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ABSTRACT

Widespread evidence indicates that exposure of cell culturepadicles results in
significant biological changes in both the irradiated and non-irradigtstéindercells in the
population. The induction of non-targeted biological responses in cell cultures exposed to low
fluences of high charge (Z) and high energy (E) particles is relevant to estoh#te health
risks of space radiation and to radiothmtaHere, we investigated the mechanisms
underlying the induction of stressful effects in confluent normal human fibroblast cultures
exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET)
~151 keV/um), 600 MeV/u silicon ions (LET ~50 keV/um) or 290 MeV/u carbon ions
(LET ~13 keV/um). We compared the results with those obtained in cell cultures exposed, in
parallel, to low fluences of 0.9eV/u a particles (LET ~109 keV/pm).

Induction of DNA damage, changes in gene expression, protein carbonylation and
lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as
0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from
irradiated to bystander cells. At a mean dose of 0.2 cGy, only ~1 and 3 % of the cells would
be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-
irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53
(serine 15), p24* (also known as CDKN1A), HDM2, phospho-ERK1/2, protein
carbonylation and lipid peroxidation. The magnitude of the responses suggested participation
of non-targeted cells in the response. Furthermore, when the irradiated cell populations were
subcultured in fresh medium shortly after irradiation, greater than expected increases in the
levels of these markers were also observed during 24 h. Together, the results imply a rapidly
propagated and persistent bystander effectsitu analyses in confluent cultures showed
53BP1 foci formation, a marker of DNA damage, in more cells than expected based on the

fraction of cells traversed through the nucleus by an iron or silicon ion. The effect was



expressed as early as 15 min after exposure, peaked at 1 h and decreased bgiddr. A
tendency occurred after exposure to a mean absorbed dose of 0.2 cGyleV3vparticles,
but not after 0.2 cGy of 290 MeV/u carbon ions.

Analyses in dishes that incorporate a CR-39 solid state nuclear track detector bottom
identified the cells irradiated with iron or silicon ions and further supported the participation
of bystander cells in the stress response. Mechanistic studies indicated that gap junction
intercellular communication, DNA repair, and oxidative metabolism participate in the
propagation of the induced effects.

We also considered the possible contribution of secondary particles produced along
the primary particle tracks to the biological responses. Simulations with the FLUKA multi-
particle transport code revealed that fragmentation products, other than electrons, in cells
cultures exposed to HZE particles comprise <1 % of the absorbed dose. Further, the radial
spread of dose due to secondary heavy ion fragments is confined to approximately 10-20 pm
Thus, the latter are unlikely to significantly contribute to the stressful effects in cells not

targeted by primary HZE particles.

Key words HZE particles, o particles, low dose/low fluence, bystander effect, secondary
particles, FLUKA, CR-39, ATM/p53 signaling pathway, protein oxidation/lipid peroxidation,

gap junction communication, DNA repair, oxygen tension



RESUME

De nombreuses études ont miéngue l'exposition de cultures cellulaires a des
particuleso. conduit a des changements biologiques importants autant dans les cellules
irradiées que dans les cellul®gstandemon-irradiées. L'étudaes réponses biologiques non-
ciblées dans des cultures cellulaires exposées a de faibles fluéigssl@hrds permet
d’estimer les risques pour la santé du rayonnement spatial et de la radiothérapie. Nous avons
caractérisé les mécanismes sous-jacents de l'induction d'effets stressants dans des cultures
confluentes de fibroblastes normaux humains exposés a de faibles fldédoossfer de
1000 MeVu (transfert d'énergie linéique (TEL) ~151 k@gwf), d’ions silicium de
600 MeV/u (TEL ~50 keMim) ou d’ions carbone de 290 MeV/u (TEL ~13 keV[am). Nous
avons comparées résultats avec ceux obtenus dans des cultures cellulaires exposées, en
paralléle, a de faibles fluences de particale® 0,92 MeV/u (TEL ~109 keym).

L'induction de dommages a I'ADN, les changements dans I'expression des génes, la
carbonylation des protéines et la peroxydation lipidique durant les 24 h suivant I'exposition
de cultures confluentes a de faibles doses (0,2 cGy et plus} €er ou d'ions silicium ont
trés largement contribuélapropagation d’effets stressants des cellules irradigux cellules
bystander non-irradiées. Pour une dose moyenne de 0,2 cGy, sede8 %ldes cellules
seraient irradiées dans le noyau par un ion, respectivement, fer ou silicium. Les immunoblots
ont révélés des augmentations significatives des niveaux de phospho-TP53 (sérine 15),
p21"a" (CDKN1A), HDM2, phospho-ERK1/2, de carbonylation des preiet de
peroxydation lipidique dans les B4uivant I’exposition. L'ampleur de ces réponses suggere
la participation de cellules non ciblées dans les effets observés. De plus, lorsque les
populations cellulaires irradiées ont été ré-ensemencées dans un milieu de culture frais peu
apres l'irradiation, les niveaux de ces marqueurs ont aussi augmentés durant 24 h. Ensemble,

ces résultats montrent un effet rapidement propagé et persistant. Des analiygegalisées



dans des cultures cellulaires confluentes ont montré que la formation de foyers de la protéine
53BP1, marqueur de dommages a I'ADN, touchait un nombre de cellules plus impagtant qu
celui auguré par la fraction de cellules traversées léarmsyau par un ion fer ou silicium. Cet
effet est exprimé dés Ihin suivant I'exposition, atteint son maximum apl¢s 1’exposition
puis diminuejusqu’a 24 h. Une tendance similaire s'est produite apres exposition a une dose
moyenne absorbée de 0,2 cGy de particulde 3,7 MeV, mais non apres 0,2 c&yons
carbone de 290 MeV/u.

Des analyses utilisant des puits de cultures intégrant une fine épaisseur de CR-39,
détecteur solide de traces nucléaires, et permeiitas 1’identification des cellules irradiées
aux ions fer ou silicium, confirment la participation de cellldgstanderdans la réponse au
stress. Des études mécanistiques ont, de plus, indiqué que les jonctions gap pdamettant
communication intercellulaire, certaines voies de la réparatio’ ADN, ainsi que le
métabolisme oxydatif participent a la propagation des effets non ciblés induit par des
radiations de haut TEL. Nous avons également examiné la contribution possible des
particules secondaires produites le long des tra¢emsd primaires dans les réponses
biologiques.Les simulations réalisées avec le code de transport de particules FLUKA ont
révélé que la dose due aux produits de fragmentation, autres que les électrons, est mférieure
1 % de la dose absorbée dans les cultures cellulaires exposées a des ions lourds. De plus, la
dose radiale des ions lourds secondaires est limitée a ~1f@-20tour de 1’ion primaire.
Ainsi, ces derniers sont peu susceptibles de contribuer de maniére significative a la réponse
biologique observée dans des cellules non ciblées par des ions lourds primaires.
Mots clefs : ions lourds, particules, faible dose/faible fluence, effet de proximité ou
bystander radiations secondaires, FLUKA, CR-39, voie de signalisation de ATM/p53
carbonylation des protéines/peroxydation lipidique, jonction gap, réparation de I’ADN,

pression partielle en oxygene



ABBREVIATIONS

vy-H2AX = Serine 139-phosphorylated histone H2AX
53BP1 = p53-binding protein 1

AGA = 18-a-glycyrrhetinic acid

ATM = Ataxia telangiectasia mutated

ATR = Ataxia telangiectasia mutated and Rad3 related
BSO = Buthionine sulfoximine

CDC = Cell division cycle

CHO = Chinese hamster ovary

c-JNK = c-Jun NHterminal kinase

COX-2 = Cyclooxygenase-2

c-PTIO = 2{4-carboxyphenyl)-4, 4, 5, 5- tetramethylimidazoline-1-oxyl-3-oxide
Cx = Connexin

DDT =1, Ibis (pchlorophenyl)-2, 2, 2-trichloroethane
DMSO = Dimethyl sulfoxide

DNA-PK = DNA-dependent protein kinase

DPI = Diphenyleneiodonium

DSBs = DNA double strand breaks

ERK = Extracellular related kinase

GCR = Galactic cosmic rays

GJIC = Gap junction intercellular communication
HDM2 = human homologue of murine double minute 2 (MDM2)
HLF1 = Human lung fibroblasts

Hsp72 = Heat shock protein 72

IL-8 = Interleukin-8



HZE = High charge (Z) and high energy (E)

LET = Linear energy transfer

MAPK = Mitogen-activated protein kinase

MDM2 = Murine double minute 2

MN = Micronucleus

NAD(P)H = Nicotinamide adenine dinucleotide phosphate
NF«B = Nuclear factor kB

NHEJ = Non-homologous end-joining

NO = Nitric oxide

PARP = Poly (ADP-ribose) polymerase

PET = Polyethylene terephthalate

PMA=4 ,9 |12 ,13 , 20-pentahydro-xytiglia-1,6-dien-3-one 12_ -myristate 13-acetate
RNS = Reactive nitrogen species

ROS = Reactive oxygen species

SCE = Sister chromatid exchange

SOD = Superoxide dismutase

SB = DNA single strand break

TGF-1= Transforming growth factor 31

TNF- o = Tumor necrosis factou-

TRAIL = TNF-related apoptosis-inducing ligand
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Chapter 1 Introduction

1.1 lonizing radiation

1.1.1 Definitions

Radiationis the transport of energy through space. The absorption of energy from
radiation in biological material may lead to excitation or to ionizatfomionizing radiation
is a radiation that has sufficient enerngypenetrate matter causing localized release of large
amounts of energyl'he released energy can in turncejene or more orbital electrons from
an atom or molecule of the absorbing material. The loss (or gaiah electronis called

ionization ancanionis a charged atom or molecule.

lonizing radiation is classified as either electromagnetic or particulate. Whereas X and
y rays belong to electromagnetic radiation, energgtirons, protons, neutrons, o particles
and heavy charged particles are different forms of particulate radiation (Hall and Giaccia

2012).

1.1.2 Electromagnetic radiations

X and y rays are the two major types of electromagnetic ionizing radiation. They
consist of a spectrum of waves, like other electromagnetic radiations that are non-ionizing
such as radio waves, microwaves, infrared, visible light, and ultraviolet light. However,
X and y rays are distinctly characterized by their short wavelengths, high frequency, and high
energy (Figure 1-1). Both types have no changmass and@antravel long distances through

matter.
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Figure 1-1 Electromagnetic spectrum. Range of electromagnetic radiatia) including radio waves,
Xrays, visible light, ultraviolet light, infrared radiation, vyrays, and other forms of radiation

(http://mynasadata.larc.nasa.qgov/science-processes/electromagnetic-diagram/

X rays andy rays do not diffein nature orin properties but the designation reflects
the way they are produced. X rays are produced extranuclearlyy rmyd are produced
intranuclearly (Hall and Giaccia 2012). In practical terms, X rays are prodycelectrical
devices that accelerate electramshigh energy and then stop theéma target material,
usually made of tungsten or gold; part of the kinetic energy of the electroosverted into
Xrays. On the othehand, y rays are emitted by radioactive isotopes; they represent the
excess energy tha given off as the unstable nucleus breaks up and décatgseffort to

reach a stable form (Hall and Giaccia 2012).
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1.1.3 Particulate radiations

Particulate radiations consist of atomic or subatomic particles which carry energy
the form of kinetic energy or massmotion.They include the following:

Electrons are small negatively charged particles. Tloay be acceleratedo high
energies and are widely used for cancer therapy and industrial applications.

Protons are positively charged particles with a mass 1836 times greater thaf that
electrons; they are found the nucleus oanatom. Hydrogen atoms that are stripped of their
single electron are knowas “protons”’. Protonscan also be accelerated to high energy in
specialized equipment such as cyclotrons and accelerators. Due to their dose distribution,
they are increasingly being used for cancer treatment.

Neutrons have a mass similao that of protons and are also fouindthe nucleus of
an atom. Because they carry no charge, they cannot be accelerateddotrazaledevice.

They are produced when charged particles (e.g. deuteron) impinge on suitable target material
(e.g. beryllium). They are also emitted when heavy nuclei (e.g. uranium, plutoniumyander
fission. They are an important component of space radiation. They are also used in cancer
therapy in a procedure whereby they are captured by boron that is injected into patients
(Boron Neutron Capture Therapy).

o particles are nuclei of helium atoms. They consist of two protons and two neutrons
and have a net positive chargigerefore, they can be accelerated in electrical devices similar
to those of protons and electrons. An environmental sadregarticles is radon gas. Radon
(**Rn) emitsa particles of 5.5 MeV, with a half-life of 3.8 days (BEIR VI 1998
a particle has a mass ~8000 times greater than an electron; as a resatinly travel a few
millimetersin air. Its rangeis further reduced when the density of the absorbing medium
increags Alpha particles cannot penetrate human skin, but @imnhaled and thereby

damage lung tissue. They are used in immune-radiotherapy.
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Heavy charged particlesare generally classified as particles with atomic number (2)
greater than two (i.ereater than that of o particles) and with higher energy (E). High charge
and high energy (HZE) particles are encountered by astronauts during prolonged deep space
travel (e.g. iron) and are used in cancer therapy (eadon). For experiments and
therapeutic use, their electrons are stripped, which allows their acceleration to high energies
(e.g. 300-1000 MeV/u) in particle accelerators. In this project, HZE particles generated at the
NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory
(Upton, NY, USA) were used. HZE particles have been used for biomedical purposes since
1975 (Jermann 2010). Heavy ions can be accelerated to high energies (e.g. thousands of
millions of volts) eithelby acceleration of the particles of interestpgra nuclear interaction
betweenan accelerated particle aradtarget material from which the desired partictasbe
obtained.

In addition to the above, other types of particulate radiations are being used in physics
experiments or considered for radiotherapy (e.g. negatively chargeekqis or pions (),
antiprotons). This thesis project focused on biological effect of particulate radiation,
namelya particles and iron, silicon and carbon ions. The results are pertinent to terrestrial
environmental exposures, radiation protection of astronauts during space travel and to

radiotherapy.

1.2 Interaction with matter

The biological effects of ionizing radiation depend on the amount of energy absorbed
by living matter and by the spatial distribution of the absorbed energy. To comprehend the
physics of tissue irradiation, the mechanisms of energy transfer must be understood (Cember

1996).
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1.2.1 Linear energy transfer

The Linear_Energy Transfer (LETS defined as th@amount of energy lost per unit
length along the path traveled by the radiatlois expresseéh keV um™. LET is anaverage
guantity: the en@y deposition events tissues have a particular distribution that vaaga
function of tissue depth. In contrast to electromagnetic radiagignX rays,**'Cs and®®Co
y rays), whose energy deposition decreases exponentially as a function of penetration-depth
in target material, charged patrticles (e.g. HZE particles) have a well-defined range in matter.
Specifically, energy deposition by HZE particles is characterized by a low entrance dose
the target material and a pronounced sharp maximum near the end of their range (the Bragg
peak) (Katz and Cucinotta 1999). Beyond the Bragg peak, the energy may be close to zero
(Figure 1-2). Extremely high-LET-values in tissue can be reached at the Brag@ pbaas,

Blakely et al. 1982Nelson 2003), and this characteristic energy deposition profile of charged

particles is exploited in cancer radiotherapy. By positioning the patient so that the location of
the tumor coincides with the Bragg peak of the impacting particles, most of the energy is
deposited in the tumor, while the surrounding tissue is exposed to a significantly reduced
amount of energy (Figure 1-2). Thus, cell killing is enhanced in the tumor region but not in

the normal tissue surrounding the tumor (Durante and Loeffler)2010
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Figure 1-2: Typical energy loss profiles for X rays and heavy ions as a fotion of travel in tissue
(Adapted from Durante and Loeffler 2010)

It is well-established that the complexity of radiation damage increases with the LET
(Rossi 1959Tobias, Blakely et al. 1982Vard 1994). The LET effects, known also as track
structure effects, determine the relative potency of different types of radiation in causing
biological change (Goodhead, Thacker et al. 1993oodhead 19940ttolenghi, Merzagora
et al. 1997 LaVerne 2000). High energy X rayS'Cs and®*Co y rays, electrons and high
energy protons are typical low-LET radiationsand HZE particles are on the other hand
typical high-LET radiations. The demarcation value between low- and high-LET radiations is
~10 keV/um (Podgorsak 2008all and Giaccia 2006).

Track structure depends greatly on LET (LaVerne 2000), and this project focuses on
the biological effects of low fluences of high LET radiation. To this end, understanding the
yield and precise location of the radiation-induced bursts of reactive oxygen species is critical
to our understanding of the events involved in the cellular responses to stress induced by low
fluences of energetic particles.

The energy track trajectory of a high-LET particénbe thought ofsconsisting of a

cylindrical “core” densen radiolityc species and surroundegla concentric regioknownas
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“penumbrd formedby secondary electrons (low LETrays) Figure 1-3. Therefore, certain
high-LET radiations will have combined high- and low-LET radiation components to their
tracks (Cucinotta, Katz et al. 1998uroya, Plante et al. 2006), which may greatly affect the
biological response. Signaling events induced by the low-LET component may modulate
biochemical and molecular events induced by the high-LET component of the radiation and

vice-versa.

Penumbra Core

(spatrse ionizations) (denge 1onizations)

Figure 1-3: Energy depositionof high-LET heavy ion (from Ferradini 1979)

1.2.2 Physical interactions between radiation and matter

The physical interactions between radiation and matter are of 3 main types.

lonization of atoms when the energy of the impacting radiation exceeds the binding
energy of electrons in target atoms, the electron may be ejected from its orbital resulting in
ionization of the atom. If the ejected electron has sufficient enérgyn in turn create
secondary ionizations.

Excitation of atoms the process of raisingn electronto a higher energy level
without causing its ejectiois known as excitation. An excited atom returts normal state

by emission of specific secondary electromagnetic radiation.

-29-



Heat transfer. depending on the type and energy of the radiation, target atoms or
molecules may be neither excited nor ionized. However, the radiation may increase the
kinetic energy of translation, rotation and vibration of the atomsthmalled heat transfer
effect.

Absorption of ionizing radiation energy by biological materials causes all the three

above types of interactions.

1.2.3 Track structure and LET

Understanding the radiation track structure is of crucial importance in specifying the
spatial distribution of the radiolytic species and free radical intermediates created by the
passage of the impacting ion (Meesungnoen and Jay-Gerin 2011). Characterizing the
distribution of the radiolytic products would aid in understanding the mechanisms implicated
in modulation of signaling effects and induction of subsequent damage in cell cultures
exposed to radiations of different LET. The induced molecular changes are likely to be
dependent on the biochemical status and physical organization of the cellular organelle(s)
traversed by the irradiating particle. In chapter 3 and 5 of this thesis, the role of the cellular
redox environment in the response of normal human fibroblasts to low fluences of 3.7 MeV
a particles is investigated and discussed.

Predicting the effects of radiation type and energy in radiolysis not only requires a
description of the early physical aspects of the radiation track structure, but also a modeling
of the temporal dependence of the spatial distributions of the radiationed reactive
species in the tracks (Muroya, Plante et al. 2006). For example, simulation studies for high-
LET radiations with the same LET show that ionizatsiatong the track may differ, which

could lead to different spectrum of damage (Muroya, Plante et al. 2006).
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The projections in Figure 1-4 illustrate track simulation in liquid water aC2&f°
different energetic ions, namel{* (0.15 Me\}, *He** (1.75 MeV/u),*C®" (25.5 MeV/u),
2Ne'™ (97.5 MeV/u) with an identical LEDf ~70 keVium. They show that the spatial
extent of the distributions of all radiolytic species increases with increasing energy of the
incident ion. This is readily explained by the greater penetration range of the ejected
secondary electrons due to traversal of the higher velocity ion. fifaus.energetic incident
ions transfer more enerdy secondary electron® rays) generated along the ion traltkis
the & rays that determine the penumbra extensiotime tracks (Magee and Chatterjee 1,980
Muroya, Plante et al. 20Q0®lante and Cucinotta 2008). Predicting the range and energy of
these electrons is significant to understanding the nature and magnitude of biological
responses triggered in cells that are not directly traversed by a primary HZE particle. In
chapter 4 of this thesis, the dose impatig® rays and the radial range of the electrons and
other fragmentation products is calculated following exposure of confluent human cell

cultures maintained on soda-lime glass surface to 1000 M&v#wr 600 MeV/§®S;i ions.
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Figure 1-4: Projections over theXY -plane of simulated tracks segments (calculatedt ~10"*s) for the
following impact ions: *H* (0.15 MeV) (panel a)He** (1.75 MeV/u) (panel b) **C®* (25.5 MeV/u) (panel
c) and ®Ne'®* (97.5 MeV/u) (panel d). Dots represent the energy deposited at points where an interaction

occurred and an ionization was createdlons are generatedat the origin along the Y-axisin liquid water
at 25°C under identical LET conditions (~70 keV/um) (Muroya, Plante et al. 206).
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The central region of the tracks is made up of the reactive species that are generated
not only by the heavy ion itself, but also by the numerous low-energy secondary electrons
that are ejected from the ion trajectory. The core of tracks is then initially comprised of
“spurs™® (<100eV) and “blobs™ (~100-500 eV) (Mozumder and Magee 1966) with sizes
reaching a few tens of nanometers (Meesungnoen, Jay-Gerin et al. 2002). As we can see from
Figure 1-4, these secondary electrons are so dense that this central region appeacsisonti
The second, peripheral region extends above ~20-50 nm from the incident ion path. It is
much larger and less dense in radiolytic species. Figure 1-4 shows that this region is
negligible for the proton track while its importance increases with the energy of the
irradiating ion, from helium to carbon to neon ions. It corresponds to the region where
energetic secondary electrorsrdys), ejected from the core in knock-on collisions, can go.

As seenin Figure 1-4, the production of the$eays is sporadic and their tracks are generally
well separated from each other, giving a highly non-uniform geometric distribution of

absorbed energy.

1.2.4 Direct and indirect effects of ionizing radiation

When cells are exposed to ionizing radiation, the induced biological effects result
mainly from two processes: direct action and indirect action. Due to their unique inherent
physical properties and energy deposition patterns, high-LET radiations cause biological
changes mainly bgirectly damaging critical targets in the cells like DNA. Alternately, low-
LET electromagnetic radiations (>ady rays) interact with other atoms or molecules in the
cell, especially water to produce free radicag(hydroxyl, superoxide radicals) and other

reactive species that go on to damage critical targets in the vicinity; therefore, they cause

@ Spur: concentration of3 ion pairs in a volume ~4 nm in diameter
® Blob: concentration of ~12 ions pairs in a regiomsYin diameter
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cellular damage largely by andirect manner (Lehnert 2008). Ultimately, these direct and
indirect effects of ionizing radiation produce biological and physiological alterations in the
cell or organism that manifest in second&ven decades after irradiation. This thesis further
explores the mechanisms underlying the early responses of human cells to high-LET

particulate radiations.

1.2.5 Absorption of photons

There are three principal mechanisms by whicland vy rays interact with living
tissue: photoelectric effect, Compton scattering and pair production.

In the photoelectric procesghe photon interacts with a bound electron of an atom of
the absorbing material. It gives up all of its energy to the electron; some is used to overcome
the binding energy of the electron and release it from its orbit; the remainder is given to the
electron as kinetic energy of motion. The vacancy left in the atomic shell as the result of
ejection of the electrois filled by another electron falling in from an outer shell of the same
atom or by conduction electron from outside the atom. Photoelectron absorption is the
dominant process for X ray absorption up to energies of about 500 keV. The mass absorption
coefficient for photoelectric absorption varies rapidly with the atomic number; as a result,
photons used in diagnostic radiology have an energy range in which photoelectric absorption
dominates (Hall and Giaccia 2012).

At high energies (characteristic §o y rays), theCompton procesdominates. The
photon interacts with a “free” electron, an electron whose binding energy is negligibly small
compared with the photon energy. Part of the energy (from 0 to 80 %) of the photon is given
to the electron as kinetic energy, whereas the photon, with whatever energy remains,

continues on its way, being deflected from its original path.
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Pair production occurs when an electron and positron are created with the annihilation
of the photon. Positrons are very short lived and disappear (positron annihilation) with the
formation of two photons of 0.51 MeV energy. Pair production is of particular importance
when high-energy photons pass through materials of a high atomic number; it occurs when
the photon energy is greater than 1.02 MeV, but only becomes significant at energies around

10 MeV.

1.2.6 Physical and Physicochemical Effects of lonizing Radiation: Water

radiolysis and generation of reactive chemical species

Liquid water is the major constituent of cells, comprising ~80 % of their matter. A
thorough knowledge of water radiolysis is therefore critical for understanding radiobiological
effects. The excitations and ionizations resulting from the absorption of energetic radiations
by water lead to production of free radicals that in turn can attack other critical molecules

(indirect effect) (Figure 1-5).

Oxidative alterations
to DNA, proteins, lipids

Direct

v

(5inisi

Radiation \
VWater

radiolysis R ROS/ \‘\

$ ROS,RNS

Figure 1-5: Direct and indirect actions of radiation (Azzam, Jay-Gerin et al. 2011)

For brevity, the complex events that accompany the absorption of high-energy
photons or the passage of fast charged particles can be divided into four, more or less clearly

demarcated, consecutive, temporal stages (Platzman 19&8)g the first or “physical”
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stage, the energy deposition is caused as discussed earlier (sectiprbyl th8 incident
radiation and the secondary electrons generated. The chemical species resulting from these
interactions are extremely unstable and undergo fast reorganization in the second or
“physicochemical” stage. These processes produce radical and molecular products of
radiolysis that are distributed in the highly non-homogeneous track structure described earlier
(section 1.2.3). Secondary electrons slow down to sub-excitation energies and following
thermalization, they become trapped and hydratédagg. The initial (~13%s) spatial
distribution of reactants is then directly used as the starting point for the so-called stage of
“non-homogeneous chemistry”. During this third stage, the various chemically reactive
species diffuse and react with one another or with the environment, until all intra-track
reactions are complete (~16). Finally, in a physiologic system, there follows a “biological”

step in which the cells respond to the damage resulting from the products formed in the
preceding levels. During this stage (19 or longer, depending very much upon the
medium), the biological responses affecting the long-term consequences of radiation
exposure are induceth addition to ROS produced as a result of radiolysis of cellular water

or activation of oxidases, reactive nitrogen species are also generated due to activation of
nitric oxide synthases (Figure 1-5) (Azzam, Jay-Gerin et al. 2011).

In summary, the radiolysis of water is a major source of ROS in irradiated cells under
ambient oxygen. Interestingly, the yield of these species is strongly modulated by different
types of radiation. With increasing LET of the irradiating particles, an increase in the yield of
molecular products (such as®}) is accompanied by a corresponding decrease in the yield
of radicals (such a®©H, hydroxyl radical). In contrast, O (superoxide radicaly the most
abundant radical species produced by radiations with high-LET character (LaVerne 2004
Meesungnoen and Jay-Gerin 201FBvidently, the yield of these products and their

concentrations along the tracks of irradiating particles has important consequences to the
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extent and nature of induced DNA damages (Goodhead Ta8fpa, Ballarini et al. 2005
O'Neill and Wardman 2009). Radiation-induced ROS are similar in niattinese produced

by normal respiratory chaim mitochondria; however, they are distinguislgdheir cellular
distribution. Unlike free radicals formed by endogenous production (respiratory chain), those
formed after irradiation are concentrated along the radiation track. They are not produced
uniformly in large numbers buh a relatively small volumen "clusters” of ionization®f
nanometer size. In an aerobic cellular environment at physiological pH, the major reactive
species at homogeneity (<16) include superoxide radical £Q, hydroxyl radicals ‘OH)

and hydrogen peroxide ¢B,).

Radiation-induced reactive chemical species result in short-term immediate cellular
alterations as well as long term changes that occur hours, days or months after irradiation due
to disruption of oxidative metabolism (Petkau 198pitz, Azzam et al. 2004). Persistent
generation of ROS/RNS may cause continuous covalent changes to nucleic acids, proteins
and lipids.

Whereas ~60 ROS per nanogram of tissue were estimated to be generated from a hit
caused by*'Cs y rays (Meesungnoen, Benrahmoune et al. 2001), it has been estimated that
2000 ROS are generated from an o particle traversal, corresponding to a concentration of
~19 nM in the nucleus of a typical human fibroblast (Autsavapromporn, de Toledo et al.
2011). Such concentration can obviously cause extensive oxidative damage and alter normal

homeostasis.
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1.3 Units of Dose

The most common description of radiation exposure uses the concept of dose.

1.3.1 Definitions

The Roentgenis the unit of exposure to ionizing radiation named after Wilhelm
Roentgen, the German scientist who discovered X rays in 1895. It is the amount of
X rays required to produce ions carrying one electrostatic unit of electrical charge (either
positive or negative) in ém® of dry air under standard conditions.

The absorbed doserelates to the amount of energy deposited by any type of
radiation. It is defined by the International Commission on Radiological Units and
Measurements (ICRU) as the energy absorbed, at a specific point, per unit mass (inert or
living). The unitis the Gray (Gy)n tributeto the British physicist Harold Gray. One griay
equivalentto one jouleof radiation energy absorbed per kilogram of tissue. iBhi®tto be
confused with the equivalent dose.

