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Extended Abstract 

Bionanocomposites represent an emerging group of nano-structured hybrid materials. They 

are formed by the combination of natural polymers and inorganic solids and show at least one 

dimension on the nanometer scale. These hybrid materials retain the structural and functional 

properties of nano-structured materials. Meanwhile, the presence of biopolymer can reduce 

the public health and environmental risks of nano-sized materials.  Properties inherent to the 

biopolymers, notably, biocompatibility and biodegradability, open new prospects for these 

hybrid materials particularly in regenerative medicine and in environmental engineering 

(Darder et al., 2007). Fabrication of large-sized bionanocomposites, rather than nano-sized 

particles, can prevent possible harmful nanoparticle (NP) intake by humans and other living 

things. Synergistic assembling of biopolymers with inorganic nano-sized solids leads to 

multifunctional bionanocomposites which can be synthesized and applied in several areas for 

designed purposes.  

This thesis focuses on (i) the presence of toxic arsenic and antibiotics in Chinese drinking 

water sources; (ii) evaluation of a novel tailored bionanocompsite, namely chitosan goethite 

bionanocomposite (CGB), as a removal agent for inorganic arsenic species from water; (iii) 

using clay minerals as an adsorbent for removing gentamicin, an aminoglycoside antibiotic, 

from water, and assembling gentamicin-loaded clay with biopolymer hydroxypropyl 

methycellulose leading to a bionanocomposites film, namely gentamicin-montmorillonite- 

hydroxypropyl methycellulose (Gt-Mt-HPMC), to be used as a burn wound dressing. 
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A large number of people worldwide are exposed to elevated As concentrations in ground 

water – many of them in developing countries and with no available alternative water 

resources. Aquifer systems with high levels of arsenic, elevated by natural processes or 

anthropogenic activities, have been reported in different environments from all continents. 

Some of the best-documented and most severe cases of arsenic contaminated groundwater 

have been found in aquifers in Asia (e.g. parts of Bangladesh, China, India, Nepal) and South 

America (e.g. Argentina, Mexico) (Aureli, 2006). Estimates of the rural population exposed to 

unsafe As levels by drinking untreated groundwater in India, China, Myanmar, Pakistan, 

Vietnam, Nepal, and Cambodia has grown to over 100 million (Ravenscroft et al., 2009). 

Inorganic forms of arsenic: arsenite [As(III)] and arsenate [As(V)] are the two dominant 

species found in groundwater. Long-term drinking water exposure to arsenic may cause skin 

lesions (Tondel et al., 1999), peripheral vascular disease (Engel et al.,1994), hypertension 

(Chen et al., 1995), black-foot disease (Chen, 1990), and high risk of cancers, etc (Bates et 

al.,1992).  

 

Arsenic was released to subsurface water bodies due to natural processes, such as arsenic 

mobilization from minerals and sediments. It is not possible to eliminate these sources. 

Therefore groundwater containing high level of arsenic has to be treated before use as 

drinking water. Common techniques for arsenic removal from water include 

oxidation/precipitation, coagulation, sorption, ion-exchange and membrane filtration. 

 

In rural areas of developing nations where local population face economical – traditional – 

political constrains, a low-cost and practical set-up for removing arsenic from drinking water 

is necessary. Sorption and coagulation/precipitation are more realistic techniques than high 
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cost and high-tech operation techniques (i.e. ion exchanges and membrane processes). To 

simplify the As removal processes, a promising adsorbent which can efficiently adsorb both 

As(III) and As(V) is more practical than coagulation/precipitation processes, in which case 

pre-oxidation of drinking water for converting As(III) to As(V) is needed.  

 

In this study, we employed a novel method to synthesize a chitosan-iron hydroxide composite, 

namely chitosan goethite bionanocomposites (CGB) beads. CGB beads were characterized by 

Mössbauer Spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM). 

Batch sorption and kinetic experiments were performed to assess the sorption of As(III) and 

As(V) onto CGB. The mechanism of As(III) and As(V) uptake onto CGB was investigated by 

Synchrotron Radiation X-ray Absorption Spectroscopy (SR-XAS). The diffusion of As(III) 

and As(V) from solution into the porous solid phase was monitored by micro X-ray 

fluorescence (μXRF) and micro X-ray Near Edge Spectroscopy (μXANES). 

 

Wet Chemistry 

Isotherms for the sorption of As(III)/As(V) onto CGB beads were studied at different pH 

values and data were found to be best described by the Freundlich and Redlich-Peterson 

equations. The kinetics study indicated that As(V) was adsorbed faster than As(III), and a 

pseudo-equilibrium was reached in both cases within 2000 min. The effect of CGB mass used 

in adsorption on residual As levels was studied. For 1 liter of water containing 1 mg/L of 

As(V) or As(III), only less than 0.5 g and around 2 g respectively of the CGB bead is needed 

to decontaminate the water to reach the 10 ȝg/L standard. 

 

Mechanism study 
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The As oxidation state and binding environment were examined by synchrotron X-ray 

absorption spectroscopy. Results showed that As was adsorbed mainly onto goethite 

nanoparticles in the CGB composite material, although As can be adsorbed by chitosan as 

well. As(III) was partly oxidized to As(V) under an aerobic environment while As(V) species 

remained unchanged under both aerobic and anaerobic environments. 

 

Diffusion pattern 

As-loaded CGB samples collected from kinetics experiments at 1.5 h and 72 h were cut into 

40 ȝm thick cross-sections. The distribution and co-localization of Fe and As in cross-sections 

of As-loaded CGB were studied by high resolution synchrotron radiation micro X-ray 

fluorescence mapping. The distribution of As reveals that, during the first 1.5 h, As(III) 

penetrated for 70-80 ȝm in the beads, while the penetration of As(V) was slightly faster, 

reaching 100-110 ȝm. After 7β h, both As(III) and As(V) diffuse in the whole CGB section, 

their concentration being higher at the borders and diminishing in the center of the beads in a 

typical U shape profile. This suggested that the arsenic adsorption took place more rapidly 

than the diffusion process. Effective diffusivities of arsenic were calculated: )(AsIIIDeff
= 

6.69×10-14 m2/s and )(AsVDeff
= 1.34×10-13 m2/s. The estimated effective diffusivities of 

As(III) and As(V) are similar. The higher estimated diffusivity of As(V) could be due to the 

electrostatic attraction between As(V) and the interior of the beads which accelerates the 

movement of As(V) towards the core of the beads.  

 

The novel material – chitosan goethite bionanocmoposites (CGB) that this thesis presents 

show several outstanding properties: 
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(i) High efficiency: it can efficiently remove both the inorganic As species As(III) and 

As(V), without a pre-oxidation process,  

(ii) Low difficulty and cost in filtration process: the large-scale bead (1 mm) is more 

easily to be removed than fine nanoparticle powders. 

(iii) Low health risk: goethite nanoparticles are stabilized by the chitosan matrix, so there 

are no NPs released from the sorption process during its use. No toxic chemical was 

used during the fabrication of the material compared to conventional methods, in 

which the use of toxic cross-linking reagents is common. 

(iv) High mechanical property: Compression mechanical property test reports the 

crushing strength to be 34.9 ± 6.5 N, compared to chitosan hydrogel beads (1.87 N) 

and that of the chitosan hydrogel beads impregnated with carbon nanotubes (7.62 N). 

 

These properties highly reduce the cost and complexity of the water remediation process. It 

could be a promising material particularly for developing nations, which suffer a diversity of 

socio-economical-traditional constraints for water purification and sanitation.  

 

The risk and occurrence of antibiotics in water 

As with other dangerous pollutants that spread in the environment and threaten human health, 

there is a need for environmental scientists and engineers to help address the critical problem 

of antibiotics. An antibiotic is an agent that inhibits or kills bacteria. Despite decades of high 

usage for human medicines and veterinary purposes, the occurrence and effects of antibiotics 

in the environment have been little studied until very recently. Antibiotics presence has now 

become a focus of research efforts due to different adverse effects, especially the contribution 

to antibiotic resistant bacteria in the environment. The powerful killing and growth inhibitory 
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effects of antibiotics have reduced the numbers of susceptible strains, leading to the 

propagation of resistant variants (Levy, 2008). Such resistant bacteria can cause an infection 

both in humans and animals and may not respond to regular antibiotic treatments (Regassa et 

al., 2008). The presence of antibiotics, even in low dose, also potentially harm aquatic 

environment and pose risks to public health. 

 

Gentamicin removal by clay mineral and synthesis of Gt-Mt-HPMC bionanocomposites 

film for burn wound dressing 

Gentamicin (Gt.), an aminoglycoside antibiotic produced by fermentation of Micromonospura 

purpurea, is a mixture of basic, water soluble compounds containing aminocyclitol 2-

deoxystreptamine and 2 additional amino sugars (MacNeil and Cuerpo, 1995). Gentamicin is 

used to treat many types of bacterial infections, particularly those caused by Gram-negative 

organisms (Moulds and Jeyasingham, 2010). The main toxic effects of the aminoglycoside 

antibiotics are nephrotoxicity and ototoxicity. Furthermore, fetotoxicity was observed for 

gentamicin (Gehring et al., 2005). Although application of Gt. in human medicine has 

declined, its use in veterinary and agriculture is still intense. Gentamicin can enter the 

environment via pharmaceutical factories, hospital waste water and animal droppings. 

 

The sorption of Gt. onto Na
+
-montmorillonite 

The amino groups of the sugar rings of gentamicin exhibit variable pKa values which range 

from 5.6 to 9.5. Thus, gentamicin carries a net positive charge under acidic conditions when 

all or parts of amino groups are protonated. It offers the possibility of gentamicin intercalation 

in Na+-montmorillonite by means of cationic exchange processes. 
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In order to investigate the adsorption isotherm, three equilibrium isotherm models were 

applied: the Langmuir, the Freundlich, and the Redlich-Peterson isotherms.  The Langmuir 

and the Redlich-Peterson isotherms best fitted the data fothe adsorption of gentamicin on Na+-

montmorillonite at 294 K . 

 

XRD results confirmed intercalation of the gentamicin in the clay interlayers, indiciated by 

the decrease of 2θ values. As the gentamicin/clay ratio increases, the d001 spacing reaches 1.4 

nm when the clay reaches saturated adsorption. The increase of clay d001 spacing was due to 

the thickness of gentamicin molecule sheet. The orientation of gentamicin in the interlayer of 

the clay was studied. 

 

Gentamicin-montmorillonite-HPMC film 

Gentamicin-loaded montmorillonite, the solid waste from the gentamicin adsorption process, 

can be used to synthesize gentamicin-montmorillonite-HPMC (Hydroxyl Propyl Methyl 

Cellulose) (Gt-Mt-HPMC) film which can be potentially used as a burn wound dressing. The 

antimicrobial effect of Gt-Mt-HPMC against the skin infection-causing bacteria 

Staphylococcus aureus was examined according to ASTM E2149 (Standard test Method for 

determining the antimicrobial activity of immobilized antimicrobial agents under dynamic 

contact conditions). The reinforcing clay mineral and HPMC afford the necessary mechanical 

strength to the dressing, and the combined binding matrix was aimed at providing adequate 

moisture control and release of antibiotics to protect the wound bed from infection and to 

promote healing.  

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control 

tube with peptone water. The samples HPMC or/and montmorillonite which were free of 
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gentamicin showed no detectable antimicrobial effect. The result showed that Gt-Mt-HPMC 

retained the antimicrobial capability of gentamicin. The efficiency of the antimicrobial effect 

of the bionanocomposites was not weakened by the supporting material montmorillonite nor 

the HPMC.  
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Résumé 

Les composés dits 'bionano' (bionanocomposites) apparaissent comme un nouveau groupe de 

matériaux hybrides nano-structurés. Ils sont issus de la combinaison de polymères naturels et 

de solides inorganiques et sont de l'ordre du nanomètre dans au moins une direction (Darder 

et al., 2007). Ces matériaux hybrides conservent les structures et les propriétés fonctionnelles 

des polymères et matériaux inorganiques dont ils sont composés. Parallèlement, la présence 

de biopolymères permet de diminuer les risques environnementaux et de santés publiques liés 

aux nano-matériaux. Les propriétés inhérentes aux biopolymères (biocompatibles' et 

biodégradables) ouvrent des perspectives intéressantes pour ces matériaux hybrides en 

particulier dans les domaines de la médecine regénérative et  en génie de l'environnement 

(Darder et al., 2007). La production de bionanocomposites de taille plus importante, que les 

nanoparticules qu'ils renferment, permet d'éviter les effets nocifs potentiels des nanoparticules  

(Nps) pour les organismes vivants et plus particulièrement pour l'homme. L'association de 

biopolymères et de nano-solides inorganiques permet la conception de bionanocomposites 

multifonctionnels qui peuvent être synthétisés et utilisés pour des applications dans des 

domaines variés. 

 

Cette thèse se propose d'étudier principalement (i) ma présence d'arsenic et d'antibiotiques 

dans les sources d'eau potable en Chine; (ii) l'évaluation d'un nouveau bionanocomposites, à 

savoir le CGB (chitosan goethite bionanocomposite),  dans la décontamination des eaux 

contenant des espèces inorganiques d'arsenic; (iii) l'évaluation d'argiles comme adsorbants de 
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décontamination de la gentamicine (un antibiotique aminoglycoside ) présent dans l'eau de 

même que celle de bionanocomposés fait d'argiles riches en gentamicine de polymères de 

methycelluloses hydroxypropyles Gt-Mt-HPMC (gentamicin-montmorillonite- hydroxypropyl 

methycellulose) utilisés comme pansement contre les infections qui ont lieu suite à des 

brûlures.  

 

Une part importante de la population mondiale est exposée à des concentrations élevées 

d'arsenic à travers les ressources en eau présentes dans le sous-sol – principalement dans les 

pays en développement où il n'existe pas de sources d'eaux alternatives. Les systèmes 

aquifères présentant des concentrations en arsenic élevées résultant de processus naturels ou 

de l'activité humaine ont été observés sur l'ensemble des continents et dans différents 

environnements. C'est en Asie (e.g. Bangladesh, Chine, Inde, Népal) et en Amérique du Sud 

(e.g. Argentine, Mexique) que les cas les plus spectaculaires de contamination à l'arsenic via 

les aquifères ont été répertoriés (Aureli, 2006). On estime que le nombre de personnes exposé 

à un taux d'arsenic posant des problèmes sanitaires dans les régions rurales d'Inde, de Chine, 

du Pakistan, du Vietnam, du Népal et du Cambodge dépasse aujourd'hui 100 millions 

(Ravenscroft et al., 2009). Les formes inorganique d'arsenic majoritairement présentent dans 

les aquifères sont l'arsenite [As(III)] et l'arséniate [As(V)]. La consommation prolongée d'eau 

contaminée à l'arsenic peut conduire entre autres à des lésions cutanées (Tondeal et al., 1999), 

à de l'artériopathie oblitérante des membres inférieurs  (Chen, 1990; Engel et al., 1994), à de 

l'hypertension (Chen et al., 1995) et à des cancers du poumon, de la peau et du foie (Bates et 

al., 1992). 
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L'arsenic dans les aquifères provient des minéraux présents dans les sédiments suite à des  

mécanismes biogéochimiques de mobilisation. Il n'est pas possible d'éliminer ces sources 

naturelles. L'eau issue des aquifères doit donc être traitée avant d'être consommée. On peut 

citer parmi les techniques couramment employées l'oxydation/précipitation, la coagulation, la 

sorption, l'échange d'ions et la filtration par membrane. 

 

Les contextes sociaux-économiques des zones rurales des pays en voie de développement 

nécessitent le développement de méthodes de décontamination peu onéreuses et faciles à 

mettre en place. Les techniques basées sur les mécanismes de sorption ou de 

coagulation/précipitation apparaissent comme plus réalisables au contraire des techniques plus 

avancées et plus cher comme l'ozonation, les échanges d'ions ou la filtration par membrane. 

Dans l'optique de simplifier les techniques de décontamination, il est probablement plus 

intéressant d'envisager un composé capable d'absorber à la fois l'arsenite et l'arséniate que de 

développer les mécanismes de coagulation/précipitation où une opération de pré-oxydation de 

l'eau est nécessaire afin de convertir As(III) en As(V). 

 

Dans l'étude présentée, nous décrivons une nouvelle méthode permettant de synthétiser des 

billes d'hydroxide fer-chitosan, le CGB (Chitosan Goethite Bionanocomposites). Ces billes de 

CGB ont été caractérisés à l'aide de la spectrométrie Mössbauer et de la microscopie 

électronique à balayage (FE-SEM). Des expériences de sorption et de leur cinétique ont été 

conduites afin d'estimer la diffusion et l'immobilisation de As(III) et As(V) sur les billes de 

CGB. Le processus de fixation de As(III) et As(V) a été étudié à l'aide de la spectroscopie 

d'absorption des rayons X au Synchrotron (SR-XAS) et la diffusion de As(III) et As(V) dans 
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les billes de CGB a été suivies en utilisant la micro spectrométrie de fluorescence X (ȝXRF) 

et la micro spectroscopie proche bord des rayons X (ȝXANES). 

 

Chimie des solutions 

L'étude de la sorption de As(III)/As(V) sur les billes de CGB a été effectuée pour différentes 

valeurs de pH et les données on été interprétées à l'aide des équations de Freundlich et 

Redlich-Peterson. L'étude cinétique a montré que As(V) était adsorbé plus rapidement que 

As(III) et que le pseudo-équilibre était atteint pour les deux espèces en moins de 2000min. 

L'impact de la quantité de billes CGB utilisés pour l‟adsorption des résidus d'arsenic a 

également été étudié. Respectivement moins de 0.5g et 2g de billes de CGB dans un litre 

d'eau contaminée à 1mg/L de As(V) ou As(III) est nécessaire pour obtenir une eau avec moins 

de  10 ȝg/L d'arsenic. 

 

Etude des mécanismes 

L'état d'oxydation et les interactions de l'arsenic ont été examinés en utilisant la   

spectroscopie d'absorption des rayons X. Les résultats montrent que l'arsenic est 

principalement adsorbé sur les nanoparticules d'oxyhydroxyde de fer composant les billes de 

CGB bien que l'arsenic puisse également être adsorbé par la matrice de chitosan. As(III) est 

partiellement oxydé en As(V) dans un environnement anaérobique alors que As(V) reste 

inchangé dans un environnement aérobique ou anaérobique. 

 

Diffusion 

Des sections de 40ȝm d'épaisseur de billes de CGB soumises aux expériences d'adsoprtion 

ont été étudiées après 1.5h et 72h d'exposition. La distribution et la co-localisation du fer et de 
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l'arsenic sur ces sections ont été analysés en utilisant la micro spectrométrie de fluorescence X. 

La distribution d'arsenic a mis en évidence qu'en 1.5h, As(III) pénètre de 70-80 ȝm dans les 

billes alors que As(V) pénètre de 100-110 ȝm. Après 7βh, les deux espèces ont diffusés dans 

la totalité de la bille avec un gradient de concentration tel que la concentration au cœur des 

billes est moindre que sur les bords. Les résultats indiquent que le temps caractéristique de 

l'adsorption est plus court que celui de la diffusion. Les coefficients de diffusion effectifs des 

deux espèces ont été calculé et les valeurs obtenues sont du même ordre de grandeur pour les 

deux degrés d‟oxydation de l'arsenic = 6.69×10-14 m2/s et = 1.34×10-13 m2/s. La valeur plus 

élevée pour le coefficient de diffusion de As(V) peut être expliquer par l'attraction 

électrostatique qui a lieu entre As(V) et l'intérieur des billes (chitosan négativement chargé) 

accélérant ainsi la migration de As(V) vers le cœur des billes. 

 

Le nouveau matériaux (CGB) étudié présente donc des propriétés remarquables: 

(i) Efficacité : il permet d'absorbé les espèces d'arsenic As(III) et As(V) sans oxydation 

au préalable. 

(ii) Facilité de mise en place et peu onéreux: les billes de CGB étant de taille importante 

(1mm), il est plus faciles de les récupérer que les poudres à base de nanoparticules. 

(iii) Pas de risque sanitaire : les nanoparticules de goethites sont stabilisés via la matrice 

de chitosan prévenant ainsi la présence de Nps lors de l'utilisation du procédé. De plus 

il faut noter que la synthèse des billes de CGB ne nécessite pas l'utilisation de produit 

toxique contrairement aux méthodes conventionnelles qui utilisent par exemple le 

glutaraldéhyde. 

(iv)  Propriétés mécaniques : Les tests sous les contraintes de compression ont indiqués des 

ruptures à  34.9 ± 6.5 N. Ces résultats sont à comparer avec 1.87 N obtenu avec les 
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billes d'hydrogel de chitosan et 7.62 N obtenu avec des billes d'hydrogel de chitosan 

contenant des nanotubes de carbone. 

 

Ces propriétés réduisent considérablement les coûts et la complexité des techniques de 

décontamination. Ce matériaux offre donc des perspectives intéressantes pour les pays en voie 

de développement qui souffrent de problèmes sociaux-économiques récurrents qui limitent les 

possibilités de purification et de traitement des eaux. 

 

Les antibiotiques et l'eau : état des lieux et risques 

La présence d'antibiotiques dans le milieu naturels nécessite la mobilisation des scientifiques 

et ingénieurs comme cela se fait pour les autres polluants qui posent des problèmes sanitaires. 

Les antibiotiques sont des agents qui inhibent ou tuent les bactéries. Pendant des décennies, 

alors qu'une quantité importante été utilisé dans la médecine pour l'homme ou les animaux, 

leur distribution et leur impact sur l'environnement étaient peu étudiés et ce jusqu'à 

récemment. La répartition des antibiotiques dans les environnements naturels a fait l'objet 

d'études importantes suite à la découverte d'effets indésirables comme la résistance accrue aux 

antibiotiques de certaines bactéries dans l'environnement et nous avons passé en revue les 

données sur la Chine. L'utilisation massives des antibiotiques a réduit le nombre de souches 

en favorisant les souches résistantes (Levy, 2008). Ces bactéries peuvent être responsables 

d'infection chez l'homme ou l'animal que les traitements classiques ne peuvent régler 

(Regassa et al., 2008). La présence d'antibiotique, même à faible dose, peut également 

endommager les milieux aquatiques voir poser des problèmes de santé publiques. 
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Epuration de la gentamicine à l'aide d'argile et synthèse de pansements contre les  

brûlures à base de films de bionanocomposites Gt-Mt-HPMC  

 

La gentamicine (Gt), un antibiotique de la famille des aminoglycosides issue de la 

fermentation de Micromonospura purpurea, est composé d'éléments solubles dans l'eau dont 

l'aminocyclitol 2-deoxystreptamine et deux sucres amino (MacNeil et Cuerpo, 1995). La 

gentamicine est utilisée dans le traitement de nombreuses infections bactériennes, et plsu 

particulièrement celles causées par des organismes à Gram négatifs (Moulds et Jeyasingham, 

2010). Les principaux effets toxiques observés avec les antibiotiques de la famille des 

aminoglycosides sont des effets nephrotoxiques et ototoxiques. En outre, des effets 

fetotoxiques ont été rapportés lors de l'utilisation de la gentamicine (Gehring et al., 2005).  

