:

q

keff

δkeff

δq
=

�

φ†, [−qkeffδq (Σ − Σs,1) + qkeffδqS − qkeffδqΣs,1 + qδqF] φ
�

�φ†, Fφ� (3.53)

=

�

φ†,




−qkeffδqΣ + qkeffδqS + qδqF

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿ 0

−qkeffδqΣs,1 + qkeffδqΣs,1




φ

�

�φ†, Fφ�

The transport correction affects the resultant sensitivity in two ways;

• An isotropic computation (such as B0 with no transport correction) tends to un-
derestimate the effective leakage of the geometry [83]. By increasing the diffusion
length λg = 3dg, where the diffusion coefficient dg was defined by equation 3.50, the
transport correction Σs,1 of equation 2.8 presents a correction for anisotropic scat-
tering with the preferential scattering in the forward direction, the initial neutron
direction before the collision. For neutrons at high energies (which are most prone
to leakage), scattering reactions compete with leakage. Since leakage is increased by
taking into account the anisotropy, the effect is a net increase in the sensitivity of the
scattering reaction competing with leakage. This can be seen from equation 3.52. A
transport correction reduces the denominator of the leakage sensitivity δq(d

g
1B2) de-

fined by equation 3.52. As a result, use of equation 3.52 results in an increase in the
magnitude of the sensitivity δx(dgB2)/δΣx. We note that the sign of δx(dgB2)/δΣx

appearing in equation 3.52 is negative for x ∈ {(n, abs), (n, scat), (n, f)} so that the
resultant change in the keff sensitivity is positive.
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• Next, we note that the ratio δkeff/δΣs,1 is negative. This can be seen from the sign
of δ(dgB2)/δΣs,1 which is positive. For a geometry with leakage at its frontiers, the
average neutron travels in the direction of leakage. Increasing the transport correc-
tion increases the average number of neutrons traveling in the "forward" direction
(for the average neutron, this is the direction of leakage). The result is an increase
in the effective leakage so that the ratio δ(dgB2)/δΣs,1 is positive. The negative
sign of the ratio δkeff/δΣs,1 implies that an increase in leakage results in a decrease
in keff . This effect can be seen from equation 3.46 and 3.51.

In differentiating the leakage term δ(dg
0B2), we have assumed the buckling coefficient B2

to be constant. This is due to the physical interpretation of the buckling coefficient B2.
For a system at critical conditions, the relationship between keff and k∞ is given as [81]:

k∞PNL(B2, L) = 1.0 = keff (3.54)

where PNL is the non-leakage probability of the neutrons dependent on the diffusion
length L and the buckling coefficient B2.9 If a sensitivity expression for keff is to be de-
rived, it is clear that one of the three variables appearing on the left hand side of equation
3.54 should be held constant. The diffusion length L is a measure of the average distance
which the neutron travels before capture and depends explicitly on the cross sections.
However, the buckling coefficient B is a measure of the reactor size (which is assumed
to be fixed). Therefore, it is to be anticipated that for a given reactor size, the buckling
coefficient B is constant.10

3.2.3 Implementation

Computing the sensitivity expression given by equation 3.40 requires the adjoint flux φ†

corresponding to the differential adjoint of equation 3.43 and the buckling coefficient �B2.
The sensitivity expression is computed in the following way:

1. First a buckling calculation (homogeneous B0 and B1 models as well as heteroge-
neous B1 models are available in DRAGON [59]) is performed. In case of a hetero-
geneous calculation, the direction of leakage is to be chosen best representative of
the geometry. The buckling value B2 or in case of a heterogeneous computation, the
buckling vector �B2 and the mixture dependent diffusion coefficients dg

M are then ex-
ported using the EDI: module of DRAGON which is responsible for generating two
group homogenized cross sections.11 Here �B2 =

�

B2
x, B2

y , B2
z

�

denotes the square of
the components of the buckling vector of equation 3.34.

9For example, in the case of the homogeneous medium, the one-group diffusion length L =
�

D
Σa

is

defined to be the ratio of the condensed diffusion coefficient D to the condensed absorption cross section
Σa. The non-leakage probability would then be defined as PNL = 1

1+L2B2 [81].
10Note that in many design problems, it is indeed the cell/assembly/reactor size which is to be varied

to reach a keff =1.0.
11No condensation in energy should take place.
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2. The module ASM:, which calculates the collision probability matrix P(Σ), is mod-
ified to take as input the EDI: output structure and add the mixture dependent

product �dg
M · �B2 to the mixture absorption and total cross sections available on the

library data structure. The buckling vector �B2 and the mixture diffusion coeffi-

cients dg
M = �dg

M · �B2/
�

�B2 · �B2 are stored under the ’MACROLIB’ directory of the
library linked list structure. The computed collision probabilities correspond to the
P(Σ + dB2) that appear in equation 3.40.

3. The module FLU: (or SAD:) is then used to compute the isotropic component of
the forward flux φ and the adjoint flux φ† = P†(Σ + dB2) · ψ† corresponding to
equations 3.40 and 3.43 respectively. Note that reflective boundary conditions are
imposed when computing the collision probabilities P(Σ + dB2) in the previous
step.

4. The sensitivity expression given in equation 3.47 is then computed by SNS: using
equations 3.49 or 3.52 to compute the leakage term δq(dB2) appearing in the sen-
sitivity expression 3.47. It should be noted that the mixture total cross section Σ

g
M

should be reconstructed by adding dg
M

�

�B2 · �B2 before being used in equations 3.49
and 3.52.

3.3 Application to Uncertainty Analysis

In computing uncertainty contributions using the Sandwich rule given by equation 1.199,
the covariance matrix V that is used must be consistent in both energy meshing and
reaction definition with the computed sensitivities. The covariances provided by the
SCALE code [42] are given in 44 group format and correspond to covariances for individ-
ual channel reactions/partial cross sections (i.e. (n,elastic), (n,inelastic), (n,2n), ...). As
discussed in section 2.1.2, the code ANGELO [43] can be used to transform the SCALE
44 group matrices to the WIMS 172-group format. Although covariance matrices pro-
cessed by ANGELO correspond in energy meshing to the 172-group WIMS format (i.e.
172×172 element covariance matrices), the reactions available on the WIMS libraries (and
therefore the sensitivities computed by SNS:) differ in definition from the partial cross
sections in terms of which the covariance data is available. Therefore, in order to use
the covariances processed by ANGELO, either the sensitivities for the partial reactions
should be recovered from the lumped computed sensitivities or the covariance data must
be lumped into the absorption and scattering reactions equivalent in definition to the
reactions available on the WIMS 172-group library. We note that the same restriction
applies to covariances processed by NJOY’s ERRORR module (we use ERRORR in this
work to process JENDL-4 covariances).

In this section we will review the difficulties involved with computing the uncertainty
contribution for scattering reactions when using sensitivities that correspond in definition
to the WIMS libraries. We will then proceed to discuss some of the current methods for
applying available covariance matrices with sensitivities computed from cross sections
in the WIMS libraries [55, 56, 54]. After discussing why these approximations fail to
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produce realistic results, we will proceed to present our methodology for computing the
uncertainty contribution for heavy isotope scattering reactions.

3.3.1 Scattering Uncertainties

An accurate computation of the uncertainty contribution from scattering reactions is
interesting not only due to the difficulty of the computation, but also due to the high
uncertainties associated with these reactions. In comparison to fission yield, capture or
fission reactions, which typically have a high contribution to the uncertainty due to their
large sensitivities, heavy isotope (such as 238U) scattering reactions can contribute to
the total response uncertainties not necessarily by having a large sensitivity but rather
because of the large uncertainties that are associated with these reactions. This can be
observed in figure 3.1, where 238U(n,el) and 238U(n,inel) uncertainties in the fast range
(groups 1-45 in the WIMS 172-group energy grid) as reported by the recently released
SCALE 6 covariances [42], are presented. Here, the uncertainty for 238U(n,inel) is reported
to be between 20% to 35% of the cross section value. Although 238U(n,el) is reported
to have a lower uncertainty in the fast range, its contribution to the overall uncertainty
is through its anti-correlation with (n,inel). This can be observed from the 238U(n,el)-
(n,inel) correlation matrix presented in figure 3.2. At high energies, the evaluator uses
coupled channels deformed optical models to represent the cross section. In this range,
the evaluator encounters a possible set of reactions which are measured experimentally.
These reactions include elastic reactions without a compound nucleus formation, direct
interactions (the neutron interacts with a nucleon inside the nuclei), elastic and inelastic
reactions via compound nucleus formation, as well as capture and fission reactions [84].
The simplest cross section to measure in this range is the total cross section since it
can be measured through transparency measurements [85]. The scattering cross section
(usually inelastic) is then obtained as the difference between the total cross section and
the remaining reactions (see for example [86]), so that elastic and inelastic cross sections
are negatively correlated. As a result of this strong and negative correlation, even if the
uncertainty of (n,el) reactions is lower than the uncertainty associated with (n,inel), if
the sensitivity is at least of the same order of magnitude as the sensitivity of (n,inel),12

then the reaction (n,el) contributes to the overall uncertainty through its anti-correlation
with (n,inel). As a result, the contribution from heavy isotope elastic reactions to the
overall uncertainty can be important.

12This is indeed the case for problems involving neutron leakage.
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Figure 3.1: Uncertainties (in %) for 238U(n,el) and 238U(n,inel) reactions reconstructed
from SCALE6 covariances using ANGELO. Note the high uncertainties reported in the
fast range.
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Figure 3.2: (n,el)-(n,inel) Correlation Matrix (fast groups only) reconstructed from
SCALE 6 Covariances using ANGELO. Note is the strong anti-correlation reported be-
tween elastic and inelastic reactions. y-axis: (n,el) - x-axis: (n,inel)
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Lumped Covariances

As mentioned above, the covariance data used for uncertainty analysis should correspond
in definition to the cross sections that were used to compute the sensitivity. In many
lattice codes such as DRAGON [59], WIMS [87], HELIOS [88] and CASMO [89], the
available cross sections in the library are in the form of lumped reactions. The lumped
transfer matrix, and lumped scattering and absorption cross sections available in the
WIMS libraries were defined by equations 2.2-2.4 as:

Σ
g→g�

(n,SCAT ) = σ
g
(n,el)P

g→g�

(n,el) + σ
g
(n,inel)P

g→g�

(n,inel) + 2σ
g
(n,2n)P

g→g�

(n,2n) + 3σ
g
(n,3n)P

g→g�

(n,3n) (3.55)

σ
g
(n,SCAT ) =

NG�

g�=1

�

σ
g
(n,el)P

g→g�

(n,el) + σ
g
(n,inel)P

g→g�

(n,inel) + 2σ
g
(n,2n)P

g→g�

(n,2n) + ...
�

(3.56)

σ
g
(n,ABS) =

�

x∈(n,abs)

σ
g
(n,x) − σ

g
(n,2n) − 2σ

g
(n,3n) (3.57)

where σ
g
(n,SCAT ) and σ

g
(n,ABS) are the lumped scattering and absorption cross sections in

the energy group g and P g→g�

x is the group to group transfer matrix for reaction type
x ∈ {(n, el), (n, inel), (n, 2n), ..}. Except for a few isotopes, only the isotropic component

of the scattering matrix S(n,SCAT ) = (Σg→g�

(n,SCAT )) is provided in the WIMS libraries [38],
so that we limit our discussion here to isotropic scattering. We note that since covariance
matrices for secondary angular distributions are not currently available in most evalua-
tions,13 matrices corresponding to the transport correction cannot be derived. The usual
way to account for the contribution of the transport correction to the uncertainty is to
assume that the P1 scattering components have the same uncertainties as the scattering
cross section.

A covariance matrix corresponding to the lumped scattering cross section given by
equation 3.56 can be constructed by [90]:

COV (σg
(n,SCAT ), σ

g�

(n,SCAT )) =
�

x

�

y

σ
g
(n,x)

σ
g
(n,SCAT )

COV (σg
(n,x), σ

g�

(n,y))
σ

g�

(n,y)

σ
g�

(n,SCAT )

(3.58)

where the summation indices x and y refer to the individual channel reactions x, y ∈
{(n, el), (n, inel), (n, 2n), (n, 3n)}. An expression similar to 3.58 can also be derived for
the absorption cross section defined by equation 3.57. We constructed these covariances
[90] in application to nuclear data uncertainty propagation using the total cross section
and its uncertainties. Similar covariances have since been constructed at VTT [55, 56]
and applied to nuclear data sensitivity and uncertainty analysis using perturbation theory
with the code CASMO-4. However, while the methodology of VTT works well for ab-
sorption reactions, it does not lead to accurate results when the uncertainty for scattering
reactions are considered.

13The TENDL evaluation provides this data.
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Difficulties in Computing the Uncertainty Contribution for Scattering Reac-
tions

Let us consider the sensitivity formula for keff given by equation 3.47. In this case, the
group sensitivity Sg

keff,(n,SCAT ) to the scattering cross section is defined as the difference
between the gain term Gg,(n,SCAT ) (which represents the gained neutron importance from
the scattering reaction) and the loss term Lg,(n,SCAT ) (which represents the loss in neutron
importance due to scattering interactions). Ignoring the fission source normalization
appearing in equation 3.47, we have:14

Loss term: L
g,(n,SCAT )
keff

= keff

�

j∈M

Vj

�

φ
†
j,gNIσ

g
I,(n,SCAT )φj,g − φ

†
j,g

keffB2

3Σ
g
M

NIσ
g
I,(n,SCAT )

Σ
g
M

φj,g

�

(3.59)

Gain term: G
g,(n,SCAT )
keff

= keff

�

j∈M

NG�

g�=1

Vjφ
†
j,gΣ

g�→g
I,(n,SCAT )φj,g� (3.60)

Sensitivity: S
g,(n,SCAT )
keff

= G
g,(n,SCAT )
keff

− L
g,(n,SCAT )
keff

(3.61)

where for simplicity, in computing the leakage contribution that appears in equation 3.59,
we have used equation 3.39 to define the diffusion coefficient. Here, the summation index
j ∈ M appearing in equations 3.59 and 3.60 represents summation over all the regions j
that are composed of the mixture M , Vj is the volume of region j, φj,g and φ

†
j,g are the

flux and adjoint in region j and group g, Σ
g
M is the macroscopic total cross section for

mixture M and NI is the isotopic density of isotope I ∈ M . The lumped components of
the scattering matrix Σ

g→g�

I,(n,SCAT ) and the lumped scattering cross section σ
g
I,(n,SCAT ) were

defined by equations 3.55 and 3.56 respectively.

We can imagine the chain rule approach for recovering the sensitivities corresponding
to the partial cross sections appearing in equation 2.3. The application of the chain rule
to the loss term L

g,(n,SCAT )
keff

is mathematically valid. The chain rule can therefore be

applied to the loss term L
g,(n,SCAT )
keff

to recover the partial loss term Lg,x
keff

for the partial

cross sections x ∈ {(n, el), (n, inel), (n, 2n), ...}. i.e.

L
g,(n,x)
keff

= L
g,(n,SCAT )
keff

·
σ

g
(n,x)

σ
g
(n,SCAT )

(3.62)

However, computation of the partial cross section for the gain term is not evident as it
requires the application of the chain rule before the group collapsing (i.e. prior to the
summation over the index g� appearing in equation 3.60) so that the partial gain term
Gg,x for reaction type x is defined as:

G
g,(n,x)
keff

= keff

NG�

g�=1

�

j∈M

Vj

�

g�

φ
†
j,gNIσ

g�

I,xP g�→g
x φj,g� (3.63)

14Note that we have associated the leakage term as a loss for computational purposes only. The
contribution of this term to the sensitivity is positive.
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Here lies the difficulty associated with recovering partial cross section sensitivities from
the computed sensitivity to the lumped scattering cross section. As the form of the group
to group transfer function P g�→g

x varies greatly with the reaction type x ∈ {(n, el), (n, inel), ...},
recovering the partial sensitivity requires the application of the chain rule to the gain term
of the sensitivity before the collapse of the gain term (before computing the summation
over g� appearing in equation 3.63). This can be done by writing out the GAIN matrix in
its entirety15 but would somewhat defeat the purpose of performing the sensitivity com-
putation inside the code. As a result, the practitioner is forced to resort to assumptions
regarding the form of the scattering matrix.

We will briefly discuss three approximations that we have seen used by other codes
[55, 56, 54] when computing the uncertainty contribution from scattering cross sections
using WIMS libraries and SCALE covariances.

3.3.2 Current Approximations for Computing Scattering Un-
certainties

• The approximation used by version 1.0 of the Canadian code DINASOUR [54] is
to assign the scattering sensitivity component as the contribution due to elastic
scattering. This is accurate for 1H (the only possible scattering interaction is via
elastic), and is a very good approximation for 16O (where the primary mode of
scattering interaction is elastic). However, it does not lead to realistic values when
computing scattering reactions for heavy isotopes. In reflected lattices, heavy iso-
tope elastic scattering outside of the resonance region is generally negligible (in the
resonance region, the principle component of the sensitivity is due to spectral fine
structure effects which were discussed in section 3.1). Therefore, since the uncer-
tainty for elastic scattering is lower than the uncertainty for inelastic, assigning
the scattering sensitivity as elastic tends to greatly underestimate the resultant
uncertainty contribution from scattering sensitivities.

• A more profound methodology to incorporate the currently available covariance
data for use with the sensitivities computed in terms of lumped reactions is to
construct covariance matrices corresponding in definition to the lumped reactions.
Such matrices can be constructed using equation 3.58. In [55, 56], the covariance
matrices for the lumped scattering cross section is applied to the scattering sensi-
tivity S

(n,SCAT )
keff

= G
(n,SCAT )
keff

− L
(n,SCAT )
keff

after computing the sum over the incident
energies g� appearing in equation 3.60. This is equivalent to assuming that the
chain rule applies to the gain term G

g,(n,SCAT )
keff

defined in equation 3.63, i.e.:

G
g,(n,x)
keff

= G
g,(n,SCAT )
keff

·
σ

g
(n,x)

σ
g
(n,scat)

(3.64)

However, we can see why equation 3.64 does not lead to reliable results. The
expression ignores all information regarding the form of the group to group transfer

15We provide this matrix in the SNS: output file.
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matrices P g�→g
(n,x) which appear in equation 3.56 (238U transfer matrices for elastic

and inelastic scattering can be observed in figure 3.3). As a result, the scattering
sensitivity is weighted unevenly if equation 3.64 is used.

• Rather than using lumped covariance data, Version 2.0 of DINASOUR uses the

output of the NJOY GROUPR module to compute the sensitivity
∂σ

g

(n,SCAT )

∂σ
g

(n,x)
for the

partial cross section x ∈ {(n, el), (n, inel), (n, 2n), ...}. It then applies the computed
sensitivities to the lumped scattering matrix S(n,SCAT ) available in the WIMS li-
braries and performs direct perturbations to compute sensitivity to partial cross
sections or statistical sampling of the cross sections to compute the response un-
certainty. This methodology is once again equivalent to applying the chain rule
given by equation 3.64 to the lumped gain term, so that it will not produce reliable
results when computing the uncertainty contribution from scattering cross sections.
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Figure 3.3: Elastic and Inelastic elastic scattering Group to Group transfer matrices for
238U (from JEFF 3.1) for the fast groups of the WIMS 172-group library. Only groups 1
(E=19.6403 MeV) to group 45 (E=11.1378 keV) are shown.
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3.3.3 Our Approximation for Reflected Lattices

Figure 3.3 presents the group to group transfer matrices for 238U(n,el) and (n,inel). We
note the diagonal nature of the transfer matrix for elastic scattering, and the dense nature
of the matrix for inelastic scattering. For the case where scattering is isotropic, the elastic
scattering energy transfer function P(n,el)(E

� → E) has the form given by equation 1.66
as:

P(n,el)(E
� → E) =

�
1

(1−α)E� E ≤ E � ≤ E/α

0 else
(3.65)

where α =
�

A−1
A+1

�2
, and A is the atomic number of the isotope. A well known phenomena

is the decrease in the energy bandwidth E � ∈ [E, E/α] with increasing mass number.
Examining figure 3.3 suggests the assumption:

Σ
g�→g
(n,elastic) ≡ σ

g
(n,elastic)δ

g�

g (3.66)

to be valid for fast groups. Here δg�

g is the Kronecker delta function. Equation 3.66 is
valid for heavy isotopes since the atomic mass of the target nuclei is large enough that the
energy bandwidth E� ∈ [E, E/α] falls within the energy group. As a result, the elastic
scattering transfer matrix is diagonal. Additionally, assuming that the only components
of the scattering matrix S(n,SCAT ) (whose components were given by equation 3.55) are
elastic and inelastic reactions, the problem is further simplified. In this case, it can be
observed that the elastic scattering loss and gain terms of equation 1.194 are equal and
cancel out, so that the heavy isotope scattering sensitivity can be effectively assigned as
inelastic scattering.

Indeed, for reflected lattices, the problem of computing accurately the uncertainty
contribution from isotope scattering reactions is quite simple (so far, the only cases we
have seen considered by [55, 56, 54] are reflected lattices). The explanation for our
approximation given by equation 3.66 is as such:

As observed from the diagonal nature of the heavy isotope elastic scattering group
to group transfer matrix (presented for 238U in figure 3.3), heavy isotope elastic
interactions contribute to the scattering sensitivity not by changing the neutron’s
energy, but rather its direction. For the reflected lattices, particularly those being
considered in [55, 56, 54], the reflective nature of the boundary condition along with
the small pitch length of the lattice16 promotes flux isotropy. If the flux is isotropic,
the resultant change in the neutron’s direction does not have a great effect on the
neutron’s importance (which is identical for all neutron directions). Hence, in re-
flected lattices (or in general, when the flux is isotropic), the sensitivity to elastic
scattering in the fast groups for heavy isotopes is negligible.

Implementing equation 3.66 for reflective lattices is simple; we do this by assigning the
scattering sensitivity for heavy isotopes computed by SNS: as the contribution from in-
elastic scattering. To highlight this point, let us consider the GEN III 9.8% enriched Pu

16In comparison to the neutron’s mean free path.
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MOX pin-cell, the description of which is available under Exercise I.1 of the OECD’s Un-
certainty Analysis in Modeling (UAM) Benchmark [103]. This is one of the benchmarks
considered and presented by Pusa in [56]. Given the harder flux spectrum associated
with MOX fuel, 238U(n,inel) cross section is an important contributor to the overall keff

uncertainty. The study of this benchmark not only permits us to quantify the errors in-
troduced by using the approximation suggested above, but also to examine the accuracy
of the sensitivities computed by the module SNS: for reflected geometries.

UAM GEN III MOX Lattice Cell at 9.8% enriched Pu

We will now consider the 9.8% enriched GEN-III MOX lattice pin-cell outlined under the
lattice physics phase of the UAM benchmarks [103]. The cell has a pitch of 1.262 cm,
with a pin radius of 0.4126 cm.

Table 3.1 presents the explicit keff sensitivities and the corresponding reaction un-
certainty contributions to the keff computed by CASMO-4 and SCALE/TSUNAMI 2D
along with our results obtained from DRAGON SNS:. The CASMO-4 and SCALE/T-
SUNAMI 2D results have been reproduced from [55]. All presented results have been
computed using the ENDF B/VI evaluation. The columns appearing under the heading
sensitivity report the integrated keff sensitivity (in %/%) of the reaction appearing in
the table. They represent the % change in keff from a 1% uniform perturbation in the
cross section. The columns appearing under the Δk

k
report the (%) contribution to the

keff uncertainty for each reaction pair.

The first observation regarding the comparison provided in table 3.1 is the observed
differences in the 238U(n,SCAT) sensitivity. The 238U(n,SCAT) sensitivity that is reported
by DRAGON is 23% larger17 in magnitude than the TSUNAMI 2D results reported by
[55]. To investigate this discrepancy, we constructed a model with SCALE/TSUNAMI-
3D, the results of which are presented in table 3.2. In this table we note that the
238U(n,SCAT) explicit sensitivities computed by DRAGON differ by 5% from the sen-
sitivity reported by SCALE/TSUNAMI-3D. As an additional verification, we have also
computed the implicit 238U(n,SCAT) using the DRAGON sensitivities along with our
analytical approximation given by equations 3.32 and equation 3.19 (note that this sensi-
tivity is not computed by CASMO-4). As observed in table 3.2, our implicit component
for 238U(n,SCAT) differs by 14% from the SCALE/TSUNAMI 3D sensitivity. A compar-
ison plot between the DRAGON computed and the SCALE/TSUNAMI-3D computed
complete scattering sensitivity (implicit + explicit) can be observed in figure 3.4. The
dotted green line presents the 238U(n,el) sensitivity computed by SCALE/TSUNAMI-
3D in 238-group format. The dotted red curve presents the SCALE/TSUNAMI-3D
238U(n,inel) sensitivity. The grey curve presents the SCALE/TSUNAMI-3D 238U(n,el)
sensitivity collapsed to the WIMS 172-group mesh using the procedure described in sec-
tion 3.1.4. We note the good agreement between the DRAGON results (blue curve) and
the SCALE/TSUNAMI-3D (dotted green and red curves). Without having a more de-
tailed sensitivity profile for the sensitivities reported by [55], we can assume that the

17% differences are given relative to SCALE/TSUNAMI-3D results.
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23% difference in 238U(n,SCAT) sensitivity observed between our DRAGON computed
sensitivity with the TSUNAMI-2D 238U(n,SCAT) reported by [55] is due to underlying
differences in the model. Finally, we note the negligible value of 238U(n,el) sensitivity
outside of the resonance region (observed by the dotted green curve) and the dominant
behaviour of 238U (n,inel) in the fast range (dotted red curve 3.4), both confirming our
approximation for the diagonal form of the heavy isotope elastic scattering matrix.

