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Vichi for the time and effort they invested in reviewing my habilitation thesis and
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1 Introduction

In this document I describe my main research activities, covering several subjects
of different nature, with applied statistics being the common theme. My main
research field lies in the area of time series and panel data analysis. In time series
analysis, I often employ hidden Markov models (HMMs) and hidden semi-Markov
models (HSMMs). These models, regularly addressed by the more general terms
’latent class’ or ’regime-switching’ models as well, provide flexible, general-purpose
models for univariate and multivariate time series, be it for single series or multiple
sequences of observations. Both HMMs and HSMMs have been used for more than
two decades in various fields, good overviews are provided, e.g., by Bartolucci et al.
(2012), Zucchini & MacDonald (2009), Cappé et al. (2005), Yu (2010). In addition
to my primary research field, I have also been contributing to research in other areas
(e.g. medicine and biology), employing a broader range of methods. The following
paragraphs provide a brief overview.

The growing popularity of HMMs in the past decades has led to numerous papers
on applications to real-world problems, and to increased interest in computational
aspects. In order to estimate the parameters of the model, most researchers employ
maximum-likelihood (ML) parameter estimation, mostly by implementing either a
numerical maximization of the log-likelihood function or alternatively by the so-
called expectation-maximization (EM) algorithm. In Bulla & Berzel (2008), we
compare these two approaches by means of several criteria and propose a minor
modification of the EM algorithm allowing the estimation of stationary HMMs. In
the case of HSMMs, the situation is, however, slightly different. These models are a
generalization of the well-known HMM - the main difference being that they allow for
a greater flexibility for the choice of the sojourn time distributions, which implicitly
follow a geometric distribution in the case of a hidden Markov chain. Unfortunately,
with this flexibility comes a much higher computational burden. In order to make
this class of models accessible to a larger number of researchers, we introduced hsmm

(Bulla et al. 2010), a software package for the statistical computing environment
R (R Development Core Team 2013). This package provides the most important
algorithms required for working with HSMMs.

Applications of HMMs to real data have grown since comparably high computational
power has become widely available. Nevertheless, for a long time the lion’s share
of the investigated models used Markovian mixtures of Gaussian distributions as
observational distribution. One of the main reasons for the preference of this model
may be its frequent use in the (theoretical) literature. Moreover, the implementation
of the EM algorithm often becomes much more challenging with increasing model
complexity.
In the financial area, HMMs have regularly been employed in the context of daily re-
turns modelling. A popular contribution to this subject was authored by Rydén et al.
(1998), who showed that HMMs reproduce most of the stylized facts about daily
series of returns established by Granger & Ding (1995a,b). In Bulla & Bulla (2006),
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we show that certain stylized fact can be described better by means of HSMMs,
which are moreover preferred by common model selection criteria. Another impor-
tant aspect of modelling daily returns of financial time series is the occurrence of
outliers, or extreme values. Motivated by this phenomenon, we present a further
extension of the most common model to conditional t-distributions in Bulla (2011),
including models with unequal distribution types in different states.
Anyhow, if a high number of models has to be fitted in the absence of big computa-
tional power, simple HMMs with conditional Gaussian distributions still constitute
an alternative to be considered. In Bulla et al. (2011), we propose a simple Markov-
switching asset allocation model, which reduces the market exposure to periods of
high volatility. In an out-of-sample context, the strategy proves profitable after
taking transaction costs into account, rendering it more attractive than a simple
buy-and-hold strategy.
Another popular concept in finance constitutes the single factor capital asset pric-
ing model (CAPM). In the context of the CAPM, the systematic risk Beta (β) has
historically been assumed to be constant over time and was mostly estimated via
ordinary least squares (OLS). In Mergner & Bulla (2008), we investigate the time-
varying behaviour of systematic risk for 18 pan-European sectors. Using weekly
data over the period 1987-2005, six different modelling techniques in addition to the
standard constant coefficient model are employed, including two Markov-switching
models with Gaussian error term. A comparison of ex-ante forecast performances
of the different models indicates that the random walk process in connection with
the Kalman Filter is the preferred model to describe and forecast the time-varying
behaviour of sector betas in a European context.
Outside of the financial context, HMMs also find their application in Marine re-
search. In Bulla et al. (2012), we propose a model allowing the identification of sea
regimes from environmental multivariate time series. This task is complicated by
the mixed linear-circular support of the data, the occurrence of missing values, the
skewness of some variables, and the temporal autocorrelation of the measurements.
The proposed procedure is illustrated for a multivariate marine time series, and
identifies a number of wintertime regimes in the Adriatic Sea.
In biology, the application of HMMs has a long history in the context of sequence
and genome analysis. Basic models have become known, in particular, by the work
of Durbin et al. (1998). Since then, many more applications and more complex
models have followed. In Unterthiner et al. (2011), we have developed the Unknown
Subtype Finder (USF), an algorithm based on a probabilistic model, which auto-
matically determines which parts of an HIV-1 Group M input sequence originate
from a subtype yet unknown.
Marketing is a field relatively young to the application of HMMs. Although mar-
keting data sets are often of longitudinal form and of high dimensionality, thus
well-suited for the application of complex models, the popularity of HMMs in this
field has been only recently increased, basically since the paper of Netzer et al.
(2008). In Mark et al. (2013), we contribute to this growing literature by extending
the hurdle model to capture customer dynamics using a hidden Markov chain.
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Leaving H(S)MM-related methods, an important field of applied statistics is, for
example, medical (and biological) research. The application of statistics in medicine
has a long history, and due to the growing amount of data collected, the complexity
of the models required has been continuously increasing. For example, simple linear
models are regularly replaced by more advanced techniques for panel data and time
series analysis. Naturally, medical researchers often lack either the necessary time
or formation or both for selecting, applying, and developing complex statistical
methods fitting their research goals. Therefore, a growing part of my current research
work is dedicated to supporting and consulting researchers in this field. The tasks
covered range from application of basic statistical techniques over study design to the
application and development of complex models for time series or longitudinal data.
In Unzicker et al. (2005), we studied the expression and function of a neuroprotective
system, the cannabinoid CB1-receptors. The hypothesis that nNOS overexpression
is cardioprotective after ischemia/ reperfusion because of inhibition of mitochondrial
function and a reduction in reactive oxygen species generation is treated in Burkard
et al. (2010). The study carried out by Chapon et al. (2012) aims to assess the
relevance of 1-point calibration procedure, within the framework of the development
of a new ingestible telemetric temperature sensor. Last but not least, in Fneich et al.
(2013) we deal with DNA methylation in B. glabrata, which is a snail intermediate
host of Schistosoma mansoni, a tropical flatworm responsible for parasitic infection
of humans.

In addition to the previously described section, I have also been contributing to
other topics in applied statistics. These do not yet fit into a larger framework, as
my work in these fields is just at the beginning. In the article of Barbu et al. (2012),
we deal with the estimation of the stationary distribution of a discrete-time semi-
Markov process. Moreover, we treat a clustering algorithm and the corresponding
model selection criteria in Ngatchou-Wandji & Bulla (2013).

The remainder of this document is structured as follows. Section 2 reviews contri-
butions to computational methods for H(S)MMs, while Section 3 focuses on model
development for and applications of H(S)MMs. The subsequent Section 4 summa-
rizes the results achieved in medical and biological research, and Section 5 presents
those subjects which cannot be thematically embedded into the previous three sec-
tions and further development is ongoing.

2 Computational aspects of hidden (semi-)

Markov models

In the following, we provide a brief overview of the results obtained by Bulla &
Berzel (2008) and Bulla et al. (2010), which are dealing with different computational
aspects of HMMs and HSMMs, respectively.
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2.1 Efficient parameter and confidence interval estimation for HMMs

The growing popularity of HMMs in the past decades led to a high number of
research papers, published either on theoretical aspects of these models or on their
application to real-world problems. In order to estimate the parameters of the
model, most researchers use maximum-likelihood (ML) parameter estimation. To
maximize the likelihood, one of the following two approaches is implemented in most
cases: numerical maximization of the log-likelihood function or, more popularly, the
expectation-maximization (EM) algorithm. Although neither algorithm is superior
to the other in all respects, researchers and practitioners who work with HMMs
tend to use either of them, and ignore the other. Direct numerical maximization
(DNM) has appealing properties, especially concerning the treatment of missing
observations, flexibility in fitting complex models and the speed of convergence in
the neighbourhood of a maximum. The main disadvantage of this method is its
relatively small circle of convergence.