Bien que l'utilisation de la gentamicine en médecine ait diminué, son utilisation en médecine 

vétérinaire et en agriculture est encore importante. La gentamicine peut être introduite dans 

l'environnement via les lieux de productions ou via les les eaux usées des hôpitaux et les rejets 

de fermes d'élevage. 

 

Sorption de la gentamicine sur Na
+
-montmorillonite 

Les groupes amino des anneaux de sucres de la gentamicine présentent des valeurs de pKa 

quie varient entre 5.6 et 9.5. De ce fait, la gentamicine possède une charge positive nette dans 

des conditions acides quand l'ensemble des groupes amino sont protonés ce qui offre la 

possibilité à la gentamicine de s'intercaler dans  Na+-montmorillonite au travers de 

mécanismes d'échanges de cations. Afin d'étudier l'adsorption isotherme, trois modèles 

d'équilibre isotherme ont été utilisés : le modèle de Langmuir, le modèle de Freundlich et le 

modèle de Redlich-Peterson. Les modèles de Langmuir et de Redlich-Peterson ont permis de 
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modéliser au mieux l'adsorption de la gentamicine sur la montmorillonite saturée en Na+ à 

294 K (r2=0.978). 

Les résultats issus de DRX montrent l'inclusion de la gentamicine dans les inter-couches 

d'argile avec la diminution des valeurs  βθ lors de l'augmentation du ratio gentamicine/argile 

et l'espacement d001 atteint 1.4 mm dans l'argile saturée à la gentamicine. L'augmentation de 

l'espacement d001 est dû à l'épaisseur des molécules de gentamicine. L'orientation de la 

gentamicine dans les inter-couches d'argile a également été étudié. 

 

Films de Gentamicin-montmorillonite-HPMC 

La phase solide, la montmorillonite contenant de la gentamicine, résultant de l'adsorption de 

gentamicine peut être utilisée afin de synthétiser les films de gentamicin-montmorillonite-

HPMC (Hydroxyl Propyl Methyl Cellulose) qui peuvent potentiellement être appliqués 

comme pansements suite à brûlures. Les propriétés anti-bactériennes de  Gt-Mt-HPM pour 

contrer les infections cutanées de  Staphylococcus aureus ont été étudiées suivant le protocole 

ASTM E2149 (test standard pour déterminer l'activité anti-bactérienne d'agents immobiles 

anti-bactériens sous contraintes dynamiques). L'argile et HPMC agissent alors comme une 

structure ayant les propriétés mécaniques nécessaires pour le pansement en même temps 

qu'une matrice capable de fournir un environnement humide et capable de délivrer lentement 

l'antibiotique protégeant ainsi la blessure d'une infection. 

Gt-Mt-HPMC et Gt-HPMC ont démontrés leurs propriétés anti-bactériennes avec un tube de 

contrôle d'eau peptonée. Les échantillons  HPMC et/ou montmorillonite sans gentamicine 

n'ont montré aucune efficacité anti-bactérienne. Les résultats montrent que Gt-Mt-HPMC 

conserve l'ensemble des capacités anti-bactériennes de la gentamicine sans que le support  

montmorillonite et HPMC n'en diminue ses effets. 
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1.1. Occurrence of arsenic in the environment 

Arsenic-bearing minerals including arsenic-rich pyrite, arsenopyrite, orpiment, realgar and 

As-associated metal sulfides can release large amounts of arsenic when the chemical 

environment has been changed. O2-enriched environments leads to oxidation of these 

minerals followed by As mobilization. Insoluble As-bearing minerals are rapidly oxidized by 

exposure to the atmosphere and then the released soluble As(III) is carried by runoff and 

groundwater flow into surface and ground waters.  

Major natural processes responsible for observed concentrations of arsenic in surface and 

ground water include: mineral precipitation/dissolution, adsorption/desorption, chemical 

transformation, ion exchange, and biologic activity (Welch et al., 1988; Smedley and 

Kinniburgh, 2002). Ordinary solid phases containing arsenic at around the crustal abundance 

can give rise to high dissolved arsenic (0.05 mg/L) (Nordstorm, 2002).  

Adsorption and desorption reactions between arsenic and Fe/Mn/Al oxides and hydroxides 

surfaces are particularly important controlling reactions because these oxides are widespread 

in the hydrogeologic environment and arsenate adsorbs strongly to oxides and hydroxides 

surfaces in acidic and near-neutral-pH water (Dzombak and Morel, 1990; Waychunas et al., 

1993). However, arsenate adsorption rapidly decreases in basic media (Mamindy-Pajany et al., 

2011). pH value plays an important role in the desorption of arsenic because of its effects on 

the species distribution of anions, the surface charge of the arsenic-bearing oxides and 

hydroxides, and subsequent electrostatic forces between arsenate and solids (Xu et al., 2012).  
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Anaerobic microbial respiration, utilizing either sedimentary or surface-derived organic 

carbon, is one important process contributing to the mobilization of arsenic from host 

minerals, notably hydrous iron oxides (Charlet and Polya, 2006). Many studies have given 

evidence of arsenic release under reducing environments in the presence of Fe-reducing 

bacteria. Burial of fresh organic matter, infiltration of fresh DOC and the slow diffusion of O2 

through the sediment lead to reducing conditions just below the sediment-water interface in 

lakes or in superficial groundwaters as abundantly described in SE Asia deltas (Charlet and 

Polya, 2006; Fendorf et al., 2010). This encourages the reduction of As(V) and desorption 

from Fe and Mn oxides, as well as the reductive dissolution of As-rich Fe oxyhydroxides.  

1.2. Arsenic speciation and toxicity 

Arsenic speciation is controlled by redox potential (Eh) and pH values. Arsenic can occur in 

the environment in several oxidation states (-3, 0, +3 and +5), being organic compounds or 

inorganic forms. In natural waters, arsenic is mostly present in its inorganic form as 

oxyanions of trivalent arsenite [As(III)] or pentavalent arsenate [As(V)] (Figure 1.1). Under 

oxidising conditions, arsenate occurs as anionic forms: H2AsO4
- is dominant pHs less than 

about 6.9, while HAsO4
2- becomes dominant at higher pH values. Under reducing conditions, 

the uncharged arsenite species H3AsO3
0 is dominant at pH ≤9.2 (Smedley and Kinniburgh, 

2002). An overview of arsenic species depending on the pH and Eh in the aqueous phase is 

given in the pH-Eh diagram (Fig. 1.2).  
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Figure 1.1: Molecule structures of arsenate and arsenite (Hydrogen atoms are omitted). 

 

Figure 1.2: Eh-pH diagram of arsenic species in the aqueous phase at 25°C and 1 bar total 

pressure (Smedley and Kinniburgh, 2002). 

Inorganic As species are significantly more harmful than organic As species. In short, we only 

discuss the toxicity of inorganic forms of arsenic: arsenite and arsenate. Acute arsenic 

poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhea 

(Ratnaike, 2003). Long-term drinking water exposure of arsenic may cause skin lesions 

(Tondel et al., 1999), peripheral vascular disease (Engel et al.,1994), hypertension (Chen et al., 

1995), black-foot disease (Chen, 1990), and high risk of cancers (Bates et al.,1992). High 

drinking water As concentration was found to elevate late fetal mortality and 

neonatal/postneonatal mortality (Hopenhayn-Rich et al., 2000). As exposure was also 

observed to impair cognitive development in school children and lead to children DNA 
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damage and immunodeficiency (Yanez et al., 2003; Vega et al., 2008). Some research 

findings from Chile link in utero and early life As exposure to cardiovascular, respiratory and 

lung cancer later in adult life (Smith et al., 2006; Yuan et al., 2007).  

WHO‟s recommendations for drinking-water quality go back to 1958. The International 

Standards for Drinking-Water established the maximum allowable level of arsenic in drinking 

water as 0.20 mg/L. In 1963 the standard was re-evaluated and reduced to 0.05 mg/L. The 

guideline value was provisionally reduced in 1993 from 0.05 mg/L to 0.01 mg/L. Many 

countries, including China, have kept the old guideline value of 0.05 mg/L as their water 

quality standard for several years, even up until now.  

1.3. High arsenic water distribution all around the world 

A large number of people worldwide are exposed to elevated As concentrations in ground 

water – many of them in developing countries and with no available alternative water 

resources. Aquifer systems with high levels of arsenic, elevated by natural processes or 

anthropogenic activities, have been reported in different environments from all continents. 

Some of the best-documented and most severe cases of arsenic contaminated groundwater 

have been found in aquifers in Asia (e.g. parts of Bangladesh, China, India, Nepal) and South 

America (e.g. Argentina, Mexico) (Aureli, 2006). Estimates of the rural population exposed to 

unsafe As levels by drinking untreated groundwater in India, China, Myanmar, Pakistan, 

Vietnam, Nepal, and Cambodia has grown to over 100 million (Ravenscroft et al., 2009). 

Bhattacharya et al. (2002) reported As concentrations of up to γ700 ȝg/L in groundwater in 

the Bengal Delta Plain, Bangladesh; High arsenic concentrations up to 11,000 ȝg/L were 

found in some areas of Ontario, Quebec, New Brunswick, Nova Scotia and British Columbia 

(Health Surveillance, Alberta Health and Wellness, 2000); Arsenic concentrations up to 
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1β,000 ȝg/L were measured in groundwater from an aquifer in the Fox River valley in eastern 

Wisconcin, USA (Schreiber et al., 2003); High arsenic levels in drinking water have been 

measured throughout the province of Cordoba, located in the centre of Argentina, often above 

100 ȝg/L and reaching levels of over β000 ȝg/L (Hopenhayn-Rich et al., 1998). Most of the 

contaminated aquifers are related to sediments of Quaternary age (Acharyya, 2005). Also 

known for As-enriched waters are geothermal areas, such as the Yellowstone National Park in 

the West of the United States, the Donargarh rift belt of Central India (Mukherjee, 2009), the 

Guide Basin of China (Shi et al., 2010) and Central Italy (Angelone, 2009). A comparison of 

occurrences in the Ganges–Brahmaputra, Mekong, and Red River basins shows that common 

geological characteristics include river drainage from the rapidly weathering Himalayas, 

rapidly buried organic bearing and relatively young (ca. Holocene) sediments, and very low, 

basin-wide hydraulic gradients (Charlet and Polya, 2006). Statistical models based on the 

statistical relationship of As concentrations and relevant explanatory variables such as 

geology, climate or topography have recently been developed (Amini et al., 2008; Rodriguez-

Lado et al., 2008; Winkel et al., 2008). Amini et al. (2008) used a large database of measured 

arsenic concentration in groundwaters from around the world as well as digital maps of 

physical characteristics such as soil, geology, climate, and elevation to model probability 

maps of global arsenic contamination. Maps of modeled global probability of geogenic 

arsenic contamination in groundwater for reducing and high-pH/oxidizing conditions were 

delineated (Fig. 1.3).  
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Figure 1.3: Modeled global probability of geogenic arsenic contamination of reducing and for 

high-pH/oxidizing aquifer conditions (Amini et al., 2008). 

 

1.4. Arsenic decontamination: techniques and challenges 

With limited alternative drinking water resources, millions of people are affected by 

groundwater with elevated arsenic concentration. Arsenic was released to subsurface water 

bodies due to natural processes, such as arsenic mobilization from minerals and sediments. It  

is not possible to eliminate these sources. Therefore groundwater containing high level of 

arsenic has to be treated before used as drinking water. Table 1.1 summarized advantages and 

disadvantages of common techniques for arsenic removal from water.  
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Table 1.1: Arsenic removal techonologies 

Techonology Advantages Disadvantages 

   

Oxidation/ 
precipitation 

Air 
oxidation 

Relatively simple, Low-cost, in situ As removal, Slow process, 

Chemical 
oxidation Rapid process, kill microbes at the same time pH control is needed 

Coagulation 
Relatively low–cost, 
Common chemicals are available, wider range of 
pH 

Toxic sludge, 
Low removal of As, 
Pre-oxidation may be required, 
Sedimentation, filtration needed, pH readjustment 
needed, 

Sorption 
Wide range of sorbents can be chosen, easy set 
up 

Regeneration, replacement, toxic solid waste 

Ion-exchange High capacity, pH independent High cost, high-tech operation and maintenance. 

Membrane filtration 
Green, less chemical consumption, several 
contaminants can be removed at once High cost, high energy consumption 

 

Oxidation 

The purpose of oxidation is to convert soluble As(III) to As(V), which is followed by 

precipitation or sorption of As(V). As(V) is more easily adsorbed onto solid surface than 

neutral As (III) over a wide range of pH condition, thus oxidation of As(III) to As(V) is 

considered to be helpful for further treatment. Oxidation is essential for anoxic groundwater, 

since As(III) is the predominant form at near neutral pH (Masscheleyn et al., 1991).  

Coagulation and Precipitation 

By adding a coagulant to the contaminated water, flocs form and arsenic co-precipates with or 

adsorbs on the surface of the coagulant, followed by settling of the aggregate or  removal by 

filtration. Generally the best removal is achieved at the pH at which the precipitated species is 
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least soluble. The nature and size of the flocs are important as they adsorb the soluble As from 

water and finally transform it into an insoluble product. Among the various chemical 

coagulants used for As removal, Fe and Al based coagulants are mostly used (McNeill and 

Edwards, 1995). 

Adsorption 

Adsorption takes place on the surface of solid adsorbents. High abrasion resistance, high 

thermal stability and high exposed surface area are important properties of adsorbents for 

being practical and efficient in the removal of contaminants. Several adsorbents have been 

used to remove As from aqueous solution. Among all the adsorbents, iron oxides, 

oxyhydroxides and hydroxides, including amorphous hydrous ferric oxide, goethite and 

hematite, are the most promising adsorbents for removing both As(III) and As(V) from water. 

Most iron oxides are fine powders that are difficult to separate from the solution after 

treatment. Therefore, the EPA has proposed iron oxide-coated sand filtration as an emerging 

technology for arsenic removal at small water facilities (EPA, 2000; Thirunavukkarasu et al., 

2003). 

Ion exchange  

By electrostatic attachment, many contaminants can effectively be removed from aqueous and 

solutions. Solid polymeric or mineralic ion exchangers, either cation exchangers or anion 

exchangers, are chosen depending on the contaminant and the chemistry of water. The resins 

need to be regenerated by rinsing with a solution of high resin-ion concentration after all the 

ions on the surface of the resin are exchanged with the contaminant ions. Arsenate is 
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predominantly removed by ion exchange techniques, whereas these are not effective  for the 

uncharged arsenite species. 

Membrane processes 

Membranes are a selective barrier, allowing some constituents to pass while blocking the 

passage of others. The movement of constituents across a membrane requires a driving force 

(i.e. a potential difference between the two sides of the membrane) including pressure, 

concentration, electrical potential, or temperature. Pressure-driven membranes are frequently 

used for contaminant removal. Based on the pore size of the membrane, pressure-driven 

membranes are often classified into four categories: microfiltration (MF), ultrafiltration (UF), 

nanofiltration (NF), and reverse osmosis (RO). High-pressure processes (i.e., NF and RO) 

have a relatively small pore size compared to low-pressure processes (i.e., MF and UF) (EPA, 

2000). Although high pressure processes can remove a broader range of contaminants than 

low pressure processes, the high energy consumption requirement of this technique constrains 

its use. 

1.5. Objectives - Arsenic decontamination technique and material for house-hold set-up  

In rural areas of developing nations where local population face economical – traditional – 

political constrains, a low-cost and practical set-up for removing arsenic from drinking water 

is necessary. Sorption and coagulation/precipitation are more realistic techniques than high 

cost and high-tech operation technique (i.e. ion exchanges and membrane processes). To 

simplify the As removal processes, a promising adsorbent which can efficiently adsorb both 

As(III) and As(V) is more practical than coagulation/precipitation processes, in which case 

pre-oxidation of drinking water for converting As(III) to As(V) is needed. Nanomaterials 
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which have high surface-to-volume ratio give hope for higher arsenic removal capacities than 

with convention materials (Theron et al., 2008). However, the high reactivity and small size 

of nanoparticles also come with higher potential risks due to a better uptake and interaction 

with biota (Auffan et al., 2009). Many metal nanoparticles have been found to cause 

chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations (Xie et 

al., 2011). The difficulty nanoparticles bring to filtration processes due to their nano-size 

constrains their application in water treatment as well. The goals of this work are to (i) design 

a novel nano-material which can efficiently remove inorganic As species As(III) and As(V), 

(ii) minimize the difficulty and cost in filtration process by the new properties of the material, 

(iii) lower the health risks of the material, and (iv) examine the mechanism of arsenic 

adsorption on to the material. 
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2.1. Introduction 

WHO‟s norms for drinking-water quality go back to 1958. The International Standards for 

Drinking-Water established allowable level arsenic in drinking water as 0.20 mg/L. In 1963 

the standard was re-evaluated and reduced to 0.05 mg/L. The guideline value was 

provisionally reduced in 1993 from 0.05 mg/L to 0.01 mg/L. Many countries including China 

had kept the old guideline value 0.05 mg/L as water quality standard for several years. In 

2006, Ministry of Health PRC gave a revision of the Standards of drinking water quality with 

allowable arsenic concentration as 0.01 mg/L instead of 0.05 mg/L, as used in the past 

decades (Ministry of Health of China and Standardization Administration of China, 2006). 

Chronic endemic arsenicosis was found in Taiwan in 1968 and reported in Xinjiang Province 

in Mainland China in the 1970s. In the 1980s, more areas were reported to be affected by 

arsenicosis via drinking water. Up to year 2012, endemic arsenicosis distributed over 45 

counties in 9 provinces, while 19 provinces had the problem that arsenic concentration in 

drinking water exceeded water standard level (0.05 mg/L). Even though China government 

has been working on building up water supply plants to ensure safe drinking water, the 

population at risk is still large: about 1.85 million according to the recent official data from 

Ministry of Health PRC et al. (2012) is drinking water with As level above 0.05 mg/L. 

Population exposed to drinking water with As level 0.01 mg/L - 0.05 mg/L was not included 

in that survey. 

One goal of the present study is to draw a picture on arsenic sources of China and to know 

how the respective importance of each type of source is for elevating As concentration in 

drinking water. Secondly, we discuss some major documented hotspots that were well-known 

as As-affected areas. An additional goal is to summarize the features of environment where 
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different types of natural high-As waters and the reasons why acute poisoning incidents 

happen. 

2.2. Source of arsenic to surface and groundwater 

2.2.1. Minerals 

Arsenic is a metalloid which exists in earth crust and ranks 14th in element abundance order. 

The background concentration varies from 1.8 mg/kg to 2.1 mg/kg according to different 

reviews. Arsenic occurs as a major constituent in more than 200 minerals, including elemental 

As, arsenides, sulphides, oxides, arsenates and arsenites (Smedley and Kinniburgh, 2002). 

However, most of those arsenic containing minerals are rare in nature and generally found as 

sulfides associated with Au, Cu, Pb, Zn, Sn, Ni, and Co in ore zones. The most dominant 

minerals exist in environment are arsenopyrite (FeAsS), realgar (AsS) and orpiment (As2S3). 

China has large amount of arsenic reserves: The known arsenic reserves were reported to be 

3977 kt, and 2796 kt preserved reserves, of which 87.1% existed in paragenetic or associated 

ores up to the end of 2003 (Xiao et al., 2008). In 2011, China was the top producer of white 

arsenic with almost 50% world share, followed by Chile, Peru, and Morocco. (U.S. 

Geological Survey, 2012). Xiao et al., (2008) reported the distribution of arsenic deposits in 

China (Figure 2.1). Documented arsenic ore reserves, as demonstrated in Fig. 2.1, are mostly 

located in southern and western regions of China. The sum of arsenic reserves locating in 

Guangxi, Yunnan and Hunan Province represents more than 60 percent of the total arsenic 

reserves explored in China. As reported, up to 87 percent of reserves are believed to be 

present in sulphide ores which are paragenetic or associated with transition metals ores. 
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Figure 2.1: Distribution of arsenic deposits in China (See abbreviations in Table 2.2) (from 

Xiao et al., 2008, revised). 

 

2.2.2. Rocks, sediments, soils and air 

2.2.2.1. Rocks 

The arsenic abundance of China‟s continental lithosphere (CCL) has been reported to average 

1.2 mg/kg (Li and Ni, 1997). Compositions of rocks in eastern China were with higher arsenic 

levels, particularly in clastic rock (5.0 mg/kg), pelite (7.8 mg/kg) and carbonatite (3.2 mg/kg) 

(Yan et al., 1997). 

Concentrations in coals are variable depending on the area. Wang et al. (2005) sampled and 

analyzed 297 coal samples and found that 16 percent of the samples have arsenic 

concentrations higher than 8 mg/kg, while concentration ranged from 0.24 to 70.83 mg/kg. 
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Other research reported much higher arsenic concentrations up to 32,000 mg/kg arsenic in 

coal sample (Ren et al.,1999). Guizhou province is well-known for its large amount of coal 

reserves, and these contain high arsenic concentration. In southwest of Guizhou, Emeishan 

basaltic rocks, which is believed to have close relationship with the forming of high-arsenic 

coal, contain 11 - 113 mg/kg of arsenic (Xie and Nie, 2007), although the basaltic rocks in 

earth crust are considered having low average arsenic concentration, around 2 mg/kg 

according to research of Turekian and Wedepohl (1961). 

2.2.2.1. River and aquifer sediments. 

Average As concentrations for sediments of water system in China is 9.1 mg/kg (Luo et al., 

2010). This value is notably higher than world average river sediments which is 5 mg/kg 

(Martin and Whitfield, 1983). Changjiang River (Yangzte River) is the 3rd longest river in the 

world. The Changjiang River Basin drains an area of 1.8 million square km, 18.8% of China's 

land area (CWRC, 2005-2013). Zhang et al., (1995) investigated 260 sediment samples from 

Changjiang River Basin and the average As concentration of raw sediments appears to be 7.6 

mg/kg, while the fine grained parts (< 6γȝm) tends to be higher as 9.0 mg/kg. Huai River, 

another main river of China, has been reported to have an average As concentration in 

sediments of 12.6 mg/kg (9 - 21.8 mg/kg) (Luo et al., 2010). Studies carried out on the 

Yellow River have reported high arsenic abundance and notable cases of arsenic poisoning in 

various areas along the river. Fan et al. (2008) reported that As sediments concentrations in 

Shanyin (in Datong Basin area), Shanxi Province ranged from 3.09 to 26.25 mg/kg with the 

highest concentration found at depth of 28 - 34 m. Also within the Datong Basin, along 

Huangshui River and Sanggan River, Xie et al. (2008) collected aquifer sediment samples 

retrieved from 0 m to 50 m depths below ground level, and arsenic contents ranged from 4.9 

to 118.2 mg/kg with mean value of 18.6 mg/kg. Hetao Plain located in the Great Bend of 
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Yellow River in Inner Mongolia is one of the representative arseniasis-affected areas in China. 