Explicit Sensitivity (%/%)
Reaction DRAGON (this

work)
CASMO† TSUNAMI-2D†

239Pu ν̄-ν̄ 7.224 ∗ 10−1 7.212 ∗ 10−1 7.251 ∗ 10−1

238U σscat-σscat −1.84 ∗ 10−2 −1.591 ∗ 10−2 −1.494 ∗ 10−2

238U σc-σc −1.802 ∗ 10−1 −1.963 ∗ 10−1 −1.611 ∗ 10−1

242Pu σc-σc −1.528 ∗ 10−2 −2.339 ∗ 10−2 −1.557 ∗ 10−2

239Pu σf -σf 3.60 ∗ 10−1 3.619 ∗ 10−1 3.596 ∗ 10−1

239Pu σc-σc −1.997 ∗ 10−1 −1.974 ∗ 10−1 −2.004 ∗ 10−1

240Pu σc-σc −1.115 ∗ 10−1 −1.104 ∗ 10−1 −1.058 ∗ 10−1

238U ν̄-ν̄ 8.277 ∗ 10−2 8.333 ∗ 10−2 8.165 ∗ 10−2

Contribution to Δk
k

(%)
Reaction DRAGON (this

work)
CASMO† TSUNAMI-2D†

239Pu ν̄-ν̄ 7.282 ∗ 10−1 7.273 ∗ 10−1 7.311 ∗ 10−1

238U σscat-σscat 2.90 ∗ 10−1 9.952 ∗ 10−2 2.721 ∗ 10−1

238U σc-σc 2.384 ∗ 10−1 2.457 ∗ 10−1 2.078 ∗ 10−1

242Pu σc-σc 1.36 ∗ 10−1 2.339 ∗ 10−1 1.359 ∗ 10−1

239Pu σf -σf 2.232 ∗ 10−1 2.236 ∗ 10−1 2.204 ∗ 10−1

239Pu σc-σc 1.928 ∗ 10−1 1.960 ∗ 10−1 1.928 ∗ 10−1

239Pu σc-σf 1.576 ∗ 10−1 1.555 ∗ 10−1 1.582 ∗ 10−1

240Pu σc-σc 1.519 ∗ 10−1 1.549 ∗ 10−1 1.459 ∗ 10−1

238U ν̄-ν̄ 9.677 ∗ 10−2 9.668 ∗ 10−2 9.534 ∗ 10−2

Table 3.1: Scattering keff sensitivity and uncertainty contributions for the reflected 9.8% MOX
fuel pin-cell. Benchmark description in reference [103].
†: reproduced from [55]
DRAGON computation in the 172-group ENDF B/VI (this work). TSUNAMI-2D computa-
tion performed in the 238-groups using the ENDF B/VI (reproduced from [55]). CASMO-4
computation performed in 70 groups with the ENDF B/VI evaluation (reproduced from [55]).
Note the differences observed for the 238U σscat − σscat uncertainty contribution predicted by
CASMO-4 resulting from the application of the chain-rule to the scattering sensitivity. Also
note the good comparison between the DRAGON computed 238U σscat − σscat uncertainty and
that of SCALE/TSUNAMI-2D confirming our approximation for the diagonal form of heavy
isotope elastic scattering matrix.
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238U scattering implicit and explicit sensitivities
DRAGON (ENDF B/VI) SCALE 5/TSUNAMI-3D (ENDF B/VI)

Implicit Explicit Implicit Explicit
2.12 ∗ 10−2 −1.84 ∗ 10−2 1.86 ∗ 10−2 −1.75 ∗ 10−2

Table 3.2: Comparison of implicit & explicit 238U scattering sensitivities computed from
DRAGON SAD:/SNS: with the analytical approximation given by equations 3.32 and 3.19,
and the sensitivities computed by SCALE5/TSUNAMI-3D. Both computations have been per-
formed using ENDF B/VI. Note the good comparison between the DRAGON explicit values (5%
difference relative to SCALE/TSUNAMI-3D and the computed implicit values (14% difference
relative to SCALE/TSUNAMI-3D).
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Figure 3.4: 238U complete (implicit+explicit) scattering sensitivities for the GEN III
MOX fuel pin cell. Note the good agreement between the DRAGON SNS: profile (blue
curve) with the SCALE/TSUNAMI-3D profile (grey and red curves). The sensitivities
in the resonance region are implicit sensitivities to 238U(n,el) cross section.
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Figure 3.5: 238U elastic ratio function σ(n,el)/(σ(n,el)+σ(n,inel)) and inelastic ratio functions
σ(n,inel)/(σ(n,el) + σ(n,inel)) computed from JEFF 3.1.
Note the dominant (n,el) cross section value in comparison to (n,inel) in the fast range.

Next, we note that as observed from Table 3.1, despite the good agreement between the
computed 238U lumped/total scattering sensitivities by CASMO-4 and by TSUNAMI-2D,
the approach suggested by [55, 56] does not lead to an accurate value for the uncertainty
contribution from 238U scattering. This is due to the application of the chain rule to
the gain term of the sensitivity [55, 56]. To understand the underlying physics/error
compensations involved by assuming this approximation, we have attempted to reproduce
the computation performed by CASMO-4 by applying the chain rule to the sensitivities
computed by DRAGON. This is equivalent to applying the lumped covariance matrix
to the scattering cross section. To do this, we define the elastic and inelastic scattering
sensitivities S

(n,el)
keff

and S
(n,inel)
keff

, in terms of the lumped scattering sensitivity S
(n,scat)
keff

as:

S
g,(n,el)
keff

= S
g,(n,scat)
keff

·
σ

g
(n,el)

σ
g
(n,scat)

= S
g,(n,scat)
keff

·
σ

g
(n,el)

σ
g
(n,el) + σ

g
(n,inel)

(3.67)

S
g,(n,inel)
keff

= S
g,(n,scat)
keff

·
σ

g
(n,inel)

σ
g
(n,scat)

= S
g,(n,scat)
keff

·
σ

g
(n,inel)

σ
g
(n,el) + σ

g
(n,inel)

(3.68)

where the second equalities have been obtained by assuming that the only components of
the scattering cross section are elastic and inelastic (i.e. ignoring (n,2n), (n,3n), ...). We
note that (n,2n), (n,3n),... reactions have generally low sensitivities in thermal systems.
Table 3.3 shows why applying the chain rule to the scattering sensitivity is dangerous.
At high energies, the value of the cross section for elastic and inelastic scattering is
of the same order of magnitude (see figure 3.5). However, the form of their group to
group transfer matrices are very different. Application of the chain-rule to the total
scattering sensitivity results in splitting the lumped/total scattering sensitivity between
the two reactions based on the ratios of the cross sections σ(n,el)/(σ(n,el) + σ(n,inel)) and

103



σ(n,inel)/(σ(n,el) + σ(n,inel)) while ignoring any information in regards to the form of the
group to group transfer matrices. These ratio functions can be observed in figure 3.5.
In reality it is the form of the group-to-group matrices that dictates the sensitivity (the
sensitivity is the difference between the neutron importance gained after the collision and
the importance lost from the collision) and not the ratio of the cross sections. At high
energies, where the contribution to the scattering sensitivity is primarily due to inelastic
scattering (observed earlier in figure 3.4), application of the chain rule results in a false de-
composition/weighting with artificially assigning the majority of the scattering sensitivity
as elastic. As a result, the inelastic scattering reaction sensitivity is under-estimated, and
the elastic scattering reaction sensitivity is over-estimated. The scattering uncertainty
contribution computed using the chain rule is observed to be approximately half of the
238U(n,scat) uncertainty that is compute by TSUNAMI-2D or by DRAGON. This is due
to the cancellation of errors resulting from the strong anti-correlation that exists between
the two scattering reactions, and the inaccurate computation of the contribution of this
anti-correlation, which is approximately half of the keff uncertainty contribution from
238U(n,SCAT).

Table 3.3 reports the resulting sensitivities and uncertainty contributions that one
would obtain by using the chain approximation for the scattering sensitivity. For exam-
ple, we see that 238U elastic scattering reactions which should not have a major contri-
bution at high energies in reflected lattices (observed earlier in figure 3.4) are assigned a
higher sensitivity (in magnitude) than the inelastic reaction. The correlation between the
two reaction is over estimated as a result, and the contribution from inelastic reactions
is under-estimated. The computed uncertainty (127 pcm) reported in table 3.3 differs
by approximately 20% from the uncertainty reported by [56] (observed in table 3.1 to
be 99 pcm). This difference is due to the discrepancy between the scattering sensitivity
computed by DRAGON and the scattering sensitivity computed by CASMO-4 (which
differ by 16%).

REACTION Sensitivity (%) Uncertainty (pcm)
238U (n,el)-(n,el) −1.11 ∗ 10−2 124

238U (n,inel)-(n,inel) −7.0 ∗ 10−3 130
238U (n,el)-(n,inel) - -179

Lumped/Total scattering −1.84 ∗ 10−2 127

Table 3.3: Example of applying the chain-rule to 238U lumped/total scattering cross sec-
tion. Sensitivities have been computed by applying the chain-rule formula (see equations
3.67-3.68) to the DRAGON SNS: computed lumped scattering sensitivity. ANGELO
processed covariance matrices from the SCALE 6 library have been used in the uncer-
tainty analysis. Note the over prediction of the elastic sensitivity and the resulting large
contribution of the anti-correlation between (n,el) and (n,inel). As a result, applying the
chain rule results in a poorly computed scattering uncertainty of 127 pcm (99 pcm from
CASMO-4) in comparison to 290 pcm (DRAGON SAD:/SNS:) or 272 pcm (TSUNAMI
2D).

The next observed discrepancy in table 3.2 is for 242Pu (n,capture); the sensitivity re-
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ported for the capture of 242Pu by CASMO-4 is approximately 50% larger (in magnitude)
than the sensitivity computed by either TSUNAMI-2D or DRAGON. The explanation
of this discrepancy this is reported in [55, 56] to be due to differences in the self-shielded
cross section that is computed by CASMO-4 in comparison to SCALE/TSUNAMI-2D
and our DRAGON results.

For all three codes, the sensitivities are in good agreement. We note that in reflected
pin cell problems, the flux is isotropic so that deviations between the computed sensitiv-
ities are generally low.

3.3.4 Our Approximation for Cases Involving Neutron Leakage

Equation 3.66 is equally applicable for cases involving neutron leakage. We will present
two methods for computing heavy isotope scattering sensitivities: the first requires access
to partial cross section data and is aimed to recover the elastic and inelastic scattering
sensitivities from the computed lumped scattering sensitivity, the second method avoids
the requirement of having access to partial cross section data by using lumped covariance
matrices.

Uncertainty Propagation with Partial Cross Section Data

Assuming that the only components of the scattering cross section/matrix are (n,el) and
(n,inel), we have from substitution of equation 3.66 into equation 3.61:
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(3.69)

where Sg�→g
I,(n,inel) is the (n,inel) scattering matrix. Equation 3.69 presents a way for extract-

ing the partial cross section sensitivities from the computed total scattering sensitivities.
In the case where neutron leakage is not present, equation 3.69 reduces to the assump-
tion introduced in the previous section, i.e. heavy isotope scattering sensitivities at high
energies are due to inelastic scattering. As discussed in the previous section, for pin-cell
problems, this is indeed the case and the approximation is valid. In the case where neu-
tron leakage is present (this is the case where heavy isotope elastic scattering reactions
are most visible), the partial elastic cross section sensitivity is given by:

S
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keffB2
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g
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Niσ
g
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Σ
g
M

φj,g (3.70)

the sensitivity to the partial inelastic cross section can then be retrieved by substract-
ing the total scattering sensitivity from the partial elastic sensitivity S

(n,el)
keff which was

computed by equation 3.70, i.e.

S
(n,inel)
keff = S

(n,SCAT )
keff − S

(n,el)
keff (3.71)
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Note that at no point are the components of the inelastic scattering matrix Sg�→g
I,(n,inel)

required. To compute the partial cross section sensitivities from equation 3.70 and 3.71
requires access to partial cross section data from which the multi-group library (in this
case the 172-group WIMS library) was constructed.

Uncertainty Propagation with Lumped Covariance Matrices

Another option for computing scattering uncertainty contributions that avoids the re-
quirement of having access to the partial cross section data is to use lumped covariance
matrices. Such matrices can be constructed using the expression given by equation 3.58.
As seen from equation 3.69, the inelastic terms must be treated seperately. The covari-
ance between the lumped scattering cross section and inelastic scattering cross section
can be computed by [90]:
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We can then define an equivalent gain term G̃g which can be considered as purely origi-
nating from inelastic scattering:
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where the second equality was obtained by virtue of the approximation given by equation
3.66. An equivalent loss term can also be defined as:18
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which can be associated with the lumped scattering matrix. This is equivalent to applying
the chain rule of equation 3.62 to the loss terms. We note that the total scattering sen-
sitivity S
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= G̃
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remains invariant. The response uncertainty
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(3.75)

18Note that we associate this term to losses for computational purposes only. In reality, the term has
a positive contribution to the sensitivity.
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Equation 3.75 presents a simple method for the computation of the uncertainty from
the scattering cross section without requiring knowledge of the partial cross sections.
Once covariance matrices are computed from equations 3.58 and 3.72, the uncertainty
can be calculated using equation 3.75. The only requirement for this approach is that
the equivalent loss term L̃ (which represents the contribution to the sensitivity from the
leakage term δ(dgB2)) and the equivalent gain term G̃ are stored during the process of
sensitivity analysis.19 We note that while this approach leads to results consistent with
those computed by using partial cross sections, information relating to the origin of the
uncertainties is lost. As one of the principle applications of nuclear data uncertainty
propagation is to provide meaningful feedback to evaluators, experimentalists, etc., we
do not recommend this approach and suggest for partial cross sections contributions to
be computed by using equations 3.70 and 3.71.

Figures 3.6 and 3.11 present the correlation matrix for 238U(n,SCAT)-(n,SCAT) and
238U(n,SCAT)-(n,inel) computed from equations 3.58 and 3.72. The cross section val-
ues that appear in equations 3.58 and 3.72 have been taken from JEFF 3.1 evaluation,
processed into 172-group by the NJOY code. To read and manipulate the covariances,
we use our set of PYTHON libaries, which contain modules capable of reading, writing
and creating NJOY GENDF format files (see section 2.8.3 of the previous chapter). The
matrices are then stored in NJOY ERRORR format for use. After the sensitivities have
been computed by DRAGON, the sensitivity to the partial (n,el) and (n,inel) cross sec-
tions is computed by using equations 3.70 and 3.71. The uncertainty can be computed
either by using the sandwich rule with the computed partial cross sections or by using
the lumped covariance matrices presented above. The two methods are equivalent and
give identical results that are also consistent with SCALE/TSUNAMI 3D.

3.3.5 Limitations of Our Approximation

First, as we mentioned it several times over the course of this section, the solution we
propose is only applicable to heavy isotope scattering reactions. However, while reactions
such as 1H(n,el) and 16O(n,el) may have a noticable contribution to the uncertainty due
to their high sensitivities, heavy isotope scattering reactions can be great contributors to
the uncertainty due to the high uncertainties associated with these isotopes. An accurate
computation of the uncertainty contribution from these uncertainties is valuable as they
can provide guidelines for future experiments and measurements (i.e. their uncertainties
can actually be improved through integral experiments and data adjustment).

Next, the approximation 3.66 ignores the effect of group transfer due to elastic scat-
tering. For heavy isotopes, this does not have a large effect. The key point is that the
contribution from elastic reactions is not due to the differences in the importance of neu-
trons resulting from the energy loss of the elastic collision (as for heavy isotopes, the
energy loss from the elastic collision is not large), but rather from the importance gained
from the resultant change in the neutron’s direction following the elastic collision.

19These are stored under ’CORSIGS’ and ’GTERM’ on the SNS: LCM object
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Finally, we note that our assumption also ignores the contribution of (n,2n) and (n,3n)
reactions. In thermal systems, contribution from these reactions to the total uncertainty
is small so that they do not play a major role in the obtained uncertainty for keff .20

For example, for the thermal systems considered in [103], the keff sensitivity of these
reactions as computed by SCALE/TSUNAMI-3D is an order of magnitude smaller than
the sensitivity of (n,inel). Therefore, in thermal systems, the corresponding uncertainty
contribution from these reactions is computed to be a few pcm of the overall keff un-
certainty, so that our assumption of ignoring these reactions is not presumed to lead to
large errors in the computed partial sensitivity and uncertainty contributions.21

20Note that this is not true in the case of evolution/burn up computations where these reactions will
dictate the density of child nuclei. Contribution from these reactions to the overall uncertainty in this
case is due to the uncertainty on the density of the child nuclei and not related to the current application.

21For the benchmarks considered in chapter 4, this error is of the order of 1% of the computed
sensitivity.
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Figure 3.6: SCALE 6 238U (n,SCAT)-(n,SCAT) lumped scattering correlation matrix.
Constructed from SCALE 6 covariances and JEFF 3.1 cross section values
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Figure 3.7: Uncertainty (%) for the 238U(n,SCAT) cross section constructed from SCALE
6 covariances and JEFF 3.1
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Figure 3.8: 238U(n,inel)-(n,inel) correlation matrix from SCALE 6 Covariances
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Figure 3.9: 238U(n,inel) uncertainty(%) from SCALE 6 Covariances
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Figure 3.10: 238U(n,SCAT)-(n,inel) correlation matrix for groups 1-45 of the WIMS 172-
group library. Constructed from SCALE 6 covariances and JEFF 3.1 cross section values.
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Figure 3.11: 238U(n,SCAT)-(n,inel) correlation matrix for groups 1-45 of the WIMS 172-
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Chapter 4

Results and Verification

The reference set of benchmarks in our community is the OECD Uncertainty Analysis in
Modelling (UAM) benchmark, which sets out goals and guidelines for developers [103].
Contained in the benchmark description manual are exercises that address sensitivity
and uncertainty analysis for pin cell, assembly, core computations and evolution/burn-up
calculations. Here, a number of different core designs covering a wide range of spectra
and isotopes exist for analysis. Most relevant to the lattice code DRAGON and the CP
method are pin cell, assembly, and burn-up computations.

The set of benchmarks contained in Exercise I.1 and I.2 of the UAM benchmarks
[103] provide a good verification for the methodology and tools that we have presented in
chapter 2. In these two exercises, reflected pin-cell and assembly problems are specified.1

Participants can provide their results for response uncertainties for homogenized two-
group cross sections and critical, and verify their results. Solutions to a number of these
benchmarks are already available from participants who used deterministic and Monte
Carlo methods for sensitivity analysis and uncertainty propagation.

Relevant to the first two exercises of the UAM benchmarks, the recently published
literature shows good agreement between different methods of nuclear data uncertainty
propagation, and where available, sensitivity analysis [104, 54, 55, 56, 108]. In the ther-
mal systems studied in the UAM Benchmarks, heavy isotope capture, fission yield and
fission cross sections usually have the largest contributions to the response uncertainty,
primarily because of their high sensitivities. However, conservative estimates of nuclear
data uncertainties are reported by most evaluations to be within the 1-5% range for the
major actinides 238U and 235U. Their low uncertainties make improving their cross section
values through integral experiments and data adjustment more difficult.

A second group of cross sections whose uncertainty can also contribute to the over-
all performance parameter are heavy isotope scattering reactions. An example of this
is 238U(n,inel) cross section which is reported to have an uncertainty of 20-35% of its

1For example, in chapter 3, we provided comparisons between our DRAGON sensitivities and uncer-
tainties and those computed by CASMO-4 and SCALE/TSUNAMI-2D which were reported in [55]. The
three solutions were in good agreement not only demonstrating the capacity of our tools but also this
conclusion.
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value and also to be strongly anti-correlated with 238U(n,el) (see figures 3.1-3.2). An
uncertainty analysis for these reactions is also more pragmatic since, given their high
uncertainties, their values can actually be improved through integral experiments and
data adjustment. However, an accurate computation of the sensitivity for these reactions
is more difficult as, unlike absorption and fission sensitivities, the scattering sensitivity
expressions depend on the anisotropic flux moments and are more sensitive to the accu-
racy of the transport computation.2

As we will demonstrate shortly, the current methodology available in the code DRAGON
[24, 34, 108] does not permit for an accurate computation of scattering sensitivities. This
was the underlying reason for the developments introduced in chapter 3. In this chapter
we will provide a verification for the developments made in chapter 2 and 3 by presenting
our results of the Phase III of the OECD Uncertainty Analysis and Criticality Safety
Assessment (UACSA) Benchmark [105, 106, 107]. Currently, we are not aware of a de-
terministic solution to these benchmarks.3

The primary aim of the Expert Group from proposing this benchmark was to study
the underlying differences between methods/codes used for sensitivity and uncertainty
analysis. The principle requirement of the benchmark is an accurate computation of the
scattering sensitivities [107]. The greatest discrepancies amongst benchmark participants
were observed for 238U and 16O scattering sensitivities. Therefore, the expert group fo-
cused on these two sensitivities in the benchmark summary [107]. One of the conclusions
reached by the UACSA Expert Group was that 238U(n,SCAT) and 16O(n,SCAT) sensi-
tivities require improvement. Additionally, a large component of the keff uncertainty for
these benchmarks is also due to 238U(n,SCAT) uncertainties, making an accurate com-
putation of its uncertainty contribution even more necessary.

As a consequence, in this chapter we will study three benchmarks proposed by the
Expert group. These benchmarks involve three models: a critical sphere of Uranium
Fluoride, a 3D light water MOX fuel lattice at its critical height, and a 3-D small MOX
core surrounded by a light water reflector. From a computational point of view, the
proposed benchmarks involve three processes:

• A large component of the 238U elastic scattering sensitivity is in the resonance region
where implicit effects occur.

• The proposed benchmarks involve geometries where neutron leakage occurs. As a
result, scattering reactions gain a new significance due to their competing role with
leakage.

• Due to neutron leakage, a new importance is given to scattering reactions, and

2At the time of the original development with GPT in DRAGON [24, 34], scattering sensitivities were
the most discrepant reported values. Since then, further studies of sensitivity analysis in application to
the reflected pin-cell problems in the UAM benchmark [108] highlighted further discrepancies.

3Note that a perturbation theory approach with DRAGON-4 using the Method of Characteristics
(MOC) was attempted for this benchmark in [109]. However, as the sensitivity computation was being
performed in P0, most of the computed scattering sensitivities are one order of magnitude smaller than
the values predicted by SCALE/TSUNAMI-3D.
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their role in the compensation of errors becomes more pronounced. An accurate
computation of this error compensation is difficult due to the different formats
associated with the WIMS libraries and the currently available covariance data.
An accurate computation of this uncertainty is not currently possible by codes such
as CASMO-4 and DINASOUR [55, 56, 54].

4.1 2% Enriched UF4 Sphere

This benchmark represents a slightly enriched (2%) sphere of polyethylene. The radius
of the sphere is 36 cm. The atomic densities are given in Table 4.1.

2% enriched sphere
Isotope Density

(atms/barn-cm)
235U 1.3303 ∗ 10−4

238U 6.4370 ∗ 10−3

H 3.9097 ∗ 10−2

C 1.8797 ∗ 10−2

F 2.6280 ∗ 10−2

Table 4.1: Atomic densities for the 2% UF4 bare sphere. Reproduced from [106].

4.1.1 Scattering Sensitivities

Table 4.2 presents keff integrated scattering sensitivities for the five isotopes present in
the geometry. The values provided in the table represent a % change in keff result-
ing from a 1% uniform perturbation in the scattering cross section of the isotope. The
columns of the table report the integrated scattering sensitivity of the isotope (in %) as
obtained from the different transport computations. The sensitivities appearing in the
first column labeled keff are computed by using the scalar flux φ and φ† in the sensitivity
expression that was obtained from the assumption that the resulting perturbation in the
CP matrix can be effectively represented by adding an isotropic source to the in-group
scattering term (see equations 1.188 -1.190). The scalar flux φ and the adjoint φ† have
been obtained from DRAGON FLU: using a keff search. The sensitivities in this col-
umn present the current approach for computing sensitivities in DRAGON [24, 108, 110].
We will refer to these sensitivities as DRAGON-K (DR-K). The second column presents
sensitivities computed by using a B0 homogeneous leakage model (DR-B0) and the sen-
sitivity expression we introduced in chapter 3 by treating leakage as a standard cross
section (see equations 3.47 and 3.49). The column labeled SCALE P0 presents results
obtained from SCALE6/TSUNAMI-1D by using the flux and adjoint from a P0 discrete
ordinates solution (S6-P0). The column labeled DRAGON B1 reports sensitivities that
have been computed by using a Homogeneous B1 leakage model with DRAGON (DR-B1)
and by computing the leakage sensitivity using the transport corrected diffusion coeffi-
cient (see 3.47 and 3.52). The column labeled SCALE P1 presents sensitivities obtained
by SCALE/TSUNAMI-1D from a discrete ordinate P1 solution (S6-P1); these will be our
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reference results.

We note the good agreement between DR-B1 and S6-P1. Even for 235U, which has
a small sensitivity component of the order of 10−4, our DR-B1 computed sensitivity is
within 8% of the reference S6-P1 result. This shows the validity of our leakage model.

Explicit Scattering Sensitivities (%/%)
Isotope DRAGON

keff

DRAGON
B0

SCALE
P0

DRAGON
B1

SCALE P1 Relative
Error (%)

1H 3.17 ∗ 10−1 3.55 ∗ 10−1 3.21 ∗ 10−1 3.82 ∗ 10−1 3.76 ∗ 10−1 -1
12C 5.70 ∗ 10−3 2.50 ∗ 10−2 1.55 ∗ 10−3 3.32 ∗ 10−2 3.17 ∗ 10−2 -4
19F 9.47 ∗ 10−3 4.73 ∗ 10−2 2.96 ∗ 10−2 5.71 ∗ 10−2 5.58 ∗ 10−2 -2

238U 5.24 ∗ 10−3 2.18 ∗ 10−2 1.55 ∗ 10−2 2.94 ∗ 10−2 2.80 ∗ 10−2 -5
235U 9.27 ∗ 10−5 4.07 ∗ 10−4 3.61 ∗ 10−4 5.22 ∗ 10−4 5.63 ∗ 10−4 8

Table 4.2: Comparison of explicit scattering sensitivities for the 2% enriched UF4 sphere.
The relative error (in %) reports the difference between DRAGON B1 relative to the SCALE

P1.

DRAGON keff (DR-K): sensitivities obtained by using the flux and adjoint from a DRAGON

keff search.

DRAGON B0 (DR-B0): sensitivities obtained by using the flux and adjoint from DRAGON by

using a homogeneous B0-buckling search (see equations 3.47 and 3.49).

DRAGON B1 (DR-B1): sensitivities obtained by using the flux and adjoint from DRAGON by

using a homogeneous B1-buckling search(see equations 3.47 and 3.52) .

SCALE P0 (S6-P0): SCALE/TSUNAMI-1D sensitivities from a discrete ordinates P0 solution.

SCALE P1 (S6-P1): SCALE/TSUNAMI-1D sensitivities from a discrete ordinates P1 solution.

B0-DRAGON Sensitivities

Next, we see that the DR-B0 values appearing in the table are more comparable to the
DR-B1 and S6-P1 (our reference results) than the S6-P0 results. This may seem surpris-
ing given that the sensitivities appearing in both columns originate from the scalar flux
and adjoint solutions to Boltzmann equations where scattering anisotropy is ignored and
only the zeroth Legendre component of the flux and adjoint are solved for (i.e. the scalar
flux). However, we note that in the BN formalism, the higher order flux moments are
coupled in terms of a lower diagonal matrix (see section 3.2.1). Thus, computing a higher
flux moment does not influence the previous solution. In the CP formalism, we note that
when solving for the scalar flux, the only assumption that was made was that scattering
anisotropy could be effectively ignored. Therefore the scalar flux obtained from a CP so-
lution corresponds to the actual scalar flux of a system where scattering anisotropy does
not exist (i.e. the zeroth term in the infinite Legendre expansion of the flux). Contrary to
the BN formalism, in the PN formalism [83], computation of higher order flux moments
affect the previous lower order solution. Therefore, the DR-B0 sensitivities are in better
agreement with the DR-B1 sensitivities because the scalar flux obtained from a CP or a
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B0 solution is more accurate than the scalar flux obtained from a P0 solution.4

Next, we observe that the DR-K sensitivities are lower than all other sensitivities re-
ported in table 4.2. This was the main motivation behind the developments we presented
in chapter 3. Even though the DR-K sensitivities were computed by using the flux and
adjoint originating from a transport corrected CP solution, the resulting sensitivities are
less accurate than the S6-P0 sensitivities. The reason for this has to do with how we
arrived at the perturbation expressions for reactivity. In order to avoid computing the
perturbation of the Collision Probability matrix, we assumed that the perturbation in
our system, δΣ, can be effectively represented by adding the isotropic source δΣφ(�r, E)
to the in-group scattering source (see equations 1.187-1.188). Assuming a perturbation
of this form permitted us to approximate the perturbation in the CP matrix in terms of
a linear perturbation in the total cross section. However, perturbations that affect the
angular flux, or current, can not be represented by such a source. Therefore, the resultant
DR-K perturbation expressions do not capture the components of the sensitivity arising
from such perturbations.