The statistical software R (R Development Core Team 2013) provides, inter alia,
the two functions nlm() and optim() to perform DNM of the log-likelihood. The
function nlm() carries out minimization of a function using a Newton-type algorithm
(Dennis & Moré 1977, Schnabel et al. 1985). On the other hand, optim() offers,
among other things, the Nelder-Mead simplex algorithm (Nelder & Mead 1965),
a popular adaptive downhill simplex method for multidimensional unconstrained
minimization, which does not require the computation of derivatives. In general,
the Nelder-Mead algorithm is more stable; however, it may also get stuck in local
minima and is rather slow compared to Newton-type minimization. In Bulla &
Berzel (2008) we compare the two algorithms by means of several criteria. Since both
the functions nlm() and the Nelder-Mead algorithm can only perform unconstrained
numerical minimization, the parameter constraints need to be taken into account by
different transformation procedures. For the TPM, we apply the TR-transformation
described in Zucchini & MacDonald (1998). In order to meet the non-negativity
constraint of some of the parameters of the state-dependent distributions, we use
different transformations and compare their performance. The general tendency,
that the unordered log-parameterization provides the most stable results, was found
to hold for all simulated series.
Moreover, we propose a minor modification of the EM algorithm. In its standard
implementation, this algorithm is unsuitable for fitting stationary HMMs, which can
be resolved by a modified E-step. After assigning initial values to the parameters,
the EM algorithm is implemented by successively iterating the E-step and the M-step
until convergence is achieved.

E-step: Compute the Q-function

Q(θ, θ(k)) = EC(T )

[
log P (X(T ), C(T )|θ) |X(T ), θ(k)

]
,

where θ(k) is the current estimate of the parameter vector θ, X(T ) := {X1,X2,
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. . . ,XT } the sequence of observations and C(T ) := {C1, . . . , CT } the states of the
latent process generated by an m-state homogeneous and irreducible Markov chain.

M-step: Compute θ(k+1), the parameter values that maximize the function Q w.r.t. θ:

θ(k+1) = argmax
θ

Q(θ, θ(k)).

The EM algorithm for HMMs commonly presented in the literature works as follows.
The Q-function of a HMM given by

Q(θ, θ(k)) =

m∑

i=1

log δi ψ1(i)

︸ ︷︷ ︸
A

+

m∑

i,j=1

T−1∑

t=1

log γij ξt(i, j)

︸ ︷︷ ︸
B

+

m∑

i=1

T∑

t=1

log pi(st)ψt(i)

︸ ︷︷ ︸
C

,

with ψt(i) := P ({Ct = i|S(T ) = s(T ), θ})
and ξt(i, j) := P ({Ct = i, Ct+1 = j|S(T ) = s(T ), θ}, (1)

can be split of in three additive parts. In the M-step, the initial component A, the
transition component B and the observation component C are
maximized separately. In particular, the reestimation formulae for the first two
components are

δ
(k+1)
i = ψ1(i) and γ

(k+1)
ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 ψt(i)

, i, j = 1, . . . ,m. (2)

Clearly, this procedure fits a homogeneous, but non-stationary, HMM because the
individual treatment of the initial and the transition component leads to an estimate
δ̂ which is not the stationary distribution of Γ̂. In order to fit a stationary Markov
chain, we propose a modified M-step. The initial component A and the transition
component B of Equation (1) have to be treated simultaneously with a stationarity
constraint. I.e., the M-step for these two components becomes

max
γij∈Γ




m∑

i=1

log δi ψ1(i) +

m∑

i,j=1

T−1∑

t=1

log γij ξt(i, j)




with δΓ̃ = (0, 0, . . . , 0, 1). (3)

The matrix Γ̃ is obtained by replacing the last column of 1 − Γ by the vector
(1, . . . , 1)T of length m. It results from the original form of the stationarity con-
straint for Markov chains δΓ = δ with

∑m
i=1 δi = 1 (see MacDonald & Zucchini

1997). The explicit calculation of a maximizing solution of the system of equations
(3), which has to be carried out at each iteration, is more difficult than it appears at
first glance. Even for the simplest non-trivial HMM with two states, the system be-
comes intractable. However, solving it with numerical methods is straightforward:
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We implemented a Newton-type algorithm which takes the values of Γ resulting
from the M-step of the preceding iteration as initial values for the M-step of the
current iteration. Compared to the regular re-estimation given in Equation (2), the
modified M-step does not slow down the estimation significantly.
In addition, we propose a hybrid algorithm that is designed to combine the advan-
tageous features of the two algorithms and compare the performance of the three
algorithms using simulated data from a designed experiment, and a real data set. For
this hybrid algorithm, the estimation procedure starts with the EM algorithm and
switches to a Newton-type algorithm when a certain stopping criterion is fulfilled.
The hybrid algorithm would seem to provide an excellent compromise, because it is
almost as stable as the EM-algorithm, but clearly faster.
Finally, we describe the results of a simulation experiment to assess the true cov-
erage probability of bootstrap-based confidence intervals for the parameters. The
mains finding is that the true coverage probability for bootstrap-based confidence
intervals, obtained by parametric bootstrap, can be unreliable for models whose
state-dependent parameters lie close to each other.

2.2 Algorithms for working with HSMMs

In the case of HSMMs, the situation is slightly different. These models, also referred
to as explicit duration HMM or state duration HMM, is a generalization of the HMM
that allows one to utilize more general sojourn time distributions. A HSMM consists
of a pair of discrete-time stochastic processes {St} and {Xt}. Similar to HMMs, the
observed process {Xt} is related to the unobserved semi-Markovian state process
{St} by the so-called conditional distributions.
Let XT

1 := (X1, . . . ,XT ) denote the observed sequence of length T . The same con-
vention is used for the state sequence St. The set of parameters of the model is
denoted by θ. The state process is a finite-state semi-Markov chain, which is con-
structed as follows. A homogeneous Markov chain with J states, labelled 1, . . . , J ,
models the transitions between different states. The stochastic process {St} is spec-
ified by the initial probabilities πj := P (S1 = j) with

∑
j πj = 1, and the transition

probabilities pij. For states i, j ∈ {1, . . . , J} with j 6= i, these are given by

pij := P (St+1 = j |St+1 6= i, St = i)

satisfying
∑

j pij = 1, and pii = 0. The diagonal elements of the transition probabil-
ity matrix (TPM) of a HSMM are required to be zero, since we separately model the
runlength distribution. This distribution, also referred to as sojourn time distribu-
tion, is associated with each state. It models the duration the process {St} remains
in the state j and is defined by

dj (u) := P (St+u+1 6= j, St+u = j, . . . , St+2 = j |St+1 = j, St 6= j) .

The combination of a Markov chain, modelling state changes, and runlength dis-
tributions, determining the sojourn times in the states, define {St} and illustrate
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the main difference between the HMM and the HSMM. The semi-Markovian state
process {St} of a HSMM does not have the Markov property at each time t, but is
Markovian at the times of state changes.
The observed process {Xt} at time t is related to the state process {St} by the
conditional distributions bj(xt), which are either probability functions in the case of
discrete conditional distributions or probability densities in the case of continuous
conditional distributions:

bj (xt) =

{
P (Xt = xt |St = j) for discrete Xt

f (Xt = xt |St = j) for continuous Xt
.

For the observation component, the so-called conditional independence property is
fulfilled:

P (Xt = xt |XT
1 = xT1 , S

t−1
1 = st−1

1 , St = j, ST
t+1 = sTt+1) =

P (Xt = xt |St = j),

That is, the output process at time t depends only on the value of St.

In his pioneering work, Ferguson (1980) introduced a particular HSMM with non-
parametric sojourn time distributions in the field of speech recognition. Since then,
the model was further investigated by various authors. Applications include, e.g.,
speech and pattern recognition (Levinson 1986, Sin & Kim 1995), the analysis of
branching and flowering patterns, rainfall data, and user request patterns to a Web
server (Guédon et al. 01, Sansom & Thomson 2001, Yu & Kobayashi 2003), gene
finding (Burge & Karlin 1997, Lukashin & Borodovsky 1998), and protein secondary
structure prediction (Schmidler et al. 2000). Unfortunately, the computational bur-
den of estimating these models is much higher than in the case of HMMs (see Fer-
guson 1980, Levinson 1986, Guédon 2003). Therefore, despite the different fields of
application, flexible software allowing the work with HSMMs has been available only
to a limited extent. Before introducing hsmm, a software package for the statistical
computing environment R (R Development Core Team 2013) in Bulla et al. (2010),
the only existing implementation was included in the publicly available program
AMAPmod (Godin & Guédon 2007). This program is tailored to specific problems and
thus cannot be easily modified, in particular not without at least good knowledge
of the C++ programming language.
The hsmm package provides the most important algorithms required for working with
HSMMs. The functions contained in the package address three important aspects of
the HSMM. Firstly, the simulation of sequences of states and observations given the
model specifications (sojourn time and conditional distributions) and parameters.
Secondly, maximum likelihood estimation of the model parameters, given a sequence
of observation and the model specifications. Thirdly, acquisition of information
about the underlying state sequence via the Viterbi algorithm and the smoothing
probabilities. The computationally intensive part, written in C, is independent of
the selected distributional assumption. Extension to include other distributions re-
quires minor modifications to the R code. Figure 1 shows an example of a simulated
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sequence from a HSMM with logarithmic sojourn time distributions and Gaussian
conditional distributions, together with the inferred latent states.