In Hangjinhouqi County, northwest of Hetao Basin, sediments contained As concentrations 

ranging from 6.8 to 58.5 mg/kg, reported by Deng et al. (2009). The As concentrations of 

sediments from the Huhhot Basin which locates close to Hetao Plain lie in the range 3 - 29 

mg/kg (Smedley et al., 2003). 

2.2.2.2. Soils and atmospheric input 

 

Figure 2.2: Content distribution of arsenic in topsoil of Mainland China (from Weng et al. 

2000, revised). 
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Baseline concentrations of As in soils are generally of the order of 5 - 10 mg/kg (Smedley and 

Kinniburgh, 2002). An average geochemical background level in world soils was set as 7.2 

mg/kg by Boyle and Jonasson (1973). By analyzing 4095 soil samples from all over mainland 

China, Wei et al. (1991) investigated this geochemical background level for 61 elements. 

Table 2.1 shows As results in China compared with the As background levels for some other 

countries. Soil content for 95% of total samples was in the range of 2.5 - 33.5 mg/kg. Among 

different types of soil of China, regosol and mountain soils have relatively high As 

concentrations (around 16 mg/kg) and unsaturated siallitic soils have the lowest arsenic 

content 4 mg/kg. Based on the same dataset, Weng et al. (2000) studied the content 

distribution of As in Chinese topsoil (Figure 2.2). Arsenic content in soils tended to associate 

with calcium content in the north and with iron content in the south of China. While As 

correlation with Fe is well recognized due to the high affinity of secondary iron 

oxyhydroxides for arsenic oxyanion (Charlet and Poly, 2006; Charlet et al., 2011), the 

correlation with calcium is less frequent and could be linked to the substitution of As(III) in 

calcite (Roman-Ross et al., 2006; Bardelli et al., 2011). Compare Fig. 2.2 with Fig. 2.1, we 

found the content of distribution to be positively correlated to ore deposits. 

The deposition of atmosphereic arsenic may increase the arsenic content in aqueous system 

and soils slightly. Volcanic activities and eolian erosion of arsenic-containing minerals are 

natural processes which can release arsenic into the atmosphere. However, human activities 

are believed to play a more important role as source of arsenic air pollution. Fossil-fuel 

combustion for energy generation, mining and agricultural operations, such as biomass waste 

combustion, cause national wide problem both in urban and countryside areas. Combustion of 

coal is the principle source of China‟s outdoor air pollution (Sheldon et al., 199β). China 
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relies on coal for 70% to 75% of its energy needs, consuming 1.9 billion tons of coal each 

year (Millman et al., 2008). Tian and Qu (2009) estimated atmospheric arsenic emission from 

coal combustion reached 1500 tons by China for year 2005. Atmospheric particles (PM2.5 

and PM10) were analyzed for As concentration in some cities. As concentration in the air was 

43.36 ng/m3 (11.98 - 82.55 ng/m3) in Taiyuan, 24.4 ng/m3 in Guangzhou and 0.32 ± 0.17 

mg/m3 (0.07 - 0.79 mg/m3) in Beijing (Xie et al., 2006; Huang et al., 2007; Yang et al., 2012).  

 

Table 2.1: Comparison between background concentrations of arsenic in soils in Mainland 

China and some other countries (Wei et al., 1991). 

Country Range (mg/kg) AMa GMb 

Mainland China 0.01-626 11.2 9.2 

USA <0.1-97 7.2 5.2 

Japan - 9.02 - 

UK - 11.3 - 

 

a: AM-Arithmetic mean 

b: GM-geometric mean 
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2.3. Arsenic mobilization processes 

2.3.1. Geogenic factors 

Major processes responsible for observed concentrations of arsenic in surface and ground 

water include: mineral precipitation/dissolution, adsorption/desorption, chemical 

transformation, ion exchange, and biologic activity (Welch et al., 1988; Smedley and 

Kinniburgh, 2002). Ordinary solid phases containing arsenic around crustal abundance can 

give rise to high dissolved arsenic (0.05 mg/L) (Nordstorm, 2002). 

Evaporation 

In arid or semi-arid areas, use of groundwater is widespread due to lack of surface water. 

Extensive use of groundwater combined with high evaporation rate and low recharge rate 

leads to concentration of arsenic in groundwater, especially in low-lying places and closed 

basin where arsenic can hardly be flushed away by water flow. Studies on arsenic uptake by 

calcite and gypsum demonstrated that arsenic can be kept by accumulated salt contents 

(calcite and gypsum) in soil in saline area (Roman-Ross et al., 2006; Fernandez-Martinez et 

al., 2007). Rainfall or irrigation can release arsenic from those salts and then carry arsenic 

down into the subsoil and groundwater. 

High pH 

Adsorption and desorption reactions between arsenic and Fe, Mn and Al oxides and oxides 

and hydroxides surfaces are particularly important controlling reactions because those oxides 

are widespread in the hydrogeologic environment and arsenate adsorbs strongly to oxides and 

hydroxides surfaces in acidic and near-neutral-pH water (Dzombak and Morel, 1990; 

Waychunas et al., 1993). However, arsenate adsorption rapidly decreases in basic medium 
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(Mamindy-Pajany et al., 2011). pH value plays an important role in the desorption of arsenic, 

because of its effects on the species distribution of anions, surface charge of the arsenic-

bearing oxides and hydroxides, and subsequent electrostatic forces between arsenate and 

solids (Xu et al., 2012). The study of Bhattacharya et al. (2006) suggested the volcanic ash as 

the probable source of groundwater As. Locally, elevated pH values linked to carbonate 

dissolution, cation exchange, and dissolution of silicates promote release of adsorbed As. In 

high pH zones As remains dissolved in groundwater. Some studies also reported arsenic 

release from different iron-bearing minerals, soils and sediments by desorption process as pH 

values become alkaline (Appelo et al., 2002; Smedley and Kinniburgh, 2002; Breit and Guo, 

2012).  

Geothermal 

The release of arsenic from geothermal systems into surface and ground waters have been 

reported from several parts of the world. Arsenic concentrations in geothermal well fluids 

generally range from <0.1 mg/kg to 10 mg/kg. However, As concentrations of >20 mg/kg are 

not uncommon, at the other extreme. Most reservoir fluids are undersaturated with respect to 

arsenopyrite and other arsenic minerals (Ballantyne and Moore, 1988) and hence As leaching, 

rather than As precipitation, is predicted to occur in the reservoir. Hot springs, geysers and 

steam features with high As contents drain unimpeded into the nearest catchment system and 

contaminate shallow aquifer systems by natural upward movement of geothermal fluid and 

some other anthropogenic activities (Webster and Nordstrom, 2003; Aksoy et al., 2009). 

Dissolution of As oxide and orpiment, relevant to pH value, redox condition and fluid 

temperature, plays an important role in regulating arsenic mobility. Secondary minerals that 

form after the dissolution of Fe-As sulphides such as Fe-hydroxides exert a greater influence 
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on the mobility of arsenic in the geothermal environment (Pascua et al., 2006). Study of 

Winkel et al. (2013) reveal that where Fe-(hydr)oxides are not sufficiently abundant to act as 

major scavengers for arsenic, arsenic can be closely associated with calcite matrix in a CO 2-

enriched environment. 

Sulfide Oxidation 

Arsenic-bearing minerals including arsenic-rich pyrite, arsenopyrite, orpiment, realgar and 

As-associated metal sulfides can release great amount of arsenic when the chemical 

environment has been changed. O2-enriched environment leads to oxidation of these minerals 

followed by As mobilization. Insoluble As-bearing minerals are rapidly oxidized by exposure 

to atmosphere and then released soluble As(III) is carried by runoff and groundwater flow 

into surface and ground waters.  

Reductive dissolution 

Anaerobic microbial respiration, utilizing either sedimentary or suface-derived organic carbon, 

is one important process contributing to the mobilization of arsenic from host minerals, 

notably hydrous iron oxides (Charlet and Polya, 2006). Many studies have given evidences of 

arsenic release under reducing environments in presence of Fe-reducing bacteria. Burial of 

fresh organic matter, infiltration of fresh DOC and the slow diffusion of O2 through the 

sediment lead to reducing conditions just below the sediment-water interface in lakes or in 

superficial groundwaters as abundantly described in SE Asia delta (Charlet and Polya, 2006; 

Fendorf et al., 2010). This encourages the reduction of As(V) and desorption from Fe and Mn 

oxides, as well as the reductive dissolution of As-rich Fe oxyhydroxides. 
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2.3.2. Anthropogenic factors 

As a by-product of some human activities, arsenic can be added to natural waters by chemical 

industry, mining operations, and agriculture. Arsenical pesticide, industrial sewage/sludge and 

mining tailing have been reported as sources of arsenic and had contaminated groundwater 

and surface water via natural processes (e.g. oxidation of mine waste) or direct human 

manipulations, such as rainwater infiltration, irrigation, runoffs and sewage discharge. In 

addition to the chemical conditions of the As sources, the composition and states of the 

primary materials, treatment methods, storage design are influential as well (Breit and Guo, 

2012).  

2.4. High-As content in China waters - geogenic cases  

2.4.1. Overview 

One of the most pervasive problem afflicting people in rural area in China is inadequate 

access to clean water. By the end of 2010, the rural population with safe drinking water was 

670 million, and only 54.7% of rural population had tap water (Ministry of Water Resources, 

PRC, 2011). Before 1962, residents mainly relied on shallow well water and surface water 

(Sun, 2004). Deeper wells were drilled after shallow well water was discovered to induce 

fluorosis and after surface water was shown to be polluted. Since chronic endemic arsenicosis 

was found in Taiwan in 1968 and reported in Xinjiang Province in Mainland China in the 

1970s, more areas have been identified to be affected by arsenicosis via drinking water. Up to 

year 2012, endemic arsenicosis distributed over 45 counties in 9 provinces, while 19 

provinces had the problem that arsenic concentration in drinking water exceeded water 

standard level (0.05 mg/L). In total, the recent official data from Ministry of Health PRC et al. 
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(2012) showed the population at risk reached to 1.85 million, less than 2.34 million which 

was reported by Xia and Liu (2004). Moreover, a systemic research was carried out on 

endemic arsenicosis affected and suspicious areas by China government during 2004 and 

2010. There were 12,835 villages with a total population of around 1.25 billion under 

investigation. The result showed 844 villages with 697,000 people were exposed to high-

arsenic drinking water (>0.05 mg/L) (Sun, 2011). Sun also gave the distribution of villages 

with high-arsenic drinking water (Table 2.2). Although in 2006, Ministry of Health PRC gave 

a revision of Standards of drinking water quality with permitted arsenic concentration as 0.01 

mg/L instead of 0.05 mg/L as used in the past decades, it was considered as target rather than 

requirement (Ministry of Health of China and Standardization Administration of China, 2006). 

However, the new standards started to be subject to enforcement in July of 2012, which 

means more population would be taken into account if they have been exposed to drinking 

water with As concentration of 0.01 - 0.05 mg/L. Summary of documented cases of geogenic 

high-As groundwaters of China is shown in Table 2.3. Figure 2.3 shows documented areas 

with groundwaters containing high-As content above 0.05 mg/L. As shown in the Fig. 2.3, 

high-As groundwaters mainly appear in Zone I- i.e. in the north of China under arid or semi-

arid climate. 
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Figure 2.3: Water resource distribution in China and comparison of map of documented high-

As groundwaters and modeled map of probability of geogenic high-As groundwater (See 

abbreviations in Table 2.2.) (from Shen et al., 2005; Yu et al., 2007; Amini et al. 2008 ; 

Courrier International, 2009; Zhang et al., 2010). 
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Table 2.2: The distribution of villages with high-arsenic drinking water in rural areas of 

China (from Sun, 2011, revised). 

As content 0.05-0.1 mg/L 0.1-0.15 mg/L 0.15-0.5 mg/L >0.5 mg/L 

Provinces 

(abbreviation) 

Village 

number 
Population 

Village 

number 
Population 

Village 

number 
Population 

Village 

number 
Population 

Xinjiang (XJ) 184 164,040 33 36,200 16 15,462 2 2114 

Inner Mongolia 

(IM) 
137 11,544 29 3165 36 2748 4 575 

Bintuan, 

Xinjiang 
61 62,723 7 4667 6 4741 2 12,125 

Shanxi (SX) 48 73,994 22 22,139 4 8334 2 1675 

Jilin (JL) 46 16,153 8 2604 17 5772 - - 

Shandong (SD) 26 30,642 5 7489 1 916 - - 

Anhui (AH) 24 32,390 9 16,952 18 32,686 4 7229 

Henan (HA) 20 27,612 2 1893 4 5994 - - 

Shaanxi (SN) 10 12,826 1 1100 - - 1 987 

Yunnan (YN) 8 10,048 5 13,488 1 440 1 6201 

Qinghai (QH) 6 4166 2 538 2 3470 6 1989 

Gansu (GS) 6 4756 4 4501 1 146 2 3170 

Hubei (HB) 4 5940 2 3202 1 983 1 1342 

Jiangsu (JS) 1 1500 - - 1 300 - - 

Heilongjiang 

(HL) 
1 1713 - - - - - - 

Sichuan (SC) - - - - - - - - 

Total 582 46,047 129 117,938 108 81,992 25 37,407 
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Table 2.3: Summary of documented cases of geogenic high-As groundwaters of China.  

Province/Region Concentration 

ranges (ȝg/L) 

Aquifer type Groundwater conditions reference 

Inner Mongolia 

(Including Hetao 

Plain and Hubao 

Plain) 

Up to 1740 Holocen alluvial and 

lacustrine sediments 

Strongly reducing conditions, neutral 

pH, high alkalinity. 

Deng et al., 

2008; 

Deng, 2009 

Xinjiang (Tianshan 

Plain) 

40-750 Holocene alluvial plain Reducing, deep wells (up to 660m) are 

artesian 

Wang and 

Huang, 1994 

Shanxi (Datong 

Basin) 

105-1932 Quaternary sedimentary 

basin 

Reducing, high pH (8.09), high 

concentration of  phosphate and organic 

matters 

Guo et al., 

2003; 

Guo and Wang, 

2005 

Jilin and 

Heilongjiang 

(Songnen Plain) 

Up to 152.4 Quaternary sedimentary 

basin 

Reducing, high pH(8.0-9.3), high 

concentration of organic matters 

Zhang et al., 

2010 

Ningxia 

(Yinchuang Plain) 

<10-177 Holocene alluvial and 

lacustrine sediments 

Reducing and oxidizing , highest As 

level exists in reducing environment, 

pH (7.18-8.58) 

Han et al., 2010 

Kuitun, Xinjiang Up to 880 Quaternary alluvial and 

lacustrine sediments 

Reducing and oxidizing. Some 

tubewells water contain mainly As(V). 

Wang et al., 

2004; 

Luo et al., 2007 

Qinghai (Guide 

Basin) 

<112-318 Artesian aquifer, 

metamorphic rocks and 

volcanic 

Geothermal water (18.5-34.6 °C), high 

pH (>8). 

Shi et al., 2010 
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While high-arsenic content in drinking water is widespread problem, it occurs only under 

special natural circumstances relating to geochemical environment and hydrological features. 

At least, two conditions are necessary: i) Abundant source of arsenic and ii) Arsenic 

transportation from the source to water and accumulation. Not all the areas which locate near 

the arsenic-contained minerals or rocks have arsenic contaminated problem. It is quite usual 

that one village is discovered to be with high-As content in water from wells at the same time 

the neighboring village has extreme safe water. Below, we will discuss some examples which 

exist in different areas of China and the main characteristics of them. 

2.4.2. Different types of geogenic high-As waters 

2.4.2.1. Oasis-like reducing/oxidizing water 

Xinjiang Province is a very arid region and it is the place where arsenicosis was first reported 

in Mainland China. Kuitun, one of the arsenicosis affected cities, has annual rainfall of 160 - 

185 mm while annual evaporation of 1800 mm (Wang et al., 1985). The affected areas in 

Xinjiang involve Dzungaria Basin on the north side of Tianshan Mountains in the west to 

Mamas River in the east, a stretch of ca. 250 km (Wang and Huang, 1994). According to a 

recent report (Sun, 2011) and to the map given by Shen et al. (2005), the south side of 

Southern Tianshan Mountains and the south side of Altai Mountains were areas exposed to 

high-As drinking water. Wang (1984) found As concentrations up to 1.2 mg/L in 

groundwaters from this province. Most of arsenicosis areas in Xinjiang are low-lying lands 

with relatively low altitude. Although some researches believed in that the high-As 

groundwater was under reducing environment in Xinjiang, one research did analysis water 

samples which had As level above 0.6 mg/L and found only As(V) in these ground waters 

(Wang et al., 2004). 
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2.4.2.2. Geothermal waters. 

Hot springs with elevated As concentration have been reported in several parts of China, 

including geothermal zones of Guide County of Qinghai Province, Rehai and Ruidian of 

Yunnan Province, Tibet and Taiwan. 

Guide County of Qinghai is one of the areas which are suffering serious endemic diseases. 

Both fluosis and arsenicosis exist in Guide County, affecting around 590,000 population. 

Geothermal water (18.5 - 34.6 °C) contains 0.32 - 4.57 mg/L fluoride and 0.112 - 0.318 mg/L 

arsenic. It‟s considered that the sources of arsenic are metamorphic as well as volcanic rocks 

in the north part of Guide Basin. The concentrations of arsenic were found to be positive 

associated with water depth and temperature of thermal water. The distributions of high-As 

and high-F groundwater had the same pattern as the abnormal geothermal regions (Shi et al., 

2010). 

Several water samples from hot springs in Rehe and Ruihai region of Yunnan were 

investigated. Almost all the hot springs water had pH value above 7.9 except one spring 

which had a pH of 3.5. The alkaline thermal waters contain arsenic ranging from 0.083 mg/L 

to 687 mg/L while the single acidic spring water had only 0.0436 mg/L of arsenic. Only 

inorganic arsenic had been found in those samples. The environment of those hot springs 

could be oxidizing and reducing as well. Four of eleven springs had As(V) as the dominant 

specie and other samples had considerable concentration of As(III) with the highest ratio up to 

91% for As(III)/Total As (Liu et al., 2009). 

2.4.2.3. Natural mineral waters 

The arsenic contamination of mineral water in Hexigten Banner was first discovered in 1979, 

when more than 20 student campers who had done their intern exploration in the area ended 
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up getting sick because of toxic spring water they had drunk in mountain area. After they 

were diagnosed as acute arsenic poisoning cases, local disease control and prevention centers 

carried out sampling and analysis in surrounding areas. Arsenic concentrations up to 2.43 

mg/L were found in mountain spring water and arsenic content in groundwater ranged from 

19.8 to 8β.β ȝg/L. Most of arsenicosis-endemic villages were located within this mountain 

area in valleys. Arsenic was derived from large outcrops of FeAsS, Zn and Pb ores distributed 

throughout the mountains where large mine tailings were frequently found (Ministry of 

Health of Inner Mongolia, 2009; Zhang et al., 2010).   

2.4.2.4. Reducing environments 

Irrigated Hetao Plain and Hubao Plain in Inner Mongolia 

The Hetao Plain with an area of 13,000 km2 is located in the western region of Inner Mongolia, 

bounded by the Yin Mountain in the north, by the Yellow River in the south, by Ulan Buh 

(Wulanbuhe) desert in the west, and by Ulansuhai Nur Lake (Wuliangsuhai) in the east. In the 

late Jurassic, a fault basin located in the northwest of the Hetao plain was formed. Lacustrine 

sediments with highly reducing conditions were formed in the closed basin. This region has 

groundwaters with high dissolved concentrations of arsenic (Yang et al., 2008). 

Concentrations up to 1.74 mg/L have been found in the groundwater in Hangjinhouqi, a 

county locating in the west part of Hetao Plain (Deng, 2008). Deng et al. (2009) reported 

results on arsenic concentrations and speciation in water samples collected in Hangjinhouqi, 

with an arsenic concentration ranging from 0.076 mg/L to 1.09 mg/L and speciation 

dominated by As(III): the As(III) to the total soluble As ratio ranging from 84% to 99%. 

Hubao Plain lays in the east side of Hetao Plain and has similar geological structure. 74 

groundwater samples were collected from chronic endemic arsenic poisoning areas around 
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Hubao Plain in 1998 and 1999 respectively for water quality analysis. The results showed that 

high arsenic samples (>0.05 mg/L, As(III)/Total As = 82%) had low average levels of 

dissolved oxygen (0.0 mg/L) and low Eh value (39 mV) (Zhang et al., 2002). Lin and Tang 

(1999) also reported As-rich groundwater samples (As content: 0.42 mg/L), with 100% As(III) 

to total As ratio. 

Datong Basin-Shanxi 

Arsenicosis was revealed in early 1990s in Shanxi Province after local residents started to use 

water from deep wells (20 - 50m). The geochemical features of Datong Basin are close to 

those found in Hetao Plain. The analysis of 66 groundwater samples collected from Shanyin 

area of Shanxi Province showed that 23 of them had high-As content (0.105 - 1.932 mg/L) 

and they have relative high As(III) to total As ratio ranging from 50% to 80.4% (Guo et al., 

2003). Xie et al. (2011) identified the sources of arsenic in the shallow aquifers of Datong 

Basin through a thorough mineralogical, geochemical and zircon U–Pb dating study. Instead 

of pyrite which had arsenic content <1 mg/kg, Fe oxides (with up to 2000 mg/kg of arsenic) 

were shown to be the major mineral phases of arsenic enrichment in Datong bedrocks. The  

sedimentary rocks including coals were the most probable sources of arsenic in aquifer 

sediments according to zircon ages and geochemical data. The same group (Xie et al., 2008) 

reported that the aqueous arsenic levels were strongly depth-dependent in the Datong Basin 

and that the high arsenic concentrations were found at depths between 15 m and 60 m, with a 

maximum concentration equal to 1.82 mg/L. The hydrochemical characteristics of high 

arsenic groundwater from the study area indicated that the mobilization of arsenic was related 

to reductive dissolution of Fe oxides/oxyhydroxides and/or desorption from the Fe 

oxides/oxyhydroxides at high pH (above 8.0). 
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2.4.3. Prediction of geogenic potential As-affected groundwater 

Statistical models based on the statistical relationship between As concentrations and relevant 

explanatory variables such as geology, climate, topography or soil organic matter content 

have recently been developed (Amini et al., 2008; Rodríguez-Lado et al., 2008; Winkel et al., 

2008). Some researchers started to use logistic regression to assess the probability that As 

concentrations exceed a pre-defined threshold (Lee et al., 2009; Twarakavi and Kaluarachchi, 

2006; Winkel et al., 2011). Amini et al. (2008) used a large databank of groundwater arsenic 

concentration from around the world as well as digital maps of physical characteristics such 

as soil, geology, climate, and elevation to model probability maps of global arsenic 

contamination. The relative significance of the variables in the arsenic model showed: The 

occurrence of arsenic under reducing aqueous conditions was most closely correlated to 

climatic, geological, and drainage parameters while under high-pH/oxidizing aqueous 

conditions it was most closely correlated to soil parameters (clay and silt), and drainage 

condition. Maps of modeled global probability of geogenic arsenic contamination in 

groundwater for reducing and high-pH/oxidizing conditions were delineated respectively. 

