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Résumé étendu

Introduction

Dans les systèmes de communications sans fil, l’environnement situé entre une antenne
d’émission et une antenne de réception peut perturber le signal. En effet, le signal reçu est
une somme de plusieurs versions retardées du signal émis. On dit alors que le signal est émis
dans un canal multi-trajets. Ce type de canal engendre des évanouissements en fréquence,
c’est à dire des trous dans le spectre, pouvant être destructeurs pour le signal.

Une solution pour lutter contre ces phénomènes est d’utiliser une modulation multipor-
teuses, telle que l’OFDM (Orthogonal Frequency Division Multiplexing). Le principe est de
diviser la bande fréquentielle du signal en sous canaux étroits, chacun portant une partie
de l’information. Ainsi, si un évanouissement fréquentiel dû au canal affecte une partie de
l’information, le reste est transmis sans perturbation. Associé à un codage canal, le CODFM
(pour Coded OFDM) garantit un faible nombre d’erreurs dans le signal reçu, ce qui fait que
cette modulation est largement utilisée dans les standards actuels.

Un autre avantage de l’OFDM est que, considérant que chaque sous canal est un canal
plat, l’égalisation est facile car il suffit d’effectuer une simple division du signal reçu par le gain
du canal pour récupérer le symbole émis. Ainsi, la qualité de l’égalisation est directement liée
à la précision de l’estimation de canal. Cette dernière a donc un rôle clef dans la performance
du système de communication et c’est pourquoi on trouve un grand nombre de publications
sur le sujet.

Dans ce résumé de thèse seront présentées deux méthodes permettant d’approcher l’es-
timateur optimal, appelé LMMSE (Linear Minimum Mean Square Error) en évitant ses in-
convénients. En plus des canaux "classiques", on abordera deux cas particuliers, où les délais
des canaux seront supposés très longs, ou à l’inverse, très courts. De plus, une étude sta-
tistique des erreurs d’interpolation dans le cadre de l’estimation de canal sera proposée. La
plupart des simulations sont effectuées en suivant le standard DRM/DRM+ [1], utilisé pour
la transmission radio dans les actuelles bandes AM et FM. Cependant, on remarquera que
les méthodes proposées peuvent être appliquées dans un contexte général d’une transmission
OFDM.

Le mémoire de thèse est composé des parties suivantes :
– Dans un premier temps, on rappelle les fondamentaux concernant le canal de propaga-
tion et la transmission d’un signal OFDM.

– Un état de l’art des principales méthodes d’estimation de canal dans un contexte OFDM
est proposé. Deux estimateurs sont principalement détaillés : l’estimateur LS (pour
Least Square, ou moindres carrés) et l’estimateur LMMSE.
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– Une méthode appelée ACA-LMMSE (pour Artificial Channel Aided-LMMSE), qui per-
met d’éviter la connaissance a priori de la matrice de covariance du canal nécessaire à
l’estimation LMMSE, est proposée. Cette méthode permet aussi de réduire le nombre de
calculs par rapport à l’estimateur LMMSE classique, dans un contexte de canal variant
dans le temps. De plus, il est possible de combiner cette méthode avec un algorithme
appelé RISIC (pour Residual ISI Cancellation)

– Pour ACA-LMMSE, le niveau de bruit est supposé connu du récepteur, or en pratique,
la variance du bruit nécessite une estimation. Une méthode d’estimation conjointe du
canal et du rapport signal à bruit (RSB) est alors présentée dans une nouvelle partie.
L’estimateur se base sur le critère de l’erreur quadratique moyenne minimum (ou MMSE
en anglais). Comme l’estimation d’un paramètre alimente l’estimation de l’autre, l’es-
timateur proposé est itératif. De plus, il est montré que l’algorithme peut servir à la
détection de bandes libres dans le cadre de la radio intelligente.

– L’estimation de canal nécessite parfois une interpolation pour estimer les coefficients
entre deux points connus appelés pilotes. Cependant, les interpolations créent des er-
reurs résiduelles ayant un impact sur la qualité de l’estimation. Dans cette partie, une
analyse statistique des erreurs d’interpolation pour l’estimation d’un canal de Rayleigh
est effectuée. Deux mesures de performance, l’erreur quadratique moyenne (ou MSE en
anglais) et la borne inférieure du taux d’erreur binaire, sont analytiquement déduits de
cette étude.

– Dans une dernière partie, une application de la diversité de délai cyclique (ou CDD
en anglais) aux réseaux de type SFN (Single Frequency Network) est présentée. Dans
ce type de réseau, quand le récepteur se situe dans les zones de recouvrement entre
deux cellules apparait un phénomène d’évanouissement large bande, qui peut pertur-
ber la totalité du signal. En effet, la diversité fréquentielle du COFDM est perdue, car
toute les porteuses du signal sont touchées. La solution est alors d’augmenter artifi-
ciellement la sélectivité fréquentielle du canal grâce à la CDD. Une application à la
norme DRM/DRM+ est effectuée, et il est montré que l’augmentation de la sélectivité
fréquentielle par la CDD impacte aussi la qualité de l’estimation de canal.

Cette dernière étude a été menée dans le cadre du projet OCEAN (Optimisation d’une
Chaîne Emission-Réception pour la Radio Numérique terrestre), projet collaboratif rassem-
blant deux partenaires industriels (Digidia et Kenta) et deux partenaires académique (ECAM
Rennes et Télécom Bretagne), et financé par la région Bretagne et Rennes métropole.
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r.1 Contexte et modèle

Dans cette partie, on va rappeler les éléments importants concernant le canal de propa-
gation à trajets multiples. De plus, on formalisera l’écriture de la transmission d’un signal
OFDM dans ce type de canal.

r.1.1 Le canal de transmission multi-trajet

r.1.1.1 Le modèle WSSUS

Dans un grand nombre de transmissions, les antennes d’émission et de réception ne sont
pas en ligne de mire. Dans ce cas, le signal est réfléchi, diffracté ou diffusé par l’environnement
de propagation, composé par des bâtiments, véhicules ou des obstacles naturels. Le signal émis
passe alors par plusieurs trajets différents avant d’être reçu. Ce type d’environnement, appelé
canal multi-trajet, est caractérisé par le nombre de trajets L, les retards τl et les gains hl,
l = 0, 1, ..., L− 1 des différents trajets qui le composent.

D’une manière générale, la réponse impulsionnelle du canal h s’exprime :

h(t, τ) =
L−1
∑

l=0

hl(t)δ(τ − τl), (r.1)

où δ est l’impulsion de Dirac. On considèrera par la suite le très répandu modèle de canal
WSSUS (pour Wide Sense Stationary Uncorrelated Scattering) décrit par Bello [2]. Plus
précisément, pour tout l = 0, 1, ..., L − 1 les coefficients hl sont stationnaires au sens large,
i.e. la moyenne E{hl(t)} est indépendante du temps et E{hl(t1)hl(t2)∗ = 0} si t1 6= t2, et
décorrélés, i.e. E{hl1(t)hl2(t)

∗ = 0} si l1 6= l2, où E{.} est l’espérance mathématique et ∗ la
conjugaison complexe.

r.1.1.2 Le canal Rayleigh

On va maintenant caractériser la statistique suivie par |h(t)|. En première approximation,
on considère dans la suite du résumé que du point de vue du récepteur, le canal h(t) est
une somme de K composantes indépendantes de moyennes nulles provenant de toutes les
directions et telles que K tend vers l’infini. En appliquant le théorème central limite, on
déduit que h(t) suit une loi gaussienne centrée, et donc que |h(t)| suit une distribution de
Rayleigh [3], notée pr,Ray. Sa variance σ2h est égale à E{|h(t)|2}. Alors, pour une variable
positive r, pr,Ray(r) s’exprime

pr,Ray(r) =
r

σ2h
e
−r2

2σ2
h . (r.2)

Le canal de Rayleigh est un modèle largement utilisé dans la littérature, car il est simple
et approxime bien la réalité. Cependant, des modèles plus spécifiques ou plus proches des
mesures pratiques ont été proposés, tels que le modèle de Weibull [4], celui de Nakagami [5],
ou celui généralisé donné par la distribution κ− µ [6].

r.1.1.3 Relations temps-fréquence du canal

Dans un grand nombre d’applications, il est plus intéressant (car plus simple) d’étudier
le canal dans le domaine fréquentiel. La réponse fréquentielle du canal H(t, f) est obtenue
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en appliquant une transformée de Fourier (notée FT , pour Fourier Transform) à la réponse
impulsionnelle (r.1). On obtient alors

H = FTτ (h)

⇒ H(t, f) =
∫ +∞

−∞
h(t, τ)e−2jπfτ dτ

H(t, f) =
L−1
∑

l=0

hl(t)e−2jπfτl . (r.3)

On remarque que la réponse fréquentielle s’obtient en appliquant la TF sur la variable de
retard τ . La réponse fréquentielle H(t, f) est donc une fonction pouvant varier dans le temps
t, comme l’illustre la figure r.1. Quand la variation du canal est très lente, on dit qu’il est
quasi-statique, s’il ne varie pas au cours du temps, le canal est dit statique.

0

5

10

15

20

25

40

30

20

10

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tf

|H
(t

,f
)|

Figure r.1 – Réponse fréquentielle du canal H(t, f).

On définit aussi deux fonctions très utilisées dans le traitement du signal, car elles carac-
térisent statistiquement le canal dans les domaines temporels et fréquentiels :

– le profil d’intensité du canal Γ(τ). Un modèle couramment répandu est le profil expo-
nentiel décroissant [7–9].

– la fonction de corrélation fréquentielle du canal RH(∆f )
Ce deux fonctions sont reliées par une transformée de Fourier :

Γ = FT−1∆f
(RH)

⇔ RH = FTτ (Γ). (r.4)

Pour plus de précisions sur l’expression de la corrélation fréquentielle, on peut se référer à [7],
ou à l’annexe A.1.
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r.1.2 Transmission d’un signal OFDM

r.1.2.1 Représentation continue

En bande de base, dans le formalisme continu, le signal OFDM s’exprime :

s(t) =
∑

n∈Z
sn(t) =

√

1
Ts

∑

n∈Z

M−1
∑

m=0

Cm,nΠ(t− nTs)e2jπmFst, (r.5)

où sn(t) est le nème symbole OFDM, Ts est le temps symbole, Fs = 1/Ts l’écart inter-
porteuse et Π(t) la fonction porte qui vaut 1 si −Ts

2 ≤ t < Ts
2 et 0 sinon. M est le nombre

de porteuses (i.e. de sous-canaux) par symbole, donc si on note B la bande passante du
signal, on a Fs = B/M . L’OFDM a la propriété que les porteuses composant le symbole sont
orthogonales entre elles. Ainsi, il n’y a aucune interférence entre porteuses dans le domaine
fréquentiel, et on peut traiter chaque porteuse indépendamment les unes des autres. Le signal
reçu u(t) est le produit de convolution de s(t) par h(t), auquel est additionné un bruit blanc
gaussien noté w(t). Dans le domaine fréquentiel, par propriété de la transformée de Fourier,
le produit de convolution devient un produit simple :

u(t) = (h ⋆ s)(t) + w(t) (r.6)
F T=⇒ U(f) = H(f).C(f) +W (f). (r.7)

Pour tout m = 0, 1, ..., M − 1, Cm,n est un symbole d’information d’une constellation
donnée (e.g. BPSK, QPSK). Pour lutter contre les interférences entre symboles (qu’on notera
ISI) dues aux trajets retardés du canal de transmission, on ajoute au début de chaque symbole
OFDM à l’émission un intervalle de garde (GI). Si le GI est plus long que le délai maximum
du canal, alors, la suppression du GI en réception permet de supprimer l’ISI. Dans la suite, on
considèrera que le GI est un préfixe cyclique (CP), c’est à dire que la fin de chaque symbole
OFDM est recopiée au début. Comme il est indiqué plus loin, en plus de supprimer l’ISI,
l’ajout d’un CP confère des propriétés cycliques au symbole OFDM. On notera TCP la durée
du préfixe cyclique.

La figure r.2 montre les propriétés temporelles et fréquentielles du signal OFDM. La sous-
figure r.2 (a) illustre, dans le domaine temporel, la suppression de l’ISI grâce à l’ajout du CP.
La sous-figure r.2 (b) montre l’orthogonalité en fréquence des porteuses. De plus, en considé-
rant l’écart en fréquence Fs suffisamment petit, on peut considérer le canal comme constant
sur chacune des porteuses. Ainsi, si l’une d’elle est affectée par le canal de transmission, on
appliquera une simple division pour retrouver la valeur de départ.

r.1.2.2 Représentation discrète

Cette représentation des porteuses parallèles amène naturellement à une représentation
discrète du signal OFDM, d’autant qu’on fait un traitement numérique du signal et que la
version discrète de la FT , appelée transformée de Fourier rapide (ou FFT en anglais), permet
une génération simple des symboles OFDM. Dans le formalisme discret, l’utilisation du CP
transforme la convolution linéaire (r.6) en convolution cyclique [10]. Après la suppression de
l’intervalle de garde, le nème symbole OFDM reçu est donné par :
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(a) Suppression de l’ISI par ajout d’un CP.
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Figure r.2 – Propriétés temporelles et fréquentielles de l’OFDM avec CP.
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+wn

= hnsn +wn, (r.8)

où hn est la matrice de canal circulante de taille M ×M , sn est le vecteur de taille M × 1
contenant les échantillons de sn(t) et wn le vecteur de taille M × 1 contenant les échantillons
du bruit. Une propriété des matrices circulantes est qu’elles sont diagonalisables dans la base
de Fourier (voir [11, 12] ou Annexe A.2), dont la matrice F est donnée par

F =
1√
M

















1 1 1 · · · 1
1 ω ω2 · · · ω(M−1)

1 ω2 ω4 · · · ω2(M−1)
...

...
...

. . .
...

1 ω(M−1) ω2(M−1) · · · ω(M−1)2

















, (r.9)

avec ω = e−
2jπ
M . On remarque que F est une matrice orthonormale, i.e. FFH = I, où I est

la matrice identité et H est la transformée hermitienne ou transconjugaison. C’est la matrice
F qui permet la transformée de Fourier rapide. On calcule alors le vecteur des échantillons
fréquentiels du signal reçu par Un = Fun. En tenant compte du changement de base, on peut
alors simplifier :
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Un = FhnFHFsn +Wn

= FhnFHCn +Wn

= HnCn +Wn, (r.10)

où Cn = Fsn est le vecteur de taille M × 1 contenant les symboles d’informations Cm,n.
Par propriété de la matrice de canal hn, son dual fréquentiel Hn est diagonal et contient les
échantillons Hm de la réponse fréquentielle qui s’expriment :

Hm,n =
L−1
∑

l=0

hl,ne−2jπfmβlτs

=
L−1
∑

l=0

hl,ne−2jπ m
M

βl , (r.11)

où fm = m
Mτs

et βl =
τl
τs
sont les versions échantillonnées de f et τl, avec τs le temps d’échan-

tillonnage. Comme Hn est diagonale, on rencontre fréquemment l’équivalent de (r.10) :

Un = HnCn +Wn

⇔ Un = CnHn +Wn, (r.12)

où Cn est la matrice diagonale de taille M ×M contenant les symboles d’information Cm,n.
De plus, on peut écrire chacun des échantillons Um,n comme une simple multiplication

Um,n = Hm,nCm,n +Wm,n. (r.13)

Etant donnée sa simplicité, cette expression est largement utilisée pour l’estimation de canal,
comme il sera montré plus loin.

r.2 Techniques d’estimation : état de l’art

Parmi le grand nombre de méthodes d’estimation de canal, on s’intéresse ici aux techniques
dites semi-aveugles, effectuées dans le domaine fréquentiel.

r.2.1 Les pilotes

On appelle les méthodes semi-aveugles, ou assistées par pilotes celles qui utilisent des
porteuses dites "pilotes" pour effectuer l’estimation. Les pilotes sont des porteuses dont le
gain, la phase et la position dans la trame OFDM sont connus de l’émetteur et du récepteur.
Le motif des pilotes dans la trame OFDM dépend de la sélectivité du canal [13]. Ainsi, pour un
canal très sélectif en fréquence mais pas en temps, on utilisera un préambule dans le domaine
fréquentiel, où chaque sous porteuse d’un symbole OFDM donné est dédiée à l’estimation.
C’est le motif utilisé quand on considère un canal quasi-statique. Pour un canal moyennement
sélectif en fréquence, mais très sélectif en temps, on utilisera plutôt un préambule dans le
domaine temporel, où certaines fréquences sont exclusivement dédiées à l’estimation de canal
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(a) Préambule dans le domaine fréquentiel. (b) Préambule dans le domaine temporel.

Figure r.3 – Deux motifs possibles de disposition des pilotes.

pour chaque symbole OFDM. La figure r.3 illustre ces deux dispositions : les porteuses pilotes
sont en noir et les porteuses d’information en blanc.

Selon la sélectivité des canaux considérés, d’autres motifs peuvent être utilisés : dans
le standard DRM/DRM+ [1], les pilotes sont disposés en quinconce, un motif rectangulaire,
hexagonal ou une disposition aléatoire peuvent aussi être considérés [14]. On remarque, comme
sur la figure r.3 (b), que si le canal est connu au niveau des pilotes, une interpolation sera
nécessaire pour estimer la réponse fréquentielle du canal sur tout le réseau temps-fréquence.
Certaines méthodes d’estimation vont être abordées par la suite.

r.2.2 Les critères LS et MMSE

Parmi les méthodes d’estimation, celles basées sur le critère des moindres carrés ou LS
(pour Least Square en anglais) et sur le critère de l’erreur quadratique moyenne minimum
ou MMSE (pour Minimum Mean Square Error en anglais) sont celles les plus étudiées. Les
développements suivants sont effectués avec un préambule dans le domaine fréquentiel, bien
qu’on verra que leur validité sera aussi montrée pour d’autres motifs. De plus, pour simplifier
l’écriture, on ne notera pas l’indice n dans les prochains développements.

r.2.2.1 Estimation LS

a. Expression de Ĥ
LS

Le critère des moindres carrés vise à minimiser la fonction de coût JLS , définie comme la
norme au carrée de la différence entre le vecteur du signal reçu U et le produit du vecteur de
signal émis C par une matrice diagonale D dont les coefficients sont à optimiser :

JLS = |U−DC|2. (r.14)

On définit la matrice optimale Dopt = Ĥ
LS
, où Ĥ

LS
est l’estimation LS de la réponse fré-

quentielle du canal de transmission. Après développement, pour tout m = 0, 1, ..., M − 1, la
minimisation de JLS donne
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ĤLS
m =

Um

Cm
= Hm +

Wm

Cm
. (r.15)

Comme on considère un préambule, on peut réécrire (r.15) sous sa forme vectorielle :

Ĥ
LS

= UC−1 = H+WC−1. (r.16)

A partir de (r.16), on remarque que l’estimateur LS est sensible au bruit, ce qui sera vérifié
plus loin. Plusieurs variantes de l’estimateur LS (scaled LS ou encore shifted scaled LS) sont
proposées dans la littérature [15, 16].

b. Caractéristiques de l’estimation LS

On montre facilement que l’estimateur LS est non biaisé. En effet, si on note le biais B(.),
comme W est une variable gaussienne centrée, on a

B(Ĥ
LS
) = E{ĤLS −H} = E{WC−1} = 0. (r.17)

L’expression de l’erreur quadratique moyenne minimum de l’estimateur LS, que l’on note
MMSELS et développée dans [15,17,18], s’obtient après minimisation de la fonction d’erreur

J
Ĥ

LS = 1
M E{||ĤLS −H||2F }, où ||.||F est la norme de Frobenius 1. On obtient finalement :

MMSELS =
1

M
E{tr(WC−1(WC−1)H)} = σ2

P , (r.18)

où P = CmC∗m. On remarque que l’erreur quadratique moyenne de LS est équivalente à
l’inverse du rapport signal-à-bruit RSB. On montrera dans la partie r.5 qu’ il est aussi possible
d’obtenir une expression de MMSELS dans le cas de pilotes séparés dans la trame OFDM.

r.2.2.2 Estimation LMMSE

a. Expression de Ĥ
LMMSE

Le critère du minimum d’erreur quadratique moyenne vise à minimiser la fonction de
coût JMMSE , définie comme l’erreur quadratique moyenne du vecteur H−DU, comme il est
montré dans [19] :

JMMSE = E{||H−DU||2F }, (r.19)

où D est la matrice diagonale dont les coefficients sont à optimiser. Comme on considère que
le canal est gaussien sur chaque porteuse, on appelle l’estimateur MMSE linear-MMSE, ou
LMMSE [7]. Après un développement effectué dans [15], on trouve finalement l’estimation
LMMSE :

Ĥ
LMMSE

= DoptU

Ĥ
LMMSE

= RH(RH + (CCH)−1σ2I)−1Ĥ
LS

, (r.20)

où RH est la matrice de covariance du canal de taille M ×M donnée par RH = E{HnHH
n }

et σ2. On remarque qu’une inversion et une multiplication sont nécessaires dans (r.20), ce

1. La norme matricielle de Frobenius A est donnée par ||A||F =
√

tr(AA
H).
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qui rend LMMSE plus complexe que LS, surtout pour de grandes valeurs de M . Cependant,
cet estimateur est optimal au sens de l’erreur quadratique moyenne. De plus, comme il est
montré dans [7], cet estimateur peut servir d’interpolateur tout en restant optimal.

Bien que cet estimateur soit optimal, son utilisation est limitée par deux inconvénients
majeurs : sa complexité, et la nécessité de connaître la matrice de covariance RH , qui est a
priori inconnue du récepteur.

b. Caractéristiques de l’estimation LMMSE

A partir de (r.20), on donne simplement le biais de l’estimateur LMMSE. Comme RH est
une constante, et que H et W sont deux variables aléatoires gaussiennes centrées décorrélées,
on déduit :

B(Ĥ
LMMSE

) = E{ĤLMMSE −H}
= E{(RH(RH + (CCH)−1σ2I)−1 − I)H

+RH(RH + (CCH)−1σ2I)−1WC−1}
= 0. (r.21)

L’erreur quadratique moyenne de l’estimateur LMMSE se calcule en minimisant la fonction

d’erreur J
Ĥ

LMMSE = 1
M E{||H− Ĥ

LMMSE ||2F }. A partir de [15, 19], on donne directement le
résultat sous sa forme matricielle :

MMSELMMSE =
Mσ2

MP/σ2 + tr(R−1
H )

. (r.22)

On remarque dans (r.22) que l’expression deMMSELMMSE nécessite l’inversion de la matrice
de covariance du canal de taille M×M . On a vu dans la partie r.1 que le canal est de longueur
L, avec L ≤ M . Or, L est le rang de la matrice RH , donc celle-ci peut ne pas être inversible.
Dans la majorité des cas, on ne peut pas utiliser (r.22) comme expression du MMSE. A partir
de cette considération, une nouvelle expression scalaire de l’erreur quadratique minimum a
été publiée dans [20]. Cette nouvelle expression peut être utilisée aussi bien dans le cas où
RH est inversible ou non, et est donnée par :

MMSELMMSE =
1

M
.

L2σ2

LP +
∑L−1

m=0
σ2

λm

, (r.23)

où λm, m = 0, 1, ..., L−1 sont les L−1 valeurs propres non nulles de la matrice de covariance
RH . On remarque que pour L = M , on retrouve l’équivalence entre (r.23) et (r.22).

r.2.3 Techniques d’interpolation

L’estimation LS permet d’obtenir la réponse fréquentielle (bruitée) sur les porteuses pi-
lotes. Dans un grand nombre de cas, il est alors nécessaire d’effectuer une interpolation pour
estimer le canal sur l’ensemble du réseau temps-fréquence. On a vu que LMMSE pouvait
servir de filtre interpolateur. Cependant, sa complexité fait qu’on préfère souvent utiliser des
interpolations plus simples, telles que celles présentées dans cette partie. Celles-ci ont la parti-
cularité d’être basées uniquement sur des polynômes interpolateurs, et n’ont besoin d’aucune
caractéristique du canal ou du signal. On suppose dans la suite que P porteuses pilotes sont
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régulièrement distribuées dans chaque symbole OFDM. Ainsi, on va décrire des méthodes
d’interpolations sur l’axe fréquentiel.

r.2.3.1 Interpolation nearest-neighbor

L’interpolation nearest-neighbor (NN) ou dite du plus proche voisin en français, est la plus
simple car elle se base sur un polynôme interpolateur de degré zéro. Si on note fp la position
fréquentielle d’un pilote et δf l’écart fréquentiel entre deux porteuses pilotes consécutives,
alors, ∀ f ∈ [fp − δf /2, fp + δf /2], on obtient :

Ĥ(f) = Ĥ(fp), (r.24)

où Ĥ(fp) est l’estimation de canal LS au niveau du pilote. Fig. r.4 (a) illustre le principe de
l’interpolation NN autour d’une position pilote fp. Malgré sa simplicité, il est évident que
cette interpolation n’est adaptée que pour des canaux très peu sélectifs.

r.2.3.2 Interpolation linéaire

L’interpolation linéaire est elle aussi relativement simple, car elle se base sur un polynôme
interpolateur de degré un. Pour une valeur f ∈ [fp, fp+δf

], le canal estimé Ĥ(f) est la moyenne
entre Ĥ(fp) et Ĥ(fp+δf

), pondérée par la distance fp+δf
− fp. Ainsi, on obtient :

Ĥ(f) = Ĥ(fp) + (f − fp)
Ĥ(fp+δf

)− Ĥ(fp)

fp+δf
− fp

. (r.25)

Fig. r.4 (b) illustre le principe de l’interpolation linéaire entre deux positions fréquentielles
de pilotes fp et fp + δp. Bien que plus précise que l’interpolation NN, l’interpolation linéaire
présente des mauvais résultats quand les canaux sont très sélectifs.

fp fp + δf

Ĥ(f)

Ĥ(f) = Ĥ(fp)

δf

f

(a) Interpolation NN.

fp fp + δf

Ĥ(f)

Ĥ(f)

δf

f

(b) Interpolation linéaire.

Figure r.4 – Illustration du principe des interpolations NN et linéaire.

r.2.3.3 Interpolation polynomiale

Le principe de l’interpolation polynomiale est d’approximer Hf par un polynôme de degré
P − 1, où P est le nombre de pilotes par symbole OFDM. En utilisant comme base les
polynômes de Lagrange {L0,L1, ...,LP−1}, on obtient χ(f) le polynôme interpolateur :

χ(f) =
P−1
∑

p=0

Lp(f)χ(fp) =
P−1
∑

p=0

Lp(f)Ĥ(fp), (r.26)
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où Lp(fp) = 1 et χ(fp) = Ĥ(fp). Il est prouvé dans [21] que χ(f) est l’unique polynôme de
degré P−1 passant par tous les points (fp, Ĥ(fp)). Il est aussi montré que quand P augmente,
le polynôme χ(f) a tendance à diverger entre chaque point de contrôle. Dans certains cas,
il est même possible que l’erreur entre la fonction originelle et le polynôme interpolateur
tende vers l’infini. Ce phénomène, appelé effet Runge, rend l’interpolation par polynômes de
Lagrange peu applicable en pratique. Une solution pour limiter l’effet Runge est de découper
l’ensemble des points de contrôle par paquets de quatre points consécutifs {fp, ..., fp + 3δp}
et d’appliquer une interpolation par un polynôme de degré trois sur chacun des intervalles.
Cette méthode appelée interpolation cubique par morceau est couramment utilisée.

Cependant, cette technique rend la fonction interpolante discontinue sur chaque nœud
entre les différents morceaux considérés. Pour obtenir une fonction continue sur tout l’inter-
valle d’étude (correspondant à la bande B), il est possible d’utiliser l’interpolation cubique
spline. Elle utilise comme base les polynômes d’Hermite qui assure la continuité en chaque
point de contrôle en ajoutant une condition sur la dérivée première du polynôme en chacun des
points de contrôle. Une différence supplémentaire avec l’interpolation cubique par morceau
de Lagrange, c’est qu’un polynôme de degré trois est utilisé entre chaque nœud.

r.2.4 Autres méthodes d’estimation de canal

Il est impossible de faire une liste exhaustive de toutes les méthodes d’estimation de canal,
mais une vingtaine de techniques usuelles sont décrites dans [22–27]. Parmi elles, on peut citer
trois des plus couramment utilisées :

– Le filtre de Wiener 2D, décrit dans [28], est l’estimateur optimal au sens de l’erreur
quadratique moyenne. Il peut être vu comme une généralisation de LMMSE dans les
deux dimensions temps et fréquence. Cependant, sa complexité en limite son utilisation.

– L’interpolation iFFT (pour interpolated Fast Fourier Transform) est décrite dans [13,
29]. Après avoir fait une estimation LS au niveau des pilotes, on repasse dans le domaine
temporel au moyen d’une IFFT de taille P . L’interpolation est alors faite en rajoutant
M − P zéros au vecteur obtenu (zero padding), puis en appliquant une FFT de taille
M .

– L’estimation du maximum de vraisemblance (ou ML, pour Maximum Likelihood), dé-
crite dans [30, 31], vise à maximiser la fonction de coût JML :

JML = ln(p(Un|Hn, Cn, σ2)), (r.27)

où p(Un|Hn, Cn, σ2)) est la densité de probabilité (ddp) conditionnelle du signal reçu.
Classiquement, on considère un bruit blanc gaussien, alors la ddp conditionnelle est
une loi normale à M variables, ce qui explique la présence du logarithme népérien dans
(r.27).

Dans la suite, on va s’intéresser à l’estimateur LMMSE, ainsi qu’aux interpolations décrites
dans la partie r.2.3.

r.3 Estimation ACA-LMMSE

Dans cette partie, on propose une méthode d’estimation de canal basée sur l’estimation
LMMSE, mais qui est réalisée sans la connaissance a priori de la matrice de covariance du
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canal. De plus, dans le contexte d’un canal variant rapidement dans le temps, la méthode
proposée permet de réduire la complexité de l’estimation LMMSE.

r.3.1 Principe du ACA-LMMSE

Dans la littérature, la matrice de covariance RH utilisée pour l’estimation LMMSE (r.20)
est souvent supposée connue, comme dans [32], ou doit être régulièrement estimée [33] pour
suivre les variations du canal. Pour éviter ces contraintes, on propose une méthode appelée
ACA-LMMSE, pour Artificial Channel Aided-LMMSE, ou "LMMSE assistée d’un canal ar-
tificiel" en français. Le principe est de masquer le canal de transmission par un filtre G ayant
les caractéristiques d’un canal de transmission pour effectuer une estimation LMMSE du ca-
nal physique et du filtre en utilisant seulement les propriétés statistiques du filtre G. Cette
technique a été publiée dans [34, 35]. Les étapes de la méthode, résumées par la figure r.5,
sont les suivantes :

1. A la réception, un signal artificiel composé uniquement de pilotes et filtré par G est
additionné au signal physique Un. Les pilotes du signal artificiel ont les mêmes gains,
phases, et positions que ceux du signal physique. Le filtre G est parfaitement connu
et maîtrisé par le récepteur. De plus, comme il agit comme un canal, on emploiera la
terminologie du canal de transmission pour le caractériser, et on nommera G ce canal
artificiel. Ainsi, du point de vue du récepteur, les porteuses pilotes reçues sont affectées
par la somme des canaux réels et artificiels :

Ũm,n = (Hm,n +Gm,n)Cm,n +Wm,n. (r.28)

On note Km,n = Hm,n+Gm,n les échantillons du canal hybride formé du canal physique
et du filtre.

2. Une estimation LS du canal hybride Hn est effectuée au niveau des pilotes Km,n =
Ũm,nC−1m,n, puis une estimation LMMSE en est déduite :

K̂
LMMSE

n = RK(RK + σ2(CnCH
n )
−1)−1K̂

LS

n

= RK(RK +
σ2

P I)−1K̂
LS

n , (r.29)

Pour éclaircir l’écriture, on notera B = RK(RK + σ2

P I)−1 dans la suite.

3. Comme les coefficients du filtre sont connus, on peut les soustraire de (r.29) pour obtenir
l’estimation ACA-LMMSE du canal physique :

Ĥ
ACA

n = K̂
LMMSE

n −Gn. (r.30)

On note D et LK , τ
(G)
max et τ

(K)
max les nombres de trajets et les délais maximums de G et K,

respectivement.
Comme le canal physique est supposé inconnu, on ne pourra pas en pratique utiliser RK

dans (r.29). Le but de ACA-LMMSE est donc de masquer les statistiques de H par celles de

G et n’utiliser que la matrice RG pour estimer K̂
LMMSE

n . Il sera montré plus loin comment
obtenir la propriété de masquage du canal H par le filtre G, qui se traduit par l’approximation
RG ≈ RK .
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Figure r.5 – Schéma-bloc de l’estimation ACA-LMMSE dans une chaîne de réception sim-
plifiée.

r.3.2 Complexité de ACA-LMMSE

r.3.2.1 Calcul de la matrice de corrélation

Pour réaliser l’estimation LMMSE (r.20), il faut connaître la matrice de covariance RH =
E{HnHH

n } ce qui n’est jamais le cas en pratique. Elle est donc approchée avec l’estimation LS
de la réponse fréquentielle, i.e. R̃H = Ĥ

LS

n (Ĥ
LS

n )H . Comme R̃H est une matrice hermitienne
de taille M×M , son calcul nécessite M(M+1)

2 opérations simples 2. De plus, cette matrice doit
être régulièrement mise à jour, en fonction des variations du canal de transmission.

Pour effectuer l’estimation ACA-LMMSE, on construit la matrice RK (ou de manière
équivalente RG si on suppose RG ≈ RK) en suivant les recommandations de [7], ou l’annexe
A.1. Ainsi, pour u, v = 0, 1, ..., M − 1, on note (RK)u,v les éléments de RK , à la uème ligne et
vème colonne :

(RK)u,v =
LK−1
∑

lK=0

∫ βmax

0
ΓlK (β)e

−2jπ
(u−v)

M
βdβ. (r.31)

Comme RG est une matrice de Toeplitz hermitienne de taille M ×M , son calcul nécessite
seulement M opérations. De plus, cette matrice étant indépendante des variations du canal,
elle ne nécessite d’être calculée qu’une seul fois au cours de toute la durée de la transmission,
ce qui réduit beaucoup la complexité, comparativement à LMMSE.

r.3.2.2 Calcul de la matrice B

Le calcul de B = RH(RH + (CCH)−1σ2I)−1 nécessite 2M3 opérations (M3 pour l’inver-
sion et M3 pour la multiplication matricielle), pour LMMSE et ACA-LMMSE (où RH est
remplacé par RG). Cependant, comme RH doit être mise à jour régulièrement, B doit l’être
aussi dans le cas LMMSE. Pour l’estimation ACA-LMMSE, B ne doit être calculée qu’une
seule fois en début de transmission.

Ainsi, si on note N le nombre de mises à jour nécessaires pendant la transmission, on ré-
sume dans le Tableau r.1 les complexités totales de LMMSE et de ACA-LMMSE. On remarque

2. Par opération simple, on entend le nombre de multiplications ou de divisions.
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bien que ACA-LMMSE est moins complexe que LMMSE, ce qui est d’autant plus sensible si
N devient grand, i.e. si le canal varie rapidement et si la transmission dure longtemps.

Table r.1 – Comparaison de la complexité entre LMMSE et ACA-LMMSE.
Opérations B R̃H ou RG mise à jour Total
LMMSE 2M3 M(M+1)

2 N N(2M3 + M(M+1)
2 )

ACA-LMMSE 2M3 M - 2M3 +M

r.3.3 Choix des paramètres de G
Conformément à (r.31), les échantillons (RG)u,v de la matrice RG sont exprimés par :

(RG)u,v =
D−1
∑

d=0

∫ β
(G)
max

0
Γd(β)e−2jπ

(u−v)
M

βdβ, (r.32)

L’effet de masquage de H par G est obtenu si RG ≈ RK . En observant (r.32) et (r.31),
on remarque que les matrices de covariance dépendent de trois paramètres : les nombres de
trajets D ou LK , les délais maximum β

(G)
max ou βmax et les profils d’intensité Γd(β) et ΓlK (β).

Pour assurer le masquage, il faut que (r.32) soit le plus proche possible de (r.31), et
donc faire concorder les paramètres de RG et RK . Pour cela, les choix sont guidés par les
paramètres de transmission d’un signal OFDM, comme il est montré dans [34, 35] :

– Comme le système est supposé être bien conçu, la longueur du CP est plus grande que
le délai maximum du canal, i.e. β

(H)
maxτs ≤ TCP . Ainsi, en choisissant β

(G)
maxτs = TCP , on

assure βmax = β
(G)
max dans (3.6).

– Pour assurer l’effet de masquage, il faut que D > L. Or, comme L est inconnu, il
faut donc fixer une valeur D arbitrairement grande. Comme on est dans un formalisme
discret, la longueur de la réponse impulsionnelle du canal artificiel est limitée par β

(G)
max.

On sait alors qu’on peut fixer une limite supérieure D ≤ τ
(G)
max/τs.

– Le profil d’intensité Γd(β) peut être n’importe quelle fonction intégrable sur [0, β
(G)
max].

Cependant, on sait qu’un grand nombre de canaux a un profil exponentiel décroissant
[7–9]. On choisira donc ce profil pour Γd(β).

Dans [35], il est montré que le paramètre le plus limitant est le choix du délai maximum β
(G)
max,

qui doit logiquement être supérieur à β
(H)
max.

r.3.4 Résultats de simulations

r.3.4.1 Paramètres de simulations

Les paramètres de simulations sont ceux du standard DRM/DRM+ [1]. Le canal considéré,
US Consortium est un canal à quatre trajets tels que les retards (échantillonnés) et les gains
correspondant sont donnés par βl ∈ {0 7 15 22} et σl ∈ {1 0, 7 0, 5 0, 25}. Les paramètres du
signal sont donnés dans le tableau r.2. De plus, les pilotes sont en quinconce dans la trame,
avec une régularité d’une sur quatre porteuses sur l’axe fréquentiel et un sur deux symboles
sur l’axe temporel.
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Table r.2 – Paramètres de la robustesse C de la norme DRM/DRM+.
Robustesse C

Durée d’un symbole 14.66 ms
Durée du CP 5.33 ms
Durée d’une trame 400 ms
Nombre de porteuses 148
Largeur de bande 10 kHz
Constellation 64-QAM

Le filtre G possède alors les paramètres suivants : D = 15, τ
(G)
max = TCP = 5.33 et le profil

d’intensité Γd est une exponentielle décroissante, ce qui est conforme aux recommandations
précédentes.

r.3.4.2 Erreur quadratique moyenne de l’estimateur ACA-LMMSE

La figure r.6 compare les performances de ACA-LMMSE avec celles du LS et du LMMSE
en terme d’erreur quadratique moyenne minimum (ou MMSE), en fonction du rapport P/σ2

sur une fenêtre de 1 à 12 dB. Deux motifs pour l’agencement des pilotes sont considérés : sur la
figure r.6 (a), un préambule (noté préamb. en légende) concordant avec les résultats théoriques
(r.18) et (r.23) ; et sur la figure r.6 (b), un motif en quinconce (noté quinc. en légende),
en accord avec les recommandations de la norme DRM/DRM+. L’estimation LMMSE est
effectuée en considérant la matrice de covariance connue du récepteur, ce qui est le cas idéal.
Une interpolation spline a été faite pour le scénario LS avec les pilotes en quinconce.
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0

P/σ2
 (en dB)

M
M

S
E

LS − préamb.
LMMSE − préamb.
ACA−MMSE − préamb.

(a) Préambule en fréquence.
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M
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E

LS − quinc.
LMMSE − quinc.
ACA−LMMSE − quinc.

(b) Pilotes en quinconce.

Figure r.6 – Erreur quadratique moyenne de ACA-LMMSE comparée à LS et LMMSE.

Quel que soit le motif de la distribution des porteuses pilotes, on remarque qu’ACA-
LMMSE a de meilleures performances que LS et n’est qu’à 2 dB de LMMSE (en terme de
MMSE), dans le cas idéal. Cette légère dégradation est évidemment due à l’approximation
RG ≈ RK .
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r.3.4.3 Taux d’erreur binaire de l’estimateur ACA-LMMSE

La figure r.7 montre les performances du ACA-LMMSE en terme de TEB (Taux d’Erreur
Binaire) en fonction de Eb/N0 et compare ACA-LMMSE avec LMMSE et LS. Pour LMMSE,
deux cas sont considérés : l’un où la matrice de covariance du canal est parfaitement connue, et

l’autre où elle est estimée par R̃H = Ĥ
LS

n (Ĥ
LS

n )H . Les pilotes suivent la distribution en quin-
conce du standard, donc une interpolation spline est utilisée en complément de l’estimateur
LS. Pour toutes les courbes de la figure r.7, aucun codage canal n’a été effectué.
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Figure r.7 – TEB de ACA-LMMSE comparé à LMMSE et LS en fonction de Eb/N0.

On remarque que LMMSE et ACA-LMMSE surpassent LS et que contrairement à LS, leurs
courbes n’atteignent pas de borne inférieure d’erreur (dans la plage de Eb/N0 considérée). Ce
phénomène de seuil d’erreur sera étudié plus en détail dans la partie r.5, mais on peut déjà dire
qu’il est dû à l’interpolation. La figure r.7 permet de vérifier que LMMSE atteint l’optimum
quand elle est effectuée avec une matrice de covariance parfaitement connue. On observe aussi
que ACA-LMMSE est à moins de 2 dB du TEB de l’estimation parfaite et que l’écart de TEB
entre ACA-LMMSE et LMMSE effectuée avec R̃H est de moins de 0,2 dB. On conclut qu’à
performance équivalente, ACA-LMMSE nécessite moins de calculs que LMMSE, et n’a pas
besoin de la matrice de covariance du canal physique.

r.3.5 Conclusion et perspectives

On a vu que l’estimation de canal proposée, appelée ACA-LMMSE, atteint des résultats
proches de l’estimateur optimal, et sans avoir besoin de la connaissance a priori de la matrice
de covariance fréquentielle du canal. De plus, comparée à un cas plus réaliste LMMSE où
cette matrice est estimée et mise à jour, on a montré que ACA-LMMSE nécessite moins de
calculs, dans un environnement où le canal de transmission varie au cours du temps. En effet,
grâce à l’effet de masquage du canal, l’inversion et la multiplication matricielles nécessaires à
LMMSE ne sont calculées qu’une seule fois en début de transmission. Bien que ce ne soit pas
montré dans cette partie, il est aussi possible d’utiliser ACA-LMMSE pour adapter certains
algorithmes à un canal variable dans le temps. Un exemple est développé dans la partie 3.5.3,
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où l’algorithme RISIC [36] permettant la suppression d’ISI dans des canaux quasi-statiques
est adapté aux canaux variant rapidement dans le temps.

r.4 Estimation conjointe du RSB et du canal

Dans la partie précédente, l’estimation ACA-LMMSE a été proposée comme solution
pour utiliser LMMSE sans connaissance a priori de la matrice de covariance du canal, tout
en réduisant le nombre de calculs nécessaires dans le cas de canaux variant dans le temps.
Cependant, la variance du bruit nécessaire à LMMSE (r.20) ou ACA-LMMSE (r.29) est
supposée connue du récepteur. En pratique, ce paramètre est aussi à estimer.

Dans cette partie, on propose une méthode pour estimer conjointement le canal et le
rapport signal-à-bruit (RSB). Pour obtenir une estimation précise, on base l’estimation sur
le critère MMSE pour les deux paramètres. En utilisant l’estimateur MMSE, la valeur de
chacune des inconnues (canal ou bruit) est nécessaire pour estimer l’autre. En conséquence,
l’algorithme proposé est itératif. Le principe de la méthode a été présenté dans [37] pour
un cas théorique, où la matrice de covariance du canal était supposée connue. Un cas plus
réaliste, où cette matrice doit être estimée, a été publié dans [38, 39]. C’est cette version de
l’algorithme qui est présenté dans cette partie.

r.4.1 Présentation de l’algorithme

r.4.1.1 Estimation de la variance du bruit et du RSB

Dans cette partie, on suppose que les estimations du canal et du bruit sont effectuées sur
un préambule, i.e. toutes les porteuses d’un symbole OFDM sont dédiées à l’estimation. Pour
estimer la variance du bruit σ2, on utilise le critère de l’erreur quadratique moyenne :

σ̂2 =
1

M
E{||UC−1 − Ĥ||2F }

=
1

M
E{||ĤLS − Ĥ||2F }. (r.33)

On remarque dans (r.33) que l’estimation de la variance du bruit dépend de la qualité de
l’estimateur de canal. Ainsi, une estimation LS mène à une estimation σ̂2 nulle. C’est pourquoi
on propose dans la suite d’utiliser l’estimateur de canal optimal selon le critère MMSE.

Le RSB, noté ρ est alors estimé en utilisant le moment d’ordre deux du signal reçu noté
M2 :

M2 = E{|U|2} = Ps + σ2

⇒ ρ̂ =
M2

σ̂2
− 1, (r.34)

où Ps est la puissance du signal reçu.

r.4.1.2 Description de l’algorithme itératif

Dans un scénario réaliste, la matrice de covariance du canal RH est inconnue du récepteur,
et doit être estimée. On notera R̃H cette matrice estimée. L’algorithme, dont les étapes sont
détaillées ci-après, est décrit par la figure r.8. On notera i l’indice de l’itération.
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Figure r.8 – Schéma-bloc de l’algorithme proposé dans un cas réaliste.

1. A l’itération (i = 0), seule l’estimation LS du canal est disponible. On estime donc la

matrice de covariance par R̃
LS
H = Ĥ

LS
(Ĥ

LS
)H . De plus, on fixe un critère d’arrêt, noté

eσ, et on initialise la variance du bruit σ̂2(i=0).

2. A l’étape (i = 1), on effectue l’estimation LMMSE avec la matrice R̃
LS
H :

Ĥ
LMMSE

(i=1) = R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS

, (r.35)

3. A partir de (r.33), la variance du bruit est estimée :

σ̂2(i=1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i=1) ||2}. (r.36)

Si les étapes suivantes de l’algorithme sont effectuées avec R̃
LS
H , on montre dans [38]

et dans l’annexe B.1 que l’algorithme converge vers zéro. C’est dû au fait que R̃
LS
H est

une matrice bruitée. Pour obtenir une matrice de covariance du canal plus proche de la

matrice exacte, on peut alors utiliser Ĥ
LMMSE

(i=1) , tel que :

R̃
LMMSE
H = Ĥ

LMMSE

(i=1) (Ĥ
LMMSE

(i=1) )H . (r.37)

4. Pour i ≥ 2, on effectue les estimations (r.35) et (r.36) en utilisant R̃
LMMSE
H :

Ĥ
LMMSE

(i) = R̃
LMMSE
H (R̃

LMMSE
H + σ̂2(i−1)I)

−1Ĥ
LS

, (r.38)

σ̂2(i) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i) ||2}. (r.39)

5. Tant que |σ̂2(i) − σ̂2(i−1)| > eσ, on retourne à l’étape 4 avec i ← i + 1, sinon, on passe à
l’étape 6.

6. La dernière itération est notée i0, alors on estime le RSB en utilisant (r.34) :

ρ̂ =
M̂2

σ̂2(i0)

− 1. (r.40)

7. fin de l’algorithme.

A chaque itération de l’algorithme, les estimations du canal et du bruit se rapprochent
d’une valeur finale (Ĥi0 , σ̂2i0

) dont la précision sera évaluée par simulation. On va aussi montrer
que la valeur de l’initialisation joue un rôle dans la convergence de l’algorithme.
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r.4.2 Convergence de l’algorithme

Les étapes prouvant la convergence de l’algorithme vers une valeur non nulle sont résumées
dans cette partie. Pour cela, on montre que l’estimation de la variance du bruit σ̂2(i) converge
vers une valeur non-nulle. Alors, logiquement, à partir de (r.38) et (r.40), on conclut que
l’estimation de canal et le RSB convergent.

r.4.2.1 Expression scalaire de l’algorithme

A partir de (r.39), il est possible d’obtenir une version scalaire de l’expression de la variance
du bruit, comme il est montré dans [38] ou dans le chapitre 4. On montre alors que (σ̂2(i)) est
une suite construite à partir d’une fonction σ̂2(i+1) = fr2(σ̂2(i)). Plus précisément, en posant
x = σ̂2(i), on obtient :

fr2(x) =
x2

M

M−1
∑

m=0

λm + σ2

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ x)2

. (r.41)

On remarque que l’initialisation σ̂2(i=0) apparaît dans (r.41). Elle joue donc un rôle fondamental
dans la convergence de l’algorithme.

r.4.2.2 Conditions de convergence

On remarque aisément que fr2 est croissante sur R+ et que fr2([0, M2]) ⊂ [0, M2]. Donc,
en utilisant le théorème du point fixe, on déduit que fr2 a au moins un point fixe, que (σ̂2(i))
est monotone et donc qu’elle converge vers un des points fixes de fr2. Un point fixe, i.e. une
solution de fr2(x) = x, est évident, car fr2(0) = 0. Or, on souhaite une convergence vers une
autre valeur que zéro. On peut alors donner des conditions (voir [38] pour plus de précisions)
sur σ̂2(i=0) pour assurer une convergence de (σ̂

2
(i)) vers une autre valeur que zéro.

– A partir de la dérivée seconde de fr2, une condition nécessaire est déduite :

σ̂2(i=0) ≥ (

√

27
8
− 1)M2. (r.42)

– On peut alors montrer qu’une condition suffisante existe si σ̂2(i=0) = ΛM2, avec Λ >> 1,
mais sans plus de précision sur Λ et sur la valeur finale de l’estimation de la variance
du bruit σ̂2i0

.
– Un choix optimal de σ̂2(i=0) peut être fait si, à chaque symbole pilote on résout

σ̂4

M

M−1
∑

m=0

λm + σ̂2

( (λm+σ̂2)3

(λm+σ̂2+σ̂2
(i=0),opt

)2
+ σ̂2)2

− σ̂2 = 0. (r.43)

en fonction de σ̂2(i=0),opt. Les valeurs σ̂2 et λm sont les variables estimées grâce au symbole
pilote précédent.

r.4.3 Résultats de simulations

r.4.3.1 Estimation du RSB

Dans un premier temps, on évalue la performance de l’algorithme sur l’estimation du
rapport signal-à-bruit. Pour cela, on va le comparer à trois méthodes de la littérature :
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– La méthode de Ren [40] est spécifiquement adaptée aux systèmes OFDM. En effet, elle
nécessite un préambule composé de deux symboles OFDM pilotes. De plus, le canal
est supposé invariant pendant deux symboles consécutifs. Alors la variance du bruit est
estimée par :

σ̂2 =
1
2M

E{||Un −Un+1||2F }

=
1
2M

E{||Wn −Wn+1||2F }. (r.44)

– La méthode de Xu [41] se base sur les sous-espaces de la matrice de corrélation estimée
du canal R̃H . Le moment d’ordre deux du signal reçu est estimé sur le sous espace des
valeurs propres non-nulles du canal, tandis que le niveau du bruit est estimé sur l’espace
complémentaire, où les valeurs propres du canal sont nulles.

– La méthode M2M4 est utilisable pour toute forme d’onde [42]. Son principe est d’estimer
le moment d’ordre deux (r.34) et le moment d’ordre quatre M4 = 1

M E{||UUH ||2F } =
P 2

s + 4Psσ2 + 2σ4. On déduit alors la puissance du signal et la variance du bruit par :

P̂s =
√

2M2
2 −M4

σ̂2 = M2 −
√

2M2
2 −M4,

puis le RSB ρ̂ = P̂s/σ̂2.
De plus, on compare l’algorithme proposé (dans le cas réaliste) avec le cas théorique où la
matrice de covariance est supposée connue [37]. La figure r.9 représente l’erreur quadratique
moyenne normalisée (ou NMSE en anglais) de l’estimation du RSB NMSE = E{|ρ̂−ρ|2/ρ2}
en fonction du RSB. L’algorithme proposé est comparé avec les méthodes précédemment
présentées.
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Figure r.9 – NMSE de l’estimation du RSB en fonction de ρ.

