N

N

Interactive Generation and Rendering of Massive
Models: a Parallel Procedural Approach
Cyprien Buron

» To cite this version:

Cyprien Buron. Interactive Generation and Rendering of Massive Models: a Parallel Procedural
Approach. Graphics [cs.GR]. Université de Bordeaux, 2014. English. NNT: . tel-00988387v1

HAL Id: tel-00988387
https://theses.hal.science/tel-00988387v1
Submitted on 12 May 2014 (v1), last revised 25 Aug 2015 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00988387v1
https://hal.archives-ouvertes.fr

THESE

présentée a

L'UNIVERSITE de BORDEAUX

ECOLE DOCTORALE DE MATHEMATIQUES ET

D’'INFORMATIQUE
par Cyprien Buron
Pour obtenir le grade de

DOCTEUR

SPECIALITE : INFORMATIQUE

Interactive Generation and Rendering of Massive Models:

a Parallel Procedural Approach

Soutenue le : 04/02/2014

Devant la commission d’examen composée de :

Stéphane Mérillou Professeur, Univ. Limoges
Jean-Michel Dischler Professeur, Univ. Strasbourg
Eric Galin Professeur, Univ. Lyon 2
Gael Guennebaud CR Inria, Univ. Bordeaux 1
Xavier Granier Professeur, Univ. Bordeaux 1

Jean-Eudes Marvie PhD, Principal Scientist, Technicolor

- 2014 -

Président
Rapporteur
Rapporteur
Examinateur
Directeur de thése
Encadrant de thése

Remerciements

Premiére page & lire, mais derniére page rédigée. C’est enfin 'occassion de remercier
toutes les personnes qui m’ont aidé et accompagné durant ces 3 passionnantes années
de thése.

Tout d’abord, je souhaite adresser mes premiers remerciements a mes directeurs de
these : Jean-Eudes Marvie et Xavier Granier. Merci de m’avoir m’avoir fait confiance et
donné 'opportunité de réaliser cette thése en collaboration entre Technicolor et Manao.
Je vous suis trés reconnaissant de m’avoir encadré, orienté, et conseillé durant ces années.

J’adresse mes remerciements & Jean-Michel Dischler et Eric Galin pour avoir lu
avec attention mon manuscript et & Stéphane Mérillou pour avoir présidé mon jury de
soutenance.

Je tiens également & remercier ’équipe Manao de m’avoir accueilli lors de mes
séjours & Bordeaux, et Xavier pour m’avoir héberger. Plus particuliérement, j'adresse
un grand merci & Gaél Guennebaud pour toute ’aide apportée et son implication dans
mes travaux de recherche.

Je souhaite également remercier 1’équipe & Technicolor notamment Gagl, Pascal,
Patrice, Olivier, Alex, sans oublier Pascal Gautron et Sandra. La bonne ambiance
toujours présente dans I’équipe a permis un cadre de travail idéal. Les aides, remarques
et discussions fructueuses avec chacun ont grandement contribué au bon déroulement
et & la réussite de cette thése. Notamment, les devs avec Pat, les démos et les rushs
vidéos de P’ti Fourbe, les relectures toujours constructives de Jean-Eudes, Xavier, des
Pascals et des Gaéls (et leurs stylos rouges tombés au combat) ont permis ces travaux.
Les soirées deadline ot bonne humeur régnait avec travaux de derniéres minutes ont
toujours été de grands moments.

Enfin, j’adresse un grand merci & mes parents et & ma femme Stéphanie pour m’avoir
encouragé, soutenu et supporté depuis le début.

Contents

1 Introduction

2 Parallel computing & graphics hardware

2.1 Theory of parallel computing
2.1.1 Power consumptionissue.
2.1.2 Theoretical speedup
2.1.3 Parallelism conditions
2.1.4 Parallel system classification.
2.1.5 Parallel programming types
2.1.6 Parallel hardware

2.2 Graphics processing unit, Lo L
2.2.1 History
2.2.2 Unified pipeline revolution
2.2.3 Hardware tessellator

2.3 Logical graphics pipeline - DirectX 11 / OpenGL 4

24 Conclusion Lo

3 Procedural content generation

3.1 Introduction to procedural generation of contents
3.2 Grammar-based modeling of plants
3.3 Grammar-based modeling of buildings
3.4 Geometry synthesis on surfaces
3.5 Improving artist experience
3.6 Real-Time procedural generation on GPU
3.7 Conclusion L

4 Parallel procedural generation based on independent 1D atoms

4.1 Introduction
4.2 Procedural pipeline overview

1il

iv Contents
4.3 Rule compiler 44
44 Ruleexpander. 46

4.4.1 Grammar-specific GPU expression-instantiated interpreter 46
4.4.2 Segment-based expansion 47
4.4.3 TImplementation on graphics hardware o1
4.5 Terminal evaluator 53
451 Renderer 04
4.6 Applications 54
4.6.1 Architecture 55
4.6.2 Vegetation Lo 95
4.6.3 Object batching & performance 58
4.7 Conclusion e 61

5 Internal context parallelization
and application to roofs modeling 63
5.1 Introduction 64
5.2 Principle 64

5.2.1 Internal consistent context computation 66
5.2.2 Internal context decomposition 66
523 Joinrule 67
5.24 Clipping 68
525 Projectrule 69
53 Casestudy 70
54 Applications & resultso 72
5.5 Discussions & future works oL 73
5.6 Conclusion 75

6 External context-sensitive grammars
and application to growth on generic shapes 77
6.1 Introduction 78
6.2 Passing context through texture maps 79
6.3 Indirection geometry images 81

6.3.1 Geometry imageso 81
6.3.2 Indirection computationo 82
6.4 Marching ruleo 84
6.4.1 Best matching pixel o000 87
6.4.2 Tangent-based orientation of the marching direction 88
6.5 Smooth seamless geometry synthesis 90
6.6 Applications & results 93
6.6.1 Ivygrowth o 94
6.6.2 Grammar constraints through texture contexts 96
6.7 Discussion 98
6.8 Conclusion 98

Contents v

7 Parallel grammars scalability

and application to massive sceneries 101
7.1 Introduction 102
7.2 LOD system overviewo 103
7.3 Architecture 104
7.3.1 Impostors 105
7.3.2 LODs description 106
7.3.3 LOD transition 108

7.4 Vegetationo 108
741 Impostors L e 108
7.4.2 LOD description o 110

7.5 Caching, clustering and culling 110
7.5.1 Caching 110
7.5.2 Clustering 110
7.5.3 Fine-grain cullingon GPU o0 111

7.6 Results. o 112
7.7 Conclusion. L 115
8 Conclusion 117
8.1 Contributions 117
8.1.1 Parallel procedural generation based on independent 1D atoms . 117
8.1.2 Internal context parallelization 118
8.1.3 External context-sensitive grammars 118
8.1.4 Parallel grammars scalability 118

8.2 Perspectives L L 118
9 Résumé en Francais 121
9.1 Imtroduction L 121
9.1.1 Contributions 122

9.2 Etat de l'art sur la génération procédurale 122
9.3 Génération procédurale en paralléle basée sur des atomes 1D indépendants123
9.3.1 Description du pipeline 0L 124
9.3.2 Applications et résultats Lo oL 125

9.4 Parallélisation du contexte interne oL 127
94.1 Méthode o 127
9.4.2 Application a la génération de toits & résultats 128

9.5 Grammaires sensibles au contexte externe 129
9.5.1 Méthode 129
9.5.2 Application a la croissance sur des surfaces génériques & résultats 130

9.6 Mise a I’échelle des grammaires paralleles 131
9.6.1 Méthode 131
9.6.2 Application aux environnements massifs & résultats 132

9.7 Conclusion. 132

9.7.1 Contributions 132

Vi Contents

9.72 Perspectives 133
A Grammar rule library 137

Bibliography 143

Chapter]_

Introduction

Movie and video game industries endlessly create more huge and more complex environ-
ments in order to render even more realistic scenes. However, the natural elements and
architectural models composing the sceneries, such as trees and buildings, are orders of
magnitude too complex to be modeled and stored for large-scale environments. In addi-
tion, the generated models being extremely huge and complex, rendering an entire scene
or editing one or many objects within the environment becomes a very time-consuming
and tedious task. These drawbacks prevent from interactive pre-visualization and fast
production.

In this thesis, we aim at generating and rendering the elements composing mas-
sive scenes at interactive time. To do so, we propose a parallel procedural approach,
benefiting from the highly parallel computation capabilities of recent graphics hardware.

Procedural methods provide tools for quickly modeling elements exhibiting repet-
itive patterns like buildings and trees. Especially, grammar-based methods use a set
of rules and parameters in order to describe the lightweight structure of the objects.
Starting from a small set of rules, an infinite number of unique but similar objects are
generated depending on the input parameters. Grammar-based methods, through their
amplification role, open new perspectives in modeling large-scale environments. For
instance, the New York cityscape of the King Kong movie is generated using CityBot
[Whi06], the procedural modeling system developed by Weta Digital. The large-scale
buildings of Man of Steel are created with CityEngine [Esrl2].

Traditionally, procedural approaches generate the amplified models using the Cen-
tral Processing Unit (CPU), and transfer the results to the memory of the Graphics
Processing Unit (GPU) for later rendering. Pre-amplification leads to memory con-
sumption and geometric complexity issues, preventing from real-time edition for large-
scale models. We thus explore the parallelism theory to generate and render massive
scenes interactively.

With the increasing parallel computation power of recent graphics hardware, parallel

2 Chapter 1. Introduction

computing on GPUs became a trend research topic. For instance, global illumination,
physics simulation and image processing successfully took advantage of the GPU. The
high number of computing cores in such architectures allows for fast computation on
very large datasets.

Porting sequential programs to parallel architectures requires to rethink the algo-
rithm, and deal with the parallelism constraints. Our contributions bring the parallelism
paradigm to the procedural approach in order to reach interactive performances for huge
procedural environments.

Contributions

We take advantage of both parallelism and procedural generation of highly detailed
models by introducing a new parallel procedural approach. We extend our approach to
deal with incoherent generated models, and massive environments. Four main contri-
butions are proposed in this thesis:

o We design GPU shape grammars: a parallel procedural pipeline for interactive gen-
eration and rendering of highly detailed objects

e This pipeline is extended to consistently generate models relying on internal con-
texts, such as roofs

e External context sensitive grammars are introduced for consistent expansion on sur-
faces and grammar constraints through texture maps

e Finally, we propose parallel grammars scalability to address massive environments

Our parallel procedural approach is based on the decomposition of input objects
into independent 1D atoms. Thanks to our segment-based expansion, each 1D atom is
able to evaluate the grammar in a first parallel stage. Then, geometric terminal shapes
are instantiated in a second parallel stage. Finally, the rendering of the generated
highly detailed models is performed consistently to existing rendering pipelines. We
demonstrate the efficiency of our pipeline with interactive modeling of both vegetation
and architecture.

Decomposition of the input objects into 1D atoms results in independent expansion
of each atomic element. To model internally consistent objects, we extend our pipeline
to take care of internal contexts with respect to parallelism. Our method is illustrated
on interactive consistent roof generation over multiple independent atoms.

Grammar rules are often controlled by non-intuitive parameters. In order to con-
strain the grammar rules with more artist-friendly tools, our pipeline integrates external
context-sensitive grammars. Texture contexts such as pre-generated texture maps or
on-the-fly paintings are simple way to control the grammar behavior. We also introduce
surface context for consistent expansion onto an underlying surface. External context-
sensitive grammars are particularly useful to interactively generate growth on generic
shapes.

While GPU shape grammars pipeline handles hundreds of grammar-based models
interactively in parallel, we bring scalability to parallel grammars in order to scale up to
thousands of generated models at interactive times. To do so, we introduce a complete
LOD system based on advanced rendering optimization techniques within our pipeline.
Massive sceneries are then supported with interactive feedback for artists.

Thesis overview

This thesis is divided into 7 chapters. We first introduce essential concepts about the
parallelism paradigm, we detail the specific parallelism of the graphics hardware and
review the graphics pipeline in Chapter 2. Related works on procedural generation
are presented in Chapter 3. The next four chapters present our contributions. From
Chapter 4 to Chapter 7 we introduce respectively the parallel procedural approach used,
the internal context parallelization, external context sensitive grammars and the parallel
grammars scalability. Finally, Chapter 8 concludes this thesis and opens some research
perspectives.

Chapter 2

Parallel computing & graphics hardware

This chapter introduces the theory of parallel computing. We start with a quick overview
of parallelism, essential for a good comprehension of the research work of this thesis. For
more details about parallel computing, we suggest you to refer to [KWm10]. Then we
focus on the parallelism capabilities of recent graphics processing units (GPU). Finally
we address the logical graphics pipeline according to the DirectX®) 11! / OpenGL®)
42 specifications.

2.1 Theory of parallel computing

Traditionally, computer softwares are designed for sequential computing. In order to re-
solve a problem, one may create an algorithm, and implement it with a stream of serial
instructions. Only one instruction at a time is executed on a CPU (Central Processing
Unit). Once execution is finished, the next instruction is processed and so on. On the
other hand, in parallel computing, a problem is broken into independent tasks. Each one
may be solved concurrently by an algorithm composed of sequential instructions. Divid-
ing a problem into independent smaller ones takes advantage from multiple processing
units. Each processing unit available can execute its part of the algorithm simultane-
ously. Parallelism has been used for around 30 years in high-performance computing
but supporting hardware were very expensive, thus limiting its popularity. However,
since the apparition of many-cores GPUs, usable for general parallel computing inside
everyday usage computers, any application can benefit from parallel programming.

"http://msdn.microsoft.com/en-us/library /windows /desktop/ff476080(v=vs.85).aspx
http://www.opengl.org /registry/

6 Chapter 2. Parallel computing & graphics hardware

2.1.1 Power consumption issue

Runtime of computer software mainly relies on the speed of the processing unit: the
faster the processor executes an instruction, the faster is the application. Computation
performance used to increase only with frequency scaling. However, power consumption
depends on frequency. The equation of the chip consumption is given by:

P=CxV?*xF (2.1)

where P is the power consumption, C the capacitance of all transistors whose inputs
change per clock cycle, V is the voltage of the chip, and F is the processor frequency
in cycles per second. Increasing the frequency of the chip involves directly a higher
power consumption and a heat dissipation issue. This is the main reason that the race
frequency has been stopped at the beginning of 2004. However, Moore’s law stating
that the number of transistors in a chip doubles every 18 to 24 months [MT65] is
still effective because additional transistors are now used for duplicating processors for
parallel computing.

2.1.2 Theoretical speedup

Amdahl’s law is a model showing the speedup of a parallelized algorithm according to
a given number of threads running in parallel and a given portion of algorithm that
cannot be parallelized [Amd67]. Assuming the algorithm is a problem of a fixed size
no matter the parallelization, we can compute the maximum speedup independently
from the number of threads assigned to the computation. Let n € N be the number of
threads for computation, B € [0; 1] the fraction of the algorithm remaining serial, the
theoretical speedup of computation is:

1

S =55 (2.2)
The maximum speedup reachable when n tends to infinity is:
lim S(n) = 2.3)
S = 3 -

The theoretical maximum speedup only depends on the portion of the algorithm
that cannot be parallelized, and is independent from the number of threads assigned as
shown in Figure 2.1.

Another interpretation from Equation 2.3 is that in a sequential algorithm divided
into many parallel tasks, it is more efficient to achieve a small parallelism onto the largest
fractional part than applying big parallelism onto the smallest ones. For instance, let
us consider a program composed of two independent tasks A and B, A taking 75% of
the computation time, and B 25% (Figure 2.2). If we achieve a speedup of x5 for the
computation of the task B, we will reach a total speedup of 1.25. On the other hand,
just achieving a speedup of x2 for the task A allows for a better total speedup of 1.60.

While Amdalh’s law assumes a problem of fixed size, Gustafson’s Law considers
problems of large scale where the data sets may grow with the number of processors

2.1. Theory of parallel computing 7

Amdahl's Law
20,00 —
P
18.00 —
/’ Parallel Portion

16.00 7 5004

/’ —T5%
14,00 9094

/ —o5%

Speedup
i
=
NS
\

w00 ;/f =
2.00 -'”""'F..
0.00 - +

BEREEERREERE

Mumber of Processors

Figure 2.1: Theoretical maximum speedup does not depend on the number of threads
working in parallel, only on the fractional part of the algorithm parallelizable. Image
courtesy of Wikipedia.

mA ;
mB
o Time saved ' W Time saved

(a) Original time repartition (b) B 5x faster) A 2x faster

Figure 2.2: Focusing efforts on paralleling larger parts of an algorithm is more prof-
itable than working hard to achieve a better speedup onto the smaller parts. Here a
speedup of x2 for the computation of the part A gives a better total speed computation
improvement (c) than a speedup of x5 for the part B (b).

8 Chapter 2. Parallel computing & graphics hardware

[Gus88|. Contrary to Amdalh’s law stating that the maximum speedup reaches a limit
with a large number of threads working in parallel, Gustafon’s law says that the speedup
always grows linearly with the number of threads and the input data to work on. How-
ever, accordingly to Amdalh’s law, the smaller the serial parts of the algorithm, the
faster the computation. Considering a problem with a sequential fractional part A, the
speedup is described as:

S(P)=P—Ax(P—1) (2.4)

where P is the number of processors assigned to the computation.

Gustafson's Law: 5(P) = P-a*{P-1)

120

T T T T T
x-001 % (x-1) e

x=0.2% (x-1) '_‘,’/
x-03 % (el
100 |- x-0.4#Tx-1) =]
/ff)j *(x-1)

v
5 -0.6%(x-1)
//r X h (X /

8O - 5o

60 - ~ /// / gt i =

Speedup - S(P)
\

Number of Processors - P

Figure 2.3: For large input data, maximum speedup of parallelization grows linearly
according to the number of processors. Image courtesy of Wikipedia.

Figure 2.3 shows different speedup cases. The equation 2.4 says that the computa-
tion time of the serial part of the algorithm does not change no matter the number of
processors. If it takes 1s to compute the sequential part with 1 processor, it will always
take 1s even with 100 processors. Conversely, the parallel part will have a speedup
proportional to the number of processors because we can compute the parallel part of
many input data in the same amount of time than for only one input.

Both laws address different problems, Amdalh’s law for problem of fixed size while
Gustafson’s law generalizes to arbitrary data sets. By associating both laws, me may
benefit from both the parallelization of non sequential parts of a program, and the

2.1. Theory of parallel computing 9

parallelization over the data sets. Our contributions are designed respectfully to this
observation.

2.1.3 Parallelism conditions

An algorithm composed of multiple program segments can be computed in parallel if
Berstein’s conditions are satisfied [Ber66]. Let P; be the program segment ¢, with input
and output variables I; and O; respectively. Likewise for the program segment P;. P;
and P; are independent and can be computed in parallel if:

I;iNO;=9,1;Nn0;=2,0,nN0; =90 (2.5)

The two first conditions state the input of one program segment must not depend
on the output of the other program segment. The third condition says the two program
segments must not write outputs at the same location. If one of the conditions failed,
it shows a flow dependency and program segments are not independent. If successful,
they can be processed in parallel. However while Berstein’s conditions prohibit shared
memory between program segments, it remains possible to achieve parallelism using
synchronization mechanism such as semaphores, mutual exclusions, barriers, etc.

2.1.4 Parallel system classification

Processor architectures may be classified into different categories. One of the most
widely used is the Flynn’s taxonomy [Fly66]. It differentiates multi-processor architec-
tures according to the number of concurrent instruction data streams. Four categories
are defined as shown in Figure 2.1:

e SISD: Single Instruction, Single Data. Only one instruction is executed by the CPU
at any clock time. Only one data is used at any clock time.

e SIMD: Single Instruction, Multiple Data. All processing units execute the same
instruction at any clock time, but on different data. For instance a vector addition
can be performed in only one SIMD instruction where the multiple data are the four
components of the vector.

e MISD: Multiple Instruction, Single Data. All processing units execute different
instructions at any clock time, on the same data.

e MIMD: Multiple Instruction, Multiple Data. All processing units execute different
instructions at any clock time, on different data.

On top of this classification of processor architectures, two sub-categories of the
MIMD are defined: SPMD and MPMD. In Single Program Multiple Data mode, multi-
processors executes the same program but independently. As these multi-processors do
not share the same program counter, executions are independent. Multiple Program
Multiple Data is the extension of the SPMD paradigm with various programs in input.

10 Chapter 2. Parallel computing & graphics hardware
Instruction Stream
Single Multiple
SISD Instruction Pool MISD Instruction Pool
))
. A1l L
3 |——|PU|- a|--[PU|— Ls|pu|-
~— ——
o o
A A
D]
o0
a
g1 ¢»m
=
e
Cg SIMD Instruction Pool MIMD Instruction Pool
=
[
———[PU |~ —|PUj |PU|—
gl— L pyle 2|l—lpulH L{pul-
[aTh [aTh
o o
= =
A|l————|PU| Al—|pul4 Ls|pul-
<
S
£ ———|pU|~ —|puj Ls|pul
=

Table 2.1: Flynn’s taxonomy differencing computer according to instruction and data
streams, processed by Processing Units (PUs). Courtesy of Wikipedia.

2.1. Theory of parallel computing 11

2.1.5 Parallel programming types

Different programming types exist for parallel computing: bit-level parallelism, instruction-
level parallelism, task parallelism and data parallelism. We will not go into details for
the first three categories, but only for the one that interests us here: the data parallelism.
Data parallelism focuses on a collaborative distributed work on a same data set.
Each thread will have a specific partition of the data set assigned and threads perform
the same task on their own data partition. For instance, a matrix addition can be
parallelized through data parallelism. Having two 1000 x 1000 matrix in input, A
and B, the addition of A plus B is computed into an output 1000 x 1000 matrix C.
Depending on the number of available threads N, the work may be subdivided into
N arbitrary sub-partitions (Figure 2.4). Instead of having only one thread performing
the 1000000 additions, we take advantage of the N threads, each computing MNIOOO
additions. Ideally same result is achieved N times faster using data parallelism.

Figure 2.4: A 12 x 18 matrix is partitioned into 6 x 6 subsets. Each thread is assigned
a subset of the work and is executed in parallel.

We focus onto data parallelism because we extensively use data parallel computation
type for this research work. Moreover as we will see in the next subsection, GPU is
designed especially for this kind of parallelism and is extremely powerful at executing
such computation in parallel. Furthermore, GPU processing units also support SIMD
computations. For instance, addition of two vectors may be realized with only one
vector addition instruction processed on each component of the vectors.

2.1.6 Parallel hardware

Different classes of hardware exist for parallel computing: multi-core computing, dis-
tributed computing, cluster computing, massive parallel processing, grid computing,
GPUs, and some others. We focus on only two parallel classes of hardware, the multi-
core computing and the GPU because these hardwares are now quite cheap and very
widespread inside industries and prosumers, contrary to highly expensive hardware such
as massive parallel processing or grid computing.

Multi-core processors refer to CPUs available since 2004/2005 for general audience

12 Chapter 2. Parallel computing & graphics hardware

where a processor is composed of up to around ten cores integrated into the same chip.
Each core has its own instruction stream, and may execute independent operations:
multi-core processors belong to the MIMD class. However, with the SSE instructions
available on many CPUs, they are able to perform SIMD instructions at a low-level.
On the other hand, GPUs are now used for general-purpose computing. Contrary to
the multi-core processors, GPUs are stream processors that allow each core to execute a
same instruction onto a different data set (SIMD). For instance, vectorial computations
are performed in parallel for each element of the vector. In addition, recent GPUs are
also categorized as SPMD because each core can follow different paths through the same
code. They are heavily optimized for data parallelism, and generally contain hundreds
of cores. We may compare two current high-performance CPU and GPU in order to see
the divergence of number of computing cores. For instance, the CPU Intel® Xeon®
E7-8870 has 10 cores composed of 8 computing units each, giving 80 total computing
units whereas the GPU NVIDIA®) GeForce@® GTX 780 has 2304 computing cores.

However, the number of cores does not make a GPU always more efficient than
a CPU. Graphics hardware has also some limitations, for instance it has less cache
memory than a CPU, and is not as comfortable with complex instructions (branching,
loop, etc) as the CPU. Globally we can say that the GPU is better for simple calculation
on many data, whereas the CPU is better for complex computation on few data.

2.2 Graphics processing unit

Graphics Processing Units are designed to reduce the CPU load by performing the oper-
ations related to the computation and display of synthetic images, that we call graphics
rendering. Recently GPUs have also been used in more high-level processing: the
general-purpose computing on graphics processing units (GPGPU). Both approaches
take advantage of the highly parallel structure of the GPU. In this section we describe
into more details the architecture of a recent GPU, which is essential to understand the
work of this thesis. In order to see how a same hardware can be used for both graph-
ics rendering and general-purpose computing, we start by a brief review of graphics
processing unit history. Then we see its evolution to the unified pipeline. Finally we
describe an interesting feature of recent GPUs: the hardware tessellator.

2.2.1 History

Historically first GPUs have been developed for graphics rendering purpose. Some
logical graphics pipeline have been designed (DirectX 7, DirectX 8, etc) directly affecting
hardware architecture. Let’s take the example of the DirectX 7 specifications. Figure 2.5
shows the classic pipeline used for many years. Starting from the top, where data is
fed from the CPU to the GPU, multiple processing stages are executed to finally get a
pixel drawn on the screen. Basically the GPU receives vertex data (position, normal,
texture coordinates and color) from the CPU and these data are then processed by the

2.2. Graphics processing unit 13

vertex stage. This stage performs a fixed-function® transform and lighting operation
per vertex. The next step is the primitive assembly stage where vertices are assembled
into primitives such as triangles, lines, or points. These primitives go through the
rasterization stage. It converts primitives into pixel fragments. Then the fixed-function
fragment step computes shading for each fragment. Finally the raster operations (ROP)
eliminates invisible fragments according to Z-testing, it also computes blending between
fragments if needed and anti-aliasing. The visible fragments are then written into the
frame buffer. Over the years, the classic pipeline remained mainly unchanged. Most
notable evolutions were vertex shader programmability brought with DirectX 8, and
similarly for fragment shader with DirectX 9. However this graphics pipeline was nearly
hardware-implemented as-it-is. Each stage of the pipeline was processed by a specialized
physical part of the graphics hardware, following the linear pipeline scheme. In fact,
each major processing stage of the pipeline was composed of many physical sequential
stages. For example, in GeForce 7 GPUs fragment shader stage usually had more than
200 sequential hardware stages. Implementation of this classic graphics pipeline resulted
into a high number of physical stages sequentially ordereds.

Graphics pipelines for last 20 years
Processor per function

T&L evolved to vertex shading

Triangle, point, line — setup

Flat shading, texturing, eventually
Pixel shading

Blending, Z-buffering, antialiasing

m Wider and faster over the years

Figure 2.5: Classic graphics pipeline before unified pipeline architecture. Courtesy of
NVIDIA.

2.2.2 Unified pipeline revolution

With G80 architecture, NVIDIA decided to change their philosophy of the hardware
implementation of the graphics pipeline. While previous approach was a sequential
hardware pipeline directly simulating graphics pipeline, they designed a unified pipeline
and shader architecture where the sequential pipeline flow is modified to be more loop-
ing oriented (Figure 2.6). The new unified shader processors are able to perform any
shader computation (vertex, fragment), and it can feed back itself result of current op-
eration to execute another one. This new approach significantly reduces the number of

3A fixed-function operation is a stage hardware implemented that may be parametrized but not
modified.

14 Chapter 2. Parallel computing & graphics hardware

hardware pipeline stages. Such an architecture was first hardware-implemented within
the NVIDIA GeForce 8800 graphics card (Figure 2.7).

Discrete design Unified design
Shader B [ibuffer | [ibuffer | [ibuffer | [ibuffer |
Shader
_ Core
\ \
Shader C [obuffer | [obuffer | Tobuffer [[obuffer |

Figure 2.6: In unified design (since G80 architecture), a single core can execute each
shader stage. Courtesy of NVIDIA.

[Host |
¥ *
Input Assembler Setup | Rstr / ZCull
Vix Thrnd Issue Geom Thread |ssue Pixel‘l’hread Jssus

m- M-W- M-M- M-
___ ___

Figure 2.7: G80 architecture based on Streaming Multiprocessors. Courtesy of NVIDIA.

This radical modification of architecture has been motivated by the following obser-
vation. Some graphics applications may be vertex shader intensive, while others may
be pixel shader intensive, especially for recent programs. Workload for vertex and pixel
shaders may be completely imbalance at any given time of the computation. For in-
stance let us imagine a GPU with a fixed number of shader units: 4 vertex shader cores,
and 8 pixel shader cores (Figure 2.8a). In case of a vertex shader intensive application,
the maximum performance is reach when all vertex shader units are used, so it corre-

2.2. Graphics processing unit 15

sponds to 4 in our example. On the other hand for fragment shader intensive scene,
maximum performance is limited to number of fragment shader units available, here 8.
In both case, a bottleneck appears because shader work is not well distributed among
shader units. In addition, we also observe that some shader units are not working at
all and are idle. The idea of unified pipeline and shader architecture came from this
observation: how can we fully take advantage of all shader units available at any time?
Unified shader processors should be generic so that they could perform any shader in-
vocation at any time, in order to minimize idle time. This is illustrated in Figure 2.8b.
In vertex shader intensive case, most of the shader units are used for vertex computa-
tion, attaining a performance score of 12, and accordingly for fragment shader intensive
case. In both cases, all shader cores are used, maximizing computation performance.
This fundamental pipeline modification brought general-purpose computing to graphics
hardware, while also enhancing graphics pipeline with a better load balancing. The
same hardware allows us to do either parallel general-purpose computing (physics simu-
lation, image processing, etc) or parallel graphics rendering (image synthesis, etc) using
the same computation cores.

Unified Shader

Vertex Shader
Pixel Shader
Idie hardware

= Heavy Geometry
Workload Perf = 4 Workload Perf =12

. HeawGeoméry ‘

Vertex Shader

Unified Shader

Heavy Pixel Heavy Pixel
Workload Perf=8 Workload Perf = 12
(a) Specialized shader stages (b) Unified shaders

Figure 2.8: Unified computing shader units allow to achieve better performances in any
application case. Courtesy of NVIDIA.

This unified pipeline has been the starting point of all recent graphics pipeline ar-
chitecture such as NVIDIA Fermi and NVIDIA Kepler. For instance, if we look at
the NVIDIA GeForce 680 GTX specifications, corresponding to the GK10/ Kepler ar-
chitecture (Figure 2.9), we note that the computing cores (also called CUDA®) cores)
are regrouped into 8 streaming multiprocessor (SMX). Each SMX contains 192 compu-
tations cores, reaching a total number of 1536 computation cores. Work distribution
is realized in a first time using a global scheduler distributing thread blocks to SMX,
which then distribute them to their computation cores thanks to a warp scheduler.