To study this effect, we can consider three different components of the DR-B1 sen-
sitivity expression that we arrived at by using the buckling approximation and treating
leakage as a standard cross section (see equations 3.46, 3.44, 3.49). In the sensitivity
expression for the scattering cross section we can isolate the terms:

• Energy gain/loss defined as the difference
�

φ†, keff (δqS − δqΣ) · φ
�

where q =
σ(n,SCAT ). This term accounts for the net importance gained from the neutron
after the scattering collision (its sign is usually positive for thermal systems).

• The isotropic component of the leakage term
�

φ†,
qkeff B2

3(Σ−Σs,1)
δqΣ

(Σ−Σs,1)
φ
�

, i.e. the net

importance gained from the neutron’s change in direction following the scattering
collision.5

• Scattering anisotropy approximated from the transport correction as

−keff

�

φ†, qB2δq(Σs,1)

3(Σ−Σs,1)2 φ
�

(see equations 3.51-3.52).

The three components of the scattering sensitivities are presented in table 4.3 for DR-B1

sensitivities. Also reported in the table are integrated sensitivities (%/%) for the DR-K
and DR-B1 approach. The first column GAIN/LOSS (GL) refers to the energy gain/loss
component of the sensitivity. The column named STREAMING (ST) presents the con-
tribution of the streaming/neutron leakage term to the integrated DR-B1 sensitivity, and
the last column reports the contribution of the transport correction (TR) to the inte-
grated DR-B1 sensitivity. The values are given in terms of the percentage contribution
to the DR-B1 integrated sensitivity. The values appearing in the parenthesis are the
absolute contribution to the DR-B1 integrated sensitivity (in %/%).

4Indeed, the differences observed in the B0 sensitivities and the B1 sensitivities highlight the effect of
scattering and flux anisotropy in the system. Since the leakage is underestimated with a B0 model [83]-
scattering sensitivities in the fast range (which compete with leakage) are also underestimated.

5Note that for computational purposes, this term is assigned as a loss term. In the sensitivity formulas,
its sign is positive.
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Integrated Sensitivities (%/%) Sensitivity Decomposition† (% of B1)

Isotope DRAGON
keff

DRAGON
B1

GAIN/LOSS STREAMING TR

1H 3.17 ∗ 10−1 3.82 ∗ 10−1 82% 23% -5 %
(3.15 ∗ 10−1) (8.60 ∗ 10−2) (−1.8 ∗ 10−2)

12C 5.70 ∗ 10−3 3.32 ∗ 10−2 18% 82% 0 %
(5.90 ∗ 10−3) (2.73 ∗ 10−2) (0.0)

19F 9.47 ∗ 10−3 5.71 ∗ 10−2 20% 80% 0 %
(1.13 ∗ 10−2) ( 4.58 ∗ 10−2) (0.0)

238U 5.24 ∗ 10−3 2.94 ∗ 10−2 36 % 83% -19 %
(5.98 ∗ 10−3) ( 2.29 ∗ 10−2) (−5.2 ∗ 10−3)

235U 9.27 ∗ 10−5 5.22 ∗ 10−4 22% 79% 0 %
(9.25 ∗ 10−5) ( 4.10 ∗ 10−4) (0.0)

Table 4.3: Decomposition of the Integrated Sensitivities computed by DRAGON SNS:
†: Sensitivity decomposition % (absolute value %/%) of the DRAGON results from a B1

leakage model with transport correction.

For example, we see from table 4.3 that the largest component for the 1H integrated
scattering sensitivity is the GL term. This shows the role that 1H plays as a neutron
moderator. The GL contribution is positive because an increase in 1H(n,el) cross section
results in an increase in the thermal neutron population thereby increasing fission.6

Also observed from 4.3 is that the ST contribution to the scattering sensitivity of
all elements other than 1H is larger than GL. The ST and TR components can not be
computed in the DR-K approach. Comparison of DR-K and GL verifies that the DR-K
can only predict the sensitivity component due to energy gain and loss. This limitation
of the DR-K approach is constraining when the uncertainty contribution from scattering
reactions is important (which is the case for the UACSA benchmarks being studied).

Figures 4.1 presents the 1H(n,el) sensitivity profile. The scattering sensitivity is im-
portant over the entire spectrum given Hydrogen’s efficiency to moderate neutrons. The
DR-K profile appears in gray and effectively shows the GL profile. We observe that at
high energies, where neutrons are more prone to leakage, streaming effects become im-
portant. This can be seen by comparing the DR-K, with DR-B1 and S6-P1. The effect
can be seen in figures 4.2, 4.3, and 4.4 for 12C, 19F and 238U scattering sensitivities.

6Note that this is true for thermal systems.
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Figure 4.1: Comparison of 1H(n,el) sensitivity for the UF4 sphere. Note the differences at
high energy between the gray curve and the two other curves, that result from streaming effects
that are not captured by the DRAGON-keff (DR-K) approach.
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Figure 4.2: Comparison of the 12C(n,SCAT) sensitivity for the UF4 sphere. Note the
differences at high energy between the gray curve and the two other curves, that result from
streaming effects that are not captured by the DRAGON-keff (DR-K) approach. The differences
between the DRAGON-B1 profile and SCALE6/TSUNAMI-1D profile stem from anisotropy.
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Figure 4.3: Comparison of 19F(n,SCAT) sensitivity for the UF4 sphere.
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Figure 4.4: Comparison of 238U(n,SCAT) sensitivity for the UF4 sphere.
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Integrated Sensitivities

The main goal of this study is the computation of keff sensitivities to multi-group cross
sections for the purpose of nuclear data uncertainty propagation with DRAGON. This
requires the computation of sensitivity profiles for use with the sandwich formula (see
equation 1.199).

Table 4.4 presents the DR-K, DR-B1 and S6-P1 integrated sensitivities (in %/%). The
column labeled relative error presents the difference (in %) between the DR-B1 results
and the S6-P1 results. Comparing the DR-K column with the DR-B1 column, we observe
that absorption and fission sensitivities are not affected by leakage as their sensitivities
essentially rely on the scalar flux. The last column in the table presents the error (in
%) between the DR-B1 sensitivities relative to the S6-P1 sensitivities. We note the good
agreement between the presented values. The 9.18% error associated with 238U absorp-
tion cross section is due to underlying differences in the self shielded multi-group cross
sections and will be discussed in the next section. The row labeled TOTAL reports the
sum of the absorption, scattering and fission sensitivities. This sensitivity is called the
total sensitivity as it represents the % change in keff from a 1% perturbation in the
atomic density of the isotope.

For 238U, the error in the capture sensitivity is the largest component of the error in the
total sensitivity. This is principally due to differences in the self-shielding computation
between the two codes. Note that the sensitivities are often of opposite signs, making
the total sensitivity usually smaller, and its error more difficult to interpret. The total
sensitivity is therefore not an optimal parameter for comparison when performing code-
verification.
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Explicit Integrated Sensitivities (%/%)
Reaction DRAGON

SNS: keff

DRAGON
SNS: B1

SCALE P1 Rel. Error†

(%)

19F
(n,ABS) −5.99 ∗ 10−3 −5.76 ∗ 10−3 −5.39 ∗ 10−3 6.8 %

(n,SCAT) 9.47 ∗ 10−3 5.71 ∗ 10−2 5.58 ∗ 10−2 2.2 %
TOTAL 3.48 ∗ 10−3 5.13 ∗ 10−2 5.04 ∗ 10−2 1.7 %

235U

(n,capture) −1.11 ∗ 10−1 −1.12 ∗ 10−1 −1.12 ∗ 10−1 0.1 %
(n,scat) 9.27 ∗ 10−5 5.18 ∗ 10−4 5.63 ∗ 10−4 7.98 %

(n,f) 3.69 ∗ 10−1 3.65 ∗ 10−1 3.66 ∗ 10−1 0.3 %
ν̄ 9.49 ∗ 10−1 9.49 ∗ 10−1 9.49 ∗ 10−1 0.02 %

TOTAL 2.59 ∗ 10−1 2.53 ∗ 10−1 2.54 ∗ 10−1 0.3%

238U

(n,capture) −3.29 ∗ 10−1 −3.32 ∗ 10−1 −3.04 ∗ 10−1 9.18 %
(n,scat) 5.24 ∗ 10−3 2.74 ∗ 10−2 2.80 ∗ 10−2 2.07 %

(n,f) 3.34 ∗ 10−2 3.40 ∗ 10−2 3.44 ∗ 10−2 1.14 %
ν̄ 5.13 ∗ 10−2 5.07 ∗ 10−2 5.06 ∗ 10−2 0.3 %

TOTAL −2.96 ∗ 10−1 −2.70 ∗ 10−1 −2.42 ∗ 10−1 12 %

1H
(n,γ) −1.01 ∗ 10−1 −1.02 ∗ 10−1 −1.01 ∗ 10−1 0.6 %

(n,scat) 3.17 ∗ 10−1 3.82 ∗ 10−1 3.76 ∗ 10−1 1.62 %
TOTAL 2.16 ∗ 10−1 2.81 ∗ 10−1 2.75 ∗ 10−1 2.21 %

12C
(n,capture) −7.05 ∗ 10−4 −6.75 ∗ 10−4 −6.55 ∗ 10−4 3.0%

(n,scat) 4.87 ∗ 10−3 3.32 ∗ 10−2 3.17 ∗ 10−2 4.0%
TOTAL 4.16 ∗ 10−3 3.25 ∗ 10−2 3.11 ∗ 10−2 4.5%

Table 4.4: Comparison of DRAGON explicit integrated sensitivities (%/%) with SCALE
6 /TSUNAMI-1D
† Relative Difference between the DRAGON SNS: B1 (DR-B1) results relative to the
SCALE6/TSUNAMI-1D results.
Note the underestimated scattering sensitivities obtained from the DR-K approach and
the good comparison between the DR-B1 and S6-P1 sensitivities.
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4.1.2 Implicit Sensitivities

The sensitivities presented in the previous section were explicit sensitivities. They rep-
resented a % change in keff resulting from a 1% change in the self-shielded multi-group
cross section. In this section, we will present our results for implicit scattering sensitiv-
ities. These sensitivities were computed according to the algorithm outlined in section
3.1.3. The implicit sensitivity accounts for the contribution to the sensitivity from the
perturbation in the multi-group cross section resulting from a perturbation in the fine flux.

In the case of 238U (n,γ), an increase in the absorption cross section leads to a higher
depression in the fine flux. Since the self shielded multi-group cross section is generated
by weighting the absorption cross section with the fine flux, the effect is a net reduction
in the absorption rate (i.e. a positive sensitivity). Therefore, the implicit component
and the explicit component of the 238U(n,γ) sensitivity have opposite signs. As a result,
accounting for the implicit effect decreases the absorption sensitivity, and ignoring the
implicit absorption sensitivity leads to an over-estimation of the computed 238U(n,γ) un-
certainty contribution.

Unlike absorption, taking into account the implicit component of the 238U(n,el) reac-
tion leads to an increase in its uncertainty so that neglecting the implicit effect would
under-estimate the 238U(n,el) uncertainty contribution. This is most likely the reason
why the Expert Group decided to consider this sensitivity in [107]. The 1H(n,el) implicit
sensitivity was also presented in [107] so that we present this sensitivity as an additional
verification. The remaining implicit sensitivities are lower than 1-5% (in magnitude) of
the corresponding explicit component and have not been considered in this study. We
note that in this benchmark, the contribution of the implicit sensitivity to the total keff

uncertainty from 238U nuclear data uncertainties is 42 pcm when computed by using the
DR-B1 sensitivities and the analytical approximation. The contribution of the implicit
sensitivity to the computed uncertainty is 40 pcm when using SCALE6/TSUNAMI-1D.7

238U (n,el) Implicit Sensitivity

Of course the reason why we introduced our analytic approximation in section 3.1.3 was
that we did not wish to repeat the self shielding computation 47 times per isotope.8 The
analytical approximation of section 3.1.3 requires one forward flux solution, one adjoint
solution, and 47 cross section interpolations over the estimated dilution factor, and pro-
vides a good estimate for the implicit sensitivity in homogeneous systems.

Table 4.5 presents implicit scattering cross section sensitivities calculated for the 2%
enriched UF4 sphere using three different computational schemes as well as reference
results obtained by SCALE/TSUNAMI-1D. The values reported in this table represent
the contribution to the keff sensitivity from perturbations in the multi-group cross sec-
tions resulting from perturbations in the fine flux. The first column presents the implicit

7The covariance data source here are the 44 group SCALE6 covariance library. The contribution of
the implicit sensitivity for capture was computed by SCALE to be 12 pcm, with the contribution from
the correlation between the two being negligible.

8The number 47 corresponds to the number of resonance groups in the WIMS 172 group library
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sensitivity computed by the analytical approximation. The second columns presents
the implicit sensitivity computed from performing 47 self shielding computations using
perturbed libraries, and the chain rule expansion law given by equation 3.19. This com-
putational approach is feasible for large cases since the self shielding computation for
these cases accounts for only a fraction of the computation time.9 This approach requires
one flux solution, one adjoint solution and 47 DRAGON self shielding computations. The
third column presents sensitivities we obtained from complete simulations by perturbing
the cross section and performing a keff search. This approach requires 47 DRAGON sim-
ulations. We note the good agreement between all three computation routes. However,
our implicit sensitivities are 22% greater than those reported by SCALE/TSUNAMI-3D.

Implicit Scattering Sensitivities (%/%)
DRAGON SCALE

Isotope ANALYTIC +
SNS:

47 SHI: +
SNS:

DIRECT 47
simulations

/TSUNAMI
1D[109]

238U 2.65 ∗ 10−2 2.55 ∗ 10−2 2.59 ∗ 10−2 2.16 ∗ 10−2

1H -2.99 ∗ 10−2 −2.95 ∗ 10−2 −2.94 ∗ 10−2 −3.01 ∗ 10−2

19F -4.21 ∗ 10−3 −4.22 ∗ 10−3 −4.27 ∗ 10−3 −3.67 ∗ 10−3

Table 4.5: Implicit scattering sensitivities for the 2% enriched UF4 sphere.
SCALE/TSUANMI results are reproduced from the model supplied in [109]. Note the
good comparison between the three DRAGON methods.

Figure 4.5 presents a comparison between the implicit sensitivity computed with
DRAGON using the analytical approximation (red curve), the implicit sensitivities com-
puted using DINASOUR (dotted purple curve), and implicit sensitivities computed by
SCALE6/TSUNAMI-1D (blue curve). Provided in the figure is also the SCALE6/TSUNAMI-
1D sensitivity collapsed from 238 groups to 172 groups (green curve). The DINASOUR
sensitivities have been provided by McMaster University using our input model. DI-
NASOUR perturbs the multi-group parameters in the WIMS library according to the
Narrow Resonance Approximation (NRA). It then proceeds to compute the sensitivity
by performing direct DRAGON simulations using the perturbed WIMS libraries.

From figure 4.5, we see that the largest observed differences between the sensitivity
profiles are in the first few resonances. The observed differences are due to the approxi-
mation used for the fine flux as well as differences in the energy mesh used by the codes.
The first few resonances of 238U are wide so that the neutron energy loss from the elas-
tic collision with 238U can be effectively ignored (the neutron energy after the collision
remains under the resonance). A better approximation in this range is the Wide Reso-
nance Approximation (WRA) where the scattering cross section of the resonance isotope
is ignored [20]. The analytical approximation we used (see equation 3.21) is based on the
Intermediate Resonance Approximation (IRA). In the IRA, the scattering cross section of
the resonant isotope is given a lower weighting in fine flux than when using the NRA (see

9Computing the CP matrix is the most computationally intensive part of the calculation
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equation 3.21).10 As a result, the keff sensitivity to the heavy isotope scattering cross
section (in this case 238U) vary based on the specific formalism used. A good example
of this is the 6.7 eV resonance of 238U which is wide so that the scattering cross section
has little impact on the fine-flux. The SCALE 238-group energy grid is fine enough to
capture this effect, as observed in figure 4.5.
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Figure 4.5: Comparison of 238U implicit scattering sensitivities in the resonance region.

Note the differences in the epithermal regions between DINASOUR (NRA), DRAGON-SNS:
(IRA), and SCALE/TSUNAMI-1D which has a fine enough energy grid thereby avoiding the
IRA/NRA approximations in the first few resonances.

For the implicit scattering sensitivities presented in table 3.19, the multi-group cross
section that has the highest contribution to the implicit effect is 238U(n,γ). The implicit
sensitivity for 238U scattering is positive since an increase in the scattering cross section of
238U results in neutrons being more often scattered out of the resonance thereby reducing
the absorption rate.

The implicit sensitivity for the other isotopes k �=238U is negative. An increase in the
potential scattering cross sections of isotopes k �=238U results in an increase in the dilu-
tion factor (the resonant isotope 238U becomes more dilute). Correspondingly, the flux
depression due to the resonances of 238U is decreased (i.e. the flux approaches the 1/E
asymptotic shape). The result is an overall net increase in the multi-group absorption
cross section of 238U, and therefore a net increase in the 238U absorption rate.

For 1H(n,scat), the negative component of the implicit sensitivity from the analyt-
ical model (DR-B1) is plotted in figure 4.7 and compared with results provided from

10For 238U, the intermediate resonance factor is reported in the WIMS libraries to have a value λ = 0.2
[38].
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SCALE/TSUNAMI1-D. We note the good agreement between the two computational
routes.
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Figure 4.6: Positive component of 1H elastic scattering cross section sensitivity (%/%). 47
direct simulations with DRAGON (green curve); DRAGON-SNS: B1 explicit sensitivities from
one SHI: computation and the analytical approximation (orange curve); 47 SHI: computa-
tions (blue curve); SCALE6/TSUNAMI 1D implicit sensitivity in 238-groups (dotted black
curve);SCALE6/TSUNAMI 1D implicit sensitivity collapsed to 172-groups (red curve); differ-
ence between SCALE6/TSUNAMI-3D collapsed to 172 groups and the analytical model (dotted
purple).
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Figure 4.7: Negative component of the 1H (n,scat) implicit sensitivity in the resonance region.
One SHI: and the analytical approximation (orange curve); 238-group SCALE/TSUANMI 1D
implicit sensitivity profile (black dotted); SCALE/TSUNAMI-1D implicit sensitivity collapsed
to the 172 group WIMS energy grid.
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Figure 4.8: Positive component of 238U elastic scattering cross section sensitivity (%/%) in
the resonance region. 47 direct computations w/ DRAGON (green curve); one SHI: computa-
tion along with the analytical approximation 3.19 and 3.20 and SNS: (orange curve); 47 SHI:
and equation 3.20 with SNS: (blue curve); SCALE/TSUNAMI-1D implicit sensitivity in 238
groups (dotted black curve); SCALE/TSUNAMI-1D implicit sensitivity collapsed to 172 groups
(red curve); Difference between the SCALE/TSUNAMI-1D implicit sensitivity collapsed to 172
groups and the analytical model.
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Figure 4.9: Negative component of the 238 (n,γ) explicit sensitivity profiles (%/%) in the
resonance region. 172 group DRAGON SNS: capture sensitivity profile (orange line); 238
SCALE/TSUNAMI 1D SNS: capture sensitivity profile (dotted black); SCALE/TSUNAMI
1D capture sensitivity collapsed to the 172 group WIMS energy grid.
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4.1.3 Uncertainty Propagation

Table 4.6 presents the 238U cross section uncertainty contributions obtained from the
DRAGON SNS: explicit sensitivities. Also provided in the table are reference results
computed by SCALE/TSUNAMI-1D. The nuclear data uncertainty source we use in this
section is the 44-group covariance matrices released with the SCALE 6 library and pro-
cessed by ANGELO to the WIMS 172-group energy grid. The first two columns appearing
in the table report (in %/%) the DR-B1 and S6-P1 integrated explicit sensitivities. The
second two columns report the contribution to the keff uncertainty (in pcm) from the
specified reaction pair.

From table 4.6, we observe that despite the small sensitivity of 238U(n,inel), its keff

uncertainty contribution is greater than 50% of the total keff uncertainty from 238U
nuclear data uncertainties. We also observe the negative correlation reported between
(n,el)-(n,inel), that accounts for more than half of the (n,inel)-(n,inel) uncertainty. Both
of these points highlight the importance of an accurate computation of scattering sensi-
tivities. A DR-K approach predicts 238U(n,inel)-(n,inel) keff -uncertainty contribution to
be 45 pcm. This value is lower by a factor of 5 from the 254 pcm uncertainty contribution
which is predicted by SCALE/TSUNAMI-1D and the 243 pcm uncertainty contribution
computed by the DR-B1 approach. The DR-K approach also ignores the contribution
from 238U(n,el) and the correlation between 238U(n,el)-(n,inel). However, the total un-
certainty computed by the DR-K approach leads to 414 pcm which is very close to the
TSUNAMI-1D P1 predicted value of 460pcm. The reason for this is that the capture cross
section is the largest contributor to the uncertainty, which the DR-K approach computes
accurately.

The keff uncertainty contributions from the 235U nuclear data uncertainties are pre-
sented in table 4.7. The dominant contributor is the ν̄ uncertainties which have a large
contribution given their high sensitivities (sum of all the ν̄ sensitivities should equal to
unity). The uncertainties obtained by using the DR-B1 explicit sensitivities are in good
agreement with the SCALE6/TSUNAMI-1D results (S6-P1).

Uncertainty contributions for 1H and 19F obtained from the explicit sensitivities com-
puted by DR-B1 and the uncertainties predicted by TSUNAMI-1D are presented in tables
4.8 and 4.9. Since the computed sensitivities were in good agreement, the computed un-
certainties are identical. For 19F, we have divided the (n,el) and (n,inel) sensitivities using
the partial reaction law that we used for heavy isotope scattering. While in this case,
this approach seems to lead to comparable values with S6-P1, it is not recommended for
use with non-heavy isotopes such as 12C and 19F.

When computing the keff uncertainty contribution from 12C and 19F scattering re-
actions, neither the chain-rule nor our approximation of no out-group elastic scattering
(see equation 3.66) is valid. Therefore we cannot compute the uncertainty contribution
from these isotopes. We note that in thermal systems, the uncertainty contribution from
the isotopes of medium range atomic masses is usually lower than the contribution from
heavy isotopes.
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238U Nuclear Data Comparison of 238U keff Sensitivity and Uncertainties
Sensitivity (%/%) Uncertainty (pcm)

REACTION REACTION DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1

DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1
(n,capture) (n,capture) −3.3 ∗ 10−1 −3.04 ∗ 10−1 435 408

(n,inel) (n,inel) 1.4 ∗ 10−2 1.4 ∗ 10−2 254 243
(n,el) (n,inel) - - -138 -138

ν̄ ν̄ 5.0 ∗ 10−2 5.1 ∗ 10−2 59 59
(n,el) (n,el) 1.6 ∗ 10−2 1.3 ∗ 10−2 41 42
(n,f) (n,f) 3.4 ∗ 10−2 3.4 ∗ 10−2 18 18
(n,el) (n,capture) - - -18 -16
(n,f) (n,capture) - - 2 3
(n,el) (n,f) - - -2 -2
(n,2n) (n,2n) - 1.042 ∗ 10−3 - 1

Total Uncertainty Contribution (in pcm) 490 460

Table 4.6: Comparison of the computed uncertainty contributions, (in pcm), due to 238U cross
section uncertainties for the 2% enriched UF4 sphere. DRAGON computations are obtained
using a B1 homogeneous leakage model. Note that explicit sensitivities are presented. The
nuclear data uncertainty source used are the SCALE 6 Covariances.

235U Nuclear Data Comparison of 235U keff Sensitivity and Uncertainties
Sensitivity (%/%) Uncertainty (pcm)

REACTION REACTION DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1

DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1
ν̄ ν̄ 9.5 ∗ 10−1 9.5 ∗ 10−1 285 285

(n,capture) (n,capture) −1.1 ∗ 10−1 −1.12 ∗ 10−1 160 159
(n,f) (n,capture) - - 124 124
(n,f) (n,f) 3.6 ∗ 10−1 3.66 ∗ 10−1 122 122
(n,el) (n,capture) - - 5 5
(n,el) (n,f) - - -4 -4

(n,inel) (n,inel) 2.3 ∗ 10−4 2.42 ∗ 10−4 1 2
(n,el) (n,inel) - - -1 -1
(n,el) (n,el) 2.9 ∗ 10−4 3.0 ∗ 10−4 1 1

Total Uncertainty Contribution (in pcm) 370 369

Table 4.7: Comparison of the computed uncertainty contributions, (in pcm), due to 235U cross
section uncertainties for the 2% enriched UF4 sphere. DRAGON computations are obtained
using a B1 homogeneous leakage model. Note that explicit sensitivities are presented. The
nuclear data uncertainty source used are the SCALE 6 Covariances.
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1H Nuclear Data Comparison of 1H keff Sensitivity and Uncertainties
Sensitivity (%/%) Uncertainty (pcm)

REACTION REACTION DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1

DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1
(n,el) (n,el) 3.8 ∗ 10−1 3.8 ∗ 10−1 133 133

(n,capture) (n,capture) −1.0 ∗ 10−1 −1.0 ∗ 10−1 5 5
Total Uncertainty Contribution (in pcm) 143 141

Table 4.8: Uncertainties in (in pcm) due to 1H cross section uncertainties for the 2% enriched
UF4 sphere. DRAGON computations are obtained using a B1 homogeneous leakage model.
Note that explicit sensitivities are presented. The nuclear data uncertainty source used are the
SCALE 6 Covariances. Note the good comparison between the DR-B1 and S6-P1 computed
uncertainty contributions.

19F Nuclear Data Comparison of 19F keff Sensitivity and Uncertainties
Sensitivity (%/%) Uncertainty (pcm)

REACTION REACTION DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1

DRAGON
SNS:

SCALE /
TSUNAMI

1D-P1
(n,el) (n,el) 3.12 ∗ 10−2 3.76 ∗ 10−2 120 151

(n,inel) (n,inel) 2.5 ∗ 10−2 1.76 ∗ 10−2 151 123
(n,el) (n,inel) - - -95 -128
(n,α) (n,α) −2.81 ∗ 10−3 −2.81 ∗ 10−3 192 189

Total Uncertainty Contribution (in pcm) 215 198

Table 4.9: Uncertainties in (in pcm) due to 19F cross section uncertainties for the 2% enriched
UF4 sphere. DRAGON computations are obtained using a B1 homogeneous leakage model.
Note that explicit sensitivities are presented. The nuclear data uncertainty source used are
the SCALE 6 Covariances. The uncertainty has been computed by applying the approxima-
tion introduced for heavy isotopes (no energy loss accompanied from elastic scattering). This
approximation should not be applied to non-heavy nuclides such as 19F.
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Comparison of Approximations for Computing Heavy Isotope Scattering Cross
Section Uncertainties

One of the primary efforts made by developers performing nuclear data uncertainty prop-
agation is incorporating the currently available covariance data to their specific code. For
users of the WIMS libraries, the main issue is the difference in definition that exists be-
tween the cross sections provided in the WIMS libraries in terms of which the sensitivities
are computed by codes such as DRAGON, CASMO-4, or DINASOUR, and the partial
cross section data in terms of which covariance matrices, coming from experiences and
evaluations, are currently available (see section 3.3). We provided an example of our solu-
tion to this problem for reflected pin-cells in chapter 3. We have also seen in this section
that, for 238U, the contribution from the elastic and inelastic reactions is important to
the overall uncertainty.