The concept oflose equivalentwas introduced for radiation protection purposes. It
rests on the notion that equal absorbed dose, the induced damaging effects observed vary
with the nature of radiation, with high-LET radiations being more capable of causing damage
per unit absorbed dose than low-LET radiations. AccordinCRU Report 51, the dose
equivalent is definedas the amount of absorbed dose multiplieg a quality factor or
weighting factor(WRg) of the type of radiationn question (Table 1-1)it is calculatedin

Sievert (Sv)asa tributeto Rolf Sievert, a Swedish radiobiologist.
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Typeof radiation Wgr
Photons 1
Electrons 1
E <10 keV 5
10 keV < E <100 keV 10
Neutrons 100 keV < E <2 MeV 20
2 MeV < E <20 MeV 10
> 20 MeV 5
Protons 5
a particles, heavy charged particles | 20

Table 1-1: Weighting factors for various radiations (ICRP 1991)

Table 1-1shows that the weighting factors for a particles, HZE particles and low
energy neutrons can be 20 times greater than for photons and high energy electrons.

Theeffective dosds a quantity that has been introdutcedissess detrimenits terms
of effectsin the whole body. Calculated from the equivalent dose for each body part, the
effective dose takes into account the different sensitivities of tissues thatmesalghting
factors for organéWr). The unitis also the Sievert.

As will be discussed in this thesis, considering the biological effects of ionizing
radiation, absorbed dose not always sufficiento quantify the induced damage. Absorbed
dose only gives a macroscopic view of energy deposition; it does not reflect the heterogeneity

of energy deposition nor does it account for non-targeted biological effects of radiation.

1.3.2 Complexity of the concept of dose

Whereas doses of low-LET radiations produce a uniform pattern of ionization
throughout a target (cell, tissue, animal), tisisot the case for charged particles (Figure

1-6). Indeed, for charged pai@s, ionizationis concentrated along the tradk.the centeof
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a track, the local dose may be thousands of Gray but, a few microns away, theagbse
close to zero (Cucinotta, Nikjoo et al. 2000). Therefore,is extremely importantto

understand the pattern of energy deposition specific to the radiation type.

1 Dose Unit 1 Dose Unit

4

; //// //

//
Low LET radiation deposits High LET radiation deposits
energy in a uniform pattern energy in a non-uniform pattern

Figure 1-6: Different pattern of energy deposition of low-LET and hightET radiations (Nelson 2003)

To overcome the inadequacies of the traditional concept of dosagel based on the
number of particle (i.e. fluence) may be more appropiiatine context of effects of low
level particulate radiations. Fluemis definedasthe number of particles that traverse a unit
area; it is expressagsparticles/cri. Equation 1-1 links the notion of fluence, dose and LET:

o TEL
Yol

Equation 1-1: D =1.602.1 X @

where D represents the dose Gy (Jkg'), LET is in keV um?, the fluenceg is in
particles/cni, andp is the densityf the medium considered (hepes/ g cni).

This method ignores the effeat$ track width dueto the lateral extension of high
energy secondary particles rays) that may extend for many micrometers, or even
millimeters, such that several adjacent cells will be ihithe passage of a single ion

(Cucinotta, Nikjoo et al. 1998).
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In the case of low fluence exposure, it is importanknow the number of particle
traversals through a target cell cell nucleus. The number of traversals throaghrgetis
dependent on the fluence and the area of the target (i.e. geometric cross section). The Poisson
distribution (Equation 1-2) gives the probability that cells or cell nuclei areyhgixactly n
particles:

e’*A"

Equation 1-2: P(n)= l
n:

wherel is the average number of particles per target area; it is the product of the fluence and
the target area (nucleus or whole cell).

For confluent AG1522 cell cultures usedour experiments, the nuclear surfase
estimated to be between 146> (Azzam, de Toledo et al. 1998) and 165 gn? (Shao,
Furusawa et al. 2006), while the total area of the cell is estimated to hen8QGaillard,

Pusset et al. 2009) or 1370 +m®2 (Shao, Furusawa et al. 2006) for AG01522 catls
confluence. In this project, the values of 1402 and 80Qum? for the surface area of the
nucleus or the entire cell were used as cells destined for irradiation were maintained in
confluence for 4 days with a feeding at 2 days prior to exposure. Under these coratiions,

mean absorbed dose of 0.2 cGygfarticles, ~1 % of cell nuclei are hit by a particle track.

1.3.3 Which dose is considered as low dose?

There is a need to clarify whag meantby "low dose". It has been generally
understood that a low dose is a dose below which tisere significant differencen
incidence of cancers between the exposed and control unexposed @moupss. scientific
foundation, the United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR 2000) and the National Academy of Sciennethe United States (BEIR VII

2006) have concluded that theldieof "low" dose radiation correspontts doses below
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100 mSv receivedn a short time. This dose represents 10 cGy wKeor yrays are
considered and 0.5 cGlya particles or energetic heavy ions are considdfor the studies

in this thesis project, confluent cell cultures were irradiated with very low mean doses of
particulate radiations so that, in a given field, only oneisetradiated through the nucleus

by a primary particle track.

1.4 Health Risks of low doses of radiation

1.4.1 Exposure to low doses of ionizing radiations

lonizing radiationis ubiquitousin nature; it is presenin terrestrial rocksjn the
atmosphere, in agricultural products and within humans and animal biota. Furthermore, with
the evolution of society, the use of radiation has become essential to numerous industrial and
medical applications.

Radiation therapyby itself or coupled with other modalitiess, the main method of
cancer treatment. It generally uses high doses of ionizing radiation. With the exceptiisn of
particular case, the human populatisincreasingly being exposead low doses of radiation.

In addition to natural background radiation representing 2.4 mSv per year per person on
average (UNSCEAR 2000), humans are exposed to radiation from industrial activities
energy generation, and especially from an increase of diagnostic radiology examinations.
About 70 million are performeith France each year deliveriag average of 1 mSv per year

per person (Aurengo, Averbeck et al. 2005), a dose equivalélt chest X ray procedures.

The worldwide annual effective dose per person for diagnostic medical examinations
0.4 mSv (UNSCEAR 2000). The majority of the latter exposures consist of low-LET

radiations.
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Low level exposurego high-LET radiations are mainly from high-altitude airline
flights (Bottollier-Depois, Chau et al. 2000) and low concentrations of internal emitters such
as inhaled radon progeny (UNSCEAR 2000). With regrdnatural exposure, radon
(o particle emitter) andts progeny play a major rolen contributingto over 50 % of the
annual exposure dose (UNSCEAR 2000). Althougtarticles are non-penetrating and are
stoppedby the outer layer of skin, thesan be nevertheless inhaled and lodigethe lung
alveoli. It is assumed that exposuceradonis responsible for 13 % of deaths from lung
cancer (about 3350 deatbachyear)in France, and 9 % Europe (Catelinois, Rogel et al.
2006).

Recently, global efforts for space exploration have intensified. The Nationa
Aeronautics and Space Administration (NASA) in the U.S. plans a rétutile moonby
2020in anticipation of a trigo Mars around 2035. However, the health risks associated with
different types of radiation that astronauts may encountdeep space limit those efforts.
Indeed, astronauts are likely to be exposetbw fluences and lowluences rates (Figure
1-7) of a complex mixture of radiations, such that particle traversals throughircelis
astronaut’s body are well separated tissue location antime (Held 2009).In particular, the
magnitudeof the biological effects of protons and heavy ions, the main constituents of
galactic cosmic rays (GCR3% very uncertain (Cucinotta and Durante 2006)has ben
estimated that on the Russian Space Station Mir, lymphocyéesastronaut are traverseg
one proton every 12 days, one helium ot months, one oxygen ian 24 years and one
iron ion in 400 years (Blakely and Kronenberg 1998). Therefore, during long-duration
missions, such as a voyage to Mars, astronauts may be exposed to significant cumulative

doses.
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Figure 1-7: Contributions to space radiation risk uncertainty of the main biological and physical
endpoints (NASA 1998 Durante and Kronenberg 2005)

The exponential growth of low dose Xray diagnostic examinations has recently
aroused public and scientific concern. In response, the health risks from exposure to ionizing
radiation have been the subject of comprehensive reports of the National Research Council of
the National Academy of Sciences in the US (BEIR VII 2006) and of the Académie des
Sciences (Aurengo, Averbeck et al. 2005). Moreover, all space agencies around the world are
also interestedo expand knowledge of the impact of low doses/low fluences of space

radiation on astronauts.

1.4.2 The validity of the linear no-threshold (LNT) model

The biological effects and héa risks of high doses of radiation have been well
characterized through extensive experimental studies and epidemiological surveys of
survivors of radiation accidents and, in particular, of the A-bombs dropped at Hiroshima and
Nagasaki (BEIR VII 2006). These studies have demonstrated that exposacete high
doses causes deleterious consequences in human and non-human biofag,jnoliichot

exclusively, cancer induction (Brenner, Doll et al. 2003).
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To estimate health risks at low dosedse tnternational Commission on Radiation
Protection (ICRP) has recommended consideration of a linear relationship between dose and
cancer risk. In this linear no-threshold (LNT) model, it is assumed that exposure to any dose
of radiation, however small, increases the risk of detrimental health effects. Furthermore, the
effects of sequential doses are assumed to be additive. In these suppositions, to estimate the
risk at low doses of ionizing radiation (below 100 mSv), extrapolations from data obtained at
high dose radiation were made.

However, the validy of using this dose-response mogatontroversial and has been
the subject of intense debate. According to the French Academy of Sciences, epidemiological
studies did not reveal a significant increaseancer incidencen humans for doses below
100 nSv (Tubiana and Aurengo 2005)7r conclusion, this report doubts the validity of
using the LNTin the evaluation of the carcinogenesis risk of low dgse$0,000 mrem}=
10 cSv)and evenmore for very low doses (<1000 mre(s)1 cSv)’. Rather, the members
involved in examining low dose effects concluded that there is a threshold below which
harmful effects are unlikely to arise (curdén Figure 1-8).On the other hand, the BEIR VII
report of the US Academy of Science (BEIR VII 2006) and analyses by other scientsts (
(Preston 2003)) support the LNT model (cuavim Figure 1-8)asthe best representation
estimate cancer riskt low doses. However, members of the committee that wrote the BEIR
VII report also agreed that at doses below 100 mSy, statistical limitations make it difficult to
evaluate cancer risk in humans.

Indeed, epidemiological studies evaluating the effects of low dose radiation require
the follow-upof large populations for extended periods of titmeéletermine with confidence
the risks of health hazards. As a result, such epidemiological studies are difgelterate
and may be biased by modulating factors in the intervening years between exposure and

manifestation of adverse health effeagg(diet, smoking, exposure to diagnostic radiology,
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stressetc). Due to these difficulties, mechanisticvitro cellular studies anth vivo studies
with model animal systems were suggesésda source of knowledge that would help

formulate adequate radiation protection guidelines.
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Figure 1-8: Different possible extrapolationof cancer related radiation risk (Brenner, Doll et al. 2003)

Growing evidence has emerged for a number of biological phenomena that may be
importantin modulating the cellular responseslow doses of ionizing radiation supporting
the non-linear biological responsaslow doses/fluences of radiation (Nagasawa and Little
1992 Azzam, de Toledo et al. 199Bedpath, Liang et al. 2001).

Based on data providing evidence for these phenomena and the uncertainty of
estimating health risks at low doses of ionizing radiation, different models have been
proposed to represent risk at low doses. Whereas tunved-igure 1-8 postulates that the
LNT model underestimates risk, curve c in the same figure assumes that LNT model over-
estimates riskA J-shaped curved (cunesn Figure 1-8) has also been advocated. According
to the latter curve, exposure to very low dose radiation may be beneficial (hormesis). The

extrapolation curves, d ande (Figure 1-8) challenge the LNT model. These extrapolations

-45 -



are based on the propagation of stressful effects from low dose/low fluence targeted cells to
non-irradiated bystander cells (cur®® endogenous defense mechanisms (cuivend

stimulatory pro-survival responses (cugje

1.5 Non-targeted effect

1.5.1 The paradigm

It has been traditionally accepted that the biological effefatadiation exposure were
only the consequencef DNA damage in cells whose nuclei were targeted by radiation.
Accordingto this paradigmDNA damage occurs during or shortly afteradiation of cell
nuclei (Zirkle and Bloom 1953.ittle 2006). However, over the last three decades, significant
data have emerged challengitigs classial “target theory’ that the important biological
consequences of irradiation result from targeBdA damage (reviewed in Matsumoto,
Hamada et al. 2007). Celis the vicinity of directly irradiated cells present also molecular,
biochemical and getie abnormalities. Importantly, stressful effects also manifest in the
progeny of the irradiated and bystander cells. Those effects have been‘woin¢grgeted
effect” and include radiation-induced bystander effects, and genomic instability. In tontras
to the latter effects, substantial evidence has also been described whereby pre-exposure to a
small dose of low LET radiation induces signaling effects that attenuate the damages induced
by a subsequent challenge dose of radiation. Moreover, such protective effects may be
propagated from low dose/low LET irradiated cells to neighboring bystander cells (reviewed

in de Toledo, Buonanno et al. 2011).
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1.5.2 Experimental approaches to study non-targeted effects

Tissue culture system

Different tissue culture systems study bystander effects can be used; they are
dividedin two groups (reviewed in Hamada, Maeda et al. 2011). In the first, irradiated and
bystander cells ara physical contacht the time of irradiation permitting direct physical
interactions between cells (direct intercellular communication). This includes confluent cell
monolayers (Figure 1-9 a) (Nagasawa and Little 1992) and, three-dimensional clusters of
cultured cells (Bishayee, Rao et al. 19®shayee, Hill et al. 2001) or cultured cells
maintained in a matrix (artificial tissue) (Belyakov, Mitchell et al. 2005) exposed to low
fluences of particulate radiations that target only a small fraction of the cells in the exposed
population. Partially-shielded tissues harvested from rodents where also exposed to
electromagnetic radiations (Khan, Hill et al. 1998). More recently, non-targeted effects
studies with electromagnetic (Mothersill, Smith et al. 2003turbash, Kutanzi et al. 2008)
and particulate (Jain, Li et al. 2011) radiations were perfoiimeil/o using fish, mice and
rats. The latter studies are reminiscent of abscopal effects observed clinically decades prior
the emergere of non-targeted effect studies using tissue culture systems (Parsons, Watkins
et al. 1954, reviewed in Mothersill and Seymour 2004).

In the second group, theleno direct contact between cedlisthetime of irradiation,
but stressful bystander effeatan be transmitted through diffusible factors. This involves
sparsely seeded cells where irradiated cells and bystander cells ab#rasime of exposure
to low fluences of particulate radiations (Figure 1-9 b) and system where irradiated cells are
co-cultured with bystander cells after irradiation. Strategies involving the transfer of
conditioned medium (Figure 1-9 c) donated from irradiated cells to non-irradiated cells
grown in separate dishes (Mothersill and Seymour 1997) or the use of inserts where, after

exposure, the irradiated celhteract with bystander cellsy sharing medium (Figure 1-9 d)
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(Fournier, Becker et al. 200Yang, Anzenberg et al. 200Yang, Anzenberg et al. 2003}

by physical contact (Figure 1) (Buonanno, de Toledo et al. 2011) have been used. In the

context of studies with HZE patrticles, in the insert or medium transfer strategies, bystander

cells, which are co-cultured with irradiated cells after exposure, are not subject to kiayersa

d rays or secondary fragmentation products.
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Figure 1-9: Tissue culture systems used for non-targeted effects studiés). Confluent monolayer culture.

(b) Sparsely populated monolayer culture. (¢) Medium transfer from irradiated culture to na-irradiated

one. (d) Two-compartments co-culture dish in contact by sharing medium. (e) Wwo-compartments co-

culture dish in contact by physical contact. (Adapted from Hamada, Maeda et al. 2011)

Irradiation systems

There are two types of external irradiation system for non-targeted effect studies. On

one hand, precise microbeams of a particles, helium ions, X rays, electrons or protons (Figure

1-10 a) can deliver a preset dose or exact number of particles to a single cell or the sub-

structuresof a cell (e.g. nucleus (Zhou, Randers-Pehrson et al. 2006ytoplasm (Wu,

Randers-Pehrson et al. 1999)) with micron precision. On the other hand, broadbeams that

emit very low fluences (Figure 1-1) of a particles estimated following Poisson distribution
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have been effectively used to study bystander effects under non-perturbing cer(dsion
explained in the paragraph 1.B(Azzam, de Toledo et al. 2001). Broadbeam irradiators are
also used in high dose/fluence experiments involving medium transfesulture of
irradiated and bystander cells (Figure 1-10 c) (Yang, Anzenberg et al. 2007) and exposure of
partially-shielded cell cultures (Figure 1-10 d). In our laboratory, broadbeam irradiation has
also been used to examine the propagation of stressful effects among irradiated cells
(Autsavapromporn, de Toledo et al. 2011).

In the experiments used in this project confluent cell cultures maintained on plastic or
glass surfaces were exposedutparticles or heavy ions, respectively, from broadbeams. In
case of heavy ions, the irradiated and non-irradiated cells were subjéatays and
secondary fragmentation products that may modulate signaling events &lcttedprimary
impacting particle.
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Figure 1-10: Irradiation systems used for non-targeted effects studies. (a) Preasi microbeam. (b) Low-
fluence broadbeam. (c) High-Fluence broad beam and medium transfer. (d) Broadbeam with pal
shielding. (Adapted from Hamada, Maeda et al. 2011)
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1.5.3 The bystander effect

The term bystander effect was borrowed from the gene therapy field iviusteally
refersto the death of tumor cells as a result of targeting a single cell type withimea mi
population.

The bystander effecs a biological/biochemical change expresbga cell that is not
directly targetedy ionizing radiation, but happens to be in proximity to a targeteditedl.
mainly an effect of intercellular signalingpy which cells damagethy ionizing radiation

transmit signalso neighboring cells leading to important biological change.

Irradiated
cells

Figure 1-11: Radiation-induced bystander effect. In an exposed cell culture where only few cells (in blkac

are directly irradiated, biological effects are observed in neighboring non-irradiated cells (gray ds).

The pioneering radiation-induced bystander effieehonolayer cell cultures exposed
to o particles from a broadbeam irradiator was repoited992 by Nagasawa and Little
(Nagasawa and Little 1992). A rate of 845 % of Chinese hamster ovary (CHO) cells
displayedanincreasean sister chromatid exchanges (SCE) (a type of genetic damage) (Figure
1-9a)when less than 1 % of nuclei had been travelgegiparticles track. Subsequently, the
a-particle-induced bystander effect was confirnbgdseveral biological indicators, including
sister chromatid exchange (Nagasawa and Little 18@3hpande, Goodwin et al. 1996),
micronuclei formation (Azzam, de Toledo et al. 208&lyakov, Malcolmson et al. 2001
Azzam, De Toledo et al. 20p&hao, Furusawa et al. 2Q0RBashino, Suzuki et al. 2007

Shao, Prise et al. 2008), cell differentiation (Belyakov, Folkard et al. 2006), nuclear DNA
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mutation (Nagasawa and Little 1998hou, Randers-Pehrson et al. 2000), modulation of
stress-responsive genes (e.g. TP53, CDC2, rai&dB, P38"FX) (Azzam, de Toledo et al.
1998 Azzam, de Toledo et al. 2001) or increase of intracellular reactive oxygen species
(ROS) (Narayanan, Goodwin et al. 199%%&zam, De Toledo et al. 200%) a proportion of

cells greater than those initially traverdsoo particles.

On the other hand, the characterization of bystander effects in cell populations
exposed to very low fluences of high charge (Z) and high energy (E) (HZE) particles, another
type of high-LET radiation, are only emerging, and conflicting data, using differefiro
cell culture systems, have been reported. In initial experiments with microbeams (Figure 1-10
a) which allow selected cells to be individually hit with precise numbered particles, dtressfu
effects were shown to be transmitted from HZE-particle-irradiated cells to contiguous
bystander cells (Shao, Furusawa et al. 2608nada, Ni et al. 20Q08arada, Nonaka et al.
2009). Even when onlg single cell within the confluent culture was hit by one particle of
“PAr (~1260 keVaim) or ®Ne (~380 keVjim), a 1.4-fold increase of micronucleated cells
was detected demonstrating a bystander response. The ingéreasécronuclei was
approximately 2-fold higher than control levels when 49 cells in the culture were individually
hit by 1 to 4 particles, but it was independent of the number and LET of the particles (Shao,

Furusawa et al. 2003).

In subsequent experiments whereby HZE-particle-irradiated cells eweraltured
with bystander cells in a manner in which they only shared growth medium (Figudg, 1-9
stressful responses were also induced in the bystander cells and were similar in nature to
those induced in the targeted cells (Fournier, Becker et al.; 2007, Anzenberg et al.
2007 Yang, Anzenberg et al. 2007). Furthermore, oxidative stress and DNA damage
persisted in distant progeny of bystander cells that had been in contiguous co-culture with

HZE-particle-irradiated cells (Figure 1-9 e) (Buonanno, de Toledo et al. 2011).
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However, other experiments involving the transfer of growth medium from irradiated
cultures to recipient bystander cells present in a separate dish (Figure 1-9 c) (Groesser,
Cooper et al. 2008; Sowa, Goetz et al. 2010), or the targeting of an exact number ofacells in
population with energetic heavy ions from microbeam (Fournier, Barberet et al. 2009) did not
detect an effect with a variety of endpoints and cell types. Several factors may underlie the
absence of observable effects, in this case, including timing of endpoint measurement
dilution of the inducing factor and the metabolic state/redox environment of the recipient

cells.

Possiblemechanisms underlying the bystandeeffect

A series of experiments in different laboratories suggested various mechéryisms
which signals can be transmitted from irradiated to non-irradiated cedlp:juGction
intercellular communication (GJIC) and secreted diffie factors have been shown to
mediate bystander effects. The ROS seem to be also inviolveddiating the intercellular
communication. Among the different mechanisms direct evidence for involvement of GJIC in

bystander effects was generated (Azzam, de Toledo et al. 2001).

Gap-junction intercellular communication

Homeostatic functionsf multicellular organisms are based on a complex system of
communication, allowing cell®o interact with each othen a coordinated manner and with
the environment. This organizatichbased, among otherodes of interactiongn a method

of direct and economic communication through gap junctions.
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Gap junction

Gap junctions are defineak cell-cell channels where two plasma membranes from
contacting cells apposeachother withan apparent hydrophilic separation gap ef82im
(Naus and Laird). The gap bridgedby hemichannels or connexons formed from a family of

21 human proteins called connexins (Figure 1-12).

Closed Open

Intercellular spacg

PR AApace Hydrophilic channel

Figure 1-12 Simple Cartoon Structure of Gap Junction

(http://php.med.unsw.edu.au/cellbiology/index.php?title=2011 Group 2 Projekt

Connexongan be homomeric or heteromerdsthey are composeoly the same or

different types of connexins resultimghomotypic or heterotypic channels (Figure 1-13).
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Figure 1-13: Schematic drawing of possible assembly patterns of connexins into complete gapgtion

channels http://php.med.unsw.edu.au/cellbiology/index.php?title=2011 Group 2 Projekt

Gap junction channels exchange small molecules typically ranging in ~2000 Daltons
in size (Harris 2007), sudds soluble second messengers, amino acids, nucleotides, calcium
ions, glucose and electrical signals, through a process called gap junctional intercellular
communication (GJIC) (Goodenough and Paul 2009). Recent reports indicate that molecules
of 6000 Daltons, suchs micro-RNA can also diffuse through gap junctions (Wolvetang,
Pera et al. 2007). Junctional communicatanbe visualizedby intracellular microinjection
of fluorescent tracers su@s Lucifer yellow (Stewart 1978) wise spread into neighboring
cells can be monitored microscopicalll-Eouly, Trosko et al. 1987). Junctainchannels
canbe established between all cells belongmghe same tissue. GJIC plays essential roles
in a multitude of cellular processes including cell migration, proliferation, differentiation, a
apoptosis (Wolvetang, Pera et al. 2007).

Connexin channels have been shown to be highly selective among molecular
permeants. The selectivity among cytoplasmic permeants is not simply on the basis of size or
charge. Although connexin channels are permeable to second messengers (Harris 2001)
different connexins form channels with different selectivities for second messengers
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(Niessen, Harz et al. 200Goldberg, Moreno et al. 200Bedner, Niessen et al. 2006). For
example, ATP, ADP, AMP, glutamate and glutathione are significantly more permeable
through junctional connexin43 than connexin32 channels. On the other hand, adenosine and
inositol triphosphate (IP3) are more permeable through connexin32 than through connexin43

channels.

Mechanisms

The role of gap junction communication in the propagation of bystander stressful
effects following exposure tlow fluence of o particles has been initially studiedy Azzam
etal. (Azzam, de Toledo et al. 1998)confluent cell cultures. In early experimgmelative
to control, western blot analyses of cell lysates from exposed cultures revealtad3-4
increasen level of p53 and p2f™ when only 5 % of nuclei wereaversed by « particles.
These increases were reduced when the cultures were irraligtegsence of lindafiea
gap-junction inhibitor. Subsequent experiments generated direct evidence for the involvement
of functional gap junctions in propagation of o particle-induced stressful bystander effects
(Azzam, de Toledo et al. 2001). When cultures of an isogenicopedt epithelial cells that
differ in their ability to perform GJIC were exposé&al low fluencea particle, bystander
induction of p212", as detected hip-situ immunoblotting, was observed in the GJIC proficient
cultures only. The induced p%3* occurred in characteristic aggregates of neighbocklls,
further supporting the view that damage signalseweommunicated from irradiated to
bystander cells in a GJIC-dependent manner. In aintraGJIC-deficient cultures exposed to
low fluences ofa particle, only single isolated and presumably irradiatdts oevariably
exhibited up-regulation of p24™. The magnitude of the contribution of bystandelscal the

overall response of irradiated cultures was notedflgcted in western blot analyses. While up-

¢ Lindane:y-hexachlorocyclohexane isomer
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regulation of p2¥2™ was observed in GJIC proficient/connexin43 wild-typeuse embryo
fibroblast cultures exposed to mean doses as IdvGasGy; a dose of 10 cGy was required to
detect an effect in GJIC-deficient/connexin43 knattkoultures (Azzam, de Toledo et al.
2001).

The participation of gap junctions in bystander effects was further confirmed in cell
survival (Bishayee, Rao et al. 1999) and DNA mutation studies (Zhou, Randers-Pehrson et al.
2000). The cytotoxic effect observed in bystander cells when they were grown with tritiated
thymidine labeled cells was significantly attenuated by lindane (Bishayee, Rao et al. 1999
Bishayee, Hill et al. 2001). In related experiments, chemical inhibition of GJIC prevented the
growth disadvantage effect that occurs within mouse aggregation chimeras compuised of
irradiated and non-irradiated cleavage-stage embryos (Vance and Wiley 1999). Furthermore,
a pre-treatment of cells with gap junction inhibitors eliminated the 3-fold increase in mutation
frequency observed following targeting only Z0of cells with 20 o particles each using
microbeam irradiation. Similarly, propagatiofi stressful effects from o-particle-irradiated
cells leading to DNA mutation in bystander cells was eliminated when cells carrying a
dominant negative connexin 43 vector abrogating GJIC were used in experiments (Zhou,
Suzuki et al. 2001). Whereas, these studies provide strong evidence for involvement of gap
junction intercellular communication, these studies do not exclude other pathways for the
propagation of radiation effects to bystander cells. Although many studies with normal cells
display evidence that gap-junction intercellular communication is essential, others studies
with tumor cells show bystander effects in absence of GJIC.

Participation of GJIC in stress-induced bystander effects is not unique to ionizing
radiation; it has also been described in high density cells exposed to chemotherapeutic agents.
Toxicity of these compounds was enhanced by functional GJIC in target cells (Freeman,

Abboud et al. 1993ick, Barker et al. 1993%uriyama, Nakatani et al. 199&esnil, Piccoli
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et al. 1996 van Dillen, Mulder et al. 20QXalvelyte, Imbrasaite et al. 2003ensen and
Glazer 2004). Thus, many systems show that GJIC enhances the effects of toxic agents on
targeted and untargeted cells. Junctional communication may also lead to induction of
protective effects that attenuate damage in targeted cells (Wygoda, Wilson et al.Th@97).

determinants and mechanism(s) of these effects, however, remain largely undefined.

Diffusible factors and | nvolvement of oxidative metabolism

Diffusible factors

In addition to junctional communication, a large number of studies have shown that
bystander responses occur when bystander cells are incubated with culture medium harvested
from irradiated cells (Mothersill and Seymour 198thersill and Seymour 1998yer and
Lehnert 2000lyer, Lehnert et al. 200Marcellos-Hoff and Brooks 200X ang, Asaad et al.

2005). The observation of bystander effects under such conditions suggested tbhatedell-
contact via GJIC was not necessarily needed and implied that GJIC was not the only pathway
mediating bystander effects. These two pathways, however, are not necessarily exclusive of
each other. Moreover, not all cell types can produce bystander signals, and not yesell t
would respond to these signals. The mechanisms underlying bystander effects are likely to
depend on cell/tissue types, their phenotype (metabolic state, age, pre-exposure to other
stresses) and their micro-environment.

The released factor causing the ionizing radiation-induced bystander effect has yet to
be elucidated. The factors leading to such effects appeared to be released by irreliBated c
within the first few hours after exposure. It was suggested that the released factor may be a

protein, as it was labile when heated but stable when frozen. Cytokines or other factors that
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act to increase intracellular levels of ROS/RNS in bystander cells have been considered as
candidates (Mothersill and Seymour 198/&r and Lehnert 20Q0yer, Lehnert et al. 2000).

