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Chapter 1

Introduction

1.1 Context and motivations

The main interest of our research has been in analyzing the local structure of large social
networks. How is a node connected to the network? How can we analyze the whole set of
nodes of the network in a reasonable time? Does the way a node is connected say anything
about the person represented by the node? Is there a correlation between the structure of
the network surrounding an individual and their age, gender or practices (mobile phone
uses, online popularity etc.)?

So the goal of this research is to characterize individuals by analyzing the social network
in which they are embedded. Such a characterization is useful for instance for service
providers, for whom the knowledge of their customers is very important. It is essential
to know what services customers want and how their expectations evolve so that offers
or advertisement can be adjusted and sent to people who are likely to react favorably to
them.

In order to obtain such a characterization of users, one can adopt different ap-
proaches. One can use socio-demographic data as age, gender, job, location etc. Other
information that can be used, which may be even more useful and reliable than socio-
demographic one, is the traces left by customers while using various services. Mobile
phone providers thus know how many times a day a person makes phone-calls, how long
their conversations are, with how many different people etc. In the same way, developers
of online platforms can also use traces of usage. For instance on a platform of social net-
working and sharing of photos and videos like Flickr (www.flickr.com), users can declare
each other as contacts, upload photos or videos, make them public, write comments etc.
One can use this information (amount of published content, comments, number of contacts
etc.) as a characterization of each person’s activity on the platform. Different users can
then be proposed different services depending on their uses.

Nowadays, traces of uses are present everywhere and are generally easy to obtain.
Almost everybody has a mobile phone, an email address and more and more people use
online platforms like Facebook, MySpace, Flickr, Twitter, Wikipedia, Delicious, LinkedIn
etc. Some of these platforms are for social networking, others for publishing contents
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4 CHAPTER 1. INTRODUCTION

(photos, videos, text etc.), for information etc. but all of them keep traces of human
activity. The development of Internet, of so-called Web2.0, of communications in general
but also of powerful computers being able to register, store and process large amounts of
data gives thus unprecedented opportunities for human behavior analysis. Traditionally
this was a field of study for sociologists, but it becomes of interest for more and more
scientists, from many domains. Such databases containing traces of uses are interesting
for instance for mathematicians and computer scientists, who search for relevant and
tractable measures to characterize people uses, develop algorithms and software to store
and efficiently process such large data etc. They are also interesting for physicists who
try to discover the processes behind different activities or dynamics of people and for
economists who try for instance to unfold people motivation in making choices.

Traces of uses can be analyzed from different points of view. One approach is the com-
putation of different statistics on frequency or duration of calls in the case of mobile phone
communications, or comments and published content in the case of online platforms. This
gave interesting insights on the uses of different services on news groups [FSWO06], wikis
[HBBO7], online dating communities [HEL04], question/answer forums [ZAAQT, [AZBAOS],
Youtube ﬂm, IMAAOS| and many other platforms. Another approach, the one we
adopt in this thesis, is that of analysis of the social network in which people are em-
bedded. When using different services, online or offline, people connect to each other.
These connections can be modeled as social networks, merely graphs where the vertices
(or nodes) are the persons and the edges (or links) correspond to observed connections be-
tween them. It is important to take into consideration these connections because people
aren’t isolated entities, they live together, interact and influence each other. A often-
confirmed phenomenon is that of ”word-of-mouth” [EBK69, [FS65, [AD07]: when making
a choice, people often talk to other people, ask for advice and are more likely to choose
something if someone they trust has already chosen it. Moreover, people connecting in
the same way to the others might have similar behaviors, like the same things etc. It
is thus important to see, analyze and characterize people and their uses by taking into
consideration the context in which they evolve, the people to which they connect, so the
social networks in which they are embedded.

In sociology, the analysis of social networks hasn’t appeared with the databases of
traces of uses, but a lot of time before, when Internet and mobile communications didn’t
exist yet. Already present in the work of G. Simmel [Sim55a] (English translation) in the
very beginning of the 20th century, it had a real development in the 1950s, when scholars
like John A. Barnes, Elisabeth Bott, Sigfried F. Nadel studied patterns of ties between
individuals [Bar54], kinship relations [Both7] and social structure [Nad57]. Then, in the
1970s Harrison White and his students at Harvard University, among which Mark Gra-
novetter and Barry Wellman, elaborated and popularized social network analysis. Since
then, questions like strength of personal ties [Gra78], social capital [Col88| [Bur92], social
roles in a network [LWTI, BES9] and many others keep cropping up. Traditionally, when
studying social networks, sociologists used to gather data by interviews with the analyzed
people. Such data is very rich, very detailed, but it takes time to obtain as one has to
interview all the persons in the study. Recordings of traces of uses available nowadays
offer new possibilities for social network analysis. However, one has a much less detailed
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image of human activities and relations between individuals. A lot of information is not
visible in the traces of uses and one cannot ask the studied people about this missing data,
as in interviews. Thus, one has no idea about the type of relation between two persons:
are they family, friends, colleagues, do they know each other at all? Also, one does not see
all the connections between the two persons. Maybe they do not call each other by mobile
phone, but have other types of contact, by line phone or e-mail etc. However, even if one
does not have the same quality as in data gathered from interviews, obtaining the data
is much easier, the amounts are much more important and they are about many people.
The difficulty thus changes from obtaining the data to analyzing it.

As a social network is, after all, a graph, one generally uses graph theory when study-
ing social networks. Moreover, large social networks (with, let’s say, some thousands of
nodes) are also complex networks. This is a common name for large graphs modeling
relations between entities (persons, institutions, places etc.) found in real-life. A lot of
excitement has surrounded the field of the analysis of complex networks since the first
studies in the domain, at the end of the 1990s. What created all the excitement was
the constant discovery that real-world large graphs are very different from the so-called
random networks, so are not random. ”"Random networks” here means networks where
there is no constraint for linking two nodes by an edge: any two nodes of the network
can be connected by an edge with a same probability. This defines a model of random
generation of networks which was introduced by Erdos and Renyi in the 1960s [ERG0],
thus being the first and the simplest network generation model. Probably the first paper
describing differences between real-world graphs and random ones was [WS98] by Watts
and Strogatz. As the graphs analyzed in this paper were different from those generated by
the Erdos-Renyi model, the authors concluded that this model wasn’t adapted for gener-
ation of realistic graphs. As opposed to the Erdos-Renyi model where any two nodes can
be connected by a link with the same probability, in real life there is probably a reason for
which two nodes become connected, there must be some factors that make a real-world
graph come to life and evolve in a certain way. The authors proposed another network
generation model and thus began a long series of models. Probably the most famous in
this series are the ones proposed by Kleinberg [Kle00] and Barabasi and Albert [BA99],
but many others exist [LKFO05] [KRRT99, etc.

Since these first studies, researchers have constantly noted differences between real-
world graphs and random ones. Basically, no matter from which context the graph comes
(sociology, biology, economy, linguistics, computer science etc.), in almost (if not) all the
cases, this graph has the same properties as all the other real-world graphs, thus belonging
to the group of ”complex networks”. We present briefly some of these properties. Complex
networks have a heterogeneous distribution of the degree: most of the nodes are connected
to very few others, while a small fraction of nodes are connected to a very large number
of nodes. Also, most of the vertices of the graph belong to a same giant component: for
most pairs of nodes, one can go from one node of the pair to the other one by following
the edges of the graph. Even more, when going from the first node to the second one in
the most direct way one crosses only a small number of edges, usually at most 20. And
this even if the graph has several millions of nodes. Another property shared by complex
networks is that of the high local density: if two nodes are connected to a common node,
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there is a high probability that they are connected to each other, too. Here "high” means
a lot higher than in random networks. These properties have been observed for instance
in citation graphs [Red98], protein-protein interaction networks [GRO3, [WE0T], biological
neural networks [MiOOT01, ISGST02], food webs [DWMO02], social networks modeling
online relations [MKGT 08, [ABA(3] and many others. As said before, when creating a
random generation model, researchers try to identify the factors leading to the creation of
links and thus to explain the formation of real-world networks. The quality of the proposed
model of network generation is measured by the capacity of the model to produce networks
that have (some of) the properties of real graphs.

There are several approaches for analyzing complex networks in general and social
networks in particular. Generally one can place the analysis at one of the following three
levels: global, intermediate or local. At the global level one takes into consideration the
network as a whole and computes different properties for this set. From the previously
listed properties, the computation of the giant component, of the distance between the
nodes and of the distribution of the number of contacts are included in the global approach.
In the intermediate approach one analyzes each node by taking into consideration the
whole network. At this level one can compute for instance groups of nodes that are
densely connected inside the group and sparsely connected to the other groups; this is
called community detection and has been the object of many studies like [Eve80), [GN02|
Vir03l [CMN04, BGLLOS] and many others. Also at the intermediate level one can compute
the ”importance” of each node, usually expressed in terms of centrality (e.g. betweenness
[EreTT7], closeness, eigen vector [Bon8&7], page rank [BP9S] etc.). Finally, at the local level,
a widely used measure is the clustering coefficient [WS98| [HK79] measuring the local
density of the network. Briefly one computes how connected are to each other the nodes
to which a given node is connected (as compared to the case where all these nodes are
connected to each other). In this local approach the idea is to analyze each node by taking
into consideration only the nodes surrounding it and not the whole network. This is the
approach that we consider in this thesis.

We want to answer the following question: given a possibly large social network, de-
scribe its local structure, so the way each one of the nodes is connected to the surrounding
network. This description should thus offer a characterization of the individuals belonging
to a social network by taking into consideration only the structure of the social network
(and not other information on the individuals). The computation of this description
should take little time and memory so it can be applied to large social networks. To our
knowledge, existing methods either place the analysis at the intermediate level (so they
characterize the node by taking into consideration the whole network), either offer too
little information (like the clustering coefficient that only counts the connections between
the contacts of one node).

We propose a method to answer this question, so a method that analyzes the local
structure of a given graph and describes the way each node is connected to the network.
This method takes into consideration the links each node has with other nodes and the
links between these nodes. We apply this method to two social networks: one modeling
mobile phone communications and the other one modeling activity of MySpace users. In
these networks each node corresponds to a person; when analyzing each node we call
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the corresponding person ego. As we analyze the way ego is connected to the network,
this analysis can be called egocentred. Our approach here is related to the analysis of
egocentred networks in sociology. In this approach, one studies the personal relations a
given individual (ego) has with other individuals. The data for such studies is obtained
by interviews with ego who describes his relations with the other persons and, sometimes,
the relations between these persons [Wel79), [Wel85. [Gri98] [Gro05]. Here we try to adapt
this approach to large social networks, where the egocentred networks are obtained by
focusing on each individual and his links in the network. The egocentred networks thus
obtained contain less information, are less detailed than those obtained by interviews with
ego. The advantage however is that the networks obtained from large graphs are all built
in the same way, from observed interactions, and thus are not subjective to ego’s opinion
on his relations and especially on the relations between his contacts.

The proposed method computes a description of the way each node is connected to
the surrounding network and also of how the different persons ego is connected to are
placed in relation with each other. As it is local, this method does not need the whole
social network in order to characterize one node (as opposed to intermediate methods),
but merely the nodes to which ego is connected and the links between them. Thus, the
method can be applied even if one has only fractions of a certain social network. It can be
applied as well to small networks built from interviews as to large social networks. Once
again, because it is local, its complexity when analyzing one ego is also ”local” i.e. it
depends only on how many contacts ego has in the network. This is important because it
can be easily applied to large networks; to give an idea, our implementation of the method
runs in 30 minutes for all the nodes in a social network with 3 million nodes and 6 million
edges on a computer with standard configuration.

After having obtained a characterization of the different persons by taking into con-
sideration the social network in which they are embedded, one can search for correlations
between this description and other measures characterizing the individuals. These mea-
sures can be socio-demographic data (age, gender, job etc.) or indicators of people activity.
For instance for the mobile phone network we use the intensity of communication of each
person (number of calls, duration, number of SMS etc.), while for the MySpace network
we use measures of online popularity. If the different parameters and the local structure of
the network (obtained by applying the proposed method) are found to be correlated, then
one can use the parameters in order to infer the local structure and vice-versa. This can be
useful when some of the data is missing, for instance if one has the social network in which
the individual is embedded but does not have the other information characterizing him.
Also, one can divide the persons in the given social network into groups depending on the
local structure of the network surrounding them: people connected in identical or similar
ways to the network are put in the same group; people with different local structures are
put into different groups. This approach is related to that of computing ”roles” of nodes
in a social network, where nodes occupying the same position, having the same function
in the network are grouped together. Note that when searching for social roles (and so in
our approach here), nodes put together in the same group are not necessarily connected to
each other nor have common contacts, they are just connected in the same way to the net-
work. The problems of dividing individuals into groups based on a prior characterization,



8 CHAPTER 1. INTRODUCTION

of research of correlations between indicators and of prediction of different parameters are
frequently found in data mining. We use some well-known techniques from this domain
in order to solve the different problems.

In the following section we present the structure of this thesis and its contributions.

1.2 Thesis overview and contributions

The rest of this thesis is divided into three parts.

Part [[ presents an overview of existing studies in the different fields of this thesis. We
begin by presenting some basic notions and algorithms of graph theory and of data mining
in Chapter 2l Next, we present the field of complex networks, several properties, how to
compute them and the differences with random networks. Some models and algorithms for
random generation of graphs are also discussed. At the end of Chapter [Bla special place is
given to the problems of identifying frequent patterns and network motifs, two problems
related to the approach adopted in this thesis. Chapter @ then presents social networks and
several important topics in the domain, both in small detailed social networks obtained
from interviews and in large social networks modeling phone communications and online
activities. We also discuss some differences between offline and online social networks by
comparing a mobile phone graph to a graph obtained from activity on Flickr. This is an
original work, from which a part has been published in [SP09a]. We finish this
chapter by presenting some marketing studies using social networks.

Part [I] is the main part of this thesis. Chapter [l first introduces the method for
characterizing the local structure of large social networks. We present the method, some
algorithmic aspects and a comparison with other existing measures and methods. Part of
this chapter has been published in [SP09b]. We continue in Chapter [6] with an analysis
of the online popularity of artists on MySpace in relation with the social structures in
which the artists are embedded. This study on MySpace popularity has been published
in [SCBI10]. In Chapter [l we then begin the analysis of a social network modeling mobile
phone communications. After some first statistics, we study the contacts of each person
(ego) and their relative positions in the social network in relation with each other and with
ego. We finish this part by Chapter [8 on clustering of individuals in the mobile phone
network depending on the network structures in which they are embedded. We compare
the group associated to each person with other information we have on the individuals i.e.
age, gender and intensity of communication. Parts of the work presented in these last two
chapters have been published in [SSPGI0].

The last part concludes this thesis and presents some possible directions for future
work.

The appendix contains the French translation of the introduction and of Chapter [E]
the central chapter of this thesis.
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1.2.1 Publications

The research carried out during this PhD thesis leaded to the following publications:

International conferences with reviewing process and proceedings:

Alina Stoica, Thomas Couronné, Jean-Samuel Beuscart. To be a star is not
only metaphoric: from popularity to social linkage. The 4th International AAAI
Conference on Weblogs and Social Media (ICWSM), Washington, United States,
2010.

[CSB10] Thomas Couronné, Alina Stoica, Jean-Samuel Beuscart. Online social network
popularity evolution: an additive mixture model. The 2010 International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM), Odense,
Denmark, 2010.

[SP09b] Alina Stoica, Christophe Prieur. Structure of neighborhoods in a large social
network. The 2009 IEEE International Conference on Social Computing (Social-
Com), Vancouver, Canada, 2009.

Journals:

Christophe Prieur, Alina Stoica, Zbigniew Smoreda. Extraction de réseaux
égocentrés dans un (tres grand) réseau social. Bulletin de méthodologie sociologique,
number 101, 2009.

Workshop and conferences with abstract-based submission:

[SSPG10] Alina Stoica, Zbigniew Smoreda, Christophe Prieur, Jean-Loup Guillaume.
Age, Gender and Communication Networks. NetMob, Workshop on the Analysis of
Mobile Phone Networks, Boston, United States, 2010.

Alina Stoica, Christophe Prieur. Structure of ego-centered networks in very large
social networks. The XXIX International Social Network Conference (Sunbelt), San
Diego, United States, 2009.
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Part 1

Overview and survey
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In this part we present the different fields to which this thesis is related. We begin
by reviewing several basic concepts of graph theory and data mining. Next we make a
survey of existing studies on complex networks, by presenting their main properties, how
to compute them and also some existing network models and random graphs generators.
We continue with a survey of questioning and advances on social networks, from different
points of view, going from detailed sociological approaches to analysis of large databases
on phone communications and online activities.

Section 5] discussing several differences between an online and an offline network, is
an original work.

We finish this part with a presentation of marketing studies that use social networks.
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Chapter 2

Basic notions

We present here some basic graph-theory concepts and an overview of data mining algo-
rithms.

2.1 Graph theory concepts

A graph G = (V,E) is a set V of elements called vertices along with a set of so-called
edges E C V x V connecting pairs of vertices in V. Network is a synonym for graph used
especially in sciences like sociology or biology. We interchangeably use the terms vertex
and node to refer to the elements of the set V', and similarly edge and link to refer to the
elements of the set E, although vertex and edge are usually associated to the notion of
graph, while node and link are associated to that of network. The graph G is undirected if
for all (u,v) € E also (v,u) € E i.e. edges are unordered pairs of nodes. If pairs of nodes
are ordered, so edges have direction, the graph is directed ; in this case edges are usually
called arcs. The graph G is simple if it has no multiple edges (i.e. for all u,v € V there is at
most one edge connecting u to v) and no self-loops ((v,v) ¢ E, for all v € V). Throughout
this document, unless specified otherwise, the considered graphs are simple and undirected.
The complement graph of a graph G = (V, E) is a graph G’ = (V', E’) where the vertices
are the same as in G (i.e. V/ = V) and the edges are all the possible edges between vertices
in V' that are not present in F (i.e. E' = {(u,v),u,v € V and (u,v) ¢ E}).

Neighborhood: A vertex u € V is a neighbor of the vertex v € V' if and only if (u,v) €
E; in this case the two vertices are said to be adjacent. The set N(v) = {u € V, (u,v) € E}
represents the neighborhood of v, N [v] = N(v) U {v} represents its closed neighborhood
and d(v) = |N(v)| represents its degree.

Paths and Connectedness: A path in a graph is a sequence of vertices such that
from each of its vertices there is an edge to the next vertex in the sequence. A path where
the first vertex in the sequence is the same as the last vertex in the sequence is called a
cycle. The length of the path is the number of edges the path uses. The distance between
two vertices v and v is the length of a shortest path from u to v. If there is no such path,
the distance is infinite and the two vertices are not connected. A connected component is
a maximal set of vertices where for every pair of vertices there is a finite path connecting

15
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them. A graph is connected if it has exactly one connected component containing all of
its vertices. The diameter of a graph is the largest distance found in the graph (when
taking any two of its vertices). Of course this definition makes sense only for connected
graphs, so one usually restricts the computation of the diameter to the largest connected
component of the graph.

Graph isomorphism: Two graphs G = (Vig, E¢) and H = (Vi, Ey) are isomorphic
if and only if there exists a bijective function ¢ : Vg — Vp (called isomorphism of G and
H) such that any two vertices u and v are adjacent in G if and only if p(u) and ¢(v)
are adjacent in H. When G and H are one and the same graph, the function ¢ is called
automorphism of G. The graph isomorphism is an equivalence relation on graphs so it
partitions the class of graphs into equivalence classes, called isomorphism classes.

Density: The density p of a graph G = (V, E) with at least 2 vertices is the ratio

between the number of edges of the graph and the total number of possible edges: p =
E|

Iy~

( ’ %ubgraphs: Given a graph G = (Vz, Eg), a graph H = (Vy, Egy) is a subgraph of G if
Vi C Vi and for all u,v € Vp, if (u,v) € Ey then (u,v) € Eg. H is an induced subgraph
of G if Vg C Vg and for all u,v € Vi, (u,v) € Ey if and only if (u,v) € Eg. As a special
case, a triangle is a connected triplet of vertices (u,v,w) with (u,v), (u,w), (v,w) € E.

Graph traversal: A graph traversal is a way of visiting all the vertices of a graph
by following its edges. The most used graph traversals are the depth-first search (DFS)
and the breadth-first search (BFS). In both, one starts with a node, called the root, and
explores its neighbors, their neighbors etc. until all the vertices are explored. For each
node, its unexplored neighbors are called its children. In the DFS one starts with the root,
then explores one child, its children, their children etc. before passing to the next child.
In the BF'S one starts with the root, then explores all its children, then their children etc.

Representation: Let n be the number of vertices of a graph G (i.e. n = |V|) and m
be the number of its edges (i.e. m = |E|). The adjacency matriz of the graph G is an xn
matrix A such that A; ; = 1if (i,j) € E and 0 otherwise. With this encoding, testing the
presence of an edge takes ©(1) time, which is time efficient. However, running through
the neighborhood of a vertex v takes ©(n) time; moreover this representation takes ©(n?)
space which is inefficient if the graph is sparse (i.e. m € o(n?)).

Another graph encoding, more useful in the case of large graphs, is the adjacency list
representation where, for each vertex, one stores the (sorted) list of its neighbors. This rep-
resentation needs ©(m) space, which is efficient, and running through N (v) takes O(d(v))
time. However testing the presence of an edge (u,v) takes ©(d(v)) time (O(log(d(v))) if
N (v) is sorted). This encoding is nevertheless much more efficient than the previous one
for large sparse graphs.

Time and space complexity: Even if this is not necessarily connected to the graph
theory, we explain the three Landau notations: O, © and o. Given two functions f and g,
one writes f(x) € O(g(z)) if and only if there exists a positive real number k£ and a real
number zo such that |f(z)| < k|g(z)| for all x > z¢; in this case f is bounded above by
g asymptotically. One writes f(x) € ©(g(z)) if and only if there exist two positive real
numbers k; and k2 and a real number xg such that k1|g(x)| < |f(z)| < k2|g(z)| for all z >
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xo; in this case f is bounded both above and below by g asymptotically. Finally, one writes
f(x) € o(g(x)) if Ve > 0 there exists a real positive number zy such that |f(z)| < ¢|g(x)]
for all z > xg; in this case f is dominated by g asymptotically.

For a useful introduction to graph theory and algorithms, see for instance [CLROI].

2.2 Data mining

Data mining is the process of extracting patterns from data. It is the application of
statistical methods, data analysis and artificial intelligence to (often large) databases in
order to extract meaningful information. It is commonly used in a wide range of profiling
practices, such as marketing, surveillance, fraud detection and scientific discovery. We
present here some useful data mining methods and several classical statistical measures.
We focus our presentation on the goals of the different methods and on how they can
be used, rather than the mathematical considerations (which explain how the method
works and why it gives good results). For useful books on the subject, see for instance
HTFOL].

Data mining methods can be categorized into two sets: descriptive methods and pre-
dictive methods. In both methods, one has a database of individuals (or objects, elements
etc.) which are characterized by a set of variables: for each individual, there is a value for
each variabld]. In the first category of methods (descriptive) there is no favored variable;
in the second case, there is one, also called the target variable (or dependent or variable
to explain). Variables that can take only a few values can be seen as categories or classes;
they are called categorical variables. Variables that can take any real value (maybe re-
stricted to some interval) are called continuous variables.

Descriptive methods

Given a set of p individuals and a set of n variables characterizing them, one needs to
group them in a limited number k of classes (or clusters) such that individuals with similar
characteristics are grouped together. The vector of values of the n variables characterizing
each individual is called feature vector. One has no a priori idea of the possible classes
nor, sometimes, of their number. This type of problem (called clustering) occurs often
in marketing, where companies need to divide the set of their customers in classes in order
to make offers adapted to the customers’ expectations and characteristics, in medicine,
where patients reacting similarly to medication need to be treated in a certain way, in
sociology, trade etc. There are several methods for answering this question:

e partition algorithms (k-means, density methods, Kohonen self organizing maps, re-
lational clustering etc.),

e hierarchical methods (either agglomerative (”bottom-up”) or divisive (”top-down”)),

e fuzzy methods.

1Some values might be missing; this is a special case that we do not discuss here.
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There are several aspects that need to be taken into consideration when doing a cluster-
ing; often the results depend on them. First, one often needs a notion of distance between
individuals: the individuals who are similar must be close to each other according to this
distance. In most cases the chosen definition of distance is the Fuclidean one:

where u and v are the two individuals characterized by n variables with values uq, ...u, and
v1, ...0p, respectively. Other possible distance are the Manhattan distance (d(u,v) = |lu —
vl|1 = Do |u; —vi]), the angle between the corresponding vectors, the Hamming distance
(which measures the minimum number of substitutions required to change one member
into another) etc. Second, the number of clusters in which the population is divided must
be decided. There are some methods that compute this number by themselves (e.g. the
relational clustering), others where it is easy to compute it (e.g. hierarchical clustering),
but also methods where this number must be given as input (e.g. k-means). This can
be a problem if the given number does not correspond to the real distribution of the
population. Third, the validation of the results might be difficult if one has no ideas of
how the individuals should be grouped (especially if the dataset is very large). There
are different methods of validation depending on the clustering algorithm. Usually, the
algorithm tries to minimize the intra-cluster variance (the mean of the square distance from
each individual to the center of the cluster) and to maximize the inter-cluster variance (the
mean of the square distance from each cluster center to the global center). The center
(or centroid) C' of a cluster K is a vector representing the average of all the points in

the cluster i.e. for each variable i, its value is the arithmetic mean of the values for that

1
variable of all the points in the cluster: Cg (i) = — > cx vi where ng denotes the
nK

number of individuals in the cluster K, v is a point in the cluster and v; is its value for
the i—th variable.

The k-means algorithm assigns each point to the cluster whose center is nearest
(according to the chosen distance). For creating k clusters, the algorithm works as it
follows: first, it generates k& random points as clusters centers (if these centers are not
given as input); then, it assigns each point to the nearest cluster center and it compute
the new cluster centers; it repeats the two previous steps until some convergence criterion
is met. The main advantages of this algorithm are its simplicity and speed which allows
it to run on large datasets. Its disadvantage is that it does not yield the same result with
each run, since the resulting clusters depend on the initial random assignments. Also,
to compute the clusters, it minimizes intra-cluster variance, but does not ensure that the
result has a global minimum of variance. Therefore, when clustering a set of points, one
should also perform several k-means clusterings and choose the one with the minimal
variance. As the number of clusters must given as input, one should perform several
clustering with different numbers k of clusters. To choose the best number of clusters, one
can compute the average silhouette [KR90] of each clustering and take the one with the
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highest average H For each point and its attributed cluster, the silhouette measures how
similar that point is to points in its own cluster compared to points in other clusters. This
value ranges from —1 (indicating that the point has been put in the wrong cluster) to 1
(indicating that the point is very similar to the other points in its cluster). A clustering
with a higher average silhouette is therefore a better clustering.

In the Kohonen self-organizing map[Koh90], the aim is to cluster the individuals
and also to build a bi-dimensional map with n layers (a layer for each variable describing
the individuals) where the individuals are placed depending on their topological proximity.
The map’s smallest entity is a cell, and each individual is placed in only one cell (the
individual has the same position and therefore cell on all the layers); there are \/H cells
where p is the size of the population to cluster. The method has three steps. The first one
is the learning. The feature vectors of the cells are randomly initialized. Then a subset
of the population to model is randomly selected; for each individual in this selection the
SOM finds the ("winner”) cell whose feature vector is the most similar (i.e. is the closed
by a given distance). The feature vector of the winner cell is updated to take into account
the feature values of the individual. The feature vector of the neighbor cells are then
modified to reduce the vectors gradient with the new values of the cells’ feature vector.
The second step of the algorithm is the processing of the global population to model: each
individual is placed in the cell with the closest feature vector. Finally the last step is the
clustering of the cells with, for instance, a k-means algorithm, based on the similarity of
their feature vectors.

In the hierarchical agglomerative clustering clusters are built by progressively
merging existing clusters, thus creating a hierarchy of clusters. The initial clusters are the
individuals themselves. At each step of the algorithm, the two closest clusters are merged.
Different definitions of distance between clusters can be used: the Euclidian distance
between their centers, between all their individuals, between the two far-most individuals
or, on the contrary, between the closest two, the increase in variance for the cluster being
merged (Ward’s criterion) etc. Each agglomeration occurs at a greater distance between
clusters than the previous agglomeration, and one can decide to stop clustering either
when the clusters are too far apart to be merged (distance criterion) or when there is a
sufficiently small number of clusters (number criterion). As it needs to compute, several
times, the distances between all the clusters, this method can be hardly applied on large
data.

As opposed to the first two types of methods (partition algorithms and hierarchical
methods), the fuzzy algorithms do not place each individual in only one cluster, but rather
compute a probability of belonging to each one of the clusters.

Another set of descriptive methods, whose goals are quite different from those of the
clustering algorithms, are the factorial methods. Here the idea is to project the data in
a smaller number of dimensions (smaller than the n characterizing the individuals), usu-
ally 2 or 3, and thus be able to visualize it. One very popular method in this category is
the principal component analysis [PeaQ1] which transforms the n possibly correlated

2This is the method proposed and implemented by the statistical tool of Matlab:
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/bq-679x-18.html
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variables into a smaller number of uncorrelated variables called principal components. The
first principal component accounts for as much of the variability in the data as possible,
and each succeeding component accounts for as much of the remaining variability as pos-
sible. The new variables are linear combinations of the initial variables. By computing the
values of these new variables for each individual, one has a representation of the individ-
uals in a smaller number of variables. One can also plot them in a 2D-space represented
by the first two principal components and thus have an image of the similarity between
individuals.

Predictive methods

In this case there is a special variable among the n characterizing the individuals. The
different methods try to estimate the value of this variable (called variable to explain or
dependent or target variable) depending on the values of the other variables characterizing
the individuals (called explaining or independent variables). If the target variable can have
only a few values, these values are considered as classes or categories of individuals. In this
case, using the explaining variables, one tries to discover the set of rules that make that
each individual is given a certain class. This way, if a new individual enters the population,
one can attribute him a class depending on his values for the explaining variables. This
problem is called classification. Another problem is the prediction, where the target
variable is continuous. In this case one needs to find the relation between the value
of the target variable and those of the explaining variables, relation usually given by a
formula. The two types of problems occur often in medicine (where one needs to predict
the efficiency of medication, the probability that a patient recover), in industry (where
one needs to compute the probability of occurrence of a certain phenomenon), in sociology
(in order to predict the behavior of a person), in meteorology, agriculture, banking etc.

The main classification methods are:

e the decision trees,

the linear discriminant analysis,

the logistic regression,

the k-nearest neighbors method,

the methods based on neural networks: the support vector machines, the genetic
algorithms, the expert systems.

The main prediction method is the linear regression.

In the classification methods, one usually uses a set of randomly chosen individuals
(among the existing population) in order to learn the rules (so build a model) by which
the different individuals are divided in the different classes. This is the learning set. Then
one takes a set of individuals from the remaining population and test the precision of the
model on them. The precision can be measured by the fraction of individuals whose real
class is the same as the one predicted by the model. Nevertheless, not all methods build a
model from a learning set; some methods simply attribute a class to each individual based
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on some measures and not on a set of rules. For instance, the method of the k-nearest
neighbors attributes to each individual the class of the k nearest individuals from him
(according to a distance e.g. the Euclidian one). However, the choice of k, of the distance
to use and the fact that the classification of each new individual requires the manipulation
of a whole set of already classified individuals make this method difficult to use. One
usually prefers the methods where a model is built, especially when classifying large data.

A decision tree is used in order to find a set of rules that associate each individual to a
class. It begins by identifying the variable that divides best the individuals in the different
classes such that one obtains some sub-populations, called nodes. The population of each
node is then divided in other nodes based on the variable that splits best the individuals
in classes. This is repeated until no division is possible or wanted. By construction, the
final nodes (the leaves) contain mainly individuals of a single class. Each individual is
associated to a leaf, so to a certain class, with a rather high probability when he fulfills
the set of rules allowing to get from the root to that leaf. The set of rules of all the leaves
represents the classification model, used to attribute classes to new individuals. This
method is fast and the classification rules are easy to understand. Moreover it does not
require any special conditions for the explaining variables (as for instance some probability
laws or absence of collinearity). However, each level of the tree depends on the previous
one, which makes that the tree might find local optimums instead of global ones.

As a prediction method, the linear regression estimates the value of the target vari-
able depending on the explaining variables. More precisely it estimates the conditional
expectation of the dependent variable - that is, the average value of the dependent vari-
able when the independent variables are held fixed. Regression analysis is widely used
for prediction but also to understand which among the independent variables are related
to the dependent variable, and to explore the forms of these relationships. This method
works only under several conditions: the explaining variables are continuous and linearly
independent; other assumptions are also made on the sample data and on the errors of
the modeling function.

We also present some useful statistical measures. The standard deviation o measures
the dispersion of a variable X: o, = \/E[(X — p)?] where the operator E denotes the
average or expected value and p, = E[X]. When the variable X has N values z1,...,xn

the standard deviation is o, = \/ % Zfi1(xz — 11z)?. If one cannot obtain all the values
taken by X for the given population, one can use a sample of the population. In this case
the standard deviation is only estimated; the denominator is replaced by N — 1 instead
of N, where N is the size of the sample. Sometimes it may be useful to center and scale

a variable X i.e. to transform X into a new variable Z with mean zero and standard
deviation one: z; = M for all 7 from 1 to V.
Oy
The covariance of two variables X and Y is a measure of how much the two variables
change together and is defined as Cov(X,Y) = E[(X — E[X])(Y — E[Y])]. If the two

variables have N values respectively z1, ...,z and y1, ..., yn, the covariance is Cov(X,Y) =

1 N
N 2im1 (T = pa) (Ui — py)-
Often one needs to measure the intensity of the relationship (or the correlation) be-
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tween two variables X and Y. If the two wvariables are continuous, this can be done by

computing the linear correlation coefficient (also called Pearson correlation) 7., between
cov(XY) _ E[(X—pa) (Y —py)]

Tz0y Oz0y

. The Pearson correla-

the two variables: rxy = corr(X,Y) =
tion is +1 in the case of a perfect increasing (positive) linear relationship, —1 in the case
of a perfect decreasing (negative) linear relationship, and some value between —1 and 1
in all the other cases, indicating the degree of linear dependence between the variables.
As it approaches zero the correlation is weaker. The closer the coefficient is to either —1
or 1, the stronger the correlation between the variables. If the two wvariables take only a
few values (i.e. they represent classes or categories), one can verify if the two variables
are independent by performing a y? test (read chi-square). One can use this test to de-
cide if the category X dependents on the class Y to which the individual belongs. If one
needs to measure the correlation between a continuous variable and a categorization, one
can perform a ANOVA test. This test tells if the mean of the continuous variable is the
same for the different categories. If this is true then the two variables are independent.
For instance, one can use the ANOVA test in order to see if the salary (the continuous
variable) is independent from the gender (the categories, male and female). However, this
test says only if the means are different or not, but it does not say for which categories
the means are significantly different and for which they are not. A test that can provide
such information is called a multiple comparison test. Such tests are the Bonferroni and
the Scheffé tests.

The x? and the ANOVA are exemples of hypothesis tests. Such tests are used to
prove a given hypothesis H;. For that, one submits the opposite hypothesis Hy to a test
T that must be satisfied if Hy is true. The idea is to show that T is not satisfied which
means that Hy is false, so Hy is true. Hj is called the null hypothesis while H; is called
the alternative hypothesis. To build the test T', one associates a statistic to Hp using the
observations; this statistic must follow a theoretical law if H is true. Next one measures
the value v of the statistic on the given data and compares this value to the theoretical
values of the law. Also one chooses a significance level as a threshold from which the
hypothesis is rejected; usually this value is at most 0.05. Now one computes the p-value
which is the probability to observe such a value as v if Hy is true. If this probability is
lower than the significance level, the null hypothesis Hy is rejected, so Hy is accepted. On
the contrary, if the p — value is higher than the significance level, the null hypothesis can’t
be rejected, so one does not know if H; is true.