2.3 Perspectives

In its current form, both the package hsmm and a similar package presented by
O’Connell & Højsgaard (2011) base on the algorithms of Guédon (2003). A flexible
alternative is the approximation of HSMMs by specially structured HMMs as de-
scribed, for example, by Durbin et al. (1998) or Langrock & Zucchini (2011). The
advantage of the approximation technique is a high flexibility: in a current research
project, covariate effects have been included in the parameters of the sojourn time
distributions without major difficulties - this kind of extension would have required
considerable work in the context of the original algorithms of Ferguson (1980) or
those of Guédon (2003). Moreover, the computational complexity using the HMM
approximation is low. Therefore, the next step might be an update of the package
hsmm to take advantage of approximation techniques.

3 Applications of hidden (semi-)Markov models

In the past decades, rather simple as well as more complex H(S)MMs have regularly
been applied to real data since computational power has become available at com-
parably low cost. Nevertheless, for a long time the lion’s share of the investigated
models concerned Markovian mixtures of Gaussian distributions. This may have
been motivated, on the one hand, by the moderate computational effort due to the
availability of closed formulae for the E-step of the popular EM algorithm. On the
other hand, the Gaussian model has been very common in the theoretical literature
as well. Nevertheless, as soon as this standard framework is left, often models which
are more appropriate for a certain application can be developed - but the algorithmic
challenges may increase substantially. We have been investigating the application of
H(S)MMs in various fields, namely finance, environmental sciences, bioinformatics,
and marketing.

3.1 H(S)MMs in Finance

In the financial area, HMMs are mostly termed ’regime-switching’ models since the
seminal paper of Hamilton (1989). Subsequently, these models have been used by
an increasing number of researchers, in particular in the then growing field of daily
returns modelling. A popular contribution to this subject was authored by Rydén
et al. (1998), who showed that HMMs reproduce most of the stylized facts about
daily series of returns established by Granger & Ding (1995a,b). A notable excep-
tion is the inability of these models to reproduce one ubiquitous feature of such
time series, namely the slow decay in the autocorrelation function of absolute (or
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Figure 1: Simulated observations and states and inferred states
The upper panel displays the sequence of observations. The second and third panel show the state
sequence estimated by the Viterbi algorithm and the smoothing probabilities, respectively. The
lower panel shows the smoothing probabilities (black if it is the maximum probability and gray
otherwise).
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squared) returns. The lack of flexibility of a HMM to model the temporal higher
order dependence can be explained by the implicit geometric distributed sojourn
time in the hidden states.
In Bulla & Bulla (2006), we focus on modelling the distributional and temporal
properties of daily return series by HSMMs. The two HSMMs explored are general-
izations of the model presented by Rydén et al. (1998), termed ‘RY’ in the following.
We show that slow decay in the autocorrelation function can be described much
better by means of HSMMs, while all other stylized facts are equally well or better
reproduced. Moreover, HSMMs are generally preferred by model selection criteria
such as AIC or BIC. This is illustrated by examining the fit of two such models to
18 series of daily sector returns. It is remarkable that the estimated average sojourn
times for the HSMMs are significantly lower than for HMMs, contradicting the gen-
erally assumed high persistence of volatility clusters.
More precisely, we generalize the model of RY by fitting a HSMM with negative
binomial sojourn time distributions of the form

dj(u) =

(
u− 2 + rj
u− 1

)
pj

rj(1− pj)
u−1, u = 1, 2, . . . .

The number of parameters only increases by one per state, and for rj = 1, j ∈
0, . . . , J − 1 our model reduces to a HMM. While Granger & Ding (1995a,b) sug-
gested a double exponential distribution to characterize daily returns, RY proposed
mixtures of normal variables. We fit HSMMs with normal and t distributed vari-
ables, respectively. In the following, the HMM of RY will be denoted by MRY , the
HSMM with normal conditional distributions by SMN and the HSMM with condi-
tional t distributions by SM t. As to the number of states, all models investigated
have two states, as RY noticed that the three-state models ‘are less similar to each
other’ and that ‘the estimation results seem heavily dependent on outlying obser-
vations’ (Rydén et al. 1998). These findings were confirmed in our own preliminary
analysis.
We treated two data sets: One containing the original returns, the second oultier-
corrected returns following the approach of Granger & Ding (1995a). That is, setting
values outside the interval [r̄t − 4σ̂, r̄t +4σ̂] equal to the value of the closest interval
boundary to reduce extreme outliers, which may jeopardize the specification power
of the ACF (Chan 1995). Fitting the models showed an average log-likelihood of
MRY is 14200 and 14267 for the original and outlier-corrected data, respectively.
It increases to 14236 (14299) and 14271 (14311) for SMN and SM t, respectively.
As the three models are hierarchically nested, a likelihood ratio test (LRT) may be
applied with the null hypothesis of r1, r2 = 1 for the comparison MRY /SMN , and
ν1, ν2 = ∞ (d.f. of t distribution) for SMN/SM t. Using the original data, SMN is
better than MRY at 0.1% level of significance for each of the 18 sectors. The same
statement holds true for SMN/SM t, indicating that SM t provides the best fit to
the data. The results for the outlier-corrected data are similar, with the limitation
that level of significance is 1% for the comparison SMN/SM t. The only exception is
the Utilities sector, where the test is not significant. The preference for the HSMMs
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is supported by the Akaike information criterion which, on an average, decreases
from -28388 (-28523) for the MRY to -28456 (28582) and -28522 (-28601) for SMN

and SM t, respectively.

Figure 2: Empirical and model ACF
The figure shows the empirical ACF (gray bars) and the ACF of the three models con-
sidered (solid, dotted, and dashed lines) at lag 1-100 of r2t for the first four sectors.
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For all details on the reproduction of stylized facts, we refer to Bulla & Bulla (2006),
and present only results on the ACF of squared returns. Figure 2 displays the
empirical ACF of squared returns as well as the ACF of the three models for the
first four sectors. The other fourteen sectors and the outlier-corrected series show
similar results and are therefore omitted. The solid line represents the ACF ofMRY ,
while the dotted and dashed lines represent SMN and SM t, respectively.
The HMM shows the typical strong decay of the autocorrelations and is far from
the gray empirical ACF, which confirms the results of RY. Both SMN and SM t

reproduce this stylized fact much better than the HMM. However, the SM t looses
some of its credibility due to the bad fit for the lags of lower order. Here, SMN
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Figure 3: Mean and standard deviation of the sojourn time distributions
The figure shows mean and standard deviation of the sojourn time distributions of all the 18 sectors,
grouped by model and high-risk (HR)/low-risk (LR) states. The y-axis is logarithmic.
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performs clearly better.
Finally, it may be noted that the main difference between HMMs and HSMMs is the
sojourn time distribution. The results of the original and the outlier-corrected data
do not differ substantially, and we therefore restrict our remarks to the analysis of
the original data. Figure 3 shows the mean and standard deviation of the estimated
sojourn time distributions by state. For every model, the expected sojourn time
is higher in the ‘low-risk state’, where risk is measured in terms of variance of the
respective conditional distribution.
It is remarkable that the average sojourn times for the HSMMs are significantly
lower than for MRY , i.e., the persistence of both the high- and the low-risk state is
much lower.

Another important aspect of modelling daily returns of financial time series is the
occurrence of outliers or extreme values. As mentioned before, these values may, if
not excluded or capped, on the one hand have strong effects on the parameters of an
estimated model. On the other hand, they may mask the empirical autocorrelation
function (Chan 1995). Therefore, many analysis are preceded an outlier-correction,
based on varying criteria. A different approach, based on the assumption that these
rare values constitute integral part of the sample, is to keep them unchanged and
adopt the distribution of the model considered to account for extreme values. In
this case one may be obliged to depart from the Gaussian approach. In view of
the application to return series, which are often heavy-tailed and leptokurtic (see,
e.g., Gettinby et al. 2004, Harris & Küçüközmen 2001), a possible candidate for an
extension of the Gaussian is the t-distribution.
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In Bulla (2011), we present an extension of the model of Rydén et al. (1998) (RY)
to conditional t-distributions, including models with unequal distribution types in
different states. More precisely, we investigate two extensions: On the one hand,
mixtures of Gaussians where the conditional means may take any value, allowing
for skewed marginal distributions. This model is denoted by MN in the following.
On the other hand, we introduce conditional t-distributions. The model denoted by
MNt is characterized by a m − 1 Gaussian distributions and one t-distribution in
mth state, i.e.