Pro-inflammatory diffusible factors (e.4.-8) were reported as initiator of bystander
response in primary normal lung fibroblast exposed to a particles (Narayanan, LaRue et al.
1999 Facoetti, Ballarini et al. 2006). Transforming growth factor (TGF)-R1 has also been
shown to play a role in radiation-induced bystander signaling (Barcellos-Hoff and Brooks
200% Shao, Folkard et al. 2008). Using double-Mylar dishes whereby cells are plated on one
or both sides of the dish, a bystander effect was detected when cells on one side were targeted
by a high dose of a particles. It was suggested that T@Esecreted by irradiated cells in the
medium may have a role in mediating the bystander response (Zhou, Suzuki et al. 2002).

Increased levels of Tumor Necrosis Factor (Td&yFAn A549 cells or TNF-related
apoptosis-inducing ligand (TRAIL) in H640 cells were observed after exposure to ionizing
radiation under bystander conditions (Shareef, Cui et al. 2007). Importantly, apoptosis has
been reported to be a significant pathway of cell death induced by exposure to bystander
factors (Belyakov, Malcolmson et al. 2Q0llyng, Seymour et al. 2001). Calcium is an
important signaling molecule as changes in intracellular calcium modulate cell functions and
can lead to apoptosis (Clapham 1995). Increase in calcium concentration has been shown to
cawe mitochondrial ROS formation and loss in mitochondrial membrane potential in
bystander cells recipient of medium from irradiated cells (Lyng, Seymour et al. 2002).

More recent experiments examined the effect of dilution of the irradiated cell
conditioned medium (ICCM) on the bystander effect. Results indicated that the effect of
ICCM from different cell lines reached a plateau at different dilutions, which correlated with
inherent radiosensitivity of the cells investigated. These finding suggested a role for
chemical-mediated activation of a signaling molecules and implicated ROS/RNS in the

response (Ryan, Smith et al. 2008).
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In earlier studies, it was shown thaparticle irradiation of culture medium devoid of
cells caused the generation of SCE-inducing factors; such factors, however, were short-lived
(Lehnert, Goodwin et al. 1997). Supernatant from irradiated cells or irradiated medium
caused the induction of SCE in non-irradiated cells to the same extent observed following
exposure of cell cultures to low fluences of a particles (Lehnert, Goodwin et al. 1997).
Interestingly, both medium and cell-derive@Einducing effects were inhibited by SOD,

suggesting that ROS are involved in these responses.

Oxidative metabolism

Cellular exposure to high levels of reactive oxygen species (ROS) produced by
endogenous enzymatic reactions or induced by external agents can contribute to numerous
human diseases and disorders (Droge 2002). Intracellular accumulation of oxidants results in
modification of proteins, DNA and lipids (Halliwell 1996). Persistence of such damages and
their transmission to daughter cells may contribute to the development of cancer,
atherosclerosis, accelerated aging and other degenerative diseases (Finkel and Holbrook
2000). On one hand, excessive ROS production alters several redox-regulated physiological
processes (Droge 2002). On the other hand, low levels of ROS participate in signaling
pathways that control essential cellular functions including proliferation (Torres 2003).
Together, these studies suggest that ROS maintain normal cellular functions by regulating the
expression of specific genes (Price and Calderwood;1818h and Tresini 2000Herrlich
and Bohmer 20Q0Meplan, Richard et al. 2000), modulating ion channel activities (Lopez-
Barneo, Lopez-Lopez et al. 1988), and mimicking or affecting intermediates (e.g. second
messengers) in signal transduction (Schulze-Osthoff, Baur et al. 1997).

Oxidative metabolism has been implicated in radiation-induced bystander effects at

the onset of interest in these studies (reviewed in Azzam, de Toledo et al. 2003). Importantly,
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oxidative metabolism is a regulator of gap-junction communication (Trosko and Chang 2001
Bertram 2004) that mediate bystander effects (Azzam, de Toledo et al. 1998)

In 1992, Nagasawa and Little postulated the participation of ROS in the mechanism of
radiation-induced bystander effects (Nagasawa and Little 1992). This has been confirmed by
extensive studies showing the involvement of the superoxide éDjon A disproportionate
increase in the fraction of cells with DNA damage (SCE, micronuclei) in cultures exposed to
1 or 2 cGy ofa particles was significantly reduced when the exposed cultures were pre-
incubated with SOD or catalase (Narayanan, Goodwin et al.; 222am, De Toledo et al.
2002). Importantly, incubation of cells with active, but not boiled SOD, attenuated
micronucleus formation in bystander cells (Azzam, De Toledo et al. 2002).

Narayanan et al. showed that activation of plasma membrane-bound nicotinamide
adenine dinucleotide phosphate (NAD(P)eékidase in normal human lung fibroblagss
responsible for the increase of ROS, including intracellular superoxide anion and concomitant
increases in hydrogen peroxide,() in bystander cells. In their experiments, bystander
cells were incubated with serum-containing culture medium exposed paoticles or
incubated with supernatants fromirradiated cells (Narayanan, Goodwin et al. 1997).
Subsequent experiments by Azzam et al. generated further support for the role of NAD(P)H-
oxidase in the a-particle-induced bystander effect (Azzam, De Toledo et al. 2002). Incubation
of normal human skin fibroblast cultures with diphenyleneiodonium (DPI), an inhibitor of
flavoproteins oxidases such as NAD(P)H oxidase, reduced the excessive formation of
micronuclei and inhibéd the up-regulation of p2£™ in bystander cells in confluent cultures
exposed to a mean absorbed dose of 0.3 cGy (a dose at which ~1 % of nuclei is traversed by
ana particle track).

The role of oxidative stress the genetic changes indedin bystander cells was also

supportedby microbeam studies (Wu, Randers-Pehrson et al. 1999) where only the
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cytoplasm was traversedy o particles. In presence of dimethyl sulfoxide (DMSO), a
scavenger of free radicals (primarily hydroxyl radical), the frequency of mutatidhe

CD59 locus was suppressed by 4- to 5-fold to near background levels. Incubation of cells
with buthationinesufoximine (BSO), that deples cells of the antioxidant glutathione,
promoed excess ROS levels, and resulted in mutation frequency that was 4- to 5-fold higher
than background. Wet al. suggested that free radicals gener@gdytoplasm irradiation

have a lifetime long enougto migrateto the nucleus and induce oxidative nuclear DNA
damage (Wu, Randers-Pehrson et al. 1999). Similar to bystander effect studies, these results
show that DNA damage is not necessarily the result of direct DNA traversal by an irradiating
particle. Subsequent studies by Tartier et al (Tartier, Gilchrist et al. 2007) have shown that
cytoplasmic irradiation also propagates stressful effects leading to DNA damage in bystander
cells.

ROS participatein the regulation of expression and activity of p53 (followed by
downstream effectors p21", MDM2, p34cdc2), mitogen-activated protein kinases
(MAPK), extracellular related kinase (ERK1/2), and several redox-modulated transcription
factors (e.g. c-Jun N-terminal kinase (c-JNKR-1, etc...) in bystander cells (Azzam, De
Toledo et al. 2002)ncubation of low fluence a-particle-irradiated cultures with antioxidants
attenuated the bystander induction of the latter proteins.

Interestingly, although micronuclei induction in low fluencearticle-irradiated cell
cultures was partly reduced by treatment with DMSO, a scavenger of reactive Gpgpees
(ROS), maximal protection of the bystander cells was observed when the cultures were
irradiated in presence of mixture of DMSO and Plveninhibitor of GJIC (Shao, Furusawa

et al. 2003). Accordingly, both ROS and GJIC contribute to bystander respandeGJIC

YPMA:4_,9 12,13, 20-pentahydro-xytiglia-1,6-dieor® 12_ -myristate 13-acetate
-61-



may play an essential role by mediating the release of soluble biochemical factors from
targeted cells.

Besides reactive oxygen species, nitric oxide (NO) and other reactive nitrogen species
(RNS) were also proposed as mediators of radiation-induced bystander effect (Shao, Stewart
et al. 2003). The lifetime of nitric oxide (with duration of seconds) is extensively longer than
that of certain ROS (e.g. superoxide) that last only nano- to micro-second). Although NO
chemically inert toward most cellular constituents (except for heme), it reacts witto O
form the peroxynitrite anion (ONOPwith a rate constant that is larger than that for the
superoxide dismutase (SOD)-catalyzed dismutation 6f (Qay-Gerin and Ferradini 2000).

Like hydroxyl radicals, ONOQs also highly reactive and capable of attacking a wide range
of cellular targets, including lipids, thiols, proteins and DNA bases. This high reactivity of
ONOO implies low selectivity, confined reactivity with molecules in immediate vicinity, and
inability to act as a cellular messenger. By contrast, the much lower reactivity @&n@
H,0, allows them to rapidly diffuse a longer distance away from the originating site.

In presence of a NO-specific scavenfePTIO®), DNA damage induction, revealed
by micronuclei, vas significantly attenuateéh human glioblastoma T98G bystander cells
from culturesirradiated with o particles from a microbeam (Shao, Stewart et al. 2003). Nitric
oxide mediate also the accumulation of TP53 and heat shock protein 72 (hsp72) levels in
wild-type TP53 gliobastoma celt®-cultured with, or recipient of conditioned medium from
X-ray-irradiated mutant TP53 gliobastoma cells (Matsumoto, Hayashi et al. 2001). The
accumulation of those proteins was abaistby the addition c-PTIO to the medium
(Matsumoto, Hayashi et al. 2001). Collectively, these findings indicate the potential
importance of an intercellular signal transduction pathway initiated by nitric oxide in the

cellular response to ionizing radiation.

© Nitric oxide scavenger: §4-carboxyphenyl)-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxid®7TdO)
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Using a broad beam o particle irradiator and special dishes where the cells to be
targeted were grown on aué polyethylene terephthalate (PET, also known as Mylar), and
the bystander cells grown on @8 striped PET insert, Zhouet al, showed that the
expression of cyclooxygenase-2 (COX-2, also known as prostaglandin endoperoxide
synthase-2) signaling cascade play a role in the bystander effect. When COX-2 wasdinhibit
the bystander effect decreased (Zhou, Ivanov et al. 2005). Moreover, MAPK pathways
(ERK1/2, c-JNK, p38) that are essential to activation of COXay play an important role in
this process; when MAPKs were suppressed, the bystander effect was inhibited. These results
provide evidence that the COX-2-related pathway, an essential mediator of the cellular
inflammatory response, is a critical signaling link for the bystander phenomenon.

Hence our understanding of mechanisms has greatly advanced since the bystander

effect was first characterized in cell cultures exposed to low fluence o particles.

1.5.4 Genomic instability

The genome in mammalian cells is constantly challenged by destabilizing factors
including normal DNA replication and cell division, spontaneous DNA damage and oxidative
stress from normal oxidative metabolism. In addition, cells may be exposed to stress from
extracellular environmental agents, including genotoxic chemicals and exposure to
environmental (e.g. radon), diagnostic and occupational radiation (Little 2003). Different
mechanisms of DNA repair are activated to maintain genomic integrity. However, failure in
those processes can lead to destabilization of the genome. Failure of cells to repair DNA
damage correctly may contribute to mutagenesis and/or genome instability that can lead to
carcinogenesis, aging, inherited disease, and cell death (Little 200®rland, Bennett et al.
2000). In the context of high-LET radiation, Kadhim et al. have shown, that cells surviving
an o particle exposure harbor genetic lesions that are different in nature from those that
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occurred in the irradiated parental cells (Kadhim, Macdonald et al. 1992). Therefore, it has
been postulated that exposure to ionizing radiation induces genomic instability that promotes
a mutator phenotype that ultimately leads to cancer (Loeb and Loeblis#92001 Little

2003).

Genomic instability is characterized by genetic changes including chromosomal
rearrangements, chromosomal aberrations (Kadhim, Macdonald et al. 1992), micronuclei
formation (Belyakov, Prise et al. 1999), gene amplifications, gene mutations and cellular
neoplastic transformation (Chang and Little 1991). Reduced plating efficiency (lethal
mutations or delayed reproductive death) in cells derived and clonally expanded from an
irradiated cell were also observed (Seymour, Mothersill et al.;1@86wed in Morgan

2003) (Figure 1-14
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Figure 1-14: Radiation-induced genomic instability. Progeny of irradiated cells may exhibit genetic
alteration including gene mutation and chromosomal aberration many generations afell divisions after

irradiation (Adapted from Lorimore, Coates et al. 2003).

Genomic instability occurs not only in the progeny of irradiated cells, but also in the
progeny of bystander cells. Studiasour laboratoryoy Manuda Buonanno have shown that

stressin bystander cells, which wereo-cultured with cells irradiated with iron ions
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(1000 MeV/u), persist over several generatioms the daughter cells andan lead to
neoplastic transformatian these cells (Buonanno, de Toledo et al. 2011).

Similar to its role in the propagation of stressful effects from irradiated to non-
irradiated cells in an exposed population, oxidative stress due to perturbations in oxidative
metabolism have been implicated in the induction of genomic instability and its propagation
to progeny cells (Lorimore, Coates et al. 200®rgan 2003). In progeny of bystander cells
that wereco-cultured with HZE-particle-irradiated cells, an increase in protein carbonylation
and lipid peroxidation was observed (Buonanno, de Toledo et al. 2011). Other mechanisms,
including dysfunctional DNA repair, epigenetic events and perturbation in gene expression
have been implicated in the expression of genomic instability following exposure to ionizing

radiation (Kronenberg and Little 1989kayasu, Suetomi et al. 2000).

1.5.5 Adaptive response

The radiation-induced adaptive response is a protective response whereby exposure to
a small priming dose of ionizing radiation protects cells from stress induced by endogenous
metabolic processes or a subsequent challenge from ionizing radiation or other environmental
agents. Adaptive responses have been mainly observed followirigo or in vivo exposures
to low doses of LET radiation (typically y or X rays) delivered at low dose-rate. They are
observed, in general, following priming doses between 1 and 100 mGy (Shadley, Afzal et al.
1987). However, they have beelsoaobserved following higher y rays doses delivered at
very low dose-rate (Azzam, de Toledo et al. 1992).

Adaptive or hormetic responses were observed as early as the turn of thenfdry
by Russian biologists. Renewed interest in their study was stimulated by the landmark study

of Olivieri et al. (Olivieri, Bodycote et al. 1984). In that study, the culture of human
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lymphocytes with low level of tritiated thymidine protected them from damaging effects
leading to chromatid type aberrations induced by a subsequent challenge dose of X rays.

Adaptive responses to ionizing radiation have been found to be dependent on the
adapting dose, dose-rate, expression time (Shadley, Afzal et al. 388dley and Wolff
1987 Shadley and Wiencke 1989), culture conditions (Wolff 1998), pH (Bosi, Micheli et al.
1991) and stage of the cell cycle (Shadley 1994). An adaptive respahgeotects against
DNA damage was shown to be expressed by a reduction in chromosomal aberrations
(Khandogina, Mutovin et al. 1991), sister chromatid exchanges (Olivieri, Bodycote et al.
1984), micronucleus formation (lkushima 198¥zzam, Raaphorst et al. 1994) and gene
mutation (Sanderson and Morley 198&Isey, Memisoglu et al. 199Rigaud, Papadopoulo
et al. 1993). These observations in cultured mammalian cells mirror the evidence for the
existence of radiation-induced protective mechanisms in prokaryotes and lower eukaryotes
(Samson and Cairns 1977). Evidence for an adaptive response to ionizing radiation has also
been observenh vivo (Cai and Liu 1990Mitchel, Jackson et al. 1999). With direct relevance
to cancer risk, exposure to low dose/low dese-y rays was shown to protect against
neoplastic transformation in model mouse embryo fibroblasts (Azzam, Raaphorst et al. 1994
Azzam, de Toledo et al. 1996).

Several biological processes may be modulated by low dose/low dose-rate irradiation.
Cellular irradiation under such conditions may up-regulate DNA repair mechanisms, affect
the overall redox-state of the cell and its anti-oxidation potential. It can also alter chromatin
conformation and hence affect the accessibility of DNA lesions to DNA repair machinery.
Apoptosis that eliminates heavily damaged cells from the irradiated population may be also
involved. Modulation of cell to cell interactions by the low dose priming exposure may also
alter the cellular response to the challenge radiation dose (reviewed in de Toledo, Asaad et al.

2006 de Toledo and Azzam 2008zzam, de Toledo et al. 2007).
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1.6 Perspective of the study

In radiation protection, international organizations recommend that the relationship
between dose and the risk of developing cancer be considered asBikEaN(l 2006). The
expression ofbystander effectanduced by energetic particles of higEsL character
challenges the traditional dogma that the induction of biological stress is only the product of
direct action of radiation on nuclear DNA. The induction of streskfigtander effects
following low dose radiation exposures suggests that the health risk is underestimated by
current radiation protection guidelines (Brenner, Doll et al. 2003).

In case of exposure to environmental radon or galactic cosmic rays encountered
during missions in space, only a small fraction of cells in exposed tissues is traversed by an
energetic particle (BEIR VIl 20Q&ucinotta and Durante 20068CRP 2011); the expression
of radiation-induced bystander effects, and the observation of genomic instability at extended
times after exposure, suggest that a greater fraction of cells may be at risk. In fact, thie lack
clear knowledge about non-targeted responses has been singled out by the US National
Academies (2008) as one of the important factors limiting accurate prediction of radiation
health risks associated with space exploration.

Human epidemiological studies would be ideal to predict the health risks of exposure
to low fluences of space particulate radiations; however, given the relatively insignificant
number of humans exposed to such radiations, mechanistic studies in tissue culture systems
and in animals have been considered essential to estimate corresponding risks to human.

Using molecular, biochemical, physical and computational approaches, this thesis
project provides evidence for the propagation of Hafd-a-particle-induced stressful effects
from irradiated to neighboring bystander cells. In evaluating biological responses, the
structure of HZE-particle-tracks was considered (Goodhead, Fatbmarev and Cucinotta

2006). The microscopic structure of the primary HZE-particle-track is characterized by a high
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frequency of interactions with the target, which results in highly localized energy depositions
(Goodhead 1989 Ponomarev and Cucinotta 2006). Secondary radiations arise from
interactions with atomic electrons in target atoms and from fragmentation of the target atoms.
These secondaries are produced along the primary particle track and include energetic
electrons (0 rays), photons, and a particles and other ions, with different LET. The range of
these particles can extend up to several cell diameters (Metting, Rossi et aCa8id8tta,

Nikjoo et al. 1998), thereby potentially irradiating and contributing to biological changes
observed in cells that neighbor those targeted by the primary track. In particular, protective
mechanisms induced by lolsET secondary radiations (e.g. 6 rays, photons) may mitigate
stressful effects propagated from cells traversed by the primary particle (Elmore, Lao et al.
2009). To investigate whether secondary particles contribute to bystander effects induced by
HZE particles, their contribution to the absorbed dose in relevant targets was calculated using
the multi-particle transport code FLUKA (Aiginger, Andersen et al. 26@%rari, Sala et al.

2005 Battistoni, Muraro et al. 2007).

To further understand the mechanisms underlying the biological effects of low fluence
particulate radiation, the role of gap junction communication, oxygen tension and DNA repair
was investigated in normal human fibroblast cultures exposed to mean absorbed doses as low
as 0.2 cGy.

The knowledge gained from these studies may contribute not only to understanding the
health risks associated with space exploration buttalsadiotherapy. Proton and heavy ion
beam therapy as well as immunotherapy wiitibodies conjugated to a-emitting particles
are being increasingly used worldwide to treat cancer. The propagation of death inducing
effects from irradiated to non-irradiated tumor cells may enhance the potency of these

treatments. However, the propagation of signaling events that lead to induction of oxidative
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stress and DNA damage in neighboring non-irradiated normal cells and their progeny may

contribute to long-term health effects, including the emergence of second cancers.

1.7 Project hypothesis and Aims

1.7.1 General hypothesis

The hypothesis underlying this thesis project is that exposure of normal human
diploid fibroblasts to low fluences of particulate radiations with high linear energy transfer
(LET) character results in molecular and biochemical events not only in irradiated cells but
also in neighbored non-irradiated bystander cells. Further, the magnitude of induced
biological responses, in bystander cells, increases with the LET. The effects are modulated by
gap junction intercellular communication and by oxidative metabolism; they involve events
modulated by theATAXIA TELANGIECTASIA MUTATEIATM) gene and DNA repair

activity, and depend on the partial oxygen tension of the medium in which cells are cultured.

1.7.2 Aims
Specific Aim 1

To characterie the evolution of biological changes in bystander cells in normal human

fibroblast cultures exposed to low fluence of particulate radiations that differ in their LET

v Investigate markers of oxidative stress and DNA damage in confluent AG1522
normal human fibroblagopulations exposed to mean absorbed doses as low
as 0.2 cGy from high charge and high energy (HZE) particles (1000 MeV/u

Fe?® with LET ~151 keV/um, 600 MeV/3%si*** with LET~50 keV/pm
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and 290 MeV/U*C® with LET ~13 keV/um). Compare the results with those

obtained in parallel with 0.9¥IeV/u o particles with LET ~109 keV/pm.

v Develop a tissue culture system that integrates CR-39 nuclear track detector to
distinguish irradiated from non-irradiated cells in cultures exposed to a low

fluences of heavy ions.

Specific Aim 2

To calculate, using the multi-particle transport code FLUKA, the doses imparted to AG152
confluent cells grown on soda-lime glass surface by fragmentation products following

exposure to 1000 MeV/u iron ions, 600 MeV/u silicon ions or 290 MeV/u carbon ions.

Specific Aim 3

To examine mechanisms involved in the propagation of bystander effect in confluent normal

human diploid cell cultures exposed to low fluence of HZE particles
v" Investigae the involvement of gap junction intercellular communication
v Investigate the involvement DNA repair

v Investigae the effect of culturing cells @b vivo-like oxygen tension
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Chapter 2 Materials and Methods

2.1 Cell culture

AG1522 normal human diploid skin fibroblasts were obtained from the Genetic Cell
Repository at the Coriell Institute for Medical Research (Camden, NJ). When activel
growing, these cells have a doubling time of 26 h. Cells at passage 10-12 were grown in
Eagles’ Minimum Essential Medium (MEM) (CellGro, Cat. No. 1501@V) containing
12.5 % heat inactivated (30 min at 56 °C) fetal bovine serum (FBS) (Sigma, Cat. No., F6178)
supplemented with 4 W L-alanyl-L-glutamine (CellGro, Cat. No. 25-013), 100 U/nL
penicillin and 100 pg/mL streptomycin (CellGro, Cat. No. 30-G0R-They were maintained
in 37 °C humidified incubators in an atmosphere of 5 % @@l/vol) in air. For experiments
with confluent cultures, cells were seeded at numbers that allowed them to reach the density-
inhibited state within 5 days. They were then fed twice on alternate days, and experiments
were initiated 48 h after the last feeding. Under these conditions, 95-98 % of cells were in
Go/G; phase of the cell cycle, as assessed by flow cytometry or tritiated thymidine uptake
(Venkatachalam, de Toledo et al. 2008). The synchronization of cells/@ @Ghase, by
density-inhibition of growth, eliminates complications in interpretation of results that arise
from changes in the cellular response to ionizing radiation at different phases of the cell cycle
(Terasima and Tolmach 1961).

For experiments with sparse cultures, density-inhibited cells were trypsinized and
seeded, 8 h before irradiation, at densities that result in ~50 % confluence. According to this
protocol, the cells were injGhase of the cell cycle (Venkatachalam, de Toledo et al. 2008).

For HZE-particle-irradiation, the cells were either grown irc26 polystyrene flasks
(Greiner, Cat. No. 690160) for Western blot analyses, or in glass-bottomed flaskettes

(Thermo Scientific Nunc, Cat. No. 177453) forsitudetection of 53BP1 foci. Cells destined

-71-



for a-particle irradiation were seeded in custom-made stainless steel dishes (36 mm internal
diameter) with 1.5umthick replaceable polyethylene terephthalate (PET) bottom (known by
the brand name “Mylar”). To facilitate cell attachment, the PET surface was precoated with
FNC coating mix comprised of fibronectin and collagefthenaES™, Cat. No. 0407)
overlaid with 2mL of MEM and incubated at 37 °C. After 30 min, the medium was aspirated

and the cells suspended in growth medium wereesbBaunediately thereafter.

2.2 Irradiation and dosimetry

Confluent density-inhibited cultures of AG1522 fibroblasts were exposed to high-
LET radiations. The radiation sources and doses used for experiments, and the distances

travelled by the various irradiating particles in water are described in Table 2-1.

Table 2-1: Characteristics of the radiations and dose delivered to the confluent cell cultures.

o Symbol Energy LET Range in water  Dose
Radiation source

uxP MeV/u  keV/um Cm cGy
Iron ions SOF ot 1000 151 27 0.2-10
Silicon ions ZBgjlar 600 50 22 0.2-10
Carbon ions oct 290 13 16 0.2-10
Americium 241 ‘He?* 0.92 109 0.002 0.2-10

a particles

Nucleons (u) = numbers of protons (p) and neutrons. Note that the primary ionsipgred sof
electrons. Elsewhere in the thesis, the charge is implied but not stated in the text.

For a certain radiation and a specific dose, to calculate the flgeacd fraction of
AG1522 cells (80@m? (Gaillard, Pusset et al. 2009)) or AG1522 cell nuclei {48
(Azzam, de Toledo et al. 1998)), in confluent cultures, traversed by a primary particle, the
method of Charlton and Sephton (Charlton and Sephton 1991) was used. The method is

outlined in section 1.3.2. The fluences and fractions of cells traversed by an irradiating
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particle in confluent cultures exposed to mean absorbed doses ranging from 0.2 to 10 cGy of
different particles are reported in Table 2-2. For exposures of 0.2 or 1 cGy, the fluences were
confirmed after etching of CR-39 nuclear track detector fused to the bottom of cell culture

dishes where the cells grow.

Table 2-2 Estimates of particle traversals when confluent AG1522 cells (mean nuclear thickness of
1.2pum (Cornforth, Schillaci et al. 1989), mean nuclear area of 140m? (Azzam, de Toledo et al. 1998)
and mean cell area of 80@m? (Gaillard, Pusset et al. 2009)are exposed to different radiations. P(i)

denotes the fraction of cells receivingtraversals.

Source (lon) Dose Flluence a\I/:er?ant;s r:):) fb)?es,lfeiir;i(iglil/lg uf lglr %iﬁeerfﬁgnmz
cGy | particles/cm : ’
particle(s)
Whole
Nucleus
cell

Avg. Avg. P(0) P1) | P(x2)
0.2 8.3x 10 0.066 | 0.012| 0.988 | 0.011 | 0.001
1000 MeV/u 1 4.1x1d 0.331 | 0.058| 0.943 | 0.055 | 0.002
iron ions 5 2.1x10 1.654 | 0.289| 0.749 | 0.217 | 0.034
10 4.1x10 3.307 | 0.579| 0.561 | 0.324 | 0.095
0.2 25x1d 0.200 | 0.035| 0.965 | 0.034 | 0.001
600 MeV/u 1 1.2x 10 0.999 | 0.175| 0.840 | 0.147 | 0.013
silicon ions 5 6.2x 10 4.994 | 0.874| 0.417 | 0.365 | 0.218
10 1.2x 16 0.988 | 1.748| 0.174 | 0.304 | 0.522
0.2 9.6 x 1d 0.768 | 0.134| 0.874 | 0.118 | 0.008
290 MeV/u 1 4.8x 10 3.841 | 0.672| 0.511 | 0.343 | 0.146
carbon ions 5 2.4x 16 19.207 | 3.361| 0.035 | 0.116 | 0.849
10 4.8x 16 38.414 | 6.722| 0.001 | 0.008 | 0.991

0.2 1.2 x 14 0.092 | 0.016| 0.984 | 0.016 0
3.7 MeV 1 5.7 x 14 0.458 | 0.080| 0.923 | 0.074 | 0.003
a particles 5 29x10 2.291 | 0.401| 0.670 | 0.268 | 0.062
10 5.7 x 10 4.581 | 0.802| 0.449 | 0.360 | 0.191

" These estimates do not take into account secondary radiations.
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HZE-particle-irradiations at the NASA Space Radiation Laboratory (NSR.)

Irradiation with iron ions (1000 MeV/0®Fe®*, ‘entrance’ LET ~151 keV/um),
silicon ions (600 MeV/f3Si**+, ‘entrance’ LET ~50 keV/um) or carbon ions (290 MeV/u
12c%* <entrance” LET ~13 keV/um) were performed at the NASA Space Radiation
Laboratory (NSRL) at Brookhaven National Laboratory during 2008-2011. Description of the
facility and detailed information on the radiation beam can be found at
http://www.bnl.gov/medical/nasa/LTSF.asp. Energetic ions are generatedandem Van
de Graaff electrostatic accelerator. lon beams are then transported to the Alternating Gradient
Synchrotron (AGS) Booster, where they are pushed to higher energies (Tsoupas, Ahrens et al.
2007) (Figure 2-1). Then, there extracted slowly into the NSRL beam transport line that
generates a uniform beam distribution at the target (Figure ZH2 energetic ions are
usually stripped of their electrons by a 0.051 mm thick copper foil located at the entrance of

the NSRL line.