In section 3.3.4, we provided a comparison between our approximation for computing
the scattering sensitivity & uncertainty and the chain-rule approximation. For example,
we showed in chapter 3 that, in reflected lattices, the small pitch length and the reflective
boundary conditions promote flux isotropy. In this case the sensitivity of 238U(n,el) is
negligible and the uncertainty can be computed by simply assigning the obtained scat-
tering sensitivity as the sensitivity of 238U(n,inel). This was the approximation that we
used for reflected pin-cells in section 3.3.3.

In table 4.6, when reporting the 238U uncertainty contributions, we observed that
the 238U(n,el) scattering cross section can have a non-negligible contribution to the over-
all uncertainty by its anti-correlation with the 238U(n,inel). Since current codes such
as CASMO-4 and DINASOUR, that use the WIMS libraries cannot capture this effect
properly, we decided to quantify the errors in the computed scattering uncertainty con-
tribution that are associated from the use of these codes.

To perform this computation, we mimic the sensitivity and uncertainty results that
would be computed from codes such as DINASOUR or CASMO-4; we do this by applying
the chain rule to the DR-B1 lumped/total scattering sensitivity. Note that we do not use
the code CASMO-4 or DINASOUR to perform this computation. However, we can as-
sume that if the mentioned codes are capable of computing accurately the 238U(n,SCAT)
sensitivity (lumped scattering sensitivity), then they will arrive at the partial sensitivities
238U(n,el) and 238U(n,inel) similar to what we present here.

McMaster University has provided us with sensitivities for 238U(n,el) and 238U(n,inel),
as computed by their code DINASOUR from our input model. Figure 4.10 presents the
sensitivity profile for the lumped scattering reaction as computed by SCALE/TSUNAMI-
1D (black curve), DR-B1 (orange curve) and the code DINASOUR (blue curve). Given
the direct perturbation/simulation nature of the code, the results obtained by DINA-
SOUR can be considered as exact to the limit of a keff sensitivity computation with
DRAGON.11 Note the good agreement between the sensitivity profiles computed by all

11Note that the question of precision is always a limiting factor in direct perturbation methods. For
example, sensitivity computations for reactivity worths of small samples are difficult without using an
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three codes.

Next, in figure 4.11 and 4.12, we present the keff sensitivity to 238U(n,inel) and
238U(n,el) as computed by applying our approximation of heavy isotope diagonal scat-
tering matrix (orange curve) and the chain-rule approximation (dotted red curve). We
note the agreement of our predicted sensitivities with those from DINASOUR for both
reactions when applying the chain-rule to the scattering sensitivity. We also observe that,
for both reactions, the sensitivity profiles computed in this way are very different, with
the chain-rule approach underestimating the (n,inel) sensitivity and overestimating the
238U(n,el) sensitivity.
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Figure 4.10: Comparison of the keff sensitivity profiles for the 238U lumped scattering reaction.
DRAGON-SNS: B1 solution obtained using the ENDF B/VI (orange curve). SCALE/TSUNAMI-1D
P1 solution obtained using the ENDF B/VI evaluation (black curve). DRAGON+DINASOUR∗ results
supplied by McMaster University using our input model and ENDF B/VII evaluation (blue dotted curve).
Note the good comparison between all three computational schemes.

exact perturbation approach.
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Figure 4.11: Comparison of the keff
238U (n,inel) sensitivity profiles for the UF4 sphere.

DRAGON-SNS: B1 solution obtained using the ENDF B/VI (orange curve). SCALE/TSUNAMI-1D
P1 solution obtained using the ENDF B/VI evaluation (black curve). DRAGON+DINASOUR∗ results
supplied by McMaster University using our input model and ENDF B/VII evaluation(dotted blue curve).
DRAGON-SNS: B1+ Chain rule obtained by applying the chain rule to the SNS: computed sensitivity
(dotted black curve). Note the good comparison between DRAGON-SNS: B1 with the reference solution
SCALE/TSUNAMI-1D P1 and the poorly computed sensitivity resulting from applying the chain rule.
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Figure 4.12: Comparison of the keff
238U (n,el) sensitivity profiles for the UF4 sphere.

DRAGON-SNS: B1 solution obtained using the ENDF B/VI (orange curve). SCALE/TSUNAMI-1D
P1 solution obtained using the ENDF B/VI evaluation (black curve). DRAGON+DINASOUR∗ results
supplied by McMaster University using our input model and ENDF B/VII evaluation (dotted blue curve).
DRAGON-SNS: B1+ Chain rule obtained by applying the chain rule to the SNS: computed sensitivity
(dotted red curve). Note the good comparison between DRAGON-SNS: B1 with the reference solution
SCALE/TSUNAMI-1D P1 and the poorly computed sensitivity resulting from applying the chain rule.
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Table 4.10 presents comparison for the retrieved partial 238U(n,el) and 238U(n,inel)
cross section sensitivities and their uncertainty contributions computed by applying three
various approximations to the DR-B1 sensitivities, as well as sensitivities and uncertainty
contributions reported by SCALE/TSUNAMI-1D. The columns appearing in the table
are as follows:

• SCALE: this column presents results obtained using SCALE/TSUNAMI-1D with
the P1 approximation.

• A.1: This column partial cross section sensitivities/uncertainties retrieved from the
DR-B1 SNS: explicit sensitivities using the approximation introduced in this work
(see equations 3.66 and 3.70-3.71).

• A.2: This column presents partial cross section sensitivities/uncertainties obtained
using our approximation introduced in section 3.3.3 for reflected pin-cells which
consists of assigning the lumped scattering sensitivity in the fast energy range as
the sensitivity to the inelastic cross section.

• A.3: This column presents our results obtained by applying the chain rule to the
lumped scattering cross section (see equations 3.67-3.68). It reports the sensitivity
& uncertainty that would be predicted by codes such as CASMO-4 and DINASOUR
[55, 56, 54].

238U keff Sensitivity (%) keff uncertainty (pcm)
Reaction SCALE� A.1∗ A.2† A.3‡ SCALE� A.1∗ A.2† A.3‡

el-el 1.26 ∗ 10−2 1.56 ∗ 10−2 5.72 ∗ 10−3 2.16 ∗ 10−2 42 41 4 128
inel-inel 1.42 ∗ 10−2 1.38 ∗ 10−2 2.90 ∗ 10−2 7.8 ∗ 10−3 243 254 310 133
el-inel - - - - -138 -138 0 -183

238U (n,scat) TOTAL Uncertainty (pcm) 204 217 310 24

Table 4.10: Comparison of various approximations for retrieving partial cross section
sensitivities.
SCALE�: Results from SCALE/TSUNAMI-1D P1 (S6-P1).
A.1∗: Approximation used in this work and given by equation 3.70 and 3.71 (DR-B1).
A.2†: Approximation used in this work for application to reflected pin-cells.
A.3‡: Approximation used by CASMO-4 [55] and DINASOUR [54] of applying the chain-rule to the
scattering cross section. All DRAGON computations have been performed using the DR-B1 sensitivities
(A.1, A.2, and A.3).

Comparing the values provided in table 4.10, we observe the following points:

• A.2: Assigning the scattering sensitivity at high energies as the sensitivity of in-
elastic scattering results in an over-estimation of the keff uncertainty by 22% of the
DR-B1 uncertainty contribution (reported in A.1) and 27% of the reference S6-P1

uncertainty contribution. More importantly, since the elastic cross section is set
to zero within this range, the approximation will miss the contribution from the
anti-correlation between the two reactions, which has a value larger than 50% of
the uncertainty contribution coming from the inelastic cross section. As a result,
this approximation overestimates the total contribution of scattering reactions to
the keff uncertainty by 43% of our computed value, and 52% of the value computed
by the reference code SCALE/TSUNAMI-1D.
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• A.3: Application of the chain rule to the scattering sensitivity results in an over
estimation of the elastic sensitivity by 38% of the elastic sensitivity reported by
A.1 (DR-B1) and 71% of the elastic sensitivity computed by S6-P1. As a result,
the chain rule approximation over estimates the contribution from the elastic cross
section by some 212% of the DR-B1 value (A.1) and the S6-P1 value (SCALE).
The approximation also underestimates the inelastic component of the sensitiv-
ity by 43% of the DR-B1 value (A.1) and 45% of the sensitivity computed by
SCALE/TSUNAMI-1D. This results in an underestimation of the inelastic contri-
bution to the uncertainty. The uncertainty contribution is over-estimated by 47% of
the DR-B1 computed contribution (A.1) 45% of the S6-P1 computed contribution.
Similarly, since the sensitivities for the 238U(n,el) and 238U(n,inel) reactions differ
greatly, the contribution from the anti-correlation between the elastic and inelastic
is also over estimated by some 32% of the DR-B1 or S6-P1 values. As a result of
these differences, the resultant contribution from 238U scattering reactions to the
keff uncertainty is underestimated by approximately one order of magnitude.

Uncertainty Analysis with Lumped Covariances

In [56], Pusa attempts to avoid the intermediate step of computing partial cross section
sensitivities by constructing covariance matrices which correspond to the lumped/total
scattering cross section defined in the WIMS libraries. As the application is equivalent
to assuming that the chain rule applies to the total/lumped scattering cross section, the
results obtained by CASMO-4 are not comparable with the computed sensitivities by
SCALE/TSUNAMI-2D. The conclusion then reached in [56] is that "it is not possible
to perform S&U analysis with respect to the total scattering cross-section in a manner
that would produce results consistent with the approach where sensitivities are computed
with respect to individual scattering reactions."

We think that it could serve of benefit to provide results using lumped scattering co-
variance matrices. Here, the key point when constructing the lumped scattering matrix
is that the covariance as well as the correlation between the lumped scattering reaction
and inelastic scattering should be computed and stored (see equation 3.72).

Table 4.11 presents the uncertainty contribution from the lumped covariance matrices
we have constructed. The values appearing in the table are in percent contribution to the
total variance with the absolute contribution to the variance reported in the parenthesis.
We see that the obtained scattering uncertainty is identical to the approach where partial
cross sections are used (217 pcm in table 4.10). While the computed contribution from
the scattering cross section uncertainty using this methodology is as accurate as our ap-
proach using partial cross sections, information regarding the origin of the uncertainties
are lost. For this reason, throughout the remainder of this work, when reporting uncer-
tainty contributions, we will use the approach of partial reactions rather than using our
lumped covariance matrices.

We note the good agreement between the computed value of 217 pcm in table 4.10
and the computed value of 216 pcm in this computation. Also, note the error cancellation
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between the two reactions which becomes more pronounced. After the computation of
the lumped covariance matrix and its correlation with inelastic scattering, this computa-
tion will not require knowledge of the partial cross section data.

238U Scattering % Contribution to the total variance
REACTION LOSS (n,scat) GAIN (n,inel)

LOSS (n,scat) 0.65 % (2.63 ∗ 10−8) 32.52 % (1.54 ∗ 10−6)
GAIN (n,inel) 32.52 % (1.524 ∗ 10−6) 34.39 % (1.61 ∗ 10−6)

Variance 4.69 ∗ 10−6

Contribution to
Uncertainty (pcm)

216

Table 4.11: Computation of 238U(n,SCAT) uncertainty contribution using lumped co-
variances. The reported values are % of the variance. Absolute values are reported in
parenthesis. The computation has been performed using DR-B1 sensitivities and lumped
covariance matrices constructed from the ANGELO processed SCALE-6 covariances.
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4.2 MOX Lattice at Critical Height

The previous benchmark provided an example where, due to competition with leakage,
a large component of the scattering sensitivities was composed of the streaming term
(ST). However, the spectrum was thermal so that anisotropic effects did not have a ma-
jor contribution to the sensitivity. This benchmark involves the variation of the cell
pitch for MOX lattices and provides a study for scattering sensitivities in configurations
where scattering anisotropy is important. Since our solution with DRAGON is a CP so-
lution12 for the scalar flux, with transport corrected isotropic source, capturing the effect
of anisotropy is difficult.

4.2.1 Benchmark Description

The geometry for this benchmark corresponds to an infinite x-y configuration of pin cells
at critical heights (z-axis). The cell corresponding to the reference case can be observed
in figure 4.13. The material composition is given in table 4.12. The participants are
asked to provide keff sensitivity results for ten different lattice pitches. The pitch values
can be observed in table 4.13. The goal of the benchmark [105] is to study the variation
of the implicit sensitivity with the moderator volume, and the effect of leakage on the
resultant sensitivities.

Modeling

The typical approach to model this problem with SCALE is to model the cell in 3-D.
Using SCALE6/TSUNAMI-3D (S6-P1), and the model provided in [109], for each pitch,
we have varied the cell height until critical conditions are reached. The keff and critical
heights computed with SCALE6/TSUNAMI-3D are reported in table 4.13.

Our approach to this problem with DRAGON has been to model the lattice in 2-D
and use a heterogeneous B1 leakage model with leakage specified in the z-axial direction
(DR-B1). The critical height can then be computed in terms of the computed buckling
coefficient Bz. For instance, in the mono-energetic case, the relationship between the
critical height Hz for a rectangular parallelepiped with z-axial leakage is given by [81]:

Hz =

�
�
�
�

π2

B2
z

− 2d (4.1)

where the factor 2d appearing in the above equation represents the linear extrapolation
distance [81] subtracted from both sides of the lattice (hence the factor 2). The linear
extrapolation distance d is related to the mono-group diffusion coefficient D as [81]:

d = 0.73 · 3 · D (4.2)

12Note that this is true for all CP computations with DRAGON including the: DR-K, DR-B0 and
DR-B1 approaches.
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Here the one-group diffusion coefficient D is computed by the EDI: module of DRAGON
[59] which uses the computed flux of the critical cell (in 172-group energy) as the weight-
ing function to compute the diffusion coefficient D.

Table 4.13 reports the computed critical heights as a function of the cell pitch (cm)
as computed from equations 4.1-4.2. The DRAGON computed buckling coefficient and
diffusion cross section are also provided. We note the good comparison between the com-
puted critical heights by two codes (10% maximum difference).

Computational Times

For this model, the computational time for computing the flux, adjoint and sensitiv-
ities with DRAGON is 10 seconds when performing the computation on a 64 bit 2.2
GHz PC. The computation time for the 3-D cell when using SCALE/TSUNAMI-3D is
approximately 20 minutes (with a 0.1% statistical error on the computed sensitivities).

Figure 4.13: MOX lattice dimensions for the reference case (pitch=0.9525 cm).
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Isotopic Densities (atoms/barn-cm)

Isotope Fuel Clad Moderator Void
238Pu 7.3857 ∗ 10−6 - - -
239Pu 4.2019 ∗ 10−3 - - -
240Pu 5.6060 ∗ 10−4 - - -
241Pu 8.7523 ∗ 10−5 - - -
242Pu 1.6972 ∗ 10−5 - - -
235U 1.2223 ∗ 10−4 - - -
238U 1.6876 ∗ 10−2 - - -

241Am 3.4258 ∗ 10−5 - - -
16O 4.3713 ∗ 10−2 - 3.3680 ∗ 10−2 1.0000 ∗ 10−6

1H - - 6.6733 ∗ 10−2 -
52Fe - 5.5330 ∗ 10−2 - -

Cr - 1.4394 ∗ 10−2 - -

Ni - 1.0161 ∗ 10−2 - -

Mo - 2.1168 ∗ 10−3 - -

Mn - 1.6935 ∗ 10−3 - -

C - 6.7739 ∗ 10−5 - -

Si - 8.4673 ∗ 10−4 - -

Table 4.12: Atomic Densities (atoms/barn-cm) for the MOX lattice and core benchmark.
Reproduced from [106].

DRAGON SCALE/TSUNAMI 3D P1

Lattice
Pitch
(cm)

Buckling
B2

z (cm−2)
Diffusion

Coefficient
(cm) D

Critical
Height (cm)

keff Critical
Height (cm)

0.586 8.16 ∗ 10−3 1.14 30 0.99144 28
0.60 8.25 ∗ 10−3 1.14 30 0.99476 28
0.66 8.82 ∗ 10−3 1.15 29 0.9975 27
0.73 9.93 ∗ 10−3 1.16 27 0.9968 25

0.9525∗ 1.45 ∗ 10−2 1.13 21 0.99831 20
1.05 1.59 ∗ 10−2 1.12 20 0.995 18
1.15 1.69 ∗ 10−2 1.10 20 0.968 18

Table 4.13: Pitch Variation of the MOX fuel lattice. ∗ reference case
SCALE/TSUNAMI-3D model taken from [109]. Note that the DR-B1 keff is 1.0 by
definition of the buckling search.
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4.2.2 Results

Scattering Anisotropy

Table 4.14 presents the decomposition of the 238U(n,SCAT) DR-B1 sensitivity into its
components of energy GAIN/LOSS (GL), STREAMING (ST), and Transport Correc-
tion (TR). Also presented in the table is reference S6-P1 sensitivities. First, we note that
had we used the DR-K approach, we would need to model the cell in 3-D. The results
from the DR-K approach would be similar in value to the contribution of the GL column
(this is the only term that the DR-K approach is computing). Since we can assume that
the 238U(n,el) group to group matrix is diagonal, the GL term represents the importance
gained from the energy loss of the neutron after the 238U(n,inel) reaction. For the first two
lattice pitches appearing in the table (pitch=0.586 cm and 0.60 cm), the GL component
has a slightly negative sign. 238U fast fission in these two geometries accounts for 10% of
the total fission rate and 238U(n,inel) competes with 238U(n,f). With the softening of the
flux that is accompanied with increasing pitch, thermal fission with 239Pu increases and
energy loss from 238U(n,inel) scattering becomes a gain in neutron importance so that
the GL component becomes positive.

We also observe that the GL term only accounts for a small part of the 238U(n,SCAT)
sensitivity, with the majority of the sensitivity contribution coming from the streaming
term ST and scattering anisotropy TR. The DR-K approach is not able to account for
these two components and would greatly underestimate the sensitivity. The column la-
beled as Relative Error reports (in %) the difference between the DR-B1 computation
relative to the S6-P1 computation.

Next we note that the DR-B1 sensitivities are slightly larger than the S6-P1 sensitiv-
ities. The reason for this is anisotropy (approximately half of the given error) as well
as differences in the computed explicit sensitivity profile in the resonance region due to
differences in the energy meshing. This second source of differences has little impact in
the final uncertainty given the low uncertainties of 238U(n,el) reported in the resonance
region. Also, the main component of the sensitivity in this region is implicit sensitivity
which is discussed in the next section.

Next we observe from table 4.14 that at low pitches, where flux anisotropy is the
strongest, the TR contribution to the 238U(n,SCAT) sensitivity is also the highest. The
largest component of the computed TR component is due to elastic scattering anisotropy.13

Figure 4.14 presents a comparison of the transport corrected DR-B1
238U(n,el) sensitivity

profile (in green), the DR-B1 non-transport corrected sensitivity (dotted red), and the
S6-P1

238U(n,el) sensitivity profile (in blue). We see the efficiency of the transport cor-
rection to capture the effect of anisotropy. The correction works well when the matrix is
diagonal and the collision only serves to change the neutron’s direction. This is the case
for 238U(n,el) and can be observed from the good comparison between the DR-B1 (green)
and the S6-P1 (blue) curves.

13From approximately 100 keV, l-wave interaction becomes possible with the nuclei, so that elastic
scattering reaction is no longer required to be isotropic in the Center of Mass frame.
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However, a transport correction will not be as effective when the P1 matrix is dense.
This can be seen by comparing the obtained sensitivity expressions which account for
leakage and scattering anisotropy when using the transport corrected diffusion cross sec-
tion (see equations 3.47 and 3.52) with sensitivity expressions for a discrete ordinates
code where angular flux moments are used in the sensitivity formulas (see for example
the SUSD3D sensitivity expressions given by equation 2.17). We see that in equation
2.17, the scattering sensitivity is defined as a gain term involving the product of the flux
moments, summed over the out-going group energies of the scattered neutron. The sensi-
tivity expressions for leakage when using the transport corrected definition of the diffusion
coefficient (see equations 3.47 and 3.47) account for scattering anisotropy by subtracting
the transport correction from the in-group component of the scattering source, i.e. the
gained importance from the energy loss of the neutron following the scattering collision
is ignored. In cases where the scattering reaction does not reduce the neutron’s energy
(such as 238U(n,el)) the transport correction works well.

Figure 4.15 presents the 238U(n,inel) scattering profile for the MOX lattice at 0.586 cm
pitch computed by the DR-B1 approach (green curve) and reference S6-P1 sensitivities
(blue curve). Given the small cell pitch, the system is undermoderated. Therefore, the
neutron makes several collisions before being slowed down to thermal energies. Anisotropy
effects play an important role here as the neutron can exit and enter the cell several times
before being absorbed. When energy loss is coupled with the inelastic scattering reac-
tion, a transport correction will not capture the gain/loss associated with the anisotropic
inelastic reaction. We believe this to be the main reason for the differences observed
between the two profiles.

With the increase in moderator volume that is accompanied with increasing pitch,
the average number of collisions made by the neutron also decreases. A neutron that has
an inelastic interaction in the fuel, will most likely exit the fuel and enter the moderator
where it can be slowed down to thermal energies and may return to the fuel where it
can induce a fission. As a result, the profile for the inelastic reaction converges to the
spectrum for fission neutrons (the fast neutrons available in the fuel). This can be seen
from figure 4.16, where the 238U(n,inel) sensitivity as computed by DR-B1 and S6-P1

sensitivity, for the lattice pitch=1.15 cm is presented.
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238U(n,SCAT) Decomposition (% of DR-B1) DR-B1 S6-P1 Relative
Error (%)Pitch (cm) GL (%) ST (%) TR (%) Sensitivity

(%/%)
Sensitivity

(%/%)
0.586 -5 147 -42 4.54 ∗ 10−2 4.18 ∗ 10−2 -8 %
0.6 -1 135 -35 4.33 ∗ 10−2 4.02 ∗ 10−2 -8 %
0.66 12 120 -32 3.70 ∗ 10−2 3.65 ∗ 10−2 -1 %
0.73 22 137 -25 3.34 ∗ 10−2 3.33 ∗ 10−2 0 %

0.9525 34 91 -25 2.65 ∗ 10−2 2.53 ∗ 10−2 -5 %
1.05 36 89 -25 2.34 ∗ 10−2 2.22 ∗ 10−2 -5 %
1.15 37 113 -24 2.04 ∗ 10−2 1.93 ∗ 10−2 -6 %

Table 4.14: Comparison of 238U(n,SCAT) Integrated Explicit keff Sensitivities (%/%)
as a function of lattice pitch.
DR-B1: Integrated keff sensitivities (%/%) from DRAGON SNS: with a heterogeneous B1

leakage model with z-axial leakage.
S6-P1: Integrated keff sensitivities (%/%) from SCALE6/TSUNAMI-3D.
GL: (%) contribution of the GAIN/LOSS term to the DR-B1 integrated sensitivity.
ST: (%) contribution of the STREAMING term to the DR-B1 integrated sensitivity.
TR: (%) contribution of the Transport Correction term to the DR-B1 integrated sensitivity.
Re. Err.: Relative Error (in %) between DR-B1 and S6-P1. Error computed relative to S6-P1.
Note the importance of scattering anisotropy on the computed sensitivity, the importance of
the streaming term (ST), and the low error reported between the two reactions.
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Figure 4.14: Comparison of 238U (n,el) sensitivity for MOX lattice at pitch=0.586 cm.

DRAGON-B1 SNS: with no transport correction (dotted red). DRAGON B1 (DR-B1) with
transport correction (green). SCALE6/TSUNAMI-3D P1 (S6-P1) sensitivities. (in blue).
Note the negative effect of the transport correction on the scattering sensitivity and the efficiency
of the transport correction when applied to 238U (n,el).
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Figure 4.15: Comparison of 238U (n,inel) sensitivity for MOX lattice at pitch=0.586 cm.

DRAGON B1 with transport correction (green). SCALE6/TSUNAMI-3D P1 (blue).
Note the differences between the two profiles due to the non-diagonal form of the 238U(n,inel)
P1 matrix which a transport correction cannot capture, and flux anisotropy.
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Figure 4.16: Comparison of 238U (n,inel) sensitivity for MOX lattice at pitch=1.15 cm.