For graphics rendering the scheduling is completely hidden from the programmer,
but assure him an efficient load balancing. Cache management is also automatically

16 Chapter 2. Parallel computing & graphics hardware

handled. Inversely, for general-purpose computing, programmer can choose the number
of threads to launch, the thread block size, and how to control cache between local
and global memory in order to get the maximum performance. At this step, we can
say general-purpose computing allows a finer grained parallelization and a better cache
management than for graphics rendering. However, when the final goal is to render
an image, one should know that switching context from general-purpose computing to
graphics rendering (for example when using OpenGL to render the final image depending
on the results of an OpenCL®) computation) is quite costly.

Most known languages for general-purpose computing on graphics hardware are
CUDA and OpenCL. Programs that are processed on computation cores are called
kernels. Similarly DirectX and OpenGL are used for graphics rendering, and programs
executed are called shaders.

PCI Express 3.0 Host Interface

GPC GPC

Raster Engine Raster Engine
3 s Ex s 8
SMX smx SMX MX
Polymorph Engine 2.0 Polymorph Engine 2.0
= —

Memory Controller
19]j03u0g Kowapy

Memory Controller
19jjou0g fiowspy

o -
Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0
SMX MX Smx

SMx

T T8
Raster Engine Raster Engine

GPC GPC

Figure 2.9: GeForce 680 GTX - GK104 Kepler Architecture.

2.2.3 Hardware tessellator

Kepler architecture and equivalent also added a special hardware unit responsible for
tessellation, introduced in DirectX 11, called hardware tessellator. Tessellation is a pro-
cess allowing creation of new vertices on top of existing triangles. It can amplify a low

2.2. Graphics processing unit 17

polygon model into a denser one, while being smoother and smoother. Higher density
models give higher quality rendering images, as the head model in Figure 2.10 shows.
Before introduction of the hardware tessellation, in order to get highly detailed meshes,
we had to tessellate the models using the CPU and then transfer the resulting objects
to the GPU for rendering, which was very expensive operation. Then some GPU-based
methods have been developed to refine meshes [BS05, SJP05, PO08, GBP11]. We may
send only a low-resolution mesh to the GPU which will refine it on-the-fly and render
it. This automatically accelerate mesh-based computations such as animations that can
be done only onto the low-resolution mesh, before triangle amplification. Finally hard-
ware tessellator increased refinement performance thanks to special hardware computing
units dedicated for this operation avoiding multi-pass computation.

Figure 2.10: Tessellation on a head model.

Figure 2.11 shows the diagram of a streaming multiprocessor (SMX). We notice
that hardware tessellator is a unit separated from computation cores. And as there
is one tessellation core per SMX, we have as many tessellation units as the number
of SMX. These new tessellation cores are specialized for quickly creating new vertices
on-the-fly and directly stream them to the graphics pipeline. An important thing to
note is that we may address these cores only using graphics rendering pipeline, not with
general-purpose computing languages such as Cuda and OpenCL.

More recently OpenGL 4.2 introduced compute shaders. While being created for
general-purpose computation, they slightly differ from CUDA /OpenCL kernels because
they are directly integrated within logical graphics pipeline. They combine advan-
tages of general-purpose programming with fine-grained parallelization and precise cache
management but integration to graphics pipeline eliminates costly context switching.
However they are only processed by computation cores and cannot address tessellation
units.

As a major part of this thesis is about adding more and more details to models
procedurally, we choose to implement all this work using graphics pipeline only in order
to get intensive usage of hardware tessellator.

Chapter 2. Parallel computing & graphics hardware

PalyMarph Enging 2.0
o) I...i..: I I._ = I TR T ,I
Warp Schaduler Wrp Schoduler Warp Schaduisr Warp Scheduisr

CHupaich Unil Dispeich Unl Dispeich Unit Dispebch Uil Dlepeich Unk Dispaieh Usdl Dlagsich Unlt | Pspaich Linh

k- R e S kS & 3 L
Register File {65,536 x 32-bit)

4+ & ks 4 4 E 3 & +
Cors, Cor LDET SFU Core Com Core Com

Core Core Core Com
Core 2 Core Cormn
Carn Core

Cuorm

Corm

Core

Core

Corm| LOET 5 Care
Com LDE Core
Core Corn Cora
Core Com LI Core Core
Cofe| Corn Com| LS Core Cor Cors LEVET

Cors Cors Corm Cors Cors Core

~ TewiweCachs
64 KB Sharsa Mamory /L1 Cachn

Figure 2.11: GeForce 680 GTX - SMX Diagram.

2.3. Logical graphics pipeline - DirectX 11 / OpenGL 4 19

2.3 Logical graphics pipeline - DirectX 11 / OpenGL 4

The latest evolution of the logical graphics pipeline corresponds to DirectX 11 and
OpenGL 4 specifications. Figure 2.12 shows the different steps of the pipeline according
to the OpenGL 4 naming conventions. Among these steps it is important to distinguish
fixed-function stages from programmable ones. Fixed-function stages are not modifi-
able while programmable stages may be completely designed by programmers. It is
important to recall that each stage is processed in parallel onto the input data.

Vertex s
Shader Clipping
Tessellation i
Y Rasterization
e)
| Tessellation |
| Control |
{__Shader
Fragment
= _i Shader
I Tessellator 1
e i
Fe——L——e = | Fragment |
| Tessellation | | Tests |
| Evaluation : s om e
{ Shader |]
_______ e s
——————————————————— | Framebuffer |
| Blending and |
| — Losicmmg
[&) -yl-
| Geometry !]
'7
| Shader Write
———ae] Masking

_______ Transform Write to
Feedback Framebuffer

Figure 2.12: OpenGL 4.0 Pipeline.

e Vertex shader: This is the first stage of the graphics pipeline. Each vertex com-
posing input primitives is sent to the vertex shader to be processed in parallel.
Typically, per-vertex processing is vertex projection onto the camera space, normal
transformation, preparation of additional information such as texture coordinates,
ete.

e Tessellation control shader: At this stage, vertices are regrouped into patches. Tes-
sellation control shader prepares the patch before actual tessellation. It indicates
how should be the subdivision for the inner and outer borders of the patch.

20

Chapter 2. Parallel computing & graphics hardware

Tessellation Inner Level
1 3 5 >

Tessellation Outer Level

Figure 2.13: Triangle refinement according to the inner and outer tessellation factors.

Tessellator /Primitive control: The hardware tessellation is really executed at this
stage. Since it is a fixed-function stage, it automatically read the tessellation values
filled at the tessellation control stage, and creates the new vertices resulting from
the tessellation according to a tessellation pattern. Figure 2.13 shows refinement
pattern on a triangle according to different tessellation factors.

Tessellation evaluation shader: After tessellation, we need to specify some informa-
tion about vertices issued by the primitive control stage, such as the position, the
normal and the texture coordinates. In order to do this, primitive control stage in-
forms on barycentric tessellation coordinates for each vertex. It allows the developer
to know the position of the created vertex according to the boundary vertices of the
patch. As he knows information about there boundary vertices, one may infer some
values by interpolation using the barycentric tessellation coordinates.

Geometry shader: In the geometry shader stage, one may compute per-primitive
information, create again new vertex, or decide not to send them to the following
stage (and not to display them). Input and output of this stage are specified prim-
itives: points, lines, or triangles. At this stage, one may choose to record emitted
vertices into a buffer for further usage (called transform feedback).

Clipping/Culling: Before going through rasterization, we may easily discard non
visible triangles. Primitives back-facing the camera may be eliminated. Primitives
entirely outside the viewing region are discarded while those partly in the viewing
region are clipped into fully visible and fully invisible parts to discard non visible
ones.

Rasterization: This is the step that convert primitives into fragments. Fragments
selected as visible after fixed-function tests will constitute the pixels of the final im-
age. Figure 2.14 shows an example of primitive rasterization. Generated fragments

2.3. Logical graphics pipeline - DirectX 11 / OpenGL 4 21

are processed by the subsequent stages. Information like depth of the fragment are
automatically computed and each fragment writes its depth on the depth buffer if
its value is smaller than the previous one.

e Fragment shader: Each fragment is processed by a fragment shader. It computes
some information such as the color, the texture applied, the lighting, etc. It may
also recomputes its depth. Then some tests are run on the fragments before writing
to the frame buffer.

e Fragment tests: scissor, stencil and depth tests are performed for each fragment.
If at least one test fails, fragment is discarded. For instance, depth test compares
depth of the current fragment to the depth of the fragment at the same frame buffer
position. Only the closest fragment will be written in the frame buffer. For recent
hardware, depth test can be computed before fragment shading in order to accelerate
the process under certain conditions. This is know as early-z culling.

e Blending: If blending is required, color of the fragment at a given position will be
blend with the color at the same position already in the frame buffer.

e Masks: Some masks can be defined to avoid fragments write the frame buffer de-
pending on its color, depth or stencil values.

e Frame-buffer: Finally fragments that reach this stage are written to the frame buffer
that composed the final image.

-
/

4

Figure 2.14: Rasterization converts polygons and lines (black lines) into fragments (blue
pixels).

22 Chapter 2. Parallel computing & graphics hardware

2.4 Conclusion

During the last decade, computing performances have been boosted thanks to the par-
allelism capabilities offered by recent affordable hardware such as multi-core CPUs and
many-core GPUs. While CPUs are more efficient in computing complex operations
on a single data set, GPUs are on the other hand more efficient for simple compu-
tations on very large number of data sets. In other words, powerful data parallelism
may be achieved using GPUs for appropriate algorithms. Moreover, hardware tessel-
lation recently introduced in GPUs allows for efficient real-time mesh refinement (Di-
rectX11/OpenGL4). We believe that both of these advantages open new perspectives
for high performance computing and we take benefit from them in this thesis. All
our contributions from Chapter 2 to 7 systematically exploit these advantages in the
solution designs.

In this thesis we aim at generating and rendering procedural objects efficiently using
the GPU. The next chapter reviews some related work about the procedural generation
and application on graphics hardware.

Chapter 3

Procedural content generation

In this chapter we address the procedural content generation, a very powerful tool for
creating contents with infinite variations. We will start by introducing the idea of pro-
cedural content generation, the benefits and drawbacks associated to such a technique.
Then we will see different methods specialized for creating contents such as vegetation
and architecture. We will talk about artist-friendly methods and some research work
focused on procedural geometry generation on surface. Finally we will see methods
about real-time generation using GPUs.

3.1 Introduction to procedural generation of contents

Modeling an object may be done with various methods. Artists commonly use polygonal
modeling softwares (3dsMax [Autl3a], Maya [Autl3b|, etc) which offer many tools
to create meshes. Traditionally artists manipulate primitives (points, lines, triangles,
quads) in order to shape its model (Figure 3.1). Deformation operators (extrusion, split,
displacement, twist, etc) help the artist to tune the model more easily than vertex by
vertex. Other tools like Constructive Solid Geometry [RV77], FreeForm Deformation
[SP86], and others assist the user to create and edit models in a more artist-friendly
fashion. In order to help the artists, other softwares change the traditional polygonal
modeling approach to a more artist-friendly way: the sculpting/painting. Zbrush [Pix13]
and Mudbox [Aut13c] purpose to directly sculpt a base mesh to deform it and add details
using brush tools. Other high-level methods for modeling exist such as subdivision
surfaces. Artists may define only a coarse mesh using patch primitives. Subdivision
surface methods such as Catmull-Clark [CC78] and Loop [Loo87] then refine this coarse
mesh to a finer one Figure 3.2. Implicit surfaces are also used for defining a mesh as a
mathematic function in R3 [Baj97]. Finally on top of all these methods, displacement
mapping and other texture map based displacement methods, where vertices are moved

23

24 Chapter 3. Procedural content generation

according to a value in a texture map, are trendy tools because it allows artists to paint
the texture map directly on the object. Such painting techniques provide a high-level
modeling mechanism to artists that avoid them to directly move vertices.

Figure 3.1: Mesh modeling using Blender software.

On the other hand procedural modeling approach completely differs from previous
approaches. Instead of manipulating primitives, directly or through modeling tools,
or sculpting the mesh, some objects may be described procedurally with an algorithm
composed of a set of functions or rules calling each other. The main advantage of
procedural modeling is the lightweight representation of the object. As we replace the
actual polygonal mesh by functions describing its structure, we only need to store this
small representation and not the final generated mesh. Another advantage is that a
same set may generate potentially infinite number of similar but unique objects, when
using stochastic and random functions. Fractals objects are procedurally generated.
For instance, terrains with the diamond-square algorithm [FFC82].

Grammar-based methods also describe procedurally various objects with a succes-
sion of simple high-level grammar rules. Vegetation, architecture and terrains are among
the most well-suited elements for grammar-based procedural modeling (Figure 3.3). For
instance, one tree results from a growth phenomenon. It can be described with multiple
growing rules, the first one modeling the trunk, and recursively smaller and smaller
branches. A building facade is generally divided into two parts. A ground floor com-
posed of doors and windows, a ledge being sit on top of the whole floor. Secondly,

3.1. Introduction to procedural generation of contents 25

Figure 3.2: Highly detailed mesh modeled using subdivision surfaces with displacement
mapping. Courtesy of Kenneth Scott, id Software 2008.

multiple stories composed of windows, balconies. Such a facade can easily be described
with grammar rules.

Various objects and environments may be modeled using procedural techniques such
as terrains ([SDKTT09, GGGT13, HGA110]), road networks (|GG10, GPMG10]), urban
layouts ([PM01, CEWT08, VKWT12]), vegetation ([DHLT98, BMJ*11]), architectures
([WWSR03, MWH06, WOD09]), and interiors ([MSK10, LHP11]). Procedural meth-
ods have also been studied for synthesis of textures representing natural elements such
as wood, bricks, concrete, tree bark, etc ([EMP102, All13]). In this chapter we focus
on grammar-based modeling of vegetation and architecture.

Figure 3.3: Vegetation and architecture are subjects of choice for procedural modeling.

26 Chapter 3. Procedural content generation

3.2 Grammar-based modeling of plants

Procedural modeling was firstly introduced for plants generation, particularly using L-
systems [Lin68]. We will describe the overall approach of such a method, however for
readers who are interested in more explanation we recommend the book The Algorithmic
Beauty of Plants authored by Prusinkiewicz and Lindenmayer [PLHT90].

A Lindenmayer System, also called L-System, is a string rewriting system originally
developed as a mathematical theory of plant development. A string rewriting system
is composed of a set of strings associated to rewriting rules (or production rules). The
basic idea is to successively replace strings by the production rules to amplify the object.
Starting from a simple string (the axiom), rewriting operations will replace it by a
complex string, thus describing the shape of a complex plant. L-Systems are similar
to Chomsky’s grammars but differ in the way production rules are applied. Rewriting
rules of Chomsky grammars are applied sequentially (one letter at a time), while L-
System rewriting is processed in parallel (all letters at a time). This difference comes
directly from the definition of the L-System, because simulating plant development
means simulating cells subdivision where many divisions can occur at the same time.

Let us consider two strings, composed of only one letter each, a and b. We associate
production rules a — ab, and b — a, meaning the letter a is replaced by the string ab,
while the letter b is substituted by the letter a. Starting with the initial axiom string
b, the rewriting process of the four first derivation steps is shown in Figure 3.4.

b
b%a%a%bea
IOXa a

1

Figure 3.4: Rewriting process (5 derivation steps) according to the production rules a
—aband b — a

In order to model plants, some graphical interpretations of L-Systems have been
developed. Among them, the LOGO-style turtle interpretation is one the most known.
The turtle interpretation is based on the turtle state (position, rotation) and some string
commands understandable by the turtle. The turtle’s state is defined as a triplet (x,y,«)
representing the Cartesian coordinates (x,y) of the turtle and the angle alpha where
the turtle is heading. Then, let us define d the step size when the turtle moves, and ¢
the angle increment when the turtle rotates. Given those two parameters, the following
symbols are defined:

Finally, once the L-System is rewritten, we may draw it using the turtle inter-
pretation where individual letters are treated as commands. For instance, consid-
ering the L-System defined by the axiom F + F' 4+ F' 4+ F and the production rule

3.2. Grammar-based modeling of plants 27

Move a step forward of length d, according to the current angle «, and draw the line
Same as F but without drawing a line

Rotate right the angle o by +§

- Rotate left the angle o by -9

+ ™=

Table 3.1: Symbols for turtle interpretation

F—-F+F—F—FF+F+F—F, Figure 3.5a) shows the interpretation of the axiom,
while Figure 3.5b-c) correspond to n = 1,2 steps of derivation of this L-System.

Figure 3.5: Generating a quadratic Koch island from a L-System.

On top of this turtle interpretation of L-Systems, other commands have been intro-
duced. Without entering into details, bracketed L-Systems allow for describing branch-
ing structure of many plants by turtle state into a stack. Stochastic L-Systems, context-
sensitive L-systems and other extensions have also been developed. Please refer to
[PLH*90] for more details. Such L-Systems allow for modeling impressive vegetation
as in Figure 3.6.

Due to their amplification role, L-systems have the main advantage to have a
lightweight storage. Using only one L-System grammar and one seed, we may generate
one highly detailed 3D model of a plant. Coupling with stochastic and context-sensitive
parameters, many different plants can be generated with the same grammar. We only
need to create random seeds to obtain a high range of diversity. However, such high def-
inition models created with L-systems are costly to generate (derivation, interpretation)
and render. While the generation and rendering of few models may be quite interactive,
sceneries such as forest involving hundreds of trees are highly time-consuming and not
interactive. Generation step may be avoided by storing amplified models but it implies
a large memory cost. Some approaches try to optimize rendering of these plants by
generating level of details, using the hierarchical structure of the object, to relieve the
geometric load of the GPU [LCVO03]. Other approaches accelerate generation time by
parallelizing the derivation and interpretation steps [LH04, YHL107, Mag09, LWW10].
A more detailed explanation will be given in the following section.

28

Chapter 3. Procedural content generation

Figure 3.6: Different vegetation modeled from L-Systems, courtesy of Xfrog.

3.3. Grammar-based modeling of buildings 29

3.3 Grammar-based modeling of buildings

Procedural modeling has also been particularly useful for architecture modeling, espe-
cially for facades and buildings. We will describe briefly history of procedural architec-
ture modeling, for more detailed information recent state-of-the-art reports are available
[WMWPFO07] and [VAW10].

While L-Systems have been designed for simulating growth phenomenon of plants,
they have also been used for modeling buildings. Parish et al suggested to use L-System
for architectural modeling [PMO1]. They considered the starting axiom as the bounding
box of the building, and then a building-like style L-System is derived on it. They also
defined implicit level-of-details by stopping the derivation at an arbitrary level (see
Figure 3.7).

11111

Figure 3.7: L-System for building. Five consecutive steps of the generation of a building,
allowing easy LOD generation. Image from [PMO1].

L-Systems have also been extended into FL-System (Functional L-System) to gen-
erate any kind of object hierarchy such as buildings [MPBO05]. In this work, grammar
symbols are replaced by functions that can be executed at any step of the rewriting
process.

However, as a L-System simulates growth in open spaces, they are not really adapted
to architecture modeling. On the other hand, Stiny et al. introduced shape grammars
allowing to work on lines and points instead of string symbols [SG71]| (see Figure 3.8).
While L-System allows growth-like operations, shape grammars are more suitable for
reduction-like operations. Shape grammars successfully address architecture design
modeling [F1e87, SM*78, KE81, DF81, Dua02] but they are complicated to use and
derivation of such grammars is a complex task, often needing a human intervention.

In order to simplify procedural architecture modeling, Wonka et al. introduced split
grammars in Instant Architecture [WWSRO03], an extension of shape grammars. In this
work, authors defined a generic shape manipulation rule: split operation. It specifies
how to split a shape into several smaller pieces, and then refine structures more and
more (Figure 3.9). This split rule may take relative parameters as input so that a same
splitting rule works on different shape sizes. The second operation rule is the replace
rule, where terminal symbols may be associated to geometry shapes to achieve higher
quality. Contrary to shape grammars, it provides a fully automatic derivation stage.

30

Chapter 3. Procedural content generation

Axiom

Rule 1: Rule 2:

lﬂl}‘ E'—>|}, D—>.D

%

R2 R1 R1 R2
] = [?Iﬂ)l|§|%®=ﬂ%]
]

’J_
[

QP O B R

Figure 3.8: Shape grammar derivation starting from an axiom (top left) and two rules

(top center and right).

START '>|F|F|F|F|

w’

WIN

» KS

Figure 3.9: Split rules start, f, w, win, and ks are described on the top. The resulting
split grammar derivation is shown on the bottom. Image from [WWSRO03].

3.3. Grammar-based modeling of buildings 31

Muller et al. built upon previous split grammars a new grammar tool for archi-
tecture modeling: CGA shape grammar [MWHT06]. In their work, each shape has a
scope associated representing its bounding box. They defined new generic rules such as
repeat, scale, translate, etc. While dimension changing was not possible in split gram-
mars, it is performed through the use of the new added componentSplit rule. Thus any
volume may be subdivided at any time into faces, and any faces into segments. Formal
description of CGA shape grammars will be detailed later in Chapter 4, as we base
our work on the same grammar. They also handled snapping and occlusion thanks to
grammar rules querying information to the surrounding environment. Figure 3.10 shows
a set of rules and the building generated. CGA shape grammar method is integrated
within CityEngine software [Esr12], where geometry shapes are modeled by hand using
traditional tools.

PRIORITY 1:

1: footprint ~ S(Irbutlding_height, Ir) facades
T(0,building_height 0) Roof("hipped”.roa _angle){ roof }

PRIORITY 2:

2: facades ~» Comp(“sidefaces™){ facade }

3: facade : Shape.visible("street™)
~+ Subdiv("X", lr,door_width*1.5){ tiles | entrance } : 0.5
~ Subdiv("X".door_width*1.5.1r){ entrance | tiles } : 0.5

4 facade ~- tiles

5: tiles ~+ Repeat{"X",window_spacing){ tile }

6: tile ~ Subdiv("X".1r,window_width,11){ wall |
Subdiv("Y".2r.window Jheight.1r){ wall | window | wall } | wall }

7: window : Scope.occ(noparent”) != "none” ~ wall

8 window ~» S(1r,lr,window_depih) 1{"win.obj”)

9: entrance ~+ Subdiv("X”, Ir,door_width,1r){ wall |
Subdiv(™Y " door_height,11){ door | wall } | wall }

10: door ~~ S(Ir.Irdoor_depth) I{ "door.obj™)

11: wall ~ I("wall.obj™)

PRIORITY 3:

12: roof ~+ Comp(“sidefaces™) { covering }
Comp(sideedges™){ roofedge } Comp("topedges™){ roofedge }

13: covering ~»
Repeat("XY", flatbrick_width brick dength){ flatbrick }
Subdiv(™X", flatbrick_width.1r){ € |

Repeat("X", flatbrick width){ roofedge } }

Figure 3.10: Houses on the right are generated using the grammar rule set on the left.
Image from [MWHT06].

Krecklau et al. introduced Generalized Grammar [KPK10|, a procedural modeling
language adapting general modeling purpose to the power of shape grammars. Non-
terminal classes such as boxes or FFD objects may be used to model complex object
deformations. They also added abstract structure templates to facilitate parameter
passing and object instantiation. They illustrated generalized grammar by modeling
both buildings and trees Figure 3.11.

Interconnected structures such bridges and catenaries are quite challenging to model
procedurally. Krecklau and Kobbelt specify attaching points on object that can be later
used for interconnections [KK1la]. Respectfully to connection patterns or geometric
queries, end points are selected among attaching points. Finally interconnection objects
are either a rigid object chain constructed by inverse kinematics, or a deformable beam
performed by spline interpolation (see Figure 3.11).

32 Chapter 3. Procedural content generation

Figure 3.11: Generalized Grammar allows for modeling both vegetation and architecture
(left, [KPK10]). Interconnection objects are designed by specifying attaching points
(right, [KK11a]).

3.4 Geometry synthesis on surfaces

While grammar-based methods provide the ability to generate models freely in the 3D
space, geometry synthesis on surface is challenging. Different methods for generating
geometry on surfaces have been studied, often based on geometric textures. In these
approaches, geometry to apply on the surface is defined as a 3D geometric texture
and it relies on geometric texture synthesis. A work of Zhou et al. introduces mesh
quilting [ZHW06]. They defined a local pattern as a 3D texture sample to spread
over the shell surrounding the surface mesh. The mesh should be parametrized and a
graph cut minimization algorithm finds out how to assemble adjacent patterns accord-
ing to the parametrization and local deformation, in order to seamlessly connect texture
patches. To limit distortions on highly curved surfaces, they proposed a low distortion
parametrization of the shell space. Compelling results are shown by the authors in Fig-
ure 3.12. However such method based on texture synthesis also has several limitations.
It can only generate local or stationary patterns, meaning that only a similar pattern
can be spread at a time. Then the way the pattern is spread over the surface is not user
controllable at different places.

On the other hand, procedurally generated objects lying on surfaces are much chal-
lenging because they need to know information about the base surface mesh at any time.
Maya software proposes a painting interface for creating procedural objects: PaintFEf-
fects. Only a few hard-coded objects are available. While an artist can edit some
parameters, he cannot create its own grammar. During painting process, relative 3D
position of the brush onto the mesh is found by ray casting. Then seeds are sampled
along the stroke based on the input’s speed (mouse or stylus). The quickier is paint
the stroke, the farther apart are the seeds. Finally each seed is able to generate its own

3.4. Geometry synthesis on surfaces 33

Figure 3.12: A 3D sample of an ivy’s stem and leaves is applied on the David mesh.
With a vector field, the artist can design the final, complex mesh by guiding the mesh
quilting algorithm. Here, the ivy is made to wrap around the leg and climb to the torso.
Image from [ZHWT06].

geometry. As the generation is only guided by the surface normal at the initial seed
position and does not follow the surface, intersections happen at concave surfaces. Such
a method does not allow consistent global procedural generation where only one seed
grows over the surface, replaced by many local generation.

Another software An Ivy Generator [Tho07]| addresses the problem of consistent
global procedural generation by relying on brute-force testing all the triangles of the
scene [Tho07]. A seed is sampled on the base mesh, then a hard-coded grammar de-
scribing an ivy growth is processed. Basically for each growth iteration, it finds out
the nearest triangle from the current scope to compute surface adhesion. This approach
gives consistent results with limited intersections. However testing all triangles is a very
heavy computation for complex scenes. Artists are not allowed to change the grammar
or write their own, they may only edit the parameters.

In order to allow more artistic freedom, a recent work of Li et al. tends to com-
bine geometry synthesis on surface with shape grammars [LBZ"11]. A user should
define vector or tensor fields on the surface mesh to indicate the spread direction of the
shape grammars onto the surface. Using shape grammars as geometry input for surface
spreading allows global geometric pattern and not only local ones. Then they define
shape grammar rules guided by those fields. Translation, rotation and scale rules may
be driven by fields. The grammar can also use the field in the rule selection process
itself. Compelling results are shown by authors (Figure 3.13). However even if designing
vector or tensor fields on surface seems almost simple for artists, it remains difficult to
have a good imagination of the results before generating the actual geometry. Moreover
it necessitate a quite high generation time, preventing interactive edition.

34 Chapter 3. Procedural content generation

Figure 3.13: A stem and leaf pattern growing on three different surfaces. Geometry
structure is described by a shape grammar while growing direction are defined by vector
or tensor fields. Image from [LBZ'11].

3.5 Improving artist experience

While procedural methods provide high-level modeling rules, one of the major draw-
backs of such grammar-based methods is the lack of artistic control. Indeed, those
text-based methods are not intuitive to artists, rules are often complicated to be easily
used. Users have to learn how to construct well-defined objects, and most of the time
they have no other choice than build grammars in a programmatic way. Moreover once
a grammar is written, the artist should be able to tune the grammar parameters inter-
actively, to avoid waiting the generated object. Actually artists have to spend much
time and make much effort tuning parameters in order to get close from what they
want or to an example. For instance, it is very stressful and time consuming to alter
some branch positions of trees without changing the other branches. According to these
two observations we may classify artist-friendly methods in two classes: grammar rules
edition and grammar parameters tuning.

For methods focused on helping the artist to create and assemble grammar rules,
Lipp et al. introduced an interface for interactive visual editing CGA shape grammars
without writing any grammar rules [LWWO08]. Such an approach try to combine pro-
cedural modeling to traditional visually-based modeling software. On the other hand,
an interesting method from Kelly and Wonka presents a completely new approach for
procedurally generated buildings, including roofs [KW11]. Contrary to previous meth-
ods that considered facades and roofs separately, they aim at modeling both facades
and roofs together. Instead of using grammars for describing building structure, they
use structure profiles which are artist-friendly tools indicating how a facade will be
organized. Different profiles may be assigned to different parts of the building foot-
print, then a sweeping algorithm refines the building structure according to the profiles
starting from the building footprint. Inspired by straight skeleton algorithm used for
roof modeling, the sweeping process builds the extruded volume following the facade
and roof profiles. Anchor points may be defined onto these profiles to add detailed
shapes like windows, leading to complex buildings with compelling roofs as shown in
Figure 3.14.

3.5. Improving artist experience 35

2

)

Py f
Q

o
N
:

Figure 3.14: Describing buildings with extrusion profiles allows to modeled various style
of architecture. Image from [KW11].

Second class of artist-helpful methods aim at simplify laborious task of grammar pa-
rameters tuning. In order to tackle this limitation, some approaches introduced external
constraints for driving derivation thus simplifying artist control. Mech et Prusinkiewicz
developed a modeling framework simulating interactions between plants as L-Systems
and exterior environment constraints such as light and water competition, space colo-
nization, collisions [MP96]. Prusinkiewicz et al. proposed the use of positional infor-
mation to control parameters along a plant axis [PMKLO1|. A sketching process for
L-system modeling was introduced by Ljiri et al. where the artist defines a stroke along
which the L-system will grow [IOI06].

Talton et al. recently proposed an algorithm for controlling grammar-based proce-
dural methods [TLLT11|. The user may provide a high-level specification of the desired
production either with geometric shapes, sketches, or analytical objectives (see Fig-
ure 3.15). Then the algorithm computes a production conformed to the specification
by optimizing over the space of possible productions from the grammar. This is done
by formulating procedural modeling tasks as probabilistic inference problems, with a
costly RIMCMC (Resersible Jump Markov Chain Monte Carlo).