Chapter 3

Complex networks

Informally, complex networks are modeling of large data. In many domains, sets of objects
and relations between them can be modeled as graphs where the vertices are the objects
and the edges correspond to relations. At the end of the 1990’s, due to the exponential
growth of the size of relational databases, along with the development of communication
tools, researchers began to analyze graphs modeling large datasets (with at least several
thousands of recordings). Although graph theory has a long tradition, the analysis of
graphs modeling large datasets became a new field of study which began to develop very
fast, being surrounded by a lot of excitement. This is due not just to the development of
powerful computers able to store and handle such large datasets but also (and especially)
to the discovery of a set of properties shared by these graphs. Large graphs (and by large
we mean at least 10° vertices and edges) modeling datasets from numerous domains such
as biology, linguistics, inter-personal communication, WWW etc. are constantly found to
share several characteristics [BA99, (WSO8, [New(3]. They are therefore grouped under a
common name, that of complex networks.

There are numerous examples of complex networks extracted from real-life phenomena.
They can model for instance the presence of words in sentences, interactions between
proteins, collaborations between boards of directors, traces of phone calls or online activity,
mobility dynamics of people, connections by plane between airports etc. They are the
object of study of many researchers, from several domains, going from computer scientists,
mathematicians, physicists, to biologists, sociologists, economists etc. The interest comes
from the importance of the study of such networks in understanding how nature works, how
people interact, how different relations appear and evolve etc. Moreover these interactions
or relations are not random, they do not appear with an equal probability between two
objects or two persons, but they are triggered by different factors. This was a major
discovery in the analysis of complex networks: they are not random networks. Even more,
as said before, they share several non-trivial properties. Almost every large network found
in nature, no matter its origin, follows a same set of characteristics. We detail these
properties, along with computational issues and examples of complex networks presenting
them, in Section 3.1l We then present several models for network generation in Section [3.2]
We finish this discussion on complex networks by showing some techniques for frequent
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patterns discovery and motifs identification in Section

3.1 Complex networks properties

We present several properties shared by most complex networks, there values in randomly
generated networks, some computational aspects and real-world examples.

In this section on complex networks properties, by randomly generated graph we mean
a graph where no particular constraint is imposed (besides the number of vertices and
edges): there can be an edge between each pair of vertices with the same probability. This
model of graph generation was introduced by Erdos and Renyi [ER60] and is a pioneer
work in the domain. The idea is very simple: we start with n nodes and we add edges such
that, for each pair of nodes, an edge is added with equal probability p. This defines a set
of graphs G(n,p) where (n,p) are the parameters of the model. Such graphs have some
interesting properties that we present in the same time as those of real-world networks.

For a graph G = (V, E), let n denote its number of vertices (i.e. n = |V]) and m its
number of edges (i.e. m = |E).

Graphs randomly generated by the Erdos-Renyi model are used for comparisons with
real networks: for each real graph with n vertices and m edges, one generates random

graphs G(n,p) with p = so graphs that have the same number of vertices and

m
n(n—1)
edges as the original one. Several characteristics are found to be shared by real-world
networks but not by the randomly generated graphs. We present here each one of these
characteristics, their values in several examples from real life and in random graphs but
also existing methods for their computation in large graphs. Remember that we compute
these properties in graphs that have typically at least 10° vertices and an even higher
number of edges. A computation that takes O(n?) time (with n the number of vertices)
is impractical for such graphs. Therefore one needs to use efficient (preferentially linear)
algorithms when analyzing complex networks.

Degree distribution.

Definition. Generally in complex networks most nodes have very low degrees while
there is a small fraction of nodes with very high degrees. When plotting the distribution
of degrees, one obtains a curve that is very close to the axis (see Figure BIKa)). This
is very different from the binomial degree distribution of random networks (see Figure
BIKd)); in these random graphs the probability that a node has degree k is

P(degree(v) = k) = <n ; 1>pk(1 —p)ik,

On the contrary, many real-world graphs have degree distributions with probability density
functions of the form
p(z) = ax™”

where p(x) is the probability to encounter the value x, a is a constant and 7 is an expo-
nent; distributions with such probability density functions are called power-laws and -y is
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Figure 3.1: In many complex networks the degree distribution plot looks like (a), while in
random networks it looks like (b).

called the power-law exponent. A power law distribution is sometimes called a scale-free
distribution, which intuitively means that it looks the same regardless of on what scale
we look at it. More precisely, there exists a function g such that p(bx) = g(b)p(x) for all
b (x and p(x) previously defined): g(b) = b~7. The scale-free property means that when
multiplying x by a scaling factor b the shape of the distribution p(z) remains unchanged
except for a multiplicative constant: it does not depend on the scale. When plotted in a
log-log scale, a power-law distribution is a straight line (see Figure B.2)).

Computation. Computing the degree distribution of a given graph is quite easy, one
needs only to find the degree of each node and then to count the number of occurrences of
each degree. On the contrary, trying to match the degree distribution to a power-law is not
a simple task: the power law could be only in the tail of the distribution and not over the
entire distribution, estimators of the power law exponent could be biased, some required
assumptions may not hold etc. There are several methods employed nowadays, like linear
regressions using the plot of the data on the log-log scale (after having distributed the
data in equal-sized bins or in bins with exponentially increasing size), regression using the
cumulative distribution of the degree, maximum-likelihood estimators where the value of
the power law exponent + is estimated such that the likelihood that the data came from
the corresponding power-law distribution is maximized, and many others. Further details
on the mathematics of power-laws can be found in [Mit04} New05] [CSNO7].

Deviations from power-laws. There are many studies on complex networks where the
degree distribution is computed and found to be skewed, with many nodes having a small
degree and a small fraction of nodes having high degrees. However, this does not nec-
essarily mean that the degree distribution is a power-law. There are several examples
of real-world complex networks that present deviations from the power-law distributions;
often their distributions belong to one of the two following cases: power-laws with expo-
nential cutoffs and lognormals. For power-laws with exponential cutoffs, the log-log plot
of the distribution looks like a power-law (so a straight line) for the lower range of values



26 CHAPTER 3. COMPLEX NETWORKS

100000 e
Epinions In-degree  +
10000 | 1
. ]
- 1000 |- L 1
5 +‘++ 1
[=] RS
o} L ]
100 aﬁ% 1
s ]
10 | %ﬁ'% 1
R ]
R
‘| L

1 10 100 1000 10000
In-degree

Figure 3.2: The in-degree distribution on a log-log scale for the Epinions graph (an online
social network of 75,888 people and 508,960 edges [DRO1]). This distribution follows a

power law.

of the degree and then decays very fast for large values (see Figure B3|(left)). Often the
decay is exponential and is usually called an exponential cutoff. This distribution does
not scale and is thus not asymptotically a power law; however, it does approximately scale
over a finite region before the cutoff. This distribution captures limitations of size found
in real world, as for example for the network of airports [ASBS00]. There is a cutoff in the
possible number of nonstop destinations reachable from an airport: this might be because
airports have a limited capacity to handle new edges that they end up reaching. The
lognormal distribution is a distribution whose logarithm is a normal distribution; its plot
in the log-log scale looks like a truncated parabola (see Figure B3|(right)).

Ezxamples of degree distributions in real-world complex networks. The degree distribu-
tion was found to be a power-law or one of the two deviations for the Internet [FFEF99],
the web [AH0I1], graphs modeling activity on online platforms [KNT06, MMGT07], cita-
tion graphs [Red98|, protein-protein interaction networks [GR03, [WF0T], biological neural
networks [MiOOT01l ISGS™02], food webs and many others.

Diameter

Definition. As defined in Section 2.1} the diameter of a graph is the largest distance
in the graph, where a distance is measured for each pair of nodes as the length of a
shortest path between them. In other words, it is the minimum number of hops in which
any node of the graph can reach any other node. This definition makes sense only for
connected graphs, so one generally restricts the computation to the largest connected
component. This is not a problem because in most complex networks there is a giant
connected component that contains the vast majority of nodes.

Besides this classical definition of the diameter, several other terms have been used
to describe the idea of distance between nodes. For instance the effective diameter is a
measure less susceptible to outliers; it is the minimum number of hops in which some
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Figure 3.3: (left) The probability of the number of species per genus of mammals during
the late Quaternary period J[CSNQT7]. This distribution has an exponential cutoff. (right)
The out-degree distribution of a Clickstream graph (a bipartite graph of users and the
web sites they surf [MEOQI]). This distribution is log-normal.

fraction (e.g. 90%) of all connected pairs of nodes can reach each other [TPSE0I].

Another term is that of characteristic path length. For each node of a graph, one
starts by computing the average path length as the average distance from the node to any
other node (in the same connected component). The characteristic path length is then
the median value of the average path length for all the nodes [BT02]. By taking the mean
value of the average path lengths for all the nodes one computes another measure, known
as the average diameter.

A notion connected to that of diameter is the hop-plot [FFF99]. The hop-plot of a
network is its set of pairs (d, g(d)) where d is a natural number and g(d) is the fraction of
connected node pairs whose shortest connecting path has length at most d. See Figure 34
for an example of the hop-plot and the effective diameter in a real-world complex network,
as presented in [CF0G].

Computation. Computing the distance between each pair of nodes can be done by
computing first the distance from one node to every other node; this takes ©(m) time
and O(n) space with a breadth-first search (BFS), where n is the number of nodes of the
graph and m is the number of edges. One does this for each node of the graph, so the
total computation takes ©(nm) time and ©O(n) space. The time complexity is much too
high given that nm is at least 10'0 for real-world complex networks. Faster algorithms
have been proposed [Sei92] but they have a space complexity of ©(n?)
which, once again, is impractical for complex networks. A common solution is to estimate
the different measures. For instance for finding the hop-plot a randomized algorithm that
takes O(n+m)d time and O(n) space, where d is the diameter of the graph, generally very
small, has been proposed in [PGF02]. For the classical definition of the diameter, efficient
algorithms for finding lower and upper bounds have been proposed in [MLHOS|, PCMT0)].
An estimation of the diameter is obtained in a small number of steps (often 10 steps are
sufficient) where a step needs only ©(m) time and ©(n) space.

Ezxamples from real-world complex networks. The diameter of many complex networks
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Figure 3.4: Hop-plot and effective diameter. This is the hop-plot of the Epinions graph
[DRO1]. We see that the number of reachable pairs of nodes flattens out at around 6 hops;
thus the effective diameter of this graph is 6.

has been found to be very small compared to the graph size. The effective diameter was
computed for the Internet graph in [FFF99] and was found to be around 4 for the Internet
AS-level and around 12 for the Router-level. The average diameter was found to be 11.2
for the graph of the Web pages in the nd.edu domain [AJB99|, 18.7 for the power grid and
3.65 for the network of actors [WS98]. Many other examples can be found in the litera-
ture; see for instance [New03] for a list of examples. This phenomenon of small diameter
of complex networks, known as the ”small-world” phenomenon, is rather surprising given
the large size of the networks. Even more, the diameter is found to be shrinking in time
[LKE05]. On the contrary, the Erdos-Renyi random networks have a diameter concen-
trated about log n/log z where n is the number of nodes in the graph and z is the average
degree; in this case, the diameter grows slowly as the number of nodes increases.

Clustering coefficient

Definition. The clustering coefficient can be computed for each node of a graph and,
in this case, measures how densely the neighbors of the node are connected to each other,
or it can be computed for the whole graph and, in this case, measures the transitivity of
the graph. For a node, the clustering coefficient represents the number of links between
its neighbors compared to the total possible number of links. If the node has degree d > 1,

then its clustering coefficient is 2t where nb; is the number of links between the neighbors

of the node [WS98|] (see Figure2 for an exemple). Note that nb; is the number of
triangles to which the node belongs. Now, for the clustering coefficient of the graph, there
are two definitions. One possibility is to compute the mean of the clustering coefficients
of all the nodes with degree at least 1 of the graph. A second definition (also known as
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Figure 3.5: Clustering coefficient. The vertex v has 10 neighbors which are connected by

5 edges. Thus the clustering coefficient of v is ﬁ = %.

2

the transitivity ratio HKT9]) is

3 x the total number of triangles of the graph

the number of connected triplets of the graph

where a connected triplet is formed by a central node connected to two others; the factor
of 3 comes from the fact that a triangle is counted as three triplets.

Computation. For the computation of the clustering coefficient one needs to count the
triangles containing a node (and repeat this for all the nodes of the graph when counting
the clustering coefficient of the whole graph). The fastest algorithm for doing this relies on
matrix product [IR78 [CWR&T, [AYZ97]. This is based on the observation that elements on
the diagonal of A3 (where A is the adjacency matrix of the graph) represent the number
of triangles to which the nodes of the graph belong. Thus the counting of triangles can
be done in O(n¥) time where w < 2.376 is the fast matrix product exponent [CW8T].
The problem of this approach is that the adjacency matrix must be stored; moreover
the matrix A? must be computed and stored leading to a ©(n?) supplementary space
complexity. Other solutions for the problem of counting of triangles have been proposed
[Lat08] [SW05]; they are slower than the previous one but require less space (@(m%) time
and ©(n) space for the first one, ©(n?) or ©(nm) time and ©(1) space for the second one),
and also list the triangles (i.e. they give the 3 vertices belonging to each triangle). In the
case of graphs with power-law degree distributions, the listing of triangles is faster, taking
O(mné) time and ©O(n) space where « is the exponent of the power-law. See [Lat08] for
a detailed survey of algorithms for triangles computation and listing.

Ezamples from real-world complex networks. The clustering coefficient is found to be
significantly higher in real-world complex networks that in random ones. In networks
generated by the Erdos-Renyi model the clustering coefficient is equal to = where z is
the average node degree and n is the number of nodes. When n is large, the clustering
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Figure 3.6: Connected components. Most of the nodes belong to a giant component and
few nodes belong to small connected components.

coefficient takes very low values. On the contrary, the value of the clustering coefficient
is rather high in real-world complex networks (compared to the one in random networks
anyway). Thus, in [WS98] the clustering coefficient (computed as the average value of the
clustering coefficients of the nodes) is found to be 0.79 in the actor network as opposed
to 0.00027 in the corresponding random network and 0.08 for the power grid network
as opposed to 0.005 for the random graph. Many other researchers have computed the
clustering coefficient and found it to be significantly higher than in random networks in

citation graphs [Red98|, protein-protein interaction networks [GRO3| [WF0T], biological
neural networks [MiOO™01, ISGS™02|, food webs [DWMO02], social networks modeling on-

line relations [MKG¥08, [ABA03|] and many others.

Connected components

The connected components and their sizes are computed using a graph traversal (like a
breadth-first search ) in ©(n) space and ©(m) time. In most real-world complex networks,
it has been observed that most of the nodes belong to a huge connected component, often
called giant component, while the rest of the nodes (if any) belong to small connected
components, like in Figure There is a giant connected component for instance in
citation graphs (ArXiv and pattents) [LKF05], in the autonomous systems graph [LKF05],
in a web graph of 39M pages in the .uk domain [Lat08], in metabolic networks [JMBOO1],

food webs [DWM02], email networks [NFB02] and many others.
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In random graphs, for a low value of p, there are few edges and all the connected
components are small, having an exponential size distribution with finite mean size. For
high values of p, the graphs have a giant component with O(n) of the nodes in the graph
belonging to this component (where 7 is the total number of nodes). The rest of the com-
ponents again have an exponential size distribution with finite mean size. The changeover
(called the phase transition) between these two regimes occurs at p = 1/N.

Communities

Communities (or modules or clusters) are groups of nodes better connected between
themselves (i.e. have more links) than to the rest of the network. A large body of work has
been devoted to defining and identifying communities in complex networks. There exists
agglomerative methods (where nodes are grouped into hierarchies, which are grouped
themselves into high-level hierarchies and so on [Eve80]), divisive methods (where, starting
with the whole graph, edges are removed in a prescribed order based on a given measure, as
for instance edge-betweenness [GN02]), methods based on max-flow min-cut formulations
FLGO0] or on Kirchoff’s laws [WHO4], local methods (based on local information [Vir03]),
optimization methods (based on the maximization of an objective function [CMN0O4]) and
many others. A very efficient algorithm for extracting communities in large graphs was
proposed in [BGLLOS]. For a survey on community identification, see for instance [For1Q].

The quality of the partitions resulting from these methods is often measured by the
modularity ) of the partition, a measure of the density of links inside communities as
compared to links between communities NGO4]:

1 kik;
=5 X |45

v

} d(ci, cj)

where m is the number of edges of the graph, A;; is the adjacency matrix, k; is the degree
of the node 4, ¢; is the community to which the node i belongs and 0(ci, ¢j) is the Kronecker
delta symbol, equal to 1 if ¢; = ¢; and to 0 otherwise.

As to the significance of the identified communities, it has been observed that community-
like sets of nodes tend to correspond to organizational units in social networks [New(0],
functional modules in biological networks [RSMT02] and scientific disciplines in collabo-
ration networks between scientists [GN02] (see Figure B.1).

Centrality
The centrality is a measure of the relative importance of a node within a network.
There are several definitions of centrality; here we present the most commonly used:

e the degree centrality,
e the betweenness,
e the closeness,

e the eigen vector centrality,
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Figure 3.7: Communities. An example of a coauthorship network depicting collaborations
among scientists at a private research institution [GN02]. Nodes in the network represent
scientists, and a line between two of them indicates that they coauthored a paper during
the period of study.



3.1. COMPLEX NETWORKS PROPERTIES 33

e the page rank.

The degree centrality is the simplest one. It is defined as the number of links a node
has (the degree of the node) divided by n — 1 where n is the number of nodes of the graph
(this is just for normalization; this way the range of values of the degree centrality is 0
to 1). Degree is often interpreted in terms of the immediate risk of a node for catching
whatever is flowing through the network (such as a virus, or some information). While
very simple and easy to compute, this measure does not really capture the importance of
the node as some very high-degree nodes might be placed at the periphery of the network
and thus be important only for a small part of the network. As explained in [Bar(02], if
one measures the degree centrality of nodes in the movie actors network (where two actors
are connected by a link if they have acted together in a movie), the most central actors
are found to be porno actors. Their importance in the movie network is however limited
to the porno section and one can reasonably argue that there are other more important
actors.

The betweenness centrality[FreTT] considers as central nodes that are placed on many
shortest paths between other nodes; these nodes are important as one has to pass trough
them in order to travel efficiently in the different parts of the network. Thus, the between-
ness centrality Cp of a vertex v is defined as

Cp(v) = Z 210

sEVALEV Ost
s#t

where o is the number of shortest paths between s and ¢ and o4 (v) is the number of such
shortest paths that pass trough v. This measure reflects better the notion of importance
of a node than the previous one, but it is costly to compute (it takes O(nm) time using
the most efficient known algorithm [BraO1]) and thus difficult to use on large networks.

The closeness centrality considers as central nodes that are at a short distance from the
other nodes (in the same connected component); thus the closeness of a node is the sum
of the distances between this node and all the other nodes in its connected component
divided by the number of nodes in the component (minus 1, as one does not take into
consideration the node itself). Closeness can be regarded as a measure of how long it will
take information to spread from a given node to other reachable nodes in the network.
Computing the closeness means computing the shortest distance from one node to the other
ones which can be done for each node in O(m) time and ©(n) space with a breadth-first
search (BFS). As the closeness of a node makes sense when compared to that of other nodes
of the graph, one needs to compute it for (all the) other nodes of the graph, so the time
complexity is multiplied by the number of nodes. An efficient randomized approximation
algorithm for computing closeness centrality in weighted graphs has been proposed in
[EW04]; this algorithm estimates the centrality of all vertices with high probability within
a (1 + ¢) factor, € > 0, in near-linear time. See Figure B.§] for an example of graph and
Table [3I] for the values of the degree, the betweenness and the closeness centrailty in this
graph.

The eigen vector centrality[Bon87] and the page rank[BP98| assign relative scores to
all nodes in the network based on the principle that connections to high-scoring nodes
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Figure 3.8: An exemple of graph.

Table 3.1: The degree, betweenness and closeness centrality of nodes A, B and G from

Figure B8
node | degree betwenness closeness
A 4 DX 5H+4+4=29 1/10x (44+2x3+3x%x3)=1.9
B 2 4x6=24 1/I0x (242%x6+2x3) =2
G 1 0 1/I0x (14+2%x3+2x3+4+3x5)=3.2

contribute more to the score of the node in question than equal connections to low-scoring
nodes.

The presented properties are some of the measures one usually computes in complex
networks. These properties can be grouped in three categories depending on the level
where the analysis is done. Thus there are:

global properties computed by taking into consideration the whole network; these are
the degree distribution, the diameter, the connected components etc.;

local properties computed for each node, by taking into consideration the neighborhood
of the node; the clustering coefficient of nodes is such a measure;

intermediate properties computed by taking into consideration the way each node is
connected to the network in the context of the entire network; the identification of
communities and the nodes centrality belong to this approach.

To sum up, there is a set of properties that are significantly different for real-world large
graphs and for randomly generated ones. This means that edges in real graphs are not
randomly created, but there are factors that influence their creation. Many researchers
have tried to explain the formation of edges and, this way, the evolution of complex
networks. Many models of network generation have been thus proposed. We will present
some of them in the next section.

3.2 Models of networks and random generation of networks

This section presents first several models of network generation and then some algorithms
for random generation of networks. First of all, it is important to distinguish between the
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two approaches. In the construction of models of networks, the goal is, given an original
network, to explain the formation of its links. Therefore one can generate an artificial
network from one vertex to a complex object where the resulting network reproduces sev-
eral properties of the original one. However, the resulting network is not randomly chosen
among all the networks with those properties. That is, there may be some networks that
share all the input properties but who never get generated by the model. This is not a
problem since the model does not try to generate all the possible networks with the input
properties but to give an explanation for the formation of links in the original network.
On the contrary, the goal of the random generation of networks is precisely to generate
networks that are randomly (i.e. with the same probability) chosen among all the networks
that have the input properties. In this case, any network with those properties is gener-
ated with an equal probability. If the first approach proposes models in order to explain
the formation of links and therefore the evolution of the network, the second approach
proposes generations of networks that are then used as null models. That is, they are used
as a general characterization of all the networks with the input set of properties. One can
use the null model in order to see if the original network has some other properties that
distinguish it from the null model (or, on the contrary, it is just one ordinary network
with the input properties).

Models of networks

The simplest model of network is the Erdos-Renyi model that was discussed earlier.
In this model no condition is imposed for the formation of links: any two nodes can be
connected by a link with the same probability. However, the graphs generated by this
model are very different from real-world complex networks. Therefore there must be a
logic, a reason behind the formation of links: the links are not randomly created but
generated by one or several factors.

The first model of graph generation after the Erdos-Renyi model was that proposed
by Watts and Strogatz [WS98|. This model, introduced nearly 40 years after that of
Erdos and Renyi, was the first one to generate graphs sharing some of the properties of
real-world complex networks. In this model links do not connect random pairs of nodes,
but each node is connected to k of its closest neighbors (nodes are displayed on a circle).
Next, for each node u, each of its edges (u,v) is rewired with probability p to form some
different edge (u,w), where node w is chosen uniformly at random. The parameter p gives
the randomness of the generated graph: when p = 0 the graph is completely ordered and
when p = 1 the graph is completely random. Between the two, there is a broad region of
values of p in which the clustering coefficient of the network is rather high and the average
shortest path length is low.

Another model introduced just after that of Watts and Strogatz tried to explain an-
other property of large complex-networks: the heterogeneous right skewed distribution of
the degree. This model, introduced in [BA99] and known as the ”preferential attachment
model”, contains two mechanisms: population growth and preferential attachment. The
intuition behind the first mechanism is straightforward: real networks grow in time as new
members join the population. The mechanism of preferential attachment, analogous to Si-
mon’s " Gibrat principle” [Sim55b] and Merton’s ”Matthew Effect” [Mer68|, expresses the
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idea that newly arriving nodes will tend to connect to already well-connected nodes rather
than poorly connected ones. Specifically, Barabasi and Albert defined the probability that
a new node connects to an existing node with degree d as ¢ x d (where ¢ is a normalizing
constant). Barabasi and Albert showed that over a sufficiently long time horizon, the
degree distribution of a growing network exhibiting linear preferential attachment would
converge to a power-law with exponent v = 3.

The graphs generated by the two models, however, do not exhibit all the properties
of real-world complex networks. In the first model, the shape of the degree distribution
is similar to that of random graphs generated by the Erdos-Renyi model. For the graphs
generated by the second model, the power-law exponent of the degree distribution is fixed
at v = 3 (while many real-world graphs deviate from this value), there is exactly one
connected component (while many real-world graphs have several isolated components),
the average degree is constant (while the average degree of some real-world graphs increases
over time [BJNT02, LKF05]).

Many other models have been proposed since these two initial ones. Each model tries
to explain different properties observed in real-world complex networks as for instance
the shrinking diameter (this is done by the forest fire model proposed in [LKFE05]), the
increasing average degree (this is done by the model proposed in ), community
behavior (two models [KKRF99, KRRT99] try to explain this) and many others. See for
instance [CF06] for a detailed presentation of existing network models.

Random generation of networks

Given a set of properties, a generator of random graphs must produce graphs that
are randomly chosen among all the graphs presenting that set of properties. Usually the
properties are computed in an input graph for which one needs to build null models.
Several existing generators produce graphs that preserve the degree distribution of the
input graph. It is the case for instance of the generator introduced in [VLO3] [ that
generates simple connected graphs; this generator needs as input a set of pairs of degree
and number of vertices with that degree. Another generator that preserves, for each node,
its in-degree and its out-degree, was used in ﬂm ; graphs generated this way
served as null model for finding network motifs as we explain in the following section.

Sometimes one needs to generate graphs that have not just a given degree distribution
but also other properties. We present here a generator introduced in [MKEV06] ﬁ based
on dk — series.

The algorithm introduced in [MKEV06] generates graphs that preserve the dk-series dis-
tribution of the given input graph. dK — series describe correlations amongst degrees of nodes
in subgraphs of size d, ford = 0,1, ...,n. For instance, when d = 3 and the input graph is undi-
rected, the 3k—distribution contains the number of connected triplets with degrees k1, ks, k3
for all ky,ko,ks € N. The connected triplets can be triangles and 3—nodes paths, so one
counts separately the triangles and the 3—nodes paths with degrees ki, ko, k3. The generated

!Tool available at http://fabien.viger.free.fr/liafa/generation/
2Tool available at http://www.weizmann.ac.il/mcb/UriAlon/
3Tool available at http://www.sysnet.ucsd.edu/ pmahadevan/topo_research/topo.html
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graphs that preserve the 3k-serie of the input graph will have the same number of triangles
and of 3—nodes paths as the input graph; moreover the connected 3—nodes subgraphs of the
generated graphs will have exactly the same combinations of degrees as the input graph.

When d = 0, the generated graphs have the same average degree as the input one. When
d =1 the degree distribution is preserved. When d = 2, the generated graphs have the same
number of edges with degrees ki, ks for all ki, ks € N. The dk-series have two important
properties: first, graphs having a dk-distribution also have the d’k-distributions, with d' < d;
second, generated graphs are more and more similar to the input graph when d increases,
ending up isomorphic to it when d = n. Using this approach, the authors construct graphs
for d = 0,1,2,3 and demonstrate that these graphs reproduce, with increasing accuracy,
important properties of measured and modeled Internet topologies. They find that the d = 2
case is sufficient for most practical purposes, while d = 3 essentially reconstructs the Internet
AS- and router-level topologies.

3.3 Identification of patterns in complex networks

Frequent patterns

In numerous analysis like mining biochemical structures, program flow control study,
graph comparison or compression etc., one needs to compute the number of occurrences of
a graph @ as subgraph in the graphs G, G, ...G,, of a given database D. This is the graph
query problem. Often one needs to solve a problem close to this one, the frequent graph
patterns problem, where one computes all the graphs ) that are subgraph of a number
of graphs in D, this number being higher than a given threshold (this number is called
the support of @)). There are several algorithms for solving these problems; they can be
grouped in:

e graph-theory based algorithms,
e greedy algorithms,
e algorithms using inductive logic programming.

For the graph-theory based algorithms, one usually follows the general principal of the
Apriori algorithm introduced in for association rule mining: in a ”bottom up”
approach, frequent subsets (here graphs) are extended one item at a time (a step known
as candidate generation), then candidates are tested against the data. The algorithm
terminates when no further successful extensions are found. For instance, AGM [TWMO0]
is an algorithm based on this idea that uses canonical codes for adjacency matrices and
therefore for subgraph matching. Frequent subgraphs are generated in the bottom-up
order by adding one vertex at a time (two already found frequent graphs with the same
number of vertices are joined together in a candidate graph that has one more vertex).
However this algorithm suffers from computational intractability when the graph becomes
too large. Another algorithm, F'SG proposed in [KKOI], uses the same scheme: starting
with frequent graphs with 1 and 2 nodes, it successively generates larger frequent graphs
by adding one edge at a time. The algorithm expects a graph with colored edges and
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nodes; however one usually analyzes graphs that are a special case, having all nodes and
edges of only one color. Also, the algorithm needs to solve the graph and subgraph
isomorphism problems repeatedly which is very slow and inefficient for graphs with only
one color. The algorithm GSPAN introduced in [YH02] uses a different canonical code
for the graphs ) based on depth-first search; this coding scheme gives faster results. The
same canonical code is used in [YHO3|] for mining closed frequent graphs i.e. graphs @
that are not contained in other graphs with the same support. This algorithm, called
CloseGraph uses an efficient scheme for generating candidate graphs based on the DFS
trees of the already found graphs: new edges are added from the last discovered vertex in
the DFS tree to any other vertex situated on the path from the first discovered vertex to
the last discovered one in the DFS tree; new vertices are added by linking to this path.

In the inductive logic programming approach, first order predicates are used in the
description of frequent subgraphs. The WARMR algorithm [DT99] uses this method;
however it needs to check for equivalence of different first-order clauses which is NP-
complete. The algorithm FARMAR [NKOI] uses a weaker equivalence condition to speed
up the search.

In the greedy approach, the graphs @) are chosen such that they minimize a given mea-
sure. For instance, the algorithm SUBDUE [HCD94] solves a problem related to that
of finding frequent graphs, that of compressing input graphs using frequently occurring
subgraphs. The subgraphs are chosen to minimize a measure called minimum description
length. As in the Apriori approach, new subgraphs are found by adding new edges; the
generation is stopped when no new subgraphs are found. The algorithm also allows inex-
act matching of subgraphs by assigning a cost to each distortion, like deletion, insertion
or substitution of nodes and edges.

Network motifs

A problem related to the previous ones is that of identifying network motifs introduced
in [MSOIT02]. Given a graph G one searches for motifs i.e. small structures that appear in
G more often than in random graphs. The analysis begins with the identification of all the
connected subgraphs of G with a given number of nodes; the subgraphs are directed if G
is directed, else they are undirected. For each possible connected graph with that number
of nodes (up to isomorphism), its number of occurrences as subgraph of G is compared to
its number of occurrences in several (e.g. 1000) randomly generated graphs. The graphs
are generated such that they have the same degree distribution as G i.e. the same number
of nodes with a given in-degree and out-degree. Structures that appear significantly more
often in G than in the randomly generated graphs are called motifs.

In [MSOI702] Milo et al. identify motifs with 3 and 4 vertices in several real-world
complex networks extracted from biochemistry (transcriptional gene regulation), ecology (food
webs), neurobiology (neuron connectivity), and engineering (electronic circuits, World Wide
Web). They find several structures to appear more often than in randomly generated networks;
moreover some of these motifs are shared by several real-world networks as shown in Figure
The authors also offer some possible explanations for the occurrences as such motifs. For
instance, the World Wide Web motifs may reflect a design aimed at short paths between related
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pages. This similarity in motifs in the neuronal connectivity network and in the transcriptional
gene regulation network may point to a fundamental similarity in the design constraints of the
two types of networks. Both networks function to carry information from sensory components
(sensory neurons/transcription factors regulated by biochemical signals) to effectors (motor
neurons/structural genes). The feed-forward loop motif common to both types of networks
may play a functional role in information processing. One possible function of this circuit
is to activate output only if the input signal is persistent and to allow a rapid deactivation
when the input goes off. Indeed, many of the input nodes in the neural feed-forward loops
are sensory neurons, which may require this type of information processing to reject transient
input fluctuations that are inherent in a variable or noisy environment.

A lot of excitement has surrounded the network motifs approach, the original paper
of Milo and al. [MSOIT02] being cited over 1600 times as of March 2010. The analysis
of network motifs has led to interesting results in the areas of protein-protein interaction
prediction [AA04], hierarchical network decomposition [ILKF05], temporal gene expression
patterns [SOMMAQ2] and many others. However this method has also received some
criticism. First, the method assumes that matching the degree distribution of the graph
in the randomly generated ones gives good null models; however the motifs found under
this assumption might not be statistically frequent if one uses a better graph generator.
Second, Vazquez et al. demonstrated that global network features such as
the clustering coefficient also influence local features such as the abundance of certain
subgraphs. Artzy-Randrup et al. found that certain network models (such
as "preferential attachment” [BA99]) lead to a display of motifs although there is no
explicit selection mechanism for local structures. Milo et al. answered this criticism in
ﬂm by suggesting not only to look at the overabundance of individual subgraphs
but rather at a broader picture in the form of so-called ”subgraph significance profiles”.

In the computation of network motifs one searches for small structures that appear
more often than in random graphs, while in the computation of frequent patterns one
searches for structures that appear frequently. It can be also useful to simply count the
small structures and than use their distribution, as for instance for network comparison.
This is the approach adopted by Przulj in [Prz06]. The author proposes a method for mea-
suring graph similarity using ”graphlet degree distributions” (which count the occurrences
of the vertices of the graph in small connected non-isomorphic subgraphs). As we will see
in the following chapters, this is also the approach we adopt in this thesis, although for a
different goal.

In this approach and also in the identification of network motifs one needs to list (or
at least to count) all the subgraphs with a given number of nodes. For the counting of
subgraphs, some authors proposed algorithms for counting different type of graphs (as for
instance cycles in [AYZ97] or connected undirected graphs with 4 nodes in [KKMO0]) or
for estimating their total number from a randomly sampled set of subgraphs [KIMAO4].
For the actual listing of all the subgraphs with a given number of nodes, the most efficient
algorithm to our knowledge is ESU which was proposed in [Wer(6]. We will present this
algorithm in more details in Section
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Chapter 4

Social networks

A social network is a modeling of a set of relations among a set of individuals. It can
be seen as a graph where the vertices are the individuals and the edges are the relations
between them. Traditionally, this has been a domain of study for sociologists and anthro-
pologists who analyze the connection between individuals or collective behaviors and the
social structures in which individuals are embedded. The idea of ”social network” has
been used for over a century, Georg Simmel being the first scholar to think directly in
social network terms at the beginning of the twentieth century [Sim55a] (English version).
His essays pointed to the nature of network size on interaction and to the likelihood of
interaction in ramified, loosely-knit networks rather than groups. In the 1930s, Jacob
L. Moreno pioneered the systematic recording and analysis of social interaction in small
groups, especially classrooms and work groups. In 1954, John A. Barnes [Bar54] started
using the term ”social network” systematically to denote patterns of ties, encompassing
concepts traditionally used by the public and those used by social scientists: bounded
groups (e.g., tribes, families) and social categories (e.g., gender, ethnicity). The field de-
veloped with the works of Elisabeth Bott on kinship [Bot57], of Sigfried Nadel on social
structure [Nad57], of Harrison White and his students at Harvard University and many
others. For instance Mark Granovetter and Barry Wellman (whose principal works will
be presented in the following sections) are among the former students of White who have
elaborated and popularized social network analysis.