DRAGON B1: DR-B1 (green). SCALE6/TSUNAMI-3D: S6-P1 (blue).
Note the good agreement between the two profiles in the absence of anisotropic interactions in
the fuel.
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The effect observed for 238U(n,inel) anisotropy can also be observed for the sensitiv-
ities of 16O(n,SCAT) in the moderator and 1H(n,el). Tables 4.15 and 4.16 report the
decompositions of the DR-B1 scattering sensitivities as well as reference S6-P1 results.
We first observe that both of these reactions have a large component of the scattering
sensitivity composed of the importance gained from the neutron’s loss of energy follow-
ing the scattering interaction. This component to the sensitivity is presented in the GL
(in % of the DR-B1 sensitivity). Anisotropy for these reactions is also important as ob-
served from the TR column in the table accounting for the negative contribution of the
transport correction. However, neglected in the TR column is the importance gained
following the neutron’s loss in energy after the (anisotropic) scattering reaction.14 Given
that the 16O(n,SCAT) P1 matrix is dense, we can expect the GL term associated with
this component would be of the same order (though smaller given the forward direction of
scattering) as the GL term for the DR-B1 sensitivity reported in table 4.16. However, we
cannot compute GL component for the anisotropic scattering component of the sensitiv-
ity as angular fluxes are not computed by DRAGON. We believe this partly explains the
observed difference in the Relative Error column. We also believe that in this case, the
dB2 approximation may not be accurate enough to capture effects of anisotropy. With
light isotopes, the trend seems to be that whenever anisotropy is high (or the contribution
from the transport correction is high), the agreement between the two codes is reduced.
For 1H (see table 4.16), although the same error exists from using the transport correc-
tion and the buckling approximation, the GL component from the scalar flux is dominant
(larger than TR by a factor of 2). This is why the computed relative differences are lower
than for 16O(n,SCAT) in the moderator. To verify this point and track down the exact
source of error, would require a direct perturbation approach with a 3-D DRAGON lat-
tice. Given the lower contribution to the keff uncertainty from these reactions, we have
not yet performed this computation.15

The sensitivity profiles for 16O(n,SCAT) and 1H(n,el) in the moderator computed by
DR-B1 and S6-P1 are presented in figures 4.17 and 4.19. For 16O in the moderator, we
observe from figure 4.17 that the two profiles are not comparable at high energies, with
the DR-B1 approach underestimating the sensitivity. We cannot currently comment on
the comparison between the 1H profiles.16

Table 4.17 reports the decomposition of the DR-B1 sensitivity for 16O in the fuel.
We note that anisotropic scattering interactions are not observed to have a large effect
in the fuel, with the largest component of the sensitivity being leakage term (ST). The
16O(n,SCAT) profiles for 16O in the fuel are plotted in figure 4.18. Observed is the rela-
tively poor comparison at 430 keV. This can be related to the fact that the P1 coefficient
of the 16O scattering cross section (which has a large resonance at this energy) changes
signs as a function of the scattering angle at 430 eV. This effect cannot be captured with
a transport correction.17

14Note that for these two isotopes, the anisotropy is in the Laboratory Frame.
15The difference between our computed 16O scattering uncertainty contribution with the S6-P1 ap-

proach is approximately 80 pcm.
16Note that the statistical error is being reported by S6-P1 as 0.1%
17Correspondence with Dr. G. Rimpault.
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16O(n,SCAT)
in H2O

Decomposition (% of DR-B1) DR-B1 S6-P1 Relative
Error (%)

Pitch (cm) GL (%) ST (%) TR (%) Sensitivity
(%/%)

Sensitivity
(%/%)

0.586 73 90 -63 6.34 ∗ 10−3 1.57 ∗ 10−2 60 %
0.6 74 88 -61 7.28 ∗ 10−3 1.76 ∗ 10−2 59 %
0.66 76 78 -54 1.11 ∗ 10−2 2.57 ∗ 10−2 57 %
0.73 77 71 -48 1.54 ∗ 10−2 3.44 ∗ 10−2 55 %

0.9525 79 61 -40 2.72 ∗ 10−2 5.64 ∗ 10−2 52 %
1.05 78 60 -39 3.02 ∗ 10−2 6.33 ∗ 10−2 52 %
1.15 78 60 -38 3.23 ∗ 10−2 6.80 ∗ 10−2 53 %

Table 4.15: Comparison of 16O(n,SCAT) in H2O: Integrated Explicit keff Sensitivities
(%/%) as a function of lattice pitch.
DR-B1: Integrated keff sensitivities (%/%) from DRAGON SNS: with a heterogeneous B1

leakage model with z-axial leakage.
S6-P1: Integrated keff sensitivities (%/%) from SCALE6/TSUNAMI-3D.
GL: (%) contribution of the GAIN/LOSS term to the DR-B1 integrated sensitivity.
ST: (%) contribution of the STREAMING term to the DR-B1 integrated sensitivity.
TR: (%) contribution of the Transport Correction term to the DR-B1 integrated sensitivity.
Relative Error (in %) between DR-B1 and S6-P1 is computed relative to S6-P1.

1H(n,el) Decomposition (% of DR-B1) DR-B1 S6-P1 Relative
Error (%)Pitch (cm) GL (%) ST (%) TR (%) Sensitivity

(%/%)
Sensitivity

(%/%)
0.586 161 12 -72 9.61 ∗ 10−2 1.27 ∗ 10−1 24 %
0.6 158 11 -69 1.13 ∗ 10−1 1.42 ∗ 10−1 21 %
0.66 146 9 -56 1.89 ∗ 10−1 2.27 ∗ 10−1 17 %
0.73 142 8 -50 2.70 ∗ 10−1 3.16 ∗ 10−1 15 %

0.9525 146 8 -54 4.21 ∗ 10−1 4.83 ∗ 10−1 13 %
1.05 149 9 -57 4.44 ∗ 10−1 5.13 ∗ 10−1 13 %
1.15 151 9 -60 4.61 ∗ 10−1 5.05 ∗ 10−1 9 %

Table 4.16: Comparison of 1H(n,el) Integrated Explicit keff Sensitivities (%/%) as a
function of lattice pitch. DR-B1: Integrated keff sensitivities (%/%) from DRAGON
SNS: with a heterogeneous B1 leakage model with z-axial leakage.
S6-P1: Integrated keff sensitivities (%/%) from SCALE6/TSUNAMI-3D.
GL: (%) contribution of the GAIN/LOSS term to the DR-B1 integrated sensitivity.
ST: (%) contribution of the STREAMING term to the DR-B1 integrated sensitivity.
TR: (%) contribution of the Transport Correction term to the DR-B1 integrated sensi-
tivity.
Relative Error: Relative Error (in %) between DR-B1 and S6-P1. Error computed relative
to S6-P1.

145



16O(n,SCAT)
in Fuel

Decomposition (% of DR-B1) DR-B1 S6-P1 Relative
Error (%)

Pitch (cm) GL (%) ST (%) TR (%) Sensitivity
(%/%)

Sensitivity
(%/%)

0.586 17 98 -15 5.43 ∗ 10−2 5.00 ∗ 10−2 -9 %
0.6 18 97 -15 4.99 ∗ 10−2 4.55 ∗ 10−2 -10 %
0.66 20 95 -15 3.79 ∗ 10−2 3.55 ∗ 10−2 -7 %
0.73 23 92 -15 3.12 ∗ 10−2 2.94 ∗ 10−2 -6 %

0.9525 27 87 -15 2.22 ∗ 10−2 2.00 ∗ 10−2 -11 %
1.05 28 86 -15 1.93 ∗ 10−2 1.71 ∗ 10−2 -13 %
1.15 29 86 -15 1.67 ∗ 10−2 1.46 ∗ 10−2 -14 %

Table 4.17: Comparison of 16O(n,SCAT) in the fuel: Integrated Explicit keff Sensitivities
(%/%) as a function of lattice pitch.
DR-B1: Integrated keff sensitivities (%/%) from DRAGON SNS: with a heterogeneous B1

leakage model with z-axial leakage.
S6-P1: Integrated keff sensitivities (%/%) from SCALE6/TSUNAMI-3D.
GL: (%) contribution of the GAIN/LOSS term to the DR-B1 integrated sensitivity.
ST: (%) contribution of the STREAMING term to the DR-B1 integrated sensitivity.
TR: (%) contribution of the Transport Correction term to the DR-B1 integrated sensitivity.
Relative Error: Relative Error (in %) between DR-B1 and S6-P1. Error computed relative to
S6-P1.
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Figure 4.17: Comparison of 16O(n,scat) in H2O sensitivity profiles for MOX lattice at
pitch=0.9525 cm. DRAGON B1 with transport correction sensitivity profile (green).
SCALE6/TSUNAMI-3D P1 sensitivity profile (blue). Note the poor comparison between
the two profiles arising from anisotropic effects.
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Figure 4.18: Comparison of 16O(n,scat) in the fuel sensitivity profile for MOX lattice at
pitch=0.9525 cm. DRAGON B1 with transport correction (green). SCALE6/TSUNAMI-
3D P1 (blue). Note the effect of the resonance at 430 keV.
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Figure 4.19: comparision of 1H(n,el) sensitivity for MOX lattice at pitch=0.9525 cm.
DRAGON B1 with transport correction (green). SCALE6/TSUNAMI-3D P1 (blue).

4.2.3 Integrated Sensitivities

Table 4.18 presents our integrated explicit sensitivities (DR-B1) and the sensitivities
computed by SCALE6/TSUNAMI-3D using P1 expansion for the angular flux (S6-P1).
We have provided sensitivities for the main isotopes present in the fuel and the moderator.
We note that for 238U and 242Pu, the observed differences between the absorption cross
section sensitivities are largest. These two isotopes are also the isotopes which are the
most self-shielded. The observed differences in the computed absorption sensitivities
highlight the underlying differences in the self-shielded multi-group cross sections from
the different approaches to self-shielding used by the codes.
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Integrated Explicit Sensitivities (%/%) at pitch = 0.9525 cm
Isotope Reaction DR-B1 S6-P1 Rel. Error (%)

239Pu

(n,ABS) −2.63 ∗ 10−1 −2.62 ∗ 10−1 -0.5
(n,SCAT) 4.69 ∗ 10−3 4.62 ∗ 10−3 -1.2

(n, f) 3.93 ∗ 10−1 3.92 ∗ 10−1 -0.3
(n,ν̄) 9.24 ∗ 10−1 9.20 ∗ 10−1 -0.4

TOTAL 1.35 ∗ 10−1 1.35 ∗ 10−1 -0.2

238U

(n,ABS) −7.61 ∗ 10−2 −6.62 ∗ 10−2 -15.0
(n,SCAT) 2.65 ∗ 10−2 2.53 ∗ 10−2 -4.7

(n, f) 1.88 ∗ 10−2 2.04 ∗ 10−2 7.9
(n,ν̄) 2.68 ∗ 10−2 2.94 ∗ 10−2 9.0

TOTAL −2.94 ∗ 10−2 −2.04 ∗ 10−2 -44.3

240Pu

(n,ABS) −6.76 ∗ 10−2 −6.32 ∗ 10−2 -7.1
(n,SCAT) 7.5 ∗ 10−4 9.02 ∗ 10−4 16.9

(n, f) 3.63 ∗ 10−3 3.89 ∗ 10−3 6.9
(n,ν̄) 5.14 ∗ 10−3 5.53 ∗ 10−3 6.9

TOTAL −6.33 ∗ 10−2 −5.84 ∗ 10−2 -8.4

241Pu

(n,ABS) −5.09 ∗ 10−3 −5.01 ∗ 10−3 -1.6
(n,SCAT) 1.12 ∗ 10−4 1.05 ∗ 10−4 -6.7

(n, f) 1.29 ∗ 10−2 1.32 ∗ 10−2 2.4
(n,ν̄) 2.81 ∗ 10−2 2.84 ∗ 10−2 1.3

TOTAL 7.93 ∗ 10−3 8.32 ∗ 10−3 4.7

242Pu

(n,ABS) −2.01 ∗ 10−3 −2.51 ∗ 10−3 19.8
(n,SCAT) 2.47 ∗ 10−5 1.26 ∗ 10−5 -96.2

(n, f) 8.85 ∗ 10−5 9.47 ∗ 10−5 6.6
(n,ν̄) 1.24 ∗ 10−4 1.33 ∗ 10−4 7.2

TOTAL −1.89 ∗ 10−3 −2.40 ∗ 10−3 21.2

16O in
Fuel

(n,ABS) −6.39 ∗ 10−4 −8.48 ∗ 10−4 24.6
(n,SCAT) 2.22 ∗ 10−2 2.00 ∗ 10−2 -11.2
TOTAL 2.16 ∗ 10−2 1.91 ∗ 10−2 -12.8

16O in
Water

(n,ABS) −1.44 ∗ 10−3 −1.90 ∗ 10−3 24.2
(n,SCAT) 2.72 ∗ 10−2 5.70 ∗ 10−2 52.2
TOTAL 2.58 ∗ 10−2 5.51 ∗ 10−2 53.2

1H

(n,ABS) −2.06 ∗ 10−2 −1.97 ∗ 10−2 -4.9
(n,SCAT) 4.21 ∗ 10−1 4.83 ∗ 10−1 12.9
TOTAL 4.0 ∗ 10−1 4.64 ∗ 10−1 13.7

Table 4.18: Comparison of integrated explicit sensitivities (%/%) for the MOX lattice at
pitch=0.9525 cm. DR-B1: DRAGON SNS: with a B1 transport corrected heterogeneous leak-
age model with z-axial leakage. S6-P1 : SCALE6/TSUNAMI-3D sensitivities from a P1 flux
and adjoint multi-group Monte-Carlo solution.
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Next, we see that for heavy isotope scattering reactions, the largest discrepancy, in
relative terms, appears for 240Pu and 242Pu. We note that their sensitivities are small in
absolute values so that they do not have a large contribution to the error. To examine the
error, we can compare the partial elastic and inelastic reactions sensitivities obtained from
the DR-B1 approach and the S6-P1 approach. Table 4.19 presents comparisons between
DR-B1 and S6-P1 integrated elastic scattering sensitivity (in %/%) for 238U and the
Plutonium isotopes. The column labeled TR presents the contribution of the transport
correction to the elastic sensitivity. We first note that the TR component has a large
contribution of elastic sensitivity. Next, note that the elastic sensitivity is computed to
be within 20% for the isotopes having sensitivity of the order of 10−4; approximately half
of this difference is in the resonance region where group meshing can have an effect on the
computed difference (gain-loss) in the sensitivity expressions. The other portion of the
difference can be explained from our assumption of the diagonal nature of heavy isotope
elastic scattering transfer matrix and anisotropy. For 238U, approximately 10-15 % of
the observed error is due to inherent differences in the elastic scattering in the resonance
region and 5-10% error which arises from anisotropy. Finally, the large discrepancies
observed with 240Pu,241Pu and 242Pu are rather a question of precision.18

Explicit component of Integrated Heavy Isotope Elastic Sensitivities (%/%)
pitch=0.9525 cm DRAGON DR-B1 SCALE Relative

Error (%)Isotope TR Sensitivity (%/%) Sensitivity (%/%)
238U -51 1.32 ∗ 10−2 1.1 ∗ 10−2 -20

239Pu -58 2.93 ∗ 10−3 2.55 ∗ 10−3 -15
240Pu -46 4.99 ∗ 10−4 6.16 ∗ 10−4 19
241Pu -61 6.35 ∗ 10−5 1.052 ∗ 10−4 40
242Pu -37 1.71 ∗ 10−5 2.14 ∗ 10−6 -697

Table 4.19: Comparison of the explicit component of heavy isotope elastic sensitivities for
pitch=0.9525 cm. DR-B1: Sensitivity computed by DRAGON SNS: from a heterogeneous B1

search. TR: Contribution of the transport correction (%) to the DR-B1 computed sensitivity

Table 4.20 presents comparisons for the DR-B1 and S6-P1 integrated inelastic sensitiv-
ities. (n,2n) reactions here account for approximately 1% of the total scattering sensitivity
so that they can be effectively neglected. The largest component of the difference be-
tween 238U and 239Pu is believed to be from anisotropy of inelastic scattering reactions
which cannot be accounted for by a transport correction. The remaining differences in
the sensitivities observed for 240Pu, 241Pu, 242Pu are likely numerical and a question of
precision. We note that sensitivities at these orders of magnitude do not contribute to
the uncertainty.

Finally, we note that the difference between the computed DR-B1 and the S6-P1 sen-
sitivity for 238U(n,SCAT) is only 4.7%. We stress that these were the reactions reported
by [107] to be the most discrepant (particularly for 238U). Also observed is that the errors
between the partial reactions (n,el) and (n,inel) are much higher, but cancel out due to

18Note that all the sensitivities computed by DRAGON SNS: are in double precision. We believe
these limitations are rather due to the precision of the ENDF format (see section 1.2.1).

150



Integrated Heavy Isotope Inelastic Sensitivities (%/%)
pitch=0.9525 cm DRAGON SCALE Relative

Error (%)Isotope Sensitivity
(%/%)

Sensitivity
(%/%)

238U 1.10 ∗ 10−2 1.36 ∗ 10−2 19
239Pu 2.55 ∗ 10−3 1.98 ∗ 10−3 -29
240Pu 6.16 ∗ 10−4 2.82 ∗ 10−4 -118
241Pu 1.05 ∗ 10−4 5.06 ∗ 10−5 -108
242Pu 2.14 ∗ 10−6 1.01 ∗ 10−5 79

Table 4.20: Comparison of heavy isotope inelastic sensitivities for pitch=0.9525 cm. DR-B1:
Sensitivity computed by DRAGON SNS: from a heterogeneous B1 search. TR: Contribution
of the transport correction (%) to the DR-B1 computed sensitivity.

compensation making 238U(n,SCAT) a poor value for benchmarking. As seen shortly,
these reactions also have disproportionate contributions to the uncertainty making an
accurate computation of their sensitivities even more necessary.

4.2.4 Implicit Sensitivities

In heterogeneous systems, the analytical approximation is limited as it ignores the per-
turbation δΣeff in the effective dilution factor Σeff (see section 3.1.3). However, it can
still be used to predict the implicit effect of an isotope on itself. While this limitation may
seem constraining, in the majority of the benchmarks considered by the UACSA Expert
Group, the isotope whose implicit sensitivity had the largest impact on the computed un-
certainty was 238U(n,el) [107]. As the principle isotope which contributes to the implicit
sensitivity is 238U(n,γ), the analytical approximation can be used to estimate the implicit
sensitivity for 238U(n,el). Table 4.21 presents the implicit component of the 238U(n,el)
sensitivity computed by using the analytical approximation with the DR-B1 explicit sen-
sitivities as well as reference results from the SCALE6/TSUNAMI-3D code (S6-P1). We
note the good comparison between the computed values. Similar to the sphere problem
of the previous section, the 238U (n,scat) implicit sensitivity is positive due to the increase
in the flux depression that is accompanied from an increase in the scattering cross section
of 238U (i.e. the scattering reaction helps removing the neutrons under the resonances).
With the increase in the moderator volume (increase in pitch), the probability for a neu-
tron born in the fuel to have a collision in the moderator, and be slowed down to thermal
energies where it can induce fission, increases. Accompanied with decreasing pitch is the
reduction in the absorption rate in the unresolved region where the resonances are narrow
and the scattering reaction is effective in removing neutrons under the resonance. There-
fore the implicit sensitivity also decreases with increasing pitch. Figure 4.20 presents the
scattering sensitivity profiles for 238U(n,el) in the resonance region. The orange curve
presents results obtained from the analytical approximation (equation 3.31). The blue
curve presents results obtained from 47 self shielding calculation and equation 3.19. For
both cases, the dominant contributor to the scattering sensitivity is the capture cross sec-
tion of 238U (ie. G238U

R,(n,γ) in equation 3.19). A direct perturbation approach to sensitivity
in DRAGON would be expected to produce results comparable to this curve. The dips in
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238U (n,n) Implicit Scattering Sensitivities (%/%)
Lattice

pitch (cm)
DRAGON SNS: +

ANALYTIC
SCALE/TSUNAMI

3D [109]
Rel. Err.

0.586 1.71 ∗ 10−2 1.60 ∗ 10−2 -6.9%
0.60 1.77 ∗ 10−2 1.59 ∗ 10−2 -11%
0.66 1.71 ∗ 10−2 1.45 ∗ 10−2 -18%
0.73 1.52 ∗ 10−2 1.26 ∗ 10−2 -20%

0.9525∗ 9.14 ∗ 10−3 8.3 ∗ 10−2 -10%
1.05 7.6 ∗ 10−3 7.1 ∗ 10−2 7%
1.15 6.9 ∗ 10−3 6.2 ∗ 10−2 10%

Table 4.21: 238U Implicit scattering sensitivities as a function of varying pitch for the
MOX lattice. SCALE/TSUNAMI 3D results are reproduced from [109]. DRAGON
SNS: ANALYTIC computation has been performed from equations 3.31-3.32 and 3.19.
∗ reference case.

the blue curve are due to numerical errors introduced when reading the perturbed cross
sections from the DRAGLIB after the self shielding calculation. To read the perturbed
cross sections, we use the FORTRAN 77 modules of the GANLIB driver [60] that we
compiled as a dynamic library for use with PYTHON. This error is to be expected with
FORTRAN when subtracting two similar real numbers in single precision. The dotted
black curve presents SCALE/TSUNAMI-3D sensitivities in the SCALE 238-group en-
ergy grid. The red curve presents the SCALE/TSUNAMI-3D sensitivities collapsed to
the WIMS 172-group energy grid by using the procedure discussed in section 3.1.4. We
note the good comparison between the three implicit sensitivities. Differences at low
energy most likely stem from our neglect of the contribution from 240 Pu (n,γ) in the
analytical approximation (G238U

R,x of equation 3.19), differences in energy meshing and the
self-shielding approach in the two codes (figure 4.21), and differences in the explicit 238U
absorption profiles. The explicit absorption profiles are shown in figure 4.21. The general
trend between the two sensitivities is that the SCALE predicted absorption sensitivities
are slightly lower than those predicted by DRAGON inside the first few resonances.

Prediction of the implicit sensitivities for isotopes k �=238 U requires the computa-
tion of the perturbation δΣe in the effective cross section (see equations 3.31-3.32). We
have recently seen a publication [110] on the subject outlining recent developments in
DRAGON regarding the computation of keff implicit sensitivities using the Stamm’ler
method. We believe that coupling this new module with SNS: will not be a difficult task
and could allow for a more complete sensitivity analysis package in the code DRAGON.

For this benchmark, the next reaction with the largest implicit sensitivity is 1H(n,el).
The implicit sensitivity for this reaction is reported by SCALE/TSUNAMI-3D to be 5%
of its explicit sensitivity. Since the cross section for hydrogen is well known (i.e. it has a
small uncertainty) the 5% contribution from the implicit sensitivity to the overall uncer-
tainty can be effectively neglected. Similarly, the implicit sensitivity for the remaining
isotopes in the benchmark is smaller than 5% of the explicit sensitivity [109] so that the
implicit effect can be neglected.
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Figure 4.20: Positive component of 238U elastic scattering cross section sensitivity (%/%) in the
resonance region: one SHI: computation along with equations 3.31-3.32 and 3.19 the explicit
sensitivities from SNS: (orange curve); 47 SHI:, equation 3.19 and the explicit sensitivities
from SNS: (blue curve), SCALE/TSUNAMI 1D (red curve)
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Figure 4.21: Negative component of the 238U (n,γ) explicit sensitivity (%/%): 172-group
DRAGON SAD:/SAD: capture sensitivity profile (orange line), 238 SCALE/TSUNAMI 1D
capture sensitivity profile (dotted black), SCALE/TSUNAMI 1D capture sensitivity profile
collapsed to the 172-group WIMS energy grid (red curve)
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4.2.5 Uncertainty Analysis

Table 4.22 presents the variation of 238U reaction integrated sensitivities (in %/%) as a
function of increasing pitch computed from the DR-B1 approach and the S6-P1 approach.
The relative error reports the difference between the DR-B1 sensitivities relative to the
S6-P1 sensitivities. Table 4.23 presents reaction pair uncertainty contributions to the keff

uncertainty (in pcm) as a function of increasing pitch.

From table 4.23, we see that the uncertainty contribution for capture reaction de-
creases as a function of increasing pitch. This can be expected by observing the decrease
in the capture sensitivity that is accompanied with increasing pitch. Next, we note that
while the error in the absorption sensitivities (table 4.22) is increasing with increasing
pitch, the estimated errors in the uncertainties are roughly constant for the more ther-
mal spectra (pitches = 0.73 - 1.05 cm). This is because the largest components of the
error in the absorption sensitivities are observed in the first few resonances appearing in
the epithermal region. The cross sections in this region are well known and have a low
uncertainty, so that the increasing difference in the sensitivities does not have a great
impact on the computed uncertainties. At pitch=1.05 cm, the largest contribution to the
82 pcm (n,capture)-(n,capture) uncertainty is from the absorption cross sections in the
epithermal region where the sensitivity differences are the largest, resulting in the 33.2%
error in the computed uncertainties.

Next, we note the importance of (n,inel) reactions given that they always appear
amongst the top contributors to the uncertainty. We also note that their contribution
to the uncertainty is increasing with pitch (see table 4.23) even though their sensitivities
remain relatively constant (see table 4.22). This can be understood better by discussing
the sensitivity profiles of 238U. We see from table 4.14 that, with increasing pitch, the
GL component of the sensitivity begins to account for a larger part of the scattering sen-
sitivity. This term is due to 238U(n,inel) (elastic reactions do not slow down neutrons).
As the spectrum shifts to a thermal spectrum, the inelastic sensitivity profile approaches
the fission source (see figures 4.15 and 4.16). The uncertainty reported for 238U(n,inel)
however is higher in this range (see figure 3.9) thereby increasing the 238U(n,inel) contri-
bution to the keff uncertainty.

Also observed in table 4.23 is the decreasing contribution of 238U(n,f) and 238U(n,ν̄)
with increasing pitch/moderation from the reduced fast fission rate. Finally we note that,
except for the first two cases where the largest difference is due to differences in the cap-
ture cross sections, our computed uncertainties in all remaining cases are approximately
within 10% of the uncertainty computed by SCALE6. We also observe from table 4.23 the
importance of the negative correlation between 238U(n,inel) and 238U(n,el), which helps
in reducing the computed uncertainty for all pitches. Computation of the uncertainty
contribution from these reactions is not possible with the DR-K approach.

Similarly, table 4.25 presents uncertainty contributions for 239Pu reactions. Our 239Pu
computed uncertainty contributions are in good agreement with values predicted by
SCALE/TSUNAMI-3D, primarily due to the ν̄ uncertainty which is being conservatively
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reported here. As a result, the underlying comparisons between other contributors are
lost when only the error on the isotope’s total contribution to the uncertainty is examined.
The highest discrepancy here is noticed for inelastic reactions, where the sensitivity is low
(order of 10−3) and typically difficult to be compared. We also note that the uncertainty
is observed to increase with increasing pitch due to the increase in the thermal fission of
239Pu, and 239Pu ν̄ uncertainties.
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4.3 MOX Core with Light Water Reflector

4.3.1 Description

This benchmark can be found in the International Criticality Safety Benchmark Evalu-
ation Project handbook (ICSBEP) [111] under MIX-COMP-THERM-001-001. The crit-
icality experiment represents a fast reactor fuel assembly with recycled Plutonium in a
shipping cask, in an accident scenario where water fills the cask [106, 107]. The facil-
ity consists of an under-moderated configuration of 609 fuel pins with a lattice pitch of
0.9525 cm arranged in a rectangular configuration. The cross sectional lattice configura-
tion (height-width) is 28x22, with an asymmetry in the top row containing only 17 pins.
The fuel used is the same mixture of PuO2 and UO2 as the previous benchmark. The
isotopic composition is given in table 4.12. The fuel pins in the core have a height of
91.44 cm with an aluminum based reflector (nickel, chrome and aluminum) placed at the
top and the bottom of the core. Since the core is fairly symmetric, only a quarter of the
core consisting of the asymmetry (located at row 11 of the fuel) has been modeled (see
figure 4.22).

Modeling

To account for the different capture cross sections, originating from differences in the fine
flux that exists between cells in the inner core and cells on the outer periphery near the
reflector, self shielding calculations have been performed for each cell "type" separately
(see figure 4.22). In total, five cell "types" have been defined representing the corner cells,
the cells on the outer edge of the core, the inner cells and two cells in the asymmetrical
levels 10 and 11 of the quarter model. Naturally, the thermal component of the flux in the
outer cells is higher than in the inner cells due to the increased moderation by the reflector.

In modeling the geometry, we used the EXCELT: [59] module of DRAGON for set-
ting up the tracking geometry. This is one of the more widely used modules of DRAGON,
that can be used to model 2-D and 3-D non-centered mesh geometries. Such geometries
highlight the power of the collision probability method in providing a true representation
of a heterogeneous system. During the modeling process, the standard spatial conver-
gence studies have been performed to ensure keff stability with respect to the meshing.
It should be noted that due to the void boundary conditions, the flux has large variation
between the inner core (fuel cells) and the boundary (outer edge of the reflector). Since
we assume that the flux is constant in each volume, in the case where a large volume size
is selected, the number of reflected neutrons towards the fuel region is underestimated
substantially (due to the averaged flux over the region). Overcoming this problem re-
quires a fine splitting in the reflector region. The quarter assembly has therefore been
modeled using 1154 sub-volumes. Figure 4.22 presents the cross sectional view of the
modeled geometry (2D quarter with assembly).