Xt = µst + ǫst , ǫst ∼
{
N(0, σ2i ) for St ∈ {1, . . . ,m− 1}
t(0, σ2m, ν) for St = m

.

Finally,Mt denotes a model having exclusively conditions t-distributions. The choice
of only one t-distribution is motivated by the application to daily returns: the mth

state is supposed to represent that regime characterized by highest volatility and
extreme observations. The last model is Mt and has m conditional t-distributions.
In view of Robert & Titterington (1998) we require σi < σi+1 ∀ i = 1, . . . ,m− 1 for
all models considered to ensure their identifiability.
The main data analyzed in this paper are the daily returns calculated for the S&P500
index, covering the period from January 3rd, 1928 to August 13th, 2007. We seg-
mented this long time series into periods of the length of eight calendar years, starting
with 1928-1935 and ending with 2000-2007, which allows analyzing the performance
of different models in many different time periods.
The main results are that a) the extended models reproduce various stylized facts
of daily returns better than the common Gaussian model, and b) robustness to out-
liers and persistence of the visited states increases significantly. More precisely, the
extensions to models with varying means and at least one conditional t-distribution
seems to be reasonable. Often these models are more parsimonious than a Gaus-
sian 3-state alternative, provide more stable parameter estimates, and are preferred
by BIC and LRT. Moreover, MNt and Mt allow for skewed distributions, and re-
produce the kurtosis as well as extreme observations (measured by outlier location
tests) better than their competitors with Gaussian components. Generally, these
two models show a superior performance when it comes to reproducing the stylized
facts presented above in the context of HSMMs.
More important, in particular from a practical perspective, is the fact that that
the introduction of conditional t-distributions often increases the state persistence
significantly, resulting in longer and more stable volatility periods. This has consid-
erable effects on the estimated state sequence, which is often utilized to link certain
economic patterns to particular periods. We demonstrate this by means of an anal-
ysis of various international indices, Figure 4 displays the results. In this figure,
we visualize the effect of extending to conditional t-distributions by plotting the
smoothing probabilities and resulting state classifications. The top eight panels dis-
play the returns and smoothing probabilities for the S&P500 on the left and for the
Nikkei on the right. For better identification, the background of the periods with
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P (St = 2) > P (St = 1) is shaded light gray. These two 2-state models visualize
how large respectively small the effect of conditional t-distributions can be. The
state classification of the S&P500 changes completely as the number of transitions
(or state switches) reduces from 41 (MRY ) to 23 (MNt) and finally 5 (Mt). In case
of the Nikkei, however, the (optical) difference between the models is much smaller.
The lower eight panels show corresponding quantities resulting from the two 3-state
models for CAC and DAX. The solid and dotted lines represent P (St = 2) and
P (St = 3) respectively, and the background of the high-risk state is shaded dark
grey. For all indices, the evolution of the estimated state sequence changes consid-
erably.
The reason for the increased persistence of the models with conditional t-distribution(s)
may most likely result from the excess kurtosis of the t-distributed component. Re-
garding the high-volatile state, the augmented probability mass around zero in-
creases the persistence of this state in short periods of low volatility, while heavier
tails still allow for catching extreme outliers. The argumentation for the low-risk
state is similar: compared to the Gaussian distribution, heavier tails increase the
state’s persistence, because they allow for a higher robustness towards short periods
of observations with comparably high volatility. Last but not least, on the one hand,
the extended models with non-zero conditional mean confirm the link between pe-
riods of high volatility and falling stock prices. On the other hand, in contrast to
other extensions of the commonly used Gaussian HMM, e.g. duration-dependent pa-
rameters (Maheu & McCurdy 2001, Peria 2002) or semi-Markovian models (Bulla &
Bulla 2006), the estimation requires only a very moderate increase in computational
complexity.

The single factor capital asset pricing model (CAPM) constitutes a very popular
concept in finance. In the context of the CAPM, beta has historically been as-
sumed to be constant over time, that is, market risk is treated as being constant.
This assumption yield a benchmark for time-varying betas, an the excess-return
market model with constant coefficients where an asset’s unconditional beta can be
estimated via OLS:

Rit = αi + βiR0t + ǫit, ǫit ∼ (0, σ2i ), (4)

with

β̂i =
Cov(R0, Ri)

V ar(R0)
, (5)

where R0t denotes the excess return of the market portfolio and Rit denotes the ex-
cess return to sector i for i = 1, . . . , I, each for period t = 1, . . . , T . The error terms
ǫit are assumed to have zero mean, constant variance σ2i and to be independently
and identically distributed (IID). Following the Sharpe (1964) and Lintner (1965)
version of the CAPM, where investors can borrow and lend at a risk-free rate, all
returns are in excess over a risk-free interest rate and αi is expected to be zero; see
Campbell et al. (1997, Ch. 5) for a review of the CAPM.
However, inspired by theoretical arguments that the systematic risk of an asset de-
pends on microeconomic as well as macroeconomic factors, various studies over the
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Figure 4: International indices with smoothing probabilities, 1993-2007
The figure shows percentage returns of the S&P 500, Nikkei, CAC, and DAX from 1993 to 2007.
Below each return series, three panels display the corresponding the smoothing probabilities P (St =
i |XT

1 ) for MRY , MNt, and Mt, respectively. The background of periods with ŝt = 2 is shaded light
gray. For the two 3-state models (DAX and CAC), the background of periods with ŝt = 3 is shaded
dark gray. The smoothing lines themselves are solid and dotted for state 2 and 3, respectively. We
omit MN , because there is almost no visual difference to MRY .
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last three decades have rejected the assumption of beta stability (see, for example,
Fabozzi & Francis 1978, Sunder 1980, Bos & Newbold 1984, Collins et al. 1987). In
Mergner & Bulla (2008), we investigate the time-varying behaviour of systematic
risk for 18 pan-European sectors. Using weekly data over the period 1987-2005, six
different modelling techniques in addition to the standard constant coefficient model
are employed: a bivariate t-GARCH(1,1) model, two Kalman Filter (KF)-based ap-
proaches, a bivariate stochastic volatility model estimated via the efficient Monte
Carlo likelihood technique as well as two Markov switching models.
The two Markov switching approaches extend the relatively thin literature dealing
with time-varying betas. Before our work, only two authors contributed to this
subject. Fridman (1994) considers monthly data from 1980 to 1991 to analyze the
excess returns of three oil corporation securities by fitting a two-state regression
model, which leads to an improved assessment of systematic risk associated with
each security. He also notes two effects. Firstly, beta increases whenever the process
is in the more volatile state and, secondly, the higher volatility state tends to be
less persistent than the lower volatility state. Huang (2000) also considers a Markov
switching model with one high-risk and one low-risk state. Using monthly return
data from April 1986 to December 1993, he performs several test to check the con-
sistency of different states with the CAPM and rejected the hypothesis that the data
were from the same state.
In Mergner & Bulla (2008), the data used are weekly excess returns calculated from
the total return indices for eighteen pan-European industry portfolios, covering the
period from 2 December 1987 to 2 February 2005. The DJ STOXX℠ 600 index
serves as a proxy for the overall market, and 3-month Frankfurt Interbank Offered
Rate (FIBOR) as risk-free interest rate for calculating weekly excess returns.
Comparing the in- and out-of-sample forecast performances of the various tech-
niques, the results of this study indicate that time-varying sector betas are best
described by a random walk process, estimated by the use of the Kalman filter.
While the in-sample results overwhelmingly support the KF approach, its superior-
ity is only partly maintained out-of-sample where the advantage over its competitors
is less pronounced. It is noteworthy that the out-of-sample forecast performance of
the two proposed Markov switching models is inferior to that of any time-varying
alternative and also to OLS. This suggests that HMMs may better serve for the
ex-post identification of periods with different structure in-sample in this context,
while preference may be given to other methods for forecasting tasks.

In situation where a high number of models has to be fitted having access only
to limited computational power, simple Gaussian HMMs constitute an alternative
to be considered. In Bulla et al. (2011), we propose a straightforward Markov-
switching asset allocation model, which reduces the market exposure to periods of
high volatility. The model employed is a simple two-state HMM, which nevertheless
forms the basis of a profitable investment strategy. The idea behind this strategy is
rather simple:

1. For time t, predict the hidden state ŝt.
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Table 1: Out-of-sample performance of Markov-switching strategies

This table displays annualized mean returns (in %), standard deviations (in %) for the five indices
and the Markov-switching strategies based on ŝft+1. Sharpe ratios are only reported for positive

mean returns. “Str.V it.” denotes the Viterbi-based strategy. Every index is followed by the statistics
of the respective strategy in the subsequent row.