Another idea to easily tune grammar-based procedural models has been explored
by Benes et al. [BSMMH]. They built their framework on breaking the production
system into a set of smaller ones, that may communicate with each other. The key
idea is to divide the space into guides separating objects with closed boundaries, where
each guide contains its own independent procedural model (Figure 3.16). Interaction
between neighborhood procedural models is realized through the use of guide links
serving as a message passing mechanism. Once a procedural model reaches a link, it

36 Chapter 3. Procedural content generation

Figure 3.15: A simple sketch may constraint expansion process. Image from [TLL'11].

sends a message to the neighbor guide so that it may generate its own model. Artist
control is possible either on the overall shape with the high-level specification guides,
or on the local changes directly on the procedural systems.

Figure 3.16: Guides are defined and linked to control the grammar expansion. Image
from [BSMM11].

Despite the powerful usage offered by procedural systems, artist experience is often
depreciated because of the classical trial and error process in order to write manually the
grammar generating the desired production. Some inverse procedural modeling methods
aim at avoiding this tedious task by (semi-)automatically inferring the grammar rules
and parameters based on an example models [ARB07, MZWVG07, BWS10, éBM"’lO].
As it is out of the scope of this thesis, we will not detail those methods however the
reader should be aware that such methods exist to facilitate artist work. Grammars

3.6. Real-Time procedural generation on GPU 37

extracted from inverse procedural system could be seen as input for our work.

3.6 Real-Time procedural generation on GPU

We presented some procedural methods in sections 3.2 and 3.3 that can, at the best,
be generated at interactive time for relatively small scenes using the CPU. In case
of potentially huge sceneries, derivation step of CGA shape grammars are order of
magnitude too heavy to compute in real-time. Real-time rendering would necessitate
generation of procedural models off-line for later rendering. However the amplification
role of grammars automatically leads to a high memory cost if we store generated
models. A real-time application would only have limited model size. This precludes
real-time generation of massive cities for video games, and on-the-fly artist tuning of a
building inside the massive environment. Allowing real-time generation of procedural
contents would certainly open new gates for interactive applications industry.

In order to maintain a low generation time for the generation of massive facades, few
methods tried to leverage parallelism capabilities offered by recent graphics hardware.
Ali et al introduced a method for real-time rendering of building facades using the
GPU [AYRWO09]. Facades are compressed in an efficient manner and then rendering
is performed in a two steps process. First, facades are decompressed on the GPU
representing the lightweight facade structure. Then details are added through a ray-
tracing algorithm to compute displacements using the fragment shader.

Direct grammar evaluation on the GPU has been proposed by Haegler et al. [HWAT10].
They proposed to store grammar rules as textures and to evaluate lazily grammars on-
the-fly on the GPU. Grammar derivation is performed per-pixel using CUDA by a
ray casting algorithm that only evaluate the corresponding branches of the rule graph.
Krecklau ef al. enhance [HWAT10] by handling stochastic rules and they added a in-
terior mapping method [KK11b]|. It allows for giving the illusion of interior modeling.
While both methods provide interactive evaluation of facades and lightweight storage,
they render only flat textured facades, and not detailed geometry shapes.

Marvie et al. introduced a ray-tracing renderer for procedural content [MGHS11|.
Similarly to [HWA'10] grammar rules are encoded into textures and they perform a
lazy ray-tracing on the GPU to evaluate the grammar (see Figure 3.17). Furthermore,
their work is based on more general rules and geometry shapes as terminal symbols
are supported. Using geometries encoded into images |[GGHO02|, they compute the
geometric facades elements again with ray-tracing in the same rendering pass when a
ray reaches a leaf of the grammar. As everything is regenerated on-the-fly, it allows for
interactive tuning of building parameters among massive datasets. While they obtained
interactive compelling results on models with a low memory footprint, their method is
heavily fragment-bound and not support component-split, occlusion and snapping rules.

While previous approaches address the problem of real-time generation of Chomsky
based grammars, some other works focused on the parallel generation of L-Systems
which are parallel rewriting systems. Lacz and Hart proposed a solution based on vertex
and fragment shaders combined with a render-to-texture loop in order to compute L-

38 Chapter 3. Procedural content generation

Figure 3.17: The grammar is evaluated on a per-pixel basis, and finally a ray-tracing of
the terminal shape is performed. Image from [MGHSI11].

System [LHO04|. Madgics extends this concept using automatically created geometry
shaders |[Mag09|. Those two methods work only if successors have no effect on the
traversal state which rarely happens and require a shader compilation step. Lipp et al.
introduced a CUDA framework for the derivation and interpretation of L-systems using
the GPU [LWWO09|. They defined a GPU efficient structure representing a L-System.
One iteration of the derivation step consists of three kernels running in order, each
kernel is processed in parallel by thousands of threads. Kernels have to be launched
as many times as desired producing an intermediate representation of the grammar
for an arbitrary number of iterations. It extensively use the parallel scan primitive to
achieve the computation. Interpretation step is also a three pass algorithm where the
geometry is finally generated. For each branch of the L-System created, a new work
item is prepared. Their framework allows for real-time L-system generation even for
complex grammar (Figure 3.18). The major drawbacks of their method comes from
the intermediate representation where a full regeneration of this structure is required
when the iteration or any parameters change. They extended their work to multiple
L-Systems [LWW10].

Figure 3.18: A multi-pass algorithm performs parallel derivation and interpretation of
L-systems. Image from [LWWO09].

3.7. Conclusion 39

3.7 Conclusion

Grammar-based procedural methods provides powerful modeling process for artists.
Objects whose structure can be described by growth or reduction operations are par-
ticularly suited such as vegetation with L-Systems and architecture with CGA shape
grammars. Objects are then lightweight decomposed in grammar rules representing the
type or style of object, and grammar parameters driving those rules. Such decomposi-
tion allows for high variety by simply tuning the grammar parameters. However, two
major drawbacks exist and motivate challenging research works. First, artist-friendly
methods try to avoid direct manipulation of heavy text-based rules, and simplify in-
teractive parameters tuning. Second, massive sceneries are limited because of both the
high memory consumption and the non interactive generation.

Latest works take advantage of the parallelism capabilities of the GPU to reach
interactive generation using fragment shaders. We believe the GPU may be efficiently
used in order to allow interactive generation and tuning of massive sceneries. Chapter 4
develops our parallel approach based on a multi-stage GPU-based process, using inter-
mediate caching to refine geometry at various levels and hardware tessellator of modern
graphics hardware.

40

Chapter 4

Parallel procedural generation based on independent 1D atoms

In this chapter we introduce GPU shape grammars, a solution providing interactive
procedural generation, tuning and visualization of the constitutive elements of environ-
ments for both video games and production rendering. Our technique generates highly
detailed models without explicit final geometry storage. To this end we reformulate the
grammar expansion to delay the generation of fully detailed models at the tessellation
control and geometry shader stages. This reformulation to parallel segment-based ex-
pansion allows to substitute processing of complex input data for simple independent 1D
atoms. We apply our solution to the interactive generation and rendering of buildings
and trees. This work has been published in the GPU shape grammars paper [MBG™12].

41

42 Chapter 4. Parallel procedural generation based on independent 1D atoms

4.1 Introduction

Modeling the massive, highly detailed environments used in current video games and
cinema post-production requires intensive artistic input. The geometry of those envi-
ronments can be handled in real-time by game engines, to the extent of the available
graphics memory depending on the geometric complexity. In the context of produc-
tion rendering, the creativity is often restrained by the lack of appropriate real-time
feedback. The elements of complex scenes are often modeled independently, while the
assembly is performed on very low-resolution models to preserve interactivity. Once as-
sembled the memory footprint of the scene commonly exceeds the memory available on
commodity hardware, hence requiring specific pre-processing and out-of-core schemes
for visualization.

The amount of authoring efforts can be drastically reduced by procedural modeling,
which exploits the repetitive patterns typically present in buildings, cities and organic
shapes. Instead of explicitly modeling the scene elements, the artist selects a procedure
describing the construction rules for the object or family of objects. Using a collection
of elementary (possibly high definition) shapes provided by the artist, the actual ge-
ometry of entire families of objects is then generated automatically, sparing the user
from modeling the entire object structure. However, modifying a single parameter of
the construction rules may require regenerating the entire object, resulting in a loss
of interactivity. This issue scales with the size of the generated environments: large
sceneries such as virtual cities comprise many objects generated from a small set of con-
struction rules. Modifying a rule then involves a full generation and storage of all the
related models (Figure 4.1), resulting in delays in the design work-flow. Furthermore,
the memory occupancy of a large set of fully detailed objects quickly rises to prohibitive
levels.

Rule Rule CPU Textures GPU
Params Set Shaders

Geometrv
g ===) | Renderer [==—

(Generation

Terminals i

Geometry

Figure 4.1: Classic generation pipeline process the grammar and generates models using
the CPU and then transfers the result to the GPU for rendering.

We introduce a new method for real-time modeling and visualization of complex en-
vironment elements using procedural modeling. In order to benefit from the parallelism
capabilities of the GPUs, we propose a parallel segment-based grammar expansion work-

4.2. Procedural pipeline overview 43

ing on independent simple 1D atoms, corresponding to the decomposition of complex
input data to elementary elements. Then, our method expands construction rules on the
fly taking advantage of the tessellation units of modern graphics hardware. We propose
a complete pipeline for the generation and rendering of procedural models, avoiding the
explicit storage of the scene geometry (Figure 4.2). Our solution is easily integrable
within existing rendering workflows, thus brings the advantages of procedural modeling
within real-time rendering engines, for which computational and memory efficiencies
are mandatory.

Rule Rule Expressions 3 GPU
Params Set Expi0(angle) { retumn2*Fl*angle }
Exprl (al) { returnval=0 5 }
., Rule
DEEDOEREE0E
Rule - Expander
Compiler -
_’ | 12335303461320 446131.1364351.0.21321 |
CPU Parameters Map J l Terminal
B Set

Terminal

«— | Renderer |¢==]
Evaluator

Terminals
Geometry

Textures
Shaders

Figure 4.2: GPU shape grammars map procedural modeling techniques to the require-
ments of graphics hardware. We compile the grammars into an efficient structure for
fast expansion of the rules. The expansion generates a lightweight intermediate repre-
sentation of the object structures. The geometry is then generated on the fly without
explicit storage.

In Section 4.2 we introduce GPU shape grammars and discuss a generic pipelined
architecture for the generation of highly detailed procedural models (Sections 4.3 to 4.5).
We apply our approach to the generation of buildings and vegetation, and we show
parallelization results (Section 4.6).

4.2 Procedural pipeline overview

Procedural generation techniques are usually based on iterative refinement of a data
structure, while the efficiency of the graphics pipeline comes from a highly parallel,
stage-based structure carrying specialized information. We then reformulate grammar
expansion for efficient procedural generation on graphics hardware. Based on Chomsky
grammars [Cho65|, our solution supports both growth and reduction operations and is
usable for most purposes of procedural modeling. As shown in Figure 4.2 our approach

44 Chapter 4. Parallel procedural generation based on independent 1D atoms

is divided into three main components: the rule compiler, rule expander and terminal
evaluator.

Grammars represent high level mechanisms while GPU shaders support relatively
low level operations. In Section 4.3, our CPU-based compiler extracts a generic rule
graph from the rules (i.e., organization of the rules with each other) and convert this
graph into a GPU interpretable rule map. The run-time behavior of the rules is ex-
tracted into shader expressions and combined with a generic rule map interpreter, yield-
ing a grammar-specific GPU ezpression-instantiated interpreter. Finally, the grammar
parameters are packed into a GPU-compatible parameter map for fast access.

The rule expander runs our interpreter on graphics hardware to traverse the rule map
according to the generation parameters (Section 4.4). For each node, the expression-
instantiated interpreter evaluates the corresponding expression and performs a depth-
first traversal. The output of the traversal is a lightweight set of terminal symbols only
describing the object structure. The actual geometry is not generated at this stage for
high speed processing and low memory usage.

Finally, in Section 4.5 the terminal evaluator performs GPU-based geometry genera-
tion based on this terminal set. The evaluator fetches the geometric description of each
terminal and generates the terminal geometry at the desired location. The geometry is
then directly rendered, avoiding any storage of the fully detailed models.

4.3 Rule compiler

The first stage of the GPU shape grammars pipeline is the CPU-based rule compiler
which build a rule map from the grammar rules (see Figure 4.3). A grammar rule can
be generically written in the spirit of [MWHT06:

Pred ~» Rule({Expr;(P)}jen){Succ} (4.1)

where Pred is the predecessor of the rule, Rule is the name of one of the supported
built-in rules, and Swucc is the set of successors of the rule. The behavior of the expres-
sions Expr; is driven by the generation parameters P = {p;};en. Note that compared
to [MWHT06], we replace the rule condition by the specific rule type Condition which
switch between two successors according to the evaluation of the expression.

For example, let us consider a grammar simulating a simple recursive growth (Fig-
ure 4.4a). In Figure 4.4b we express this grammar in terms of the components of the
generic rule (Equation 4.1).

Using this formulation we represent a rule using four components: a predecessor, a
successor set, a rule type and a set of expressions representing the related arguments.
All the possible expansions of a grammar can then be represented by a rule graph
linking each predecessor to all its successors through a rule type identifier and a set of
expressions associated to each rule (see Figure 4.5a).

We flatten the rule graph into a rule map (Figure 4.5b). For each rule the successors
are represented using offsets within the rule map, while the corresponding rule type

4.3. Rule compiler 45
CPU (Rule Compiler GPU
(—\CPU GPU Expressions
EXpl'eSSion Expi0(angle) { return Rule
L 5 | 2'PI*angle }
-1 | Extraction Expander
Rule < . W, Exprl(val) { returnval=>0.5 } p
.)
Set Wi — [lTerminal
\\ Rule (Tl aph > [\}. Ia ‘“"Mi JCeDa] € W D {\x;] et
Generation
_ y, Rule Map
)
Rule Pal'ametel' _ [12335303461320.446131.1364351.0.21321
Params Compilation Parameters Map
|
& /
. - & Terminal
de :
“' h"‘ Evaluator
ARl i Rkddds

Textures
Shaders

b

Terminals
Geometry

Figure 4.3: The rule compiler divides the grammar into a rule map and a set of expres-
sions expressed in shader code. The expressions are combined with a generic rule map
interpreter for fast grammar expansion on graphics hardware.

HOUAQWE =
¢

Extrude(10){A,B}
Shape(shapeld)
Cond(recLevel<n){C,2}
Branch{D, E}
Rotate(—m/4){W}
Rotate(r/4){W}

(a) Expansion grammar

Pred Rule Succ
W | Extrude {A,B}
A Shape
B Cond | recLevel<n | {C,0}
C Branch {D, E}
D Rotate {W}
E Rotate {W}

(b) Generic rule components

Figure 4.4: A simple growth grammar (a), where W is the axiom. The components of
the generic rules are specified in (b).

46 Chapter 4. Parallel procedural generation based on independent 1D atoms

=

A
] i E— |
W Aref Bref AlB Cref I)ref C Wl‘et D Wret
D C E
{ [|
(a) Rule graph (b) Rule map

Figure 4.5: Each component of the rules is encoded into a rule graph (a). This graph
is flatten into a GPU interpretable rule map b).

is replaced by a simple identifier. The argument expressions typically involve low-
level operations compatible with standard shader languages. Using this observation we
extract the expressions from the grammar and generate an expression library in shader
code for run-time evaluation, allowing on-the-fly evaluation of the expressions.

This representation accounts for any possible expansion of the input grammar. The
automatically generated shader code only describes the expressions related to each rule
individually and does not implement the interpretation of the rule map. We then
introduce a stack-based generic rule map interpreter, performed at rule expansion stage.

4.4 Rule expander

The grammar and generation parameters fully describe the structure of the target ob-
ject, although not in a directly renderable form. In order to achieve efficient grammar
interpretation on GPUs, the rule expander makes intensive use of the geometry genera-
tion capabilities of graphics hardware to create a set of simple primitives associated to
each terminal symbol (Figure 4.6) and we introduce a segment-based expansion based
on a grammar-specific expression-instanciated interpreter.

4.4.1 Grammar-specific GPU expression-instantiated interpreter

The rule expander is a GPU stage responsible for interpreting the grammar by traversing
the rule map and evaluating the expressions. We take advantage of the separation of
the grammar into a generic rule map and shader code expressions to introduce an
independent GPU interpreter. Our interpreter is designed to handle any grammar rule
set so that we need to compile it only one time. Grammar-specific expressions are
regrouped together into a library and compiled separately from the generic interpreter.
Then, to evaluate the expressions at run-time, the interpreter reads the expression id
from the rule map and asks the library to compute the expression corresponding to this
id. It results in a black box expression computation. In summary, the rule expander
proceeds as follows: for each rule, the interpreter traverses the rule map, evaluates the

4.4. Rule expander 47

expressions blinded and applies the corresponding rule to determine the successor set.
The successors are then recursively processed until all the rules have been expanded
into terminal symbols (Algorithm 1).

The combination of a generic interpreter with the user-defined grammar expressions
could be performed using dynamic libraries or runtime assembly code generation on a
classical processor. As current graphics hardware does not allow the use of such libraries
we automatically combine the generic interpreter code with the grammar-specific ex-
pression library. The result is a high performance, expression-instantiated interpreter
for the target grammar ready to be executed at any stage of the graphics pipeline.
While we designed an efficient GPU grammar interpreter, performing an expansion on
a complex input data generally does not fit well the graphics pipeline. Because GPUs
prefer working on multiple instances of a simple data, we thus introduce a segment-based
expansion, preventing complex operations.

4.4.2 Segment-based expansion

A reason for the high performance of graphics hardware is the subdivision of a multi-
dimensional problem into problems of fixed dimension. For example the vertex proces-

CPU Expressions e e Rule Expander)
Rule Rule Exprli(angle) { rebuan 2 *Pl*arele | TControl
Params Set Exprl (val) { retumwal> 0.5 }
il ! Terminal
T e B P . —| Tesselator
Rule —— Count
. ‘ Rule Map
Compiler
_’ | 12335303461320 446131 1364351.0.21321 | k
Parameters Map) ~

Triangle
Indexing

Terminal

AR Rl Evaluator

l’ Renderer | ®=| a3 b

X :
. Tha sy 7
w I Terminal
Set
E Terminal
dentificatior
Textures Terminals Geometry Shader
GPU Shaders Geometry \ Y,

Figure 4.6: The rule expander interprets the grammar according to the generation
parameters, generating a terminal list and one triangle per terminal. Then, the geometry
shader associates each triangle with a terminal, and outputs a lightweight structure
representing the terminal symbols.

48 Chapter 4. Parallel procedural generation based on independent 1D atoms

ruleStack.push(Axiom)
while lruleStack.empty() do
curld = ruleStack.pop()
if curld is a terminal then
terminal = RuleEval(curld)
terminalList.add(terminal)
else
succ = RuleEval(curld)
ruleStack.push(succ)
end if
end while

ALG 1: Generic rule map interpreter algorithm. Once the interpreter meets a terminal
symbol, it stores the corresponding terminal for further evaluation (Section 4.5). For
each non-terminal symbols, we evaluate the corresponding rule and push the successor(s)
into the stack. Function RuleFwval() evaluates the grammar rules and, if expressions have
to be evaluated at run-time, it asks the expression library to compute it according to
the expression id.

sor only considers points, while the geometry processor is applied to primitives. The
pipeline for GPU shape grammars follows a similar idea: optimization opportunities
arise when formulating the grammar expansion scheme in terms of atomic elements of
fixed dimension.

The operations described in [MWHT06] operate on elements of various dimensions
from points to volumes, where the Component Split operation breaks elements into
elements of smaller dimension. While this approach is efficiently implementable on
a general processor, the underlying data-parallel structure of graphics hardware can-
not handle the dimension changes without a significant overhead. In counterpart, this
architecture favors repetitive operations performed in parallel on objects of constant
dimension.

This problem is naturally solved by a simple principle: an object of dimension n can
always be decomposed into elements of lower dimensions from 0 to n [Edm60, Lie94].
As 3D surfacic objects are composed of elements of dimension 0 (vertices), 1 (segments)
and 2 (surfaces), geometric operations can be conveniently expressed as a combinations
of 1-dimensional elements with potential 2D elements. For example, the extrusion of a
surface is a decomposition of the surface into a set of segments, followed by an extrusion
of each segment and a translation of the initial surface. A splitting operation on the
resulting surface can be performed by subdividing the surface into two sets of segments.
Following this principle, we introduce a GPU-compliant grammar expansion method
based on 1D atoms.

This formulation has a direct impact on the representation of the rules: even when
applied on 1D atoms, a notion of the higher dimensions must remain temporarily to
preserve the power of expression. Considering a single input atom (Figure 4.7a), the

4.4. Rule expander 49

I TN

\ 4

| E 4 4
(a) 1D atom case (b) Expansion element case

Figure 4.7: Starting from a single 1D atom (a), our segment-based formulation generates
an expansion element (i.e., a 2D atom and a set of contour 1D atoms) and the initial
1D atom is translated. We may also start from such an expansion element (b): each
contour 1D atom is segment-based expanded as in (a) and the 2D atom is translated.

output of this rule is twofold: First, the generated face is described by a 2D atom and
a set of contour 1D atoms, called expansion element. Second, the rule translates the
input 1D atom by the extrusion vector v. More formally, this results in the following
syntax for the extrusion:

Pred ~ Extrude(v){F _Succ, S_Succ} (4.2)

where F_Succ and S Succ are respectively applied to the generated expansion ele-
ment and to the translated atom. While we illustrated the Eztrude rule starting from
a segment, this principle straightforwardly generalizes to the expansion element (Fig-
ure 4.7b). In this case, the contour 1D atoms perform their own segment-based expan-
sion as presented, and we also translate the starting expansion element at the top. Thus,
each initial contour 1D atoms is extruded to an expansion element that may be also
used for futher extrusion. Finally, ¥ Succ is always applied to an expansion element
while S Succ may be applied either to the translated 1D atom or to the translated
expansion element.

Each rule expander thread uses a context representing the local frame of the current
atom and a tag indicating whether the atom is part of a surface. Current contexts are
managed using fixed-size stacks in GPU memory. Starting with an input segment, we
initialize an ezpansion context representing the frame of the segment. The axiom W
of the grammar is then applied, generating a set of 1D and 2D atoms and pushing the
associated local frames into the expansion context. The successors of W are then applied
recursively until all paths reach terminal rules. We also provide current-scope and world-
scope accessors within the grammar. Those accessors can be used as parameters for any
rule. Initial expansion context is accessible through world-scope accessors, while the
current expansion context is questionable with current-scope accessors. For instance,
one may query the initial normal of the 1D atom (corresponding to the normal of the
footprint) with getWorldNormal(), or the normal of the current atom after multiple
extrusions using getCurrentNormal().

In Figure 4.8, we illustrate the segment-based expansion onto the grammar example
in Figure 4.4, generating a tree-like structure. We recursively apply expansion on 1D

50 Chapter 4. Parallel procedural generation based on independent 1D atoms

/\
€

(d)

|
(b)

*® ¢

N
a @
=]

() (f) (8)

—~

Figure 4.8: Exploded view of the expansion of our example grammar using segment-
based formulation. The axiom is applied on a base 1D atom (a), yielding an extruded
face composed of one 2D and four 1D atoms (i.e., an expansion element), and a trans-
lated 1D atom (b). The expansion element is replaced by a terminal shape, while the
translated 1D atom is divided into branches (¢) and rotated (d). The branches are then
extruded (e) and the new expansion elements are replaced by shapes (f), resulting in
the final generated geometry (g).

atoms and we associate terminal shapes to the expansion element. As stated into the
grammar, once we reach a given recursion level we stop the expansion by redirecting the
condition rule to its second successor which is a null terminal (@ notation). Each time
we hit a null terminal symbol during grammar expansion, we interrupt the evaluation
of the current branch.

Our implementation of the interpreter supports a subset of the rule types intro-
duced in [MWHT06], including split, repetition and extrusion. As we focus on mas-
sively parallel generation, we did not address the rules involving a dependency between
the generated objects, such as the occlusion-related operations. The consequences of
the limitations of our method are discussed in Section 4.6.3. The Appendix A shows
the rules implemented within GPU shape grammars, according to the segment-based
formulation.

In addition to the rules presented in Appendix A, we introduce a branch rule which
simply replicates the original atom n times (Figure 4.8c) and applies a successor to each

4.4. Rule expander 51

generated segment as described in Figure 4.4:
Pred ~» Branch(n) { {Succ; },_; ,} (4.3)

This segment-based approach provides a solution for efficient grammar expansion on
graphics hardware based on 1D atoms and a subsequent reformulation of the classical
rule syntax. Our reformulation is carried out automatically from the input grammar,
making this process logical to the grammar designer. In the remainder of this section
we introduce the mapping of this solution within the graphics pipeline.

4.4.3 Implementation on graphics hardware

In order to efficiently generate the terminal sets, the rule expanding stage takes advan-
tage of the geometry generation capabilities of GPUs. We implemented our technique
using hardware tessellation and Shader Model 4.0 (DirectX 11, OpenGL 4.0). While our
technique could also be implemented using Cuda/OpenCL languages, to our knowledge
the tessellation units are separated from the computing cores and cannot be directly
accessed. An implementation using the graphics pipeline then allows us to harness the
computational power of both the computation cores and tessellation units.

Following the tessellation scheme of graphics hardware our approach is divided into
two parts: the generation of the terminal set of the object at the tessellation control
shader stage, and the output of the corresponding terminal primitives at the geometry
shader stage. Figure 4.6 shows the rule expansion steps according to the graphics
pipeline.

Starting from input 1D atoms, the tessellation control shader executes our expression-
instantiated rule interpreter. The output of the interpreter is then a list of terminal
symbols with their associated parameters stored within a simple read/write buffer in
graphics memory (using shader image load store mechanisms). As the hardware tes-
sellator can not generate the exact number of triangles corresponding to the list size,
we have to optimize the generation step. For a quadrilateral patch, specifying ¢ and j
tessellation levels forces the hardware tessellator to generate ¢ x j quadrilaterals, each
one being subdivided into 2 triangles, yielding to 2 x4 x j triangles. In order to minimize
the number of unnecessary triangles generated, we compute the minimum ¢ and j levels
such that we generate at least the list size. Then we specify tessellation levels ¢ and j
to the tessellator which generates the appropriate number of triangles.

Once the triangles have been generated by the hardware tessellator, we consider the
positioning of the terminal set stored into the previously generated terminal list. The
idea is to replace each generated triangle by a terminal shapes. However, the output of
the tessellator is a set of triangles only identified by their barycentric coordinates. In the
geometry shader, we first generate a unique identifier for each triangle based on those
coordinates. The algorithm 2 describes how we arbitrarily compute a per-triangle index
for a quadrilateral depending on the barycentric tessellation coordinates. An example of
tessellation pattern hardware-defined and its computed per-triangle indexing are shown
in Figure 4.9. Using this identifier, we fetch the corresponding terminal symbol and
parameters from the previously generated list and associate this information to the

52 Chapter 4. Parallel procedural generation based on independent 1D atoms

triangle. Triangles whose identifiers exceed the list size are simply discarded. The
final output of the geometry shader is a lightweight set of primitives representing the
placement and parameters of the terminals. This terminal set can then be streamed
to the next step of our pipeline for direct geometry generation and rendering. If the
generation parameters are constant, the set can also be cached to avoid per-frame
regeneration. As the terminal set does not embed the geometry of the terminals, this
caching incurs a very low memory overhead. The set of terminals is then passed to the
terminal evaluator for geometry generation.

Compute the minimal tessellation coordinates (tmin, Umin) of the triangle.
Those coordinates identify the quadrilateral containing the triangle.
Determine if the triangle defines the upper or lower part of the quadrilateral
if An edge of the triangle is along v, then
The triangle defines the lower part of the quadrilateral
else
The triangle defines the upper part
end if
Compute an indexation base, base, = Umin
if The triangle defines the lower quadrilateral part then
base, = Umin
else
base, = Vpmin + %
end if
Compute the triangle index: index = base, X i + 2 X base, X i X j

ALc 2: Triangle indexing for a quadrilateral based on barycentric tessellation coordi-
nates u, v, according to the tessellation levels ¢ and j.

1
12 13 | 14 15
8 9 10 11
0.5
a 5 6 7
0 1] 2 3
Vl o 0.25 0.5 0.75 1

u
Figure 4.9: A quadrilateral patch is tessellated into i x j quadrilaterals with ¢ = 4
and j = 2, each of which being subdivided into 2 triangles. We index the triangles
depending on their barycentric tessellation coordinates u,v following the algorithm 2.
Red indices correspond to triangle being the lower part of the quadrilateral, while blue
indices are upper parts.

4.5. Terminal evaluator 53

4.5 Terminal evaluator

The terminal set provides information regarding the location and parameters for the
geometry associated to the terminals symbols. However, the structure of graphics hard-
ware does not allow a direct substitution of the terminal set by the corresponding de-
tailed geometry. Instead, we embed the vertex attributes of the terminal shapes within
GPU buffers and reuse the triangle indexing scheme.

Using this representation, each primitive of the terminal structure is tessellated into
the number of triangles corresponding to the target detailed geometry for the terminal.
After assigning a unique identifier to each triangle, the geometry shader extracts the
corresponding terminal geometry from the geometry buffers (Figure 4.10). Note that
while geometry buffers provide a simple way of representing the terminal geometry,
other approaches such as texture-guided subdivision surfaces could be used instead.

The generated geometry is finally rendered and shaded within the same render pass,
hence avoiding explicit storage of the fully detailed model.

CPU Expressions 3 S
Rule Rule Expe0angle] { returm 2 *PI*ange Set
Params Set Exprl (val) { retumwal =0 5 }
—~ = Rule
[-._;w DA EDE Ex 1 —
Rule f— xpander
‘ Rule Map
Compiler
_’ | 12335303461320 446131.1364351.0.21321 |
Parameters Map h
Textures - e \ 17
Shaders T_:dl%nmd% > Subdiv
SRy J Evaluation
— (Terminal l TControl
Evaluator
1 Tesselator
anidll & By,) oy i
K D Triangle Triangle
ia Fetch Indexing
. v
GPU _— Geometry Shader)

Figure 4.10: The detailed geometry of the terminal symbols is substituted to the ter-
minal set using hardware tessellation and on the fly geometry evaluation, providing a
fully detailed model ready for rendering.

54 Chapter 4. Parallel procedural generation based on independent 1D atoms

451 Renderer

The output of our procedural generation pipeline is a simple set of textured triangle
meshes which can be easily rendered using any state-of-the-art technique (Figure 4.11).
Procedurally generated objects can therefore be combined to other scene components
within a same render pass. Our method is then easily integrable into existing rendering
engines. In particular, the existing deferred shading pipelines are left untouched. Fi-
nally, for the purpose of production rendering the output of the terminal evaluator can
also be stored within GPU buffers and read back to files for later rendering.