Figure 2-1: Schematic diagram of the NSRL line in relation to the Booster synchnain, which accelerates
the ions provided by the Tandem accelerator, or the protons produced at LINAC (TsoupgaAhrens et al.
20079).
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A set of magnets placed along the transport beam line is used to generate a uniform
beam at the target (typical beam uniformities of% @vere achieved over a rectangular area
of 20 x 20 cm). Figure 2-2 represents 4 T75 tissue culture flasks with a small amount of
medium in the bottom of each flask. The false color image displays relative beam intensity,
with black/blue being low intensity and yellow/white being highest. The uniformity of color
within the central region of the 20 x 20 cm area shows the uniformity of the beam profile.

Hot spots at the periphery are a by-product of octupole focusing magnets.

Figure 2-2: Beam Profile observed using the Digital Beam Imager. Four T7%afkks with a small amount
of medium in the bottom of each flask were irradiated. False color indicates the beantensity is uniform
across the 20 220 cm exposure area

(http://www.bnl.gov/medical/NASA/CAD/Beam Uniformity and Profile.asp.

The relative LET is measured using the secondary ion chambers as greater and greater
thicknesses of high density polyethylene are inserted into the path of the beam. When a
critical thickness is reached, the beam patrticles slow down enough in the polyethylene to stop
in the ion chamber, resulting in a peak in LET (i.e. Bragg peak). Typical Bragg curves for
1000 MeV/u iron ions, 600 MeV/u silicon ions and 290 MeV/u carbon ions are shown in

Figure 2-3.
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Figure 2-3: Typical Bragg curves for (A) 1000 MeV/u iron ions, (B) 600 MeV/uilgcon ions, (C)
290MeV/u carbon ions in high density polyethylene f = 0.97 g/cm3) with the peak position of,
respectively, ~25 cm, ~21 cm, ~16 cm Note that the scales are not the same.
(http://www.bnl.gov/medical/NASA/CAD/Braga/Bragg.asp

The cell monolayers were positioned perpendicularly to the beam such as the incident
beam first impacted the side of the flask on which the cells were growing and then the growth
medium. They were located in the plateau region of the Bragg curve, but were not stacked.
The flasks were filled to capacity 3 h prior to irradiation, with pH and temperature-
equilibrated growth medium containing 20 % (vol/vol) conditioned medium that was
harvested from confluent cultures grown for 48 h. This ensured that during the irradiation,
deviation from 37 °C was attenuated and the cells were immersed in this conditioned

medium, which alleviates changes in osmolarity and partial oxygen tension. The latter
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parameters greatly affect the cellular response to radiation (Gray, Conger et al, 1953
Rueckert and Mueller 1960). The incident beam first impacted the side of the flask on which
the cells were growing and then the growth medium. The foam sample-holder produces
minimal scatter or fragmentation of the incoming heavy ion beam. Note that the foam used to
hold the flasks in Figure 2-2 is essentially invisible in the image

(www.bnl.gov/medical/NASA/CAD/Sample_Holder_Layout.asp

Exposures to 0.2, 1 or 10 cGy occurred at mean absorbed dose-rates of 0.2, 1 or
5 cGy/min respectively. Using PMT/Scintillator-based dosimetry measuring the total amount
of ionization in a gas sample that is proportional to the square of the beam patrticle charge,
and approximately inversely proportional to the square of the particle velocity, the dose of
0.2 cGy was delivered in 3 or 4 spills at a minimum. Uniformity of the beam across the
irradiated flasks was between 1 % and 5 %. The dose just out of the beam (i.e. the beam-
related background) is proportional to the beam dose and is on the order of 0.01 % of the
dose in the beam. The background radiation due to activation depended on the preceding
irradiation; in case our experiment was preceded by a 1 h exposure to the maximum rate of
protons delivered at the NSRL, theay dose that cells would receive would be at the rate of

~10° cGy/min. Control cells were sham-treated and handled in parallel with the test cultures.

a-particle-irradiation

Alpha particle-irradiations were conducted with a 0.2 mCi (7.4 MBHAmM
collimated source (half-life of 432.2 years) housed in a helium-filled Plexiglas box located in
a custom-made chamber maintained at 37 °C and an atmosphere of 5 &ol\®l) in air.
To optimize uniformity of the beam, the source was mounted on a rotating platform (88 rpm)
and the exit window was equipped with a beam delimiter. The uniformity was confirmed by

etching polyallyl diglycol carbonate plastic (PADC) exposed to the beam for 4 secetids. C
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were irradiated at a mean absorbed dose-rate of 2 cGy/min (Neti, de Toledo et al. 2004
Galillard, Pusset et al. 2009). This source disintegrates in three principal emissions of
a particles (5.485 MeV (84.5 %), 5.443 MeV (12.8 %), 5.388 MeV (1.6 %)) and photon
emission (59.%eV of y rays (35.9 %) (Browne. E and Firestone 1986). Irradiation occurred
from below, through the PET base. At the cell layer,diparticles have a measured mean
energy of 3.7 MeV (0.92 MeV/u) (LET ~109 keV/pum (Watt 1996)) with Full Width at Half
Maximum (FWHM) of 0.5 MeV. The irradiator box was fitted with a photographic shutter to
allow accurate delivery of the desired mean absorbed dose (Neti, de Toledo et al. 2004). The
maximum range of the 6 rays produced by a 3.88¢V o particle is ~0.1 um (Hamm, Turner

et al. 1985); hence, bystander cells in low fluence irradiated cell cultures are utdikdy

targeted by secondary radiation.

2.3 Contribution of secondary particles to the absorbed dose

A large portion of the studies in this thesis were performed with cells grown in
flaskettes. The purpose was to examine the induction of DNA damage in bystander cells
following exposure of the cell cultures to low mean absorbed doses of HZE particles. In these
experiments, HZE particles traversed first through the soda-lime glass bottom of the

flaskettes before reaching the cells and growth medium (Figuye 2-4
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Figure 2-4: Culture flaskette usedin HZE-particle-irradiation of cells

Some of the HZE interactions with the above target materials may result in
fragmentation of the incidenti.€. primary) particle and/or of the target material.
Fragmentation of the incident HZE particle may produce lower-atomic number (Z)
fragments, usually with lower LET. The primary-particle fragments have a high probability to
proceed with the same velocity as the primary particle, whereas target fragmentsygenerall
have lower velocity and can be significantly scattered with respect to the incident-ion-
trajectory (Ponomarev and Cucinotta 2006). Furthermore, photons and secondary electrons
(6 rays), depending on their energy, can travel significant distances away from the primary
particle track (Cucinotta, Katz et al. 1998). Hence, cells that are not directly targdtesl by
primary ion may be affected by secondary radiation. The effects of these seconcdignsdi
greatly impact the interpretation of results evaluating bystander effects.

To determine whether secondary particles impart a significant absorbed dose to either
directly targeted cells, or cells in the vicinity, when a mean absorbed dose of 0.2 cGy is
delivered with either 1000 MeV/tfFe ions, 600 MeV/{®Si ions or 290 MeV/U<C ions,
calculations were undertaken, using FLUKA code version 2011.2.15 with the default

configuration ‘HADROTHErapy’. (Ferrari, Sala et al. 200Battistoni, Muraro et al. 2007
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Battistoni, Broggi et al. 2011). FLUKA (FLUktuierende KAskade) is a multi-purpose Monte
Carlo particle transport code that considers all particle interactions including electromagnetic
interactions, nuclear interactions of the primary or incident particles and the generated
secondary particles, energy loss fluctuations and Coulomb scattering.. Several parameters
were considered in our simulations with FLUKA. They included transport threshold for
particles, delta ray production threshold, and restricted ionization fluctuations. The RQMD
model was used, since its interface was developed for the processing of ion-ion interactions
from 0.1 GeV/u to 5 GeV/u. The event generators RQMD and DPMJET were linked to
ensure ion-ion interactions above 125 MeV/u. The FLUKA evaporation/fission/fragmentation
module performed the fragmentation of the primary heavy ions and the de-excitation of the
excited fragments. Simulations were undertaken with the transport cut-offs for heavy ions
(primary and fragments), photons, protons anghrticles set at 1 keV. The transport cut-off

for electrons was seit 1 keV when the production threshold for 6 rays was 10, 100, and

1000 keV; it was set at 1®Y when the production threshold for & rays was 1 keV.
Production thresholds fd@rrays were set at equal value in the cover slip, cell monolayer and
medium to ensure that the electronic equilibrium is established (i.e. that the flux of secondary
electrons leaving a surface is independent of the surface thickness). This would be a sensitive
parameter for a very thin surface like the cell monolayer. Upon reaching thd eueady,

the particles were assumed to deposit this cut-off energy locally and their tracks were no
longer followed.

The contribution of neutrons to the absorbed was calculated but is not shown due to
inconsistent results, especially in the cell monolayer. Since the HADROTHErapy option was
used, neutrons with energy below 20 MeV cannot be followed with dedicated multi-group
library for neutrons with that energy. Benchmarking the FLUKA code with the MCNP code

could generate more consistent results for the neutron dose.
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Using FLUKA, the radial dose distribution to the AG1522 cell monolayer around the
track of a narrow beam of 1000 MeV#iFe ions was calculated for both the primary particle
and its secoraties (HADRONTHErapy configuration with delta rays’ production thresholds
set at 1, 10, 100, and 1000 keV). Every run was performed witlordl§) and the absorbed
doses to concentric annuli (thickness 1 pm, depth 1 um) extending to a radius of 100 um
were calculated. The radial distance of 100 um covers the diameter of an AG1522 cell and
extends to adjacent cells.

To re-create experimental conditions, the geometry and the constitutive materials of
the flaskettes were specified as input parameters for the code thanks to the graphical user
interface named Flair and developed using Python (programming language). The beam at the
NSRL is square and has a uniform center of ~20 x 20 cm. Within this area, the flaskette was
re-created with a cell growth surface of A%’ and a thickness of 1 um (Figure 2-4). The
cells grew over Inm-thick soda-lime glass of 19.1827 in area. The walls of the flaskette
consisted of polystyrene. The volumes considered were: soda-lime glass @mi.92
confluent cell monolayer of 0.0@&im® and culture medium of 18@n°.

The elemental mole percentage of the soda-lime glass culture siprfed3 g/cnt)
was considered to be O (60 %), Si (25 %), Na (10 %), Ca (3 %), Mg (1 %), Al (1 %). The
polystyrene (GHg) walls of the flaskettes have a density of 1.06 g/dfor the biological
materials, a Jumthick human skin equivalent (W&W type 3 (Woodard and White 1086)
with elemental mass composition of H (10.1 %), C (15.8 %), N (3.7 %), O (69.5 %), S
(0.2 %), Cl (0.3 %), Na (0.%) and K (0.1%) and with density of 1.09 + 0.05 g/émas
considered as representative of the cell culture. For simplicity, the growth medium was
considered to be water. A water thickness of 1.87 cm represents conditions wherein the

flaskette is filled with medium. The absorbed doses calculated by FLUKA were provided in
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the output as GeV/gm®/primary ion. Radiation absorbed doses in cGy were obtained from
the FLUKA output by correcting the values for target volume and the fluence.

The fluence of 8323 of 1000 MeV7iFe ions/cm was experimentally determined at
BNL by the scintillator-based dosimetry. This fluence results in 3 329 200 patrticles over the
exposure area of 20 x 20 cm. For 600 Me¥i ions, the fluence was 24 480 particles/cm
resulting in 9 792 000 particles over the 20 xcB0exposure area. For 290 MeVAAC ions,
the fluence was 96 030 particlesfcresulting in 38 412 000 particles over the 20 &0
exposure area. The scintillator-based dosimetry relies on counting the tracks in the beam
when a certain preset number of tracks with high LET characteristfEeis reached, the
beam is cut-off. This approach was also used in the FLUKA simulations for determining the

mean absorbed dose to the various targets from the primary and secondary radiations.

2.4 The effect of environmental oxygen concentration on cellular
responses to a-particle-irradiation

To examine the effects of environmental oxygen concentration in the cellular
responses to low fluence a-particle-irradiation, a custom-made chamber that integrates the
latest advances in oxygen monitoring was used. It is equipped with dissolved oxygen sensors
that do not consume oxygen, and with controllers for humidity, carbon dioxide and
temperature. Oxygen can be controlled at normobaric pressure to within 0.1% of any single
set point over the entire 0-199.9% range. Long-term culturing conditions that permit cells
to progressively adapt to various partial oxygen tensiong) f(Ras can be achieved. To

reduce stress associated with transfer of cell cultures from ambigmd Romore hypoxic
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environment, the Bacan be decreased in a controlled manner at a desired rate (e.g. 1% over
1 h or longer).

For experiments, AG1522 cells were maintained initially in 37 °C humidified
incubators in an atmosphere of 5 % Q®ol/vol) in air. After the last feeding, they were
transferred to an incubator in the chamber that is maintained at the same atmospl§ére of 5
CQO, in ambient air, or in a different incubator within the same chamber where the oxygen
concentration was regulated from ambient to a desired concentration below or above 21 % in
air over a period of time. For experiments where cells were irradiated at oxygen tension of
0.5 %, the oxygen concentration in air was decreased gradually over 24 h by adding nitrogen
gas. Once the desired oxygen level was reached, the cells were further incubated at that
atmosphere for additional 24 The o particle irradiator used for this project is housed within
the chamber; therefore, irradiations were performed at the desired oxygen concentation, 5

CO,and 37€.

2.5 Chemicals

Different chemicals have been used during experiments.

Inhibition of DNA repair

PJ34 or N(-0Oxo0-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide, HCI]
(Alexis, Cat. No. 270-289-M005) is an inhibitor of Poly (ADP-ribose) polymerase (PARP), a
component of the early response to DNA strand breaks (Huber, Bai et al. 2004). It was
dissolved in DMSO. PJ34 was used in the experiments by adding the appropriate volume of
stock solution to give a final concentration of 1@, .24 h prior to irradiation. The cells were

incubated in presence of the drug until they were harvested.
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Inhibition of Gap Junction Communication

18-a-glycyrrhetinic acid (AGA) (Sigma, Cat. No. G8503), a reversible inhibitor of
gap junction communication (Davidson, Baumgarten et al. 1986), was dissolved in DMSO
and added to cell cultures at a concentration of 30 min prior to irradiation. The cells
were incubated in the presence of the drug until they were harvested 3 h later. Under this
protocol, AGA did not alter the plating efficiency of unirradiated cells but did inhibit cell
coupling. Control cell cultures were incubated with the dissolving vehicle (DMSO).

t-butyl hydroperoxide treatment

t-butyl hydroperoxide (Sigma/Aldrich, Cat. No. 458139) was dissolved in growth
medium that was conditioned by AG1522 for 48 h and added to cell cultures, 1 h before
irradiation, at a concentration of 0.8MuThe cells were incubated in the presence of the drug
until they were harvested 3 h later.
ATM Inhibitor

Ku 55933 or 24-Morpholinyl)-6{1-thianthrenyl)-H-pyran-4-one (Tocris, Cat. No.
3544), Ataxia-Telangiectasia Mutated Kinase (ATM) inhibitor, was added to cell cultures at a
concentration of 10 at 30 min before irradiation. The cells were incubated in the presence

of the drug until they were harvested 3 h later.

2.6 Endpoints

2.6.1 In situ immune-detection of 53BP1

53BP1 has been proposed as a suitable marker of DNA double-strand breaks (DSB)
(Rappold, Iwabuchi et al. 2001). At different times after irradiation, confluent cell cultures
were rinsed twice in phosphate buffered saline (PBS), fixed with freshly preparga 3.7

(vol/vol) paraformaldehyde in PBS for 10 min, and rinsed 5 times with PBS. Subsequently,
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the cells were permeabilized with Triton-X buffer (0.25 % Triton-X in water / 0.1 % saponin
in Tris-buffered saline (TBS) [25&h Tris, pH 7.5, 150 ml NaCl, 2 nM KCI in water] for

10 min. The fixed and permeabilized cell monolayers were subsequently blocked for 1 h in
blocking buffer [2% normal goat serum, 2 % BSA, 0.1 % TX-100 (in TBS)] and reacted with
rabbit anti-53BP1 antibody (Bethyl, Cat. No. A300-272A) diluted 1:500 (vol/vol) in blocking
buffer and incubated for 2 h at room temperature. After incubation with an Alexa Fluor 594
goat anti-rabbit secondary antibody (Invitrogen, Cat. No. A11037), the cells were washed 3
times (5 min/wash) in buffer consisting of 0.2 % normal goat serum, 0.2 % BSA, 0.1 % TX-
100 in TBS. SlowFade® Gold antifade reagent with DAPI (Invitrogen, Cat. No. S36988) wa
used in mounting the samples.

Cells with 53BP1 foci were scored using a UV microscope (Leica DM IL). All the
images within the same data set were captured with a ProgRes® camera (Jenoptik) using the
same optics and exposure time and were saved for subsequent evaluation. As such, bleaching
of the signal was avoided. Identical criteria were followed in defining foci characteristics.
Nuclei with atypical size or morphology and those with very high foci counts (presumably
appearing in S-phase cells) were not scored (Wilson, Nham et al. 2010). The data described
in the thesis represent the excess percent increase of cells with 53BP1 foci in irradiated

cultures relative to respective control. They were calculated as follows:

AF=100x (Eradiated_ I:comrol)
Equation 2-1:
Number of cells with 53BP1 fo

Total number of cells countec

where =

The data described in Results are representative of at least three independent
experiments. For each experiment, 2 irradiated and 2 control dishes were analyzed. For each
dish, more than 3000 cells were scored by eye in 40 different fields. Poisson statistics was

used to calculate the standard error associated with the percentage of cells with foci over the

-85 -



total number of cellscored. The Pearson’s ¥ test was used to compare treatment groups
versus respective controls. A valuepaf0.05 between groups was considered significant.

A significant number of cells in control samples harbored foci, which fluctuated
between experiments and assay times. When the control samples of all experiments were
pooled, the mean = SD of the fraction of cells harboring at least one 53BP1 focus was
0.26 = 0.12 with a range of 0.05 to 0.50. The mean = SD of spontaneous 53BP1 foci per cell
nucleus was 0.35 £ 0.12 with a range of 0.06 to 0.68 foci/cell. The mean + SD of spontaneous
53BP1 foci per cell nucleus in foci-positive cells was 1.29 £ 0.11 foci/cell with a range from
1.04 to 1.35 foci/cell. These results are consistent with those of Ugenskiene et al. who
estimated the background level of 53BP1 foci in AG1522 cells to be 1.1 foci/cell
(Ugenskiene, Prise et al. 2009). A high background level of nuclear foci indicative of DNA
damage was also observed in various cell strains, with inter and intra-individual differences

being detected (Wilson, Nham et al. 2010).

2.6.2 - Western blot analyses

Following irradiation, the cells were harvested by trypsinization, pelleted, rinsed in
PBS, repelleted, and lysed in chilled radio-immune precipitation assay (RIPA) buffeM50 m
Tris-Cl (pH 7.5), 150 vl NaCl, 50 nM NaF, 5nM EDTA, 1% Nonidet P-40, 0%
sodium deoxycholate, 0.1 % SDS] supplemented with sodium orthovanadai) (Bigma,
Cat. No. S3014), protease (1:1000, vol/vol) (Sigma, Cat. No. P8340) and phosphatase
(1:2000) (Sigma, Cat. No. 2850) inhibitor cocktails. The mixture of protease inhibitors with
broad specificity for the inhibition of serine, cysteine, aspartic proteases and aminopeptidases
contains 104 ml 4-2-aminoethyl)benzenesulfonyl fluoride (AEBSF), 1.Mnpepstatin A,
1.4 mM E-64, 4 nM bestatin, 2 il leupeptin, and 80M aprotinin. The mix of phosphatase
(e.g. L-isozymes of alkaline phosphatase as well as serine/threonine protein phosphatases
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such as PP1 and PP2A) inhibitors contains microcystinLR, cantharidin, (-ango-
bromotetramisole. The extracted proteins were fractionated by SDS-PAGE and
immunoblotted according to standard procedures

Protein levels The levels of stress responsive proteins were quantified with
antibodies against p21™ (Millipore, Cat. No. 05-345), p-TP53ser15 (Cell Signaling, Cat.
No. 9284S), p-ERK1/2 (Cell Signaling, Cat. No. 9101S), and HDM2 (Sigma, Cat. No.
M4308). The anti-connexin 43 (Sigma, Cat. No. c6219) was also used.

Protein oxidation:When proteins are oxidized by reactive oxygen species (ROS),
some amino acids are modified generating carbonyl groups. These carbonyl groups,
specifically of aldehydes or ketones, can react with 2,4-dinitrophenyl hydrazine (DNPH),
which in turn can be recognized by anti-2,4 dinitrophenol (DNP) antibodies on immuno-blots
(Stadtman 1993). For experiments, the OxyBlot Protein Oxidation Detection Kit (Millipore,
Cat. No. S7150) was used. Protein samples were denaturated with 6% SDS and derivatized
with DNPH (10X 2,4-Dinitrophenylhydrazine Derivatization Solution (100 mM) dissolved in
2 N hydrochloric acid). Negative controls were derivatized with a Derivatization-Control
solution (Millipore, Cat. No. S7150). After 15 min incubation at room temperature
neutralization solution (Millipore, Cat. No. S715@M Tris/30 % glycerol) was added to
each tube to stop the reaction and samples were immunoblotted. The DNPH-bound proteins
were detected by using rabbit anti-2,4-dinitrophenyl IgG (Millipore, Cat. No. S7150).

Accumulation of 4-hydroxynonenal protein addudtsidroxyalkenals, such as 4-
hydroxynonenal (4-HNE), are among the major products of lipid peroxidation (Voulgaridou,
Anestopoulos et al. 2011). Proteins with 4-HNE adducts were identified with goat anti-4-
HNE antibody (Millipore, Cat. No. AB5605).

After incubation of the nitrocellulose membranes with a specific secondary antibody

conjugated with horseradish peroxidase, protein bands were detected by an enhanced
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cheminoluminescence system from GE Healthcare (Amersham, Cat. No. RPN-2209).
Luminescence was determined by exposure to X ray film, and densitometry analysis was
performed with an EPSON scanner and National Institutes of Health Image J software (NIH
Researcl&ervices Branch). The secondary antibodies used were anti-mouse (Bio-Rad, Cat.
No. 170-6516), anti-rabbit (Bio-Rad, Cat. No. 170-6515 or Santa Cruz, Cat. No. sc 2030) or
anti-goat (Santa Cruz Biotechnology, Cat. 8©2020).

Staining of the nitrocellulose membranes with Ponceau S Red (Sigma, Cat. No.
P717Q (Romero-Calvo, Ocon et al. 2010) or reaction of goat anti-rabbit immunoglobulin G
(Santa Cruz, sc 2030,) with a protein of 30 kDa was used to verify equal loading of samples
(loading control). Experiments were repeated at least 3 times, and representative data are
shown in results. Treated samples were compared with the control of the respective time

point.

2.6.3 - Micronuclei

Radiation-induced DNA damage was assessed by measuring the frequency of
micronucleus formation by the cytokinesis-block technique (Fenech and Morley 1986).
Briefly, ~2 x 10 cells were seeded in chamber flaskettes (Nalge Nunc International, Cat. No.
154526) in presence of cytochalasin B (Sigma, Cat No. C 6762), an agent that inhibits
cytokinesis without preventing nuclear division. Therefore, cells that have divided in the
presence of cytochalasin B can be easily identified by the presence of two nuclei. At the
concentration of 2g/mL, cytochalasin B was not toxic to the cells. After 72 h incubation, the
cells were rinsed in saline solution (0.9 % w/w of NaCl dissolved in water), fixed in gthanol
stained with Hoechst 33342 (&/mL in PBS), and viewed with a fluorescence microscope.

At least 2500 binucleated cells per treatment in each experiment were examined. The fraction
of micronucleated cells and the number of micronuclei per micronucleated cell was

evaluated. Each graph is representative of at least three separate experiments, and Poisson
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statistics was used to calculate the standard errors associated with the percentage (or fraction)
of micronucleated cells in the total number of binucleated cells scored. Comparisons between
treatment groups and respective controls were performed using the Pearson’s y° test A value

of p< 0.05 between groups was considered significant.

2.7 Cell culture dish with CR-39 and etching

To identify irradiated cells in low fluence HZE-particle-exposed adherent cyltures
AG1522 cells were seeded onto glass-bottomed tissue culture dishes (Ibidi®) wjtm-100
thick polyallyl diglycol carbonate (PADC) plastic polymer, commonly known as Columbia
Resin #39 or CR9™ plastic, grafted to the their bottom (Track Analysis Systen$)L
Upon cell fixation, the CR-39 was etched in 10 N KOH at 37 °C for 3.5 h and the pits were
visualized using light microscopin situ analyses of 53BP1 foci formation were performed
following etching. Images were obtained by switching from fluorescent to optical imaging
and changing the focal plane. Monitoring of confluent cultures during a 3 h period by
confocal microscopy using a fixed high magnification field did not reveal any movement of
the cells following exposure to mean absorbed doses of 0.1-0.3 afspavficles (Gaillard,

Pusset et al. 2009).
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Adherent cells/
growth medium

Coverslip
(160-190 pm)

~ CR-39

(100 pm)

Irradiation

Figure 2-5: Tissue culture dish with CR39%-bottom for HZE-particle- irradiation. Incorporation of a
100pum-thick CR-39 film below the glass bottom of the sealable-dish permits wialization of HZE-
particle-tracks without interfering with microscopic examination of biological changes. The dishefilled
to capacity with pH- and temperature-equilibrated growth medium can be positioned perpendicularly to

the incident beam.
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Chapter 3 Specific Aim 1: To characterize the evolution

of biological changes in bystander cells in normal
human fibroblast cultures exposed to low fluence of

particulate radiations that differ in their LET

3.1 Rationale

As described in section 1.5.3, bystander effects have been extensively observed in cell
cultures wherna only a small fraction of the cells is targeted by high linear energy transfer
(LET) o particles (LET ranging from ~100 to 120 keV/um). However, the expression of such
effects after exposure to low fluences of HZE particles, another type of high LET radiation
but with different physical characteristics, remains unclear. The characterization of bystander
effects in cell populations exposed to very low fluences of HZE particles are only emerging,
and conflicting data, using differem vitro cell culture systes) have been reported. In
initial experiments with a microbeam, stressful effects were shown to be transmitted from
HZE-particle-irradiated cells to contiguous bystander cells (Shao, Furusawa et al, 2003
Hamada, Ni et al. 2008Harada, Nonaka et al. 2009). In subsequent experiments whereby
HZE-particle-irradiated cells wem-cultured with bystander cells in a manner that they only
shared growth medium, stressful responses were also induced in the bystander cells and were
similar in nature to those induced in the targeted cells (Fournier, Becker et gl.Y200Qj¢
Anzenberg et al. 200% ang, Anzenberg et al. 2007). Furthermore, oxidative stress and DNA
damage persisted in distant progeny of bystander cells that had been in contiguous co-culture
with HZE-particle-irradiated cells (Buonanno, de Toledo et al. 2011). However, other
experiments involving the transfer of growth medium from irradiated cultures to recipient

bystander cells present in a separate dish (Groesser, Cooper et alS@@83 Goetz et al.
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2010), or the targeting of an exact number of cells in a population with energetic heavy ions
from a microbeam (Fournier, Barberet et al. 2009) did not detect an effect with a variety of
endpoints and cell types. Several factors may underlie the absence of observable effects in
these cases, including timing of endpoint measurement, dilution of the inducing factor and

the metabolic state/redox environment of the recipient cells.

Providing clear evidence for the expression of HZE-particle-induced bystander effects
is pertinent to space exploration during which astronauts are likely to be exposed to low
fluences of energetic particles (Cucinotta and Chappell 2010). To gain greater knowledge of
HZE-particle-induced bystander effects, we investigated the kinetics of expression of stress
markers in confluent density-inhibited normal human fibroblast cultures exposed to low
fluences of energetic iron, silicon or carbon ions, and compared the results with those
obtained in cultures exposed to low fluencesugiarticles. Cell cultures were exposed to
doses as low as 0.2 cGy wherein only 1-3 % of nuclei are traversed by a particle track. Using
endpoints to measure DNA damage (micronucleus formatiaitu analyses of 53BP1 foci),
expression levels of stress-responsive proteins {21p-TP53serl5, HDM2 and p-
ERKZ1/2), protein carbonylation and lipid peroxydation, the work described in this project

provides evidence for HZE-particle-induced bystander effects.

In this study, the HZE particles were delivered from a broadbeam irradiator that does
not permit identification of the targeted cells. To distinguish irradiated from bystander cells,
we developed dishes that incorporate a CR-39 solid state nuclear track detector at their glass
bottom where the cells are growing. Following etching of the CR-39, DNA damage in
targeted and non-targeted cells was assessed by 53BP1 foci formation, a marker that has been

associated with DNA double strand breaks (Schultz, Chehab et al. 2000).
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3.2 Results

3.2.1 Evidence of radiation-induced bystander effect in confluent normal
human diploid fibroblast cultures exposed to low mean absorbed

doses of a particles or HZE particles

Confluent density-inhibited AG1522 fibroblasts were exposed to low mean absorbed
doses of 3. MeV a particles (LET ~109 keV/um), and in parallel to 1000 MeV/u iron ions
(LET ~151 keV/um), 600 MeV/u silicon ions (LET ~51 keV/um) or 290 MeV/u carbon ions
(LET ~13 keV/um).