Name Mean S.D. Sharpe ratio # Forecasts # Transitions

DAX 7.24 22.0 0.292 5,796 -

Str.V it. 7.76 13.0 0.437 - 84

DJIA 8.93 16.8 0.417 5,823 -

Str.V it. 9.82 11.2 0.646 - 60

NASDAQ 6.82 32.0 0.272 3,383 -

Str.V it. 8.63 14.0 0.464 - 31

Nikkei -4.30 22.6 – 3,925 -

Str.V it. -2.28 13.9 – - 89

S&P 500 8.37 16.5 0.390 5,834 -

Str.V it. 8.56 10.3 0.577 - 46

2. Determine the weights of the portfolio at time t. If ŝt = 1, invest 100% in the
index Xt, else 100% in the risk-free asset (Cash),

where, without loss of generality, we assume σ1 < σ2. The intention is to reduce
overall portfolio risk during volatile market periods by shifting from equities into
the risk-free asset class. The data analyzed are daily returns for five major equity
indices, each covering over 20 years: DAX, DJIA, NASDAQ 100, Nikkei 225 and
S&P 500. The data for the DAX, DJIA and S&P 500 start in January 1976, whereas
the records of the NASDAQ and Nikkei begin in October 1985 and January 1983
respectively. Following Ang & Bekaert (2002), we fix the return of our risk-free asset
to an annual rate of 3%.
We examine the performance of a regime-based asset allocation strategy under real-
istic assumptions, and compare the results to a buy-and-hold strategy. As Table 1
shows, the strategy proves profitable In an out-of-sample context after taking trans-
action costs into account (fixed at 10 basis points (0.10%) for a one-way trade).
For all indices, the exposure to highly volatile periods is reduced. Investors follow-
ing the strategy significantly reduce their risk in terms of the annualized standard
deviation, on average by 41% (p-value of a paired t-test: 0.013). The highest
degree of risk reduction is observed for the NASDAQ where the standard deviation
of the strategy (14%) is not even half the risk of the index (32%). Moreover, all
strategies outperform the respective index in terms of annual returns. The highest
average annual excess return is realized for the Nikkei (201.6 bp), the lowest differ-
ence occurs for the S&P 500 (18.5 bp). This is naturally much lower than in-sample,
however a not undesirable side-effect of avoiding volatile periods (p-value of a paired
t-test: 0.0385). Consequently, the strategies exhibit much better Sharpe ratios than
the respective indices (p-value of a paired t-test: 0.00163).
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3.2 HMMs in Environmental Modeling

Leaving the financial context, H(S)MMs have been applied for some time in envi-
ronmental sciences. Part of this area is marine research, where the development of
models that help scientists to understand how air-sea interactions influence the sea
surface constitutes a major goal. In Bulla et al. (2012), we propose a model allowing
the identification of sea regimes from environmental multivariate time series. This
task is complicated by the mixed linear-circular support of the data, by the occur-
rence of missing values, by the skewness of some variables, and by the temporal
autocorrelation of the measurements. We address these issues simultaneously by
an HMM-based approach, and segment the data into pairs of toroidal and skew-
elliptical clusters by means of the inferred sequence of latent states.
More precisely, toroidal clusters are defined by a class of bivariate von Mises densi-
ties for modelling wind and wave direction simultaneously. The bivariate von Mises
density in the form introduced by Singh et al. (2002) is a parametric distribution on
the torus, which naturally embeds the bivariate normal distribution when the range
of observations is small. Its density is given by

f(x;β) =

exp (β11 cos(x1 − β1) + β22 cos(x2 − β2) + β12 sin(x1 − β1) sin(x2 − β2))

C(β)
,

with normalizing constant

C(β) = 4π2
∞∑

m=0

(
2m

m

)(
β212

4β11β22

)m

Im(β11)Im(β22),

where

Im(x) =
1

π

∫ π

0
ex cos t cos(mt)dt

is the modified Bessel function of order m. This density can be viewed as a bivariate
generalization of the von Mises distribution, where β12 accounts for the statistical
dependence between x1 and x2.
Moreover, a bivariate skew normal distribution is employed to define skew-elliptical
clusters of wind speeds and wave heights. Following Lin (2009), we specify a bi-
variate skew normal density as a linear mixed model with positive random effects.
More precisely, let ϕ(y;µ,Σ) be the bivariate normal density function with mean µ

and covariance matrix Σ. We first introduce a bivariate random effect v = (v1, v2)
with independent components, distributed according to two standard normal distri-
butions truncated at 0, say

v ∼ f(v) =
ϕ(v;0, I)∫

(0,+∞)2 ϕ(u;0, I)du
=

2

π
exp

(
−1

2
vTv

)
v ∈ [0,+∞)2.

Second, we assume that y follows a bivariate normal distribution conditionally on v

f(y|v;γ) = ϕ(y;µ(v;γ),Σ(γ))
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with mean

µ(v;γ) =

(
γ1
γ2

)
+

(
γ′1 0
0 γ′2

)(
v1
v2

)

and covariance matrix

Σ(γ) =

(
γ11 γ12
γ12 γ22

)
.

In this setting, a bivariate skew normal distribution is obtained as

f(y;γ) =

∫

(0,+∞)2
ϕ(y|v;γ)f(v)dv

and reduces to a bivariate normal distribution when the skewness parameters γ′1 =
γ′2 = 0.

The core of the classification procedure is an EM algorithm accounting for missing
measurements, unknown cluster membership, and random effects as different sources
of incomplete information. The proposed procedure is illustrated for a multivariate
marine time series, and identifies a number of wintertime regimes in the Adriatic
Sea. The data that analyzed are time series of semi-hourly wave and wind direc-
tions, as well as wind speeds and wave heights, recorded in the period 12/12/2009 -
12/1/2010 by the buoy of Ancona, located in the Adriatic Sea at about 30 km from
the coast.
Figure 5 displays the components of the estimated 3-state model (selected by ICL) as
log-densities through contour lines. Each scatter plot in Figure 5 includes the data
points, filled with grey levels according to the posterior membership probabilities
p̂tk (black indicates p̂tk = 1). The first component of the model is associated with
periods of calm sea: weak winds (γ2 = 3.665) generate small waves (γ1 = 0.400).
In this regime, the shape of the joint distribution of wave and wind directions is
essentially spherical (β12 is barely significant) and centred at the average wind di-
rection β̂2 = −1.053, corresponding to northwesterly Mistral episodes. As expected,
wind and wave directions are poorly synchronized under this regime, because wave
direction is more influenced by marine currents than by wind direction during weak
wind episodes.
The second component is associated with Sirocco episodes (β2 = 2.840). Com-
pared to the first regime, wind and wave directions appear more synchronized
(β12 = 1.758) and characterized by winds of higher speed (γ2 = 5.740) and higher
waves (γ1 = 0.514). In this second regime, waves travel southeasterly along the
major axis of the basin (β1 = 2.305), driven by winds that blow from a similar
directional angle (β2 = 2.840). As there are neither coastlines nor mountains, there
is little dispersion of energy in the interaction between wind and wave and, as a re-
sult, waves can reach significant heights. In studies of the Adriatic Sea, detection of
Sirocco regimes is very important because it exposes Venice to the famous flooding
tides when occurring in combination with luni-solar astronomical forces.
A similar phenomenon, although in the opposite direction, is captured by the third
component of the model. In this regime, northern Bora jets (β2 = −0.210) generate
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Figure 5: Components of the estimated 3-state model
Log-densities of the circular (left) and linear (right) component of a three-states hidden Markov
models. Contour lines are computed at the levels -0.5, -1.25, -2, -2.75, -3.5, and points are filled
on a grey level scale according to their posterior probability of class membership, where black is
associated with probability 1.
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high waves (γ2 = 1.119) that travel along the major axis of the basin (β1 = −0.081).
Compared to the other two regimes, waves and winds are much more synchronized
(β12 = 18.840) and highly concentrated around one modal direction. Most of the
wind energy is transferred to the sea surface and, as a result, the correlation between
wind speed and wave height is larger than that observed under Sirocco or Mistral
episodes. As expected, most of the profiles with the highest waves in the sample are
clustered in this last regime.
The model describes the plasticity of the wind-wave interaction in the Adriatic Sea,
indicating that the joint distribution of wind and wave data changes under different
environmental regimes. Regime-switching does not only change directional and lin-
ear averages but also, and more interestingly, the correlation structure of the data.
As a result, on the one side the weak (marginal) correlation between wind and wave
observations is explained by the presence of a Mistral-specific regime of good weather
conditions. On the other side, the model indicates that wind is an accurate predic-
tor of wave-metric processes during a Bora episode, but that the level of accuracy
decreases under Sirocco and almost vanishes under Mistral episodes. In summary,
weather conditions should not be used to predict wave direction and height, without
accounting for the latent, environmental heterogeneity of the data under study.