On observe que la méthode proposée dans un scénario réaliste atteint presque les per-
formances du cas optimal. De plus, l’algorithme itératif surpasse les autres méthodes de la
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littérature. Comparée à la méthode de Ren, le bénéfice est double, car pour une meilleure per-
formance, la technique proposée n’utilise qu’un symbole OFDM pilote par préambule, contre
deux pour la méthode de Ren.

r.4.3.2 Estimation de canal

On montre sur la figure r.10 la performance de l’estimation de canal de la méthode propo-
sée par le taux d’erreur binaire en fonction de ρ et pour différentes valeurs du nombre d’itéra-
tions. Une comparaison avec l’estimation LS et le cas théorique est proposée. La constellation
utilisée est une MAQ-16, et le canal de transmission est similaire à celui utilisé dans la partie
r.3.
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Figure r.10 – Taux d’erreur binaire (TEB) de la méthode proposée en fonction du RSB,
comparaison avec des méthodes existantes.

On observe qu’à partir de i = 2, la méthode proposée surpasse les performances de l’esti-
mateur LS. La figure r.10 montre que l’estimation de canal converge, et qu’elle converge vers
une limite proche de l’estimation parfaite, puisque l’écart en les deux courbes est inférieur à
0.2 dB.

r.4.4 Conclusion et perspectives

Dans cette partie, on a présenté un algorithme itératif pour l’estimation conjointe du RSB
et du canal. Comme l’estimation se base sur le critère MMSE, celle-ci est très performante pour
chacun des paramètres, ce qui a été vérifié par simulation. De plus, on suppose un cas réaliste,
où la matrice de covariance du canal est a priori inconnue. Cet algorithme permet donc une
application pratique de LMMSE, où ses paramètres statistiques sont estimés itérativement.

La suite des travaux concernant cette méthode est son application à la détection de bande
libre dans le cadre de la radio intelligente. En effet on peut montrer que, sans changer la
structure de l’algorithme, il converge aussi si du bruit seul est présent en entrée à la place du
signal, comme c’était le cas dans cette partie. On peut alors détecter la présence ou non d’un
utilisateur dans la bande considérée. Cette application est présentée dans la partie 4.5.
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r.5 Étude des interpolations sur les performances de l’estima-
tion d’un canal de Rayleigh

Dans cette partie, on s’intéresse aux erreurs d’estimation dues aux interpolations, néces-
saires quand on considère une distribution des pilotes différente d’un préambule en fréquence.
On va montrer qu’il est possible de caractériser ces erreurs en calculant analytiquement la
limite atteinte par le TEB. Les premiers résultats de cette étude ont été publiés dans [43].

r.5.1 Modèle

Dans toute cette partie, on va considérer des interpolations effectuées selon l’axe fréquen-
tiel. On utilisera de manière équivalente le formalisme continu ou discret pour décrire le
canal :

H(f) =
L−1
∑

l=0

hle
−2jπfτl ⇐⇒ Hm =

L−1
∑

l=0

hle
−2jπ

βlm

M , (r.45)

Dans le formalisme discret, on définit δp (correspondant à δf en continu) l’écart fréquentiel
entre deux pilotes consécutifs, comme l’illustre la figure r.11. Dans la suite, on considèrera
δp ∈ {2, 3, 4}. De plus, on suppose que les pilotes sont uniformément répartis dans chaque
symbole OFDM.

δp = 4δp = 3δp = 2

Figure r.11 – Illustration de la distribution des pilotes pour différentes valeurs de δp.

Pour faciliter les simulations, chaque symbole OFDM sera composé de M = 241 porteuses :
pour tout δp ∈ {2, 3, 4}, 240 est divisible par δp. Pour valider les développements qui vont
suivre, on simulera deux canaux de Rayleigh H1 et H2, dont les paramètres (retards et gain)
sont :

– H1 : βl ∈ {0 6 13 16} et σ2l = {1 0, 5 0, 4 0, 2},
– H2 : βl = {0 4 9 14 16 18 21} et σ2l = {1 0, 5 0, 4 0, 3 0, 3 0, 2 0, 1}.

r.5.2 Statistique des erreurs d’interpolation

r.5.2.1 Expression des erreurs

On va s’intéresser ici aux interpolations nearest neighbor (NN) et linéaire. Dans un premier
temps, on s’intéresse aux erreurs uniquement dues aux interpolations, donc on suppose un
bruit nul σ2 = 0. On note eh l’erreur d’interpolation Ĥ(f)−H(f) et ξ son module. A partir
des expressions des interpolations NN (r.24) et linéaire (r.25), on donne les erreurs ξNN et
ξli :

ξNN = |Ĥ(f)−H(f)| = |H(fp)−H(f)| (r.46)

ξli = |H(f)− Ĥ(f)| = 1
2
|(fp+δp − f)(fp − f)| × |H ′′(α)|, (r.47)
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où H ′′ est la dérivée seconde de la réponse fréquentielle (on voit dans (r.45) que H est
visiblement C2) canal et α ∈ [fp, fp+δp ]. L’expression de ξNN est triviale en utilisant (r.24).
Celle de ξli se déduit simplement de la formule de Taylor en fp et fp+δp , comme il est montré
dans l’annexe C. A partir de (r.47), on peut déjà déduire que si |H(f)| suit une loi de Rayleigh,
alors ξNN et ξli suivent aussi une distribution de Rayleigh, dont les variances seront données
plus loin. De plus, comme les erreurs sont fonctions de H(f) (ou de sa dérivée seconde), ξ et
|H(f)| sont corrélés.

r.5.2.2 Paramètres statistiques des erreurs

A partir des expressions des erreurs (r.47) et de la réponse fréquentielle du canal (r.45),
sans le démontrer ici, on déduit les expressions des variances σ2ξ dans le formalisme discret.
On note k une porteuse donnée se situant entre deux positions pilote p et p+ δp. On exprime
alors σ2ξ pour les deux interpolations considérées :

σ2ξk,NN
=

L−1
∑

l=0

σ2l (2− 2 cos(2π
kβl

M
)) (r.48)

σ2ξk,li
= |(δp − k)k

M2
|24π4

L−1
∑

l=1

β4l σ2l . (r.49)

On remarque que ces valeurs dépendent de la distance à un pilote. Physiquement, cela se
traduit par le fait que plus on considère une valeur interpolée écartée d’une position d’un
pilote, plus l’erreur d’estimation est grande, statistiquement.

On calcule aussi le coefficient de corrélation entre l’erreur d’estimation eh et le canal H(f).

On note ρrξ ce coefficient, qui s’exprime ρrξ =
|E{H(f)e∗h}|

σhσξ
. Plus précisément, on obtient :

ρrξk,NN =
|∑L−1

l=0 σ2l (e
−2jπ

βlk

M − 1)|
σhσξk,NN

(r.50)

ρrξk,li =
| (δp−k)k

M2 |2π2∑L−1
l=1 β2l σ2l

σrσξk,li

. (r.51)

Plus de précisions sur l’obtention des expressions (r.49) et (r.51) sont données dans le chapitre
5. Comme ξ et |H(f)| sont de processus de Rayleigh corrélés, on peut déduire une expression
de leur densité de probabilité conjointe pr,ξ(r, ξ) [44, 45], où r = |H(f)| :

pr,ξ(r, ξ) =
rξ

σ2rσ2ξ (1− ρ2rξ)
exp

(

−
σ2ξ r2 + σ2rξ2

2σ2rσ2ξ (1− ρ2rξ)

)

I0

(

rξρrξ

σrσξ(1− ρ2rξ)

)

, (r.52)

où I0(.) est la fonction de Bessel modifiée de première espèce et d’ordre zéro.

r.5.3 Considérations géométriques

r.5.3.1 Modèle

On va maintenant étudier l’impact des erreurs d’interpolation sur la détection des symboles
de constellation. Naturellement, l’impact des erreurs diffère selon la taille et la géométrie des
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constellations. Dans cette partie, on va étudier une BPSK (Binary Phase Shift Keying) et
une 4-QAM (Quadrature Amplitude Modulation) avec un codage de Gray, comme l’illustre
la figure r.12, où d est une valeur de normalisation.

Q

I

0010

0111

d

d-d

-d

0 1

+1-1
I

BPSK

4-QAM

Figure r.12 – BPSK et 4-QAM avec un codage de Gray.

La détection des symboles est effectuée par un égaliseur zero forcing. Comme on suppose
ici un bruit nul, le symbole estimé Ĉ s’écrit :

Ĉ =
H(f)

Ĥ(f)
C =

H(f)
H(f) + eh

C. (r.53)

Dans la suite, on va utiliser les notations complexes suivantes : H(f) = rejΘH , eh = ξejΘξ , et
on définit aussi Θ = ΘH −Θξ.

r.5.3.2 BPSK

Pour une BPSK (C ∈ {−1,+1}), les domaines de décisions sont symétriques, il est donc
équivalent de raisonner sur C =+

− 1. On va choisir C = 1 dans la suite. La probabilité d’erreur
de détection, qu’on note P BP SK

e , est alors donnée par :

P BP SK
e = P

(

Re{Ĉ} < 0|C = 1
)

. (r.54)

Après un calcul simple mais fastidieux, la résolution de (r.54) donne :

P BP SK
e = P

(

Re{ H(f)
H(f) + eh

× 1} < 0
)

⇒ P BP SK
e = P

(

r2 + rξ cos(Θ)
|H(f) + eh|2

< 0

)

, (r.55)

puis

P BP SK
e =







0 if ξ ≤ r

1− arccos(− r
ξ
)

π if ξ ≥ r
. (r.56)
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r.5.3.3 4-QAM

De la même manière pour une 4−QAM , comme il est mentionné dans [46], les domaines
de décision sont symétriques par rapport aux axes I et Q pour les bits de poids forts (ou MSB
en anglais) et les bits de poids faibles (ou LSB). On peut donc arbitrairement raisonner sur
C = +d + jd dans la suite. Dans ce cas, la probabilité d’erreur de décision P 4QAM

e pour le
MSB (égale pour les MSB et les LSB) s’écrit

P 4QAM
e = P

(

Re{Ĉ} < 0|C = d+ jd
)

. (r.57)

On développe (r.57) pour obtenir :

P 4QAM
e = P

(

Re{ H(f)
H(f) + eh

(d+ jd)} < 0
)

⇒ P 4QAM
e = P (r + ξ(cos(Θ)− sin(Θ)) < 0) , (r.58)

puis finalement

P 4QAM
e =



















0, if 0 ≤ ξ ≤ r√
2

arctan(t+
2 )−arctan(t2−)

π , if r√
2
≤ ξ ≤ r

(1 + arctan(t3−)−arctan(t+
3 )

π ), if r ≤ ξ

, (r.59)

où t +2− = t −3+ =
2ξ+
−

√
∆p

2(r−ξ) , avec ∆Q = 4ξ2 − 4(r2 − ξ2).

r.5.3.4 Expression de la valeur seuil du TEB

La borne inférieure atteinte par le taux d’erreur binaire, que l’on note TEBseuil se calcule
en intégrant P const

e que multiplie la ddp conjointe pr,ξ(r, ξ) :

TEBseuil =
∫ +∞

0

∫ +∞

0
P const

e pr,ξ(r, ξ)dξdr, (r.60)

où l’exposant const dépend de la constellation considérée.

r.5.4 Résultats de simulations

Pour valider les résultats analytiques, la figure r.13 compare les courbes de TEB simulées
et les valeurs de seuils obtenues analytiquement en fonction du RSB. Pour chaque sous-figure,
deux écarts δp ∈ {2, 4} et les deux constellations sont représentées. Sur la figure r.13 (a),
les courbes sont obtenues pour le canal H(1) et l’interpolation NN, et la figure r.13 (b), les
courbes sont obtenues pour le canal H(2) et l’interpolation linéaire. Les valeurs des seuils de
TEB sont obtenues en utilisant r.60. Pour plus de précisions sur les valeurs des paramètres
de simulations σ2ξ et ρrξ, on peut consulter la section 5.6.

Un grand nombre de cas avec des paramètres différents sont représentés, afin de couvrir
le plus de scénarios possibles. On remarque que chaque valeur analytique du TEB correspond
effectivement à la limite atteinte par chacune des courbes. Les développements théoriques
sont donc validés. On remarque aussi que, naturellement, l’interpolation linéaire est plus
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(a) Canal H(1), interpolation NN.
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Figure r.13 – Courbes de TEB simulées comparées aux seuils calculés analytiquement.

performante que l’interpolation NN. De plus, on vérifie que les résultats se dégradent avec
l’augmentation de δp. La très légère différence pouvant être visible entre les limites théoriques
et les courbes de simulations peut s’expliquer par le fait que la double intégrale dans (r.60)
s’approxime en réalité par une double somme.

r.5.5 Conclusion et perspectives

Dans cette partie, on a présenté une étude sur les erreurs d’estimation dues aux interpo-
lations. Une analyse statistique permet de caractériser ces erreurs, en fonction de la méthode
d’interpolation et de l’espacement fréquentiel entre pilotes. Cette étude associée à une analyse
géométrique dépendant de la constellation, il est alors possible de prédire la borne inférieure
atteinte par les courbes de TEB. Dans le chapitre 5, on montre qu’il est aussi possible de
donner une expression analytique du MSE en fonction du RSB. Une suite logique à ces tra-
vaux sera d’étendre l’étude à des constellations de plus grandes tailles et à d’autres types
d’interpolations. De plus, on peut envisager d’utiliser la même étude pour caractériser les
interpolations en traitement d’image.

r.6 Application de la diversité de délai cyclique à un SFN

Dans cette partie est présentée la diversité de délai cyclique (ou CDD en anglais) appliquée
à un SFN (Single Frequency Network) utilisant la norme DRM/DRM+. Cette étude et le
résultat de la contribution de l’ECAM Rennes au Projet OCEAN (Optimisation d’une Chaîne
d’Emission-réception pour la rAdio Numérique terrestre), et a été publiée dans [47].

r.6.1 Modèle

r.6.1.1 Réception d’un signal dans un SFN

Dans cette partie, on considère un récepteur mobile Rx se situant dans la zone de recou-
vrement entre deux cellules d’un réseau SFN (pour Single Frequency Network, en anglais),
comme l’illustre la figure r.14 (a). Dans ce type de réseau, le signal est émis à la même
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fréquence quelle que soit l’antenne d’émission Tx. Suivant ce modèle, les évanouissements
fréquentiels du canal peuvent affecter toute la bande passante d’un signal donné. Dans ce cas,
la diversité fréquentielle de l’OFDM devient inutile, même si un codage canal est utilisé.

Du point de vue du récepteur dans la zone de recouvrement, la réponse fréquentielle du
canal est la somme des contributions du signal provenant de Tx1 et Tx2. Pour tout m =
0, 1, ..., M − 1, on a alors :

Hm =
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
mβl2

M

=
L−1
∑

l=0

hle
−2jπ

mβl
M , (r.61)

où hl, hl1 , hl2 sont les coefficients et βl, βl1 , βl2 les retards échantillonnés des trajets. L1 et L2

sont le nombre de trajets provenant de Tx1 et Tx2, et on suppose que L ≤ L1+L2, sans perte
de généralité. De plus, on suppose que le délai maximum du canal est très court. Dans cette
condition, les gains |Hm| peuvent être fortement atténués, et sur une large plage de fréquence,
comme l’illustre la représentation temps-fréquence de la réponse fréquentielle du canal sur la
figure r.14 (b).

Tx1 Tx2

Rx

zone de recouvrement

(a) Réseau SFN simplifié à 2 Tx.
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(b) Réponse fréquentielle du canal équivalent, sans
diversité.

Figure r.14 – Réseau SFN simplifié et réponse fréquentielle du canal vu de la zone de recou-
vrement.

Quand toute la totalité des porteuses est affectée par un évanouissement, le gain de la
diversité fréquentielle apporté par l’OFDM devient nul, et un grand nombre d’erreurs appa-
raissent dans le signal reçu, et cela même si un codage de canal est utilisé.

r.6.1.2 Paramètres de simulations

Le signal utilisé tout au long de cette partie suit les paramètres donnés par le mode de
robustesse B de la norme DRM/DRM+ [1]. On va considérer un signal de largeur en fréquence
B = 5 kHz, composé de 103 porteuses mappées par une 4-QAM (dont une nulle au centre)
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et une trame composée de 15 symboles OFDM. Chaque symbole a une durée Ts = 21.33
ms et un préfixe cyclique (CP) de durée TCP = 5.33 ms. Un code de Reed-Solomon [48] de
rendement 0,5 est appliqué. Les paramètres de simulations sont résumés dans le tableau r.3.

Table r.3 – Paramètres de simulations.
Robustness B

Durée d’un symbole Ts 21.33 ms
Durée du CP TCP 5.33 ms
Durée d’une trame 400 ms
Nombre de porteuses M 103
Largeur de bande B 5 kHz
Constellation 4-QAM
Rendement du code RS 0.5

r.6.2 Diversité de délai cyclique

Le principe de la diversité de délai cyclique (ou CDD, en anglais), décrite dans [49], est
d’augmenter artificiellement la sélectivité fréquentielle du canal pour retrouver l’avantage de
la diversité fréquentielle de l’OFDM. Pour obtenir ce résultat, on opère un décalage cyclique
kΦ sur les échantillons des symboles émis sur une des deux antennes Tx1 ou Tx2, tel que, si
on note uk,div le kème échantillon du nouveau symbole, alors on obtient :

uk,div = uk−kΦ(modM) =
M−1
∑

m=0

(Cme−2jπkΦm/M )e2jπkm/M , (r.62)

où mod signifie modulo. De manière équivalente, cela revient à ajouter une phase Φm =
−2πkΦm/M , avec m = 0, 1, ..., M −1 avant l’IFFT au signal émis sur une des deux antennes.
Cette méthode est alors appelée diversité de phase [49]. Comme les deux antennes jouent un
rôle symétrique, on supposera que la phase additionnelle est ajoutée sur Tx2. Alors, du point
de vue du récepteur, le nouveau canal équivalent est donné par :

Hm =
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
mβl2

M eΦm

=
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
m(βl2

+kΦ)

M . (r.63)

Bien qu’il y ait équivalence entre la diversité de phase et la CDD, on remarque que la mise en
œuvre de la CDD nécessite seulement un décalage des échantillons dans le domaine temporel,
tandis que la diversité de phase nécessite M multiplication. La CDD est donc moins complexe
que la diversité de phase. Comme il est mentionné dans [50], l’augmentation de la sélectivité
est effective si kΦ > 2. La figure r.15 montre la nouvelle réponse fréquentielle du canal pour
une CDD avec kΦ = 6. Comparativement à r.14 (b), on remarque bien l’augmentation de
la sélectivité fréquentielle du canal. Dans ces conditions, on retrouve l’avantage de l’OFDM
codé.
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Figure r.15 – Réponse fréquentielle du canal avec diversité de délai cyclique.

r.6.3 Résultat de simulation

Dans cette partie, on caractérise les performances de la CDD en prenant en compte le
système plus globalement par le taux d’erreur binaire (TEB). Ainsi, à la réception, une esti-
mation LS est effectuée au niveau des pilotes, puis une interpolation spline permet d’obtenir
la réponse du canal sur tout le réseau temps-fréquence.

La figure r.16 montre le TEB en fonction des symboles OFDM, sur une durée de 11,20 s
(soit 420 symboles). Deux processus indépendants sont affichés (1 pour chaque fenêtre), pour
lesquels une transmission sans CDD et une transmission avec CDD sont comparées. Le délai
vaut kΦ = 6, et le rapport signal-à-bruit vaut 10 dB. Pour chaque processus, les observations
sont faites sur un temps correspondant à dix fois le temps de cohérence, ce qui est suffisant
pour tirer des conclusions statistiques.

Quel que soit le processus, on remarque que le nombre d’échantillons (ici, un échantillon
est un symbole OFDM) dont le TEB est non-nul décroît quand la CDD est utilisée, compara-
tivement à une transmission sans CDD. Ainsi, on peut remarquer sur la fenêtre du haut que
la durée correspondant à un BER non-nul pour la transmission sans CDD est environ égale
à 1,5 s, tandis que le TEB est nul pendant toute la transmission pour la transmission avec
CDD. Sur la fenêtre du bas, on remarque que des symboles à TEB non-nul pour une trans-
mission avec CDD peuvent aussi apparaître, mais de manière ponctuelle. Si on considère une
transmission radio, on déduit alors que la CDD permet d’obtenir des erreurs quasi-inaudibles,
tandis que les erreurs dans une transmission sans CDD peuvent gêner l’écoute.

La figure r.17 (a) donne les courbes de TEB en fonction du RSB pour une une transmission
sans CDD et pour une transmission avec CDD avec kΦ = 3 et kΦ = 6. La courbe d’une
transmission avec seulement du bruit additif gaussien est tracée comme référence, celle-ci étant
la borne inférieure du TEB. On observe clairement le gain apporté par la CDD : à TEB=10−3,
le gain en RSB pour kΦ = 3 est de 2 dB et de 3 dB pour kΦ = 6. La conclusion concernant
la baisse du nombre d’erreurs tirée de la figure r.16 est donc confirmée statistiquement.
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Figure r.16 – TEB en fonction des symboles OFDM, pour deux processus indépendants.

La figure r.17 (b) montre les même courbes que la r.17 (a), exceptée la courbe de trans-
mission sans CDD, et celles-ci sont comparées avec les courbes d’une estimation effectuée
par une interpolation linéaire. Cela permet d’étudier l’effet de la CDD sur la performance
plus globale du système. L’interpolation spline nécessite une complexité de l’ordre de O(M2)
et l’interpolation linéaire O(M), mais l’interpolation spline est plus précise que la linéaire,
notamment si les fonctions varient rapidement.
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Figure r.17 – TEB en fonction du RSB, pour une transmission avec et sans CDD, et pour
deux types d’interpolation.

C’est ce qui est vérifié sur la figure r.17 (b). En effet, on observe que l’interpolation spline
offre de meilleures performances que l’interpolation linéaire. Cependant, on remarque que
pour TEB=10−4, la différence de RSB entre les courbes d’une interpolation spline et linéaire
est de 1 dB pour kΦ = 3, et cette différence vaut 2 dB pour kΦ = 6. Ainsi, plus le canal est
sélectif, plus l’interpolation spline est précise, comparativement à l’interpolation linéaire. On
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déduit que pour atteindre une valeur de TEB pour un RSB donné, la seule augmentation de
la valeur kΦ ne suffit pas, car celle-ci influe sur l’estimation de canal. Ainsi, une augmentation
artificielle de la sélectivité peut engendrer une augmentation de la complexité de l’estimateur
en réception.

Pour conclure, l’estimation de canal doit être prise en compte dans la performance globale
du système quand la CDD est utilisée. Un compromis entre l’augmentation de la phase kΦ et
la complexité du récepteur est alors nécessaire.

Conclusion

Ce résumé a couvert les différents travaux et thématiques de la thèse, et les principaux
résultats ont été présentés. Après avoir rappelé les éléments de base concernant les canaux
de transmissions, notamment les canaux WSSUS, ainsi que la transmission et les propriétés
d’un signal OFDM, un état de l’art des techniques usuelles d’estimation de canal a été fait.
Parmi celles-ci, les études effectuées au cours de la thèse se sont orientées vers les méthodes
LS, LMMSE (pour Least Square et Linear-Minimum Mean Square Error, respectivement) et
les techniques d’interpolation basées sur des polynômes interpolateurs.

La méthode ACA-LMMSE (pour Artificial Channel Aided-LMMSE) permet d’approcher
les performances optimales de LMMSE en évitant deux de ses inconvénients. Ainsi, ni la
connaissance a priori de la matrice de covariance du canal, ni son estimation ne sont néces-
saires au récepteur. De plus, dans un environnement variant rapidement, aucune mise à jour
des coefficients de cette matrice ne doit être effectuée. Pour cela, on place en récepteur un
filtre connu agissant comme un canal artificiel masquant le canal physique. Grâce à un choix
adapté des paramètres du filtre, on peut estimer la somme des canaux physique et artificiel en
utilisant uniquement la matrice de covariance du canal artificiel. Le canal physique est ensuite
estimé par soustraction des coefficients du filtre à l’estimation de la somme. Le choix des pa-
ramètres du filtre permet aussi de rendre la méthode indépendante des variations physiques
ou statistiques du canal.

Dans ACA-LMMSE, la variance du bruit est supposée connue, ce qui est rarement le
cas en pratique. Une autre méthode proposée dans la thèse consiste à supposer le canal et
le bruit inconnus, et de les estimer itérativement grâce au critère MMSE. Ainsi, à chaque
itération, l’estimation d’un paramètre permet l’estimation de l’autre. Il est montré, que par
un choix adapté de l’initialisation, cet algorithme converge vers des valeurs de bruit et de
canal proches des valeurs exactes. Cette méthode permet donc une estimation performante
du canal, du bruit et du rapport signal-à-bruit, et peut même être utilisé pour la détection
de bande libre dans un contexte de radio intelligente.

Quand les pilotes sont dispersés dans la trame OFDM, il est nécessaire d’effectuer une
interpolation pour obtenir l’estimation des coefficients fréquentiels sur tout le réseau temps-
fréquence. Ces interpolations ont une erreur résiduelle, qui engendre alors des erreurs sur
le signal reçu. On a montré qu’on peut caractériser statistiquement ces erreurs, et cela de
manière analytique, en fonction de la technique d’interpolation, de l’écart entre pilotes et de
la constellation choisie. Des mesures de performance théoriques, comme l’erreur quadratique
moyenne ou le seuil de taux d’erreur binaire, ont été déduites. Celles-ci sont validées par
comparaison avec les valeurs obtenues par simulations.
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Enfin, une application de la diversité de délai cyclique (ou CDD) à un SFN (pour Single
Frequency Network) a été accomplie dans le standard DRM/DRM+. Dans ce type de réseau,
il arrive que le récepteur se trouvant dans une zone de recouvrement de deux antennes perde
la totalité du signal. Ceci est dû à un type de canal à trajets courts, dont la conséquence est
l’apparition d’évanouissements fréquentiels affectant la totalité de la bande du signal. Dans
ce cas, même l’OFDM codé ne suffit pas à recouvrer l’information utile. La solution est donc
d’augmenter artificiellement la sélectivité fréquentielle du canal grâce à la CDD. Cependant,
on a montré que quand les pilotes sont dispersés dans la trame OFDM, cette augmentation
de sélectivité impacte la qualité d’estimation. Il faut alors faire un compromis entre le gain
apporté par la CDD et la complexité de l’estimateur. Cette étude a été menée dans le contexte
du projet OCEAN, visant à l’optimisation d’une chaîne d’émission réception pour la radio
numérique terrestre.
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Abstract

In wireless communications systems, the transmission channel between the transmitter and
the receiver antennas may disrupt the signal. Indeed, the channel can be frequency selective
due to the multipath, and time selective if any element of the propagation environment is in
motion. The multicarrier modulations, such as the orthogonal frequency division multiplexing
(OFDM), are very robust against the multipath effect, and allow to recover the transmitted
signal with a low error rate, when it is combined with a channel encoding. Furthermore, it is
usual to consider that the channel frequency response is constant on each subcarrier, so the
equalization is simply performed by a per subcarrier division. The channel estimation then
plays a key role in the performance of the communications systems. For this reason, a great
number of papers that propose various methods have been published for many years. Among
them, we interest to the pilot aided techniques that use pilot tones to estimate the channel
on some time and frequency positions. To do so, a lot of techniques are based on the least
square (LS) and the minimum mean square error (MMSE) criteria. The LS is simple, but is
sensitive to the noise level, and an interpolation is required if the pilot tone are scattered in
the OFDM frame. The MMSE is optimal, but is much more complex than LS, and requires
the a priori knowledge of the second order moment of the channel and the noise.

In this manuscript, two methods that allow to reach a performance close to the one of
LMMSE while getting around its drawback are investigated. Thus, the proposed method called
artificial channel aided-LMMSE (ACA-LMMSE) does not require the a priori knowledge of
the channel covariance matrix nor its estimation. Moreover, this method is independent of
the physical or statistical variations of the channel, so it reduces the complexity, since the
covariance matrix just has to be computed once during the transmission. However, ACA-
LMMSE supposes that the noise level is known at the receiver side. A second method then
proposes to perform the joint estimation of the noise and the channel by means of the MMSE
criterion. Consequently, as the estimation of each parameter requires the estimation of the
other one, the proposed algorithm is iterative. In another way, a third part of this dissertation
investigates the errors of estimation due to the interpolations. By combining a statistical and a
geometrical study of the errors of interpolation, it is possible to derive an analytical expression
of the mean square error (MSE) of the estimation and a theoretical expression of the lower
bound of the bit error rate (BER) curves. Finally, a application of the cyclic delay diversity
to a single frequency network (SFN) using the DRM/DRM+ standard is presented. The
consequence of the increase of the frequency selectivity on the channel estimation is shown.
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Introduction

Since the invention of the telegraph by Samuel Morse in 1832, we observed an extraordi-
nary development of systems allowing data transmission between two distant points. As these
systems became more and more popular, higher and higher data rates were required, then lea-
ding to more and more complex systems. This is the reason why the signal processing domain
has met different major breakthroughs during its short history life. For instance, one can name
the digital signal processing that allowed a great decrease of the size and the complexity of the
telecommunications systems, the channel turbo-decoding for quasi-error free transmissions at
low signal-to-noise ratios and, more recently, the standardization of multicarrier modulation
for high data rate transmissions over severe channels.

Indeed, in the case of data transmission in a dense environment, like an urban transmis-
sion for instance the transmitted signal may be disrupted by several effects like reflection or
diffusion. As a consequence, the received signal may be seen as a sum of delayed and attenua-
ted versions of the transmitted signal: the transmission is then made over a multipath fading
channel. These channels can be very frequency selective, i.e. deep fading may be observed in
some frequency bands. For applications requiring low data rates (i.e. a transmission over a
narrow bandwidth), the effect of the multipath channel is limited and classical monocarrier
modulations are quite appropriate. But for transmission on larger bandwidth, another scheme
has to be considered.

The multicarrier modulations, and particularly the orthogonal frequency division mul-
tiplexing (OFDM), have shown to be adapted for transmissions in multipath channels. The
OFDM signal can be seen as a parallel data transmission over narrower frequency bands. This
property then makes the OFDM modulation robust against the frequency selective channels.
Coupled with an efficient channel code, the resulting system called coded OFDM (COFDM)
has proved its efficiency as it is now part of several telecommunications standards for different
applications:

– Wired communication systems: xDSL technology, PLC, etc.
– Wireless systems: WiFi [51] or WiMax, etc.
– Television: DVB-T [52], DTMB, ISBD, etc.
– Radio: DAB [53], DRM [1], etc.

As for the DVB standards that were proposed in order to replace the analog television in
the frequency bands between 470 and 862 MHz, DAB and DRM are standards for the digital
radio broadcasting:

– The digital audio broadcasting (DAB) [53] uses the band III or the band L.
– The digital radio mondiale (DRM/DRM+) [1] is designed for the radio broadcasting in
the current AM and FM bands.



2 Introduction

Contrarily to the industrialized countries where the AM/FM network is deeply established,
this technology seems to be very attractive for emerging countries. In addition, the urban
environments in these countries are also becoming denser and denser which may cause some
transmission problems, even with an OFDM-based standard.

In the context of the digital radio broadcasting in the DRM/DRM+ standard, the study
made in this thesis is especially focused on the transmission channel estimation. Indeed, the
channel estimation is a key function in the transmission chain in order to limit the transmission
errors. This is particularly relevant in the DRM channels, because the channels are naturally
frequency selective due to the multipath effect, but also time selective as the receiver may be
mobile. Furthermore, in radio broadcasting, there is no feedback of data via an uplink from
the mobile station (MS) to the base station (BS), so the receiver does not have any a priori
information on the channel.

The literature is very extensive about the channel estimation techniques. In this disserta-
tion, two methods are proposed to approach the optimal estimator by avoiding its drawbacks.
The channel is also studied in particular cases, i.e. when the path delays are very short or, on
the contrary, when they are overlong. Furthermore, an analytical study of the channel esti-
mation, when performed by means of interpolations techniques, is proposed. It is shown that
the different methods and studies proposed in this report are not limited to the framework
of the DRM standard, but can be applied in the general context of the transmission of any
OFDM signal over multipath channels.

The organization of this dissertation is depicted on Fig. 18. For an better reading of the
thesis, the links between the different chapters are highlighted by arrows. The content of the
chapters are presented hereafter.

Figure 18 – Plan of the thesis dissertation.

Chapter 1 presents the system model used all along the dissertation. The different statis-
tical properties and the characterizations of the transmission channel are recalled. The model
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of the OFDM transmission over a multipath channel is formalized, and the different features
of such a multi-carrier transmission are reminded.

Chapter 2 presents the main techniques of channel estimation. After having skated over
the blind methods and the methods with knowledge of the channel, we focus on the semi-
blind techniques, also called pilot symbol aided modulation (PSAM) in the literature. The
pilot subcarriers are essentially used for the synchronization and, in our context, the channel
estimation. Different pilot arrangements in an OFDM frame are presented, according to the
time and/or frequency selectivity of the propagation channel. The two main estimation criteria
least square (LS) and minimum mean square error (MMSE) are detailed, and a new expression
of the MMSE is proposed. Then, some usual methods of the literature are presented, with
their advantages and weaknesses.

In Chapter 3, a channel estimation method called artificial channel aided - linear MMSE
(ACA-LMMSE) is proposed. Although the LMMSE channel estimation is optimal according
to the MMSE criterion, it has two main drawbacks. The first one is its complexity, especially in
a mobile environment, since the channel variations must be tracked. The second one lies in the
fact that LMMSE requires an a priori knowledge of both the channel statistics via the channel
covariance matrix and the noise level. The proposed technique allows to reduce the complexity
of LMMSE in the case of a time-varying channel, and avoid the a priori knowledge or the
estimation of the channel covariance matrix. Furthermore, the performance of ACA-LMMSE
is close to the one of the theoretical LMMSE. In addition, it is shown that ACA-LMMSE
can be combined with the residual intersymbol interference cancellation (RISIC) algorithm
to mitigate the interference in a mobile environment.

Chapter 4 also deals with the LMMSE estimator, but with a different point of view from
the previous chapter. Here, a joint and iterative method for both signal to noise ratio (SNR)
and channel frequency response is proposed. Contrary to ACA-LMMSE, the receiver does not
have any knowledge of the noise level, in addition to the transmission channel. In order to
get a very good channel estimation, both parameters are estimated by means of the MMSE
criterion. As the MMSE estimation of the noise variance requires the channel knowledge and
the LMMSE channel estimation requires the noise level, an iterative algorithm is proposed, in
which each estimation feeds the other one. The chapter is divided into three part: in the first
one, a theoretical approach of the algorithm is presented. Here, the channel covariance matrix
is supposed to be known, which is not the case in practice. Thus, in a second part, the receiver
does not have any knowledge of the channel statistics, and the channel covariance matrix is
estimated. It is theoretically proved that the algorithm converges in both scenarios. In the
third part, an application of the algorithm to spectrum sensing is presented. The performance
of the joint estimation is compared to several techniques of the literature, and simulations
show that it is very close to the optimal one. Applied to spectrum sensing, the methods
turns out to have a high detection probability, even for low SNR values. Thus, the proposed
algorithm is able to achieve the detection of a hole in the spectrum, and the joint estimation
of the channel and the SNR. The method comes then within the scope of cognitive radio.

After having studied the LMMSE channel estimation, Chapter 5 focuses on the error of
interpolation in the context of the channel estimation. It is usual to consider sparsely distribu-
ted pilot tones in the OFDM frame, so an interpolation is required to get the estimation over

3



4 Introduction

the whole time-frequency lattice. However, these interpolations are responsible of estimation
errors, which result in the appearance of an error floor on the bit error rate (BER) curves.
In this chapter, we propose to analytically evaluate this error floor value, according to the
considered interpolation method and constellation type. Thus, the analysis is split into two
parts: a statistical analysis of the errors, according to the interpolation, and a geometrical
analysis, according to the chosen constellation. The study is carried out for two different in-
terpolation methods: nearest neighbor (NN) and linear, and for two constellation sizes: binary
phase shift keying (BPSK) and 4-quadrature amplitude modulation (4-QAM). Furthermore,
an theoretical expression of the mean square error of the channel estimation performed with
different kinds of interpolation is proposed.

Finally, Chapter 6 presents an application of the cyclic delay diversity (CDD) to the digital
radio mondiale DRM/DRM+ standard [1] and its impact on the channel estimation. In single
frequency networks (SFNs), it may happen that flat fading affects the whole transmission
channel when the receiver is situated in the overlapping area between two cells. In that case,
the benefit of OFDM in frequency selective environments is lost, and the whole signal may be
lost, even if a channel code is used. In order to keep the advantage of OFDM, one solution is to
artificially increase the frequency selectivity of the channel by increasing its maximum delay.
This technique is then called delay diversity. In this chapter, the benefit of DD is shown, and
the effect of the increase of the frequency selectivity on the choice of the estimation method
is studied.

Within the framework of the radio transmission in the standard DRM/DRM+, the colla-
borative project called OCEAN, for Optimisation d’une Chaine Emission-Réception pour la
rAdio Numérique terrestre, aims at the study and the optimization of the radio transmission
chain. This thesis comes whithin the scope of this project. Started in 2010 and ended in 2013,
it has grouped four industrial and academic partners together, all four located in Brittany,
France:

– Digidia and Kenta, two SMEs which manufacture devices for the digital broadcasting
and the implementation of the network,

– ECAM Rennes and Télécom Bretagne, two engineering schools.
This project has been funded by the Brittany region and by Rennes métropole. Fig. 19 shows
the logos of the four partners and the financiers.

Figure 19 – Partners and financiers of the OCEAN project.
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Chapter 1

System, Models, Basic Elements

1.1 Introduction

This chapter reminds some fundamentals about the propagation channel and the OFDM
transmission chain. A topic about the transmission channel and its modeling is firstly covered.
Then a description of the statistical tools that are used to characterize it is proposed. Second,
the OFDM transmission chain, and in particular the OFDM signal, its properties and its
benefits in a multipath environment is presented.

1.2 The Transmission Channel

As a large number of expressions are used to qualify the channels (static, wide sense
stationary, deterministic etc.), we propose in this section our definitions of the basic elements
that identify a transmission channel. These definitions are thus suggested to avoid some
confusions and will be used in the rest of this manuscript.

The transmission channel defines the environment situated between the emission and the
reception antennas. The signal, transmitted over the channel, suffers from some perturbations
of different kinds: reflection, diffraction or diffusion. These phenomena are due to obstacles in
the environment of propagation, like an hilly landscape, buildings or the change of temperature
with the altitude. Furthermore, the transmitter, the obstacles or the receiver can be in motion.
The consequence is a time variation of the channel that also causes a Doppler effect. The simple
picture of Fig. 1.1 illustrates different causes of the signal perturbations.

1.2.1 The Multipath Channel

Some transmission networks only involve one fixed transmitter and one fixed receiver both
being in line of sight. It is then simple to shape directional antennas to get a radio beam. In
such conditions, the signal is generally weakly degraded. In mobile radio transmissions, an-
tennas are isotropic, and the signal takes several paths before reaching the reception antenna.
This propagation environment is called multipath channel. For example, Wi-Fi waveforms [51]
are reflected on the walls, on the floor and on the ceiling of a building. At other wavelengths,
the obstacles (TV waveforms in DVB-T standard [52] for example) are building and the ones
at FM wavelength [1] are hilly landscapes or mountains.

5



6 Chapter 1. System, Models, Basic Elements

Figure 1.1 – Illustration of effects of the transmission channel.

In most transmission schemes, the transmitting antennas do not need to be necessarily
in line of sight (LOS), i.e. in direct visibility. Thanks to multiple reflections, the signal can
bypass the obstacles and be received in buildings, in a dense urbanization etc. This kind of
multipath channel is qualified as Non- Line Of Sight (NLOS). On the other hand, a signal
processing is required in order to limit the degradations due to the multipath effect.

The impulse response of a multipath channel can be characterized by three parameters:
– the number L of paths of the channel,
– the complex gain of each path, noted hl

– the delay of each path, noted τl, with l = 0, 1, ..., L− 1.
Considering a mobile channel, these three parameters can be time varying, and noted L(t),
hl(t) and τl(t). In this general model, the impulse response of the channel, function of the
time t and of the delay τ , is given by

h(t, τ) =
L(t)−1
∑

l=0

hl(t)δ(τ − τl(t)), (1.1)

where δ(τ) is the Dirac impulse.
The nature of the channel depends on the sizing of the signal, i.e. the modulation. Thus,

if we denote T the reference time of the modulation (i.e. the symbole duration), then, we
distinguish four kinds of channels:

– Static channel: the channel is time-invariant.
– Quasi-static channel: the channel can be considered as time-invariant during a significant
time >> T .

– Dynamic channel: the channel is constant during a symbol, but varies from a symbol
to another .

– Fast-varying channel: the channel may vary during a data symbol.
The writing of (1.1) tallies with fast-varying channel. In the rest of this document, we will be
interested only by quasi-static and dynamic channel models. Furthermore, in the majority of
cases, we will assume that the number of path L and the delays τl are constant during the
transmission, which simplifies the writing to

6



1.2. The Transmission Channel 7

h(t, τ) =
L−1
∑

l=0

hl(t)δ(τ − τl). (1.2)

1.2.2 Channel Models

In order to limit the degradations caused by the channel, the knowledge of h(t, τ) is
required. However, a transmission channel is very complex. It depends on the wavelength,
the environment, the arrangements of the transmitter and the receiver, the movements of
the transmitters etc. Two models are then available to describe the channel at best: the
deterministic model and the statistical model.

1.2.2.1 Deterministic Model

A simple method to determine the channel profile is to measure its impulse response at
different points on a given area [54], [55]. This method leads to an empirical model of the
channel. It is usually used in the planning of a network, in order to optimize the ratio between
the installations cost and the size of the covered area. However, it requires a laborious measures
campaign. Furthermore, this method does not specify the characteristic of the channel, as the
number of paths, the delays etc.

With the improvement of the computation capacity of the computers, the ray tracing
technique has been developed, as depicted in [56], [57]. The method is based on the same
principle as the geometrical optics, considering the light waves as rays following geometrical
propagations. In this case, the electromagnetic waves of the signal is seen as a ray having
linear propagation in a known environment (thanks to a map, a building plan etc.). It is then
possible to determine the signal trajectories. This method gives a better description of the
physical reality of the channel than the empirical model, but requires a greater computational
complexity.

These two methods are very useful to plan a network and to provide an a priori state of
the propagation channel for the user in a given environment. However, it is sensitive to the
random variation of the channel.

1.2.2.2 Statistical Model

As a great number of natural phenomena, the transmission channel is subject to random
variations. The deterministic model then becomes insufficient to characterize its statistical
properties. In this model, h(t, τ) is seen as a random variable, characterized by statistic
functions, as developed in subsection 1.2.3. The statistical model is commonly used in the
theoretical studies of the channel and for simulations. This model is also used in this report.

1.2.3 Channel Statistics

In this section, we define the channel model that is used in this report. Thus, we introduce
the Wide Sense Stationary Uncorrelated Scattering channel model. Furthermore, from Bello’s
model [2], we derive the statistical functions as the channel intensity profile, the correlation
function, the channel Doppler spectrum and the scattering function.

7



8 Chapter 1. System, Models, Basic Elements

1.2.3.1 Probability Density Function of the Amplitude and the Phase of h(t, τ)

In an NLOS transmission, the antennas being considered as isotropic, the signal is sup-
posed to be received from all possible directions at the reception antenna. In first approxi-
mation, the channel h(t) can be seen as a sum of K independent components h(t)(κ) (with
κ = 0, 1, ..., K) coming from all directions, with K → +∞. The components h(t)(κ) are com-
plex random variables, with a mean mκ and with a variance σ2κ. By applying the central limit
theorem, h(t) is then a zero-mean Gaussian complex process whose gain |h(t)| follows a Ray-
leigh distribution [3], noted pr,Ray(r). Its variance, noted σ2h, is equal to E{|h(t)|2}. pr,Ray(r)
is written as

pr,Ray(r) =
r

σ2h
e
−r2

2σ2
h , (1.3)

where r is a positive real value. The probability density function (pdf) of the phase of a
Rayleigh process follows a constant distribution, noted pφhray

(θ) as

∀θ ∈ [−π, π], pφhray
(θ) =

1
2π

, (1.4)

For a LOS transmission, a line of sight component is added to the previous model. The
corresponding probability density function follows the Rice distribution (given in [58]), noted
pr,Rice(r) as

pr,Rice(r) =
r

σ2h
e
− r2+ρ2

2σ2
h I0(

rρ

σ2h
), (1.5)

where I0(.) is the modified Bessel function of the first kind with order zero, r is a positive
real value, ρ2 is the variance of the line of sight path, and σ2h the variance of the scattered
components. We define the Rice factor CR = ρ2

σ2
h
as the ratio between the power of the LOS

received signal component and all the NLOS components. The probability density function
of the phase pφhrice

is given by

pφhrice
(θ) =

e
− ρ2

σ2
h

2π



1 +

√

πρ2

σ2h
cos(θ − θρ)e

ρ2 cos2(θ−θρ)

σ2
h

(

1 + erf(
ρ cos(θ − θρ)

σh
)
)



 , (1.6)

where erf(.) is the error function and θρ is the phase of the LOS path. For x ≥ 0, the error
function is defined as erf(x) = 2

π

∫ x
0 e−t2

dt. θ is defined as −π < θ ≤ π. We remark in (1.5)
and (1.6) that if ρ2 −→ 0, we naturally get the Rayleigh model that has been previously
described. Fig. 1.2 depict the probability density functions of the amplitude (a) and phase
(b) in Rayleigh and Rice cases, for σ2h = 1 and θρ = 0.

Although Rayleigh and Rice models are the most frequently used channel models, some
other ones exist. Thus, the Weibull model [4] is close to real measured channels. Nakagami
model [5], later generalized in [6] by the κ − µ distribution, is a general model in which
Rayleigh’s and Rice’s are particular cases.
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Figure 1.2 – Probability Density Function of the Amplitude and the Phase of h(t, τ).

1.2.3.2 Time-Frequency Correlation Function and Power spectra in WSSUS Mo-

del

Based on Bello’s work [2], and thanks to the theoretical developments in [3] and [59],
we define in this part the different statistical functions allowing to describe the channel.
Illustrations will clarify the different relationships between the following functions.

a. Impulse Response and Frequency Response The impulse response h(t, τ) given
by (1.2) and the frequency response H(t, f) (1.7) of the channel are mutually linked by a
Fourier Transform relation noted FTτ . The subscript in FT(.) denote the variable on which
the Fourier Transform is processed.

H = FTτ (h)

⇒ H(t, f) =
∫ +∞

−∞
h(t, τ)e−2jπfτ dτ

H(t, f) =
L−1
∑

l=0

hl(t)e−2jπfτl . (1.7)

Fig. 1.3 illustrates this relationship ((a): h(t, τ), and (b): H(t, f)). We notice that the FT
is made on the delays τ , which makes the frequency response H(t, f) a time-varying function.
As far as Fig. 1.3 is only an illustration of the impulse and frequency responses of a channel,
the axes scales have been only defined for simulations purpose of h(t, τ) and H(t, f).

b. WSSUS Channel Model From [2], we highlight the acronym WSSUS:
– WSS, for wide sense stationary: each path hl(t) in (1.2) is a zero mean Gaussian complex
process, so E{hl(t)} = 0, ∀t, with E{.} the statistical expectation, and then the mean
of each path is independent of the time variations. Furthermore, the time correlation
function rhl

(t1, t2) = E{hl(t1)h∗l (t2)} can be only written with the difference ∆t =
t1 − t2, i.e.

9



10 Chapter 1. System, Models, Basic Elements

(a) Impulse response h(t, τ)
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Figure 1.3 – Illustration of time-varying impulse and frequency responses of a channel.

rhl
(t1, t2) = rhl

(∆t). (1.8)

Each path hl(t) of the channel is then wide sense stationary.
– US, for uncorrelated scattering: the paths are uncorrelated, so for l1 6= l2

E{hl1(t)h
∗
l2(t)} = 0. (1.9)

c. Time-Frequency Correlation Function and Channel Doppler Spectrum Since
the channel follows the WSSUS model, its time-frequency correlation function, noted RH and
defined by RH(t1, t2, f1, f2) = E{H(t1, f1)H∗(t2, f2)} has the following property:

RH(t1, t2, f1, f2) = RH(∆t,∆f ), (1.10)

where ∆f = f1 − f2. To generalize, all the statistical functions are written with the variables
∆t and ∆f that are independent of the time t and the frequency f .

A useful and usual function describing the channel is the power spectral density (PSD),
also called channel Doppler spectrum. Considering a two-dimensional plane for the signal
scattering, isotropic antennas, an homogeneous transmission environment and a Rayleigh-
distributed channel response, it is shown that the PSD follows the Jakes’ model [60] also called
spectrum in "U". However, Clarke was the first to propose this PSD in [61]. The PSD, noted
SH(ν,∆f ) is defined as the Fourier Transform of the time correlation function RH(∆t,∆f ) for
∆f = 0. We then restrict the correlation function (1.10) to its time component, and according
to the notations, we adopt a small letter writing, i.e. RH(∆t,∆f = 0) = rh(∆t) for the time
correlation function. Furthermore, we note SH(ν,∆f = 0) = SH(ν). We then get:

SH(ν) = FT∆t(rh(∆t)). (1.11)

Basically, the Jakes’ PSD is given by

SH(ν) =











σ2
h

πνDmax

√

1−( ν
νDmax

)2
if |ν| ≤ νDmax

0 else
, (1.12)
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1.2. The Transmission Channel 11

where νDmax is called maximum Doppler frequency, and represents the time variation of the
mobile channel. In first approximation, νDmax can be seen as the ratio between the velocity
vM of the received mobile or surrounding objects on the wavelength λs of the transmitted
signal, νDmax = vM /λs.

Thanks to the developments given in [3], the time correlation function rh(∆t) is the inverse
Fourier transform (noted FT−1ν (.)) of SH(ν)

rh = FT−1ν (SH)

⇒ rh(∆t) = σ2hJ0(2πνDmax∆t), (1.13)

where J0 is the Bessel function of the first kind with order zero. Fig. 1.4 depicts the Jakes’
PSD and the tallying time-correlation function for σ2h = 1, considering a mobile receiver of
speed 100 km.s−1 and a signal transmitted at 108 MHz. The maximum Doppler frequency is
then equal to νDmax = 10 Hz.
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Figure 1.4 – Link between the Jakes PSD and the time correlation spectrum.

However, the Jakes’ PSD is not the only model for describing transmissions. It is shown
in [62], [63] that in the presence of far echoes in the propagation, the Doppler PSD turns
to Gaussian shape. It tallies with HF transmissions, with paths reflected on the ionosphere.
Thus, it is for example the PSD used in the DMR standard [1] for broadcasting tallying with
the AM bands. Furthermore, the same model is used in aeronautical propagations [64], as
transmission between airplanes and satellites.

The function SH(ν) is usually given in the following form:

SH(ν) =
σ2h

√

2πσ2D

e
− (ν−fD)2

2σ2
D , (1.14)

where σ2D is the Doppler spread and fD the Doppler shift. The Gaussian function is centered
on its mean fD. The time correlation function is then derived, following the expression given
in [65]:

rh(∆t) = σ2he(2jπfD∆t)e−
1
2
(2πσD∆t)

2

. (1.15)
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12 Chapter 1. System, Models, Basic Elements

It is noticeable that rh(∆t) is a complex function, as SH(ν) is centered on fD. Indeed, when
SH(ν) is even (i.e. fD = 0), then rh(∆t) is a real function. Fig. 1.5 depicts (1.14) and (1.15),
with fD = 0, σ2h = 2 and σ2D = 2. These parameters are typically the ones of HF propagations
with ionospheric scattering [1].

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ν (Hz)

S
H
(ν

)

(a) Channel Doppler Spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆
t
 (s)

r h
(∆

t )

(b) Time Correlation Function

Figure 1.5 – Link between the Gaussian PSD and the time correlation function.

