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Summary 

 

How genetic and environmental factors interact during development is a key question in 

current biology, yet little is known about how molecular and cellular processes integrate 

environmental information. In my PhD research I aimed to address this problem using the 

network of C. elegans vulval signalling pathways as a model system. The principal objective 

of my project was to quantitatively examine how involved major signalling pathways, EGF-

Ras-MAPK, Wnt and Delta-Notch, are modulated by specific environmental signals.  

First, I analysed how a specific environmental factor (starvation) alters activities and 

interplay of signalling pathways underlying C. elegans vulval cell fate patterning. Using 

genetic approaches, I examined in detail how starvation signals are perceived and mediated to 

modulate vulval induction. I found that starvation consistently increased vulval induction 

through upregulation of the EGF-Ras-MAPK pathway activity independent of the Wnt 

pathway. This environmental effect is mediated by internal sensing of nutrient deprivation, 

likely acting through the TOR pathway, and affects vulval induction at the level or upstream 

of the EGF receptor. These findings highlight how developmental processes and involved 

evolutionarily conserved signalling pathways are modulated in response to environmental 

variation.  

Second, I examined the environmental sensitivity of the Caenorhabditis vulval 

developmental system from an evolutionary perspective through comparative analysis of 

different C. elegans and C. briggsae isolates. I aimed to maximally disrupt this patterning 

process by exposure to extreme temperatures and to quantify which underlying developmental 

and cellular aspects are most environmentally sensitive and how such sensitivity evolves 

within and between species. I found that extreme temperature induced diverse developmental 

variants and defects, which were strongly genotype- and species-dependent. The occurrence 

of certain developmental defects induced by temperature extremes further revealed that vulval 

precursor cells and associated fates differ in temperature sensitivity, and this cell-specific 

sensitivity shows evolutionary variation. These results illustrate how sensitivity of different 

system parameters underlying Caenorhabditis vulval development are shaped by subtle, 

specific interactions between environmental perturbation and genetic background. 
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Résumé 

 

Comprendre comment les facteurs génétiques et environnementaux interagissent au cours du 

développement est une question fondamentale en biologie. Cependant, peu de choses sont 

connues à propos de l’intégration des informations environnementales par les processus 

moléculaires et cellulaires. Au cours de ma thèse, je me suis intéressée à cette question en 

utilisant le réseau de développement de la vulve du nématode C. elegans comme système 

modèle. L’objectif principal de mon projet était une étude quantitative de la modulation par 

l’environnement des voies de signalisation majeures impliquées dans ce processus telles que, 

EGF-Ras-MAPK, Delta-Notch et Wnt.  

J’ai tout d’abord analysé comment un facteur environnemental spécifique (la carence 

nutritionnelle) modifie les activités et les interactions entre les voies de signalisation sous-

jacentes au développement vulvaire chez C. elegans. L’utilisation d’approches génétiques m’a 

permis d’examiner en détail comment les signaux environnementaux de carence sont perçus 

et transmis afin de moduler l’induction vulvaire. J’ai ainsi mis en évidence que 

l’augmentation de l’induction vulvaire par la carence passe par une augmentation de l’activité 

de la voie EGF-Ras-MAPK et est indépendante de la voie Wnt. Cet effet de l’environnement 

est assuré par la détection de la diminution de l’apport en nutriments, probablement par 

l’action de la voie TOR, et affecte l’induction vulvaire en parallèle ou en amont du récepteur à 

l’EGF. Ces résultats mettent en évidence comment les processus développementaux et les 

voies de signalisation sous-jacentes évolutivement conservées répondent et intègrent la 

variation environnementale.   

 

J’ai ensuite examiné la sensibilité environnementale du système de développement de 

la vulve de Caenorhabditis dans une perspective évolutive et ce, grâce à l'analyse comparative 

de différents isolats naturels de C. elegans et C. briggsae. En perturbant au maximum le 

réseau de développement vulvaire par l’exposition à des températures extrêmes, j’ai pu 

quantifier quels aspects moléculaires et cellulaires de ce réseau étaient les plus sensibles à 

l’environnement et analyser l’évolution de cette sensibilité au sein de différentes espèces et 

souches de Caenorhabditis. J’ai pu observer que l’exposition à des températures extrêmes 

induit des variants et des défauts de manière fortement dépendante de la souche et de l’espèce. 

L’occurrence de certains défauts développementaux induits par la température révèlent en 
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outre que certaines cellules précurseurs de la vulve et les voies de signalisation associées 

présentent une sensibilité environnementale différente. Ces résultats illustrent la manière dont 

la sensibilité des différents paramètres sous-jacents au développement de la vulve des 

Caenorhabditis est façonnée par des interactions spécifiques entre les perturbations 

environnementales et le fond génétique. 
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“Not everything that can be counted counts, and not everything that counts can be counted”

   

          Albert Einstein
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1. Introduction 

1.1. Motivation: Understanding the environmental context-dependence of 

organismal development 

Organismal development relies on complex signalling networks involving a relatively small 

number of highly conserved molecular signalling pathways (e.g. Receptor Tyrosine Kinase, 

TGF-, Delta-Notch, Wnt, Nuclear Hormone Receptor, Hedgehog) (Gerhart, 1999; Pires-da 

Silva and Sommer, 2003). The same molecular cascades therefore participate in diverse 

developmental processes and their precise function is strongly dependent on genetic and 

cellular contexts, i.e. they are highly flexible. This flexibility and context-dependent 

activation of molecular pathways during development allows their diversified action in the 

same organism, e.g. in response to changing cellular environments, as well as across different 

species where the same molecular pathway may be utilized for divergent functions. 