To approximate the buckling coefficient, z-axial buckling was imposed for the model.
The sensitivities are then computed using the algorithm outlined in section 3.2.3. This
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solution requires two collision probability matrix computations, two flux computations
and one adjoint computation.

Computation Time

The entire computation using the methodology presented in chapters 2 & 3 takes approx-
imately 2.5 hours of simulation time on a standard 64 bit PC 2. 2GHz. The uncertainty
analysis can be performed in a few seconds using the computed sensitivity profiles.

Figure 4.22: Cross sectional view of the quarter core.
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SCALE/TSUNAMI-3D model

The IRSN has provided to us sensitivities computed with SCALE5/TSUNAMI-3D using
a P5 expansion of the angular flux (S5-P5). These results will be our reference results.
Details of the IRSN model can be found in [107, 109].

4.3.2 Results

Table 4.26 presents comparisons of integrated sensitivities computed using the DR-B1

approach with the reference results from SCALE5/TSUNAMI-3D (S5-P5). We first note
their good agreement for the 238U(n,SCAT) sensitivity. The profiles for 238U(n,SCAT) are
shown in figure 4.24. In green are sensitivities obtained using the DR-B1 approach with-
out using a transport correction. In red are results obtained using the DR-B1 approach
with transport corrected total and scattering cross sections. In grey are the reference re-
sults obtained with S5-P5. In dotted blue are the sensitivities computed using the DR-K
approach. We see that this last approach greatly underestimates the sensitivity. We also
note the good agreement between the transport corrected DR-B1 approach (red line) and
the reference results obtained with S5-P5.

For this benchmark, we note that a CP solution with a transport correction per-
forms slightly better than a P1 multi-group Monte-Carlo solution when computing the
238U(n,SCAT) sensitivity. This can be observed by comparing figures 4.23 (reproduced
from [109]) with figure 4.24 at high energy. The orange curve in figure 4.23 presents the
sensitivity profiles computed with the multi-group Monte-Carlo Criticality Safety code
MORET5 [112], with self shielded cross sections obtained with DRAGON4. Similarly, the
red curve presents MORET5 sensitivities, with self-shielded cross sections computed using
APOLLO2. Both computations are in P1. The curve in blue represents the SCALE/5-
TSUNAMI-3D results obtained by the IRSN [109, 107], also shown in figure 4.24 for com-
parison with the DR-B1 approach. We note the good comparison of the DR-B1 approach
at high energies. Differences observed in the resonance region in figure 4.23 between
the APOLLO2/MORET5 or DRAGON-4/MORET5 with the SCALE5/TSUNAMI-3D
sensitivities arise from the neglect of 238U implicit scattering sensitivities, which are not
calculated by the multi-group Monte Carlo approach of MORET5.

For sensitivities in the reflector, we touch at the limitation of the BN approach. One
of the conditions for reformulating the transport problem using the Buckling formalism
was that the obtained solution is valid far away from the reflector. When this condition is
satisfied, the gradual attenuation of the flux can be captured by the buckling formalism.
However, in the reflector, where the flux decreases rapidly over a short distance, the
buckling approximation is no longer valid. From the previous benchmark, we observed
that the keff sensitivity of 16O in the moderator could not be effectively computed using
a transport correction. In this benchmark, the DRAGON-B1 computed 16O scattering
sensitivity has the highest relative error with respect to the sensitivity computed by
SCALE5/TSUNAMI-3D. This is partly due to energy loss from anisotropic scattering
reactions, that we cannot account for with a transport correction, and partly due to the
poor approximation that the buckling formalism provides in the reflector.
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Sensitivities (%/%)
Reaction SCALE5/TSUNAMI

3D [109]
DRAGON
SNS: B1

Rel. Diff
(%)

238U (n,capture) −5.88 ∗ 10−2 −6.37 ∗ 10−2 -11.2
ν̄ 2.53 ∗ 10−2 2.38 ∗ 10−2 6.1

(n,f) 1.76 ∗ 10−2 1.64 ∗ 10−2 6.6
(n,scat)‡ 2.36 ∗ 10−2 2.34 ∗ 10−2 0.5
(n,inel) 1.12 ∗ 10−2 1.11 ∗ 10−2 0.7
(n,el)∗ 4.85 ∗ 10−3 4.87 ∗ 10−3 -0.4

(n,total) −2.45 ∗ 10−2 −2.78 ∗ 10−2 -13.6

239Pu ν̄ 9.25 ∗ 10−1 9.28 ∗ 10−1 -0.3
(n,f) 3.84 ∗ 10−1 3.89 ∗ 10−1 -1.2

(n,capture) −2.62 ∗ 10−1 −2.61 ∗ 10−1 0.3
(n,scat) 2.89 ∗ 10−3 3.01 ∗ 10−3 -4.1
(n,el) 1.59 ∗ 10−3 1.11 ∗ 10−3 29.8

(n,inel) 1.25 ∗ 10−3 1.89 ∗ 10−3 -52.0
(n,total) 1.25 ∗ 10−1 1.30 ∗ 10−1 -4.4

240Pu (n,capture) −6.12 ∗ 10−2 −6.13 ∗ 10−2 -0.1
(n,f) 3.33 ∗ 10−3 3.17 ∗ 10−3 4.7

ν̄ 4.75 ∗ 10−3 4.56 ∗ 10−3 4.0
(n,scat) 3.97 ∗ 10−4 3.37 ∗ 10−4 15.2
(n,el) 2.29 ∗ 10−4 1.51 ∗ 10−4 34.1

(n,inel) 1.63 ∗ 10−4 1.86 ∗ 10−4 -13.9
(n,total) −5.75 ∗ 10−2 −5.78 ∗ 10−2 -0.4

1H (n,scat) 4.17 ∗ 10−1 3.59 ∗ 10−1 13.9
(n,capture) −8.06 ∗ 10−2 −6.86 ∗ 10−2 14.9

(n,total) 3.36 ∗ 10−1 2.90 ∗ 10−1 13.6

16O (n,scat) 8.77 ∗ 10−2 4.55 ∗ 10−2 48.1
(n,capture) −2.44 ∗ 10−3 −2.33 ∗ 10−3 4.7

(n,total) 8.53 ∗ 10−2 4.32 ∗ 10−2 49.4

Table 4.26: Comparison of MOX Core sensitivities (%/%) obtained from DRAGON SNS:
with B1 z-axial buckling with a transport correction (DR-B1) and reference results ob-
tained from SCALE/TSUNAMI 3D provided by IRSN [107, 109]. ∗: Explicit component
of the sensitivity. ‡: Complete (implicit+explicit) component of the sensitivity.
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Figure 4.23: MOX core with light water reflector: 238U (n,scat) sensitivity pro-
files (%/%)/du. Figure Reproduced from [109]. APOLLO2/MORET5 (red) P1:
integrated=0.024 ± 2.89 ∗ 10−4 (%/%). DRAGON-4/MORET5 P1 (orange): integrated
0.019±7.62∗10−4 (%/%). TSUNAMI-3D P5 (blue): integrated 0.015±7.72∗10−4 (%/%).
Note the discrepancy at high energy due to anisotropy.
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Figure 4.24: MOX core with light water reflector: 238U (n,scat) complete (explicit +
implicit) sensitivity profile (%/%)/du. SCALE/TSUNAMI 3D∗ results supplied by the
IRSN[107]. Note is the discrepancy at high energy due to anisotropy, and the improved
comparison of SCALE/TSUNAMI 3D P5 with DRAGON SNS: B1 with a transport
correction in comparison to APOLLO2/DRAGON-4/MORET5, and the inaccuracy of
DR-K approach (dotted blue).
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Figure 4.25: MOX core with light water reflector: 238U (n,el) sensitivity profile (%/%)/du.
∗SCALE/TSUNAMI 3D results supplied by the IRSN[107] Note the effect of the trans-
port correction, and the accuracy of our approximation for retrieving (n,el) partial cross
sections.
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Figure 4.26: MOX core with light water reflector: 238U (n,inel) sensitivity profile
(%/%)/du. SCALE/TSUNAMI 3D∗ results supplied by the IRSN[107]. Note the ac-
curacy of our approximation for retrieving (n,inel) partial cross sections.
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Figure 4.27: MOX core with light water reflector: 16O (n,scat) sensitivity profile
(%/%)/du ∗SCALE/TSUNAMI 3D P5 results supplied by the IRSN[107] Note the good
comparison of DRAGON-B1 results with SCALE/TSUANMI 3D results for 16O (n,scat)
in the fuel where the buckling approximation is valid.
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Figure 4.28: MOX core with light water reflector: 16O (n,scat) in H2O sensitivity profile
(%/%)/du. ∗SCALE/TSUNAMI 3D P5 results supplied by the IRSN[107] Note the dis-
crepancy between the DR-B1 and the S5-P5 results throughout the spectrum due to the
inadequacy of the buckling approximation in the light water reflector.
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4.3.3 Uncertainty Analysis

Much effort is at present devoted to covariance matrix generation. Different methods
have been proposed and are being tested. This results in rather important differences
among different covariance matrix evaluations. Despite the fact that cross-section evalu-
ations often differ little as they are generally based on the same set of experimental data,
differences in evaluations of cross-section uncertainties can be large. Since the verification
of uncertainties is non-trivial, we used three sets of currently available covariance data.
In this section, the spread of the uncertainties obtained in this way provides valuable
information on the reliability and accuracy of currently available covariance data. In
particular the following evaluations were used:

• SCALE-5.1 covariance library evaluation: These covariance files are older, but also
very complete. The evaluation covers a large range of isotopes and reactions. The
evaluation was originally intended for safety applications, so that the data are
intentionally conservative. The resulting uncertainties are therefore generally larger
than those based on best-estimate evaluations.

• SCALE-6 covariance library evaluation: These covariance files are more recent than
the SCALE 5.1 covariance files, and provide a very complete evaluation based on
more modern data. The evaluation includes an ensemble of covariances from var-
ious origins: ENDF/B-VI, ENDF/VII, JENDL-3.3 and approximate (low-fidelity)
covariances. The assumption here being that since nuclear data evaluations are sim-
ilar and usually based on the same set of experiments, the covariances taken from
one source/evaluation should provide a reasonable representation of uncertainties
for the other evaluations. The matrices are intentionally conservative as they were
also intended for safety applications.

• JENDL-4.0 evaluation: The Japanese JENDL evaluation has provided covariances
matrices in their evaluation files for decades. JENDL-4.0 includes their most re-
cent covariance data released. Covariances matrices exist for fewer isotopes when
compared to the SCALE covariance library evaluations, but cover a larger range of
reactions.

Tables 4.27 and 4.28 report (in pcm) the 238U and 239Pu reaction contributions to
the keff uncertainty using the three mentioned uncertainty sources. We see that contri-
butions and computed uncertainties differ drastically from one data source to another.
For 238U, it can be observed from table 4.27 that even though the computed uncertainty
contribution from 238U nuclear data uncertainties as predicted by SCALE5 covariances
and JENDL-4 covariances is similar, the reaction contributions as predicted from each
evaluation are drastically different. SCALE5 covariances report 238U(n,capture) to be the
reaction with the largest uncertainty contribution while SCALE6 and JENDL4 covari-
ances report 238U(n,inel) to be the highest contributor to the uncertainty. Similarly, as
observed in table 4.28, the uncertainty data reported by the three evaluations for 239Pu
are different, with the SCALE evaluated covariance libraries predicting a total uncertainty
approximately 3 times larger than the uncertainty predicted by JENDL 4.0 covariances.
The largest difference here is due to the reported 239Pu ν̄ uncertainties which can be
observed in figure 4.30. We can conclude that, even with an accurate computation of the
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sensitivities, given the differences in the covariance data, the task of predicting a reliable
value for the contribution of nuclear data uncertainties to the total keff uncertainty is
difficult.

Contribution to Uncertainty (pcm)
238U SCALE 5

Covariance
Library

SCALE 6
Covariance

Library

JENDL 4
Covariances

(n,capture) (n,capture) 121 86 82
(n,inel) (n,inel) 36 193 98
(n,el) (n,capture) -21 6.5 -2.8
(n,el) (n,inel) -10 -74 -
(n,f) (n,f) 9 9 10
(n,f) (n,capture) -6 1 0.5
(n,el) (n,el) 4 15 11

Contribution to keff uncertainty (pcm) 127 207 128

Table 4.27: Comparison of the 238U uncertainty contributions obtained using SCALE
5, SCALE 6 and JENDL 4 covariance libraries. Note the differences in the predicted
reaction uncertainty contributions and total isotope uncertainty contribution to the keff ,
that depend greatly on the covariance libraries.
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Figure 4.29: Comparison of reported 238U(n,inel) cross section uncertainties. Uncertainty
as reported by SCALE-5 evaluated covariance data library (orange curve). Uncertainty
as reported by SCALE-6 evaluated covariance data library (black curve). Note the dif-
ferences in the reported uncertainties at high energies.
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Contribution to Uncertainty (pcm)
239Pu SCALE 5

Covariances
SCALE 6

Covariances
JENDL 4

Covariances
ν̄ ν̄ 934 933 71

(n,capture) (n,capture) 666 270 270
(n,f) (n,f) 510 266 260
(n,f) (n,capture) -425 220 -

(n,inel) (n,inel) - 21 9
(n,el) (n,el) 3 5 3

Contribution to the keff uncertainty (pcm) 1181 1032 381

Table 4.28: Comparison of the 239Pu uncertainty contributions obtained using SCALE
5, SCALE 6 and JENDL 4 covariance libraries. Note the differences in the predicted
reaction uncertainty contributions and total isotope uncertainty contribution to the keff ,
that depend greatly on the covariance libraries. See figure 4.31 for comparison of the ν̄

sensitivity profiles computed from using DR-B1 and SCALE-5.
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Figure 4.30: Comparison of reported 239Pu ν̄ uncertainties. 239Pu ν̄ uncertainty as re-
ported by JENDL-4 (orange curve), and SCALE 6 evaluated covariance libraries (black
curve).
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Figure 4.31: Comparison of computed 239Pu ν̄ sensitivity profiles. DR-B1 ν̄ sensi-
tivity profile (blue). SCALE 5/TSUNAMI-3D ν̄ sensitivity profile (purple). SCALE
5/TSUNAMI-3D results provided by IRSN [106].

DR-K Approach

Finally, we note that if the sensitivities obtained from the DR-K approach are used in
the uncertainty analysis, then the contribution from the reaction pairs 238U(n,el)-(n,el)
and 238U(n,el)-(n,inel) are completely ignored as the 238U elastic sensitivity would be
computed as zero. With the SCALE6 covariances, the contribution of the (n,inel)-(n,inel)
reaction pair is computed to be 102 pcm (instead of 193 pcm with DR-B1), and the total
uncertainty due to 238U is computed to be 138 pcm (instead of 207 pcm with DR-B1).

Sensitivities (%/%)
Reaction S5-P5 [109] DR-B1 DR-K

238U (n,scat) 1.605 ∗ 10−2 1.597 ∗ 10−2 5.40∗10−3

239Pu (n,scat) 2.89 ∗ 10−3 3.01 ∗ 10−3 5.62∗10−4

240Pu (n,scat) 3.97 ∗ 10−4 3.37 ∗ 10−4 6.01∗10−5

1H (n,el) 4.17 ∗ 10−1 3.59 ∗ 10−1 2.39∗10−1

16O (n,scat) 8.77 ∗ 10−2 4.55 ∗ 10−2 6.49∗10−3

Table 4.29: Comparison of integrated explicit scattering sensitivities for the MOX core.
S5-P5: SCALE5/TSUNAMI-3D-P5 sensitivities supplied by the IRSN [109, 107]. DR-B1:
DRAGON SNS: sensitivities obtained with a B1 z-axial leakage model using transport
corrected total and scattering cross sections. DR-K: DRAGON SNS: sensitivities ob-
tained from the forward and adjoint flux from a k-search. Note the good agreement
between S5-P5 and DR-B1 integrated sensitivities. Also note that, except for 1H, the
DR-K approach underestimates sensitivities by an order of magnitude.
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Summary and Conclusion

In this thesis, we presented a comprehensive sensitivity and uncertainty analysis for re-
actor parameters such as the multiplication factor keff . We start our analysis at the
fundamental step of the physics calculation - the Evaluated Nuclear Data File. By rig-
orously maintaining the consistency between cross section definitions used for the sensi-
tivity computation and those used in transport computation, we demonstrated that, for
the benchmarks considered, conventional deterministic formalisms such as the transport
corrected diffusion approximation are sufficient to propagate nuclear-data uncertainties
at a level of accuracy comparable to that observed by using state-of-the-art Monte Carlo
or deterministic SN transport tools.19

To perform the sensitivity and uncertainty analysis, we used several conventional ap-
proximations. Comparison of our methodology and results, with previous attempts at
sensitivity and uncertainty analysis performed by other tools [113, 108] demonstrates that
the sensitivity can, in some cases, be more affected by the consistency of the cross section
data used during the sensitivity computation than by the model approximations. As long
as these approximations are applied in a rational manner, and taken into account consis-
tently in the sensitivity and uncertainty analysis, they can be as effective as several more
complex and exact methods currently used for sensitivity and uncertainty propagation.
We demonstrated this point for the buckling formalism and the analytical formula that
we used to compute implicit sensitivities.

Sensitivity coefficients of integral observables on input parameters (such as cross sec-
tions) combined with covariance matrices are used to perform error propagation of input
parameters. The most difficult sensitivity coefficient to compute is the sensitivity to scat-
tering cross sections, not only because of the arduous task of accurately computing the
energy gain and loss difference in the scattering formulas, but also because of the subtle
nature that these reactions depend on the transport solution. While poorer agreement
was observed for light isotope scattering sensitivity coefficients (particularly 16O), due to
the limitations of the transport correction in anisotropic systems, performance parameter
uncertainties such as the keff are generally dominated by cross section uncertainties of
heavy isotopes. An accurate computation of scattering sensitivities for heavy isotopes
is vital as they can highly contribute to the uncertainty. Additionally, by establishing a
consistent link between the cross section data used in the transport and sensitivity code

19Indeed, despite the rapid progress in computational power and Monte Carlo methods, deterministic
transport codes (such as DRAGON, WIMS, APOLLO) and diffusion theory are still the main tools used
by the industry for everyday core and safety computations highlighting the need for upgrading these
tools with sensitivity and uncertainty analysis capabilities.
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and the cross section data for which nuclear data uncertainties are expressed, we captured
the fine role of the compensation of errors in the computation of uncertainties associated
with heavy isotope scattering reactions such as, 238U(n,inel) and 238U(n,el).

While not presented in this report, a great part of the developments performed over
the course of this study was concentrated on the sensitivity and uncertainty analysis for
linear functionals of the flux, using Generalized Perturbation Theory. An example of such
a computation for Breeding Ratio responses, as well as uncertainty propagation using the
Total Monte Carlo method is provided in the Appendix. We have chosen not to include
these results in these pages, as we believe that their true value will be more appreciated
when coupled with a 2-group diffusion calculation of a full core, particularly for intended
application to integral experiments. Application of sensitivity analysis tools to integral
experiments can provide: (i) a validation of the coherence between the microscopic and
the integral data, (ii) a qualification of the desired accuracies required for nuclear data,
and (iii) if used with diligence, the improvement of the required base data to obtain at-
tainable accuracies.

Finally, we provided a comparison between uncertainties predicted by three of the
currently available and widely used nuclear data uncertainty evaluations. By comparing
their respective results, we demonstrate that the evaluation of the uncertainty is a non-
trivial task even after an accurate computation of the sensitivity. Indeed, the existence
of limitations associated with evaluated cross-section data, when applied to designs that
operate at different spectra, composition and fuel, is the prime motivation for most nu-
clear data sensitivity studies, on to which much effort has been recently directed. Many of
such inadequacies can be alleviated through the (cautious) use of cross section adjustment
techniques. Adjustment by sensitivities and least square procedures incorporate, and are
strongly dependent on, the sensitivities. Therefore, a precise computation of sensitivities
is vital, as poorly estimated sensitivity can lead to unwanted biases in the adjusted data.
The fact that sensitivities to the entire ensemble of data under consideration must be
integrated in the adjustment process is more crucial for the adjustment by sensitivities
technique.

To summarize, the suite of codes we developed for sensitivity and uncertainty analysis
with DRAGON permits for an accurate computation of sensitivities. It also provides a
link between the data used in the transport computation and the base nuclear data. A
continuation of the work presented in this study could be the application of the developed
tools to cross section adjustment techniques, in the frame work of integral experiments.
Such an application not only allows the qualification of uncertainties, but when used with
caution, it can also provide a means for the improvement of the uncertainty through the
amelioration of the cross section data.
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Appendix A

Propagation of Nuclear Data
Uncertainties in Deterministic
Calculations: Application of
Generalized Perturbation Theory
and the Total Monte Carlo Method
to a PWR Burnup Pin-Cell

Presented in the Nuclear Data 2013 International Conference

P. Sabouri†1, A. Bidaud†, S. Dabiran‡, D. Lecarpentier∗, F. Ferragut†

†: LPSC/IN2P3/CNRS, Grenoble, France
‡: McMaster University, Hamilton, Canada

∗: EDF, Clamart, France

A.1 Abstract

The development of tools for application to nuclear data uncertainty propagation in
lattice calculations are presented. The Total Monte Carlo method and the Generalized
Perturbation Theory method are used with the code DRAGON to allow propagation of
nuclear data uncertainties in transport calculations. Both methods begin the propagation
of uncertainties at the most elementary level of the transport calculation - the Evaluated
Nuclear Data File. The developed tools are applied to provide estimates for response
uncertainties of a PWR cell as a function of burnup.

A.2 Introduction

In recent years, the idea of supplying covariance data along with the Evaluated Nuclear
Data File has become more systematic, leading to the inclusion of covariance data for

1Corresponding Author
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a large number of isotopes in evaluations such as JENDL-4, ENDFB/VII, as well as
TENDL. However, in comparison to the number of transport codes available, the number
of tools which allow for the use of the provided data to propagate nuclear data uncertain-
ties in transport calculations is limited. Performing such a propagation is often a difficult
process, due to the different “definitions” of the neutron cross section which exist along
the path of a deterministic calculation, as well as the task of uncertainty propagation
itself.

A.3 Methodology

Currently, two major methods are available for uncertainty propagation in reactor cal-
culations. The first method is Generalized Perturbation Theory (GPT) using covariance
data in multi-group form along with sensitivity profiles obtained from GPT. The second
method is the Total Monte-Carlo method (TMC) developed at NRG [1] requiring hun-
dreds of identical simulations each starting with a unique Evaluated Nuclear Data File.
Both methods have been implemented for use with DRAGON 3.06 [2] to allow for nuclear
data uncertainty propagation.

Generalized Perturbation Theory

Generalized Perturbation Theory methods provide a rapid and accurate way to calculate
sensitivities of responses of the flux to various changes in system conditions. For a linear
ratio R = �Σx,φ�

�Σy ,φ�
, with Σx and Σy being arbitary functions and the inner product � , �

representing integration over space and energy, the adjoint fixed source problem is defined
as [3]

L†
Γ

† = S†
Γ

† + λF†
Γ

† +
∂R

∂φ
(A.1)

where L is the loss operator of the Boltzmann equation in its differential form, S and
F correspond to the scattering and fission gain terms of the Boltzmann equation, φ

corresponds to the neutron flux and λ = 1
keff

to the eigen-value of the Boltzmann equation.

The sensitivity Sα
R (in %/%) to the nuclear data α may then be calculated as

SR
α =

α

R

∂R

∂α
=

α

R







DIRECT
����

∂R

∂α
+

INDIRECT
� �� �
�

Γ
†, ∂α(L − S − λF) φ

�







(A.2)

The first term of Eq. (A.2) is defined as

∂R

∂α
=

�∂αΣx, φ�
�Σy, φ� − R

�∂αΣy, φ�
�Σy, φ�

and corresponds to the explicit/direct change in R resulting from the dependence of the
functions Σx and Σy on α. The second term containing the generalized adjoint flux
Γ† represents the change in R due to the implicit change of the neutron flux φ on the
parameter α.
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In DRAGON, the flux φ is solved by using the Collision Probability (CP) method.
The flux φ satisfies the integral form of the transport equation [24]

(I − P(ΣT )S − λP(ΣT )F)φ = 0 (A.3)

where the CP matrix P(ΣT ), which may be thought of as the inverse of the loss operator
L of the differential Boltzmann equation, is dense in space and sparse in energy. The
adjoint of Eq. (A.3) for the response R is given as [24]

(I − STPT − λFTPT)Γ∗ = PT ∂R

∂φ
(A.4)

where T represents matrix transposition. Due to the non-commutativity of the CP ma-
trix P with the operators F and S, the adjoint of the integral equation Γ∗ is not the
same as the adjoint of the differential operator Γ†. The adjoint equation corresponding
to the differential adjoint Γ† can be recovered by multiplying Eq. (A.4) by the collision
probability matrix P so that Γ† = PΓ∗. The adjoint of the integral equation satisfies the
relation Γ∗ = FTΓ†. Ref. [5] interprets the adjoint Γ∗ as the importance of the fission
source to response R. Table A.1 presents comparisons for the largest sensitivities calcu-
lated using DRAGON 3.06 with those obtained from SCALE 6 (explicit contribution) for

the breeding ratio R =
�

Σ238U
(n,γ), φ

�

/
�
�

I∈fissile ΣI
(n,f), φ

�

corresponding to a 3.3% enriched

PWR pin-cell defined in [103]. A final note should be made in regards to the application

Table A.1: Comparison of integrated sensitivities (%/%) of the Breeding Ratio obtained
by SCALE 6 and DRAGON 3.

Reaction SCALE DRAGON
235U(n,γ) 1.02 1.02
235U(n,f) −8.17 × 10−1 −8.18 × 10−1

238U(n,f) −5.11 × 10−2 −5.14 × 10−2

238U(n,scat) 1.26 × 10−2 1.019 × 10−2

1H(n,γ) 8.10 × 10−3 −8.25 × 10−3

238U(n,γ) 2.25 × 10−3 −1.54 × 10−3

1H(n,scat) −1.95 × 10−3 −1.99 × 10−3

of GPT methods with CP. Firstly, due to the integral nature of the transport solution,
forward and adjoint fluxes for a large range of geometries involving non-centered meshes
are available. In particular, one does not need to resort to cylindrization or cartesianiza-
tion of the geometry as is common with SN codes. Secondly, the most computationally
intensive part of the transport calculation (accounting for between 90% to 97% of the
computational time) is spent in the calculation of the CP matrix P. This calculation
only needs to be performed once, which makes GPT methods with CP extremely fast in
comparison to other methods such as SN or MOC.
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The Total-Monte Carlo Method

The TMC method provides an easy, accurate and flexible way to propagate nuclear
data uncertainties. Hundreds of identical simulations are neccessary for each isotope,
each starting with a unique ENDF. The Evaluated nuclear data files are provided by
NRG using their TALYS code [1]. A multi-group library corresponding to each ENDF
is constructed using the NJOY code. A simulation with DRAGON is then performed
using the constructed multi-group library. The standard deviation/uncertainty in output
parameters due to nuclear data uncertainties may then be calculated. Reference [8]
reports convergence of the standard deviation with a negligible skewness for a sample
number larger than 200. The data used in this work is ENDF’s supplied by NRG with
their the TENDL-2011 evaluation [7].