As already mentioned, Jakes and Gaussian Doppler PSD are based on a 2-D scattering
model with isotropic propagation. More realistic models have been developed. Thus, [66] shows
that 3-D scattering model (i.e. the received signal has a solid angle of 4π steradian) have an
uniform PSD. In [67], a generalization of the PSD is developed in the case of non-isotropic
propagations, i.e. the signal is not received uniformly on the antenna.

d. Time-Frequency Correlation Function and Channel Intensity Profile We here
give the relation between the frequency correlation function and the channel intensity profile.
We restrict the correlation function (1.10) to its frequency part, i.e. the function RH(∆t,∆f )
for ∆t = 0, that we note RH(∆f ). The channel intensity profile, function of the variable τ , is
noted Γ(∆t, τ). We here simplify the writing to Γ(∆t = 0, τ) = Γ(τ). The frequency correlation
function and the channel intensity profile are linked by a Fourier transform relation as

Γ = FT−1∆f
(RH)

⇔ RH = FTτ (Γ). (1.16)

As the channel is supposed to follow a WSSUS channel model, the paths are uncorrelated,
then Γ(τ) can be expressed as the sum of the intensity profile of each path Γl(τ), as done
in [7] and detailed in Appendix A.1. Thus, from [59] and [7], we give in (1.17) the expression
of RH(∆f ):

RH(∆f ) =
L−1
∑

l=0

∫ τmax

0
Γl(τ)e(−2jπ∆f τ)dτ. (1.17)

Mathematically, the only constraint on Γl(τ) is its integrability. Physically, as seen in [7–9],
most of the models for the channel intensity is the decreasing exponential profile

12



1.2. The Transmission Channel 13

Γ(τ) =

{

Ce
−τ

τmax , if τ ∈ [0, τmax]

0, else,
(1.18)

where C is a normalization constant whose value is defined afterward. The frequency corre-
lation function is then derived, as done in [7]:

RH(∆f ) =
L−1
∑

l=0

∫ τmax

0
Ce

−τ
τmax e−2jπ∆f τ dτ

=
L−1
∑

l=0

C.





e−τmax(
1

τmax
+2jπ∆f ) − 1

−τmax( 1
τmax

+ 2jπ∆f )





= LC.
1− e−2jπ∆f τmaxe−1

1 + 2jπ∆f τmax
. (1.19)

We find RH(∆f = 0) = LC(1 − e−1). In order to get RH(∆f = 0) = 1 (property of the
correlation functions), the normalized constant is then fixed C = 1/(L(1 − e−1)). Fig. 1.6
depicts the decreasing intensity profile and the real and imaginary parts of the frequency
correlation function. The arbitrary chosen parameters are τmax = 0.7 ms and L = 4.
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Figure 1.6 – Link between the channel intensity profile and the frequency correlation func-
tion.

e. Scattering function The fourth statistical function that is used to describe the channel
is the scattering function, noted Sh, and function of the variables ν and τ . Determining
Sh(ν, τ) is in most cases not necessary as it can be easily derived from the previously defined
functions with the following relations

Sh = TF∆t(Γ)

Sh = TF−1∆f
(SH).

(1.20)
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14 Chapter 1. System, Models, Basic Elements

Nevertheless it is interesting, because the study of Sh(ν, τ) is sufficient to characterize the
channel scattering. Indeed, the shape of Sh(ν, τ = 0) (i.e. the Doppler spectrum) characterizes
the channel variation speed, and the shape of Sh(ν = 0, τ) (i.e. channel intensity profile)
determines the length and gain of the paths. Fig. 1.7 depicts the 3D scattering function. Note
that the scales on X and Y axes are defined for simulation purpose and do not reflect any
physical reality.
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Figure 1.7 – Scattering function Sh(ν, τ).

As the channel is time-varying, it is very difficult to obtain a dynamic knowledge of its
characteristics. Furthermore, it becomes impossible to get a perfect knowledge if some addi-
tive noise is considered. However, its statistic properties are well described by the functions
RH(∆t,∆f ), SH(ν,∆f ), Γ(∆t, τ) and Sh(ν, τ). Indeed, by a priori approximations, empiri-
cal model or measurements, it is possible to use these functions in order to design a given
transmitted signal. For instance, knowing the number of paths, their delays and the channel
variation speed is crucial to determine:

– the choice of the modulation to use (single/multicarrier),
– the design of the equivalent receiver (channel estimation, echo cancellation etc.),
– the possible data rate that can be reached.

The design of the transmitter/receiver is also facilitated by the knowing of the coherence
time noted TC and the coherence bandwidth noted BC . It is considered that the channel is
invariant during the time duration TC and frequency bandwidth BC . In first approximation,
proposed in [68], TC and BC can be given by
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1.3. The OFDM Signal and the Transmission Chain 15

TC ∝
1

νDmax

(1.21)

BC ∝
1

τmax
(1.22)

The statistical functions and the links between them are often summarized in literature
by the diagram given in Fig. 1.8, as Bello presented it in [2].
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Figure 1.8 – Diagram summarizing the links between the different statistical channel func-
tions.

1.3 The OFDM Signal and the Transmission Chain

1.3.1 History

As it is described in [69, 70], the transmission of the data using a frequency multiplexing
is very robust against the frequency selectivity of the channel, when it is combined with
a channel coding. As mentioned in [70, 71], the first techniques of frequency multiplexing
with orthogonal carriers appeared in the mid 50’s for military applications. In the 60’s and
70’s, the analog modulation and demodulation by means of the Fourier transform as been
developed, but it was prohibitive in terms of calculation load for a massive deployment of this
technology. The OFDM acronym appeared in the 80’s, when the evolution of the technology
of semi-conductor allowed a great development of the implementation of complex algorithms,
especially the ones based on FFT/IFFT of large size. This kind of modulation is now used in
a large number of wired and wireless transmission standards.

1.3.2 Modelisation of the OFDM Signal

In this section, we describe the mathematical expression of the OFDM signal in a time-
continuous formalism. In baseband, the nth OFDM symbol noted sn(t), composed of M
subcarriers, is given by:

sn(t) =

√

1
Ts

M−1
∑

m=0

Cm,nΠ(t− nTs)e2jπmFst, (1.23)
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whith Π(t) the rectangular function of duration Ts as

Π(t) =

{

1 if −Ts
2 ≤ t < Ts

2

0 else,
(1.24)

where Ts is the OFDM symbol duration, Fs = 1
Ts

is the subcarrier spacing and Cm,n, m =
0, 1, ..., M − 1 are the information symbols coming from a set Ω of a given constellation. For
example, for a QPSK, we have the set Ω = {1 + j, 1 − j,−1 + j,−1 − j}. The orthogonal
frequency multiplexing can be written with the family of functions φm(t), defined by

φm,n(t) =

√

1
Ts
Π(t− nTs)e2jπmFst. (1.25)

This family of functions is known to satisfy the orthonormal property for the usual complex
scalar product:

〈

φm,n, φm′,n′
〉

=
∫ +∞

−∞
φm,n(t)φ∗m′,n′(t)dt

= δm,m′δn,n′ , (1.26)

where δ is the Kronecker delta symbol

δm,n =

{

1 if m = n,

0 else
. (1.27)

The signal at the transmitter is composed of an infinity of OFDM symbol, for n ∈ Z:

s(t) =

√

1
Ts

∑

n∈Z

M−1
∑

m=0

Cm,nΠ(t− nTs)e2jπmFst. (1.28)

From the expression of the OFDM signal (1.28) and the orthogonality relation (1.26), the
demodulation of the signal amounts to a simple scalar product:

Ĉm,n = 〈φm,n, s〉 . (1.29)

1.3.3 Transmission of the OFDM Signal

The signal s(t) is transmitted over the multipath channel h(t, τ) (1.2). An additive white
Gaussian noise (AWGN) w(t) is added at the receiver side. The received signal u(t) is expressed
by

u(t) = (h ⋆ s)(t) + w(t)

=
∫ τmax

0
h(t, τ)s(t− τ)dτ + w(t), (1.30)

where ⋆ is the convolution product. In practice, if the OFDM signal were simply transmitted
following (1.28), the channel with delayed multipath would create intersymbol interferences
(ISI), as depicted in Fig 1.9. In order to avoid this effect, a guard interval (GI) is added to
each OFDM symbol. The GI can be of several kinds [72]:

16



1.3. The OFDM Signal and the Transmission Chain 17

– zero-padding: a signal equal to zero is introduced at the beginning of each symbol,
– known-sample-padding: a known signal is introduced at the beginning of each symbol,
– cyclic prefix (CP): the end of the symbol of length TCP is copied out at its beginning.
We will consider CP for the rest of the report. The addition of the CP is depicted in
Fig 1.10.

In the three cases, the GI does not include useful information, so this technique reduces the
useful data rate. The CP duration is chosen so that TCP is at least equal to the maximum
channel delay. The effective transmitted signal is then of duration T ′s = Ts+TCP . We consider
in the transmission model (1.30) that the CP has been removed. In the following, we will
justify that the use of CP allows to simplify the mathematical expression of the received
signal, thanks to the cyclic property of the CP.

t

τ

sn(t)sn+1(t)

ISI

Figure 1.9 – ISI due to delayed multipath channel.

t

τ

sn(t)sn+1(t)

no ISI

TCP

Figure 1.10 – ISI cancellation by means of the CP.

The OFDM signal, combined with a cyclic prefix, is a robust modulation against the
multipath channel as it efficiently limits ISI. In frequency domain, the effects of the multipath
channel are the fading in some parts of the frequency bandwidth B of the considered signal.
Equation (1.31) gives the received signal U(f) in frequency after the Fourier Transform:

U = FTt(u)

= FTt((h ⋆ s) + w)

⇒ U(f) = H(f).C(f) +W (f). (1.31)

where C(f) is the FT of s(t). The use of orthogonal carriers in frequency domain amounts
to consider the bandwidth B as M parallel subchannels of width BM = B

M . The signal
is well dimensioned thanks to coherence bandwidth BC if B

M << BC (see section 1.2). In
this condition, each subchannel can be seen as a Gaussian channel, i.e. only a flat channel

17



18 Chapter 1. System, Models, Basic Elements

with AWGN. Knowing the channel, it is straightforward to recover the information symbols
Cm,n thanks to a one-tap equalization, i.e. a simple division. Fig. 1.11 depicts this OFDM
property: the signal C(f) and the frequency channel response H(f) can be locally (on the
bandwidth B/M) seen as constant. A simple per subcarrier equalization is then performed.
This representation of parallel subchannels also leads to a simple discrete model of the OFDM
signal, developed in section 1.3.4.

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

frequency

B/M

subcarriers channel frequency 
response H(f)

Figure 1.11 – Illustration of the OFDM principle and the frequency effect of multipath
channel.

However, the attenuations can be locally strong, i.e. H(f) ≈ 0 for a given value of f . In
this case, the demodulation (1.29) operation recovers only noise due to W (f), and errors may
appear. As a consequence, the sole OFDM modulation is insufficient to fight against these
perturbations. However, by combining the OFDM with channel coding is a very efficient
solution [73]. The coded-OFDM (COFDM) is used nowadays in all the OFDM transmission
systems. The coding operation is made at the binary information level. The principle is to
create redundancy in the transmitted message in a way that the errors can be corrected thanks
to the additional information. Reed-Solomon code (RS) [48] or convolutive codes, proposed
in 1955 in [74] and [75] are two frequently used kinds of code. The convolutive codes allow
to correct the independent errors in the frame, and RS code the error packets. Furthermore,
in order to limit the length of these packets, a bit interleaving is operated on the bit frame,
which allows to separate the error chains in reception.

Fig. 1.12 depicts a simplified transmission chain including the interleaving, channel en-
coding, mapping, modulation at the transmitter side and their reverse blocks at the receiver
side. Some blocks such as "pilots insertion" or "IDFT" will be explained afterward in the
dissertation.

18



1.3. The OFDM Signal and the Transmission Chain 19

binary

mapping

S/P

... ...

insertion

... ...

IDFT

... ...

P/S

GI

pilots

channel

transmission

w ∼ N (0, σ2)

removal

IG

S/P

... ...

... ...

DFT

... ...
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S/P

mapping

decoding

channel

interleaving

equalization

... ...
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channel

encoding

addition

channel

estimation

removal

inverse

desinterleaving

source

received
binary
chain

+

Figure 1.12 – Simplified diagram of the transmission chain of an OFDM signal.
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20 Chapter 1. System, Models, Basic Elements

1.3.4 Discrete Model of the OFDM Transmission

Most of the time, the design of analog modulators and demodulators is hard to implement
as it requires very specific technologies that are sometimes reproducible with difficulty. This is
even more the case for OFDM signal modulation as it can be seen as M parallel monocarrier
modulators. In addition to the fact thatM can be very large, the perfect synchronization of the
M modulators becomes an insuperable problem. This is the reason why for such modulations,
the signal digitalization is unavoidable as it allows the use of digital processors like ASICs,
FPGAs or DSPs whose chip is very reproducible. Moreover, as further seen in this paragraph,
we show that the sampled OFDM signal can be generated by (I)DFT, and (I)FFT in some
particular cases. Indeed, in the case where M = 2p ( with p an integer), the (I)DFT can be
computed by an (I)FFT algorithm that reduces the IDFT computation.

We note τs the sampling time. According to the Shannon theorem, τs is defined for the
rest of the report as

τs =
Ts

M
. (1.32)

From (1.23), we derive the expression of the OFDM symbol samples sn[k] in the discrete time,
noted sk,n for more readibility:

sk,n = sn(t = kτs)

=

√

1
M

M−1
∑

m=0

Cm,ne2jπmFskτs

=

√

1
M

M−1
∑

m=0

Cm,ne2jπm k
M , (1.33)

with k = 0, 1, ..., M − 1. The complex vector sn = (s0,n, s1,n, ..., sM−1,n)T of size M × 1
represents the nth OFDM symbol sampled at the frequency fs = 1/τs. From (1.33), we notice
that the samples sk,n are obtained by the inverse discrete Fourier transform (IDFT) of the
constellation symbols Cm,n. We define the vector Cn = (C0,n, C1,n, ..., CM−1,n)T of size M ×1
in the frequency domain, composed of the M elements Cm,n transmitted at the nth time slot.
In the same way, each component Cm,n of Cn is the discrete Fourier transform (DFT) of the
samples sk,n:

Cm,n =

√

1
M

M−1
∑

k=0

sk,ne−2jπm k
M . (1.34)

Eqs. (1.33) and (1.34) can be rewritten in a vectorial formulation:

sn = F−1Cn, (1.35)

Cn = Fsn, (1.36)

where F is the M ×M Fourier matrix defined by
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1.3. The OFDM Signal and the Transmission Chain 21

F =
1√
M

















1 1 1 · · · 1
1 ω ω2 · · · ω(M−1)

1 ω2 ω4 · · · ω2(M−1)
...

...
...

. . .
...

1 ω(M−1) ω2(M−1) · · · ω(M−1)2

















, (1.37)

with ω = e−
2jπ
M . The Fourier matrix verifies the orthonormality condition FFH = I, I being

the identity matrix. We also deduce that FH = F−1. sn and Cn are the representations of
an OFDM symbol in the time and frequency domains, respectively.

The discrete-time impulse response of the channel is derived from (1.2). Considering the
channel to be invariant during an OFDM symbol, we rewrite the expression of each path gain
as hl(t) = hl,n. Furthermore, each path delay is sampled as τl = βlτs, with βl ∈ N. Equation
(1.2) then becomes:

h(τ) =
L−1
∑

l=0

hl,nδ(τ − βlτs). (1.38)

In its vectorial form, the channel impulse response (CIR) (1.38) is the M × 1 vector hn =
(h0,n, h1,n, ..., hl,n, ..., hL−1,n, 0, ..., 0)T . In the literature, we usually find two models of channel
impulse response (IR): a dense CIR, where hl,n is non-null whatever l and a sparse CIR, where
some hl,n values are null. The model used in this thesis report is a sparse CIR, as shown in
the following.

The corresponding frequency response is obtained by applying a M-points DFT on (1.38).
Thus, we obtain the following expression of the frequency response of the channel at the
frequencies fm = m

Mτs
:

Hm,n =
L−1
∑

l=0

hl,ne−2jπfmβlτs

=
L−1
∑

l=0

hl,ne−2jπ m
M

βl . (1.39)

1.3.4.1 Cyclic Properties

Inspired from the work in [76], we develop the steps of the transmission in the discrete
model. We show that the use of the cyclic prefix allows to simplify the equations. Indeed, as
it has been proved in [10], the cyclic extension of the OFDM symbol transforms the linear
convolution hm,n ⋆ sm,n into a cyclic convolution, which allows to get a simple per carrier
discrete multiplication Hm,nCm,n after the DFT. Furthermore, we justify that the CP does
not appear in the transmission expression (1.30). The convolution is performed by means of
the circulant channel matrix built with the vector hn.

We note MCP the number of samples in the cyclic prefix, so that MCP = TCP /τs. From
sn, we built s′n by adding the CP: s′n = (sN−MCP ,n, ..., sN−1,n, s0,n, ..., sN−1,n)T . s′n is then a
complex vector of size (M + MCP ) × 1. The complex channel matrix of size (M + MCP ) ×
(M +MCP ), noted h′n is a Toeplitz circulant matrix given by
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22 Chapter 1. System, Models, Basic Elements

h′n =















hL−1,n · · · h1,n h0,n 0 · · ·

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
· · · 0 hL−1,n · · · h1,n h0,n















. (1.40)

The received signal u′n is the contribution of the symbol s′n and last L samples of the previous
symbol s′n−1, as depicted in Fig. 1.10. The expression of u′n is detailed as follows:

u′n =















hL−1,n · · · h1,n h0,n 0 · · ·

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
· · · 0 hL−1,n · · · h1,n h0,n







































sM−MCP ,n

...

sM−1,n

s0,n

...

sM−1,n

























+





























0 · · · 0 hL−1,n−1 · · · h0,n−1
...

. . . 0
. . .

...
...

. . . hL−1,n−1

0 · · · . . . · · · 0
...

. . .
...

0 · · · · · · · · · 0





















































sM−MCP ,n−1
...

sM−1,n−1
s0,n−1

...

sM−1,n−1

























+w′
n, (1.41)

u′n = h′ns′n + hISI′

n−1s′n−1 +w′
n, (1.42)

where w′
n is the (M +MCP )× 1 complex vector representing the Gaussian noise. The cyclic

prefix is supposed to be well dimensioned, i.e. MCP ≥ L. The M ×1 received signal vector un

is obtained after the CP removal in (1.41). In a practical way, it tallies with the suppression
of the MCP first samples of the transmitted signal vector and of w′

n, and the removal of the
MCP up rows of h′n and hISI′

n−1 (in the second line of the expression (1.41)). We remark that
the matrix hISI′

n−1 then becomes null, which results in the ISI cancellation. The expression of
un is detailed as follows:

un =















0 · · · hL−1,n · · · h1,n h0,n 0 · · ·
...

. . . 0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 hL−1,n · · · h1,n h0,n



































sM−MCP ,n

...

s0,n

...

sM−1,n





















+wn. (1.43)

Thanks to the cyclic character of the (M + MCP ) ×M channel matrix in (1.43) and of the
vector (sM−MCP

, ..., sM−1,n, s0,n, ..., sM−1,n)T , we rewrite (1.43) so as to highlight the desired
vector sn:
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un =





































h0,n 0 · · · · · · hL−1,n · · · h1,n

h1,n h0,n 0
. . .

. . .
. . .

...

...
. . .

. . .
. . .

. . . hL−1,n

hL−1,n
. . .

. . . h0,n 0
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 hL−1,n · · · h1,n h0,n























































s0,n

s1,n

...

...

sM−1,n



















+wn. (1.44)

The M ×M circulant matrix of the channel is noted hn. (1.44) is simply written as

un = hnsn +wn. (1.45)

This is the discrete version of the convolution (1.30). This demonstration proves that the
equation of transmission can be considered after removal of the CP, when it respects the
condition MCP ≥ L. The scenario MCP < L will be studied afterward, in Chapter 3. We
obtain the equivalent transmission equation in the frequency domain by multiplying by the
Fourier matrix as

Un = Fun

= Fhnsn + Fwn. (1.46)

We note Wn = Fwn the contribution of the noise is the frequency domain. Due to FFH = I,
we develop (1.46):

Un = FhnFHFsn +Wn

= FhnFHCn +Wn

= HnCn +Wn. (1.47)

We note Hn = FhnFH the channel matrix in the frequency domain. Since hn is a circulant
matrix, then Hn is diagonal, as shown in (1.48). Indeed, every circulant matrix is diagonali-
zable in a Fourier basis [11]. The proof of the property is given in Appendix A.2, or in [12].

Hn =















H0,n 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 HM−1,n















(1.48)

Since Hn is diagonal, (1.47) can be written in an equivalent form:

Un = HnCn +Wn

⇔ Un = CnHn +Wn, (1.49)
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24 Chapter 1. System, Models, Basic Elements

where Cn is the M ×M diagonal matrix whose diagonal elements are the ones of the vector
Cn, Hn is the channel frequency response vector composed of the diagonal elements of Hn.
Consequently, whatever m = 0, 1, .., M − 1, the samples of Un are simply expressed by

Um,n = Hm,nCm,n +Wm,n. (1.50)

This shows that if the CP is well sized, it fully cancels the ISI and each transmitted symbol
Cm,n is only corrupted by the channel frequency coefficient Hm,n and the noise Wm,n. This
expression is widely exploited for the channel estimation, which will be discussed further in
this document.

1.3.5 Frequency Covariance and Correlation Matrix

The frequency covariance matrix is very important to describe the statistical properties of
the channel in the discrete domain. In the rest of the report, we will see that it is particularly
useful in several estimation methods. We note RH this M ×M complex matrix defined as

RH = E{HnHH
n }. (1.51)

As the expectation is a linear operator, each sample (u, v) of the matrix (uth row, vth column)
is given by

(RH)u,v = E{Hu,nHH
v,n}. (1.52)

From the expression of the frequency correlation function (1.19), we get the covariance matrix
by sampling the variables ∆f = (u− v)/τs and τ = βτs such as

(RH)u,v =
L−1
∑

l=0

∫ βmax

0
Γl(β)e−2jπ

(u−v)
M

βdβ, (1.53)

where βmax is equal to τmax/τs. From (1.53), it is obvious that (RH)u,v = (RH)
∗
v,u, that is

in matrix form: RH = RH
H . Furthermore, we notice that (RH)u+1,v+1 = (RH)v,u, so RH is

Toeplitz matrix. The frequency covariance matrix is then a Toeplitz and Hermitian matrix.
The covariance matrix is called correlation matrix if this one is normalized, i.e. (RH)u,v = 1.
The correlation matrix is noted RH and is linked to the covariance matrix by the relation:

RH =
1

σ2h
RH , (1.54)

where σ2h is the variance of the channel, defined in the discrete domain by

σ2h =
L−1
∑

l=0

E{|hl,n|2}. (1.55)

We also define σ2l,h as the variance of each path of the channel given by σ2l,h = E{|hl,n|2}. In
order to directly obtain a correlation matrix, it is possible, in a simulation process to create
a normalized channel. In this case, each path variance is directly given by σ2l,h/σ2h. In this
report, we will mainly use non-normalized channels in simulations.

If the channel is static, we get:
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1.4. Simulation of the Transmission Channel 25

RH = E{HnHH
n } = HnHH

n , (1.56)

as the channel is deterministic, in such a case. This exact form can also be used in the case
of quasi-static channels, but the covariance channel matrix RH must be regularly updated.

1.4 Simulation of the Transmission Channel

In this section, we describe a usual method to design the transmission channel by simula-
tion, called "filter method". Other techniques are presented in [3], but the most common one
is the filter method. Additional descriptions are given in [1], [3] or [77]. Due to the WSSUS
model, each tap can be independently created. The principle is to generate each zero mean
complex process hl,n thanks to a white Gaussian Noise (WGN) process filtered by the square
root of the path Doppler spectrum as (1.12) or (1.14). The method is summarized as follows,
and the diagram in Fig. 1.13 depicts it.

Filter Method

For each path l = 0, 1, ..., L− 1, and for a process of size N :

1. create a Gaussian process ξl ∼ N (0, σ2

l,h) of size N .

2. Make an DFT of ξl.

3. Filter by the square root of the desired N-sampled Doppler spectrum
√

SH(ν). Each
path has its own variance σ2l,h, Doppler spread σ2D and Doppler shift fD linked to the
attenuation and the speed of the channel variations.

4. Make an IDFT to obtain the vector hl,n

ξl ∼ N (0, σ2

l,h) DFT
√

SH(ν) hl,nIDFT

Figure 1.13 – Block-diagram of the filter method.

Fig. 1.14 illustrates the time-varying path gains 10 log(|hl,n|2) of a four paths channel.
We summarize in Table 1.1 the parameters of the four-paths (non-null paths) channel model
given in the DRM standard [1] called US Consortium. The Doppler spectrum of each path
is Gaussian.

Table 1.1 – US Consortium channel parameters.
Path number l 1 2 3 4
Delay (τl) (in ms) 0 0,7 1,5 2,2
Variance (σ2l,h) 1 0,7 0,5 0,25
Doppler shift (fD) (in Hz) 0,1 0,2 0,5 1,0
Doppler spread (σ2D) (in Hz) 0,1 0,5 1,0 2,0

We observe on Fig. 1.14 the gain variations of the four paths of the US Consortium
channel separately. On the Y axis, we sampled the variations on 170 consecutive OFDM
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26 Chapter 1. System, Models, Basic Elements

symbol. Each path varies independently from the others, and we observe that the speed of
variation increases in the same way than the Doppler spread value. The global transmission
channel is finally the sum of these paths. An illustration of the frequency response of the US
Consortium channel varying with time can be seen by clicking on the following link:

http://www.youtube.com/watch?v=NIVx1Mqks9Q

It has been simulated with the filter method previously described. The time dimension is
on the X-axis, frequency on the Y-axis, and the gain 10 log(|H(t, f)|2) on the Z-axis. This is
the same representation as Fig. 1.3 (a), although in Fig. 1.14, the impulse response is depicted
on 200 OFDM symbols, which makes it continuous from the observer point of view.
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Figure 1.14 – Time variations of the four paths of the US Consortium channel.

1.5 Conclusion

This chapter presented the system model which will be used throughout the next chapters.
The OFDM modulation and the cyclic property of the OFDM signal with CP have been
covered. It also described the transmission channel: the statistical functions (the correlations
functions, the intensity profile etc.) and the relations linking them. Furthermore, it provides
the way to simulate the channel, by means of a Monte Carlo method.
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Chapter 2

Channel Estimation Methods

2.1 Introduction

The multipath channel is one of the main sources of distortions in wireless communications
systems. Consequently, a channel estimation is required in order to compensate the channel
effects and limit the loss of useful data. In OFDM systems, a simple per carrier equalization
can be performed to recover the transmitted information. The error rate at the receiver is
then directly linked to the channel estimation performance.

The literature about channel estimation is very extensive, and describes a very wide range
of methods, so we will not make an exhaustive list of these techniques in this chapter. In order
to highlight the field of interest of this thesis, we propose to classify them according to two
main parameters : the formalism (time or frequency), and the degree of knowledge of the
channel at the receiver. Some other classification parameters such as the complexity or the
adaptativity of the methods could be used, but this classification offers a simple overview of
this vast domain of study. Furthermore, we focus on the methods used in ODFM context,
although some of the techniques are useable for single and multicarrier systems.

2.1.1 Time or Frequency Domain Estimation

As shown in Chapter 1, the structure of the OFDMmodulation is adapted to the frequency
domain estimation. Indeed, if the channel is supposed to be constant on each subcarrier, a
simple one-tap equalization can be performed to cancel the fading due to multipath chan-
nels (see Fig. 1.11). Some time domain estimation techniques are proposed in the literature.
Generally, these methods have exactly the same formulations in time or frequency domains.
Thus, [78–80] refer to the usual minimum mean square error (MMSE), maximum likelihood
(ML) and least square estimators. The description of these methods in the frequency domain
are given in Section 2.4.

Several other alternative solutions have been described. In [81], the authors proposed to
combine a frequency and a time domain MMSE estimation, and show that the performance
is improved compared to the same method performed in a single domain. In [82], an hybrid
domain LS and MMSE estimation is presented. From (1.50), the hybrid domain formulation
of the mth received carrier is given by
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28 Chapter 2. Channel Estimation Methods

Um,n = Hm,nCm,n +Wm,n

=
L−1
∑

l=0

hl,n(e−2jπ ml
M Cm,n) +Wm,n. (2.1)

We observe in (2.1) the contribution of elements in time domain hl,n and in frequency domain
Cm,n. This scheme is called hybrid domain. In the rest of the thesis report, we will focus on
frequency domain estimation methods.

2.1.2 Blind Estimation

The blind estimation methods implies that the receiver has no information about the
channel. The advantage is the high spectral efficiency of these transmission schemes, since all
the bandwidth is used to carry data only. However, blind estimation suffers from a compu-
tational high complexity or a low efficiency. The principle of a large number of methods is
based on second-order moment of the received signal, as depicted in [83]. Thus, if we note ũ

the M ×N matrix composed of N received OFDM symbols ũn = hnsn without noise, we get
the following eigendecomposition

ũũH = (q̄ q̃)
(

AP×P 0P×L

0L×P 0L×L

)

(

q̄H

q̃H

)

, (2.2)

where P = M − L and q̃ is the M × L matrix whose columns span the null space of ũ. We
note q̃l the lth column of q̃. From (2.2), it is proved in [83] that, with the orthogonal spaces
property, the equation

hH(q
0
, ..., q

L−1) = 0 (2.3)

has a unique nontrivial solution h, where h = (h0, h1, ..., hl, ..., hL−1)T . The matrice q
l
, with

l = 0, 1, ..., L− 1 is given by

q
l
=













q̃l,0 q̃l,1 · · · q̃l,P−1
q̃l,1 q̃l,2 · · · q̃l,P

...
...

...
...

q̃l,L−1 q̃l,L · · · q̃l,M−1













. (2.4)

As noticed in [83], ũ is replaced by un in practice. The channel estimation ĥ is then obtained
in the least square sense by minimizing the cost function

J = |h(q
0
, ..., q

L−1)|
2. (2.5)

In [84, 85], the same property of orthogonal spaces is used according to some characteristics
of OFDM modulation, such as the virtual carriers or zero padding guard interval. The blind
channel estimation is then performed in the frequency domain.
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2.2. The Pilots in the OFDM Frame 29

2.1.3 Transmission Methods with a Known Channel State Information

Contrary to the blind estimation, some techniques consider the channel as perfectly known
at the receiver and/or the transmitter sides. In that case, we can not strictly talk about channel
estimation, but we present the simple principle of methods using the channel information. As
described in [86] and in Fig. 2.1, the diagram of the transmission chain with known channel
remains the same as before, except that some filters can be added at the receiver and/or the
transmitter sides.

Modulation

Tx filter:

Channel

Transmission
Rx filter:

Demodulationtime reversal

pre-equalizer

matched filter

equalizer

s(t) u(t)

Figure 2.1 – Transmission scheme exploiting the knowledge of the channel state information.

Whatever the considered domain (time or frequency), the filters, inserted at the trans-
mitter and/or the receiver side, allow cancelling the channel distortion. These filters then act
as perfect equalizers. For instance, we can cite the matched filter [87] at the receiver, or the
time reversal method [88], when the channel information is used at the transmitter side. The
two methods being equivalent, we express the received signal if time reversal is used. In that
case, the Tx filter is h∗(−t) and then

u(t) = (s(t) ⋆ h∗(−t) ⋆ h(t)) + w(t)

= (s(t) ⋆ Rh(t)) + w(t), (2.6)

where Rh(t) is the channel autocorrelation function. As mentioned in [88], in the ideal case,
Rh(t) = δ(t), and then the received signal is given by u(t) = s(t)+w(t). Obviously, in practice,
h(t) is not perfectly known, and it turns to a usual problem of channel estimation.

2.1.4 Semi-blind Estimation

In the majority of cases, the transmission channel is unknown at the receiver, but extrinsic
information is transmitted to perform the channel estimation. This kind of signal called
pilot is multiplexed with the useful data, and its physical characteristics are known by both
transmitter and receiver, as detailed in the next section.

In the rest of the chapter, we will focus on semi-blind estimation methods, also called
pilot-aided estimation or pilot symbol aided modulation (PSAM). Fig. 2.2 offers a simple
overview of where is the field of study among all the channel estimation methods. First, we
describe the different arrangement of the pilots in an OFDM frame in Section 2.2. Second, we
express the two usual criterions (LS and MMSE) used for the channel estimation in section
2.2, and then we propose a state of the art of the main pilot-aided estimation methods in
Section 2.4.

2.2 The Pilots in the OFDM Frame

The pilots, noted C = αejφ, are subcarriers whose gain α, phase φ and arrangement
in the time-frequency lattice are known by both the transmitter and the receiver. They do
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30 Chapter 2. Channel Estimation Methods

Figure 2.2 – Classification of the estimation methods.

not carry any useful data, but are dedicated in the OFDM frame to the time and frequency
synchronization, as well as the SNR and the channel estimation. In order to reduce their
sensivity to the noise, the gain is usually higher than the other subcarriers carrying useful
data (usually normalized to one). For instance, the DRM/DRM+ [1] specifies a gain α =

√
2,

and α = 2 for the boosted pilots which are on the edge of the spectrum. Fig. 2.3 illustrates
four different pilots arrangements in the OFDM frame.

The choice of the pilot pattern depends on the selectivity of the channel, which is charac-
terized by BC and TC . The block-type arrangement (a), also called time preamble, is adapted
to quasi-static channels with high frequency selectivity. On the contrary, the comb-type ar-
rangement (b) is used when the channel is time selective and with a low frequency selectivity.
In the case of time and frequency selective channels, the rectangular (c) or staggered rows (d)
patterns can be used. Consequently, an interpolation will be needed to estimate the channel
frequency response over the time-frequency plan. The literature describes some other arran-
gements such as the hexagonal pattern or even an irregular distribution [14].

We define δf and δn the gaps between two consecutive pilot subcarriers along the frequency
and the time axis, respectively. As reminded in [13], in order to perform an efficient channel
estimation, these gap must respect the sampling theorem:

δf ≤
BC

2
(2.7)

δn ≤
TC

2
. (2.8)

The choice of the pilots arrangement not only depends on the considered channel, but is
also a trade-off between the specified BER at the receiver and the expected data rate. Indeed,
the higher the number of pilots, the lower the BER, but at the same time the lower the data
rate. If the number of pilots is reduced, the BER may increase, and targeting a required BER
value may involve that the channel estimation method becomes more complex.
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(a) Block-type arrangement (b) Comb-type arrangement

(c) Rectangular pattern (d) Staggered rows pattern

Figure 2.3 – Four possible pilot arrangements in the OFDM frame.

2.3 LS and MMSE Criteria

In this section, we consider a preamble scheme (see Fig. 2.3 (a)) to make the developments.
However, we will see that they are also valid if the pilot tones are sparsely distributed (such
as the rectangular or the staggered rows pattern) in the OFDM frame.

2.3.1 Principle of LS Estimation

2.3.1.1 Expression of LS Estimation

The least square criterion aims at minimizing the cost function J defined as the square
norm of an error vector. This vector is the difference between the vector of the received
signal U and the product of the transmitted signal vector C by a diagonal matrix D whose

coefficients have to be optimized. We then get the estimation Ĥ
LS

= Dopt. The cost function
is first expressed as
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32 Chapter 2. Channel Estimation Methods

JLS = |U−DC|2, (2.9)

By developing (2.9), we get

JLS =
M−1
∑

m=0

|Um −DmCm|2. (2.10)

Minimizing JLS amounts to solve ∇DJLS = 0 with

∇DJLS =























∂
∂D0

(|U0 −D0,optC0|2)
...

∂
∂Dm

(|Um −Dm,optCm|2)
...

∂
∂DM−1

(|UM−1 −DM−1,optCM−1|2)























. (2.11)

For all m = 0, 1, .., M − 1, we simply get

−2Cm(Um −Dm,optCm) = 0, (2.12)

and from Ĥ
LS

= Dopt we deduce

ĤLS
m =

Um

Cm
= Hm +

Wm

Cm
. (2.13)

We notice that the LS estimation can be performed on each carrier individually. It can then
be applied in the case of sparse pilot carriers in the OFDM frame. In the case of a pilot
preamble, from (1.49) we give the vectorial form of the expression (2.13):

Ĥ
LS

= UC−1 = H+WC−1. (2.14)

From (2.14), it can be seen that the LS estimation is very sensitive to the noise level. In
order to reduce the sensitivity to the noise, [15] proposes the scaled LS (SLS) estimator, in

which Ĥ
LS

is multiplied by a coefficient γ, which is chosen such as the mean square error

E{||H− γĤ
LS ||2F } is minimized. In the same way, [16] presents the generalized form of SLS,

called shifted SLS (SSLS), in which Ĥ
LS

is replaced by γĤ
LS

+ x, where γ and x are to be
optimized.

2.3.1.2 Characteristics of the LS Estimation

From (2.14), we derive the bias and the minimum mean square error of LS estimation.
Since the noise is zero-mean, the bias B is obviously equal to zero:

B(Ĥ
LS
) = E{ĤLS −H} = E{WC−1} = 0. (2.15)

For the minimum mean square error (noted MMSELS), we use the same development as
in [15, 17, 18], i.e. we minimize the error function J

Ĥ
LS :

J
Ĥ

LS =
1

M
E{||ĤLS −H||2F } =

1
M

E{||WC−1||2F }, (2.16)
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2.3. LS and MMSE Criteria 33

conditionally to CmC∗m = P, P being the power of the pilots. We denote by ||.||F the Frobenius
norm 1. Therefore, the MMSELS is simply given by

MMSELS =
1

M
E{tr(WC−1(WC−1)H)}

=
1

M

M−1
∑

m=0

E{WmW ∗
m}

CmC∗m

MMSELS =
σ2

P . (2.17)

We recognize the result given in [17]. The minimum mean square error of LS estimation is
then equivalent to the inverse of the SNR. We will show in Chapter 5 that it is also possible to
derive an analytical mean square error of the LS estimation in the case of sparsely distributed
pilots in the frame. In this scenario, the interpolation method has to be taken into account.

2.3.2 Principle of Linear-MMSE Estimation

2.3.2.1 Expression of LMMSE Estimation

The MMSE aims at minimizing cost function defined by the mean square error of the
error vector H−DU, as shown in [19]:

JMMSE = E{||H−DU||2F }, (2.18)

where D is the matrix whose coefficients have to be optimized. The channel estimation is

then given by Ĥ
LMMSE

= DoptU. As mentioned in [7,32], the term linear in LMMSE is valid
when the channel is supposed to be flat over each tone, which is the case in our model. We
develop (2.18) as

JMMSE = E{tr
(

(H−DU)(H−DU)H
)

}

= tr
(

E{HHH −HUHDH −DUHH +DUUHDH}
)

. (2.19)

We remind that U = HC+W, and we consider that H and W are two uncorrelated zero-mean
vectors, so we get:

JMMSE = tr
(

RH −RHCHDH −DCRH +D(CRHCH + σ2I)DH
)

= tr(RH)− tr(RHCHDH)− tr(DCRH)

+ tr(D(CRHCH + σ2I)DH). (2.20)

We derivate the expression (2.20) to find Dopt satisfying ∂JMMSE/∂D = 0. To this end, we
use the matrix derivative form [89]:

∂JMMSE

∂D
= 0−RHCH − (CRH)

H + 2D(CRHCH + σ2I) = 0. (2.21)

1. The Frobenius norm of a matrix A is given by ||A||F =
√

tr(AA
H).
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34 Chapter 2. Channel Estimation Methods

Since the channel covariance matrix RH is Hermitian, it is equal to its conjugate transform
RH

H = RH [11]. We then express the optimal matrix Dopt as

Dopt = RHCH(CRHCH + σ2I)−1

= RH(RH + (CCH)−1σ2I)−1C−1. (2.22)

We finally deduce the expression of the LMMSE channel estimation:

Ĥ
LMMSE

= DoptU

= RH(RH + (CCH)−1σ2I)−1C−1U

Ĥ
LMMSE

= RH(RH + (CCH)−1σ2I)−1Ĥ
LS

. (2.23)

In order to lighten the writing, the matrix RH(RH + (CCH)−1σ2I)−1 will be noted B. Eq.
(2.23) is the usual expression of the LMMSE estimation. We notice that it requires more
operations to be performed than LS, due to the matrix inversion and the multiplication.
However, it is less sensitive to the noise than LS, as shown in Section 2.3.2.2. This is due to
the LMMSE estimator is based on the mean square error, and the considered Gaussian noise
has a mean equal to zero. Furthermore, LMMSE can play the role of interpolator, as shown
in Section 2.4.2, so it can be used in the case of pilots which are sparsely distributed in the
frame.

2.3.2.2 Characteristics of the LMMSE Estimation

From (2.23), we derive the bias and the minimummean square error of LMMSE estimation.
Since H and W are zero-mean processes, we simply express the bias B as

B(Ĥ
LMMSE

) = E{ĤLMMSE −H}
= E{(RH(RH + (CCH)−1σ2I)−1 − I)H

+RH(RH + (CCH)−1σ2I)−1WC−1}
= 0. (2.24)

We observe that LMMSE is also an unbiased estimator. We now express the MMSE of the
LMMSE estimation, noted MMSELMMSE , based on the developments proposed in [15, 19].
To this end, we define the error function J

Ĥ
LMMSE that must be minimized:

J
Ĥ

LMMSE =
1

M
E{||H− Ĥ

LMMSE ||2F }. (2.25)

The development of the minimization given in [15, 19] requires the chain differentiation rule
for traces of matrices [89,90] in order to solve ∂(J

Ĥ
LMMSE )/∂C∗m = 0. However, this is valid for

MIMO systems, where the channel covariance matrix is supposed to be invertible. Indeed, [15]
expresses MMSELMMSE by

MMSELMMSE =
Mσ2

MP/σ2 + tr(R−1
H )

. (2.26)
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In Chapter 1, we noticed that in the SISO case, the M × M matrix RH has rank L, with
L < M , so RH is not invertible. The formula (2.26) is then not valid, and must be reconsidered
for the SISO systems.

2.3.2.3 Expression of the Minimum Mean Square Error of LMMSE in the SISO

Case

a. Scalar Expression of J
Ĥ

LMMSE

In this part, we propose a new development based on the one in [15] to make it suitable with
non invertible channel covariance matrices. To this end, we first express a scalar expression
of the mean square error, and we derive the MMSELMMSE by considering a minimization
under constraint problem. This new approach has been proposed in [20].

From (2.23), we derive the mean square error function JLMMSE :

J
Ĥ

LMMSE =
1

M
E{||H− Ĥ

LMMSE ||2F }

=
1

M
E{tr((H− Ĥ

LMMSE
)(H− Ĥ

LMMSE
)H

)}

=
1

M
tr

(
E{(H− Ĥ

LMMSE
)HH} − E{(H− Ĥ

LMMSE
)(Ĥ

LMMSE
)H}).

(2.27)

Using the orthogonality principle [91], the second term in the right part of (2.27) is equal to
zero. Since H and W are uncorrelated zero mean processes, we have E{HWH = 0}. We then
develop (2.27) to get

J
Ĥ

LMMSE =
1

M
tr

(
E{HHH} − E{RH(RH + σ2(CCH)−1)−1Ĥ

LS
HH})

=
1

M
tr

(
RH −RH(RH + σ2(CCH)−1)−1RH

)
. (2.28)

As one can remark that RH = RH + σ2(CCH)−1 − σ2(CCH)−1, (2.28) simplifies to

J
Ĥ

LMMSE =
1

M
tr

(
RH(RH + σ2(CCH)−1)−1σ2(CCH)−1

)

=
1

M
tr

(
RH(

1
σ2

RH(CCH) + I)−1
)
, (2.29)

where I is the identity matrix. Since RH is an Hermitian and positive-semidefinite matrix,
and as (CCH) is a multiple of the identity matrix, 1

σ2 RH(CCH)+ I is also an Hermitian and
positive-semidefinite matrix having the same eigendecomposition basis as RH . We can then
write

RH = QDHQH

1
σ2

RH(CCH) + I = QDQH , (2.30)

35



36 Chapter 2. Channel Estimation Methods

where Q is an unitary matrix. The mth components of DH and D are λm and 1/(CmC∗mλm

σ2 +1)
respectively. Inserting (2.30) into (2.29) and remembering that λm = 0 for m = L, L +
1, ..., M − 1, we finally get the scalar expression of the error function

J
Ĥ

LMMSE =
1

M

L−1∑

m=0

λmσ2

λmCmC∗m + σ2
. (2.31)

b. Minimizing J
Ĥ

LMMSE

From (2.31), we may reason on the L variables Cm. Thus, we notice that if L = M (i.e.
RH has full rank), the problem remain the same as in [15]. We minimize the error function
(2.31) subject to the power constraint 1

L

∑L−1
m=0 CmC∗m = P. To this end, we use the Lagrange

multipliers method so that the problem can be rewritten as

L = 1
M

L−1∑

m=0

λmσ2

λmCmC∗m + σ2
+ µ(

1
L

L−1∑

m=0

CmC∗m − P), (2.32)

where µ is the Langrange multiplier. Whatever m = 0, 1, ...L − 1, the partial derivatives of
the gradient ∇L must satisfy

∂L
∂C∗m

= − λ2mσ2Cm

(λmCmC∗m + σ2)2
+

µCm

L
= 0. (2.33)

We deduce that CmC∗m =
√

σ2L
µM − σ2

λm
, and using the constraint 1

L

∑L−1
m=0 CmC∗m = P, we

obtain
√

σ2L

µM
= P +

1
L

L−1∑

m=0

σ2

λm
, (2.34)

and then

CmC∗m = P +
1
L

L−1∑

m′=0

σ2

λm′
− σ2

λm
. (2.35)

Inserting (2.35) into (2.31), we finally get the expression of the MMSE of the LMMSE channel
estimation:

MMSELMMSE =
1

M
.

L2σ2

LP +
∑L−1

m=0
σ2

λm

. (2.36)

We can see that if L = M (i.e. RH has full rank), then (2.36) is identical to (2.26). It
then validates the proposed expression of MMSELMMSE . Furthermore, we recognize the
characteristics given in [15, 18]: MMSELMMSE < MMSELS , in particular for high σ2 va-
lues, and MMSELMMSE = L

M MMSELS for low σ2 values. Fig. 2.4 displays the shape of
MMSELMMSE got by simulations and by using the analytical expression (2.36). In addition,
it compares MMSELMMSE to MMSELS (2.17). For the simulations, we used a FFT size
M = 128, and a channel of length L = 32 with a decreasing intensity profile. Furthermore,
the pilot power is normalized, that is P = 1.

We observe that the theoretical curve MMSELMMSE and the one plotted by simula-
tion matches. It validates the proposed expression (2.36). Moreover, we verify the inequality
MMSELMMSE < MMSELS whatever the value of the ratio P/σ2.
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Figure 2.4 – MMSE of LMMSE and LS estimations versus P/σ2.

2.4 Pilot-Aided Estimation Methods

In this section are presented some important and usual channel estimation methods, which
are precisely described in the literature, in particular in [22–27]. The basic principle of PSAM
is to estimate the channel on the pilot tones, and to extend this knowledge by means of some
interpolation techniques to the complete time-frequency carriers set, in order to perform
equalization afterward. We classify them in three groups according to three main criteria:

– The methods require some physical and/or statistical knowledge about the channel.
– The methods are only based on interpolation techniques.
– The methods use a feedback from the transmission chain in order to get information on
the transmitted signal.

2.4.1 Methods with Knowledge of Some Properties of the Channel

2.4.1.1 Wiener Filter

TheWiener filter is an MMSE criterion-based channel estimation method described in [28].
As mentioned in [7,13,28], it is an optimal technique according to the MSE criterion. Let us
consider P ×Np sparse pilot tones in an OFDM frame, as depicted on Fig. 2.5. The Wiener
filter performing the estimation on the data subcarriers is

Ĥm,n =
P−1∑

p=0

Np−1∑

np=0

w(m, n, p, np)ĤLS
p,np

, (2.37)
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where the optimal filter minimizes the mean square error as

w(m, n) = min
Ĥm,n

(

E{|Hm,n − Ĥm,n|2}
)

. (2.38)

Figure 2.5 – Illustration of the Wiener filtering.

Since it uses a filter function of the time and the frequency directions, it is called 2-D
Wiener filter. This method is very complex [13, 92], and it is usual to find methods in which
the 2-D filter is split into two filters, one along the frequency axis, and the other one along the
time axis. The frequency filter is the one given in (2.23) and the frequency channel covariance
matrix is expressed in (1.53). However, a pilot preamble is considered in (2.23). Here, the
pilot subcarriers are sparse in the OFDM symbol. In that case, the LMMSE estimator plays
the role of interpolator [7]. Let us assume P pilots per OFDM symbol, thus we note RH the
M × P matrix built from RH and whose columns are restricted to the pilots positions. In
the same way, we note R̃H the P × P frequency covariance matrix, Cn and ĤLS

n the vectors
containing the pilot subcarriers and the LS estimation of the channel on these pilots positions
respectively. Then, the LMMSE estimation (interpolation) along the frequency axis is given
by

Ĥ
LMMSE

= RH(R̃H + (CnCH
n )
−1σ2I)−1ĤLS

n . (2.39)

In order to perform an interpolation along the time axis, we firstly built the time correlation
matrix. As proposed in [92], we consider for instance a Jakes model or a uniform Doppler
spectrum. The time correlation is the Fourier transform of the Doppler spectrum (see chap.
1), so we obtain

(Rtime
H )u,v = σ2hJ0(2πνDmax(u− v))

(Rtime
H )u,v =

sin(2πσ2Dmax
(u− v)Ts)

2πν2Dmax
(u− v)Ts

, (2.40)

for the Jakes and the uniform spectrum, respectively, where νDmax is the maximum Doppler
frequency. At last, in the literature, the mainly used pilot positioning are the preamble and the

38
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comb-type arrangement. In the following, we will also use these patterns in the simulations,
and we will only consider a frequency filtering. In (2.39), we observe that the interpolating
filter RH(R̃H +(CnCH

n )
−1σ2I)−1 requires a P ×P matrix inversion and a (M ×P )× (P ×P )

matrix multiplication. The LMMSE channel estimation then requires a complexity 2 equal to
O(P 3 + MP 2) [93]. To sum up, the Wiener (or LMMSE) estimation is an optimal method,
but requires the knowledge of the matrix RH and the noise variance σ2, and has a high
complexity, particularly if a preamble scheme is considered.

2.4.1.2 iFFT Estimation

The principle of iFFT (for interpolated fast Fourier transform) is described in [13,29] and
depicted on Fig. 2.6. After having performed the LS estimation on the pilot subcarriers, a
P -sized IDFT is made to recover the channel impulse response (supposing that the number
of pilots is greater than the length of the channel). Then, M − P samples equal to zeros
are added at the end of the estimated IR vector (zero padding). Finally, a M -sized DFT is
applied to obtain the estimation of the complete channel frequency response. The window
which appears on Fig. 2.6 is simply the rectangular window of the OFDM signal, as seen in
(1.23).

Figure 2.6 – Illustration of the interpolated fast Fourier transform Estimation.

As mentioned in [29], the iFFT channel estimation has two drawbacks. First, the signal
must be periodic and M must be an integer multiple of P to recover the correct spectrum.
Second, as a window is used, it is well known that the estimated spectrum leaks on the adjacent
channel. This phenomenon is called leakage. However, in order to reduce the leakage, some
kinds of windows have been proposed, as in [29, 94]. For instance in Fig. 2.7, we give the
frequency response of the Hanning window compared to the rectangular one. We actually
observe that the leakage is lower when the Hanning window is used instead of the rectangular
one.
a. Complexity of the iFFT estimation: If the iFFT estimation is performed using the
DFT matrix F (A.15) (for any M), the complexity of the method is O(P 2+M2) operations.
Indeed, the IDFT and the DFT requireO(P 2) andO(M2) multiplications, respectively. Howe-
ver, it is known that with some algorithms using the Hermitian property of F , the complexity
can be reduced to O(P ln(P ) + M ln(M)), and even, if M is a power of two, the complexity
can be reduced to O(P log2(P ) +M log2(M)) by means of the Cooley-Tukey algorithm. This
estimator is obviously less complex than LMMSE. To summarize, iFFT is a low complexity
estimation method, but needs that M is an integer multiple of P . Moreover, due to the win-

2. given in number of elementary multiplications
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Figure 2.7 – Frequency responses of the Hanning and the rectangular windows.

dowing, the estimated spectrum leaks on the adjacent ones, which is a drawback when the
nearby channels are used by other users or applications.