Generally, the analysis of the structure of interpersonal relations can offer insights
about the persons’ sociability and can explain their actions. For this type of analysis,
sociologists and anthropologists usually obtain their data from interviews with the ana-
lyzed people. This data, although very detailed, can be difficult to obtain. The process of
interviewing people is often long and costly and the obtained datasets rather small, with
several hundreds of analyzed relations in the best of cases.

Recently, new sources of data have been used. With the development of internet,
mobile communication, computer capacity, one can easily access traces of interpersonal
communication such as activity on online platforms, phone calls, emails, instant messages
etc. The obtained datasets are large, possibly containing millions of communications. The
access to data is much easier than before but the obtained sets are less detailed as one sees
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only a fraction of the interactions between people. Imagine for instance the case of mobile
phone communications. While there is a recording for each mobile phone call between a
certain set of people, one has no idea if those people contact each other by other means. If
two persons do not call each other by mobile phone, this does not mean that they do not
speak to each other at all; maybe they use the land phone, send emails or just talk to each
other all the day long since they work in the same office. Also, if during interviews, one
can ask details about the relation between two persons (for instance friendship, family,
work etc.), here one does not have any information about this relation. However, data
obtained from traces of communications has two important qualities: it is about many
people and it is easy to obtain. This gives the opportunity to answer questions which
previously remained unanswered: How do interpersonal relations change over time? How
can we detect "abnormal” interactions (such as spam in an e-mail network)? How are
items of information and viruses spread in the network? How can we identify influential
people in the network?

Data obtained from traces of communication is a topic of interest for many researchers
nowadays and not only sociologists and anthropologists but also computer scientists, math-
ematicians, physicists. The datasets are modeled as large social networks which are, after
all, complex networks. Therefore all the discussion in Section B.I] applies here. We will
present several studies on large datasets obtained from traces of online activities and mo-
bile phone communications in Sections and [4.4]l Before, we discuss some of the major
findings in social network analysis before the era of large datasets in Section L1l Section
presents a special case of the social network analysis, the one centered around one
individual, called egocentred analysis.

Remark. As said before, social network analysis has been traditionally a field of study
for sociologists. Nowadays, researchers from many other domains, including computer
scientists, analyze traces of inter-personal communications and thus study social networks.
However, the goal is often a ”sociological” one: analysis of people behavior, of their uses
of different online platforms, of the mobile phone etc. Of course, it is not straightforward
what to search; one has to have a good intuition and some real sociological questions
in mind before starting to analyze traces of communications. Nevertheless, the core of
the research is often based on observations. Thus the focus is on the interpretation of
these observations rather than on the way of producing them. Many researchers do not
even mention the methodology they used in order to make the observations, how long it
took etc. It would be interesting to make a survey of the topics encountered in social
network analysis, and especially of those regarding online platforms, and formalize them
in graph theory notions, algorithms and complexity. However, this is not our goal here.
We present several central questions in social network analysis and several advances on
analysis of uses, as they are found in the literature. We do not intend here to formalize
them, but to present them as they were published, that is focusing on observations and
their interpretation, rather than the way of producing them.
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4.1 Questioning and advances

The domain of social network analysis has been marked by several topics initiated by
now-famous researches. One of them is Milgram’s experiment [Mil67], [TM69] about the
average distance between two random persons. In this experiment participants had
to reach randomly chosen individuals in the U.S.A. using a chain letter between close
acquaintances. Their surprising find was that, for the chains that completed, the average
length of the chain was only six in spite of the large population of individuals in the social
network. While only around 29% of the chains were completed, the idea of small paths in
large graphs was still a landmark find. This observation, known as ”small world” or ”six
degrees of separation”, was not explained until late 90’s. It is the model proposed by Watts
and Strogatz [WS98] presented in Section that offered a first possible explanation.

Another issue that keeps cropping up in social networks analysis is that of the strength
of ties. A person is connected to other persons by links that have different meanings and
also different strengths. There are for instance friends who are sociologically closer than
others, family members who are closer than work partners etc. In [Gra78], Granovetter
analyzed the role of the different types of links a person has in finding a job. By interview-
ing people who had obtained a job in the previous five years, he observed that the persons
who provided useful information about a job were rarely family or friends, but rather
acquaintances who were in different occupations than the respondent. This observation is
known as "the strength of weak ties”. The explanation is that those to whom a person is
closest (family and close friends, workmates etc.) interact with one another in numerous
situations, so probably possess the same knowledge about job opportunities. Therefore
they are less likely to be the sources of new information than more distant contacts. It is
through the relatively weak ties of less frequent contacts and of people in different work
situations that new and different information is likely to become available.

Another idea related to this one is that of social capital which means essentially
that better connected people enjoy higher return on their efforts. An individual occupying
some special location in the social network might be in a position to broker information or
facilitate the work of others or be important to others in some way. This importance could
be leveraged to gain some profit. However, the problem is: what does better connected
mean? In general, there are two viewpoints on what generates social capital. The first
one is that of structural holes introduced by Burt in [Bur92]. Weak connections between
groups are holes in the social structure, and create an advantage for individuals whose
relationships span the holes. Such individuals get lots of brokerage opportunities and can
control the flow of information between groups to their benefit. The second one is that of
network closure introduced by Coleman in [Col88]. This is the view that networks with
lots of connections are the source of social capital. When the social network around an
actor A is dense, it means that information flow to A is quick and usually reliable. Also,
the high density means that no one around A can escape the notice of others; hence,
everyone is forced to be trustworthy (or face losing reputation). Thus, it is less risky for
A to trust others, and this can be beneficial to him. Although these two points might
look completely opposite, Burt finds that they actually supplement each other. If
a group has high closure but low contacts across holes, the group is cohesive but has only
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Figure 4.1: Social capital. The two concepts are illustrated by nodes X (structural holes)
and Y (network closure) [CE06].

one perspective/skill. Low closure but high contacts across holes leads to disintegrated
groups of diverse perspectives. Thus the best performance is achieved when both are
high. Figure 1] (taken from [CEF06] which explains very well the notion of social capital)
illustrates the two concepts of social capital: the node Y benefits of network closure, as
it is in the middle of a dense web, while X bridges the structural hole between the two
clusters.

Another important topic in the analysis of social networks is that of identifying social
roles.

4.1.1 Social roles

This notion refers to the position of an actor in society and it is based on the relationships
that the actor in question has with other actors. Actors playing a particular social role
are connected in the same way to the network. Generally nodes having the same role have
to be equivalent or similar to each other by some metric. Several definitions of social roles
have been proposed.

Modules. Given a graph, one can compute its modules [Gal67, [HM79] and then
consider that the vertices belonging to the same module have the same role.

Definition 4.1.1. Let G = (V,E) be an undirected graph. A module of G is a subset
of vertices M C V' such that for any v € V. ~x M one has either N(v) N M = M either
N@w)NnM =0.

So a module is a group of vertices that are ”seen” in the same way by the vertices not
belonging to the module: if a vertex from the exterior of the module is linked to a vertex
in the module, then it is linked to all the other vertices of the module.

We also present three well-known social roles definitions based on equivalence relations.

Structural equivalence [LWT7I1]. Two nodes are considered as equivalent if and
only if they have exactly the same neighbors in the graph, so they are linked to exactly
the same set of nodes with (in the case of directed graphs) the arrows pointing in the same
directions.
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Definition 4.1.2. Two vertices u and v of a graph G are equivalent with respect to the
structural equivalence if and only if N(u) = N(v).

Thus, two structurally equivalent actors can exchange their positions without changing
the network. For the graph in Figure 2] the structural equivalence divides the nodes into
seven classes: {A}, {B}, {C}, {D}, {E,F}, {G} and {H,I}; there are only the nodes E
and F', H and I respectively that are equivalent as they have exactly the same neighbors.
Note that the classes of vertices defined by the structural equivalence in a graph are
modules of the given graph. Structural equivalent vertices are also called false twins in
graph theory.

Several researchers have shown that identifying nodes with identical neighborhoods
does not correspond to the intuition of social roles [Sai78| [JBLEOI]. It is not frequent
to find two persons with identical relations. There are examples of actors who play the
same role without being connected to exactly the same people, but rather have similar
relations with people who have themselves a same role. Two fathers, for example, will
have different sets of children to whom they relate, but they might be expected to be-
have, in certain respects, in similar ”fatherly” ways towards them. The two men occupy
the same social position, that of father, even though they are not connected to the same
people. There are two relations that express this idea: the automorphic equivalence and
the regular equivalence.

OBNORORO

Figure 4.2: An example of graph.

Automorphic equivalence. Two nodes are considered as equivalent if one is the
automorphic image of the other one.

Definition 4.1.3. Two vertices w and v of a graph G are automorphically equivalent if
there is an automorphism ¢ of G such that p(u) = v.

The idea is to consider as equivalent actors who are embedded in structures with similar
inner links. Roughly, the actors’ ”faces” are different but the structures are identical. For

the graph in Figure B2 the automorphic equivalence divides the nodes into five classes:
{A}, {B, D}, {C}, {E, F,H,I} and {G}.
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Regular equivalence [BE89]. Two nodes are considered as equivalent if they are
connected to equivalent nodes.

Definition 4.1.4. Given a graph G = (V, E), let r : V' — N be a role assignment for the
vertices in V' ; the function r can be seen as an attribution of colors to the vertices in V.
Also the function r defines an equivalence relation on the vertices in V. This relation is
said to be regular if and only if for all u,v € V' such that r(u) = r(v) one has

{r(i);i e N(u)} = {r(i);i € N(v)}

So if two nodes are equivalent, the colors found in the neighborhood of one node are
also found (possibly in different numbers) in the neighborhood of the other node. For
the graph in Figure one possible regular equivalence is that with the following classes:
{A}, {B,C,D} and {E, F,G,H, I}, so there are 3 colors: one for the vertex A, another
one for the vertices B, C' and D and another one for the vertices E, F, G, H and I.

Note that this definition is circular: to check if two vertices v and v are equivalent,
one has to check if their neighbors are equivalent, and therefore if v and v are equivalent.
Algorithms for computing regular equivalences have been proposed for instance in [EB93].

The three definitions presented here are often too strict for real-world data. The
problem is that only few nodes are found as equivalent when using these definitions on
real-world graphs. Thus the equivalence classes are much too numerous, often of the same
order of magnitude as the number of vertices of the graph. The idea behind social roles is
however to group nodes in a small number of clusters that can be easily used. Therefore
one generally uses different heuristics like the computation of a distance between nodes:
equivalent nodes are at distance 0 from each other and similar nodes are at a small dis-
tance. This distance can be defined for instance as a certain correlation coefficient or
similarity measure between nodes. Or it can be defined using vectors characterizing the
nodes; the distance between the nodes is then the (e.g. Euclidian) distance between their
vectors. After having defined a certain distance between nodes one can use a clustering
algorithm (as presented in Section [2.2]) in order to group nodes into clusters: nodes in the
same cluster are close to each other with respect to the given distance. The advantage is
that one can place the number of clusters where he wants, going from a small number of
clusters (if this is his goal) to a large number of clusters, where nodes in the same cluster
are very similar to each other.

We presented here only some of the topics of social network analysis. For a review of
social network methods see for instance [WEF94].

4.2 Egocentred analysis

In the analysis of social networks, a special part is that of the study of personal relations
i.e. the different relations a given individual (called ego) has with other individuals (often
called alters). This is called an egocentred approach because the social relations are seen
from ego’s point of view. The analyzed relations are generally obtained by interviews
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with ego who describes his relations with the other persons and, sometimes, the relations
between these persons. Thus, ego is asked about the people he knows, with whom he
interacts, about the importance of these people in his life etc. One problem here is the
type of questions to ask ego (for instance he is asked to cite the persons he knows, but what
does "know” mean?); this is very important since the recorded data depends entirely on it.
This becomes even more complicated when ego is asked to cite the relations between his
alters, as he may have a wrong impression about these relations. The advantage, however,
is that the interviewer can ask whatever questions he wants, thus obtaining very detailed
and meaningful data.

While the analysis of ego’s relation has a long history in anthropology and sociology
[Sim55al, Mit69, Boi74], the approach is not always a social network
one in the sense that the structure of the network is not studied; rather, a given relation
between two persons is analyzed in the context of the existence of other relations. Thus,
the focus is predominantly on the different properties of the two individuals and of their
individual relationships and not on the notion of network as structured configuration. Such
analysis has been done for instance on romantic relationships [Sur88| SEE92] or
on the notion of social support [MCN97] [BCP02, [ATSK04].

In order to analyze personal networks using a social network approach, one needs to
define ego’s network (also called egocentred or personal network or personal community).
One has to define a network (or a graph) so a set of nodes and a set of links. The nodes
are usually ego and his alters but one can also consider their alters (so the nodes two steps
away from ego) etc. The presence of the different people is mentioned by ego during the
interviews. For the links, there is a link between ego and each one of his alters. The links
between alters, if present, are also given by ego.

Once one has built such an egocentred network, one can study its structure: the number
of nodes, links, the density, the clustering coefficient etc. The analysis of the different
patterns occurring in people’s personal networks is important because it can show how
different networks are structured and why, what part different social and personal factors
(e.g. gender, age, mobility histories, ethnicity, profession) play in this, how a person is
socially integrated etc.

One of the most influential network analysts from a personal relationship perspective,
Barry Wellman, consistently argued that a network approach is fundamental to under-
standing the character of contemporary society and the role the personal relations play
within this. In a series of reports based on data collected from East York, a suburb
of Toronto, in the 1970s [Wel79, [Wel82) (Wel85, WW90], Wellman has been particularly
concerned with the ways individuals are integrated in social life. In [Wel82] [Wel88] he
distinguishes several configurations of relations in terms of network structure: people em-
bedded in quite dense networks, people having several subsets of alters and also people
where alters have little to do with each other. In France, egocentred analysis has been
made popular by Maurizio Gribaudi who introduced the methodology of notebooks of con-
tacts [Gri98], Michel Grossetti who studied social structures of personal relations in the
Toulouse area |[Gro05], Dominique Cardon and Fabien Granjon who analyzed the relation
between cultural practices (media-related, recreational, communication etc.) and personal
networks structure [CGO5], and many others.
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If in the studies presented in this section the data came from interviews, in the following
ones the data comes from traces of phone communications and online activities.

4.3 Phone communications

We present here an overview of existing studies on large social networks extracted from
two different environments: phone communications and online activities.

Several researchers analyzed the phone usage, the way people communicate by mobile
or fixed phone in terms of duration or frequency of calls, depending on the sociological or
geographical distance between people, on their gender etc.

In [SLOO] Licoppe and Smoreda studied the relationship between the duration of fixed
phone calls and the gender of the two persons in communication. The authors used telephone
billing records on several hundreds of adult men and women during 4 months. The analysis
showed that the duration of calls is correlated with receiver’s gender and it is in average
longer when a woman is called. Also, their in-depth conversation analysis suggested that
politeness rules governing the telephone call can explain in part why it is the gender of the
receiver that has the biggest effect on how the call is managed and on its overall duration. The
conversations involving women tended to go through longer introductive sequences, to be more
multi-thematic and digressive in nature with a corresponding lengthening and multiplication of
closure sequences; meanwhile the conversations with men tend to be linear and monothematic.
In the main, the callers seem to adjust their interaction style to the gender of the receiver.

The same authors analyzed the relationship between the intensity of calls and the
distance between the two persons.

In [LS05] Licoppe and Smoreda, using phone calls databases and interviews focusing on
the use of telephone, identified two patterns of communication: the "connected presence” and
the "intermittent presence”. In the first pattern of communication, the "connected presence”,
the two persons, socially and often also geographically close, are frequently in contact with
each other, exchanging many short calls and messages. They share activities that require
numerous calls for synchronization and coordination. In the second pattern, the "intermittent
presence”, the two persons, close friends or intimate relatives, are not able to see each other or
talk very often. Their conversations are long, they give and receive news, trying to compensate
for the rarity of face-to-face contacts.

These analyses have been done using fixed phone data. Nowadays, the development of
mobile phones and their worldwide spread (a penetration larger than 40% worldwide and
close to 100% in the developed countries) offer new possibilities of analysis. The mobile
phone, a individual and ubiquitous device offering voice and text communication features,
has transformed the frequency and the geography of communication as compared to older
fixed phone practices. We are now virtually always accessible to others wherever we are.
This offers a useful insight into individual behavior. Of course, cellular phone communica-
tions do not fully capture social exchange. A social relation is expressed through multiple
interaction channels such as email, land phone communications, instant messaging, face



4.3. PHONE COMMUNICATIONS 49

to face interactions, the mobile phone communications capturing only a subset of the un-
derlying social network. However, studies on the strength of ties have shown that mobile
phone is among the most intimate communication tools; a mobile phone conversation sug-
gests a certain relation between the two individuals, given that there aren’t any listings of
mobile phone numbers. Moreover, people that contact each other via one communication
tool tend to communicate via other ones as well [Hay05], hence the relevance of analyz-
ing mobile phone communications in the search of understanding the underlying social
network.

Behavioral data coming from telecommunication operators offers the opportunity to
revisit some older research on telephone usages. For instance, using mobile phone com-
munication data, Lambiotte et al. were able to test the hypothesis that the
existence of a call between two persons depends on the geographical distance between
them. They thus show that the probability of a mobile phone call is inversely propor-
tional to the square of the geographical distance between the two persons.

Also, new types of analysis are possible. For instance, one can use the location of
the mobile phone when the communication began (also possibly when it ended) in order
to study people mobility patters. Extensive call records of any mobile phone carrier
contain even more detailed information on the spatiotemporal localization of millions of
users. This is due to the fact that mobile phones, in order to place outgoing calls and
to receive incoming calls, must periodically report their presence to nearby cell towers,
thus registering their position in the geographical cell covered by one of the towers. The
analysis of such information for a better understanding of people mobility could be of
high interest for urban planning, public transportation design, traffic engineering, disease
outbreak control and disaster management. Several studies try to discover the patterns of
mobile phone users mobility [BDE09, [GHBO0S, [EP05] and to predict their trajectory. In
this direction, Song et al. measure the entropy of each individual’s trajectory,
thus finding a high potential predictability in user mobility.

Mobile phone communications have also been modeled as complex social networks and
analyzed accordingly. In several studies the nodes of the modeling graph are the individuals
communicating by mobile phone during a given period, while the links correspond to
reciprocal communications: two nodes are connected by a link if there had been a least
one communication between the two persons in each direction (i.e. A called B and B
called A). This procedure eliminates one-way calls that suggest that the caller does not
know the receiver personally.

In this approach, Onnela et al. [OSH™07b]] used a graph modeling mobile phone commu-
nications where they computed the degree distribution. As expected, most users communicate
with only a few individuals while a small minority talks with dozens. However, the degree
distribution decays very fast, so the hubs (high-degree nodes) are few; this is different from
the case of land lines and of emails where well-connected hubs are present. This situation is
probably rooted in the fact that institutional phone numbers, corresponding to the vast major-
ity of large hubs in the case of land lines, are absent, and in contrast with e-mail, in which a
single e-mail can be sent to many recipients, resulting in well-connected hubs, a mobile phone
conversation typically represents a one-to-one communication. The authors define the weight
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of a link (its strength) as the total duration of mobile phone communications between the two
persons; they study the relationship between the strength of ties and their betweenness central-
ity, finding that the two are negatively correlated. Next, the authors analyze the importance of
links of different strength for the robustness of the network (actually of the largest connected
component that contains 84% of the nodes). They thus find that the removal of the weak ties
leads to a sudden, phase transition-driven collapse of the whole network. In contrast, the re-
moval of the strong ties results only in the network’s gradual shrinking but not its collapse. By
simulating information diffusion in the network, they find that the process of diffusion changes
dramatically when the strength of links is taken into consideration (as opposed to the situation
where all the links are considered as having equal weight). Moreover, in contrast with the
theory of the importance of weak ties in information access [Gra78], they find that both weak
and strong ties have a relatively insignificant role as conduits for information ("the weakness of
weak and strong ties”): the former because the small amount of on-air time offers little chance
of information transfer and the latter because they are mostly confined within communities,
with little access to new information. They finally conjecture that communication networks
are better suited to local information processing than global information transfer.

The same authors develop the analysis of links weight in [OSHT07al in mobile phone
communications networks.

In [OSH™07a] Onnela et al. take into consideration both the duration of calls and
the total number of calls between the two persons as weight of the link connecting them.
Besides computing classical measures, such as different distributions, the authors define the
intensity of a subgraph as the geometrical mean of the weights of its links. They count the
number of fully connected subgraphs (i.e. cliques) with 2 to 10 vertices in their network and
in randomly generated Erdos-Renyi networks, finding that cliques with more than 3 vertices
appear a enormous number of times more often in the real graph than in the generated ones.
Note, however, that it had already been observed that the number of triangles was a lot higher
in real-world complex networks than in Erdos-Renyi graph, so the authors’ conclusion is not
surprising. When comparing the intensity of subgraphs in the real network and in a network
where the links weight have been shuffled, the authors find that the real-world subgraphs have
considerably higher intensities than the random ones. This shows that local organization of
weights in the mobile phone graph is not random.

Several researchers analyzed the temporal dynamics of mobile phone networks e.g. the
temporal stability of links. In [HRS0§|, Hidalgo and Rodriguez-Sickert define the per-
sistence of a link over a set of time periods as the number of periods where the link is
activated (there are reciprocal calls between the two persons during that period). They
find that persistent links are more common with people with low degree and high cluster-
ing. Palla, Barabasi and Vicsek used mobile phone data to study the evolution
of social groups. They found that large groups persist for longer times if they are ca-
pable of dynamically altering their membership, suggesting that an ability to change the
group composition results in better adaptability. In contrast, the behavior of small groups
displays the opposite tendency, the condition for long-term persistence being that their
composition remains stable.
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4.4 Online activities

Nowadays, the development of Web2.0 allows users to connect to platforms of social net-
working, sharing of photos, videos, blogging, where they interact, declare friendship re-
lations and share contents, thus being active participants and not only simple visitors of
sites. In this context, new digital practices have emerged for production and diffusion of
contents and also for recommendation, tagging and social networking. Moreover each user
is able to manage his own visibility and, throughout his profile, develop strategies for in-
creasing the audience of his productions and therefore his popularity. Thanks to more and
more precise tracking tools, he knows how many people viewed, commented, recommended,
rated, and forwarded his work. These ratings, by increasing the users reflexivity about
his popularity, strongly influence publishing and networking practices [Hal0g], [HRWO0S],
leading some authors to describe the Web as a huge space of competition for popularity
[Waz09].

The analysis of usages and contents on these online platforms should help us anticipate
users’ expectations, develop recommendation systems, strengthen contents audience and
growing of communities, improve segmentation and targeting of users.

Generally, one can adopt one of the three following approaches to analyze activity on
online platforms:

1. analysis of usages (the way users act on these platforms),
2. analysis of the published contents (audience, diffusion etc),
3. analysis of the social networks that model the relations between individuals.

1 Usages. People connect and use the functionalities of online platforms in different
ways, often with uneven frequencies ("burtsy nature”). Generally, to measure users’ activ-
ity, one looks at the traces left on the platforms, such as number of comments a user writes,
number of photos he uploads etc. The different measures of activity are found to have a
skewed distribution on news groups [FSWO06|, wikis [HBB07], online dating communities

[HEL04], question answer forms [ZAAQ7, [AZBA0S)].

In [GHO6] Golder and Huberman analyze user activity on Del.icio.us, a site for recording
bookmarks. Users can store bookmarks of webpages, in the same way as in browsers but with
access from any computer, and can tag them with keywords. Delicious is considered "social”
because, not only can one see his own bookmarks, one can also see all of every other users
bookmarks. By analyzing two sets of Delicious data containing almost 20 thousand bookmarks,
the authors observe that users vary greatly in the frequency and nature of their Delicious use.
That is, some users use Delicious very frequently, and others less frequently. Also some users
have large sets of tags, others have small sets, and there is very little correlation between the
number of bookmarks a user stores and the number of tags he uses. Users' tag lists grow over
time, as they discover new interests and add new tags to categorize and describe them, but
the growth rates may be very different. The authors also identify different function of tags.
Although a significant amount of tagging, if not all, is done for personal use rather than public
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benefit, information tagged for personal use can benefit other users. In this way, Delicious
functions as a recommendation system, even without explicitly providing recommendations.

When analyzing the way people make use of the functionalities of online platforms,
one can for instance identify groups (or clusters) of individuals based on the measures of
activity, as in [MAAQS] for Youtube or [PCBT08] for Flickr users. All in all, the analysis
of uses on online platforms gives us an idea of how different functionalities are used and
can thus help developers of such platforms to improve them.

2 Contents. Many studies analyze the contents published on online platforms. For
instance, some works concentrate on the success of such contents. Understanding the
popularity characteristics is important because it can bring forward the latent demand
created by bottlenecks in the system (e.g. poor search and recommendation engines,
lack of metadata). It also greatly affects the strategies for marketing, target advertising,
recommendation, and search engines.

In [CKR™07], the popularity of videos on Youtube (the world’s largest site for publishing
of videos), measured as number of views, is found not to be a perfect power-law. In the
log-log plot, the distribution of the number of view is not a straight line at the two ends:
the most popular and the least popular items. There are several possible explanations for
this observation that contradicts Anderson’s intuition of a "long tail” [And06]. For the least
popular items, that receive fewer views than if the distribution was a straight line on all its
length, it can be because many videos are of low interest to most users; these videos are often
produced for small audience e.g. family members. Also, search or recommendation engines
typically return or favor a small number of popular items [CR04, IMBSAQZ], steering users
away from unpopular ones. This way users cannot easily discover niche content because this
content is not properly categorized or ranked. The most popular videos also receive fewer views
than if the distribution was a straight line on all its length. A possible explanation, suggested
in [GDST 03] for P2P downloads and adopted in [CKR*07] for Youtube videos, is that video
content does not change (is immutable); therefore viewers are not likely to watch the same
video multiple times, as they do for mutable web objects. Even the number of views of very
popular items does not go past a certain limit, so there is a cutoff in the distribution.

As in the Pareto principle (or 80-20 rule), the audience is often concentrated on a minority
of contents: on Youtube 10% of the top popular videos count for nearly 80% of views, while the
rest 90% of the videos receive very few requests. Besides the argument that recommendation
tools and search engine favor popular items, another argument is that users tend to consume
the most popular contents (the hits on home pages, the subjects of buzz, the most seen
contents: winner takes it all [Fra93]). As for the evolution of the popularity of Youtube videos
in time, the number of views 5, 7 and 90 days after the publication of the video is found to be
highly correlated to its popularity after 2 days. So a video with little audience two days after
its apparition on Youtube is likely to rest unpopular forever.

The prediction of audience of contents is also addressed in [SHOS], while other authors
identify different patterns of success (for photos on Flickr [CMGQ9]) or different types of
contents based on the attention they are given ([CS08]).
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The two aspects, uses and contents on online platforms, are often analyzed together.
This seems logical as the content is published by users and made popular by their uses.
When analyzing the popularity of contents one often analyzes the strategies developed by
users to build the popularity, so the uses of the tools for social networking or promotion.
Also, the analysis of uses often raises questions about the success of the published contents.
For instance, in the previously evoked study on the uses of tags on Delicious [GHOG],
the authors analyze also the popularity of URLs measured as the number of bookmarks
containing them. In another study Huberman et al. [HRWOS| show that productivity on
Youtube is dependent of the attention received by a content: a lack of attention leads to
a decline of the activity.

3 Social networks. Many of the online platforms give users the possibility to link
to other users by explicitly declaring a relation (such as friendship or fan etc.) or by
leaving traces on other users’ profiles (such as comments). These relations between users
can be modeled by graphs. The analysis of such graphs is important as it can provide
characterizations of the individuals and of the links between them. For instance, one could
look for individuals that have similar positions in the graph because these individuals are
likely to act similarly on the platform. Moreover one can characterize individuals by
using endogenous variables of the social network and also exogenous variables (such as
age, gender, town, quantity of published content, quantity of comments etc.) and then
measure the correlations between the two types of variables. If the two are correlated, one
can predict one using the others which can be very useful if some of the information is
hidden.

If data on users of online platforms is generally rich and public (personal data, declared
friendship relations, comments are public on sites like MySpace, Flickr, Twitter etc.),
which is rarely the case for offline data, the analysis of the relations between the users of
an online platform may be difficult. First, for most of the platforms one cannot analyze
the whole set of relations because this set is too big and the recording of the relations
too long. Therefore one usually builds a sample of the relations present on the platform
by doing a breadth-first search aspiration (see Section 2] for a presentation of the BFS
method) of profiles: starting from some initial profiles, one follows a given relation (such
as friendship declaration) and goes from profile to profile, recording the found data. The
BF'S crawling produces a sample with a relevant structure (good fitting of the clustering,
density, and centrality values) but underestimates the in-degree and overestimates the
out-degree [MMG¥07], [KNT06]. Second, data is often noisy: many profiles may not be
active (their creators never go on the profile), a user may have several profiles, the relations
may not correspond to real social relations between individuals (they are artificially and
maybe randomly created), the nature of the relations may be completely hidden (some of
them correspond to real strong social relations, some other do not have a correspondent
in the real life, but all of them have the same form on the platform: they are all friendship
relations for instance).

Once we have obtained a set of data that can be modeled by a graph, we have a social
network which often is also a complex network, so all the discussion in Chapter [3] applies
here. One can analyze the data at three levels: global, by characterizing the network as
a whole, local, by evaluating the local structure of the network, around each node, or
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intermediate, by studying communities, roles of nodes etc.

For the analysis of communities, one can compute such communities by using the social
network as explained in Section 3.1 or study the user defined communities. On different
platforms it is possible for users to join predefined groups, so one can try to explain how
and why people join these groups. It can be because they share convictions or hobbies
with the people already in the group or because they have strong relations with one or

several persons in the group [Sas02] [SP02].

In |BHKLO6| Backstrom et al. try to explain the decision of joining a group and
the evolution of communities by analyzing the social network in which the individuals are
embedded. They use decision trees to predict and explain the decision of an individual to join
a community and also how much a community grows. The explaining variables for the decision
to join a community are chosen from a large set of factors such as the number of friends an
individual has in a given community, but also how these friends are connected: by an edge, by
a path, the average length connecting two friends, number of community members reachable
from the friends etc. For the growing of the community, the explaining variables are the number
of members of the community, the number of individuals with a friend in the community, the
number of triangles in the community and the number of 3-paths etc. The analyses are done
on two datasets: LiveJournal (a site for maintaining journals, personal and group blogs) where
users can create and join communities, and DBLP (an online database of computer science
publications) where conferences are used as a proxy for communities. For the decision to join
a community, the number of friends already in the community plays an important role but
also the connectivity of these friends: a user is more likely to join a community if his friends
already there are connected to each other. One possible explanation is based on the notion of
social capital: the individual knows that he will be supported by a rich local social structure
if he joins. For the growth of the community, the existence of a large number of people with
friends in the community is the most important factor for a significant growth.

The global properties of online networks follow the general patterns of complex net-
works: the degree distribution is a power law or one of its variants, the clustering coefficient
significantly higher than in random networks, the diameter is small and there exists a large
connected component.

In |KNTO06] Kumar et al. analyze several complex networks characteristics for two large
samples of Flickr (a site for photo sharing and social networking) and Yahoo!360 (a site for
Yahoo! users for sharing photos or blogs among the friends of a user). This study is one
of the first studies that use temporal data i.e. all the activity on the two sites is recorded
during several dozens of weeks. The authors are thus able to analyze the dynamic properties
of the two platforms. They begin by observing that the two networks are highly "mutual”
i.e. the friendship links are often reciprocal and, as expected, the degree distributions are
power-laws. One interesting result is the evolution of the density that is discovered to have, in
both networks, 3 stages (see Figurel4.3): first a rapid growth, generated by an initial euphoria
among a few enthusiasts who join the network and frantically invite many of their friends to
join, second a decline, generated by the natural dying-out of the euphoria and third, a true
organic growth when more and more people know about the network.
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Figure 4.3: Density of Flickr and Yahoo! 360 by week [KNTO6].

The authors continue their analysis by classifying the members of the two networks into
one of the three groups: singletons (degree-zero nodes that have joined the service but have
never made a connection with another user), giant component and middle region, consisting
in various isolated connected components. This middle region contains about 1/3 of the users
of Flickr and about 10% of the users of Yahoo! 360. Surprisingly, these fractions remain
almost constant in time, despite significant growth of the networks (for example the Flickr
social network grew by a factor of over 13x during the studied period). Also, about 90% of the
connected components in the middle region have a star structure i.e. connected components
where one or two nodes (centers) have an edge to most of the other nodes in the component
and a relatively large number of nodes have an edge solely to one of these centers. As for the
structure of the giant component, 1/2 of the nodes have degree one and there is a small core
of highly connected vertices. The diameter is rather small but greater than 6 (suggested by
the "six-degrees of separation” folklore): the average diameter is found to be 6.01 for Flickr
and 8.26 Yahoo! 360, while the effective diameter is 7.61 and 10.47 respectively. The time
evolution of the diameter is highly correlated to that of the density: it has a first stage of
flatness, followed by a second stage where the edge density drops and the diameter grows till
it reaches a peak, and a third stage, when the edge density starts increasing and the diameter
starts decreasing. A similar phenomenon of shrinking diameter was observed by Leskovec
et al [LKFO5] in citation graphs. Finally, the authors propose a model of network evolution
using a biased notion of preferential attachment. The model reproduces quite accurately the
component structure of the two networks.
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4.5 Online activities vs. offline communications

We compare here several characteristics of an offline social network and an online one.
This section represents an original work; we have however placed it in the overview and
survey part because it is here that we have presented the characteristics of online and
offline networks.

The studied offline network comes from one month of mobile phone communications
between 3 million persons. This dataset will be detailed in Chapter [t it contains the
communications of the clients of a same operator during a month. We model this set of
communications by a simple undirected graph where the vertices are the clients and the
edges are given by the presence of communications: we link two vertices by an edge if each
one of the two persons called the other one at least once during the recorded month. We
thus obtain a graph that has approximately 2 million vertices and 3 million edges.

The online network comes from the recordings of the activity of 1.6 million users of
Flickr (www.flickr.com), a site for photo and video sharing and social networking, also
during a month. We are still dealing with inter-personal communications, this time online
comments instead of phone calls. On Flickr, users can put photos and videos online that
the other users can see and comment. Any user can comment other users’ photos or his
own (we chose to filter out the comments to the own photos). As in the case of mobile
phone, we model the activity of the users of Flickr by a simple undirected graph where the
vertices are the users and the edges correspond to comments: two vertices are connected by
an edge if each one of the two users commented at least once the other user’s photos. The
obtained graph has 63,000 vertices and 245,000 edges, so almost 32 times fewer vertices
and 12 times fewer edges than the mobile phone network. There are several explanations
for these differences.

A simple but important observation is that people interact in the two contexts (phone
calls and online comments) in very different ways. First, a phone call is a synchronous
communication: the two persons talk to each other, it is a live exchange. On the con-
trary, writing comments on Flickr is asynchronous: one just writes the comment, without
necessarily waiting for an answer. Second, a mobile phone call requires some effort: the
caller must have the phone number of the person he wants to call and usually he has to
pay for the phone call. In contrast, writing a comment on the photo of another Flickr
user is easy: one does not need a prior knowledge of the user and does not have to pay for
writing comments. However, what really make the difference between mobile phone usage
and writting of comments are the aim and the utility of a phone call as opposed to that of
a Flickr comment: people call each other in order to synchronize, to coordinate, to give or
receive news, to exchange information etc, while on Flickr, the comments are related to a
photo or a video. The mobile phone is a very useful device, while writing comments may
be fun, but hardly something people absolutely need in their every day life. Thus, during
a day, a person is more likely to make a phone call than to write an online comment.
Also a mobile phone communication indicates a certain relation between the two persons,
simply by the fact that mobile phone numbers are not publicly listed. People do not call
people they don’t know just to comment on a certain thing.