Nearly all the areas with high probability of arsenic occurrence in China groundwater were 

found in oxidizing conditions. The China part of their maps is compared with published and 

documented As-affected area in Figure 2.3. Modeled map agreed well with the already 

established high As contaminated areas. However, documented high As regions such as Hetao 

Plain and Datong Basin were actually found to be under reducing conditions rather than 

predicted oxidizing conditions. Despite the moderate accuracy on the groundwater types, the 

map could still be used as a reference to investigate unknown areas, in order to prevent mass 

intoxication via groundwater with elevated As concentration. 
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Targeting the Shanxi Province, Zhang et al. (2012) applied stepwise logistic regression to 

analyze the statistical relationships of a dataset of As concentrations in groundwaters with 

some environmental explanatory parameters, where most of As investigations in this province 

focused on the Datong and Taiyuan Basins. They identified some environmental parameters 

are closely related to the distribution of high As concentrations, namely i) Holocene 

sediments; ii) Topographic Wetness Index; iii) hydrological characteristics; iv) Gravity and (v) 

Remote sensing information. 

2.5. High-As content in China waters - anthropogenic cases  

Table 2.4 gives a list of incidents of drinking waters polluted by industry in China in the last 

decade and three case studies were discussed below. 

Table 2.4: Cases of drinking water source polluted by human activities in China. 

Province/Region Polluted water 

type 

Time Contamination 

source 

As level in 

polluted water 

(mg/L) 

Notes Reference 

Dushan, Guizhou Duliu River 2007 Sulfuric acid 

plant 

Up to 14.2  65 poisoned Chen et al., 2010 

Chenxi, Hunan Ground Water 2008 Sulfuric acid 

plant 

Up to 19.5  17 poisoned Chen et al., 2010 

Hechi, Guangxi Ground Water 2008 Smelter  15 poisoned Chen et al., 2010 

Yunan Yangzonghai 

Lake, 

freshwater 

lake 

2008 Chemical 

plants 

> 0.1 26,000 

threatened 

Liu, 2009; EPA, 

Yunnan, 2008-2010;  

Wang et al., 2010 

Henan Dasha River, 2008 Sulfuric acid Up to 2.56 Plant Peoples Court of 
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Minsheng 

River 

plant discharge with 

As level up to 

445mg/L  

Minquan County, 

2010  

Xichang, Sichuan Well water 2006 Copper 

Smelter 

- 17 poisoned Chen et al., 2010 

Yingde, 

Guangdong 

Water channel 2005 Mining 

industry 

- 34 poisoned Chen et al., 2010 

Jiangsu and 

Shangdong 

Picang flood-

diversion 

channel 

2009 Chemical 

plants 

Up to 1.987  500,000 

threatened 

Ling et al., 2009 

 

Mining and smelting activities 

Arsenic is present in sulfide minerals associated with Au, Cu, Pb, Zn, Sn, Ni, and Co mineral 

ores and can be released in the water during the slow oxidation of As- rich pyrite waste 

tailings, or in the air during the smelting process. Up to 70% of total arsenic is abandoned as 

tailing by mine selections process.. Only 10% of total arsenic is recovered while the 

remaining part is kept in intermediate material or found in solid waste residue and 

wastewaters (Wei and Zhou, 1992). 

Acute poisoning has often occurred in China because of mine tailings. For example, in 1961, 

308 people were poisoned and 6 were killed in Xinhua, Hunan Province. Arsenic-containing 

(5% - 13%) tailings from antimony mine were disposed close to drinking water tube well and 

contaminated the water (Yang, 1992). More recently, i.e. in the latest decade, this type of 

disaster happened quite often as a result of booming mining and smelting activities. In Hechi, 

Guangxi Province, arsenic acute poisoning happened at least 3 times between 2001 and 2008, 

with an increasing number of smelters being built in this region, famous as a non-ferrous 
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metal-rich-area. The contamination was usually triggered by heavy rains or floods which 

flushed the waste water from smelter treatment tanks directly into surface waters. On the other 

hands, too many plants have been running without or under poor supervision from 

government. The lack of waste treatment system led to several problems as well. 

Pesticide use 

Inorganic arsenicals, such as lead, calcium, magnesium and zinc arsenate, zinc/sodium 

arsenite, Paris green (acetoarsenite) or organic arsenicals have been used extensively as 

agricultural chemicals. Those chemicals are used as herbicides, desiccants, antiseptics, toxic 

rat poisons, oncomelania hupensis poisons and so on. Because of their highly toxicity, many 

pesticides including arsenical products have been banned by China government. Although 

arsenical pesticides mainly draw some concerns related to soil pollution, it could also affect 

the quality of drinking water directly. It was reported that well water had been contaminated 

by pesticide and the concentration of As was around 1.15 mg/L in Yangshan, Anhui Province 

(Li et al., 2006). 

Zhang and Xiao (1993) revealed that arsenic concentration measured in tube well waters was 

positively related to rainfall. The tube well was believed that have been contaminated by 

pesticide waste disposed around the well. Tube well water samples contained 0.008 - 0.044 

mg/L arsenic in dry seasons and 0.03 - 2.00 mg/L of arsenic in rainy seasons. Arsenic 

concentration in soils and vegetables were studied as well. Soils contain 2.5 - 49.5 mg/kg at 

40 cm depth and 7 - 97.5 mg/kg at 80 cm depth. The highest level of arsenic (5 mg/kg) was 

found in roots of vegetables. 
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Chemical Industries 

Sulfuric acid is produced by oxidation of sulfur rich ores. The use of As-bearing sulfide 

minerals as raw material in sulfuric acid manufactures is all-pervading in China chemical 

industries. Illegal use of low-class mineral ores that contain large amounts of arsenic, lack of 

safe waste treatment system and illegal discharge of waste waters into surface water made 

pollution incidents inevitable to happen. In the single year 2008, Heishui River of Guizhou, 

Groundwater of Chenxi, Hunan and Yangzonghai Lake of Yunnan were all polluted by 

sulfuric acid production plants. The Yangzonghai Lake is an exemplary case. Its waters had 

arsenic concentration less than 0.006 mg/L prior to September 2007. A contamination was 

noticed in April 2008 and resulted in arsenic concentration of lake water above 0.1 mg/L, 

according to analysis results of samples collected in July, September and October 2008 (Liu, 

2009; EPA, Yunnan, 2008-2010; Wang et al., 2010). 

2.6. Conclusions and recommendations 

This review has attempted to list the current available information on the occurrence and 

distribution of As contamination in China drinking water. The current facts related to drinking 

water contamination by arsenic in China appear alarming: i) the problem is widespread 

throughout China; ii) a large population has been exposed to drinking water with high level of 

geogenic As; iii) an increasing number of sudden and accidental As pollution events is taking 

place due to human activities.  

Geogenic high As water are mostly found in arid or semi arid North of China. It results from: 

i) use of groundwater as water supply is more common in the north, where As-rich  

groundwaters are more likely to be discovered, than in the south, and ii) climate, geochemical 

and hydrological conditions are favorable for formation of high-As water. Although natural 
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arsenic resource is abundant and high-As in drinking water is widespread in China, the 

problem only occurs when certain geochemical and hydrological conditions are met. There 

are some common features among those cases. High-As spring or groundwater are found in 

closed basins where As is hard to be flushed away or be diluted. Affected areas are usually 

low-lying zones with high pH value (≈8.5), which is favorable for As being released and 

exchanged from minerals or rocks (Charlet and Polya, 2006). Reducing type As-rich 

groundwater bodies are mainly found in the north of China, under arid or semi-arid climate. 

In contrast, in south of China, arsenic existence in drinking water is mainly due to human 

activities. Large amount of As ore reserves and As-containing mineral mines are located in 

the south where extensive mining activities and chemical industries increase the likelihood of 

As pollution accidents. Surface water in the south are contaminated by industrial discharge or 

runoff containing high As content from industries, triggered by heavy rains and floods in 

those subtropical or tropical zones.  

Almost all arsenic-contamination cases were discovered thanks to poisoning accidents. It can 

be foreseen that under the current situation of water scarcity people will exploit more and 

more natural water for drinking or other uses. In order to ensure water safety as well as to 

prevent further environmental disasters, the government needs to conduct effective water 

quality monitoring and management. For those areas which have been identified as As-

affected, continuous water quality test should be carried out on-site. Arsenic level as well as 

arsenic speciation should be examined.  

Previous investigations of a number of affected sites in China have given people a better 

understanding of the As-contamination problem. However, research focused mainly on 

heavily contaminated water bodies with water As concentrations above 0.05 mg/L, and areas 
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of groundwater with lower concentrations (0.01 - 0.05 mg/L) of arsenic will call out for 

government and researchers attention in the near future. Low concentration of arsenic could 

be dangerous if there‟s a high ratio of As(III) to total As. Knowledge on the speciation of 

arsenic is gaining increasing importance because toxicological effects of arsenic are 

connected to its chemical form and oxidation states. To have a better view of the danger of 

As-containing water and to give more comprehensive information to the exposed public, the 

analyses should not be restricted on the determination of total As. Arsenic speciation is also 

important and necessary to be measured.  

Besides, more researches should focus on understanding the occurrence, origin and 

distribution of arsenic. Government should pay more attention to industrial and agricultural 

activities which lead to As pollution. More technical supports should be given to mining or 

chemical plants to deal with sewage and sludge storage and waste treatment. Supervision 

departments should increase the frequency of sampling and analyzing of the discharge from 

industrial plants.  
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3.1. Introduction 

One of the most pervasive problems afflicting people throughout the world - water scarcity 

- has increased people‟s dependence on groundwater resources in many parts of the world. 

During the past two decades, arsenic poisoning via groundwater has become a worldwide 

issue (Nordstrom, 2002). Some of the best-documented and most severe cases of arsenic 

contaminated aquifers have been found in Asia (e.g. parts of Bangladesh, China, India, Nepal) 

and South America (e.g. Argentina, Mexico) (Aureli, 2006; He and Charlet, 2013; 

Ravenscroft et al., 2009). Among common possible oxidation states (-3, 0, +3 and +5) 

inorganic arsenate (As(V)) and arsenite (As(III)) pose the greatest threat to human health, 

since they are the main species occurring in natural waters and are the most toxic forms. In 

particular, arsenite is more toxic than arsenate, due to a higher mobility in the environment 

and possible passive cell uptake via aquaporins. To address this public health threatening 

problem, numerous methods have been developed focusing on As-rich water decontamination 

(Charlet and Polya, 2006; Mohan and Pittman, 2007). 

Iron hydroxides have a high sorption affinity toward both As(V) and As(III) over a wide 

range of pH values (Dixit and Hering, 2003). They are important constituents of soils and 

sediments therefore they play an important role in regulating arsenic concentrations in natural 

waters. Consequently, many water treatment industries use iron oxides/hydroxides adsorbents. 

However, most reactive iron oxides/hydroxides are fine powders, and are difficult to separate 

from solution after completion of the adsorption process. To overcome this limitation, plenty 

of research has studied polymer - iron oxide/hydroxide hybrid compounds (Rorrer et al., 1993; 

Wang et al., 2009; Zou et al., 2012). The hybrid materials have macroscopically larger sizes 

so that it is less difficult to separate them by filtration procedures in water treatment 
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manipulation. Also, polymeric coating may stabilize the iron oxide/hydroxide by increasing 

repulsive forces to balance the magnetic and van der Waals attractive forces acting on the 

nanoparticles (Wu et al., 2008). Chitosan, being a low-cost, biodegradable and non toxic 

biopolymer, has been used as one of possible coating polymers for fabricating iron 

oxide/hydroxide-polymer composites (Ngah et al., 2011). Besides the contribution of iron 

oxide/hydroxide, chitosan can function as arsenic adsorbent independently. The intrinsic pK 

of chitosan amine groups are close to 6.5, favoring their protonation and resulting in an 

enhanced affinity to arsenic anions in acidic solutions (Chassary et al., 2004). However, since 

the low “porosity” of chitosan polymer contributing to low ion diffusivities constrains the 

diffusion process of arsenic anions, most studies have made use of chitosan synthesized from 

the gel bead method, which allows an expansion of the polymer network, enhancing anion 

diffusion and improving access to the internal sorption sites (Guibal et al., 1998; Jin and Bai, 

2002). To fabricate composite beads, some investigations treated chitosan beads with 

FeCl3 ·  6H2O solutions or hydrated ferric oxides suspensions, or conversely started with 

dispersing iron oxides into chitosan solution, followed by the bead formation step (Dias et al., 

2011; Guo and Chen, 2005; Qiu et al., 2012; Rorrer et al., 1993). Chemical cross-linking of 

chitosan with glutaraldehyde is usually employed to enhance the mechanical properties of the 

polymer beads by exploiting a Shiff‟s reaction between aldehyde and the amine groups 

(Nedelko et al., 2006).  

 

In this study, we employed a novel method to synthesize a chitosan-iron hydroxide composite, 

namely chitosan goethite bionanocomposites (CGB) beads, making no use of toxic 

glutaraldehyde. Goethite nanoparticles and chitosan gel-beads were prepared simultaneously, 

leading to a homogenous distribution of goethite nanoparticles in the chitosan network. 
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Goethite and chitosan develop cross-links providing enhanced mechanical property in term of 

compressive strength, without need of further treatments by toxic chemical compounds. CGB 

beads were characterized by Mössbauer Spectroscopy and Field Emission Scanning Electron 

Microscopy (FE-SEM). Batch sorption and kinetic experiments were performed to assess the 

sorption of As(III) and As(V) onto CGB. The mechanism of As(III) and As(V) uptake onto 

CGB was investigated by Synchrotron Radiation X-ray Absorption Spectroscopy (SR-XAS). 

The diffusion of As(III) and As(V) from solution into the porous solid phase was monitored 

by micro X-ray fluorescence (ȝXRF) and micro X-ray Near Edge Spectroscopy (ȝXANES). 

3.2. Experimental Section 

3.2.1. Chemicals.  

All solutions were prepared with Milli-Q water (resistivityμ 18.β Ω cm). High molecular 

weight chitosan (average MW: 342500 g·mol-1), sodium meta-arsenite (NaAsO2, 99%), 

sodium arsenate (Na2HAsO4 ·  7H2O, 98.5%), iron(III)-chloride hexahydrate (FeCl3 ·  6H2O), 

sodium hydroxide (NaOH, 98%) and hydrochloric acid (HCl, 37%) were purchased from 

Sigma-Aldrich. Acetic acid (100%) was from Merck.  

3.2.2. Synthesis of CGB.  

Chitosan acetic acid solution, was prepared by adding 30 g of high molecular weight 

chitosan into 1L of acetic acid (1%, v/v). The solution was constantly stirred at 50 °C until 

chitosan powder was completely dissolved and then cooled down to room temperature. Ferric 

solution was prepared by dissolving 25.2 g of FeCl3 ·  6H2O into 200 mL of acetic acid (1%, 

v/v). A ferric acetic acid mixture (200 ml) (c[FeCl3] = 0.466 mol L-1, 1% (v/v) of acetic acid) 

was gently poured into the chitosan solution, and the mixture was stirred until it became 
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homogenous. The resulting solution was pumped through a fixed pipette tip (1 ml) drop by  

drop into a chitosan casting bath containing 0.5 mol/L NaOH (Figure 3.1). The gel ferric 

chitosan beads were kept for 24 h in the NaOH bath and then washed with Milli-Q water until 

the residual water reached a neutral pH. Finally beads were separated from solution and air 

dried at 25 °C.  

 

Figure 3.1: Apparatus for casting CGB beads. 

3.2.3. Characterization.  

The CGB beads size distribution was measured by a Mastersizer - 2000 (Malvern) and the 

pore volume was tested by mercury intrusion using PoreMaster® Series Porosimeters - 

Automatic Pore Size Analyzers. CGB mechanical properties were investigated with an  

„Adamel Lhomargy‟ with a 500 N load cell. During the test procedure one CGB sample was 

placed between the specimen stage and upper punch and loaded at a constant rate of 1 ȝm/s 

until failure (Fig. 3.2). The force (crushing strength, FC) and the CGB deformation (DdC) 

were recorded until failure happened.  
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Figure 3.2: Experimental scheme of mechanical property test. 

CGB iron (nano)particles were investigated (i) by zero-field 57Fe Mössbauer measurements at 

room temperature (RT, 300 K) and liquid nitrogen temperature (LNT, 77 K) using a bath 

cryostat in transmission mode with a constant acceleration driving unit using a 57Co/Rh –ray 

source. The spectrometer was calibrated using a standard Fe foil and the isomer shift values 

were expressed with respect to this standard at 300 K. The fitting of the spectra was 

performed using the MOSFIT program (MOSFIT: Teillet and Varret, unpublished program). 

This fitting model used a discrete number of independent quadrupolar doublets of Lorentzian 

lines where the full width at half maximum Γ (mm.s-1), the isomer shift δ (mm.s-1) and the 

quadrupole splitting ΔEQ (mm.s-1) were refined using a least-squares fitting procedure. The 
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relative uncertainty of the hyperfine parameters was assumed to be near 5 %. The proportions 

of the different Fe species were estimated from the relative respective absorption area, 

assuming thus the same values of f Lamb Mössbauer recoilless factors; and (ii) by Field 

Emission Scanning Electron Microscopy (NovaTM NanoSEM 230) using an accelerating beam 

at a voltage of 5 kV (magnification: 80000×).  

 

CGB solid samples (10.9 mg) were digested by 4 ml of HNO3 and HCl (1:3) (aqua regia) in 

teflon digestion tube at 70 ºC for 500 min in Mid Temperature Graphite Digestion Blocks, 

DigiPREP Block Digestion Systems (SCP SCIENCE, Canada). After digestion, the residue 

was diluted to 30 ml by Milli-Q water. The resulting solution was filtered through a 0.45 ȝm 

microporous membrane into a plastic bottle ready for ICP-OES analysis. 

 

3.2.4. Batch Sorption Isotherm 

CGB beads were added to (i) two arsenate solutions (prepared with Na2HAsO4) at pH 5 and 

pH 9 with initial As concentrations ranging from 0.069 to 0.84 mmol/L, and (ii) arsenite 

solutions (NaAsO2) at pH 5 and pH 9 with initial As concentrations ranging from 0.093 to 1.2 

mmol/L (2.5 g/L, CGB adsorbent to arsenic adsorbate ratio). The adsorption studies were 

performed at 298 K under a constant 200 rpm shaking for 120 h. Supernatants were collected 

by pipette prior to analysis. Three equilibrium isotherms, namely Langmuir, Freundlich, and 

Redlich-Peterson, were used to model the experimental data.  

 

The theoretical Langmuir isotherm is often used to describe adsorption of a solute from a 

liquid solution onto a single type of surface site as (Ho et al., 2002; Langmuir, 1918) 
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1  ;         (3.1) 

where qe is the equilibrium adsorption capacity (mmol/g), Ce is the equilibrium liquid phase 

concentration (mmol/L), qm is the maximum adsorption capacity (mmol/g), Ka is adsorption 

equilibrium constant (L/mmol). The Freundlich isotherm (Freundlich, 1906) is an empirical 

isotherm that can be used to model the adsorption from dilute solutions and can be thought of 

as the result of a log-normal distribution of  Langmuir parameters, Ka (Sposito, 1984). The 

ordinary adsorption isotherm is expressed by the “Freundlich” equation: 

n

eFe CKq
1  ;          (3.2) 

where Ce is the equilibrium concentration in the solution, (mmol/L), qe is the equilibrium 

adsorption capacity, (mmol/g), KF and 1/n are empirical constants. KF is the adsorption value, 

the amount adsorbed at unit concentration (1 mmol/L). It is a characteristic of both the 

adsorbent and the adsobate. The Redlich-Peterson isotherm contains three parameters and 

incorporates the features of both the Langmuir and the Freundlich isotherms (Redlich and 

Peterson, 1959). It is parameterized as follows: 
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1
;           (3.3) 

It has three isotherm constants, namely A, B, and g with (0 < g < 1). 

Due to the inherent bias resulting from linearization, alternative isotherm parameter sets were 

determined by non-linear regression. This provides a mathematically rigorous method for 

determining the isotherm parameters using the original form of the isotherm equation (Ho, 

2004; Seidel and Gelbin, 1988). To compare the three isotherms, a trial-and-error procedure 

was applied to obtain the isotherm parameters. We used an optimization routine to maximize 
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the coefficient of determination r
2 between the experimental data and isotherms (Ho, 2006; 

Ho and Ofomaja, 2005). 

The coefficient of determination r2 is defined by: 

     



22

2

2

emem

em

qqqq

qq
r ;        (3.4) 

where qm is the equilibrium capacity obtained from the isotherm model, qe is the 

equilibrium capacity obtained from experiment, and 
eq  is the average of qe. 

3.2.5. Kinetic Experiment.  

For each experiment, 0.2 g of CGB beads were added into 0.1 L arsenate solution (Na2HAsO4, 

0.066 mmol/L, pH=7) for 0 to 3000 min or into 0.1 L arsenite solution (NaAsO2, 0.082 

mmol/L, pH=7) for 0 to 10080 min, both at 298 K. At fixed time intervals, 2 ml of solution 

was collected using a syringe attached with a 0.β ȝm pore size filter. Kinetics data from our 

experiments were fitted with a pseudo-second-order kinetic model to estimate the rate 

constants, initial sorption rates, and arsenic sorption capacities on CGB (Ho and McKay, 1999; 

Ho and McKay, 2000).  

 

All the supernatant samples were analyzed by Inductively Coupled Plasma Optical Emission 

Spectrometers (ICP-OES) (Varian 720-ES, Varian, Inc.) to determine the arsenic and iron 

concentrations and evaluate the release of iron during the sorption process, respectively 

(detection limitμ Asμ 1 ȝg/Lν Feμ 0.1 ȝg/L). Further filtration by 0.45 ȝm microporous 

membrane or centrifugation did not induce changes in the total aqueous concentrations 

Second-order kinetics 
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The sorption was represented by the equation: 

2)( te
t qqk

dt

dq  ;          (3.5) 

where k is the pseudo-second-order rate constant. For boundary conditions t = 0 to t = t, and 

qt = qt, where qe and qt are the sorption capacity at equilibrium and at time t, respectively 

(mmol/g). The integrated form of the equation is: 
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which can also be written as: 
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or in the linear form: 
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where h=kqe
2 can be regarded as the initial sorption rate as t approaches 0. 

3.2.6. Effect of CGB dose on residue arsenic level 

Different doses of CGB beads (0.5 g – 5.5g CGB/ 1L arsenic solution) were added to arsenate 

and arsenite solutions at pH 7 with two initial As concentrations 5 mg/L and 1 mg/L (0.067 

mmol/L, 0.013 mmol/L), respectively. The adsorption processes were performed at 298 K 

under a constant 200 rpm shaking for 120 h. Supernatants were collected by pipette prior to 

analysis. 
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3.2.7. Leaching Test 

Arsenic and iron concentration of all the aqueous samples (initial and final solutions) from the 

isotherm and kinetic study were measured by ICP-OES. All the calibration and sample 

solutions were prepared with 2% HNO3. After the adsorption, no iron could be detected in the 

samples. The result shows that no iron/goethite was released into the solution during the 

adsorption. 