Radiation-induced DNA damage is associated with signaling pathways that recognize
genetic alterations and cause the recruitment of specific repair proteins at the site of the
damage. One of the first proteins recruited to the site of DNA double-strand breaks is the p53
binding protein-1 (53BP1). Mutation dd83BP1 has been shown to be associated with
carcinogenesis (Naidu, Har et al. 2011), and the gene is considered a "tumor suppressor"
(Huo and Yang 2011). The 53BP1 protein is a key factor in the repair of DNA double strand
breaks; it becomes rapidly hyper-phosphorylated and forms discrete foci in nucleisof cell
that have sustained DNA damage (Rappold, Iwabuchi et al. 2001). As a result, 53BP1 foci
formation has been extensively used as a biomarker to examine DNA damage and repair. In
this study, it is used to evaluate DNA damage not only in irradiated cells but also in their
neighboring "bystanders". Analyses of the appearance and decay of 53BP1 foci were coupled
with evaluation of the formation of micronuclei, a form of DNA damage representing mainly
DNA double strand breaks (Fenech 2008). The focus was on effects induced by low mean
doses of particulate radiations by which only a fraction of the cells in exposed cultures is

traversed through the nucleus by a particle track.
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Three hours after exposure to mean absorbed doses of 0.2 to 10 cGy of u/pisidiles,

the fractions of binucleated cells with micronuclei and cells presenting 53BP1 foci increased
with dose (Figure 3-1). The augmentations however were not proportional to the mean
absorbed doses. At 0.2 cGy, the increases in binucleated cells with micronuclei and cells
presenting 53BP1 foci were significant and were much higher than the percentage (1.4 %) of
cells that would have been traversed by a particle track through the nucleus. These results
suggest the involvement of cells other than those initially irradiated in the response of the

exposed cultures to a particles.

A B
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Figure 3-1 The induction of stressful effects in confluent AG1522 fibroblast cultures at 3h aftezxposure
to low doses of 3.MeV a particles. (a) Percentage of binucleated cells with micronuclei cells; (b)
percentage of cells with 53BP1 foci (number of cells with 53BP1 foci ovehet total number of cells
counted). (*: p<0.05, **: p<0.01and ***: p<0.001 derived byy test).

The above results confirm earlier observations from several laboratories that exposure
to a particles triggers the propagation of stressful effects from irradiated to bystander cells
(Nagasawa and Little 19922zzam, de Toledo et al. 1998zzam, de Toledo et al. 2001
Belyakov, Malcolmson et al. 200Azzam, De Toledo et al. 2008hao, Furusawa et al.

2003 Kashino, Suzuki et al. 200%hao, Prise et al. 200Banot, Hoarau et al. 2009). Using
AG1522 fibroblasts, we expanded these studies to investigate whether low mean absorbed
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doses of HZE particles induce similar stressful bystander effects. To this end, confluent
cultures were exposed to 0.2 cGy of 1000 MeV/u iron ions (LET ~151 keV/um), 600 MeV/u
silicon ions (LET ~51 keV/um) or 290 MeV/u carbon ions (LET ~13 keV/um), where only
1.2%, 3.5%, or 13.4% of the cells, respectively, were irradiated in the nucleus. The kinetic of
53BP1 foci formation were examinedsituat 15 min, 1 h, 3 h and 24 h after exposure.

Relative to respective control, the percent of cells with 53BP1 foci was increased at
15min, 1h and 3 h by 6.8 %p €0.001), 15 % [§<0.001) and 10.6 % p(<0.001),
respectively for°Fe ions (Figure 3-2), and by 1.9 %, 7.7 8%0.001), and 5.3 %p(<0.001),
respectively, for 3. MeV a particles (Figure 3-2). Increases of 8.2 p<(.001), 11.86
(p<0.001) and 2.8 %p(<0.05), at 15 min, 1 h and 3 h, respectively, were also observed after
exposure to 0.2 cGyf3°Si ions (Figure 3-3, Panel A). By 24 h, the percent increase of cells
with 53BP1 foci was null for®Fe ions, was increased by 34l(p <0.01) for?®Si ions, and by
2 % for o particles p <0.05). The significant increase in the percentage of cells with foci (5
50 %) over what would be expected based on the percentage of cells irradiated through the
nucleus (1.2-3.5 %) strongly supports the participation of non-targeted bystander cells in the

response of the overall cell populationn@diation by low fluences of high LET particles.
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Figure 3-2: Kinetics of the appearance of 53BP1 foci in confluent AG1522 cell cultures espd to 0.2 cGy
from 1000 MeV/u *°Fe ions and 3.™MeV a particles. The data represent the excess percent increasef]

of cells with 53BP1 foci in irradiated populations relative to respective control calcutad as
AF = 100 (Firragiated — Feontro) Where F is the ratio of the number of cells with 53BP1 foci over the tat
number of cells counted Each graph is representative of 4 experiments. x> test was performed on the total
number of cells compared with respective control in irradiated populations . *p <0.05, **: p<0.01and

*** p<0.00].

The fraction of cells with 53BP1 foci was shown to decrease by 2 h after exposure to
DNA damaging agents (low-LET radiations) (Schultz, Chehab et al. 2000). Thus, the
increases observed at 1-3 h over those detected at 15 min in cultures expgtSedotos ©
a particles suggest the recruitment of additional cells in the response. Presumably, these are
bystander cells wherein signaling molecules propagated from irradiated cells had time to
exert effects that result in DNA damage. The attenuation of the percent increasewitlcells
53BP1 foci at 24 h may reflect repair of DNA damage in bystander cells. In contr&se to
ions (LET ~151 keV/um)?®Si ions (LET ~5keV/um) and o particles (LET ~109 keV/pm),
exposure of confluent cultures to 0.2 cGy from 88//u *°C ions (LET ~13 keV/um) did
not result in significant increase in 53BP1 foci formation (Figure 3-3, Panel B). For a given
dose, the number of cells traversed by a particle increases when the LET decreases; however,

the energy per particle also decreases. At mean absorbed dose of 0.2 cGy of 26C MeV
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ions, the number of cells traversed is more than 10 times higher than after exposure to
1000 MeV/u*°Fe ions or 3.7 Me\W particles. This suggests that HZE particles with lower
LET may be less efficient at inducing stressful bystander effects under the conditions used in
this study. Further it highlights the importance of absorbed radiation dose per cell (in

particular the nucleus) in induction of bystander effects.
A B
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Figure 3-3: Kinetics of the appearance of 53BP1 foci in confluent AG1522 cell cultures expdgo 0.2 cGy
from (A) 600MeV/u ?®Si ions, (B) 290MeV/u 2C ions. The data represent the excess percent increase
(AF) of cells with 53BP1 foci in irradiated populations relative to respective control deulated as
AF = 100 (Firradiated — Feontrol) Where F is the ratio of the number of cells with 53BP1 foci over the talt
number of cells counted. The data are representative of 2 and 1 experiments &licon ions and carbon
ions respectivelyy® test was performed on the total number of cells compared with respective control in
irradiated populations (*: p <0.05, **: p<0.01and *** : p <0.00J).

3.2.2 Levels of stress-responsive proteins are rapidly modulated in

human cell populations exposed to low fluences of HZE particles

We examined the phosphorylation of serine 15 in TP53 (p-TP53ser15), a marker that
accumulates in response@NA damage (Siliciano, Canman et al. 19€anman, Lim et al.

1998), and of the stress-responsive and pro-survival extracellular signal-relatedskina
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ERK1 and ERK2 (p-ERK1/2) (Valerie, Yacoub et al. 2007), in confluent AG1522 cell
cultures exposed to doses of 0.2 or 1 cGy of energetic iron or silicon ions at different times
after exposure, and compared the results with those obtained in AG1522 cell cultures exposed
in parallel to a particles.

Relative to control, at 15 min after exposure to 0.2 or 1 cGy from 1000 M&s&u
ions (LET ~151 keV/pum) or 600 MeVA3Si (LET ~50 keV/pum), an increase in p-TP53ser15

and p-ERK1/2 levels was consistently observed (Figure 3-4, Panel A).

In confluent cells

15 min
(A) (B) h
*°Fe “sj a particles Fe
Dose (cGy) 0 02 1 0 02 1 0 02 1 Dose (cGy) 0 0.2 1
p-TP53ser15 el —— - p-TP53ser15
Fold change 1 12 1.8 1 25 34 1 15 33 Fold change 1 16 1.8
p-ERK1/2 ——— S p21Wan —
Fold change 1 16 25 1 14 3.1 113 16 Fold change 1 3 56
Ponceau S HDM2 -—==
Red staining Fold change 1 24 35
Ponceau S
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(C) 3h (D) 6h 24h
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Figure 3-4: Western blot analyses of the levels of p-TP53ser15, p-ERK1/2, §2% and HDM2 in AG1522
cell populations (A) 15 min, (B) 1 h, (C) 3 h, (D) 6 and 24 h after expare to a dose of 0, 0.2 or 1 cGy from
1000MeV/u *°Fe ions, 600 MeV/f®Si ions or 3.7 MeVa particles. Staining with Ponceau S Red was used
as loading control. Each immunoblot is representative of 3-4 experiments. Fold changepresents relative

change compared to the respective control.
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The representative data in figure 3-4 (Panel A) indicate increases of ~1.2- and 2.5-fold
in p-TP53serl5 levels and 1.6- and 1.4-fold in p-ERK1/2 levels in cultures exposed to
0.2 cGy of®Fe or?®Si ions, respectively. At this mean absorbed dose, only ~1.2 and 3.5 % of
nuclei are traversed by either ion, respectively. Similarly, at 1 cGy, wherein ~6 % of nuclei
are traversed by an iron ion and 17.5 % by a silicon ion, respective increases of B.8- and
fold in p-TP53serl5 levels and of 2.5- and 3.1-fold in p-ERK1/2 levels were observed. These
data indicate that p-ERK1/2 and p-TP53serl5 are sensitive markers that are rapidly
modulated after exposure of human cell cultures to very low mean absorbed doses of high-
LET HZE radiations. The levels of p-TP53serl5 and p-ERK1/2 were similarly increased at
15 min after exposure of confluent AG1522 cultures to 0.2 or 1 cGy of 3.7d\EMticles
(LET ~109 keV/um) (Figure 3-4figure 3-4, Panel A). The enhanced stress, implied by the
increase in p-TP53serl5 level, correlated with increases ranging from 1.8- to 5.6-fold in
levels of HDM2 and p21%™ at 1 h (Figure 3-4, Panel B) and 3 h (Figure 3-4, Panel C) after
exposure, suggesting activation of TP53, a central protein involved in maintenance of
genomic integrity. Similar to micronucleus formation and 53BP1 foci formation, the
magnitude of these changes implies participation of a greater fraction of cells than the 1.2-

3.5 % fraction traversed by a patrticle track through the nucleus at a mean dose of 0.2 cGy.

The increases in p-TP53serl5 detected at 15 min (Figure 3-4, Panel A).and3h p21
and HDM2 at 1-3 h (Figure 3-4, Panels B and C) also occurred at 6 and 24 h after exposure
(Figure 3-4, Panel D). The persistence of the effect may be due to sustained stress in the
targeted and bystander cells that were affected early after exposure (23m)nor to the
recruitment of new bystander cells in the stress response. These new bystander cells may be
affected by events propagated from irradiated cells or other bystander cells that have

sustained stress (DNA damage) earlier.
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3.2.3 Exposure to low fluences of HZE particles induces significant
oxidative stress

The persistence of stress in low fluence exposed cell cultures as evaluated by markers
of DNA damage and up-regulation of stress-responsive proteins was further supported by
analyses of protein oxidation and lipid peroxidation. The majority of ROS produced in
targeted cells at the time of irradiation persist for milliseconds (Muroya, Plante et al. 2006).
These ROS can oxidize proteins and increase their susceptibility to proteolytic attack (Berlett
and Stadtman 1997). The detection of oxidized proteins long after exposure is likely due to
ROS generated from perturbations in oxidative metabolism (Petkay 3p8z, Azzam et al.

2004).

In confluent cells
Oxidative Stress Dose Response to *°Fe ions
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Figure 3-5 Immunoblots showing oxidative stress in confluent AG1522 cell populations harvested R
after exposure to low mean absorbed doses of 1000 MeVfiFe ion: (A) Protein carbonylation and (B)
Lipid peroxidation as measured by 4-HNE protein adduct accumulation. In the case oprotein
carbonylation, the relative intensity (i.e. fold-change) in oxidation of the overall spaatm of proteins
(~30-130 kDa) in irradiated cells was compared to that in control cells. For KINE protein adduct
accumulation, the relative intensity refers to the level of the band with arrow relate to control. Staining

with Ponceau S Red was used as loading control. Each immunoblot is representative of 3 experiments
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The representative data in figure 3-5 (Panel A) show ~2- to 4-fold increases in overall
protein carbonylation in cells from cultures harvested 24 h after exposure to 0.2 and 1 cGy of
1000 MeV/u iron ions, respectively. The accumulation of 4-hydroxynonenal (HNE) adducts
in proteins from the same cultures indicates that increased lipid peroxidation was involved
(Figure 3-5, Panel B).

The rapid propagation of stressful effects and their persistence was further revealed
when confluent cell populations exposed to a mean dose of 1 cGy from 1000 Re¥/u
ions were subcultured, by 15 min after irradiation, to lower density (1:3) in fresh medium.
Similar to results in confluent cultures, relative to respective control, increases in the levels of

p-TP53ser15, p2¥™ and HDM2 occurred at 8 and 24 h after subculture (Figune 3-6

In subcultured cells

8h 24 h
*Fe

Dose (cGy) 0 1 0 1
p-TP53ser1t5 ... ER——
Fold change 1 14 115
p21 war1 —
Fold change 1 24 1 1.8
HDM2 ===
Fold change TN

1 1.8 115
Ponceau S
Red staining

Figure 3-6: Western blot analyses of the levels of p?3", p-TP53serl5 and HDM2 in AG1522 cell
populations exposed to 1000 MeV/tFe ions. Confluent cells were exposed to a mean dose of 1 cGy and
subcultured in fresh medium (1:3). Samples were harvested for analyses 8 and 24fter irradiation.
Staining with Ponceau S Red was used as loading control. Each immunoblot is representatinfe4

experiments. Fold change represents relative change compared to the respective control.
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3.2.4 Identification of cells targeted by primary incident HZE particles:
The development of glass-bottomed dishes incorporating CR-39
solid state nuclear track detector

To distinguish irradiated cells from bystander cells, ai®&hick CR-39 solid state
nuclear track detector was bonded to the bottom edges of the cell culture surfaoe ZFig
in Materials and Methods section). After etching of CR-39, cells traversed in the nucleus
could be identified, and induced biological effects may be assessed by suitable markers in
targeted and bystander cells. The data in Figure 3-7 show 53BP1 foci in a confluent cell

culture exposed to 0.2 cGy of 1000 MeV/&e ions followed by 15 min incubation.

A

Figure 3-7: Representative images of etched tracks and 53BP1 foci in AG1522 cell cultures grown on
dishes with CR39-nuclear track detector bottom, at 15 min after exposure to 0.2 cGy dfo00 MeV/u>®Fe
ions: (A) visualization of etched tracks; (B) 53BP1 immuno-detection (red); (C3tained with DAPI; (D)

images in A-C are super-imposed with the black dots representing etched tracks in (A) convertedwhite

for better visualization.
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Following etching, the iron ion tracks were visible as black dots (Figure 3-7, Panel
A). As expected, exposure to 0.2 cGy resulted in ~1.5 % of cells being superimposed on pits.
The formation of 53BP1 foci (Panel B) in nuclei (revealed by DAPI staining, Panel C) that
superimpose the black dots (inverted in white for better visualization, Panel D) indicates that
these cells sustained DNA damage as would be expected from nuclear traversal by a high
LET particle. The two cells with foci adjacent to the traversed cell are likely affected
bystander cells (Panel D). They may however be cells subject to secondary radiations. The
absence of CR-39-pits below these adjacent cells indicates lack of hot-spots; it suggests that
the strategy of incorporating CR-39 solid state nuclear track detector is suitable to investigate

the kinetics of biologic responses in situ in targeted and non-targeted cells.

3.3 Discussion

The data reported here highlight the manifestation of stressful bystander effects in
confluent normal human cell cultures exposed to Ibywided doses of HZE or a particles by
several endpoints.

The DNA DSB is a serious threat to the integrity of eukaryotic genomes; it can affect
survival and may induce events that lead to neoplastic transformation (lliakis. 1991)
Following exposure to DNA damaging agents, a battery of damage sensing and repair
proteins localize at the site of DNA breaks. Among these proteins, 53BP1 forms discrete foci
within minutes after exposure (Schultz, Chehab et al. 2000) (Rappold, Iwabuchi et al. 2001)
(Asaithamby, Uematsu et al. 2008). Using the same microscope optics and exposure time,
and scoring by eye, to accurately differentiate 53BP1 foci, as well as usimgtsegmntras
for each time point, the results from cultures exposed to a dose by which only 1-3 in 100 cells

is traversed through the nucleus by an energetic ion, strongly supported the participation of
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bystander cells in the response. At 15 min after exposure to a mean absorbed dose of 0.2 cGy
from o particles,*°Fe ions oF°Si ions, the fraction of cells with 53BP1 foci was higher than
predicted based on the percentage of cells directly targeted by radiation, which highlights
rapid propagation of bystander effects.

In general, it is thought that 53BP1 foci formation is transient; it peaks at ~20 min
after exposure to DNA damaging agents and return to basal level within 1 to 2 h (Schultz,
Chehab et al. 2000). In our study, the maximum increase of 53BP1 foci detected at 1 h, and
its persistent elevation at 3 h, may be due to the induction of DNA damage in non-targeted
cells. Although 53BP1 foci in directly targeted cells would be expected to disappear by 3 h,
the results in Figure 3-2 indicated a significant increase in foci formation not only relative to
control but also compared to data acquired in cells fixed 15 min after exppst€Q1).

These results suggest the propagation of signaling events leading to DNA damage in
bystander cells. The return to nearddsvel by 24 h after irradiation may be due to the
decay of signaling events leading to recruitment of additional bystander cells suffétfg D
damage or to repair of the induced damage. Events that lead to other forms of stress may be
however propagated.

In contrast to°Fe, ?Si ions and « particles, no excess 53BP1 foci formation has been
detected after exposure of cell cultures to 0.2 cGy from 290 MeV/u carbon ions (LET
~13 keV/um) at any time between 15 min and 24 h after irradiation. This may be due to less
energy deposition per traversed cell, which leads to less complex DNA damage being
induced in the targeted cells. These effects likely affect the nature of the propagated signaling
events. The lack of increase in 53BP1 foci formation in carbon ion exposed cell cultures also
suggests that radiations of lower LET may be less efficient at inducing stressful bystander

effects at low doses. Different outcomes may however occur following delivery of multiple
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ions that result in a large absorbed dose to the targeted cells. The use of microbeams would
greatly facilitate such experiments.

Similar to earlier results describing effects in cell cultures exposed to low fluences of
a particles (Azzam, de Toledo et al. 2003), increases in proteins that participate in p53 and
ERK1/2 signaling pathways were observed in normal human fibroblast cultures exposed to
mean absorbed doses as low as 0.2 cGy of 1000 MeV/u iron ions or 600 MeV/u silicon ions.
The increases in stress-responsive proteins were detected as early as 15 min after irradiation
and persisted for at least 24 h.

Relative to control, higher levels of p-TP53serl5, a marker of DNA damage, was
detected in confluent AG1522 fibroblasts exposed to 0.2 cGy wherein only 1-3 % of cells are
traversed, on average, through the nucleus by one ion. This was associated 1-3 h after
exposure with increased level of P#, a p53 effector and key component of the DNA
damage induced &heckpoint. The increases in the levels of these stress markers persisted
for at least 24 h after exposure and were associated with an increase in protein carbonylation
and in accumulation of 4-HNE protein adducts. The enhanced oxidative stress highlighted by
the latter markers may have, in part, contributed to the persistent increases in p-TP53serl5
and p21"" levels 24 h after exposure of the cultures to a low dose of HZE particles. These
appreciable increases in stress markers in cultures exposed to low fluences of high LET
radiations suggested the involvement of non-targeted cells in the overall response.

The induction of stressful bystander effect>fffe ion-irradiated cell cultures was
supported through the use of culture dishes that incorporate a nuclear track detector (Gaillard,
Pusset et al. 2009). The latter strategy allowed identification, on a cell per cell basis, of
irradiated and bystander cells in the population after irradiationadyroadbeam of

HZE particles. It expands earlier observations with a particles in our laboratory (Gaillard,
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Pusset et al. 2009). The use of these CR-39 bottomed-dishes unequivocally iderified th
irradiated cells and showed that neighboring non-targeted cells also harbored 53BP1 foci.

The results describing induction of 53BP1 foci at 15 min after irradiation (Figuye 3-7
further show that propagation of the signaling events leading to stressful effects in bystander
cells is rapid. However, the reaction to the signal(s) is likely to be cell-dependentagnd
require time to be expressed. It may manifest through certain endpoints but not others, and its
occurrence/magnitude/nature is likely to depend greatly on the identity/concentration of the
mediating signal and phenotype (e.g. redox environment) of the recipient -cell

(Autsavapromporn, de Toledo et al. 2011).

Data pertaining to this aim have been included in a manuscript (Gonon G., Groetz J.-E., de

Toledo S.M., Howell R.W., Fromm M., Azzam E.l. Non-Targeted Stressful Effects in Normal

Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE)

Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations.

(manuscript accepted for publication in Radiation Research)
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Chapter 4 Specific Aim 2: To calculate, using the multi-

particle transport code FLUKA, the doses imparted to
AG1522 confluent cells grown on soda-lime glass
surface by fragmentation products following exposure
to 1000 MeV/u iron ions, 600 MeV/u silicon ions or

290 MeV/u carbon ions.

4.1 Rationale

The studies described in Chapter 3 generated clear evidences of HZE-particle-induced
bystander effects. However, in contrast to cellular exposure to o particles where the ranges of
the generated 6 rays are small compared to the nuclear dian{éteti, de Toledo et al. 2004)
(maximum range of thé rays produced by a 3.65 Mawparticles is about 0.Am (Hamm,
Turner et al. 1985)), in case of HZE-particle-irradiation, secondary particles such as other
heavy ions, electrons, photons, protons and o particles can be produced due to the interaction
of the primary HZE particle with the target. The interaction of these secondary particles with
cells not targeted by primary ions may have contributed to the observed stressful effects.
Depending on their charge (positive in case of ions), the particles interact with matter
following three different processes leading directly or indirectly to ionizations or excitations
(as seen in section 1.2.2): on one hand, collisions with target electrons, and on the other hand,
nuclear interactions including elastiand inelastic collisions may occur. The first two

mechanisms are respectivalysponsible for the “electronic” energy loss (production of

9 An elastic collision is defined as a collision between two bodies wherein kinetigyen conserved; the total
kinetic energy is redistributed between the colliding bodies Cember, H)(1880oduction to health physics
New York, McGraw-Hill, Health Professions Division, ibid.
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drays and Xrays) and deflection of ions in matter, while the latter is responsible for
fragmentation. Considering nuclear interactions, elastic collisions play an important role in
the spread angle, while inelastic collisions change the nature of projectile and target. It should
be noted that elastic nuclear collisions (Rutherford scattering) cross-sections are proportional
to the inverse of kinetic energy squared; thus at the energies used in our experiments, the
probability for such elastic scattering remains extremely low.

As for inelastic nuclear collisions, even if the probability of a nuclear interaction
between projectile and target is small, due to their respective sizenilébr the nucleus
compared to I8 m for the atom), the cumulative effect of these interactions can affect the
spatial distribution of the absorbed energy in tissue and may contribute to the observed
bystander effect. As fragmentation can generate additional high-LET components into the
radiation field, the fragmentation phenomena need to be quantified. To address the possibility
that secondary radiations can contribute to the observed bystander effect, Jean-Emmanuel
Groetz (Head of the Radiation-Matter Interaction group of the Laboratoire de Chimie
Physique et Rayonnements) evaluated the contribution to the absorbed dose of secondary
particles by performing a simulation. We chose FLUKA multi-particles transport code where

nucleus-nucleus interactions are considered.

4.2 Definitions

4.2.1 Monte Carlo simulation

FLUKA multi-particles transport code is based on a Monte Carlo simulations package
for the interaction and transport of particles and nuclei in matter. The Monte Carlo method is
a numerical saition to a problem that models objects’ interaction with other objects or their

environment based upon simple object-object of object environment relationship. However,
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several types of problems have been solved by Monte-Carlo simulation such as traffic flow,
finance, genetics, population growth, radiation sciences, radiation dosimetry (Beilajew 2001).
In radiobiology, Monte Carlo simulations permit to follow the path of an individual
representative particle and resulting secondaries through matter until they are no longer of
interest, to determine dose, fluence and other distribution in cell cultures or patients. The
particle is followed from its birth; that is the incident beam to its stopping due to capture by a
nucleus, annihilation, or if the particle drops below the cut-off pre-defined energy. Basic
physics interaction probabilities composed of different random phase, the distance between
two interactions, the type of interaction induced and energetic and kinetic parameters needed
to characterize the given interaction are used to determine the fate of the representative
particles. Sufficient representative particles are transported to produce statistically acceptable
results. In our case, we considered 300 000 primary ions per cycle (300 000 histories) and 10
cycles were repeated for each type of primary i6fBe(?®Si or *°C ions). Increasing the
number of particles transported will not affect the results that are normalized per incident

particle but will improve statistics by the square root of the number of particles.

4.2.2 Fluence, fluence differential in energy, solid angle

Secondary particles can propagate from a radiating source in all possible directions and
are emitted over a range of energy. Thus, the magnitude of emitted radiations must be
described by its spectral and its directional components. So, we need to define the fluence,
the fluence differential in energy, the double differential fluence and the solid angle.

In section 1.3.2, the fluengewas defined as the number of particles traversing a planar
area. To be more specific, tilaence ¢ is defined by¢:?j—N wheredN is the number of
a
particles incident on a sphere of cross-seatiariThe use of a sphere expresses the fact that
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one considers the area perpendicular to the direction of each particle. The unit is in
particle/cm?2.

The fluence differential in energy o(E), or the distribution of fluence with respect to

¢

energy is defined byﬁ(E)=j—E, wheredyp is the fluence of particles with energy between

E + dE Therefore, the unit is in particle/cm2/GeV; in our case, as the results are normalized
per primary ion (incident ion), the unit used here is particle/cm?/GeV/primarypditiele
fluence (particle/cm?/primary) can be obtained by integrating the differential spectrum over

all energy channels. It can be also considered as an infinitesimal volume dV with particles

D.de

passing through &t:d—v, whereZd€ is the sum of all path lengths of the particles that

traverse the volume.

There is an analogous definition for the direction distribution dihweble differential

2
of fluenceo(E, 2), that is defined ag(E,2)= d;oﬁ) whereQ is the solid angle.

The solid angle Q, is the two-dimensional angle in three-dimensional space that an
object subtends at a point. It is a measure of how large that object appears to an observer
looking from that point. A solid angle equals the area of a segment of unit sphere in the same
way a planar angle equals the length of an arc of unit circleSThaeits of solid angle are
steradian (sr). Although the surface area of a spherernisté&adian, in our case, the
calculation were done with a solid angle included between 0 arsk#dian corresponding
to the hemisphere whose base is the surface separating the coverslip and cell culture. Thus,

only particles going in one direction (sobdae glass » cell culture) are considered.
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Figure 4-1 The solid angleQ corresponds to a cone with anglef Q
included in the projection unit sphere

(http://fr.wikipedia.org/wiki/Fichier:Angle solide coordonnees.svg

The halfangle o at the apex of the cone of revolution representing the solid angle is
defined ag) = 2x (1-cosa). Spectral and angular distributions are calculated from the normal
to the surface coverslip/cell culture that is the axis of the incident beam in our case.

The binning was carried out accorditgyseven intervals of solid angles (Figure 4-2)

which gives the following correspondences (Tablg.4-1

Table 4-1: Correspondences between the solid angfe (sr) and the half-angle of the cone (°) using the
relation a = Arcos (1- Q/(2n))*180/n

Solid angleQ (sr) | Half angle a (°)
0.8976 31.0028
1.7952 44.4154
2.6928 55.1502
3.5904 64.6232
4.4880 73.3986
5.3856 81.7870
6.2832 90.0001
Axis of the incident beam —>| de2

Figure 4-2 Geometric range of a beam defined by a diaphragm plane and a cone, open, symmetrica
around its axis

(adapted from http://www.optique-ingenieur.org/fr/cours/OPI_fr M05_CO05/res/Image?7 1.ipg
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4.3 Results

4.3.1 Contribution of secondary particles to the total dose

The contribution of heavy ions (primary and fragments), electrons, photons, protons
and o particles after exposure of cell cultures maintained on the glass-bottom of flaskettes,
filled with medium to capacity, to a dose of 0.2 cGy of 1000 MeVYfe 600 MeV/u?®Si
ions or 290 MeV/d“C ions are reported, respectively, in Table 4-2, Table 4-3, Table 4-4.