Given these reasons, one expects, during a month, a smaller number of comments
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Figure 4.4: Double log scale degree distribution in the mobile phone network (red dots)
and the Flickr network (blue dots).

than mobile phone calls between the same number of people. Indeed, during the followed
month, the 1.6 million users of Flickr wrote approximately 4 million comments, while the
3 million mobile phone customers made approximately 150 million phone calls. All the
mobile phone customers make at least one phone call and 2M out of the 3M make calls
and also receive. On the contrary, most of Flickr users have an account, publish photos,
but never make comments. Only 63,000 out of the 1.6\ users give and receive comments.
There are however some very active users who make a lot of comments and also receive
a lot. Users’ activity is much more heterogeneous on Flickr than in the mobile phone
network.

The degree distributions of the two graphs are therefore completely different (see Table
41l and Figure [@4)): in the online network the maximal value of the degree is much higher
than in the offline network, while the median is the same, so the majority of Flickr users
make very few comments while there are some users that make a lot. This shows that
online relations do not necessarily reflect offline, real social relations. In real life the
cost of creation and keeping of relations limits their number at a certain threshold, thus
introducing a cut-off in the distribution. Moreover, on online platforms, everybody is
visible. A user can connect to any other user simply because all the needed contact
information are on the profile. In a favorable context (great audience of the published
contents, promotion etc.), some users become very popular. They become the stars of the
platform, having a great number of contacts i.e. a high degree [. This notion of star is not
present in offline contexts: one does not get phone calls from other persons just because
he is popular.

To end this parenthesis on the differences between the datasets of Flickr and mobile

The online popularity of another online platform, MySpace, is analyzed in Chapter
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Table 4.1: The number of nodes and links of the two networks and their average, maximal
and median degree

network # nodes | # links | avg degree | max degree | med degree
Flickr 63 x 10% | 245 x 103 7.8 695 2
mobile phone | 2 x 10° | 3 x 10° 3.3 96 2

phone communications, note that we defined the edges of the two graphs in the same
way, by using the existence of communications. Generally one uses for online platforms
the declared links (e.g. friendship links) as edges. However, many declared links are not
active: the users do not contact each other, they have declared each other as friends but
they haven’t had any contact since. Taking into consideration only the links sustained by
a certain activity allows us to filter out these cases of unused links.

4.6 Applications: Marketing and services

For a products or services provider, the knowledge of its customers is essential in order
to target the audience, to propose services and publicity adapted to each user etc. To
characterize the customers, several dimensions can be taken into consideration: the dif-
ferent socio-demographic information (such as age, gender, job, residence etc.), the uses
customers make of the different services, and the social network in which they are embed-
ded. The social network dimension is important because people do not live isolated lives,
they are surrounded by other people who might influence them.

If marketing models take or not into consideration the social network aspect (although
it is frequently shown that different parameters computed in the social network improve
marketing models), there is one field of marketing that studies this dimension: the viral
marketing. This field exploits existing social networks by encouraging customers to share
product information with their friends. The motivation is that individuals are influenced
by their personal relations in the decision of adopting innovations and products (this is
also known as the Word-of-mouth, WOM, influence). Several researches brought this to
light. For instance, sociological studies on individual choice, initiated in the 1940s’ by P.
Lazarsfeld team at Bureau of Applied Social Research at Columbia University, emphasized
the influence of the network of personal relations in the decision of purchase. Engel et al.
find that 60% of the persons asked about the choice of a car garage cited the
WOM as main influence. Also, Feldman and Spencer [FS65] estimate to two-thirds the
ratio of new residents of a community who used WOM for finding a doctor. Even study
institutes as Harris Interactive [ADQ7] or BIGresearch tried to measure the importance of
WOM. If the former provided a ranking of products depending on the degree of influence
of WOM in the decision of consumption, the latter state that more than 90% of the
interviewed persons give or receive purchase advice.

In the context of the internet, word-of-mouth advertising is not restricted to pairwise
or small-group interactions between individuals. Rather, customers can share their experi-
ences and opinions regarding a product with everyone. Quantitative marketing techniques
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Figure 4.5: Schematic of the two-step flow model of influence [KL55].

have been proposed [Mon0O1] to describe product information flow online, and the rating
of products and merchants has been shown to effect the likelihood of an item being bought
[RZ02. [CM06).

If the influence of the social network on making a decision (at least that of adopting
a product or a service) is generally accepted, the existence of a group of people capable
of having a greater influence than other people is still debated. Several researchers tried
to identify persons with a certain position, and therefore influence, in a social network.
Such people, often called ”social leaders” or ”influentials”, would be capable to influent
other people or to speed up the process of diffusion of products and services. In their two-
step flow model, Katz and Lazarsfeld [KL55] propose the idea that there exists a small
fraction of opinion leaders (stars in Figure [L.5]) who act as intermediaries between the mass
media and the majority of society (circles). Their influence is direct and derives from
their status as individuals who are highly informed, respected, or simply ”connected”;
these people are capable of influencing an exceptional number of their peers. Gladwell
[GIa00] sustains the concept of influentials adapted to marketing: if it is possible to find
and target the influentials in a social network, then the diffusion will be extremely fast,
while randomly chosen individuals will cause a slow diffusion. This hypothesis is however
contradicted in [WDO7]. Using a series of computer simulations of interpersonal influence
processes, the authors argue that cascades of adoption do not succeed because of a few
highly influential individuals influencing everyone else, but rather on account of a critical
mass of easily influenced individuals influencing other easy-to-influence people. In their
models, influentials have a greater than average chance of triggering this critical mass,
when it exists, but only modestly greater, and usually not even proportional to the number
of people they influence directly.
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Chapter 5

A method for analyzing the local
structure of large networks

In this chapter we present a method for analyzing the local structure of a (possibly large)
network by characterizing the way each node is connected to the network. The method
is designed to be applied to a given node of a network; in this case it produces a char-
acterization of the configuration of the network surrounding the node: the structures in
which the node it is embedded, the way its neighbors are placed with respect to the others
and the way its links are disposed. Omne can apply this method to all the nodes of the
network, thus obtaining a description of its local structure, or only to some of its nodes:
it can be useful if one has only a fraction of the nodes of the network or if the goal is
to compare some nodes to each other. Before presenting the method, we introduce some
useful notions. Then we explain the method and we compare the measures produced by
it to other existing indicators. We finish this chapter by making some comments on the
usefulness of the method.

5.1 Definitions

Unless specified otherwise, all the considered graphs are simple and undirected.

Egocentred network. Given a graph G = (V,E) and a vertex v € V, we call
egocentred network of v, denoted by Eg(v), the subgraph induced in G by the neighbors
of v i.e. the graph whose vertices are the neighbors of v and whose edges are the edges
between these neighbors.

Patterns and positions. We call k-patterns all the non-isomorphic connected graphs
with at most k vertices and at least 1 edge. Figure[B Ilpresents the thirty 5-patterns. There
are nine 4-patterns (indices 1 to 9) and three 3-patterns (indices 1 to 3). In this chapter
we consider only 5-patterns that we call simply patterns.

Given a graph, two vertices are said to be position equivalent if there is an adjacency
preserving permutation of the vertices of the graph such that the two vertices are inter-
changed (the position equivalence is actually the automorphic equivalence). A position is
a maximal set of position equivalent vertices. For example, for each pattern in Figure 511
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Figure 5.1: The set of patterns and their positions.
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each color corresponds to a distinct position. Formally, two vertices u and v of a graph
G are position equivalent if there exists an automorphism ¢ of G such that ¢(u) = v.
The positions correspond to the equivalence classes of this relation. There are 73 different
positions in the 30 patterns and, as Figure (.1l shows, a pattern has as most 4 different
positions. We want to establish categories of positions so we sort the positions of a same
pattern in ascending order of their betweenness centrality; for different positions having
the same centrality, we sort in ascending order of the degree. We call peripheral the first
position in this order and central the last one. The positions that are not central nor
peripheral or are both central and peripheral are called intermediate. Briefly the positions
colored in red are central, those colored in black are peripheral and the other ones are
intermediate.

Graph characterization. Given a graph G = (V| E), one can obtain a characteri-
zation of the graph by computing the occurrences of the different patterns in the graph,
and of its vertices by computing the position each vertex occupies in each pattern. A
pattern P is said to occur in the graph G if there exists a set of vertices Vp C V such
that the subgraph induced by Vp in G is isomorphic to P. Listing all the occurrences of
the pattern P in the graph G means finding all the sets of vertices Vp according to the
previous definition. For each occurrence of a pattern in G = (V, E) one can compute in
which position of the pattern the different vertices of V are placed. Thus, after having
listed all the occurrences of the 30 patterns in G, one has, for each vertex v € V, its
number of occurrences in each one of the 73 positions (we call this the position vector of
v). Formally, the k-position vector of v is a vector Posi(G,v) that contains the number
of occurrences of v in the different positions of the k—patterns: Posk(G,v,i) counts the
number of subgraphs of G with at most k vertices that contain v in the position 7. As an
example, Figure represents a graph (a), the patterns it contains and their number of
occurrences (b), and the number of occurrences in the different positions of two selected
vertices (¢) (we have noted only the positions where at least one of the two vertices is
present; for all the other positions the corresponding element of the position vector is 0).

5.2 Efficient graph characterization

When characterizing a graph G as explained before, one needs to search all the induced
subgraphs with a given maximal number of vertices (in our case 5), to find to which pattern
each of them is isomorphic and to compute the number of occurrences of the different
vertices in the different positions. All the three operations (the listing of patterns, the
checking of isomorphism and the computation of positions) must be done efficiently so
that one can characterize a large number of graphs in a reasonable time.

For the listing of subgraphs we use Algorithm ESU introduced in [Wer(6]. Figure (3]
presents this algorithm; N, (w, Vsubgraphs) (line Ey) represents the set of neighbors of
w which do not belong to Viypgraphs nor have any neighbors in Viypgraphs. Basically the
algorithm starts with a vertex v of G and adds neighboring vertices until a set of k vertices
is obtained, hence a connected induced subgraph with k vertices. More precisely, starting
with the vertex v, the algorithm repeatedly adds neighbors of v or of the already added
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Figure 5.2: A graph (a), its patterns (b) and the position vectors of two vertices v and v
(only the positions where at least one of the two vertices appears) (c).

vertices (this is the set Vegtension). It is the computation of the set Viytension that makes
this algorithm efficient. To be added to this set, a vertex must satisfy two conditions: its
label must be greater than that of v (the labels are simply indices from 1 to |Vg|) and it
must have exactly one neighbor in the already added vertices. This insures the addition of
each vertex exactly once. Also, as explained in [WerQ6], the algorithm finds each subgraph
exactly once, so one does not need to check the presence of a found subgraph in a list of
already founds subgraphs. To our knowledge, this is the most efficient existing algorithm
for induced subgraphs listing.

Once an induced subgraph has been found, one needs to find the pattern to which it is
isomorphic. For several patterns this can be done by computing the degree distribution of
their vertices: patterns with different degree distributions are not isomorphic. The reverse,
however, is not always true. For instance, patterns number 21 and 22 in Figure [5.1] have
the same degree distributions: (2,2,2,3,3). In this case one can differentiate between the
two patterns by looking not only at the degrees of the vertices, but also at how vertices
of different degrees are inter-connected. Thus, for pattern 21, two vertices of degree 2 are
connected to each other, while the vertices of degree 2 in pattern 22 are connected only to
vertices of degree 3. To take into consideration in the same time the degrees of the vertices
and of their neighbors we introduce the notion of neighbor-degree.

Definition 5.2.1. Given a graph G and a vertex v of G, we call neighbor-degree of v,
denoted by nd(v) = EueN[v] d(u), the sum of its degree and the degrees of its neighbors.
We call degree combination of the graph G the ascending sorted list of the neighbor-degrees
of its vertices.

These two notions suffice in order to check if two connected graphs with at most 5
vertices are isomorphic, as shown by the following lemma.
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Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU)
Input: A graph G = (V,E) and an integer 1 < k < |V/|.
Output: All size-k subgraphs in G.

01 for each vertex v € V do

02  Vistension — {u € N({v}) : u>v}

08  call EXTENDSUBGRAPH ({v}, Vistension, v)

04 return

EXTENDSUBGRAPH (Vsybgraph, Vestension, V)
E1 if |Vsusgrapn| = k then output G[Vsypmpn] and return
E2 while Vggension # 0 do
E3 Remove an arbitrarily chosen vertex w from Vguension

Y

E4 Jé‘wtension = VE:ctension U {u = Nea:cl(w: VSubgmph) Tu> U}
E5  call EXTENDSUBGRAPH(Vsubgraph U {®W}, Vigtension V)
E6 return

Figure 5.3: Pseudocode for the algorithm ESU which enumerates all size-k subgraphs in

a given graph G [Wer(6].

Lemma 5.2.2. Two graphs G and H with at most 5 vertices are isomorphic if and only
if their degree combination are identical. Moreover, two vertices u,v € Vg are position
equivalent if and only if they have the same neighbor-degree.

Proof. The proof is straightforward, it suffices to check the two statements for all the
connected graphs with at most 5 vertices. O

For the two patterns in our previous example, the degree combination of pattern 21 is
(7,7,8,10,10), while that of pattern 22 is (8,8,8,9,9). Thus, the two patterns are identi-
fied as non-isomorphic. Moreover vertices of a same pattern that have distinct positions
have different neighbor-degrees.

Note that for a graph G with n vertices and m edges one computes the neighbor-degrees
of all the vertices of G in O(m) time and O(n) space (it suffices to scan all the edges in
order to compute and store the degrees, then scan all the edges again to compute the
neighbor-degrees), then its degree combination in O(n -logn) time. For the set of patterns
these quantities are constant as n and m are at most 5 and 10 respectively. Therefore one
can find to which pattern a connected graph with at most 5 vertices corresponds (i.e. to
which of the 30 graphs in Figure .11t is isomorphic) and check if two of its vertices are
position equivalent in constant time.

Note however that the lemma is not true for the connected graphs with 6 vertices.
The two graphs in Figure [5.4] are not isomorphic but have the same degree combination:
(7,7,7,7,10,10).
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Figure 5.4: Two non-ismorphic connected graphs with 6 vertices

5.3 A method for local structure analysis

Given a (possibly large) graph G = (V, E'), we want to analyze its local structure around a
vertex v € V' (we call this vertex ego). We proceed as follows — method local_structure(v):

Step 1. Extract the egocentred network Eg(v) of v i.e. the subgraph induced by the
neighbors of v in G;

Step 2. List the patterns of Eg(v);
Step 3. Compute the position vectors of the vertices in Eg(v).

Let us explain the three steps of the method with an example.

Step 1 and 2. In Figure[5.5)(a), the black circles correspond to the neighbors of v, the
black lines correspond to the edges between them and the red lines to the edges between
v and its neighbors. The egocentred network Fg(v) of v is represented in Figure E5|(b)
and the patterns of Eg(v) in Figure [5.5)(c) []. We chose not to include v in its egocentred
network because we know that it is connected to all the vertices in this graph, its presence
does not bring any information. After performing the steps 1 and 2 of the method one has
a rich description of the way v is connected to the graph GG. For a more detailed description
of the local structure of G around v one can list the patterns of a higher order (with more
than 5 vertices); the patterns with 5 vertices are however a good compromise between the
variety of forms and their number; even the 4-patterns provide in many cases a detailed
enough picture.

Step 3. We compute the position vectors of the neighbors of v, so the number of
times each neighbor appears in each one of the positions of the different patterns. Figure
B.5(d) contains the position-vectors of two neighbors of v (only the elements that are
higher than 0 for at least one of the vertices; all the other elements are equal to 0). The
positions occupied by the different neighbors describe the relative place of these neighbors
as opposed to the other neighbors but also the links formed by v, if one looks from v’s point
of view. As an example, Figure presents the correspondence between three possible
positions of a neighbor u and the structure of the graph around the edge (u,v).

"We have also counted the isolated vertices and edges in Eg(v).
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Figure 5.5: A vertex v and its neighbors (a), the egocentred network Fg(v) of v (b), the

patterns of Fg(v) (c¢) and the position vectors of two neighbors of v (d) (only the positions
where at least one of the two vertices appears).
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Figure 5.6: Three possible positions of the neighbor u (a) and the corresponding structures
around the edge (u,v) (b)
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a) b)

Figure 5.7: A position of the neighbor u with weight 2 (a) and the corresponding structure
around the edge (u,v) (b).

If the graph G is directed, one can add this information to the description of the edges
formed by v by simply adding a weight to the neighbors of v. For a node v, the weight
wy(u) of a neighbor w is:

e 1 if the connection is from v to u (v — u),
e 2 if the connection is from u to v (u — v),
e 3 if the connection is symmetric (v — w and u — v ).

As an example, Figure .7 presents the correspondence between a possible position of
a neighbor u that has weight 2 and the structure of the graph around the edge (u,v).

The method introduced here can be used to define a relation of equivalence on the
vertices of the graph (. First, each vertex can be characterized by a vector containing
the number of occurrences of patterns with at most k vertices in its egocentred network.
Then, one can use these vectors to identify equivalent vertices.

Definition 5.3.1. Given a vertex v of a graph G and a positive integer k, we call k-pattern
vector of v the vector containing the number of occurrences of the k-patterns (i.e. all the
non-isomorphic connected graphs with at most k vertices) in the egocentred network Eg(v)
of v. Two vertices of the graph G are said to be k-pattern equivalent if and only if they
have identical k-pattern vectors.

5.4 Algorithmic aspects

Remember that the graph G = (V, E) to which the method is applied may be large (more
than 10° vertices and even more edges). Therefore we have to pay a particular attention
at the time and space complexity of the used algorithms. First of all, we store the graph G
in a adjacency list representation (see Section 2.1]): for each vertex, we have the ascending
sorted list of its neighbors (the vertices of V' are given indices from 0 to |V| — 1). This
representation needs ©(|E|) space and running through N(v) takes ©(d(v)) time, with
d(v) denoting the degree of v. Testing the presence of an edge (u,v) takes O(log(d(v)))
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time. For a graph G = (V, E), let n denote the number of its vertices (n = |V|) and m
the number of its edges (m = |E|).

Step 1. In this step we need to compute the egocentred network of the vertex v € V i.e.
the subgraph induced by the neighbors of v in G. This is equivalent to listing the triangles
in which v appears. For this, we rely on Algorithm new-vertez-listing proposed in [Lat08].
Algorithm ComputeEgocentered computes the egocentered network of the vertex v € V.

Algorithm 1 ComputeEgocentered. Computes the egocentered network of a vertex

Input: A simple undirected graph G = (V, E) and a vertex v € V
Output: A simple undirected graph Eg = (V,,, E,), the egocentred network of v

create an array A of |V integers and set them to —1
initialize V,, and F, to the empty set
for each vertex u in N (v), set Afu| to v
for each vertex u in N(v)
4.1 add u to V,,
4.2 for each vertex w in N(u) such that w < u
if Alw] = v then add (w,u) to E,

Ll e

Algorithm ComputeEgocentered. One may see this algorithm as a way to use the
adjacency matrix of G without explicitly storing it: when processing the vertex v, the
array A is nothing but the v — th line of the adjacency matrix. This array is built in O(n)
time and space. Then one can test for any edge (u,v) in ©(1) time and space. Since the
line 4.2 is executed at most twice for each edge connecting a neighbor of v, and there are
at most m such edges, we obtain that Algorithm ComputeEgocentered is in O(m) time
and O(n) space.

Steps 2 and 3. We want to characterize the graph Fg(v), so to compute its patterns
and the positions of its vertices. For simplicity of notation and because these two steps
constitute a method that can be applied to any graph, not just to egocentred networks, we
denote the graph Eg(v) by G. First, we need to identify the connected induced subgraphs
with at most 5 vertices of GG, then to find the pattern to which each of these subgraphs
is isomorphic and finally to compute the positions occupied by the different vertices in
the found subgraphs (actually the three operations are successive: once a subgraph is
found, one checks to which pattern it is isomorphic and computes the positions of the
vertices, then continues the search for other subgraphs). For the first part we rely on
Algorithm ESU(G, k) [Wer06] (see Figure[5.3]) that lists the induced subgraphs of G' with
k vertices. For the second and the third part, we compute the neighbor-degrees and
the degree combination of the found subgraph, according to Lemma Algorithm
Characterize WithPatterns implements the two steps.

Algorithm Characterize WithPatterns. We have slightly modified Algorithm
ESU (Figure B3] in order to compute induced subgraphs with at most k vertices with
k < 5. Also, the operation output G[Vsupgrapn] (line E; in ESU) is replaced by the
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function IndexPattern that computes the pattern isomorphic with the found subgraph
and the positions occupied by the different vertices. Algorithm Characterize WithPatterns
has a time complexity linear in the number of patterns found in the graph G : for Algorithm
ESU see [Wer06]; for Function IndexPattern note that it takes O(m, + n, x logn, + log
nb_patterns) to execute, where n, is the number of vertices in the pattern (at most 5),
my is the number of edges (at most 10) and nb_patterns is the total number of different
patterns (equal to 30 for patterns with at most 5 vertices). As all these quantities are
smaller than given constants, 5, 10 and log 30 respectively, one can say that IndexzPattern
has a constant time complexity and Algorithm Characterize WithPatterns is linear in the
number of patterns of the graph G. As we do not dispose of a method for estimating the
number of patterns of a given graph, let us note simply that the number of patterns with
at most k vertices is at most n* where n is the number of vertices of G.

Algorithm CaracterizeLocalStructure. We have now all the elements for writing
the algorithm that characterizes the local structure of a graph G = (V, E) around each
vertex v € V: Algorithm CaracterizeLocalStructure. This is simply the application of the
two previous algorithms to all the vertices of the graph. Note however a modification: the
array A is built only once for all the vertices of the graph, at the beginning of the algorithm,
and then updated for each vertex. Thus the construction of A has the same time and space
complexity as in Algorithm ComputeEqgocentred: ©(n) for both. The time complexity of
Algorithm CaracterizeLocalStructure is thus ©(n+3 .y (nb. patterns in Eg(v))) which is
(at most) O(n+>",cy (d(v)?)). As we apply this method to real-world complex networks,
where most vertices have small degrees, the method is in average rather fast. In Chapter
[[1 we apply the method to a real-world graph with 2.7M vertices and 6.4M edges and
we give an empirical complexity of our method for this graph. It takes 31 minutes for
our C++ implementation of the method to execute for this graph on a computer with
standard configuration, a 2.8 GHz processor and 4Gb RAM.

5.5 Applications of the method

The goal of the method we introduced here is to characterize the way a node is connected
to the network. It is a method for analyzing the local structure of the network that
produces a characterization of each node. Its goal is not to give a ranking or ordering of
nodes but merely to show how they are connected to the network. This can be useful in
several situations. First, as any characterization method, it improves our knowledge of the
nodes of the network. Second, the obtained characterization of nodes can be compared
to other properties of the nodes: if there is a correlation, one can use one to predict the
others. This is practical if some data is missing as some properties can be inferred from
the other ones. Third, there are situations where a local analysis is the best way to study
the problem. It is the case of data obtained independently for different persons, where
the ”global” network containing all the persons is unknown (as for instance in sociological
studies where data on each person is obtained through individual interviews and there is
no collection of the whole network). In this case one may want to study the network in
which individuals are embedded, but, as there is no global network, one cannot perform
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Algorithm 2 Characterize WithPatterns. Characterizes an undirected simple graph

Input: A simple undirected graph G' = (V, E) and a positive integer k < 5
Output: An array Pt such that Pt[P] contains the nb. of occurrences of the pattern P in G,
an array Ps such that Ps[v][i] = Posk(G,v,7) (the nb. of occurrences of v in the position 7)

1. set all the elements of Pt and Ps to 0
2. for each vertex v € V do

2.1 Vegtension <— {u € N(v) : u > v}

2.2 VSubgT’aph = {U}, ESubgraph =0

2.3 call ExtendSubgraph(Vsusgraphs ESubgraphs VEstension, v, Pt, Ps, k)
3. return

ExtendSubgraph
Input:
- a positive integer k < 5,
- two sets Vsupgraph € V' and Esypgrapn, © E containing the vertices and edges
already added to the subgraph,
- a set of vertices Vegptension containing the vertices that can be added to the subgraph,
- a vertex v from which the construction of the subgraph has begun,
- two arrays Pt and Ps that will be updated by the procedure

1. if |VSubgT’aph| > k return
2. if ’VSubgraph‘ > 0 call IndexPattern(Vgubgmph, ESubgraphypta Ps )
3. while VEziension 7& 0
3.1. remove an arbitrarily chosen vertex w from Vgatension
3.2. Vll?mtensi(m = VE:(:tension
3.3 E,,Subgraph = ESubgraph
3.4. for each u € N(w) : u > v
if v € Vsupgrapn add (u,w) to Egubgmph //add all the edges from w to the subgraph
else if uw & N(Vsubgrapn) add w to Vi, ;oo
3.5. call ExtendSubgraph(Vsusgrapn U {w}, Eé'ubgraph’ Vi tensions Us Pt Ps k)

IndexPattern
Input: A set of vertices Vsupgraph, a set of edges Egupgrapn and
two arrays Pt and Ps that will be updated by the procedure

1. scan the set Egypgrqpn and note each occurrence of each vertex
//thus computing the degrees of the vertices

2. create an array D containing the degrees of the vertices

3. for each edge (a,b) € Egypgrapn add degree(b) to D(a) and degree(a) to D(b)
//thus computing the neighbor-degrees

4. sort D and write it as a number

5. find the pattern P with this number and increment Pt(P)

6. for each vertex u

find the position i (in the pattern P) with the same neighbor-degree and increment Ps[u][i]
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Algorithm 3 CaracterizeLocalStructure Characterizes the local structure around each
vertex in a (large) graph

Input: A simple undirected graph G' = (V, E) and a positive integer k < 5

1. create an array A of |V| integers and set them to —1
2. for each vertex v € V
2.1 initialize V,, and FE, to the empty set
2.2 for each vertex u in N(v), set Alu| to v
2.3 for each vertex u in N(v)
2.3.1 add u to V,,
2.3.2 for each vertex w in N(u) such that w < u
if Alw] =wv then add (w,u) to E,
2.4 call CharacterizeWithPatterns((V,, Ey), k)

the classical global or intermediate network analysis.

Another situation where the study of the local structure is appropriate is for networks
where nodes ”importance” is local. In the opposite situation, there are networks where
(some) nodes are important for the function of the whole network. Take for instance the
case of the railways network of a country; in this case it is important to analyze nodes
in the context of the global network: there are some nodes (railways stations) that are
important for the whole network as they connect different parts of the country. In this case
a local analysis is not sufficient, one needs to use measures that take into consideration
the whole network. Also, in online social networks, the global perspective may be useful.
In this case users are visible to the whole network: they can be seen and contacted by
any other user in the network. Often there is a notion of popularity, where people try
to improve their visibility and where fans can link to them. However, a local analysis
may also bring important information. One can analyze for instance the links created by
different persons before a certain moment in time; this is a local analysis that outputs
star-fan relations (expressed by links).

A local approach is useful especially in networks where nodes importance and visibility
are local. Take for instance the case of mobile phone communications. Here people cannot
be contacted by everybody as mobile phone numbers are not public. And even if that was
the case, people do not usually call other people just because these are known or famous.
There is no measure of popularity in this network (as opposed to online platforms where
different statistics on people activity and popularity are often available). People usually
make phone calls because they really have something to discuss with the other person and
not because they are fans of this person. In this case people a few steps away (maybe
2 suffice) from a person do not know this person; the existence of this person does not
have any importance to them. For such networks characterizing nodes by looking at the
whole network may not be very useful: someone with a high (say betweenness) centrality
may not be more important than other persons. His presence in the network is surely
important for several persons but these persons are most probably close to him in the
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Table 5.1: Equivalent notions for a vertex v: in the whole graph and in the egocentred
network.

graph G egocentred network Eg(v)

degree of v number of vertices
number of triangles containing v number of edges
number of 4-cliques containing v number of triangles

network. If this person leaves the network the vast majority of the other individuals in the
network won’t even notice the change. For such networks the method introduced here is
more appropriate that other types of analysis taking into consideration the whole network
(at least when characterizing each node).

Finally, this method can be used in order to compute a certain equivalence or similarity
of vertices, notions very important for the definition of social roles played by nodes in a
network. A possible relation of equivalence is the k-pattern equivalence that we have
defined in Section If one wants to compute similar vertices (instead of equivalent),
one can compute a certain distance between the k-pattern vectors of the vertices (also
defined in Section [£.3]). We will discuss this approach and some applications in Chapter

B

5.6 Comparison to other measures

Let us first emphasize the equivalence between several notions regarding a vertex v, in the
context of the whole graph and in its egocentred network (see Table BE.1]). For instance,
the degree of v in the graph G corresponds to the number of vertices in the egocentred
graph Fg(v). Moreover the clustering coefficient of the node v is equal to the density
of its egocentred network, as the number of triangles containing the node is equal to the
number of edges between its neighbors, and are both equal to (g) where d is the degree of v.

Patterns versus centrality. As presented in Section Bl the centrality of vertices
is a measure of their importance in the network. Usually one computes the centrality of
all the vertices in the graph in order to produce a ranking of vertices. There are several
definitions of centrality: the degree centrality, the betweenness, the closeness, the page-
rank, the eigen vector centrality etc. Besides the degree centrality (which is simply the
degree of the node), all the other measures take into consideration the entire graph. As
explained in the previous section, the goal of the method introduced here is to produce a
local characterization of vertices. This is the main difference between our method and the
different definitions of centrality: the goal is not the same. Another difference comes from
the context of application of the methods: while the different measures of centrality need
to have the entire network in order to compute the centrality of one node, our method
needs only the neighbors of the node and the edges between them, so it can be applied only
to some parts of the graph if the other parts are not known. Finally, the betweenness and
closeness centrality can be hardly computed in complex networks as their time complexity
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Figure 5.8: An example for the difference between centrality and position vectors.

is O(nm). On the contrary, as explained earlier, our method can be easily applied to large
networks.

In a different approach, one could compute the centrality of the vertices present in
each egocentred network, so of the neighbors of each vertex, and compare the centralities
of the different neighbors to each other. Remember that in our method we compute the
k—position vector of each neighbor in order to see how the different neighbors are placed
in relation with each other. The position vector is a different measure than the centrality.
It reflects the relation of each one of the neighbors with the other neighbors, placed at
at most 5 steps from it. It is rather a measure of how the different neighbors are placed
and connected in the network than of their rank or importance. Look for instance at the
graph in Figure 5.8 and suppose this is the egocentred network of some given vertex. The
vertices x and z have degree 4, the vertex y has degree 2, and the betweenness centrality
of z,y and z is 27, 28 and 24 respectively. While one has a ranking of the vertices (y is
more central than x and x is more central than z), one does not know how these vertices
are connected to the network. Even more, one can argue that it is x and not y that has a
more important position in the egocentred network as it connects 4 vertices not directly
linked. This is not shown by the degree nor by the betweenness centrality. By applying
the method we introduced here one knows that x is the center of a star with 5 vertices and
that it belongs to a path with at least 6 vertices. It is also clear that y is connected by a
link to the center of a star and that it is in the center of a path . As for z, one knows that
it belongs to a 4—clique and that it belongs to a path with at least 6 vertices. To sum up,
the method we introduced here and the measures of centrality have different goals and are
useful in different situations.

Patterns versus density and clustering coefficient. The density of the egocen-
tred network of a vertex (or its clustering coefficient) is a first characterization of the
vertex and the way it is connected to the network. For a more detailed characterization
one can compute also the clustering coefficient of the egocentred network as the average of
the clustering coefficient of the vertices in the egocentred network. The listing of patterns
in the egocentred networks provides however a richer description of the local structure of
the network than these two measures. Once again, it describes how the different neighbors
of the vertex are disposed, in which type of structures they are embedded. For instance,
imagine that the two networks in Figure are the egocentred networks of two given
vertices. These egocentred networks have the same number of vertices, of edges (so the
same density) and the same clustering coefficient. These measures do not capture the
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Figure 5.9: Two egocentred networks that have the same number of vertices, of edges and
the same clustering coeflicient.

differences between these two graphs, but the listing of patterns does.

K-pattern equivalence versus other vertex equivalences. In Sectiond.Ilwe pre-
sented the structural, automorphic and regular equivalences, probably the most famous
vertex equivalences. These notions, used in order to define social roles, are much too strict
for real-world complex networks. The k-pattern equivalence that we defined in Section (.3
is included in the structural and automorphic equivalence. This is based on the simple
observations that vertices that have exactly the same neighbors in the network (so are
structurally equivalent) have identical egocentred network, so identical feature vectors,
and therefore are k-pattern equivalent, for all k. Also, vertices that are automorphically
equivalent have isomorphic egocentred networks, so identical feature vectors and are thus
k-pattern equivalent, for all k. For the two definitions, the opposite is not always true, so
one can say that the k-pattern equivalence is included in the structural and automorphic
equivalences. This means that the k-pattern equivalence is less strict than these two re-
lations; however it is still not enough flexible for real-world networks. Some adaptations
of the k-pattern vectors in order to compute similarity of vertices in real-world complex
networks will be discussed in Chapter Bl

5.7 Chapter conclusions

We introduced in this chapter a method for analyzing the local structure of a graph around
each vertex. This method provides a rich description of the way a given vertex is connected
to the graph and also of the way its neighbors are placed in relation with each other. It
can be applied both to small and large networks, and even to fractions of networks. In
the following chapters we apply this method to two social networks, the first one modeling
activity on an online platform and the second one modeling mobile phone communications.
In the first case we study the relation between the popularity of users and the structure
of the network in which they are embedded, while in the second case we compare the way
the vertices and their neighbors are placed in the graph to other information (age, gender,
intensity of communication) on the mobile phone users.
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Chapter 6

From online popularity to social
linkage: a case study of MySpace

6.1 Introduction

In this chapter we analyze the popularity of users’ content on MySpace in relation with
the social network in which the users are embedded. MySpace (www.myspace.com) is
an online platform for social networking which gives signed-up users a free access to a
personal space. In this space, users can present information about themselves, create a
blog, publish different content, link to other users, visit their pages and write comments
there. Although users can publish any kind of photos or videos, MySpace is especially
known for the great number of music artists who present their musical compositions. Each
user can declare his profile type as "member” or "musician”. Besides being a place for
publishing content, MySpace also offer its users the possibility to connect to each other.
Thus, everybody can visit everybody’s page and write comments there. Also each user can
link to any other user by declaring friendship or best-friendship relations. These relations
are not necessarily mutual: everybody can declare everybody as (best) friend, without
waiting for the acceptance of the other part. The number of best friendship declarations
is limited to 40, so one can consider the best friend links as stronger than the friend ones.

On the page of each user, all this information is visible: besides the published content
and personal data, everybody sees how many people visited or left comments on the
profile, how many users have declared him as (best) friend and how many users he has
declared. Each user, thanks to these ratings on how many people viewed or commented his
work, knows how popular his profile is. He can thus adjust his publishing and networking
practices in order to become more popular, so he can develop strategies to increase his
fame. Every user is manager of his own visibility thus transforming MySpace in a place
for competition for popularity. The same situation happens on other online platforms that
offer social networking tools and space for content publishing.

Several researchers have dealt with this competition for visibility and reputation on
online platforms. Some of them concentrated on the success of contents while others
focused on the reputation of individuals in the large social networks created by these
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practices. For instance since the seminal work of Herring et al. [HKPT05], we know that
influent bloggers are at the center of the social network, and that bloggers tend to link
to bloggers of equal or superior reputation. See Section [£4] for an overview of existing
studies on online activities. While several researchers analyzed the popularity of contents
or the social networks modeling online activities, few authors studied the relation between
the two. Here, using a dataset of MySpace artist profiles, we try to hold together the
two approaches: we study the popularity of MySpace artists in relation with the local
structure of the social network surrounding them.

First, we build a popularity typology based on different measures of online popularity,
using the Kohonen self organizing map technique (see Section 2.2)). Second we analyze
how the different artists are connected to each other using the method local_structure
introduced in Chapter[Bl We thus obtain a rich description of the structure of the network
in which each node is embedded, that we confront to the online popularity of the artist.
At the end, we obtain 5 distinct patterns of popularity on MySpace, described in terms of
audience, recognition, and social structure.