2.4.1.3 Maximum Likelihood Estimation

In this section, the maximum likelihood estimation and the expectation-maximization
algorithms are presented. Since the additive noise is considered as a zero mean Gaussian
process, each received symbol Um = HmCm+Wm is a also a Gaussian process of mean HmCm

and variance σ2, whatever m = 0, 1, ...M − 1. Furthermore, as Hn and Wn are uncorrelated,
and the elements of the noise vector are independent, the conditional probability density
function of the received signal is given by (see [30, 31] for more precisions):

p(Un|Hn, Cn, σ2) =
1

(2πσ2)P/2
exp

(

− 1
2σ2

P−1∑

m=0

|Um −HmCm|2
)

. (2.41)

The joint maximum Likelihood estimation of Ĥn and Ĉn is performed by means of

(Ĥn, Ĉn) = max
Hn,Cn

(

ln(p(Un|Hn, Cn, σ2))
)

. (2.42)

If Cn is a pilot symbol, it becomes obvious that the ML estimation (2.42) is equivalent to
the LS one, as mentioned in [95]. Indeed, maximizing the logarithm of p(Un|Hn, Cn, σ2) is
exactly equivalent to minimizing JLS in (2.9). The interest of ML appears when the matrix
Cn is composed of pilots and data, as when a comb-type pilot scheme is used, for instance.
In that case, let us denote C̃n and C̄n the matrices containing the pilots and the data,
respectively, such as the complete OFDM symbol is Cn = {C̃n, C̄n}. C̃n and C̄n} are usually
named observed information and additional information, and their size is P × P and (M −
P )× (M −P ), respectively. The direct solving of (2.42) thanks to the incomplete observation
C̃n necessitates a prohibitive calculation cost. In order to make it feasible in practice, the
expectation-maximization (EM) has been developed in 1977 by A. P. Dempster et al in [96].
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Several equivalent formulations of the EM algorithm have been proposed in literature [97–99].
As indicated by its name, the EM algorithm is composed of two steps. Let us denote i the
number of the iteration. The general formulation of EM is

– 1. Expectation step:

Q(Hn|Ĥn,(i−1)) = E{ln(p(Un|Hn))|C̃n, Ĥn,(i−1)}. (2.43)

– 2. Maximization step:

Ĥn,(i) = argmax
Hn

(

Q(Hn|Ĥn,(i−1))
)

. (2.44)

The EM algorithm allows reaching the ML performance when i tends to infinity. References
[97, 98] discuss the initialization value Ĥn,(i=0), and a detailed expression of the function
Q(Hn|Ĥn,(i−1)) is developed in [100].

2.4.2 Methods without Knowledge of the Channel Properties

This section briefly describes usual interpolation techniques which do not require any
channel or noise properties as the aforementioned ones, but are only based on different kinds
of interpolations. These methods are also described in [23, 27]. Furthermore, Chapter 5 is
partially dedicated to the statistical characterization of these interpolations. These interpo-
lations are used when a comb-type pilot scheme, a rectangular or a staggered rows pattern is
considered.

2.4.2.1 Nearest-Neighbor Interpolation

The nearest-neighbor (NN) interpolation is a simple method to get an estimation of the
channel frequency response between the pilot subcarriers. Let us denote fp the frequency
position of a pilot, and δf the frequency gap between two consecutive pilots. In the following,
we also note δp the frequency gap corresponding to δf in the discrete formalism. We also
suppose a regular pilot arrangement ..., fp−δf

, fp, fp+δf
, .... Furthermore, we denote fp− and

fp+ the centers of the intervals [fp−δf
, fp] and [fp, fp+δf

] respectively. As illustrated on Fig.
2.8, whatever f ∈ [fp− , fp+ ], the channel estimation on this interval is

Ĥ(f) = Ĥ(fp), (2.45)

where Ĥ(fp) is the LS estimation performed on the position fp. In the discrete formalism,
whatever p− δp/2 ≤ m ≤ p+ δp/2, the expression (2.45) becomes

Ĥm = Ĥp. (2.46)

Although its simplicity, it is obvious that this interpolation is only adapted to very weakly
selective channels.

2.4.2.2 Linear and Second Order Interpolation

The linear interpolation is also a simple method, which consists, for a given value f ∈
[fp, fp+δf

], of taking the mean of the values Ĥ(fp) and Ĥ(fp+δf
), weighted by the inverse of

the distance fp+δf
− fp. More precisely, Ĥ(f) is obtained by
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fp fp + δffp − δf fp+fp−

Ĥ(f)

Ĥ(f) = Ĥ(fp)

δf

f

Figure 2.8 – Illustration of nearest-neighbor interpolation.

Ĥ(f) = Ĥ(fp) + (f − fp)
Ĥ(fp+δf

)− Ĥ(fp)

fp+δf
− fp

. (2.47)

Equivalently, in the discrete formalism, we get

Ĥm = Ĥp + (m− p)
Ĥp+δp − Ĥp

δp
. (2.48)

Fig. 2.9 illustrates the principle of the linear interpolation. In the same way as the NN
interpolation, this method offers bad results when the channel is highly frequency selective.

fp fp + δf

Ĥ(f)

Ĥ(f)

δf

ffp − δf

Figure 2.9 – Illustration of the linear interpolation.

As described in [101], the second order interpolation is similar to the linear one, but uses
three pilots instead of two. Thus, for a given subcarrier m between the pilot positions p and
p+ δp, the second order interpolation Ĥm is given by

Ĥm = cp−δpĤp−δp + cpĤp + cp+δpĤp+δp , (2.49)

where the coefficients cp−δp , cp and cp+δp are equal to
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





cp−δp =
1
2(a(a− δp))

cp = −(a− δp)(a+ δp)

cp+δp =
1
2(a(a+ δp))

a = δp

m−p .

(2.50)

It is shown in [101] that the second order interpolation is only slightly more efficient than the
linear one. In the rest of the report, we will only take interest in the linear interpolation.

2.4.2.3 Polynomial Interpolation

The polynomial interpolation consists in the approximation of H(f) by a polynomial
of degree P − 1 noted χ which verifies: for the pilot positions fp, p = 0, 1, ..., P − 1, χ
takes the values Ĥ(fp). Thus, we get Ĥ(f) = χ(f). Since the following methods are based
on mathematical considerations, the developments are made in the continuous formalism.
Obviously, the results remain valid after sampling (on the expected subcarriers for instance).
As shown in Fig. 2.10, the pilots can be evenly distributed or not. The usual way to build χ
is to use the Lagrange basis of the functions L0,L1, ...,LP−1 defined, for p = 0, ..., P − 1 by

Lp(f) =
P−1∏

k=0
k 6=p

f − fk

fp − fk
=

(f − f0)(f − f1)...(f − fP−1)
(fp − f0)(fp − f1)...(fp − fP−1)

, (2.51)

and such as

χ(f) =
P−1∑

p=0

Lp(f)χ(fp) =
P−1∑

p=0

Lp(f)Ĥ(fp). (2.52)

This is the only polynomial of degree P − 1 verifying the conditions χ(fp) = Ĥ(fp), as shown
in [21]. The main drawback of the Lagrange polynomial interpolation is the Runge effect. It
results in fluctuations of χ(f) between the nodes, and especially near the end points f0 and
fp. It occurs in particular when P is large, and when the control points fp (the pilot positions
in our case) are evenly distributed. The error of interpolation even tends to infinity when P
tends to infinity.

f

Ĥ(f)

Ĥ(f)

fp−2 fp−1 fp fp+1

Figure 2.10 – Illustration of polynomial interpolation.

Piecewise Cubic Interpolation

In order to limit the Runge effect, a method consists in cutting the interval of H(f) (the
bandwidth of the channel) into several shorter intervals [f0, f3], [f3, f6], ..., [fP−4, fP−1], and
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performing a cubic interpolation on each on them. Considering for instance the first interval
[f0, f3], the Lagrange’s (2.51) basis simplifies to

L0(f) =
f − f1
f0 − f1

× f − f2
f0 − f2

× f − f3
f0 − f3

L1(f) =
f − f0
f1 − f0

× f − f2
f1 − f2

× f − f3
f1 − f3

L2(f) =
f − f0
f2 − f0

× f − f1
f2 − f1

× f − f3
f2 − f3

L3(f) =
f − f0
f3 − f0

× f − f1
f3 − f1

× f − f2
f3 − f2

, (2.53)

In the following, we assume that the pilots are evenly distributed. However, in that case, the
Runge effect is limited because of the poor value of the polynomial. Since the polynomials
are independently built, we notice that the curve is discontinuous on the interval [f0, fP−1].
In order to make the interpolating curve continuous on the complete interval, it is usual to
use the cubic Hermite interpolation and the cubic spline interpolation, as described in the
following.

2.4.2.4 Cubic Spline Interpolation

The cubic spline interpolation uses the Hermite polynomials basis, and ensures the conti-
nuity of the interpolating curve on each control point by adding a condition on the derivative
of the curve on these point. Another difference with the Lagrange cubic interpolation is that
a polynomial of degree three is built between each node. On the interval [0, 1], the Hermite
basis is the following:

η0(f) = (1 + 2f)(1− f)2

η1(f) = f2(3− 2f)

κ0(f) = f(1− f)2

κ1(f) = f2(f − 1). (2.54)

Now, considering some interval [fp, fp+1], we derive the spline cubic polynomial χs as

χs(f) = η0(
f − fp

fp+1 − fp
)H(fp) + η1(

f − fp

fp+1 − fp
)H(fp+1)

+ κ0(
f − fp

fp+1 − fp
)(fp+1 − fp)H ′(fp) + κ1(

f − fp

fp+1 − fp
)(fp+1 − fp)H ′(fp+1),

(2.55)

where H ′(f) is the derivative of H on the point f . As shown in [102], it would be easy to
show that χs(f) is the single polynomial satisfying χs(fp) = H(fp), χs(fp+1) = H(fp+1),
χ′s(fp) = H ′(fp) and χ′s(fp+1) = H ′(fp+1). When these conditions are used for the derivative
of χ′s(fp), the interpolation is called clamped cubic spline. A second usual choice is to take
null derivative χ′s(fp) = 0 and χ′s(fp+1) = 0. In that case, the interpolation is called natural
cubic spline.
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2.4.2.5 Other Interpolations

It would remain a wide range of interpolation methods to be described. References [27,103]
cover around twenty of the most classical techniques. For the most of them, the principle is
to filter the pilots in order to get the missing information. The general formulation for these
techniques is

Ĥ(f) =
∫ +∞

−∞
gi(f − ν)Ĥp(ν)dν, (2.56)

where gi is the interpolating function, and Ĥp(ν) is the function which takes the value H(fp)
for ν = fp and zero elsewhere. Obviously, the observation is not infinite (limited to the pilots),
and the system is discrete. After sampling, we can then rewrite (2.56) as

Ĥm =
P−1∑

k=0

gi,m−kĤp,k. (2.57)

From (2.56), we notice that the interpolation method only depends on the function gi. The
moving average interpolation usually requires decreasing functions gi as the inverse function,
or the decreasing exponential. Another very usual interpolation is based on the Nyquist-
Shannon sampling theorem (1949) and on Whittaker’s work (1935). This method is based on
the properties of the sinc function and is then called Shannon-Whittaker interpolation or sinc
interpolation. It is expressed by

Ĥm =
P−1∑

k=0

Ĥp,ksinc

(

m− kδp

δp

)

. (2.58)

2.4.3 Iterative and Recursive Channel Estimation

2.4.3.1 Iterative Channel Estimation, Equalization and Data Detection

The class of the iterative estimation methods allows getting both channel and data esti-
mations. The principle, clearly described in [104] and in Fig. 2.11 is to use the estimated data
(and the channel respectively) to feed the channel estimator block (the data detection block
resp.). The steps are summarized in the following:

– Initialization: A channel estimation Ĥp,(0) is performed on the pilot tones p at iteration
i = 0. The complete channel estimation Ĥ(0) is derived.

– The data subcarriers Ĉm,(0) are estimated.
– For i ≥ 0, the data Ĉm,(i) is used as virtual pilot tones to estimate Ĥm,(i), and Ĥm,(i) is
used for the equalization.

As indicated in [104], although detection errors (Ĉm,(i) 6= Cm) may occur, if the error pro-
bability is low enough, the channel estimation Ĥ(i) is more accurate from an iteration i to
the next one. In order to reduce the errors in detections, the system can include a channel
decoder, as presented in [105,106]. In that case, the channel estimation is made conditionally
to the estimated bits, and is called estimation with hard decision.

The channel estimation can be performed thanks to any aforementioned techniques. The
complexity of the iterative techniques then depends on the estimation and equalization me-
thods. For instance, [107] proposes an LS-based one, the authors of [108] base their method
on the EM algorithm and LMMSE is used in [105].
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Channel
Estimation

Equalization Data
Detection

U

Ĥ

C̃

Ĉ

Figure 2.11 – Block-diagram of the iterative channel estimation with feedback from the data
detection.

2.4.3.2 Recursive Channel Estimation

The principle of recursive channel estimation is to use an adaptive filter to perform the
estimation. Thus, contrary to iterative methods, in which the estimation is done l times on the
same symbol, the recursive techniques require not only the nth OFDM symbol, but also the k
previous ones. The most used estimator is the recursive least square (RLS), whose principle
is explained in [109]. We denote JRLS

n the cost function to minimize:

JRLS
n =

n
∑

k=0

λn−k||ek||2, (2.59)

where λ is the forgetting factor such as 0 < λ ≤ 1, and ek is the error vector given by

ek = Uk − ĤkCk. (2.60)

Ĥk is the vector which minimizes the cost function JRLS
n , that is

∇
Ĥk

JRLS
n =

























∂
∂Ĥ0,k

(
∑n

k=0 λn−k||ek||2)
...

∂
∂Ĥm,k

(
∑n

k=0 λn−k||ek||2)
...

∂
∂ĤM−1,k

(
∑n

k=0 λn−k||ek||2)

























= (0). (2.61)

Whatever m = 0, ..., M − 1, by solving (2.61) we find

Ĥm,n =

∑n
k=0 λn−kUm,kC∗m,k
∑n

k=0 λn−k|Cm,k|2
, (2.62)

hence, if we rewrite (2.62), we get the update equation (see [109] for more details)

Ĥm,n = Ĥm,n−1 +
C∗m,k

∑n
k=0 λn−k|Cm,k|2

(Um,n − Ĥm,n−1Cm,n). (2.63)

Similarly to RLS, the authors of [110] propose the recursive MMSE (RMMSE). This
method is slightly more complex than RLS. Indeed, in addition to the channel, the channel
covariance matrix RH and the noise variance σ2 must be updated in function of the forgetting
factor λ. Furthermore, if the statistics of the channel vary, [109] naturally advises to perform
an update of λ.
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2.5 Conclusion

In this chapter, a state of the art about the most important channel estimation methods
used in OFDM systems has been presented. These methods differ from one to another by the
optimization criterion that is used, the complexity, and the need of the a priori knowledge of
some channel characteristics. The performance of LS and LMMSE has been characterized, via
the MMSE. In this chapter, the contribution of the thesis is the derivation of a new expression
of the minimum mean square error of the LMMSE estimator in SISO context. This expression
can be seen as a generalization of the MMSE to the systems in which the channel correlation
matrix is not invertible.

Chapters 3 and 4 focus on the LMMSE estimation, and propose new methods to avoid the
a priori knowledge of the channel covariance matrix and/or the noise level. Chapter 5 focuses
on the interpolation methods, and studies the error of estimation that they cause. Thus, the
following three Chapters will mainly refer to Sections 2.3 and 2.4.2.
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Chapter 3

Artificial Channel Aided-LMMSE
Channel Estimation

3.1 Introduction

In Chapter 2, the LMMSE channel estimator has been presented in detail. Although it is
the optimal estimator according to the MMSE criterion, two main drawbacks limit its practical
implementation. First, from (2.23), we notice that the LMMSE estimator requires the channel
covariance matrix RH and the noise variance σ2. In this chapter, RH is a priori unknown
by the receiver. Second, the matrix inversion and multiplication require O(M3) operations,
where M is the DFT size. For instance, let us consider the transmission of a signal built with
the 2K-mode of the DVB-T standard [52]. In that case, each ODFM symbol is composed
of 1705 useful carriers, so the LMMSE estimation requires about 8.5.109 operations. This
complexity still increases when the channel is time-varying. Indeed, if the channel impulse
response (CIR) hn changes from one OFDM symbol to another, the matrices RH and B =
RH(RH + (CCH)−1σ2I)−1 have to be accordingly updated.

In order to avoid the a priori knowledge of the channel covariance matrix and/or reduce the
complexity of LMMSE, the literature proposes several approaches. In [7,111], a singular value
decomposition of B is used to perform a low rank estimation, which reduces the complexity
of LMMSE with a negligible loss of the performance. In [18], the authors propose the relaxed
MMSE (RMMSE), in which the matrixRH is replaced by a diagonal matrix αI. The coefficient
α is optimized to reduce the MMSE of the estimator. In the same way, in [112], B is also
replaced by a diagonal matrix βI, and a double optimization on α and β is performed to reduce
the MMSE. This method is called dual diagonal LMMSE (DD-LMMSE). Both techniques
reduce a lot the complexity of the LMMSE estimator, but to the detriment of the efficiency.
Following another way, the authors of [33] use the symmetry property of the covariance
matrix combined with a fast algorithm for the Toeplitz matrix inversion [113] to reduce the
complexity.

In this chapter, we propose a LMMSE-based method in which the knowledge of the channel
covariance matrix is not necessary. To this end, a perfectly tunable filter acting like an artificial
channel is added at the receiver side. An LMMSE estimation of the sum of this artificial
channel and the physical channel is then performed by using the sole covariance matrix of
the artificial channel, and the physical channel estimation is finally obtained by subtracting
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the frequency coefficients of the added filter. This method, called artificial channel aided-
LMMSE (ACA-LMMSE) published in [34,35], also reduces the complexity of LMMSE, since
the matrix B has to be computed only once. Furthermore, this chapter presents in Section 3.5
an application of the proposed method in the context of channels with delays longer than the
CP durations. Combined with the algorithm called RISIC [36], the technique also allows to
perform the channel estimation and the ISI cancellation in the case of fast varying channels.
In this chapter, since we consider that the channel response can vary from one OFDM symbol
to another, the subscript n is adopted to point out the OFDM symbol index.

3.2 Description of the Method

3.2.1 Principle of the Method

In most of transmission models, the receiver does not have any knowledge of the CSI nor
of the statistics of the channel. This is particularly the case in broadcast systems. In the
LMMSE techniques described in the literature, the covariance matrix RH is considered to be
known, or must be estimated. Thus, this matrix must be regularly updated in order to track
the channel variations.

The solution proposed in this chapter and described in Figs. 3.1 and 3.2 avoids the a priori
knowledge of RH . To this end, an artificial signal (composed of pilots only) is transmitted
through a filter G and added to the received signal. Actually, the filter G plays the role of
an artificial channel, whose parameters (coefficients, paths delays etc.) are perfectly known
and tunable by the receiver. The statistics of the filter G is chosen in order to match a
WSSUS channel. The coefficients of the filter G are randomly varying like an artificial channel.
Consequently, we use a channel terminology to describe G. To do so, we note gn(τ) and Gm,n

the impulse response and the samples of the frequency response of the artificial channel,
respectively. They are expressed by

gn(τ) =
D−1
∑

d=0

gd,nδ(τ − βdτs), (3.1)

Gm,n =
D−1
∑

d=0

gd,ne−2jπ
mβd

M , (3.2)

where gd,n are complex zero mean Gaussian processes and D is the number of paths of
the artificial channel. We assume that the physical channel hn(τ) and the artificial one gn(τ)
are uncorrelated. The pilot tones of the artificial signal are supposed to have exactly the
same arrangement in the frame than the pilots in the OFDM received signal. The positions
matching with the data carriers in the OFDM signal are replaced by zeros in the artificial
signal. Furthermore, we assume that the artificial signal is perfectly synchronized with the
received signal. From the receiver point of view, the pilots are distorted by the sum of the
physical channel and the artificial channel. For a given pilot Cm,n, if we note Ũm,n the artificial
received signal, it yields

Ũm,n = (Hm,n +Gm,n)Cm,n +Wm,n. (3.3)

The resulting channel, noted K = H + G, is called hybrid channel afterward. Its channel
impulse response κn(τ) is the sum of the ones of the physical and the artificial channels:
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κn(τ) =
L−1
∑

l=0

hl,nδ(τ − βlτs) +
D−1
∑

d=0

gd,nδ(τ − βdτs)

=
LK−1
∑

lK=0

κlK ,nδ(τ − βlkτs). (3.4)

LK ≤ L+D is the number of paths of the hybrid channel and κlK ,n its path coefficients. As
it is possible to get βl = βd, it explains the inequality LK ≤ L + D. Fig. 3.1 illustrates via a
simple diagram the masking effect of the physical channel hn(τ) by the artificial one gn(τ).
The shape and the length of the impulse response of the artificial channel will be discussed
afterward.

Figure 3.1 – Illustration of the masking effect of H by G.

The goal of the proposed method is to perform an LMMSE channel estimation of Kn =
Gn+Hn without any knowledge of the statistics of Hn. We then propose a way to design the
filter G such that the hybrid channel covariance matrix RK used in the LMMSE estimation of
the hybrid channel can be entirely computed using the parameters of G. In this way, we will
justify the covariance matrix approximation RK ≈ RG. The filter G must then play the role of
"mask" for H. This result will be obtained thanks to a relevant choice of the filter parameters,
as described in Section 3.3. Finally, as G is perfectly known, we retrieve the estimation of
H by subtracting G from the LMMSE estimation of the hybrid channel K. As we make an
LMMSE-based estimation of the physical channel with the help of an artificial channel G, we
refer the proposed method as artificial channel aided-LMMSE (ACA-LMMSE) in the rest of
the chapter.

3.2.2 ACA-LMMSE channel Estimation

We now develop the mathematical expression of the proposed estimation method. In order
to simplify the writing, let us consider that the pilots are arranged in a preamble scheme in the
following. However, the result remains also valid in the case of pilot tones that are sparsely
distributed in the OFDM frame, since LMMSE is based on Wiener interpolator filter (see
Section 2.4.1). The hybrid channel vector Kn = Hn + Gn is estimated by means of the
LMMSE estimator as
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Figure 3.2 – Diagram of the ACA-LMMSE estimation in a simplified transmission-reception
chain.

K̂
LMMSE

n = RK(RK + σ2(CnCH
n )
−1)−1K̂

LS

n

= RK(RK +
σ2

P I)−1K̂
LS

n , (3.5)

where K̂
LS

n is the vector containing the LS estimated samples Ũm,n/Cm,n, m = 0, 1, .., M − 1,
and RK is the M ×M complex covariance matrix of K, whose elements (RK)u,v are expressed
similarly to (1.53):

(RK)u,v =
LK−1
∑

lK=0

∫ βmax

0
ΓlK (β)e

−2jπ
(u−v)

M
βdβ. (3.6)

In (3.6), βmax is the maximum delay of K, i.e. the one of H or the one of G. Let us assume that
the noise variance is known or estimated with an algorithm adapted for OFDM transmissions
[40], [41], [37]. In order to perform the LMMSE estimation of the hybrid channel in (3.5),
the covariance matrix RK = RH+G has to be calculated. However RK is unknown, as the
statistics of H are supposed to be unknown. The proposed solution aims to mask H thanks
to the filter G, that is to set the statistics of G (recalling that these statistics are fixed by the
user) leading to the approximation RK ≈ RG. If this condition is verified, (3.5) remains valid
whatever the variations of the physical channel Ĥn, and even if its statistics change (i.e. if
RH changes). Thus, the covariance matrix RG has to be computed only once during all the
transmission. ACA-LMMSE is then less complex compared to the methods in which RH and

B have to be updated. From (3.5), we get an estimation of the physical channel noted Ĥ
ACA

n

as
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Ĥ
ACA

n = K̂
LMMSE

n −Gn. (3.7)

Although the coefficients gd,n of G are randomly generated (by means of a known statistic
and the filter method described in Section 1.4), they can be stored in a memory after their
generation so that Gn can be completely accessible for the estimation step of (3.7). In order to
avoid the need of a memory, simulations will show that a simple filter with fixed coefficient can
replace the artificial varying channel. The proposed solution can then be simply implemented
in practice.

3.2.3 Characteristics of ACA-LMMSE

From (3.7), we derive the bias of the ACA-LMMSE estimation. Since Hn and Gn are
zero mean processes, it is obvious that Kn = Hn +Gn is also a zero-mean process. Thus, by

analogy with (2.24), we express the bias B(Ĥ
ACA

n ) of ACA-LMMSE as

B(Ĥ
ACA

n ) = E{ĤACA

n −Hn}
= E{K̂LMMSE

n −Gn} − E{Hn}

= E{RK(RK +
σ2

P I)−1K̂
LS

n } − E{Gn}
= 0. (3.8)

Eq. (3.8) shows that ACA-LMMSE is an unbiased estimator. Since we consider a SISO system,
we now express the MMSE of the ACA-LMMSE estimation, noted MMSEACA, based on the
developments proposed of Section 2.3.2.3. To this end, we define the error function J

Ĥ
ACA

which must be minimized. From (3.7), it yields

J
Ĥ

ACA =
1

M
E{||Hn − Ĥ

ACA

n ||2F }

=
1

M
E{||Hn − (K̂

LMMSE

n −Gn)||2F }

=
1

M
E{||Kn − K̂

LMMSE

n ||2F }. (3.9)

By replacing Hn by Kn, we notice that (3.9) is equivalent to (2.27). We directly deduce the
expression of MMSEACA from Section 2.3.2.3 and [20]:

MMSEACA =
1

M
.

L2
Kσ2

LKP +
∑LK−1

lK=0
σ2

λK,lK

, (3.10)

where λK,lK are the eigenvalues of the hybrid channel. We observe that the MMSE of ACA-
LMMSE has the same form as the one of LMMSE, but with the eigenvalues of RK . It then
theoretically proves the efficiency of the ACA-LMMSE estimation. Furthermore, since K is
unknown, if the approximation RK ≈ RG is verified, (3.10) proves that the performance
of ACA-LMMSE is driven by an appropriate choice of G. As LMMSE plays the role of an
interpolator (see Section 2.4.1), the proposed technique is also valid when the pilot tones are
sparse in each OFDM symbol, as when a comb-type pilot scheme is used. Although the closed
form of MMSE is impossible to derive in this case, simulations will compare the proposed
solution with the LMMSE and LS Section 3.4.
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54 Chapter 3. Artificial Channel Aided-LMMSE Channel Estimation

3.2.4 Complexity Comparison with Standard LMMSE

3.2.4.1 Computation of the Channel Covariance Matrix

Without taking into account the characteristics of the channel covariance matrix, the
number of operations required to compute RH = E{HnHH

n } is equal to M2. However, as
it is mentioned in Section 1.3.5, RH is a Toeplitz and Hermitian matrix. As a consequence,
with m = 0, 1, .., M − 1, it is sufficient to compute M multiplications HmH∗

1 to deduce the
M2 elements of RH .

The main drawback of the LMMSE estimator is that RH is a priori unknown. An usual
solution to get around this problem [7] is to compute an estimated covariance matrix that we
note R̃H by means of the LS estimate of the channel frequency response HLS

n :

R̃H = Ĥ
LS

n (Ĥ
LS

n )H . (3.11)

Unlike RH , R̃H is "only" an Hermitian matrix. Thus, it is necessary to compute all the
elements of the lower or upper triangle of R̃H to deduce the others. In that case, the number
of multiplications is equal to M(M+1)

2 . However, since we here consider a time varying channel,
R̃H has to be regularly updated in order to track the channel variations. If we note N the
number of required updates, the total complexity (computation of R̃H + update) is then
equal to N M(M+1)

2 . Whatever the frequency of the updates (every OFDM symbol, OFDM
frame, 2 frames etc.), the value of N becomes huge as the transmission duration increases.
Furthermore, even if RH can be computed, it is possible that the statistics of the channel
change, and then the covariance matrix must also be updated.

In the case of the ACA-LMMSE estimation, it is assumed that the approximation RK ≈
RG is verified (see next section). Since G is perfectly known, RG is computed using (3.6), so
we know that this covariance matrix is a Toeplitz and Hermitian matrix. As a consequence,
its computation only requires M elementary operations. Furthermore, the filter G is designed
in order to always mask the physical channel H, so ACA-LMMSE is independent of the
variations of the channel gain and statistics. At last, RG requires M multiplications and must
be computed only once during the transmission.

3.2.4.2 Computation of the matrix B

The computation of B = RH(RH + (CCH)−1σ2I)−1 requires a complexity equal to M3

for the matrix inversion, and M3 for the matrix multiplication, namely 2M3 multiplications.
When LMMSE is performed with R̃H , the computation of B must be done N times during
the transmission in order to track the channel variations. The total complexity is then 2NM3.

Once more, by using ACA-LMMSE, B is computed only once at the beginning of the
transmission and does not require any update. It is also possible to reduce the complexity of
LMMSE (or ACA-LMMSE) by using the singular value decomposition (SVD) of the channel
covariance matrix, while keeping the same performance, as proposed in [7]. In that case, the
complexity is reduced to 2NLM2 for the LMMSE estimator and 2LKM2 for ACA-LMMSE.
Table 3.1 summarizes the complexity of the proposed ACA-LMMSE compared to the usual
LMMSE. The exponent 1 indicates that the methods are simplified by means of the matrix
characteristics and the SVD method for the computation of B [7]. We notice that the com-
plexity of each operation has the same order of magnitude for both techniques. It means that
ACA-LMMSE is much simpler than the usual LMMSE estimation because the operations of
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3.3. Choice of Filter G Parameters 55

ACA-LMMSE have to be performed only once during all the transmission duration, unlike
LMMSE which requires updates. It is all the more the case if the channel quickly varies and
if the transmission duration is long.

Table 3.1 – Complexity comparison between ACA-LMMSE and usual LMMSE. The ex-
ponent 1 points out the simplified methods.

Operations B R̃H or RK update Total
usual LMMSE 2M3 M2 N N(2M3 +M2)
ACA-LMMSE 2M3 M2 - 2M3 +M2

usual LMMSE 1 2LM2 M(M+1)
2 N N(2LM2 + M(M+1)

2 )
ACA-LMMSE 1 2LKM2 M - 2LKM2 +M

3.3 Choice of Filter G Parameters

The aim of this section is to justify the approximation RK ≈ RG. To this end, we use the
practical US Consortium channel model coming from the Digital Radio Mondiale (DRM)
standard [1] and whose parameters are given in Table 1.1. Although we use a practical model
from DRM standard in this section, we will extend the method for any WSSUS model in
Section 3.4. The transmitted OFDM signal is composed of 148 independent carriers, according
to robustness Mode C of the standard. Keep in mind that the training symbols are in staggered
rows in the OFDM frame. Table 3.2 summarizes the parameters used for the simulations.

Table 3.2 – Parameters of Robustness C mode.
Robustness C

Symbol duration 14.66 ms
CP duration 5.33 ms
Frame duration 400 ms
Number of carriers 148
Signal bandwidth 10 kHz
Signal constellation 64-QAM

The physical channelH being unknown, the exact statistical parameters ofK are unknown.
Thus, we can not use the covariance matrix RK given by (3.6). We then perform the LMMSE
estimation of the hybrid channel using the covariance matrix of G, whose parameters are
perfectly known and controllable, and defined by

(RG)u,v =
D−1
∑

d=0

∫ β
(G)
max

0
Γd(β)e−2jπ

(u−v)
M

βdβ, (3.12)

where β
(G)
max is the maximum delay of the artificial channel. Equation (3.12) highlights three

parameters which have an influence on the covariance matrix RG: the number of paths D

of the artificial channel, the maximum delay β
(G)
max (or equivalently τ

(G)
max in the continuous

formalism) and the intensity delay profile Γd(β). The following subsections characterize these
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56 Chapter 3. Artificial Channel Aided-LMMSE Channel Estimation

three parameters in order to get the approximation RK ≈ RG, i.e. to make (3.12) as close as
possible to (3.6).

3.3.1 Discussion on the Choice of the Parameters

We now focus on the choice of the parameters D, β
(G)
max (or τ

(G)
max) and Γd(β) to make (3.12)

as close as possible to (3.6). Firstly, our choice is driven by using some basic features about
OFDM. Thus, since the system is supposed to be well designed, we have β

(H)
maxτs ≤ TCP . As

a consequence, choosing β
(G)
maxτs = TCP ensures βmax = β

(G)
max in (3.6).

The goal of the artificial channel is to mask the physical one. As a consequence, the number
of artificial paths D must be chosen larger than L. However, as L is unknown, we must fix
an arbitrary large D value. Due to the discrete time formulation, the length of the impulse
response (limited by βmax(G)) of the filter is finite. We can then fix an upper limit to the
number D equal to τ

(G)
max/τs.

The multipath intensity profile Γ(βb) can be a priori chosen in an infinite set of functions.
Nevertheless, the choice is only limited by a practical consideration: expression (3.12) must
be integrable. However, the decreasing exponential shape is commonly used ( [7], [8] and [9])
in a large number of channel models, so we will use this shape. These a priori choice for D,
β
(G)
max and Γd(β) will be confirmed in the next sections.

3.3.2 Discussion on the Choice of the Maximum Delay τ
(G)
max

Here, the validity of ACA-LMMSE is verified for any value of the maximum delay βmax =
β
(G)
max ≥ β

(H)
max, with β

(G)
max ∈ [β(H)

max, TCP /τs]. Figure 3.3 depicts the 3-D curve of the bit error
rate (BER) of the ACA-LMMSE estimation versus β

(G)
max/β

(H)
max and Eb/N0 on the X and Y

axes, respectively. According to the aforementioned recommendations, the number of paths
D is set to 20 paths and Γd(β) follows a decreasing exponential profile.
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Figure 3.3 – BER curve versus β
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Two zones in the BER curve are clearly noticeable. For β
(G)
max/β

(H)
max ≤ 1, the error floor

of the BER is larger than 0.1, for any considered value of Eb/N0. The error floor of the zone
β
(G)
max/β

(H)
max ≤ 1 is due to a bad LMMSE hybrid channel estimation. Indeed, LMMSE method

requires a correctly sized covariance matrix, i.e. the rank of the covariance matrix must be
equal to the length of the channel path delay, according to [7]. In the case β

(G)
max/β

(H)
max ≤ 1,

the length of the hybrid channel K = H + G is equal to that of the physical channel H, so
the rank of the covariance matrix RG is lower than the length of the hybrid channel. In these
conditions, the LMMSE method does not perform an efficient hybrid channel estimation, and
so the channel H can not be efficiently estimated.

For β
(G)
max/β

(H)
max ≥ 1, the BER does not reach any error floor for the considered Eb/N0

values, according to an efficient channel estimation. H being unknown, RG is used to perform
the estimation, and the rank of RG is equal to the length of the artificial channel G. In the
case β

(G)
max/β

(H)
max ≥ 1, the condition on the rank of the covariance matrix RG equal to the

length of the hybrid channel is respected. Indeed, the length of the hybrid channel K = H+G
is equal to that of the artificial channel G. K is then well estimated with LMMSE method
and the channel estimation is efficiently performed with ACA-LMMSE. One can also observe
that for β

(G)
max ∈ [β(H)

max, TCP ] (i.e. β
(G)
max/β

(H)
max ∈ [1, TCP /β

(H)
max]), the BER reaches the same

value for a given Eb/N0. Assuming β
(H)
max to be unknown, it is then shown that β

(G)
max can be

chosen equal to TCP without degradation of performance. It justifies the first a priori choice
β
(G)
max = TCP .

3.3.3 Discussion on the Choice of the Number of Paths of the Artificial
Channel

In this section, the effect of the number of paths D of the artificial channel is studied,
assuming that the parameters βmax and Γd(β) are chosen according to the previous recom-
mendations. By hypothesis, the number of paths L of the physical channel is unknown, thus,
LK is also unknown in (3.6). The LMMSE estimation of the hybrid channel K is then perfor-
med by means of the covariance matrix RG defined by (3.12). Recalling that LK ≤ L + D,
the larger D compared to L, the less the error between D and LK . The physical consequence
is that the gain of the channel becomes negligible in comparison to the one of the added filter,
which justifies the masking effect.

On one hand, the channel is characterized by the non-null eigenvalues of its covariance
matrix [114]. On the other hand, as the channel covariance matrices are Hermitian, comparing
the eigenvalues of two covariance matrices is equivalent to comparing the matrices themselves
[115]. In order to justify the approximation RK ≈ RG, the eigenvalues of the matrices RK

and RG are compared. For m = 0, ..., M − 1 we define λ
(K)
m and λ

(G)
m the eigenvalues of RK

and RG respectively. Figure 3.4 depicts the normalized error noted εm as a function of m and
defined by

εm =
|λ(K)

m − λ
(G)
m |

max
m

(λ(G)m )
, (3.13)

where max
m

(λ(G)m ) is the largest eigenvalue of the matrix RG. Four curves of error are conside-
red, corresponding to D = 5, 10, 20 and 40 paths. The eigenvalues are stored in the ascending
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order λ
(G)
m ≤ λ

(G)
m+1 and λ

(K)
m ≤ λ

(K)
m+1.
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Figure 3.4 – Normalized error εm between the eigenvalues of RK and RG.

Two parts are noticeable in Fig. 3.4. For m = 0 to 93, the error εm is null and for
m = 94 to 147, the error εm is non-null. This is because the channel gain is contained in the
last eigenvalues, tallying with the length of the impulse response (IR). Fig. 3.4 also highlights
that the larger the number of paths D, the lower the normalized error εm. Indeed, for D = 40,
the error εm is less than 0.05 for m = 0, ..., M − 1. From Fig. 3.4, we can fix an arbitrary
value D equal to 1/3 or 1/2 of the upper limit τ

(G)
max/τs. Indeed, for sufficiently large D, the

matrices RG and RK have their eigenvalues almost equal, i.e. for m = 0, ..., M − 1 we have
λ
(G)
m ≈ λ

(K)
m . It then justifies the approximation RG ≈ RK .

3.3.4 Discussion on the Choice of the Multipath Intensity Profile

In this section, the effects of the multipath intensity profile Γd(β) on the estimation effi-
ciency is studied. The parameters τ

(G)
max and D are chosen according to the previous recom-

mendations. As already stated, since K is unknown, the function ΓlK (β) of the hybrid channel
is approximated by the one of the artificial channel G, which is chosen by the user. Since a
decreasing exponential profile is an usual model for the gain of the multipath channels, it is
logic to suppose that it is the best profile for Γd(β) to guarantee the masking effect.

Although all integrable functions can be used in (3.12), three shapes are simulated for the
multipath intensity profile: a decreasing exponential profile (d.e.p.) (noted Γdep(β)), a constant
profile (c.p.) (noted Γcp(β)) and a growing exponential profile (g.e.p.) (noted Γgep(β)), and
whose shapes are depicted in Fig. 3.5.

Γdep(β) =







Ce
−β

βmax if β ∈ [0, βmax]

0, else,
(3.14)

Γcp(β) =

{

C if β ∈ [0, βmax]

0, else,
(3.15)
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ββmax
0

Γdep(β)

(a) Decreasing exponential pro-
file

ββmax
0

Γcp(β)

(b) Constant profile

ββmax
0

Γgep(β)

(c) Growing exponential profile

Figure 3.5 – Three profiles for Γ(β).

Γgep(β) =







Ce
β

βmax if β ∈ [0, βmax]

0, else,
(3.16)

where C is a normalization constant. Here, since the channel is not normalized, C = 1.
Inserting (3.14) to (3.16) into (3.12) yields

(RG)
dep
u,v = DC.

1− e−2jπ
(u−v)

M
βmaxe−1

1 + 2jπ (u−v)
M βmax

, (3.17)

(RG)
cp
u,v = DC.

1− e−2jπ
(u−v)

M
βmax

2jπ (u−v)
M βmax

, (3.18)

(RG)
gep
u,v = DC.

1− e−2jπ
(u−v)

M
βmax+1

1− 2jπ (u−v)
M βmax

. (3.19)

It is noticeable that the decreasing exponential profile (3.17) has the same the expression
than (1.17), but in the discrete formalism.

Fig. 3.6 compares the BER curves versus Eb/N0 of the theoretical LMMSE estimation
(with the known matrix RH) and the ACA-LMMSE using the three proposed multipath in-
tensity profiles. To get a perfect control of RG, we fix β

(G)
maxτs = TCP and D = 20 paths.

Simulations show that the proposed solution is really close to the LMMSE estimation perfor-
mance. There is only a 2 dB Eb/N0 loss between ACA-LMMSE and the LMMSE estimator.
Furthermore, in the ACA-LMMSE case, the statistics of the physical channel are unknown,
contrary to the theoretical LMMSE estimator. This 2 dB loss comes from the approximation
of the multipath intensity profile of the hybrid channel K by G. In addition, Fig. 3.6 shows
that the shape of the intensity profile do not have a significant impact on the BER perfor-
mance. Indeed, the decreasing exponential profile leads to only slightly better results than
the other two profiles. This is due to the shape of the considered channel, which has also a
decreasing intensity profile. In that case, the filter G better matches with the physical channel.
Nevertheless, with a sufficiently large D value, G acts like a mask for H. The ACA-LMMSE
method then leads to good estimations for any choice of Γd(β). Thus, the choice of the shape
of Γd(β) is not a necessary condition for the feasibility of the proposed method.
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Figure 3.6 – BER of the ACA-LMMSE estimator for three different intensity profiles.

3.4 Simulations Results

3.4.1 Mean Square Error of ACA-LMMSE

The performance of the ACA-LMMSE estimator is first evaluated by means of the mi-
nimum means square error MMSE, estimated by the value E{ 1

M

∑M−1
m=0 |Hm − Ĥm|2}. The

simulations parameters remain the same as in the previous section. Two pilot distributions are
considered: a preamble scheme (noted PB), according to the analytical developments given in
this chapter, and a distribution in staggered row (noted SP), according to the DRM standard.
In Figs. 3.7 and 3.8, the ACA-LMMSE estimator is compared with the usual LMMSE and
LS ones. In the SP case, LS is combined with the polynomial interpolation in order to get
the estimation over the entire time and frequency lattice. According to robustness C (see [1],
Appendix L), the pilot tones are placed every 4 carriers along the frequency axis and 1 pi-
lot every 2 carriers along the time axis. The filter G has the following parameters: D = 15,
τ
(G)
max = TCP = 5.33 ms and the delay profile follows a decreasing exponential profile. This
configuration is coherent regarding the previous requirements.

For both PB and SP cases and whatever the SNR, the MMSE of the ACA-LMMSE estima-
tor reaches a value 2 dB higher than the theoretical LMMSE. The ACA-LMMSE performance
is slightly degraded compared to LMMSE, as the proposed estimator uses the covariance ma-
trix RG which is naturally different from RH . This phenomenon can be explained by compa-
ring the theoretical expressions of the MMSE of the usual LMMSE (2.26) and ACA-LMMSE
(3.10). Indeed, MMSE is a growing function with respect to the value L (or LK in (3.10)).
Yet, LK is set in order to get LK ≥ L, so MMSEACA ≥ MMSELMMSE . Now comparing
ACA-LMMSE with LS, it clearly outperforms LS as it offers an MMSE gain around 10 dB.
This result is valid for both SP and PB distributions. Note then that the differences between
the SP and PB cases are due to the interpolation technique that inevitably degrades the
estimation quality.
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Figure 3.7 – Evolution of MMSE of ACA-LMMSE compared to LS and LMMSE as function
of P

σ2 for PB distribution.

3.4.2 Comparison with other methods

For all the BER curves in this chapter, no channel encoding is considered. Fig. 3.9 displays
the BER curves versus Eb/N0 of the ACA-LMMSE estimator, compared to LS, LMMSE and
the perfect estimation. Two cases are considered for the LMMSE estimation: one performed
with the exact channel covariance matrix RH = HnHH

n on one hand, and one performed
with the estimated one R̃H (3.11) on the other hand. LS is performed with a polynomial
interpolation. For all the Eb/N0 values, the BER is obtained by making a mean on 106 bits.

We observe on Fig. 3.9, for Eb/N0 ≥ 15 dB, that both LMMSE and ACA-LMMSE curves
converge to zero while the LS curve reaches an error floor. This error floor, equal to 4.10−2,
is due to the interpolation and will be characterized in Chapter 5. According to [7], when
performed with RH , LMMSE is optimal and almost reaches the perfect estimation. ACA-
LMMSE and usual LMMSE performed with R̃H almost reach the same performance, the
Eb/N0 gap between the two curves being less than 0.2 dB. Furthermore, the error between
these estimations and the perfect one is less than 2 dB. In both cases, the gap is due to the
approximation of the covariance matrix R̃H instead of RH , or RG ≈ RK . We conclude that
the LMMSE estimation performed with R̃H and ACA-LMMSE allows to avoid the knowledge
of H, but for similar performance, ACA-LMMSE is N times less complex than LMMSE, as
shown in Section 3.2.4.

3.4.3 Suitability of ACA-LMMSE in general WSSUS Channel Models

In order to show that the ACA-LMMSE is suitable to all WSSUS-based models, the
physical channels used to simulate Fig. 3.10 have been randomly generated. To this end L

and τ
(H)
max are random variables and Γl(β) is a random function. More precisely, for each

simulation run, the random parameters L, τ
(H)
max and Γl(β) follow these statistics:

– L is evenly distributed on J2, 14K.
– τ

(H)
max is also uniformly distributed between 1 and 4 ms.
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Figure 3.8 – Evolution of MMSE of ACA-LMMSE compared to LS and LMMSE as function
of P

σ2 for SP distribution.

– Γl(β) follows the d.e.p., the g.e.p. or the c.p. with a probability equal to 1/3.

The BER is averaged over 30 simulation runs of 70 frames, which is equivalent to 4× 106
bits. At each run, all the parameters change according to the previous recommendations.
Fig. 3.10 compares the BER performance of the LMMSE and ACA-LMMSE estimations
for these random physical channels. It is considered a theoretical LMMSE, in which the
channel parameters at each run are supposed to be known. The parameters of the artificial
channel for the ACA-LMMSE estimation are the same as mentioned previously: D = 20
paths, τ

(G)
max = TCP = 5.33 ms and Γd(β) follows a decreasing exponential profile.

Fig. 3.10 shows that the Eb/N0 gap between the BER curves of LMMSE and ACA-LMMSE
is less than 0.5 dB. Furthermore, the difference of the BER between the ACA-LMMSE curve
and the perfect estimation one is about 1 dB. These results match with the ones obtained
with the US Consortium channel. It shows that the proposed method can be adapted for all
channels based on the WSSUS model, and has a performance close to the theoretical LMMSE.

3.4.4 Reduction of Implementation Complexity

In this section, it is shown that a practical application of the ACA-LMMSE method can
be simply performed by means of a constant filter G. Indeed, we noted in Section 3.2.2 that
the coefficient gd,n have to be generated and stored in a memory. By following the steps to
generate the coefficients described in 1.4, the three stages FFT, filtering and IFFT have a
cumulative complexity equal to N(log2(N) + 1) for each coefficient gd,n. In order to avoid
these calculations, it is proposed to consider a filter G with constant coefficients such as its
impulse response is

g(τ) =
D−1
∑

d=0

gdδ(τ − βdτs). (3.20)
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Figure 3.9 – BER of ACA-LMMSE compared to LMMSE and LS for US Consortium
Channel.

Such a filter can be simply designed with only delay lines, as described in Fig. 3.11 . We
notice that the coefficients gd are fixed whatever the value of n. It then makes the method
applicable with a low cost of implementation. In order to keep the masking effect of G on
H on one hand, and the same covariance matrix (3.17) as previously on the other hand,
the parameters τ

(G)
max and D are fixed such as τ

(G)
max = TCP , D = 20 paths. In order to

approach the multipath intensity profile Γd(τ), we impose that the coefficient gains |gd|2 follow
a decreasing exponential profile. The D paths are equally spaced on the interval [0, τ

(G)
max], with

g0 corresponding to τ = 0 and gD−1 corresponding to τ = τ
(G)
max = TCP . The phase φ(gd) of

each path coefficient is randomly chosen, following a uniformly distribution on [0, 2π].
Fig. 3.12 compares the BER performance of the theoretical LMMSE and the ACA-LMMSE

estimation when performed with the fixed filter depicted in (3.20) and Fig. 3.11. In order to
generalize the method, the same WSSUS-based model with the varying parameters as in
Section 3.4.3 is used.

Figs. 3.10 and 3.12 are quite similar, i.e. the difference between the BER curves of LMMSE
and ACA-LMMSE is less than 0.5 dB. This result shows that the performance of the method
is the same with a time-varying and a static filter G. This method can then be performed in
practice with a low cost of implementation.

3.5 Application to Intersymbol Interference Cancellation

In this section, let us now assume a very disrupted transmission, in which the channel
is supposed to be fast varying and its delay spread is longer than the cyclic prefix. In these
conditions, intersymbol interference (ISI) and intercarrier interference (ICI) occur. The trans-
mission model under these constraints will be detailed in Section 3.5.1.

The literature proposes a wide panel of methods for the ISI and ICI cancellation. The two
main methods for the interferences mitigation is the equalization and the cancellation. The
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Figure 3.10 – BER curve of the ACA-LMMSE estimator compared to the LMMSE for a
general channel model.

g0

τs

g1

τs

gD−1

input

output

Figure 3.11 – Diagram of the constant filter G simply represented by delay lines and constant
coefficients.

first one rather acts on the received signal whereas the second one rather acts on the trans-
mission channel. For instance, it is shown in [116,117] that the turbo-equalizer suppresses the
interferences and even allows the BER to reach the theoretical lowest bound. Its principle
is to iteratively estimate the data sn by means of a succession of steps: equalization, desin-
terleaving, symbol-to-binary conversion, channel decoding, binary-to-symbol conversion and
interleaver. At each iteration, the equalizer is updated according to the mean square error
E{|s(e)n − sn|2}, where s

(e)
n is the output of the equalizer. Although the turbo-equalizer allows

the BER to reach the lowest bound, this method is complex, as each stage requires several
operations. Furthermore, the convergence is not ensured in the presence of highly frequency
selective channels.

The usual technique for both ISI and ICI cancellation is called residual ISI cancellation
(RISIC) [36]. This time-domain cancellation (TDC) is the iterative version of the previously
proposed multitone echo canceller algorithm (MTEC) [118]. The RISIC algorithm, whose
principle is detailed afterward, allows to suppress ISI and mitigates ICI by making the trans-
mission channel matrix cyclic. However, RISIC is efficient if the channel is supposed to be
static or quasi static, since its performance is degraded in varying channels. Indeed, the chan-
nel is estimated on a preamble and is assumed to be invariant over several OFDM symbols.
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Figure 3.12 – BER curve versus Eb/N0 of the ACA-LMMSE when performed with a constant
filter. Comparison to the theoretical LMMSE.

In order to make the RISIC algorithm suitable for time varying channels, it is proposed
to combine it with the ACA-LMMSE estimator. Indeed, the ACA-LMMSE performance is
close to the optimal one, and this method is particularly adapted to varying channels. In the
following, the model of the ISI channel is derived from the model developed in Chapter 1.
The RISIC algorithm is presented and its combination with ACA-LMMSE is proposed.

3.5.1 Model of ISI Channel

By analogy with the transmission model described from (1.41) to (1.44) in Chapter 1, we
derive the model in which the channel response is longer than the CP, that is L > MCP . The
CP removal corresponds to the removal of the MCP rows in (1.41). Since L > MCP , it yields

un = hnsn + hISI
n−1sn−1 +wn, (3.21)

where hn is the M ×M channel matrix

hn =


























h0,n 0 · · · 0 hMCP−1,n · · · h1,n

h1,n h0,n 0 0
. . .