CPU Expressions 3 GPU
Rule Rule ExprO(angle) { retuen 2 *Fl*ange |
Params Set Exeprl (val) { retumval=0.5 }
* T —
Rule - Expander
= . Rule Map r Termina
Compiler Bet
_’ | 1233530346 1320 446131.1364351.0 21321 | l
Parameters Map Terminals
Z Geometry > Terminal
- S Evaluator
Renderer 7
Fragment Vertex
Shading Projection andll & Bbig,
7 i Frijorr
Fragment Shader|l| Geometry Shader M
Textures! Shaders

Figure 4.11: Rendering stage: our procedural generation pipeline generates a set of
classical meshes ready for rendering using any existing shading technique.

4.6 Applications

Typical uses for procedural modeling include the generation of compelling buildings
and plants. We assess our generic pipeline on architectural modeling and vegetation
growth. Although these two kind of objects follow antagonistic modeling approach
(i.e., reduction vs. growth operations), we are able to efficiently generate them using
our generic system. First, we describe the grammar-based generation of buildings and
the segment-based strategy used. Then we see another approach for grammar-based
modeling of plants.

4.6. Applications 55

4.6.1 Architecture

The CGA shape grammars [MWHT(06] are a method of choice for procedural modeling of
buildings. Starting from a footprint, the first steps of the grammar expansion generally
consists in a small number of growth operations to generate the rough shape of the
buildings. Then, potentially numerous reduction operations (e.g., split and component
split) divide each facade into a number of elements such as doors and windows. The
generation parameters typically include the target number of floors, or the space between
facade elements. A simple example of such grammar is provided below using a syntax
following our segment-based formulation:

W ~» Extrude(buildingHeight){F, ©}

F ~ Split("y", floorHeight, ~){GF, FLy}
GF ~ Split("y", floorHeight-0.1, 0.1){G, T"}
G ~+ Split("x", doorWidth, ~){TP, RWg}
FLrg ~ Repeat("y", floorHeight){RWg}

RWgr ~ Repeat("x", windowWidth){TW}

T ~» Shape(ledge)

TP ~» Shape(door)

™ ~ Shape(window)

where F, GF, G and FLy respectively represent the facade, ground floor including top
ledge, ground floor elements and the other floors. T%, TP and TW are the terminal
symbols of the grammar, linking to the actual geometry for the first floor ledge, the
door and the windows. We illustrate in Figure 4.12 how this grammar is interpreted
rule-by-rule to generate a building.

The split and repeat operations [MWH'06] are particularly useful in this context,
and can be easily implemented in shader code. The geometry of the terminal sym-
bols can be arbitrarily chosen and encoded into GPU buffers (Figure 4.13). Finally,
assembling variety of terminal shapes yields a wide range of building appearances (Fig-
ure 4.14).

The input of the grammar is a set of generation parameters stored within the pa-
rameter map for fast GPU access. The footprint of the building is decomposed into a
set of independent segments, bootstrapping our grammar expansion pipeline. While we
feed our system with complex footprints, we automatically divide them into 1D atoms
in a pre-processing step. Thus we benefit from the high number of threads interpreting
the grammar in parallel.

4.6.2 Vegetation

The contrast between the generation of buildings and vegetation lies in the relative
importances of growth and reduction operations. The very principle of plant evolution
induces recursive, numerous growth operations, keeping reductions marginal. This ex-
pansion scheme seamlessly fits within the framework of GPU shape grammars, which
support extrusion and implicit component split operations.

56 Chapter 4. Parallel procedural generation based on independent 1D atoms

(d) G (¢) FLr (f) RWx
Figure 4.12: Non terminal rules of the above grammar are explained on example. The
axiom W is shown in a red line, while successors are blue and green quadrilerals, re-
spectively for the first and second successors.

Figure 4.13: Many different terminal shapes are provided to increase the variety of
object generated.

4.6. Applications 57

(a) (b) (c)

Figure 4.14: Our sample building grammar can be used to generate a variety of buildings
following a same set of construction rules. Changing the geometry of the terminal
symbols allows for further style variations. Rule expander takes 0.2ms per building,
while terminal evaluation and rendering are performed in 2.6ms (a), 8.4ms (b) and
4.0ms (c). We observe these differences because terminal evaluation depends on the
complexity of terminal shapes used.

The tree model' shown in Figure 4.15 is generated from the grammar on page 60
of [PLH*90], slightly modified to fit the framework of GPU shape grammars:

W ~+ Extrude(trunkLen, twisto){TT, Growth }
Growth ~+ Cond(reclevel < n){ BranchSplit, T® }
BranchSplit ~» Branch(3){ Main, Subl, Sub2}

Main ~» Rotate(ql){ RotBranch }

RotBranch ~ Extrude(branchLen, twist;){T?, LeafSet}
LeafSet ~> Branch(2){Leaf, Growth}

Leaf ~+ Rotate(q){ TV }

Subl ~> Rotate(gs){ BO }

Sub2 ~ Rotate(gs){ BO }

TT ~» Shape(trunkGeom)

T8 ~» Shape(branchGeom)

T ~ CreateQuad(leafVertices)

The overall pattern of this grammar follows the principle of Figure 4.8, including
recursive rules simulating the growth of smaller branches from the main ones. This re-
cursion is represented within the rule graph and evaluated at run-time by our expression-
instantiated interpreter, yielding procedurally-generated vegetation at arbitrary growth
levels. In the case of vegetation, a single segment per tree is used as input for the
grammar interpreter, leaving all the other parameters in the parameters map.

In both applications, architecture and vegetation, we take advantage of the paral-

!Terminal geometry and textures courtesy of http://xfrog.com/

58 Chapter 4. Parallel procedural generation based on independent 1D atoms

lelism capabilities of graphics hardware thanks to the segment-based expansion. We
push the concept farther by batching multiple inputs of a same grammar.

Figure 4.15: GPU shape grammars naturally apply to the generation of vegetation.
Starting with an input segment and a small set of terminal shapes (a), the grammar is
expanded on the GPU, yielding a set 240 terminal patches (b), on which textures can
be mapped to generate a low level of detail (¢). Those terminals are then replaced by
their corresponding geometry, yielding a fully detailed model (d,e) generated from end
to end in 40ms using GPU shape grammars. Once the terminal set is cached render
speed reaches 530fps instead of 23.8fps with systematic regeneration.

4.6.3 Object batching & performance

Starting with a base geometry such as a footprint and a set of generation parameters
our pipeline generates in parallel a terminal set describing the location and parameters
of each terminal shape. However, sequentially repeating this process for each object
prevents any parallel evaluation of the different objects, reducing the benefits of our
method. As we design a generic expression-instantiated interpreter, the only difference
between two instances of a same grammar lies in the input parameters. Therefore we

4.6. Applications 59

leverage the parallel architecture of graphics hardware by grouping the base geometries
into a single vertex buffer (see Figure 4.16), and packing parameters into a parameters
map. Thus, concurrent threads work on different input geometries fetch from the vertex
buffer, but use the same grammar-specific interpreter and expression library. Finally we
specify a unique id for each input geometry, so that the interpreter will fetch different
parameters from the parameters map. The i'h input geometry will fetch the i'h values
from the parameters map. Then, the terminal set for an entire set of objects with
various parameters is generated using a single draw call. The terminal evaluation and
rendering of the terminal shapes are also performed in parallel over the entire terminal
set.

L
O @r / \ Expressions
D Rule

Expander

Rule Parameters T1
3 Map Map
Footprint polygons CPU 1D Atom Contexts 1D atoms for W Terminal Sets (7P J

Figure 4.16: All the footprints are associated to a unique grammar, divided into in-
dependent 1D atoms and regrouped into a single buffer. As the parameters are also
packed together in a buffer, the expansion is performed for each 1D atom in parallel in
a single draw call.

Consequently, multiple objects can be generated and rendered at the same cost as
a single object until all computing cores are filled. As an example, we measured the
generation time for various building following the same grammar and batched together.
Figure 4.17 reports a chart with the generation time depending on the number of input
segment. From this chart we observe a repetitive pattern composed of a short period
where the generation time keeps increasing linearly (green periods: A and C), followed
by a larger period where the generation time is stable (red periods: B and D). This
pattern is repeated over the input segment count (A/B, then C/D, etc). This can
be interpreted according to the parallelism provided by the graphics hardware. At the
beginning, when only few segments are given in input to the pipeline, the GPU prepares
a first computing grid and then processes it. As the generation are performed in parallel,
computation time should be stable from 1 to 20 input segments. However, the time spent
to the grid preparation depending on the number of input, the final generation time
(i.e., preparation and computation) grows linearly on the number of input. Then, a
stable period is reached from 20 to 100 input segments (period B). Available computing
grids are prepared in parallel from the first one, involving a stable the generation time.

60 Chapter 4. Parallel procedural generation based on independent 1D atoms

Finally, another increasing section is observed (period C). It suggests the GPU may
processed up to 100 segments in parallel for this case. When the GPU is filled with
more than 100 inputs, it prepares other computing grids that will be processed in
another round of computation, after processed the previous ones. We thus observe the
beginning a second round of parallel computation.

Generation time (ms)

30|

20|

Input segment count

150

o 60

1 W1 EeEeTa—
-

< I
< €

A

S 5
€ >

i D

B I C
Figure 4.17: Sublinear complexities are observed when the GPU shape grammars is filled
with many input segments. Around 100 input segments are processed in parallel at each
computing round. The orange arrows show the preparation time of one computing grid.
For a given round of computation (e.g., A+B, C+D sections), the first linear slope is
due to the first grid preparation. Then, other grids preparation are performed in parallel

to the first one.

Although our approach, based on a highly parallelized formulation for grammar
expansion, allows for efficient parallel generation, especially when we batch objects
interpreting a same grammar together, it also has a counterpart. As we decompose
input footprints into independent 1D atoms, the footprint context (intra-object) is en-
tirely lost. Each 1D atom performs the grammar interpretation autonomously, without
any information about the initial footprint. Moreover, information about neighbor-
ing footprints (inter-objects) is also unavailable in our system. The lack of inter and
intra-objects structure information prevents from internal and external context sensitive
operations such as snapping and occlusion operations. These functionalities adapt the
generation of procedural models to their environments [MWH"06]. Typical example
are the alignment of the window levels (snapping) and the avoidance of openings in
occluded building facades. While those operations are costly in CPU-based generation
schemes, our segment-based formulation for parallel grammar expansion prevents such
techniques to be applied within a single render pass.

4.7. Conclusion 61

4.7 Conclusion

We introduced GPU shape grammars, a generic solution for real-time generation, tun-
ing and rendering of procedural models. Based on an expression-instantiated rule inter-
preter coupled to parallel segment-based grammar expansion, our approach generates
geometry on the fly within graphics hardware. The generated models are then directly
streamed across the graphics pipeline, avoiding the storage of the fully detailed models.

We demonstrated the application of our method for real-time generation of both
buildings and vegetation. GPU shape grammars generate and render relevant geometry
during navigation, allowing for simultaneous navigation and parameters tuning. We
also use our pipeline for real-time generation of terabyte-sized urban environments, the
problem of massive sceneries being addressed in Chapter 7.

The fast rendering capabilities of our method find a particular interest in interactive
applications, in which memory consumption and computational efficiency are critical.
Also, the ability for interactive tuning and rendering of arbitrarily massive models
makes the GPU shape grammars a highly valuable tools within the visual effect and
game industries.

However, to benefit from the high number of threads running concurrently, we au-
tomatically decompose input complex footprints into independent 1D atoms. This de-
composition leads to the loss of internal context information, and makes impossible the
generation of models based on internal structures, for instance when addressing the
problem of the roof generation. As 1D atoms are expanded independently, they cannot
converge consistently without any additional information, preventing consistent roof
generation over the initial footprint. In the next chapter, we consider the processing of
such internal context operations, with respect to the independent 1D atoms and propose
an efficient solution to preserve parallel processing capabilities of our pipeline.

62

Chapter 5

Internal context parallelization
and application to roofs modeling

LY

(a) Hipped with halfway dormer (b) Haussmann-type (¢) Normandy

Figure 5.1: We extend the GPU shape grammars pipeline to reconstruct structured
data. Our solution allows for efficient modeling of complex roof structures starting
from independent 1D atoms. Note that gutters, chimneys, ridge tiles and overhangs are
also generated by the system.

Application of our procedural pipeline introduced in Chapter 4 to model structured
data. We feed the independent 1D atoms with local context information to generate
internally consistent models at run-time. All along this chapter, we take the example of a
highly detailed roofs. Starting from a consistent roof structure such as a straight skeleton
computed from the building footprints, we decompose this information into local roof
parameters per input segments compliant with GPU shape grammars pipeline. We also
introduce Join and Project rules for a consistent description of roofs using grammars,
bringing the massive parallelism of GPU shape grammars to the benefit of generation
of consistent structures. This work has be published in the GPU roof grammars paper
[BMG13|.

63

Chapter 5. Internal context parallelization
64 and application to roofs modeling

5.1 Introduction

The procedural pipeline introduced in Chapter 4 intensively uses the parallelism ca-
pabilities of GPUs. Our approach relies on a reformulation of the classic expansion
scheme to a segment-based one. By decomposing input footprints into 1D atoms, many
1D atoms are processed in parallel thanks to our expansion scheme. While enforcing
parallelism, such decomposition leads to the loss of the internal context of the input
data. As an example, once a footprint building is exploded, each 1D atom is entirely
independent from its neighbors and the internal structure of the footprint remains un-
available during the expansion process. Internal context models such as roof structures
can not be generated using GPU shape grammars pipeline as-it-is and require ad-hoc
solutions.

Roof construction requires a global processing of the building footprints to extract
the ridges and gables. Among the solutions designed for structure extraction from
a polygon, Aicholzer et al. introduced straight skeleton algorithm [AAAG96]. This
algorithm computes the skeleton of the polygon by sweeping the edges according to
the bisector angles. This technique has been applied for urban modeling purposes
in various methods for generation of complex structures such as mansard and hipped
roofs [LD03, MWH"06, KW11]. However, due to the strongly sequential nature of
this algorithm, most GPU methods for procedural architecture compute roofs on the
CPU and transfer the geometry to the GPU for rendering [HWA*10, MBG*12|. To
address roof generation, we push further the segment-based expansion from the facades
to the roofs, where each 1D atom generates both its facade and its roof. More generally,
we generate internally consistent objects on the GPU by feeding 1D atoms with local
information to guide the construction. This per 1D atom local context information
allows to simulate structured input data.

Our contributions bring parallelism to grammar-based generation of consistent mod-
els (Figure 5.2). First, a CPU component converts consistent internal contexts com-
puted from building footprints into local contexts information consistent with the 1D
atoms paradigm (see Chapter 4). In the case of roof generation, this information typ-
ically include the target roof height and slopes. We also enrich GPU shape grammars
with Join and Project rules to guide creation of consistent model using the information
distributed among the 1D atoms. Following the GPU shape grammars pipeline, we
evaluate the new rules at interpretation stage to benefit from the parallel processing
capabilities of the graphics hardware.

5.2 Principle

The idea of this work is to let 1D atoms handle their own section of a internal consistent
model. In order to reconstruct a consistent internal information from independent 1D
atoms, we guide unstructured 1D atoms with a local context extracted from the internal
context. To do this, we integrate four new steps within the GPU shape grammars
pipeline presented in Chapter 4. We first determine an internal consistent structure on
the CPU from an input geometry in (see Section 5.2.1, Figure 5.2a). We then decompose

5.2. Principle 65

Input — a) Consistent internal b) Internal context
Geometry context computation decomposition into
CPU local contexts

Expressions
R}ﬂe = 0 Parameters Map
Set R_Llle feiﬁ:ﬁ(%lli)aégle } | 12335303461320 446131.1364351.0.21321 |
Rule Col‘ﬂp 1ler Rule Map
; L — Exprl(val) { return !
Pﬂl‘alll.‘) val>05 } |\t |\ IEI“M‘ Ii_ .||:,,| v |l\,‘i||r“-l I
CPU k Y a_
GPU Termuinals geometry l
Textures :
Terminal Rule
Renderer Evaluator Expander

¢) Join,
Project

Termmuinal
Set

Figure 5.2: Overview of our method used for generation of internally consistent models.
New steps are indicated in red. a) We compute a consistent internal context from the
input geometry. b) Conversion of internal context into 1D atoms local context. ¢) We
introduce Join and Project rules to generate consistent structure from independent 1D
atoms in parallel. d) Finally terminal evaluation stage performs the clipping of shapes
issued by the Join rule.

this information into local context for 1D atoms (Section 5.2.2, Figure 5.2b). Multiple
1D atoms may thus generate in parallel their section of the initial internal model.
However, rules provided in GPU shape grammars are not sufficient enough to model
consistent structure from independent 1D atoms. We thus add Join (Section 5.2.3) and
Project (Section 5.2.5) rules to the rule expansion stage (see Figure 5.2c). Finally, a
clipping operation required by the Join rule is performed during terminal evaluation
(Section 5.2.4; Figure 5.2d).

We apply our method on the roof generation from input footprints. In this case, we
start from the input footprint to compute an internal consistent context which is the
roof skeleton. Then, we feed each 1D atom with their local context extracted from the
roof skeleton. They are thus able to generate in parallel their roof section using the
local context that finally result in a consistent roof model. We illustrate our approach

Chapter 5. Internal context parallelization
66 and application to roofs modeling

with the roof generation case all along the remaining of this chapter.

5.2.1 Internal consistent context computation

The first step to build consistent roof from unstructured 1D atoms is to compute the
internal consistent context from the input geometry. We consider this information to
be preprocessed by any offline CPU-based algorithm (Figure 5.2, top left box). For
instance, we may fill the internal context with the straight skeleton algorithm imple-
mentation from CGAL! or user-defined inputs. Figure 5.3 shows different results given
by the straight skeleton algorithm computed on closed polygons. We use this informa-
tion as destination locations for 1D atoms. We thus extract the internal context into
per 1D atom local context.

b T

()=

%

Figure 5.3: Straight skeleton (red) computed on different polygon footprints (black).
Image courtesy of CGAL 1.

5.2.2 Internal context decomposition

Previous internal consistent context is computed on the entire footprint polygon, given
the overall shape of the roof skeleton that will be used for the consistent roof generation.
We then need to decompose the output of the CPU-based internal context generator
into multiple local contexts. To this end we associate one section of the internal context
to each segment of the input footprint as its local context, and store this information
into the parameters of the 1D atoms (Figure 5.2). For the roof generation, we associate
one roof section destination for each 1D atoms so that all roof sections are generated
consistently according to the internal context. We consider two cases of 1D atom roof
section: the segment either reaches another segment, or a vertex (Figure 5.4). In terms
of roof architecture, it corresponds to ridge (segment) and gable (vertex) cases. We
excluded cases where the target is composed of two or more segments to avoid T-
vertices. This point will be discuss later in Section 5.5. From this observation both
cases can be reduced to a segment to segment operation, where a gable is obtained by
duplicating the destination vertex.

"http://www.cgal.org

5.2. Principle 67

(a) Top plane view (b) 3D view

Figure 5.4: Starting from on closed building footprint (solid lines), an off-line algo-
rithm computes its roof skeleton (dash lines). Each 1D atom is then associated with a
destination on the skeleton according to two cases: ridge (red) or gable (green). Left:
association cases on the plane. Right: final 3D roof construction.

5.2.3 Join rule

Once we have specified the local context for each 1D atoms, we may reconstruct the
internal consistent context at the rule expansion stage using grammar rules. The only
available rule in Chapter 4 to fill a non rectangular quadrilateral with a set of shapes
is the Extrude rule. However, as soon as the extrusion does not generate a rectangular
quadrilateral, the geometry mapped is distorted to fit the quadrilateral (Figure 5.5a).
In some applications such as synthesizing a branch geometry onto a scaled extruded
quadrilateral, we actually desire the geometry to be distorted in order to fit the space.
Nevertheless, there are also some cases such as the roof tile covering where we do not
want to introduce such distortions. Instead we would like to simply clipped the geometry
by the edges (see Figure 5.5b). Thus, to avoid distortions we introduce the Join rule:

Pred—Join(float heightExtrusion, vec2 v1, vec2 v2)
{quadClipped, quadSupport, segTop}

where Pred is the rule predecessor, quadClipped is the rule successor applied onto the
clipped extruded quadrilateral (Figure 5.6b), quadSupport is the rule successor applied
onto the joined face (Figure 5.6a) and segTop is the rule successor applied onto the
extruded segment (Figure 5.6¢). heightExtrusion is the height of the extrusion, while
the target 2D segment is represented by vI and v2.

Therefore, the Join rule acts as a clipped extrusion rule guided by a 2D segment
destination and a height. Moreover, unlike the scaled Ertrude rule, Join does not change
the surface parametrization but prepares some clipping planes (see Figures 5.6d-f) that
are used at terminal evaluation stage (Figure 5.2).

Chapter 5. Internal context parallelization
68 and application to roofs modeling

(a) Scaled Eztrude rule (b) Join rule

Figure 5.5: Differences on surface parametrization.

Figure 5.6: The Join rule has three successors : a) a joined face, b) an extruded
rectangular quadrilateral including the joined face, and ¢) the top segment defined by
vl and v2 at heightExtrusion added to starting height. Clipping planes are defined
around the joined face and applied on the extruded quadrilateral. The left d), right e)
and top f) clipping planes are oriented according to the bissector angles.

5.2.4 Clipping

Clipping planes are automatically generated after a Join rule and applied to the ex-
truded rectangular quadrilateral. These clipping planes are oriented according to the
bisector angles (Figures 5.6d-f), so that adjacent terminal shapes are consistently as-
sembled. Patch clipping is partially performed at the rule expansion stage for the

5.2. Principle 69

terminal shapes generated from a Join rule (Figure 5.7a to b). Fully clipped terminal
shapes are simply not generated. Triangle clipping is achieved at terminal evaluation
stage by applying an optimized clipping algorithm [McG11] within the geometry shader
for all terminal shapes being crossed by a cutting edge (Figure 5.7b to c¢). This algo-
rithm takes advantage of the SIMD capabilities of the graphics hardware to efficiently
eliminate clipped triangles.

(a) No clipping (b) Patch clipping (c) Triangle clipping

Figure 5.7: Clipping is performed in two passes. First, non visible terminal shapes are
clipped at rule expanding stage. Then, terminal shapes concerned by cutting edges are
triangle-clipped.

5.2.5 Project rule

During rule expansion one may want to project the current quadrilateral onto a chosen
plane, for instance to create a balcony window as part of a roof section (Figure 5.8).
While splitting the roof section, the roof part that will become the balcony can be
separated. As this roof part is originally aligned with the roof surface, it can projected
onto the plane defined by input axes, typically the local tangent of the quadrilateral
and the cross product between this local tangent and the normal of the input footprint.
The projected quadrilateral can then become the base of a balcony. We thus introduce
the Project rule:

Pred—Project(vec3 axisl, vec3 axis2) {quadProjected}

where Pred is the rule predecessor and quadProjected is the rule successor applied onto
the projected quad. The plane is defined by the vectors axisl and axis2.

The height of projection is made available through the current-scope built-in accessor
projectionHeight(). The tangent, binormal and normal of the input building are set at
the beginning of the grammar evaluation, while the local base is updated throughout
the rule expansion. This information is also available for the user through accessors such
as localTangent() or globalNormal(). Users may thus easily set the desired projection.

Chapter 5. Internal context parallelization
70 and application to roofs modeling

[TN

Figure 5.8: Illustration of the Project rule. The blue quadrilateral b) is the projection
of the red quadrilateral a). The projection axes are the local tangent ¢) and the cross
product e) between the local tangent and the global normal d).

5.3 Case study

Our method allows to procedurally generate compelling roofs of different architecture
styles. For instance the following rule sequence describes a roof with a balcony window,
using Join and Project rules coupled with local context information. This sequence
corresponds to the first roof section of the roof part detailed in Figure 5.9.

TopWall ~ Join(3, roofPosl, roofPos2) { RoofSection, NULL, MansardTop }
RoofSection ~» Repeat(X, 3) { BalconyPart }
BalconyPart ~» Split(X, 2, 1, ~) { RoofCov, BalconyRoof, RoofCov }
BalconyRoof ~» Project(localTangent(), cross(localTangent(), globalNormal()))

{ BalconyFlat }
BalconyFlat ~» Explode() { FloorShape, NULL, RightBalc, BackBalc, LeftBalc }
RightBalc ~» Join(projectHeight(), currentPos1(), currentPos1())

{ WallBalcShape, NULL, NULL }

LeftBalc ~» Join(projectHeight(), currentPos0(), currentPos0())
{ WallBalcShape, NULL, NULL }

BackBalc ~» Join(projectHeight(), currentPos0(), currentPosl())
{ NULL, WindowShape, NULL }

RoofCov ~> Repeat(XY, sizeTiles) {TilesShape}

The hole created by the Project rule BalconyPart is entirely filled by reconstructing
the missing parts using the Join rules LeftBalc, RightBalc and BackBalc. Note also
the Ezplode rule that allows to call distinct successors on the current quadrilateral, and
each of its four segments.

5.3. Case study 71

~7, MansardTop

| TopWall

%

L

(f) BalconyFlat
sty TIAT

T
WindowShape

BackBalc s

alcShape 3%
- i 7 Z

E o .geftBalcr 8
P

Wy hg L i
() LeftBalc (h) BackBalc

Figure 5.9: The roof grammar presented in this chapter is described rule by rule. Prede-
cessor is indicated in red, while successors are either in green, blue or purple. RightBalc
rule is similar to the LeftBalc. Terminal shapes are applied on color filled quadrilaterals.

Chapter 5. Internal context parallelization
72 and application to roofs modeling

While this example illustrates how to create this style of roof, the Join rule is also
useful for modeling other consistent architectural objects such as gutters. Particularly
extremities may be seamlessly joined according to the angles computed from provided
per 1D atoms local context information. In this case, the same local context information
is used to generate both roof sections and gutters. While for creating the roof sections we
join toward the local context (i.e., the roof skeleton), we simply use the inverse direction
to generate gutters. Gutters are thus created on the opposite side and clipping planes
provide seamless geometry mapping (see Figure 5.10).

Figure 5.10: Gutters are consistent models which use the same local context information
as for roof construction. We benefit from seamless geometry mapping between adjacent
gutters using the Join and the automatically generated clipping planes.

5.4 Applications & results

We modeled various complex roofs structures featuring highly detailed geometries using
Join and Project rules. Different architectural roof styles may be modeled using our
method such as mansard, gable, hipped, overhangs and others. Roofs are covered with
different geometric shapes such as slates, flat or round tiles provided by artists, using
Repeat rules over the roof sections. We also modeled geometric roof elements that are

5.5. Discussions & future works 73

essential to create compelling roofs (Figure 5.11). For instance, chimneys, dormer or
flat windows, balconies and ridge tiles are also modeled in a few rules.

—

Figure 5.11: Simple use of the grammar rules allows us to create dormer windows, flat
windows, roof balconies, chimneys, ridge tiles, gutter, beams, and more.

As for models of Chapter 4, roof parameters can be tuned interactively. We mea-
sured timings on object generation (rule expanding stage), and on terminal evalua-
tion, clipping and rendering using a NVIDIA GeForce GTX 480 GPU. We observed
that buildings (facades and roofs) are expanded in sub-linear complexities, confirming
Chapter 4 results. As we expand objects in parallel, we may generate many objects at
a reduced cost. For instance expansion of 1 to 20 Normandy-type houses (80 segments)
requires a constant time of 11.5 ms. The expansion of 21 to 40 houses (160 segments)
then takes 22.3 ms. Terminal evaluation, clipping and rendering scale linearly, taking
around 1.02 ms per input segment.

5.5 Discussions & future works

We experimented two strategies for geometric roof covering: the repetition of many
terminals yielding a single tile each and the use of fewer terminals leading to batches
of tiles (2x2 tiles). Rule expanding is thus faster in the second case. For instance, the
halfway dormer roof of Figure 5.1 is expanded 1.92x faster using batches of tiles. Also,
the terminal evaluation part runs 1.1x faster than using unit tiles. Hardware tessellator
seems to prefer few denser meshes than many sparse meshes.

In counterpart, misalignment can occur in some specific cases (Figure 5.13). While

Chapter 5. Internal context parallelization
74 and application to roofs modeling

the Repeat rule creates an even repartition across adjacent children, the Split rule may
introduce irregularities when the splitting and repetition axes are not identical (Fig-
ure 5.12a-b). The children are either scaled to fit the space, or translated to be aligned
with the split (Figure 5.12c¢). To limit these distortions (see Figure 5.13) we can au-
tomatically adapt the number of repetitions to the nearest integer part (Figure 5.12d).
However the ideal solution would be to globally distribute the children of repeat rules
and clip geometric parts lying outside the split axis (Figure 5.12e). Moreover, we could
use the clipping stage introduced at terminal evaluation to perform this operation.

Split=3.75
0 1 2 3 4 5 6 7 8
a) Base quad Reference repeat
0 1 2 3 4 5 6 7 8
b) Reference repeat d) Adjusted repeat
c) Distorted repeat e) Exact repeat

Figure 5.12: Misalignment occurs when repeat and split axes are not identical. A base
quadrilateral of size 8cm is split at 3.75cm, then a part is repeated every lem a). The
split axis is indicated in red. The reference case shows repeat parts seamlessly aligned b).
In GPU shape grammars last element of each split part is scaled to fit the remaining
space exhibiting artifacts (¢) in grey), and first element of the second split part is
translated to be aligned with the split axis. Repetition sizes may be modulated to limit
the distortions (d)). To respect reference pattern, we would need a global distribution
of the repeat parts and clip the ones lying outside the split axes (e) in blue).

f \

(a) Misalignement (b) Reference
Figure 5.13: Tiles being on the border of the split axis are not well aligned a) compared
to the reference case b).

5.6. Conclusion 75

Finally, the straight skeleton algorithm may lead to incoherent, unrealistic roof
structures. In some cases, one input segment can be associated to multiple destination
segments, currently not supported by GPU roof grammars. Nonetheless our approach
can be associated to any other user-defined roof structure extractor. Future work could
therefore consider new skeleton generation algorithms based on architectural rules and
constraints. Such skeletons could be directly used as input of our pipeline to model
highly detailed roofs.