3.3 HMMs in Bioinformatics

In bioinformatics, the application of HMMs has a long history in the area of sequence
and genome analysis. Basic as well as more advanced models have become known
to a wider audience in the past two decades. Probably the most widely known
application consists in profile HMMs (pHMM), presented in the well known book
from Durbin et al. (1998). pHMMs are generative probabilistic models for families
of nucleotide or protein sequences (our application deals with nucleotide sequences).
Based on a multiple sequence alignment (MSA) of the family of nucleotide sequences
to be modelled, a special HMM is constructed whose topology is determined by the
MSA. If sampled from (which is the application the most easy to grasp and the least
relevant in practice), this HMM yields nucleotide sequences, whereby the probability
of yielding a particular sequence reflects how plausible it is that this sequence is a
member of the given sequence family. When used for decoding, a pHMM provides
the likelihood that a given query sequence is a member for a particular nucleotide
family. Like this, one can determine to which family a query sequence probably
belongs to when given multiple families.
One particular task in sequence analysis of HIV consists in determining whether or
not a given HIV-1 Group M sequence stems - completely or in part - from some
unknown HIV-1 Group M subtype (for HIV the term ’subtype’ has been established
instead of ’family’). This is important for phylogenetic inference as well as epi-
demiological monitoring. Nevertheless, a single algorithm only, the Branching Index
(BI), has been developed for this task so far. Moving along the genome of a query
sequence in a sliding window, the BI computes a ratio quantifying how closely the
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query sequence clusters with a subtype clade. In its current version, however, the
BI does not provide predicted boundaries of unknown fragments.
In Unterthiner et al. (2011), we have developed the Unknown Subtype Finder (USF),
an algorithm based on a probabilistic model, which automatically determines which
parts of an input sequence originate from a subtype yet unknown. The underlying
model is based on a simple pHMM for each known subtype and an additional pHMM
for an unknown subtype. The emission probabilities of the latter are estimated using
the emission frequencies of the known subtypes by means of a (position-wise) proba-
bilistic model for the emergence of new subtypes. We have applied USF to SIV and
HIV-1 sequences formerly classified as having emerged from an unknown subtype.
Moreover, we have evaluated its performance on semi-artificial HIV-1 recombinants
and non-recombinant HIV-1 sequences. The results have been compared with the
corresponding results of the BI.

3.4 HMMs in Marketing

Our last area of interest is marketing, a field in which the application of HMMs has
only been recently pursued. Although marketing data sets are often of longitudi-
nal form and of high dimensionality, thus well-suited for the application of complex
models, one may note that only recently the popularity of HMMs has grown, in
principal since the paper of Netzer et al. (2008). Few studies have examined the
influence of marketing activities while accounting for customer dynamics over time.
In Mark et al. (2013), we contribute to this growing literature by extending the
hurdle model (Mullahy 1986) to capture customer dynamics using a hidden Markov
chain. The resulting model can be interpreted as random coefficients hurdle model,
extending the work of Alfò & Maruotti (2010).
In detail, the first part of the model, often called ‘decision’ or ‘participation’ com-
ponent, which treats the probability of a non-zero observation is represented by a
conditional Bernoulli distributions with parameter τitj , i.e.,

P (yit = 0 | x(1)
it , sit = j) = τitj with

logit(τitj) = α0j + α1jx
(1)
it1 + · · · + αljx

(1)
itl .

The second part of the model, which is often termed the ‘utilization’ component,
consists of a conditional truncated (at 0) Poisson distribution with parameter λitj ,
i.e.,

P (yit = k | x(2)
it , sit = j) =

λkitj
k!
e−λitj

1− e−λitj
for k = 1, 2, . . . and

log(λitj) = β0j + β1jx
(2)
it1 + · · ·+ βmjx

(2)
itm

Here, yit represents the observation recorded for individual i at time t. The not neces-

sarily identical sets of covariates in the two steps are x
(1)
it1 , . . . , x

(1)
itl and x

(2)
it1 , . . . , x

(2)
itm,
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respectively. Finally, α0j , ..., αlj and β0j , ..., βmj represent random coefficients driven
by latent Markov chains {si}t with j = 1, . . . , J states.
We find our dynamic model performing better than static and latent class models.
Our results suggest the customer base can be segmented into four segments: Deal-
prone, Dependable, Active, and Event-driven. Each segment reacts differentially to
marketing activities. Catalogues influence both purchase incidence and the number
of orders, and this marketing activity has the largest impact on purchase incidence
across all four segments. In contrast, retail promotions are more likely to influence
the number of orders a customer will make for all of the segments except for the
Deal-prone segment.

Figure 6: Proportion of customers classified at the aggregate level.
The figure shows the proportion of customers classified in the four states at the aggregate level over
the observation period of 9 years.
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Furthermore, empirical inquiry into the estimated state sequences also provides in-
sight into the evolution of the relationships between the customers and retailer.
Figure 6 displays the proportion of customers classified in the four states at the
aggregate level. We find that the estimated proportion of Deal-prone customers
increases relatively slowly over the observation period, from 18.8% to 23.3%. The
estimated transitions (via a maximum a posteriori analysis of the posterior proba-
bilities) underline that once customers enter this state, they basically remain in it.
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As for the Dependable state, the estimated proportion of customers in this state
diminishes significantly over the observation period. The initial state probabilities
attribute 75.5% of our sample to this state; however, state membership decreases
to 48.9% by year nine. In contrast, the Active state gains the largest number of
customers over time. Initially, this state has a smaller proportion of customers,
namely 5.0%, and grows to 22.5% of the customer base by the ninth year. Finally,
we find that the trajectory of the Event-driven costumers is highly seasonal with
peaks mostly during the holiday seasons. Finally, our empirical findings suggest
that when customers make a transition, they are more likely to transition to more
valuable states.
Summarizing, our results suggest that retailers would benefit from a segmentation
model that incorporates customer dynamics. The model proposed and tested here
will enable marketers to better understand the impact of marketing variables on
buying behaviour.

3.5 Perspectives

For the future, many extensions and generalizations of the works above can be
thought of. For example, currently the option of including seasonal dynamics into
the model presented in Bulla et al. (2012) is examined. Moreover, in a different
project, the marketing model is improved by including channel purchase behaviour,
on the one hand by mixed HMMs, on the other hand by including a multinomial
step in the hurdle model presented in Mark et al. (2013). In the context of a different
research project, the application of mixed HSMMs is examined for modelling heart
rates over a 24 hour period. Finally, the possibility of modelling spatial rainfall
patterns by H(S)MMs is an ongoing project with researchers from Wellington (NZ).
Altogether, the increased amount of panel data available in good quality may very
probably require the development of many more sophisticated models, and (mixed)
H(S)MMs constitute a promising approach for capturing the various dynamics po-
tentially present in the data.

4 Statistics in medicine and biology

The application of statistics in medicine (and biology, and other fields) has a long
history, as the large majority of papers published in medical journals contains at
least basic statistical techniques. Unfortunately, most medical researchers lack the
necessary formation for selecting and applying the correct methods, ranging from
research design over statistical analysis to the presentation of the (statistical) results.
This has been outlined in a large number of papers, e.g., Ioannidis (2005) or the
regular contributions of Altman (1982, 1991, 1994, 2000) provide a good entrance
to the subject.
The fact that the volume of recorded data has been continuously increasing in the
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past years, in medicine not less than in other fields. Consequently, medical researches
find themselves in a rather difficult situation: high amounts of complex data sets
often require relatively sophisticated statistical techniques, often from the time series
modelling or panel data analysis framework. Consequently, as medical researchers
rarely possess the necessary time for working with complex statistical methods, a
growing part of my current research work is dedicated to supporting and consulting
researchers in this field. In the following, I provide a brief overview of these activities.

4.1 Function of a neuroprotective system

In Unzicker et al. (2005), we studied the expression and function of a neuroprotec-
tive system, the cannabinoid CB1-receptors, in an Endothelin (ETB)-deficient hip-
pocampus. We show that CB1 expression in the hippocampus increases postnatally
in all rats, but that the increase in CB1-receptor expression is significantly higher in
ETB-deficient compared to wildtype littermates. Neuronal apoptosis decreases dur-
ing brain maturation but remains on a significantly higher level in the ETB-deficient,
compared to wildtype dentate. When investigating survival of hippocampal neurons
in culture, we found significant protection against hypoxia-induced cell death with
CB1-analogs (noladin, 9-tetrahydrocannabinol) only in ETB-deficient neurons. We
suggest that CB1-receptor upregulation in the ETB-mutant hippocampus reflects
an attempt to compensate for the lack of ETB-receptors.
The statistical methods used in this article are rather basic non-parametric statis-
tics, such as the Wilcoxon rank-sum test (also called Mann-Whitney-U test) and
the Spearman rank correlation test. In order to account for multiple comparisons,
a Bonferroni correction has been applied.