. . .
...

. . . hL−1,n

...
. . .

. . .
...

. . .
. . .

. . . hL−1,n

hL−1,n
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

...

0 · · · hL−1,n
. . . h1,n h0,n


























, (3.22)

65



66 Chapter 3. Artificial Channel Aided-LMMSE Channel Estimation

and hISI
n−1 is the M ×M contribution of the n− 1th time slot such as

hISI
n−1 =

















0 · · · 0 hL−1,n−1 · · · hMCP ,n−1
...

. . . 0
. . .

...
...

. . . hL−1,n−1

0 · · · . . . · · · 0
...

. . .
...

0 · · · · · · · · · 0

















. (3.23)

We notice in the top left corner of (3.22) that the channel matrix is not cyclic, which causes
intercarrier interferences (ICI). We note h

n
the complementary matrix of hn such as hn + h

n
is the cyclic matrix of the channel. The second term in (3.21) is the ISI contribution, whose
channel matrix is hISI

n−1. The subscript n is used in order to highlight the fact that the channel
is time varying. The received carriers Um, m = 0, .., M − 1 are obtained by applying an
M -point FFT to (3.21), such as

Un = FFT{un} = FFT{hnsn}+ FFT{hISI
n−1sn−1}+ FFT{wn}

= Uu
n +UICI

n +UISI
n +Wn. (3.24)

The exponent u in the first term means useful. We define U(.) the Heaviside step function as

U(x) =
{

0, if x < 0

1, if x ≥ 0
. (3.25)

For all 0 ≤ m ≤ M − 1, the samples of the three vectors Uu
n, UICI

n and UISI
n in (3.24) can

be expressed as it is made in [36,119,120]:

Uu
m,n = Cm,n

[
L−1∑

l=0

hl,n exp
(−2jπlm

M

)

− 1
M

L−1∑

l=MCP

M−1∑

i=0

hl,n exp
(
2jπm(M − l)

M

)

U(l − i−MCP )



 , (3.26)

U ICI
m,n = − 1

M

L−1∑

l=MCP

hl,n

M−1∑

i=0

M−1∑

ν=0
ν 6=m

Cν,n exp
(

2jπ
ν(M − l + i)− im

M

)

U(l − i−MCP ), (3.27)

U ISI
m,n−1 =

1
M

L−1∑

l=MCP

hl,n−1
M−1∑

i=0

M−1∑

ν=0

Cν,n−1 exp
(

2jπ
ν(M ′ − l + i)− im

M

)

.U(l − i−MCP ),

(3.28)
with M ′ = M +MCP − 1. The RISIC algorithm, presented afterward, allows to mitigate the
two sources of interferences given in (3.27) and (3.28).
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3.5.2 RISIC Algorithm

The principle of the RISIC algorithm holds in two main steps: the ISI hISI
n−1sn−1 is can-

celled, and the ICI is cancelled by means of the cyclic reconstruction of the channel matrix.
The steps are summarized as follows, assuming that the nth OFDM symbol is received. The
iterations are noted by means of the exponent (I).

1. An estimation of the channel ĥ is performed only once thanks to a preamble, and valid

for the transmission duration. The estimated matrices ĥ
ISI

and ĥ
n
are deduced from ĥ.

2. Thanks to the estimation of the previous symbol ŝ
(I−1)
n−1 , the ISI is mitigated thanks to

u(I)n − ĥ
ISI

ŝ
(I−1)
n−1 . (3.29)

3. An estimation of the current symbol ŝ(I)n is achieved,

4. The cyclic reconstruction is performed such as u
(I)
n − ĥ

ISI
ŝ
(I−1)
n−1 + ĥ

n
ŝ(I)n .

The two last steps are iteratively performed, with I ← I + 1. It is shown in [36] that this
algorithm has a good performance. However, it can not be used in the case of time varying
channels, as h varies. Nevertheless, the next section proposes to apply ACA-LMMSE with
RISIC in the case of fast-varying channels.

3.5.3 ACA-LMMSE with RISIC Algorithm

Let us now consider a time-varying channel. In this context, an adapted pilot pattern
must be chosen (see Chapter 2, Section 2.2). According to the DRM/DRM+ standard, let us
assume pilot tones in staggered row in the OFDM frame. It has been shown that the ACA-
LMMSE is a good estimator, and is particularly adapted in the time-varying channel case,
since its complexity does not increase in this context. The channel used for the simulations
is based on the US Consortium model, whose parameters are given in Table 1.1. The signal
is the same as the one used in Section 3.3. In order to simulate a transmission with ISI, we
add a fifth path whose delay is up to TCP = 5.33 ms. Its variance E{h5,n}/2 is set equal to
0.1. Being limited by the number of samples of the signal, we suppose that this delay noted
τ
(H)
max is strictly lower than Tu/2. Thus we define 5.33 < τmax ≤ 6 ms.
In order to apply ACA-LMMSE by supposing that the channel parameters are a priori

unknown, the ones of the artificial channel G are set such as:
– D = 15 paths,
– Γl(β) follows a decreasing exponential profile,
– τ

(G)
max = 7 ms. For simulations purposes, this value is limited by Tu/2 = 7.33 ms.

The RISIC algorithm combined with the ACA-LMMSE channel estimation is summarized as
follows:

1. Perform ISI cancellation such as

ũ(0)n = un − ĥ
ISI

n−1ŝn−1. (3.30)

For n = 0, it is assumed that s0 is the first transmitted OFDM symbol, i.e. no ISI
occurs. In that case, the algorithm is simply a ACA-LMMSE estimation. Thus, (3.30)
becomes valid from n = 1.

67



68 Chapter 3. Artificial Channel Aided-LMMSE Channel Estimation

2. Obtain the symbol Ũ
(0)
n in frequency domain by applying an M -point DFT to ũ

(0)
n .

Achieve the ACA-LMMSE channel estimation Ĥ
(0)

n as done in (3.5) and (3.7). A simple
one-tap equalization is performed and a decision is made to get the data Ĉ

(0)
m,n, and

after the IDFT, ŝ(0)n is obtained. Furthermore, from Ĥ
(0)

n , estimate the channel impulse

response [ĥ(0)0,n, ĥ
(0)
1,n, ..., ĥ

(0)
L−1,n, 0, ..., 0]T and deduce the estimated matrix ĥ

(0)

n
.

3. From the iteration I = 1, perform the cyclic reconstruction by applying

ũ(I)n = ũ(0)n + ĥ
(I−1)
n

ŝ(I−1)n . (3.31)

4. Obtain the symbol Ũ
(I)
n in frequency domain by applying an M -point DFT to ũ

(I)
n .

Perform the ACA-LMMSE channel estimation Ĥ
(I)

n and deduce ĥ
(I)

n
. The equalization

and decision are made to get Ĉ
(I)
m,n and ŝ(I)n .

5. Go back to step 3 and perform steps 3 and 4, with I ← I − 1.

6. End of the algorithm.

In order to complete the RISIC algorithm as described in [36], we propose to add a stopping
criterion. Thus, we note er the threshold such as

if ||ũ(I)n − ũ(I−1)n ||F < er, (3.32)

then the algorithm stops. Finally, the proposed algorithm is summed up by Algorithm 1.

begin

Initialization: er, ;
I ← 0 ;
if n = 0 then

Estimate Ĥ
(0)

0

else
Perform ISI cancellation

ũ(0)n = un − ĥ
ISI

n−1ŝn−1. (3.33)

I ← 1 ;

while ||ũ(I)n − ũ
(I−1)
n ||F > er do

Perform the cyclic reconstruction by applying

ũ(I)n = ũ(0)n + ĥ
(I−1)
n

ŝ(I−1)n . (3.34)

Obtain the symbol Ũ
(I)
n ;

Perform the ACA-LMMSE channel estimation Ĥ
(I)

n and deduce ĥ
(I)

n
;

Obtain Ĉ
(I)
m,n and ŝ(I)n ;

I ← I + 1 ;
end

end

end

Algorithm 1: RISIC algorithm combined with ACA-LMMSE channel estimation.
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3.5.4 Simulations Results for RISIC combined with ACA-LMMSE

Fig. 3.13 shows the impulse responses of the physical and the artificial channels versus
τ/Ts. It illustrates the principle of the ACA-LMMSE applied to the RISIC algorithm. The
simulations are made using the aforementioned parameters.
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Figure 3.13 – Impulse responses of the physical channel hn(τ) and the artificial channel
gn(τ).

Fig. 3.13 indeed shows that the fifth path of hn(τ) has a delay higher than TCP , which
causes ISI and ICI. Moreover, the mask effect of H by G is observable through D > L and
τ
(G)
max > τ

(H)
max. This figure is a snapshot of the IR of H and G at a given time. Nevertheless, all

the paths are time-varying, according to the model.

Fig. 3.14 depicts the BER curves of the proposed method versus Eb/N0, for different values
of the iteration number. They are compared to the curve of the transmission without ACA-
LMMSE and RISIC. In that case, only the ACA-LMMSE channel estimation is performed at
the receiver. No channel code is used in the simulations.

When the proposed method is not used, the BER curve reaches an error floor equal to 0.1
for high values of Eb/N0. This high error rate is due to the interferences. Indeed, we observe
that the iterative mitigation of the ISI and ICI by means of the RISIC algorithm allows to
reduce a lot the BER limit. Thus, for I = 4, the limit is equal to 3× 10−3. The use of RISIC
allows to divide the bit errors rate by a value greater than 30. The use of a channel code can
then allows to reduce more the BER and to get a good transmission quality.

Fig. 3.15 displays the value ||ũ(I)n − ũ
(I−1)
n ||F versus the iteration number from I = 1 to

I = 4. The curve of ||ũ(I)n − ũ
(I−1)
n ||F decreases and converges to zero. Thus, the threshold

er can be chosen as small as possible, according to the expected precision. It validates the
proposed possibility of using a stopping criterion to complete the RISIC algorithm [36], in
addition to the combination with ACA-LMMSE.
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Figure 3.14 – BER versus Eb/N0 of ACA-LMMSE and RISIC method.
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3.6 Conclusion

In this chapter, a channel estimation method called ACA-LMMSE has been presen-
ted [34, 35]. Its principle is to mask the impulse response of the physical channel by a filter
acting like an artificial channel, in order to apply the LMMSE estimator to this hybrid chan-
nel. The artificial channel being known, it is subtracted to the hybrid channel estimation in
order to keep only the physical channel estimation. This method has two advantages, com-
pared to the usual LMMSE. First, it allows to perform an efficient estimation without any
knowledge of the channel covariance matrix, nor its estimation. Indeed, the hybrid channel
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LMMSE estimation can be performed by using the sole statistics of the artificial filter. Se-
cond, in a mobile environment, the complexity is reduced. Indeed, due to the variations of the
channel, the covariance matrix must be updated and a matrix inversion is regularly required,
which is very complex. With ACA-LMMSE, the channel covariance matrix and the matrix
inversion are computed only once during the transmission. It has been shown that the prac-
tical implementation of the method can be performed by means of a simple delay line filter.
Furthermore, since the estimator is independent of the channel variations, it can be used for
the implementation of methods as RISIC which supposed quasi static channel. In this chap-
ter, an ISI and ICI cancellation method is proposed. It is based on the RISIC algorithm [36],
which is combined with ACA-LMMSE to make it valid in very time selective channels. In the
next chapter, an other MMSE based method is presented. It differs from ACA-LMMSE in
the sense that the channel covariance matrix and the noise level are supposed to be unknown,
and are estimated.

71



72 Chapter 3. Artificial Channel Aided-LMMSE Channel Estimation

72



Chapter 4

MMSE-based Joint Iterative SNR
and Channel Estimation

4.1 Introduction

In Chapter 3, the ACA-LMMSE channel estimation method has been presented. It almost
reaches the performance of LMMSE, and does not require the a priori knowledge of the channel
covariance matrix. However, the noise level was supposed to be known at the receiver side.
In practice, the noise variance is obviously unknown and must be estimated. In this chapter,
a MMSE-based method is proposed for the joint estimation of the noise and the channel.

In addition to the multipath channel, the additive noise is another source of disturbance
in wireless communications. Most of the time, the noise level is characterized by comparison
with the signal power by means of the signal to noise ratio (SNR). The knowledge of the noise
power is very useful in order to design the transmitter and/or the receiver. For instance, at
the transmitter side, the knowledge of the SNR allows to perform adaptive modulations. As
summarized in [121], the principle is to adjust the constellation in terms of kind and size, ac-
cording to the SNR level. At the receiver side, the noise level is used in several algorithm, such
as turbo-decoding [122], or LMMSE channel estimation [7, 15]. For this particular example,
it is often assumed that the noise level is a priori known, or well estimated thanks to an
existing method of the literature. We also supposed this for the ACA-LMMSE estimation
presented in the last chapter. In this chapter, a method for the estimation of both SNR and
channel estimation is proposed. The SNR is estimated thanks to the MMSE criterion that
requires an estimation of the frequency selective channel, as it is presented afterward. Since
the noise variance is required for the LMMSE channel estimation (see Chapters 2 and 3),
we then notice that one estimation may be used for the other one. Thus, it seems natural to
propose an iterative algorithm.

First, a simple case will be presented, in which the channel covariance matrix is supposed to
be known. The solution will then be extended to a more realistic case, in which the covariance
matrix has to be estimated. Finally, an application of this algorithm to the free band detection
will be proposed.
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4.2 SNR Estimation: State of the Art

The SNR estimation methods are all based on the same elementary scheme:

1. The noise variance estimation σ̂2 is first performed,

2. An estimation of the transmitted signal power P̂s is achieved,

3. The SNR, noted ρ is finally obtained by ρ̂ = P̂s/σ̂2.

Alternatively, the steps 2. and 3. are sometimes replaced by the following processing:
2. The second order-moment of the received signal is estimated M̂2 = P̂s + σ̂2,
3. the SNR is estimated by ρ̂ = M̂2/σ̂2 − 1.
The main difference between the techniques of the literature lies in the way to estimate

σ2. A wide range of usual methods are described in [123–125]. Among them, the second-
and forth-order moment (M2M4) estimator, is firstly mentioned in [126]. Its principle is to
estimate the second order moment of the received signal Um M2 = E{UmU∗m} = Ps + σ2 on
one hand, and the forth order moment M4 = E{(UmU∗m)

2} = P 2
s + 4Psσ2 + 2σ4 on the other

hand. Then, the signal and the noise powers estimations are deduced by

P̂s =
√

2M2
2 −M4 (4.1)

σ̂2 = M2 −
√

2M2
2 −M4. (4.2)

In [125], an alternative M2M4 method is proposed, using a new definition of the forth order
moment M ′

4 = E{(Re(Um)2 + Im(Um)2)2}, where Re(.) and Im(.) denote the real part and
the imaginary part of a complex number, respectively. The advantages of the M2M4 lie in
the facts that it does not require any channel estimation and that it has a low complexity.
However, its efficiency is degraded in the presence of frequency selective channels.

The maximum likelihood estimator (ML), whose developments are given in [19], suppose
the channel to be known, or requires a high complexity, as shown in Section 2.4.1.3. In order
to reduce the complexity of the ML, the expectation maximization (EM) algorithm given
in [96, 99] and summarized in 2.4.1.3 is adapted for the joint channel and noise estimation
in [127,128].

The minimum mean square error (MMSE) estimator, from which the method proposed
in this chapter is derived, also requires the estimation of the transmission channel. Thus, the
performance of the MMSE estimation depends on the channel estimation. References such
as [42, 123, 129] only derive a theoretical expression of the MMSE in which the channel is
supposed to be known, but the authors do not propose any practical solution to reach it.

These usual methods can be derived in the OFDM context, as it is done by the authors
of [42]. If, in addition, a frequency selective channel is considered, the literature proposes
two strategies for the SNR estimation. The first one uses the previously cited methods, and
requires a channel estimation. In the second one, the estimation of the channel frequency
response is avoided [40, 129]. In [129], the author proposes a method for a 2× 2 Multi Input
Multi Output (MIMO) configuration that features a two pilot-symbols preamble and assumes
that the channel coefficients are invariant over two consecutive carriers. Following a similar
scheme, [40] also proposes a preamble-based method featuring two pilot symbols for the
estimation of the noise variance. The received symbols in the preamble are then expressed
by Un = CnHn + Wn and Un+1 = Cn+1Hn+1 + W=1, where Cn+1Hn+1 is supposed to be
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equal to CnHn. Thus, the channel estimation is avoided because the noise variance is simply
estimated by

σ̂2 =
1
2

E{||Un −Un+1||2}. (4.3)

Although it is an efficient method, its main drawback is the loss of data rate due to the need of
a preamble composed of two pilots. This is especially the case if a preamble must be regularly
inserted, as in the case of time-varying channels. In [41], the SNR is estimated by means of
the properties of the channel covariance matrix. As presented in Chapter 1, the channel has a
length L. Thus, its covariance matrix has L non-null eigenvalues from which M2 is estimated
and M−L null eigenvalues from which σ2 is estimated. This method is limited by the channel
insufficient statistics, which degrades the estimation performance.

4.3 First Approach of the Method in a Simple Context

In this part, a theoretical approach of the algorithm is presented. In that case, the cova-
riance matrix of the channel is supposed to be known at the receiver. This work has been
published in [37]. Second, a more realistic approach, in which the channel covariance matrix is
estimated, is derived in Section 4.4. This case has been covered in detail in [38,39]. Third, in a
cognitive radio context, an application of this algorithm for free bands detection is presented
in Section 4.5.

4.3.1 System Model

4.3.1.1 Channel Model

In the following, and unlike the channel model of Chapter 3, let us here assume a quasi
static multipath channel. Thus, the pilots tones in the frame follow a block-type arrangement,
as depicted in Fig. 2.3 (a). In this section, the channel covariance matrix is considered to be
known at the receiver. Furthermore, two cases are taken into account:

– RH is the covariance matrix in the perfect case (called "case 1"), that is when computed
by means of (1.56), i.e. RH = HHH ,

– R̆H is the covariance matrix computed by means of the statistics of the channel (1.53):

(R̆H)u,v =
L−1∑

l=0

∫ τmax

0
Γl(τ)e

−2jπ
(u−v)

M
τ dτ.

This case is called "case 2". Fig. 4.1 displays the shape of a channel intensity profile,
simulated according to the Robustness C parameters (M = 148) and for a decreasing
intensity profile with τmax = 2.2 ms. We remind that the shape of Γ(τ) is also the one
following by the eigenvalues of the channel when taken in the decreasing order. In that
case, the M − L last eigenvalues of R̆H are null.

Without loss of generality, the pilots and the channel are normalized, i.e. for all pilot tones
m = 0, .., M − 1, P = CmC∗m = 1, and remembering that λm is an eigenvalue of the channel,
1

M

∑M−1
m=0 λm = 1.
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Figure 4.1 – Profile of the eigenvalues λm of the channel, with M = 148 and τmax = 2.2ms.

4.3.1.2 MMSE Noise Variance Estimation

The noise variance estimation, performed on a pilot symbol, is given by:

σ̂2 = E{|Um − CmĤm|2}
=

1

M
E{||U−CĤ||2F }. (4.4)

The two expressions in (4.4) are strctly equivalent, since the first line is the scalar version of
the estimator and the second one is its matrix expression. As it is assumed that P = 1, then
(4.4) can be rewritten as

σ̂2 =
1

M
E{||UC−1 − Ĥ||2F }

=
1

M
E{||ĤLS − Ĥ||2F }. (4.5)

In a more general case where P = α, we find σ̂2 from (4.5) by simply multiplying the right
part of the equality by α. From the same equation, we can affirm that the more accurate the
channel estimation (i.e. Ĥ becoming similar to H), the better the noise variance estimation.

4.3.2 Proposed Algorithm - Theoretical Case

4.3.2.1 Description of the Algorithm

Since the performance of the MMSE noise variance estimation in (4.5) requires an accurate
channel estimation, it is proposed in [37] to use the LMMSE estimator. At the same time, the
noise variance is required in this channel estimation (2.23). As the noise variance estimation
feeds the channel estimation and vice versa, an iterative technique allowing a joint estimation
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Ĥ
LS

Figure 4.2 – Block diagram of the proposed iterative algorithm.

of the noise variance and the channel frequency response is proposed. The principle of the
algorithm is depicted in Fig. 4.2.

The steps of the algorithm are given as follows and summarized by Algorithm 2. We note i
the iteration index. The algorithm can be performed with the matrix RH as with R̆H as well.
Moreover, it is assumed that a LS estimation of the channel is performed on the preamble.

1. Initialize the noise variance so that σ̂2(i=0) > 0. The inequality is strict because if the
initialization σ̂2(i=0) were equal to zero, the LMMSE channel estimation would be equi-
valent to the LS one. If LS channel estimation were chosen to perform noise variance
one in (4.5), it would lead to σ̂2(i=1) = 0. In this condition, the algorithm would enter
an endless loop. Furthermore, fix a stopping criterion eσ.
For i ≥ 1:

2. Perform an LMMSE estimation of the channel by using

Ĥ
LMMSE

(i) = RH(RH + σ̂2(i−1)I)
−1Ĥ

LS
. (4.6)

3. For i ≥ 1, perform the MMSE noise variance estimation σ̂2(i) with

σ̂2(i) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i) ||2}. (4.7)

4. While |σ̂2(i) − σ̂2(i−1)| > eσ, go back to step 3 with i ← i+ 1, otherwise go to step 6.

5. Estimate the SNR ρ̂ from the final noise variance estimation noted σ̂2(i0)
:

ρ̂ =
M̂2

σ̂2(i0)

− 1, (4.8)

where (i0) indicates the index of the last iteration.

6. End of the algorithm.

4.3.2.2 Convergence of the Algorithm

In this section, it is shown that the proposed algorithm converges, i.e. the noise variance

σ̂2(i) and the channel frequency response Ĥ
LMMSE

n(i) estimations converge. From (4.6), it is

obvious that if (σ̂2(i)) admits a limit, then Ĥ
LMMSE

(i) converges to a given channel estimation. In
the following, a scalar recursive expression of σ̂2(i) is derived, then the proof of the convergence
of this sequence is given.

a. Scalar Expression of the Sequence (σ̂2(i))
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begin

Initialization: eσ > 0, σ̂2(i=0) ;

i ← 1 ;
while |σ̂2(i) − σ̂2(i−1)| > eσ do

Perform an LMMSE channel estimation (4.6) ;
Perform the noise variance estimation (4.7) ;
i ← i+ 1 ;

end

Estimate the SNR ρ̂ (4.8) with σ̂2(i0)
;

end

Algorithm 2: MMSE-based joint estimation of channel and SNR, theoretical case.

In the following, the different mathematical formulations are based on the covariance
matrix RH . However, the developments remain valid with R̆H since it is also an Hermitian
matrix. Since P = 1, we have CCH = I, and then the development of (4.7) yields

σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2F }

=
1

M
E{||ĤLS −RH(RH + σ̂2(i)(CCH)−1)−1Ĥ

LS ||2F }

=
1

M
E{||ĤLS −RH(RH + σ̂2(i)I)

−1Ĥ
LS ||2F }. (4.9)

By noticing that RH = (RH + σ̂2(i)I)− σ̂2(i)I, the factorized form of (4.9) is obtained:

σ̂2(i+1) =
1

M
E{||(σ̂2(i)I(RH + σ̂2(i)I)

−1)Ĥ
LS ||2F }

=
1

M
tr

(

E{(σ̂2(i)(RH + σ̂2(i)I)
−1Ĥ

LS
)(σ̂2(i)I(RH + σ̂2(i)I)

−1Ĥ
LS
)H}

)

. (4.10)

The sole random variable remaining in (4.10) is Ĥ
LS
, so we get

σ̂2(i+1) =
1

M
tr

(

(σ̂2(i)(RH + σ̂2(i)I)
−1)E{(ĤLS

(Ĥ
LS
)H)}(σ̂2(i)I(RH + σ̂2(i)I)

−1)
)

=
1

M
tr

(

σ̂4(i)(RH + σ̂2(i)I)
−1(RH + σ2I)(RH + σ̂2(i)I)

−1
)

. (4.11)

Since RH is an Hermitian and positive semi-definite matrix, it can be diagonalized by means
of a unitary matrix Q [11,15]. Moreover, whatever α ∈ C, it obvious that the matrix RH +αI

has the same eigendecomposition basis as RH . One can deduce that RH +σ2I and RH + σ̂2(i)I
are diagonalizable in the same basis, and we note:

DH = QH(RH + σ2I)Q, and

DH(i) = QH(RH + σ̂2(i)I)Q, (4.12)
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where DH and DH(i) are diagonal matrices, whose elements are λm + σ2 and λm + σ̂2(i),
respectively. Consequently, (4.11) can be rewritten as follows:

σ̂2(i+1) =
1

M
tr

(

σ̂4(i)Q(DH(i))
−1(DH)(DH(i))

−1Q−1
)

. (4.13)

From (4.13), we obtain a recursive formulation of σ̂2(i+1):

σ̂2(i+1) =
σ̂4(i)
M

M−1∑

m=0

λm + σ2

(λm + σ̂2(i))
2
. (4.14)

From (4.14), we notice that the sequence (σ̂2(i+1)) is defined by a function ft such as, if we set
x = σ̂2(i), we have

ft(x) =
x2

M

M−1∑

m=0

λm + σ2

(λm + x)2
. (4.15)

It can be seen that ft is not defined for x = 0, because the minimum value of the eigenvalues
is zero. Thus, ft is defined whatever x ∈]0,+∞]. Furthermore, since σ2i=0 does not appear in
(4.14), the sequence is independent of the initialization value.

b. Proof of Convergence

The proof of the convergence of the sequence (σ̂2(i)) is based on the fixed-point theorem.
It is known that the sequence (σ̂2(i+1)) converges if the equation

ft(x) = x (4.16)

has at least one solution, this solution being one of the fixed point of ft. Yet, it is known
that ft has at least a fixed point on a closed interval [a, b] (a and b are defined afterward) if
ft([a, b]) ⊂ [a, b]. Moreover, the sequence (σ̂2(i)) converges to one of the fixed points of ft if it
is bounded and monotonous.

We first prove that ft([a, b]) ⊂ [a, b]. To this end, we remind that, as the channel has a
length L and its covariance matrix is positive semidefinite, its eigenvalues are positive or null
according to the value of m:

{

λm ≥ 0, if m = 0, .., L− 1

λm = 0, if m = L, .., M − 1
. (4.17)

From (4.15), we deduce the limits of ft:

lim
x→+∞

ft(x) =
1

M

M−1∑

m=0

λm + σ2 = M2, (4.18)

and

lim
x→0+

ft(x) =
1

M

M−1∑

m=L

σ2 =
M − L

M
σ2. (4.19)

As a consequence, (4.19) ensures the existence of a strictly positive value ǫ such as ǫ ∈
]0, M−L

M σ2] and that verifies ft(ǫ) ≥ ǫ. Furthermore, whatever x > 0 the second derivative of
ft, defined by
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f ′t(x) =
2

M

M−1∑

m=0

λm(λm + σ2)x

(λm + x)3
, (4.20)

is positive, so ft is a strictly growing function. From (4.18) and (4.19), we easily obtain that
ft([ǫ,+∞[) ⊂ [ǫ, M2]. In addition, as ft is a strictly growing function that is upper bounded
by M2, it justifies the following inclusion:

ft([ǫ, M2]) ⊂ [ǫ, M2], (4.21)

proving then that ft has at least one fixed point on the closed interval [ǫ, M2]. As it has been
previously shown that ft is strictly growing on the interval [ǫ,+∞[, the sequence (σ̂2(i)) is
consequently monotonous. From (4.18) and (4.19), the sequence (σ̂2(i)) is also lower bounded
by ǫ and upper bounded by M2. Finally, from the fixed-point theorem, (σ̂2(i)) converges to one
of the fixed point of ft. Fig. 4.3 displays the shape of ft for three values of σ2, and is compared
to y = x. The eigenvalues are the ones described by Fig. 4.1. Intuitively, it seems on Fig. 4.3
that ft has a unique fixed point, which is proportional to σ2. In the following section, a proof
of this is proposed.
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Figure 4.3 – Shape of ft(x) for three different values of σ2, comparison with y = x.

4.3.2.3 Uniqueness of the Solution - Proof by Contradiction

a. Polynomial Expression of the Problem to Solve

In this section, we study ft in order to prove the uniqueness of the fixed point. A proof
by contradiction is used to show the uniqueness of this solution. To this end, we define the
function gt by

gt(x) = ft(x)− x. (4.22)

Let us now assume that gt has at least two distinct solutions for the equation gt(x) = 0,
written down x1 and x2, both in [ǫ, M2]. x1 being different from x2, we can fix x2 > x1.
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Therefore, the equality gt(x2) = gt(x1) = 0 can be developed as

gt(x2) = gt(x1) = 0 (4.23)

⇔ ft(x2)− ft(x1)− (x2 − x1) = 0

⇔ x22
M

M−1∑

m=0

λm + σ2

(λm + x2)2
− x21

M

M−1∑

m=0

λm + σ2

(λm + x1)2
− (x2 − x1) = 0

⇔ 1

M

M−1∑

m=0

(λm + σ2)
(
x22(λm + x1)

2 − x21(λm + x2)
2
)

(λm + x2)2(λm + x1)2
− (x2 − x1) = 0

⇔ 1

M

M−1∑

m=0

(λm + σ2) (x2(λm + x1) + x1(λm + x2))λm(x2 − x1)

(λm + x2)2(λm + x1)2
− (x2 − x1) = 0.(4.24)

Due to x2 6= x1, (4.24) can be simplified to get

1

M

M−1∑

m=0

(λm + σ2)(x2(λm + x1) + x1(λm + x2))λm

(λm + x2)2(λm + x1)2
− 1 = 0

⇔ 1

M

∑M−1
m=0 (λm + σ2)(x2(λm + x1) + x1(λm + x2))λm

∏M−1
k=0
k 6=m

(λk + x2)
2(λk + x1)

2

∏M−1
m=0 (λm + x2)2(λm + x1)2

− 1 = 0, (4.25)

and the common denominator expression is obtained as

1

M

∑M−1
m=0 (λm + σ2)(x2(λm + x1) + x1(λm + x2))λm

∏M−1
k=0
k 6=m

(λk + x2)
2(λk + x1)

2

∏M−1
m=0 (λm + x2)2(λm + x1)2

− M
∏M−1

m=0 (λm + x2)
2(λm + x1)

2

M
∏M−1

m=0 (λm + x2)2(λm + x1)2
= 0. (4.26)

The solutions of (4.26) are the roots of its numerator, so we reduce the study to:

M−1∑

m=0

λm(λm + σ2)(x2(λm + x1) + x1(λm + x2))
M−1∏

k=0
k 6=m

(λk + x2)
2(λk + x1)

2

−M
M−1∏

m=0

(λm + x2)
2(λm + x1)

2 = 0

⇔
M−1∑

m=0

(λm(λm + σ2)(x2(λm + x1) + x1(λm + x2))− (λm + x2)
2(λm + x1)

2)

×
M−1∏

k=0
k 6=m

(λk + x2)
2(λk + x1)

2 = 0. (4.27)

In order to show that ft has a sole fixed point, it must be shown that the unique solution of
(4.23) is x1 = x2. Equivalently, we show that Eq. (4.27) has no solution, whatever the values
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of x1, x2, λm and σ2. To this end, since ∀m = 0, 1, ..., M − 1,
∏M−1

k=0
k 6=m

(λk + x2)
2(λk + x1)

2 is

strictly positive it is possible to reduce the study to the polynomial form P defined by

P (x1, x2, λm, σ2) = λm(λm+σ2)(x2(λm+x1)+x1(λm+x2))− (λm+x2)
2(λm+x1)

2. (4.28)

If it is proved that P (x1, x2, λm, σ2) has the same sign whatever m = 0, 1, ..., M − 1, then
(4.26) has no root. Thus, the only solution in (4.24) would be x2 = x1, which contradicts the
very first assumption x1 6= x2. In the following, the sign of the obtained polynomial is derived
according to the both possible natures of the channel covariance matrix (see Section 4.3.1.1).

b. Sign of the Polynomial Considering RH

Firstly, let us consider the case 1, i.e. the channel covariance matrix is RH = HHH . The
rank of this matrix is the one of the vector H, i.e. its rank is equal to one. As a consequence,
the M − 1 last eigenvalues λ1, ..., λM−1 of RH are null. In this case, for all m = 1, ..., M − 1,
the expression of the polynomial P (x1, x2, 0, σ2) is simplified as

P (x1, x2, 0, σ2) = −x22x
2
1. (4.29)

Since x1 and x2 are strictly positive, we deduce that whatever m = 1, ..., M−1, the polynomial
P (x1, x2, 0, σ2) is negative. For the non-null eigenvalue λ0, we use elementary physical consi-
derations to prove that the polynomial P (x1, x2, λ0, σ2) is also negative. Indeed, the channel
is normalized so that

1

M

M−1∑

m=0

λm =
λ0
M

= 1. (4.30)

Therefore, we have λ0 = M , and by reminding that M is the DFT size, we have M >> 1.
Thus, we can reasonably suppose that we consider a range of values of noise variance such as
σ2 << λ0. In such conditions, we get the equivalence P (x1, x2, λm, σ2) ∼ −λ40 = −M4. We
conclude that whatever m = 0, ..., M − 1, the polynomial P (x1, x2, λm, σ2) is negative. We
finally conclude that the only solution in (4.24) is x1 = x2, that is ft has a sole fixed point.

c. Sign of the Polynomial Considering R̆H

In the case 2, the channel covariance matrix R̆H is considered. The problem is slightly
more complex because R̆H has rank L. The M − L last eigenvalues are null, so we naturally
find again P (x1, x2, 0, σ2) = −x22x

2
1 for m = L, .., M − 1. For the L non-null eigenvalues

λ0, .., λL−1, the proof is based on an empirical observation. For the need of the proof, let us
consider the channel described by Fig. 4.1. It appears that one fixed point (x2 for instance)
of ft is roughly proportional to σ2, such as we can note x2 = ασ2. Since it is supposed
that x1 6= x2, and as x1 and x2 play the same role in 4.28, two scenarios can be considered:
x1 < x2 or x1 > x2. These two cases are shown on Fig. 4.4, which displays the polynomial
P (σ2) versus the SNR, for x2/x1 = 10 and x2/x1 = 0.1, and for a fixed value α equal to
0.9. Furthermore, P (σ2) is drawn for the lowest and the highest eigenvalues of R̆H , that is
λ0 = 10.1 and λL−1 = 3.71.

Fig. 4.4 (a) clearly shows that P (σ2) is strictly negative, whatever x2/x1 value, and for
the two different eigenvalues. It is reasonable to suppose that it is also valid whatever the
eigenvalue λm, m = 0, .., L − 1. Despite these empirical assumptions, we can conclude that
P (x1, x2, λm, σ2) < 0 for all m = 0, .., L − 1, and then the only solution is x1 = x2, which
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Figure 4.4 – Shapes of P (σ2) in a good and a bad scenario.

proves that the fixed point of ft is unique. It is nevertheless possible to find scenarios that
lead to the opposite observation. For instance, 4.4 (b) displays P (σ2) drawn with α = 0.09,
x2/x1 = 10 and λm = 3.71. In that scenario, it is possible to get P (x1, x2, λm, σ2) = 0, so it is
impossible to prove that the equality (4.27) is not valid. However, it is a very particular case,
in which x1 and x2 have very low values, which would correspond to a very bad noise variance
estimator. Thus, by supposing that the noise estimation is well performed, it naturally leads
to the fact that the algorithm converges to a unique solution.

4.3.2.4 Estimation of the Bias of the Noise Estimation

The bias of the noise variance estimation is now derived when the algorithm is performed
with the exact covariance matrix RH = HHH . The bias, noted B(σ̂2), is defined by

B(σ̂2) = σ̂2 − σ2. (4.31)

When the algorithm reaches its limit, i.e. i tends to infinity, we have σ̂2 = ft(σ̂
2). Remembering

that the channel covariance matrix RH has rank one and that λ0 = M , (4.31) is expressed
by

B(σ̂2) = ft(σ̂
2)− σ2

=
M − 1

M
σ2 +

σ̂4(λ0 + σ2)

M(λ0 + σ̂2)2

=
−σ2(M + σ̂2)2 + σ̂4(M + σ2)

M(M + σ̂2)2
. (4.32)

For a sufficiently large value of M , we can approximate the bias (4.32) by B(σ̂2) ≈ −σ2

M .
One can notice that the larger M , the more accurate the approximation. We will check the
accuracy of the approximation B(σ̂2) ≈ −σ2

M in the next section.
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4.3.3 Simulations Results - Theoretical Approach

The signal parameters used for the simulations are the ones given by Table 3.2 in Chapter
3. However, in this chapter, it is considered a block-type pilot arrangement. The channel is
based on the US Consortium model of the DRM/DRM+ standard [1], whose path gains are
normalized. The channel parameters are summed up in Table 4.1.

Table 4.1 – Table of parameters of the channel model.
Channel model

path 1 path 2 path 3 path 4
delay 0 ms 0.7 ms 1.5 ms 2.2 ms
gain 0.7448 0.5214 0.3724 0.1862

4.3.3.1 Convergence of the Noise Variance Estimation

Figs. 4.5 (a) and (b) display the noise variance estimations in cases 1 and 2 (for RH and
R̆H , respectively) versus the number of iterations, and compare it to the exact value of the
noise variance. The simulations are performed with ρ = 0 dB and ρ = 10 dB, in order to show
the validity of the method for any SNR values. The initialization value is first chosen to be
low σ̂2(i=0) = 0.1 on Fig. 4.5 (a), and larger σ̂2(i=0) = 2 on Fig. 4.5 (b). The curves are obtained
after 7000 simulation runs.
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Figure 4.5 – Noise variance estimation versus the number of iterations, in cases 1 and 2.

Fig. 4.5 shows the convergence of the noise variance estimation, whatever the SNR and the
initialization values. It validates that (σ2(i)) is monotonous, independent of the initialization
value and converges to a unique solution, close to the exact noise variance.

4.3.3.2 Speed of Convergence of the Algorithm

Fig. 4.6 depicts the absolute difference |σ̂2(i) − σ̂2(i−1)| versus the number of iterations
starting from i = 2, in cases 1 and 2. Simulations are performed with the parameters ρ = 10
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dB and the initialization value σ̂2(i=0) = 2. These curves allow characterizing the required
number of iterations to get an expected threshold value eσ.
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Figure 4.6 – Absolute difference between two consecutive noise variance estimations |σ2(i) −
σ2(i−1)|, for ρ = 10 dB and σ̂2(i=0) = 2.

The algorithm has a high speed convergence. Indeed, for instance, for a given threshold
eσ = 0.01, only two iterations are needed in case 1 and three iterations in case 2. Furthermore,
we notice in Fig. 4.6 that the value of |σ̂2(i)− σ̂2(i−1)| seems to be almost linear and converges to
zero. These results confirm the monotony and the high speed of convergence of the proposed
algorithm.

4.3.3.3 Bias of the Noise Variance Estimation

Fig. 4.7 displays the bias of the noise variance estimation B(σ̂2) = σ̂2−σ2 versus the FFT
size. We then go beyond the scope of the transmission context described in Table 3.2, since
the FFT size varies from M = 64 to M = 1024. Furthermore, B(σ̂2) is compared to −σ2

M in
order to validate the approximation B(σ̂2) ≈ −σ2

M . The curves are drawn for ρ = 10 dB, and
the estimated bias values are obtained after averaging out 1000 simulation runs.

We observe that the bias is non null whatever the FFT size. However, the bias has a
very low value: above −0.03 for M = 64 and until −0.0025 for M = 1024. Furthermore, Fig.
4.7 shows that the approximation B(σ̂2) ≈ −σ2

M is accurate for high values of M . Indeed,
the value of the error −σ2

M − B(σ̂2) is less than 0.025 for M = 64 and less than 0.002 for
M = 1024.

4.3.3.4 Comparison of SNR Estimation to Other Methods

Fig. 4.8 depicts the normalized mean square error (NMSE) of the SNR estimations as
a function of the SNR. The proposed algorithm in cases 1 and 2 is compared to Ren’s me-
thod [40], Xu’s method [41] and the usual M2M4 method. We remind that Ren’s method
requires a couple of pilot-symbols in the preamble in order to avoid the effect of the frequency
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Figure 4.7 – Bias of the estimation B(σ̂2) versus the FFT size, compared with −σ2

M .

selective channel. Xu’s method requires a single pilot-symbol preamble in order to compute
the covariance matrix of the channel. The M2M4 method directly computes the SNR estima-
tion thanks to the second moment-order M2 and the fourth moment-order M4 of the received
signal. For a 16-QAM in a Rayleigh fading channel, [42] gives the estimation of the SNR as

ρ̂ = (
√

M4 − 2M2
2 )/(0.8M

2
2 −

√

M4 − 2M2
2 ). (4.33)

To get Fig. 4.8, the initialization value is σ̂2(i=0) = 0.1 and the algorithm runs until i = 3.
The NMSE whose expression is NMSE = E{|ρ̂− ρ|2/ρ2}, is approximated by an average on
200000 samples.

−4 −2 0 2 4 6 8 10 12 14 16

10
−3

10
−2

10
−1

10
0

10
1

SNR (in dB)

N
M

S
E

 o
f 

th
e

 e
s
ti
m

a
te

d
 S

N
R

proposed method, case 1
proposed method, case 2
Ren’s method 
Xu’s method 
M

2
M

4

Figure 4.8 – NMSE of the SNR estimation of the proposed method compared to three
existing methods.
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The shapes of the curves of Ren’s and Xu’s estimation methods match with those in [40].
Furthermore, as mentioned in [42], the performance of the M2M4 method is degraded in
Rayleigh fading channels, which is also the case here. Then, the proposed method outperforms
the usual M2M4 for all SNR values. The theoretical case (case 1) has a lower NMSE than
Ren’s method (that outperforms Xu’s method), due to the use of a perfect channel covariance
matrix. In case 2, Ren’s method has a lower NMSE than the proposed algorithm, due to
the approximation of the covariance matrix, but Ren’s method requires twice more pilot
symbols. On the other hand, the proposed algorithm yields a globally lower NMSE than Xu’s
method, except for SNR values between 3 and 7 dB. Xu’s method as well as the proposed
one require only one pilot symbol, so the proposed algorithm is globally more precise for the
same useful bit rate. Furthermore, the proposed method also performs a channel estimation,
whose efficiency is studied in the next section.

4.3.3.5 Channel Estimation

Fig. 4.9 displays the BER of the proposed method versus the SNR over a relevant span
of its values (from 0 to 32 dB). Cases 1 and 2 are considered, and compared to the usual
least square and the perfect estimations. The initialization noise value is set like previously,
i.e. σ̂2(i=0) = 0.1. The BER curves are performed thanks to 2.5× 106 bits. A zoom is added in
order to display in a more precise way the BER curves that may appear as merged.
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Figure 4.9 – BER versus SNR for the proposed method compared with perfect estimation
and LS one.

Simulation in Fig. 4.9 show that the channel estimation converges. In case 1, the estimation
reaches its limit at the first iteration, which tallies with the convergence speed of the noise
variance estimation shown in Fig. 4.8. For a SNR value equal to 25 dB, the error of case 1
compared to the perfect estimation is less than 0.1 dB. For case 2, the channel estimation
reaches its limit at i = 3, which also tallies with the necessary iterations number to ensure
that (σ̂2(i)) converges. For a SNR value equal to 25 dB, the error in case 2 compared to
the perfect estimation is less than 0.5 dB. Furthermore, the proposed iterative method is
more efficient than the regular LS estimation. Indeed, for SNR=25 dB, the error of the LS
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88 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

estimation compared to the proposed method in case 2 is equal to 2.5 dB. Contrary to the
previous chapter, the LS estimation does not reach a BER limit. This is because a pilot
preamble arrangement is here used, so no interpolation is required.

4.4 Realistic Approach of the Joint estimation

In this section, a scenario in which the covariance matrix is a priori unknown is considered.
As a consequence, this case is called realistic approach, by contrast with the theoretical case
of the previous section. The algorithm, performed in this realistic context, has been presented
in [38,39].

4.4.1 Proposed Algorithm - Realistic Case

In the practical case, neither the matrix RH nor R̆H is available at the receiver side. Thus,
the channel covariance matrix must be estimated, by means of the vector of the estimated
channel frequency response. This estimated matrix is noted R̃H . The algorithm, performed
in this realistic case, is described by Fig. 4.10 and its steps are detailed in the following.

Initialization
eσ , σ2

(i=0)
,

Estimation

Channel
Estimation

MMSE noise
i = 1 ?

Estimation of

R̃
LMMSE

H

|σ2
(i)
− σ2

(i−1)
|

yes i ←− i + 1

Estimation

SNRno

> eσ ?

LMMSE

(Ĥn, ρ̂2)

yes

no
R̃

LS

H

Figure 4.10 – Block diagram of the iterative algorithm in the realistic scenario.

1. At the beginning, only the LS channel estimation Ĥ
LS

performed on a pilot preamble
is available, so the only way to estimate the covariance matrix denoted R̃

LS
H is

R̃
LS
H = Ĥ

LS
(Ĥ

LS
)H . (4.34)

Furthermore, a stopping criterion eσ is fixed.

2. At the first step (i = 1) of the algorithm, the LMMSE channel estimation is performed

with R̃
LS
H :

Ĥ
LMMSE

(i=1) = R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS

, (4.35)

where σ̂2(i=0) still points out the initialization value of the noise variance.

3. The noise variance is then estimated as previously, with Ĥ = Ĥ
LMMSE

(i=1) . Remembering
that the pilots are normalized, CCH is equal to the identity matrix I, so it yields:

σ̂2(i=1) =
1

M
E{||U−CĤ

LMMSE

(i=1) ||2}

=
1

M
E{||ĤLS − Ĥ

LMMSE

(i=1) ||2}. (4.36)
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If the algorithm keeps on computing with R̃
LS
H , Appendix B.1 proves that (σ̂2(i)) converges

to zero. Under this condition, the algorithm enters into an endless loop. This is due to
the fact that R̃

LS
H is sensitive to the noise. In order to obtain a more accurate channel

covariance matrix, it is now possible to use Ĥ
LMMSE

(i=1) , such as

R̃
LMMSE
H = Ĥ

LMMSE

(i=1) (Ĥ
LMMSE

(i=1) )H . (4.37)

4. For i ≥ 2, the iterative estimation steps (4.35) and (4.37) are performed by using (4.37):

Ĥ
LMMSE

(i) = R̃
LMMSE
H (R̃

LMMSE
H + σ̂2(i−1)I)

−1Ĥ
LS

, (4.38)

σ̂2(i) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i) ||2}. (4.39)

The characterization of the initialization σ̂2(i=0) will be discussed afterward. However, it

is already obvious that σ̂2(i=0) must be strictly positive, otherwise Ĥ
LMMSE

(i) = Ĥ
LS

in
(4.38). In that case, σ̂2(i) = 0, and the algorithm enters into an endless loop.

5. While |σ̂2(i) − σ̂2(i−1)| > eσ, go back to step 4 with i ← i+ 1, otherwise go to step 6.

6. At last, the final iteration is noted (i0), and the SNR is estimated from the noise variance
thanks to

ρ̂ =
M̂2

σ̂2(i0)

− 1. (4.40)

7. End of the algorithm.

The algorithm derived for the realistic scenario in which an unknown channel covariance
matrix is assumed, is summarized in Algorithm 3.

Fig. 4.11 depicts the way our algorithm works. It remains valid for both the theoretical
and the realistic scenarios. The joint estimation of the couple (Ĥ(i), σ̂2(i)) is depicted on a
Cartesian system. From the initialization σ̂2(i=0), the noise variance and channel estimations

alternatively feed each other until the algorithm reaches its limit (Ĥi0 , σ̂2i0
). Note that this

couple is different from the couple (H, σ2), that characterizes the perfect estimation. This
very low bias of estimation will be more precisely measured afterward.

4.4.2 Convergence of the Algorithm

In this section, the convergence of the proposed solution is proved, when an appropriate
choice of the initialization σ̂2(i=0) is done. To this end, a necessary and sufficient condition on
σ̂2(i=0) is given, and an optimal choice is proposed. As previously explained, if the convergence
of the noise variance is proved, it is then obvious that the channel estimation also converges,
i.e. the algorithm converges.

89



90 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

begin

Initialization: R̃
LS
H , eσ > 0, σ̂2(i=0) ;

i ← 1 ;
while |σ̂2(i) − σ̂2(i−1)| > eσ do

if i = 1 then

Perform LMMSE channel estimation (4.35) ;
Perform the noise variance estimation (4.36) ;

Calculate the matrix R̃
LMMSE
H (4.37) ;

else

Perform an LMMSE channel estimation (4.38) ;
Perform the noise variance estimation (4.39) ;

end

i ← i+ 1 ;
end

Estimate the SNR ρ̂ (4.40) with σ̂2(i0)
;

end

Algorithm 3: MMSE-based joint estimation of both channel and SNR given in the
realistic scenario.

4.4.2.1 Scalar Expression of the Sequence (σ̂2(i))

Firstly, as it has been done in the previous section for the theoretical case, a scalar ex-
pression of the sequence (σ̂2(i)) is derived. Whatever i ≥ 2, by inserting (4.38) into (4.39), the
noise variance estimation is developed as follows

noise

channel
frequency
response

σ2

H

σ̂2(i=0)

x

estimated value(Ĥi0 , σ̂2i0
)

variance

Figure 4.11 – Principle of the proposed iterative algorithm.
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σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2F }

=
1

M
E{||ĤLS − R̃

LMMSE
H (R̃

LMMSE
H + σ̂2(i−1)I)

−1Ĥ
LS ||2F }

=
1

M
tr

(

σ̂4(i)(R̃
LMMSE
H + σ̂2(i)I)

−1(RH + σ2I)(R̃
LMMSE
H + σ̂2(i)I)

−1
)

. (4.41)

The third line of (4.41) is coming from the second one by simply noticing that R̃
LMMSE
H =

(R̃
LMMSE
H + σ̂2(i−1)I) − σ̂2(i−1)I. The matrix R̃

LMMSE
H is now expressed, assuming that it is

computed after the first iteration (4.37), as

R̃
LMMSE
H =

1

M
Ĥ

LMMSE

(i=1) (Ĥ
LMMSE

(i=1) )H

= (R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
)(R̃

LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
)H

= R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
(Ĥ

LS
)H(R̃

LS
H (R̃

LS
H + σ̂2(i=0)I)

−1)H . (4.42)

For a sufficiently large value of M , we consider that 1
M tr(R̃

LS
H ) = 1

M tr(RH + σ2I). Since
the estimation of the noise variance is calculated thanks to the trace in (4.41), we make the
assumption that, as a first approximation:

R̃
LS
H = Ĥ

LS

p (Ĥ
LS

p )H ≈ RH + σ2I. (4.43)

Finally, the expression of R̃
LMMSE
H is given by inserting (4.43) into (4.42):

R̃
LMMSE
H = (RH+σ2I)(RH+(σ

2+ σ̂2(i=0))I)
−1(RH+σ2I)(RH+(σ2+ σ̂2(i=0))I)

−1(RH+σ2I).
(4.44)

Once more, since whatever α ∈ C, the matrix RH + αI has the same eigendecomposition
basis as RH , one can deduce that (RH + σ2I), (RH + σ̂2(i)I) and RH + (σ2 + σ̂2(i=0))I are
diagonalizable in the same basis:

DH = QH(RH + σ2I)Q,

DH(i) = QH(RH + σ̂2(i)I)Q, and

DH(i=0) = QH(RH + (σ2 + σ̂2(i=0))I)Q. (4.45)

By replacing (4.45) into (4.44) and (4.41), and after some mathematical developments, the
scalar expression of the sequence is

σ̂2(i+1) =
σ̂4(i)
M

M−1∑

m=0

(λm + σ2 + σ̂2(i=0))
4(λm + σ2)

((λm + σ2)3 + σ̂2(i)(λm + σ2 + σ̂2(i=0))
2)2

⇔ σ̂2(i+1) =
σ̂4(i)
M

M−1∑

m=0

λm + σ2

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ σ̂2(i))

2
. (4.46)

91



92 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

It can be seen that, unlike the theoretical scenario, the initialization σ̂2(i=0) appears in (4.46),
and then, has an influence on the convergence of the sequence. Thus, if σ̂2(i=0) is chosen close

to zero, the term (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
is then roughly equal to (λm + σ2). In that case, Appendix

B.1 shows that it is equivalent to use the covariance matrix R̃
LS
H and the noise estimation

then converges towards zero. The choice of the initialization will be studied in the following.
As previously mentioned, one can notice that the sequence (σ̂2(i+1)) is built from a function,

that will be noted fr2, and if we set x = σ̂2(i), fr2(x) is expressed by

fr2(x) =
x2

M

M−1∑

m=0

λm + σ2

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ x)2

. (4.47)

4.4.2.2 Necessary Condition for the Convergence of the Sequence (σ̂2(i))

In this part, a necessary condition on the initialization value σ̂2(i=0) for the convergence of
the sequence (σ̂2(i)) is derived. To this end, some properties of fr2 are listed as follows:

– Since (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
> 0, fr2 is continuous on R

+.