5.6 Conclusion

This chapter introduced a solution to create internal consistent models from independent
local 1D atoms. In Chapter 4, the input footprints were decomposed into independent
1D atoms, preventing the generation of internal consistent models. Starting from an
initial footprint, its internal consistent context is computed. Then, for each 1D atom,
the local context information is extracted from the internal context information. Thus
the 1D atoms are able to reconstruct their section of the internal context. We assessed
our approach on architectural modeling where we compute a straight skeleton algorithm
corresponding to the internal consistent context of the input footprint. Then we decom-
pose this internal information into per 1D atom local context. Each atom is thus able
to generate both its own facade and roof section using proposed Join and Project rules.
The clipping stage introduced at terminal evaluation allows for real-time geometric
clipping, providing seamless geometric mapping. Using the same approach, consistent
context objects such as gutters may be generated all around the footprint with seamless
clipping. We illustrate our method by creating various styles of compelling roofs. As our
solution is fully integrated within the GPU shape grammars pipeline, we benefit from
the parallelism capabilities of the GPU. Results show sub-linear complexities similar to
the one noticed in Chapter 4, confirming our internal context parallellization approach.

While this approach of per 1D atom internal context allows for generating structured
data, it is limited to simulate intra-objects context. For instance, we cannot use infor-
mation of an underlying surface, either geometric or texturing, during rule expansion.
In the next chapter, the challenging problem of external contexts guiding the grammar
evaluation is addressed.

76

Chapter 6

External context-sensitive grammars
and application to growth on generic shapes

(a) Hebe model (b) Ruins

Figure 6.1: Surface contexts are used to expand grammars over an underlying surface.
Texture contexts help to constrain grammar rules.

Controlling grammar rules from external contexts is addressed in this chapter. The
GPU shape grammars pipeline is extended to handle texture and surface contexts. This
solution allows to constrain any grammar rule with texturing or geometric information.
In addition, our system provides on-the-fly painting for artists with interactive feedback.

77

Chapter 6. External context-sensitive grammars
78 and application to growth on generic shapes

6.1 Introduction

GPU shape grammars pipeline introduced in Chapter 4 is based on the decomposition of
input objects into 1D atoms, thus taking benefit from the highly parallel nature of GPUs.
Chapter 5 proposed an extension to perform internal context operations in parallel at the
atom level. However, another problem remains for grammars constrained by external
contexts: knowledge of the environment external to the input object. For instance,
such grammars could be constrained to grow on an underlying surface, or be controlled
with high-levels editing tools. Related works have been presented in Chapter 3. First,
various ad-hoc methods have been developed to control the global structure of context-
free grammars. These grammars grow freely in the 3D space, without any external
context information. Using high-levels tools such as strokes [IOI06], guides [BSMM11],
paints or voxels [TLLT11], artists are able to force the generated objects to fit a desired
global structure. While these methods only provide structural constraints, a more
general approach consists in writing context sensitive grammars [Cho56], that is directly
integrate external contexts within grammar rules. Depending on external contexts, the
grammar is derived accordingly. Context sensitive L-Systems have been used to interact
with their environment such as general surfaces [PJM94, MP96|, height fields [PMO1]
and curves [PMKLO1]. However, all these methods only consider growth on the plane
or 3D space but not on surfaces. Li et al. introduced field guided shape grammars
[LBZT11] where the user designs vector or tensor fields onto an underlying surface.
Then, the external context represented by the fields is used directly at the rule level
to control the grammar expansion onto the surface, and field values can be used by
any rule. A common drawback of these techniques is they all requires from seconds to
minutes to generate such controlled models.

Currently in our pipeline, each 1D atom grows freely in the 3D space, without any
constraints nor information about the environment. This leads to a lack of control of the
grammar for the user and global consistency issues, such as inter-penetration, preventing
coherent grammar generation. Basically, context sensitive objects would need to know
at any time the position of the current scope relatively to the environment. Then,
grammar rules could be controlled with queried information from external contexts:
either surface or texture contexts. For instance an artist wishing to generate an ivy
model following a statue mesh could use the surface context of the statue. In addition
to surface contexts, one should be able to control the allowed growth places, the foliage
density, the color of the leaves, etc, with simple texture contexts. We introduce a
generalized approach where any external context may constrain any rule. While the
grammar can follow an underlying surface using the corresponding surface context, we
also use an artist-friendly painting solution for controlling grammar rules with texture
contexts. Moreover, as interactive feedback is crucial for artist, our solution is adapted
to the GPU shape grammars pipeline, thus benefiting from parallelism capabilities of
the GPU.

Our solution integrates texture contexts (Section 6.2, Figure 6.21) to constrain the
grammar rules according to texture information. Texture contexts are either generated
offline or painted on-the-fly. A texture lookup accessor is added within the grammar

6.2. Passing context through texture maps 79

in order to query texture contexts during rule expansion (Figure 6.2a). Our system
also supports surface contexts based on indirection geometry image (Section 6.3, Fig-
ure 6.211), a multi-charts geometry image with indirection information for jumping from
a chart to another at run-time. Surface context generation is performed on the GPU
from a parametrized input geometry (see Figure 6.2b to d). In Section 6.4, we detail
a marching rule responsible for moving over the surface context using its indirection
geometry image (see Figure 6.2¢). The geometry mapping onto the elements generated
by the marching rule is then performed using Bezier curve interpolation (Section 6.5,
Figure 6.2f). Finally, we demonstrate that our method is able to generate many con-
sistent growing models, such as ivy, in parallel using the GPU (Section 6.6). Thanks
to these contributions, artists can control the grammar rules at different levels with a
simple painting interface. Issues and future works are finally discussed in Section 6.7.

Rule Expressions I I- Texture contexts [JLEIQE
R Parameters Map |
Set feiirm[)(zm*gllzégle } 12335303461320 46131 13643510 21321 : | |
Rule Compiler ~ RuleMap J J
i —p p Exprlcval) { return lyf—| :
arais AR A WD W —— -
Al i Offline Painting
CPU = ' —
I1 -Surface contexis
Input _ 8 Gi;;)an;:try Ic))()?:l::: - d) Indirection s I
2 ” . Indirection
Geometries T extraction computation Geonietry
images =
GPU
GPU Terminals geometry \
g Textures Terminal ‘ Rule
‘- Evaluator | [*| Expander
1) Bezier geometry a) Texture

mapping e) Marching

Figure 6.2: GPU shape grammars pipeline is extended to handle external texture (I)
and surface contexts (II). Texture information is queried using a texture lookup accessor
(a). Surface context is encoded into an indirection geometry image (b to d) and ac-
cessing surface information is performed by the marching rule (e). Finally, the terminal
geometries are seamlessly synthesized over the terminal generated by marching rule (f).

6.2 Passing context through texture maps

A simple approach for controlling grammars with external contexts is to use textures
(Figure 6.2I). Any information can be encoded into textures: a population map, a
density map, a random map, etc. For instance, one may control the fur repartition
on an object using a texture. In this case, the external context is the texture context.
Starting from a tessellated mesh with given texture coordinates, each polygon of the
mesh may be processed using our parallel pipeline. The context-sensitive grammar
populating the mesh with fur is then governed by the population map from the user.

Chapter 6. External context-sensitive grammars
80 and application to growth on generic shapes

However, the user does not have any grammar tool to access texture information.
While it would be very useful to constrain any rule with such information, adding
a new special rule certainly complicates the work of the grammar designer. Instead,
we introduce a texture accessor (see Figure 6.2a). Using an accessor directly as rule
parameter allows for a cleaner grammar and faster execution. The texture lookup
accessor fetches a texel of a given texture according to provided texture coordinates.
As the rule parameters are automatically extracted into shader code expression (see
Chapter 4), this accessor is defined as a classical texture lookup method in shader:

vecd texture(int textureld, vec2 texCoord)

where textureld is the id of the texture to address, and texCoord are the texture coor-
dinates corresponding to the pixel to fetch.

With such texture accessor, one may easily access texture context to constrain its
grammar. The grammar hereafter populates a terrain according to the value of the
population map in Figure 6.3.

GenBuilding — Condition(texture(0, getTexCoord()).x > 0.5)
{ StartBuilding, GenTree }

Gen'Tree — Condition(texture(0, getTexCoord()).y > 0.5)
{ StartTree, NULL }

For each polygon of the terrain, the grammar evaluates the texture context according
to the scope texture coordinates. For this grammar, a building is generated if the x
value of the fetched pixel is upper than 0.5. Else, if the y value is upper than 0.5, a tree
is then generated.

Figure 6.3: Population map of buildings and trees. Red pixels indicate a building area
while green pixels specify trees. White pixels correspond to null terminal symbol.

The artist may feed the system with an existing population texture. In addition, as
our pipeline provides interactive feedback, the artist can also paint the texture on-the-
fly directly onto the model. The painted texture is generated on the GPU. While the
artist paints onto the model, the texture coordinates corresponding to the brush center
are sent to a paint shader. Then, depending on the brush size, the shader writes the
texture map at the given texture coordinates with the brush value.

6.3. Indirection geometry images 81

While this approach allows external texture contexts to constrain the grammar, gen-
erated models still grow freely into the environment. The following section describes a
solution to external surface context in order to generate consistent growth over surfaces.

6.3 Indirection geometry images

In order to constrain the grammar expansion with information about its underlying sur-
face, each 1D atom should know its position relatively to this surface context. Grammar
rules should thus query geometric and texturing information all over the surface to guide
themselves at any time. As the grammar evaluation stage is performed at run-time on
the GPU, the surface context must be available directly on the GPU. Our approach
uses texture-based mesh representation that is efficient for the GPU.

6.3.1 Geometry images

Various mesh data structure have been developed and optimized for a GPU usage.
Data structures such as half-edge data representation |[Man88| aim at efficiently encod-
ing triangles information. While such a conservative approach permits to store every
triangle of the mesh, it is also more complex to generate and to use than texture-based
approaches. In this latter category of data structures, mesh information is encoded as
a classical texture, that is easily accessed on the GPU using shaders.

Among texture-based methods, Gu ef al. introduced geometry images [GGHO02.
Starting from a mesh, a surface parametrization is first computed so that the mesh is
topologically equivalent to a disk. A geometry image is then generated by rendering
the mesh into a texture using the uv parametrization instead of vertices positions. The
result is a flat textured representation of the mesh where each pixel contains one interpo-
lated vertex position value. Other information such as normal and texture coordinates
may also be stored as per pixel values. This geometry image can then be used to approx-
imately reconstruct the initial mesh. While the quality of the reconstruction heavily
depends on the texture size, it may also suffer from distortion artifacts due to the auto-
matic sampling from the rasterization. Depending on the mesh parametrization, high
curvature areas may be undersampled, or flat ones oversampled. Such sampling ends
up with a low quality mesh representation leading to inconsistent mesh reconstruction
from the geometry image.

Sanders et al. extended this work to multi-charts geometry images [SWGT03]. In
order to limit these distortion artifacts, multiple cuts are found over the mesh to extract
various charts parametrized independently. The charts are then distributed all over the
texture through a chart placement algorithm. Finally, the classical geometry images
rendering is applied in a first pass to generate the multi-charts geometry image. As
rasterization on the border of the two adjacent charts may give different values on
each chart, they apply a border zippering algorithm. Their algorithm avoids cracks
and ensure continuity at chart borders. In a second pass, they create a one-pixel large
border around each chart to force neighboring charts to share the exact same border.
Better reconstructions are obtained, minimizing distortion artifacts.

Chapter 6. External context-sensitive grammars
82 and application to growth on generic shapes

Geometry images have been used for efficient ray-tracing of meshes on the GPU
[CHCHO06], proving this structure suitable for the GPU. However, while the reconstruc-
tion based on multi-chart geometry image is seamless due to the border zippering, each
chart of the geometry image is independent from its neighbors. This representation does
not allow to jump from a chart to another at run-time. For instance, being on border
pixel of a source chart of the geometry image, there is no solution to find its neighbor
in a destination chart. The following section introduces indirection geometry image in
order to allow jumping from a chart to another on multi-chart geometry images.

6.3.2 Indirection computation

The surface context of the mesh is encoded into an indirection geometry image (see
Figure 6.2I1). It is a texture similar to multi-chart geometry images, with additional
information for jumping from a chart to its neighbors. We only consider final mesh
representation into texture atlases, but not the mesh parametrization issues. Existing
multi-chart unwrapping algorithms [SPR06| are used to compute the mesh parametriza-
tion offline. From such atlases, the indirection geometry image generation algorithm
automatically finds chart correspondences on the GPU.

An indirection geometry image is a texture atlas containing information about the
mesh (e.g., vertices position, normal, texture coordinates) with indirection informa-
tion at chart borders. Figure 6.4 illustrates these indirections. We start from a mesh
parametrized in a preprocessing step. As we compute a one pixel border containing
indirection information around each chart of the texture atlas, the indirection geometry
image needs at least two pixels between each chart. Similarly to geometry images, the
texture resolution directly impacts the sampling quality of the mesh.

Figure 6.4: The indirection geometry image contains indirection information at chart
border. The chart A is linked to the charts B, C D and E with indirections.

6.3. Indirection geometry images 83

The indirection geometry image is composed of four types of pixels (see Figure 6.5).
Pixels belonging to the geometry image are divided into two sub-categories (1 & 2):

1. pixels bordering the background are called inner border pixels
2. the others are inner pixels

The pixels being on the background are also divided into two sub-categories (3 & 4) :

3. pixels bordering the geometry image are outer border pixels or indirection pixels

p=

4. the others are background pixels

Figure 6.5: Inner border pixels (yellow) belong to the mesh, while outer border pixels
(black) are added into the background of the indirection geometry image (white).

Our algorithm generates the indirection geometry image using three GPU-based
stages. First, a classical multi-chart geometry image without border zippering operation
is created (see Figure 6.2b). The principle is to render the input mesh onto a full-screen
quadrilateral by inverting vertex positions and texture coordinates [GGHO02|. The next
stage is designed to isolate inner border pixels into a GPU buffer (Figure 6.2c). As
the general algorithm finds the closest inner border pixel for each outer border pixel,
regrouping all the inner border pixel into a unique GPU buffer considerably accelerate
indirection computing.

Finally the last stage computes indirection for each outer border pixel (Figure 6.2d).
It finds out which inner border pixel in another chart is the nearest to the indirection
pixel (see Algorithm 3).

During indirection algorithm, charts id are compared so that the indirected pixel
does not belong to the same chart. These charts id are computed offline during the
multi-chart geometry image generation and provided as vertex attributes. An example
of indirection geometry image is shown in Figure 6.6. Once the indirection geometry
image corresponding to a 3D model is computed, grammar expansion may use the
marching rule to follow the surface context.

Chapter 6. External context-sensitive grammars
84 and application to growth on generic shapes

// init
geometrylmage < input geometry image
innerBorderBuffer < innerBorderBuffer generated
indirectionGeometrylmage <— input geometry image
// algo
Render a full-screen quadrilateral
for all fragments (i,7) do
tmpPixel < geometrylmagel, j]
if tmpPixel == background then
isOuterBorderPixel = false
mean < 0
// compute the mean of all inner neighbor pixel
fork=-1..1,1=-1..1do
if geometrylmage[i + k, j + [] != background then
mean < mean + geometrylmage[i + k, 7 + (]
isOuterBorderPixel = true
end if
end for
if isOuterBorderPixel == true then
// find the nearest vertex to the mean
nearestVal < +inf; nearestInt < 0
for k£ = 0..innerBorderBuffer.size-1 do
if innerBorderBuffer|k|.chartld != tmpPixel.chartId then
if innerBorderBuffer[k| - mean < nearestVal then
nearestVal < (innerBorderBuffer|k| - mean)
nearestInt < k
end if
end if
end for
indirectionGeometrylmageli,j| < innerBorderBuffer|nearestInt|
end if
end if
end for
ALG 3: Indirections are computed for outer border pixels. The reference value is the
mean of the 1-ring neighborhood of the outer border pixel. Then the indirection corre-
sponds to the closest inner border pixel from the reference value.

6.4 Marching rule

The Marching rule is responsible for generating extrusions along the surface. Contrary
to the Eztrude rule that perform extrusion anywhere into the 3D space, Marching rule
performs extrusion following the surface context in any direction. The Marching rule is

6.4. Marching rule 85

(a) indirection geometry image (b) zoom on the head parts

Figure 6.6: Indirections are computed for each outer border pixel, referencing an inner
border pixel from another chart a). Bottom part of the head replicates green border
pixels of the top part, and inversely with purple ones b).

specified as follows:
Pred—Marching(vec2 direction, float stepSize) {quadExtruded, segmentTop}

where Pred is the rule predecessor, quadFxtruded is the rule successor applied onto the
extruded quadrilateral, and segmentTop is the rule successor applied onto the trans-
lated segment. The parameter direction is the 2D vector indicating the direction for
the marching inside the indirection geometry image, and stepSize corresponds to the
marching size in pixels. The direction parameter is optional, and if not provided, the
marching direction of the current scope is used. Initial scope has the direction (0, 1).
Moreover, the rotation rule is extended to rotate the marching direction of the current
scope.

The interpretation of the Marching rule is done similarly to the other rules, at
the rule expanding stage of the GPU shape grammars pipeline. Starting from a seed
sampled from the base mesh, its initial position, normal and texture coordinates are
known, using the center of the segment. The texture coordinates are the entry point into
context surface represented by the indirection geometry image. Then, the 2D direction
and marching step size (i.e., grammar rule parameters) are evaluated at run-time.

The marching algorithm starts from a source texture coordinates, and fetches a
destination texture coordinates according to the given marching direction. Four cases
may happen during the marching according to the pixel fetched:

1. it belongs to the same chart of the indirection geometry image than the current
scope (Figure 6.7A)

2. it directly reaches an outer border pixel (Figure 6.7B)

Chapter 6. External context-sensitive grammars
86 and application to growth on generic shapes

Figure 6.7: Four cases may happen during marching rule. Blue cross represent inner
pixels, green cross are inner border pixels, red cross mean outer border pixels and yellow
cross are background pixels. A) the pixel fetched is an inner pixel. B) the pixel fetched
is an outer border pixel, the redirection is automatic (dash line). C) the pixel fetched
is part of background, the marching is inverted to find the corresponding outer border
pixel (dotted line). The redirection is then automatic. The case where the pixel fetched
is part of another chart (e.g., large marching step) is treated similarly to C).

3. it gets to the background (Figure 6.7C)
4. it ends directly into another chart (Figure 6.7D)

In the first case, the destination vertex simply corresponds to the pixel fetched. For the
second case, as the outer border pixel contains the value of a vertex in another chart, the
pixel fetched automatically redirects to this chart. Finally, if the pixel fetched jumps in
the background or in another chart, the algorithm finds the outer border pixel in the
inverse given marching direction. Then the redirection is performed as in the second
case.

As the redirections are computed according to the mean of the inner border pixels,
the outer border pixel fetched may not be the more appropriate. In order to fetch the
outer border pixel minimizing the 3D direction distortion, a best matching pixel selec-
tion is performed at redirection (Section 6.4.1). Then, the 2D marching direction for
the destination chart is computed to be consistent with the one of the source chart (Sec-
tion 6.4.2). Finally, instead of generating classical terminal quadrilaterals, the marching
rule generate quadrileterals over the mesh with specific tangent, binormal and normal
at center endpoints (Section 6.5). Those information are later used during the terminal
evaluation stage to allow smooth transitions between terminal shapes.

6.4. Marching rule 87

6.4.1 Best matching pixel

The indirection geometry image indicates for a given outer border pixel the redirection
into its original chart. Each indirection pixel is set as the nearest inner border pixel being
on another chart, according to the mean of its 1-ring inner border pixel neighborhood.
This is why a better indirection pixel may be selected than the one fetched on the 2D
marching direction, with respect to the 3D direction (Figure 6.8). In order to find the
most consistent outer border pixel, the matching step considers outer® containing both
the fetched outer border pixel, and its 1-ring neighborhood being also indirection pixels
(Figure 6.8: Py and Py, Py, P3).

First, a reference 3D direction is computed between the current vertex position
curPos and the vertex position innerPos at the inner border pixel Pj,ner being on the
2D marching direction. Then, for each indirection pixel outer®, the algorithm computes
the 3D directions between curPos and the position of the indirected vertex positions
outerPos®. Finally, for each outer border pixel outer®, a matching value is computed
as:

innerPos — curPos outerPos® — curPos

linner Pos — cur Pos| |outer Pos* — cur Pos|

The indirection pixel having the closest matching value to 1 is then the best matching
pixel for indirection. Once the indirection pixel is selected, the 2D marching direction
at the destination chart is oriented according to the source and destination tangents.

Background pixels

Outer border pixels

\

Inner border pixels

7

Figure 6.8: Marching from the pixel P.,, to outer border pixel Py, the best indirection
pixel may be in the 1-ring neighborhood of Py. A reference 3D direction is computed
according to Pjuner, the closest inner border pixel from Py being on the 2D marching
direction (yellow arrow). The reference value is the 3D vector pos(Pipner) — p0S(Peyr)
(red arrow). Then we compute the 3D direction vectors pos(Py) — pos(Peur) (green
arrows). The outer border pixel whose 3D direction vector is the closest to the reference
one is chosen as indirection pixel.

Chapter 6. External context-sensitive grammars
88 and application to growth on generic shapes

6.4.2 Tangent-based orientation of the marching direction

Adjacent charts may have various orientation. From this observation, the same marching
direction from a chart A to a chart B can be used only if their adjacent edges are parallel.
However, as soon as different rotations are applied to adjacent charts, a new orientation
for the marching direction should be computed, when jumping from the chart A to B.
Thus, being on a chart A with a given 2D direction, the consistent direction at chart B
is a rotation of the initial direction (see Figure 6.9).

Figure 6.9: Marching direction is oriented according to the source and destination 2D
tangent vectors. Let « be the angle between t; and —d;, the destination marching
direction ds is the rotation of ¢t of —7 + «.

In order to compute the rotation to apply to the 2D marching direction, local tan-
gents at the border of the source and destination charts are computed. Our solution is
invariant to rotation, translation and scale operations computed during chart placement
step of the parametrization, but not to mirroring operations. As this rotation algorithm
is based on the tangent of each charts, both charts must be consistent in orientation.
That is, they both have to be oriented either clockwise or counter-clockwise. If adjacent
charts are not consistently oriented, the algorithm will fail and inverse the rotation.

First, the tangent for the source chart A is approximated (see Figure 6.10a). Be-
ing on an outer border pixel of A, with texture coordinates nextTexCoord, the 1-ring
neighborhood is scanned in clockwise order. During this scan, the first outer bor-
der pixel after a background one, with texture coordinates nextTexCoordTangent, is
part of the source tangent. This tangent is thus defined as nextTexCoordIangent —
nextTexCoord. The angle a betwen the source tangent and the source 2D marching
direction is computed. Then the outer border pixel at nextTexCoord redirects to the
inner border pixel of destination chart B, at newTexCoord (Figure 6.10b). The 1-ring
neighborhood of this inner border pixel is scanned. Here, the first inner border pixel

6.4. Marching rule 89

B
3

v ‘ Background pixels ‘ g \ v

‘ Outer border pixels ‘

- ‘ Inn-erborder pIXEIS ‘ V

(a) Source chart A. (b) Destination chart B.

Figure 6.10: Chart tangent computation at one and three pixels distance, respectively
blue and green case. In the source chart, the tangent endpoint is defined as the first outer
border pixel after a background pixel. For the destination chart, the tangent endpoint
is defined as the first inner border pixel after an inner pixel. Computed tangents are
indicated in red.

after an inner pixel, with texture coordinates newT exCoordI angent, is part of the tan-
gent at chart B. The destination tangent is thus defined as newT'exCoordTangent —
newTexCoord. Finally, the destination 2D marching direction is a rotation of the
destination tangent of —m + a.

However, fetching only the 1-ring neighborhood to compute the tangent may give
inconsistent results. For instance, if two adjacent chart borders are rasterized sightly
differently, the rotation may be over-estimated. Better tangent estimation is provided
by computing the tangent at various pixel distances. The final tangent computation is
modulated with distances of one pixel, three pixels and five pixels border tangents. Mean
of the intermediate tangents allows smoother tangent estimation. A future work could
be to experiment with the tangent approximation based on a discrete curve [F'T99].

The marching rule provides a simple way to move according to the context surface
using an indirection geometry image. The best matching pixel recovers the more con-
sistent pixel at border. Jumping from a source chart to a destination chart is automatic
using the texture coordinates of outer border pixels. Then the destination 2D march-
ing direction is rotated according to the angle between the source tangent and source
2D marching direction. Finally, quadrilaterals are generated between marching end-
points with normal and tangent information. Those segments are then used for smooth
seamless geometry mapping.

Chapter 6. External context-sensitive grammars
90 and application to growth on generic shapes

6.5 Smooth seamless geometry synthesis

In order to substitute a terminal symbol by geometry, artists commonly use the Shape
rule. It indicates the terminal geometry id to instantiate at the terminal evaluation
stage. In the GPU shape grammars pipeline presented in Chapter 4, terminal evaluation
considers only geometry mapping on flat quadrilaterals. Using a simple linear mapping
based on the position of the four corners, the terminal shape fits the quadrilateral
support. However, in case of multiple extrude rules that do not follow a unique extrusion
direction, each instantiated terminal shapes is oriented according to the normal of its
quadrilateral, thus exhibiting a continuity issue (see Figure 6.11a).

Vlachos et al. introduced PN-triangles for generating smooth subdivided triangles
with a C° continuity and C! at triangle corners [VPBMO1]. As PN-triangles only
need vertex position and normal inputs, it is easily integrable into graphics hardware
applications. A PN-triangle is defined as a cubic triangular Bezier patch that matches
the point and normal information at the vertices of the flat triangle. Peters [Pet0§]
extended this work to PN-quads. While we could use PN-quads for continuous geometry
synthesis over the quadrilateral terminal shapes, this solution requires to compute 12
control points and 5 control normals over the quadrilateral patch, and then to interpolate
the terminal shape vertices accordingly. To prevent from complex operations at terminal
evaluation stage, simpler cubic Bezier curves are proposed.

Instead of linear mapping of the terminal geometry over the quadrilateral, we con-
sider straight lines joining center endpoints of the quadrilateral, with position, normal
and tangent information. While position and normal are directly queried from the in-
direction geometry image, the tangent is computed as the cross product between the
mean adjacent binormal and the normal of the point. Given three points P;_1, P;, and
P11, and N; being the normal at P;, the tangent T; at P; is:

1 P — B P — P,

T,=N; X (=
=N QR L =R T IR - Al

) (6.1)

where X defines the cross product.

In order to apply a cubic Bezier interpolation for a straight line defined by its two
endpoints, we need to compute two more control points. Following the idea of Vlachos et
al., control points of the Bezier curve are computed according to the projection normals
[VPBMO1] (see Figure 6.11b). First two control points uniformly sample the straight
line at % and % Then for each endpoint, the nearest control point is projected onto
the plane defined by the projection normal N/. By setting projection normal N/ in the
plane defined by P;_1, P;, P41, we ensure G continuity. Finally, the two control points

are defined according to the projection normal as follows:

bso = P;, bos = Pin1

wij = (P = B) - Nj € R

by = (2P, + Piy1 — wi,i—i-lNi/)/S?
bz = (2Piy1 + P — wip1,:N]41)/3

6.5. Smooth seamless geometry synthesis 91

(a) Linear mapping artifacts

(b) b21 control point computation

Figure 6.11: Multiple extrusions with various extrude directions prevent from seamless
transition (a). Using the projection normal and position information of the segment
defined by the endpoints b3y and by3, we define two control points by and bio for cubic
Bezier interpolation (b). by is the projection of (2bso + bos)/3 into the tangent plane
at bso. bi2 is the projection of (bgg 4 2bg3)/3 into the tangent plane at bgs.

The Bezier curve is then computed using the equation:

B(t) = (1 — t)3b3g + 3(1 — t)2tho1 + 3(1 — 1)t%b12 + t3bos (6.3)

By defining a normal point at mid-edge, a quadratic normal interpolation captures
shape variations (e.g., inflexions), which is not possible with linear interpolation as
illustrated in Figure 6.12. This mid-edge normal point n;; is defined as the average of
the end-normals reflected across the plane perpendicular to the segment:

n20 = No
no2 = N
ni = s
[P]| (6.4)

hi1 = No+ N1 —vo1 (P1 — Fo)
(P1 — Po) - (No + Ny)
(P — Po) - (P~ P)

1)01:2

Chapter 6. External context-sensitive grammars
92 and application to growth on generic shapes

/4 L7 Y 7\ L/

(a) Linear interpolation. (b) Quadratic interpolation

Figure 6.12: Linear interpolation of the normal endpoints (a) does not preserve the in-
flexion of the surface, while quadratic interpolation does. Figures courtesy of [VPBMOL].

The final quadratic equation for interpolating normal endpoints is:
N(t) = (1 —t)*ngo + 2(1 — t)tnyy + t*ngy (6.5)

Tangent endpoints are also interpolated using the same method used for the normal.
Finally, we only compute two control points, one normal point and one tangent point
before interpolating the terminal geometry.

Geometry synthesis onto each generated quadrilateral is then performed in parallel
using interpolated Bezier information: position, normal and tangent. Let ps(xs, ys, 25)
be a vertex of the terminal shape, where xg,ys, zs are normalized (i.e., relatively to
the bounding box of the terminal shape, see Figure 6.13a). Computation of p(z,y, 2),
the interpolation of ps according to the Bezier curve, is performed incrementally. First,
p is positioned according to the Bezier curve interpolation using its height value y;
(Figure 6.13b) as:

p= B(ys)

Then, p is translated according to the quadratically computed tangent at ys using its
width value z, (Figure 6.13c) as:

p=p+T(ys)(To(1 — ys) + T1ys)(zs — 0.5)

where Ty and T are respectively the length of the tangent at endpoints Py and Pi.
Finally, p is translated according to the interpolated normal at ys using its depth value
zs (see Figure 6.13d):

p=p+ N(ys)(No(l — ys) + N1ys)(2s — 0.5)

where Ny and Nj are the length of the normal at endpoints.

In the end, terminal shapes are smoothly interpolated according to the Bezier curve.
Considering unique normal and tangent information for adjacent quadrilateral generated
with the marching rule, repetitive terminal shape models are seamlessly generated at
terminal evaluation.

6.6. Applications & results

93

A

|

|

|

|

! | ¥Ys=|os3
‘ ;

|

i

\

|

. /Zs=06s

(a) Vertex ps is normalized according to
the bounding box.