4.2 nNOS overexpression is cardioprotective

The hypothesis that nNOS overexpression is cardioprotective after ischemia/ reper-
fusion because of inhibition of mitochondrial function and a reduction in reactive
oxygen species generation is treated in Burkard et al. (2010). We succeed to demon-
strate that conditional transgenic overexpression of nNOS resulted in myocardial
protection after ischemia/reperfusion injury. More precisely, the corresponding is-
chemia/reperfusion experiments in isolated hearts showed a cardioprotective effect
of nNOS overexpression. Infarct size in vivo was also significantly reduced. Besides
a reduction in reactive oxygen species generation, this might be caused by nitrite-
mediated inhibition of mitochondrial function, which reduced myocardial oxygen
consumption already under baseline conditions.
As before, robust non-parametric methods such as Wilcoxon rank-sum test and
Kruskal Wallis test were performed. For posthoc pairwise comparisons, the p-values
were subject to Bonferroni correction. For analysing several longitudinal data sets,
I employed generalized estimated equation (GEE) techniques. The target function
was non-linear, a model specification which is not directly available in the geepack
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package (Halekoh et al. 2006). Therefore, I determined the model parameters by a
numerical optimization of the mean squared error of the model. To account for intra-
individual dependencies, I utilized and unstructured working correlation matrix, and
standard errors were determined by a Jackknife approach.

4.3 Calibration and performance of a temperature sensor

The study carried out by Chapon et al. (2012) aims to assess the relevance of 1-point
calibration procedure, within the framework of the development of a new ingestible
telemetric temperature sensor. The criteria used for performance assessment were
the level of accuracy, and the time of inertia of the temperature sensor prototype
(TSP) tested. First, the stability of the calibration bath was assessed. Then, the
accuracy of 16 prototypes was evaluated for different target temperatures (ranging
from 29℃ to 45℃). Finally, the inertia of TSP response was evaluated while increas-
ing and decreasing the bath temperature. The results show that the difference be-
tween prototype and target temperature increases as bath temperature moves away
from 37℃, however, the accuracy of the sensor conforms to applicable standards.
Most TSP remain in the range of ±0.2℃ for each temperature level tested, but a
linear, decreasing slope is observed. Data from time of inertia assessment show that
probes were within the range of ±0.2℃ from the target temperature with a maximal
delay of 150 seconds, which satisfies standard norms. However, our results indicate
that a 1-point calibration procedure of the sensors appears non optimal, a 2-point
calibration procedure should be performed to avoid the observed temperature data
slope.
Most of the statistical methods utilized for this study fall into the class of linear
models, such as uni- and multivariate regression, analysis of variance, and analysis
of covariance. Only the non-linear model developed for the inertia analysis required
a combination of generalized least squares and numerical optimization of likelihood
for parameter estimation. In order to account for heteroscedasticity, the residual
variance was assumed to follow an exponential structure of the variance function,
and the correlation structure of the error was accounted for by imposing an AR(1)
pattern.

4.4 DNA methylation in Biomphalaria glabrata

In the paper of Fneich et al. (2013), we report that DNA methylation, which is one
of the carriers of epigenetic information, occurs in B. glabrata; approximately 2%
of cytosine nucleotides are methylated. We describe the methylation machinery of
B. glabrata. Methylation occurs predominantly at CpG sites, present at high ratios
in coding regions of genes associated with housekeeping functions. We also demon-
strate by bisulfite treatment that methylation occurs in multiple copies of Nimbus,
a transposable element.
Apart from basic correlation analyses, the question whether observed/expected CpG
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Figure 7: Histogram of CpGo/e ratio in B. glabrata transcripts
CpGo/e ratio was measured as a proxy to estimate the CpG methylation in transcripts from RNA-
seq libraries from B. glabrata guadeloupian strain (Bg Gua). X axis: CpGo/e ratio, Y-axis density
of transcripts. The figure displays a histogram of Bg Gua CpGo/e ratios with a fitted mixture
distribution. The grey shaded bars represent 95% confidence intervals for the two mean values of
the components. The estimated mean values of the two components are 0.209 and 0.616.
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ratios are subject to a bimodal distribution with distinct modes required more ad-
vanced methods. To analyze this, I fitted simple Gaussian and a mixtures of Gaus-
sians to the data and determined confidence bands for the two means, Figure 7 shows
the results. Not surprisingly, the model selection criteria AIC and BIC also both
indicate a clear preference for the mixture model in comparison to a single Gaussian
distribution.

4.5 Perspectives

The work started on telemetric sensors commenced in Chapon et al. (2012) is cur-
rently being continued. Two paths are pursued: First, we examine the effect of sen-
sor location in rats, and secondly we examine the performance of a more advanced
device, the development of which took the findings of the prototype stage into ac-
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count. Furthermore, I intend to improve the model for analyzing the methylation in
transcripts from RNA-seq libraries, as mixtures of Gaussians are not very adequate
due to the bounded support and skewness of the data. Moreover, I am working on
measuring driving performance, because the models which are currently considered
‘state of the art’ allow many improvements. In particular, none of the current ap-
proaches takes any mean reversion (to the centre of the road) into account, which
may lead to major improvements in describing driver’s behaviour. Finally, I intend
to further encourage the utilization of advanced statistical models for the projects I
provide statistical council on, for example (non-) linear (generalized) mixed effects
models and survival analysis for treating longitudinal data in medical studies. This
is motivated by the currently frequently occurring loss of significant information
when the data are pre-transformed to allow for the application of simpler, but less
appropriate methods.

5 Miscellaneous

In this section, contributions to topics in applied statistics which do not fit into any
of the previous sections are described. These may, in future, lead to larger or more
numerous research projects in the same directions. However, due to the rather low
amount of time spent on these projects, it seems too early for embedding them into
a larger framework.

5.1 Estimation of the stationary distribution of a semi-Markov
chain

In the article of Barbu et al. (2012), we deal with the estimation of the stationary
(or limit) distribution of a discrete time, irreducible, and aperiodic semi-Markov
process Z = (Zk)k∈N with finite mean sojourn times. The limit distribution of a
semi-Markov chain (SMC) is given by

πj =
1

µjj
mj =

ν(j)mj∑
i∈E ν(i)mi

=
ν(j)mj

m
, j ∈ E,

where the row vector ν = (ν(1), . . . , ν(s)) is the stationary distribution of the em-
bedded Markov chain (EMC) (Jn)n∈N and E = {1, ..., s} the finite state space.
Moreover, we denote by m :=

∑
i∈E ν(i)mi the mean sojourn time of the SMC, by

µjj the mean recurrence time of state j for the SMC, and by mj the mean sojourn
time in state j.
In the following, let us denote by S = (Sn)n∈N the successive time points when state
changes in (Zn)n∈N occur and by J = (Jn)n∈N the successively visited states at these
time points. Set also X = (Xn)n∈N∗ for the successive sojourn times in the visited
states. Then, let us assume that we have an observed sequence of a SMC, censored at
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fixed arbitrary timeM ∈ N
∗, (Z0, . . . , ZM ), or, equivalently, an observation of the as-

sociated Markov renewal chain (Jn, Sn)n∈N, (J0,X1, . . . , JN(M)−1,XN(M), JN(M), uM ),
where uM :=M−SN(M) is the censored sojourn time in the last visited state JN(M).
All quantities required for an estimator of the stationary distribution of a SMC base
on simple counts. For all states i, j ∈ E, let us introduce the two quantities:

• Ni(M) :=
∑N(M)−1

n=0 1{Jn=i} =
∑M

n=0 1{Jn=i,Sn+1≤M} the number of visits to
state i of the EMC (Jn)n∈N, up to time M ;

• Nij(M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j} =
∑M

n=1 1{Jn−1=i,Jn=j,Sn≤M} the number of
transitions of the EMC (Jn)n∈N from i to j, up to time M.

Subsequently, we consider the empirical estimator of the stationary distribution of
the EMC (Jn)n∈N defined by:

ν̂(i,M) =
Ni(M)

N(M)
, i ∈ E.

and the estimator for mi,

m̂i(M) =
1

Ni(M)

Ni(M)∑

k=1

Xik.

Consequently, an estimator of the mean sojourn time of the SMC, m, is

m̂(M) =
1

N(M)

∑

j∈E

Nj(M)∑

k=1

Xjk =
1

N(M)

N(M)∑

k=1

Xk,

and we obtain the following estimator of the stationary distribution of the SMC

π̂i(M) =
1

m̂(M)N(M)

Ni(M)∑

k=1

Xik, i ∈ E.