– ∀x ∈ R
+ the derivative

f ′r2(x) =
2x

M

M−1∑

m=0

(λm + σ2) (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ x)3

(4.48)

is positive, so fr2 is growing on R
+.

– fr2(0) = 0.
– lim

x→∞ fr2(x) =
∑M−1

m=0 λm + σ2 = M2.

From these four properties, we deduce the inclusion fr2([0, M2]) ⊂ [0, M2], and since fr2 is
growing on R

+, we conclude that fr2 has at least one fixed point in [0, M2]. From the third
item, it is obvious that zero is a fixed point of fr2. Since fr2(0) = 0 and fr2 is growing
on R

+, necessary (but not sufficient) condition for fr2 to have other fixed points can be
expressed as follows: there exists x0 ≥ 0 such as max

x
(f ′r2(x)) = f ′r2(x0) > 1, which can

allow f2 the possibility to be above the first bisector. Then, σ̂2(i=0) can be adjusted in order
to ensure this condition. If we note f ′r2m

(x) as the functions extracted from f ′r2(x) such as
f ′r2(x) =

∑M−1
m=0 f ′r2m

(x), we have

f ′r2m
(x) =

1

M

2x(λm + σ2) (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ x)3

. (4.49)

Let us note f ′r2min
(x) the function whose maximum reached for x = x0min is the lowest among

all the maxima of the functions f ′r2m
in the set {f ′r2m

}, m = 0, ..., M − 1. If we adjust σ̂2(i=0)
so that f ′r2min

(x0min) ≥ 1, then we fulfill the necessary condition, f ′r2(x0min) ≥ 1. Indeed, if
f ′2min

(x0min) ≥ 1, then
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1 ≤ f ′r2min
(x0min) ≤

1

M

M−1∑

m=0

f ′r2m
(x0min) = f ′r2(x0min). (4.50)

In order to find x0min, we calculate the second derivative f ′′r2min
of fr2min :

f ′′r2m
(x) =

1

M

2(λm + σ2) (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
− 2x)

( (λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
+ x)4

. (4.51)

The second derivative f ′′r2min
is equal to zero for x0min = 1

2
(λm+σ2)3

(λm+σ2+σ̂2
(i=0)

)2
, so we get the

maximum value of f ′r2min
:

f ′r2min
(x0min) =

8

27

(λm + σ2 + σ̂2(i=0))
2

(λm + σ2)2
. (4.52)

Whatever the values of σ2 and σ̂2(i=0), f ′r2min
(x0min) is minimum for λm = λmax, with λmax

the maximum eigenvalue of RH , and minimum for λm = 0. We can then minimize σ̂2(i=0):

8

27

(λmax + σ2 + σ̂2(i=0))
2

(λmax + σ2)2
≥ 1

⇔ σ̂2(i=0) ≥ (

√

27

8
− 1)(λmax + σ2). (4.53)

The necessary condition max
x
(f ′2(x)) > 1 is reached for σ̂2(i=0) ≥ (

√
27
8 − 1)(λmax + σ2).

Since λmax and σ2 are unknown, the condition is necessary but not sufficient so as to assess
that f2 has a fixed point that is different from zero. However, λmax is, by definition, the
maximum eigenvalue of the channel covariance matrix, so λmax ≥ 1

M

∑M−1
m=0 λm. Furthermore,

as M2 =
1

M

∑M−1
m=0 λm + σ2, so, thanks to (4.53) we can minimize σ̂2(i=0), and get

σ̂2(i=0) ≥ (

√

27

8
− 1)M2. (4.54)

4.4.2.3 Sufficient Condition for the Convergence of the Sequence (σ̂2(i))

The lower bound (4.54) satisfies the necessary condition f ′r2 ≥ 1. Thus, this entails that
fr2 has a fixed point that is different from zero. In order to give a sufficient condition, the
initialization value σ̂2(i=0) has to be set equal to ΛM2, with Λ >> 1. Indeed, for all x ∈ [0, M2],
fr2 satisfies

lim
σ̂2

(i=0)
→+∞

fr2(x) = M2, (4.55)

so it is possible to find σ̂2(i=0) such as fr2(x) > x. Given that lim
x→+∞

fr2(x) = M2, we deduce

that a fixed point different from zero exists for a well chosen initialization σ̂2(i=0) = ΛM2.
However, the previous development only proves the existence of a sufficient condition on σ̂2(i=0)
for the convergence of (σ̂2(i)) to a non-null limit but it does not give a precise characterization
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of σ̂2(i=0). In order to get a suitable value of σ̂2(i=0), the receiver should test some initialization
values (e.g. thanks to an abacus) until it finds the expected one, as depicted on Fig. 4.12.
It illustrates the shape of fr2 considering σ2 = 2 for two examples: one with a relevant
initialization σ̂2(i=0) = 10M2 (we see a fixed point that is different from zero) and one with
an initialization which does not match the necessary condition (zero is the sole fixed point).
It is then verified that if σ̂2(i=0) is not chosen large enough, then σ̂2(i) converges to zero. A
second drawback occurs: the ratio between the noise variance σ2 to be estimated and the
initialization σ̂2(i=0) is not constant for all the values of σ2, as shown on Fig. 4.13 for Λ = 10

and Ps = 1. Indeed, Fig. 4.13 displays the noise variance σ2 and its estimation σ̂2 versus
σ2. Thus, a given value Λ can be well chosen for a given value σ2 but not for another one.
The solution is then not appropriate if the noise variance have a varying level during the
transmission.
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Figure 4.12 – Shape of fr2 in two different cases, compared with y = x.

In order to get the optimal value σ2(i=0), an abacus with different curves of fr2 can be crea-
ted. However, the solution is not applicable in practice, since the channel frequency response
and the noise variance can take an infinite number of values. Furthermore, we assume that
the receiver has no a priori knowledge of the set of the parameters {λm, σ2}, which makes the
a priori choice of the optimal initialization impossible. A solution close to the optimal one is
nevertheless proposed in the next section.

4.4.2.4 Optimal Choice of the Initialization σ̂2(i=0)

The conditions on σ̂2(i=0) given in the previous sections are either not relevant enough
(σ̂2(i=0) = ΛM2 with Λ >> 1), or too complex (use of abacus of f2). Here, a simple characte-
rization of σ̂2(i=0) is proposed, thanks to the noise variance estimation σ̂2, which is performed
on the last frame. It supposes that the noise variance does not vary significantly from a frame
to another. If we note nF the index of the current frame, the proposed method is:

– For the first frame nF = 1, perform the algorithm thanks to the arbitrary initialization
σ̂2(i=0) = ΛM2 chosen with the sufficient condition Λ >> 1.
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Figure 4.13 – σ2 and σ̂2(i=0) versus σ2.

– For nF > 1, get the noise variance σ̂2 and the eigenvalues of the channel covariance
matrix R̃

LMMSE
H (4.37), estimated at the previous frame nF − 1.

– Considering the expression of fr2 given in (4.47), look for σ̂2(i=0),opt so that

σ̂4

M

M−1∑

m=0

λm + σ̂2

( (λm+σ̂2)3

(λm+σ̂2+σ̂2
(i=0),opt

)2
+ σ̂2)2

− σ̂2 = 0. (4.56)

The direct solving of (4.56) is very complex, but in practice, the receiver can use a simple
binary search algorithm to approach the optimal solution. This solution σ̂2(i=0),opt, close to the
optimal one, can then be found at the frame nF by means of the previous estimation. The
next section depicts the performance of the proposed algorithm and finally shows that the
performance in the realistic scenario is close to the one of the theoretical case.

4.4.3 Simulations Results - Realistic Approach

The parameters used for the simulations are exactly the same as the ones used in for the
theoretical scenario.

4.4.3.1 Convergence of the Noise Variance Estimation

Similarly to Fig. 4.5, Fig. 4.14 displays the noise variance estimation versus the iteration
number, from i = 0 to i = 20. In order to validate the results whatever the SNR, two values
are considered ρ = 0 dB and ρ = 10 dB. The initialization is chosen according to the sufficient
condition σ2(i=0) = 20M2. The curves of the theoretical case are compared to the ones of the
theoretical scenario (with RH) and the exact value σ2. The curves are obtained after 4000
simulations runs.

For iterations i ≥ 1, Fig. 4.14 shows that the sequence (σ̂2(i)) is monotonous and converges
to a sole non-null value, which verifies the theoretical developments given in Section 4.4.2.

95



96 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

0 2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

iteration number (i)

n
o
is

e
 v

a
ri
a
n
c
e
 e

s
ti
m

a
ti
o
n

σ2
 (SNR=0dB)

estimated σ2
, theoretical case

estimated σ2
, practical case

σ2
 (SNR=10dB)

estimated σ2
, theoretical case

estimated σ2
, practical case

Figure 4.14 – Noise variance estimation versus the iteration number, comparison to the
theoretical case.

Even in the practical case, the algorithm quickly converges, since from i = 7, the noise
variance estimation seems to reach its limit. This observation will be confirmed in the next
section. Fig. 4.14 also characterizes the noise variance estimation thanks to the normalized
bias β calculated by β = |(σ̂2(i)) − σ2|/σ2. Expressed in percentage, the bias of the proposed
estimation is equal to 5.9 % for ρ = 0 dB and 1.2 % for ρ = 10 dB. These results are very
close to the estimation performed in the perfect case. It also shows that the method is less
accurate for low SNR values, which can be explained by the fact that the ratio between σ2

and σ̂2(i=0) is not constant according to the level of the noise variance.

4.4.3.2 Characterization of the Threshold eσ

Fig. 4.15 depicts the values of the difference |σ̂2(i)− σ̂2(i−1)| versus the number of iterations
for i ≥ 2. The practical case is compared with the theoretical one performed with RH .
Simulations are performed with ρ = 10 dB and the initialization value σ̂2(i=0) = 2 in the
theoretical case and σ̂2(i=0) = 20M2 in the practical case. These curves evaluate the required
number of iterations to get an expected value of the threshold eσ.

Although the gradient of |σ̂2(i) − σ̂2(i−1)| is smaller in the practical case than in theoretical
one, Fig. 4.15 confirms that |σ̂2(i) − σ̂2(i−1)| converges to zero. It also allows to evaluate the
required number of iterations, considering a given threshold value. For instance, in order to
reach eσ = 0.01, three iterations are required in the practical case and two in the perfect case.
For eσ = 0.0001, seven iterations are required in the practical case and three in the perfect
case.

4.4.3.3 Comparison of SNR Estimation with other methods

Fig. 4.16 displays the NMSE of the SNR estimation of the proposed method for the practi-
cal scenario, and compares it to Ren’s method [40], Xu’s method [41] and the usual M2M4 [42].
We remind that Ren’s method requires a two pilot-symbols preamble in order to avoid the
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Figure 4.15 – |σ̂2(i) − σ̂2(i−1)| versus the iteration number i.

effect of the frequency selective channel, whereas Xu’s method and M2M4 require only one
pilot-symbol by preamble. Figs. 4.16 (a) and (b) compare the SNR estimation performed
with two different initializations. For Fig. 4.16 (a), the sufficient condition σ̂2(i=0) = 20M2 is
considered at each frame. In Fig. 4.16 (b), the initialization step σ̂2(i=0) = 20M2 is used for
the first frame nF = 1, and then σ̂2(i=0) is updated thanks to the proposed method presented
in Section 4.4.2.4. Whether Fig. 4.16 (a) or (b) is considered, the number of iterations is set
i0 = 7. In the theoretical case, the initialization value is σ̂2(i=0) = 0.1, and the number of
iterations is i0 = 3. The NMSE given by NMSE = E{|ρ̂ − ρ|2/ρ2}, is approximated and
simulated thanks to an average made over 200000 samples.
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(a) Sufficient initialization σ2
(i=0) = 20M2
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Figure 4.16 – NMSE of the SNR estimation of the proposed method compared to three
existing methods, for two different initializations.

As previously mentioned for the theoretical scenario and noticed in [42], the performance
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of the M2M4 method is degraded in Rayleigh channels. Unlike the theoretical case performed
with R̆H , the proposed iterative method outperforms Xu’s one, whatever the considered SNR.
In Fig. 4.16 (a), the performance of the algorithm is degraded compared to the one obtained
with Ren’s method for low SNR values (<3 dB). It confirms the observations made concerning
the evaluation of the bias, that is for low values of SNR, σ̂2(i=0) is not large enough compared
to the value of the noise variance σ2. However, when the algorithm is used with an updated
initialization (Fig. 4.16 (b)), the method outperforms Ren’s one whatever the SNR is, and
the SNR gap with the perfect case is less than 1 dB from SNR = 0 dB. This proves the
efficiency of the proposed algorithm and the validity of the improvement with regard to the
choice of σ̂2(i=0), when performed with an update each frame. Compared to the other methods,
the proposed algorithm then improves the trade-off between the number of required pilots
and the performance of the SNR estimation.

4.4.3.4 Channel Estimation

Fig. 4.17 shows the BER curves of the proposed estimator versus the SNR (in dB), and
for different iteration numbers. It also compares the results with the theoretical scenario, the
perfect estimation and the usual LS. The simulations parameters are exactly the same as the
ones used to simulate Fig. 4.9. The BER curves are performed by the means of simulating a
2.5× 106 bits transmission.
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Figure 4.17 – Bit error rate (BER) of the proposed method versus SNR, and comparison
with perfect estimation, theoretical case and LS.

The proposed method outperforms again the LS estimator. Furthermore, after seven ite-
rations of the algorithm, the gap between the BER curve of the proposed method and the
perfect estimation is less than 0.2 dB. The iterative estimation, performed in the practical
scenario almost reaches the performance of the theoretical one. One can conclude that the al-
gorithm converges, after only several iterations, and has a high performance for the estimation
of both channel and SNR.
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4.5 Application of the Algorithm to Spectrum Sensing

In the previous part, it was supposed that the receiver is synchronized with a pilot
preamble. Let us now study the behavior of the algorithm if only white Gaussian noise is
added to the useful signal. Thus, this part aims to show the ability of the proposed algorithm
(in the practical scenario) to be used as a free band detector.

4.5.1 Spectrum Sensing

Wireless communications in general are facing a constant increase of data rate-consuming
transmissions, due to the multiplications of the applications and services, while the usable
spectrum is naturally limited. Furthermore, most of the bands are already allocated to specific
licenses. However, some of these licensed bands are not used at full capacity, which results in
spectrum holes along the time and frequency axes [130], whereas they could be exploited in
order to achieve the requirements of data rate. Away from the usual paradigm in which the
channels are allocated only for licensed users, Joseph Mitola defines the cognitive radio [131],
allowing an opportunistic access by unlicensed users to the unused frequency bands. In such
a network, the opportunistic users, called secondary users (SUs) can use licensed bands when
primary users (PUs) are absent from those ones. The main condition for the SUs to use the
licensed bands is to minimize the interferences with PUs. Thus, they must be able to sense
the presence of the PUs, even if the PU’s signal is attenuated compared to the noise level.
Fig. 4.18 depicts the concept of spectrum sensing: A PU transmitter (PU-Tx) is transmitting
to a PU receiver (PU-Rx) while a SU transmitter intends to transmit in the same band. In
order to avoid the interferences with the PU, the SU has to perform spectrum sensing. In
order to lighten the drawing, only one PU-Rx and two SU-Rx are depicted, but the network
can obviously be more complex.

Figure 4.18 – Illustration of the use of the spectrum sensing.

The process set up by the SUs to sense the presence of the PUs is called spectrum sensing.
The authors of [132–134] propose detailed reviews of the different techniques of spectrum
sensing proposed in the literature. The different methods are usually classified into two main
categories: the non-cooperative detection and the cooperative detection.

4.5.1.1 Non-cooperative Methods

The non-cooperative detection concerns a sole SU who tries to detect the presence of the
PU alone. Among the wide range of methods [132–135], the following list shortly describes
the main ones:
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100 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

– The energy detector measures the energy of the received signal and compares it with a
threshold. It has a low complexity of implementation and does not require any knowledge
on the PU’s signal features. However, the choice of the threshold value depends on the
noise variance, and uncertainties on the noise level may cause important degradations
of the detector performance [136], [137].

– The matched-filter correlates the received signal to the one transmitted by the PU,
which is supposed to be known at the receiver [87], [138]. This is the optimal detector
when the signal is transmitted with AWGN only and supposed to be known at the
receiver. Due to these hypotheses, this method is generally not applicable in practice,
and its performance is degraded when the knowledge of the signal is erroneous [139].

– Less binding than the matched-filter, the feature detectors only use several characteris-
tics of the signal to detect the PU. Thus, the waveform-base sensing uses the preamble
of the PU’s signal (used for the synchronization, the estimation etc.) to perform a cor-
relation with the received signal [140]. However, the performance of the waveform-based
sensing is degraded in the presence of selective channels. In the same way, when a CP
is used in an OFDM signal, its autocorrelation function becomes time-varying, so a
method consists of detecting the peaks in the autocorrelation function at time-lag Ts.

– More generally, the cyclostationarity detector exploits the periodic redundancy of all
telecommunications signals to differentiate it from a pure Gaussian noise [141,142]. As
indicated in [134], the redundancy can be due to periodic patterns such as the CP,
the symbol rate or the channel code. However, these second-order detectors requires
great sensing time, i.e. a large number of symbols to be performed. In [143], an hybrid
architecture composed of both energy and cyclostationarity is proposed. It allows to
compensate the limitation of the energy detector due to the noise uncertainty thanks
to a cyclostationarity detection stage whose computation time is reduced.

4.5.1.2 Cooperative Methods

In the case of the cooperative detection, it is assumed that several SUs (called nodes of the
network) share out some information about the state of the spectrum. This sharing allows the
SUs to increase the probability of detection of the PU, in particular for the SUs who might
receive the PU’s signal disrupted by fading or noise uncertainty. Furthermore, it allows to
reduce the sensing time. The different techniques can be summed up as follows:

– The detection with soft combing (or centralized) decision, in which each SU transmits its
sensing data to a central unit called fusion center. The fusion center then combines the
different soft decisions to make a decision on the presence or the absence of the PU, and
this decision is transmitted back to the SUs. In [144], the performance of different data
combination schemes are compared. Although it considered as the optimal detection
scheme, the required bandwidth to transmit the sensing information from the SUs and
the computation complexity of the data processing might be great, according to the
sensing method.

– The detection with hard combining (or distributed) decision, in which each SU makes
its own decision and transmits to the fusion center a binary information 0 or 1. The
fusion center then combines the hard decisions of the SUs to make a common decision.
The decision can be made by following the AND-logic, the OR-logic or the voting
rule [134, 135]. Although the hard decision is less efficient than the soft decision, it
is also less complex and less bandwidth consuming. Furthermore, if a high number of

100



4.5. Application of the Algorithm to Spectrum Sensing 101

nodes are considered, the hard decision and the soft decision become equivalent in term
of performance [135].

– The fully distributed detection differs from the previous one in the sense that no fusion
center is considered in the network. However, both approaches are often mistaken in
the literature and simply called "distributed detection". In [145], an example of fully
distributed detection algorithm is given: at each iteration, a sensing step followed by
a gossiping step is performed. In the gossiping step, the SUs transmit the results of
the sensing step to their neighbors, without the help of a fusion center. This approach
appears as efficient in the case of a SU who is hidden from the PU by an obstacle.

– The external detection, in which the sensing is not performed by the SUs, but by
external sensors. According to the arrangement of the sensors in the networks, the
external detection also avoids the hidden SUs effect. As mentioned in [135], this solution
is developed in the standard IEEE 802.22, designed for the opportunistic access to the
free TV bands.

Complementary to these two main differences, the detection techniques can also be dif-
ferentiated according to the bandwidth on which they are performed. Indeed, some methods
can detect several holes over a wide bandwidth, while others are adapted to the detection of a
sole hole in a given channel. Since we consider a sole receiver, the context of the next sections
will be the non-cooperative detection of a PU by a single SU in a given narrow band.

4.5.2 Proposed Detector

4.5.2.1 Detection Hypothesis

In order to link this part to the rest of the chapter, let us consider the problem of the
detection of a preamble over a Rayleigh channel in a given band to be sensed. To this end, it is
a priori supposed that the SU is perfectly synchronized with the PU. According to previously
in the dissertation, the signal that is received by the SU is noted U after the M -points DFT.
The SU has no a priori knowledge of the presence or the absence of the PU, so the detection
hypothesis test is written as follows:

{

H0 : U = W

H1 : U = CH + W,
(4.57)

H0 and H1 denoting the absence and the presence of the PU, respectively. In the following,
the matrix C corresponds to a preamble, such as ∀m = 0, 1, .., M − 1 we have CmC∗m = 1.

The performance of a detector is characterized by its probability of detection, noted Pd,
and its false alarm probability Pfa. Pd corresponds to the probability of choosing the correct
H1 while the signal is present, whereas Pfa corresponds to the probability of choosing H1

while the signal is absent. In a general way, the more Pd is close to 1 and Pfa close to 0, the
more the detector is efficient. It is also usual to use the missing probability Pm = 1− Pd, as
the probability of choosing H0 while the signal is present.

As mentioned in [135, 145], the sensibility of the detector (the expected value of Pfa and
Pd) depends on the application. In a cognitive radio context, the SU has to minimize the
interference with the PU, so the probability of detection has to be maximized, whereas if the
false alarm probability is not optimized, it only implies that the SU misses white spaces. On
the contrary, in a radar application, a false alarm could have serious consequences, especially
in a military context.
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102 Chapter 4. MMSE-based Joint Iterative SNR and Channel Estimation

In the previous parts of this chapter, the convergence of the algorithm under H1 has been
shown. In the next sections, the convergence of the algorithm under H0 is studied, and an
analytical expression of Pd and Pfa is also proposed.

4.5.2.2 Convergence of the MMSE-based Algorithm under the Hypothesis H0

The signal C is supposed to be absent, so the received signal is U = W. The convergence
of the proposed algorithm in the case of absence of signal is going to be proved. Furthermore, it
will be proved afterward that the non-null solution allows to make the MMSE-based algorithm
a free band detector. To this end, the three first steps of Algorithm 3 presented in Section 4.4
are now expressed under the hypothesis H0.

a. Expression of the Algorithm under H0

Let us consider that the receiver does not know if the signal is present or absent, so the
same formalism as in Section 4.4 is used, and the steps of the algorithm are recalled:

1. Firstly, the LS channel estimation is performed:

Ĥ
LS

= C−1U = C−1W. (4.58)

The channel covariance matrix

R̃
LS
H = Ĥ

LS
(Ĥ

LS
)H = WWH (4.59)

is deduced from (4.58). Furthermore, a stopping criterion eσ and an initialization σ̂2(i=0)
are set.

2. At iteration i = 1 of the algorithm, the LMMSE channel estimation Ĥ
LMMSE

(i=1) is per-

formed by using R̃
LS
H :

Ĥ
LMMSE

(i=1) = R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS

. (4.60)

3. The MMSE noise variance estimation σ̂2(i=1) is performed with Ĥ = Ĥ
LMMSE

(i=1) :

σ̂2(i=1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i=1) ||2F }, (4.61)

and a new covariance matrix is computed by

R̃
LMMSE
H = Ĥ

LMMSE

(i=1) (Ĥ
LMMSE

(i=1) )H . (4.62)

Indeed, it is proved in Appendix B.2 that if the algorithm keeps on computing with
R̃

LS
H = WWH , then the sequence σ̂2(i) necessarily converges to zero. When R̃

LS
H is used,

and in spite of its inputs are different, the algorithm has exactly the same response
whatever the hypothesis H0 or H1.
Then, for i ≥ 2, perform the channel and the noise variance estimation

Ĥ
LMMSE

(i) = R̃
LMMSE
H (R̃

LMMSE
H + σ̂2(i−1)I)

−1Ĥ
LS

, (4.63)

σ̂2(i) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i) ||2}. (4.64)
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For the application of the algorithm to spectrum sensing, it only require these three steps.

b. Scalar Expression of the Sequence (σ̂2(i))
The convergence of the algorithm is now going to be proved, and its limit characterized.

First, remembering that R̃
LS
H is an Hermitian matrix, we develop (4.62) as

R̃
LMMSE
H = Ĥ

LMMSE

(1) (Ĥ
LMMSE

(1) )H

= R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
(R̃

LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
)H

= R̃
LS
H (R̃

LS
H + σ̂2(i=0)I)

−1Ĥ
LS
(Ĥ

LS
)H(R̃

LS
H (R̃

LS
H + σ̂2(i=0)I)

−1). (4.65)

Let us assume that M is large enough to justify the approximation tr(WWH) = tr(σ2I).
Since the estimation of the noise variance is calculated by means of the trace in (4.64), we

make the assumption that, as a first approximation R̃
LS
H ≈ σ2I, and then it possible to replace

RLMMSE
H by

R̃
LMMSE
H = σ2I(σ2I+ σ̂2(i=0)I)

−1R̃
LS
H (σ2I(σ2I+ σ̂2(i=0)I)

−1)

=
σ6

(σ2 + σ̂2(i=0))
2
I (4.66)

in (4.64). Thus, by reinjecting (4.66) in (4.63) and (4.64), it yields

σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2}

=
1

M
E{||ĤLS − R̃

LMMSE
H (R̃

LMMSE
H + σ̂2(i)I)

−1Ĥ
LS ||2}

=
1

M
E{||W− σ6

(σ2 + σ̂2(i=0))
2
I(

σ6

(σ2 + σ̂2(i=0))
2
I+ σ̂2(i)I)

−1W||2}

=
1

M
E{||(σ̂2(i)I((

σ6

(σ2 + σ̂2(i=0))
2
+ σ̂2(i))I)

−1)W||2}

=
σ2σ̂4(i)(σ

2 + σ̂2(i=0))
4

(σ6 + σ̂2(i)(σ
2 + σ̂2(i=0))

2)2
. (4.67)

c. Convergence of the Sequence (σ̂2(i)) to a non-null Solution

For a better readability, we note in the following mathematical developments

A = σ2 + σ̂2(i=0). (4.68)

It is once more noticeable that the sequence (σ̂2(i+1)) is built from a function fs1 such as, if
we note x = σ̂2(i):

fs1(x) =
σ2A4x2

(σ6 +A2x)2
. (4.69)
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The sequence converges if fs1 has at least a fixed point. Zero is an obvious fixed point, but
it has been proved in Appendix B.2 that the algorithm enters into an endless loop if (σ̂2(i))
converge to zero. We then solve the equation fs1(x) = x to find the others fixed points:

fs1(x) = x

⇔ σ2A4x2

(σ6 +A2x)2
= x

⇔ σ2A4x2 = x(σ6 +A2x)2. (4.70)

Since we consider that zero is not a solution to the equation, the previous expressions can
be simplified by x, and the problem amounts to look for real roots of the polynomial A4x2 +
x(2A2σ6 − σ2A4) + σ12. Since it is a second order polynomial, in order to find real solutions,
the first condition on the initialization σ̂2(i=0) is to obtain the discriminant ∆ = (2A2σ6 −
σ2A4)2 − 4A4σ12 positive, i.e.:

∆ ≥ 0

⇔ (2A2σ6 − σ2A4)2 ≥ 4A4σ12

⇔ 4A4σ12 +A8σ6 − 4A6σ8 ≥ 4A4σ12

⇔ A2 ≥ 4σ4

⇔ (σ2 + σ̂2(i=0))
2 ≥ 4σ4

⇔ σ̂2(i=0) ≥ 3σ2. (4.71)

As σ2 is absolutely unknown, one can find a stronger condition on σ̂2(i=0), conditionally to
∆ > 0. We then find the roots r+s and rs− of the polynomial under the condition ∆ > 0:

r+s− =
(σ2A4 − 2A2σ6)+−

√

(2A2σ6 − σ2A4)2 − 4A4σ12

2A4

⇔ r+s− =
(σ2A2 − 2σ6)+−

√
σ4A4 − 4σ8A2

2A2
. (4.72)

If we notice that when σ̂2(i=0) tends to +∞, then A = σ2 + σ̂2(i=0) also tends to +∞, and we
get:

lim
A→∞

r+s =
σ2A2 + σ2A2

2A2
= σ2, (4.73)

and

lim
A→∞

rs− =
σ2A2 − σ2A2

2A2
= 0. (4.74)

It can be seen that, by choosing the initialization value σ̂2(i=0) as large as wanted, the
sequence (σ̂2(i)) converges to a value as close as possible to the exact value of the noise variance
σ2. This characterization of the initialization value σ̂2(i=0) perfectly tallies with the one made
for the sufficient condition under hypothesis H1 in Section 4.4.2.3. Furthermore, It will be
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further shown that this solution allows to detectH0 fromH1. Thus, choosing σ̂2(i=0) with a large
value is the condition for the algorithm to converge to a non-null solution for both hypotheses
H0 and H1. Furthermore, since it converges, the stopping criterion |σ̂2(i)− σ̂2(i−1)| < eσ can also
be same under H0. Finally, the MMSE-based algorithm can be used as a free band detector.

Fig. 4.19 displays the function fs1 for different values of (σ̂2(i=0)), compared with y = x

and for a fixed σ2 = 1. By comparing the curves of fs1 for different initializations values, we
verify that, the larger the value of σ̂2(i=0), the closer to the real value of σ2 = 1 the fixed point.
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Figure 4.19 – Aspect of fs1 for different values of σ2(0), σ2 = 1 compared with y = x.

4.5.2.3 Decision Rule for the Proposed Detector

In this section, a decision rule for the detector is proposed. To this end, whatever H0 or
H1, it is supposed that the algorithm has converged, i.e. the condition |σ̂2(i) − σ̂2(i−1)| < eσ is
reached and then i = i0.

The second-order moment M2 =
1

M

∑M−1
m=0 |Um|2 of the received signal is expressed under

the hypotheses H0 and H1, respectively:

M2 =

{
1

M

∑M−1
m=0 |Wm|2, if H0

1
M

∑M−1
m=0 |CmHm +Wm|2, if H1

. (4.75)

The second order-moment is the decision metric used for the energy-base detector. Here, a
different metric notedM is proposed, and defined by

M = |M2 − σ̂2|, (4.76)

where σ̂2 = σ̂2(i0)
is the noise variance estimation performed by means of the iterative algo-

rithm. From (4.75), the metric (4.76) is rewritten according to the hypotheses H0 and H1:

M =

{

| 1M
∑M−1

m=0 |Wm|2 − σ̂2|, under H0

| 1M
∑M−1

m=0 |CmHm +Wm|2 − σ̂2|, under H1

. (4.77)
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By fixing a threshold ς, the detection and false alarm probabilities are defined by:

Pd = P (M > ς|H1) (4.78)

Pfa = P (M > ς|H0), (4.79)

and the decision criterion is

H0, ifM < ς

H1, else.

It is then possible to rewrite the practical algorithm proposed in the scenario of the joint
estimation of the SNR and the channel for free band detections, as it is summed up in
Algorithm 4.

begin

Initialization: R̃
LS
H , eσ > 0, σ̂2(i=0) and ς ;

i ← 1 ;
while |σ̂2(i) − σ̂2(i−1)| > eσ do

if i = 1 then

Perform LMMSE channel estimation ;
Perform the noise variance estimation ;

Calculate the matrix R̃
LMMSE
H ;

else

Perform an LMMSE channel estimation with R̃
LMMSE
H ;

Perform the noise variance estimation ;
end

i ← i+ 1 ;
end

Calculate the metricM ;
if M < ς then

return H0 ;
else

return H1 ;
Estimate the SNR ρ̂ (4.40) with σ̂2(i0)

;

end

end

Algorithm 4: Application of the MMSE-based algorithm to free band detection.

It can be seen that the structure of Algorithm 4 is the same as Algorithm 3, but with a
detection part. Thus, compared with the method of the literature, the proposed method not
only return the decision H0 and H1, but also:

– the noise variance estimation, if H0,
– the channel and SNR estimations, if H1.
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An a priori qualitative analysis of the detector can be done. Indeed, from (4.77), one can
deduce that, by supposing a good estimation of σ̂2,M tends to a value close to zero under H0,
and to a value close to Ps under H1. By supposing a normalized signal power, one can suppose
that choosing a value ς between zero and one allows to get a viable detector. Concerning the
value of the threshold eσ, since it ensures the convergence of the algorithm, it has no effect
on the detector performance. This property will be shown by simulations afterward.

In the context of cognitive radio, the SUs have to target a given detection probability, noted
P t

d. Thus, according to the Neyman-Pearson criterion [146], the best value of the threshold
ς can be analytically derived (when it is possible) by solving P (M > ς|H1) ≥ P t

d, and by
maximazing the likelihood ratio test (LRT)

Λ(x) =
p(x|H1)

p(x|H0)
≷H1

H0
ς. (4.80)

To this end, the probability density functions (pdfs) of M have to be expressed, which is
proposed in the next section.

4.5.3 Analytical Expressions of the Detection and False Alarm Probabili-
ties

4.5.3.1 Probability Density Function of M under H1

Under the hypothesis H1, from the results of the section 4.4 it is reasonable to suppose
that the noise variance estimation is good enough to consider that σ̂2 ≈ 1

M

∑M−1
m=0 |Wm|2, so

the contribution of CmHm is prevailling inM so that:

M = | 1
M

M−1∑

m=0

(|CmHm +Wm|2)− σ̂2|

= | 1
M

M−1∑

m=0

(|CmHm|2 + |Wm|2 + CFm)− σ̂2|, (4.81)

where ∀m = 0, .., M − 1, CFm are the cross factors (CmHmW ∗
m) + (CmHmW ∗

m)
∗, whose

mean (for a sufficiently large value of M) is equal to zero, since Hm and Wm are zero-mean
uncorrelated Gaussian processes. The development of (4.81) then simply yields:

M = | 1
M

M−1∑

m=0

|CmHm|2 + |Wm|2 − σ̂2|

=
1

M

M−1∑

m=0

|HmCm|2, (4.82)

such asM is linked to Ps by Ps = E{M}, according to the hypothesis H1. The result (4.82)
obtained with the approximation σ̂2 ≈ 1

M

∑M−1
m=0 |Wm|2 can be matter of debate, since it has

been seen in Section 4.4 that the noise estimation under hypothesis H1 is biased. However, it
will be shown in Section 4.5.4 that this approximation proves good for low values of σ2. Thus,
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the developments keeps going on from (4.82). Whatever m = 0, .., M − 1, the mth sample of
the channel frequency response given by (1.39) is reminded:

Hm =
L−1∑

l=0

hl,n exp(−2jπ
m

M
βl), (4.83)

as CmC∗m = 1, the metric (4.82) can be rewritten by

M =
1

M

M−1∑

m=0

∣
∣
∣
∣
∣

L−1∑

l=0

hl exp(−2jπ
mβl

M
)Cm

∣
∣
∣
∣
∣

2

=
1

M

M−1∑

m=0

(

L−1
∑

l=0

hl exp(−2jπ
mβl

M
)Cm

)(

L−1
∑

l=0

hl exp(−2jπ
mβl

M
)Cm

)∗

=
L−1
∑

l=0

|hl|2 +
1

M

M−1
∑

m=0

L−1
∑

l1=0

L−1
∑

l2=0

l2 6=l1

hl1h∗l2 exp
(

−2jπ
m(βl1 − βl2)

M

)

. (4.84)

According to the Rayleigh distributed WSSUS channel model, whatever l = 0, .., L − 1, the
gains hl are uncorrelated zero mean Gaussian processes. For a large enough value M , let us
assume that the mean of the cross factors on the right side of (4.84) is equal to zero. Finally,
the metricM is simply written as follows

M =
L−1
∑

l=0

|hl|2, under H1. (4.85)

M then follows a chi-square distribution with 2L degrees of liberty. The probability density
function (pdf) noted pM(x) of the decision statistic under H1 is then expressed by

pM(x) =
1

2LP L
s Γ(L)

xL−1 exp
(

− x

2Ps

)

, under H1, (4.86)

where Γ(.) is the gamma function [147]. Fig. 4.20 (a) displays pM(x) under H1.

4.5.3.2 Probability Density Function of M under H0

The theoretical expression under the hypothesis H0 of the pdf of the metric

M = | 1
M

M−1
∑

m=0

|Wm|2 − σ̂2(i)| (4.87)

is now developed. To this end, let assume that the initialization of the algorithm is chosen
large enough to allow the approximation σ̂2 ≈ σ2, that suits with both hypotheses. Whatever
m = 0, ..., M − 1, each sample Wm is a zero-mean Gaussian process with variance σ2, |Wm|2
has a chi-square distribution χ22 with a degree of liberty equal to 2:

χ22(x) =
1

σ2
e−

x
σ2 . (4.88)

The mean and the variance of this distribution are equal to σ2 and σ4, respectively. In an
OFDM context, we reasonably suppose that M is large enough (e.g. M > 100) to consider
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that, from the central limit theorem, 1
M

∑M−1
m=0 |Wm|2 has a normal distribution N ∼ (σ2, σ4

M ),
and then 1

M

∑M−1
m=0 |Wm|2− σ̂2 has a centered normal distribution N ∼ (0, σ4

M ). Consequently,
the metricM = | 1M

∑M−1
m=0 |Wm|2 − σ̂2(i)| has a chi distribution χ1 with one degree of liberty:

pM(x) =

√
2

Γ(12)
√

σ4/M
exp

(

−1
2
(

x
√

σ4/M
)2
)

,under H0 (4.89)

The probability density functions of the metricM, according to H0 and H1

pM(x) =











√
2

Γ( 1
2
)
√

σ4/M
exp

(

−1
2(

x√
σ4/M

)2
)

, under H0

1
2LP L

s Γ(L)
xL−1 exp

(

− x
2Ps

)

, under H1

(4.90)

are depicted on Fig. 4.20 (b) using the following parameters: L = 4, Ps = σ2 = 1 and
M = 148.
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Figure 4.20 – pM(x) under hypotheses H0 and H1.

4.5.3.3 Analytical Expressions of Pd and Pfa

The detection and false alarm probabilities Pd and Pfa are obtained by integrating (4.90)
between the fixed level ς and +∞. For the calculation of Pd, the solution is given in [148]
and [149]:

Pd = P (M > ς|H1)

=

∫ +∞

ς

xL−1

2LP L
s Γ(L)

exp

(

− x

2Ps

)

dx

=
Γ(L, ς

2Ps
)

Γ(L)
, (4.91)

where Γ(., .) is the incomplete gamma function [147]. In the case H0, we have:
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Pfa = P (M > ς|H0)

=

∫ +∞

ς
pM(x)dx

=

∫ +∞

ς

√
2

Γ(12)
√

σ4/M
e
− 1

2
( x√

σ4/M
)2

dx. (4.92)

By using the change of variable X = x√
2σ4/M

, and knowing that Γ(12) =
√

π, one can recognize

the complementary error function erfc(x) = 1− erf(x):

Pfa =

∫ +∞

ς√
2σ4/M

2√
π

e−X2
dX

= erfc(
ς
√

M√
2σ2

). (4.93)

Since the incomplete gamma function is not directly invertible in (4.91), it is not possible to
derive an analytical expression of the threshold ς function of the target detection probability
P t

d. However, an approximation by means of a computer calculation or a series expansion of
the invert of (4.91), or a simple characterization of ς by simulations can be done. We shall
consider this third solution thereafter. Furthermore, the next section aims to characterize the
performance of the proposed detection algorithm, and the validity of the proposed analytical
developments.

4.5.4 Simulations Results

The parameters are the same as the ones used for the theoretical and the practical ap-
proach of the algorithm.

4.5.4.1 Choice of the threshold ς

Fig. 4.21 depicts the metric M = |M2 − σ̂2| versus the number of iterations, under the
hypotheses H0 and H1. The SNR is fixed equal to 0 dB. In presence of signal, the average
signal power Ps is equal to 1. The simulation is obtained thanks to 4000 simulation runs.

It can be seen that the a priori qualitative analysis is verified. Indeed, for a sufficient
number of iterations (according to the value eσ, as shown thereafter), M converges to Ps

under H1, and converges to zero under H0. It has been noticed that it is not possible to find
an exact value of ς according to P (M > ς|H1) = P t

d. However, it is observable on Fig. 4.21
that the choice of the threshold is not restricting. Indeed, choosing ς so small as desired ensures
a probability Pd close to one, and, for a sufficient number of iterations, it also ensure a low
value for Pfa. However, reducing the value of eσ increases the number of required iterations,
as shown in the following. For an expected detection probability, a trade-off between the
complexity and the acceptable level of false alarm probability has to be taken into account.
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Figure 4.21 – |M2 − σ̂2| versus the iterations number under H0 and H1, for SNR = 0 dB.

4.5.4.2 Effect on the Choice of eσ on the Detector Performance

It is shown in this section that the choice of the threshold eσ value does not have any effect
on the detection performance of the proposed method, but only plays a role on the speed of
convergence of the algorithm. Fig. 4.22 depicts the curves of probabilities of detection Pd and
false alarm Pfa versus the SNR from -15 dB to 10 dB. In order to ensure the convergence of
the algorithm, eσ must have a low value. Subfigures (a) and (b) then depict the curves Pd

and Pfa for eσ = 0.01 and eσ = 0.0001 respectively. According to these recommendations,
the initialization σ2(i=0) is equal to 40×M2. We also arbitrary fix the threshold ς = 0.01, its
effect on the detection performance being further studied. The figure is obtained thanks to
2000 simulation runs.
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(a) Detection and false alarm probabilities Pd and
Pfa versus SNR, for eσ = 0.01
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Figure 4.22 – Detection and false alarm probabilities in function of SNR, for two values eσ

and for a fixed value ς = 0.01.
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We observe that the curves of Pd and Pfa match from subfigure (a) to (b). Pfa is equal to
zero or nearly for all SNR values and Pd reaches one from SNR=-5 dB. The detector can then
reach the perfect one from SNR ≥ −5 dB, i.e. in low SNR environment. We conclude that,
assuming a value of eσ low enough to ensure the convergence of the algorithm, this threshold
does not have any effect on the detection performance of the proposed method.

Fig. 4.23 displays the iterations number the algorithm needs before it stops versus the
SNR from -10 to 10 dB. We consider three different values for the threshold: eσ= 0.01, 0.001
and 0.0001. The conditions of simulations remain the same.
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Figure 4.23 – Means of the number of iterations needed by the algorithm to stop versus SNR
(in dB), for three values of threshold eσ.

Although the figures 4.22 (a) and (b) present almost the same probabilities whatever the
threshold eσ, they differ from each other according to the number of iterations the algorithm
requires before stopping. Indeed, remembering that we compare |σ̂2(i) − σ̂2(i−1)| with eσ, the
lower eσ, the larger the number i of iterations needed to reach eσ. However, Fig. 4.23 shows
that the maximum mean of iterations is less than 7 for SNR=-10 dB and shows the maximum
mean of iterations is less than 5 for SNR=-10 dB and eσ = 0.0001, which is a reasonable num-
ber of iterations. We conclude that the choice of eσ has no effect on the detector efficiency,
while it allows the convergence of the algorithm. Furthermore, the number of required itera-
tions reasonably increases when eσ and the SNR have low values. The detector then remains
usable in practice under these conditions.

4.5.4.3 Receiver Operating Characteristic of the Detector

The performance of a detector is usually evaluated by means of the receiver operating
characteristic (ROC) curves, depicting the detection probability Pd function of the false alarm
probability Pfa. The optimal detector is logically reached at the point (Pfa = 0, Pd = 1). The
curve Pfa = Pd is called line of chance, and corresponds to a detector which make as much
good decisions as false alarms. If the ROC curve is above the first bisector, the detector is
qualified as efficient, since Pd > Pfa.
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Fig. 4.24 shows the ROC curves of the proposed detector for low SNR values: SNR = -10
dB and SNR = 0 dB. The conditions of simulation remain the same, and we fix the threshold
eσ = 0.01. The proposed detector is also compared to the usual energy detector, whose metric
M is equal to the second order-moment of the received signal M2. This metric is compared
to the threshold ς to obtain the following decision rule

H0, ifM < ς

H1, else.

Each point of the curves is obtained thanks to 2000 simulation runs.
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Figure 4.24 – Receiver operating characteristic (ROC) curves of the proposed method com-
pared to the energy detector for SNR=-10 dB and SNR=0 dB.

We observe that the proposed detector outperforms the energy detector, whatever the
SNR. The reason is that we consider the detection of a preamble transmitted over a Rayleigh
channel. As a consequence, the power of the received signal PS in (4.81) is not constant and
follows a chi-square distribution. The result of this is that, for simulations made at a fixed
SNR, the noise variance is also a varying process, which deteriorates the detector performance.
For more precisions, the theoretical development of the energy detection of signal with random
amplitude are given in [148,149]. Fig. 4.24 also confirms that the proposed detector is able to
reach the perfect detector for ς = 0.01. Indeed, for SNR=0 dB, we observe that ROC curve
reaches the point (Pfa = 0, Pd = 1), as we remarked in Fig. 4.22 for SNR ≥ −5 dB. We
conclude that the proposed detector is very efficient for the detection of preamble over fading
channels, even for low SNR values.

Fig. 4.25 compares the ROC curves of the proposed detector given by simulation with the
theoretical ones Pd and Pfa given by (4.91) and (4.93) respectively. It is observable that the
theoretical curve for SNR=0 dB is very close to the one obtained by simulation, whereas for
SNR=-10 dB, the difference is more noticeable. This observation tallies with the discussion
on the approximation σ̂2 ≈ 1

M

∑M−1
m=0 |Wm|2 in the calculation of the metric M under the

hypothesis H1. Indeed, this approximation is justified for high values of SNR, but becomes
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wrong for the very low SNR values. However, the theoretical curves allows to give an idea on
the detector performance for a given SNR, even for the low SNR values.
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Figure 4.25 – Comparison of the receiver operating characteristic (ROC) curves obtained by
simulation and in theory.

4.6 Conclusion

In this chapter, an MMSE-based algorithm for the joint SNR and channel estimations has
been presented. Unlike the technique presented in Chapter 3, the proposed method does not
require neither any a priori knowledge of the channel statistics nor the noise level. To this
end, the MMSE noise variance estimation feeds the LMMSE channel estimation, and vice
versa. A theoretical and a more realistic scenario of the algorithm have been proposed. In the
two cases, the convergence to a non-null solution has been proved. Moreover, compared to
several techniques of the literature, the performance of the estimator is close to the optimal
one, for both SNR and channel frequency response. Finally, based on the realistic scenario, an
application of the method to spectrum sensing has been presented. Thus, if a PU is detected,
the algorithm also estimates the channel and the SNR. If not, the SU can access the free band
and get a measure of the noise level, as depicted on Fig. 4.26.

Signal
Detector

SNR-Channel
Estimator

ĤLS

(Ĥ, ρ̂)
H1

H0
σ̂2

Figure 4.26 – Diagram of the proposed algorithm, usable as detector and estimator.

This figure is a summary of the chapter. The detector block has been presented in Section
4.5, and the channel-SNR estimator corresponds to the practical case of Section 4.4. To
conclude, the proposed algorithm has different applications with the same structure, so it
perfectly comes in the scope of cognitive radio.
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Chapter 5

Study of the Interpolation on the
Rayleigh Channel Estimation
Performance

5.1 Introduction

In a wide range of applications, when a function is known only in some points, an inter-
polation is necessary to estimate the function between the nodes. In some communications
standards, such as DRM/DRM+ [1], the pilots tones are sparse in the OFDM frame, so an
interpolation is performed to estimate the channel frequency response over the time-frequency
lattice. In the same way, the comb-type pilot arrangement requires an interpolation over the
frequency axis. Such interpolations lead to estimation errors, which can induce some errors
of decision and finally a corrupted signal at the receiver. It results an error floor on the BER
curves for high SNR level.

We here study interpolation methods based only on mathematics, such as the linear inter-
polation [25,27], but without physical consideration such as LMMSE [7,18] or using FFT [13].
In [150], the effect of several channel models (e.g. Rayleigh, Rice, Nakagami) have been stu-
died to express the theoretical symbol error rates (SER) of linear modulations in a single
carrier context. This study has been extended in [151, 152] to the effects of the channel es-
timation errors on the BER for a single carrier signal transmitted over a Rayleigh channel.
In an OFDM context, [153] shows the BER floor due to different interpolation methods and
for different constellation sizes. In [46, 154], an analytical expression of the SER and BER
for a transmission in presence of channel frequency offset and channel estimation errors is
derived for different modulation schemes. However, the developments are made by using the
probability density functions (pdfs) given in [155], in which the channel coefficients and the
error of estimation are supposed to be uncorrelated.

In this chapter, the effect of the estimation errors due to the interpolations is analytically
characterized by means of the MSE of the estimation and the error floor of the BER, in
an OFDM context. To this end, since we consider Rayleigh channels, it is possible to derive
the statistical parameters of the interpolation error, such as its variance, its mean or its
bias. Furthermore, it is shown that the channel coefficients and the errors are correlated, and
the correlation coefficient is expressed. In order to perform the analytical developments, two
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interpolation methods are considered: the nearest neighbor and the linear ones, although it
will be shown that the study can be done for all interpolation techniques from which it is
possible to theoretically derive statistics.

First, the statistics of the interpolation errors are derived, according to the interpolation
method and the frequency gap between two consecutive pilot tones δp (see Section 2.4.2).
Second, the MSE of the channel estimation is expressed thanks to these parameters. Finally,
the BER floor is given for two constellations sizes: a BPSK and a 4-QAM. To this end, a
geometrical analysis function of the constellation is proposed. A short study of the effect of
the interpolation errors on the BER floor has been presented in [43].

5.2 System Model

This section aims to recall some principles presented in Chapter 2 and to give the notations
and the simulations parameters used throughout this chapter. Let us consider OFDM symbols
with a comb-type pilot arrangement such as the pilot tones are evenly distributed in each
symbol, with a frequency gap noted δp. As illustrated on Fig. 5.1, three values δp ∈ {2, 3, 4}
are considered, so as to generalize the further developments whatever δp. On Fig. 5.1, the
pilot tones are black and the data carriers are white. For simulations reasons, each symbol
has M = 241 subcarriers. Indeed, it is noticeable that 241 = k × δp + 1. Furthermore, the
developments and the simulations are achieved without channel coding.

δp = 4δp = 3δp = 2

Figure 5.1 – Illustration of the pilot arrangements for different values of δp.