 

3.2.8. Bulk XAS  

Arsenic-loaded CGB samples for XAS measurements were prepared by introducing 1g CGB 

beads into 40 ml arsenic solution (7 mmol/L arsenate or 5.6 mmol/L arsenite solution at pH = 

5 and pH = 9). After 72h of sorption process at 298K in an anaerobic glove box,  the beads 

were separated from the solutions. The supernants of all solution were measured by ICP-OES 

to evaluate the adsorbed quantities of As onto CGB. The adsorbed quantities of the arsenate-

adsorbed beads were 0.113 mmol/g, at pH=5 and 0.052 mmol/g, at pH=9, and that of the 

arsenite-adsorbed beads were 0.151 mmol/g, at pH=5 and 0.156 mmol/g, at pH=9. The As-

loaded samples were dried and ground in the glove box, and were kept in liquid nitrogen until 

the measurements at the synchrotron facility. XAS measurements at the As K-edge (11.867 

keV) were performed at the European Radiation Synchrotron Facility (ESRF, Grenoble, 

France) using the bending magnet French absorption spectroscopy beamline (FAME-BM30B) 

(Proux et al., 2005; Proux et al., 2006). An As(III) reference (As2O3) was placed behind the 

samples and measured along each energy scan for accurate energy calibration.  
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The XAS spectra were recorded in fluorescence mode using a high-throughput 30-elements 

solid state germanium detector (Canberra, St Quentin Yvelines, France).  The spectra of the 

As reference compounds were acquired in transmission mode using two ionization chambers 

to measure the incoming and transmitted photons. The storage ring was operated with a ∼200 

mA current. Two Rh-coated mirrors for efficient harmonics rejection, collimation, and 

vertical focusing of the beam are located up and down stream the monochromator with 

respect to the beam direction. The beam energy was selected using a Si (220) double-crystal 

monochromator. A sagittal focusing system provided a beam intensity of 1010 photonss-1 at 

1β keV, and a beam size on the sample of approximately γ00 × β00 ȝm (H × V).  At the 

working energy and conditions, the resolution, which was equal to the energy sampling, was 

of ~0.5 eV. XANES spectra were background subtracted, normalized, and then the absorption 

edge energy of each „internal‟ As(III) reference spectrum was shifted to match the As2O3 

absorption edge.  

 

Structural parameters were obtained from shell fitting following standard procedures for data 

reduction and analysis (Lee et al., 1981). The FitEXA code (Meneghini et al., 2012; Monesi et 

al., 2005) was used for least square minimization. Fits were performed in the wave vector 

space up to k = 12 Å-1, without Fourier filtering. Atomic clusters of the reference compound 

structures centered on the absorber atoms were calculated using the ATOMS code (Ravel, 

2001), and were used as starting points for refinements. The FEFF8 code (Ankudinov et al., 

1998) was used to calculate EXAFS theoretical amplitude and phase photoelectron scattering 

functions. Uncertainties on refined parameters were calculated using the MINOS subroutine 

from the MINUIT package (James and Roos, 1975), which takes into account the correlation 

between free parameters.  
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3.2.9. μXANES and μXRF 

As-loaded CGB samples collected from kinetics experiments at 1.5h and 72h were cut into 40 

ȝm thick cross-sections using a cryo-microtome (Shandon CryotomeTM SME Cryostat, 

Thermo Scientific). ȝXRF analyses were performed at the DiffAbs beamline at the Soleil 

synchrotron radiation facility (France). An excitation energy of 12.0 keV was selected using a 

Si (311) double crystal monochromator, and a beam spot size of 10 × 10  ȝm2 was achieved 

using a Kirkpatrick-Baez mirror system. The X-ray fluorescence spectra were recorded with a 

Si (Li) detector. The µXRF maps were processed with PyMCA 4.4.6 software (Sole et al., 

2007). Based on the distribution of As and Fe, points of interest were selected for µXANES 

analysis at the As K-edge in the 11.8-12.0 keV range with 3s integration time per energy point. 

NaAsO2 and Na2HAsO4  7H2O (Alfa Aesar) were also measured and used as As(III) and 

As(V) references. Background subtraction and normalization of the XAS spectra were 

performed using the IFEFFIT package (Ravel and Newville, 2005). 

 

3.3. Results and Discussion 

3.3.1. Physicochemical Characteristics of CGB.  

The dark red chitosan goethite bionanocomposites beads (Fig. 3.3) have an average 

diameter of 1018 ± β41 ȝm and a density of 1.447 g/cm3. The total pore volume is 0.024 

cm3/g according to Mercury porosimetry test and thus a porosity   of 3.5 %.  
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Figure 3.3: Picture of CGB. 

 

CGB were characterized by combining two techniques FE-SEM and Mössbauer spectroscopy. 

The results indicate the presence of goethite nanoparticles in chitosan matrix. CGB consists of 

20.33 wt.% of goethite particle and 79.67 wt.% of chitosan according to result of ICP-OES 

measurement of digested CGB by strong acids. To elucidate the size and morphology of the 

mineral/chitosan phases, we used FE-SEM (Fig. 3.4). The image shows that the CGBs are 

composed of goethite lath-like particles (average size: ~200-300 nm in length, ~50 nm in 

width, and ~10 nm in thickness) surrounded by chitosan network. Compression mechanical 

property test reports an average value for the crushing strength and deformation of CGB of 

34.9 ± 6.5 N and 12.6 ± 4.6 %, respectively. The maximum endurable force is significantly 

higher than the breaking down forces of the chitosan hydrogel beads (1.87 N) and that of the 

chitosan hydrogel beads impregnated with carbon nanotubes (7.62 N) reported by (Chatterjee 

et al., 2009). The result proves that by impregnating 20.33 wt.% goethite into the chitosan 

matrix, the mechanical property of the gel bead was greatly improved. Therefore, CGB 
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material can be easily transported and used for water purification by water treatment plant or 

household set-up.  

 

Figure 3.4: FE-SEM photomicrograph of CGB at 80,000 X. 

 

CGB Mössbauer spectra performed at RT and LNT are shown in Fig. 3.5a and Fig. 3.5b. The 

result of the fitting and the relative areas (RA) are summarized in Table 3.1. Both RT and 

LNT spectra display hyperfine magnetic and paramagnetic components characteristic of 

trivalent iron. There is a distribution of hyperfine magnetic field, Sdistribution, at RT whereas 

only one sextet (S) is present at LNT. Paramagnetic components (D77 and D300) are also 

present. The magnetic and paramagnetic components have the same RA (within one percent) 

whatever the temperature, indicating two different iron environments: #1 and #2. For iron #1, 

fitting line shapes of the magnetic components, Sdistribution and S, differ at RT and LNT. 

Hyperfine magnetic fields (290kOe at RT, and 495kOe at LTN, Table 3.1) are those of a 

stoichiometrically composed and well crystallized α-FeOOH goethite. The presence of sextets 

is due to Fe antiferromagnetic order in goethite (TNeel = 400K, for goethite bulk). This 

component could correspond to the goethite lath particles observed by FE-SEM. For iron #2, 

the paramagnetic doublets (D300 and D77) are characteristic of trivalent iron. That doublets RA 
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does not change with the temperature indicates these doublets are characteristic of the same 

iron environment, i.e. the same kind of particles. The doublets width tends to be larger at 

lower temperature (0.58 mm.s-1 at RT and 0.90 mm.s-1 at LNT, Table 3.1), which may 

indicate the beginning of the paramagnetic state to the ordered state magnetic transformation. 

This behavior is typically characteristic of nano-particles, whose size and shape influence the 

temperature of ordered magnetic state. Nano-ferrihydrite and nano-goethite both give rise to a 

paramagnetic doublet with very close hyperfine parameters, preventing determining their 

relative amount from Mössbauer measurements. 

 

Figure 3.5: (a) 57Fe Mössbauer spectra of CGB at liquid nitrogen temperature (LNT = 77K); 

(b) room temperature (RT = 300K). Experimental values are shown as marked grey points; 

solid lines are fitted spectra components: Sdistribution and S is respectively for a sextet 

distribution and one single sextet. D77 and D300 are paramagnetic doublets. The corresponding 

hyperfine parameters are given in Table 3.1.  
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Table 3.1: Mössbauer spectroscopy hyperfine parameters of CGB spectra at LNT (77 K) and 

at room temperature (RT = 300K), displayed in Fig 3.5a and 3.5b. Values in angle brackets 

are average values. 

Temperature  

of analysis  

Component   

(mms-1
)  

± 0.01 

  

(mms-1
)  

± 0.01 

EQ  

(mms-1
)  

± 0.01 

2  
(mms-1

)  

± 0.01 

H (T)  

± 0.2 

RA (%)  

± 2 

LNT S 0.48 0.38 ― -0.22 49.5 88 

 D77 0.42 0.90 0.74 ― ― 12 

        

RT Sdistribution 0.38  0.30 ― 
-0.25  29.0  87 

 D300 0.32 0.58 0.64 ― ― 13 

(mm.s
-1

): Isomer shift; 

 (mm.s
-1

): Linewidth at half height; 

EQ (mm.s
-1

): Quadrupole splitting;  

2 (mm.s
-1

): Quadrupole shift;  

H (T): Hyperfine field; 

RA (%): Relative area. 

 

The formation of goethite chitosan bionanocomposites could occur through the following 

steps: (i) precipitation of Fe(III) occurs at low pH by formation of precursor particles in the 

Fe(III)-chitosan acetic acid mixture; (ii) when the drop of Fe(III)-chitosan acetic acid mixture 

reaches the NaOH casting bath, pH increases sharply and goethite forms by an adsorption of 

free Fe3+ onto the already formed Fe(III) colloids (Charlet, 1994). At the mean time, the 

reaction of the acetic acid solvent with the non-solvent NaOH solution causes the chitosan to 

precipitate, forming the gel beads (Rorrer et al., 1993). The homogeneous distribution of 
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chitosan inside the ferric-chitosan acetic acid mixture offers the reaction support for the 

growth of the goethite nanoparticles, and prevents their aggregation during the beads casting 

procedure.  

 

3.3.2. As adsorption: isotherm and mechanism (EXAFS) 

The theoretical plots of each model are shown in Fig. 3.6a and 3.6b for As(V) and As(III) 

(panels a and b, respectively), together with the experimental data (obtained at pH 5 and pH 9) 

for adsorption of As(V) and As(III) on CGB at 298K. The graphs are plotted in the form of 

As(V) and As(III) adsorbed per unit mass of CGB, qe (mmol/g), against the concentration of 

As(V) and As(III) remaining in solution, Ce (mmol/L). qm. The maximum adsorption quantity 

at higher pH value (pH = 9) for adsorption of As(V) onto CGB is lower than the one at lower 

pH value (pH = 5); while the adsorption quantities of As(III) at pH 5 and at pH 9 are close to 

each other.  

 

Figure 3.6: Isotherms of arsenate (a) and arsenite (b) adsorption onto CGB at 298 K, at pH=5, 

9. 
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A comparison of coefficient of determination for three isotherms has been made and listed in 

Table 3.2. The Redlich-Peterson isotherm is found to be the most suitable model for 

describing both the adsorption equilibrium of As(V) and As(III) onto CGB. Comparing the 

Langmuir and the Freundlich isotherm, the Freundlich model better reproduces the sorption of 

As(V) and As(III) on CGB.  

 

Table 3.2:.Isotherm parameters obtained using the non-linear method for the adsorption of 

arsenate and arsenite onto CGB at 298K at pH 5 and pH 9. 

 

Isotherm  As(V) As(III) 

  pH=5 pH=9 pH=5 pH=9 

Langmuir qm. mmol/g 0.146 0.0488 0.0964 0.0951 

 Ka. L/mmol 8.43 689 33.6 91.7 

 r
2
 0.768 0.852 0.903 0.863 

Freundlich 1/n 0.193 0.104 0.209 0.150 

 KF. (mmol/g)(L/mmol)
1/n

 0.124 0.055 0.103 0.110 

 r
2
 0.933 0.989 0.972 0.980 

Redlich-Peterson g 0.807 0.907 0.832 0.850 

 B. (L/mmol)
g
 138293 5053.4 173 172504 

 A. L/g 17111 275 17.5 19011 

 r
2
 0.933 0.992 0.981 0.980 
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At pH 5, the maximum amount of adsorbed As(V) and As(III) equals to 0.151 mmol/g and 

0.11γ mmol/g, respectively, corresponding to a site density of 1β.8 ȝmol/m2 and 9.57 

ȝmol/m2.  

 

Those values are higher than the theoretical maximum arsenic sorption capacity calculated 

from the site density of goethite (2.0 sites/nm2, i.e. γ.γγ ȝmol/m2) reported by Dixit and 

Hering (Dixit and Hering, 2003). This could be due to the size effect of goethite nanoparticles 

in CGB. The high surface area to volume ratio of nanoparticles provides more active edges 

for binding As. The estimated site density could be slightly higher than the true value since 

we have neglected the insignificant contribution of chitosan in As adsorption. The goethite 

particle cuboid geometrical assumption which is used to simplify calculation could cause 

error as well.  

 

The adsorption mechanism of As on CGB is investigated by studying the As local 

environment by means of extended X-ray absorption fine structure (EXAFS) spectroscopy 

and compared with that of pure chitosan (batch experiments with As(V) and As(III) and pure 

chitosan were made at pH 5). The X-ray absorption near-edge spectroscopy (XANES) spectra 

on bulk samples (see Fig. 3.7a), indicate that the oxidation state of As is maintained after 

reaction with both pure chitosan and CGB. This is expected, because the samples were kept in 

an O2-free glove box until measurement, brought to the synchrotron facility in liquid nitrogen, 

and measured at low temperature (20K) in helium atmosphere. 
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Figure 3.7: (a) XANES spectra of As(III)- and As(V)-loaded CGB and pure chitosan reacted 

at pH 5 and 9. The vertical lines indicate the position of the main adsorption peak of the 

As(III) and As(V) references; (b) Experimental EXAFS signal (points) and the fit curves 

(thick red lines); (c) Fourier Transforms (experimental = points, fit curves = thick red lines) of 

CGB and pure chitosan reacted with As(III) and As(V) at pH 5 and 9 (the FT are not 

corrected for the phase shift). 

The Fourier transforms and fit curves of the EXAFS signals of As(III/V)-loaded CGB and 

As(III/V)-loaded pure chitosan are shown in Fig. 3.7c (the EXAFS signals are reported in Fig. 

3.7b). As(V)-loaded CGB: the lack of coordination shells higher than the first (Table 3.3) 

indicates that As(V) is adsorbed as an outer-sphere complex on pure chitosan. On the other 

hand, the presence of As-Fe contributions in As-loaded CGB suggests that As is adsorbed 

mainly on the goethite phase, as inner-sphere complex (Fig. 3.8). The structural refinement of 

the As local environment reveal that CGB can adsorb both As(V) and As(III). This was 

expected, considering the high affinity of goethite, as well of Fe-oxides and oxyhydroxides in 

general, with As. As(III)-loaded CGB: structural refinements of As(III)-loaded pure chitosan 

reveal that, when in the 3+ oxidation state, As forms inner-sphere complexes on the chitosan 
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molecule. A possible sorption site for arsenite compatible with the EXAFS refinements is 

shown in Fig. 3.9. Conversely, in As(III)-loaded CGB, again As(III) is preferentially adsorbed 

onto the goethite phase as inner-sphere complex, as suggested the presence of an As-Fe 

contribution (Table 3.3). 

 

Figure 3.8: Structural diagram of bidentate binuclear As(III)/As(V) surface complexes on the 

(110) plane of goethite (α-FeOOH) showing (a) the protonated bidentate surface species at 3.3 

Å. Only the bidentate binuclear complex was used in surface complexation modeling. 

 

 

 

 

 

 

Figure 3.9: 3D atomistic model of a possible sorption site of As(III) on pure chitosan (black: 

As atom; light grey: oxygen atoms; grey: carbon atoms; blue: nitrogen atoms). Hydrogen 

atoms have been omitted for clarity.  
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TABLE 3.3: Refined structural parameters of pure chitosan and CGB reacted with As(III) 

and As(V). The numbers within parenthesis represent the error on the last digit. 

 1st shell 2nd shells   

 
CN 

 

R 

(Å) 

σ2 

(Å2 103) 

CN 

 

R 

(Å) 

σ 2 

(Å2 103) 

S0
2 χȞ

2 

As(V)         

Chitosan 4 O  1.690(3) 2.2(4) - - - 1.0(1) 1.0 

CGB (pH 5) 4 O 1.686(6) 3.1(5) 
2.0(5) Fe 

9.9(5) O 

3.28(2) 

3.52(5) 

8(3) 

21(9) 
1.0(1) 1.0 

CGB (pH 9) 4 O 1.688(3) 2.8(4) 
2.0(5) Fe 

8.0(5) O 

3.28(2) 

3.52(5) 

8(3) 

21(9) 
1.0(1) 1.0 

As(III)         

 

Chitosan 

 

3 O 1.792(5) 2.0(6) 

2 C 

4 C 

2 C 

2.91(4) 

3.32(4) 

3.66(4) 

8(9) 

7(9) 

7(9) 

1.0(1) 1.0 

CGB (pH 5) 3 O 1.780(6) 2.4(6) 
2.0(5) Fe 

1.0(5) O 

3.33(2) 

3.55(5) 

8(3) 

11(5) 
0.9(1) 1.0 

CGB (pH 9) 3 O 1.787(6) 3.9(4) 
0.8(7) Fe 

1.3(8) O 

3.34(1) 

3.54(3) 

4(4) 

12(6) 
1.0(1) 1.3 

CN: Coordination Number;  

R: distance from the absorber;  

σ2: Debye-Waller factor 
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3.3.3. Effect of CGB dose 

Figure 3.10 shows the residual arsenic concentration after adsorption treatment of different 

dose of CGB beads at 298 K. Reacting with high initial concentration (5 mg/L) of arsenic 

solution, 3.5 g of CGB beads are needed to decontaminate the solution in order to reduce 

arsenate/arsenite level to meet the 50 ȝg/L water standard. The residual arsenic level is 

decreasing with the increasing amount of CGB bead. For lower initial concentration (1 mg/L) 

of arsenic solution, the 10 ȝg/L water standard level can be reached by using 0.5g and 2.5 g of 

CGB as adsorbent, respectively. CGB bead shows higher efficiency on removing As(V) than 

on As(III).  

3.3.4. Kinetic study and diffusion pattern (μXRF and μXANES) 

The results of kinetic experiments reveal that the sorption of As(III) and As(V) by CGB 

took less than 2000 min (33h) to reach equilibrium (Fig. 3.11). The adsorption of arsenate was 

more rapid than that of arsenite. The initial sorption rate usually increases with an increase in 

the initial concentration. However, the initial sorption rate of arsenate is higher than that of 

arsenite, although the initial concentration of arsenite was lower than that of arsenate. At 1.5h, 

50.19% of the total amount of As(V) was removed from the solution, while 35.49% of the 

total As(III) was removed at the same time. Most of arsenic molecules were trapped by CGB 

in the first 24h (88.60% of arsenite and 97.64% of arsenate), and after this time, adsorption of 

As(V) and As(III) onto CGB tend to a plateau. A widely used parameter to compare reaction 

rate is the half-life, t1/2, the time within which half of the initial concentration of arsenic has 

disappeared, that is C/C0=0.5. In our experiments, half-life of As(V) and As(III) were 94 min 

and 166 min, respectively.  
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Figure 3.10: Effect of CGB dose on residual arsenic concentration (initial As concentration 

5000 ȝg/L and 1000 ȝg/L, at pH 7, 298K). 
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Figure 3.11: Kinetics study of arsenite and arsenate adsorption onto CGB at 298 K, at pH=7. 

 

Table 3.4: Kinetic parameters for the sorption of As(III) and As(V) on CGB at pH 7, at 298 K. 

Kinetic  As(III) As(V) 

pseudo-second order C0. mmol/L 0.0817 0.0657 

 qe. mmol/g 0.0317 0.0274 

 k. g/mmol min 0.224 0.438 

 h. mmol/g min 2.2510
-4 3.2610

-4 

 r
2
 0.998 0.971 

arsenic removal ratio t=1.5 h (90 min) 35.5% 50.2% 

 t=24 h (1440 min) 88.6% 97.6% 

 t1/2. min 166 94 

C0, initial arsenic concentration; k, rate constant; qe, equilibrium sorption quantity; h, initial 

sorption rate; r2, coefficients of determination.; t1/2, half-life of arsenic in solution. 
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Selected distribution maps of As and Fe of As(V) and As(III)-loaded CGB cross-sections (at 

1.5h and 72h reaction time of kinetic experiment) are shown in Fig. 3.12. The distribution of 

Fe reveals the vacuolar nature of the CGB, which consists of spheres tending to be hollow or 

with uneven distribution of material at their inside. The hollow areas of CGB at 72h reaction 

time were larger than that of samples at 1.5h. This could be due to chitosan polymer swelling 

in solutions occurring during the experiment. The distribution of As reveals that, during the 

first 1.5h, As(III) penetrated for 70-80 ȝm in the beads, while the penetration of As(V) was 

slightly faster, reaching 100-110 ȝm. These value are consistent with the results of kinetics 

study data which show that As(V) adsorption onto CGB is faster than that of As(III). The 

profile distribution plots (Fig. 3.12) of As(III) and As(V) at 1.5 h indicate that the diffusion 

front is limited to a well defined ring at the beads surface, suggesting that the As adsorption is 

primary due to the formation of surface complexes. 

 

ȝXANES spectra collected at the points of interest, highlighted in Fig. 3.12 by white 

numbered circles, are reported in Fig. 3.13. Spectra 1-4 indicate that As is mainly (or only), in 

the 5+ oxidation state, while spectra 5-8 indicate mixed (3+ and 5+) As oxidation states. The 

results reveal that arsenic remained in 5+ oxidation state in all As(V)-loaded beads, while in 

the As(III)-loaded beads, it was partly oxidized to As(V). Since the ȝXANES and ȝXRF 

measurements were conducted in air and at room temperature, the oxidation of As from the 

3+ to the 5+ state is most probably due to the exposition to oxygen (bulk XANES performed 

in anaerobic environment and at low temperatures show no change in the oxidation state).  

 

After 72h, both As(III) and As(V) diffuse in the whole CGB section, their concentration being 

higher at the borders and diminishing moving to the center of the beads in a typical U shape 
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profile. This suggests that the arsenic adsorption takes place more rapidly than diffusion 

process. At the beginning of the reaction, arsenic concentration in the bath drops sharply due 

to the rapid adsorption on the surface and rim of the CGB bead. Once the arsenic ions enter 

the porous CGB, local micro-scale adsorption occurs between the porous aqueous phase 

containing arsenic solution and solid goethite/chitosan phase. With the transport of arsenic 

from bath solution into CGB, part of arsenic ions are preferentially adsorbed on the 

goethite/chitosan, and the rest could diffuse further to the core of bead. The diffusion and 

sorption reaches equilibrium when the As concentration in all pores of the beads equals to the 

As concentration in bath solution. The distribution of As in As-loaded CGB at the equilibrium 

(Fig. 3.12b, 3.12d) shows shell-to-centre arsenic concentration gradients.  