Our first results concern the following asymptotic properties:

Ni(M)/N(M)
a.s.−−−−→

M→∞
ν(i),

Nij(M)/N(M)
a.s.−−−−→

M→∞
ν(i)pij ,

Ni(M)/M
a.s.−−−−→

M→∞
1/µii.

Moreover, the estimators ν̂(i,M), m̂i(M), m̂(M), and π̂i(M) for the stationary
distribution of the EMC, mean sojourn time in state i, mean sojourn time of the
SMC, and stationary distribution of the SMC, respectively, are strongly consistent,
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as M tends to infinity for any state i ∈ E of the SMC. Furthermore, for any fixed
arbitrary state i ∈ E, we have

√
M [π̂i(M)− πi]

D−−−−→
M→∞

N (0, σ2πi
),

with asymptotic variance

σ2πi
=

1

µii

σ2
i

m2
i

+
ρ2ii−σ2

i

(µii−mi)2(
1
mi

+ 1
µii−mi

)2 ,

where ρ2ii is the variance of the recurrence time of state i and σ2i is the variance of
the sojourn time in state i.
We demonstrate the theoretical findings presented above by means of a short sim-
ulation study in Barbu et al. (2012). More precisely, we chose a 3-state SMC with
shifted Poisson sojourn time distributions, that is,

hi(k) =
λk−1
i

(k − 1)!
e−λi .

The true parameter values of the model equal

p =




0 0.5 0.5
0.7 0 0.3
0.8 0.2 0


 and λ =

(
4 5 3

)
.

Additionally, a uniform distribution is assumed for the initial distribution α. From
this parameterization directly follows ν =

(
0.429 0.274 0.297

)
, µ =

(
11.6 18.2 16.8

)
,

π =
(
0.431 0.330 0.239

)
, as well as m =

(
5 6 4

)
and σ2 =

(
4 5 3

)
. Thus, the

true values of µ and π are available for checking the consistency of the estimators.
Therefore, we simulate 200 sequences with N(M) = 500 each, which is equivalent
to values of M moderately superior to 2000. As small example, Figure 8 provides a
visual impression of convergence towards the true parameter values by means of 20
randomly selected sample paths. While the black horizontal lines represent to the
true values of 1/µ the gray lines result from the corresponding estimators.
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Figure 8: Estimated values values of Ni(M)/M and true values of 1/µii
The figure shows the estimated values values of Ni(M)/M (gray lines) from simulated series together
with the true value of 1/µii (black lines) for states i = 1, 2, and 3.
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5.2 On choosing a mixture model for clustering

In Ngatchou-Wandji & Bulla (2013), we treat a new clustering algorithm and the
corresponding, newly introduced model selection criteria SAIC and SBIC. More
precisely, we propose a method for clustering data and choosing a mixture model.
A d-variate finite mixture model assumes that the data x = (x1, . . . ,xn) ∈ R

dn are
a sample from a probability distribution with density of the form

f(u|K, θ) =
K∑

k=1

pkφk(u|ak), u ∈ R
d, (6)

where K is the number of components of the mixture, the pk’s represent the mix-
ing proportions, and the components φk(·|ak)’s are density functions, each with a
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known form and depending on the parameter vector ak. Finally, θ := (θ1, θ2) :=
((p1, . . . , pK), (a1, . . . ,aK)) represents the full parameter vector of the mixture (m,K)
at hand. The most popular mixture is the Gaussian mixture model, where φk(·|·)
are Gaussian densities with mean µk and covariance matrix Σk. That is, φk(·|ak) =
φ(·|ak) is a d-variate Gaussian density with ak = (µk,Σk) for k = 1, . . . ,K.
The first main result is the derivation of a classification algorithm based on the
so-called classification likelihood. Then, the likelihood conditioned on these clus-
ters is written as the product of likelihoods of each cluster, and AIC- and BIC-type
approximations, respectively, are applied. The resulting criteria, termed SAIC and
SBIC, turn out to be the sum of the classical AIC or BIC, respectively, relative to
each cluster plus an entropy term. More precisely, they are given by

SAIC(K|θ̂1, z) =
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k − dak


 and

SBIC(K|θ̂1, z) =
K∑

k=1


 ∑

xj∈Ck

log φk(xj |âk) + nk log p̂k −
dak

2
log(nk)


 ,

where C1, C2, . . . , CK correspond to theK clusters, nk to the number of observations
per component, and dak

the number of parameters in each component k.
The performance of our methods is evaluated by Monte-Carlo methods and on a
real data set, showing in particular that the iterative estimation algorithm converges
quickly in general, and thus the computational load is rather low. In the following,
we present an extract of these results, which concern data for the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA. The observations are waiting
times between eruptions and the durations of the eruption. This data set with 272
observations is included in the datasets package of R.
In order to initialize our clustering algorithm, called mb1 in the following, we follow
two approaches. On the one hand, we use the k-means algorithm (function kmeans

in R) to estimate an initial trajectory of z = (z1, ..., zn), which represent the missing
data via sets of binary variables indicating whether xi arises from the component k.
The k-means algorithm itself is started by 100 different random sets, and we estimate
models with two, three, and four components. On the other hand, we generate 1000
random paths for z (identical sampling probability for each component).
The initialization by random paths requires higher computational effort, however,
also attains higher likelihoods. Therefore, this method is preferred for this example
with relatively small sample size, and we do not further comment results from the
k-means initialization. Fitting the 2-component model, the algorithm estimates
clusters containing less than 5% of the sample for only 5% of the initial paths.
However, this figure rises to ∼30% for the models with three/four components.
These models have been removed, as they do not really utilize three respectively
four components. Table 2 presents the results, showing an almost constant SAIC.
Thus, according to this criterion, the parsimonious 3-component model should be
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Table 2: Model selection by SAIC/SBIC

This table displays log-likelihood, SAIC, and SBIC of the estimated models with 2, 3, and 4 com-
ponents, initialized by k-means or random paths.

no. comp. 2 3 4

logL -1131 -1125 -1120

SAIC -1141 -1140 -1140

SBIC -1155 -1157 -1158

selected. The SBIC attains the highest value for two components, therefore the
model with two components is chosen. Here, we set Kmax = 4 because both SBIC
and SAIC do not increase anymore when increasing the number of states from three
to four.
Figure 9 displays the data, the estimated densities of the two components and the
mapping of the observations to the components. The estimated parameters are

µ1 =

(
2.04
54.5

)
, µ2 =

(
4.29
80.0

)
,

Σ1 =

(
0.0712 0.452
0.452 34.1

)
,Σ2 =

(
0.169 0.918
0.918 35.9

)
.

The estimated values of z indicate that 35.7% and 64.3% of the observations belong
to the respective components. Finally, the speed of convergence of the algorithm
and its stability towards the initialization is of interest. The number of iterations
required by the algorithm is rather manageable in the majority of cases. Considering
the random initializations, the third quartile of the number of iterations lies at 14,
16, and 15 for models with 2, 3, and 4 components, respectively. The corresponding
figures for the k-means initialization are 3, 9, and 13, confirming a low computational
load. Concerning the stability of the algorithm towards initialization, it should be
noted that mb1 failed to converge in 12% of the cases in the 2-component case.
This may be attributed to a very poor initialization of the components. Conver-
gence problems mainly occur because less than three observations belong to one
of the components, such that the variance-covariance matrix cannot be estimated
anymore. This phenomenon is mostly present at the initialization stage, but also
happens rarely during the iteration steps. Moreover, the algorithm converged to
the maximum likelihood of -1131 in 69.6% of the cases, which corresponds to the
maximum attained by the k-means initialization.
For three and four components, respectively, the results are less satisfactory: First,
almost all estimated models are (slightly) different to each other. Moreover, in
48%/76% of the samples the algorithm does not converge properly, determines com-
ponents with very few observation (< 10), or estimates two or more components
with (almost) identical parameters. Keeping in mind ‘Garbage in, garbage out’, this
behaviour may however be viewed as the initialization paths are purely random and
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Figure 9: Clustering of Old Faithful Geyser data
The figure shows bivariate data from the Old Faithful Geyser, clustered by mb1. The preferred
model has two components, the centers of which are marked by filled circles. Contours result from
the two estimated Gaussian densities.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50

60

70

80

90

eruptions

w
ai

tin
g

Component 1
Component 2

may also underline the preference for the model with two components. Summa-
rizing, random path initialization does not seem to provide better results than the
k-means initialization, but rather entails convergence problems.

5.3 Perspectives

The two aforementioned works on semi-Markov chains and clustering algorithms do
not fall into my main research interests. Therefore, it is hard to say when the next
research project will fall into one of these two categories. However, together with
some colleagues I am currently working on integer-valued data in order to obtain
some experience in this new subject. More precisely, we are working on bivariate
integer-valued autoregressive processes, and a bivariate Skellam distribution which
allows for modelling bivariate correlated integer-valued data.
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