Covariance Data and Multi-Group Covariances

As a result of the multi-group approximation, the continuous spectrum cross sections
σ(E) are transformed into tabulated sets of multi-group cross section σg. The multi-

group cross sections σg =
� Eg+1

Eg
σ(E)φ(E)dE/

� Eg+1

Eg
φ(E)dE are obtained by averaging

the continuous spectrum cross section in the group interval [Eg, Eg+1] with the slowing
down flux φ(E). The slowing down flux φ(E) corresponds to the flux in an infinite homo-
geneous mixture of the resonant isotope and a moderator with different concentrations
of the resonant isotope, at various temperatures. The Narrow Resonance approximation
provides a simple analytical formula for the weighting flux given by [9]

φ(E) =
σr

p + σ0

σr
t (E) + σ0

1

E
(A.5)

where σr
p and σr

t (E) are the potential scattering and total cross section of the resonant

isotope, and σ0 = Nm

Nr
σm

p is the product of the ratio of the concentration of the moderator
Ni to the concentration of the resonant isotope Nr with σm

p being the potential scattering
cross section of the moderator. In an infinitely dilute medium (σ0 → ∞), the weighting
flux approaches φ(E) = 1

E
while for a low dilution of the resonant isotope with the

moderator (σ0 → 0), the weighting flux is given by φ(E) =
σr

p

σr
t (E)

1
E

. Due to the variation

of the weighting flux as a function of dilution, one should expect the uncertainties and
covariances corresponding to multi-group cross sections at infinite dilution to be different
than those corresponding to finite dilution. A better parameter for disscussion of cross
section data in this range is the resonance integral RI =

�

σ(E)φ(E)dE/
� 1

E
dE, defined

as the absorption cross section leading to the same reaction rate in the resonance had
the resonance not been there. At large dilutions (corresponding to low levels of self
shielding), the contribution of the cross section σ(E) to the resonance integral of Eq. (A.5)
is dominated by the largest resonance peaks, so that the uncertainty on the resonance
integral is resulting primarily from the uncertainties on the magnitude of the strongest
resonances. When self shielding becomes stronger (at low dilutions), due to the strong
suppression in the weighting flux of Eq. (A.5) at the resonance, the contribution to
the resonance integral uncertainty from the uncertainty of the magnitude of the peaks
becomes lower, while the contribution of the uncertainty and correlations of the dips
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between the resonances increases. The expected effect observed is an increase in the
resonance integral uncertainty with an increase in self shielding (decreasing σ0) [10].

If the only information in the ENDF file [11] is file 33 (group covariances supplied
by the evaluator at infinite dilution), the effect of the variation of the resonance integral
uncertainty as a function of dilution is not possible to capture. Furthermore, due to a
current limitation in the NJOY ERRORR module [12], even if file 32 (covariances of
resonance parameters) is provided, the effect is not possible to capture.

These current limitations are handled by generating covariance matrices from the
constructed multi-group libraries produced from the NRG’s ENDFs. The covariances are
calculated for the temperature and dilution values available on the library. It should
be noted that in TENDL-2011, the sampled ENDFs do not contain any covariances
between resonance parameters. The uncertainty at infinite dilution is therefore over-
estimated with the uncertainty on the resonance integral relatively constant as a function
of dilution. For the highest resonances, differences of one order of magnitude in the RI
uncertainty are noticed as a function of dilution. Ref. [10] has reported a variation of
the resonance integral uncertainty corresponding to two orders of magnitude (decreasing
with an increase in dilution) when sampling from the full covariance matrices (with lower
resonance peak uncertainties in comparision to the NRG data) provided by ORNL.

A final note should be made in regards to the differences in the definition of cross
section reactions between the data normally contained in multi-group libraries and gen-
eral cross section data (such as those obtained by the NJOY GROUPR module). To
reduce unneccessary computational time as well as save storage space, most multi-group
libraries (such as the WIMSD4 format [9]) contain data corresponding to lumped re-
actions. For example, the “absorption” cross section in WIMSD4 format is defined as
σABS =

�

x∈ absorption σx − σ(n,2n) − 2 ∗ σ(n,3n). Lumped covariance matrices corresponding
to the absorption cross section can be created by using the procedure outlined in [13].

A.4 Preliminary Results for Evolution Calculations

Table A.2 reports the total uncertainty of isotopic densities NI due to the nuclear data
uncertainties in 235U, 238U, and 239Pu at the end of the cycle for a 3.7% enriched PWR
pin cell at a power of 38 kW/kg. The uncertainty of N236U due to the nuclear data

Table A.2: Isotopic density uncertainties (%) for 3.7% enriched PWR cell at 60 GW d
T−1.

Isotope σ(NI) Isotope σ(NI)
236U 1.91% 238Pu 1.40%
239Pu 2.20% 240Pu 1.95%
241Pu 1.66% 242Pu 1.24%
237Np 1.44% 242Am 1.25%

uncertainties of 235U is 1.9% and remains roughly constant as a function of burnup.
At the first time step, the uncertainty is the same as that of the capture rate of 235U

(i.e. R =

�

Σ235
(n,γ)

,φ

�

��I∈fissile
,φ�) with 60% of the contribution to the variance coming from the
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uncertainty on the fission cross section of 235U which has an integrated sensitivity of -
0.85 (%/%): 20% of the contribution coming from the uncertainty on capture rate of 235U
(having an integrated sensitivity of 1.04%/%) and the remaining 20% from the reported
correlation between the capture and fission cross sections. Similarily, the uncertainty of
N239P u at the first time step is identical to the uncertainty of the breeding ratio

R =

�

Σ238
(n,γ), φ

�

��I∈fissile, φ�

and has a value of 0.93%: 88% of the contribution to the variance is from the uncertainty
of the capture cross section of 238U (having an integrated sensitivity of 0.96 %/%) and the
remaining 12% from the correlation between the scattering (with an integrated sensitivity
of 0.2%/%) and capture.

In general, the uncertainty for a response R(N̄ , ᾱ), where N̄ = (NI) is the vector of
isotopic densities and ᾱ = (αi) is the vector of to the nuclear data parameters, can be
calculated by

(δR)2 =
�

i,j

∂R

∂αi

COV (αi, αj)
∂R

∂αj

+
�

I,J

∂R

∂NI

COV (NI , NJ)
∂R

∂NJ

(A.6)

+ 2 ∗
�

I,j

∂R

∂NI

COV (NI , αj)
∂R

∂αj

where the first term represents the direct contribution to the uncertainty δR due to the
uncertainties and correlations of the nuclear data vector ᾱ, the second term accounts
for the contribution of the uncertainties and correlations in the isotopic densities N̄
(for example, the negative correlation between N238U and N239P u ) and the third term
represents the contribution from the correlations which exist between the nuclear data
and the isotopic densities (for example the negative correlation between the fission of
235U and the density of 239Pu resulting from the constant power constraint). The ideal
way to calculate the terms in the above equation is by use of Generalized Perturbation
Theory for the coupled Boltzmann and Bateman equations (for instance, as outlined in
[5]). Such a formalism is currently under development in DRAGON.

At the start of the cycle, the sensitivities ∂R
∂NI

for the isotopes not initially existant
in the fuel may be small, in which case the second and third terms of Eq. (A.6) can
be ignored. In this case the first term of Eq. (A.6) can be calculated by using static
GPT calculations at each step. Table A.3 presents comparisons for the uncertainties
obtained using static GPT calculations at (ignoring the second and third in Eq. (A.6))
with those obtained by TMC. As seen, with the exception of the computed uncertainty
for the Breeding Ratio due to nuclear data uncertainties of 238U , the approximation is
valid well until Middle of Life. For the case of 238U, the negative correlations between
the atomic densities of 238U and 239Pu, and the negative correlations between the fission
of 235U and the number density of 239Pu (as a result of the constant power condition)
result in a steady decrease in the breeding ratio uncertainty. The two contributions
correspond to the second and third term of Eq. (A.6), respectively. The effect is not
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Table A.3: Comparison of Uncertainties obtained for the keff and Breeding Ratio at BOL,
MOL (30 GWdT−1) and EOL (60 GWdT−1).

Material
keff Breeding Ratio

TMC GPT TMC GPT
BOL 235U 0.48% 0.49% 0.89% 0.86%
BOL 238U 0.34% 0.32% 0.93% 0.97%
MOL 235U 0.23% 0.24% 0.35% 0.39%
MOL 238U 0.34% 0.35% 0.62% 1.02%
MOL 239Pu 0.39% 0.40% 0.38% 0.42%
EOL 235U 0.12% 0.10% 0.07% 0.15%
EOL 238U 0.44% 0.38% 0.27% 1.02%
EOL 239Pu 0.45% 0.59% 0.36% 0.60%

captured resulting in an overestimation of the Breeding Ratio uncertainty. At the End
of Life, the correlations of the second and third term of Eq. (A.6) result in a reduction
in the overall uncertainty.

A.5 CONCLUSIONS

A consistent methodology for the propagation of nuclear data uncertainties in transport
calculations for use with DRAGON using the Total Monte Carlo method and the Gener-
alized Perturbation Theory method has been presented. The two methods were applied
to a PWR lattice cell for evolution calculations. The uncertainty propagation starts at
the most elementary point of a transport calculation- namely the Evaluated Nuclear Data
File. With the exception of the Breeding Ratio uncertainty due to 238U, preliminary re-
sults for the evolution of response uncertainties as a function of burnup using GPT are
in accordance with those obtained by the Total Monte Carlo method well until MOL.
However, ignoring the correlations between nuclide densities and their correlations with
the nuclear data results in an overestimation of the uncertainty on the calculated response
parameters at the end of life. This shortcoming can be resolved through the implementa-
tion of GPT for the coupled Boltzmann and Bateman equations. The effect highlights the
contribution of the isotopic density uncertainties and correlations in reducing the total
uncertainty for calculated response prameters at the EOL.

The authors are indebted to Dr. D. Rochman (NRG) for having supplied the ENDFs
which form the base of this work as well as for the many constructive correspondences
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which allowed the use of the provided data.

Bibliography

[1] R. Rochman, et al., J. Korean. Phys. Soc. 59, 1236, (2011).

[2] G. Marleau, et al., Report IGE-157 (1993).

[3] G. Greenspan, et al., Advc. Nucl. Sci. Tech. 8, 190, (1980).

[4] T. Courau, et al., Nucl. Sci. Eng 143, 19, (2003).

[5] G. Greenspan, et al., Advc. Nucl. Sci. Tech. 14, 210, (1980).

[6] K. Ivanov, et al. , Specification of Phase I of OECD LWR UAM, Nuclear
Energy Agency, (2011).

[7] ftp://ftp.nrg.edu/pub/wwww/talys/random/random.html.

[8] D. F. da Cruz et al., Proc. of ICAPP 12, 12093 (2012).

[9] WIMS-D LIBRARY UPDATE, IAEA, (2007).

[10] G. Zerovnik, Use of Covariance Matrices for Estimating Uncertainties

in Reactor Physics Calculations, Doctoral Dissertation, IJS, (2012).

[11] M. W. Herman, et al., ENDF-6 Formats Manual, (2009).

[12] R. E. MacFarlane, The NJOY Data Processing System, Oak Ridge National Labo-
ratory, (2006).

[13] P. Sabouri, et al., Proc. Physor 2012, 274, Physor (2012).

180



Chapter 1

Fondements théoriques

1.1 Données Nucléaires

Les données nucléaires sont à la base de tout calcul de réacteurs. Par con-
séquent, une bonne connaissance est essentielle dans le calcul de physique
des réacteurs. Ces données, présentées sous la forme de sections efficaces
nucléaires, décrivent les modes d’interaction possibles pour les neutrons
avec des noyaux cibles.

1.2 Matrice de Covariance

Une valeur physique est caractérisée par sa moyenne <q> et la fonction
de distribution P(q) qui détermine son incertitude. Quand q est discret,
avec un nombre fini de valeurs possibles Qi et une fonction de distribution
de probabilité P(q), la valeur moyenne de q est définie par:

< q >=
�

i

qiP (qi) (1.1)

La précision de q est définie par la différence entre la moyenne et la distri-
bution de la probabilité associée, c’est-à-dire la racine carrée de la variance:

σ2
q = var(q) = (Δq)2 =< (q− < q >)2 >=

�

i

(δqi)2 1
N

(1.2)

où δqi ≡ qi− < q >.

Dans le cas de nombreuses variables, caractérisant la fonction de prob-
abilité P (�q), il est exigé non seulement la connaissance de la moyenne et
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de la variance, mais aussi les corrélations entre les échantillons obtenus.
Où �q = (qi)N

i=1 est un vecteur composé des n variables qi. Il est possible
pour les variables différentes qi d’avoir des corrélations entre elles. Ces
corrélations sont normalement représentées en notation matricielle par la
matrice de covariance V = (Vij):

V =
�

(�q − ��q�) · (�q − ��q�)T
�

(1.3)

où T représente la transposition vectorielle. Les éléments de la matrice Vij

sont définis:

Vij = �(qi − �qi�) · (qj − �qj�)� = �δqi · δqj� (1.4)

Pour j = i, nous avons:

Vii =
�

δqi
2
�

= var(qi) (1.5)

Les éléments de la matrice de corrélation sont définis comme:

Cij =
Vij

�

ViiVjj

=
�δqi · δqj�
ΔqiΔqj

(1.6)

où Δqi =
√

Vii est l’écart-type.

1.3 Les Bibliothèques de Sections efficaces
et Les Fichiers de Covariance

Les valeurs de section efficace proviennent de mesures physiques ainsi que
des modèles physiques. Cependant, avant d’être utilisées dans des calculs,
elles doivent être validées. L’objectif du processus de validation est de
montrer que les résultats obtenus sont cohérents et complets.

L’évaluation des sections efficaces est réalisée par de nombreux organ-
ismes et est présentée sous la forme d’une évaluation de la bibliothèque
des sections efficaces, mise à jour périodiquement. Parmi les évaluations
récentes, préparées dans les laboratoires différents, nous pouvons citer:
ENDF / B-VII (USA), JEFF 3.1 (UE), JENDL 4.0 (Japon), BROND
(Russie), CENDL (Chine ), et TENDL (Hollande).
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1.4 Les Calculs Déterministes

Le transport des neutrons dans un réacteur est un processus de diffusion.
Un neutron est né à hautes énergies, se déplace dans le réacteur tout en
étant ralenti par des collisions de diffusion élastique et inélastique. Pendant
ce temps, le neutron peut être perdu en raison de fuites ou il peut être
capturé, ou interagir dans une réaction de production de neutrons tel que
(n, 2n), (n, 3n), et de (n, f). Le paramètre d’intérêt pour décrire ce système
est le flux de neutrons φ(ρ̄), donné par l’équation de Boltzmann.

1.4.1 Équation de Boltzmann

Dans sa forme intégro-différentielle [8], en supposant que les neutrons sont
émis par fission isotrope et que les probabilités d’interaction sont invari-
antes par rotation, l’équation du transport des neutrons est:

Ω̂ · �∇φ(�r, Ω̂, E) + Σ(�r, E)φ(�r, Ω̂, E) = Q(�r, E, Ω̂) (1.7)

La source de collision Q(�r, E, Ω̂) est définie par:

Q(�r, E, Ω̂) =
�

Ω̂�

dΩ̂
�

�

E�

dE �q(�r, Ω̂
� → Ω̂, E � → E) (1.8)

où la densité de collision q(�r, Ω̂ → Ω̂, E → E) est:

q(�r, Ω̂
� → Ω̂, E � → E) =

Fission density
� �� �

χ(�r, E)
4πkeff

ν(E �)Σf(�r, E �)φ(�r, Ω̂
�, E �)

+

Scattering density
� �� �

Σs(�r, Ω̂
� → Ω̂, E � → E)φ(�r, Ω̂

�, E �) (1.9)

où :

- φ(�r, Ω̂, E): le flux angulaire de neutrons à �r, dans la direction Ω̂ et
à l’énergie E.

- Σ(�r, E): la section efficace macroscopique totale à �r et énergie E.

- Σf(�r, E �):
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la section efficace macroscopique de fission à �r et énergie E�.

- ν: le nombre moyen de neutrons produits par fission.

- χ(�r, E): le spectre de fission à neutrons à �r et énergie E; n

- Σs(�r, Ω̂
� → Ω̂, E � → E): la section efficace différentielle pour un neu-

tron d’énergie E � et direction Ω̂ de disperser à un neutron à l’énergie
E + dE et direction Ω̂ + dΩ̂.

- keff : le facteur de multiplication effectif.

Équation 1.7 est une équation de conservation. Le terme à gauche
représente les neutrons perdus à cause des fuites et des collisions, et le
terme à droite représente la source de fission, de diffusion.

1.4.2 L’Anisotropie et la Correction de Transport

La correction de transport est une approximation utilisée pour réduire la
dépendance angulaire de la source de collision Q(�r, Ω̂

� → Ω̂, E � → E). En
utilisant la correction de transport, l’équation de Boltzmann devient:

Ω̂ · ∇φ(�r, E, Ω̂) + Σ̄(�r, E)φ(�r, E, Ω̂) = Q̄(�r, E) (1.10)

où [14]:

Σ̄(�r, E) = Σ(�r, E) − ΔΣtr(�r, E) (1.11)

Σ̄s,0(�r, E � → E) = Σs,0(�r, E � → E) − δ(E � − E)ΔΣtr(�r, E) (1.12)

ΔΣtr(�r, E) =
� ∞

0
dE �

Σs,1(�r, E → E �) (1.13)

L’équation 1.10, prend partiellement en compte l’effet d’anisotropie linéaire
de la diffusion. En réduisant la section efficace totale à la section efficace
corrigée, définie par l’équation 1.11, la longueur de diffusion du neutron
est augmentée. Cela imite l’effet de l’anisotropie linéaire de la diffusion: le
neutron diffusé par le choc anisotrope va continuer dans la direction vers
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l’avant.

1.4.3 Formulation intégrale

La forme intégrale de l’équation 1.10 est donnée par:

�φ(�r, E) =
�

�r�∈D

exp(−τ(s, E))
s2

q(�r�, E � → E)d3�r�

+
�

�r�∈∂D

exp(−τ(ss, E))
s2

S

�

Ω̂ · n̂−
�

φ−(�rS, E, Ω̂
�)d2r� (1.14)

où φ−(�r, E, Ω̂
�) est le flux angulaire entrant à la surface ∂D avec l’intérieur

normale n̂−.
Le premier terme de l’équation 1.14 représente la contribution de la source
de collision q, au flux neutronique à �r. Le deuxième terme est la contribu-
tion de tous les neutrons entrants dans la surface φ−.

1.5 Forme Discrétisée

Une solution numérique d’une équation nécessite une discrétisation. En
discrétisant l’espace et la surface, et en utilisant l’approximation multi-
groupe de discrétiser sur l’énergie, l’équation 1.10 devient:

φi,g =
NS�

α=1

Nν�

µ=0
pµ,g

iα φµ,α
−,g +

NV�

j=1

NG�

g�=1

pg
ijQj,g (1.15)

φν,α
+,g =

NS�

β=1

Nν�

µ=0
pνµ,g

αβ φµ,β
−,g +

NG�

g�=1

NV�

j=1

pν,g
αj Qj,g (1.16)
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avec les probabilités de première collision définies par:

pg
ij =

1
Vi

�

�r∈Vi

�

�r�∈Vj

e−τg(s)

s2
d�r�d�r (1.17)

pν,g
iα =

1
Vi

�

�r�∈Vi

�

Sα

e−τg(sS)

4πs2
S

(Ω̂ · N̂−)ψν(Ω̂, N̂−)d�r�dASα
(1.18)

pν,g
αi =

4
Sα

�

Sα

�

�r∈Vi

e−τg(s)

s2
(Ω̂ · N̂+)ψν(Ω̂, N̂+)dAsα

d�r (1.19)

pνµ,g
αβ =

4
Sα

�

Sα

�

Sβ

e−τg((sS)

4πs2
S

(Ω̂ · N̂−)(Ω̂ · N̂+)ψν(Ω̂, N̂+)ψµ(Ω̂, N̂+)dASα
dASβ

(1.20)

et Qj,g =
�

g� qg�→g
j est la source de neutrons dans le volume j et le groupe

d’énergie g et représente la contribution de la fission et diffusion.

1.5.1 Forme Matricielle

Dans la notation matricielle, les équations 1.15 et 1.16 sont:

�φ = PVS
�J− + PVV

�Q (1.21)
�J+ = PSS

�J− + PSV
�Q (1.22)

où �J+ and �J− sont les courants entrants et sortants. Le flux �φ est le vecteur
de flux neutronique, et la source �Q = (

�

g� qj,g�→g) est le vecteur source de
neutrons dans la région j et dans le groupe d’énergie g.

La Forme Classique

La forme standard de l’équation de transport est le problème de la résolu-
tion des valeurs propres généralement écrit comme:

(A − λB) · �φ = 0 (1.23)

où λ = 1
keff

et A and B sont les opérateurs de l’équation de Boltzmann.

Dans la forme de l’opérateur, nous avons :

�φ = P(Σ) (S + λF) �φ (1.24)
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où Σ = (Σg)i. On voit que:

(1.25)
A = I − P(Σ)·S (1.26)
B = P(Σ) · F (1.27)

où I est la (NV · NG)2 matrice identité.

1.6 L’Adjoint Intégral

Le formalisme adjoint est à la base de la méthode de la sensibilité de
l’analyse d’incertitude. Pour chaque formulation de l’équation de trans-
port, il existe un flux adjoint correspondant. L’équation adjointe corre-
spondant à l’équation intégrale 1.24 s’écrit:

(A† − λB†) · �ψ† = 0 où (1.28)

A† = I − ST · P (1.29)

B† = FT · P (1.30)

et l’opérateur T est la transposition matricielle. ψ† est également appelé la
fonction de l’importance du flux neutronique et est interprétée comme le
flux total de neutrons ajouté au réacteur critique à partir d’un flux d’unité
de neutrons à la position (�r, E).

1.7 La Théorie des Perturbations

Une théorie de perturbation formulée en utilisant la formulation intégrale
de l’équation de transport présente un intérêt pour deux raisons [15] :

1. La première est la capacité de la formulation intégrale pour calculer
des solutions précises dans les systèmes hétérogènes. Cette carac-
téristique, unique aux formulations intégrales, permet un calcul pré-
cis du coefficient de réactivité de petites perturbations insérées dans
le coeur.

2. Les perturbations dans les opérateurs, apparaissant dans l’équation
de transport intégrale (voir les équations 1.25 - 1.27), sont non-
linéaires par rapport aux perturbations dans les paramètres physiques
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sous-jacents. On peut montrer que l’utilisation de la fonction ad-
joint, pour le système non-perturbé, est plus précise dans sa formu-
lation intégrale de l’équation de transport que dans sa forme intégro-
différentielle [26, 15].

1.7.1 Formules de perturbation

Supposons qu’une perturbation q → q + δq dans un paramètre se traduit
par la perturbation dans les opérateurs A, B, λ et φ selon:

A → Ap ≡ A + δA (1.31)
B → Bp ≡ B + δB (1.32)
φ → φp ≡ φ + δφ (1.33)
λ → λp ≡ λ + δλ (1.34)

Les équations de Boltzmann pour le système de référence et le système
perturbé sont:

reference: A · φ = λB · φ (1.35)
perturbé: Ap · φp = λpBp · φp (1.36)

adjoint reference: A† · ψ† = λB† · ψ† (1.37)

Après avoir développé l’équation 1.36, et en négligeant tous les termes
d’ordre 2 et supérieurs et en soustrayant de l’équation 1.35, nous avons:

(A − λB) · δφ + (δA − λδB) · φ = δλB · φ (1.38)

en utilisant le produit intérieur avec la fonction adjointe ψ†, on obtient:

δλ =

�

✘✘✘✘✘✘✘✘✘✘✿0

(A† − λB†)ψ†, δφ

�

�ψ†, B · φ� +

�

ψ†, (δA − λδB) · φ
�

�ψ†, B · φ�

=

�

ψ†, (δA − λδB) · φ
�

�ψ†, B · φ� (1.39)

L’équation 1.39 présente la perturbation dans la valeur propre λ en fonc-
tion des perturbations dans les opérateurs de l’équation de Boltzmann. Le
calcul de la perturbation dans le λ nécessite le flux φ, l’adjoint ψ† et les
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perturbations dans les opérateurs δA et δB. De cette façon, nous évitons
la nécessité pour le calcul de la perturbation δφ, qui autrement exigeraient
une nouvelle solution de l’équation de transport pour chaque perturbation
δq.

1.7.2 Calcul de δA et δB

Les opérateurs A et B pour la formulation intégrale sont donnés par les
équations 1.26 et 1.27:

A = I − P(Σ)·S (1.40)

B = P(Σ) · (
−→
χT ·

−−→
νΣF ) (1.41)

Pour utiliser l’équation 1.39 avec l’adjoint intégrante, ψ† nécessite la con-
naissance des perturbations dans le opérateurs A et B. Ces perturbations
sont données par:

δA = −(δP · S + P · δS) (1.42)
δB = (δP · F + P · δF) (1.43)

Cependant, nous observons que les perturbations δA et δB dépendent
de la perturbation δP. Le calcul numérique de cette perturbation est
difficile et intensif et n’a pas été considéré dans cette thèse. Une approxi-
mation introduite par Takahashi consiste à remplacer la perturbation dans
la section totale apparaissant dans l’équation de Boltzmann par une source
équivalente dans la section efficace de diffusion.