For the requested mean dose of 0.2 cGy, the scintillator provided the counts of
particles from which a total delivered dose was calculated according to the relation between

fluence, dose and LET given in Materials and Methods.
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Table 4-2: Contribution of primary and secondary particles to the mean absorbed desin the glass

coverslip, cell culture and medium when 1000 MeV/0°Fe ions were used to deliver 0.2 cGy to cell

cultures grown on glass-bottomed flaskettes with a nominal fluence of 83%%e ions/cm? which results in

3329200 particles over the exposure area of 20 x 20n. The production threstholds of & rays were set at
[A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 1 MeV. The transport cut-off was set at 1 keV for HZE particles,

protons, photons, and a particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels@®@and

D).

Errors represent standard deviations of the mean. When the standard deviation is < Q@1 cGy, it is

expressed and noted i%% as it can represent a high deviation. The term “total heavy ion” refers to the

primary 1000 MeV/u *°Fe ions and the fragments.

[A]
1 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1000 + 0.0007 0.1228 +0.0022 |00-22 0.1185 + 0.0022
heavy ions 0.35
**Fe ions 0.0997 + 0.0007 0.1221 + 0.0022 59.87, 0.1114 + 0.0022
Electrons 0.0623 + 0.0004 0.0807 +0.0014 39.57 0.0756 + 0.0014
Photons | 3.2609x 10 +0.69 % | 2.2013 x 10 + 82.22 % 0.00] 2.3844x 10 +1.11 %
Protons 1.2438x 10 +8.72% | 2.3514 x 100 £ 21.97 % 0.12| 5.1421 x 10 +2.57 %
Alpha 4.3250 x 10 + 16.40 % |5.1070 x 10 + 102.92 % 0.03] 1.5104 x 10' +3.47 %
Total 0.1626 + 0.0012 0.2039 + 0.0036 100 0.1950 + 0.0036
[B]
10 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crv) (18.7990 cr)
Dose + standard Dose # standard Contribution Dose # standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
TOt"".' 0.1206 + 0.0011 0.1452 +0.0020 | 167 0.1404 + 0.0019
heavy ions 0.44
%Fe ions 0.1202 +0.0011 0.1443 + 0.0020 71.23 0.1320 + 0.0018
Electrons 0.0412 + 0.0004 0.0569 + 0.0009 28.08 0.0529 + 0.0007
Photons | 2.7719x 10 +0.92 % |1.9991 x 10 + 14.62 % 0.00] 2.1064 x 16 + 1.35 %
Protons 1.6855x 10 +7.96 % | 2.8335 x 10 + 16.52 % 0.14| 6.1175x 100 + 3.49 %
Alpha 5.7126 x 10 + 16.36 % | 9.6370 x 10 + 57.56 % 0.05 1.7112 x 10 +4.38 %
Total 0.1622 + 0.0015 0.2025 + 0.0029 100 0.1943 + 0.0026
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[C]

100 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cri) (0.0010 crm) (18.7990 cm)
Dose + standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1420 + 0.0008 0.1698 +0.0018 |2494 0.1642 + 0.0018
heavy ions 0.48
**Fe ions 0.1416 + 0.0008 0.1688 + 0.0018 84.46 0.1546 + 0.0016
Electrons 0.0198 + 0.0.001 0.0294 + 0.0004 14.72 0.0301 + 0.0003
Photons 15099 x 1 +0.79 % | 1.0620 x 160 + 74.71 % 0.00, 1.3329x 160 +2.33 %
Protons 1.8447 x 10 +8.36 % | 3.5205 x 10 + 12.33 % 0.18 7.0077 x 10 +2.84 %
Alpha 5.6496 x 10 + 13.10 % | 1.5287 x 10 + 98.28 % 0.08 1.9140 x 1d + 4.40 %
Total 0.1622 + 0.0009 0.1999 + 0.0021 100 0.1954 + 0.0021
[D]
1 MeV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1633 + 0.0008 0.1922 +0.0027 |27-66 0.1858 + 0.0016
heavy ions 0.61
**Fe ions 0.1628 + 0.0008 0.1910 + 0.0028 97.05 0.1751 + 0.0016
Electrons 0.0016 + 0.72 % 0.0040 + 0.0001 2.03 0.0069 + 0.0001
Photons 3.0758 x 10 +2.36 % | 4.9817 x 10 + 75.16 % 0.00003 1.7904 x 10 + 14.80 %
Protons 2.0372x10+7.36 % | 3.4352x 10 +8.05 % 0.17| 7.4120x 1¢ + 3.54 %
Alpha 6.1595 x 1¢ + 12.03 % | 1.1259 x 10 + 78.06 % 0.05 2.0916 x 10 + 4.68 %
Total 0.1653 + 0.0008 0.1968 + 0.0029 100 0.1939 + 0.0016
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Table 4-3 Contribution of primary and secondary particles to the mean absorbed dose in the ga

coverslip, cell culture and medium when 600 MeV/4®Si ions were used to deliver 0.2 cGy to cell cultures

grown on glass-bottomed flaskettes with a nominal fluence of 280 #Si ions/cm? which results in

9792000 particles over the exposure area of 20 x 2th. The production thresholds of & rays were set at
[A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 1 MeV. The transport cut-off was set at 1 keV for HZE patrticles,

protons, photons, and a particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels@and

D).

Errors represent standard deviations of the mean. When the standard deviation is < 0.0D0Gy, it is

expressed and noted %% as it can represent a high deviation. The term “total heavy ion” refers to the

primary 600MeV/u ?®Siions and the fragments.

[A]
1 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1006 + 0.0003 0.1236 +0.0012 |0116 0.1209 + 0.0004
heavy ions 0.20
5j jons 0.1003 + 0.0010 0.1232 + 0.0012 60.96 0.1170 + 0.0012
Electrons 0.0611 + 0.0006 0.0777 +0.0012 38.44 0.0720 + 0.0007
Photons | 3.1033x10+1.40% |1.1169x 10 +82.11 % 0.00| 2.1527 x 10 +2.25 %
Protons 27759 x 10 +5.06 % | 4.7413 x 10 + 26.76 % 0.23| 9.7519 x 1d +5.20 %
Alpha 1.0644 x 10 +£13.94 % | 1.4144 x 10 + 73.98 % 0.07| 2.6864 x 10'+5.03 %
Total 0.1622 + 0.0016 0.2021 + 0.0024 100 0.1945 + 0.0019
[B]
10 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crv) (18.7990 cr)
Dose + standard Dose # standard Contribution Dose # standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
TOta.' 0.1218 + 0.0008 0.1467 +0.0014 |/311 0.1436 + 0.0016
heavy ions 0.26
25j jons 0.1215 + 0.0008 0.1462 + 0.0014 72.85 0.1389 + 0.0016
Electrons 0.0392 + 0.0003 0.0531 + 0.0009 26.44 0.0479 + 0.0005
Photons 25971 x10+0.75% | 1.0276 x 16 + 54.41 % 0.00, 1.8470x 160 +2.18 %
Protons | 3.4229x10+7.30% | 5.7103 x 10 + 22.19 % 028 1 2144 x 16 +3.40 %
Alpha 1.2456 x 10 +8.93 % | 1.0788 x 10 + 82.28 % 0.05| 3.4464 x 10 +4.14 %
Total 0.1617 + 0.0010 0.2007 + 0.0023 100 0.1934 +0.0021
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[C]

100 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cri) (0.0010 cr) (18.7990 cm)
Dose + standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
TOta.' 0.1434 + 0.0004 0.1708 +0.0011 |26-74 0.1671 + 0.0014
heavy ions 0.31
85j jons 0.1431 + 0.0012 0.1702 + 0.0011 86.43 0.1616 + 0.0013
Electrons 0.0175 + 0.0.001 0.0250 + 0.0003 12.70 0.0241 + 0.0002
Photons 1.3178 x 16 +0.90 % |6.7873 x 10 + 157.79 9 0.00 1.0610 x 10 +2.89 %
Protons 3.9845x 10+ 7.79 % | 7.0894 x 10 + 14.22 % 0.36] 1.3842x 10 +1.63 %
Alpha 1.3043 x 10 + 12.69 % | 1.8740 x 10 + 67.54 % 0.10, 3.4464 x 10 +4.14 %
Total 0.1616 + 0.0014 0.1969 + 0.0013 100 0.1933 + 0.0016
[D]
1 MeV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1633 + 0.0012 0.1938 +0.0041 | 2843 0.1887 + 0.0030
heavy ions 0.36
5j jons 0.1630 + 0.0122 0.1931 + 0.0409 98.07, 0.1827 + 0.0296
Electrons 0.0007 + 0.0000 0.0019 + 0.0001 0.96 0.0027 + 0.0000
Photons | 1.4358 x 10 +5.34 % | 1.8106 x 1¢+210.82% 0.00| 6.5495 x 1¢ + 20.30 %
Protons 3.7917 x 10 +9.00 % | 6.5103 x 10 + 14.40 % 0.48 1.4250 x 16 + 3.29 %
Alpha 1.3149x 10 + 11.76 % | 1.1953 x 10 + 38.38 % 0.06] 3.8005 x 10 + 4.26 %
Total 0.1647 +0.0012 0.1969 + 0.0041 100 0.1937 + 0.0031
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Table 4-4 Contribution of primary and secondary particles to the mean absorbed dose in the gks

coverslip, cell culture and medium wher290MeV/u *2C ions were used to deliver 0.2 cGy to cell cultures

grown on glass-bottomed flaskets with a nominal fluence of 96 030*C ions/cm? which results in

38412 000 particles over the exposure area of 20 x 2@ The production thresholds of & rays were set at
[A] 1 keV, [B] 10 keV, [C] 100 keV, [D] 1 MeV. The transport cut-off was set at 1 keV for HZE patrticles,

protons, photons, and a particles. For electrons, it was set at 150 eV (Panel A) or 1 keV (Panels@and

D).

Errors represent standard deviations of the mean. When the standard deviation is < 0.0D0Gy, it is

expressed and noted if% as it can represent a high deviation. The term “total heavy ion” refers to the

primary 290 MeV/u *°C ions and the fragments.

[A]
1 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1024 + 0.0001 0.1270 +0.0013 |021° 0.1265 + 0.0001
heavy ions 0.09
2C ions 0.1023 + 0.0006 0.1268 + 0.0013 62.06 0.1249 + 0.0011
Electrons 0.0613 + 0.0004 0.0755 + 0.0015 36.94 0.0710 + 0.0006
Photons | 3.0082 x 1 +0.93 % |8.7095 x 10 + 138.13 % 0.00] 1.9454 x 16 + 2.67 %
Protons | 6.0239 x 10 + 10.79 % | 1.0729 x 1C + 34.90 % 0.53 2.2658 x 10 + 4.59 %
Alpha 2.6778 x 10/ + 15.20 % | 3.5004 x 10 + 84.32 % 0.17| 7.1590 x 10 + 4.49 %
Total 0.1649 + 0.0011 0.2043 + 0.0029 100 0.2011 +0.0018
[B]
10 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crv) (18.7990 cr)
Dose + standard Dose # standard Contribution Dose # standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
TOta.' 0.1256 + 0.0010 0.1525 + 0.0019 | 489 0.1521 + 0.0019
heavy ions 0.21
12C ions 0.1254 + 0.0010 0.1521 + 0.0020 74.68 0.1501 + 0.0019
Electrons 0.0378 + 0.0003 0.0490 + 0.009 24.05 0.0443 + 0.0005
Photons 2.4343x 10 +1.24 % | 9.3402 x 10 + 105.77 9 0.00, 1.6359 x 16 +4.67 %
Protons | 7.7265x 10f +14.18 % | 1.3566 x 10 + 36.62 % 0.67| 2.7321 x 10 + 4.26%
Alpha 3.5199 x 10 + 13.32 % | 2.3531 x 10 + 98.87 % 0.12| 7.0770 x 10 + 5.66 %
Total 0.1648 + 0.0013 0.2037 + 0.0030 100 0.2007 + 0.0024
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[C]

100 keV Glass coverslip Cell Culture Medium (water)
(1.91512 cri) (0.0010 cr) (18.7990 cm)
Dose + standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
TOta.' 0.1489 + 0.0001 0.1787 +0.0033 |28-92 0.1772 + 0.0015
heavy ions 0.20
2C ions 0.1486 + 0.0012 0.1783 + 0.0032 88.72 0.1749 + 0.0016
Electrons 0.0148 + 0.001 0.0198 + 0.0006 9.86 0.0183 + 0.0002
Photons 1.1053x 10 +1.82 % | 3.7904 x 10 + 170.03 9 0.00, 7.8355x 10 +5.69 %
Protons | 8.5832 x 101 +14.21 % | 1.5021 x 10 + 21.36 % 0.75| 3.0876 x 1G + 4.44 %
Alpha 3.4244 x 10 +15.08 % | 4.6763 x 10 +59.71 % 0.23 9.3214x 10 +6.61 %
Total 0.1653 + 0.0013 0.2009 + 0.0031 100 0.2004 + 0.0018
[D]
1 MeV Glass coverslip Cell Culture Medium (water)
(1.91512 cr) (0.0010 crM) (18.7990 cr)
Dose * standard Dose + standard Contribution Dose + standard
Particles deviation deviation to total dose deviation
cGy cGy % cGy
Total 0.1654 + 0.0013 0.1971 +0.0038 | 28-30 0.1958 + 0.0014
heavy ions 0.15
2C ions 0.1652 + 0.0014 0.1910 + 0.0038 98.15  0.1934 +0.0013
Electrons | 5.0037 x 10 + 73.15 % | 7.0334 x 10 + 83.07 % 0.00| 1.7944 x 10 + 26.38%
Photons | 3.217% 10’ +101.4% 0.0000 + 0.0000 0.00| 1.6590x 10 +78.71%
Protons | 7.5727 x 10 +11.64 % | 1.5147 x 10 + 26.84 % 0.08| 2.8089 x 10} + 3.62 %
Alpha 3.4659 x 10 + 16.25 % | 6.5669 x 10 + 0.0006 0.33) 9.9823 x 100 + 7.15 %
Total 0.1670 + 0.0014 0.2005 + 0.0037 100|  0.2010 + 0.0013
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In cell cultures exposed to 0.2 cGy from any of the primary ions, the majority of the
cellular absorbed dose was from itheespective primary ions. The remainder was due to
electrons, photons, protonsparticles and other heavy ions resulting from fragmentation. In
FLUKA terminology, the term heavy ion represents the heavy ions with atomic numbers
ranging from Z=3 to the Z of the primary ions (Z=26 e, Z=14 for’®Si and Z=12 for
12C); it excludesa particles (Z=2). The difference between the delivered dose from heavy
ions and that from the incident primary beam gives the dose due to fragments. The secondary
radiations consisting of HZE fragments, photons, protonsoapalticles, with a production
threshold and a transport cut-cit at 1 keV, constituted <1 % of the total absorbed dose
(Panels A of Table 4-2, Table 4-3, Table 4-4). In contrast, electrons with a production
threshold set at 1 keV and transport cut-off set at 150 eV contributed ~37-40 % of the total
dose. The mean absorbed dose deposited in the cell monolayer by HZE fragments was very
small (0.0007 cGy, 0.0004 cGy and 0.0005 cGy following exposut¥édons, 2®Si ions or
12C ions, respectively) (Panels A of Table 4-2, Table 4-3, Table Bhé dose contributed by
photons, protons and particles was minimal in all cases (Panels A of Table 4-2, Table 4-3,
Table 4-4).

Estimates of the mean absorbed doses to the glass cover-slip, cell monolayer and
growth medium due to secondary radiations when the production thredliotdys was set
at 1, 10 100 or 1000 keV and the transport cut off was set at 1 keV are desciibbte 4-2
Table 4-3, Table 4-4. As the production threshold ofdtiheys increased, the contribution of
secondary electrons to the total mean absorbed dose delivered telith@onolayers
decreased and that of primary ions increased. Specifically, when rty8’ production
threshold was set at 1000 keV, the contribution of primary foriee total mean absorbed
dose to aell monolayerexposed to 1000 MeV/tPFe ions increased to ~97 % and that of

electrons decreased to ~2 % (Table 4-2, Panel D). In case of 600 NiSi/ions and
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290 MeV/u*’C ions, the secondary electrons represented, respectively, 0.96 % and almost nil
of the total mean absorbed dose todék monolayel(Panels D of Table 4-3, Table 4-4).

Considering 6 rays, the maximal dose is delivered in the center of the flaskette filled
to capacity with medium. This can be linked with the LET of the incident ions; for example,
*Fe ions lose some energy through the coverslip and the cell culture, leading to higher LET.
Moreover, for such energies, the major part of the LET comes from electronic losses and is
equal to 152.46 keV/um, while the nuclear component is equal to 0.024 keV/um. In this case,
for iron ions, at 56 GeV, the initial LET used was calculated with SRI6A0 (Ziegler) and
was equal to 152.5 keV/um instead of the 151 k@V/the value of LET measured at NSRL
and reported in the other chapters. The dose delivered by photons is very low and negligible
relative to the total dose; they are thought to come from Bremsstrahifitiye ions and
electrons, and de-excitations (radiative cascades) of the ionized atoms in the coverslip
followed by the cell monolayer and the medium. As the matters traversed are not really dense
and are composed of low-Z-compounds, the intensity of Bremsstrahlung is weak.

In case of protons and a particles, their spatial distribution is not really homogeneous
and is more important in the growth medium (water) and at the exit of the flaskettes; it is due
to fragmentation of the ions in the polystyrene side of the flaskette.

The major contribution to the total dose is due to the primary ions, electrons and
fragments; however, participation of the heavy ion fragments seems to be negligible
compared to the primary beam contribution to the total dose. Nevertheless, their energy and
spatial distributions will be determined in order to try to quantify how much they are able to

hit neighboring cells.

" SRIM (Stopping and Range of lons in Mattisr group of computer programs which calculate interaction of
ions with matter : Ziegler, J. F. "Particle interaction with matter, SRIM (StoppinfRande of lons in Matter) "
http://www.srim.org/.

' Bremsstrahlung: X rays resulting from interaction of a charged particledttyet nucleus or electron cloud.
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4.3.2 Spectral fluence distributions

Spectral fluence distributions after exposure to 0.2 cGy of 1000 M&¥%e or
600 MeV/u?®Si ions (respectively Figure 4-3 and Figure 4-4) are given from differential
energy fluence expressed in particles/GeV/cm?/primary ion. To obtain the fluence for a given
energy channel, the differential energy fluence need to be multiplied by the witlle of
channel energy considered.

Each graph of Figure 4-3 and Figure 4-4 represents the fluence of different types of
particles versus energy. It should be noticed that the logarithmic scales of the energy and
fluence, respectively, in X and Y axes, are not the same for all the graphs. The minimal
energy considered was 1 keV (cut-off energy), energy at which particles deposit all their
energy locally. The maxima were those of primary ions (i.e. 56 GeV for 1 Gé&%4uons
and 16.8 GeV for 600 MeVATSi ions).

Panels A in Figure 4-3 and Figure 4-4 represent the spectral distributionhefaine
ions including primary ions at 56 GeV and 16.8 GeV, respectively’¥e and?®Si, and
other fragments whose energy is lower than the primary ions. Those distributions are
bimodal: an energy distribution that ranges from ~3 to 56 GeV°k# primary ions and
another that ranges from several keV to ~100 MeV in the medium (Figure 4-3, Panel A) . For
the cell culture, the error bars of the first part of the curve (between ~700 keV to ZakeV)
too important to give good statistical results (Figure 4-3, Panel A). The results obtained for
silicon ion are similar. The maximum of the fluence is ~0.001 ions/GeV/cm?/primary.

The majority of theelectrons (Figure 4-3 and Figure 4-4, Panels B) have energy less
than 1 MeV but nevertheless, some of them can reach ~500 MeV. In cell culture, the fluence
of the majority of the electrons is in the region of 0.07 electrons/GeV/cm?/primary, and

reaches in the medium more than 1000 electrons/GeV/cm?/primary in c&%e gfrimary
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ions (Figure 4-3, Panel B). FoiSi primary ions, the fluences are lower (Figure 4-4, Panel
B).

For photons (Figure 4-3 and Figure 4-4, Panels C), the maximal fluences
(~0.05 photons/GeV/cm?/primary in the cell culture and ~1000 photons/GeV/cm?/primary in
the medium for®e primary ions) are reached for an energy of ~20 keV with a majority of
the photons having an energy less than 10 MeV.

The fluences of therotons (Figure 4-3 and Figure 4-4, Panels D) seem to be rather
constant between 1 keV and 1 GeV in the medium as well as in the cell culture.

The spectral distributions of particles (Figure 4-3 and Figure 4-4, Panels E) are also
bimodal with a first part between 1 keV and 100 MeV and the other part between 1 GeV and

10 GeV.
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a particles in cell culture and in medium (water) contained ina flaskette exposed to 0.2 cGy of

1000 MeV/u *Fe ions.
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The tendency is similar between exposures to 0.2 cGy from 1 G&%uions and
from 600 MeV/u?®Si ions but the fluence is 10 times less along the Y-axis. In case of
exposure to 0.2 cGy from 290 MeVIC ions, the values are typically 100 times less than
for iron ions. Concerning electrons and photons, this may be explained by the LET of the
particles, the higher is the LET, the higherthe production of those secondary particles.
Moreover, the electrons and photons produced in the medium filling the flaskette are less
following *°C ions-irradiation than following exposure to silicon or iron ions. On the other
hand, as it is known that the fragmentation cross sections on different atomic targets display
different behaviour with increasing energy (Zeitlin, Fukumura et al. ;2B&6-An, Feng-

Shou et al. 2008), it is difficult to explain the observed behaviour in simple words.

Here, the fluence was considered unidirectional; however, the particles can be spread
in different direction after being created.

The total fluences in the cell culture and in the medium, separately, are the sum of the
products of differential fluence of each channel by the width of the channel and are reported
in Table 4-5 for 1 GeV/G°Fe ions and Figure 4-6 for 600 MeVAt8i ions. They represent
the fluence in volume and can be viewed as track lengths of the particles in the volume
considered (cm/cf). Due to the way by which these quantities are computed, i.e. it is
necessary to divide the fluences by the volume. The data give the impression that fluences in
the volume of the medium are much lower than those in the cell cultures. In fact, data are
here computed in order to be compared within a same given column of the table (Cell Culture

or Medium); data on a same line in the table are not to be compared.
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Table 4-5: Fluence in the cell monolayer (m of thickness) and in the medium from different particles
after exposure of the flaskettes to 0.2 cGy from 1 GeV/tfFe ions. When the standard deviation is

< 0.0001 c@Gy, as it can represent a high deviation, it is expressed and noted in %.

Cell Culture Medium
Fluer(ljce?/itatsict)?]ndard Fluence Flueréce?/iia;,;?]ndard Fluence
particle/cnd/ particle/cni/ particle/cnd/ particle/cni/

2.4565 x 18 primary primary 0.0416 primary primary
TOt?(')rr]faVy 2.4927 X10° + 0.29 % 1.0147 0.0470 + 0.0001 1.1284
5Fe 2.4565 x10° £ 0.27 % 1.0000 0.0416 + 0.0001 1.0000
Electrons | 3.8606 x10°+ 0.50 % 15.7156 1.2483 £ 0.0032 29.9807
Photons | 3.6237 x10°+ 1.81 % 1.4751 0.1691 + 0.0016 4.0618
Protons | 7.2868 X107 + 2.56 % 0.2966 0.0510 + 0.0005 1.2250
Alpha 5.3299 x10° + 4.18 % 0.0217 0.0064 + 0.0001 0.1527

Table 4-6: Fluence in the cell monolayer (1 um of thickness) and in the medium frodifferent particles
after exposure of the flaskettes to 0.2Gy from 600 MeV/u %Si ions. When the standard deviation is

< 0.0001 c@Gy, as it can represent a high deviation, it is expressed and noted in %.

Cell Culture Medium
Fluence + standard | Fluence + standard |
deviation F _uel,'n/c?ﬁ/ deviation F _u¢|an/c$ﬁ/

particle/cnd/ partrlicr:neaf particle/cnd/ partrli(r:neac
2.4759 x 10 primary P y 0.0434 primary P Yy
TOtai‘(')L‘saVy 2.4935 x10° + 0.49 % 1.0071 0.0463 + 0.0002 1.0667
g 2.4759 x10° + 0.48 % 1.0000 0.0434 + 0.0002 1.0000
Electrons 5.9678 x10%+ 0.70 % 2.4104 0.1589 + 0.0008 3.6629
Photons 6.6834 x107 + 7.08 % 0.2699 0.0246 + 0.0003 0.5667
Protons 3.8213 x107 +3.54 % 0.1543 0.0253 + 0.0002 0.5825
Alpha 2.4334x10%+6.17 % 0.0098 0.0032 + 0.0001 0.0734

4.3.3 Angular distributions

We consider now the fluences determined at the surface separating the different
environments (interfaces between soda-lime glass/cell culture). The angular distributions
have been computed considering a ring area delimited by the base of two cones with different

solid angles as shown in Figure 4-2 at the level of the cell monolayer. It is defined as double
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differential fluence with respect to energy and angle and is expressed in

particles/GeV/cm?/sr/primary.
Figure 4-5 shows that the angular deflection of heavy ions after exposure to 0.2 cGy

from 600 MeV %’Si ions does not exceed 7° measured with respect to the incident beam

passing through the interface between soda-lime glass and cell culture.

Heavy ions spectra at the interface coverslip-cell culture at different angles
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Figure 4-5. Heavy ions fluence at the soda-lime glass/cell culture interface for different angular serto

after exposure to 0.2 cGy of 600 MeV/E&fSi ions.

However, a fragment that is emitted at the entrance of the soda-lime glass would

affect a bigger area at the level of the cell culture and greater number of cells.
y =g tan(6)
9 é

<

1um Cell monolayer

g =1000 um Soda-lime glass

\

AX“" Incident HZE particle

Figure 4-6. Emission of the secondary particle if the interaction occurs at the entrance of theda-lime

glass.
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Nevertheless, the double differential fluences given by FLUKA at the entrance of the
soda-lime glass are so low that they can be neglected. The worst case that can be considered
is whena fragment is emitted at the maximum angle of 7° measured with respect to the
incident path just after the entrance of the soda-lime glass within our culture conditions. As
for fibroblasts, the mean nuclear thickness has been evaluated to be 1.2 um (Cornforth,
Schillaci et al. 1989) (Figure 4rand there is considerable heterogeneity among cells in such
a monolayer. We therefore consider that the centarA@1522 nucleus is situatedaf pm
height in the cell culture layer. In sucltase, the heavy-ion-fragments can affect an area of
123 pm in radius (Figure 4-6) that represents an area of ~4#®0@s the total area of the
cell is estimated to be 8Qn? (Gaillard, Pusset et al. 2009), the fragment can affect 1 cell
over ~59 cells that cover this area. However, the fluence is very low and as the mean nuclear
areais estimated tde 140um? (Azzam, de Toledo et al. 1998), it is therefore very unlikely

that a heavy fragment will hit the nucleus of neighboring cells.

Nucleus

Figure 4-7: Cross-section of a densi-inhibited AG1522cell, shown growing attached to a thin Mylar
substrate (1.5 pum). The prominent cell nucleus located close to the Mylar/cell interfacglthough the cell
depicted here is quite typical, there is considerable heterogeneity among cells in such a monolagar
~1 um (Cornforth, Schillaci et al. 1989)

Electrons have been estimated to have a range up ton274@hen generated by
1GeV/u °°Fe ions (Metting, Rossi et al. 1988) spread out in transverse directions as they

penetrate matt. Some of them even are scattered perpendicular to the incident beam in case
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of exposure to either 1 GeV7Fe or 600MeV/f®Si ions (Figure 4-8 and Figure 4-9). Most

of the electrons have energies less than 1 MeV (Figure 4-8 and Figure 4-9). Note that the X-
axes of Figure 4-8 and Figure 4-9 are not the same. However, for 290 MéVibns, the
electrons spectra are not significant due to the very low values of the double differential

fluences and important uncertainties (not shown).

Electron spectra at the interface coverslip-cell culture at different angles
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Figure 4-8: Electrons fluence at the coverslip/cell culture interface for different angle particles t&fr

exposure to 0.2 cGy of 1000 MeV/tfFe ions.
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Electron spectra at the interface coverslip-cell culture at different angles
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Figure 4-9: Electrons fluence at the coverslip/cell cu(lturé interface for different angle particlesfter
exposure to 0.2 cGy of 600 MeV/&PSi ions.