Y1z \‘\ |
Poo

~ \
N~

~
Y

(b) Cubic Bezier interpolation at ys po-
sition p onto the Bezier curve: p = B(ys)

(c) p is translated according to the inter-
polated tangent at y, and its width z,:
p=p+T(ys)(To(1 —ys) +Trys) (s —0.5)

(d) Finally p is translated according to
the interpolated normal at y, and its
depth zs: p=p+ N(ys)(No(1l — ys) +
N1ys)(zz — 0.5)

Figure 6.13: Incremental computation of the position p according to the Bezier curve.

6.6 Applications & results

In this section we apply our method for generating external context-sensitive grammar-
based models such as ivy plants growing onto a mesh. We also illustrate the expansion
process controlled with various texture contexts. All the images are generated using a
NVIDIA GeForce 580 GTX in a 1280 x 720 resolution.

Chapter 6. External context-sensitive grammars
94 and application to growth on generic shapes

6.6.1 Ivy growth

While the approach in Chapter 4 only allows to create plant models freely in the 3D
space, the external surface context extension permits to restrict the growth process to
follow any underlying geometry. For instance, ivy plants growing onto a base mesh are
generated with our system.

In this example, the underlying surface that is partially covered by ivy is the Hebe
model (Figure 6.14). This geometry comprises approximately 64,000 triangles. The
mesh parametrization is computed in a pre-processing step, resulting in a multi-chart
texture atlas. Then, the indirection algorithm generates the equivalent indirection ge-
ometry image in 2.1 seconds for a 1024 x 1024 resolution (Figure 6.6a). From this
texture, the grammar-based expansion is performed onto the Hebe model at rule ex-
panding stage from multiple seeds.

Figure 6.14: Our ivy model grows freely onto the Hebe model from 16 seeds. The gram-
mar used is described hereafter, with stepNumber = 30, stepSize = 12, stepBranch =
13 and numberO f Leaves = 2. The rule expander takes 61 ms while terminal evaluation
and rendering is performed in 11 ms. This scene represents 572K generated faces.

The ivy grammar follows the growth process described hereafter. The first marching
rule initializes the marching direction while the other uses the direction of the current

6.6. Applications & results 95

scope, depending on the stepSize parameter. At every stepBranch marching step, a
new branch is created and both branches rotate the marching direction of the current
scope using the RotateDir rule. The ivy leaves are generated all along branches using
a Sampling rule. This rule randomly samples the current scope and creates a given
number of children. Finally, the ivy branch is an instantiated cylinder model of 216
polygons, for each extruded marching quadrilateral, while the leaves are simple textured
quadrilateral.

IvyInitMarching — Marching(dir, stepSize)

{ IvyDuplicate, IvyCondMarching(0)}
IvyCondMarching(n) — Condition(n < stepNumber)

{ IvyBranching(n+1), NULL }

IvyBranching(n) — Condition(mod(n, stepBranch) —= 0)
{ IvyBranch(n), IvyMarching(n) }
IvyMarching(n) — Marching(stepSize)
{IvyDuplicate, IvyCondMarching(n)}
IvyBranch(n) — Branch(2) { IvyRLeft(n), IvyRRight(n) }
IvyRLeft(n) — RotateDir(-angleRotation, 1)
{IvyCondMarching(n)}
IvyRRight(n) — RotateDir(angleRotation, 1)
{IvyCondMarching(n)}
IvyDuplicate — Branch(2) { CylinderShape, IvyPart }
IvyPart — Sampling(numberOfLeaves, 1.0) { IvyLeaf }
IvyLeaf — Extrude(0.02, 5.0) { RegularQuad, NULL }

Figure 6.15 shows multiple ivy seeds expanded using the same ivy grammar, onto a dif-
ferent model. In this case the ruins model comprises 170K triangles, and the indirection
geometry image is generated in 1.08 seconds.

Seeds are created at a picking step by the user directly onto the underlying model.
Each time a user picks a new seed location, its position, normal and texture coordinates
are read back. Then a new seed is added: the corresponding 1D atom is sent to the input
seed buffer, with associated random parameters stored into the parameters map. The
seed grammar is thus evaluated on-the-fly. As the initial growing direction is a grammar
parameter, the user have to specify a value. We provide an intuitive way to set the first
growing direction. To do so, the user indicates the initial growing direction for the seed
by giving an impulsion at seed picking with a paint stroke. Let startPickingTexCoord
and endPickingTexCoord be respectively the texture coordinates at picking press and
release, the marching direction is then defined by:

endPickingTexCoord — start PickingTexCoord

However, this picking direction is only valid in cases where press and release belong to
the same chart. Otherwise, the direction may be incoherent.

Using the GPU shape grammars pipeline, each seed is processed and the associated
grammar is evaluated in parallel during rule expansion; the terminal sets are also eval-
uated in parallel at terminal evaluation. As an example, 1 to 30 seeds are generated at

Chapter 6. External context-sensitive grammars
96 and application to growth on generic shapes

(a) 421 ms / 87 ms (b) 194 ms / 41 ms

Figure 6.15: The ruins model is covered by 18 (a) and 24 (b) ivy plants, with gram-
mar parameters stepNumber = 34/48(a/b), stepSize = 10/13, stepBranch = 6/14
and numberO f Leaves = 2/2. Respectively 5.17M and 2.27M polygons are generated.
Timings are indicated as rule expander / terminal evaluation and rendering.

the same cost for the ruins scenes in Figure 6.15. The sublinear complexities observed
in Chapter 4 and Chapter 5 are also underlined in external context grammars. While
this grammar describes a growing process anywhere of the surface, without additional
external constraints, our method also provides the possibility to control the grammar
expansion with such constraints.

6.6.2 Grammar constraints through texture contexts

The grammar presented above has one constraint guiding its expansion which is to
always stay close from the underlying surface. In this case, the grammar expansion is
constrained with the surface context of the model. However, one may want to add more
external constraints to control the grammar.

Using the texture coordinates of the current marching scope, an artist can access
any information at the defined position of the surface context in an additional texture.
The information about the underlying surface may be geometric such as the curvature,
or texturing. In this last case, artists paint values directly onto the mesh that are stored
on-the-fly into a texture map using the texture coordinates on the mesh.

For instance, let us add a painting constraint to the IvyCondMarching rule in
previous grammar set. By changing the condition to:

n < nbStep && texture2D(paintMap, texCoordCur).z > 0.5

one may specify that the ivy is able to grow to this surface position only if the painted
texture has a red value greater than 0.5 at the defined location. Then, the artist simply
paints onto the mesh the areas where the ivy should stop growing (see Figure 6.16).

6.6. Applications & results 97

Figure 6.16: Texture context is used for interactively paint the restricted growing areas.
Areas painted in red are forbidden to growth (left). The same ivy grammar grows freely
onto the model without any restriction (right).

A second idea is to strictly guide where the grammar grows over the mesh. To
achieve such control, multiple texture fetch associated with rotation rules may be used
until an appropriate growing direction is found (Figure 6.17). Another solution would
be to generate a vector field from the painting and use this value at a lower resolution to
directly drive the marching direction. Various applications could constrain the grammar
using the same approach, for instance to prioritize growth in cavity and modulate the
ivy size on curved areas.

Figure 6.17: Texture context is also used to define strict growing areas. Ivy grammars
follow the red painting on the mesh.

Chapter 6. External context-sensitive grammars
98 and application to growth on generic shapes

6.7 Discussion

Using the painting approach could be interesting in order to populate terrains with
various grammars. For instance, one may paint on a terrain the areas where trees should
be generated, other areas dedicated to the creation of buildings and so on. However,
as the GPU shape grammars is composed of only one rule expanding stage, we have no
other choice than regrouping both population grammar and object generation grammar
altogether. It could thus be performed within the same generation pass. Nevertheless,
this solution is not optimized because both grammars are decorrelated. They could
be used separately in other situations. Ideally, a population grammar would generate
multiple atoms in a first rule expander pass. Then, in a second pass, the rule expanding
will take the generated segment as input and generate the corresponding geometries for
each grammar. This would achieve better performances and benefit from the parallelism
at both passes. In order to allow the use of multiple in/out buffers, multiple rule
expanding stages should be performed. A solution would consist in describing the
desired buffers on the grammar. This requires to write an expansion pipeline within the
grammar, and to generate this pipeline on-the-fly.

While the marching rule provides expansion on a surface context, intersections may
happen during the expansion process. Three types of intersection are defined: self-
intersection where a grammar may generate many times a geometry at the same position,
seed-intersection where various seeds may generate geometries at the same position,
and surface-intersection where the generated geometry may intersect the underlying
surface. Depending on the marching step size, highly convex areas may be intersected
with the generated geometry. While decreasing the marching step size at intersected
location reduces the intersection, the geometry synthesis algorithm based on Bezier
curve interpolation also helps by taking care of the surface normal. To prevent seed-
intersection and self-intersection an atomic counter can be used for each pixel of the
texture. An atomic counter is a counter that may be incremented by all threads running
in parallel. Thus, each time a marching expansion is performed, the atomic counter is
incremented indicating the number of ivy already passed before. By modulating the
distance to the surface according to this atomic counter, seed and self-intersections are
limited. However, this solution tends to decrease a bit the parallelism speed. While the
atomic counter is designed to limit the time for threads waiting access to the counter,
it necessarily degrades parallelism performances.

6.8 Conclusion

This chapter presented a solution for controlling external context-sensitive grammars.
A first approach is to constrain the grammar with texture contexts by allowing the
grammar designer to use classical shader texture lookup methods as grammar accessors.
Then, the texture accessor may be used within the grammar at any rule. While this
approach provides the ability to control the rules at the initial seed position, another
issue is raised concerning expansion process. In this case, any expansion scope should be
able to access information about the underlying surface at any time. Using the marching

6.8. Conclusion 99

rule, one may constrain the grammar to be expanded according to a surface context. The
indirection geometry image provides an efficient mean to encode the underlying surface
with indirection between adjacents charts, allowing fast access on the GPU. Finally,
as the grammar may be controlled with external information attached to the surface,
artists may paint directly onto the surface to constrain the grammar with interactive
feedback. Our solution thus provides an intuitive tool for external context-sensitive
grammars.

Chapters 4 to 6 presented solutions for generation and rendering of highly detailed
models using the GPU. Our pipeline handles up to hundreds of input 1D atoms at
interactive time taking advantage of the parallel architecture of the GPU. However, a
bottleneck appears for large-scale environments containing thousands of objects. The
next chapter introduces a solution for parallel grammar scalability, allowing generation
and rendering of elements composing very large sceneries.

100

Chapter 7

Parallel grammars scalability
and application to massive sceneries

WEN

(a) 7.5 fps (b) 8.3 fps

Figure 7.1: Our massive management system integrated within the GPU shape gram-
mars pipeline allows for interactive design, editing and navigation in massive environ-
ments. The geometry of this scene comprises 116573 buildings and 561280 trees.

We introduce a massive management system integrated within the GPU shape gram-
mars pipeline. To this end we developed a scalable framework by introducing automatic
generation of multiple levels of detail at reduced cost. We apply our solution to the in-
teractive generation and rendering of massive scenes containing thousands of buildings
and trees. This work has been published in the GPU shape grammars paper [MBG™12].

101

Chapter 7. Parallel grammars scalability
102 and application to massive sceneries

7.1 Introduction

GPU shape grammars pipeline is designed to generate and render multiple procedural
objects in parallel using a batching approach (Chapter 4). For each input segment,
we derive and interpret the associated grammar to obtain one or several fully detailed
object. In order to create more structured grammar-based objects, we proposed in
Chapters 5 and 6 to enrich the 1D atom contexts with internal and external scopes.

A new challenge arises when we want to address the generation of massive sceneries
at interactive frame rate, for instance to create virtual cities (see Figure 7.1). While our
GPU shape grammars pipeline as presented in Chapter 4 supports interactive generation
and rendering of hundreds of objects, scaling up to thousands of inputs shows some
limitations in terms of memory consumption and generation time. Figure 7.2 recalls
the pipeline introduced in Chapter 4, with the two GPU-based geometry amplification
stages: the rule expander and the terminal evaluator. If we recompute the rule expansion
and the terminal evaluation every frame, we obtain a "costly" generation time. However,
we allow intermediate storage for the two stages. Thus we could cache the fully detailed
objects on graphics memory after each parameters modification. Therefore, we avoid
running a per-frame generation step but it leads to a higher memory cost especially at
storing final generated objects.

Rule Rule Expressions ki GPU
Params Set Expl(angle) { retum 2+ angle |
Exgprl (val) { retumval >0 5 }
— Rule
LR PR
Rule P Expander
Compiler /
ﬁ | 13335303461320 446131 1364351.0 21321 |
CPU Parameters Map y l Terminal
B Set

«— | Renderer [¢&== . Terminal

Al s

Tha e
Textures Terminals

Shaders Geometry

Evaluator

Figure 7.2: GPU shape grammars pipeline.

On the other hand, rendering so many detailed objects is hardly possible in real-
time or even at interactive framerate. Typical scenes comprising thousands of highly
detailed objects are challenging to render in real-time. To achieve such performance,
level-of-details (LODs) and advanced rendering optimization techniques are mandatory.

In this chapter, we introduce a scalable approach based on automatic seamless LODs,
integrated withing the GPU shape grammars pipeline. This provides interactive genera-

7.2. LOD system overview 103

tion, as well as on-the-fly editing and rendering of objects composing massive sceneries.
We will first see a fine-grain level-of-details system for grammar-based models using
automatically generated image-based impostors (Section 7.2). We propose two differ-
ent strategies for architecture and vegetation exploiting object structures (Sections 7.3
and 7.4). Finally we will talk about the caching, clustering and culling optimization
strategies (Section 7.5).

7.2 LOD system overview

The output of procedural geometry generation is usually a highly detailed model. While
rendering of one to hundred high definition model may be performed in real-time (see
Chapters 4, 5 and 6), it is quite challenging to render in real-time an entire scene
comprising thousands of such models. Basically it is not possible to exploit the massive
power of procedural modeling directly into huge scenes: our parallel approach is not
sufficient anymore. A solution consists in degrading the quality of generated objects,
thus not reflecting the final rendering. In the case one cannot tolerate such a loss of
quality, artists have to edit the parameters or the grammar rules outside of the scene
on one model alone, then reintegrate the modification inside the complete scene for
high quality off-line rendering. Thus modification of objects are very time-consuming
for artist, acting in trial and errors process. This drawback prevents from interactive
edition and feedback on massive grammar-based models. We introduce a dynamic LOD
system for high quality real-time visualization (Figure 7.3).

Figure 7.3: The management of levels of detail is integrated within our pipeline for
interactive generation and visualization of large-scale sceneries. We defined five LODs
for architecture (Figure 7.7): red buildings correspond to the highest level (LOD4), blue
ones are central view impostors (LOD2), yellow ones correspond to grammar ray-tracing
(LOD1) and cyan buildings are the lowest level simply using the wall texture (LODO).

Chapter 7. Parallel grammars scalability
104 and application to massive sceneries

Our technique comes from a simple observation: in a massive scene such as the one
in Figure 7.3, there are few objects closer to the camera which have a high screen cov-
erage while the ones far away from the camera are much more numerous but cover less
pixels. Due to the small screen coverage of the distant objects, we may accept a loss of
quality for distant objects and degrade terminal shape geometries without impacting too
much visual result. Moreover, in order to allow massive scenes composed of thousands
of elements we also need to reduce the geometric load of the generated models. We
thus define different LODs for architecture and vegetation, balancing rendering quality
and memory storage. As buildings and trees follow two different grammar strategies,
respectively reduction and growth processes, we developed accordingly different LOD
strategies (Sections 7.3 and 7.4). While highest quality LOD always remains the actual
geometric model, we substitute the geometry by image-based impostors for lower qual-
ity levels [JWPO05]. Replacing thousands of polygons by a simple texture relieves the
GPU from triangle processing cost. We first describe the LOD system developed for
architecture modeling.

7.3 Architecture

We devise LODs for architecture based on the following observation: starting from a
basic representation of the object, each step of the procedural generation refines the
model and generates additional details to reach the best quality. Lower LODs can
then be obtained by stopping the generation pipeline at chosen stages. Especially,
for building models we often start performing one or a few extrude rules (growth) to
generate the facades. Then many reduction rules (split and repeat) are applied to refine
the facades and thus position block elements such as windows, doors, etc. Accordingly
to this modeling process, we define two grammar-based LODs where the lower one do
not perform entire grammar expansion (Figure 7.4).

(a) The higher quality LOD expands (b) We stop the expansion at the
the overall grammar first growth rule for generating the
lower quality LOD

Figure 7.4: We define two grammar-based LODs for architecture modeling.

7.3. Architecture 105

This lower level is called the extruded set. We either automatically stop after the
first growth rule, or let the grammar designer tags the grammar to indicate the extrusion
level corresponding to the extruded set. Using such a lower grammar-based LOD for
the farthest objects, we limit the memory consumption for barely visible objects. On
the other hand, the highest geometric LOD is simply the fully expanded one. Finally,
we subdivide again the two grammar-bagsed LODs to exhibit five terminal-shapes-based
LODs. Our solution relies on intensively use of image-based impostors to avoid geometry
generation for some of the LODs.

7.3.1 Impostors

A classical approach consists in generating a separate impostor for each object. How-
ever, procedurally-generated models tend to reuse a relatively small number of terminal
shapes. Therefore, we generate per-terminal impostors, and combine them at render
time. Such per-terminal impostors are a more compact solution than generating per-
object impostors for each set of grammar parameters. Those image-based impostors are
generated automatically upon loading of the terminal geometries: each terminal shape
is evaluated and rendered simultaneously from several views on graphics hardware (Fig-
ure 7.5). The resulting photometric attributes and normal map of the terminal are then
stored for later use. Once per-terminal impostors are generated, we may replace a
terminal shape symbol either by its geometric models or its impostor representation.

Generation
Patch

Terminals
Geometry

Terminal
Evaluator

Multiview
Setup

TControl L
h—

Multiview Textures

Renderer 5h_ffders

GPU

Figure 7.5: We generate impostors on the fly. For each terminal shape, we generate
it using the same principle as for the terminal evaluation described in Chapter 4 (i.e.,
with the hardware tessellator of the GPU). By specifying a multi setup, we are able to
render the same geometry from various view angles in a single render pass. We store
both photometric and normal information for later use at run-time.

Chapter 7. Parallel grammars scalability
106 and application to massive sceneries

7.3.2 LODs description

Starting from the LOD of highest quality to the lowest one, respectively LOD4 to LODO,
we explain each one according to the Figure 7.6. First, LOD4 is generated using the
entire pipeline, with classical rule expansion and terminal evaluation stages. It is the
only level who actually generates geometry. Then LOD3 and LOD2 only require a
terminal set. Difference with LOD4 is the geometric terminal shapes are substituted
by image-base impostors. For LOD3 we interpolate between the four closest multi-
view impostors depending on the angle between the camera and the terminal shape
preserving parallax effects. LOD2 only uses the central view impostor.

Rule Rule Expressions A
Params Set i
Terminal
Set
Rule I e
. Rule Map
Compiler
_b | 12335303461320 446131 1364351.0.21321 |
CPU Parameters Map
Renderer 0.1
«— | Renderer 2.3 Term. Ev. 2&3| ¢
Renderer 4 Term Ev. 4 | 4=
Textures Terminals
Shaders Geometry GPU

Figure 7.6: The management of levels of detail is integrated within our pipeline for
interactive generation and visualization of large-scale sceneries.

Lower LODs avoid the generation of a terminal set. Instead, we generate a simplified
extruded set representing the overall shape of the object. However, the high frequen-
cies due to the presence of the terminals remain visible even from long distances. To
overcome this problem, LOD1 borrows the idea of lazy per-pixel grammar expansion
of [MGHS11]. The object is then simply represented by a base volume, on which the
grammar is evaluated on a per-pixel basis. Depending on the terminal visible through
the pixel the central view of the terminal impostor is sampled to ensure coherency with
the higher levels. Finally, objects covering very few pixels on the image are replaced by
a base textured volume in LODO.

Figure 7.7 shows these five LODs applied on a building and scaled to represent the
screen coverage of each one. While the choice of LODs is automatically performed at
run-time based on the distance to the camera, LOD4/3/2 allow a per-terminal shapes
LOD selection (Figure 7.8). Indeed as all terminal shapes are independent from each
other during terminal evaluation, providing a fine-grained LOD selection.

7.3. Architecture 107

LOD4 LOD3 LOD2 .

Extruded Set LOD1 LODO

Scaled LODs

Figure 7.7: GPU Shape Grammars LOD scheme. Levels 2 to 4 are based on the full
terminal set: entire terminal geometry (LOD4) or image-based impostors (LOD3/2).
The LOD of each terminal is chosen independently on graphics hardware, resulting in
the simultaneous use of several LODs in a single facade (right). The coarser levels rely
on a simplified terminal set: LODI1 applies per-pixel grammar expansion, while farthest
objects are simply textured (LODO).

LAANLA AN

) Full detail) LOD enabled) LOD ranges (d) LOD shapes

= N
S SE N
== N
= == =
- 3
—= =
E - = ~\
S Zap SSSa
P NV v ~
7 7 <)
F 2
7.’<‘ Za =
v
)

Figure 7.8: Fully expanded grammar-based LOD allows for fine-grained per terminal
shape LOD selection.

Chapter 7. Parallel grammars scalability
108 and application to massive sceneries

7.3.3 LOD transition

Discrete levels of detail usually exhibit abrupt LOD changes, introducing popping artif.
We address this problem using a smooth and inexpensive LOD blending. Between LODO0
and LOD1 we simply blend the default texture with the result of per-pixel grammar ex-
pansion. The results of LOD1 and LOD?2 is identical (compositing of terminal textures)
and hence not prone to popping. The transition to LOD3 is then simply performed by
blending of the views contained in the impostors. The last level involves the evaluation
of the terminal geometries and generates the protruding features of the terminals. We
avoid popping between LOD3 and LOD4 by progressively flattening the geometry as
the coverage of the object decreases. This allows LOD4 to preserve a smooth transition
to LOD3, while exhibiting the required highly detailed geometry in the closeup views.

7.4 Vegetation

Vegetation shares the same idea than architecture for designing LODs. In order to
relieve the geometric load of the GPU, we substitute farther trees by image-based im-
postors while closest ones remain actual geometry. However contrary to buildings where
we defined five LODs, we propose two LODs for vegetation.

Because vegetation and architecture grammars are intrinsically different in their
conception, we cannot use the same LOD technique developed for architectural models
on vegetation ones. Typically, tree modeling consists in many growing rules to generate
the branches and few reduction rules. Stopping the expansion rules at the first growing
rule results in a unacceptable LOD, losing the global structure. In order to capture a
consistent structure, we could allow a deeper expansion up to the final extrusion rules.
While this method would work, it would also lead to a higher memory consumption,
reducing the benefit of a lower quality LOD. Instead we adopt a different approach
that use a billboard technique, where a tree is substituted by only 3 quadrilaterals
(Figure 7.10). Then we texture each side of the billboard planes with object-based
impostors. We developed only two LODs, the highest quality LOD being the actual
generated geometry, and the lowest one being billboard-based.

7.4.1 Impostors

Instead of generating per-terminal shape impostors as in architecture case, per-object
impostors are generated. We no longer shoot every terminal shapes in a hemispherical
multi-view process. Impostor shooting is performed all around each generated tree using
the GPU (Figure 7.9), storing into texture buffers photometric and normal information
to reconstruct consistent color and lighting. The main drawbacks of per-object impos-
tors is the need to reprocess the multiview impostor generation at parameters update
because we capture the overall shape of object.

7.4. Vegetation 109

(d) Back (e) Left

Figure 7.9: Per-object impostors are generated for vegetation.

(a) Billboard (b) Textured (c) Lighted

Figure 7.10: The lower tree LOD is a texture map billboard.

Chapter 7. Parallel grammars scalability
110 and application to massive sceneries

7.4.2 LOD description

As said previously, we defined two LODs selected according to the camera distance. The
LOD1 corresponds to the geometric level whereas the LODO is the image-based impostor
of the generated tree. Contrary to facade elements that were rendered onto the simple
quadrilateral support, we use a cross billboard impostor (Figure 7.10). Indeed, trees are
objects visible all over the sphere (the hemisphere for a facade) and necessitate a 360°
impostor. Each face of the billboard is assigned an ID of the object side, thus we texture
the billboard by fetching the indicating view side. We also use the normal information
to reconstruct a consistent lighting. Other methods exist for creating LODs for trees
such as billboard clouds [DDSDO03] but they needed several billboards to reconstruct
parallax effects, thus increasing the geometry complexity. While our approach relies on
very simple billboards, it allows to generate much more trees.

7.5 Caching, clustering and culling

LODs techniques presented for architecture in Section 7.3 and for vegetation in Sec-
tion 7.4 allow to relieve the geometric load of the generated objects and to increase
performances in case of thousand objects scenes. In order to reach even better perfor-
mances, our pipeline also adopted advanced rendering optimization methods such as
caching, clustering and culling.

7.5.1 Caching

GPU shape grammars pipeline is composed of two GPU components allowing to cache
the results: the rule expander and the terminal evaluator. One may cache the terminal
set generated at rule expanding, or the terminal shapes generated at terminal evaluation.
Caching all results allows to deactivate the two previous stages and only performs the
rendering, reaching high frame rates. However, such a caching process involves a higher
memory consumption on the GPU, especially concerning the terminal evaluation stage.
In order to reach interactive frame rate during navigation inside massive scenes, we
found a balance between memory consumption and caching. By activating the cache of
the rule expanding results, we avoid to recompute the grammar derivation every frame.
Moreover, as this stage only generates a light terminal set, we optimize the graphics
memory usage. We let the terminal evaluation stage be performed on-the-fly. As long
as generation parameters does not change, the cache remains valid. But as soon as a
parameter changes, we reactivate the rule expansion.

7.5.2 Clustering

GPU shape grammars performs parallel procedural generation on the GPU. By regroup-
ing input 1D atoms together inside a vertex buffer, we can take advantage of this pipeline
to generate multiple objects in parallel. For massive scenes, we combine batching with
scene partitioning. We define clusters on the scene, and every input 1D atom belonging
to the same grammar and to the same cluster (see Figure 7.11) are batched together.

7.5. Caching, clustering and culling 111

Figure 7.11: Our massive city scene is subdivided into 780 hexagonal cells corresponding
to the object batches. Terminal sets are then generated on a per-cell basis.

Thus when navigating, every 1D atoms of a cluster share the same grammar-based LOD
(i.e., terminal set or extruded set). Finally, the second LOD is still chosen per terminal
shapes. Coupling with a gross frustum culling of the clusters performed on the CPU,
we are able to quickly eliminate non visible objects before any generation or rendering.

7.5.3 Fine-grain culling on GPU

Culling techniques avoid computation on non visible triangles by discarding them. As
we decided to cache the results of the rule expansion on a GPU buffer, we can not use
any culling method at this stage. However we perform terminal evaluation every frame,
and to avoid naive geometry generation we add a. GPU-based culling step. Our culling
method is integrated within the terminal evaluation stage and performs two levels of
culling. First, based on the terminal set we may discard some terminal quadrilaterals at
tessellation control shading stage, thus before geometry generation. Terminals outside
the frustum and those back-facing the camera are considered non visible and discarded.
Second, during geometry generation at geometry shader stage we may discard non
visible triangles. Finally, only visible triangles are generated and fragment shading
stage is thus faster.

Chapter 7. Parallel grammars scalability
112 and application to massive sceneries

7.6 Results

We integrate our massive management system within the GPU shape grammars pipeline
to the generation and tuning of buildings and vegetation in real-time. The presented
images and timings were obtained at a resolution of 1280 x 720 using an Intel Xeon
X5680 3.36GHz processor running a NVIDIA GeForce GTX 480 GPU.

The entire structure of the skyscrapers scene (Figure 7.12) contains 25K terminals
(1.25M polygons) and is generated in 21ms. Upon visualization, the level of detail of
each terminal is chosen according to the distance to the viewer, yielding a rendering
speed of 21.2fps with on the fly generation, and 38.4fps by storing the terminal set
(1.9MB) within graphics memory. If stored, the detailed geometry for this scene would
take approximately 115MB. As our method features building-grained parallelization, 12
similar towers (100K terminals total) are generated in 26ms.

Figure 7.12: The skyscrapers comprise up to 209 floors, generated in 21ms and rendered
at a minimum of 38.4fps using our massive management system within the GPU shape

grammars pipeline.

Our main test scene is a massive city comprising 116573 buildings using various
grammars and terminal shapes and 561280 trees of 7 different species (see Figures 7.13
to 7.16). The buildings are generated using two distinct grammars: First, the grammar
for the business district buildings comprises 28 rules, 3 of which being conditional. The
other buildings are generated using 40 distinct rules, including 8 stochastic rules. The
buildings generated using this second grammar use 12 unique terminal shapes. The
impostors for each shape are generated at a resolution of 256 x 256, yielding a total
memory footprint of 25MB.

The city is divided into hexagonal cells (Figure 7.11). When LODs 2-4 are needed

7.6. Results 113

Figure 7.14: Large view of the thousands - 8,9 fps

Chapter 7. Parallel grammars scalability
114 and application to massive sceneries

Figure 7.16: Business district and residential buildings generated from two grammars -
13,8 fps

7.7. Conclusion 115

the batch of terminal sets of a cell is generated on the fly and stored in graphics memory
(5MB per cell on average). The higher levels of detail are then used within the cell,
depending on the viewing distance of each terminal. The farther cells are rendered us-
ing LODs 0-1 for high performance rendering. In particular, the ray-traced grammars
of LOD1 are visually equivalent to LOD2, providing a smooth transition across repre-
sentations. The scene is rendered at 7-15fps with on the fly generation of the batch
terminal sets for the cells.

The vegetation is generated using a grammar and LOD management. A separate
billboard-based impostor is then generated for each tree type. This scene comprises 7
unique tree models, each one corresponding to one grammar and one parameters set.
We decided to limit the number of tree species because we have to generate and store
one multiview impostor per generated tree.

The representation of the detailed geometry for the entire city would take approx-
imately 2.3TB, exceeding by far the memory available of high-end graphics hardware.
Using GPU Shape Grammars the entire representation for the scene is reduced to an
average of 900MB, pushing the size of renderable models to new limits.

Besides real-time navigation, generation parameters of any arbitrary set of buildings
can be edited in place interactively. GPU shape grammars are then also a valuable tool
for editing and fine tuning of complex environments. This capability finds a particular
use for the production of massive assets for movie post-production. In this case, the
detailed geometry can be read back from graphics hardware to generate final images
using a production renderer. We could also use our system for large environment games
where we would render limitless scenes on-the-fly. Such games just need to generate
new set of parameters on-the-fly to create a unique environment.