6.2 Data description

We build a sample of the MySpace music (artistic) population based on the best friendship
declaration links. After having chosen seven initial parent artists profiles among the French
MySpace music top audience, a breadth-first-search crawler is employed to collect the
profiles information, following the best friendship links during 3 iterations (best friend of
best friend of best friend of the parents).

In order to verify that this sample is not unusual, we collect several networks varying
the initial artists numbers (from 3 to 10), the parsing depth (from 2 to 4), the initial
artists nationality and the collected artists via a randomized ID selection. If the total
number of nodes and the music profiles proportion (in the selected population) depend
on the crawling parameters, the ratio of the two is around 50%. Next, for each sample,
a correlation test is applied between the followings four quantitative variables: number of
comments, of friends, of profile visits (hits) and best-friendship declaration. A Mantel test
(i.e. a matrix correlation test) is performed between the correlation tables; it shows that
the coefficients are significantly similar, i.e. the variables of each sample are correlated in
the same proportions.

As we are interested in the MySpace music profiles, we chose to remove from the
data all the non-artistic individuals. The properties of the studied network sample are
summarized in Table

In the next section we cluster the artists in the sample using several popularity char-
acteristics.

6.3 Analysis of the online popularity

We group the artists in our dataset in several clusters based on their popularity. We
choose the following variables as a characterization of each artist’s popularity:
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Table 6.1: Dataset properties

Total number of profiles 21153
Artists profiles 13936

Total number of links 143831
Number of links between artists 83201

Reciprocal links rate
(A and B have declared each other as best-friends) | 40.1%

”"Major” labeled artists 3422
”Indie” labeled artists 7069
7without” labeled artists 3445

e Number of visits of the profile (hits),

e Number of comments visitors have left on the profile (these first two characteristics
are an indicator of the artist’s audience),

e Number of people having declared the artist as best friend (this is a measure of the
artist’s global authority)

e Number of artists having declared him as best friend (the artistic authority) ,

e Fraction of the artist’s best friends who have declared him as best friend (reciprocity
rate, a measure of the cooperative behavior),

e Label (the artist’s record label); this can be "Major”, "Indie”, or ”Other”.

The set of these six variables measured for each individual represent a feature vector
characterizing the artist’s popularity. As showed by Beuscart and Couronné in a previous
study [BCQ9], the audience (expressed by the number of visits of the profile and the number
of comments) and the authority (the number of artists/people having declared the artist
as best friend) are the two main dimensions structuring the online popularity of artists
on MySpace. Because the number of visits, comments and best-friendship declaration
are heavily right-skewed, we use a log transformation instead of the value itself for these
variables.

We now use the Kohonen self organizing maps (see Section for a presentation of
this clustering method) in order to group artists based on their popularity characteristics.
As any clustering method, this technique uses as input feature vectors and groups together
individuals with similar feature vectors while putting in separate groups individuals with
different vectors.

The multi-dimensional processing of the set of individuals by the SOM provides Figure
6.1 The SOM result is a bi-dimensional map with 6 layers (a layer for each variable
describing the individuals) where individuals are placed depending on their topological
proximity. The map’s smallest entity is a cell, and each individual is placed in only one
cell (the individual has the same position on all the layers). Each cell has a feature vector
(a vector of the six variables) computed from the feature vectors of the individuals in the
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cell. On each layer, the color of the cell corresponds to the value of the corresponding
variable for that cell. The interest of this method of clustering is the visual representation
of the population for each one the variables. Instead of the classical representation of
individuals into clusters, where one does not know how the different variables contribute
to individual proximity, this method provides a representation of both proximity between
individuals and values of variables for the different individuals.

The obtained map appears to be structured by two independent trends: the more an
artist belongs to a southern cell, the more his popularity is high, in terms of both audience
and authority; and the more an artist is to the west side, the more he tends to have
reciprocal links. If audience and authority are partly correlated and discriminate popular
artists from anonymous, the trends are not exactly similar. Indeed, the south-western
area is associated with the authoritative elites (highest artistic and global authority) and
the south-eastern area is associated with the most notorious artists (highest page views
and comments). If, most probably, the audience elites are not without authority and
authoritative elites are not without audience, the top artists of the audience and of the
authority do not overlap.

We can note that the two measures of authority (global and artistic) are correlated.
The artists and the other fans create in the same way their best friendship links: the
authority hierarchy follows a unique trend. Complementary, this result shows that the
reciprocal links behavior is not associated with the popularity: it may be either because
an authoritative artist cannot have more than 40 best friends (and therefore cannot cite
everybody) or because very authoritative artists are not linking back to people who link to
them (fan-star relationship). Finally we observe that the south-east area (audience elites)
is associated with a strong presence of the ”Major” labels.

We cluster the cells produced by the SOM using a k—means clustering. The expecta-
tion maximization algorithm is then employed to choose the best number of clusters. The
population is thus distributed into 5 clusters (Figure [6.2]):
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Figure 6.2: The 5 clusters

Clusterl (Cyan, population: 2732) gathers artists with a medium-to-large audience, a
low authority and a weak reciprocity rate. They are mostly associated with major
music labels. Our browsing of the Myspace pages of some artists in this cluster
suggests that these artists, already popular offline, use their MySpace page as a
display window of their music, but make very little use of the social networking tools.
We may suppose that their strong audience comes from their offline popularity, but
that they are not active enough to gain a strong influence on MySpace.

Cluster2 (Dark blue, pop.: 3036) gathers artists with a very strong authority, and a
medium-to-high audience: these artists are not the most popular, but they are the
most recommended. Most of them belong to independent labels. The qualitative
browsing of their pages suggests a very intensive use of the social networking tools
in order to build their online popularity. Here we find a lot of trendy groups and
electronic avant-garde music, waiting for their online fame to become larger.

Cluster3 (Green, pop.: 1920) gathers artists with both a large audience and a strong au-
thority, the MySpace elites. They have mostly major labels. Browsing their pages,
we find established artists, combining traditional forms of artistic accomplishment
(famous labels, presence in renowned festivals) with an active online marketing strat-

egy.

Cluster4 (Brown, pop.: 2834) gathers artists with a very small audience and no authority.
Most of their pages display very low activity, suggesting that these artists have either
abandoned the page or show very little interest in online socializing practices.

Cluster5 (Orange, pop.: 2834) gathers artists with a small audience, low authority, and a
strong reciprocity rate. Most of them are unsigned. On the contrary to artists from
cluster 4, most of the pages we browsed are very active. These small amateur artists
seem to be the ones populating the local music scenes; they are well connected to
other artists from the same scene or from the same geographical area. Their small
audience may not reflect their inability to reach an audience, but the small size of
their musical or geographical niche.

This first part of the study provides a classification of artists based on the popularity
variables. The main results are that the two dimensions of the popularity (audience and
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Figure 6.3: The patterns with at most 4 vertices and their positions.

authority) are correlated, but discriminate at least two elites. Moreover the best friendship
links appear to have various meanings (fan - star, peers etc.). It seems relevant to study
more specifically what the links distribution and network structure teach us about the
best friendship significance and the artistic popularity. This is the goal of the following
section.

6.4 Social network structures as a function of artists’ online
popularity

In this section we analyze the local structure of the social network of MySpace artists
in order to see if it is different depending on the popularity cluster of the artists. We
represent the sample of MySpace artists and their best-friendship declarations as a simple
undirected graph where the vertices correspond to the artist profiles and the edges to the
existence of a best-friendship declaration between two artists: there is an edge between the
vertices v and v if © has declared v as best-friend or v has declared u as best-friend or both.
The resulting graph has 13936 vertices and 65979 edges. In order to describe the local
structure of the graph, around each vertex, we apply the method local_structure presented
in Chapter [B] to all the vertices of the graph: we compute the number of occurrences of
the different patterns in the egocentred network of each vertex and the positions occupied
by the different neighbors in these patterns. In this chapter we use only patterns with at
most 4 vertices (see Figure [.3} we have also indexed the 15 positions in these patterns).
It takes 34 seconds to run our C++ implementation of the method for all the vertices on
a computer with a 2.8GHz processor and 4Gb RAM.

VERTICES. We begin by studying the structure of the graph surrounding the vertices
in order to see if it differs depending on the SOM popularity cluster the vertices belong
to. For this, we use the feature vectors of the vertices i.e. the number of patterns in their
egocentred networks (computed by steps 1 and 2 of the method local_structure). We want
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Figure 6.4: For the vertices of each cluster, the average number of edges (a) and isolated
vertices (b) in the egocentred networks as a function of the degree

to compare the number of occurrences of the different patterns in the egocentred networks
with respect to the popularity clusters of the vertices. As the degree distributions are not
the same in the 5 clusters, one cannot simply compare the number of occurrences of the
patterns; these quantities are biased by the degrees of the vertices (for instance, a vertex
with a high degree probably has high values for all the patterns). Therefore, we compare
the number of occurrences of patterns in the egocentred networks of the vertices with
the same degree (i.e. the same number of vertices in the egocentred network). For each
cluster C', each degreeEl d and each pattern P, we compute the average F'D(C,d, P) of the
number of occurrences of the pattern P in the egocentred networks of the vertices with
degree d in C. Figure represents, for each degree d, the values of FD(C,d, P) for the 5
popularity clusters; the considered pattern is the number of edges (i.e. pattern number 1,
—) in the egocentred network in Figure [6.4{a) and the number of isolated vertices in the
egocentred network in Figure [6.4](D).

We observe that, for all the degrees, the vertices of the cluster 5 have the greatest
number of edges in their egocentred networks, followed by those of the clusters 2, 1 and
4 and finally 3. The order is inverted for the number of isolated vertices that measures
the quality of ”star” of a vertex. Remember that clusters 5 and 2 are the ones on the
western side of the SOM map, i.e. artists having reciprocal links, sometimes a lot of
friends, but a medium to small popularity: they can be authoritative, but not with strong
audience. Cluster 3, situated in the southern part of the map, contains the MySpace elite,
the superstars, the popular authoritative artists. These vertices are, in terms of network
structure, star centers, connecting many unlinked vertices, as Figure (3% shows.

We continue our analysis by computing, for each cluster C', each valudq e of the num-

"We take into consideration only the degrees for which there are at least 2 clusters where 1% of the
nodes have that degree

2 As before, we take into consideration only the values reached by at least 1% of the nodes in at least 2
clusters
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ber of edges in the egocentred network, and each pattern P, the average FE(C, e, P) of
the number of occurrences of the pattern P in the egocentred networks with e edges of
the vertices in C. Figure represents, for each value e of the number of edges in the
egocentred network, the values of FFE(C,e, P) for the 5 popularity clusters; the consid-
ered pattern is the number of isolated edges (Figure [65[a)), the number of triangles (i.e.
pattern number 3, A, Figure [6.5(b)) and the number of 4—cliques (i.e. pattern number 9,
=, Figure[6.5l(c)) in the egocentred network.

We observe that, given a value of the number of edges in the egocentred network, these
edges are more likely to be found in triangles and 4—cliques for cluster 5 than for clusters
2, 1 and 4. The vertices in cluster 3 have the lowest probability to have triangles and
4—cliques in their egocentred networks. The edges between the neighbors of these vertices
are often isolated (Figure [6.5)(a)), confirming the character of "star” of the vertices in
cluster 3.
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As for the other patterns with at most 4 vertices, pattern 8 ( @ ) has the same order
as the 4—clique =, showing, once again, the tendency of vertices in cluster 5 to belong to
dense groups and that of vertices in cluster 3 to be centers of stars. The other patterns
do not present a clear order; however, for pattern 5 (=), clusters 3 and 4 have the highest
probabilities to contain this pattern in their egocentred networks and for pattern 7 (&),
it is cluster 1 that has the highest one. So, even if the number of edges in the egocentred
network is the same, the structures in which these edges are placed are different for the 5
clusters, going from dense groups for the clusters 5 to sparse groups for the cluster 3.

To sum up, the social network surrounding each artist differs, depending on their popu-
larity. The most popular artists (cluster 3) are at the center of stars; heterogeneous artists,
not connected to each other, connect to these artists due to their popularity. As for artists
with a medium-to-large audience, they have distinct types of insertion in the network:
those in cluster 2 are inserted in dense recommendation networks, usually describing ho-
mogeneous musical universes, while those in cluster 1 belong to sparse structures. The
same observation can be made for artists with a small audience: artists from cluster 5,
though not very popular, are involved in dense structures, unlike artists from cluster 4
who display disconnected links. This analysis strengthens our typology, by associating
types of popularity with types of insertion in the social network.

EDGES. We continue our analysis with the study of the edges formed by the vertices
in the 5 popularity clusters. We want to see, for the vertices of each cluster, with which
clusters they form the most of their edges and how these edges are placed in the graph.
For that, we use the positions occupied by the neighbors in the egocentred network of
the different vertices (i.e. the position vectors of the neighbors, computed in step 3 of
the method local_structure). This way, we know for each neighbor u of a vertex v how
many times it occurs in each one of the possible positions of the different patterns in the
egocentred network of v. As the best-friendship links are directed, we add this information
as weights of neighbors (as explained in Chapter Bl): for a vertex v, a neighbor u has
weight 1 if v has declared u as a best-friend but « hasn’t, weight 2 if u has declared v but
v hasn’t and weight 3 if the best-friendship declaration is mutual. Also, remember that in
Section [B.1] we defined three categories of positions based on their betweenness centrality
and degree in the pattern: central, intermediate and peripheral. In Figure [6.3] the red
positions (3, 6, 8, 11, 14) are central, the blue and the green ones (1, 4, 10, 12, 15) are
intermediate and the black ones (2, 5, 7, 9, 13) are peripheral.

Let Pos(Eg(v),u,i) be the number of occurrences of a neighbor u of v in the position
i in the egocentred network Fg(v) of v. For each cluster K we compute the probability
Pri(w,C,i) to observe a vertex with weight w of the cluster C' in the position i in the
egocentred networks of the vertices in K :

ZUGK ZuéEg(v),uGC,w POS(EQ(U)v u, Z)
ZUEK ZueEg(v) POS(EQ(U)v u, Z)

PT’K(U), C,Z) =

We observe that:

1. For clusters 1 and 4, for all the 15 positions i, Pry 4(w, C, ) is maximal when C' = 3
and w = 1 (best-friendship links from 1 / 4 to 3). So, if one randomly picks an edge
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formed by a vertex of the cluster 1 or 4, no matter the structure of the graph in
which this edge is embedded, it is very probable that this edge is an out-going arc
to the cluster 3. It is a star-fan relation that confirms the character of ”star” of the
vertices in the cluster 3 and the weak authority of the clusters 1 and 4.

. For cluster 2, for all the positions i, Pra(w,C, i) is maximal when C' = 2 and w = 3

(mutual best-friendship links inside the cluster). So the cluster 2, grouping artists
with high (but smaller than the stars’) authority and audience connects mostly to
itself.

. For cluster 3, for all the central and intermediate positions, Prs(w, C,) is maximal

when C = 3 and w = 3; for all the peripheral positions i.e. i € {2,5,7,9,13},
Prs(w,C, i) is maximal when C' = 4 and w = 2 (best-friendship links from 4 to 3).
So the edges formed by the vertices of cluster 3 are placed in ”important” positions
when they are formed inside the cluster and in peripheral positions when they are
in-coming arcs. The important positions (as, for instance, position 7, the center of a
star) signify that the vertices of the cluster 3 often form a central axis to which many
triangles are connected i.e. many vertices, not connected to each other, connect to
two linked vertices of the cluster 3. This may correspond to two popular artists of a
similar music genre, where people who like the first are highly probable to like the
second too.

. For cluster 5, for all the positions with a high degree i.e. i € {4,8,10,11,14,15},

Prs(w,C,i) is maximal when C' = 2, followed by C' = 5, and w = 3 (mutual links
between 2 and 5 or inside the cluster 5); for all the other positions, Prs(w,C,i) is
maximal when C' = 3 and w = 1 (best-friendship links from 5 to 3). Remember that
this cluster has a high reciprocity of links. The vertices here share symmetric edges
especially with the vertices in cluster 2 and with themselves; these edges are often
placed in dense groups (cliques, maybe with few missing edges), as the positions
{4,8,10,11,14,15} show. We observe also a fan-star relation of the vertices in the
cluster 5 towards the vertices in the cluster 3 (the other positions). The edges with
cluster 3 are directed towards this cluster and are placed in peripheral or low-degree
positions (for instance, the position 7 corresponds to the connection of the edge to
a central axis, the position 9 to the connection to a clique etc.).

6.5 Chapter conclusions

By applying the SOM clustering method and the local_structure method introduced in
Chapter Bl to a sample of MySpace artists, we obtained a rich description of the popularity
of users. We compared two dimensions: the online popularity of the users and their
connectivity in the social network.

Our approach reveals in a robust and efficient way that the best friendship links on

MySpace wear various meanings, creating multiple popularity patterns. Next to unsur-
prising categories (clusters 3 and 4, very popular artists and unknown artists), we identify
two different kinds of mid-range popularity (clusters 1 and 2), and a category of small
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but socially active artists (cluster 5). We show that artists in these categories exhibit
different insertions in the social network. Artists with a low authority and non reciprocal
links tend to declare very popular artists as best friend thus generating a star structure.
On the contrary, some mid-range and low popularity artists form small cliques with local
neighbors, creating communities without stars but with triangles.

The self organizing map, providing a visual result, appears to be strongly relevant for
the study of sociological multivariate data integrating non linear effects. In addition, the
computation of patterns and positions of vertices in egocentred networks seems a good
way to reveal the local structure of the social linkage. When put together, theses methods
unfold a rich and intuitive set of meaningful information.

This set of methods can be easily applied to any social network where the correspond-
ing graph can be built and the activity of the users can be measured. An immediate
transposition is feasible to the Flickr and YouTube platforms, where the popularity can
be defined by the same parameters as on MySpace. Even more, the analysis can be adapted
to some offline social networks as those modeling mobile phone communications, where
calls frequency and duration measure users’ activity.

In the following two chapters we analyze precisely a mobile phone social network,
but in a different way than the study of users’ popularity on MySpace. In Chapter [7]
we describe the social network and some basic statistics; then we compare the positions
occupied by the different neighbors of each vertex (ego) to the quantity of communication
with ego. Next, the analysis we perform in Chapter [§ can be seen as going the other way
around than that on MySpace: instead of clustering individuals based on their activity
and then look at the social network structures, we cluster nodes based on the way they
are embedded in the network and then look at the communication characteristics of the
different clusters.
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Chapter 7

Mobile phone uses and social
network structure: an analysis of a
mobile phone graph

7.1 Introduction

The last two chapters of this part are dedicated to the analysis of a social network modeling
mobile phone communications. We study a database containing the recordings of one
month of communications of 3 million persons. We are interested in several questions
that can be grouped into 3 topics: mobile phone usage, structure of the social network
and socio-demographic effects. For the mobile phone uses, we compute some statistics
on frequency and duration of calls and number of SMS. We compare this information to
users’ age and gender. For the structure of the social network, we model the mobile phone
communications set by a graph that we analyze at the local level. In this chapter, we
identify characteristic patterns of the local structure of the graph. Also, we study the
relative positions that the different contacts of a person occupy in his egocentred network.
The next chapter is dedicated to a clustering of individuals based on the social structures in
which they are embedded. We compare the obtained clusters to the other two dimensions
of our data: the mobile phone usage and the socio-demographic information.

7.2 Data description

The analyzed dataset contains the recordings of the mobile phone communications of
the customers of Mobistar in Belgium during the month of October 2006. Mobistar is a
mobile phone operator that has approximately 30% share market in Belgium. The dataset
contains several details of each mobile phone communication in the Mobistar network:
the identifiers of the two persons in communication, their mobile phone operators (for
the communication to be stored, at least one of the two persons must be a Mobistar
customer), the type of communication (this can be call or short message SMS), the time
when the communication began and its duration (in the case of a phone call). The phone
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Figure 7.1: Mean call duration (in seconds) according to call initiator and receiver gender.

numbers have been hashed and each person has been given a unique identifier that does
not allow finding the identity of the person. The dataset contains over 1 billion recordings
involving 3.3 millions users. As we do not have the mobile phone communications between
the persons not belonging to Mobistar, we keep in our analysis only the communications
where the two persons are both Mobistar customers. For Mobistar customers the database
contains also their age and gender. Before using this information, we compared the age
and gender distribution of the mobile phone customers in our dataset (i.e. the fraction
of customers of a given age and gender) to the distribution in the Belgium population.
The differences between the two are very small, so there is no systematic bias in the
Mobistar data as regarding these two characteristics (except for people over 55 who are
underrepresented among mobile phone users).

First, we computed some statistics of mobile phone usage. The idea was to test, at
a large scale, some existing results obtained from interview data. These previous obser-
vations concern gender effect on communication duration. As explained in Section E.3]
several sociological studies showed that calls were longer when a woman was called. This
is because conversations with women tend to go through longer introductive and closure
sequences, to be multi-thematic and digressive in nature, while conversations with man
tend to be linear and monothematic. Actually, the callers seem to adjust their interaction
style to the gender of the receiver. Using the mobile phone dataset, we observed the same
pattern (see Figure[[I]): mobile phone calls towards a woman are, in average, longer than
calls to a man, whatever caller gender is. Also, when isolating mixed-gender pairs who
communicate in both directions (i.e. a man and a woman who call each other), we observe
a higher average duration of calls when it is the man who calls: 171 seconds as opposed
to 162 seconds when the woman calls the man.

Next, we compared mobile phone usage by age. This seems interesting as different
generations of people began to use the mobile phone at a different age. As the mobile
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Figure 7.2: Average number of calls (blue line) and SMS (green line) as a function of
phone user’s age.

phone diffusion started in the mid-1990, there are only the nowadays youngest groups of
population who entered in their ”communication age” directly with a cell phone at hand.
We thus expect a different usage of the mobile phone, especially for young people. Figure
[[2lshows the average number of out-going calls and SMS by age during the studied month,
while Figure shows the mean call duration by age. We observe no important difference
in the number of calls by age. For the mean duration of a call, we observe that people from
28 to 35 have in average the longest calls (these are out-going calls, so the age is that of the
caller), while people from 42 to 51 have the shortest. However, the differences are not very
important, the highest mean (for the age of 28) being only with 12% higher than the lowest
mean (for the age of 48). The main distinction concerns SMS usage: younger users send
more SMS than older ones. In the age group 18 to 25 this tendency is really impressive:
the SMS is used 4 times more frequently than a conversational exchange. Also, the SMS
usage seems to be more ”feminine” in general and, for the youngest part of the population
(aged 18 — 25), the between-gender "texting” is particularly popular (Figure [[.4]). Some
authors indicate that heavy SMS use in youngster’s relation with other gender is related
to seduction tactics where a direct voice contact can be more "risky” for interlocutors

inds)

While these measures represent a first analysis of the mobile phone communication
data, our purpose is to study the social network modeling this data, in general, and the
local structure, in particular. The remaining part of this chapter and the following one
deal with the analysis of the mobile phone social network, from a local point of view, and
with the correlation between local structure and intensity of communication or customers’
age and gender.
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7.3 Mobile phone graph

We model the mobile phone communications set by a simple undirected graph G. In this
graph the vertices are the customers; we connect such two vertices by an undirected link
if there had been at least one communication in each direction between the two persons
during the followed period. This way we do not take into consideration the one-way
contacts (calls or messages), single events in most of the cases suggesting that the two
individuals do not know each other personally. We keep only the vertices with degree
greater than 0, thus obtaining a graph G with 2.7 x 10° vertices and 6.4 x 10% edges. This
graph shares the characteristics of complex networks. It has a giant connected component
containing 83% of its vertices and 99% of the edges. As mentioned in other studies (e.g.
ﬂ@ﬂ), the degree distribution is very heterogeneous, with a large number of vertices
having a small degree and only a small fraction having a high degree. The same statement
is valid for the number of triangles containing a node (i.e. the number of edges connecting
its neighbors). Only 20 vertices (i.e. 7 x 107*% of the vertices) have more than 100
neighbors connected by more that 100 edges. The distributions of the degree and of the
number of triangles are presented in Figure [[.h] while Table [.1] contains the minimum,
maximum, average and median values of the two parameters. The clustering coefficient
of the graph (computed as the mean value of the clustering coefficient of the vertices) is
relatively high, being equal to 0.097.

In this graph, we apply the method introduced in Chapter [l in order to analyze the
local structure of the network. Remember that the method computes, for each vertex,
the number of occurrences of the different patterns (Figure [.6]) in its egocentred network,
and also the position vectors of its neighbors. Thus we have a description of the way the
vertex is connected to the graph (given by the patterns present in its egocentred network)
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parameter o | min | max | average | median | nb. networks s. t. a > 100
degree 1 367 4.66 3 56
nb.triangles 0 887 2.28 1 560

Table 7.1: Different measures for the degree and the number of triangles containing a
vertex.

and of the way its neighbors are placed in relation with each other. The mobile phone
graph has 2.7M vertices, so the method describes 2.7M egocentred networks. Our C++
implementation of the method takes 31 minutes to characterize the entire set of vertices
on a computer with a standard configuration: a 2.8GHz processor and 4Gb RAM.

Empirical complexity of the method. Let us discuss the complexity of our method
when it is applied to the mobile phone graph G. As explained in Section[5.4] the complexity
of the method depends on the number of patterns in each egocentred network. Actually,
it is the enumeration of patterns and positions of vertices in each egocentred network
(Algorithm Characterize WithPatterns, see Section [0.4]) that depends on the number of
patterns in the egocentred network. It is the complexity of this algorithm that we want
to analyze. As presented in Section [5.4] the time complexity is linear in the number of
patterns in the egocentred network. We do not have a method to a priori estimate the
number of patterns, so let us evaluate the complexity of the algorithm a posteriori, after
having computed the patterns in all the egocentred networks. For a vertex v in the mobile
phone graph G, let n, be the number of vertices in its egocentred network Eg(v), m, the
number of edges and p, the number of patterns. For all the egocentred networks in G, we
have p, < m3, and, for 98.5% of these graphs, p, < m2, so for the egocentred networks
of our graph G the observed time complexity of Algorithm Characterize WithPatterns is
O(m?) in 98.5% of the cases and O(m3) in the rest of the cases. Given that most egocentred
networks have a low number of edges, it is not very time-consuming to list all the patterns
and to compute the positions occupied by the different vertices.

To finish this discussion of the empirical complexity of our method, we compared the
time complexity of Algorithm Characterize WithPatterns to that of the method proposed
by Kloks et al. [KKMO0Q] that counts the induced subgraphs with exactly 4 vertices.
Given that, in this method, the number of vertices of the searched subgraphs is 4, we
also use Algorithm Characterize WithPatterns for listing patterns with at most 4 vertices.
On the one hand, for an egocentred network with n, vertices, the complexity of Kloks’
algorithm is O(n& + e%%9), where O(n?) is the time needed to compute the square of the
adjacency matrix of G. On the other hand, for each vertex v in GG, the number of induced
subgraphs with at most 4 vertices is smaller than (2 x m,)? and than (5 x n,)?, so the
time complexity of Algorithm Characterize WithPatterns is O(n?2) for all the egocentred
networks in G. Therefore, for the mobile phone graph, the time complexities of the two
methods are comparable. So it is worth listing all the patterns, given that we make a step
further by computing not just the number of the different patterns but also the positions
occupied by the different vertices.

After applying the method to our mobile phone graph, the first analysis we perform is
the computation of characteristic patterns. This analysis, related to the problems of iden-
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Figure 7.6: The set of patterns and their positions.
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tification of network motifs and frequent patterns, is presented in Section [Z.4l In a second
analysis, we study the way the different neighbors are placed in the egocentred networks
and we compare our observations to the intensity of mobile phone communication. This is
presented in Section Finally, in Chapter B we cluster individuals in the mobile phone
network based on the way they are connected to the network, thus addressing the problem
of identification of roles in a social network.

7.4 Characteristic patterns

When characterizing the egocentred networks of the vertices in the mobile phone graph
with the method introduced in Chapter Bl we obtain the number of occurrences of each
one of the patterns (Figure [Z.6]) in each one of the egocentred networks. This allows us
to address the problem of identifying ”characteristic” patterns. For this problem, several
authors proposed different definitions and algorithms for computing them. As we have
already counted the patterns, we are able to compute the characteristic patterns according
to the different existing definitions.

Let us first denote by D the set of the egocentred networks of all the vertices in the
mobile phone graph. There are several possible definitions for a characteristic pattern P
for a set of graphs D:
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Def 1. the number of occurrences of the pattern P as induced subgraph of the graphs in
D is greater than a given threshold;

Def 2. the number of graphs in D that contain the pattern P as induced subgraph is
greater than a given threshold (this is the problem of identifying frequent patterns
that we presented in Section B3] and that was treated for instance in [HS| [KKO1l

[CWMO0]);

Def 3. the number of occurrences of the pattern P as induced subgraph is higher for the
graphs in D than for randomly generated graphs of same sizes (this is the problem
of identifying network motifs that we also presented in Section and that was

introduced in [MIK*04]).

Definition 1. We compute, for each pattern P with k& < 5 vertices, the number of
occurrences of P as induced subgraph of graphs in D divided by the number of occurrences
of a pattern with k vertices in D, i.e. the probability that the subgraph induced by k
connected vertices of a graph in D represents the pattern P. Figure [[.7] shows the values
of these probabilities for £ > 3. We observe that the patterns that occur the most are the
paths and the stars (possibly with an extra edge). Note however that the counting of all the
occurrences of a certain pattern gives an advantage to those containing vertices of degree
1. For instance, in the case of 4—nodes stars = (pattern 5 in Figure [[.6]), the presence
of a 6—nodes star in an egocentred network implies counting (2) = 15 occurrences of the
pattern 5, .. By this definition, some patterns are given an advantage, they occur more
often simply because of the combinatory and probably not because they are characteristics
for our set of egocentred networks.

It seems more plausible to count either the egocentred networks that contain a certain
pattern and thus find the frequent patterns (as in definition number 2), or to refer to a
null model in order to have an estimation of the expected number of occurrences of the
different patterns (as in definition number 3).

Definition 2. Figure[Z.8 represents, for each pattern P with k < 5 vertices, the number
of graphs in D that contain P as induced subgraph divided by the number of graphs in
D that contain at least one pattern with k vertices, i.e. the probability that a graph
in D with at least k connected vertices contains P. We observe that the most frequent
patterns are the paths, possibly with one extra edge (added to form a star or a triangle).
However, it is possible that these patterns appear more often than others simply because
of the degree distributions of the egocentred networks in which they are counted and not
because they have a special meaning.

It thus seems a good idea to compare the number of occurrences of the different patterns
to their occurrences in randomly generated graphs. This way we can see which patterns
occur in our egocentred networks because there is a reason bringing vertices together, and
which patterns occur often just because of the combinatory of the egocentred networks.
It is the third definition that looks for patterns occurring more often than in random
networks.

Definition 3. For each connected component of a graph in D we randomly generated
connected graphs using the method introduced in [MKFVO06]. As explained in Section
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has at least k& connected vertices
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B2 this method uses dK —series of probability distributions (i.e. all degree correlations
within d—sized subgraphs). We built graphs for d = 1,2 and 3 respectively. For d = 1,
the generated graphs preserve the degree distribution of the original graphs, thus assuring
also the same number of vertices and edges. For d = 2, the joint degree distribution is
preserved, thus keeping also the same degree distribution. For d = 3, the graph generation
preserves the number of triangles and wedges (i.e. chains of 3 vertices connected by 2 edges)
between vertices with degrees ki, ko, k3, Vki, ko, ks € N.

For each value of d, let Ry be the set of randomly generated graphs. For each pattern,
we compute the ratio between its number of occurrences in the graphs in D and in the
graphs in R4y. When the graphs in D are compared to the graphs in R4, the patterns
with the greatest values of the ratios are characteristic for the graphs in D and the ones
with the smallest values are underrepresented. For d = 1 and d = 2, the same patterns
are identified as characteristic (see Figure [[9), with smaller values of the ratio for d = 2
than for d = 1. These patterns suggest that, although the densities of the input graphs
are preserved in the generated ones, there are graphs in D that are locally denser than
the corresponding generated ones. So, in the neighborhood of certain vertices, several
neighbors form dense clusters; these clusters may correspond to the different groups of
contacts of those persons. Note however that the two generations preserve the clustering
coefficients of the graphs in D. When k = 3, the clustering coefficient is preserved (along
with some other conditions, see Section B.2]) and the observed values of the ratio are placed
between 0.99 and 1.003 for all the patterns. The generated graphs essentially reconstruct
the original ones, so the 3k—distribution suffices in order to capture the distributions of
the different patterns in the neighborhood graphs in GM. Nevertheless, this generation is
very constraining for small graphs like those in D; in many cases there is only one graph
that has the 3k—distribution of the original one: the original one.

To sum up, computing characteristics patterns is not an easy job. Each one of the
definitions has its limitations. Even if the third definition seems the most useful, the
method for graph generation influences a lot the results; the characteristic patterns found
by using a certain graph generation method may not appear as characteristic if one changes
the method.

7.5 A characterization of ego’s contacts

By applying the method local_structure described in Chapter [B to each vertex (also called
ego) v of the mobile phone graph, we obtain a description of how the neighbors of the
vertex are placed in relation to each other. This description is a vector, called position
vector, computed for each one of the neighbors u of the vertex v. It contains the number
of occurrences of u in the different positions of the patterns identified in the egocentred
network of v (Figure represents the patterns and their positions; in each pattern each
position has a different color). We want to see if there is a relation between the feature
vectors of the different neighbors, so between their positions in the egocentred network,
and the intensity of their communication with v. We thus compare the position vectors to
the number of calls with v and to the total duration of calls. Note that the position vectors
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Figure 7.9: For each pattern, logs of the ratio between its number of occurrences in D and
in Ry

are relative quantities: they are completely conditioned by the links of each neighbor with
the other neighbors. We compare these quantities to the intensity of communication that
is also relativized: for each neighbor, we use the number and the total duration of calls
with ego not as absolute values, but as compared with the values for the other neighbors.

The maximal number of calls

First, for each ego v, we rank its neighbors depending on the number of calls they
exchanged with him: the greater the number of calls exchanged with ego, the smaller the
rank (denoted by rank,), such that the vertex with the greatest number of calls has rank
1 and the one with the smallest number of calls has rank d(v) (i.e. the degree of v).

Let D5 be the set of vertices (egos) in the mobile phone graph that have degree at
least 5. For each ego v € D5, we study the positions occupied in its egocentred network
by its neighbors with ranks 1, 2, 3 and 4 and by a randomly chosen neighbor among those
with rank greater than 4, to which we give the rank 0. In order to analyze the positions
of the different vertices, we answer two questions regarding the entire set Ds:

Q1 given a position in a pattern, which of the five ranks occupies this position the most
frequently and which one the least frequently?

Q2 given a pattern and an rank r < 5, in which position of the pattern the vertices with
rank 7 appear the most frequently and in which one the least frequently?

For a rank r, let I(r) be the set of all neighbors that have rank r along with the
corresponding egos: I(r) = {(u,v) s.t. u is a neighbor of v, d(v) > 5 and rank,(u) = r}.
For a position i (of all the possible positions of the different patterns), let Pos(Eg(v),u,1)
be the number of occurrences of the neighbor u of v in the position 4 in the egocentred
network Eg(v) of v. Also, let Nb(r, P) be the total number of occurrences of a neighbor
with rank 7 in any position of the pattern P : Nb(r, P) is the sum of occurrences, for all
egos v € Ds, of their neighbors with rank 7 in the different positions of the pattern P,
so Nb(r, P) = > icp 2 (uw)er(r) Pos(Eg(v), u,i). We now compute the probability that,
when a vertex with rank r occurs in a position of the pattern P, this position is i :
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0 if 7 is not a position of P
PT(T7 i, P) = Z(u,v)el(r) POS(EQ(U)v u, Z)
Nb(r, P)

Figure presents these probabilities for all the 5 ranks and all the patterns (as in
Figure [[.6]) with at least two positions. Remember that in Chapter Bl we classified the
different positions of each pattern in 3 categories, central, intermediate and peripheral,
based on their betweenness centrality and degree. Briefly the positions colored in red
in Figure are central, those colored in black are peripheral and the others one are
intermediate.