When all the values of double differential fluence with respect to energy and angle in
particles/cm?/GeV/deg/primary are multiplied by itheespective energy interval, and then
multiplied by the angular binning chosen, we obtained the fluence in particles/cm2/primary.
As shown in Figure 4-2, it is thus possible to define concentric rings depending each on an
angular interval (Figure 4-10) in which a given fluence in particles/cm?/primary was passing
through. Figure 4-10 represents such distributions superimposed on Figure 3-7 (Panel D) for
electrons, photons, protons and a particles around the incident track (visualized with CR-39)
at 1 um height in the AG1522 cell culture layer (approximately at the level of cell nuclei)
considering the fluence at the interface soda-lime glass/cell culture. Figure 3-7 (Panal D)
representative image of etched tracks, cell nuclei stained with DAPI (blue) and 53BP1 foci
(red) in AG1522 cell cultures grown on dishes vatiR-39-nuclear track detector bottom, at
15 min after exposure to 0.2 cGy of 1 GeWEe ions. The angle relative to each concentric
ring and the associated fluence are reported in the table that follows Figure 4-10. The rings

corresponding to the angle81.79° - 90° are not represented in Figure 4-10 as they would
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cover the whole pictures due to the elevated radius of the rings. Nevertheless, the values
corresponding to'81.79° - 90° are presented in the table following Figure 4-10. Such a
representation makes it possible to scale to the size of the cell nuclei the areal hifect
secondary particles. However, the information about energy of the particles is lost (each
concentric ring has been obtained by integration over the whole energy interval) and the
fluence at the interface of soda-lime glass/cell cultures does not take into account all of the
secondary particles appearing due to interactions in the 1 mm soda-lime glass thickness.
Except the heavy ion fragments appearing in the 1 mm Isogaglass thickness that will not

be deflected in the sequel, all of the others particles will be subject of other interactions
before reaching the interface soda-lime glass/cell culture. Thus, it might not be judicious to
determine the double differential fluence at the entrance of the soda-lime glass. Lastly, it
should be mentioned that the radial distributions of fragments are not repdziento their

very small angular deflection (no more than 7°).
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Fluence
particles/cm2/primary

Angle Electrons | Photons | Protons | a particles
B | 0°-31.00° 41834 | 0.1069 | 0.1570 0.0205
31.00°-44.41° 2.6852 0.0754 0.0248 0.0002
44.41° - 55.15° 1.7104 0.0620 0.0166 0.0001
55.15° - 64.62° 1.2504 0.0575 0.0130 0.0001
64.62° - 73.40° 0.9914 0.0658 0.0122 0.0003
73.40° - 81.79° 0.8328 0.0784 0.0145 0.0002
81.79° - 90° 1.0603 0.1496 0.0232 0.0000
Total 12.7139 0.5956 0.2613 0.0215

Figure 4-10: Visualization of radial distribution around the incident track at 1 pm height in the AG1522
cell culture layer (approximately at the level of cell nuclei) of electrons, protons, protons and a particles
considering the fluence at the interface soda-lime glass/cell culture when the flaskettes is ergoto
0.2 cGy from 1 GeV/u*®Fe ions
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When the double differential fluences of each type of particles are integrated over

2w steradian (hemispherical solid angle), they become differential fluence per energy interval
d¢ : :
(¢(E)=d—E). Figure 4-11 represents the fluence of secondary particles versus energy for

1 GeV/u *°Fe. Table 4-7 andTable 4-8 report the fluence integrated over energy at the
interface between coverslip and cell culture for 1 Ge¥Re and 600 MeV/u*®Si ions
respectively.

Differential fluence between coverslip and cell culture
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Figure 4-11: Fluences of secondary particles versus energy at the coverslip/cell culture interface

integrated over on 2r steradian after exposure to 0.2 cGy of 1000 MeV/tfFe ions.
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Table 4-7: Fluence at the interface soda-lime glass /cell monolayer from differeparticles after exposure
of the flaskettes to 0.2 cGy from 1 GeV/&°Fe ions. When the standard deviation is < 0.0001 cGy, as it can

represent a high deviation, it is expressed and noted in %.

Surface between soda-lime glass and cell culture
Fluence + standard deviation Fluence
particle/cn?/0.0021 primary particle/cnf/primary
Total heavy 0.0022 + 0.29 % 1.0147
ions

e 0.0021 + 0.27 % 1.0000
Electrons 0.0273+0.71 % 12.7185
Photons 0.0013 +1.59 % 0.5956
Protons 0.0006 + 2.84 % 0.2613
Alpha 4.6166 x10° + 4.16 % 0.0215

Table 4-8: Fluence at the interface soda-lime glass/cell monolayer from different particlefter exposure
of the flaskettes to 0.2 cGy from 600 MeV/G®Si ions. When the standard deviation is < 0.0001 cGy, as it

can represent a high deviation, it is expressed and noted in %.

Surface between soda-lime glass and cell culture
Fluence * standard deviation Fluence
particle/cnf/0.0022 primary particle/cnf/primary

Total heavy 0.0022+ 0.49 % 1.0071
ions

285 0.0022 + 0.48 % 1.0000

Electrons 0.0042+ 1.22 % 1.9606

Photons 0.0002+ 4.73 % 0.1064

Protons 0.0003+ 3.99 % 0.1345

Alpha 2.1128x10° + 6.23 % 0.0098

In both cases, after exposure of the flaskette to 0.2 cGy from 1 G&weéuor
600 MeV/u?Si ions, the number of electrons at the interface soda-lime glass/cell culture
represents typically the double of the number of heavy ions but their energy are of course
much less and the associated biological effect are different. The ionization cross-section for

electrons that slow down in water, peaks around 100 eV (Plante and Cucinotta 2009). At high
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electron energies, electrons loose more and more of their energy through Bremsstrahlung
radiation (the critical energy for electrons in water is ~100 Me&ypnd this energy, the
Bremsstrahlung component becomes the main energy loss process for electrons). Those later
Bremsstrahlung photons are taken into account in the photon component of the presented
calculations. In other words, this means that electrons produce the most dramatic effects at
low energy (i.e. where the energy deposition is very local). In order to visualize the electron
energy deposition in the whole flaskette, a computation was performed scaling the dose due
to electrons. Figure 4-12 presents the results obtained with iron ions as well as silicon ions
and shows clearly that most of the energy deposited by electrons is deposited outside of the
cell layer (one order of magnitude higher in the medium), which confirms the above

suggestion.
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Figure 4-12. Cartography of dose deposited by electrons in soda-lime glass, cell culture anddium
when flaskette is exposed to 0.2 cGy from 1 GeV7fFe or 600 MeV/u?Si ions.
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4.3.4 Fragmentation

Figure 4-13, Figure 4-14 and Figure 4-15 represent the fragment yield integrated over
21 steradian in function of the charge of the ions when the flaskette is exposed to 0.2 cGy
from 1000 MeV/u®°%Fe ions, 600 MeV/U’Si or 290 MeV/u'“C ions, respectively. The
majority of the ions consists of the primary ions 1000 Me¥e ions (Z=26), 600 MeV/u
8C jons (Z=14) or 290 MeV/U*C ions (Z=6) in Figure 4-13 Figure 4-14 and Figure 4-15
respectively. For carbon ions, there is a peak at Z=8 that does not originate from
fragmentation of carbon ions as only lower Z than Z of the primary ions are considered; they
originate from recoil oxygen nuclei on which carbon ions did elastically diffuse in the soda-

lime glass (Figure 4-15).

Differential yield at interfaces from %6Fe ions

0.01 T = =T T T T
air/coverslip —— i .
coverslip/cell culture ||
cell culture/water ««+««+-
0.001 - i Eicsmussnn 4
G000 feves el SRRy S e S e 25! T o
=
(4]
8 = i i
&
g 1e06 - ,__
o
©
1e-07 - -
1e-08 -
1e-09 L 1
0 5 10 15 30
74

Figure 4-13. Fluences in function of the charge of the heavy ions at the interface coverslip/cell culture
(red) and interface cell culture/medium (blue)integrated over on 2z steradian after exposure to 0.2 cGy

of 1000 MeV/u®°Fe ions.
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Differential yield at interfaces from 283j ions
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Figure 4-14: Fluences in function of the charge of the heavy ions at the interface coverslip/cell culture

(red) and interface cell culture/medium (blue)integrated over on 2 steradian after exposure to 0.2 cGy

of 600 MeV/u?®Siions.
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Figure 4-15: Fluences in function of the charge of the heavy ions at the interface coverslip/cell culture

(red) and interface cell culture/medium (blue) integrated over on 27 steradian after exposure to 0.2 cGy

of 290 MeV/u*C ions.
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4.4 Discussion

The beam delivered to samples can generate several components in addition to the
nominal particles’ beam which may be important when accounting for a better understanding
of biological endpoints, in particular when considering low doses of radiation. Here, we
consider the participation of different secondary particles such as fragments, electrons,
photons, protons and o particles.

Those results highlight the weakness of the dose deposited by the fragments as
compared to the dose deposited by the primary beam. However, the angular distributions and
the production of fragments are all the higher so the charge is low. Indeed, in case of
95 MeV/u'’C, it has been shown that the more the fragments are heavy, the more they will
be focused forward and centred on the primary ion’s trajectory (Braunn 2010) as a result of
linear momentum transfer from the beam. In our case, using a glass-bottomed flaskette, the
angular dispersion of heavy-ion-fragments does not exceed 7° in case of 6002 \¢hd
1GeV/u °®Fe ions. Moreover, considering their low fluence, the probability that fragments
affect surrounding cell nuclei is low and their contribution in bystander effect observed after
heavy ions is negligibldn contrast, the electrons can be spread all around the primary ion’s
trajectory with ranges up to several hundred micrometers (Metting, Rossi et al. 1988). In our
experiments where thin confluent cell monolayers are used, it is very unlikely that long range
secondaries such as high enedgwys do not escape out of the cellular culture and therefore
they should rather deposit their energy outside of the living medium. Conversely, it should be
noticed that the FLUKA computer code uses cut-off energy of 1 keV; thuserengy
electrons as well as soft X rays are not taken into account although their effects on molecular
structures are well known to be deleterious and very localized.

The results presented in this chapter do not take account of other components delivered

in the NSRL beam room in addition to the nominal beam particles such as secondary patrticles
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and scattered particles that may also irradiate the samples placed on top of or close to a table
or any other massive surface.

Nevertheless, those results give a partial answer to the contribution of secondary
particles in the observed bystander effect. Expanded FLUKA experiments and additional
studies using other multi-particle transport code such as GEANT IV or Penelope adapted to
lower energies and pushing the energy cut-off lower than 1 keV, particularly for electrons,
would help answer more clearly the contribution of secondary radiations to the HZE-induced

bystander effect.
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Chapter 5 Specific Aim_3: To examine mechanisms

involved in the propagation of bystander effects in
confluent normal human diploid cell cultures exposed

to low fluence of HZE particles

5.1 Hypothesis

Several mechanisms have been implicated in the propagation of radiation-induced
bystander effects. They include oxidative metabolism (Narayanan, Goodwin et al. 1997
Azzam, De Toledo et al. 2002), indirect and direct modes of intercellular communication
(Mothersill and Seymour 199Azzam, de Toledo et al. 1998ishayee, Rao et al. 1999
Zhou, Randers-Pehrson et al. 200%zam, de Toledo et al. 2001), physical contact
(Gerashchenko and Howell 2Q06lei, Zhou et al. 2008), and membrane- (Nagasawa,
Cremesti et al. 20Q2Hanot, Hoarau et al. 2009), and cytoplasm-originating effects (Shao,
Folkard et al. 2004)In these studies, the focus has been mainly on either y ray or o particle-
induced bystander effects (Mothersill and Seymour 2004). In contrast, our knowledge of
mechanisms underlying bystander effects induced by HZE patrticles is unclear and is only
emerging.

We hypothesize that gap junction intercellular communication and DNA repair have
significant effects in the propagation of stressful effects from low fluence HZE-particle-
irradiated cells to neighboring bystander cells. To test this hypothesis, AG1522 fibroblasts
cultures were exposed to low fluences of 1000 Me¥ke or 600 MeV/u®Si ions in
presence or absence of chemical inhibitors of gap junction intercellular communication or
DNA repair. The results were compared with those obtained in cultures exposed in parallel to

low fluences of 3.7 Me\4 particles.
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We also hypothesize that the concentration of environmental oxygen during cell
growth and at the time of irradiation modulates the magnitude of stressful effects induced in
bystander cells in cultures exposed to low fluences of a particles. The latter studies extend
our understanding of mechanisms underlying a-particle-induced non-targeted effects and
mimic in vivo conditions wherein the oxygen concentration is much lower than ambient.

Micronucleus formation, 53BP1 foci formation and changes in levels of stress-

responsive proteins were used as endpoints in these mechanistic studies.

5.2 Role of intercellular communication

5.2.1 Rationale

Trosko et al. postulated that intercellular communication plays a major role in the
response to ionizing radiation (Trosko, Chang et al. 1990). Subsequent studies with chemical
inhibitors and genetic approaches have shown that gap junction intercellular communication
indeed plays an imporiarole in propagation of a-particle-induced bystander effect (Azzam,
de Toledo et al. 199&hou, Randers-Pehrson et al. 200@) role in the propagation of j3-
particle-induced bystander effects was also demonstrated in studies involving Chinese
hamster V79 cells labeled with tritiated thymidindH{dThd) and mixed with non-labeled
cells (Bishayee, Rao et al. 1999). The short range of {herticles emanating from tritium
allows only self-irradiation of labeled cells and effectively no cross-irradiation of unlabeled
cells. Similarly, the maximum range of the delta rays produced by a 3.7 MeV alpha particle is
only about 0.1 um (Hamm, Turner et al. 1985); therefore, bystander cells do not receive any
cross dose. However, the physical characteristics of HZE particle irradiation are more
complex, and evaluation of the contribution of junctional communication to bystander effects

that HZE particles may induce could be complicated by the secondary radiations generated
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during interactions of the incident particles with the target materials (i.e. cells and their
surrounding substrates).

The AG1522 normal human fibroblasts used in this project are gap junction
intercellular communication-competent (Azzam, de Toledo et al. 2001). Using the scrape-
loading techniqueel-Fouly, Trosko et al. 1987), the fluorescent dye Lucifer yellow diffused
to adjacent cells in density-inhibited cultures (left panel of Figure 5-1). In contrast, the dye
was confined to the damaged cells when the culture was incubated wifd 58-o-
glycyrrhetinic acid (AGA), a gap junction inhibitor (right panel of Figure 5-1) (Gaillard,

Pusset et al. 2009).

Control

Figure 5-1 Transfer of the fluorescent dye Lucifer yellow through gap junctions in AG1522 confluent,
density inhibited cultures (left panel) and inhibition of its transfer to adjacent cells bys0 M AGA (right
panel) (Gaillard, Pusset et al. 2009)

To investigate the role of gap junction intercellular communication in the propagation
of signaling events that lead to HZE-particle-induced bystander effects, we evaluated
different stressful effects in confluent AG1522 cell cultures exposed to low fluences of
energetic iron or silicon ions. We examined micronucleus and 53BP1 foci formation, and
analyzed the level of p-TP53ser15, §21, p-ERK1/2 and connexin 43 (cx 43) proteins by
western blot analyses in cellitures that were irradiated in presence or absence of AGA. The
results were compared with those obtained in cell cultures exposed in parallel to lowsfluence

of 3.7 MeVa particles.
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5.2.2 Results

Three hours after exposure to 0, 0.2 or 1 cGy fromMRY o particles, the cell
populations were harvested and assayed for micronucleus formation sital analyses of
53BP1 foci formation. Consistent with previous results, cell cultures exposed to 0.2 or 1 cGy
from o particles showed significant increases <Q0.05 and p <0.01, respectively) in
binucleated cells with micronuclei (Figure 5-2). Consistent with this induction of DNA
damage, they also showed, relative to control, greater increases than expected in 53BP1 foci
formation whether when the fraction of cell with 53BP1 foci or the mean number of 53BP1
foci per cell p <0.001) (Figure 5-3) were considered. Those increases are much higher than
the percentage (1.4 % or 7.2 % for 0.2 and 1 cGy, respectively) of cells that would have been
traversed by a particle track through the nucleus, which suggests the involvement of cells

other than those initially irradiated in the response of the exposed cultures to a particles.
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Figure 5-2: Percentage of micronucleated cells in confluent AG1522 cell cultures afterp@sure to a mean
dose of 0, 0.2 or 1 cGy from 3.7 MeM particles in presence or absence of AGA. The cell cultures were
subcultured, 3 h after exposure, and grown in presence of cytochalasin B for 72ume. The graph is

representative of 2 experiments. (*p <0.05 and **; p <0.01)
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When the cell cultures were exposed to a particles in presence of 50 pM AGA, the
increase in micronucleus formation observed at 3 h after exposure to mean absorbed dose of
0.2 cGy was significantly inhibitedo(<0.05) and the fraction of micronucleated cells was
similar to that observed in control cell cultures (Figure 5-2). In cell cultures exposedp
in presence of AGA, the micronucleus formation was attenuated but not completely inhibited.

In presence of AGA, the percent excess of cells with 53BP1 foci and the mean
number of 53BP1 foci per cell (Figure 5-3, Panels A and B) also decreased by B h afte
exposure to a mean absorbed dose of 0.2 pGY (05 andp <0.01, respectively). Inhibition
of junctional communication by AGA seems to limit the increases in 53BP1 foci formation
without eliminating them entirely. However, in these experiments, incubation with AGA
significantly induced an increase in the fraction of control cells with foci. These data are
different from those described in Figure 5-2 where incubation of control cells with AGA did
not increase micronucleus formation. Interestingly however, the 53BP1 data suggest that
intercellular communication under homeostatic conditions is essential in controlling the level
of DNA damage due to metabolic activity (i.e. DNA damage in the absence of irradiation).
DNA damage due to metabolic activity is continuously generated and is readily repaired

(Weinberg 2007).
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Figure 5-3: (A) Percent excess of cells with 53BP1 foci and (B) Exsed mean number of 53BP1 foci per
cell in confluent AG1522 cell cultures 3 h after exposure to 0.2 cGy from 3.7 Mawparticles in presence
or absence of AGA (*:p <0.05, **: p<0.0land ***: p <0.001)

The data in Figure 5-2 and Figure 5-3 support the role of junctional communication as
a mediator of the induction of stressful non-targeted effects @fparticles-irradiation as
was previously described (Azzam, de Toledo et al. 1B88u, Randers-Pehrson et al. 2000).

To evaluate the contribution of intercellular communication in the propagation of
bystander effect following HZE-particle-irradiation, confluent cultures were exposed to
0.2 cGy from 1000 MeV/u**Fe or 600 MeV/u?®Si ions, and assayed for 53BP1 foci
formationin situ. In irradiations with botit®Fe (Figure 5-4, Panel A) arf8Si ions (Figure
5-4, Panel B), the significant increases in the percent of cells with 53BP1 foci over what
would be expectedp(<0.001) based on the fraction of cells irradiated through the nucleus
(1.2 % and 3.5 %, respectively) support the participation of non-targeted cells as was shown
before (Figure 3-2 and Figure 3-3n presence of AGA, those increases were clearly
attenuated in case 8fFe ions p <0.01) (Figure 5-4, Panel A) and inhibited in casé®sf
ions (Figure 5-4, Panel B). These data strongly support the role of gap junction intercellular

communication in mediating nanrgeted effects not only after a-particles-irradiation but
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also after exposure to low fluences of 1000 Me¥Re (LET ~151 keV/um) or 600 MeV/u
85j (LET ~50 keV/um) ions.
A B

1000 MeV/u *°Fe (LET ~151 keV/um) 600 MeV/u 2Si (LET ~50 keV/um)
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Figure 5-4: Percent excess of cells with 53BP1 foci in confluent AG1522 cell culturel &fter exposure b
0.2 cGy from (A) 1000MeV/u **Fe ions or (B)600MeV/u ?®Si ions in presence or absence of AGA (*:
p <0.05 **: p<0.01 and ***: p <0.001)

The involvement of gap junction intercellular communication in high LET-induced
bystander effects was further supported by attenuation of the increases"#t p#iliction

when cell culturewere exposed to low doses of a particles in presence of AGA (Figure b-5

In confluent cells
3.7 MeV a particles (LET ~109 keV/um)

3h 3 h, AGA
Dose (cGy) 0 02 1 10 0 02 1 10
p21wat1 - ‘ -—
Fold change 1 16 34 153 06 12 13 2
Ponceau S
Red staining

Figure 5-5: Western Blot analysis of p24*" level in AG1522 cells population 3 h after exposure to a mean
dose of 0, 0.2, 1 or 10 cGy from 3.7 Me¥ particles in presence or absence &0 uM AGA. Staining with
Ponceau S Red was used as loading control. Fold change represents relative change compared to the

control at 3 h without the drug.
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In AG1522 cell cultures exposed to doses of o particles by which a very small fraction
of cell nuclei is traversed by a particle track, the extent of the increase Yi"pewel
suggests participation of a greater proportion of cells in the response than expected based on
physical dosimetry calculations (Figure 5-5). For doses of 0.2, 1 or 10 o&Spanficles, the
percentages of cells traversed through the nucleus are 1.4 %, 7.2 %, and 35.8 %, respectively.
Chemical inhibition of gap junctions BYGA attenuated these increases in cultures exposed
to doses in the range of 0.2 to 10 cGy.

The p21'2" proteinis, in part, induced in a p53-dependent manner in cells that have
sustained DNA damages{Deiry, Tokino et al. 1993). The data in Figure 5-5 are thus
consistent with those in Figure 5-2 showing that exposure of AG1522 cell cultures to
absorbed doses as low as 0.2 cGy induces micronuclei in a greater fraction of cells than
expected. They suggest that DNA damage may be the signal for the bystander induction of

1"a"in these cultures as was previously shown (Azzam, de Toledo et al. 1998).

p2

In case of HZE-particle-irradiation, sparse and confluent AG1522 cell cultures were
exposed to 0, 0.2, 1 or 10 cGy of 1000 MeWEe ions and the induction of p21" was
analyzed in cell populations harvested 3 h after exposure (Figyre 5-6

1000 MeV/u *°Fe (LET ~151 keV/um)

3h
Sparse cultures Confluent cultures
Dose (cGy) 0 0.2 1 10 0 02 1 10
p21"" =
Fold change 02 02 03 04 1 16 16 18
Ponceau S
Red staining

Figure 5-6: Western Blot analysis of p2¥*" level in sparse and confluent AG1522 cells population 18
after exposure to a mean absorbed dose of 0, 0.2, 1 or 10 cGy frof0Q@ MeV/u >°Fe ions. Staining with
Ponceau S Red was used as loading control. Fold change represents relative change compared to the

control in confluent cell culture. This experiment has been performed once.
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The data in Figure 5-6 indicate no or slight increase in"ff21evel following
exposure of sparse AG1522 cell cultures to low fluenc®Rs ions. Importantly however,
with sparse cell cultures, the fraction of cells traversed in the nucleus by a HZE particle is
much less than expected by Poisson distribution as highlighted in Materials and Methods.
Together, the results showed that physical contact between cells play an important role in
propagation of signaling events that lead to"}f?’é]jnduction in low fluence HZE-patrticle-
irradiated cell cultures.

To examine if gap junction intercellular communication participates in propagation of
stressful effects from HZE-particle-irradiated to non-irradiated cells, AG1522 cell cultures
were incubated in presence or absence of MOAGA and exposed to low doses of
1000 MeV/u*®Fe (Figure 5-7, Panel A) or 600 MeV#tSi ions (Figure 5-7, Panel. B), and
harvested for analyses 3 h later. The data in Figure 5-7 describe western blot analyses of
stress-responsive p2d", p-TP53ser15, p-ERK1/2, and connexin 43 (cx 43) after exposure to

0,0.2, 1, 5, or 10 cGy froMiFe (Figure 5-7, Panel A) &%Si ions (Figure 5-7, Panel. B).
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In confluent cells
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Figure 5-7: Western Blot analyses of p21?", cx 43, p-ERK1/2 or p-TP53ser15 in AG1522 confluent cells
3 h after exposure to a mean dose of 0, 0.2, 1, 5 or 10 cGy fra@00MeV/u *°Fe ions or 600 MeV/u*®Si
ions. Reaction of goat anti-rabbit immunoglobulin G with a protein of ~30 Ba or staining with Ponceau
S Red was used as loading control. Fold change represents relative change compared to tméraloin

absence of AG\.

Similar to results obtained following a-particle-irradiation, the induction of p2t
3 h after exposure to 0.2, 1 or 5cGy of 1000 Me¥e or 600 MeV/u*®Si ions was

inhibited in presence of AGA (Figure 5-7, Panels A and B). At higher mean doses (e.g.
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10 cGy from 600 MeV/§®Si) where most cell nuclei in the exposed culture are traversed by
a particle track, AGA did not have a clear attenuating effect on tH&p2asponse.

We also measured the levels of phosphorylation of Ser-15 in TP53 following
exposure to low fluence 6fSi ions (Figure 5-7, Panel B) in presence and absence of AGA.
Several studies have indicated that p-TP53-serl5 is a suitable marker of DNA damage; it
occurs in an ATM-dependent manner shortly after irradiation (Canman, Lim et al. 1998)
Whereas the data in Figure 5-7 (Panel B) indicate an increase in TP53 phosphorylation 3 h
after exposure of confluent AG1522 cells to mean absorbed doses of 0.2 or 1 cGy, these
increases were attenuated in presence ofNBOAGA. This is not the case however after
exposure to 10 cGy, when every single cell nucleus has been traversed by one or more
particle(s); TP53 was phophorylated in the majority of cells whether AGA was present or
absent.

Similarly, at 3 h after exposure to 1000 MeVitFe ions, the levels of stress
responsive and pro-survival extracellular signal-related p-ERK1/2 were also inhibited in
presence of AGA.

Concerning cx 43, a major constituent of gap junctions in AG1522 cells, relative to
respective controls, the up-regulation observed at absorbed mean dose of 0.2 c&Fdrom
ions was inhibited in presence of SMAGA. As with o particle-induced bystander effect,
these results are consistent with participation of cx 43-gap junctions in the HZE particle-
induced bystander response. Modulation of cx 43 levels by low fluence HZE particles may
also affect other responses to ionizing radiation.

Gap junctions are constituted of different connexins (at least 20 are known to exist in
human cells). Each type of connexin forms channels with specific permeability,veodd
be interesting to investigate the role of specific channel permeabilities on low fluence HZE-

particle-induced bystander effects. Those results would help identify the different molecules
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propagated between irradiated and bystander cells. Identification of such molecules would be
useful in formulating countermeasures to the harmful effects of space radiation. It may also

have implications to radiotherapy.

5.3 DNA repair and cellular responses to low fluence HZE particles

5.3.1 Rationale

Proper functioning of a cell, and especially faithful transmission of genetic
information to its descendants, depends on maintaining the structural integrity of its DNA.
The DNA molecule may undergo permanent damage due, mainly, to oxidative metabolism
and other endogenous stresses (e.g. replication errors, higher than normal body temperature),
as well as due to occasional exposure to exogenousest(ess UV radiation, chemicals,
ionizing radiation from occupational or diagnostic procedures). The direct and indirect effects
of ionizing radiation can lead to four main types of DNA modifications. Base damage is the
most predominant type of DNA damage, followed (in decreasing order of incidence) by
single-strand breaks, DNA-protein cross-links, and double-strand breaks. The latter is the
most harmful as it can lead to cell death, genomic rearrangement and neoplastic
transformation. Following exposure to ionizing radiation, several signaling pathways
involved in DNA-damage sensing and repair are triggered, often in a manner that is
dependent on the type of damage, position in the cell cycle and other factors. Considerable
overlap and interactions between these pathways exist.

Earlier work by Nagasawa edl. indicated a linkbetween o-particle-induced
bystander effects and DNA repair mechargsgNagasawa, Peng et al. 2005). We hypothesize
that the propagation of bystander effects is facilitated when certain components of DNA

repair are inhibited. For this study, we used chemical inhibitors of key components of DNA
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damage sensing and repair, namely KU55933 as Ataxia Telangectasia Mutated (ATM)
inhibitor, and PJ34 as poly(ADP-ribose) polymerase (PARP-1) inhibitor

Among many types of lesions, ionizing radiation induces DNA strand breaks, with the
proportion, per unit dose, of induced single to double-strand breaks being dependent on the
LET of the radiation. DNA strand breaks and other oxidizing types of damage efivdt
kinase,a cell cycle checkpoint protein that is a member of the phosphatidyl inositol 3-kinase-
like kinases (PIKKs) family (Bakkenist and Kastan 2003). This family includes also ATM
and Rad3-related protein (ATR), the catalytic subunit of DNA-dependent protein kinase
(DNA-PKcs), hSMG1, and mammalian target of rapamycin (mTOR) kinases (Lempiainen
and Halazonetis 2009). ATM &critical player in the early detection and repair of ionizing
radiation-induced DNA damage (Shiloh 2003). Althouwgtmaction of ATM is cytoplasmic
and is involved in pathways related to metabolic processes, the majority of ATM is nuclear
(Alexander, Cai et al. 201@lexander and Walker 2010). Following DNA damage, nuclear
ATM is rapidly recruited to sites of DNA double-strand breaks and contributes to
phosphorylation of the histone varian2AX producing y-H2AX on serine 139 (Burma,
Chen et al. 2001)n turn, the ubiquitination of y-H2AX by RNF8 stabilizes the recruitment
of 53BP1 and BRCAL, both of which are also phosphorylated by ATM (Lavin 2008). Shortly
after induction of DNA damage, ATM autophosphorylates on serine 1981 and releases an
active monomer that can directly phosphorylate p53 and murine double minute 2 (MDM2,
known in human cells as HDM2) as well as checkpoint kinase Chk2 that phosphorylates, in
turn, p53 and MDM2. Phosphorylation of both p53 and MDM2 results in stabilization of p53
(de Toledo, Azzam et al. 2000). Activated p53 enhances transcriptitbi, the gene that
codes for the cyclin-CDK inhibitor p2£™, which results in a Geell cycle delay (Little
1968). The second mechanism is rapid but transient, and involves phosphorylation of the

checkpoint kinases Chkl and Chk2 by ATM/ATR complex. In lafe&@ly S phase, ATM
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phosphorylates Chk2 that, in turn, phosphorylates and inactivates Cdc25A phosphatase
leading to inhibition of cyclinE/A-Cdk2 activity (reviewed in Bensimon, Aebersold et al.
2011). Recently, it has been also shown that ATM is an important sensor of ROS in human
cells (Shiloh 2003Guo, Deshpande et al. 201Guo, Kozlov et al. 2010). Studies in our
laboratory have shown that inhibition of ROS generation by NAD(P)H-oxidase induces a
pronounced Garrest in an ATM-dependent manner (Venkatachalam, de Toledo et al. 2008).