7.7 Conclusion

We introduced a massive management system integrated within the GPU shape gram-
mars pipeline allowing interactive generation, edition and visualization of huge scenes
containing thousands of complex objects. While caching the rule expansion stage results
on the GPU memory, we benefit from a low memory cost of the generated terminal set.
By coupling with on the fly terminal evaluation and LODs, we are able to reach inter-
active frame rate on massive scenes. Our LOD system performs automatic impostor
generation, and provides various image-based levels limiting visual artifacts. Thanks
to our solution, artists may edit a single building interactively inside the overall scene,
or a entire batch of buildings. It thus allows to drastically reduce the time spend by
artists on environment edition contrary to state-of-art methods.

We only applied our architectural LOD system for facades and not for the roofs.
In such case, we could specify into the grammar multiple extrude sets (i.e., one for
the facade, another for the roof section) and use different base texture for the lower
LOD. For the impostor-based LOD, we could use tiles impostor. However, covering
roof sections with unitary tiles will give a high number of terminal shapes and lead to a
higher memory consumption. Using batch of tiles could limit this problem by generating

Chapter 7. Parallel grammars scalability
116 and application to massive sceneries

less terminals. Moreover, in case of mansard windows being both part of the facade and
the roof, we could use another extrude set corresponding to its lower LOD.

Chapter 8

Conclusion

This thesis presented a parallel approach for procedural generation. To conclude, we
summarize our contributions. Finally, we discuss perspectives for future work.

8.1 Contributions

We introduced a parallel procedural pipeline, bringing the massive power of paral-
lel hardware to the procedural generation and rendering of highly detailed models.
Context-based extensions are introduced to build consistent models according to in-
ternal and external contexts. Our approach also integrates a scalable framework for
interactive generation and rendering of massive environments.

8.1.1 Parallel procedural generation based on independent 1D atoms

We first designed a parallel procedural pipeline taking advantage of the massively par-
allel architectures of recent graphics hardware. As such architectures efficiently handle
many instances of simple data, we introduced simple 1D atoms and a segment-based
expansion to address the GPUs. Initial input objects are subdivided at the segment
level: the 1D atoms. Then segment-based expansion is performed in parallel for each
1D atom on the GPU. Our pipeline is decomposed into three stages: the rule compiler,
the rule expander and the terminal evaluator. First, the CPU rule compiler converts
the rule set and parameters into a GPU-interpretable rule map and shader expressions.
Then, for each 1D atom in parallel on the GPU, the rule expander traverses the rule
map according to the segment-based expansion and evaluates the expressions on-the-
fly, generating the terminal sets: the lightweight structures of the objects. Finally, the
GPU-based terminal evaluator instantiates the terminal geometries at render time. Our
framework also considers the hardware tessellator to efficiently generate the geometry

117

118 Chapter 8. Conclusion

with both the rule expander and the terminal evaluator. We assessed our pipeline with
architecture and vegetation models interactively generated and rendered.

8.1.2 Internal context parallelization

With the 1D atoms decomposition, the internal contexts of input objects are lost. As 1D
atoms belonging to the same input model are independent from each other, internally
consistent models cannot be generated. Our solution specifies local contexts for the
1D atoms from the internal contexts. Then, Join and Project rules are introduced to
create consistent structure from local contexts. These 1D atom local contexts are used
to guide consistent generation over input objects. For instance, compelling complex
grammar-based roofs are generated at interactive time using our system.

8.1.3 External context-sensitive grammars

Controlling grammar rules behavior from contexts external to the input object can help
the artist to edit grammar-based models. We thus introduced texture and surface con-
texts to constrain the grammar rules. Using a texture lookup accessor, any rule can
query either pre-generated textures or on-the-fly paintings. Texture contexts are then
used as grammar constraints. In addition, we provide surface contexts to allow con-
sistent growth expansion on underlying surfaces. Represented as indirection geometry
image, the surface context is processed by the Marching rule. Integrated within our
parallel procedural pipeline, our approach allows for interactive generation of growth
models such as ivy plants onto complex surfaces.

8.1.4 Parallel grammars scalability

Our parallel procedural pipeline is designed to interactively generate and render hun-
dreds of objects. To handle very-large environment composed of thousands of elements,
related memory consumption and geometric complexities issues are addressed with scal-
able grammars. To do so, a complete LOD system based on advanced rendering opti-
mization strategies are integrated within our pipeline. Our LOD system is designed to
seamlessly substitute geometry by texture-based impostors, preventing from visual arti-
facts. Associated with culling, caching and clustering methods, huge scenes containing
thousands of objects are generated and rendered at interactive time.

8.2 Perspectives

Our pipeline allows for interactive generation and rendering of massive environments
never before seen. While it benefits from the massive parallel power of the GPUs,
the two GPU-based stages (rule expander and terminal evaluator) also take advantage
of the hardware tessellator. However, such graphics feature is not available in many
hardware of the production industry, preventing an integration of our system within
existing rendering pipelines. This could be addressed using a more traditional feature:

8.2. Perspectives 119

the geometry instancing. This feature allows to render many instances of an object with
a single draw call using matrix transformations stored into GPU buffers. In order to
substitute the hardware tessellator for geometry instancing, the rule expander should
generate matrix transformations for each terminal shapes into a GPU buffer. Synchro-
nization of concurrent threads to write the buffer should be addressed very carefully
to preserve high parallelism performances. Then the terminal evaluator stage would
perform series of instancing draw calls, for each terminal shape. Such method implies
more draw calls per batch and thus a higher CPU cost. On the counterpart it also
avoids the cost of our redirected usage of the tessellator.

Regarding mobile devices, one can notice that even latest OpenGL specification
(OpenGL|ES 3.0), does not provide hardware tessellation. However, transform feed-
backs for storing intermediate results are now available. Depending on the success of the
geometry instancing approach instead of the tessellator, our method could also address
mobile devices were efficient generation and small storage are necessary. In addition, as
grammar rule sets encode highly-detailed objects very compactly, such grammar rules
could be quickly streamed over low-bandwidth networks. Thanks to this, mobile clients
could achieve interactive generation and rendering using our pipeline.

As seen in Chapter 4, the rule expansion is evaluated in a single pass within the
GPU. However, depending on the application, multiple expansion passes could be useful
to increase the parallelism performances. For instance, an artist could start from a
terrain model and generate seeds on-the-fly attached to various grammars, according to
a texture context. Then seeds would be processed in second expansion pass in parallel
per grammar used. To do this, an idea is to extend the grammar language to provide
in/out buffer specifications and to build the parallel procedural pipeline with multi-pass
rule expansions accordingly.

Finally, growth on surfaces are possible thanks to the Marching rule introduced,
using our surface context representation: indirection geometry image. However, such
representation is based on pre-generated models, preventing growth on grammar-based
models. In this case, the surface context would be the grammar itself. A solution would
be to perform a lazy ray-tracing through the grammar [MGHS11]| to find generated
surfaces.

120

Chapter 9

Résumé en Francais

9.1 Introduction

Afin de créer des productions toujours plus réalistes, les industries du jeu vidéo et du
cinéma cherchent & générer des environnements de plus en plus larges et complexes.
Cependant, la modélisation des objets 3D dans de tels décors se révéle trés couteuse,
que ce soit en temps de génération, en temps d’affichage, ou encore en quantité de
stockage. Tous ces inconvénients empéchent ’édition et la pré-visualisation interactive
de la scéne résultante.

L’objectif de cette thése est de permettre la génération et I’affichage en temps inter-
actif des objets peuplant ces scénes massives, tels que la végétation ou l'architecture.
Pour y répondre, nous adoptons une approche basée sur le parallélisme et sur les
méthodes de génération procédurale pour exploiter efficacement la puissance des cartes
graphiques (GPUs) modernes.

D’un co6té, les méthodes de génération procédurale permettent de créer facilement
une grande variété d’objets, en exploitant les similarités dans une méme classe d’objets
comme les plantes et les batiments. Plus particuliérement, la modélisation par régles de
grammaire offre un outil de haut niveau pour décrire ces objets de facon trés compressée,
et permet d’obtenir une infinité de résultats similaires. Gréace & leur réle d’amplification,
ces méthodes sont utilisées pour modéliser les environnements dans certains films tels
que King Kong [Whi06] ou Man of Steel |Esrl2].

D’un autre coté, la génération procédurale est effectuée généralement sur le CPU
puis le résultat est transféré sur le GPU pour effectuer 'affichage. Ce schéma de pré-
amplification résulte en un probléme de consommation mémoire et de coit de transfert
sur le bus CPU/GPU, empéchant une édition interactive dans le cas d’environments
complexes. C’est pourquoi nous cherchons & réaliser 'étape d’amplification directe-
ment sur le GPU. Grace & l'architecture des cartes graphiques récentes qui permet
un parallélisme de données performant, nous pouvons alors atteindre des performances
interactives lors de la génération de scénes massives.

121

122 Chapter 9. Résumé en Francais

9.1.1 Contributions

Nous proposons un systéme permettant la génération procédurale en paralléle sur le
GPU en temps interactif, basé sur 4 contributions :

e Nous adoptons une approche d’expansion indépendante par segment, permettant
une amplification des données en paralléle.

e Nous étendons ce systéme pour générer des modéles basés sur un contexte structurel
interne tels que les toits.

e Nous présentons aussi une solution utilisant des contextes externes pour controler
facilement les grammaires par le biais de texture et permettant une expansion sur
des surfaces.

e Enfin nous intégrons un systéme de niveaux de détail et des méthodes d’optimisation
permettant la génération, 1’édition et la visualisation interactives d’environnements
a grande échelle.

Grace a notre systéme il est possible de générer et d’afficher des scénes comprenant
des milliers de batiments et d’arbres interactivement, ce qui représenterait environ 2
tera-octets de données avec des méthodes classiques, soit environ 2000 fois la taille
mémoire disponible sur une carte graphique standard.

9.2 Etat de I'art sur la génération procédurale

Les méthodes procédurales permettent de modéliser différents types d’objets, tels que
les terrains [SDKTT09, GGGT13, HGAT10], les réseaux routiers [GG10, GPMG10],
les environnements urbains [PMO01, CEWT08, VKW™12], I'architecture [WWSR03,
MWHT06, WOD09|, les intérieurs [MSK10, LHP11] ou encore les textures [EMPT02,
All13]. Parmi les méthodes procédurales, les grammaires représentent la structure
d’objets par une succession de régles de description. Ainsi les plantes, les batiments
ou encore les terrains peuvent étre trés facilement modélisés de cette maniére. Par ex-
emple, un arbre résulte d’un enchainement de regles de croissance. Dans le cas d’un
batiment, chaque facade est généralement décomposée en un rez-de-chaussée et plusieurs
étages, lesquels sont aussi subdivisés en fenétre, portes, balcons, etc.

Parmi les méthodes basées sur des grammaires, les L-systémes sont dédiés aux opéra-
tions de croissance et permettent de modéliser de la végétation par le biais de régles
de réécriture [Lin68|. Ces systémes ont aussi été étendus pour modéliser des batiments
[PMO1, MPBO05]. Cependant, d’autres grammaires issues des shape grammars [SG71]
se sont révélées beaucoup plus adaptées dans le cadre de I'architecture, comme par ex-
emple les split grammars [WWSRO03|, et les CGA shape grammars [MWHT06]. Dans
ces différentes approches, les régles de grammaire décomposent une géométrie initiale
en plusieurs sous parties récursivement, jusqu’a obtenir des éléments terminaux (étape
de dérivation/développement). En associant des géométries détaillées aux éléments
terminaux (étape d’interprétation/évaluation), il est alors possible d’obtenir le modéle

9.3. Génération procédurale en paralléle basée sur des atomes 1D indépendants 123

final. Toutes ces méthodes permettent de compresser un modéle détaillé sous forme de
grammaire trés 1égére. Cependant elles nécessitent un temps de génération empéchant
toute interactivité pour l'utilisateur. En effet, dans les pipelines de génération classique
(Figure 9.1), la géométrie est amplifiée en utilisant le CPU et peut éventuellement étre
stockée sur disque dur. Elle est ensuite transférée au GPU pour procéder a I'affichage.
Ce transfert est trés couteux et représente un véritable goulot d’étranglement.

Rule Rule CPU Textures GPU
Params Set Shaders

Geometrv axd X bleg,
. Al Bl | === | Renderer |=—

Generation

e
Terminals E___’ SJ

Geometry
Figure 9.1: Dans un pipeline de génération procédurale classique.

Dans 'optique d’éviter notamment ces coiits de transfert, des approches récentes
géneérent directement les modéles amplifiés sur la carte graphique en temps interactif.
Les L-systémes peuvent ainsi étre générés en paralléle par calcul générique [LWW10].
En ce qui concerne les shape grammars, la génération des modéles par pixel de l'image
finale [HWA ™10, KK11b, MGHS11] permet une édition interactive pour des scénes de
centaines d’objets. Cependant ces derniéres méthodes sont contraintes a un cotit par
pixel. Pour répondre & la problématique de génération interactive de scénes massives,
nous orientons également nos recherches sur une approche utilisant efficacement le GPU.
La partie suivante décrit notre premiére contribution, un pipeline de génération procé-
durale paralléle sur GPU.

9.3 Génération procédurale en paralléle basée sur des atomes
1D indépendants

Dans cette partie nous introduisons une nouvelle méthode permettant la modélisation
et la visualisation interactives d’objets procéduraux complexes. Afin de combiner par-
allélisme et génération procédurale, nous proposons un développement de grammaire
basé sur des segments, permettant & la fois des opérations de croissance et de réduction,
tout en travaillant en paralléle sur des atomes 1D indépendants. Nous définissons un
pipeline de génération et d’affichage de modéles procéduraux évitant le stockage des
modeles détaillés (Figure 9.2). Parmi les avantages de notre solution, nous pouvons
également noter la compatibilité avec les moteurs de rendu temps réel existants.

124 Chapter 9. Résumé en Francais

Rule Rule Expressions 3 GPU
Params Set Expriange) { retum 2*ET*ange }
Exprl (val) { teturnval=0.3 }
— Rule
DEEONEREE0E
Rule S Expander
Compiler
_’ | 12335303461320 446131 1364351 031321 |
CPU Parameters Map) l Ternunal
- Set

| Renderer |&==| o bay Terminal

A N il
‘ﬁl i A
Textures Terminals

Shaders Geometry

Evaluator

Figure 9.2: Notre pipeline permet la génération de modeéles procéduraux sur GPU. Les
grammaires sont compilées sur CPU en une structure efficace pour un développement
de grammaire sur GPU. L’expansion de la grammaire génere une représentation inter-
meédiaire trés légére de la structure de I'objet. La géométrie détaillée est finalement
générée a la volée dans une seconde étape GPU.

9.3.1 Description du pipeline

Le compilateur de régles, sur CPU, extrait de la grammaire un graphe générique ainsi
que les expressions sous forme de code shader. Ce graphe représentant les liens de
parenté entre les différentes régles est encodé sous forme de texture: la carte des régles.
De méme, les parameétres sont aussi encodés sous forme de texture.

Toutes ces structures sont ensuite utilisées pour le développement des régles sur
GPU. Dans cette seconde étape, nous parcourons la carte des reégles selon les expres-
sions et paramétres associés pour chaque graine d’entrée afin de générer ’ensemble des
terminaux décrivant la structure légére de 'objet. Les graines d’entrée sont des atomes
1D correspondant & la décomposition des données d’entrée complexes en éléments sim-
ples et indépendants, pour préserver un traitement efficace sur GPU. En conséquence,
nous redéfinissons le développement de la grammaire basé sur des segments. La fig-
ure 9.3 illustre un développement.

Finalement ’étape d’association des géométries détaillées est réalisée & la volée sur
GPU, évitant le stockage du résultat. Chaque élément terminal est substitué par sa
géométrie, stockée dans la mémoire sur GPU. Les deux étapes sur GPU utilisent effi-
cacement les unités de tessellation dédiées a la génération & la demande de polygones.
L’étape d’affichage est compatible avec les méthodes d’affichage classiques, assurant un
rendu cohérent entre les objects procéduraux et le reste de la scéne.

9.3. Génération procédurale en paralléle basée sur des atomes 1D indépendants 125

W ~ Extrude(10){A,B} —

A~ Shape(shapeld) ’!n r'[
B ~ Cond(recLevel<n){C,0} — —_— ==
C ~ Branch{D, E}

D ~ Rotate(—7/4){W} (b) (©) (d)
E ~ Rotate(n/4){W}

(a)

' oo
= |

/

/

L]

(8) (h)

—
@
~

Figure 9.3: Décomposition étape par étape du développement de la grammaire (a).
L’axiome est appliqué sur 'atome 1D (b), résultant en une face composée de 4 atomes
1D et d'un élément 2D (i.e., un élément d’expansion), et en un atome 1D déplacé (c).
L’élément d’expansion est remplacé par une géométrie terminale, alors que 'atome 1D
déplacé est dupliqué en 2 branches (d), chacune suivant une rotation (e). Par récursion,
les branches sont de nouveau extrudées (f) et 'on instancie des géometries terminales
(g), donnant le modeéle final (h).

9.3.2 Applications et résultats

Grace a la reformulation supportant & la fois les opérations de croissance et de réduction,
nous générons et éditons en temps réel des arbres et des batiments selon notre approche
(Figure 9.4). Dans le cas des batiments, nous avons décomposé les empreintes au sol
initiales en atomes 1D indépendants. Ainsi nous pouvons paralléliser sur le nombre de
fagade en entrée. Pour une méme grammaire, il possible d’obtenir une grande diversité
avec des géométries terminales et des jeux de paramétres différents. Pour les arbres,
nous partons simplement d’un atome 1D agissant comme la graine de départ.

Nous pouvons aussi regrouper toutes les graines suivant une méme grammaire ensemn-
ble car dans ce cas seuls les paramétres changent entre différents objets. Ce regroupe-
ment nous permet ainsi de profiter au maximum du parallélisme. En effet, toutes ces
graines sont décomposées en atomes 1D et traitées en paralléle par la carte graphique.
En regroupant les graines nous observons des paliers de temps de génération (Figure
9.5). Ces paliers montrent que plusieurs objets sont générés au coit d’un seul, et dé-
montrent que notre approche préserve bien le parallélisme de données.

Ce pipeline générique permet donc de générer et éditer des objets procéduraux

126 Chapter 9. Résumé en Francais

complexes en temps interactif, en tirant parti du parallélisme et minimisant ’empreinte
mémoire. Cependant la décomposition des graines en atomes 1D entraine la perte du
contexte interne de la graine initiale. Une fois la graine décomposée en atomes, chaque
atome se retrouve totalement indépendant, ce qui empéche la génération de modéle
nécessitant un contexte interne.

(a)

()

Figure 9.4: Le développement des grammaires des batiments (a) et (c¢) prend 0.2 ms,
tandis que I’évaluation des terminaux et l’affichage sont réalisés en 8.4 ms (a) et 4.0 ms
(c). L’arbre (b), dont la grammaire est disponible & la section 4.6.2 est lui développé
en 40 ms avec 5 récursions et évalué en 2 ms.

Generation time (ms)

40

36

30

26

Input segment count

160

3 S
< 2

B D

1

1

1

1

1

1

1

1,

60 [100

51
2

1

Figure 9.5: Nous observons différents paliers de temps de génération dépendant du
nombre d’atomes 1D. Environ 100 atomes sont traités en paralléle & chaque tour de
calcul, & un colit moindre. Par exemple, ici 90 segments sont traités au cotit de 20,
montrant efficacité du parallélisme.

9.4. Parallélisation du contexte interne 127

9.4 Parallélisation du contexte interne

Les atomes d’entrée étant indépendant les uns des autres, ils ne peuvent pas réaliser des
opérations cohérentes avec les atomes de la méme graine initiale. Par exemple, chaque
atome peut générer sa facade verticalement, mais ne peut pas créer les différents pans
de toit. En effet, pour réaliser ce type d’opération, les atomes doivent avoir une certaine
connaissance du contexte interne 4 la graine. Dans le cadre d’un toit, le contexte interne
peut représenter les lignes de fait et les pignons. Ces informations indiquent comment
assurer la cohérence du modéle.

9.4.1 Meéthode

Dans cette seconde contribution nous nous intéressons a la génération de modéles néces-
sitant un contexte interne, en préservant le parallélisme acquis. Notre approche consiste
a décomposer le contexte interne global & la graine en contextes internes locaux affectés
aux différents atomes 1D. Ainsi chaque atome pourra construire sa partie de modeéle de
facon cohérente. Pour cela nous avons étendu le pipeline précédent (Figure 9.6).

~Input a) Consistent internal b) Internal context
Geometry context computation decomposition into
CPU local contexts
Rule Expressions

: — Parameters Map
Set Rllle Expr‘O(angle) { | 12335303461320 446131 13643510 21321 |
) return 2*FT*angle }
Rule Compiler Rule Map

- Exprival n =
PEll‘Elllls V:IP; OG;a}) sesie |\n A IE"M‘ o lofw]
CPU : v Z
GPU Terminals geometry l
Textures ;
Terminal Rule
Renderer | Evaluator Expander

¢) Join,
Project

Terminal
Set

Figure 9.6: Pour générer des modéles cohérents sur une graine initiale, nous calculons
d’abord un contexte interne global en pré-traitement sur CPU (a). Ce contexte interne
global est converti en multiples contextes internes locaux affectés & chaque atome 1D
(b). Cette information de contexte interne local est ensuite traitée par les régles Join et
Project pour générer des structures cohérentes (c¢). Finalement les éléments terminaux
sont découpés pour assurer une bonne continuité entre les atomes adjacents (d).

128 Chapter 9. Résumé en Francais

9.4.2 Application a la génération de toits & résultats

La décomposition du contexte interne global en contextes internes locaux définis pour
chaque atome 1D nous permet de modéliser par exemple différents types de toit (Fig-
ure 9.7). Alors que nous obtenons un trés haut niveau de détails en utilisant des tuiles
géométriques détaillées comme élément terminal, la cohérence entre les atomes adjacents
est bien assurée grace & la découpe précise des géométries terminales. De plus, avec le
contexte interne nous pouvons ajouter des éléments importants tels que des cheminées,
des velux, des balcons, ou encore des fenétres mansardées. Le méme contexte interne
peut étre également utilisé pour modéliser des gouttiéres autour des toits.

Y

Figure 9.7: Différents types de toit trés détaillés peuvent étre modélisés selon notre
approche.

Notre approche préserve le parallélisme et l'interactivité issus de la premiére con-
tribution car chaque atome reste totalement indépendant des autres. La dépendance
entre atomes étant gérée de fagon similaire par la décomposition du contexte interne.
Par exemple, de 1 & 20 maisons de type normande (Figure 9.7¢) sont générées a un
temps constant de 11.5ms (80 atomes), tandis qu'un second palier est observé de 21 &

40 maisons (160 atomes) a 22.3ms.

Grace & cette approche, nous pouvons donc générer des modéles nécessitant un
contexte interne, en paralleéle sur le GPU. Cependant, nous ne pouvons toujours pas
utiliser de contexte externe pour contraindre une expansion de grammaire.

9.5. Grammaires sensibles au contexte externe 129

9.5 Grammaires sensibles au contexte externe

Dans les approches précédentes, chaque graine était positionnée dans l’environnement,
puis le modéle était généré sans aucune contrainte sur cet environnement. Dans cette
troisiéme contribution nous souhaitons pouvoir utiliser ’environnement extérieur, c’est-
a-dire le contexte externe, comme information controlant la grammaire. Par exemple, les
caractéristiques d’un terrain (pente, composition chimique du sol, etc) peuvent influer
sur les modéles d’arbres générés sur ce méme terrain. De plus, nous voulons aussi
permettre une expansion de grammaire sur une surface sous-jacente.

9.5.1 Meéthode

Tout d’abord nous choisissons d’encoder les contextes externes sous forme de texture
car c’est un format adapté pour le GPU. En ajoutant un simple accesseur texture dans
la grammaire, nous pouvons trés facilement interroger un contexte externe en paramétre
d’une régle. Il est ainsi possible, par exemple, de controler une grammaire de génération
d’arbre avec une carte de population indiquant les zones adéquates & chaque espéce.

Dans le cadre spécifique d’une expansion sur une surface, la grammaire a besoin de
savoir tout au long de son développement oui elle se situe par rapport & cette surface
sous-jacente. De la méme maniére les contextes de surface sont encodés sont forme de
texture, et plus particulierement de geometry image |GGH02, SWGT03]. Avec cette
représentation un maillage est décomposé en plusieurs ilots qui sont ensuite projetés
séparément dans un atlas de texture. Bien que chaque texel non vide de l’atlas cor-
responde & un échantillon du maillage d’origine, les différents ilots sont entiérement
indépendants. Pour réaliser un marching sur la surface en utilisant une geometry im-
age, nous avons donc besoin de pointeurs d’indirection aux bordures de chacun des
ilots. Ces pointeurs nous serviront par la suite & passer d’un ilot & un autre pendant le
marching.

Nous définissons une nouvelle régle Marching dans la grammaire qui réalise une
expansion sur une surface. Basée sur une geometry image, ’algorithme de marching
commence & la coordonnée de texture de la graine initiale. Ensuite, selon une direction
donnée, nous allons récupérer le pixel destination dont la valeur sera la position de
destination de I’expansion. Au final, 4 cas peuvent étre rencontrés en fonction du pixel
destination (Figure 9.8):

(A) soit il appartient au méme ilot que le pixel source, pas de redirection

(B) soit il correspond & un pixel d’indirection, la redirection vers l'ilot adjacent est
automatique suivant la nouvelle coordonnée de texture

(C) soit il appartient a un autre ilot, nous réalisons un marching en arriére pour
retrouver le bon pointeur d’indirection

(D) soit il appartient & un autre ilot, idem (C)

130 Chapter 9. Résumé en Francais

Figure 9.8: L’algorithme de marching permet de passer d’un ilot de la geometry image
a une autre.

Finalement cette méthode permet de réaliser des expansions sur une surface. Nous
pouvons ensuite appliquer des géométries sur les éléments terminaux. Pour éviter
les discontinuités entre 2 géométries adjacentes, nous ajoutons une étape de lissage
a l'instanciation des géométries terminales. Ce lissage est calculé selon des courbes de
Bézier cubiques assurant une continuité de tangente (Figure 9.9).

Figure 9.9: L’utilisation de courbe de Bezier cubique permet une continuité lisse entre
2 géométries terminales.

9.5.2 Application a la croissance sur des surfaces génériques & résultats

Il est possible de modéliser des croissances sur des surfaces en temps interactif en util-
isant la méthode de marching, comme par exemple du lierre poussant sur des ruines

9.6. Mise a l’échelle des grammaires paralléles 131

(Figure 9.10a). Nous pouvons aussi combiner une grammaire de croissance avec des
contraintes génériques appliquées a la surface par le biais de texture. La figure 9.10b
montre des zones de croissance autorisées qui sont décidées par 'utilisateur. Il est alors
trés simple de contréler un développement de grammaire de cette facon en appliquant
la peinture directement sur le maillage, et voir la grammaire s’adapter & ce nouveau
contexte en temps interactif.

(a) Croissance libre (b) Contrainte contrainte

Figure 9.10: Le modéle de ruines est couvert par 18 lierres développés en paralléle (a).
Des centaines de milliers d’éléments terminaux sont générés en 421 ms, et instanciés
en 5.17 millions de polygones en 87 ms. L’utilisateur peut également peindre des con-
traintes de croissance sur le modéle de support et voir la génération s’adapter en temps
interactif (b).

Le pipeline tel que présenté et étendu dans les parties précédentes est capable de
générer des centaines d’objets en temps interactif mais on observe une chute des per-
formances pour des milliers d’objets.

9.6 Mise a I’échelle des grammaires paralléles

Dans cette quatriéme contribution nous allons étendre ce pipeline pour pouvoir passer
a l’échelle, et ainsi générer des environnements massifs avec des centaines de milliers
d’objets en temps interactif.

9.6.1 Meéthode

Tout d’abord nous procédons & une subdivision de la scéne en cellules. Pour chacune des
cellules, toutes les graines associées & une méme grammaire sont regroupées ensemble

132 Chapter 9. Résumé en Francais

pour profiter du parallélisme. Ensuite un niveau de détail géométrique est choisi selon la
distance & la caméra pour chaque cellule, ce qui nous permet d’alléger le colit mémoire
de la scéne. Dans le cadre de ’architecture, le niveau bas correspond & une simple
extrusion des batiments, alors que le niveau haut comprend le développement entier
de la grammaire avec toutes les opérations de réductions. En complément a ce niveau
de détail géométrique, 5 niveaux sont définis en utilisant des imposteurs multi-vue par
géométrie terminale. L’idée est de remplacer la complexité géométrique des terminaux
par une simple texture. Ainsi au fur et & mesure du rapprochement de la caméra,
la qualité de rendu est privilégiée au détriment de I’espace mémoire. Comme a chaque
instant seules les cellules les plus proches sont a un haut niveau de détail, cette approche
nous permet d’équilibrer la charge sur des scénes massives, tout en conservant une
édition interactive.

9.6.2 Application aux environnements massifs & résultats

L’extension du pipeline permet de générer des scénes massives comprenant des cen-
taines de milliers d’objets en temps interactif. La scéne en figure 9.11 comprend 116573
batiments et 561280 arbres, avec des grammaires différentes. Cette scéne est rendue
interactivement entre 7 et 15 fps en choisissant et générant & la volée les niveaux de
détail adéquats. Grace & l'utilisation de niveaux de détail et d’imposteurs & la place
des terminaux géométriques, cette scéne massive ne représente que 900 Mo en mémoire
GPU au lieu de 2.3 To.

Figure 9.11: Scéne massive rendue en temps interactif.

9.7 Conclusion

Dans cette thése nous avons présenté notre approche paralléle pour faire de la génération
procédurale. Nous allons tout d’abord résumer les contributions de cette thése, puis
nous verrons quelques perspectives de travaux futurs.

9.7.1 Contributions

Premiérement nous avons créé un pipeline de génération procédurale paralléle tirant
bénéfice des cartes graphiques récentes. Comme les GPUs exécutent efficacement des

9.7. Conclusion 133

calculs simples sur un grand nombre de données indépendantes en paralléle, nous avons
choisi de décomposer les entrées initiales en atomes 1D indépendants, pour lesquels un
développement de grammaire simple, basé sur des segments, est exécuté sur le GPU. Ce
pipeline est composé de 3 parties: un compilateur de régles, un développeur de régles
et un instanciateur de terminaux. La compilation des régles s’effectue sur CPU et con-
vertit ’ensemble des régles et les paramétres sous forme de structures adaptées pour le
GPU. Ensuite pour toutes les graines d’entrée, la grammaire est développée en paralléle
sur GPU et génére I'ensemble des terminaux. Cet ensemble correspond a la structure
intermeédiaire de I'objet. Finalement, I’évaluateur de terminaux instancie sur GPU les
géométries & la place des terminaux. Gréce a cette formulation du développement de la
grammaire, nous pouvons efficacement créer aussi bien des batiments que des plantes,
en temps interactif.