Question Q1. We observe that, for all the central positions (the maximal index in each
image, in the right side), the probability of occurrence in these positions of the vertices
with rank 1 is greater than that of the vertices with rank 2, which is greater than that of
the vertices with rank 3 etc. The opposite situation happens for the peripheral positions
(the minimal index in each image, in the left side) where the randomly chosen vertex has
the greatest probability of occurrence. For the intermediate positions, the vertices with
the greatest probability of occurrence are generally those with ranks 2,3 or 4.

Question Q2. We observe that the vertices with rank 1 occupy most frequently the
central positions and least frequently the peripheral ones (the red curves are generally
ascending or at least higher in the right side than in the left). The randomly chosen
vertices occupy mostly the peripheral positions and least frequently the central ones (the
black curves are generally descending), while the vertices with ranks 2, 3 and 4 have a
tendency placed between these two.

So, when they appear in a pattern, the vertices with rank 1 tend to occupy the cen-
tral position of the pattern; they have an important role, connecting several neighbors
otherwise disconnected. The roles played by the vertices with the next three ranks are
less important; they generally occupy the intermediate positions of the different patterns.
The randomly chosen vertex has a marginal role, generally being connected to the vertices
around it in a peripheral position. Note however that the presence of a node in the dif-
ferent positions is not equivalent to its centrality: even if a node is not the most central
(in terms of betweenness centrality), it may occupy the central position of the different
patterns. This can be shown, for instance, by looking at the egocentred networks where
the neighbor with rank 4 is the most central. We compute, as before, the probabilities Pr
for the vertices in these graphs. Even if the vertex with rank 4 is the most central, it has
a smaller probability of occurrence in the central position of the patterns 5, 6, 12, 13, 18
than the vertices ranked 1, 2 or 3.

otherwise.

The maximal sum of duration of calls

We analyze, for the egocentred network of each vertex in the mobile phone graph, the
position occupied by the vertex that had the greatest sum of duration of calls with ego. In
78.2% of the cases, the person that exchanged the greatest number of calls with ego (the
vertices with rank 1 of the previous section) is also the person that has the greatest total
duration. In the other cases, we give rank 1 to the vertex with the greatest number of calls
and rank 2 to the vertex with the greatest sum of duration of calls. We also randomly
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Figure 7.10: For each pattern P (each image) and each position ¢ in P (x-axis in each
image), the probability (y-axis) of occurrence of a vertex with rank = in ¢ : rank 1—red
dots, 2—blue dots, 3—green dots, 4—cyan dots, 0—black dots. In each image, the order of
the positions on the x-axis corresponds to the ascending order of betweenness centrality
and degree: the maximal value corresponds to the central position in the pattern, while
the value 1 corresponds to the peripheral one.
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choose a vertex among the other neighbors of ego. By performing a similar analysis to that
of the previous section, we observe, for each pattern, that the probability of the vertices
with rank 2 to occupy the central position is smaller than that of the vertices with rank 1
but higher than that of the randomly chosen vertices. The opposite situation happens for
the peripheral positions. When they appear in a pattern, the vertices with rank 2 tend to
occupy the intermediate positions.

Comments on the results

Our data provides us two measures of the intensity of communications between each
ego and his neighbors: the frequency and the duration of calls. It seems intuitive that
the person who speaks the most with ego has an important role in his network. However,
when it is not the same person that has the greatest frequency of calls and the greatest
duration, it is interesting to see which of the two actors has a more important role in ego’s
neighborhood. Using the number of occurrences in the different positions, we saw that it
is the one that has the greatest frequency who has a more important role.

Remeber that in Section [£.3] we presented a sociological study by Licoppe and Smoreda
on phone communications [LS05]. In this study the authors, using databases of telephone
calls and several interviews focusing on the use of telephone, identified two patterns of
communication, the ”connected presence” and the ”intermittent presence”. In the first
one, the two persons, socially and often also geographically close, are frequently in contact
with each other, exchanging many short calls and messages. They share activities that
require numerous calls for synchronization and coordination, the mobile phone being espe-
cially suitable for this. It seems plausible that the persons that speak the most frequently
with ego are well involved in ego’s network, being well connected to other neighbors. In-
deed, we saw that the actors that communicate the most with ego tend to occupy the
central positions of the patterns where they appear.

In the second pattern identified by Licoppe and Smoreda, the two persons, close friends
or intimate relatives, are not able to see each other or talk very often. Their conversations
are long, they give and receive news, trying to compensate for the rarity of face-to-face
contacts. The person that has long but rare calls with ego is probably geographically far
from him, while the persons that have a great frequency of calls are generally geographically
close. This hypothesis is confirmed in [LBAKT 08|, where Lambiotte et al. show that the
probability of a mobile phone call between two persons is inversely proportional to the
square of the geographical distance between them. Being far from ego, the person that
has the greatest duration of calls but not the greatest frequency is less implied in ego’s
network, his role is less important. However, the duration of the calls suggests that he
is sociologically close to ego, hence his more important position than that of a randomly
chosen neighbor.

7.6 Chapter conclusions

In this chapter we presented an analysis of a dataset of mobile phone communications.
We first computed some statistics of phone usage and then we analyzed the local structure
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of the graph by using the method introduced in Chapter Bl Until now we addressed the
question of computing the characteristics patterns of the egocentred networks, thus relating
to some very popular problems in pattern discovery, data mining and bio-informatics.
Next we analyzed the positions occupied by the neighbors of each vertex in its egocentred
network, thus addressing the notion of the roles played by the different vertices in the
egocentred network. When we compared the relative positions of the neighbors to the
intensity of communications with ego, we found that the person who had a great frequency
of calls with ego had, in average, an important position in its egocentred network. This
position is generally more important than that of the person who has the greatest duration
of calls with ego.

In the next chapter we group together vertices having similar egocentred networks
and we confront the different groups to the quantity of communications and to the socio-
demographic data.
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Chapter 8

A local structure-based clustering
of nodes

8.1 Introduction

Remember that, for each individual in the mobile phone network, we listed the patterns
of his egocentred network. The number of occurrences of the different patterns represents
a description of how each node (so each individual) is connected to the network. In this
chapter, we use this description in order to group individuals into clusters: nodes are put
in the same cluster because they are connected to the network in similar ways; nodes put
in distinct clusters are differently embedded in the network. One can see this distribution
of nodes into clusters as an identification of roles played in the network, as presented in
Section . I1.Jl Without pretending to have solved the problem of identification of roles,
we present a method to distribute nodes into clusters based on the local structure of the
network. We use the k-pattern vectors that we have defined in Section[5.3] but in a different
way than in the definition of the k-pattern equivalence (that we have also introduced in
Section [£.3)).

There are of course many ways of clustering nodes of a network, but the method
we propose here gives quite promising results, in particular when they are confronted to
other characteristics of the individuals. Indeed the probability that an individual belongs
to a certain cluster depends on his age; even more, using these probabilities we are able
to group together different ages, thus discovering 4 groups containing consecutive ages,
corresponding to 4 life stages. The probability that a person belongs to a certain cluster
also depends on his mobile phone communication intensity; moreover the intensity of
communication allows us to predict with rather high accuracy the cluster a person belongs
to.

We begin by presenting the method for grouping nodes into clusters based on the
structure of the network in which they are embedded. We then confront the obtained
clusters to age, gender and intensity of communication. We finally provide a typology
of the mobile phone users in our dataset based on social network cluster, intensity of
communications and socio-demographic data.

107
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8.2 A method for nodes clustering using patterns frequency

In this section we want to group together the vertices of a given large graph G which are
connected in the same way to the network. This is the problem of identification of social
roles that we presented in Section [.1.1]

8.2.1 Pattern-frequency equivalence

Generally, when computing roles of nodes in a network one defines an equivalence relation
between nodes: equivalent nodes are considered to have the same role. In Section we
have defined such an equivalence relation called k-pattern equivalence. This relation is
based on k-pattern vectors. We recall the two definitions here.

Definition 8.2.1. Given a vertex v of a graph G and a positive integer k, we call k-pattern
vector of v the vector containing the number of occurrences of the k-patterns (i.e. all the
non-isomorphic connected graphs with at most k vertices) in the egocentred network Eg(v)
of v. Two wvertices of the graph G are said to be k-pattern equivalent if and only if they
have identical k-pattern vectors.

Although the k-pattern equivalence is less strict than the structural and the automor-
phic equivalences (as explained in Section [5.0]), it is still not flexible enough for real-world
networks. The problem is that the equivalence classes obtained when applying the def-
inition to large graphs are much too numerous. Here we want to group the nodes of a
given large network into a small number of classes (i.e. smaller than a given constant,
for instance 20). Each class should contain similar nodes in terms of network structure.
It is the local structure of the network surrounding the node that should matter when
attributing a node to a class, and not its degree or the fact of being connected to other
nodes in the class. The interest of computing such classes is that they are very easy to use.
Thus, one can measure correlations with other properties of the nodes or make predictions
(e.g. predict a property when knowing the class and vice-versa).

One possible solution is to characterize each vertex of the given graph G by a vector
with n components and then to define an equivalence relation of vectors (and thus obtain
an equivalence relation of vertices).

Definition 8.2.2. Given a graph G = (V, E), a characterization function f : V — R"
and a relation r € R™ x R™, two vertices u,v € V are said to be r-equivalent if and only if

one has (f(u), f(v)) € r.

If one takes for instance, for each vertex v of the graph G, f(v) to be the k-pattern
vector of v and r to be the identity, one has that two vertices u and v of G are r-equivalent
if and only if they are k-pattern equivalent.

In order to define a r-equivalence on the vertices of a graph G, one has to give a
definition of characterization function f and of relation r. Here, we base our definition of
characterization function on 4-pattern vectors. As for the relation r, we define it using a
clustering method that we introduce.
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Characterization function. Given a large graph G, we obtain a description of each
one of its vertices by analyzing its egocentred network. Thus each node is characterized
by a vector, the k-pattern vector, containing the number of occurrences of the different
patterns in its egocentred network. In this section we use only patterns with at most 4
vertices (Figure B). They provide a detailed enough image of how the node is connected
to the network while being not very numerous. We add two more elements, the number
of isolated vertices and the number of isolated edges in the egocentred network, to the
4-pattern vector. We thus define a new vector characterizing each vertex, called pattern-
frequency vector.

Definition 8.2.3. Given a graph G = (V,E), we call pattern-frequency function the
characterization function f : V — RY such that for allv € V one has

F) = (fio(v), fie(v), fm(0), fL(V), fA (), f2 (v), fre(v), fz (v), fr(v), fm(v), fr(v))
where:
o fiu(v) is the number of isolated vertices in the egocentred network Eg(v),
o fie(v) is the number of isolated edges

and the subsequent components are the numbers of occurrences of the patterns as induced
subgraphs in the egocentred network Eg(v) of v:

o f(v), pattern 1, edges,

e fi (v), pattern 2, paths with 2 vertices,

e fa(v), pattern 3, triangles,

e f=(v), pattern 4, paths with 3 vertices,

o fo(v), pattern 5, stars,

e f=(v), pattern 6,

e f(v), pattern 7, chordless squares,
o f(v), pattern 8, squares with one chord,
o f=(v), pattern 9, 4—cliques.
We call the vector f(v) the pattern-frequency vector of v.

For instance, for the vertex in Figure B.2(a), the egocentred network is represented in
Figure B2(b) and the number of occurrences of the different patterns in Figure B2l(¢c); its
pattern-frequency vector is then f(v) = (4,1,6,3,1,2,0,1,0,0,0). Note that the pattern-
frequency vector of the vertex v can also be seen as a characterizing vector of its egocentred
network Fg(v).
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Figure 8.2: A vertex v and its neighbors (a), the egocentred network Eg(v) of v (b) and
the patterns of Eg(v) (c).
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Vector relation. We want to define a relation r on the vectors characterizing the
vertices of the given graph G. We choose to define a clustering of vertices based on
the pattern-frequency vectors that we have previously introduced; we call this cluster-
ing pattern-frequency clustering. Then, the relation r is defined such that its equivalence
classes are the clusters produced by the pattern-frequency clustering.

Definition 8.2.4. We call pattern-frequency equivalence on the vertices of a graph, the
r-equivalence whose equivalence classes are the clusters built by the pattern-frequency clus-
tering.

So we want to define a clustering of nodes based on pattern-frequency vectors. Of
course, this clustering must correspond to our main goal of grouping together vertices
that are connected in a similar way to the network. We use a classical clustering method,
the k-means (presented in Section [2.2]). The advantage of performing a clustering to define
vertex equivalence is its flexibility: one can distribute the vertices into a small number
of clusters (if this is his goal) or a large number of clusters (where vertices in the same
cluster are very similar to each other).

Before performing the clustering, we filter out vertices that have identical pattern-
frequency vectors. These vertices are not distinguishable by using only the patterns; their
egocentred networks contain exactly the same patterns in exactly the same number. By
default, they belong to the same cluster. The elimination of multiple copies of the same
pattern-frequency vector insures a smaller complexity of computation and also allows us
to perform a finer clustering. Of course, after having clustered the remaining vertices (we
call them the reduced population), we put the filtered out vertices into the clusters where
the vertices with identical vectors have been already placed.

Definition 8.2.5. Given a graph G, we call reduced population of G a maximal set of
vertices of G that have distinct pattern-frequency vectors. Given a positive integer d, we
denote by Popg(G) the set of vertices in the reduced population of G that have degree d
(in G).

8.2.2 The issue of the degree

There is an important factor that must be taken into consideration before doing the
clustering: the degree of vertices. It is difficult to compare the number of occurrences
of patterns in egocentred networks of vertices with different degrees because these values
are biased by the degree. For vertices with high degrees, the number of occurrences can
have high values, too. Actually, for a vertex (ego) with degree d, a pattern with k vertices
can occur at most (Z) times in its egocentred network. So, while the minimal value of
the number of occurrences of a pattern is always 0, the maximal value depends on the
degree of ego. Therefore, the exact values of the number of occurrences of patterns can
be misleading. Look, for instance, at the four egocentred networks in Figure (ego has
been removed). Their pattern-frequency vectors are presented in Table where one can
see that the values of many variables are higher for C' and D than for A and B. Even
more, the networks C and D look more similar to each other than A and B, so the vectors
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Figure 8.3: An example of 4 egocentred networks with 5 vertices (A and B) and 10 vertices
(C and D) respectively (ego has been removed).

Table 8.1: The pattern-frequency vectors of the egocentred networks in Figure

net. fdeg f'v fev f'-‘ fl_ fA fE fZ. f‘Z fEl lel fx
A 5 0 0 4 6 0 0 4 0 0 0 0
B ) 1 0 6 0 4 0 0 0 0 0 1
C 10 0 0 9 |36 | O 0 |8 | O 0 0 0
D 10 1 0 10 | 26 2 0 | 45 | 10 0 1 0

of C'and D should be closer to each other than those of A and B. However, the Euclidian
distance between the pattern-frequency vectors is 74 for A and B and 1726 for C' and D.

In order to avoid the problem of the degree, we choose to perform a clustering for each
degree. Thus, the distance between the vertices C' and D in the previous example will
be compared to the distances between other pairs of vertices of degree 10 and not to all
the input vertices. If we manage to group together the vertices of each degree in a same
number of clusters and to match together the clusters obtained for the different degrees,
then we have that each cluster contains vertices of all the degrees. This is exactly our
goal here: we want a vertex to belong to a given cluster because it has a certain type of
connection to the network and not because it has a certain degree. Thus, if a vertex gets
another degree during time, we can see if the type of structure in which it is connected also
changes by checking if its cluster changes. It is not the difference of degree that we want
to capture but the difference of structure. If we don’t have exactly the same clusters for
all the degrees, we cannot do this. And this is exactly what might happen if we perform
a single clustering for all the degrees (and not for each degree separately): there might be
clusters with no vertices of some degrees (because, for instance, there are fewer vertices of
that degree).
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8.2.3 Pattern-frequency clustering of nodes

We proceed as it follows:

1. for each degree, we perform several k-means clusterings (see Section for a de-
scription of this method) on the vertices with that degree in the reduced population,
using different numbers of clusters; we compute the best number of clusters;

2. we keep as final number of clusters the number indicated as best for most degrees;
let this number be n;

3. for each degree, we divide the vertices with that degree into n. clusters;
4. we finally match the clusters found for the different degrees.

Let us explain the different steps.

STEP 1. Given that we base our clustering on occurrences of patterns with 4 vertices
and less, we cluster only vertices with degree at least 4. For each degree, we use the k-
means algorithm on modified versions of the pattern-frequency vectors of the nodes. As
k-means starts by randomly picking the first centers, we perform 50 clusterings for each
degree and each number of clusters and choose the clustering with the lowest intra-cluster
variance. The best number of clusters is computed by comparing the average silhouette
values obtained for the different numbers of clusters (see Section for a presentation of
this technique).

Let us explain why and how we modify the pattern-frequency vectors. The k-means
algorithm uses a given distance between elements in order to compute the clusters; this
distance is usually the Euclidian distance between the feature vectors of the elements. We
need to modify the pattern-frequency vectors before computing the Euclidian distance on
them. There are several reasons for that.

a) Modifying the ranges of values. Even if we focus on each degree at a time, the num-
bers of occurrences of the different patterns are not placed in the same ranges of values.
For instance, the maximal number of occurrences of the t.—pattern is generally a lot higher
than the maximal number of the m—pattern. We need to place the ranges of values of
all the variables participating to the Euclidian distance between the same extreme values.
This can be done for instance by centering and scaling the variables or by giving them
new values, obtained from a computation of slices. It is the second solution that we adopt
here.

Generally, given a group of n elements that have values a1, as...a,, for a given attribute
(or variable) a, one can compute k bins (or slices) such that there is a fairly equivalent
number of elements whose values are placed in each bin. For that, one needs to compute
kE + 1 ascendant values (called limits) such that the first limit is the minimal value of a;
for i € {1,2,...n}, the last limit is the maximal value of a; and there is a fairy equivalent
number of elements (i.e. 7) whose values are placed between two consecutive limits. Now,
one can use instead of the values aq, as...a, the corresponding slices: instead of the value
a; one uses the value x if a; belongs to the z—th bin. Note that the computation of only
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two bins (k = 2) is equivalent to the computation of the median value of the attribute a.
In this case, one can use, instead of the real value a; of the attribute, a value that is either
1 or 2 depending on a; : if a; is inferior to the median value, then one uses 1, otherwise 2.

This is the technique that we apply here. Instead of using the real values of the pattern-
frequency vectors, we compute and use slices of values. There are several advantages in
doing this. First, we eliminate the problem of comparing very different values for different
patterns: now we have, for all the patterns, the same possible values. Second, the new
values are established using the ranges of values, as found in the network. Thus, the
number of occurrences of a given pattern in a given egocentred network can be very small
comparing to the maximal possible value and, in the same time, very high comparing to
its value in the other egocentred networks. We want to emphasize the fact that this value
is high in our network, which the slices do. Thirdly, the extreme values (often difficult to
handle) are simply put in the marginal slices and are no longer seen as extreme.

For each degree d and each one of the 11 components of the pattern-frequency vector,
we choose 5 bins such that an equivalent number of nodes in Popy (the reduced population
with degree d) have values in each one of the bins.

b) Using the absent patterns. By using the pattern-frequency vectors we take into con-
sideration the presence of different structures in the egocentred networks. Besides this, it
can be useful to take into consideration also the absence of different structures. Thus, two
nodes are similar if they have many common patterns in their egocentred networks, but
also if patterns that are not present in one are not present in the other one either. To take
this information into consideration, we add to the pattern-frequency vector of each node
the pattern-frequency vector of the complement graph of its egocentred network. Recall
that the complement graph of a graph G = (V, E) is a graph G’ = (V'/, E’) where the ver-
tices are the same as in G (i.e. V/ = V) and the edges are all the possible edges between
vertices in V that are not present in E (i.e. E' = {(u,v),u,v € V and (u,v) ¢ E}).We
thus have, for each vertex v, a vector containing the number of occurrences of patterns in
the egocentred network Fg(v), followed by the number of occurrences of patterns in the
complement graph E¢’(v) of the egocentred network. Next we replace the real values in
this new vector by the corresponding slices as previously explained; we thus obtain the
extended pattern-frequency vector.

Definition 8.2.6. Given a vertex v of a graph G, we call extended pattern-frequency vector
of v the vector with 22 components containing first the slice values of the pattern-frequency
vector of v and then the slice values of the pattern-frequency vector of the complement graph
Eg'(v) of the egocentred network Eg(v) of v.

It is on the extended pattern-frequency vectors that we compute the Euclidian distance
and we perform the k-means clustering.

STEP 3. Suppose n. was found as best number of clusters for most degrees, so we
need to divide the nodes with each degree in the reduced population into n. clusters. We
perform again 50 k-means clusterings with k = n. for each degree and we keep the clus-
tering with the lowest intra-cluster variance.
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STEP 4. We have now n, clusters for each degree greater than 3. We need to match
the clusters obtained for the different degrees so that, every node, no matter its degree,
belongs to one of the n. clusters. In order to do the matching, we compute the center (or
centroid) of each cluster for each degree. Recall that the center of a cluster is the average
of all the points in the cluster i.e. a vector where each component is the arithmetic mean
of the values of that component for all the elements in the cluster.

We match clusters for consecutive degrees by using the centers: for each degree d > 4,
we compute the centers of the clusters obtained for d (let C; be the center of the ith cluster,
with ¢ from 1 to n.) and for d—1 (let C! be the center of the ith cluster, with i from 1 to n.)
and the Euclidean distances between these centers. For each one of the clusters obtained
for degree d we have to choose exactly one cluster from those obtained for degree d—1, and
each one of these clusters must be chosen exactly once. This corresponds to a permutation
of n. elements: each cluster with index 1 to n. obtained for degree d is given a new index,
also from 1 to n., corresponding to the cluster for degree d — 1 with which it is matched.
We choose the permutation o that minimizes the sum of distances between centers of
matched clusters: >°,_,  dist(C;, C,, (i)). For that, let us observe that if there is a valid
permutation ¢ such that, for all ¢ from 1 to n., dist(C;, C! (i)) is the minimum distance
between C; and any C]’-, with j from 1 to n., then ¢ is the permutation that minimizes
the sum of distances. This case may occur for many pairs of consecutive degrees, so in
this case no other computation is needed. After having computed the permutation o that
minimizes the sum of distances, one has a bijective matching of clusters for the given
pair of consecutive degrees. By doing this for each pair, we obtain a matching of all the
clusters.

Each vertex in the reduced population thus belongs to one of the n. clusters. We now
distribute into clusters the vertices that we have previously filtered out by putting them
in the clusters of the vertices with the same pattern-frequency vector.

8.3 Clusters of individuals in the mobile phone network

Using the previously described technique, we cluster the individuals in the mobile phone
communication network (the same graph as in Chapter [7). The best number of clusters
is found to be 6. Figure 84 represents the distribution into clusters of the egocentred
networks of vertices with degree 4 (up) and 5 (bottom). In our graph, all the possible
egocentred networks for these degrees are present; these are all the possible undirected
graphs with 4 and 5 vertices respectively. For each network, we have written in red the
cluster to which it belongs.

We observe that cluster 1 contains dense networks, while cluster 6 contains very sparse
networks. Networks in cluster 2 seem to have a high number of stars, while those in cluster
5 have both isolated vertices and a rather dense group. For clusters 3 and 4 we can say
that networks in cluster 3 are denser than those in cluster 4. These observations have been
made by simply analyzing the clusters obtained for degree 4 and 5. When looking at the
centers of the clusters obtained for the different degrees, we observe that, for all degree:

e the center of cluster 1 has the maximal value for the number of edges and for the
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Figure 8.4: All the possible egocentred networks of vertices with degree 4 (up) and 5
(bottom) and their clusters.
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Figure 8.5: The distribution of the reduced population into the 6 clusters.

number of triangles i.e. vertices in cluster 1 have the highest average of f— and of

fa;

the opposite situation happens for cluster 6 : the center of this cluster has the
minimal value for the number of edges and for the number of triangles i.e. vertices
in cluster 6 have the lowest average of f— and of fa;

from the remaining clusters, the center of cluster 5 has the maximal value for the
number of isolated vertices multiplied by the number of edges i.e. vertices in cluster
5 have the highest average of f;, X f—;

the center of cluster 2 has the maximal value for the number of stars i.e. vertices in
cluster 2 have the highest average of f..;

from the remaining two clusters, the center of cluster 3 has a higher value for the
number of edges than the center of cluster 4 i.e. vertices in cluster 3 have a higher
average of f than vertices in cluster 4.

This sustains our previously made observations for degrees 4 and 5 : cluster 1 contains
the densest networks, while cluster 6 contains the sparsest ones. Networks in cluster 2
have many stars, while those in cluster 5 have both isolated vertices and a dense group.
Finally, networks in cluster 3 are denser than those in cluster 4.

Remember that before computing the clusters we have eliminated the multiple copies
of pattern-frequency vectors. It is in this reduced population that we have computed the 6
clusters. The different resulting clusters contain fairly similar percentages of the reduced
population (see Figure and Table [B.2]).

However, when reintroducing the filtered out vertices, the population is not equally
divided into clusters any more. This is caused by the low local density of the graph: most
vertices have very sparse egocentred networks, so the different patterns occur in their
networks in small number. Thus the majority of the eliminated vertices belongs to cluster
6. After the introduction of the previously filtered out vertices, the new repartition into
clusters becomes very unbalanced (Table B2]).
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Table 8.2: The distribution of the reduced and total population into the 6 clusters.

cluster | % of the reduced | % of the total
population population
1 23.16 4.15
2 18.6 2.91
3 12.24 2.54
4 17.05 26.93
5! 11.12 5.04
6 17.83 58.43

In the following sections we confront the identified clusters to other characteristics of
the mobile phone customers.

8.4 Clusters versus age and gender

8.4.1 Age

For the mobile phone customers who have provided their birth year when subscribing to
the studied operator, we want to see if there is a connection between the age of a person
and his cluster. Remember that in Section we presented some statistics on mobile
phone use. There are some differences in call frequency and duration between ages, but
the main distinction concerns SMS usage, the younger users sending a lot more SMS than
the older ones. Here we want to see if these differences in mobile phone uses are visible in
the structure of the network surrounding each person.

We compute, for each cluster k from 1 to 6 and for each age a from 18 to 55 EL the
probability that a person of age a who has at least 4 contacts belongs to cluster k :

nb. persons of age a and cluster k

Pla, k) = nb. persons of age a and degree > 3
The plot of these probabilities is presented in Figure We observe that middle age
people (30 to 45) have the lowest probability of belonging to cluster 1, so generally they
are not involved in dense structures. This can be seen also in the plot for cluster 6 (the
cluster containing the sparsest networks), where there is a peak for 35 to 40. Younger
people belong generally to clusters 2, 3 and 4 and rarely to cluster 6 (in any case, a lot
less frequently than older people). The oldest people are generally placed in cluster 5 :
there is an increasing probability of having a densely connected group and some isolated
contacts when going from 40 years old to 55.

Let us now group together the ages that have similar probabilities for the 6 clusters.
We perform a hierarchical clustering on the ages using the cluster probabilities previously
computed, after having centered and scaled the probabilities so that they have the same

118 is the minimal age to have a mobile phone subscription, while for persons of more than 55 years
old, 70% of them belong to cluster 7
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Figure 8.6: For each cluster (each image), the probability of belonging to that cluster by
age (on x-axis).

mean and standard deviation for each profile. The result of this analysis is shown in
Figure We observe that there are 4 principal, homogeneous age groups similar to life
stages categories: 19 — 23 (who can be associated with ”students”), 24 — 27 (young people
starting their active life), 28 — 48 (the age of living in couple, often with children), and
49 — 55 (people at an advanced stage of the professional life, whose children are adult or
living apart). Note that this classification is based exclusively on structural characteristics
of the local communication network where the degree was neutralized.

To sum up, there are some differences in the mobile phone usage and in the network
structure depending on the age. Therefore a good question is: do these differences exist
because with age we change our mobile phone uses or because people of different ages
started using the mobile phone at a different age? As the mobile phone appeared in the
1990s’, the younger persons in our database had a mobile phone from an early age, while
the other persons started to use it when they were already adults. So, do the youngest
people send a lot of SMS because they were used to have a mobile phone since an early
age or because they are young? It would be interesting to analyze the generation effect
on mobile phone uses in 50 years, when everybody would have had a mobile phone since
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Table 8.3: The proportion of men and women in each cluster.
cluster | % men | % women

1 51.35 48.65

2 48.32 51.68
3 48.68 01.32
4 47.73 52.27
) 49.98 50.02
6 48.18 51.82

a young age.

8.4.2 Gender

We compute, for each one of the 6 clusters, the probability that a person belonging to that
cluster is a man. We obtain the proportions in Table There is no important difference
between the values obtained for women and men: in each cluster there are almost as many
men as women. Nevertheless, a y? test rejects the hypothesis that the genders and the
clusters are independent (i.e. the probability that a person belongs to a given cluster is not
independent from the person’s gender) with p < 0.005. This, however, is not surprising:
given the large amount of data on which the hypothesis is verified, the test tends to reject
it easily.

8.5 Clusters versus intensity of communication

8.5.1 Basic statistics

We compute for each person (ego) the total number of calls he had during the followed
period (both in-coming and out-going calls), the total duration of his calls and the total
number of SMS (similarly, in-coming and out-going SMS). Also, we compute the average
number of calls, total duration and number of SMS he had with each one of his contacts.
We limit the contacts to the persons who initiated at least one communication (call or
SMS) with ego and who also received at least one call or SMS from ego; these persons
correspond to ego’s neighbors in our graph. Besides the average values, we also compute
the standard deviation for the number of calls, the duration and the number of SMS
per contact. We thus have for each ego a vector with 9 variables characterizing ego’s
communications. We use these vectors to measure the relation between communication
intensity and the previously obtained clusters.

We begin by testing, for each one of the 9 variables, the independence of the variable
and the clusters by performing an ANOVA test: we test the hypothesis that the mean
value of the variable is the same for the different clusters. As the distributions for the 9
components are heavily right-skewed, we use the log values instead of the real ones. The
ANOVA test rejects the hypothesis of equal means for each one of the components with
p = 0. However, the ANOVA test specifies just that the means are different (i.e. they are
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not all equal) but does not say for which pairs of clusters these means are significantly
different and for which they are not. In order to find this information, we perform a
Bonferroni multi-comparison test for each one of the 9 variables. We thus have:

e for the total number of calls, all the means are significantly different, except for the
clusters 1 and 2; the order of the mean values of the total number of calls for the 6
clusters is, from low to high: 6, 4, 5, 3, 2, 1;

e similarly, for the total duration of calls and the total number of SMS, all the means
are significantly different, except for the clusters 1 and 2; in this case the order is 6,
5,4,3,1,2;

e very similar results are obtained for the other variables; the ascending order of the
values is always 6, 4, 5, 3, 2, 1, maybe with an interchange of 4 and 5 and of 1 and
2; the average duration of calls per contact is the only variable for which there isn’t
a significant difference between the mean values for the 6 clusters.

So, for each one of the 9 components, cluster 6 has the lowest mean, followed by
clusters 5 and 4 (or 4 and 5), cluster 3 and finally 2 and 1 (or 1 and 2). However, using
the mean values isn’t satisfying as the different variables have a right-skewed distribution.
Therefore, for each variable, we compute 10 slices as we did in Section B.2.3t we divide its
spectrum of values into 10 slices or bins such that a fairly equal number of values belong
to each one of the bins. Then, we compute the probability that an individual belonging
to a given cluster has values in a certain bin:

#individuals € cluster s.t. value(variable) € bin

P(variable, cluster, bin) = #individuals € cluster.

We plot these probabilities for the first 3 variables in Figure @8t the number of calls in (a),
the total duration of calls in (b) and the number of SMS in (¢). Each bar corresponds to a
bin, going from the bin with the lowest values (dark blue) to the bin with the highest ones
(dark red). For each cluster, the height of each bin represents the previously computed
probability i.e. the probability that an individual in that cluster has values in that bin; the
sum of heights of bins of one cluster is thus equal to 1. For the three variables, individuals
in clusters 1, 2 and 3 have a greater probability to have values in the highest bins than in
the lowest ones, while for cluster 6 the opposite situation happens. Cluster 4 has values
especially in the intermediate bins, while cluster 5 has values both in high and low bins,
but fewer in the intermediate ones.

8.5.2 Predicting the cluster from the communications

Given these differences in quantity of communications for the different clusters, we want
to see if we can guess in which cluster an individual is placed given his communications.
For that, we use a decision tree to unfold the relation between communication intensity
and cluster and thus to predict the cluster of each individual (see Section for an
introduction to decision trees). The explanatory variables are the 9 characterizing the
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Figure 8.8: For each cluster (Ox-axis), the probability that the communications of an
individual in that cluster are in a given slice of values of the number of calls (a), total
duration of calls (b) and number of SMS (c).
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Table 8.4: The proportion of correct predictions in the 6 clusters.
cluster | rate of success
1 31.2%
22.6%
24.3%
40.4%
51.8%
37.1%

O O | W N

communications of an individual: the number of calls, the total duration of calls, the
number of SMS, the average number of calls, duration and number of SMS per contact, and
the standard deviation of the number of calls, duration and number of SMS per contact.
Based on the learning population, the tree learns the associations between intensity of
communication and cluster; then it predicts the cluster of the individuals in the test
population. If the predicted cluster is the same with the real cluster of the person, then
the prediction is correct; otherwise the prediction is false. To measure the accuracy of the
tree, one counts the correct predictions as compared to the size of the test population:
the higher this number, the better the prediction. This number is then compared to the
random prediction, where one attributes individuals into clusters randomly, with an equal
probability.

Remember that the number of individuals in the 6 clusters is very uneven, with cluster 6
over-represented. If the decision tree learns and tests its rules of association on populations
with such uneven distribution of clusters, it will associate everybody with cluster 6 : no
matter the communication characteristics of the different persons, if everybody is put in
cluster 6, the tree gives the correct class to all the individuals in cluster 6 and the wrong
cluster to all the others. As the individuals in cluster 6 are much more numerous then the
others, the tree has a high rate of success. We want to avoid this situation and impose to
the tree to search for associations between communications and clusters. Therefore, we
give it a learning population where there is an equal number of individuals belonging to
each cluster; the individuals are randomly chosen from the individuals in each cluster. We
do the same thing for the test population. As we want to predict 6 clusters, the rate of
success of the random prediction is % = 16.66%. Our decision tree has a rate of success
of 34.6%, so more than twice than the random one. The rate of correct predictions in the
different clusters is presented in Table [B.4]

This result shows that there is a correlation between the intensity of communication
and the cluster to which an individual belongs. Even more, we are able to predict the
cluster with a rather high accuracy (as compared to the random prediction) given a set of
variables characterizing the communications of each person.
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8.6 A typology of customers

In the previous two sections we compared the social network clusters first to customers’
age and gender, and then to their communication intensity. We thus saw that the prob-
ability that an individual belongs to a given cluster is not independent from his age or
communication intensity.

Here we want to take into consideration, in the same time, all the 3 dimensions char-
acterizing the individuals: the age, the communication intensity and the social network
clusterﬁ. We want to see how these characteristics are distributed in the population and
also to create a typology of customers based on these 3 dimensions. We would thus obtain
groups of individuals such that the persons in a same group have similar communication
practices and about the same age and cluster.