The observed inhomogeneous arsenic distribution can be ascribed to the decreasing 

concentration of the bulk solution. The kinetic experiments were performed in the finite bath 

sorption regime; i.e. the initial concentration in the solution outside the bead was not constant 

during sorptive equilibration process between the bath solution surrounding the beads and 

CGB particles themselves. The finite bath regime can be characterized by the nondimensional 

number (Schwarzenbach et al., 2005): 

td SK
'            (3.9) 

where '
dK  is the microscopic distribution coefficient that applies within the beads and St is the 

solid concentration per total volume. Ȗ corresponds to the final ratio of the mass adsorbed on 

the solid to the mass dissolved in the solution when sorption equilibrium is reached. The 

solute concentration inside the aggregate pores, '
wC , is always at equilibrium with the local 

adsorbed phase, '
sC , which satisfies the condition:  

'''
wds CKC             (3.10) 
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Figure 3.12: Distribution maps of As (green color) and Fe (red color). The pixel size is 10 x 

10 ȝm2. The yellow to orange colors indicate the co-presence of As and Fe. The distribution 

of As(V) and Fe is reported in panels (a), after 1.5h reaction time, and (b), after 72h reaction 

time. Panels (c) and (d) show the distribution of As(III) and Fe, respectively after 1.5h and 

72h reaction time. The plots below the distribution maps show the As and Fe concentration 

profiles calculated along the white thick lines superimposed with the distribution maps. The 

numbered white circles indicate the points where the ȝXANES spectra were acquired (Fig. 

3.13). 
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Figure 3.13: ȝXANES spectra acquired at the points of interest shown in Fig. 3.12. 

 

According to Wu and Gschwend (Wu and Gschwend, 1988), for different values of Ȗ, 

sorption proceeds as a function of the nondimensional time t*.  

2'2
*

)1( oswd

pm

o

eff

rrK

tD

r

tD
t 

,         (3.11) 

where, 

effD is the effective intraparticle diffusivity; 

pmD  is the diffusivity in the porous matter which is due to tortuosity or the Renkin effect;  


  1

sswr

,           (3.12) 

where swr  is the solid-to-water-phase ratio of the particle aggregate, s is the density of dry 

solid and   is the porosity of the particle; 
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 ro is the radius of the bead (m), and 

t is the exposed time (s). 

 

The non dimensional number Ȗ can be calculated by kinetics parameters and in our case 

(ȖAs(III)≈γ.5, and ȖAs(V)≈5), the nondimensional time, t
*, required to reach 50% equilibration 

(Mt/M∞=0.5), is about 0.00153 for As(III) and 0.00262 for As(V), which are obtained from 

the first-order sorption model and radial diffusion model at half-equilibration time for finite 

bath system according to Wu and Gschwend (Wu and Gschwend, 1988).  

Hence, 

for As(III) and As(V), we have, respectively: 

t0.5(Ȗ=γ.5)= 0.0015γ ×
)(

2

AsIIID

r

eff

o ;       (3.13) 

t0.5(Ȗ=5)= 0.00β6β ×
)(

2

AsVD

r

eff

o ;         (3.14) 

 

From the kinetics experiments we have: t0.5 (AsIII)≈140.8 min and t0.5 (AsV)≈8γ.9 min and 

or = 5.09×10-4 m, so we can calculate )(AsIIIDeff
= 6.69×10-14 m2/s and )(AsVDeff

= 

1.34×10-13 m2/s. The estimated effective diffusivities of As(III) and As(V) are similar. The 

higher estimated diffusivity of As(V) could be due to the electrostatic attraction between 

As(V) and the inner surface of the beads which accelerates the movement of As(V) towards 

the beads.  
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3.4. Practical applications.  

This study demonstrate that CGB remove both As(III) and As(V) from water efficiently. 

Hence, manipulation of pre-oxidation of As(III)-contained water for enhancing As removal 

rate is not necessary. For 1 liter of high-arsenate/arsenite water (1 mg/L), 0.5g and 2.5g CGB 

beads, respectively, can eliminate arsenic level to meet the 10 ȝg/L water standard. The 

results of leaching test prove that little extra iron was released from CGB during adsorption 

process, which demonstrates that CGB doesn‟t pose potential health risk by releasing 

nanoparticle or toxic element in application (compared other adsorbents like Mn/Al oxides or 

NPs). The mechanical property test shows that the material is very rigid and stable so that it 

can be easily stored, transported and used. The size and density of CGB beads allow for water 

decontamination without complicated or energy-consuming separation procedure, since those 

beads would precipitate at the bottom of the water container after their use for As removal or 

could be kept in permeable porous textile or plastic bags during the procedure. These 

properties highly reduce the cost and complexity of water remediation process. It could be a 

promising material particularly to developing nations, which suffer a diversity of socio-

economical-traditional constraints for water purification and sanitation.  

 

Figure 3.14: Proposed application of CGB in households for arsenic remediation. 
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4.1. Introduction 

An antibiotic is an agent that inhibits or kills bacteria. Its discovery is considered as one of 

greatest inventions of the 20th century since humankind could start to treat many bacteria-

caused diseases which were often fatal. An overview of the most important classes and groups 

of antibiotics are listed in Table 4.1. Despite decades of the large rate of use for human  and 

veterinary medicines, the occurrence and effects of antibiotics in the environment have been 

little studied until very recent times when it began to receive more notice and concern. Two 

reviews on antibiotics and related environmental issues published by Sarmah et al. (2006) and 

Kümmerer (2009) have highlighted the worldwide occurrence of antibiotics.  Human and 

animal faeces, hospital effluents, pharmaceutical industries and municipal sewage influent 

that contain antibiotics result in antibiotic residues in surface water and ground water (Figure 

4.1). The presence of antibiotics, even in low doses, gives rise to public concern due to a 

series of adverse effects to aquatic environment and potential risks to public health.  

 

 

Figure 4.1: Antibiotics in the water cycle. 
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Table 4.1: Important classes and groups of antibiotic compounds (Kümmerer, 2009). 

Class Group Subgroup Example 

β-lactams Penicillins Benzyl- Penicillins Phenoxypenicillin 

  Isoxazolylpenicillins Oxacillin 

  Aminopenicillins Amoxicillin 

  Carboxypenicillins Carbenicillin 

  Acylaminopenicillins Piperacillin 

 Cephalosporins Cefazolin group Cefazolin 

  Cefuroxim group Cefuroxim 

  Cefotaxim group Cefotaxim 

  Cefalexin group Cefprozil 

 Carbpenems  Meropenem 

Tetracyclines   Doxycycline 

Aminoglycosides   Gentamicin 1c 

Macrolides   Erythro-mycin A 

Glycopeptides   Vancomycin 

Sulfonamides   Sulfamethoxazole 

Quinolones   Ciprofloxacin 
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4.2. Sources of antibiotics contamination 

4.2.1. Pharmaceutical manufacturing 

Discharge from basic drug manufacturing facilities (BDMF) and drug formulation facilities 

(DFF) have been considered of minor importance but recent studies have shown that they can 

be substantial point sources with levels much higher than any other route (Khan et al., 2013). 

Larsson et al. (2007) reported high levels of antibiotics found from effluent of drug 

manufacturers in Patancheru, India, with the concentration of ciprofloxacin, the most 

abundant drug found downstream the plant, reaching 31 mg/L. Several antibiotics (highest 

concentrations range from 1100-49000 ng/L for different drug residues) were detected from 

water samples near one drug formulation facility in Pakistan (Khan et al., 2013). 

4.2.2. Hospital wastewater and municipal sewage 

Another possible route for antibiotic agents entering into the environment is hospital 

wastewater.  Due to the heavy use of antibiotics in hospitals, their concentrations are usually 

higher than those in domestic wastewater. About 0.7–124.5 mg/L of ciprofloxacin and 20–80 

mg/L of ȕ-lactams were found in effluents of a German hospital (Kümmerer 2003). 

Wastewater samples collected from a hospital in Girona, Spain were found to contain 

Ofloxacin and Ciprofloxacin at concentrations up to 10368 ng/L and 7494 ng/L, respectively 

(Gros et al., 2013). Elmanama et al. (2006) discussed the contribution of hospital wastewater 

to the spread of antibiotic resistance.  

The presence and fate of antibiotics in municipal wastewater treatment plants (WWTPs) are 

becoming an emerging research topic in recent years. Extensive researches on antibiotics 
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occurrence have been reported mainly in East Asia, North America, Europe, and Australia, 

according to Zhang and Li (2011), who report the occurrence, transformation, and fate of 

antibiotics in WWTPs. This review summarized much literature work published over the 

previous 8 years and concluded that many antibiotics cannot be removed completely in 

wastewater treatment processes and would enter into environment via effluent and sludge 

(Zhang and Li, 2011). Hospitals are considered as major sources of pharmaceutical residues 

discharged to municipal wastewater (Reinthaler et al., 2003; Garciaetal., 2007), but some new 

research showed that the contribution of hospitals to the loads of selected, quantifiable 

pharmaceuticals in sewage treatment plant influents was limited (Guardabassi et al., 2002; Le 

Corre et al., 2013). The overall impact of discharging untreated hospital effluents into the 

sewer system is still under debate (Le Corre et al., 2013).  

 

4.2.3. Animal farms and aquaculture 

Animal farms are recognized as a major contributor to environmental pollution with antibiotic 

resistance genes. Although in the European Union, as well as in some other countries such as 

Switzerland, the use of antibiotics as growth promoters in animal farms has been banned, 

other countries still extensively use antibiotics in livestock. Over 84% of the antibiotics 

produced in the USA are still used in agriculture, with non-therapeutic livestock usage 

accounting for 70% of the total antimicrobial use (Mellon et al. β001). China is the world‟s 

biggest producer and consumer of antibiotics in the world. Antibiotics consumption on animal 

farms was estimated to be more than 970 kt per year in China, accounting for more than 46% 

of the total annual production of antibiotics (CAST, 2007, The Conversation, 2013). 

Antibiotics (antimicrobials at large) are extensively used in animal farming as well as 
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aquaculture for preventing/treating infections and promoting growth (Holmstrom et al., 2003; 

Smith et al., 2002). Many kinds of drugs with remarkable concentrations were ubiquitous in 

animal farms and aquafarms (Le and Munekage, 2004; Miranda et al., 2009). Several studies 

have revealed the veterinary/aquaculture antimicrobial compounds can lead to the 

contamination to the environment via animal feces or aquaculture discharge (Karci and 

Balcioglu, 2009; Hoa et al., 2011; Barkovskii and Bridges, 2012; Zhou et al., 2013).  

 

4.3. Advert effects 

4.3.1. Antibiotic resistance 

Over the past five decades the increasing use of antibiotics, not only for people, but also for 

animals and in agriculture, has delivered a selection unprecedented in the history of evolution 

(Levy, 1992). The powerful killing and growth inhibitory effects of antibiotics have reduced 

the numbers of susceptible strains, leading to the propagation of resistant variants (Levy, 

2008). Such resistant bacteria can cause an infection both in humans and animals and may not 

respond to regular antibiotic treatments (Regassa et al., 2008). Antibiotic resistant bacteria 

have been found in many hospital wastewaters and municipal sewage all around the world 

(Akter et al., 2012; Huang et al., 2012; Novo et al., 2013; Korzeniewska et al., 2013). In 

natural waters, antibiotic resistant bacteria were also detected worldwide (Hoa et al., 2011; 

Khan et al., 2013; Skariyachan et al., 2013; Coleman et al., 2013). Microbes circulate 

everywhere - resistance determinants and resistant bacteria can spread locally and globally, 

selected by widespread use of the same antibiotics in people, animal husbandry and 

agriculture (Levy, 2008). 
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4.3.2. Potential public health risks 

The potential presence of antibiotics in drinking water sources is of concern due to the 

unknown health effects of chronic low-level exposure to antibiotics over a lifetime if the 

antibiotics survive drinking water treatment and are present in consumers‟ drinking water (Ye 

et al., 2007). Pomati et al. (2006) reported that a complex mixture of therapeutic drugs 

(including four antibiotics) at environmentally relevant concentrations inhibits proliferation of 

human embryonic cells. (Kim and Aga, 2007). Chen et al. (2012) studied the potential toxicity 

of sulfanilamide antibiotic to human health. Results suggested the microenvironment and 

conformation of human serum albumin (HAS) were changed in the presence of 

sulfamethazine (SMZ). Hence, the abuse of antibiotics or excess ingestion of SMZ would 

affect the normal biological function of proteins, and cause potential human health risks. 

4.3.3. Aquatic life poisoning 

Thibaut et al. (2006) provided evidence of inhibitory effects of low levels of pharmaceuticals 

on the catalytic activities of different xenobiotic metabolizing enzymes in carp liver. Those 

pharmaceuticals might potentially impact aquatic life as well according to the study of Pomati 

et al. (2006). Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and 

oxytetracycline (OXT), the four most widely used veterinary drugs in animal husbandry or in 

aquaculture, were have been investigated as to their aquatic toxicity to marine bacteria (Vibrio 

fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans 

(Daphnia magna). It was found that OXT and FLO have a stronger adverse effect on 

duckweed and green algae (Kolodziejska et al., 2013). Toxicities of amoxicillin, erythromycin, 
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levofloxacin, norfloxacin and tetracycline to cyanobacterium Anabaena CPB4337 and the 

green alga Pseudokirchneriella subcapitata have been examined. Results showed that 

erythromycin was highly toxic for both organisms; tetracycline was more toxic to the green 

algae whereas the quinolones levofloxacin and norfloxacin were more toxic to the 

cyanobacterium than to the green alga. Amoxicillin also displayed toxicity to the 

cyanobacterium but showed no toxicity to the green alga (Gonzalez-Pleiter et al., 2013). 

 

4.3. Antibiotic contamination in WWTPs and natural waters of China  

After being used, antibiotics are excreted into effluent and reach wastewater treatment plants 

or reach the environment directly. In this process, antibiotics can be partially metabolized. 

Since WWTPs can only eliminatantibiotics partially, the residual parts pass though WWTPs 

and then end up in the environment – surface water, ground water, sea water, soil or sediment.  

As China is the largest producer and consumer of antibiotics in the world, it‟s not surprising 

that antibiotics have been found to be widespread in WWTPs and the environment. Table 4.2 

lists reports of the presence of antibiotics throughout China, in WWTPs, surface waters, 

ground waters, etc. A variety of antibiotics have been reported with considerable 

concentrations especially in some surface waters. Obviously, densely populated areas are 

particularly prone to antibiotics contamination. In some water bodies, the levels of antibiotics 

are in the same range as those in WWTPs. The level of antibiotics in tap water reached 697 

ng/L in Macau and Guangzhou (Wang et al., 2010). 
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Table 4.2: Presence of antibiotics in WWTPs and natural waters of China. 

Sample type: 

wastewater 

treatment plant 

Antibiotic Level (ng/L) 

(influent) 

Level 

(effluent) 

Location Reference 

 erythromycin-H2O, 

etc 

(chloramphenicol, 

fluoroquinolone, 

sulfonamide and 

macrolide groups) 

Up to1978 Up to 2054 Pearl River Delta Xu et al., 

2007  

 Cefalexin, etc; 

Cefotaxim, etc 

Up to 2900; 

Up to 1100 

Up to 1800 Hong Kong Gulkowska et 

al., 2008.  

 Ofloxacin etc; 

(eight 

fluoroquinolones, 

nine sulfonamides 

and five macrolides) 

Up to 3100 Up to 1200 8 STPs in Beijing Gao et al., 

2012 

 Quinolones, etc; 

(eight quinolones, 

nine sulfonamides, 

and five macrolides) 

Up to 4916 Up to 123 Beijing Li et al., 2013 

 Sulfamethoxazole, 

etc; 

(sulfadiazine, 

ofloxacin and 

chloramphenicol) 

Up to 7910  2 STPs in Guangzhou Peng et al., 

2006 
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 Clotrimazole 

Fluconazole, 

econazole, 

ketoconazole, and 

miconazole 

Up to 1834  Guangzhou Peng et al., 

2012 

 Cefalexin,  

ofloxacin and etc. 

Up to 5640 

and 7900, 

respectively 

Up to 5070, 

7870, 

respectively 

Hong Kong Leung et al., 

2012 

Sample 

type :Natural 

Waters/Water 

supply 

Antibiotic Level (ng/L) 

 

Location Reference 

 14 sulfonamides, 2 

chloramphenicols and 

4 

tetracyclines  

Up to 9.23 Seawater, Dalian Na et al., 2013 

 eight quinolones, 

nine 

sulfonamides and five 

macrolides 

Up to 1563 Baiyangdian Lake Li et al., 2012 

 sulfonamides, 

fluoroquinolone, 

tetracycline and 

chloramphenicol 

8.6, 11.6 in groundwater and 

in lake water (summer); 

7.3, 11.7 in groundwater and 

in lake water (winter) 

 

Groundwater, lake 

water near pig farm, 

Hubei Province 

Tong et al., 

2009 

 4 tetracyclines, 3 

chloramphenicols, 2 

macrolides, 6 

Up to 623.27 Huangpu River, 

Shanghai 

Jiang et al., 

2011 
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fluoroquinolones, 6 

sulfonamides and 

trimethoprim 

 Sulfamethazine, etc Up to 218 Pearl River Estuary Liang et al., 

2013 

 dehydration 

erythromycin, 

sulfamethoxazole and 

trimethoprim 

Up to 50.4 and 663, in sea 

water and fresh water, 

respectively 

Coast of Yellow Sea 

and river close to the 

sea 

Zhang et al., 

2013 

 Erythromycine-H2O, 

sulfamethoxazole and 

trimethoprim 

Up to 50.9 Beibu Gulf Zheng et al., 

2012 

 fluoroquinolones, 

macrolides, 

sulfonamides and 

trimethoprim 

Up to 13,600 for trimethoprim LaizhouBay Zhang et al., 

2012 

 sulfonamides, 

macrolides, 

and trimethoprim 

Up to 1336 Tributaries of 

YongjiangRiver 

Xue et al., 

2013 

 Erythromycin-H2O 

concentrations 

Up to 460 Victoria Harbour of 

Hong Kong and the 

Pearl River at 

Guangzhou 

Xu et al., 

2007 

 norfloxacin, 

ciprofloxacin, 

lomefloxacin, and 

enrofloxacin 

Up to 679.7 Tap water of 

Guangzhou and 

Macao 

Wang et al., 

2010 

 Sulfonamides, Up to 6800 Bohai Bay Zou et al., 
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Fluoroquinolones 

Macrolides and 

Tetracyclines 

2011 

 dehydration 

erythromycin, 

sulfamethoxazole and 

trimethoprim 

0.10-16.6 Bohai Sea and the 

Yellow Sea 

Zhang et al., 

2013b 

 Sulfapyridine, etc Up to 219 Yangtze Estuary Yan et al., 

2013 

 Sulfadimidine, etc Up to 475.8 East River 

(Dongjiang) 

Zhang et al., 

2012b 

 Roxithromycin, etc Up to 2260 Pearl River System Yang et al., 

2011 

 Sulfonamides, etc 24-385 ng/L Haihe River Basin Luo et al., 

2011 

 

4.4. Elimination 

Since antibiotics are often complex molecules which may possess different functionalities, 

under different pH conditions antibiotics can be neutral, cationic, anionic or zwitterionic 

(Kümmerer, 2009). Antibiotics can be degraded by biotic processes - biodegradation by 

bacteria and fungi. Depending on their physico-chemical properties, sorption, hydrolysis, 

photolysis, oxidation and reduction can play a role in antibiotics elimination as well. These 

processes have been applied in removal of the antibiotics from water in industry and scientific 

research. 
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Clay minerals are widely considered as an active component of soils for the adsorption of 

polar xenobiotics (Boyd et al., 2001). Studying the adsorption of antibiotics onto clay 

minerals can help to understand the environmental fate of those antibiotics in soils, subsoils, 

aquifers and sediments. On the other hand, clay minerals can be used as low-cost materials as 

the removal reagent for treating water with antibiotic contaminants. The adsorption behavior 

of enrofloxacin onto smectite clay and mechanisms of adsorption has been discussed (Yan et 

al., 2012). The study of adorption of tetracycline on illite has also been reported (Chang et al., 

2012). In the next chapter, montmorillonite, a member of the smectite family, was used to 

uptake gentamicin from water. The mechanism was studied and the solid waste produced in 

the adsorption process (gentamicin-loaded montmorillonite) was recycled and reused to 

fabricate an antimicrobial film which is potentially usable as a skin wound dressing for burn 

patients. 
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5.1. Introduction 

The presence of antibiotics in natural waters is of concern for many reasons. First, antibiotic 

resistance can develop in bacteria with exposure to sub-inhibitory concentrations (Ash et al., 

2002). Second, aquatic organisms such as algae, nitrifying bacteria and zooplankton, can be 

adversely affected by mixtures of antibiotics even at low concentrations (Flaherty and Dodson, 

2005; Yang et al., 2008; Ghosh et al., 2009). And lastly, although the human health effects of 

sustained exposure to antibiotics at sub-therapeutic doses are currently unclear, there is 

increasing public awareness about the presence of antibiotics and other pharmaceutical 

compounds in drinking water supplies (Benotti et al., 2009). Thus there is interest in 

procedures to remove antibiotics and other pharmaceutical compounds from water supplies 

(Wunder et al., 2011). Antibiotics are not effectively removed via conventional water 

treatment (i.e. coagulation/flocculation/sedimentation/filtration) or lime softening ( ≤33%, 

Adams et al., 2002; Westerhoff et al., 2005; Wunder et al., 2011).  

Gentamicin (Gt.), an aminoglycoside antibiotic produced by fermentation of Micromonospura 

purpurea, is a mixture of basic, water soluble compounds containing the aminocyclitol 2-

deoxystreptamine and 2 additional amino sugars (MacNeil and Cuerpo, 1995). Its formula is 

shown in Figure 5.1 and the pKa of various functional groups are shown in Table 5.1. Gt. 

shares many structural and functional features with other antibiotics containing streptamin or 

its derivatives, such as streptomycin, meomycin and kanamycin (Butko et al., 1990). 

Gentamicin is used to treat many types of bacterial infections, particularly those caused by 

Gram-negative organisms (Moulds and Jeyasingham, 2010). The main toxic effects of the 

aminoglycoside antibiotics are nephrotoxicity and ototoxicity. Furthermore, fetotoxicity was 

observed for gentamicin (Gehring et al., 2005). Although application of Gt. in human 
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medicine has declined, its use in veterinary and agriculture is still intense. Gentamicin can 

enter the environment via pharmaceutical factories, hospital waste water and animal 

droppings. 

Adsorption of Gt. onto Na+-montmorillonite was investigated as a method to remove 

gentamicin-like positive charged antibiotics from water. Gentamicin-loaded montmorillonite, 

as the solid waste of the sorption process, can be recycled and reused in burn wound treatment.  