Poly(ADP-ribose) polymerase-l (PARP-l) is a molecular sensor of DNA breaks
(Malanga and Althaus 2005); it also plays an important role in DNA repair, cell death and
proliferation (Huang, Xiong et al. 2008). PARP-1 binds to both single- and double-strand
breaks (Eustermann, Videler et al. 2011). It is however mainly involved in repair of single-
strand break and base damage. It recruits the X ray cross complementing factor 1 (XRCC1)
protein to the site of DNA damage, which acts as a scaffold to coordinate the repair of
damaged bases. Inhibition of PARP-1 induces accumulation of large numbers of unrepaired
single strand breaks, which leads to the collapse of replication fork during S phase with
consequent generation of DNA double strand breaks (Peralta-Leal, Rodriguez-Vargas et al.
2009). Moreover, PARP-1 interacts with ATM and therefore may influence growth arrest
cascades particularly ing®1 phase. (Madison, Stauffer et al. 2011).

Here, micronucleus formation and 53BP1 foci formation reflecting DNA damage
were analysed in confluent AG1522 cell cultures exposed to 0, 0.2 or 1 cGy from 3.7 MeV
o particles, 1000 MeV/3°Fe or 600 MeV/?®Si ions in presence or absence of the ATM

inhibitor KU55933 or the PARP-1 inhibitor PJ34.
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5.3.2 Results

Role of ATM

Confluent AG1522 cell cultures were incubated in presence or absence M 10 u
KU55933 30 min before exposure to 0.2 cGy from MeN o particles. The cell cultures
were processed fan situ evaluation of 53BP1 foci 3 h later. Consistent with the data in
previous figures, the percent excess of cells with 53BP1 foci increased significantly after
exposure to a mean absorbed dose of 0.2 g>y0(001) (Figure 5-8). In presence of
KU55933, the percentage of cells with 53BP1 foci in control (sham-irradiated) cell cultures
was reducedp(<0.001) and the increaskie to low fluence of a particles was suppressed
(Figure 5-8.

3.7 MeV a particles (LET ~109 keV/um)

10

*%k%k

*kk

0 \ #

1%} KU 55933

53BP1 foci formation
% excess of cells with foci relative to control

Figure 5-8: Percent excess cells with 53BP1 foci in confluent AG1522 cell cultures 3ftelaexposure to a
mean absorbed dose of 0.2 cGy from 3.7 MeV particles in presence or absence of KU55933 (***:
p <0.001)

Following exposure to a similar mean dose (0.2 cGy) of 1000 ¥e&/or 600 MeV
283 jons, the increases in 53BP1 foci were also greater than expected based on the fraction of
nuclei traversed by an energetic ion (1.2 % and 3.5 %, respectively). In presenceMf 10 p

KU55933, both the sham-irradiated culturps<(.001) and 1000 MeV/tfFe- (Figure 5-9
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Panel A) or 600 MeV/(f®Si-irradiated cultures (Figure 5-9, Panel B) had notably reduced

fractions of cells with 53BP1 focp(<0.001).
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Figure 5-9: Percent excess of cells with 53BP1 foci in confluent AG1522 cell culturels &8fter exposure to
0.2 cGy from (A) 1000MeV/u **Fe ions or (B)600MeV/u ?%Si ions in presence or absence of KU55933 (*:
p <0.05 **: p <0.01 and ***: p <0.001)

These results support the involvement of ATM signaling in mediating the propagation
of events leading to DNA damage in bystander cells. Whether ATM mediates bystander

effects at the level of the irradiated or the bystander cells remains to be investigated.

Role of DNA repair

To gain insight into the role of DNA repair in the biological effects of low fluence
particulate radiations, confluent AG1522 cell cultures were incubated in presence or absence
of 10 pM PJ34, a PARP-1 inhibitor 24 h before exposure. They were then irradiated with
0.2 cGy from 3.7 Me\W particles, 1000 MeV/&°Fe ions or 600 MeV/&"Si ions and fixedn
situ for analyses of 53BP1 foci or subcultured for analyses of micronuclei formatton, 3
later.

In cell cultures exposed to 3.7 MeMpatrticles, significant increases in micronucleus
formation were observed after exposure to mean absorbed doses of 0.2 opl0®p (@and
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p <0.01, respectively) (Figure 5-10, Panel A). Similarly, increases in percent excesis of ¢
with 53BP1 foci were detected after exposure to 0.2 cGy prticles p <0.001) (Figure

5-10, Panel B). Following similar radiation treatments, in presence of PJ34, the increases in
the percentage of cells with micronuclgi €0.05 andp <0.01) (Figure 5-10, Panel A) or
53BP1 foci p <0.001) (Figure 5-10, Panel B) were enhanced.

A B
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Figure 5-10: (A) Percentage of micronucleated cells and (B) Percent excess of cells vi8BP1 foci in
confluent AG1522 cell cultures 3 h after exposure to mean absorbed doses of 0, 0.21@Gy from
3.7 MeV a particles in presence or absence of PJ34 (:<0.05, **: p<0.01 and ***: p <0.001)

Similarly, after exposure to mean absorbed dose of 0.2 cGy from 1000 ME¢/u
ions or 600 MeV/*®Si ions, the percent excess of cells with 53BP1 foci were increased
(p <0.01 andp <0.001, respectively). In presence of PJ34, those increases were also

enhancedd <0.001) (Figure 5-11, Panels A and B).
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Figure 5-11: Percent excess of cells with 53BP1 foci in confluent AG1522 cell culture$ after exposure
to 0.2 cGy from (A) 1000MeV/u *°Fe ions or (B)600MeV/u %Si ions in presence or absence of 10/u
PJ34 (¢*: p<0.01 and ***; p<0.001)

Unrepaired oxidative base damage and single strand breaks were reported to cause
clustered DNA damage, in particular when they occur in close proximity to each other, which
can lead to double strand breaks (Sutherland, Bennett et al. 2000). Therefore, the imcreases
micronucleus formation and 53BP1 foci, a reflection of DNA double strand breaks, upon
inhibition of PARP-1 by PJ34 may result from DNA single strand breaks and base damage in
bystander cells. The latter types of DNA damage may arise from oxidative stress resulting
from perturbations in oxidative metabolism in the bystander cells as was previously shown

(Narayanan, Goodwin et al. 199%zzam, De Toledo et al. 2003hao, Stewart et al. 2003).

5.4 Implication of partial tension of oxygen

5.4.1 Rationale

All forms of aerobic life have developed sophisticated antioxidant defenses to cope

with the threat of oxidation from molecular oxygen (Haddad 2002). Currently, cell cultures
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performed in “classic” incubators with 5 % CG, are under an oxygen atmospheric pressure of
~160mmHg (=21 % O,). In vivo, the partial tension of oxygeR®) in tissues never reaches
ambient conditions (i.e. 168m Hg). For example, thBo, of arterial blood is 95 + BimHg
and of venous blood is ~40m Hg; in most tissues, theo, varies between 6 and 8m Hg
(1-5 % ) (Wion, Dematteis et al. 2008). Thus, classicalitro method of culturing cells
derived from human tissue imposes an artificial "hyperoxia" with consequences that have not
been entirely characterized. Although cells can adapt their physiological functions to ambient
P, the activity of their oxygen and redox-sensitive signaling molecules could be altered
Such variations in the activity of signaling molecules (e.g. transcription factors) could affect
cell fate; in the context of this project, these variations could modulate the extent of
propagation of radiation-induced bystander effects.

While acutely hypoxic cells are more resistant to the effects of ionizing radiation than
their normoxic counterparts (Russo, Mitchell et al. 19Bsown and Giaccia 1994)a
controversy exists as to whether an increase or a decrease in the metabolic production of ROS
is involved in hypoxic signaling (Bunn and Poyton 19@handel, Maltepe et al. 1998
Chandel and Schumacker 2000). According to Clanton (Clanton 2007), ROS are more likely
to be produced in hypoxia when there is both a high reductive capacity (e.g., high
NADH/NAD™) and sufficient @ available for reaction (Figure 5)12Regardless, it is well
established that decreased Rocells results in reduced cytotoxicity, mutagenicity and DNA
breaks (Hall and Giaccia 2012). Further, under hypoxic condition, the rate of cell growth
(Bedford and Mitchell 1974), expression of specific genes (Wilson and Sutherland 1989
Graeber, Peterson et al. 198emenza 2000), and ion channels activity may be modulated

(Lopez-Barneo, Lopez-Lopez et al. 1988).
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Figure 5-12. Depiction of the proposed bimodal distribution of reactive oxygen species formation as a

function of Po, in which hypoxia and hyperoxia support elevations in ROS formation (Clanton 2007).

The role of the different effects of hypoxia (i.e.,Hower than ambient) on the
expression of bystander responses in cell cultures exposed to low doses/low fluences of
radiation at physiologicaPo, has not been studied. Standard protocols for cell culture at
ambientPg, may or may not accurately simulatevivo physiological responses to ionizing
radiation. The characterization of the bystander effect under conditions that imimmio
conditions is important for our understanding of intercellular communication and their
implications for radiation protection and radiation therapy.

We hypothesie that varying the oxygen tension at which cells are cultured and
irradiated results in variable effects on the propagation of the bystander effect in confluent
AG1522 cell cultures exposed to low fluence of &V o particles. To test this hypothesis,
confluent cell cultures we incubated in a 5 % CCand 0.5 % oxygen in air atmosphere for
48 h before exposure to 0.2 cGy. At different times after exposure, the cells were processed

for analyses of different biological endpoints.
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In addition to the above, we also hypothesize that inherent oxidative status of cells
affects the propagation of stressful effects from a-particle-irradiated to neighboring non-
irradiated cells. To this end, AG1522 cells were pretreated with N.Sert-butyl
hydroperoxide tBOOH) prior to exposure to low fluences of 31V a particles in a %6
CO, in ambient air atmospherebutyl hydroperoxide is a pharmacological compound that
induces oxidative stressSimilar to other organic peroxides,decomposesto alkoxyl and
peroxyl radicals in the presence of metal ions; the net result is generation of ROS, including
H,O, (Woodbine, Brunton et al. 2011). Decomposition ttBOOH accelerates lipid
peroxidation, damages DNA, and causes depletion of glutathione (GSH) (Sandstrgm 1991
Guidarelli, Cattabeni et al. 199Kim, Kang et al. 1998). Incubation of cells in 0.8lufor

periods of time extending to 4 h did not alter clonogenic survival (our data, not shown).

5.4.2 Results

Effect of Pe on DNA damage induced by low mean doses of a. particles

Three hours after exposure to 0, 0.2, 1 or 10 cGy fronM8V «a patrticles, cells
population were harvested and assayed for micronucleus formation aitd detection of
53BP1 foci. Under culture and irradiation atmosphere of 21 £ r@ative to control,
significant increases in micronuclei formation occurred after exposure to 0.2, 1 or 10 cGy
(p <0.01,p <0.001 andp <0.001, respectively) (Figure 5-13). When cells were cultured and
irradiated at 0.5 % ©in air atmosphere, these increases were attenuated but remained
significantly greater than controp €0.05, p <0.001 andp <0.001 for 0.2, 1 and 10 cGy
respectively). The difference in induction of micronuclei observed at 0.5 and 21 % oxygen
atmosphere was significant only after irradiation of the cultures with 10 pG¥.(5)

(Figure 5-13.
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Effect of tBOOH on DNA damage induced by low mean doses of o. particles

When cell cultures were incubated in an atmosphere of 2% % Me presence of
0.5 pM t-BOOH dissolved in 48 h-conditioned medium and added to cell cultures 1 h before
irradiation and maintained in its presence until they were harvested 3 h later, increases in
micronuclei formation were higher than in absence of the drug. The difference was

significant after exposure tocGy from a particles p <0.05) (Figure 5-183

3.7 MeV a-particles (LET ~ 109 keV/um)
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Figure 5-13: Percentage of micronucleated cells in confluent AG1522 cell cultures after exposure to a
mean absorbed dose of 0, 0.2, 1 or 10 cGy from 3.7 Me\particles at different oxygen tensions and cells
maintained at 21 % oxygen atmosphere in presence or absence of OM frbutyl hydroperoxide at the
time of irradiation. The cell cultures were subcultured in presence of cytochalasin B 3 h after gosure.

(*: p<0.05, **: p<0.01 and ***: p <0.001)

Similarly, in low mean dose irradiated cells, 53BP1 foci formation was reduced at
0.5 % of Q compared to 21 % of Leven in non-irradiated cell culturep €0.001), and

enhanced in presence of 0.8 =BOOH (p <0.001) (Figure 5-14
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Figure 5-14: Fraction of cell with 53BP1 foci in confluent AG1522 cell cultures after exposureta mean
dose of 0, 0.2 or 1 cGy from 3.7 Me¥ patrticles at different oxygen tensions and in presence or absence of
0.5 WM t-butyl hydroperoxide (*: p <0.05, **: p <0.01 and ***; p <0.001)

Whereas at low oxygen concentrations (0.5 % omua#Hg), the cellular level of
ROS may be less than that at 21 % ef(@L60mm Hg) (Figure 5-12), emerging data from
our laboratory suggests that enhanced DNA repair activity may ocdaorvato-like Po,
which may explain the differences in induced DNA damage atRowand ambienfq,.
However, the presence of 0.Mut-BOOH in confluent cell cultures enhanced the effect of

ionizing radiation at inducing DNA damage.

Effect of Pg on stress-responsive protein levels in cell cultures exposed to low doses of
a particles

Normal human fibroblast sense oxygen levels and respond to hypoxic conditions
through the regulation of multiple signaling pathways. We investigated responses of
confluent AG1522 fibroblasts under low (0.5 %) or ambient (21 %) oxygen atmosphere.
AG1522 cell cultures were exposed to absorbed doses of 0, 0.2, 1 or 10 cGy of 3.7 MeV
a particles and harvested for western blot analyses 3 h later.
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The levels of p-TP53serl5, p¥f', and p-ERK1/2 were examined. In the

representative data shown in Figure 5-15, the relative change in protein levels was compared

to non-irradiated samples maintained at 21 % @nsistent with previous data, exposure to

0.2, 1 or 10 cGy from 3.¥leV a particles increased p-TP53ser15, $¥4and p-ERK1/2

levels when cell cultures were maintained and irradiated at nd?mdR1 % Q) (Figure

5-15). Under reduced Lconcentration in the incubation atmosphere, the basal level of p-

TP53ser15 and p2%™ were lower than in normoxia (note that the data in Figure 5-15 are

from samples electrophoresed in the same gel). In irradiated samples, the increases in protein

levels relative to control were also less than under normoxia. These differences were

particularly noticeable at 10 cGy where 60 % of cells were presumably traversedrbgla pa

through the nucleus. In case of p-ERK1/2, greater increase occurred under hypoxia than at

21% Oy in irradiated samples (a factor of 2 at 0.2 cGy) (Figure)5-15
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Figure 5-15: Western blot analyses of p2¥3", p-TP53ser15 or p-ERK1/2 in AG1522 confluent cells B

after exposure to a mean absorbed dose of 0, 0.2, 1 or 10 cGy frori BleV a particles. Staining with

Ponceau S Red was used as loading control. Fold change represents relative change comparedritrol

at 21 % of O,
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Together, the data suggest that under reduced oxygen tension, the magnitude of
stressful effects in bystander cells is reduced. The significance of enhanced phosphorylation

of ERK1/2 remains to be understood.

5.5 Discussion

Although radiation-induced bystander effects have been well documented and the
mechanisms underlying their expression are increasingly being understood, the spectrum of
signaling events involved and their inductionimtvivodike conditions is not yet clear.
Several pathways are involved in the bystander phenomenon, and different cell types respond
differently to bystander signaling. In this projecting human fibroblasts exposed to a or
HZE particles, we have shown that several mechanisms are implicated in the propagation of
high-LET radiation-induced bystander effects. Gap junction intercellular communication,
DNA repair, and partial tension of oxygen have an effect in the propagation of the bystander
effect. This list is non-exhaustive and others factors likely play a role in an inter-connected
manner with other mechanisms.

Gap junctions are dynamic structures that are critical for diverse physiological
functions (Harris 2001Mehta 2007). Evidence for the involvement of GJIC in propagation
of bystander effects has been derived from studies with high- and low-LET radiations
(Azzam, de Toledo et al. 1998ishayee, Rao et al. 1999ance and Wiley 1999Zhou,
Randers-Pehrson et al. 2000). The intercellular channels that comprise gap junctions are
formed by connexin proteins (Harris 200Manipulation (|1) of connexin expression/gap-
junction gating by chemical agents, forced connexin expression by transfection, and connexin
gene knockout studies provide substantial evidence for the participation of gap junctions in
radiation-induced bystander effects (Azzam, de Toledo et al.; 2#Band Hei 2003). This

is supported by stabilization and up-regulation of connexin mRNA and protein by ionizing
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radiation (Azzam, de Toledo et al. 2003). Disruption of cholesterol rich areas of the plasma
membrane where gap-junction channels partition (Schubert, Schubert et al. 2002) attenuated
propagation of IR effects to bystander cells (Nagasawa, Cremesti et gl.HAQ#2, Hoarau

et al. 2009).

Connexins are an extensive family of proteins comprising several members (20
isoform9 (Harris 2001) that are expressed in different tissues and have different selectivity
related to the size and charge of the communicated molecules (Kumar and Gilula 1996
Veenstra 1996). By allowing direct intercellular transfer of ions and low-molecular-weight
molecules, gap junctions provide a powerful pathway for molecular signaling between cells.
Though the properties of channels formed by each isoform differ, in general, connexin pores
are considered to allow permeation of small molecules (reviewed in Harris 2001). Previous
work from our laboratory has shown that cx 43major constituent of gap junctions in
AG1522 cells has a prominent role in the propagation of bystander effect after exposure to
low fluences ot particles (Azzam, de Toledo et al. 20@kzam, de Toledo et al. 2003
this project, using the same type of cells, evidence was presented that suggests that junctional
communication also plays a role in HZE-particle-induced bystander effects. This was
supported by reduced induction of p-TP53ser15,"p21p-ERK1/2 and cx 43 levels in
confluent cells treated with the gap-junction inhibitor AGA (Figure 5-7), and when low
density cell populations were exposed HZE particles (Figure 5-6). Significantly, exposure to
HZE particles up-regulates cx 43 (Figure 5-7), an effect that was associated with functional
gap junction intercellular communication (GJIC) (Gaillard, Pusset et al. 2009).

Effective repair systems (Base Excision Repair, Nucleotide Excision Repair, Non
Homologous End Joining, and Homologous Recombination) explain how cells maintain
integrity of their genetic information. Defective DNA repair, particularly failure to repair

double strand breaks, may result in chromosomal rearrangements (deletions, translocation)
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which in turn may promote neoplastic transformation. It would be intriguing, in the context of
radiation-induced bystander effects, to investigate whether it is the initial induced DNA
damage in bystander cells or the capacity to repair it (Joubert and Foray 2007) that
determines the extent of long-term consequences of the bystander effect in progeny cells
Additional mechanisms affecting the source of events leading to DNA damage in bystander
cells and their progeny (e.g. epigenetic events) may activate ROS-generatiagesxor
silence genes coding for antioxidants among other effects. Nevertheless, the capacity to repair
the induced damage remains the critical factor that determines the nature and amount of
residual DNA damage. Apoptosis and immune responses may act to eliminate damaged cells
and promote healthy survival (Averbeck 2008biana, Feinendegen et al. 2009).

Using a chemical inhibitor, the data in Figure 5-9 confirm that expression of 53BP1
foci in control, irradiated and bystander cells is dependent on ATM function. However,
genetic approaches would be necessary to dissect the exact role of ATM in the bystander
response. Other studies with energetic helium ions have shown that ATM activation in
bystander cells is dependent on ATR function (Burdak-Rothkamm, Rothkamm et al. 2008)
Furthermore, the induction and co-localization of ATR, 53BP1, p-ATM-S1981"424nd
BRCAL1 foci in non-targeted cells was demonstrated, suggesting their involvement in
bystander DNA-damage signaling and providing additional potential targets for modulation
of bystander responses. Compared to our studies with;hase cells, 53BP1 bystander
foci were induced in an ATR dependent manner predominantly in S-phase cells (Burdak-
Rothkamm, Short et al. 200Burdak-Rothkamm, Rothkamm et al. 2008).

Highlighting the role of DNA repair in expression of high LET-radiation-induced
bystander effects, incubation of cell cultures with an inhibitor of PARP-1 resulted in higher
magnitude of 53BP1 foci formation aftexposure to low fluences of o or HZE particles.

Inhibitors of PARP-1 have been shown to enhance the cytotoxic effects of ionizing radiation
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and chemotherapy agents. Strategies whereby PARP-1 is down-regulated, specifically in
tumor cells, may therefore potentiate lethal effects of certain types of radiotherapy such as
radio-immunotherapy whereby non all tumor cells uptake radiolabeled antibodies (Akudugu
and Howell 2011).

Recent work in our laboratory has indicated that bystander effects are not only a low
fluence phenomenon; cells exposed to a or HZE particles communicate with each other (via
gap junctions) to enhance the cytotoxic effects of such energetic pariaksa\(apromporn,
de Toledo et al. 2011). Down-regulation of PARP-1 in such cells would yet further enhance
cytotoxic effects and result in greater benefit. This will broaden the rationale of using PARP
inhibitors as radio-sensitizers. A net benefit may be a lowering of the radiation dose delivered
to the patient.

This project shows that the concentration of molecular oxygen significantly modulates
the magnitude of stressful effects in cell cultures exposed to low fluences of particulate high-
LET radiation § particles). Whereas, stressful bystander effects were still expressed under
hypoxia (0.5 % @ (Figure 5-13, Figure 5-14 and Figure 5-15), they were attenuated
compared to effects observed under ambient atmosphere of 21 Ftigdestingly, ERK1/2
phosphorylation was stimulated under reduced oxygen tension. Expansion of these studies to
investigate global changes in gene expression (e.g. at mRNA, protein levels) and epigenetic
events (e.g. methylation patterns, level of different microRNAs) following irradiation under
reduced or ambient oxygen levels would enhance our understanding of mechanisms. It is
relevant to radiotherapy, and may contribute to formulation of adequate models to assessing
the health effects of exposure to low fluences of energetic radiations with high LET

character.
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Chapter 6 Conclusion

Usingin vitro tissue culture approach, this thesis project has provided evidence for the
existence of HZE-particle-induced bystander effects. Using different biological endpoints,
exposure of confluent normal human diploid AG1522 fibroblasts to low fluences of energetic
iron (1000 MeV/u®*Fe, LET ~151 keV/um) or silicon (600 MeV#Si, LET ~50 keV/um)
ions indicated that a greater fraction of cells participate in the stress response than predicted
by microdosimetric considerations. The percentage of micronucleated cells and nuclei with
53BP1 foci in cultures exposed to a dose of 0.2 cGy of either iron or silicon ions were
significantly greater (0.05<«0.001) than the 1.2 or 3.5 % of nuclei that would have been
traversed, respectively, by a particle track. The data suggested that the fraction of cells
sustaining DNA damage increases with time up to 3 h after the initial exposure, fgllowin
which it decreased and returned to near basal levels by 24 h. The results were supported by
extensive modulation of stress-responsive proteins. The levels 8f'bahd HDM2 that
control the G cell cycle checkpoint were elevated whether the irradiated cells were
maintained in confluence or subcultured to lower density. Similar increases in these proteins
following y-irradiation were detected when AG1522 cultures were exposed to 50 cGy or
greater dose (Azzam, de Toledo et al. 1998). Consistent with persistent stressful effects,
extensive protein oxidation and lipid peroxidation were detected 24 h after exposure of
confluent AG1522 cells to low mean absorbed doses of HZE particles. Together, the results
were similar to effects observed using similar endpoints in cell cultures exposed, in parallel,
to low fluences of 3.MeV a particles (LET ~109 keV/um). Interestingly, they were not
observed following exposure to 290 MeVAIC ions (LET ~13 keV/um). However,
biological changes measured by other endpoints may be induced. Carbon ions of 300 MeV/u

are used clinically to treat cancer, and the absence of propagation of stressful effiects fr
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cells exposed to such ions to their normal neighboring bystanders would reduce the risk of
second malignancy in these bystanders. Alternatively, a therapeutic gain of propagating
events that lead to lethal effects in adjacent bystander tumor cells would be lost.

Mechanistic studies have shown that gap-junction intercellular communication is an
important mediator of the HZE-particle-induced bystander effect. Its inhibition witn 18-
glycerretinic acid (AGA) greatly attenuated the level of stress in low fluence iron-irradiated
cell cultures. Direct interactions between cells are fundamental to the development and
function of multicellular organisms. This thesis has demonstrated that intercellular
communication plays an important role in the response to ionizing radiation. It showed that
cell populations respond as a wholeHt6E and o particles of high-LET characteristics (50 to
150 keV/um). It indicated that the response is not restricted to that of the individual traversed
cells but involves the non-traversed cells alimilar to earlier observations with a-particle-
irradiated cell cultures (Gaillard, Pusset et al. 2009), the use of CR-39 nuclear test&rdet
fused to tissue culture dishes has greatly supported the participation of bystander cells in the
response to low fluence iron ion irradiation (1000 MeV/u). The modulation of the expression
of genes related to cell cycle regulation and/or DNA damage sensing and repataimiby
cells could alter not only their growth characteristics but also their response to endogenous
DNA damage.

In addition to the role of gap-junction intercellular communication in mediating HZE-
particle-induced bystander effects, this thesis shows the involvement of DNA repair
processes. The results with 53BP1 foci formation showed that by 24 h after exposure to
1000 MeV/u*Fe ions (Figure 3-2), the excess formation of foci returned to near basal level.
This may suggest that the induction of DNA damage in bystander cells is transient and is
repairable; however, accumulating data with HZE-particle-irradiated cell cultures show that

bystander cells experience genomic instability that manifests in persistent induction of
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chromosomal damage in progeny of the bystander cells (Buonanno, de Toledo et;al. 2011
Ponnaiya, Suzuki et al. 2011). The latter effect was associated with perturbations in
biochemical processes associated with oxidative metabolism (Buonanno, de Toledo et al.
201% Ponnaiya, Suzuki et al. 2011).

Both junctional communication and DNA repair may be also impacted by cellular
partial oxygen tension. Our results show that maintenance and irradiation of cells at lower
than ambient oxygen atmosphere attenuates the HZE-particle-induced bystander effect
assessed by micronucleus formation and 53BP1 foci induction. The effect was associated
with enhanced phosphorylation of ERK1/2 proteins. Cellulari®expected to modulate the
cellular redox-environment and may affect long-term effects on oxidative metabolism. It is
therefore likely that multiple mechanisms act in concert to mediate the propagation of
signaling events from irradiated to non-irradiated cells. The mechanisms may involve, in
particular secreted factors that render even cells that are not in direct physical contact in
communication with each other (Shao, Stewart et al. 28®3ewed in Mothersill and
Seymour 2004Shao, Folkard et al. 2008).

Although, the expression of bystander effects has been considered a low dose ionizing
radiation phenomenon, in case of cells traversed even by a single HZE particle track, the
traversed cell receives a massive dose concentrated in the center of the track where the local
dose may reach thousands of Gy while a few microns away it may be close to zero
(Cucinotta, Nikjoo et al. 2000). In addition, charged particles undergo nuclear reactions to
produce secondary particles (i.e. heavy ion fragments, electrons, photons, protons, neutrons,
anda particles) that create their own tracks of molecular damage, and may therefore extend
the range of damage beyond that of the primary particle track (Nelson 2003). In this project,
FLUKA calculations showed that the dose deposited by secondary particles due to the

fragmentation of the 1000 MeVAiFe, 600 MeV/u?Si or 290 MeV/u*“C HZE primary ions
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through the flaskettes do not appreciably contribute to the total dose. Moreover, the
fragments are projected in a direction close to incident ions; thus the probability that
fragments affect surrounding cell nuclei is low. Only electronssgegad everywhere with

some being even perpendicular to the incident beam and thus may affect adjacent cells.
However, under different culture conditions, fragmentation products may induce signaling
pathways that can enhance or attenuate the induced bystander effects in a manner that
depends on the LET of the secondary products (Elmore, Lao et al. 2009).

Together, the studies in this project may contribute to the efforts by NASA, other
space agencies around the world, and in particular regulatory organizations to develop risk
based radiation exposure guidelines, and may be pertinent to radiotherapy with particulate
radiations. Identifying the propagated factors that promote stressful effects in bystander cells
would have obvious translational applications; it would increase our understanding of
radiation-induced signaling pathways in particular intercellular communication under stress

conditions.
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