We use the Kohonen self organizing map in the same way as in Chapter [fl Remember
that this clustering method produces a map with several layers, one for each variable
characterizing the individuals. This shows how the different variables are distributed
in the population. Also, the algorithm produces cells grouping individuals with close
characteristics. In a second step, the algorithm computes a clustering of the individuals.
The obtained clustering will represent our typology.

We choose the following parameters to characterize the individuals:

e age; this is the socio-demographic variable;

e cluster (from 1 to 6, as obtained in the previous sections); as it takes only 6 values,
this variable can be seen as a class or a label of each individual; this is the social
network variable;

e communication intensity: number of calls, total duration of calls and number of
SMS; these are the communication variables.

Each individual is thus characterized by a vector with 5 elements. For the commu-
nication variables, we use a log transformation instead of the values themselves as these
variables are heavily right-skewed. Also, recall that the distribution of individuals into
clusters is very uneven, with cluster 6 being overrepresented. As we want to measure the
influence of the variable ”cluster”, too, we randomly choose a same number of individuals
in each cluster.

The set of individuals is then processed by the Kohonen self organizing map. This
algorithm does not take labels into consideration when building the map, so it builds the
map using only the other variables. However, in the graphic representation of the map,
it draws a layer for the labels, too. On this layer the different cells are colored depending
on the labels of the individuals in the cells: the color of the cell corresponds to the label
that occurs the most for the individuals in that cell.

The processing of the set of individuals by the SOM provides Figure We observe
that, unsurprisingly, the number of calls and the total duration are highly correlated, with

2We do not take into consideration the gender because its influence on the cluster is not very strong;
besides, this variable takes only 2 values
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Figure 8.9: SOM results: the individuals are grouped into cells depending on their com-
munication intensity and age; the label represents the social cluster: 1(blue), 2(cyan),
3(white), 4(green), 5(red), 6(yellow).

increasing values on the south-north axis: the individuals with the lowest number of calls
and total duration are placed in the south part of the map, while those with the highest
values are placed in the north part. The number of SMS, however, is not correlated to
the two previous ones, its values increasing from east to west. This variable seems to be
correlated to the age: the highest values of the number of SMS are in the west part, where
the youngest people are placed, while the lowest values are placed in the east part, where
the oldest persons are placed. All these observations sustain our previous ones, presented
in Section there is no influence of the age on the call frequency and duration, but
there is a high influence on the number of SMS.

Let us now analyze the distribution of the variable ”cluster” in the different cells, so
the last image in Figure Figure shows the same distribution, cluster by cluster.
Thus, each image in this figure corresponds to a cluster: the red cells contain mostly
individuals of the given cluster, while the white cells contain mostly individuals of other
clusters. Recall that the different clusters are not taken into consideration when building
the map; the cells are colored depending on the clusters of the people present in the cell,
after all the computations. We observe that clusters 1, 2 and 3 are present especially
in the north-west side of the map, while clusters 4, 5 and 6 are placed especially in the
south-east side. Most of the cells labeled cluster 1 contain individuals with very high
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Figure 8.10: For each cluster (each image), the cells where the cluster is in the majority
(the red cells).

number of SMS or very high number of calls and total duration (dark red cells in the first
3 layers). Cluster 2 is generally associated with cells containing individuals with a high
number of SMS or a high number of calls and total duration (orange to red cells in the
first 3 layers). Clusters 3 and 4 are generally present in cells where the individuals have a
medium number of calls, total duration and number of SMS. Cluster 6 is especially placed
in the south-east part of the area, where there are individuals with low numbers of calls,
total duration and number of SMS (the blue cells in the first 3 layers). There seems to
be no clear relation between the label of the cell and the average age of the persons in
the cell, except for cluster 5 which is present especially in the cells containing the oldest
people (dark red cells in the fourth layer).

As in Chapter [l we cluster the cells using the k-means algorithm. We thus obtain 9
profiles, as showed in Figure BIIl We present the different characteristics of the people
with each profile in Table This result represents a typology of individuals based on
their age, communication intensity and social network cluster.
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Figure 8.11: The 9 profiles produced by the Kohonen SOM.

Table 8.5: The different characteristics of the individuals in the 9 profiles produced by the

SOM.
profile age nb. calls & duration | nb. SMS | most represented cluster(s)
1 green youngest high very high 1(45%), 2(41%)
2 red youngest medium high 2(38%), 3(20%)
3 brown | youngest-middle very low low 6(70%)
4 dark blue | youngest-middle very high medium 1(31%), 2(31%)
5 light blue | youngest-middle medium-high low 4(39%), 6(24%)
6 cyan youngest-middle low low 4(45%),6(43%)
7 blue oldest high high 2(29%), 1(19%)
8 yellow oldest low low 4(34%),6(29%)
9 orange oldest low very low 5(42%), 6(35%)
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8.7 Chapter conclusions

In this chapter we continued the analysis of the mobile phone graph with a clustering of
nodes, thus relating to the problem of identification of roles in a network. In this problem
often encountered in social network analysis, one wants to group together the nodes of
the network that are connected in similar ways to the network. There are however several
questions that make this problem difficult to solve: What is a good characterization of the
way a node is connected to the network? What does ”similar connections” mean? Can
the solution be applied to large graphs? How can one check the relevance of the different
groups of nodes? In which conditions can one say that there is no better way of grouping
the nodes?

We have made several choices in order to answer the different questions. First, we
have characterized the way a node is connected to the network by counting the patterns
present in its egocentred network; we have stored the number of occurrences of the different
patterns in a pattern-frequency vector characterizing the node. Second, we have considered
that nodes connected in a similar way to the network have close pattern-frequency vectors;
here ”close” is defined with respect to a set of transformations made on the pattern-
frequency vectors. We have thus proposed a method for nodes clustering that groups
together vertices that are embedded in similar egocentred networks. The clustering is
done efficiently, so the method can be applied to large graphs. As said before, we have
made several choices in order to answer the different questions. The proposed method
gives promising results when applied to our real-world graph. As always, in this kind of
methods, the solution validation is a delicate problem, but the results we have obtained
for our large social network sustain the relevance of our method.

We have applied the proposed method to the mobile phone graph described in the
previous chapter. This graph models one-month mobile phone communications between
the 3 million customers of Mobistar. The clusters produced by the method can be seen as
a segmentation of the set of customers based on their social network insertions. We have
compared the different clusters to the other information we had on the individuals (age,
gender and communication intensity ), showing that the different parameters characterizing
the individuals are not independent. Thus, the probability that a node belongs to a
given cluster is not independent from the age, gender or mobile phone use of the person
represented by the node. These results confirm the soundness of our method, even though,
as always, many concurrent clusterings for various purposes may as well be relevant.
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The main goal of our research was to characterize the individuals connected in a
social network by analyzing the local structure of the network. For that, we proposed a
method that describes the way a node (corresponding to an individual) is embedded in
the network. This method provides a characterization of the individual and also of the
relative positions occupied by the neighbors of the node in its egocentred network (which
can also be seen as a description of how the links formed by a node are embedded in the
network). Our method is related to the analysis of egocentred networks in sociology and
to the local approach in the study of complex networks. As it takes into consideration only
the surrounding network when analyzing one node, it can be applied to small networks,
to fractions of networks (one does not need the entire network when analyzing one node)
and also to large networks; this is due to its rather small complexity, depending only on
the number of neighbors of the node. Although in this thesis we applied the method only
to social networks, it can be applied in the same way to any other graph, no matter its
origin.

We applied the method we introduced to two large social networks, one modeling
online activity on MySpace (a platform for social networking and video publishing), the
other one modeling mobile phone communications. In the first case we were interested in
analyzing the online popularity of artists on MySpace. We first grouped individuals into
clusters using their popularity characteristics (mainly their online audience and authority),
thus obtaining 5 clusters. Besides two unsurprising categories (very popular artists and
unknown artists), we identified two different clusters of medium popularity and a category
of small but socially active artists. Next we compared the obtained clusters to the local
structure of the network surrounding each node, so we analyzed the popularity of artists
in relation with the structure of the network in which they are embedded. We thus
showed that artists in different categories exhibit different insertions in the social network.
On the one hand, artists with a low authority and non reciprocal links tend to declare
very popular artists as best friends thus generating a star structure. On the other hand,
some medium and low popularity artists with many reciprocal links form cliques with their
neighbors, thus creating dense communities, without stars but with triangles. Our research
on MySpace belongs to the analysis of popularity on online networks, where researchers
try to discover how fame is built, what strategies users employ, how they adapt their
publishing and networking practices in order to be popular. There are many studies on
this competition for online popularity, but they focus either on published content and
its popularity, either on the structure of the social network embedding the users. Here
we tried to hold together the two approaches, so to make the connection between fame
and social linkage. The same kind of analysis, using the methods we employed here,
can be done on other online platforms where the popularity can be measured and the
social network can be built. An immediate transposition can be imagined for Flickr and
Youtube for instance. In the same way, one can also study offline networks for which there
are recordings of users’ activity, as for instance a mobile phone communications network.
It is such a network that we analyzed next, but in a different approach.

We used the list of one-month communications between 3 million mobile phone users.
We were interested in three aspects that we tried to compare: social-demographic data
(users’ age and gender), communication intensity (for each couple of persons, their num-
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ber of calls, duration of calls and number of SMS) and social network structure. First
we confirmed, using these large amounts of data, some existing sociological theories on
communication duration depending on receiver’s gender and on young people’s tendency
to send SMS. Next, by applying the method introduced previously, we analyzed the local
structure of the social network modeling the set of mobile phone communications. The
results of our method gave us the possibility to test several definitions of characteristic
patterns, thus relating to two popular problems in data mining and bioinformatics: the
frequent patterns discovery and the network motifs identification. Next, we analyzed the
positions occupied by the neighbors of each node (ego) and we compared them to the
quantity of communication with ego. We thus saw that the person that speaks the most
with ego has an important position in his egocentred network. If this result seams in-
tuitive, it isn’t necessarily straightforward if there is the person who speaks the most as
number of calls or the one who speaks the most as total duration of calls who has the
most important position. In our dataset, it is the person with the highest frequency of
calls who has a more important place in the egocentred network; this result is sustained
by an existing sociological study on patterns of communication.

In our opinion, the next logical step of our analysis was to group together nodes with
similar egocentred networks, so connected in the same way to the network. This is the
problem of identification of roles in a network. Without pretending to have solved this
problem, we proposed a method for grouping the nodes of a large network that we applied
to the mobile phone social network. One of the main problems when trying to identify
the roles played by the different nodes of the network is the results validation. In small
networks one can simply look at the different nodes and decide if the attributed roles
correspond to the structure of the network surrounding each node. Of course one cannot
do this in large networks. This is why we cannot pretend having solved the problem of
identifying social roles. We simply proposed a way to cluster nodes depending on the local
structure of the network; there may be other clusterings with more satisfying attributions
of roles of nodes. However, the results obtained when applying the method to the mobile
phone social network are quite promising. We compared the 6 clusters of mobile phone
users identified by the method to the two other dimensions characterizing the individuals:
the socio-demographic data and the intensity of communication. A first observation is that
belonging to a certain cluster is not independent from users’ age, gender and intensity of
communication. Even more, by using the distribution of persons of different ages into
clusters, we were able to identify 4 homogeneous age groups, corresponding to life stages.
And this using only the way the nodes are connected to the network, independently from
the number of neighbors of each node. Next, we were able to predict with a rather high
probability the cluster of each person using his communication intensity, thus showing
that local structure and communication intensity are correlated. Persons embedded in
dense structures seem to communicate more by mobile phone than persons belonging
to sparse networks. These results make us believe in the relevance of our method for
nodes clustering. This method can be easily applied to any large network; it will cluster
nodes depending on the structure of the network surrounding them. It is important to
precise that our method groups together nodes that are connected in the same way when
comparing to the other nodes of the network and not to a theoretical situation or to nodes
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of other networks. Thus a node belongs to a certain cluster because it is similar to the
other nodes of the cluster and different from the other nodes of the network, of this precise
network. The clustering of nodes depends entirely on the structure of the given network,
as it is in this network that we want to find groups of nodes.

These are the main conclusions of our work during this thesis. A lot of extensions and
improvements can be imagined; we present some of them in the following section.

Further work

As said before, the set of methods we used here can be easily applied to other (social)
networks. Using the local structures in which nodes are embedded, it would be interesting
for instance to compute clusters of individuals in social networks that are denser than
the mobile phone one but sparser than the MySpace one. In the mobile phone network,
many links are missing: maybe two persons contact each other by different means, but
not by mobile phone. Thus, in our graph, we see the two persons as not connected and we
analyze them in consequence, although they do connect, but by means that are not visible
to us. On the contrary, in social networks modeling online activities, there are many links
that do not correspond to a real, social relation between the two persons. As we saw in
the study on MySpace popularity, people connect to other people they do not know, just
because they are popular, creating thus a fan-star structure. Such social networks are
therefore denser than the ”real” social network where each link corresponds to a social
relation between the two persons. For the mobile phone graph, we search for clusters of
individuals in a network that is sparser than the real one, while for the online networks,
we search in a graph that is denser than the real network. It would be thus interesting to
analyze a graph with a density between the two.

In another perspective, the method itself could be improved. For instance one could
characterize the way each node is connected to the network by analyzing the network at
at most 2 (or more) steps from the node i.e. the network formed by ego’s neighbors, their
neighbors and the links between all these nodes. However, the computation and results
complexity might increase a lot. Also one would have to deal with the distinction between
direct neighbors and distance—2 neighbors. Maybe an easier way to take into consideration
the distance—2 neighborhood is to analyze in more details how different individuals (with
different local characteristics) connect to each other. One can see the global network as
the union of many egocentred networks that partially overlap. It would be interesting to
see how and why they overlap, for which type of egocentred network, in which proportion
etc.

Another improvement can be done by taking into consideration the weight of links
when computing patterns. For instance, for the mobile phone social network, one can
put a weight on the links using the frequency of calls and their duration or the frequency
of SMS. Then, instead of characterizing a node by the number of patterns present in its
egocentred network, one could characterize it using the number of weighted patterns. The
weight of the pattern can be for instance the following couple: average weight of links in
the pattern, standard deviation of weight of links in the pattern. One has thus an idea of
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the quantity of information that flows in the pattern and also of its distribution (balanced
of not). Characterizing nodes by counting weighted patterns would offer a more detailed
description of how each node is connected to the network.

Also one could give a weight or simply a color to the nodes of the network (instead
of the links). This can be done at the global level, by coloring each node of the network
depending on some statistics, at the local level, by coloring each node in the egocentred
network depending on its relation with ego, or at the intermediate level, for instance by
coloring the nodes depending on the community they belong to. Then, instead of simply
counting patterns, one could count patterns with different combinations of colors on their
nodes. Maybe such an approach would provide a better definition of characteristic patters.

Another possible direction is to take into consideration the temporal dynamics of the
network. For instance one could try to predict the cluster to which a node will belong
in a second network (obtained some time after the first network) by using the cluster of
the node (and maybe other characteristics) in the first network. Or one could predict
some events (like the formation or the deletion of links) by using the way the nodes are
embedded into the network. Maybe the fact of having many stars or triangles etc. in the
egocentred network says something about the capacity of a node of adding new links or of
loosing existing ones. One could also describe how the different nodes evolve in time by
computing their cluster in different snapshots of the same network. From this description
one could compute patterns of evolution or see if the way of changing the cluster is related
to other information on the nodes. For instance in the mobile phone social network one
can see if the individuals remain in the same cluster from one period to the other, if
they change, how they change and how their evolution is related to their age or gender.
In an even more precise approach one could analyze the local structure of the network
dynamically i.e. when each event happens (as for instance the formation or deletion of
links).
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Appendix A

Introduction (en frangais)

Contexte et motivations

La principale motivation de notre recherche a été I’analyse de la structure locale des grands
réseaux sociaux. Comment un noeud est-il connecté au réseau 7 Comment peut-on analyser
la totalité des noeuds en temps raisonnable ? Est-ce que la fagcon dont le noeud est connecté
au réseau nous donne des information sur la personne représentée par le noeud? Est-ce
qu’il y a une corrélation entre la structure du réseau autour d’un individu et son age, sexe
ou usages (du téléphone mobile, des plateformes sociales enligne etc.) 7

Donc le but de notre recherche est de caractériser des individus en analysant le réseau
social dans lequel ils sont connectés. Une telle caractérisation est utile par exemple pour les
fournisseurs de services, pour lesquels la connaissance de leurs clients est tres importante. 11
leur est essentiel de savoir quels sont les services que les clients souhaitent avoir et comment
leurs attentes évoluent pour que les offres et la publicité soient adaptées et envoyées aux
personnes susceptibles d’y répondre favorablement.

Pour obtenir une telle caractérisation des utilisateurs, on peut adopter plusieurs
approches. On peut utiliser des données sociodémographiques comme 1’age, le sexe, le
métier, la position géographique etc. D’autres informations peuvent étre exploitées, qui
peuvent s’avérer encore plus profitables et fiables que les données sociodémographiques :
ce sont les traces laissées par les clients en utilisant différents services. Les opérateurs de
téléphonie mobile savent ainsi combien de fois par jour une personne effectue des appels
téléphoniques, quelles sont les durées de ses conversations, avec combien de personnes elle
communique etc. De la méme fagon, les créateurs de plateformes enligne peuvent aussi
utiliser des traces d’usage. Par exemple sur une plateforme de réseau social et de partage
de photos et vidéos comme Flickr (www.flickr.com), les utilisateurs peuvent se déclarer
les uns les autres comme contacts, peuvent enregistrer et publier des photos et des vidéos,
peuvent écrire des commentaires etc. On peut utiliser ces informations (quantité de contenu
publié, commentaires, nombre de contacts etc.) comme une caractérisation de 'activité de
chaque personne sur la plateforme. Ensuite on peut proposer aux différents utilisateurs
des services spécifiques a leurs usages.

Aujourd’hui, les traces d’usage sont présentes partout et sont généralement faciles

151



152 APPENDIX A. INTRODUCTION (EN FRANCAIS)

d’obtenir. Presque tout le monde a un téléphone portable, une adresse e-mail et de plus
en plus de personnes utilisent des plateformes enligne comme Facebook, MySpace, Fli-
ckr, Twitter, Wikipedia, Delicious, LinkedIn etc. Unes de ces plateformes sont dédiées au
réseau social, d’autres & la publication de contenus (photos, vidéos, textes etc.), a 'informa-
tion etc. mais toutes gardent des traces d’activité humaine. Le développement d’Internet,
de "Web2.0”, des communications en général mais aussi d’ordinateurs puissants capables
d’enregistrer, mémoriser et traiter des gros volumes de données offrent des possibilités sans
précédent pour 'analyse du comportement humain. Traditionnellement ceci a été le champ
d’étude des sociologues, mais de plus en plus de chercheurs, de nombreux domaines, s’y
intéressent. De telles bases de données contenant des traces de communications intéressent
par exemples des mathématiciens et des informaticiens qui cherchent des mesures perti-
nentes pour caractériser les usages, développent des algorithmes et des logiciels pour traiter
efficacement les gros volumes de données etc. Elles intéressent aussi des physiciens qui es-
saient de découvrir les processus derriere les différentes activités ou dynamiques des gens
ou des économistes qui essaient par exemple de dévoiler les motivations des individus dans
la prise de décisions.

Les traces d’usages peuvent étre analysées de plusieurs points de vue. Une approche
possible est de calculer différentes statistiques sur la fréquence ou la durée des appels dans
le cas des communications par téléphone mobile, les commentaires et les contenus publiés

dans le cas des plateformes enligne etc. Cette approche a donné des résultats intéressants
sur I'usage des différents services des groupes d’information [FSW06], wikis [HBB07], com-
munautés de recontres enligne [HEL04], forums de questions/ réponses [ZAAQ07, [AZBAOS],
Youtube [CKRF07, MAAQS| et beaucoup d’autres plateformes. Une autre approche, que
nous adoptons dans cette these, consiste dans I'analyse du réseau social connectant les
individus. En utilisant les différents services, enligne ou hors ligne, les gens se connectent
les uns aux autres. Ces connections peuvent étre modélisées comme des réseaux sociaux,
simplement des graphes ou les noeuds sont les personnes et les liens correspondent a des
connections observées entre eux. Il est important de prendre en considération ces connec-
tions car les individus ne sont pas des entités isolées, ils vivent ensemble, interagissent et
s'influencent les uns les autres. Un phénomene souvent confirmé c’est celui de ”bouche-
a~oreille” (”word-of-mouth”) ['S65] [ADO7] : avant de prendre une décision, les
gens parlent souvent avec d’autres gens, demandent leur conseil et sont plus susceptible
de choisir un produit si une personne a laquelle ils font confiance I’a déja choisi. De plus,
il est possible que les individus se connectant de la méme fagon aux autres aient des com-
portements similaires, aiment les mémes choses etc. Il est donc important de voir, analyser
et caractériser les gens et leurs usages en prenant en considération le contexte dans lequel
ils évoluent, les gens auxquels ils se connectent, donc le réseau social dans lequel ils sont
intégrés.

En sociologie, I’analyse des réseaux sociaux n’a pas apparu avec les bases de données sur
les traces d’usages, mais beaucoup de temps auparavant, quand Internet et les communica-
tions mobiles n’existaient pas encore. Déja présente dans les travaux de G. Simmel [Sim55al
(traduction anglaise) au tout début du 20éme siécle, elle s’est beaucoup développée dans
les années 1950 quand des chercheurs comme John A. Barnes, Elisabeth Bott, Sigfried F.
Nadel ont étudié des types de liens entre des individus [Bar54], des relation de parenté



153

[Bot57] et des structures sociales [Nad57]. Ensuite, dans les années 1970 Harrison White et
ses étudiants a 'université Harvard, parmi lesquels Mark Granovetter et Barry Wellman,
ont développé et rendu populaire ’analyse des réseaux sociaux. Depuis, des questionne-
ments comme la force des liens interpersonnels [Gra78], le capital social [Col88|, [Bur92], les
roles sociaux [LWT1], BE89] et beaucoup d’autres reviennent souvent. Traditionnellement,
dans l'analyse des réseaux sociaux, les sociologues recensaient leurs données par des entre-
tiens avec les individus étudiés. Les données ainsi obtenues sont tres riches, tres détaillées,
mais leur collecte prend du temps car on doit interviewer toutes les personnes de I’étude.
Les traces d’usages disponibles aujourd’hui offrent des nouvelles possibilités pour 'analyse
des réseaux sociaux. Néanmoins, on a une image beaucoup moins détaillée des activités
humaines et des relations entre les individus. Beaucoup d’informations ne sont pas visibles
dans les traces d’usage et, par rapport a ’entretien, on ne peut pas poser des questions sur
les informations manquantes aux gens étudiés. Le type de relation entre deux personnes
observées n’est ainsi pas connu : sont-elles amies, collegues, famille, se connaissent-elles 7
Aussi, on ne voit pas toutes les connections entre les deux personnes. Peut-étre elles ne
se contactent pas par téléphone mobile mais ont d’autres types de contact, par téléphone
fixe, e-mail etc. Toutefois, méme si les données ne sont pas aussi détaillées que celles ob-
tenues par entretien, la collecte des données est beaucoup plus simple, les volumes sont
beaucoup plus importants et ils concernent beaucoup de gens. La difficulté change ainsi
de la collecte de données a leur traitement.

Comme un réseau social est un graphe, on utilise généralement la théorie des graphes
quand on étudie des réseaux sociaux. De plus, les grands réseaux sociaux (avec au moins
quelques milliers de noeuds) sont aussi des graphes de terrain (ou grands réseaux
d’interaction, en anglais complex networks). C’est le nom commun donné aux graphes
modélisant des relations entre entités (personnes, institutions, endroits etc.) existantes
dans la vraie vie. L’analyse des graphes de terrain a été I'objet d’un grand interét de-
puis les premieres études dans le domaine, a la fin des années 1990. Ce qui a généré tout
I'interét a été la découverte récurrente que les grands réseaux modélisant des relations
réelles sont tres différents des réseaux aléatoires, donc ils ne sont pas aléatoires. Le terme
"réseaux aléatoires” fait référence ici a des réseaux ou il n’y a aucune contrainte pour
relier deux noeuds par un lien : chaque paire de noeuds peut étre connectée par un lien
avec la méme probabilité. Ceci définit un modele de génération aléatoire de réseaux in-
troduit par Erdos et Renyi dans les années 1960 [ER60], étant ainsi le premier et le plus
simple modele de génération. Le probable premier article décrivant des différences entre
des réseaux réels et aléatoires a été [WS98| par Watts et Strogatz. Comme les graphes
étudiés dans cet article étaient tres différents de ceux générés par le modele Erdos-Renyi,
les auteurs ont conclu que ce modele n’était pas adapté pour la génération de graphes
réalistes. Par rapport au modele Erdos-Renyi ol n’importe quels deux noeuds peuvent
étre connectés par un lien avec la méme probabilité, dans la vraie vie il y a probablement
une raison pour laquelle deux noeuds deviennent connectés, il doit y avoir des facteurs
qui font qu’un graphe apparait et évolue d’une certaine facon. Les auteurs ont proposé un
nouveau modele de génération et ainsi a commencé une longue série de modeles. Les plus
connus dans cette série sont ceux proposés par Kleinberg [KleQ0] et Barabasi et Albert

[BA99], mais beaucoup d’autres existent [LKF05] KRRT99, BINT02| etc.
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Depuis ces premieres études, les chercheurs ont constamment observé des différences
entre les réseaux réels et ceux aléatoires. Essentiellement, peu importe le contexte duquel
le graphe provient (sociologie, biologie, économie, linguistique, informatique etc.), dans
presque (si n’est-ce que) tous les cas, le graphe a les mémes propriétés que tous les autres
graphes modélisant des relations réelles, appartenant ainsi au groupe de ”graphes de ter-
rain”. Nous présentons brievement quelques unes de ces propriétés ici : la plupart des
noeuds sont connectés a tres peu de noeuds, tandis qu'une petite fraction de noeuds est
connectée a un grand nombre de noeuds. Aussi, la plupart des noeuds appartiennent a
la méme composante géante : pour la plupart des paires de noeuds, on peut se déplacer
d’un noeud a l'autre en suivant les liens du graphe. De plus, en allant du premier noeud
au deuxieme de la fagon la plus directe, on traverse seulement un petit nombre de liens,
habituellement inférieur a 20. Et ceci méme si le graphe a plusieurs millions de noeuds.
Une autre propriété partagée par les graphes de terrain est celle de la grande densité lo-
cale : si deux noeuds sont reliés & un noeud commun, il y a une forte probabilité qu’ils
soient reliés entre eux aussi. Ici ”forte” signifie beaucoup plus forte que dans des réseaux
aléatoires. Ces propriétés ont été observées par exemple dans des graphes de citation
[Red98|, d’interactions de protéines [GRO3|, WF01], dans des réseaux neuraux biologiques
IMiOO™01} ISGST02], chaines alimentaires [DWMO02], réseaux sociaux modélisant des re-
lations enligne m et beaucoup d’autres. Comme présenté auparavant,
en développant un modele de génération aléatoire, les chercheurs essaient d’identifier les
facteurs qui amenent a la création des liens et ainsi expliquer la formation des réseaux
réels. La qualité du modele de génération proposé est mesurée par la capacité du modele
de produire des réseaux qui partagent les propriétés des réseaux réels.

Il y a plusieurs approches dans l'analyse des graphes de terrain en général et des
réseaux sociaux en particulier. Généralement ’analyse se place a un des trois niveaux
suivants : global, intermédiaire ou local. Au niveau global on prend en considération le
réseau dans sa totalité et on calcule des différentes propriétés de cet ensemble. Parmi les
propriétés présentées antérieurement, le calcul de la composante géante, de la distance
entre les noeuds et de la distribution du nombre de contacts appartiennent a cette ap-
proche. Dans 'approche au niveau intermédiaire, on analyse chaque noeud en prenant en
considération le réseau global. A ce niveau on peut calculer par exemple des groupes de
noeuds qui sont densément connectés a l'intérieur du groupe et peu connectés aux autres
groupes ; cela s’appelle détection de communautés et a fait ’objet de nombreuses études
comme [Eve80, [GN02, [Vir03], et beaucoup d’autres. Aussi au niveau
intermédiaire on peut calculer ”I'importance” de chaque noeud, habituellement exprimée
en termes de centralité (e.g. betweenness [Fre77], closeness, vecteur propre [Bon87], page
rank [BP9§]| etc.). Finalement, au niveau local, une mesure largement utilisée est le coef-
ficient de clustering [WS98, [HK79] qui mesure la densité locale du réseau. Brievement, on
calcule dans quelle mesure les noeuds auxquels un noeud donné est connecté sont connectés
entre eux (par rapport au cas ou tous ces noeuds sont connectés entre eux). Dans cette
approche locale I'idée est d’analyser chaque noeud en prenant en considération seulement
les noeuds qui ’entourent et pas le réseau global. C’est I’approche que nous adoptons dans
cette these.

Nous nous proposons de répondre a la question suivante : étant donné un réseau so-
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cial (potentiellement grand), décrire sa structure locale, donc la fagon dont chacun de
ses noeuds est connecté au réseau environnant. Cette description devrait représenter une
caractérisation des individus appartenant au réseau social en prenant en considération
seulement la structure du réseau (et pas d’autres informations sur les individus). Le calcul
de cette description devrait prendre peu de temps et de mémoire pour qu’il puisse étre
appliqué a des grands réseaux sociaux. A notre connaissance, les méthodes existantes soit
placent l’analyse au niveau intermédiaire (donc elles caractérisent le noeud en prenant en
considération tout le réseau), soit offrent trop peu d’informations (comme le coefficient de
clustering qui simplement compte les liens entre les contacts d’un noeud).

Nous proposons une méthode pour répondre a cette question, donc une méthode qui
analyse la structure locale d’un graphe donné et qui décrit la facon dont chaque noeud est
connecté au réseau. Cette méthode prend en considération les liens que chaque noeud a avec
d’autres noeuds et les liens entre ces noeuds. Nous appliquons cette méthode a deux réseaux
sociaux : un modélisant des communications par téléphone mobile et un autre modélisant
des activités sur MySpace. Dans ces réseaux chaque noeud correspond & une personne;
quand nous analysons une personne nous appelons celle-ci ego. Comme nous analysons la
facon dont ego est connecté au réseau, cette analyse peut étre appelée égocentré. Notre
approche ici est liée a ’analyse de réseaux égocentrés retrouvée en sociologie. Dans ce cas,
on étudie les relations personnelles qu'un individu donné (ego) a avec d’autres individus.
Les données pour des telles études sont obtenues par des entretiens avec ego qui décrit
ses relations avec les autres personnes et, parfois, les relations entre ces personnes [Wel79]
[(Wel85, [Gri98], [Gro05]. Ici nous essayons d’adapter cette approche & des grands réseaux
sociaux, ou les réseaux égocentrés sont obtenus en se fixant sur chaque individu et ses liens
dans le réseau. Les réseaux égocentrés ainsi obtenus contiennent moins d’informations, sont
moins détaillés que ceux obtenus par des entretiens avec ego. L’avantage toutefois est que
les réseaux obtenus a partir de grands graphes sont tous construits de la méme facon, en
utilisant des interactions observées, et ainsi ne sont pas subjectifs a I'opinion d’ego sur ses
relations et surtout sur ceux de ses contacts.

La méthode proposée calcule une description de la facon dont chaque noeud est connecté
au réseau environnant et aussi de la fagon dont les différentes personnes auxquelles ego
est connecté sont placées les unes par rapport aux autres. Comme ’approche est locale, la
méthode n’a pas besoin de tout le réseau social pour caractériser un noeud (par rapport
aux méthodes intermédiaires), mais seulement des noeuds auxquels ego est connecté et
des liens entre eux. Ainsi, la méthode peut étre appliquée méme si on a juste des fractions
d’un certain réseau social. Elle peut étre appliquée aussi bien a des petits réseaux obtenus
par des entretiens qu’a des grands réseaux sociaux. Encore une fois, parce qu’elle est lo-
cale, sa complexité dans ’analyse d’un ego est aussi "locale” i.e. elle dépend seulement du
nombre de contacts d’ego dans le réseau. Cela est important parce qu’elle peut facilement
étre appliquée a des grands réseaux; pour donner une idée, notre implémentation de la
méthode s’exécute en 30 minutes pour tous les noeuds d’un réseau social avec 3 millions
de noeuds et 6 millions de liens sur un ordinateur de configuration standard.

Apres avoir obtenu une caractérisation des différentes personnes en prenant en considé-
ration seulement le réseau social les incluant, on peut chercher des corrélations entre
cette description et d’autres mesures caractérisant les individus. Ces mesures peuvent
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étre des informations sociodémographiques (age, sexe, métier etc.) ou des indicateurs de
I'activité des individus. Par exemple pour le téléphone mobile nous utilisons l'intensité
des communications de chaque personne (nombre d’appels, durée, nombre de SMS etc.),
tandis que pour le réseau MySpace nous utilisons des mesures de popularité enligne. Si les
différents parametres et la structure locale du réseau (obtenue en appliquant la méthode
proposée) sont corrélés, alors on peut utiliser les parametres pour déduire la structure
locale et vice-versa. Cela peut étre utile quand il y a des données manquantes, par exemple
si on a le réseau social dans lequel I'individu est intégré sans avoir les autres informations
le caractérisant. On peut aussi distribuer les personnes du réseau social donné dans des
groupes en fonction de la structure du réseau les entourant : les individus connectés au
réseau des facons identiques ou similaires sont mis dans le méme groupe; les individus
avec des structures locales différentes sont mis dans des groupes différents. Cette approche
est liée au calcul de "roles” des noeuds d’un réseau social, ou les noeuds occupant la
méme position, ayant la méme fonction dans le réseau sont regroupés. Notons que dans
la recherche de réles sociaux (et dans notre approche ici), les noeuds mis ensemble dans
le méme groupe ne sont pas forcement liés les uns aux autres et n’ont pas forcement de
contact commun, ils sont juste connectés de la méme maniere au réseau. Le probleme de la
distribution d’individus dans des groupes en s’appuyant sur une caractérisation préalable,
de la recherche de corrélations entre des indicateurs et de la prédiction des différents
parameétres sont souvent rencontrés dans la fouille de données (data mining). Nous utilisons
quelques techniques bien connues de ce domaine pour résoudre les différents problemes.

Le chapitre suivant représente la traduction francaise du chapitre central de cette these,
celui décrivant la méthode proposée.
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Une méthode pour ’analyse de la
structure locale des grands réseaux

Dans ce chapitre nous présentons une méthode pour I'analyse de la structure locale des
réseaux (éventuellement grands) en caractérisant la facon dont chaque noeud est connecté
au réseau. La méthode est congue pour étre appliquée a un noeud donné du réseau ; dans
ce cas elle produit une caractérisation de la configuration du réseau entourant le noeud : les
structures dans lesquelles le noeud est intégré, la maniere dont ses voisins sont placés les
uns par rapport aux autres et la facon dont ses liens sont disposés. On peut appliquer cette
méthode a tous les noeuds du réseau, obtenant ainsi une description de sa structure locale,
ou seulement & quelques uns de ces noeuds : cela peut étre utile si 'on a juste une fraction
des noeuds du réseau ou si le but est de comparer quelques noeuds entre eux. Avant de
présenter la méthode, nous introduisons quelques notions utiles. Ensuite nous expliquons
la méthode et nous comparons les mesures qu’elle produit a d’autres indicateurs existants.
Nous terminons ce chapitre en faisant quelques commentaires sur 1'utilité de la méthode.

B.1 Définitions

Sauf précisé différemment, tous les graphes considérés sont simples et non-dirigés.

Réseau égocentré. Etant donné un graphe G = (V, E) et un sommet v € V, nous
appelons réseau égocentré de v, noté Eg(v), le sous-graphe induit dans G par les voisins
de v i.e. le graphe dont les sommets sont les voisins de v et les liens sont les liens entre ces
voisins.