Burn wound infections are among the most important and potentially serious complications 

that occur during the acute period following injury. Systemic treatment against infection is 

limited by inadequate wound perfusion, which restricts migration of host immune cells and 

the delivery of antimicrobial agents to the wound. In this case, the local concentration of the 

antibiotics may be insufficient and may lead to bacterial resistance (Elsner et al., 2011). The 

widespread application of a topical antimicrobial agent on the open burn wound surface can 

substantially reduce the microbial load and risk of infection (Murphy et al., 2003). The typical 

burn wound is initially colonized predominantly with Gram-positive organisms, which are 

replaced by antibiotic-susceptible Gram-negative organisms within 1 week after the burn 

injury. Gentamicin is accordingly used to treat many types of bacterial infections, particularly 

those caused by Gram-negative organisms and it can protect the recovering tissue from 

potential infection or re-infection, therefore gentamicin has been used for cure burn wounds 

(Moulds and Jeyasingham, 2010). Gentamicin-eluting collagen sponges have been found 

useful in both partial-thickness and full-thickness burn wounds (Elsner et al., 2011). A new 

concept of wound dressing, which is based on a polyglyconate mesh coated with a porous 

poly-(DL-lactic-co-glycolic acid) matrix loaded with gentamicin, are applied in burn wounds 

(Aviv el al., 2007; Elsner et al., 2011).  



Chapter 5 

-87- 

This study developed a gentamicin-loaded montmorillonite based on a hydroxypropyl 

methycellulose bionanocomposite, and which can be potentially used as a burn wound 

dressing. Hydroxypropyl methycellulose (HPMC, Figure 5.2) is the most important 

hydrophilic carrier material used for the preparation of oral controlled drug delivery systems 

(Doelker, 1987; Colombo, 1993). The reinforcing clay mineral and HPMC afford the 

necessary mechanical strength to the dressing, and the combined binding matrix is aimed to 

provide adequate moisture control and release of antibiotics to protect the wound bed from 

infection and to promote healing. Gt-Mt-HPMC films with different ratios of Gt-Mt to HPMC 

were synthesized and the mechanical properties and moisture adsorption behavior of several 

composite films examined. Antimicrobial effects against skin infection-causing bacteria 

Staphylococcus aureus of Gt-Mt-HPMC were also determined..  

 

Figure 5.1: Gentamicin structures (Gentamicin C1: R1=R2=CH3; Gentamicin C2: R1=CH3, 

R2=H; Gentamicin C1a: R1=R2=H).  

 

Figure 5.2: molecule structure of hydroxypropyl methycellulose (HPMC), R=H or CH3 or 

CH2CH(OH)CH3. 
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5.2. Experimental section 

5.2.1. Materials 

Gentamincin sulfate (48760) was supplied by Sigma-Aldrich. Montmorillonite, Cloisite® 

Na+ Nanoclay, with a cationic exchange capacity of 92.6 meq/100 g was obtained from 

Southern Clay Products (Rockwood Additives). Deionized water (resistance of 18.2 MΩ. cm) 

was obtained with a Maxima Ultra Pure Water system from Elga. 

5.2.2. Methods 

5.2.2.1. Isotherm study 

The Cloisite® Na+ Nanoclay obtained for this study was used without any purification. A 

series of gentamincin sulfate solutions were prepared by dissolving known weights of 

gentamicin sulfate directly into deionized water. Clay and gentamicin mixtures in air-tight 

bottles covered by aluminum film were shaken for 7 days at constant temperature (294 K). In 

the batch experiment, the clay weight/ gentamicin solution volume ratio was 10 g/L.  

Table 5.1: pKa values of gentamicin C1a, C2, C1 (Lesniak et al., 2003). 

Amino group number 

(Fig. 5.1) 
Gt-C1a Gt-C2 Gt-C1 

1 8.86 8.793 8.817 

2 8.181 8.211 8.121 

3 5.768 5.83 5.686 

4 7.389 7.421 7.317 

5 9.491 9.593 9.86 
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Figure 5.3: Ionization scheme of gentamicin C1, C2, C1a. 
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Table 5.2: Sample information for Isotherm experiments of gentamicin adsorption on Na+-

montmorillonite. 

Sample No. C0 

(gentamincin sulfate)-mg/L 

b   250 

c   500 

d 2000 

e 5000 

f 5974 

g 7316 

 

All the mixtures were centrifuged at the end of adsorption process and the supernatants were 

removed. The centrifuged precipitates (labeled as b, c, d, e, f, g, corresponding to the solution 

numbers) were air-dried at 40℃ in the dark. 

5.2.2.2. Characterization 

The resulting gentamicin-clay samples were characterized by chemical analysis: the amount 

of organic matter in the samples was determined by C, H and N elemental chemical 

microanalysis with a Perkin–Elmer 2400 analyzer; X-ray diffraction (XRD) patterns of clay 

and drug-loaded clay were obtained on a Bruker D8 Advance powder diffractometer using 

CuKα radiation with energy-discriminator and a scan speed of 0.02°/s; The thermal behavior 

of the different materials (montmorillonite, gentamicin and gentamicin-loaded 

montmorillonite) were determined from  simultaneously recorded thermogravimetric analysis 
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(TGA) and differential thermal analysis (DTA) curves with a Seiko SSC/5200 instrument in 

experiments carried out under an air atmosphere (gas flow rate of 100 mL min–1) from room 

temperature to 990 °C at a heating rate of 10 °C min–1; FTIR spectra were measured in 

transmission absorption mode over the 4000-250 cm-1 region on a Bruker IFS 66v/S 

spectrophotometer, with the samples prepared in KBr pellets,. 

 

5.2.2.3. Photo-stability studies 

Gentamicin sulfate and Gentamicin-Montmorillonite (sample d) were exposed under 

ultraviolet radiation for 24 hours (continuous 254-nm UV lamp), at ambient temperature (25 

±4°C). About 5 mg of each sample was collected and analyzed by ATR-IR (GladiATR 10, 

SHIMADZU) after 3h, 6h, 12h, 18h and 24h of UV exposure. 

 

5.2.2.4. In vitro Gt. release from Gt-Mt. 

Several tubes which were wrapped by alumimum film were prepared. Twenty milligrams of 

gentamicin-clay (sample d) and 2 ml of PBS (phosphate buffer solution pH 7) were added into 

these tubes. They were shaken in reciprocatory water bath (37°C) at 75 rpm. At given time 

intervals, one tube was taken out of bath and the mixture was filtered by filtration film. All the 

precipitation was collected was treated as those samples in isotherm study. After 24h of 

drying, they were characterized by chemical analysis. 
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5.2.2.5. Preparation of Gt-Mt-HPMC films. 

Gentamicin-montmorillonite nanocomposites were prepared by the method we used to 

prepare sample f in the isotherm experiments. After 5 days of the adsorption process, the final 

mixture was centrifuged at 294 K at 4000 rpm for 20 min. 

The HPMC solution (control film) was obtained by dissolving 2 g of HPMC in 100 mL 

distilled water under magnetic stirring for 12 h. A 2% (w/v) HPMC solution was used in film 

formulations. To study the effect of Gt-Mt hybrid concentration in the HPMC film matrix, 

different concentrations of Gt-Mt nanohybrid were mixed with the 2 % HPMC solution to 

obtain different film compositions. The wet precipitation hybrids (freshly synthesized) which 

contained 220, 250, 300, 350 mg of dry hybrid were relatively added into four separated 10 

ml HPMC solution. Each mixture was stirred in an oil bath at 40 °C at 400 rpm for 4 hours. 

The suspensions were then dropped on plastic plates (10×10 cm) at room temperature for film 

preparation. Those plastic plates were placed in a ventilation box with a UV lamp. The box 

and the samples were sterilized by UV lamp for the first 15 min. The films were formed by 

evaporation of water from the samples in the ventilation box for 4 days. Obverse side and 

reverse side (contacting the plastic plates) of the film were named as the O side and R side 

respectively. Resulting films formed by the four different initial mixtures containing 

increasing amount of Gt-Mt hybrid are named as film a, b, c, d, respectively. 

5.2.2.6. Film characterization 

Field Emission - Scanning Electron Microscopy (FE-SEM)  

A Field Emission - Scanning Electron Microscopy (FEI NovaTM NanoSEM 230) was used to 

study the morphology of the films. All the samples were deposited onto aluminum specimen 
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stubs using double-stick carbon tabs, and the morphology of both the O side and the R side of 

each sample were investigated. All samples were examined using an accelerating beam at a 

voltage of 7 kV. Magnifications of 3000× were used. 

Moisture-Adsorption Isotherms 

Moisture sorption was investigated by an Aquadyne DVS dynamic water-vapor sorption 

instrument from Quantachrome. Moisture-sorption isotherms were recorded at 25 ± 0.3 °C in 

the range of relative humidity from 0 to 95% by using amounts of samples of around 7 mg. 

Mechanical Properties  

Films used for tensile tests were conditioned at about 65% RH at 15 °C during the 

measurements. The sample films which were cut to have a rectangular shape (ca. 60 mm x 15 

mm) were mounted between the grips with an initial separation of 50 mm. A Model 3345 

Instron Universal Testing Machine (Instron Engineering Corporation Canton, MA, USA) was 

used to determine the maximum percentage (%) elongation at break, and elastic modulus E 

(or Young‟s modulus) according to the ASTM standard method D 882-88. The cross-head 

speed was set at 5 mm min–1. Three replicates were run for each film sample. The elastic 

modulus E was obtained as the ratio of stress to strain at the initial linear portion of the stress-

strain curve. The percentage elongation at thebreaking point was calculated by dividing the 

extension at rupture of the films by the initial length of the specimen and multiplying by 100. 

5.2.2.7. Antimicrobial activity of Gt-Mt-HPMC film 

Antimicrobial effectiveness was examined according to ASTM E2149 (Standard test Method 

for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic 

contact conditions). 0.05 g film-c (3%) was introduced in test tubes containing 5 mL peptone 
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water. Pure montmorillonite and HPMC samples without gentamicin were used as controls. 

The samples were neutralized when required. Each tube was inoculated with 105 cells/mL of 

Staphylococcus aureus (CECT 86, ATCC 12600) in mid-exponential phase and incubated in a 

wrist action shaker (160 rpm) at 25ºC for 24h. For different samples and controls, bacterial 

counts were enumerated by sub-cultivation on TSA plates. 

5.3. Result and Discussion 

5.3.1. Preparation of Gt-Mt. nanohybrid and Isotherm study 

The amino groups of the sugar rings of gentamicin exhibit variable pKa values which range 

from 5.6 to 9.8 as shown in Table 5.1. Thus, gentamicin carries a net positive charge under 

the experimental acidic conditions when all or parts of amino groups are protonated. All the 

initial pH values of gentamicin sulfate solutions for adsorption experiment were around 5.5, 

which made it possible that gentamicin intercalation in Na+-montmorillonite by means of 

cationic exchange processes. Figure 5.4 shows the adsorption isotherm at 294 K from 

gentamicin sulfate solutions on Na+-montmorillonite. The adsorbed amount of gentamicin 

was deduced from the CHN chemical analyses. 

In order to investigate the adsorption isotherm, three equilibrium isotherm models were 

applied: the Langmuir, the Freundlich, and the Redlich-Peterson isotherms. The Langmuir 

adsorption isotherm is perhaps the best known of all isotherms describing adsorption 

(Langmuir, 1918). The theoretical Langmuir isotherm is often used to describe adsorption of a 

solute from a liquid solution as (Langmuir, 1918; Ho et al., 2002) 

          (5.1) 
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Where qe is the equilibrium adsorption capacity, (mg/g), Ce is the equilibrium liquid phase 

concentration, (mg/L), qm is the maximum adsorption capacity, (mg/g), Ka is adsorption 

equilibrium constant, (L/mg). 

 

Figure 5.4: Isotherm of gentamicin adsorption onto Na+-montmorillonite. 

The Freundlich isotherm is the earliest known relationship describing the adsorption isotherm 

(Freundlich, 1906). This fairly satisfactory empirical isotherm can be used in adsorption from 

dilute solutions. The ordinary adsorption isotherm is expressed by the following equation: 

           (5.2) 

whereCe is the equilibrium concentration in the solution, (mg/L), qe is the equilibrium 

adsorption capacity, (mg/g), KF and 1/n are empirical constants. KF is the adsorption value, the 

n

eFe CKq
1
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amount adsorbed at unit concentration, that is, at 1 mg/L. It is characteristic for the adsorbent 

and the adsobate adsorbed, and denotes multiple sorption site with varying Ka value (Sposito, 

1984). 

The Redlich-Peterson isotherm contains three parameters and incorporates the features of the 

Langmuir and the Freundlich isotherms (Redlich and Peterson, 1959). It can be described as 

follows: 

           (5.3) 

It has three isotherm constants, namely A, B, and g (0 <g< 1). 

Due to the inherent bias resulting from linearisation, alternative isotherm parameter sets were 

determined by non-linear regression. This provides a mathematically rigorous method for 

determining isotherm parameters using the original form of the isotherm equation (Seidel and 

Gelbin, 1988; Ho, 2004). To compare the three isotherms, a trial-and-error procedure, 

wasapplied to obtain the isotherm parameters.The method is using an optimization routine to 

maximize the coefficient of determination r2, between the experimental data and isotherms in 

the solver add-in with Microsoft‟s spreadsheet, Microsoft Excel (Ho and Ofomaja, β005, Ho, 

2006). 

The coefficient of determination r2 was 

;        (5.4) 
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Where qm is the equilibrium capacity obtained from the isotherm model, qe is the equilibrium 

capacity obtained from experiment, and  is the average of qe. 

The Langmuir and the Redlich-Peterson isotherms have best fitted for the adsorption of 

gentamicin on Na+-montmorillonite at 294 K. 

Thermodynamic considerations of an adsorption process are necessary to conclude whether 

the process is spontaneous or not. Gibb‟s free energy change, G°, is the fundamental 

criterion of spontaneity. Reactions occur spontaneously at a given temperature if G° is a 

negative value. Adsorption processes are calculated using the following equations: 

a

o
KRTG ln ;          (5.5) 

where R is universal gas constant (8.314 J/mol K) and T is the absolute temperature in K. 

The thermodynamic parameters Gibb‟s free energy change, G, are calculated using Ka 

which in obtained from Langmuir Eq. (5.1) and is shown in Table 5.3. 

The Gibbs energy of adsorption was -1.119 kJ mol-1. The negative values of Gibbs energy 

confirms the feasibility of the process and the spontaneous nature of adsorption of gentamicin 

on Na+-montmorillonite 

It is assumed that the cationic exchange sites in the clay, 92.6 meq/100 g, can adsorb certain 

amout of charged gentamicin due to protonation of –NH3
+ and –NH2

+–.The total charge 

depends on protonation state of hydroxyl group and amines at given pH. In the present work, 

the pH value in isotherm experiment was around 5.5. According to the study of Ganchev et al. 

(1973) and Lesniak et al. (2003), the ionic forms (Fig. 5.3) of gentamicin at our experimental 

pH should mainly be Gentamicin5+, with small amout of Gentamicin4+. The interlayer space 

eq
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of smectites are known to be strongly acidic, thus it could be predicted that gentamicin were 

present only as Gentamicin5+ in the interlayer of montmorillonite in strong acidic environment. 

As a result, the total amount of gentamicin could be retained by the clay we used was around 

0.232 mmol/g, deduced by CEC of the clay. In the sorption isotherm study, it was considered 

that sample e, f and g have reached maximum adsorption, and the amounts of gentamicin 

adsorbed by them were in the range of 0.22~0.24 mmol/g. The value proved that Gt5+ was the 

only ionic species of gentamicin intercalated into the clay interlayer. 

Table 5.3: Isotherm parameters obtained using the non-linear method for the adsorption of 

gentamicin on Na+-montmorillonite at 294 K. 

Isotherm T (K) 294 

Langmuir qm, mg/g 184.2 

 Ka, L/mg 0.0022 

 r
2 0.978 

Freundlich 1/n 0.375 

 KF, (mg/g)(L/mg)1/n 7.51 

 r
2 0.884 

Redlich-Peterson g 1.000 

 B, (L/mg)g 0.0024 

 A, L/g 0.435 

 r
2 0.978 
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We performed EDX measurement on starting montmorillonite (labeled as sample a), sample c, 

d and g. The EDX results indicate a decreasing Na+ ratio and increasing carbon ratio with the 

increasing amout of gentamicin adsorbed on the clay Wt(Na+) a > c > d > g (Table 5.4).  

Table 5.4: EDX result of sodium weight percentage in the clay and Gt-Mt samples. 

Sample No. Wt(%) of Na to 

clay sample 

(EDX) 

Wt(%) of C to 

clay sample 

Gt. Uptake of the 

clay 

mmol/g 

 

Wt(%) of Na to 

clay sample  

(estimated) 

a 2.94 2.6 0 2.94 (EDX) 

c 1.34 12.3 0.056 2.2 

d 0.55 6.8 0.141 1.2 

g 0.41 14.5 0.219 0.37 

 

If we assume that all the exchangeable cations are Na+, the weight percentage of Na+ to Gt-Mt 

clay samples could be estimated by the amount of Gt. adsorbed on different clay samples.  One 

gentamicin5+ molecule can exchange five Na+ cations equivalently. Thus, the weight 

percentage of sodium of sample c, d and g can be estimated by: 

�� % =
݉ܰܽ (�)−݉ܰܽ (݁)݈݉ܿܽ� −݉ܰܽ (݁)+݉�� × 100% =

݉ܰܽ (�)−5×݊�� �݈ܽܿ݉ܽܰܯ× −5×݊�� ܽܰܯ× +݊�� ��ܯ× × 100%  (5.6) 

mNa(i), nNa(i): initial mass and amount of substance of sodium in the clay (g); 

mNa(e), mass lost of sodium due to exchange of gentamicin (g);  

mclay, initial mass of pure Na+-montmorillonite (g); 

http://en.wikipedia.org/wiki/Amount_of_substance


Chapter 5 

-100- 

mGt, nGt: mass and amount of substance of gentamicin intercalated in the clay (mol);  

MNa, MGt: molecular weight of sodium and gentamicin (g/mol), 

The calculation results are shown in Table 5.4. The estimation shows the same trend of 

decreasing sodium ratio to Gt-Mt samples and the values are similar to EDX results. In this 

way, the predominance of ion-exchange mechanisms driving the intercalation of the 

gentamicin into the phyllosilicate substrate is experimentally confirmed. 

5.3.2. Characterization, degradation and in vitro release experiment of Gt-Mt 

composites. 

XRD characterization. 

Figure 5.5 shows the XRD patterns of clay and gentamicin-clay nanocomposites. The 

intercalation of the gentamicin in the clay interlayers was confirmed by the decrease of 2θ 

values while the gentamicin/clay ratio increases. Sample e, f and g were obtained when 

gentamicin adsorption on clay reached saturation, which means these samples should have the 

same d001 spacing value. As shown in XRD results, the d001 spacing reaches 1.4 nm when the 

adsorption reaches equilibrium. However, sample d, which contains less gentamicin compared 

to e, f, g has same d001 spacing as those full cation-exchanged samples. In a study by Darder et 

al. (2003), the intercalation of chitosan in montmorillonite increases clay basal spacing to 1.4 

nm when there‟s mono-layer of chitosan was uptaken by the clay. Because gentamicin 

molecule has similar structure as chitosan (both contain modified sugar rings), we believe that 

gentamicin intercalation has similar pattern as chitosan intercalation into clay shown in 

Scheme 4.1. The increase of clay d001 spacing was due to the thickness of gentamicin 

molecule sheet.  

http://en.wikipedia.org/wiki/Amount_of_substance
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Figure 5.5: XRD patterns of a: starting montmorillonite; b, c, d e, f and g, samples obtained 

in isotherm study, d001 basal space unit: nm. 

 

Scheme 5.1: Intercalation of gentamicin into Na+-Montmorillonite.
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Figure 5.6: 3D gentamicin molecule (blue: N; red: O; grey: C, H atom was omitted ). 

Doadrio et al. (2004) reported the lower energy configuration of gentamicin (Fig. 5.6), with 

two-dimension size of a gentamicin molecular was around 0.52 × 1.53 nm2. For sample e, f, g, 

distance between two consecutive smectite layers was about 0.47 nm, similar to the size of 

gentamicin molecule in one dimention (Scheme 4.1). The result showed that gentamicin 

molecule was intercalated as the configuration shown in Scheme 5.1, with the three ring chain 

of gentamicin molecule was positioned roughly paralled to the smectite layers.  

In order to provide experimental confirmation of the optiomal layer spacing, the fwhm profile 

as a function of d001 of Gt-Mt samples was examined (Figure 5.7). Changes in fwhm have 

been attributed previously to the evolution of different configurations of the intercalated 

molecules, whereby, in a profile of fwhm values as a function of d001, an increase in fwhm 

typically indicateds interstratifications of different layer types. Similar to the hypothesis put 

forth in the case of the adsorption of lysine on montmorillonite, a minimun in fwhm would be 

reached when the clay interlayers are saturated with adsorbed gentamicin, and the 

corresponding layer spacing would be considered optimal for the binding of gentamicin in the 

interlayer (Parbhakar et al., 2007; Wang et al., 2009; Aristilde et al., 2013). With the 

increasing amount of gentamicin intercalated in the clay, the FWHM was decreasing. When 
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the clay was saturated with gentamcin, the FWHM value reached the minimum level, which 

was proposed to be due a gradual change in the interlayer configuration occurring 

homogeneously within all layers, wherein the molecules would change position or orientation, 

for instance, from being stretched to a relatively flat chain molecure with high energy to being 

stable molecule chains less distorted.  

 

Figure 5.7: Changes in full-fixed width at half-maximum intensity (FWHM) as a function of 

d001 for Gt-Mt samples. 

 IR Spectroscopy 

Besides the vibrational band characteristics of the silicate (ȞOH of Al, Mg(OH) 3633 cm-1; 

ȞOH of H2O 3451 and 3249 cm-1; δHOH 1637 cm-1; and ȞSiO of Si-O-Si 1045 cm-1), the 

bands attributed to the intercalated gentamicin are also observed in the spectrum of 

gentamicin-clay composite (Figure 5.8). Also, vibrational bands (N-H in-plane deformation 

vibration of unprotonated amine group) of gentamicin overlap the bands (δHOH) of the 

silicate and a combination band is formed at 1632 cm-1 in gentamicin-clay composite. The 

frequency of vibrational bands at 1530 cm-1 in the gentamicin, which corresponds to 

symmetric deformation vibration (δNH3
+) of the protonated primary amine group, is shifted to 
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1526 cm-1 after it is intercalated in clay. At about 1048 cm-1 of spectrum of gentamicin-clay 

sample, the vibration band for C-O-C of gentamicin overlaps band of Si-O-Si of the clay. 

Thermal Stability 

Thermal stability was investigated from DTA and TG curves recorded in the 30-990 °C range, 

under air flow conditions (Figure 5.9). Weight loss respected to water molecule desorption is 

completed at 87 °C and 160 °C for starting silicate and gentamicin-clay, respectively. Such a 

weight loss is about 4.6% in the starting silicate, while the gentamicin-clay composites show a 

slightly higher value 5.4%. This fact indicates the high water-retention capacity of gentamicin. 