Thus, the carriers index m = p points out the pilot tones, such as p = 0, δp, ..., M − 1.
Since the interpolations methods are usually expressed for continuous functions, some

developments will be achieved in a continuous formalism. However, it will be shown that the
developments remain valid in the discrete formalism. Thus, the channel frequency response
will be equivalently expressed by

H(f) =
L−1∑

l=0

hle
−2jπfτl ⇐⇒ Hm =

L−1∑

l=0

hle
−2jπ

βlm

M , (5.1)

where βl = τl/τs, with τs the sampling time. In order to validate the further developments
by simulations, two channel noted H(1) and H(2) are considered. Their parameters (the delay
and variance of each non-null path) are summed up in Tables 5.1 and 5.2. We remind that σ2l
is the variance of the lth path. It can be seen that the number of paths, the maximum delay
and the variance of the channels differ from H(1) to H(2). Furthermore, it is verified that the
pilot gap δp is chosen according to

δf ≤
BC

2
⇐⇒ δp

Mτs
≤ 1

2βLτs
. (5.2)
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Table 5.1 – Channel H(1) parameters.
Channel H(1)

paths l 0 1 2 3
delays βl 0 6 13 16
variance σ2l 1 0.5 0.4 0.2

Table 5.2 – Channel H(2) parameters.
Channel H(2)

paths l 0 1 2 3 4 5 6
delays βl 0 4 9 14 16 18 21
variance σ2l 1 0.5 0.4 0.3 0.3 0.2 0.1

We remind that the frequency positions of the pilot tones are denoted fp and p in the
continuous and discrete formalism, respectively, and Np is the number of pilot tones by OFDM
symbol. Once more, let us assume that the power of the pilots is normalized, i.e. P = CpC∗p =
1. According to the pilot positions or not, the channel estimation is equivalently expressed by

Ĥ(f) =







Ĥ(f)LS = H(f) + W (f)
C(f) if f = fp

Ĥ(f)int + (W (f)
C(f) )

int if f 6= fp

⇐⇒ Ĥm =

{

ĤLS
m = Hm + Wm

Cm
if m = p

Ĥ int
m + (Wm

Cm
)int if m 6= p

,

(5.3)
where the exponent int denotes the interpolated values of the channel and the noise. Since
the channel and the noise are uncorrelated, the interpolation of the sum of the channel and
noise is the sum of the respective interpolations. A characterization of the interpolated noise
is given afterward.

5.3 Statistics of the Interpolation Errors

In this section, we first interest in the statistics of the error Hm−Ĥ int
m without taking into

account the noise. Second, the interpolated noise (Wm
Cm

)int is separately characterized. The
statistics of the noise and the channel estimation error will be then used in order to derive
the analytical expressions of the MSE and the BER floor.

5.3.1 Nearest Neighbor Interpolation

5.3.1.1 Notations and Reminder

As presented in Section 2.4.2, let us consider three consecutive frequency pilot positions
fp−δp , fp and fp+δp , such as fp is not at the edge of the channel, i.e. p /∈ {0, M−1}. We remind
that we denote fp− and fp+ the centers of the intervals [fp−δp , fp] and [fp, fp+δp ] respectively,
and, ∀f ∈ [fp− , fp+ ], the channel estimation made by a nearest neighbor (NN) interpolation
on this interval is
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Ĥ(f) = Ĥ(fp)
LS = H(fp) +

W (fp)

C(fp)
, (5.4)

where Ĥ(fp)
LS is the LS estimation performed on the position fp. Obviously, if p = 0 or p =

M−1, the NN interpolation is limited to the intervals [f0, f0+ ] and [fM−1− , fM−1], respectively,
but the expression (5.4) remains the same. Since the center of the intervals [fp−δp , fp] does
not necessarily match with an integer number in the discrete formalism, Fig. 5.2 displays
the discrete interval to be considered for the different δp values. Thus, the subscripts of the
interpolated value m 6= p can be expressed by m = p+k, where k ∈ {1} for δp = 2, k ∈ {−1, 1}
for δp = 3, k ∈ {−1, 1, 2} for δp = 4, and so on.

δp = 4δp = 3δp = 2

k = 1 k = 1
k = −1

k = 1
k = −1 k = 2

Figure 5.2 – Discrete intervals for the nearest neighbor interpolation, for different values of
δp.

5.3.1.2 Pdf of the Errors of the NN Interpolation

From (5.4), for a given frequency f 6= fp, the errors of the NN interpolation noted eh,NN

and ξNN are defined without taking into account the noise, such as

eh,NN = Ĥ(f)int −H(f)

ξNN = |Ĥ(f)int −H(f)|
= |H(fp)−H(f)|, (5.5)

and, by replacing H by its value given by (5.1), it yields

ξNN = |
L−1∑

l=0

hle
−2jπfpτl(1− e−2jπ∆f τl)|, (5.6)

where∆f = f−fp, which does not be mistaken with δf = fp+δp−fp. As e−2jπfpτl(1−e−2jπ∆f τl)
is deterministic, we conclude that, since |H(f)| follows a Rayleigh distribution, then ξNN is
also a Rayleigh variable. From (5.6), whatever p = 0, δp, .., M − 1 and whatever δp, we now
express ξNN in the discrete formalism:

ξNN = |
L−1∑

l=0

hle
−2jπ

pβl
M (1− e−2jπ

kβl
M )|. (5.7)
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It can be seen in (5.7) that the variance of ξNN depends on the value |k|, so it is better to
note the error ξk,NN . The variance of ξk,NN , noted σ2ξk,NN

, logically also depends on |k|, and
is defined by

σ2ξk,NN
= E{|ξ|2}

= E{




L−1∑

l1=0

hl1e−2jπ
pβl1

M (1− e−2jπ
kβl1

M )









L−1∑

l2=0

hl2e−2jπ
pβl2

M (1− e−2jπ
kβl2

M )





∗

}

= E{
L−1∑

l=0

|hl|2(2− e−2jπ
kβl
M − e2jπ

kβl
M )}

=
L−1∑

l=0

σ2l (2− 2 cos(2π
kβl

M
)). (5.8)

We observe in (5.8) that, since σ2ξk,NN
depends on |k|, it also depends on the considered gap

δp. Thus, for δp ∈ {2, 3}, |k| = 1, so σ2ξk,NN
takes a sole value. For δp = 4, |k| = 1 for two

thirds of the estimated carriers in a discrete interval described by Fig. 5.2, and |k| = 2 for
one third. Thus, we deduce the variance σ2ξNN

of the error ξNN (considered for all k)

σ2ξNN
= σ2ξ1,NN

=
L−1∑

l=0

σ2l (2− 2 cos(2π
βl

M
)), if δp ∈ {2, 3}

σ2ξNN
=
2

3
σ2ξ1,NN

+
2

3
σ2ξ2,NN

=
2

3

L−1∑

l=0

σ2l (2− 2 cos(2π
βl

M
)) +

1

3

L−1∑

l=0

σ2l (2− 2 cos(2π
2βl

M
)), if δp = 4, (5.9)

as well as the pdf pξNN
:

pξNN
(ξ) =

ξ

σ2ξ1,NN

e
− ξ2

2σ2
ξ1,NN , for δp = 2 and δp = 3

pξNN
(ξ) =

2

3
(

ξ

σ2ξ1,NN

e
− ξ2

2σ2
ξ1,NN ) +

1

3
(

ξ

σ2ξ2,NN

e
− ξ2

2σ2
ξ2,NN ), for δp = 4. (5.10)

The weights 2/3 and 1/3 in (5.9) and (5.10) correspond to the rate of the carriers such as
|k| = 1 and |k| = 2 divided by the number of data-carriers in each discrete interval described
on Fig. 5.2, for δ = 4. Figs. 5.3 (a) and (b) depicts the pdf pξNN

(ξ) for δp ∈ {2, 3, 4}. The
simulations curves are compared to the ones analytically obtained for both channels H(1) and
H(2). For the channel H(1), we have σ2ξ1,NN

= 0.092 and σ2ξ2,NN
= 0.3567. For the channel H(2),

we have σ2ξ1,NN
= 0.1908 and σ2ξ2,NN

= 0.73. We can see that the curves drawn by simulations
exactly match the ones drawn according to the theoretical expression (5.10), which validates
the development.

Since the curves perfectly match, the expression of pξNN
(ξ) can be reasonably extrapolated

whatever δp > 2:
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(a) NN interpolation, δp ∈ {2, 3}
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(b) NN interpolation, δp = 4

Figure 5.3 – Probability density function pξNN
(ξ) for the NN interpolation, comparison

between simulation and theory for δp ∈ {2, 3, 4} and for the channels H(1) and H(2).

pξNN
(ξ) =

1

δp − 1

ξ

σ2ξδp/2

e

− ξ2

2σ2
ξδp/2 +

2

δp − 1

δp/2−1
∑

k=1

ξ

σ2ξk

e
− ξ2

2σ2
ξk , if δp is even

pξNN
(ξ) =

2

δp − 1

(δp−1)/2∑

k=1

ξ

σ2ξk

e
− ξ2

2σ2
ξk , if δp is odd . (5.11)

The limit δp/2 (or δp − 1)/2) in the sum and the coefficient 2 which multiplies the sum are
due to the fact that σ2ξk

= σ2ξδp−k
.

5.3.1.3 Joint pdf of the Errors of the NN Interpolation

It is obvious from (5.1) and (5.6) that the channel frequency response and the interpolation
error are correlated. The model proposed in [155] is then not valid in this context. Since the
channel and the error follow a Rayleigh distribution (r = |H(f)| and ξ, respectively), we know
from [44,45] that the joint pdf of two correlated Rayleigh variables is It is obvious from (5.1)
and (5.6) that the channel frequency response and the interpolation error are correlated. The
model proposed in [155] is then not valid in this context. Since the channel and the error
follow a Rayleigh distribution (r = |H(f)| and ξ, respectively), we know from [44, 45] that
the joint pdf of two correlated Rayleigh variables is

pr,ξ(r, ξ) =
rξ

σ2rσ2ξ (1− ρ2rξ)
exp

(

−
σ2ξ r2 + σ2rξ2

2σ2rσ2ξ (1− ρ2rξ)

)

I0

(

rξρrξ

σrσξ(1− ρ2rξ)

)

, (5.12)

where ρrξ is the correlation coefficient between the channel and the error of estimation due to
the interpolation, which is noted ρrξ,NN in the case of a NN interpolation, and is expressed
by

120



5.3. Statistics of the Interpolation Errors 121

ρrξ,NN =
|E{H(f)e∗h}|

σhσξNN

=
|E{H(f)(Ĥ int(f)−H(f))∗}|

σhσξNN

=
|∑L−1

l=0 E{|hl|2(e2jπτl(fp−f) − 1)}|
σhσξNN

=
|∑L−1

l=0 σ2l (e
−2jπτl∆f − 1)|

σhσξNN

. (5.13)

In the discrete domain, the error depends on the value of k, so we obtain:

ρrξk,NN =
|∑L−1

l=0 σ2l (e
−2jπ

βlk

M − 1)|
σhσξk,NN

. (5.14)

Since it is not convenient to compare the simulated and analytical joint pdf, we derive from
(5.12) the conditional pdf pξ|r,ξk

(ξ|r, ξk) defined for a given value k by

pξ|r,ξk
(ξ|r, ξk) =

pr,ξk
(r, ξk)

pr(r)

=
ξ

σ2ξk
(1− ρ2rξk

)
exp

(

−
ρ2rξk

r2

2σ2r (1− ρ2rξk
)

)

exp

(

− ξ2

2σ2ξk
(1− ρ2rξk

)

)

× I0

(

rξρrξk

σrσξk
(1− ρ2rξk

)

)

. (5.15)

As it has been made for the pdf of ξ, the conditional pdf is also a weighted sum of the
conditional pdfs (5.15) for different k values, and for which the correlation coefficient given is
by (5.14) in the case of the NN interpolation. The generalized expression of the joint pdf is
directly given by:

pξ|r(ξ|r) =
1

δp − 1
pξ|r,ξδp/2

(ξ|r, ξδp/2) +
2

δp − 1

δp/2−1
∑

k=1

pξ|r,ξk
(ξ|r, ξk), if δp is even

pξ|r(ξ|r) =
2

δp − 1

(δp−1)/2
∑

k=1

pξ|r,ξk
(ξ|r, ξk), if δp is odd . (5.16)

The conditional pdf (5.16) is a general formulation, which can also be used for other interpo-
lation methods. Figs. 5.4 (a) and (b) display the conditional pdf pξ|r(ξ|r) for δp = 3 and H(1),
and δp = 2 and H(2), respectively. The correlation coefficients calculated by means of (5.14)
are equal to ρrξ1,NN = 0.6723 for the channel H1 and ρrξ1,NN = 0.7128 for the channel H2.
In order to validate the development whatever r, on each figure 5.4 (a) and (b), pξ|r(ξ|r) is
obtained conditionally to two different values r = 0.1 and r = 4. Since the functions are not
continuous in digital simulations, it is not possible to perform a perfect equality r = 0.1 or
r = 4. Here are the steps to get the simulations curves of Fig. 5.4:
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1. The channel samples Hm are created,

2. Due to H(f) is sampled into Hm, it is decided that |Hm| = r if r − 0.001 ≤ |Hm| ≤
r + 0.001,

3. The error ξ is measured conditionally to r.

Since r is approximated by the interval [r − 0.001; r + 0.001], it could explain the slight
difference between the simulations and the analytical curves.

First, it is noticeable that the correlation coefficients have high values (i.e. >0.5), so it
is verified that the uncorrelated model of [155] is not valid in the proposed context. Second,
the curves obtained by simulations match the analytical ones, so it validates the previous
theoretical developments.
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(a) δp = 3, channel H(1)
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Figure 5.4 – Conditional probability density functions pξ|r(ξ|r), comparison between analy-
tical and simulations curves.

5.3.2 Linear Interpolation

In this section, as previously, a similar development is performed for the linear interpo-
lation. We first recall the expression of the linear interpolation, for f ∈ [fp, fp+1], Ĥ(f) is
obtained by

Ĥ(f) = ĤLS(fp) + (f − fp)
ĤLS(fp+δp)− ĤLS(fp)

fp+δp − fp
, (5.17)

where ĤLS(fp) is the LS estimation performed on the pth pilot tone. We remind that, in this
section, we only interest to the interpolation errors, so (5.17) is rewritten without the noise
component by

Ĥ(f)int = H(fp) + (f − fp)
H(fp+δp)−H(fp)

fp+δp − fp
. (5.18)
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5.3.2.1 Pdf of the Errors of the Linear Interpolation

For the linear interpolation, it is known that the error between a given function g of class
C2 and its approximation ĝ by a linear function at a point x is given by

|g(x)− ĝ(x)| = 1

2
|(xp+δp − x)(xp − x)| × |g′′(y)|, (5.19)

where xp and xp+δp are two consecutive nodes such as ĝ(xp) = g(xp) and ĝ(xp+δp) = g(xp+δp),
and y ∈ [xp, xp+δp ]. The proof of this assertion is given in Appendix C. It is obvious that the
channel frequency response (5.1) is C2 on [f0, fM−1], so (5.19) can be used to determine the
error of interpolation noted ξli, on each interval [fp, fp+δp ]:

ξli = |H(f)− Ĥ(f)| = 1

2
|(fp+δp − f)(fp − f)| × |H ′′(α)|, (5.20)

where α ∈ [fp, fp+δp ] and

H ′′(f) = −4π2
L−1
∑

l=1

hlτ
2
l e−2jπfτl . (5.21)

It is obvious from (5.21) that if H(f) is a Rayleigh channel, then H ′′(f) also follows a Rayleigh
distribution. We then deduce the variance of H ′′(f)

σ2H′′ = E{H ′′(f)H ′′(f)∗}

=
L−1
∑

l=1

E{|4π2hlτ
2
l |2}

= 16π4
L−1
∑

l=1

τ4l σ2l , (5.22)

and by inserting (5.22) into (5.20), we deduce the variance of ξli:

σ2ξli
=
1

4
|(fp+δp − f)(fp − f)|2σ2H′′

= |(fp+δp − f)(fp − f)|24π4
L−1
∑

l=1

τ4l σ2l . (5.23)

In the discrete formalism, σ2ξli
depends on the value k, and we note σ2ξk,li

the variance given
by

σ2ξk,li
= |(p+ δp −m)(p−m)

M2
|24π4

L−1
∑

l=1

β4l σ2l

= |(δp − k)k

M2
|24π4

L−1
∑

l=1

β4l σ2l , (5.24)

for k = 1, .., δp−1. It is noticeable that if the channel tends to have flat fading (i.e. βl tends to
zero), then σ2ξk,li

logically tends to zero. Indeed, the linear interpolation of a constant function
leads to an error equal to zero.
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The pdf of the error of the linear interpolation is noted pξli
(ξ), and has exactly the same

formulation than the NN interpolation given by (5.10). Figs. 5.3 (a) and (b) depicts the pdf
pξli

(ξ) for δp = 2, 3. The simulations curves are compared to the analytical ones obtained for
both channels H(1) and H(2). We derive the values of σ2ξk,li

from (5.24):

– Channel H(1): σ2ξ1,li
= 0.0029 for δ = 2, and σ2ξ2,li

= σ1ξ1,li
= 0.0116 for δ = 3.

– Channel H(2): σ2ξ1,li
= 0.0086 for δ = 2, and σ2ξ2,li

= σ1ξ1,li
= 0.0344 for δ = 3.
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(a) Linear interpolation, δp = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

ξ

p
ξ(ξ

)

channel 1, simulation
channel 1, theory
channel 2, simulation
channel 2, theory

(b) Linear interpolation, δp = 3

Figure 5.5 – Pdf pξli
(ξ) for the linear interpolation, comparison between simulation and

theory for δp = 2, 3 and for the channels H(1) and H(2).

It can be seen that the simulations curves and the analytical ones match. It then validate
the previous development leading to the expression of the error variance (5.24). Furthermore,
we logically observe that the errors are closer to zero than for the NN interpolation, which is
in accordance with the fact that the linear interpolation is more precise than the NN one.

5.3.2.2 Joint pdf of the Errors of the Linear Interpolation

Since |H ′′(f)| in (5.21) also follows a Rayleigh distribution, the joint pdf pξ,r(ξ, r) of the
channel and the linear interpolation follows the distribution given by (5.12). We now express
the correlation coefficient ρrξ,li between the channel and linear interpolation error:

ρrξ,li =
|E{H(f)e∗h}|

σhσξli

=
1
2 |(fp+δp − f)(fp − f)| × |E{H(f)H ′′(f)∗}|

σhσξli

=
|(fp+δp − f)(fp − f)|2π2∑L−1

l=1 τ2l σ2l
σhσξli

. (5.25)

As previously, from (5.25), we notice that ρrξ,li depends on f . We directly derive the discrete
expression of the correlation coefficient depending on k and noted ρrξk,li:

ρrξk,li =
| (δp−k)k

M2 |2π2∑L−1
l=1 β2l σ2l

σrσξk,li

. (5.26)

124



5.3. Statistics of the Interpolation Errors 125

Figs 5.6 (a) and (b) display the conditional pdf pξ|r(ξ|r) = pξ,r(ξ, r)/pr(r), and compare the
analytical expressions with the curves obtained by simulations, for δp ∈ 2, 3 and r ∈ {0.1, 4}.
From (5.26), we derive the correlation coefficient values: ρrξ1,li = 0.5958 for H(1) and ρrξ1,li =
0.624 for H(2).

Once more, it can be seen that the simulations curves and the theoretical ones match,
whatever the channel and the value r, which validates the previous developments.
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Figure 5.6 – Conditional pdf pξ|r(ξ|r), comparison between analytical and simulations curves.

Finally, it has been shown that the statistics of the interpolation errors can be analyti-
cally derived. Although only two interpolation methods have been presented, it is possible to
express the statistical properties of the interpolation errors as soon as the interpolation has
an analytical expression of its error.

5.3.3 Statistics of the Interpolated Noise

Since the interpolation of the channel is independent from the one of the noise, we now
study the statistics of (Wm

Cm
)int (5.3) separately. Since it is assumed that |Cm| = 1, (Wm

Cm
)int

has the same statistics as Wm, and we simply note Ŵ int
m = (Wm

Cm
)int in the following.

5.3.3.1 NN-Interpolated Noise

Whatever the values of δp and k, and for a fixed p, the interpolated noise sample Ŵ int
m

such as with m = p+ k, is expressed by

Ŵ int
m = Wp/Cp. (5.27)

From (5.27), we simply deduce that the NN-interpolated noise has exactly the same statistics
as the initial noise Ŵm, i.e. Ŵ int

m ∼ N (0, σ2).

5.3.3.2 Linear-Interpolated Noise

Using the linear interpolation (5.17) in the discrete formalism and without taking into
account the channel, the expression of Ŵ int

m with m = p+ k is derived as:
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Ŵ int
m = Wp/Cp + k

Wp+1/Cp+δp −Wp/Cp

δp
. (5.28)

As whatever p = 0, δp, .., M − 1, we have E{Wp} = 0, we directly deduce that E{Ŵ int
m } = 0.

Since k appears in (5.28), the variance of the linear interpolated noise, noted σ2li,k, is a function
of k such as

σ2li,k = E{|Ŵ int
m |2}

= E{|Wp/Cp + k
Wp+1/Cp+δp −Wp/Cp

δp
|2}

= E{|Wp/Cp(δp − k) + kWp+1/Cp+δp

δp
|2}.

(5.29)

Reminding that the noise samples have the same variance and are uncorrelated, we get

σ2li,k =
(δp − k)2 + k2

δ2p
σ2. (5.30)

The total variance of Ŵ int
m , noted σ2li is the weighted sum of σ2li,k:

σ2li =
1

δp − 1
σ2li,δp/2 +

2

δp − 1

δp/2−1
∑

k=1

σ2li,k if δp is even

σ2li =
2

δp − 1

(δp−1)/2
∑

k=1

σ2li,k if δp is odd. (5.31)

In the same way, since the noise is considered to be Gaussian, then |Wp| follows a Rayleigh
distribution, and the distribution of |Ŵ int

m | noted pω,li(ω) with ω = |Ŵ int
m |, is expressed by

pω,li(ω) =
1

δp − 1

ω

σ2li,δp/2

e
− ω2

2σ2
li,δp/2 +

2

δp − 1

δp/2−1
∑

k=1

ω

σ2li,k
e
− ω2

2σ2
li,k if δp is even

pω,li(ω) =
2

δp − 1

(δp−1)/2
∑

k=1

ω

σ2li,k
e
− ω2

2σ2
li,k if δp is odd. (5.32)

Figs. 5.7 (a) and (b) depict the pdfs pω,li(ω) of the interpolated noise, for the NN and
the linear interpolations, respectively, and for δ ∈ 2, 4. The noise variance σ2 is normalized to
one in both figures. First, we observe that the simulations and the theoretical curves match,
which validates the previous developments. It is also observable on the subfigure (a) that the
pdf of the NN-interpolated noise remains the same whatever the value δp. On subfigure (b),
it can be seen that σ2li < σ2 = 1, i.e. the interpolated noise is a lower power than the initial
noise.

In this first part, the interpolation errors and the interpolated noise have been statistically
characterized. It can now be used to express the MSE of the LS with interpolations estimation,
and the BER floor, in the two next sections.
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Figure 5.7 – Pdfs of the module of the interpolated noise, for two interpolations methods,
and for δp = 2 and δp = 4.

5.4 Mean Square Error of the Estimations Performed with
Interpolation

In [34, 35], it is assumed that the mean square error of the estimations performed by
LS with interpolations cannot be analytically expressed. Thus, the different methods are
compared by means of simulations. In this section, thanks to the previous results concerning
the statistics of the interpolations errors, a theoretical expression of the MSE is proposed.

The mean square error of a given interpolation is noted MSEint and is written

MSEint =
1

M
E{||Ĥ−H||2F }. (5.33)

Each OFDM symbol being composed of pilot tones and data carriers, we split the development
into two parts. On each pilot tone, the MSE has already been expressed in Section 2.3. In
that case, the MSE is noted MSEp and it is recalled that

MSEp =
σ2

P . (5.34)

Although in this chapter, it is assumed that P = 1, we keep it in the development for providing
a general expression of the MSE. On the data carriers m 6= p, the MSE is noted MSEd, and
from (5.3), we obtain

MSEd = E{|Ĥ int
m + (

Wm

Cm
)int −Hm|2}, (5.35)

and as the noise and the channel are uncorrelated, it yields
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128 Chapter 5. Study of the Interpolation on the Rayleigh Channel Estimation Performance

MSEd = E{|Ĥ int
m + (

Wm

Cm
)int −Hm|2}

= E{|Ĥ int
m −Hm|2}+ E{|(Wm

Cm
)int|2}

= σ2ξ +
σ2int

P , (5.36)

where σ2int is equal to σ2 for the NN interpolation, and is equal to σ2li (5.31) for the linear
interpolation. Finally, the MSE is obtained by inserting (5.36) and (5.34) in (5.33):

MSEint =
Np

M

σ2

P +
M −Np

M
(σ2ξ +

σ2int

P ), (5.37)

where Np is the number of pilot tones in an OFDM symbol. Unlike the MSE of LS performed
on a preamble, MSEint tends to

M−Np

M σ2ξ for high SNR values. This is the result of the residual
error due to the interpolation. Applied to the NN and the linear interpolations, (5.37) becomes

MSENN =
σ2

P +
M −Np

M
σ2ξ

MSEli =
Np

M

σ2

P +
M −Np

M
(σ2ξ +

σ2li
P ). (5.38)

Figs. 5.8 (a) and (b) display the MSE of the channel estimations (H(1) and H(2), respec-
tively) performed with the NN and linear interpolations versus the linear SNR. Two values
δ ∈ {2, 4} are considered. For δp = 4, the channel variances for the linear interpolation are
σ21,li = 0.0262 and σ22,li = 0.0465 for the channel H(1) and σ21,li = 0.0773 and σ22,li = 0.1375 for
the channel H(2). The variance values for the NN interpolation have been previously given.
The curves are obtained by means of 2400 simulations runs.
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Figure 5.8 – MSE of the channel estimation performed with NN and linear interpolation,
for δp ∈ {2, 4}, and for the channels H(1) and H(2).
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We observe that the theoretical curves and the ones drawn by simulations perfectly match.
It then validates all the developments concerning the statistics of the interpolations errors,
and the interpolated noise. As expected, the MSE reaches an error floor. Furthermore, these
errors floors are higher for the channelH(2) (subfigure (b)) than for the channelH(1) (subfigure
(a)). This is in accordance with the theory, since H(2) is more frequency selective than H(1).
In addition to the MSE, the following section shows that it is possible to analytically measure
the BER floor reached for high SNRs.

5.5 Geometrical Considerations

5.5.1 System Model

In this section, the error floor reached by the BER curves for high SNR values is ana-
lytically evaluated when interpolation errors occur. As it is assumed high SNR values, the
noise is then neglected, in order to only consider the residual errors due to the interpolations.
Since we focus on the effects of the interpolations errors on the BER, the geometry of the
constellation has to be taken into account. In the following, a BPSK (C ∈ {−1,+1}) and a
4-QAM (C ∈ {+−d+−jd}) mapped with a Gray encoding are considered, as depicted on Fig.
5.9, with C a transmitted symbol and d a normalization coefficient.

Q

I

0010

0111

d

d-d

-d

0 1

+1-1
I

BPSK

4-QAM

Figure 5.9 – BPSK and 4-QAM constellations with Gray encoding.

At the receiver side, the channel is estimated by means of LS with interpolations. Then,
the received symbol is estimated by a simple zero forcing equalizer. As the noise is supposed
to be null, the estimated symbol Ĉ is written as follows

Ĉ =
H(f)

H(f) + eh
C. (5.39)

For a BPSK, the decision domains are exactly symmetric for C =+
− 1. Let us then set C = +1

in the following developments. The probability of detection error, noted P BP SK
e is then given

by

P BP SK
e = P

(

Re{Ĉ} < 0|C = 1
)

. (5.40)
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130 Chapter 5. Study of the Interpolation on the Rayleigh Channel Estimation Performance

In the same way for a 4-QAM, and as mentioned in [46], the decision domains are exactly
symmetric according to the Q and I axes for the most significant bit (MSB) and for the
least significant bit (LSB), respectively. Thus, let us then set C = +d + jd in the following
developments. In that case, the probability of error of detection, noted P 4QAM

e is then given
by

P 4QAM
e = P

(

Re{Ĉ} < 0|C = d+ jd
)

. (5.41)

For a given value |H(f)| = r, we denote the complex expressions of the channel H(f) = rejΘH

and the error eh = ξejΘξ , and we define Θ = ΘH − Θξ. Let us now derive the analytical
expression of (5.40) and (5.41).

5.5.2 BPSK Constellation

The inequality in (5.40) is developed:

Re{Ĉ} < 0 with C = 1

⇔ Re{ H(f)

H(f) + eh
× 1} < 0

⇔ Re{H(f)(H(f) + eh)
∗

|H(f) + eh|2
} < 0

⇔ Re{rejΘH (re−jΘH + ξe−jΘξ)

|H(f) + eh|2
} < 0

⇔ r2 + rξ cos(ΘH −Θξ)

|H(f) + eh|2
=

r2 + rξ cos(Θ)

|H(f) + eh|2
< 0. (5.42)

Since |H(f) + eh|2 > 0, we limit the study to the numerator of (5.42). It can be seen that
if ξ ≤ r, then ∀ Θ ∈ [0, 2π] the inequality cannot be valid because −1 ≤ cos(Θ) ≤ 1. Thus,
P BP SK

e = 0 as long as ξ ≤ r. For ξ ≥ r, the inequation (5.42) is valid for

Θ ∈ [− arccos(−r

ξ
), arccos(−r

ξ
)]. (5.43)

As Θ is defined in [0, 2π], we then express P BP SK
e for ξ ≥ r as a function of r and ξ

P BP SK
e =

arccos(− r
ξ )− (− arccos(− r

ξ ))

2π

= 1−
arccos(− r

ξ )

π
, (5.44)

and then, finally, P BP SK
e is expressed by

P BP SK
e =







0 if ξ ≤ r

1− arccos(− r
ξ
)

π if ξ ≥ r
. (5.45)

As arccos(1)
π = 1, then P BP SK

e is a continuous function on R
+. From the conditional pdf

pξ|r(ξ|r), we extract the conditional pdf of errors of estimation causing a wrong decision on
the bits for a BPSK, that we denote Φξ|r,BP SK(ξ|r,Re{Ĉ} 6= Re{C}):
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5.5. Geometrical Considerations 131

Φξ|r,BP SK(ξ|r,Re{Ĉ} 6= Re{C}) = P BP SK
e pξ|r(ξ|r). (5.46)

For a reason of clarity, but in order to validate the previous developments, the simulations
are performed by supposing that the channel and the errors are uncorrelated, i.e. ρrξ = 0.
Indeed, (5.46) is obtained independently of the pdf, so it is reasonable to suppose that if it
is validated for a given pdf, it can be generalized whatever the pdfs. Thus, Fig. 5.10 displays
the Rayleigh density pξ|r(ξ|r) for r = 1, σ2ξ = 1, ρrξ = 0 (i.e. pξ(ξ)) and the extracted function

Φξ|r,BP SK(ξ|r,Re{Ĉ} 6= Re{C}), drawn by simulations and by means of (5.46). The curves
are obtained thanks to 106 bits.

It is verified that Φξ|r,BP SK(ξ|r,Re{Ĉ} 6= Re{C}) = 0 for ξ ≤ r, with r = 1 in the
simulation. Furthermore, the theoretical curve and the one drawn by simulations exactly
match, so it validates the previous developments for the BPSK.
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Figure 5.10 – Extracted conditional pdf Φξ,BP SK(ξ|r), for a BPSK.

5.5.3 4-QAM Constellation

5.5.3.1 Getting the Polynomial to be Studied

The inequality Re{Ĉ} < 0 in (5.41) is developed knowing that C = d+ jd:

Re{Ĉ} < 0

⇔ Re{ H(f)

H(f) + eh
C} < 0

⇔ Re{ H(f)

H(f) + eh
(d+ jd)} < 0

⇔ Re{H(f)(H(f) + eh)
∗

|H(f) + eh|2
(1 + j)} < 0

⇔ Re{H(f)(H(f) + eh)
∗(1 + j)} < 0 (5.47)
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132 Chapter 5. Study of the Interpolation on the Rayleigh Channel Estimation Performance

It can be seen that the d value does not have any effect on the detection error. We recall that
we denote H(f) = rejΘH , eh = ξejΘξ and Θ = ΘH −Θξ to continue the development as

Re{H(f)(H(f) + eh)
∗(1 + j)} < 0

⇔ Re{(rejΘH (re−jΘH + ξe−jΘξ))(1 + j)} < 0

⇔ Re{(r2 + rξej(ΘH−Θξ))(1 + j)} < 0

⇔ r + ξ(cos(Θ)− sin(Θ)) < 0 (5.48)

If we set t = tan(Θ2 ), then we get cos(Θ) =
1−t2

1+t2 and sin(Θ) = 2t
1+t2 , and (5.48) becomes

r + ξ(cos(Θ)− sin(Θ)) < 0

⇔ r(1 + t2) + ξ(1− t2 − 2t)

1 + t2
< 0. (5.49)

Since 1 + t2 > 0 whatever the value of t, we study the sign of the numerator in (5.49), and
we denote Q the polynomial:

Q(t) = t2(r − ξ)− 2ξt+ r + ξ. (5.50)

5.5.3.2 Study of the Polynomial Q

We look for the roots of Q, by deriving its discriminant:

∆Q = 4ξ2 − 4(r2 − ξ2). (5.51)

The polynomial Q has roots if ∆Q ≥ 0, that is if

ξ ≥ r√
2

. (5.52)

Furthermore, we notice in (5.50) that Q is convex if ξ < r and concave if ξ > r. Thus, we
deduce that the solution of (5.48) depends on the value of ξ:

1. ξ ∈ [0, r√
2
[: Q is convex and has no root, so (5.48) is not valid for any value Θ. In this

interval, the probability P 4QAM
e is then equal to zero.

2. ξ ∈ [ r√
2
, r[: Q is convex and has two roots t−2 and t+2 such as

t±2 =
2ξ+−

√

∆p

2(r − ξ)
, (5.53)

so the inequation Q(t) < 0 is valid for t ∈ [t−2 , t+2 ]. We deduce that (5.48) is valid for

Θ ∈ [2 arctan(t−2 ), 2 arctan(t+2 )]. (5.54)

In this interval, the probability P 4QAM
e is then equal to

P 4QAM
e =

2arctan(t+2 )− 2 arctan(t−2 )
2π

=
arctan(t+2 )− arctan(t−2 )

π
. (5.55)
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3. ξ ∈ [r,+∞[: Q is concave and has two roots t−3 and t+3 such as

t±3 =
2ξ−+

√

∆p

2(r − ξ)
, (5.56)

so the inequation Q(t) < 0 is valid for t ∈]−∞, t−3 ] ∪ [t+3 ,+∞[. We deduce that (5.48)
is valid for

Θ ∈
[

−π, 2 arctan(t−3 )
]

∪
[

2 arctan(t+3 ), π
]

. (5.57)

In this interval, the probability P 4QAM
e is then equal to

P 4QAM
e =

π − 2 arctan(t+3 ) + 2 arctan(t−3 ) + π

2π

= 1 +
arctan(t−3 )− arctan(t+3 )

π
. (5.58)

From the conditional pdf pξ|r(ξ|r), we extract the pdf of errors of estimation causing wrong
decision on the bits for a 4-QAM, that we denote Φξ,4QAM (ξ|r). Since the I and Q components
of the 4-QAM constellation are symmetric, we get

Φξ,4QAM (ξ|r) = P 4QAM
e pξ|r(ξ|r) =







0, if 0 ≤ ξ ≤ r√
2

arctan(t+
2 )−arctan(t

−
2 )

π pξ|r(ξ|r), if r√
2
≤ ξ ≤ r

(1 +
arctan(t−3 )−arctan(t

+
3 )

π )pξ|r(ξ|r), if r ≤ ξ

(5.59)

The continuity of Φξ,4QAM (ξ|r) is verified on the points ξ = r√
2
and ξ = r:

1. On ξ = r√
2
: ∆Q = 0, which yields t−2 = t+2 and so P 4QAM

e = 0.

2. On ξ = r: We use a Taylor expansion to get a definite form of t+3 . By setting x = ξ − r
and X = 4

r x + 2
r2 x2, we obtain ∆Q = 4r2(1 + X). Thus, it is possible to develop t+3

when ξ tends to r. Indeed, as
√
∆Q ∼ 2r(1 + 1

2X), we get

lim
ξ→r

t+3 = lim
x→0

−2x− 2
r x2

−2x
= 1. (5.60)

For the limit of t−3 , we directly get limξ→r+ t+3 = −∞. Thus, P 4QAM
e in (5.58) is equal to

1
4 . Based on the same reasonment, we trivially get the same result for P 4QAM

e in (5.55).

Fig. 5.11 depicts the Rayleigh density pξ|r(ξ|r) and the function Φξ|r,4QAM (ξ|r,Re{Ĉ} 6=
Re{C}) drawn with the same parameters as previously. Once more, it is verified that the theo-
retical curve and the one drawn by simulation perfectly match. It validates the development
made for the 4-QAM.
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Figure 5.11 – Extracted conditional pdf Φξ,4QAM (ξ|r), for a 4-QAM.

5.5.4 Analytical Expression of the BER Floor

Finally, the bit error rate floor, noted BERfloor, is the double integral of the conditional
pdf Φξ|r,const(ξ|r,Re{Ĉ} 6= Re{C}) multiplied by pr(r). Some simplifications lead to:

BERfloor =

∫ +∞

0
pr(r)

∫ +∞

0
Φξ|r,const(ξ|r,Re{Ĉ} 6= Re{C})dξdr

=

∫ +∞

0
pr(r)

∫ +∞

0
P const

e pξ|r(ξ|r)dξdr

=

∫ +∞

0

∫ +∞

0
P const

e pr,ξ(r, ξ)dξdr, (5.61)

where P const
e depends on the constellation.

5.6 Simulation Results

5.6.1 Simulations Parameters

In order to make the simulations reproducible, all the parameters (i.e. the error variances
and the correlation coefficients) are summed up in Tables 5.3 and 5.4.

5.6.2 Analytical BER Floor

In a first time, the BER floor values analytically calculated with (5.61) are computed
for all the parameters, and summarized in Tables 5.5 and 5.6. It is verified that the NN
interpolation is less efficient than the linear one, and the BER floor logically increases with
δp.

In a second time, it is shown on Figs. 5.12 and 5.13 that the simulated BER curves
match the BER floor values. Fig. 5.12 display the BER curves versus the SNR for the NN
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Table 5.3 – NN interpolation parameters.
Nearest Neighbor Interpolation

δp = 2 ; δp = 3 δp = 4

Channel σ2ξ1,NN
= 0.0092 σ2ξ1,NN

= 0.0092 ; σ2ξ2,NN
= 0.3567

H(1) ρ2rξ1,NN
= 0.6723 ρ2rξ1,NN

= 0.6723 ; ρ2rξ2,NN
= 0.6712

Channel σ2ξ1,NN
= 0.1908 σ2ξ1,NN

= 0.1908 ; σ2ξ2,NN
= 0.73

H(2) ρ2rξ1,NN
= 0.7128 ρ2rξ1,NN

= 0.7128 ; ρ2rξ2,NN
= 0.7061

Table 5.4 – Linear interpolation parameters.
Linear Interpolation

δp = 2 δp = 3 δp = 4

Channel σ2ξ1,li
= 0.0029 σ2ξ1,li

= 0.0116 σ2ξ1,li
= 0.0262 ; σ2ξ2,li

= 0.0465

H(1) ρ2rξ1,li
= 0.5958 ρ2rξ1,li

= 0.5958 ρ2rξ1,li
= 0.5946 ; ρ2rξ2,li

= 0.5951

Channel σ2ξ1,li
= 0.0086 σ2ξ1,li

= 0.0344 σ2ξ1,li
= 0.0773 ; σ2ξ2,li

= 0.1375

H(2) ρ2rξ1,li
= 0.624 ρ2rξ1,li

= 0.624 ρ2rξ1,li
= 0.6244 ; ρ2rξ2,li

= 0.6242

interpolation, and Fig. 5.13 for the linear interpolation. In order to validate the proposed
developments, the simulations are made for both channels H(1) and H(2), and for δp ∈ {2, 4}.
The curves are obtained thanks to 2× 106 bits.

It can be seen on Figs. 5.12 and 5.13 that, whatever the chosen set of parameters, the
simulated curves reach a BER floor which match or almost match with the analytical values.
The very slight differences can be explained by the fact that the integral (5.61) is calculated
in a discrete formalism. However, the results allow to validate the theoretical developments
proposed in this chapter.

Table 5.5 – Analytical BER floor for the NN interpolation.
Nearest Neighbor Interpolation
δp = 2, δp = 3 δp = 4

BPSK 6.0× 10−3 1.2× 10−2 Channel
4-QAM 1.23× 10−2 2.64× 10−2 H(1)

BPSK 8.6× 10−3 1.72× 10−2 Channel
4-QAM 1.82× 10−2 4.05× 10−2 H(2)
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136 Chapter 5. Study of the Interpolation on the Rayleigh Channel Estimation Performance

Table 5.6 – Analytical BER floor for the linear interpolation.
Linear Interpolation

δp = 2 δp = 3 δp = 4

BPSK 2.52× 10−4 8.76× 10−4 2.5× 10−3 Channel
4-QAM 4.46× 10−4 1.9× 10−3 5.1× 10−3 H(1)

BPSK 4.59× 10−4 1.9× 10−3 5.3× 10−3 Channel
4-QAM 9.38× 10−4 3.8× 10−3 1.07× 10−2 H(2)
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Figure 5.12 – BER of the channel estimation performed with NN interpolation, for δp ∈
{2, 4}, and for the channels H(1) and H(2).
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Figure 5.13 – BER of the channel estimation performed with linear interpolation, for δp ∈
{2, 4}, and for the channels H(1) and H(2).
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5.7 Conclusion

In this chapter, a theoretical study of the interpolation errors applied to the channel
estimation has been presented. First, a characterization of the errors statistics is performed,
and a geometrical analysis of the effect of the error on the constellation has been made. Then,
an analytical expression of the MSE of the LS estimation performed with interpolation has
been derived, just as the expression of the BER floor. For a given channel, these values are
function of the frequency gap between the pilot tones δp, the interpolation technique and the
constellation size. It differs from the existing work of the literature, as the errors and the
channel are correlated, and the MSE and BER can be exactly characterized.

The developments have been made for the nearest neighbor and the linear interpolations,
and for the BPSK and the 4-QAM constellations. Thus, further works are going to be achieved
to extend the proposed study to other interpolation methods, and constellations of highest
orders. Moreover, the proposed analysis can be used in other contexts, in which interpolations
of random functions are required. For instance, one can reasonably imagine that it can be
used in image processing, in order to characterize the quality of resolution increasing.
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Chapter 6

Application of Cyclic Delay
Diversity to a Single Frequency
Network

6.1 Introduction

This chapter presents some transmission diversity techniques, and especially studies the
cyclic delay diversity (CDD). In single frequency networks (SFNs), it may appear that flat
fading corrupts the signal over all the bandwidth. Contrary to the model of Section 3.5, this
is due to a particular kind of multipath channel, where the delays are very short. In that
case, the frequency multiplexing of the OFDM becomes useless, as all the carriers may be
disrupted. The principle of the CDD is to artificially increase the frequency selectivity in order
to retrieve the frequency diversity of the OFDM.

This study has been made in the framework of the project OCEAN, in which an analytical
work and a measure campaign have been achieved. Thus, it is an application of the cyclic
delay diversity to the DRM/DRM+ standard [1]. Consequently, as the pilot tones are in
staggered rows in the frame, an interpolation is required for the channel estimation. Thus, it
will be shown that the increase of the frequency selectivity has to be taken into account in
the choice of the interpolation method. The results have been presented in [47]

First, some diversity techniques are presented, with their field of application, their ad-
vantages and drawbacks. Second, we focus on the delay diversity in a simple model with two
cells, which is extended to a multi-cell network. Furthermore, the impact of the CDD on the
channel estimation is shown.

6.2 Different Kinds of Diversity

The goal of the diversity is to statistically increase the quality of the received signal. To
this end, the signal is transmitted via different channels. Indeed, a signal that produces errors
through a given channel may become error-free if it is transmitted over another channel. As
presented in this part, the increase of the received signal quality can be obtained by several
ways, like the time, frequency, polarization or spatial diversity.
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6.2.1 Time Diversity

The principle of the time diversity is to transmit, from one antenna, the same signal over
two time uncorrelated channels. If we denote ∆T the delay between the transmission of the
two signals, it is known that the two channels are uncorrelated if

∆T > TC . (6.1)

A more precise approximation of the coherence time than the one given in Chapter 1 is

TC =
√

9
16πν2

Dmax

≈ 0.423
νDmax

(see [68]), where νDmax is the maximum Doppler spread. In order

to illustrate the time uncorrelation effect on the efficiency of the delay diversity, Fig. 6.1
depicts the BER curves versus Eb/N0 for three different ∆T values: ∆T = 20, 200, and 400
ms. We consider the US Consortium channel, whose parameters are given in Table 1.1 of the
section 1.4. We recall that νDmax = 2 Hz, so the coherence time TC is equal to 211.5 ms. The
robustness mode C is considered for the simulations. A 64-QAM constellation maps symbols
that are transmitted without any channel encoding. A LS estimation is performed on the
pilot tones, and a spline interpolation is made to get the channel frequency response over the
complete time and frequency lattice. Assuming the robustness mode C, the three different
values of ∆T correspond to one OFDM symbol duration Ts, ten OFDM symbols duration and
one OFDM frame duration, respectively.
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Figure 6.1 – BER curves of transmissions with time diversity versus Eb/N0, comparison
between three delays ∆T = 20, 200, and 400 ms.

We notice on Fig. 6.1 that the four BER curves all reach an error floor. This is due to
the interpolation which creates some errors of estimation, as it has been studied in Chapter
5. Furthermore, as we consider a transmission without channel encoding, these errors are
not mitigated. However, we notice that the greater ∆T , the lower the BER. This result is in
accordance with the uncorrelation condition given in (6.1). Indeed, for ∆T = 400 ms, the bit
error rate is eight times lower than a transmission without time diversity.

Finally, one can verify the BER gain brought by the time diversity. Nevertheless, the main
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drawback of this kind of diversity is the data rate loss. Indeed, transmitting two times the
same signal divides the data rate by two. The time diversity is then rarely used in transmission
schemes.

6.2.2 Spatial Diversity

6.2.2.1 Principle of the MIMO

The principle of the spatial diversity is based on the use of multiple antennas at the trans-
mitter and/or at the receiver. This principle, illustrated on Fig. 6.2 with NT transmitting
antennas and NR receiving antennas, is called multi-input multi-output (MIMO). The asso-
ciated variants are the MISO and SIMO, in the presence of a unique antenna at the receiver
and a unique antenna at the transmitter, respectively. In such transmissions, the uncorrelation
between the different versions of the signal depends on the distance between the antennas at
both the transmitter and the receiver side. The spatial correlation will be studied in Section
6.2.2.2. As shown in Fig. 6.2 in the case of the transmission of an OFDM signal, the MIMO
channel is composed of NT ×NR SISO channels. However, the MIMO technique can be used
as well for the single as the multicarrier signals.

Figure 6.2 – Diagram of a NT ×NR MIMO system.

The mathematical expression of the received signal on the kth antenna is given by

un,k =
NT∑

i=1

hn,i,ksn,i +wn,k, (6.2)

or, equivalently in the frequency domain:

Un,k =
NT∑

i=1

Hn,i,kCn,i +Wn,k. (6.3)

where i ∈ {1, 2, .., NT } and k ∈ {1, 2, .., NR} are the subscripts of the transmitting and the
receiving antennas, respectively. As mentioned in [156], a "diversity gain" is obtained if the
same signal is transmitted over the NT × NR channels. In order to minimize the errors in
the received signal, different kinds of combination of the NR outputs can be performed [157].
The most simple is the equal-gain combining. In that case, the NR versions of the signal are
averaged to get final signal. Another solution is to choose the output whose signal maximizes
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142 Chapter 6. Application of Cyclic Delay Diversity to a Single Frequency Network

the SNR. Whatever the chosen combination of the outputs, this MIMO scheme has the same
data rate as in a SISO one, but the fading disrupting the signal statistically decrease if the
NT ×NR branches are uncorrelated enough.

It is also possible to get a "multiplexing gain" if each of the NT antennas transmits a
different signal. In that case, it is possible to separate the different signals only if NR ≥ NT .
In an OFDM context, the usual expression [158–160] of such a MIMO transmission is derived
from (6.3), and expressed for each subcarrier m, m = 0, 1, ..., M − 1 as

UMIMO
m,n = HMIMO

m,n CMIMO
m,n +WMIMO

m,n , (6.4)









Um,n,0

Um,n,1

...

Um,n,NR−1









=










Hm,n,0,0 Hm,n,1,0 · · · Hm,n,NT−1,0

Hm,n,0,1
. . . Hm,n,NT−1,1

...
. . .

Hm,n,0,NR−1 · · · Hm,n,NT−1,NR−1


















Cm,n,0

Cm,n,1

...

Cm,n,NT−1









+









Wm,n,0

Wm,n,1

...

Wm,n,NR−1









. (6.5)

Let us assume that NT = NR. Thus, the recovery of the transmitted symbols is possible only
if HMIMO

m,n is invertible. The channel matrix is invertible only if the rank of HMIMO
m,n is equal

to NT . This condition is verified only if the NT ×NR paths are uncorrelated. Finally, the gain
(in term of data rate) is effective only if NR ≥ NT . The second condition is the uncorrelation
between the channels, which is ensured only if the antennas are sufficiently spaced out from
one to the other. In a general way, the authors of [161] show that data rate increases when
the correlation decreases.

6.2.2.2 Spatial Correlation

a. Correlation at the Receiver

Practically, in multi-antennas systems, there is a coupling between the antennas. This
coupling is characterized by a correlation coefficient, depending on the distance between the
antennas, the wavelength of the signal, the distance between the transmit/receiving antennas
and the scatterers, and their arrangement. Fig. 6.3 illustrates the transmission of a signal
coming from one single scatterer to a pair of receiving antennas.

We denote Θ the angle between the path and the bissection of the segment formed by
the two antennas. Furthermore, we suppose that the distance to the scatterer is much greater
than the spacing d between the antennas. From [157], we express the correlation coefficient
ρr(d) between the two antennas:

ρr(d) =

∫ 2π

Θ=0
pΘ(Θ)exp(jαd sin(Θ))dΘ, (6.6)

where α is a real number, and pΘ(Θ) is the probability density function of Θ. The subscript r
of ρr(d) means "receiver". Let us assume a usual model, in which the scatterers are uniformly
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Figure 6.3 – Two correlated receiving antennas, reproduced from [157] with the permission
of the author.

distributed around the receiving antennas. In that case, pΘ(Θ) is a uniform probability density
function on the interval [0; 2π]. Then, the integral (6.6) yields

ρr(d) = J0

(
2πd

λ

)

, (6.7)

where λ is the wavelength of the signal and J0 is the Bessel function of the first kind with
order zero. We observe that the expression (6.7) is quite similar to the expression of the
time correlation function of the mobile channel (1.13) given in Chapter 1. Fig. 6.4 shows the
magnitude of the correlation coefficient |ρr| versus d/λ. We observe that a low correlation can
be obtained for a spacing d/λ between the antennas about 0.5. For instance, if we consider
a transmission at a frequency equal to 100 MHz (in the current FM bands or using the
DRM/DRM+ standard), ρr reaches a low value for d = 1.5 m. In such a condition, we
conclude that designing a spatial diversity at the receiver is hardly feasible in practice. Indeed,
separating two receiving antennas by d = 1.5 m is hard to conceive for domestic radio sets.
However, we may imagine such a possibility in another context (DRM receiver for cars for
instance).
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Figure 6.4 – Spatial correlation between two receiving antennas versus d/λ.
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b. Correlation at the Transmitter

In order to express the correlation between two transmit antennas, let us assume a usual
model in which the scatterers are uniformly distributed around the mobile station, as illus-
trated in Fig. 6.5. We also suppose that the scatterers are at the same altitude as the mobile
station. We define r the distance between the base station and the mobile station, and rs the
scattering radius, i.e. the distance between the mobile station and the scatterers.

Figure 6.5 – Base station transmitting on reflectors arranged around the mobile station,
reproduced from [157] with the permission of the author.