Nous avons étendu ce pipeline pour pouvoir modéliser des objets nécessitant un
contexte interne pour assurer avec une cohérence globale malgré la décomposition en
atomes indépendants. Pour ce faire nous utilisons également une décomposition du
contexte interne global, calculé sur la graine initiale, en contextes internes locaux affectés
a chaque atome 1D. Ces contextes locaux sont ensuite traités lors du développement
de la grammaire. Par exemple nous pouvons utiliser cette approche pour modéliser des
toits trés détaillés.

Dans une troisiéme contribution nous avons aussi pris en compte les contextes ex-
ternes aux objets, c’est-a-dire les informations de environnement. En encodant ces
contextes sous forme de textures, il est aisé de contraindre un développement de gram-
maire selon un contexte externe. De plus, nous avons défini une régle de marching
pour générer des expansions sur des surfaces. Notre approche permet par exemple de
modéliser des croissances de lierre sur des surfaces complexes, tout en préservant une
édition des contextes en temps interactif en peignant directement sur la surface.

Finalement nous avons proposé une solution pour permettre la génération et ’affichage
interactifs de scénes massives composées de milliers d’objets. Notre approche réside en
un équilibrage entre la qualité de rendu et le cott mémoire. Nous avons étendu le
pipeline avec des méthodes d’optimisation de scénes et de niveaux de détail. Il est alors
possible de créer des scénes massives de centaines de milliers d’objets. L’intégration de
ces différentes méthodes nous permet de naviguer interactivement dans de telles scénes,
tout en préservant une édition & la volée d’un ou plusieurs objets.

9.7.2 Perspectives

Notre pipeline permet une génération et un affichage interactifs d’environnements mas-
sifs encore jamais vu. Notre approche bénéficie du parallélisme des cartes graphiques
récentes mais aussi de la tessellation matérielle. Cependant cette fonctionnalité n’est
pas disponible dans une majeure partie des cartes graphiques dans 'industrie de la
production cinématographique. Pour intégrer notre pipeline en production, il serait
tres intéressant de la remplacer par linstanciation géométrique, qui permet de ren-
dre plusieurs instances d’'un méme objet en un seul appel a la carte. Dans ce cas, le
développement des régles devrait générer les matrices de transformation adéquates a

134 Chapter 9. Résumé en Francais

chaque élément terminal. Ensuite, I’évaluation des terminaux serait réalisée avec un
appel a la carte par géométrie (au lieu d’un unique appel). Cette méthode implique
donc un cotit CPU plus élevé en contrepartie.

Comme indiqué dans la premiére contribution, le développement des régles est réalisé
en une seule étape dans le GPU. Neanmoins, il serait trés avantageux de pouvoir réaliser
plusieurs passes de développement & la suite pour augmenter encore le parallélisme. En
effet en prenant en entrée d’'une passe N, les sorties de la passe N-1, on pourra aisément
amplifier les graines d’entrée et permettre un meilleur parallélisme. Par exemple, un
artiste pourrait dans une premiere étape générer des graines d’arbres ou de végétation
sur terrain avec une grammaire de population, qui seront par la suite réellement générés
en paralléle par d’autres grammaires. Un autre exemple consiste & ne traiter les branches
filles que dans une seconde passe et ainsi éviter la divergence.

Notre pipeline utilise la fonctionnalité du transform feedback pour stocker les résul-
tats intermédiaires au besoin sur GPU. Du fait de 'arrivée de cette fonctionnalité avec
OpenGLI|ES 3.0, notre approche pourrait étre utilisée sur des matériels mobiles (télé-
phones, tablettes, etc). Ainsi il suffirait de transmettre les grammaires légéres sur les
réseaux a faible bande-passante et laisser les matériels clients se charger de la génération
et de ’affichage des modéles complexes.

Pour finir nous avons introduit une méthode de marching qui effectue des expansions
sur des maillages pré-générés. Notre approche pourrait etre étendue pour réaliser des
opérations de marching sur des modéles procéduraux. Une solution serait de stocker
une représentation simplifiée du modéle procédural et d’analyser ensuite cette représen-
tation. Une seconde idée serait d’utiliser une approche de lancer de rayons directement
de la grammaire, similairement & [MGHSI11]| pour calculer les surfaces générées a la
demande.

9.7. Conclusion 135

136

Appendix A

Grammar rule library

Pred ~ Extrude(v, height, scale, angle){ ExztrSucc, TopSucc }

> Parameters Input primitives
e yecl v : extrusion vector
e float height : height of extrusion
e float scale : scale of extrusion
e float angle : twist angle — a

Output primitives

m

> Successors
o LxtrSuce : extruded element successors
e TopSucc : top element successor

Pred ~» Marching(direction, stepSize){ quadSucc, segSucc }

> Parameters Input primitives
e vec? direction : 2D marching direction
e int stepSize : marching size in pixels

> Successors ——
e quadSucc : extruded element successor, contain-

ing information for geometry interpolation
e topSucc : top segment successor —

\

Output primitives

e
e

137

138 Appendix A. Grammar rule library

Pred ~ Join(height, v1, v2){ quadClippedSucc, quadSupportSucc, segTopSucc }

> Parameters
e height : height of extrusion
o v1;:v2: target 2D segment

> Successors
e quadClippedSucc : clipped element successor
e quadSupportSucc : support element successor
e segTopSucc : top segment successor

Input primitives

e

Output primitives
—

Pred ~» Split(axis, size', size’, ..., size’" '){ Succ', Succ?,

., Succ? }

> Parameters
e char axis : split axis
X = horizontal
Y = vertical
e float size' : first split size
e float size? : second split size
e float size™¥ ! : last split size

> Successors
Succ! : first el t
e Succ' : first element successor
e Succ? : second element successor
e Succ? : last element successor

Input primitives

Output primitives

I

-

2\\

Pred ~ Repeat(axis, size, option){ Succ }

> Parameters

e char axis : repeat axis
X = horizontal
Y = vertical

e float size : repeat size

e int option : repeat option
1 = last element fits the remaining space
2 = adapted size for equal repartition

> Successors
e Succ — successor for each element

Input primitives

.
e

Output primitives

e

/|

S

139

Pred ~» Project(axis®

, axis?){ Succ }

> Parameters

o vecd axis! : first axis defining the projection
plane

e vec? axis? : second axis defining the projection
plane

> Successors
e Succ : projected element successor

Input primitives

§

Output primitives

Pred ~ Shape(id, depthRatio)

> Parameters
e int id : geometric texture id
e float depthRatio : depth ratio of the geometry

> No Successors

Input primitives

§

Output primitives

Pred ~» Branch(N){ Succ!, Succ?,

. SuccV }

> Parameters
e N : number of branches

> Successors

e Succ! : first branch successor
e Succ? : second branch successor
e Succ : last branch successor

Input primitives

Output primitives

==

140

Appendix A. Grammar rule library

Pred ~» Translate(v

{ Succe }

> Parameters
e vecd v : translation vector

> Successors
e Succ : element successor

Input primitives

Output primitives

Pred ~ Rotate(origin, v, angle){ Succ }

> Parameters
e yecd origin : center of rotation
e vecd v : axis of rotation
e float angle : angle of rotation

> Successors
e Succ : element successor

Input primitives

§

Output primitives

Pred ~ Explode(){ Succk, Succ?, Succy, Succs, Succg }

> No Parameters

> Successors

Input primitives

° Succ}qeg : left segment successor

° Succ%e g front segment successor
° Succge 0" right segment successor
° Succ‘éeg : back segment successor

® SuccQuaq : initial element successor

Output primitives

|
|
e

141

Pred ~» Condition(expression){ Succ!, Succ? }

> Parameters
e bool expression : expression to evaluate at
run-time

> Successors
e Succ! : successor if expression is TRUE
e Succ? : successor if expression is FALSE

Input primitives

Output prlmltlves

Pred ~ RotateDir(angle){ Succ }

> Parameters
e float angle : angle of rotation for the marching
direction

> Successors
e Succ : element successor

Input primitives

e

Output primitives

142 Appendix A. Grammar rule library

Bibliography

[AAAG6]

[All13]
[Amd67]

[ARBO7]

[Autl13a]

[Aut13b]

[Aut13c|

[AYRWO09)

[Bajo7]

[Ber66]

Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gért-
ner. A novel type of skeleton for polygons. In The Journal of Universal
Computer Science, pages 752-761. Springer Berlin Heidelberg, 1996.

Allegorithmic@®). http://www.allegorithmic.com, 2013.

Gene M Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483-485. ACM, 1967.

Daniel G Aliaga, Paul A Rosen, and Daniel R Bekins. Style grammars
for interactive visualization of architecture. IEEE Transactions on Visu-
alization and Computer Graphics, 13(4):786-797, 2007.

Autodesk®): 3dsmax®). http://www.autodesk.fr/products/
autodesk-3ds-max, 2013.

Autodesk®): Maya®). http://www.autodesk.fr/products/
autodesk-maya, 2013.

Autodesk®): Mudbox@®). http://www.autodesk.com/products/mudbox,
2013.

Saif Ali, Jieping Ye, Anshuman Razdan, and Peter Wonka. Compressed
facade displacement maps. IEEE Transactions on Visualization and Com-
puter Graphics, 15(2):262-273, 2009.

Chandrajit Bajaj. Introduction to implicit surfaces. Morgan Kaufmann,
1997.

Arthur J Bernstein. Analysis of programs for parallel processing. IFEFE
Transactions on Electronic Computers, EC-15(5):757-763, 1966.

143

http://www.allegorithmic.com
http://www.autodesk.fr/products/autodesk-3ds-max
http://www.autodesk.fr/products/autodesk-3ds-max
http://www.autodesk.fr/products/autodesk-maya
http://www.autodesk.fr/products/autodesk-maya
http://www.autodesk.com/products/mudbox

144

Bibliography

[BMG13]

[BMJ*+11]

[BSO5]

[BSMM11]

[BWS10]

[CCT8]

[CEW08]

[CHCHOG6]

[Cho56]

[Cho65]

[DDSD03]

[DFS1]

Cyprien Buron, Jean-Fudes Marvie, and Pascal Gautron. Gpu roof gram-
mars. In Furographics 2013 Short Papers, pages 85—88. The Eurographics
Association, 2013.

Bedfich Benes, Michel Abdul Massih, Philip Jarvis, Daniel G Aliaga, and
Carlos A Vanegas. Urban ecosystem design. In Proceedings of Symposium
on Interactive 8D Graphics and Games 2011, pages 167-174. ACM, 2011.

Tamy Boubekeur and Christophe Schlick. Generic mesh refinement on
gpu. In Proceedings of Graphics Hardware 2005, pages 99-104. ACM,
2005.

Bedrich Beneg, Ondrej St’ava, R Méch, and Gavin Miller. Guided proce-
dural modeling. Computer graphics forum, Proceedings of Eurographics
2011, 30(2):325-334, 2011.

Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. A connection
between partial symmetry and inverse procedural modeling. ACM Trans-
actions on Graphics (TOG), Proceedings of ACM SIGGRAPH 2010,
29(4):104, 2010.

Edwin Catmull and James Clark. Recursively generated b-spline surfaces
on arbitrary topological meshes. Computer-aided design, 10(6):350-355,
1978.

Guoning Chen, Gregory Esch, Peter Wonka, Pascal Miiller, and Eugene
Zhang. Interactive procedural street modeling. ACM Transactions on
Graphics (TOG), Proceedings of ACM SIGGRAPH 2008, 27(3):103, 2008.

Nathan A Carr, Jared Hoberock, Keenan Crane, and John C Hart. Fast
gpu ray tracing of dynamic meshes using geometry images. In Proceed-
ings of Graphics Interface 20006, pages 203-209. Canadian Information
Processing Society, 2006.

Noam Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, 2(3):113-124, 1956.

Noam Chomsky. Aspects of the Theory of Syntaz, volume 11. The MIT
press, 1965.

Xavier Décoret, Frédo Durand, Frangois X Sillion, and Julie Dorsey. Bill-
board clouds for extreme model simplification. ACM Transactions on
Graphics (TOG), Proceedings of ACM SIGGRAPH 2003, 22(3):689-696,
2003.

Frances Downing and Ulrich Flemming. The bungalows of Buffalo. De-
partment of Architecture, Carnegie-Mellon University, 1981.

Bibliography

145

[DHL+98]

[Dua02)

[Edm60]

[EMP+02]

[Esr12]

[FFC82]

[F1e87]

[Fly66]

[FT99)

[GBP11]

[GG10]

|GGG+13]

|GGHO2

Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomir Méch, Matt
Pharr, and Przemyslaw Prusinkiewicz. Realistic modeling and rendering
of plant ecosystems. In Proceedings of ACM SIGGRAPH 1998, pages
275-286. ACM, 1998.

John Duarte. Malagueira Grammar - towards a tool for customizing Al-
varo Siza’s mass houses at Malagueira. PhD thesis, MIT School of Archi-
tecture and Planning, 2002.

Jack Edmonds. A combinatorial representation of polyhedral surfaces.
Notices of the American Mathematical Society, 7, 1960.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and
Steven Worley. Tezturing and Modeling: A Procedural Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2002.

Esri@®): City engine®). http://www.procedural.com, 2012.

Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering
of stochastic models. Communications of the ACM, 25(6):371-384, 1982.

Ulrich Flemming. More than the sum of parts: the grammar of queen anne
houses. Environment and Planning B: Planning and Design, 14(3):323—
350, 1987.

Michael J Flynn. Very high-speed computing systems. Proceedings of the
IEEFE, 54(12):1901-1909, 1966.

Fabien Feschet and Laure Tougne. Optimal time computation of the
tangent of a discrete curve: Application to the curvature. In Discrete
Geometry for Computer Imagery, volume 1568, pages 31-40. Springer
Berlin Heidelberg, 1999.

Gaél Guennebaud, Loic Barthe, and Mathias Paulin. Point-based graph-
tcs, chapter Real-Time Refinement. Morgan Kaufmann, 2011.

Li Gang and Shi Guangshun. Procedural modeling of urban road network.
In 2010 International Forum on Information Technology and Applications
(IFITA), volume 1, pages 75-79. IEEE, 2010.

Jean-David Génevaux, Eric Galin, Eric Guérin, Adrien Peytavie, and
Bedfich Benes. Terrain generation using procedural models based on
hydrology. ACM Transactions on Graphics (TOG), Proceedings of ACM
SIGGRAPH 2013, 32(4):143:1-143:13, 2013.

Xianfeng Gu, Steven J Gortler, and Hugues Hoppe. Geometry images.
ACM Transactions on Graphics (TOG), Proceedings of ACM SIGGRAPH
2002, 21(3):355-361, 2002.

http://www.procedural.com

146

Bibliography

[GPMG10]

[Gus8s)

[HGA*10]

[HWA 10|

[10106]

[TWPO05]

[KES1]

[KK11a]

[KK11b]

[KPK10]

[KW11]

[KWm10]

Eric Galin, Adrien Peytavie, Nicolas Maréchal, and Eric Guérin. Pro-
cedural generation of roads. Computer Graphics Forum, Proceedings of
Eurographics 2010, 29(2):429-438, 2010.

John L Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31(5):532-533, 1988.

Houssam Hnaidi, Eric Guérin, Samir Akkouche, Adrien Peytavie, and Eric
Galin. Feature based terrain generation using diffusion equation. Com-
puter Graphics Forum, Proceedings of Pacific Graphics 2010, 29(7):2179—
2186, 2010.

Simon Haegler, Peter Wonka, Stefan Mueller Arisona, Luc Van Gool, and
Pascal Miiller. Grammar-based encoding of facades. Computer Graphics
Forum, Proceedings of Symposium on Rendering 2010, 29(4):1479-1487,
2010.

Takashi Ijiri, Shigeru Owada, and Takeo [garashi. The sketch l-system:
Global control of tree modeling using free-form strokes. In Smart Graph-
ics, volume 4073 of Lecture Notes in Computer Science, pages 138-146.
Springer Berlin Heidelberg, 2006.

Stefan Jeschke, Michael Wimmer, and Werner Purgathofer. Image-based
representations for accelerated rendering of complex scenes. STAR re-
ports, Eurographics, 2005:1-20, 2005.

Hank Koning and Julie Eizenberg. The language of the prairie: Frank
lloyd wright’s prairie houses. Environment and Planning B, 8(3):295-323,
1981.

Lars Krecklau and Leif Kobbelt. Procedural modeling of interconnected

structures. Computer Graphics Forum, Proceedings of Eurographics 2011,
30(2):335-344, 2011.

Lars Krecklau and Leif Kobbelt. Realtime compositing of procedural
facade textures on the gpu. In 3DARCH11, 2011.

Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized use of non-

terminal symbols for procedural modeling. Computer Graphics Forum,
29(8):2291-2303, 2010.

Tom Kelly and Peter Wonka. Interactive architectural modeling with
procedural extrusions. ACM Transactions on Graphics (TOG), 30(2):14,
2011.

David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2010.

Bibliography

147

[LBZ+11]

[LCVO03)

[LDO3]

[LH04]

[LHP11]

[Lie94]

[Lin68|

[Loo87|

[LWWO8]

[LWW09]

[LWW10]

[MT65]

Yuanyuan Li, Fan Bao, Eugene Zhang, Yoshihiro Kobayashi, and Pe-
ter Wonka. Geometry synthesis on surfaces using field-guided shape
grammars. [IEEE Transactions on Visualization and Computer Graph-
ics, 17(2):231-243, 2011.

Javier Lluch, Emilio Camahort, and Roberto Vivé. Procedural multires-
olution for plant and tree rendering. In Proceedings of the 2Nd Interna-
tional Conference on Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa, AFRIGRAPH 03, pages 31-38. ACM, 2003.

Robert G Laycock and AM Day. Automatically generating large urban
environments based on the footprint data of buildings. In Proceedings
of the eighth ACM symposium on Solid modeling and applications, pages
346-351. ACM, 2003.

Patrick Lacz and John C Hart. Procedural geometry synthesis on the

gpu. In Workshop on general purpose computing on graphics processors,
pages 23-31. ACM, 2004.

Luc Leblanc, Jocelyn Houle, and Pierre Poulin. Component-based mod-
eling of complete buildings. In Proceedings of Graphics Interface 2011,
pages 87-94. Canadian Human-Computer Communications Society, 2011.

Pascal Lienhardt. N-dimensional generalized combinatorial maps and cel-
lular quasi-manifolds. International Journal of Computational Geometry
& Applications, 4(03):275-324, 1994.

Aristid Lindenmayer. Mathematical models for cellular interactions in
development i. filaments with one-sided inputs. Journal of Theoretical
Biology, 18(3):280 — 299, 1968.

Charles Loop. Smooth subdivision surfaces based on triangles. M.S. Math-
ematics thesis. Department of Mathematics, University of Utah, 1987.

Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual
editing of grammars for procedural architecture. ACM Transactions on
Graphics (TOG), Proceedings of ACM SIGGRAPH 2008, 27(3):102, 2008.

Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel generation
of l-systems. In Vision, Modeling, and Visualization Workshop (VMYV)
2009, pages 205-214, 2009.

Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel generation of
multiple l-systems. Computers € Graphics, 34(5):585-593, 2010.

Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

148

Bibliography

[Mag09]

[M&n88|

[MBG*12]

[McG11]

[MGHS11]

[MP96)|

[MPBO3]

[MSK10]

[MWHT06]

[MZWVG07]

[Pet08]

[Pix13]
[PIMO94]

Milan Magdics. Real-time generation of l-system scene models for ren-
dering and interaction. In Proceedings of the 25th Spring Conference on
Computer Graphics, pages 67-74. ACM, 2009.

Martti Méantyld. An introduction to solid modeling. W. H. Freeman &
Co., 1988.

Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice Hirtzlin,
and Gaél Sourimant. Gpu shape grammars. Computer Graphics Forum,
Proceedings of Pacific Graphics 2012, 31(7):2087-2095, 2012.

Morgan McGuire. Efficient triangle and quadrilateral clipping within
shaders. Journal of Graphics, GPU, and Game Tools, 15(4):216-224,
2011.

Jean-Eudes Marvie, Pascal Gautron, Patrice Hirtzlin, and Gael Souri-
mant. Render-time procedural per-pixel geometry generation. In Pro-
ceedings of Graphics Interface 2011, pages 167-174. Canadian Human-
Computer Communications Society, 2011.

Radomir Méch and Przemyslaw Prusinkiewicz. Visual models of plants
interacting with their environment. In Proceedings of ACM SIGGRAPH
1996, pages 397-410. ACM, 1996.

Jean-Eudes Marvie, Julien Perret, and Kadi Bouatouch. The fl-system: a
functional l-system for procedural geometric modeling. The Visual Com-
puter, 21(5):329-339, 2005.

Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-generated
residential building layouts. ACM Transactions on Graphics (TOG), Pro-
ceedings of ACM SIGGRAPH ASIA 2010, 29(6):181, 2010.

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. ACM Transactions on
Graphics (TOG), Proceedings of ACM SIGGRAPH 2006, 25(3):614-623,
2006.

Pascal Miiller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based
procedural modeling of facades. ACM Transactions on Graphics (TOG),
Proceedings of ACM SIGGRAPH 2007, 26(3):85, 2007.

Jorg Peters. Pn-quads. Technical report, Technical Report 2008-421,
Dept. CISE, University of Florida, 2008.

Pixologic@®): Zbrush®). http://pixologic.com/zbrush/, 2013.

Przemyslaw Prusinkiewicz, Mark James, and Radomir Méch. Synthetic
topiary. In Proceedings of ACM SIGGRAPH 199/, pages 351-358. ACM,
1994.

http://pixologic.com/zbrush/

Bibliography

149

[PLHT90]

[PMO1]

[PMKLO1]

[PO0S]

[RV77]

[SBM*10]

[SDKT+09)]

SGT1]

[SIP05]

[SM+78]

[SPS36]

[SPROG]

Przemyslaw Prusinkiewicz, Aristid Lindenmayer, James S Hanan,
F David Fracchia, Deborah R Fowler, Martin JM de Boer, and Lynn Mer-
cer. The algorithmic beauty of plants. The virtual laboratory. Springer-
Verlag, 1990.

Yoav IH Parish and Pascal Miiller. Procedural modeling of cities. In
Proceedings of ACM SIGGRAPH 2001, pages 301-308. ACM, 2001.

Przemyslaw Prusinkiewicz, Lars Miindermann, Radoslaw Karwowski, and
Brendan Lane. The use of positional information in the modeling of
plants. In Proceedings of ACM SIGGRAPH 2001, pages 289-300. ACM,
2001.

Anjul Patney and John D Owens. Real-time reyes-style adaptive surface
subdivision. ACM Transactions on Graphics (TOG), Proceedings of ACM
SIGGRAPH ASIA 2008, 27(5):143, 2008.

Aristides AG Requicha and Herbert B Voelcker. Constructive solid geome-
try. Technical memorandum. Production Automation Project, University
of Rochester, 1977.

Ondrej St’ava, Bedrich Benes, R Méch, Daniel G Aliaga, and Peter
Kristof. Inverse procedural modeling by automatic generation of I-
systems. Computer Graphics Forum, 29(2):665-674, 2010.

Ruben M Smelik, Klaas Jan De Kraker, Tim Tutenel, Rafael Bidarra,
and Saskia A Groenewegen. A survey of procedural methods for terrain
modelling. In Proceedings of the CASA Workshop on 8D Advanced Media
In Gaming And Simulation (3AMIGAS), 2009.

George Stiny and James Gips. Shape grammars and the generative spec-
ification of painting and sculpture. In IFIP Congress, pages 1460-1465,
1971.

Le-Jeng Shiue, Ian Jones, and Jorg Peters. A realtime gpu subdivision
kernel. ACM Transactions on Graphics (TOG), Proceedings of ACM SIG-
GRAPH 2005, 24(3):1010-1015, 2005.

George Stiny, William J Mitchell, et al. The palladian grammar. FEnuvi-
ronment and Planning B, 5(1):5-18, 1978.

Thomas W Sederberg and Scott R Parry. Free-form deformation of solid
geometric models. Proceedings of ACM SIGGRAPH 1986, 20(4):151-160,
1986.

Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh parameterization
methods and their applications. Foundations and Trends® in Computer
Graphics and Vision, 2(2):105-171, 2006.

150

Bibliography

[SWG*03]

[Tho07]

[TLL*11]

[VAW+10]

[VKW*12]

[VPBMO1]

[Whi06]

[WMWF07]

[WOD0Y]

[WWSRO3]

[YHL*07]

[ZHW+06]

Pedro V Sander, Zoé J Wood, Steven J Gortler, John Snyder, and Hugues
Hoppe. Multi-chart geometry images. In Proceedings of the 2008 Furo-
graphics/ACM SIGGRAPH symposium on Geometry processing, SGP "03,
pages 146-155. Furographics Association, 2003.

Thomas luft: Ivy generator. http://graphics.uni-konstanz.de/
“luft/ivy_generator, 2007.

Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomir Mé&ch, and
Vladlen Koltun. Metropolis procedural modeling. ACM Transactions on
Graphics (TOG), 30(2):11, 2011.

Carlos A Vanegas, Daniel G Aliaga, Peter Wonka, Pascal Miiller, Paul
Waddell, and Benjamin Watson. Modelling the appearance and behaviour
of urban spaces. Computer Graphics Forum, 29(1):25-42, 2010.

Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G
Aliaga, and Pascal Miiller. Procedural generation of parcels in urban

modeling. Computer Graphics Forum, Proceedings of Furographics 2012,
31(2):681-690, 2012.

Alex Vlachos, Jorg Peters, Chas Boyd, and Jason L Mitchell. Curved
pn triangles. In Proceedings of the 2001 symposiuwm on Interactive 3D
graphics, pages 159-166. ACM, 2001.

Chris White. King kong: the building of 1933 new york city. In ACM
SIGGRAPH 2006 Sketches, volume 6, page 96, 2006.

Peter Wonka, Pascal Miiller, Ben Watson, and Andy Fuller. Urban design
and procedural modeling. In ACM SIGGRAPH 2007 courses, pages 229—
229. ACM, 2007.

Emily Whiting, John Ochsendorf, and Frédo Durand. Procedural mod-
eling of structurally-sound masonry buildings. ACM Transactions on
Graphics (TOG), Proceedings of SIGGRAPH ASIA 2009, 28(5):112:1-
112:9, 20009.

Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky.
Instant architecture. ACM Transactions on Graphics (TOG), Proceedings
of ACM SIGGRAPH 2003, 22(3):669-677, 2003.

Tingjun Yang, Zhengge Huang, Xingsheng Lin, Jianjun Chen, and Jun Ni.
A parallel algorithm for binary-tree-based string rewriting in l-systems.
In International Multi-Symposiums on Computer and Computational Sci-
ences 2007, pages 245-252. IEEE, 2007.

Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Bain-
ing Guo, and Heung-Yeung Shum. Mesh quilting for geometric texture

http://graphics.uni-konstanz.de/~luft/ivy_generator
http://graphics.uni-konstanz.de/~luft/ivy_generator

Bibliography 151

synthesis. ACM Transactions on Graphics (TOG), Proceedings of ACM
SIGGRAPH 2006, 25(3):690-697, 2006.

Abstract

With the increasing computing and storage capabilities of recent hardware, movie and video
game industries desire huger realistic environments. However, modeling such sceneries by hand
turns out to be highly time consuming and costly. On the other hand, procedural modeling
provides methods to easily generate high diversity of elements such as vegetation and archi-
tecture. While grammar rules bring a high-level powerful modeling tool, using these rules is
often a tedious task, necessitating frustrating trial and error process. Moreover, as no solution
proposes real-time generation and rendering for massive environments, artists have to work on
separate parts before integrating the whole and see the results.

In this research, we aim to provide interactive generation and rendering of very large scener-
ies, while offering artist-friendly methods for controlling grammars behavior. We first introduce
a GPU-based pipeline providing parallel procedural generation at render time. To this end we
propose a segment-based expansion method working on independent elements, thus allowing
for parallel amplification. We then extend this pipeline to permit the construction of models
relying on internal contexts, such as roofs. We also present external contexts to control gram-
mars with surface and texture data. Finally, we integrate a LOD system with optimization
techniques within our pipeline providing interactive generation, edition and visualization of
massive environments. We demonstrate the efficiency of our pipeline with a scene comprising
hundred thousand trees and buildings each, representing 2 terabytes of data.

Keywords: procedural modeling, interactivity, parallelism, graphics cards, massive virtual en-
vironments.

Résumé

Afin de créer des productions toujours plus réalistes, les industries du jeu vidéo et du cinéma
cherchent & générer des environnements de plus en plus larges et complexes. Cependant, la
modélisation manuelle des objets 3D dans de tels décors se révéle trés cotiteuse. A 'inverse, les
méthodes de génération procédurale permettent de créer facilement une grande variété d’objets,
tels que les plantes et les batiments. La modélisation par régles de grammaire offre un outil de
haut niveau pour décrire ces objets, mais utiliser correctement ces régles s’avére trés souvent
compliqué. De plus, aucune solution de modélisation basée grammaire ne supporte 1’édition et
la visualisation d’environnements massifs en temps interactif. Dans un tel scénario, les artistes
doivent modifier les objets en dehors de la scéne avant de voir le résultat intégré.

Dans ces travaux de recherche, nous nous intéressons & la génération procédurale et au
rendu d’environnements & grande échelle. Nous voulons aussi faciliter la tache des artistes avec
des outils intuitifs de controle de grammaires. Tout d’abord nous proposons un systéme per-
mettant la génération procédurale en paralléle sur le GPU en temps interactif. Pour cela, nous
adoptons une approche d’expansion indépendante par segment, permettant une amplification
des données en parallele. Nous étendons ce systéme pour générer des modeéles basés sur une
structure interne, tels que les toits. Nous présentons aussi une solution utilisant des contextes
externes pour controler facilement les grammaires par le biais de surface ou de texture. Pour
finir nous intégrons un systéme de niveaux de détails et des techniques d’optimisation perme-
ttant la génération, I’édition et la visualisation interactives d’environnements a grande échelle.
Grace a notre systéme il est possible de générer et d’afficher interactivement des scénes com-
prenant des milliers de batiments et d’arbres, représentant environ 2 teraoctets de données.

Mots-clés: modélisation procédurale, interactivité, parallélisme, cartes graphiques, environ-
nements virtuels massifs.