A significant increase in thermal stability was observed by TG analysis for the gentamicin-

clay nanocomposite respect to the starting gentamicin. The DTA curve of gentamicin-clay 

shows endothermic process of intercalated gentamicin started from around 237°C (melting 

point of gentamicin) and ended with an exothermic peak at ~600 °C when the combustion of 

gentamicin completed. 



Chapter 5 

-105- 

 

Figure 5.8: IR spectra (4000-350 cm-1 region) of the starting Na+-montmorillonite (a), 

Gentamicin-Clay composite (sample g) (g), and starting gentamicin sulfate (Gt. sulfate) 
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Figure 5.9: TG curves in the 30-990 °C temperature range (obtained under an air atmosphere) 

of Na+-montmorillonite (a), gentamicin-clay nanocomposite (sample g) (g) and starting 

gentamicin sulfate (Gt.). The DTA curve corresponds to gentamicin-clay nanocomposite 

(sample g). 

Photo Stability 

The spectra of gentamicin-clay are shown in Figure 5.10. In β4 hours, there‟s no significant 

change on infrared spectrum. We can still see the same peaks that are assigned to vibration 

bands N-H and δNH3
+ near 1600-1500 cm-1. No new peak appears due to decomposition 

reaction. Kühn et al. (2008) studied stability of gentamicin in different antibiotic carriers. 

They indicated that the impurities and degradation products of gentamicin are garamin, 2 -

deoxy-streptamine and sisomicin with a background electrolyte containing 20 mM 

deoxycholic acid, 15 mM ȕ-cyclodextrin and 100 mM tetraborate (pH 10.0). We presume that 

the photodegradation products in our study are the same as those considering no oxidation 

sign found in the infrared spectra. Another possibility is that degradation hadn‟t occurred in 
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24h UV-light decomposition test, because clay shows its protective effect on drug stability in 

other studies. 

 

Figure 5.10: ATR-IR spectra (4000-350 cm-1 region) of gentamicin-clay nanocomposites 

(sample d) after continuous photodegradation test (under 254 nm UV light). 

In vitro drug release 

Results from chemical analysis show that there‟s no large amount of gentamicin had released 

from gentamicin-clay composite under our experimental condition in 72h. Gentamicin 

quantity adsorbed on clay slightly decreased from initial 0.17 mmol/g to 0.16 mmol/g 18 

hours after the release experiment and gentamicin quantity of adsorption recovered to 

0.17mmol/g. It can be considered that re-adsorption occurred. At pH 7, gentamicin is 

protonated as mixture of gentamicin3+, gentamicin4+ and gentamicin5+, which makes 

gentamicin compounds be steadily trapped in the interlayer of montmorillonite because of 

high electrostatic attraction. 
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Figure 5.11: Release profile of gentamicin from gentamicin-clay (sample d) containing 50 

mM PBS (pH=7) at 37 °C. 

5.3.3. Gt-Mt-HPMC film  

Morphology: 

The morphology of the Gt-Mt-HPMC films containing nanocomposites was analyzed by FE-

SEM. As shown in Fig 5.12, the morphologies of the films removed from the evaporation 

plastic plate are different on the two sides. Compared with the reverse R sides (toward the 

plates), Gt-Mt comopostites distribute more homogeneously in the obverse O sides of the 

films. Because the contents of Gt-Mt added to HPMC solution in film preparation vary from 

2.2% to 3.5% (w/v), the void density of R sides of films decreases with increasing ratio of Gt-

Mt to HPMC. The R sides contain more rough aggregated composites particles since larger 

particles having more mass than smaller particles (assuming that their density is the same) 

settle faster because of gravity. Through micrographs, we found the O sides of films have 

homogeneously distributed particles, as the matter of fact the O sides have clay-like coarse 
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touch while the R sides have plastic-like smooth touch since the HPMC component were 

formed against the plate. For the same reason, the R sides of the films are glossy while the O 

sides of films are dull by naked eyes observation. 

 

Figure 5.12: FE-SEM graphs of film samples (R: reverse side, O: observe side). 
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Table 5.5: Effect of Gt-Mt amount added in to 2% HPMC solution (w/v) on elastic modulus, 

and percent elongation of Gt-Mt-HPMC films produced by evaporation process. 

Film 

No. 

Gt-Mt porpotion 

in starting HPMC solution 

(w/v %) 

Elastic modulus of films 

(GPa) 

Elongation of films 

(%) 

a 2.2 1.97 ± 0.14 1.62 ± 0.81 

b 2.5 1.93 ± 0.52 1.25 ± 0.43 

c 3.0 2.46 ± 0.29 1.53 ± 0.40 

d 3.5 2.27 ± 1.01 2.11 ± 0.36 

 

Mechanical Properties 

The suitable use of antibiotics-loaded film is also strongly dependent on its favorable 

mechanical properties. Elastic modulus and elongation are parameters that are related with 

mechanical properties of films and their chemical structures (Dufresne and Vignon; 1998). 

Elastic modulus indicates the stiffness of the material, whereas elongation represents the 

capacity of the film for stretching (Alcântara et al., 2012). The pure HPMC film (2% w/v) has 

an elastic modulus of 1.2 GPa and percentage of elongation of break of 7.5% approximately. 

Table 5.5 shows the effects of Gt-Mt contents on elastic modulus and elongation at break 

values of the obtained Gt-Mt-HPMC films. The incorporating of Gt-Mt in the HPMC matrix 

gives an increase in the elastic modulus values to pure HPMC film but decrease in the value 

of elongation at break. Elastic modulus and elongation at break values of film sample c and d 

are slight higher than sample a and b, which is consistent with the morphology results 

showing Gt-Mt nanocomposites distribute more homogeneously in sample c and d than in 
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sample a and b. The voids exist in the R sides of sample a and b could contribute to their 

weaker mechanical properties and become the point from where the Gt-Mt-HPMC films start 

to crack.  

Water uptake under moisture 

Given that a balanced moist wound bed plays a key role for promoting wound healing, the 

composites can be designed to have an optimum recipe according to the patient wound. We 

studied water-absorption tendency of film a and d which contain highest and lowest portion of 

Gt-Mt based on HPMC. Figure 5.13 shows the weight increase due to water uptake expressed 

as grams of water incorporated per 100 gram of dry sample of BNC-HPMC with Gt-Mt as a 

function of the relative humidity (%). Before relative humidity reaches 80%, the water uptake 

capability of film a and film d differ little, while film a starts to adsorb more water vapor than 

film d at 80% or higher RH. The result shows that incorporation of Gt-Mt decreases slightly 

the water uptake capability of HPMC. Because of the amounts of Gt-Mt embed in HPMC film 

a and d don‟t vary largely, the difference of water uptake capability of two films is 

insignificant.  

Antimicrobial activity of Gt-Mt-HPMC 

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control 

tube with peptone water. The samples HPMC or/and montmorillonite which were free of 

gentamicin showed no detectable antimicrobial effect. The result showed Gt-Mt-HPMC 

retained the antimicrobial capability of gentamicin. The efficiency of antimicrobial effect of 

the bionanocomposites was not weakened by the supporting material montmorillonite and 

HPMC. 
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Figure 5.13: Effect of water uptake on two Gt-Mt-HPMC films( film-a and film-d). 

 

Table 5.6: Antimicrobial effectiveness of Gt-Mt-HPMC film. 

Sample description CFU/mL CFU/mL Mean %reduction 

Control PW 9.40 × 106  9.80 × 106  9.60 × 106  - 

Mt 1.20 × 107  1.06 × 107  1.13 × 107  -17.71% 

HPMC 4.00 × 106  9.60 × 106  6.80 × 106  29.17% 

Gt-HPMC n.d. n.d. n.d, 100.00% 

Gt-Mt-HPMC (3.0%) n.d. n.d n.d. 100.00% 

*% reduction: (CFU/mL control-CFU/mL sample)/CFU/mL control *100 

n.d. - not detectable  

Related experiments are ongoing. 
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5.4. Conclusion 

The adsorption of gentamicin onto Na+-montmorillonite through cationic exchange 

mechanism is feasible, so montmorillonite can be used as removal reagent for 

decontaminating of high-gentamicin containing water in water treatment. The techniques 

employed in the characterization of the Gt-Mt (CHN chemical analysis, XRD, FTIR 

spectroscopy, EDX and thermal analysis) confirm the high affinity between the clay substrate 

and the gentamicin. The maximum d001 spacing of gentamicin-clay nanocomposite is 1.43 nm, 

which indicates that gentamicin orientation with the charged octahedral sheet is parallel to the 

basal surface and gentamicin molecules are not able to lap over each other but monolayer 

intercalation. The solid waste of the treatment – gentamicin loaded montmorillonite can be 

further incorporated with HPMC to form a bionanocomposites hybrid film for treating burn 

wound. Montmorillonite/HPMC offered better thermal stability and mechanical property for 

Gt-Mt (HPMC) nanocomposites than pure drug. Gt-Mt-HPMC and Gt-HPMC showed high 

antimicrobial properties compared with the control samples. The efficiency of antimicrobial 

effect of the bionanocomposites against Staphylococcus aureus was not weakened by the 

supporting material montmorillonite and HPMC. The releasing test of gentamicin from Gt-Mt 

preliminarily proved that clay mineral can counteract rapid release of antibiotics upon water 

uptake, which was one of the disadvantages of antibiotics-loaded natural polymer. The 

potential controlled-release mechanism of Gt-Mt-HPMC and anti-photodegradation behavior 

of Gt-Mt-HPMC will need to be further studied. 
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6.1. Conclusions 

The importance of As removal from drinking water system 

 

Drinking water contamination by arsenic in China is alarming. The problem is widespread 

throughout China - 19 provinces had been found to have As concentration in drinking water 

exceeding the standard level (0.05 mg/L) up to 2012.  

A large population has been exposed to drinking water with high level of geogenic As which 

occurs mainly in the arid or semi-arid north of China. High-As spring or groundwaters are 

frequently found high pH value (≈8.5), reducing and located in low-lying areas. The climate, 

geochemical and hydrological conditions are favorable for As-rich water formation.  Low 

precipitation-to-evaporation ratio leads to As-containing water becoming concentrated. High 

pH favors As being released and exchanged from minerals or rocks. In reducing conditions, 

As(III), which is more toxic and mobile than As(V), typically dominates.  Low-lying closed 

basins make it hard for As to be flushed away. Because of surface water shortage, use of 

groundwater as water supply is more common in the North, where As-rich groundwaters are 

more likely to be discovered, than in the South.  

As the same time, an increasing number of sudden and accidental As pollution events is 

taking place due to human activities. Those accidents usually happen in subtropical or tropical 

south of China where there are plenty of As-rich ores. Intensive chemical plants, smelting and 

mining activities increase the likelihood of pollution accidents. Contamination cases are 

usually triggered by heavy rains or floods which flushed the highly concentrated As-

containing waste water/sluge directly into natural waters.  
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The synthesis and application of CGB in As removal 

 

No matter for chronic endemic arsenicosis or for acute As poisoning cases, effective actions 

should be taken. High-As water need to be well treated according to water standard or 

guideline till its concentration reach the safe level. Adsorption - one of water treatment 

techniques - is used for excess arsenic contaminants removal from aqueous solution in our 

study. The most well-known adsorbents used in adsorption is activated carbon in modern 

times. However, its widespread use is restricted due to high cost. As such, numerous 

alternative materials have been investigated.  

The novel material was synthesized in our study for removing arsenic from contaminated 

water: chitosan goethite bionanocomposite (CGB) bead.  

CGB can adsorb both As(III) and As(V) efficiently. With initial arsenite and arsenate 

concentrations of 5.6 mmol/L and 7 mmol/L, the adsorbed quantities of the arsenate-adsorbed 

beads were 0.113 mmol/g, at pH=5 and 0.052 mmol/g, at pH=9, and that of the arsenite-

adsorbed beads were 0.151 mmol/g, at pH=5 and 0.156 mmol/g, at pH=9. Isotherm study and 

pH effect on arsenic adsorption onto CGB reveal that pH value change is more significant for 

arsenate adsorption than arsenite, which could affect the surface charge of chitosan as well as 

goethite so that the electrical attraction between arsenate and material were weaken sharply 

while it has less effect on neutral arsenite molecule. Hence, manipulation of pre-oxidation of 

As(III)-contained water for enhancing As removal rate is not necessary. The kinetics study 

indicated As(V) was adsorbed faster than As(III), and pseudo-equilibrium to be reached in 

both cases within 2000 min. Diffusion of As(V) within the CGB beads was, according to 
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micro X-ray fluorescence, faster for As(V) than for As(III), and the later was partly oxidized, 

according to micro-XANES investigation. CGB beads are suitable to be used in rural areas for 

people don‟t have tap water and advanced water treatment plants. The material is safe, easy 

and practical to use in daily life. The results of leaching test prove CGB doesn‟t pose potential 

health risk by releasing nano-particle or toxic element in application. The mechanical property 

test shows that the material is very rigid and stable so that it‟s easy for storage, transport and 

daily use. The size and density of CGB allow users to obtain decontaminated water without 

need of complicated or energy-consuming separation procedure, since the large-size CGB 

applied in remediation process would precipitate at the bottom of the water container or could 

be kept in permeable porous textile or plastic bags. These possibilities highly reduce the cost 

and complexity of As water treatment process especially for underdeveloped areas.  

 

Antibiotics pollution in China waters 

 

Antibiotics presence has become a focus of research efforts due to different advert effects it 

causes, especially the contribution to antibiotic resistant bacteria in the environment. Such 

resistant bacteria can cause an infection both in humans and animals and may not respond to 

regular antibiotic treatments. Human and animal faeces, hospital effluents, pharmaceutical 

industries and municipal sewage influent that contain antibiotics result in antibiotic residue in 

surface water and ground water.  

As China is the largest producer and consumer of antibiotics in the world, antibiotics have 

been found widespread in WWTPs and environment frequently. Densely populated areas are 

prone to antibiotics contamination. The review of antibiotic presence in WWTPs and natural 
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waters in China shows the diversity of antibiotics in the water cycles with high concentration. 

In some water bodies, the levels of antibiotics are in the same range of that in WWTPs. 

Presence of antibiotics in tap water of two cities in China (concentration up to 697 ng/L) 

reflects the fact that public is exposed to potential risk by long-term intake of antibiotics via 

drinking water (Wang et al., 2010).  

 

Removal of gentamicin by clay mineral and the synthesis of hybrid film by resulting 

composites 

 

The adsorption of gentamicin onto Na+-montmorillonite through cationic exchange 

mechanism is feasible. Gentamicin molecule can be intercalated into clay. The techniques 

employed in the characterization of the nanocomposites, CHN chemical analysis, XRD, FTIR 

spectroscopy, EDX, and thermal analysis, confirm the high affinity between the clay substrate 

and the gentamicin. Gentamicin-clay nanocomposites have better thermal stability than pure 

drug. The maximum d001 spacing of gentamicin-clay nanocomposite is 1.43 nm, which 

indicates that gentamicin orientation with the charged octahedral sheet is parallel to the basal 

surface and gentamicin molecules are not able to lap over each other but monolayer 

intercalation. In 24-hour photodecomposition test, nanocomposites had no distinct changes on 

structures of functional groups. In vitro release experiment confirmed the strong affinity 

between the clay and gentamicin also. Gentamicin rarely released from nanocomposite under 

neutral pH in 3 days.  

Gt-Mt-HPMC (gentamicin-loaded montmorillonite based on hydroxypropyl methycellulose) 

hybrid film was prepared for the possible use of skin wound treatment. Fe-SEM results reveal 
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that obverse (O) and reverse (R) sides of the films show different morphology. Gt-Mt 

comopostites distribute more homogeneously in the obverse O side of the films than the other 

side. The R sides contain more roughly aggregated composites particles. The void density of 

R sides of films decreases with increasing ratio of Gt-Mt to HPMC.  

Mechanical property tests show that the incorporating of Gt-Mt in the HPMC matrix gives an 

increase in the elastic modulus values to pure HPMC film but decrease in the value of 

elongation at break. Elastic modulus and elongation at break values of film sample c and d (3% 

and 3.5% Gt-Mt in HPMC solution) are slight higher than sample a and b (2.2% and 2.5% Gt-

Mt in HPMC solution), which is consistent with the morphology results showing Gt-Mt 

nanocomposites distribute more homogeneously in sample c and d than in sample a and b. 

The voids exist in the R sides of sample a and b could contribute to their weaker mechanical 

properties and become the point where the Gt-Mt-HPMC films start to crack. 

Result of water absorption tests indicates that this hybrid film shows water retention property. 

Since the concentrations of Gt-Mt in 4 different samples don‟t vary largely, and both of 

HPMC and montmorillonite have water retention, the water absorption quantities of sample a 

and d are close, having a 30% mass change under 100% of RH at 25 ºC without big difference 

for two samples.  

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control 

samples. The efficiency of antimicrobial effect of the bionanocomposites against 

Staphylococcus aureus was not weakened by the supporting material montmorillonite and 

HPMC. 
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6.2. Further work 

As presence in China 

 

Previous investigations of a number of affected sites in China have given people a better 

understanding of the As-contamination problem. However, most information are mainly about 

heavily contaminated water bodies with water As concentrations above 0.05 mg/L. Future 

research should attach importance to contaminated water with As concentration of 0.01 mg/L-

0.05 mg/L according to the WHO guideline for drinking water. Low concentration of arsenic 

could be dangerous if there‟s a high ratio of As(III) to total As, thus knowledge on the 

speciation of arsenic is gaining increasing importance because toxicological effects of arsenic 

are connected to its chemical form and oxidation states. Arsenic speciation is important and 

necessary to be investigated for coming studies.  

Besides, more researches should focus on understanding the occurrence, origin and 

distribution of arsenic. Government should pay more attention to industrial and agricultural 

activities which lead to As pollution, giving more technical supports to mining or chemical 

plants and managing supervision departments to carry out sampling and analyzing of the 

discharge from industrial plants.  

Chitosan-geothite bionanocomposites (CGB) for arsenic removal 

 

As contaminated groundwater which usually contains Ca, Mg, bicarbonate, phosphate, DOC 

and other components will need to be used in arsenic adsorption experiments in order to study 

the effect of these components on the As removal by CGB.  



Chapter 6 

-121- 

The recycling of As-loaded CGB will be studied. Two possible methods could be taken into 

consideration: i) regeneration of As-loaded by chemical reagents like NaOH; ii) possible 

means to transform As-loaded CGB into other phase or form to be reused into other industrial 

domains. 

Since CGB beads, in our study, are designed for cleaning drinking water which is supposed to 

contain not very high concentration of As, after-use CGB beads might have not reached 

saturation and have capability to adsorb more contaminants in heavy polluted water, e.g. 

industrial waste waters. The regeneration of used CGB could be carried out after CGB 

material having been completely used and reached saturation. The sorption efficiency of 

regenerated CGB should be studied compared with primary CGB beads. 

As a polymer-containing material with elasticity properties, there is possibility to apply CGB 

into road construction material. To be used as Solid Roads Polymer Soil Stabilizers, the 

incorporation of a polymer allows for a long lasting sub-base and wearing course while 

decreasing roll resistance and increasing performance. Increased surface elasticity will 

prohibit the formation of potholes, cracking and swelling due to traffic load or temperature 

change.  

Different starting ratio of FeCl3 reagent to chitosan could be tested to form beads with 

different composition. The ratio effect on resulting material will be studied. Magnetic field 

could be introduced into the fabrication process and the effect of the magnetic field could be 

interesting to investigate because goethite or other Fe-containing magnetic materials might be 

formed in the fabrication.  
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Antibiotics removal and medical film 

 

The present study has demonstrated that gentamicin, as one kind of widely used antibiotics for 

the treatment of human and veterinary infectious diseases as well as animal feed additives, 

can be adsorbed by low-cost clay material montmorillonite. However, the gentamicin-

containing solutions were prepared in the chemistry lab. To investigate the real-life 

application of montmorillonite in removing gentamicin, water samples from disposal of 

sewage, hosipital wastewater, animal wastewater, etc. should be used in the future study. 

Besides wastewaters, antibiotic residues in natural waters with relative low concentration (less 

than 1000 ng/L) also draw public concerns since they can pose potential threats to public 

health and environment. Research related to gentamicin-containing water with low 

concentration should be carried out. This would require more sensitive instrument such as 

LC-MS/MS to be used for the examination of low concentration gentamicin. Futhermore, 

studies on application of montmorillonite in removing other kinds of antibiotic could be 

carried out, especially positive charged antibiotics due to probable electrostatic attraction 

between antibiotic and clay. 

The Gt-Mt-HPMC film hybrid material can also be used as wound dressing. Besides 

Staphylococcus aureus, resistance or inhibition behavior of this film with other common 

bacteria, which cause skin infection such as Pseudomonas aeruginosa, etc. will be 

investigated. Clinical trials on this new drug could be carried out to assess its effect on skin 

wounds based on exudate amounts, wound tissue color and whether the wound become 

infected. The potential controlled-release mechanism of Gt-Mt-HPMC and anti-

photodegradation behaviour of Gt-Mt-HPMC will need to be further studied. 
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Annex1: Calculation of site density: arsenic on goethite 

The site density for As adsorption onto goethite is calculated as following method. 

(i). We assume that goethite nano-particles in CGB have a cuboid geometry with size of 

250×50×10 nm, as observed by FE-SEM. 

(ii). The adsorption of As onto chitosan in CGB is neglected (As adsorption onto chitosan 

gel beads were tested. The sorption quantity was very small compared with the As sorption 

quantity onto CGB (qe(As-chitosan)<70ȝg/g while qe(As-CGB)>7000ȝg/g).  

(iii). Because of (ii), the maximum amount of adsorbed As(V) and As(III) onto goethite,  

qm(goethite)=qm(CGB)/w 

w: mass fraction of goethite in CGB, w=20.33%, 

qm1 (goethite) =0.74 mmol/g for As(V) and , qm2 (goethite)=0.56 mmol/g for As(III). 

 

For CGB material which contains 1g of goethite nanoparticles, the total volume of goethite 

NPs, Vtotal (nm3) can be calculated: ��݋�݈ܽ =
݉݀

× 1021 =
1�

4.27�/ܿ݉3
× 1021        (A1.1) 

Where,  

m, mass of goethite (g), m=1g; 

d, density of goethite (g/cm3), 

For each goethite NP,  ܵܰ� =   ܽ × ܾ +  ܾ × ܿ + (ܾ × ܿ) × 2       (A1.2) �ܰ � = ܽ × ܾ × ܿ          (A1.3) 

Where 

 SNP, surface area of each goethite NP (nm2); 

VNP, volume of each goethite NP (nm3); 
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a, b and c are three side-lengths of goethite NP. a= 250nm, b=50nm, c=10 nm, 

Therefore, the number of goethite NP, N, in CGB which contains 1 g of goethite can be 

calculated: ܰ = ݈ܽ�݋�� ÷ �ܰ �          (A1.4) 

So the total surface area, Stotal (m
2), is: 

݈ܽ�݋ܵ� = ܰ × ܵܰ� × 10−18                          

(A1.5) 

The site density of As(V) and As(III), dST (ȝmol/g)are calculated byμ ݀ܵܶ =
�݉ (goethite )×݉

Stotal

× 1000        (A1.6) 

 