Patterns et positions. Nous appelons k-patterns tous les graphes connexes non-
isomorphes avec au plus k& sommets et au moins 1 lien. Figure [B.I] présente les trente
5-patterns. Il y a neuf 4-patterns (numéros 1 & 9) et trois 3-patterns (numéro 1 & 3). Dans
ce chapitre nous prenons en considération seulement les 5-patterns que nous appelons
simplement patterns.

Deux sommets d’un graphe donné sont position-équivalents s’il existe une permuta-
tion des sommets du graphe telle que ’adjacence est respectée et les deux sommets sont
échangés (la position-équivalence est en fait I’équivalence automorphique). Une position
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Figure B.1 — L’ensemble de patterns et leurs positions.




B.2. CARACTERISATION EFFICACE DE GRAPHE 159

est un ensemble maximal de sommets position-équivalents. Par exemple, pour chaque pat-
tern de la Figure [B.1l chaque couleur correspond & une position distincte. Formellement,
deux sommets u et v d’'un graphe G sont position-équivalents s’il existe un automor-
phism ¢ de G tel que ¢(u) = v. Les positions correspondent aux classes d’équivalence de
cette relation. Il y 73 positions différentes dans les 30 patterns et, comme la Figure [B1]
montre, un pattern a au plus 4 positions différentes. Nous voulons établir des catégories
de positions donc nous trions les positions d’'un méme pattern en ordre croissant de leur
centralité betweenness; pour des positions ayant la méme centralité, nous trions en ordre
croissant du degré. Nous appelons périphérique la premiere position dans cet ordre et
centrale la derniere. Les positions qui ne sont ni centrales ni périphériques ou qui sont a
la fois centrales et périphériques sont appelées intermédiaires. Brievement, les positions
colorées en rouge sont centrales, celles colorées en noir sont périphériques et les autres sont
intermédiaires.

Caractérisation de graphes. Etant donné un graphe G = (V, E), on peut obtenir
une caractérisation de G en comptant les apparitions des différents patterns dans le graphe,
et une caractérisation de ses sommets en comptant les positions que chaque sommet occupe
dans chaque pattern. Un pattern P apparait dans le graphe G §’il existe un ensemble de
sommets Vp C V tel que le sous-graphe induit par Vp dans G est isomorphe a P. Enumérer
toutes les apparitions du pattern P dans le graphe G signifie trouver tous les ensembles Vp
respectant la définition précédente. Pour chaque apparition d’un pattern dans G = (V, E)
on peut calculer dans quelle position du pattern se trouvent les différents sommets de V.
Ainsi, apres avoir énuméré toutes les apparitions des 30 patterns dans GG, on a, pour chaque
sommet v € V, son nombre d’apparitions dans chacune de 73 positions (on appelle cela
le vecteur de position de v). Formellement, le k-vecteur de position de v est un tableau
Posp(G,v) qui contient le nombre d’apparitions de v dans les différentes positions des
k—patterns : Posk(G,v,i) compte les sous-graphes de G avec au plus k sommets qui
contiennent v dans la position i. Par exemple, la Figure [B.2] représente un graphe (a),
les patterns qu’il contient (b), et le nombre d’apparitions de deux sommets choisis dans
les différentes positions (¢) (nous avons noté seulement les positions ott au moins un des
deux sommets est présent ; pour toutes les autres positions 1’élément correspondant dans
le vecteur de position est 0.)

B.2 Caractérisation efficace de graphe

Quand on caractérise un graphe comme expliqué précédemment, on a besoin de chercher
tous les sous-graphes induits avec un nombre maximal de sommets donné (dans notre
cas 5), de trouver a quel pattern chacun d’eux est isomorphe et de calculer le nombre
d’apparitions des différents sommets dans les différentes positions. Les trois opérations
(Pénumération de patterns, la vérification de l'isomorphisme et le calcul de positions)
doivent étre faites efficacement pour pouvoir caractériser un grand nombre de graphes en
temps raisonnable.

Pour I’énumération de sous-graphes on utilise I’Algorithme ESU introduit dans [Wer(6].
La Figure[B.3|présente cet algorithme ; Neyer(w, Vsubgraphs) (ligne Ey) représente I'ensemble
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Figure B.2 — Un graphe (a), ses patterns (b) et les vecteurs de position des sommets u et
v (seulement les positions ot au moins un des deux sommets est présent) (c).

de voisins de w qui n’appartiennent pas a Viypgraphs €t n'ont pas de voisin dans Vypgraphs-
Essentiellement, cet algorithme commence avec un sommet v de G et ajoute des sommets
voisins jusqu’a ’obtention d’un ensemble de k sommets, donc d’un sous-graphe connexe in-
duit avec k sommets. Plus précisément, commencant par le sommet v, I’algorithme ajoute
répétitivement des voisins de v ou des sommets déja ajoutés (Veptension €st 'ensemble de
sommets qui peuvent étre ajoutés). C’est le calcul de l'ensemble Viyiension qui rend cet
algorithme efficace. Pour étre ajouté a cet ensemble, un sommet doit satisfaire deux condi-
tions : son étiquette doit étre supérieure a celle de v (les étiquettes sont simplement des
numéros de 1 a |Vg|) et il doit avoir exactement un voisin dans les sommets déja ajoutés.
Cela assure I'ajout de chaque sommet exactement une fois. Aussi, comme expliqué dans
[Wer(6], I’algorithme trouve chaque sous-graphe exactement une fois, dont on n’a pas
besoin de vérifier la présence d’un sous-graphe trouvé dans la liste de graphes déja iden-
tifiés. A notre connaissance, cet algorithme est le plus efficace algorithme existant pour
I’énumération de sous-graphes induits.

Une fois avoir trouvé un sous-graphe induit, on a besoin de trouver le pattern auquel
il est isomorphe. Pour plusieurs patterns cela peut étre fait en calculant la distribution
de degré de leurs sommets : les patterns avec des distributions de degré différentes ne
sont pas isomorphes. Néanmoins la réciproque n’est pas toujours vraie. Par exemple, les
patterns numéro 21 et 22 de la Figure [B.l ont la méme distribution de degré (2,2,2, 3, 3).
Dans ce cas on peut différencier les deux patterns en regardant non seulement les degrés
des sommets, mais aussi comment les sommets de différents degrés sont interconnectés.
Ainsi, pour le pattern 21, deux sommets de degré 2 sont liés 'un a l'autre, tandis que les
sommets de degré 2 du pattern 22 sont connectés seulement & des sommets de degré 3.
Pour prendre en considération en méme temps les degrés des sommets et des leurs voisins,
nous introduisons la notion de voisin-degré (en anglais neighbor-degree).
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Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU)
Input: A graph G = (V,E) and an integer 1 < k < |V/|.
Output: All size-k subgraphs in G.

01 for each vertex v € V do

02  Vistension — {u € N({v}) : u>v}

08  call EXTENDSUBGRAPH ({v}, Vistension, v)

04 return

EXTENDSUBGRAPH (Vsybgraph, Vestension, V)
E1 if |Vsusgrapn| = k then output G[Vsypmpn] and return
E2 while Vggension # 0 do
E3 Remove an arbitrarily chosen vertex w from Vguension

Y

E4 Jé‘wtension = VE:ctension U {u = Nea:cl(w: VSubgmph) Tu> U}
E5  call EXTENDSUBGRAPH(Vsubgraph U {®W}, Vigtension V)
E6 return

Figure B.3 — Pseudocode pour ’algorithme ESU qui énumere tous les sous-graphes avec
k sommets dans un graphe donné G [Wer(6].

Definition B.2.1. Etant donné un graphe G et un sommet v de G, nous appelons voisin-
degré de v, noté nd(v) = 3, cnp d(w), la somme de son degré et ceux de ses voisins.
Nous appelons combinaison de degrés du graphe G la liste triée en ordre croissant des
voisin-degrés de ses sommets.

Ces deux notions suffisent pour vérifier si deux graphes connexes avec au plus 5 som-
mets sont isomorphes, comme le montre le lemme suivant.

Lemma B.2.2. Deux graphes connexes G et H avec au plus 5 sommets sont isomorphes
st et seulement si leurs combinaisons de degrés sont identiques. De plus, deux sommets
u,v € Vg sont position-équivalents si et seulement s’ils ont le méme voisin-degreé.

Proof. La démonstration est directe, il suffit de vérifier 'affirmation pour tous les graphes
connexes avec au plus 5 sommets. [

Pour les deux patterns de notre exemple précédent, la combinaisons de degré du pat-
tern 21 est (7,7,8,10,10), tandis que celle du pattern 22 est (8,8,8,9,9). Ainsi, les deux
patterns sont trouvés comme non-isomorphes. De plus, les sommets du méme pattern qui
ont des positions différentes ont des voisin-degrés distincts.

Remarquons que pour un graphe G avec n sommets et m liens on calcule les voisin-
degrés de tous les sommets de G en temps O(m) et espace O(n) (il suffit de parcourir
tous les liens pour calculer et mémoriser tous les degrés, ensuite parcourir tous les liens
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Figure B.4 — Deux graphes connexes non-isomorphes avec 6 sommets.

de nouveau pour calculer les voisin-degrés), ensuite sa combinaison de degré en temps
O(n -logn). Pour I'ensemble de patterns ces quantités sont constantes comme n et m sont
au plus 5, respectivement 10. Donc on peut trouver a quel pattern un graphe connexe avec
au plus 5 sommets correspond (i.e. auquel des 30 graphes de la Figure[B.lil est isomorphe)
et vérifier si deux de ses sommets sont équivalents en temps constant.

Toutefois le lemme n’est pas valable pour les graphes connexes avec 6 sommets. Les
deux graphes de la Figure [B.4] ne sont pas isomorphes mais ont la méme combinaison de
degrés : (7,7,7,7,10,10).

B.3 Une méthode pour ’analyse de la structure locale

Etant donné un graphe (éventuellement grand) G = (V, E'), nous nous proposons d’analy-
ser sa structure locale autour d’un sommet v € V' (nous appelons ce sommet ego). Nous
procédons comme il suit — méthode structure_locale(v) :

Etape 1. Extraire le réseau égocentré Fg(v) de v i.e. le sous-graphe induit par les voisins
de v dans G';

Etape 2. Enumérer les patterns de Eg(v);
Etape 3. Calculer les vecteurs de position des sommets de Eg(v).

Nous expliquons les trois étapes de la méthode avec un exemple.

Etapes 1 et 2. Dans la Figure [B.5(a), les cercles noirs correspondent aux voisins de
v, les traits noirs correspondent aux liens entre eux et les traits rouges aux liens entre
v et ses voisins. Le réseau égocentré Eg(v) de v est représenté dans la Figure [B.O(b) et
les patterns de Fg(v) dans la Figure [B.E(c) []. Nous choisissons de ne pas inclure v dans
son réseau égocentré parce que nous savons qu’il est connecté a tous les sommets de ce
graphe, sa présence n’apporte aucune information. Apres avoir effectué les deux premiers
pas de la méthode, on a une description riche de la facon dont v est connecté au graphe
G. Pour une description plus détaillée de la structure locale de G on peut énumérer les
patterns d’un plus grand ordre (avec plus de 5 sommets) ; les patterns avec 5 sommets

! Nous avons aussi compté les sommets et les liens isolés de Eg(v).
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Figure B.5 — Un sommet v et ses voisins (a), le réseau égocentré Eg(v) de v (b), les patterns
de Eg(v) (c) et les vecteurs de position de deux voisins de v (d) (seulement les positions
ol au moins un des deux sommets est présent).

représentent toutefois un bon compromis entre la variété des formes et leur nombre ; méme
les 4-patterns offrent dans beaucoup de cas une image suffisamment détaillée.

Etape 3. Nous calculons les vecteurs de position des voisins de v, donc le nombre de
fois chaque voisin apparait dans chacune des positions des différents patterns. La Figure
B.E5(d) présente les vecteurs de positions de deux voisins de v (seulement les éléments qui
sont supérieurs a 0 pour au moins un des sommets ; tous les autres éléments sont égaux a
0). Les positions occupées par les différents voisins décrivent la place relative de ces voisins
par rapport aux autres voisins mais aussi les liens formés par v, si on regarde du point
de vue de v. Par exemple, la Figure présente la correspondance entre trois positions
possibles d’un voisin u et la structure du graphe autour du lien(u, v).

Si le graphe G est dirigé, on peut ajouter cette information a la description des liens
formés par v en donnant simplement un poids aux voisins de v. Pour un noeud v, le poids
wy(u) d’un voisin u est :

e 1 sila connexion est de v a u (v — u),
e 2 sila connexion est de u a v (u — v),
e 3 si la connexion est symétrique (v — u et u — v ).

Comme exemple, la Figure [B.7] présente la correspondance entre une position possible
d’un voisin u qui a poids 2 et la structure du graphe autour du lien (u,v).

La méthode introduite ici peut étre utilisée pour définir une relation d’équivalence sur
les sommets du graphe G. D’abord, chaque sommet peut étre caractérisé par un vecteur
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Figure B.6 — Trois positions possibles du voisin u (a) et les structures correspondantes
autour du lien (u,v) (b).

a) b)

Figure B.7 — La position du voisin u avec poids 2 (a) et la structure correspondante
autour du lien (u,v) (b).
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contenant le nombre d’apparitions de patterns avec au plus k£ sommets dans son réseau
égocentré. Ensuite, on peut utiliser ces vecteurs pour identifier des sommets équivalents.

Definition B.3.1. Etant donné un sommet v d’un graphe G et un nombre entier positif
k, nous appelons k-pattern vecteur de v le tableau contenant le nombre d’apparitions des
k-patterns (i.e. tous les graphes connexes non-isomorphes avec au plus k sommets) dans
le réseau égocentré Eg(v) de v. Deux sommets du graphe G sont k-pattern équivalents si
et seulement s’ils ont des k-pattern vecteurs identiques.

B.4 Considérations algorithmiques

Nous rappelons que le graphe G = (V, E') auquel la méthode est appliquée peut étre grand
(plus que 10° sommets et encore plus de liens). Par conséquent on doit faire attention &
la complexité temps et espace des algorithmes utilisés. Premierement, nous mémorisons le
graphe G dans la représentation liste d’adjacence (voir la Section 2.1]) : pour chaque som-
met, on a la liste de ses voisins triée en ordre croissant (les sommets de V' sont numérotés
de 0 & [V]|—1). Cette représentation nécessite espace O(|E|) et le parcourt de N(v) prends
©(d(v)) temps, ou d(v) représente le degré de v. Le test de la présence d’un lien (u,v)
prends O(log(d(v))) temps. Pour un graphe G = (V, E), soit n le nombre de ses sommets
(n =|V]) et m le nombre de ses liens (m = |E)).

Etape 1. Dans cette étape nous avons besoin de calculer le réseau égocentré d’un
sommet v € V i.e. le sous-graphe induit par les voisins de v dans G. Cela est équivalent
a l’énumération des triangles contenant v. Pour cela, nous nous appuyons sur l’algo-
rithme new-vertez-listing proposé dans [Lat08]. L’algorithme ComputeEgocentered calcule
le réseau égocentré d’'un sommet v € V.

Algorithm 4 ComputeEgocentered. Calcule le réseau égocentré d’un sommet

Entrée : Un graphe G = (V, E) simple non-dirigé et un sommet v € V'
Sortie : Un graphe Eg = (V,,, E,) simple non-dirigé, le réseau égocentré de v

. créer un tableau A de |V| nb. entiers initialisés a —1
. initialiser V,, et E, a I’ensemble vide
. pour chaque sommet u € N(v), mettre Afu] égal a v
. pour chaque sommet u € N (v)
4.1 ajouter u a 'V,
4.2 pour chaque sommet w € N (u) tel que w < u
si A[lw] = v alors ajouter (w,u) & E,

=W N

L’algorithme ComputeEgocentered. On peut voir cet algorithme comme une fagon
d’utiliser la matrice d’adjacence de G sans la mémoriser explicitement : quand on traite
un sommet v, le tableau A n’est rien d’autre que la v-ieme ligne de la matrice d’adjacence.
Ce tableau est construit en O(n) temps et espace. Ensuite on peut vérifier la présence
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d’un lien (u,v) en ©(1) temps et espace. Comme la ligne 4.2 est exécutée au plus deux fois
pour chaque lien connectant un voisin de v, et il y a au plus m tels liens, on obtient que
lalgorithme ComputeEgocentered a une complexité temps de O(m) et espace de ©O(n).

Etapes 2 et 3. Nous voulons caractériser le graphe Fg(v), donc nous calculons ses
patterns et les positions de ses sommets. Pour simplifier les notations et parce que ces
deux étapes constituent une méthode qui peut étre appliquée a tout graphe, pas juste
des réseaux égocentrés, nous notons le graphe Eg(v) par G. D’abord, nous avons besoin
d’identifier les sous-graphes connexes induits avec au plus 5 sommets de G, ensuite de
trouver le pattern auquel chacun de ces graphes est isomorphe et finalement de calculer
les positions occupées par les différents sommets dans le sous-graphe identifié (en fait les
trois opérations sont successives : une fois avoir trouvé le sous-graphe, on vérifie a quel
pattern il est isomorphe et on calcule les positions des sommets, ensuite on continue la
recherche d’autres sous-graphes). Pour la premiere partie nous nous appuyons sur I’Al-
gorithme ESU(G, k) [Wer06] (voir la Figure [B.3) qui énumere les sous-graphes induits
de G avec k sommets. Pour la deuxiéme et la troisiéme partie, nous calculons les voisin-
degrés et la combinaison de degrés du sous-graphe trouvé, conformément au lemme [B.2.2]
L’Algorithme Characterize WithPatterns implémente les trois étapes.

L’Algorithme Characterize WithPatterns. Nous avons légerement modifié I’Al-
gorithme ESU (Figure B3] pour calculer les sous-graphes induits avec au plus k sommets
ol k < 5. Aussi, 'opération output G[Vsybgraps) (ligne Ey dans ESU) est remplacée par la
fonction IndexPattern qui calcule le pattern isomorphe au sous-graphe trouvé et les posi-
tions occupées par les différents sommets. L’Algorithme Characterize WithPatterns a une
complexité temps linéaire dans le nombre de patterns trouvés dans le graphe G : pour I’Al-
gorithme ESU voir [Wer(6] ; pour la fonction IndexPattern remarquer que son exécution
prend O(my, + n, x logn, + log nb_patterns), ot n, est le nombre de sommets dans le
pattern (au plus 5), m, est le nombre de liens (au plus 10) et nb_patterns est le nombre
total de patterns différents (égal & 30 pour les patterns avec au plus 5 sommets). Comme
toutes ces quantités sont inférieures a des constantes données, 5, 10 et log 30 respective-
ment, on peut dire que IndexPattern a une complexité temps constante et I’Algorithme
Characterize WithPatterns est linéaire dans le nombre de patterns du graphe G. Comme
nous n’avons pas de méthode pour estimer le nombre de patterns d’un graphe donné, nous
remarquerons simplement que le nombre de patterns avec au plus k patterns est au plus
n¥* ol n est le nombre de sommets de G.

L’Algorithme CaracterizeLocalStructure. Nous avons maintenant tous les éléments
pour écrire l'algorithme qui caractérise la structure locale du graphe G = (V, E) autour
de chaque sommet v € V : I’Algorithme Caracterize LocalStructure. Celui-ci est juste I'ap-
plication des deux algorithmes précédents a tous les sommets du graphe. Remarquons
toutefois une modification : le tableau A est construit une seule fois pour tous les som-
mets du graphe, au début de l'algorithme, et ensuite mis-a-jour pour chaque sommet.
Ainsi la construction de A a la méme complexité temps et espace que dans 1’Algorithme
ComputeEgocentred : ©(n) pour les deux. La complexité temps de I’Algorithme Carac-
terizeLocalStructure est ainsi ©(n + ) . (nb. patterns dans Eg(v))) qui est (au plus)
O(n+ ey (d(v)®)). Etant donné que nous appliquons la méthode & des grands réseaux
réels, ou la plupart de sommets a un degré faible, la méthode est en moyenne trés rapide.
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Algorithm 5 Characterize WithPatterns. Caractérise un graphe simple non-dirigé

Entrée : Un graphe simple non-dirigé G = (V, E) et un nombre entier positif k < 5
Sortie : Un tableau Pt tel que Pt[P] contient le nb. d’occurrences du pattern P dans G,
un tableau Ps tel que Ps[v][i] = Posk(G,v,1) (le nb. d’occurrences de v dans la position 7)

1. mettre tous les éléments de Pt et Ps a 0
2. pour chaque sommet v € V faire

2.1 Vegtension <— {u € N(v) : u > v}

2.2 VSubgT’aph = {U}7 ESubgraph =0

2.3 appeler ExtendSubgraph(Vsubgraphs Esubgraphs VEztensions v, Pt, Ps, k)
3. retourner

ExtendSubgraph
Entree :
- un nombre entier positif k < 5,
- deux ensembles Vsupgrapn € V' et Egupgrapn © E contenant les sommets et les liens
déja ajoutés au sous-graphe,
- un ensemble de sommets Vyiension contenant les sommets qui peuvent étre ajoutés au sous-graphe,
- un sommet v ou la construction du graphe a commencé,
- deux tableaux Pt et Ps qui seront mis-a-jour par la procédure

1. si |Vsubgrapn| > k retourner
2. si |Vsubgrapn| > 0 appeler IndexPattern(Vsubgraph, Esubgraph:Pt, Ps)
3. tant que VEgtension 7& 0
3.1. prendre un sommet w choisi aléatoirement dans Vegiension
3.2. Vll?mtension = VE:(:tension
3.3. E,,S‘ubgraph = ESubgraph
3.4. pour chaque u € N(w) : u > v
si u € Vsubgraph ajouter (u,w) a Egubgmph //ajouter tous les liens de w vers le sous-graphe
sinon si u ¢ N (Vsupgrapn) ajouter w a Vg .
3.5. appeler ExtendSubgraph(Vsypgrapn U {w} Eé'ubgraph’ Vi tensions Us Pt Ps k)

IndexPattern
Entrée : Un ensemble de sommets Vsypgrapn, un ensemble de liens Egypgrapn €t
deux tableaux Pt et Ps qui seront mis-a-jour par la procédure

1. parcourir 'ensemble Egypgrqpn €t noter chaque occurrence de chaque sommet
//ainsi calculant les degrés des sommets
2. créer un tableau D contenant les degrés des sommets
3. pour chaque lien (a,b) € Egypgrapn ajouter degré(b) a D(a) et degré(a) a D(b)
// ainsi calculant les voisin-degrés
4. trier D et I’écrire comme un nombre
5. trouver le pattern P avec ce numéro et incrémenter Pt(P)
6. pour chaque sommet u
trouver la position ¢ (dans le pattern P) avec le méme voisin-degré et incrémenter Ps|u][i]
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Dans le Chapitre [7 nous appliquons la méthode & un graphe réel avec 2.7M sommets et
6.4M liens et nous donnons une complexité empirique de notre méthode pour ce graphe-
la. L’exécution de notre implémentation C++ de la méthode prend 31 minutes sur un
ordinateur de configuration standard avec un processeur de 2.8GHz et 4Go RAM.

Algorithm 6 CaracterizeLocalStructure. Caractérise la structure locale autour de
chaque sommet dans un (grand) graphe

Entrée : Un graphe simple non-dirigé G = (V, E)) et un nombre entier positif k£ < 5

1. créer un tableau A de |V| nombres entiers et les mettre & —1
2. pour chaque sommet v € V
2.1 initialiser V,, et E, a I’ensemble vide
2.2 pour chaque sommet u dans N(v), mettre Afu] a v
2.3 pour chaque sommet u dans N (v)
2.3.1 ajouter v a V,,
2.3.2 pour chaque sommet w dans N (u) tel que w < u
si Alw] = v alors ajouter (w,u) a E,
2.4 appeler CharacterizeWithPatterns((V,,, E,), k)

B.5 Applications de la méthode

Le but de la méthode que nous avons présentée ici est de caractériser la facon dont un
sommet est connecté au réseau. C’est une méthode pour ’analyse de la structure locale
du réseau qui produit une caractérisation de chaque sommet. Son but n’est pas de don-
ner un classement ou un ordre de sommets, mais simplement de montrer comment ils
sont connectés au réseau. Cela peut étre utile dans plusieurs situations. D’abord, comme
n’importe quelle méthode de caractérisation, il améliore notre connaissance des sommets
du réseau. Deuxiemement, la caractérisation des sommets obtenue peut étre comparée a
d’autres propriétés des sommets : s’il y a une corrélation, on peut utiliser I'une pour prévoir
les autres. Cela est pratique quand il y a des données manquantes parce que quelques unes
des propriétés peuvent étre déduites des autres. Troisiemement, il y a des situations ou
une analyse locale est la meilleure fagon d’étudier le probleme. C’est le cas des données
obtenues indépendamment pour des personnes différentes, ou le réseau ”global” contenant
toutes les personnes est inconnu (comme par exemple dans le cas des études sociologiques
ou les données sur chaque personne sont obtenues par des entretiens individuels et il n’y
a aucune collection du réseau entier). Dans ce cas on peut vouloir étudier le réseau dans
lequel les individus sont inclus, mais, comme il n’y a aucun réseau global, on ne peut pas
faire une analyse de réseau globale ou intermédiaire classique.

Une autre situation ou ’étude de la structure locale est appropriée ce sont les réseaux
ou "l'importance” des noeuds est locale. Dans la situation opposée, il y a des réseaux ou
certains noeuds sont importants pour le fonctionnement du réseau entier. Prenons par
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exemple le cas du réseau de chemins de fer d’un pays; dans ce cas il est important d’ana-
lyser les noeuds dans le contexte du réseau global : il y a quelques noeuds (des stations
de train) qui sont importants pour le réseau entier parce qu’ils connectent les différentes
parties du pays. Dans ce cas une analyse locale n’est pas suffisante, on a besoin d’utiliser
des mesures qui prennent en considération le réseau entier. Aussi, pour les réseaux sociaux
en ligne, la perspective globale peut étre utile. Dans ces cas, les utilisateurs sont visible
dans le réseau entier : ils peuvent étre vus et contactés par n’importe quel autre utilisa-
teur du réseau. Souvent il y a une notion de popularité, ou les gens essayent d’améliorer
leur visibilité et ou les supporteurs peuvent se connecter a eux. Cependant, une analyse
locale peut aussi apporter des informations importantes. On peut analyser par exemple
les liaisons créées par des personnes différentes avant un certain moment dans le temps;
celle-ci est une analyse locale qui reléve les relations star-fan (exprimées par des liens).

Une approche locale est utile surtout dans des réseaux ou 'importance et la visibilité
des noeuds sont locales. Prenons par exemple le cas des communications par téléphone
portable. Ici les gens ne peuvent pas étre contactés par n’importe qui étant donne que les
numéros de téléphone portable ne sont pas publics. Et méme si ¢’était le cas, d’habitude
les gens n’appellent pas d’autres gens juste parce que ceux-ci sont connus. Il n’y a aucune
mesure de popularité dans ce réseau (par rapport aux plateformes enligne ou des différentes
statistiques a propos de 'activité des gens et de leur popularité sont souvent disponibles).
Les gens ont d’habitude des appels téléphoniques parce qu’ils ont vraiment quelque chose
a discuter avec I'autre personne et pas parce qu’ils sont les supporteurs de cette personne.
Dans ce cas les gens a quelques pas (peut-étre 2 suffisent) d’une personne ne connaissent
pas cette personne; 'existence de cette personne n’a aucune importance pour eux. Pour
des tels réseaux la caractérisation des noeuds en prenant en considération le réseau entier
peut ne pas étre tres utile : quelqu’un avec une grande (disons betweenness) centralité
peut étre moins important que d’autres personnes. Sa présence dans le réseau est sirement
importante pour plusieurs personnes mais ces personnes sont le plus probablement pres
de lui dans le réseau. Si cette personne quitte le réseau, la grande majorité des individus
dans le réseau ne remarquera méme pas le changement. Pour des tels réseaux la méthode
présentée ici est plus appropriée que d’autres types d’analyse prenant en considération le
réseau entier (au moins quand on caractérise un noeud donné).

Finalement, cette méthode peut étre utilisée pour calculer une certaine équivalence ou
similarité des sommets, des notions tres importantes pour la définition de roles sociaux
joués par les noeuds d’'un réseau. Une relation d’équivalence possible est la k-pattern
équivalence que nous avons définie dans la Section [B:3l Si l’on veut calculer des sommets
similaires (au lieu d’équivalents), on peut calculer une certaine distance entre les k-pattern
vecteurs des sommets (aussi définis dans la Section [B.3]). Nous discuterons cette approche
et quelques applications dans le Chapitre 8

B.6 Comparaison avec d’autres mesures

Soulignons d’abord I’équivalence entre plusieurs notions quant & un sommet v, dans le
contexte du graphe entier et dans son réseau égocentré (voir le Tableau [B.1]). Par exemple,
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Table B.1 — Notions équivalentes pour un sommet v : dans le graphe total et dans le
réseau égocentré.

graphe G réseau égocentré Fg(v)

degré de v nombre de sommets
nombre de triangles contenant v nombre de liens
nombre de cliques-4 contenant v nombre de triangles

le degré de v dans le graphe G correspond au nombre de sommets dans le réseau égocentré
Eg(v). De plus, le coefficient de clustering du noeud v est égal & la densité de son réseau
égocentré, comme le nombre de triangles contenant le noeud est égal au nombre de liens
entre ses voisins, et tous les deux sont égaux a (g) ou d est le degré de v.

Patterns versus centralité. Comme nous présentons dans la Section Bl la centra-
lité des sommets est une mesure de leur importance dans le réseau. D’habitude on calcule
la centralité de tous les sommets du graphe pour produire un classement des sommets. 11
y a plusieurs définitions de centralité : la centralité de degré, la betweenness, la closeness,
le page-rank, la centralité vecteur propre etc. Hormis la centralité de degré (qui est sim-
plement le degré du noeud), toutes les autres mesures prennent en considération le graphe
entier. Comme expliqué dans la section précédente, le but de la méthode présentée ici est de
produire une caractérisation locale des sommets. C’est la principale différence entre notre
méthode et les différentes définitions de centralité : le but n’est pas le méme. Une autre
différence vient du contexte d’application des méthodes : tandis que les différentes mesures
de centralité doivent avoir le réseau entier pour calculer la centralité d’un noeud, notre
méthode a besoin seulement des voisins du noeud et des liens entre eux, donc elle peut
étre appliquée seulement a quelques parties du graphe si 'on ne connait pas les autres.
Finalement, les centralités betweenness et closeness peuvent étre difficilement calculées
dans des grands réseaux comme leur complexité temps est O(nm). Au contraire, comme
expliqué plus tot, notre méthode peut étre facilement appliquée a des grands réseaux.

Dans une approche différente, on pourrait calculer la centralité des sommets présents
dans chaque réseau égocentré, donc celle des voisins de chaque noeud, et comparer entre
elles les centralités des différents voisins. Nous rappelons que dans notre méthode nous cal-
culons le k—vecteur de position de chaque voisin pour voir comment les différents voisins
sont placés les uns par rapport aux autres. Le vecteur de position est une mesure différente
de la centralité. Il reflete la relation de chacun des voisins avec les autres voisins, placés a
au plus 5 pas de lui. C’est plutét une mesure de la facon dont les différents voisins sont
placés et connectés dans le réseau que de leur rang ou importance. Regardons par exemple
le graphe dans la Figure [B.8 et supposons que c’est le réseau égocentré d’un certain noeud.
Les sommets x et z ont degré 4, le sommet y a degré 2 et la centralité betweenness de x,y
et z est 27, 28 et 24 respectivement. Si l’on a un classement des sommets (y est plus central
que x et x est plus central que z), on ne sait pas comment ces noeuds sont connectés au
réseau. De plus, on pourrait affirmer que c’est x et pas y qui a une position plus importante
dans le réseau égocentré parce qu’il connecte 4 sommets non-reliés directement. Cela n’est
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Figure B.8 — Un exemple de différence entre centralité et vecteurs de position.

KIS

a) .b)I>/

Figure B.9 — Deux réseaux égocentrés qui ont le méme nombre de sommets, de liens et le
méme coefficient de clustering.

montré ni par le degré, ni par la centralité betweenness. En appliquant la méthode que
nous avons présentée ici, on sait que x est le centre d’une étoile avec 5 sommets et qu’il
appartient a un chemin avec au moins 6 sommets. Il est aussi clair que y est connecté par
un lien au centre d’une étoile et qu’il est dans le centre d'un chemin. Quant a z, on sait
qu’il appartient a une clique-4 et a un chemin avec au moins 6 sommets. Pour résumer, la
méthode que nous avons présentée ici et les mesures de centralité ont des buts différents
et sont utiles dans des situations différentes.

Patterns versus densité et coefficient de clustering. La densité du réseau égocentré
d’un sommet (ou son coefficient de clustering) est une premiére caractérisation du sommet
et de la facon dont il est connecté au réseau. Pour une caractérisation plus détaillée on peut
calculer aussi le coefficient de clustering du réseau égocentré défini comme la moyenne du
coefficient de clustering des sommets du réseau égocentré. L’énumération de patterns dans
les réseaux égocentré fournit cependant une description plus riche de la structure locale
du réseau que ces deux mesures. Encore une fois, elle décrit comment les différents voi-
sins du sommet sont disposés, dans quel type de structures ils sont intégrés. Par exemple,
imaginons que les deux réseaux dans la Figure [B.9] sont les réseaux égocentré de deux
sommets donnés. Ces réseaux égocentrés ont le méme nombre de noeuds, de liens et le
méme coefficient de clustering. Ces mesures ne capturent pas les différences entre ces deux
graphes, tandis que I’énumération de patterns si.

K-pattern équivalence versus d’autres équivalences de sommets. Dans la Sec-
tion [l nous présentons les équivalences structurelle, automorphique et réguliére, proba-
blement les plus connues équivalences de sommets. Ces notions, utilisées pour définir des
roles sociaux, sont trop strictes pour des grands réseaux réels. La k-pattern équivalence que
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nous avons définie dans la Section [B.3] est incluse dans 1’équivalence structurelle et auto-
morphique. Cela s’appuie sur les observations simples que les sommets qui ont exactement
les mémes voisins dans le réseau (donc sont structurellement équivalents) ont des réseaux
égocentrés identiques, donc des vecteurs de parametres (en anglais feature vectors) iden-
tiques et sont donc k-pattern équivalents, pour tout k. Aussi, les sommets automorphique-
ment équivalents ont des réseaux égocentré isomorphes, donc des vecteurs de parametres
identiques et sont ainsi k-pattern équivalents, pour tout k. Pour les deux définitions, la
réciproque n’est pas toujours vraie, donc on peut dire que la k-pattern équivalence est
incluse dans les équivalences structurelle et automorphique. Cela signifie que la k-pattern
équivalence est moins stricte que ces deux relations ; cependant elle n’est toujours pas assez
flexible pour des réseaux réels. Quelques adaptations des k-pattern vecteurs pour calculer
la similarité des sommets dans des graphes de terrain seront discutées dans le Chapitre Bl

B.7 Conclusions du chapitre

Nous avons présenté dans ce chapitre une méthode pour 'analyse de la structure locale
d’un graphe autour de chaque sommet. Cette méthode fournit une description riche de la
fagcon dont un noeud donné est connecté au graphe et aussi de la facon dont ses voisins
sont placés les uns par rapport aux autres. Elle peut étre appliquée aussi bien a des petits
réseaux qu’a des grands et méme a des fractions de réseaux. Dans les chapitres suivants
nous appliquons cette méthode a deux réseaux sociaux, le premier modélisant 'activité
sur une plateforme enligne et le deuxieéme modélisant des communications par téléphone
portable. Dans le premier cas nous étudions la relation entre la popularité d’utilisateurs
et la structure du réseau dans lequel ils sont intégrés, tandis que dans le deuxiéme cas
nous comparons la facon dont les sommets et leurs voisins sont placés dans le graphe
a d’autres informations (age, sexe, intensité de communication) sur les utilisateurs de
téléphone portable.
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