La forme intégro-différentielle de l’équation de transport est:
�

Ω̂ · ∇ + Σ

�

φ(�r, Ω̂, E) = (S + λF) · φ(�r, E) (1.44)

et l’équation intégrale pour le flux est:

�φ = P(Σ) · (S + λF) · �φ (1.45)

maintenant, nous pouvons ajouter δΣ pour les deux côtés de l’équation

9



1.44. L’équation intégro-différentielle et l’équation intégrale sont:
�

Ω̂ · ∇ + Σ + δΣ

�

φ(�r, Ω̂, E) = (S + λF) · φ(�r, E) + δΣ · φ(�r, Ω̂, E)

(1.46)
�φ(�r, E) = P(Σ + δΣ) · (S + λF) φ(�r, E) + P(Σ) · δΣ · φ(�r, E) (1.47)

puisque nous avons ajouté l’opérateur δΣ des deux côtés de l’équation,
nous voyons que le flux reste inchangé. Si le flux est isotrope, φ(�rΩ̂, E) �
1

4π
φ(�r, E), nous avons[34]:

φ(�r, E) � P(Σ + δΣ) · [S + λF + δΣ] · φ(�r, E) (1.48)

La substitution P(Σ + δΣ) � P(Σ) + δP dans 1.48 et, en ignorant le
terme de second ordre δP · δΣ, donne [34]:

− P · δΣ · φ = δP · (S + λF) · φ (1.49)

L’application à l’expression de perturbation, pour la valeur propre λ

apparaissant dans l’équation 1.39, donne:

δλ =

�

ψ†, (δA − λδB)φ
�

�ψ†, Bφ� (1.50)

En substituant les équations 1.42 et 1.43 dans l’équation 1.50 et en
utilisant l’approximation donnée par l’équation 1.49 pour δP · (S + λF),
nous avons:

δλ = −
�

ψ†, {P · (δS + δF) + δP · (F + S)} · φ
�

�ψ†, P(Σ) · Fφ�

= −
�

PT(Σ) · ψ†, {−δΣ + δF + δS} · φ
�

�PT(Σ) · ψ†, Fφ�

=

�

φ†, (δΣ − δS − λδF)φ
�

�φ†, Fφ� (1.51)

où φ† = P · ψ†.
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1.8 Fonctions de sensibilité

Dans la propagation des incertitudes des données nucléaires, une fonction
de sensibilité est une transformation linéaire qui représente la variation
relative du paramètre intégral R résultant d’un changement relatif dans
les données nucléaires q. Ces fonctions de sensibilité constituent la base
de l’approche de la sensibilité pour la propagation des incertitudes. La
fonction de sensibilité peut être considérée comme la dérivée de premier
ordre ou de la pente de la réponse R par rapport à un changement δq/q
en q:

Sq
R(ρ̄) =

δR

R
/

δq(ρ̄)
q(ρ̄)

(1.52)

où ρ̄ est la variable de phase (r̄, E, Ω̂). R est généralement une fonction du
flux avec une dépendance non-linéaire sur q. Par conséquent, la fonction
de sensibilité Sq

R (en % / %) représente la variation relative de R provenant
de petits changements dans q.

1.8.1 Formules de sensibilité pour la réactivité

Dans le cas où le flux est isotrope, la substitution pour λ = 1
keff

dans
l’équation 1.51 donne:

δ(
1

keff
) =

�

φ†, (δΣ − δS − 1
keff

δF) · φ
�

�φ†, Fφ� (1.53)

car δ( 1
keff

) = −δkeff

keff
· 1

keff
, on a:

δkeff

keff
=

�

φ†, (keffδS + δF − keffδΣ) · φ
�

�φ†, Fφ� (1.54)

en multipliant l’équation 1.54 par q/δq, on obtient la sensibilité Sq
keff

, don-
née par:

Sq
keff =

q

keff

δkeff

δq
=

�

φ†, (
GAIN

� �� �

qkeffδqS + qδqF −
LOSS

� �� �

qkeffδqΣ) · φ

�

�φ†, Fφ� (1.55)

où q ∈
�

νg, χg, σ(n,el),g, σ(n,inel),g, σ(n,f),g, ...
�

est un paramètre multi-groupe
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et δq ≡ ∂
∂q .

1.9 La Propagation d’incertitudes

Les données nucléaires q sont accompagnées des incertitudes et corrélations
fournies sous la forme d’une matrice de covariance V, où V est en unité
relative ( (%)2). Nous pouvons donc propager les incertitudes des données
de base pour calculer les incertitudes sur le paramètre R. Cela peut être
fait par la loi de propagation des erreurs:

�

ΔR

R

�2

= �ST · V · �S =
�

i

�

j

Sqi

RVijS
qj

R (1.56)

où les sensibilités Sqi

R donnent la variation de la réponse R à une variation
de la base de données nucléaires qi. L’ensemble des coefficients de sensi-
bilité, en fonction de la réaction nucléaire et de l’énergie, est désigné par
le vecteur �S. Dans le cas où nous avons un vecteur de réponse Ri, les
sensibilités sont exprimées sous forme d’une matrice avec des éléments Sij

donnés par [1]:

Sij = Sqi

Rj
=

qi

Rj

∂Rj

∂qi
(1.57)
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Chapter 2

Effets de la structure fine
du flux

Habituellement, l’analyse de sensibilité et des incertitudes en physique des
réacteurs commence par des calculs de transport de neutrons au niveau
du groupe, avec une bibliothèque multi-groupe qui a été obtenue pour les
hypothèses nécessaires et applicables au système. Cependant, une solu-
tion du flux peut être obtenue seulement après que les sections efficaces
multi-groupes soient calculées. Cela se fait par le calcul d’autoprotection.

Le calcul d’autoprotection utilise les informations disponibles dans la
bibliothèque multi-groupes pour réaliser les sections efficaces multi-groupes
représentatives du système. Dans le cas où les méthodes d’équivalence sont
utilisées, le calcul d’autoprotection utilise diverses simplifications pour ar-
river à un principe d’équivalence entre le ralentissement du neutron dans
un milieu homogène infini et le ralentissement du flux dans une géométrie
hétérogène [73, 21]. Les expressions pour la sensibilité sont ensuite cal-
culées en fonction de ces sections efficaces. Elles représentent la variation
en % de la réponse par rapport à une variation uniforme de 1 % de la
section efficace autoprotégée.

Dans cette section, nous calculons la sensibilité du paramètre de groupe
aux données nucléaires q. Cette sensibilité est appelée la sensibilité im-
plicite [74, 75]. Pour calculer cette sensibilité implicite, nous allons d’abord
discuter de la théorie de l’équivalence dans l’application de la cellule de
Wigner. Nous présentons alors l’approche de Greenspan [15] pour calculer
la perturbation dans le paramètre de groupe. Nous fournissons ensuite une
expression analytique pour la perturbation dans le flux que nous utilisons
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pour le calcul de la sensibilité implicite dans les géométries homogènes.

2.0.1 La Théorie d’équivalence

Les calculs d’autoprotection, qui utilisent la théorie d’équivalence [21, 73],
commencent par les tableaux des sections efficaces en fonction de la tem-
pérature et un facteur de dilution σ0. Le facteur de dilution σ0 fournit
une mesure de la capacité du modérateur à thermaliser les neutrons. La
définition du facteur de dilution dépend des approximations spécifiques
qui ont été utilisées pour générer le flux.
Si les résonances sont étroites, le facteur de dilution pour un milieu ho-
mogène avec un isotope de résonance est défini comme [19] :

σ0 =
�

k �=r

Nk

Nr
σp,k (2.1)

où Nk est la densité atomique de l’isotope non-résonnant avec la section
efficace potentielle σp,k et Nr est la densité atomique de l’isotope de ré-
sonance. Les paramètres de groupe sont générés en utilisant le flux de
pondération correspondant au ralentissement des neutrons dans un milieu
homogène infini composé de l’isotope de résonance et un modérateur. Si
les résonances sont étroites, alors le flux dans le milieu homogène est défini
comme [38, 19]:

φHOM(E) =
σp,r + σ0

σr(E) + σ0

1
E

(2.2)

où σr et σp,r sont les sections efficaces totale et potentielle de l’isotope avec
résonance. L’équation 2.2 suppose que la section efficace de diffusion est
dominée par la section efficace potentielle.
Dans les méthodes de la théorie d’équivalence, les expressions de flux, pour
une géométrie hétérogène, impliquent souvent des combinaisons linéaires
de flux homogène données par l’équation 2.2. Le but des méthodes d’équivalence
dans les calculs d’autoprotection est alors de calculer un facteur de dilution
σ0 "meilleur" représentatif de la géométrie. Ce principe est bien illustré en
utilisant l’exemple de la cellule de Wigner.

La Cellule de Wigner

On peut imaginer un système constitué de deux volumes, composé d’une
région de combustible F immergée dans une région de modérateur M . Le
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taux de collision total dans le combustible est donné comme [19, 20]:

ΣF (E)φF (E)VF = PF→F (E)VF

� ∞

0
dE �

Σs,F (E � → E)φF (E �)

+ PM→F (E)VM

� ∞

0
dE �

Σs,M(E � → E)φM(E �) (2.3)

où ΣF = Σr +
�

k∈F Σk est la section efficace totale du combustible, Σr est
la section efficace totale de l’isotope r, Σk est la section efficace totale de
l’isotope k �= r, φF (E) est le flux dans le combustible, VF est le volume du
combustible, σs,F est la section efficace de diffusion du combustible, σs,M

est la section efficace de diffusion macroscopique du modérateur, et PF→F

et PM→F sont les probabilités de collision.

En supposant que la diffusion n’est possible que par des collisions élas-
tiques, les probabilités de transfert d’énergie peuvent être efficacement
représentées par la forme P (E� → E) = 1

(1−αk)
1
E . En intégrant sur les

sections efficaces de diffusion, nous obtenons [19, 20]:

ΣF (E)φF (E)VF = PF→F (E)VF

�

k∈F

� E/αk

E

Nkσs,k(E �)φF (E �)
(1 − αk)E � dE �

+ PM→F (E)VM

�

i∈M

� E/αi

E

Nkσs,i(E �)φM(E �)
(1 − αi)E � dE � (2.4)

où l’indice k ∈ F est l’isotope dans le combustible et l’indice i ∈ M est
l’isotope dans le modérateur, σs,k et σs,i sont les sections efficaces micro-

scopiques de l’isotope k et i avec les densités Nk et Ni, αk =
�

Ak−1
1+Ak

�2
, et

Ak est le rapport entre le nombre de masse de l’isotope k à la masse de
neutrons.

Si la largeur de résonance est petite, les neutrons qui tombent à l’intérieur
de la région de résonance viennent de l’extérieur de la résonance où l’interaction
est dominée par la section efficace potentielle. En dehors de la résonance,
le flux φ(E) a la forme asymptotique C

E�
et la section efficace de diffusion

de l’isotope de résonance est égale à la section efficace potentielle σr,p.
Nous pouvons également supposer que la section efficace du modérateur
est constante et dominée par la diffusion potentielle σs,k = σp,k . En igno-
rant la contribution du flux sous la résonance à l’intégrale de l’énergie de
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l’équation 2.4, nous avons [19, 20] :

1
1 − αk

� E/αk

E
Nkσp,kφ(E �)

dE �

E � = Nkσp,k
1
E

for k �= r (2.5)

1
1 − αk

� E/αr

E
Nrσs,k(E �)φ(E �)

dE �

E � = Nkσp,k
1
E

for for k = r (2.6)

Dans le cas où un seul isotope résonant est considéré, l’équation 2.4 se
simplifie en [20]:

ΣF (E)φF (E)VF =
1
E

(PF→F (E)VF Σp,F + PM→F (E)VMΣp,M) (2.7)

où Σp,F = Nrσp,r +
�

k �=r Nkσp,k est la section efficace potentielle du com-
bustible et Σp,M =

�

i∈M Niσp,i et la section efficace potentielle du mod-
érateur.

Dans le cas où seulement deux régions sont considérées, la relation de
réciprocité devient:

PM→F (E)
VF ΣF (E)

=
PF→M(E)

VMΣM
(2.8)

En utilisant la loi de réciprocité ci-dessus, l’équation 2.7 se simplifie en
[20]:

φF (E) =
1
E



(1 − PF→M(E))
Σp,F

ΣM(E)
+ PF→M(E)



 (2.9)

L’équation 2.9 nécessite la connaissance de la probabilité PF→M(E). Pour
la cellule de Wigner, la probabilité PF→M peut être exprimée comme [78,
20]:

PF→M(E) =
1

ΣF (E)l̄

� ∞

0
(1 − exp(−ΣF (E)l)) dl

=
1

ΣF (E)l̄ + 1
(2.10)

où l̄ = 4V
S est la longueur de la corde moyenne dans le combustible de

volume V et de surface S. En utilisant l’équation 2.9, le flux φ(E) se

16



simplifie en [20]:

φF (E) =
1
E

Σp,F + 1/l̄

ΣF (E) + 1/l̄
(2.11)

=
1
E

Nrσp,r +
�

k �=r Nkσp,k + Σe

Nrσr(E) +
�

k �=r Nkσp,k + Σe
(2.12)

=
1
E

σp,r +
σ0

� �� �

(σ0,F + Σe/Nr)
σr(E) + (σ0,F + Σe/Nr)

� �� �

σ0

(2.13)

avec σ0,F =
�

k �=r
Nk

Nr
σp,k et la section efficace d’évasion Σe = 1

l̄
définie

comme l’inverse de la moyenne longueur de la corde l̄.

L’équation 2.13 est remarquablement similaire au flux donné par l’équation
2.2 pour un milieu homogène et infini avec le facteur de dilution σ0 =
σ0,F + Σe/NR. Lorsque la longueur moyenne l̄ est petite (c’est-à-dire qu’il
y a une grande section efficace d’évasion Σe), les neutrons du modérateur
peuvent facilement atteindre un point à l’intérieur du combustible. Par
conséquent, la dépression du flux est minimale.

La plupart des méthodes de l’équivalence représentent la probabilité
PF→M comme une somme d’expressions rationnelles telles que l’équation
2.10. Pour les géométries hétérogènes complexes, chaque formalisme utilise
un certain nombre d’hypothèses concernant la forme du flux φF (E) pour
arriver à une représentation pour la probabilité PF→M(E) et la section
efficace Σe similaires à l’équation 2.9.

Pendant le calcul de PF→M(E), le choix pour les données nucléaires
disponibles est limité aux données disponibles dans la bibliothèque. Ces
données comprennent la section efficace potentielle σp,r, et la résonance
intégrante définie par:

I =
σ(T, σ0)σ0

σ(T, σ0) + σ0
(2.14)

La résonance intégrante I fournit une fonction croissante monotone (en
fonction de la dilution) pour laquelle l’interpolation de la dilution et de la
température peuvent être effectuées. Si la taille de la résonance est inter-
médiaire, un facteur λ ∈ [0, 1] est disponible [79, 80].
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Le facteur λ fournit une mesure de la largeur de la résonance avec λ = 0
si la résonance est grande, et λ = 1.0 si la résonance est étroite. Une procé-
dure itérative sur le facteur de dilution σ0 est effectuée pour arriver à un
ensemble des sections efficaces pour tous les isotopes de résonance qui sont
présents dans le système.

2.1 L’approche de la dérivation des fonc-
tions composées de Greenspan

Le paramètre multi-groupe
�

σHET
x,I

�

de l’isotope I pour la géométrie hétérogène
peut être exprimé comme:

�

σHET
x,I

�

= f I
x(σ0, σx(E))σ∞

x,I (2.15)

où σ∞
x,I est le paramètre multi-groupe disponible dans la bibliothèque et

généré en utilisant le spectre de pondération 1 /E. Le facteur f [74]
représente l’effet du spectre de neutrons sur les paramètres multi-groupes.

Le changement
�

σHET
x,I

�

, en raison d’un changement dans la donnée
nucléaire q, est donné par:

∂
�

σHET
x,I

�

∂q
= fx,I

∂σ∞
x,I

∂q
+ σ∞

x,I

dfx,I

dq
(2.16)

Si
�
�
�
�f

I
x

∂σ∞

x,I

∂q

�
�
�
� >>

�
�
�
�σ

∞
x,I

df I
x

dq

�
�
�
�, alors les effets de la structure fine sont négligeables

et peuvent être ignorés. Dans ce cas, il existe une relation linéaire entre la
section efficace σ∞

x et la section efficace autoprotégée
�

σHET
x,I

�

. Toutefois,

dans le cas où
�
�
�
�σ

∞
x,I

df I
x

dq

�
�
�
� n’est pas négligeable, la relation entre la section

efficace autoprotégée et la donnée nucléaire q devient plus compliquée.
En particulier, comme le facteur f I

x dépend de tous les constituants de
l’ensemble, nous avons [74]:

df I
x

dq
=

∂f I
x

∂σI
x

∂σI
x

∂q
+

�

J �=I

�

y

∂f I
x

∂σJ
y

∂σJ
y

∂q
(2.17)

où J porte sur tous les isotopes autres que I et toutes les réactions x.
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Nous notons qu’un changement dans la donnée nucléaire q peut affecter
de nombreux facteurs f .

La contribution à la variation résultant dans le paramètre de perfor-
mance R d’une perturbation dans q peut se faire par différents canaux, y
compris toutes les constantes multi-groupes. Par conséquent, df

dq ne peut
plus être négligeable. En tenant compte de la contribution possible de tous
les canaux, nous arrivons à la forme typique de la sensibilité donnée par
[74]:

SRq ≡ δR

R
/

δq

q

�

I

�

x

GI
R,x

� �� �



δR

R
/

δ
�

σHET
x,I

�

�

σHET
x,I

�





P I
x,q

� �� �



δ

�

σHET
x,I

�

�

σHET
x,I

� /
δq

q



 =
�

I

�

x
GI

R,xP I
x,q (2.18)

Ici, GI
R,X est le coefficient de sensibilité du R à la constante multi-groupe.

C’est précisément ce qui est calculé dans les formules telles que l’équation
1.55 et est souvent désigné comme la sensibilité explicite, car elle ne tient
pas compte de tout changement dans le flux. P I

x,q est le coefficient de
sensibilité de la constante multi-groupe au paramètre de base q et peut
être exprimé par l’équation 2.16, comme [74]:

P I
x,q ≡ δ

�

σHET
x,I

�

�

σHET
x,I

� /
δq

q
=

DI
x,q

� �� �


f I
x

δσ∞
x,I

σHET
x,I



 /

�

δq

q

�

+

QI
x,q

� �� �



δf I

x

f I
x



 /

�

δq

q

�

(2.19)

= DI
x,q + QI

x,q (2.20)

où le premier terme DI
x,q compte pour le changement direct dans la section

efficace multi-groupe en raison d’un changement dans la donnée nucléaire
q. Le deuxième terme QI

x,q, appelé la sensibilité implicite, compte pour
la perturbation dans le spectre et est prise en compte par le changement
dans le f-facteur δf I

x .
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2.2 L’effet Implicite dans un milieu homogène

Dans un milieu homogène, en supposons que la taille de résonance est
intermédiaire nous pouvons exprimer le flux en fonction d’un facteur de
dilution σ0, comme:

φ(E, σ0) =
λσp,r + σ0

σa(E) + λσs,r(E) + λσp,r + σ0

1
E

(2.21)

où σa(E) est la section efficace d’absorption de l’isotope de résonance et
λ est le facteur de Golden-Cohenstein et prend en compte la taille de
la résonance [79]. Etant donnée que la section efficace de diffusion est
proportionnelle à la section efficace potentielle, une changement uniforme
de � % dans la section efficace de diffusion implique un changement de
� % dans la section efficace potentielle. On peut imaginer une variation
uniforme de la section efficace de diffusion comme:

σp,r → (1 + �)σp,r ⇒ σs,r(E) → (1 + �)σs,r(E) (2.22)

par le mérite de l’équation 2.21, le changement résultant dans le flux est
donné par:

φ� =
λσp,r + σ0(1 + �)−1

(1 + �)−1σ0 + λrσs,r + λrσp,r + σa(1 + �)−1

1
E

∼ φ(E, σ�
0) · (1 +

�σa

σa(E) + λσs,r(E) + λσp,r + σ�
0

)
1
E

(2.23)

où σ�
0 ≡ (1+�)−1σ0, et le valeur pour Ia,r est disponible dans la bibliothèque

multi-groupe en fonction du facteur de dilution σb = λσp,r + σ0.
Comme observé d’après l’équation 2.23, la perturbation dans le flux

peut être prise en compte par interpolation par rapport au facteur de
dilution perturbé défini comme suit:

σ�
b =

σ0

1 + �
+ λσp,r (2.24)

Dans un milieu homogène, l’équation 2.21 donne une approximation
analytique pour le flux. De même, l’équation 2.23 donne une expression
analytique pour la perturbation dans le flux à cause d’une perturbation
dans la section efficace potentielle σp,r.
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De la même manière, une perturbation dans les sections efficaces d’un
autre isotope k �= r dans le système peut être pris en compte en modifiant
la section efficace de dilution. En supposant que la taille de la résonance
est intermédiaire, le facteur de dilution peut être défini comme : σ0,F =
Σk∈mλk

Nk

Nr
σp,k. Par conséquent, une perturbation dans la section efficace

de l’isotope k �= r perturbera la section efficace de dilution de l’isotope r
comme:

σr
b → σr

b + λk
Nk

Nr
δσp,k (2.25)

Dans un milieu homogène, les équations 2.24 et 2.25 fournissent une esti-
mation pour la perturbation dans les paramètres multi-groupes δ

�

σHET
x,I

�

/
�

σHET
x,I

�

.

Exemple: Sphère de UF 4

Le tableau 2.1 présente les sensibilités implicites de la section efficace
de diffusion calculées pour une sphère de 2 % enrichi UF4, en utilisant
trois méthodes de calcul différentes, ainsi que les résultats de référence
obtenus par SCALE/TSUNAMI-1D. Les valeurs indiquées dans ce tableau
représentent la contribution à la sensibilité du keff aux perturbations dans
les sections efficaces multi-groupes résultantes de perturbations du flux.

La première colonne indique la sensibilité implicite calculée par l’approximation
analytique présentée ci-dessus. La deuxième colonne indique la sensibilité
implicite calculée à partir de l’exécution de 47 calculs d’autoprotection et
de l’équation 2.18. Cette approche de calcul est possible pour les grands
cas, comme le calcul d’autoprotection pour ces cas ne représente qu’une
fraction du temps de calcul. Cette approche nécessite une solution de flux,
une solution adjoint et 47 calculs d’autoprotection avec le code DRAGON.

La troisième colonne présente les sensibilités que nous avons obtenues
à partir de simulations complètes en perturbant la section efficace et en
effectuant un calcul de keff . Cette approche nécessite 47 simulations de
DRAGON. On note la bonne entente entre les trois voies de calcul. Cepen-
dant, nos sensibilités implicites sont 22 % supérieures à celles obtenues par
SCALE/TSUNAMI-3D.

La figure 2.1 présente une comparaison entre la sensibilité implicite
calculée avec DRAGON en utilisant l’approximation analytique (courbe
rouge), la sensibilité implicite calculée à l’aide du code DINASOUR (courbe
en pointillé violet), et des sensibilités implicites calculées par SCALE6/TSUNAMI-
1D (courbe bleue), et la sensibilité calculée à l’aide du SCALE6/TSUNAMI-
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Sensibilités Implicit (%/%)
DRAGON SCALE

Isotope ANALYTIC
+ SNS:

47 SHI: +
SNS:

DIRECT 47
simulations

/TSUNAMI
1D[109]

238U 2.65 ∗ 10−2 2.55 ∗ 10−2 2.59 ∗ 10−2 2.16 ∗ 10−2

1H -2.99 ∗ 10−2 −2.95 ∗ 10−2 −2.94 ∗ 10−2 −3.01 ∗ 10−2

19F -4.21 ∗ 10−3 −4.22 ∗ 10−3 −4.27 ∗ 10−3 −3.67 ∗ 10−3

Table 2.1: Sensibilités implicites pour la diffusion. Résultats SCALE/T-
SUANMI sont reproduites à partir du modèle fourni dans [109].

1D. Les sensibilités de DINASOUR ont été fournies par l’Université Mc-
Master en utilisant notre modèle d’entrée. DINASOUR perturbe les paramètres
multi-groupes dans la bibliothèque WIMS en supposant que les résonances
sont étroites. On procède ensuite à un calcul de la sensibilité en effectuant
des simulations directes de DRAGON en utilisant les bibliothèques WIMS
perturbées.

Sur la figure 2.1, nous voyons que les plus grandes différences observées
entre les profils de sensibilité sont dans les premières résonances. Les
différences observées sont dues à l’approximation utilisée pour le flux ainsi
que des différences dans le maillage de l’énergie utilisée par les codes. Les
premières résonances du 238U sont larges de sorte que la perte d’énergie des
neutrons à partir de la collision élastique avec 238U peut être efficacement
ignorée (l’énergie des neutrons , après la collision reste sous la résonance).
Une meilleure approximation dans cette gamme est que la résonance est
large [20]. L’approximation analytique que nous avons utilisée (équation
2.21 ) est basée sur l’approximation que la résonance est intermédiaire
(IRA), donc la section efficace de diffusion de l’isotope de résonance a une
pondération inférieure que dans le cas où la résonance est étroite (équation
2.21). En conséquence, la sensibilité du keff à la section efficace de l’isotope
lourd (dans ce cas 238U) varie en fonction du formalisme spécifique utilisé.
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Figure 2.1: Comparaison de sensibilités implicites de 238U(n,el) dans la
région de résonance.

Pour les sensibilités implicites de diffusion présentées dans le tableau
2.18, la section efficace qui a la plus forte contribution à l’effet implicite
est 238U (n, γ). La sensibilité implicite de diffusion de l’238U est positive
comme une augmentation de la section efficace de diffusion de l’238U aug-
mente le nombre de neutrons qui diffusent hors de la résonance.

La sensibilité implicite pour l’autre isotope k �=238U est négative. Une
augmentation dans les sections efficaces potentielles des isotopes k �=238U
se traduit par une augmentation du facteur de dilution (l’isotope de réso-
nance de l’238U devient plus dilué). En conséquence, la dépression sous la
résonance diminue (c’est-à-dire le flux se rapproche de la forme asympto-
tique 1/E). Le résultat est une augmentation nette de la section efficace
d’absorption multi-groupe de l’238U, et donc une augmentation du taux
d’absorption de l’238U.
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Figure 2.2: composante positive de la sensibilité implicite du keff pour l’ 1 H(n,el) (en
% / %).
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Figure 2.3: composante negatiff de la sensibilité implicite du keff pour l’ 1 H(n,el) (en
% / %).
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Figure 2.4: composante positive de la sensibilité du keff pour l’238U U(n,el) dans la
région de résonance (en % / %).
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Figure 2.5: composante negatif de la sensibilité du keff pour l’238U U(n,el)
dans la région de résonance (en % / %).
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Abstract

This thesis presents a comprehensive study of sensitivity/uncertainty analysis for reactor
performance parameters (e.g. the keff ) to the base nuclear data from which they are
computed. The analysis starts at the fundamental step, the Evaluated Nuclear Data File
and the uncertainties inherently associated with the data they contain, available in the
form of variance/covariance matrices. We show that when a methodical and consistent
computation of sensitivity is performed, conventional deterministic formalisms can be
sufficient to propagate nuclear data uncertainties with the level of accuracy obtained by
the most advanced tools, such as state-of-the-art Monte Carlo codes. By applying our
developed methodology to three exercises proposed by the OECD (UACSA Benchmarks),
we provide insights of the underlying physical phenomena associated with the used for-
malisms.

Résumé

Dans cette thèse, nous présentons une étude rigoureuse des barres d’erreurs et des sensibil-
ités de paramètres neutroniques (tels le keff ) aux données nucléaires de base utilisées pour
les calculer. Notre étude commence au niveau fondamental, i.e. les fichiers de données
ENDF et leurs incertitudes, fournies sous la forme de matrices de variance/covariance, et
leur traitement. Lorsqu’un calcul méthodique et consistant des sensibilités est consenti,
nous montrons qu’une approche déterministe utilisant des formalismes bien connus est
suffisante pour propager les incertitudes des bases de données avec un niveau de préci-
sion équivalent à celui des meilleurs outils disponibles sur le marché, comme les codes
Monte-Carlo de référence. En appliquant notre méthodologie à trois exercices proposés
par l’OCDE, dans le cadre des Benchmarks UACSA, nous donnons des informations,
que nous espérons utiles, sur les processus physiques et les hypothèses sous-jacents aux
formalismes déterministes utilisés dans cette étude.
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