From [60, 157], we directly express the correlation coefficient ρt(d) between two antennas
of the base station:

ρt(d) = J0

(
2πd

λ

rs

r
cos(Θ)

)

J0

(

πd

λ
(
rs

r
)2
√

1− 3

4
sin2(Θ)

)

. (6.8)

where the subscript t of ρt(d) means "transmitter". For a ratio rs
r = 0, 01 and an angle

Θ = 45o, |ρt(d)| is plotted on Fig. 6.6, showing the magnitude of the correlation coefficient
versus d/λ. We observe that in order to get ρt < 0.1, d/λ has to be around 50. If we keep
the same parameters as previously (simulating a transmission with DRM/DRM+ standard),
the distance d between the transmit antennas must be about 150 m. Once again, we conclude
that, in DRM/DRM+ standard, the device is not feasible in practice.
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Figure 6.6 – Spatial correlation between two transmitters versus d/λ.
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The two aforementioned models are simple, but they highlight the problem of the spatial
correlation in MIMO system. In practice, as we consider an isotropic transmitter, the incident
directions of the different paths are not necessarily in the plane of the antennas. For instance
in the DRM standard, ionospheric reflections are considered. Furthermore, the arrangement
of the scatterers is not necessarily a ring around the mobile station. In order to complete
this short description, some other models are presented in [161–163]. Finally, we conclude
that the MIMO technique provides a high diversity gain, but it loses its advantage when the
antennas are correlated. Since this correlation depends on the space between the antennas
and the wavelength of the signal, MIMO is very hardly implementable in the context of the
DRM standard, for instance.

6.2.3 Polarization Diversity

In the environments or standards in which the spatial diversity is unsuitable, it is possible
to implement the polarization diversity, based on the polarization of the electrical field. To this
end, the mobile station is composed of two antennas in the same plane but whose directions
differ with regard to the ground. The principle of this diversity is presented in [164] in a
simple case, in which the signal is considered in an azimuth plane that is orthogonal to the
plane of the antennas. A generalized model is provided in [157], and described in Fig. 6.7.
In this model, we suppose that the arrival directions of the different signal components are
not restricted to the azimuth plane. Let us define Ex and Ey the components of the electrical
field. The induced voltages V1 and V2 in the antennas (1 and 2) are functions of the angles α,
Ω, Φ and θ:

V1 = a(α,Ω,Φ)Ex + b(α,Ω, θ)Ey

V2 = c(α,Ω,Φ)Ex + d(α,Ω, θ)Ey, (6.9)

where the expressions of a, b, c and d are given in [157]. The complex correlation coefficient
is then calculated by

ρ12 =
V1V ∗2 − V̄1V̄ ∗2
√

V1V ∗1 V2V ∗2
, (6.10)

where (.) defines the average value. The envelope correlation coefficient is approximated by
ρe ≈ |ρ12|, then the mean value ρe of this real envelope is calculated by means of the integrals

ρe =

∫ 0

−π

∫ 2π

0
ρe(Φ, θ)pΦ(Φ)pθ(θ) cos θdΦdθ, (6.11)

where pφ and pθ are the probability density functions of the horizontal and the vertical arrival
angles of the signal, respectively. The authors of [165,166] provide some measurements of the
electrical fields at the receiver in order to compare them to the theoretical results. In [166], a
uniform distribution pφ and a Gaussian distribution pθ are assumed. For given angle values φ
and θ, the two components of the signal can be perfectly uncorrelated. However, polarization
diversity has drawbacks. Indeed, it is hard to obtain a perfect uncorrelation in practice, due
to the mobility of the receiver. Furthermore, the SNR at each output is very low, as the field
is split into its two components.
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(a) Front view (b) Top view

(c) Side view

Figure 6.7 – Definition of the angles of arrival of the signal, reproduced from [157] with the
permission of the author.

6.2.4 Frequency Diversity

The principle of the frequency diversity is to split the useful bandwidth into several narro-
wer channels. The data symbols are then transmitted on these subcarriers. The usual multi-
plexing technique is the OFDM, as previously described. Combined with a channel encoding,
the C-OFDM is very robust against the frequency selective channels. Indeed, only a part
of the subcarriers can be disrupted because of the frequency fading of the channel, and the
errors occurring are offset by the channel encoding on the other hand. The advantage of the
frequency diversity is detailed in Chapter 1.

6.3 Application of the Cyclic Delay Diversity in a SFN

This part describes the work achieved within the framework of the project OCEAN. It
presents an application of the cyclic delay diversity in a single frequency network simulated
with the DRM/DRM+ parameters [1]. This study fits into the global project, in which some
practical measurement of the DRM/DRM+ channel have also been performed. Thus, it is
interesting to parallel the following theoretical model with the realistic one.

6.3.1 Model Description

In this section, we study a channel model in which the fading may affect all the considered
bandwidth. In that case, the frequency diversity of the OFDM modulation becomes not
sufficient to fight against the frequency fading, even with a channel encoding. Although it is
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not the only context, this phenomenon usually occurs in single frequency networks (SFNs). In
this model, all the base stations of the network broadcast the signals at the same frequencies.
For instance, the networks using digital audio broadcasting (DAB) [53], DRM/DRM+ [1] or
DVB-T [52] are SFNs. To begin, let us consider a very simple network, composed of only two
transmit antennas (denoted by Tx1 and Tx2) and illustrated in Fig. 6.8. It is assumed that,
in the overlapping area between the two cells, the power of the signal from Tx1 is equal to
the power of the one from Tx2. Furthermore, the delay of arrival between the signal from Tx1
and Tx2 can be very short, which may cause flat fading in the considered bandwidth.

Tx1 Tx2

Rx

overlapping area

Figure 6.8 – Simplified SFN network, with two transmitters Tx.

As depicted in Fig. 6.8, we now consider a receiver Rx in the overlapping area. Moreover,
we suppose that Rx is in motion, and is in the line of sight of the transmit antennas. After
removal of the CP, we recall that the signal at the receiver side is expressed by U = CH+W.
From the receiver Rx point of view, the contribution of the signal from the two transmitters
is a signal transmitted over a single channel. The samples Hm, m = 0, 1, ..., M − 1 of the
frequency response vector is then the sum of two independent components from the two
different channels, as

Hm =
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
mβl2

M

=
L−1
∑

l=0

hle
−2jπ

mβl
M , (6.12)

where hl, hl1 , hl2 are the time-varying complex path weights, which are zero mean Gaussian
random processes. βl, βl1 , βl2 are the corresponding sampled path delays βl = τl/τs. L is the
number of paths of the equivalent channel, and we assume that each channel has the same
number of paths L1 = L2 and we have L ≤ L1 + L2. The gap between the delays βl is very
short. In such conditions, the gains |Hm| (on the Z axis) may be deeply attenuated over a
large number of consecutive carriers. As made in [49], we illustrate this flat fading on Fig.
6.9, over 103 carriers (on the Y axis) and for 30 consecutive OFDM symbols (on the X axis).
Furthermore, a dynamic representation of the phenomenon is available by clicking on this
link

http://www.youtube.com/watch?v=cyy1bVE8W24&feature=relmfu .

In order to complete this theoretical model, [167, 168] propose some practical measurements
of a DRM/DRM+ channel in an urban environment.
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Figure 6.9 – Frequency response of the equivalent channel, without diversity.

When the flat fading affect many consecutive subcarriers in the frequency and time axis,
the frequency diversity gain of the OFDM becomes null. Thus, a lot of errors occur at the
receiver. If we consider the DRM/DRM+ standard, the practical consequence is that the
radio program becomes inaudible.

6.3.2 Simulation Parameters

Fig. 6.9 is obtained by using parameters based on the ones of the DRM/DRM+ standard
[1]. The considered signal follows the robustness mode B recommendations. We simulated
a transmission with channel bandwidth B = 5 kHz. Each OFDM symbol is composed of
103 carriers (where one carrier is set to zero), and each frame includes 15 symbols. The bit
stream is mapped with a 4-QAM constellation. The symbol and the cyclic prefix durations
are Ts = 21.33 ms and TCP = 5.33 ms respectively. We also applied a RS code [48] with a
rate equal to 0.5. These parameters are summed up in Table 6.1.

Table 6.1 – Simulations Parameters.
Robustness B

Symbol duration Ts 21.33 ms
CP duration TCP 5.33 ms
Frame duration 400 ms
number of carriers M 103
Signal bandwidth B 5 kHz
Signal constellation 4-QAM
RS code rate 0.5
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Each channel (from Tx1 and Tx2) follows a simple model inspired from the CCIR poor
channel model [1]. It is a two paths channel with a uniform gain profile and which follows the
WSSUS model. Thus, the equivalent channel is composed of four paths. This channel model is
sufficiently relevant to highlight the flat fading illustrated in Fig. 6.9. The maximum delay of
the equivalent channel noted τmax is equal to 1/2B = 0.1 ms, which allows to simulate a flat
fading. Each path has a Gaussian Doppler spectrum, and the maximum Doppler frequency is
equal to 2 Hz. It corresponds to a mobile receiver with a velocity roughly equal to 72 km/h.

6.4 Cyclic Delay Diversity

6.4.1 Principle of CDD

The solution to overcome the flat fading consists in artificially increasing the frequency
selectivity of the channel. In [50,169,170], different diversity schemes are presented. The basic
way to increase the frequency selectivity is to transmit the signal from one antenna with an
additional delay denoted by ∆D. This method is called delay diversity (DD). As mentioned
in [50], the condition on the additional delay to get the expected effect is ∆D > 2

B . In a
discrete formalism, as ∆D = k∆D

Ts/M and B = M/Ts, then k∆D
must respect k∆D

> 2.
The main drawback of DD is that from the receiver point of view, the maximum delay of
the channel is now equal to τmax + ∆D. However, in order to avoid the ISI, the maximum
delay must respect τmax + ∆D ≤ TCP . This condition may not be respected if ∆D is too
large or if the value of τmax increases during the transmission. An obvious solution consists
of lengthening the guard interval, but it leads to a reduction of the useful data rate.

Another way to increase the frequency selectivity is to directly apply an additional phase
to the signal in the frequency domain. This method is called phase diversity (PD). We denote
Φm = −2πkΦm/M the phase added to the mth carrier. This carrier noted Cm,div, then
becomes

Cm,div = Cme−2jπkΦm/M . (6.13)

The advantage of the PD compared to the DD is that for the same performance as DD, no
condition on the length of the cyclic prefix is required in PD. The third way to increase the
frequency selectivity is to apply to the signal a cyclic delay k∆D

(modM), where mod means
modulo. This method is called cyclic delay diversity (CDD). If we note uk,div the kth sample
of the signal with CDD, the link with uk is then given by

uk,div = uk−k∆D
(modM). (6.14)

In the same way as PD, CDD does not require any condition on the length of the CP. As
mentioned in [49], thanks to the cyclic property of the DFT and if we set kΦ = k∆D

, CDD
and PD are strictly equivalent :

uk,div = uk−kΦ(modM) =
M−1
∑

m=0

(Cme−2jπkΦm/M )e2jπkm/M . (6.15)

Thus, the method is called PD or CDD when it is applied before or after the IDFT, respecti-
vely. The advantage of CDD with regard to PD is that it avoids making M multiplications as
(6.13), because it only requires a rotation of the OFDM symbol samples. Different versions
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of these methods have been proposed in the literature. Thus, the authors of [50] propose the
time-variant phase diversity, in which Φm is considered to be time-variant. However, it may
introduce ICI if the variations of the phase are to rapid. In [49], the CDD is applied at the
receiver side. The main advantage is that a maximum ratio combining can be performed to
maximize the SNR on each subcarrier. However, it increases the complexity of each receiver
of the network.

Since Tx1 and Tx2 play a symmetric role, let us assume in the following that CDD is
only applied at Tx2, without loss of generality. From (6.12), we derive the channel frequency
response, from the receiver point of view when CDD is used :

Hm =
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
mβl2

M eΦm

=
L1−1
∑

l1=0

hl1e−2jπ
mβl1

M +
L2−1
∑

l2=0

hl2e−2jπ
m(βl2

+kΦ)

M . (6.16)

As presented in [47], Fig. 6.10 illustrates the frequency selectivity caused by CDD with kΦ = 6.
The snapshot is obtained over 103 carriers and for 30 OFDM symbols. By comparison with
Fig. 6.9, we observe that there is more frequency fading, but they affect less consecutive
carriers. We then retrieve a channel similar to those which are described in the previous
chapters. To complete the observation, a dynamic view of channel variations with CDD can
be consulted by clicking this link

http://www.youtube.com/watch?v=p5vyyNpYIgo .
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Figure 6.10 – Frequency response of the equivalent channel with cyclic delay diversity.
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In such conditions, an efficient channel estimation [7, 18], combined with coded-OFDM
and bit interleaving, allows to very efficiently reduce the errors of decision at the receiver
[49, 50, 169, 170]. The effect of the increasing of the frequency selectivity on the choice of the
channel estimation will be discussed in Section 6.5.

6.4.2 Generalization to a Multitransmitter Network

The previous model using only two transmit antennas is very simple. In practice, several
antennas must be taken into account to model a more realistic SFN. Thus, in this section,
we consider a multiple transmit-antennas network, as depicted in Fig. 6.11. In the proposed
model, we consider transmitters without CDD (marked with an empty circle, such as BS1)
with transmitters with CDD (marked with a full circle or a cross, such as BS2 and BS3).
Obviously, the phase of BS2 noted Φm2 has to be different of the one of BS3 noted Φm3,
in order to get the expected CDD effect in each overlapping area. Thus, the arrangement is
made so that two adjacent areas do not share the same phase shifting. Should the opposite
situation occur, the received frequency response would be given by

Hm =

(

L−1
∑

l=0

hle
−2jπ

mβl
M

)

ejΦm . (6.17)

In that case, whatever the value of the phase shifting Φm, (6.17) is equivalent to a transmission
without CDD (6.12). As a consequence, three different values of phase shifting are required
to develop the network. In the following, we will set kΦ1 = 0, kΦ2 = 3, kΦ3 = 6, as it ensures
the condition kΦ ≥ 2, as shown thereafter.

BS2BS1

overlapping areas

BS3

Figure 6.11 – SFN Network, with multiple transmitters Tx.

Although Fig. 6.11 remains a theoretical representation, it highlights the three different
overlapping areas between the cells: two areas between cell with and without CDD (presented
in the previous section) and one area between cells with CDD. In that case, whatever i, j ∈
{1, 2, 3} we express the resulting frequency response as
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Hm =





L1−1
∑

l1=0

hl1e−2jπ
mβl1

M



 ejΦmi +





L2−1
∑

l2=0

hl2e−2jπ
mβl2

M



 ejΦmj

=
L1−1
∑

l1=0

hl1e−2jπ
m(βl1

+kΦi)

M +
L2−1
∑

l2=0

hl2e−2jπ
m(βl2

+kΦj )

M . (6.18)

By factorizing ejΦmi or ejΦmj with ejΦmi 6= ejΦmj , the expression (6.18) is equivalent to (6.16):

Hm =





L1−1
∑

l1=0

hl1e−2jπ
mβl1

M + (
L2−1
∑

l2=0

hl2e−2jπ
mβl2

M )ejΦmj−jΦmi



 ejΦmi . (6.19)

Finally, whatever the considered overlapping area, the study amounts to the same thing. Only
the phase shifting will be different: Φm1, Φm2 or Φm2 − Φm1, but each one respects kΦ ≥ 2.
In order to complete this theoretical model with examples of real FM networks, it is possible
to consult these two links :

http://www.emetteurs.ch/list_freq.php?Frequence=100&search=Rechercher ,

http://www.annuaireradio.fr/cartevisu.php?rowid=55 ,

in which the FM transmit antennas are mapped, in France and in Switzerland respectively.
It is also possible to choose the power and the transmit frequency to locate some antennas
more precisely.

6.5 Simulations Results

6.5.1 Realistic DRM+ Cell

Fig. 6.12 displays the coverage area of an antenna broadcasting a DRM+ signal in the
band II. It has been performed by means of the software Atoll, within the framework of the
project OCEAN, and presented in [171]. The antenna is near Brest, at the west Brittany.
It can be seen that the cell is not a circle as in the theoretical model. Indeed, in practice,
the landscape has to be taken into account in the network planning. However, the results
presented in the previous part remain valid in the realistic overlapping areas.

6.5.2 Measurement of the Fading

First, the effect of CDD on the frequency width of the fading, independently of the rest of
the system (channel estimation, channel encoding etc.) is investigated. To this end, we mea-
sure the maximum number of consecutive carriers which are disrupted by the deep fading,
i.e. the ratio of consecutive carriers disrupted by an arbitrary set channel level 20 log10(|Hm|)
equal or less than -10 dB. Fig. 6.13 displays the value of this measure versus time (repre-
sented as a number of OFDM symbols), for the same transmission with and without CDD.
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Figure 6.12 – Coverage area of an antenna transmitting in the band II.

The comparison is given for one simulation run and during 420 consecutive OFDM symbols,
corresponding to a signal time duration equal to 11.20 s. In this example, we set kΦ = 6.

For one process, we observe on Fig. 6.13 that the maximum ratio of consecutive carriers
disrupted by fading less than -10 dB can reach 100%, and even during several consecutive
OFDM symbols. In that case, the channel decoding becomes inefficient and a large number of
errors occurs in the bit stream. Considering the same transmission with CDD on one Tx, we
observe a decrease of this maximum to 40%. As a consequence, we deduce that the number
of errors is lower than in a transmission without CDD. On the other hand, for a transmission
without CDD, we observe that it is possible to obtain a flat channel (no carriers under -10
dB), which tallies with an AWGN transmission. In these conditions, for the transmission
with CDD, we observe that the percentage reaches around 8%. The effect of CDD is then to
statistically keep the maximum ratio of consecutive carriers disrupted by fading to a value
close to zero.

Table 6.2 shows the average percentage values of the number of consecutive corrupted
carriers for two different phase shifting values kΦ1 = 3 and kΦ2 = 6, pointed out by "0" and
"I", respectively. The use of two shifting values allows to describe the model of the previous
section: one transmitter without CDD, and two transmitters with CDD such as kΦ1 6= kΦ2.
By choosing kΦ2 = 2kΦ1, we simplify the number of cases to consider as kΦ1 = kΦ2 − kΦ1.
Two thresholds -10 and -20 dB are considered. Furthermore, in order to complete the study,
we simulated CDD with a time-varying value of kΦ during the transmission. To do so, we
consider that the delay kΦ alternately takes the value kΦ − 1, kΦ and kΦ + 1. This is pointed
out by "var. kΦ" in Table 6.2, and the mark "0" and "I" shows if kΦ is fixed or variable. Each
of the three delay values has a probability equal to 1/3. The average is calculated thanks to
100 simulation runs. For a transmission without CDD, the average of the maximum ratio of
the consecutive carriers disrupted by fading is 22.6% at -10 dB and 7.34% at -20 dB.

In average, we observe that the maximum percentage of the consecutive carriers disrupted
by fading decreases compared to a transmission without CDD, whatever the threshold, and
for the two values kΦ = 3 and kΦ = 6. It confirms the observations made for one simulation
run. Furthermore, according to the theory, we notice that the ratio of consecutive disrupted
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Figure 6.13 – Ratio of corrupted carriers by a channel gain equal to 20 log10(|H|) = −10
dB, over 420 OFDM symbols, with and without CDD.

Table 6.2 – Average ratio of consecutive carriers disrupted by fading at -10 or -20 dB.
Comparison in function of different delay values.

kΦ = 3 → 0 fixed kΦ → 0 ratio at
kΦ = 6 → I var. kΦ → I -10 dB -20 dB

test 1 0 0 15.17 % 4.52 %
test 2 I 0 10.50 % 3.19 %
test 3 0 I 15.59 % 4.55 %
test 4 I I 10.78 % 3.53 %
no CDD 22.6 % 7.34 %

carriers is lower for kΦ = 6 than for kΦ = 3. When varying delays kΦ are used, we almost
find the same results as for a fixed kΦ. The reason is that in average, E{kΦ} (when kΦ varies)
is equal to the fixed kΦ value. Moreover, at the receiver, a varying kΦ value increases the
difficulty of making an efficient estimation, or requires methods which do not depend on the
variations of the channel parameters as in [34,35]. We then finally recommend the use of fixed
kΦ delays.

6.5.3 Bit Error Rate Performance

We now characterize the performance of the global system, including channel encoding
and channel estimation. We use a Reed-Solomon code with rate 1/2. A least square (LS)
estimation is performed on the pilot tones, and a cubic spline interpolation allows to get the
channel estimation on all the bandwidth.

Fig. 6.14 depicts the bit error rate (BER) as a function of OFDM symbols, for a trans-
mission duration of 11.20 s (420 symbols). Two independent processes are displayed, in which
the transmission of the signal without CDD is compared to the one with CDD, for the same
channel. We used a delay value kΦ = 6, and the signal to noise ratio is set equal to 10 dB.
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The observation duration is almost equal to 10TC for both processes, which allows to get a
sufficient statistic to draw conclusions.
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Figure 6.14 – BER versus OFDM symbols, for two independent process.

For the two processes, we clearly observe a decrease of the BER for the transmission
with CDD compared to the one without CDD. Indeed, two effect are noticeable. Firstly,
the symbols with non-null BER are sparsely distributed in transmissions with CDD, while
they occur much more and consecutively in transmissions without CDD. Thus, on the top
plot of Fig. 6.14, the duration of consecutive corrupted OFDM symbols without CDD is
roughly equal to 1.5 s, while the BER is null during all the transmission duration with CDD.
Secondly, the BER value is lower if diversity is used: on the bottom plot of Fig. 6.14, the BER
reaches 0.025 (with CDD) versus 0.065 without CDD. In the context of radio transmission
with DRM/DRM+, we conclude that the use of CDD allows to obtain a listening time almost
without audible disruptions.

Fig. 6.15 displays the BER curves of transmission without CDD compared to the one
with CDD, for kΦ = 3 and kΦ = 6. As a lower bound reference, we also added the BER
performance of a transmission over an AWGN channel. The simulations have been performed
on 500 runs, corresponding to 2.106 bits. We observe, for SNR values from -4 to 16 dB, the
gain provided by CDD. Compared to a transmission without CDD at BER=10−3, the gain
in SNR is equal to 2 dB for CDD with kΦ = 3 and 3 dB for kΦ = 6.

In order to study the effect of CDD on the performance of the global system, it is important
to show the impact of the increase of the frequency selectivity on the channel estimation
performance. The author of [172] discusses this consequence of CDD. In the simulations, the
distribution of the pilot tones in the frame is one for seven carriers along the frequency axis
and one for four symbols along the time axis (see [1], Appendix L). A least square (LS)
estimation is performed on pilot tones and an interpolation is made to obtain the channel
estimation all over the frame. Thus, Fig. 6.16 compares the BER curves of channel estimation
made with a spline interpolation and with a linear interpolation, in the case of transmissions
without CDD, and with CDD such as kΦ = 6. The spline interpolation is more accurate
than the linear one, but also more complex. Indeed, the spline interpolation requires O(M2)
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Figure 6.15 – BER versus SNR for transmissions with and without CDD.

operations and the linear interpolation only O(M) operation.
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Figure 6.16 – BER versus SNR, effect of the interpolation, with and without CDD.

In both cases, the linear interpolation is less efficient than the spline one. For CDD,
we observe that the SNR gap between spline and linear interpolation is equal to 1 dB at
BER=10−3 and 2 dB for BER=10−4. For the linear interpolation, the SNR gap remains
equal to 0.5 dB. Without CDD, the channel has a low frequency selectivity, so spline and
linear interpolations have almost the same performance. However, in presence of CDD with
kΦ = 6, spline is more efficient than linear. We also observe that there is no BER floor, as
it has been described in Chapter 5. The is the result of the use of the channel coding. We
conclude that the channel estimation method must be taken into account when CDD is used
in a network in order to reach a given BER. Although CDD clearly reduces the flat fading
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in the overlapping areas of the SFN, the consequence is the increase of the complexity of the
estimation method.

6.6 Conclusion

In this chapter, different diversity methods was presented, with their advantages and
drawbacks, which are summarized in Table 6.3. The goal of the diversity is to statistically
reduce the errors at the receiver, by transmitting the signal over different uncorrelated chan-
nels. Moreover, we mainly focused on the cyclic delay diversity and its application to a SFN
using the DRM/DRM+ standard, in which flat fading channels may disrupt the signal on all
the bandwidth. This study is also a contribution of this thesis for the project OCEAN. The
principle of CDD is to retrieve the frequency diversity of the OFDM by artificially increasing
the frequency selectivity of the channel. The simulations actually validated the gain brought
by CDD in the case of flat fading channels. However, in the model, the pilot tones are spar-
sely distributed in the OFDM frame, and an interpolation has to be performed along the
frequency axis for the channel estimation. Since the CDD increases the frequency selectivity
of the channel, we showed that the channel estimation has to be taken into account in the
global performance of the system.

Table 6.3 – Comparison of the different diversity schemes.
Diversities Advantages Drawbacks Remark
Time easy implementation data rate loss transmitter
Spatial no data rate loss correlation between transmitter/

antennas receiver
Polarization no data rate loss weakening of the SNR receiver
Frequency robust against the sensible to the time robust when

frequency selective selective channels combined with
channels channel codes

Cyclic delay robust against flat adaptation of the channel transmitter/
fading estimation method receiver
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General Conclusion

In this dissertation, contributions to the multipath channel estimation in the OFDM
context were proposed. According to the channel severity that may be induced by the time or
the frequency selectivity, an adapted solution was proposed to struggle against the distortions
caused by the channel.

In wireless communications, the environment between two antennas is often considered
as a multipath channel. Thus, the received version of the signal transmitted through such a
channel is a sum of delayed versions of the original signal. These echoes are due to reflections of
the electromagnetic waves on obstacles of different natures. Although it allows the signal to be
transmitted to an hidden receiver, the multipath propagation channel is one of the main source
of disturbance for the signal. Indeed, this is the source of frequency holes in the spectrum of
the signal. This kind of channel is then called frequency selective channel. An effective usual
solution consist of transmitting the signal with the orthogonal frequency division multiplexing
(OFDM) waveform. The principle is to split the bandwidth into some narrowband subcarriers,
each one carrying only a part of the entire information. If the system is well designed, each
sub-channel can be seen as a Gaussian channel. It is then straightforward to recover the entire
information thanks to a one-tap equalization, i.e. a simple division. However, the performance
of the equalization depends on the accuracy of the channel estimation.

In the first chapter, a background concerning the transmission channel was presented.
As it is the basics of the channel models, different statistical functions and properties of
the channel were detailed, and the links between them was covered. Furthermore, the basic
principles of the OFDM modulation were introduced. We then reminded that this waveform
is robust against multipath channels, with the help of the cyclic prefix (CP), as it cancels the
intersymbol interferences (ISI) and gives the channel matrix its cyclic property at the same
time.

The second chapter proposed a state of the art of the different channel estimation methods.
In this dissertation, we focused on the semi-blind estimation techniques that require some pilot
tones to be performed. These pilot tones are non-data subcarriers whose values are known
from both the transmitter and the receiver. Among the different estimators widely detailed
in [22–27], we particularly took an interest on the methods based on the least square (LS)
and the minimum mean square error (MMSE) criteria. LS is a straightforward technique
but is very sensitive to the noise. On the contrary, the linear-MMSE (or LMMSE) estimator
is very accurate, but requires a prohibitive calculation cost, due to matrix inversions and
multiplications. Furthermore, LMMSE needs the knowledge of the noise variance and the
channel covariance matrix. Yet, in most of the cases, these parameters are unknown at the
receiver so LMMSE is hardly useable in practice.
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A method called artificial channel aided-LMMSE (ACA-LMMSE) was proposed in the
third chapter. This is an MMSE-based channel estimator that does not require the a priori
knowledge of the channel covariance matrix, nor its estimation. To do so, at the receiver
side, a signal composed by pilots only is transmitted through a filter acting like an artificial
channel, and is added to the useful signal. From the estimator point of view, an hybrid channel
composed of the physical and the artificial channel has to be estimated. The particularity of
this method lies in the fact that the added filter is designed so that an LMMSE estimation of
the hybrid channel can be performed using the artificial channel covariance matrix, which is
perfectly known. The estimation of the physical channel is then achieved by subtracting the
artificial channel coefficients. Simulations results showed that the performance of the ACA-
LMMSE estimator is close to the optimal one. In addition to the avoidance of the a priori need
of the channel covariance matrix, this method is simpler than the usual LMMSE in the case of
time-varying channel. In the LMMSE case, if the channel or its statistics varies, the channel
covariance matrix and the inversion have to be updated. In ACA-LMMSE, the artificial
channel covariance matrix is designed independently of the physical channel, so it must be
computed only once during the entire transmission duration. From this, we may combine
ACA-LMMSE with an interference cancellation algorithm called residual ISI cancellation
(RISIC) [36]. The ISIs appear in a particular channel model, when the maximum path delays
is higher than the cyclic prefix duration. The RISIC algorithm is efficient for a static or a
slowly varying channel. The combination of RISIC with ACA-LMMSE allows an extension of
the RISIC algorithm to time-varying channels.

In the proposed ACA-LMMSE method, the noise variance was supposed to be known at
the receiver side. This is the reason why an MMSE-based estimation for both the SNR and
the channel was proposed in the chapter 4. As the MMSE estimation of the noise variance
requires the channel response and the LMMSE channel estimation requires the noise level,
each estimation feeds the other one so an iterative algorithm is proposed. In the first part of
the chapter, a theoretical approach, in which the channel covariance matrix is supposed to be
known, was introduced. Then, a more realistic approach considering an estimated covariance
matrix was proposed. The convergence of the algorithm is proved in both scenarios, and
simulations showed that the optimal estimation is almost reached for both SNR and channel
parameters. Finally, a third part developed an application of the method to the spectrum
sensing in a cognitive radio context. Indeed, it is possible to differentiate the behavior of the
algorithm if a signal or only noise is received, and an analytical expression of the detection
and false alarm probabilities was derived. Finally, this practical algorithm allows to detect
the presence or absence of a user in a given channel, to estimate the noise level if the user is
absent, and to estimate both the channel and the SNR if the user is present.

Chapters 3 and 4 dealt with MMSE-based methods that simplify LMMSE or make possible
its implementation in practice. Unlike the two previous chapters, Chapter 5 focused on the
problem of interpolations for the Rayleigh channel estimation. Indeed, when the pilot tones
are sparsely distributed in the OFDM frame, an interpolation is required to get the channel
frequency response over the entire time and frequency lattice. When simple methods such
as the linear interpolation are used, a residual error of estimation appears, even if the noise
power tends to zero. Chapter 5 proposed to statistically characterize this error in function
of the interpolation method and the gap between two consecutive pilot tones. From that, a
theoretical expression of the mean square error (MSE) is developed, and the lower bound of the
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bit error rate (BER) is derived, the latter being also function of the size of the constellation.
Two kinds of interpolations are considered: the nearest neighbor (NN) and the linear ones. The
analytical expression was validated, as the curves obtained by simulations perfectly matched
the theoretical ones. This study then allows predicting the performance of an interpolation,
in function of the channel statistics, the distribution of the pilot tones and the constellation
size.

In the sixth and final chapter, an application of the cyclic delay diversity (CDD) to a
single frequency network (SFN) using the DRM/DRM+ standard [1] was presented. In such
a network, the signal is transmitted at the same frequency from all the base stations. In the
overlapping area between two adjacent cells, one may observe that the maximum delays can be
very short. In such conditions, the fading may disrupt the entire bandwidth. Consequently, the
frequency diversity of the OFDM becomes inefficient, and the signal might be fully corrupted,
even if a channel coding is used. The solution consists of artificially increasing the channel
frequency selectivity in order to recover the advantage of the coded-OFDM (COFDM), thanks
to the cyclic delay diversity. The contribution of CDD is effectively proved by simulations.
However, since the pilots are in staggered rows in the DRM/DRM+ standard, the channel
estimation requires an interpolation. Thus, admittedly the CDD improves the transmission
quality, but the increase of the frequency selectivity has to be taken into account in the system
performance, as the channel estimation requires an interpolation. This study has been done
within the framework of the project OCEAN, whose goal was to improve the digital radio
broadcasting with the DRM/DRM+ standard.

This thesis is a contribution to the channel estimation. Several solutions for the simplifi-
cation of the LMMSE have been proposed, and an analysis of the errors of interpolation has
been achieved. However, we can investigate new leads from the present work. Some prospects
can be, for instance:

– The study of the effect of a synchronization mismatch on the ACA-LMMSE efficiency.
Indeed, it was assumed that the artificial signal and the useful one are perfectly syn-
chronized, which is not the case in practice. Furthermore, it would be interesting to
practically implement the method thanks to a simple line, as proposed in the chapter
3.

– The improvement of the theoretical expression of the detection probability for the spec-
trum sensing algorithm. It was noticed that the analytical curves was obtained after
some approximation. It would be interesting to consider a more accurate model.

– The extension of the interpolation errors analysis to other interpolation methods (such
as a piecewise cubic interpolation) and constellations of higher orders (16-QAM for
instance). Furthermore, if the method is extended to a two-dimension plan, it could be
possible to use the analysis in image processing.
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Appendix A

Appendix of the Chapter 1

A.1 Expression of the Channel Covariance

The channel intensity profile Γ(τ) is calculated from the impulse response channel (1.2).
The general development of the link between Γ(τ) and RH(∆f ) is proposed in [59]. Here, we
apply it to our model. The autocorrelation function is usually defined by rh(∆t, τ1, τ2), but
remembering ∆t = 0,we get :

rh(τ1, τ2) = E{h(t, τ1)h
∗(t, τ2)}

= E{(
L−1
∑

l1=0

hl1(t)δ(τ1 − τl1))(
L−1
∑

l2=0

hl2(t)δ(τ2 − τl2))
∗} (A.1)

Remembering the channel follows a WSSUS model, we have E{hl1(t)h
∗
l2
(t)} = 0 if l1 6= l2, so

we simply (A.1) as

rh(τ1, τ2) = E{
L−1
∑

l=0

hl(t)δ(τ1 − τl)h
∗
l (t)δ(τ2 − τl))}

= E{
L−1
∑

l=0

|hl(t)|
2δ(τ1 − τ2)}

=
L−1
∑

l=0

E{|hl(t)|
2δ(τ1 − τ2)}

=
L−1
∑

l=0

Γl(τ1)δ(τ1 − τ2). (A.2)

Γl(τ) is time-limited on τ ∈ [0, τmax], with τmax the maximum path delay. The frequency
correlation function, being defined as the FT of rh(τ1, τ2), we get from (A.2)
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RH(f1, f2) =

∫ +∞

−∞

∫ +∞

−∞
rh(τ1, τ2)e

(−2jπ(f1τ1−f2τ2))dτ1dτ2

=

∫ τmax

0

∫ τmax

0
rh(τ1, τ2)e

(−2jπ(f1τ1−f2τ2))dτ1dτ2

=

∫ τmax

0

∫ τmax

0

L−1
∑

l=0

Γl(τ1)δ(τ1 − τ2)e
(−2jπ(f1τ1−f2τ2))dτ1dτ2

=
L−1
∑

l=0

∫ τmax

0
Γl(τ1)e

(−2jπ(f1−f2)τ1)dτ1

=
L−1
∑

l=0

∫ τmax

0
Γl(τ1)e

(−2jπδf τ1)dτ1. (A.3)

We retrieve the expression given in (1.17). This development also prove the assumption of
stationarity RH(f1, f2) = RH(δf ) for the frequency correlation function.

A.2 Proof of the Diagonalization of a Circulant Matrix in the
Fourier Basis

This proof is inspired of the work proposed in [12]. Let us consider A as a M×M circulant
matrix with complex coefficients (a0, a1, ..., aM−1), with M ≥ 2

A =





















a0 a1 · · · aM−2 aM−1

aM−1 a0
. . . aM−3 aM−2

...
. . .

...

a2
. . . a0 a1

a1 · · · · · · aM−1 a0





















. (A.4)

We here prove that this matrix is diagonalizable. Let us consider J the M×M elementary
matrix as

J =













0 1 0 · · · 0
0 0 1

... 0
...

. . .
. . .

...

0 0
. . . 0 1

1 0 · · · 0 0













. (A.5)

We define B = (e1, e2, ..., eM ) a basis as

e1 =









1

0
...

0









, e2 =









0

1
...

0









, ..., eM =









0

0
...

1









. (A.6)
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f is the endomorphism such as, in the basis B, J is the matrix of f . Thus, we get the
relations : {

f(eM ) = e1, and

f(ek) = ek−1, for 2 ≤ k ≤ M .
(A.7)

We deduce :

fM (ek) = f ◦ f ◦ ... ◦ f(ek)

= fM−k+1(e1)

= fM−k(eM )

= ek. (A.8)

Finally, we have :
fM = Id, (A.9)

where Id is the identity application. In its matrix form, we have :

JM = I. (A.10)

We define the polynomial Q = XM − 1 and we prove that Q is the minimal polynomial of
J, or in an equivalent manner, the minimal polynomial of f . Let us consider S =

∑M ′−1
i=0 siX

i

a polynomial of degree M ′ < M . If S cancels out f , we would have, especially for eM (the
demonstration is the same for each vector of the basis, but simpler by considering eM ) :

S(f(eM )) =
M ′−1∑

i=0

sif
i(eM ) =

M ′−1∑

i=0

sieM−i 6= 0, (A.11)

because of e1, e2, ..., eM are linearly dependent (B is a basis indeed). We proved that a poly-
nomial s whose degree is ≤ M does not exist. Q is the monic polynomial of least degree such
as Q(J) = 0, so Q is the minimal polynomial of J. The roots of Q are then the M roots of

unity (1, e
2iπ
M , e

4iπ
M , ..., e

2(M−1)iπ
M ). We rewrite Q as

Q =
M−1∏

k=0

(X − e
2ikπ

M ). (A.12)

Property : an endomorphism f is diagonalizable if its minimal polynomial has only simple
roots.

As Q has only simple roots, we can define D the diagonalized form of J, with (1, e
2iπ
M , e

4iπ
M ,

..., e
2(M−1)iπ

M ) the eigenvalues of J. The transformation matrix P is defined so that

D = P−1JP, (A.13)

with D the diagonal matrix having the eigenvalues of J on its diagonal:

D =










1 0 · · · 0

0 e
2iπ
M

. . .
...

...
. . . 0

0 · · · 0 e
2(M−1)iπ

M










. (A.14)
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Now, we show that P is similar to the Fourier matrix F defined in the chapter 1 :

F =
1√
M











1 1 1 · · · 1

1 ω ω2 · · · ω(M−1)

1 ω2 ω4 · · · ω2(M−1)
...

...
...

. . .
...

1 ω(M−1) ω2(M−1) · · · ω(M−1)2











, (A.15)

with ω = e−
2jπ
M . We define the eigenvectors P0, P1, ..., PM−1 forming the matrix P and we

note

Pk =









P0,k

P1,k

...

PM−1,k









(A.16)

Whatever k, 0 ≤ k ≤ M − 1, Pk being an eigenvector, we have

(J− e
2ikπ

M I)Pk = (J− ωkI)Pk = (0), (A.17)

and if we develop










−ωk 1 0 · · ·
... −ωk 1

...

0
. . .

. . . 1

1 0 · · · −ωk


















P0,k

P1,k

...

PM−1,k









= (0). (A.18)

We obtain the following system of equations:







ωkP0,k = P1,k,

ωkP1,k = P2,k,

...

ωkPM−2,k = PM−1,k

P0,k = ωkPM−1,k

(A.19)

By recurrence, we have

PM−1,k = ωkPM−2,k = ... = ω(M−1)kP0,k. (A.20)

We get the developed expression of the matrix P :

P =












P0,0 P0,1 P0,2 · · · P0,M−1
P0,0 ωP0,1 ω2P0,2 · · · ω(M−1)P0,M−1
P0,0 ω2P0,1 ω4P0,2 · · · ω2(M−1)P0,M−1

...
...

...
. . .

...

P0,0 ω(M−1)P0,1 ω2(M−1)P0,2 · · · ω(M−1)2P0,M−1












. (A.21)
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In order to get the orthonormal Fourier matrix, it is sufficient to chose :

P0,0 = P0,1 = · · · = P0,M−1 =
1√
M

(A.22)

We define the polynomial R as

R =
M−1∑

k=0

akXk, (A.23)

we then simply get from (A.4)

A = R(J). (A.24)

As J is diagonalizable, we easily prove that:

A = R(PDP−1) = PR(D)P−1, (A.25)

or, in other terms:

A = P

diagonal matrix
︷ ︸︸ ︷

(a0I+ a1D+ a2D
2 + ...+ aM−1DM−1)P−1, (A.26)

By taking P = F , we then verify that every circulant matrix is diagonalizable in the Fourier
basis.
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Appendix B

Appendix of the Chapter 4

B.1 Proof of the Convergence to Zero of the Algorithm when
Using the Matrix R̃

LS
H

This appendix proves that the algorithm converges towards zero when it is performed
with only R̃

LS
H . It justifies the substitution of this matrix by R̃

LMMSE
H for i ≥ 2. If the steps

(4.35) and (4.36) are performed with, then it yields:

σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2}

=
1

M
tr

(

σ̂4(i)(R̃
LS
H + σ̂2(i)I)

−1(RH + σ2I)((R̃
LS
H + σ̂2(i)I)

−1)H
)

. (B.1)

We remind that for a large value M , 1
M tr(R̃

LS
H ) = 1

M tr(RH + σ2I) so let us aaume that,

in a first approximation, R̃
LS
H = RH + σ2I in order to develop (B.1):

σ̂2(i+1) =
1

M
tr

(

σ̂4(i)(RH + (σ̂2(i) + σ2)I)−1(RH + σ2I)((RH + (σ̂2(i) + σ2)I)−1)H
)

. (B.2)

RH being an Hermitian matrix, it is possible to the the same diagonalization property given
in [37] and in Section 4.3 for the expression (B.2), and we finally find the scalar form of (B.2):

σ̂2(i+1) =
σ̂4(i)
M

M−1∑

m=0

λm + σ2

(λm + σ2 + σ̂2(i))
2
, (B.3)

where λm are the eigenvalues of the covariance matrix RH . If we note x = σ̂2(i), the sequence
(σ̂2(i+1)) is built from a function fr1 so that

fr1(x) =
x2

M

M−1∑

m=0

λm + σ2

(λm + σ2 + x)2
, (B.4)

with x ∈ [0,+∞[. The proof of the convergence towards zero of the sequence (σ̂2(i+1)) in
(B.3) is based on the fixed point theorem, i.e. we show that the only solution to the equation
fr1(x) = x is zero. The limits of fr1 are fr1(0) = 0 and lim

x→∞ f1(x) =
1

M

∑M−1
m=0 (λm+σ2) = M2.

Furthermore, the derivative of fr1
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f ′r1(x) =
2x

M

M−1∑

m=0

(λm + σ2)2

(λm + σ2 + x)3
, (B.5)

is positive for x ∈ [0,+∞[, so fr1 is growing on this interval. We then deduce the inclusion
fr1([0,+∞[) ⊂ [0, M2] and so fr1([0, M2]) ⊂ [0, M2]. Thus fr1 has at least one fixed point on
[0, M2]. As fr1 is growing on [0, M2], we conclude that the sequence (σ̂2(i+1)) converges to one
of the fixed point of fr1. An obvious fixed point of fr1 is zero, since fr1(0) = 0. We now prove
that 0 is the sole fixed point of fr1 on [0, M2]. To this end, we show that f ′r1(x) < 1, which is
equivalent to (fr1(x)− x)′ < 0. Let us define the functions fr1m(x) extracted from fr1(x) so
that fr1(x) =

1
M

∑M−1
m fr1m(x):

fr1m(x) =
x2(λm + σ2)

(λm + σ2 + x)2
. (B.6)

Since fr1 is defined by a sum, we also have for the derivative f ′r1(x) =
1

M

∑M−1
m f ′r1m

(x), with:

f ′r1m
(x) =

2x(λm + σ2)2

(λm + σ2 + x)3
. (B.7)

For any value of m = 0, 1, ..., M−1 and x ≥ 0, f ′r1m
(x) ≥ 0, so the following triangle inequality

on the derivate of fr1 is applied as

max
x
(f ′r1(x)) ≤

1

M

M−1∑

m=0

max
x,m

(f ′r1m
(x)). (B.8)

For m = 0, 1, ..., M − 1, we find the maximum of f ′r1m
(x) thanks to a second derivation so

that

f ′′r1m
(x) =

2(λm + σ2)2(λm + σ2 − 2x)

(λm + σ2 + x)4
. (B.9)

The second derivative of fr1m(x) in (B.9) is null for x = 1
2(λm + σ2), so we find, thanks to

expression (B.7):

max
x
(f ′r1m

(x)) = f ′r1m
(x =

1

2
(λm + σ2)) =

8

27
. (B.10)

Eq. (B.10) shows that for any value of m = 0, 1, ..., M − 1, the maximum of f ′r1m
is equal to

8
27 , so the triangle inequality is simplified:

max
x
(f ′r1(x)) ≤

8

27
, (B.11)

which then proves that f ′r1(x) < 1, i.e. f has only one fixed point equal to zero. Fig. 9 displays
an example of fr1(x) and f ′r1(x). One can conclude that if the algorithm is performed with the

covariance matrix R̃
LS
H , then the sequence (σ̂2(i)) converges to zero and the algorithm enters

into an endless loop, whatever the value of the initialization σ̂2(0) is.
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Figure B.1 – Shape of fr1(x), f ′r1(x) compared with y = x and y = 8/27.

B.2 Proof of the Convergence to Zero of the Algorithm under
the Hypothesis H0

If the algorithm keeps on computing at each iteration i with the covariance matrix R̃
LS
H

under hypothesis H0, then we deduce for step 4:

Perform the LMMSE channel estimation:

Ĥ
LMMSE

(i+1) = R̃
LS
H (R̃

LS
H + σ̂2(i)I)

−1Ĥ
LS

. (B.12)

Perform the MMSE noise variance estimation:

σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2F }. (B.13)

It is assumed that M is large enough to get tr(WWH) = tr(σ2I), we make, in first

approximation R̃
LS
H ≈ σ2I, so the development of (B.13) yields:

σ̂2(i+1) =
1

M
E{||ĤLS − Ĥ

LMMSE

(i+1) ||2F }

=
1

M
E{||ĤLS − R̃

LS
H (R̃

LS
H + σ̂2(i)I)

−1Ĥ
LS ||2F },

(B.14)
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and, by factorizing by C−1:

=
1

M
E{||W− σ2I(σ2I+ σ̂2(i)I)

−1W||2F }

=
1

M
E{||(I− (σ2 + σ̂2(i) − σ̂2(i))I((σ

2 + σ̂2(i))I)
−1)W||2F }

=
1

M
E{||(σ̂2(i)I((σ2 + σ̂2(i))I)

−1)W||2F }

=
σ̂4(i)

(σ2 + σ̂2(i))
2

1

M
E{||W||2F }

=
σ̂4(i)σ

2

(σ2 + σ̂2(i))
2
. (B.15)

The sequence (σ̂2(i)) is built from a function fs such as, if we note x = σ̂2(i), we obtain

fs(x) =
x2σ2

(σ2 + x)2
, (B.16)

with x ∈ R
+. Fig. B.2 displays the curve of fs for different values of σ2 and compares them

with y = x.
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Figure B.2 – Aspect of f for different values of σ2 compared with y = x.

The sequence converges if fs has at least one fixed point, i.e. a solution of the equation
fs(x) = x. Obviously, zero is one fixed point. We now show that zero is the only fixed point
of fs. To this end, the derivative f ′s and the second derivative f ′′s of fs are expressed:

f ′s(x) =
2σ4x

(σ2 + x)3
, (B.17)

and

f ′′s (x) =
2σ4(σ2 − 2x)

(σ2 + x)4
. (B.18)
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From (B.17), we deduce that ∀x ∈ R
+, f ′s(x) ≥ 0, so fs is growing on R

+. From (B.18),
we find that f ′′s (x) = 0 for x = σ2

2 , then the maximum value of f ′s is f ′(σ2

2 ) =
8
81 < 1. Due

to fs(0) = 0 and max(f ′s) =
8
81 < 1, we conclude that the only fixed point of fs is 0. We

find the same results as in the case of a received pilot preamble under hypothesis H1, that is
if the algorithm is exclusively performed with R̃

LS
H , then the sole limit to σ̂2(i+1) is zero and

the algorithm enters into an endless loop. It justifies the change of channel covariance matrix
from R̃

LS
H to R̃

LMMSE
H under hypothesis H1 as well under hypothesis H0.
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Appendix C

Appendix of the Chapter 5

C.1 Error of the Linear Interpolation

This apprendix aims to prove that, considering a C2 function g on an interval [xp, xp+δp ],
the interpolation error |g(x)− ĝ(x)| is written

|g(x)− ĝ(x)| = 1

2
|(xp+δp − x)(xp − x)| × |g′′(y)|, (C.1)

where y ∈ [xp, xp+δp ], and ĝ(x) is the linear interpolation of g:

ĝ(x) = g(xp) + (x− xp)
g(xp+δp)− g(xp)

xp+δp − xp
. (C.2)

The proof is trivial by using the Taylor’s theorem 1. The Taylor’s expansion is used to express
g(xp) and g(xp+δp):

g(xp) = g(x) + (xp − x)g′(x) +
1

2
(xp − x)2g′′(x) + ... (C.3)

g(xp+δp) = g(x) + (xp+δp − x)g′(x) +
1

2
(xp+δp − x)2g′′(x) + ..., (C.4)

in order to rewrite (C.2):

ĝ(x) = g(x) + (xp − x)g′(x) +
1

2
(xp − x)2g′′(x)

+ (x− xp)
(xp+δp − xp)g

′(x) + 1
2

(

(xp+δp − x)2 − (xp − x)2
)

g′′(x)

xp+δp − xp
+ ...

= g(x) +
1

2
(x− xp+δp)(x− xp)g

′′(x) + ... (C.5)

Using one of the remainder formulation, it exists y ∈ [xp, xp+1] such as

ĝ(x) = g(x) +
1

2
(x− xp+δp)(x− xp)g

′′(y). (C.6)

1. see for example: http://www-solar.mcs.st-andrews.ac.uk/~clare/Lectures/num-analysis/Numan_

chap3.pdf
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Abstract

In wireless communications systems, the transmission channel between the transmitter and
the receiver antennas may disrupt the signal. Indeed, the channel can be frequency selective
due to the multipath, and time selective if any element of the propagation environment is in
motion. The multicarrier modulations, such as the orthogonal frequency division multiplexing
(OFDM), are very robust against the multipath effect, and allow to recover the transmitted
signal with a low error rate, when it is combined with a channel encoding. Furthermore, it is
usual to consider that the channel frequency response is constant on each subcarrier, so the
equalization is simply performed by a per subcarrier division. The channel estimation then
plays a key role in the performance of the communications systems. For this reason, a great
number of papers that propose various methods have been published for many years. Among
them, we interest to the pilot aided techniques that use pilot tones to estimate the channel
on some time and frequency positions. To do so, a lot of techniques are based on the least
square (LS) and the minimum mean square error (MMSE) criteria. The LS is simple, but is
sensitive to the noise level, and an interpolation is required if the pilot tone are scattered in
the OFDM frame. The MMSE is optimal, but is much more complex than LS, and requires
the a priori knowledge of the second order moment of the channel and the noise.

In this manuscript, two methods that allow to reach a performance close to the one of
LMMSE while getting around its drawback are investigated. Thus, the proposed method called
artificial channel aided-LMMSE (ACA-LMMSE) does not require the a priori knowledge of
the channel covariance matrix nor its estimation. Moreover, this method is independent of
the physical or statistical variations of the channel, so it reduces the complexity, since the
covariance matrix just has to be computed once during the transmission. However, ACA-
LMMSE supposes that the noise level is known at the receiver side. A second method then
proposes to perform the joint estimation of the noise and the channel by means of the MMSE
criterion. Consequently, as the estimation of each parameter requires the estimation of the
other one, the proposed algorithm is iterative. In another way, a third part of this dissertation
investigates the errors of estimation due to the interpolations. By combining a statistical and a
geometrical study of the errors of interpolation, it is possible to derive an analytical expression
of the mean square error (MSE) of the estimation and a theoretical expression of the lower
bound of the bit error rate (BER) curves. Finally, a application of the cyclic delay diversity
to a single frequency network (SFN) using the DRM/DRM+ standard is presented. The
consequence of the increase of the frequency selectivity on the channel estimation is shown.