 Organisms live, develop and evolve in highly variable, complex and fluctuating 

external environments. How organismal development responds to and integrates 

environmental variation is thus a fundamental question in biology. Given that any phenotype 

is the result of an interaction between genotype and environment, it is of particular importance 

to understand how developmental processes shape the translation of genotype into phenotype, 

and how variation in the external environment impacts this translation. While it is clear that 

environmental variation may strongly impact developmental processes and corresponding 

phenotypic outcomes, environmental variation has traditionally been ignored in genetic and 

developmental studies. Consequently, little is known about the detailed mechanisms 

underlying environmental modification of developmental processes.  

Fundamentally, we can distinguish two opposite developmental responses to 

environmental variation. First, development may vary in response to the environment, which 

generates changes in corresponding phenotypic outcomes, a phenomenon termed 

developmental or phenotypic plasticity (Figure 1.1A). Second, development may generate an 

invariant final phenotype in the presence of environmental variation irrespective of whether 

underlying development is sensitive or insensitive this variation. This phenomenon, i.e. 

developmental insensitivity to environmental variation, is frequently referred to as 

developmental robustness (Figure 1.1B). Importantly, such robustness does not exclude 
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environmental sensitivity of the underlying  developmental mechanisms (Braendle and Félix, 

2008). 

 

Figure 1.1. Integration of the environment into the genotype-phenotype map. Two different 

genotypes and their response to two environments (E1 and E2) are represented in A and B. (A) The 

environment induces variation at the intermediate phenotypic level (e.g. gene expression, pathway 

activity) which results in variation of the final phenotypic output (plasticity). (B) The environment 

induces variation at the intermediate phenotypic level but not in the final phenotypic output. Adapted 

from Braendle et al. (2008). 

 

Understanding the environmental sensitivity of developmental systems and underlying 

molecular and cellular processes is thus relevant to understand both how development 

maintains phenotypic stability despite environmental variation and how development 

generates phenotypic change in tune with prevailing environmental conditions.  

In my PhD work, I focused on how environmental variation affects the functioning of 

a robust developmental system and its underlying genetic network. To address this question, I 

used the C. elegans vulval developmental system, a very well-characterized process involving 

highly conserved molecular signalling pathways (i.e. EGF-Ras-MAPK, Delta-Notch and 

Wnt). In this introduction, I will first present an overview of our current understanding of 

environmental sensitivity of developmental systems, followed by a brief introduction of the 

study organism, C. elegans.  I will then summarize relevant aspects of the model 
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developmental system, C. elegans vulval cell fate patterning. Specifically, I will discuss 

previously obtained insights into the environmental sensitivity, robustness and evolution of 

this system. 

1.2. Environmental sensitivity of developmental systems 

1.2.1. Developmental processes are inherently sensitive to the environment 

From the simplest unicellular to the most advanced multicellular form, all organisms live in 

complex environments that vary in diverse abiotic and biotic parameters, such as temperature, 

light, nutrients and pathogens. Such environmental variation may affect diverse phenotypic 

aspects (e.g. gene expression levels, protein synthesis, body size), which may reflect adaptive, 

neutral or maladaptive organismal responses. Environmental variation may, for example, 

profoundly affect global gene expression profiles as observed in the yeast Saccharomyces 

cerevisiae (Causton et al., 2001; Gasch et al., 2000). A wide range of environmental 

conditions, primarily stressors (e.g. temperature shocks, hydrogen peroxide, hyper- and hypo-

osmotic shock, amino acid starvation or nitrogen source depletion), have been shown to 

modulate gene expression in S. cerevisiae. A large fraction of the genome responds in a 

stereotypical manner across tested environmental conditions. Screening of DNA microarrays 

led to the identification of almost 900 genes whose expression was commonly disrupted upon 

stress exposure irrespective of its precise nature, yet most conditions also showed specific 

regulation of specific gene subsets (Gasch et al., 2000). These and many other studies in yeast 

and other organisms show that gene expression, one of the most basal phenotypic characters, 

is strongly environmentally sensitive. However, for most of these observed changes it is 

unclear how they translate into later phenotypic consequences, e.g. how they impact 

reproductive features or survival. 

Well-characterized metazoan developmental processes in response to changing 

environments are represented by growth and body size control in response to nutritional 

availability and status. Growth control, a fundamental process shaped by obvious interactions 

between genes and environment, has been particularly well elucidated in the fly, Drosophila 

melanogaster (Nijhout, 2003). In Drosophila, growth occurs during larval stages and adults 

emerge at their final size: individuals grown in starvation conditions are reduced by 50% in 

size compared to well-fed ones (Figure 1.2) (Hietakangas and Cohen, 2009). Consequently, 

the final size of an individual critically depends on the coordination of developmental timing 

and nutrient availability (Layalle et al., 2008).  
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Figure 1.2. Drosophila body size in food versus starvation conditions. A strong reduction of body 

size is observed under starvation conditions. The control fly (left) was grown in standard conditions 

(with plenty of food). The starved fly (right) was grown in a media containing only 10% of the 

standard nutritional value. Photograph from Hietakangas and Cohen (2009). 

 

Systemic regulation of growth involves interplay between multiple tissues and 

signalling pathways (Hietakangas and Cohen, 2009). This regulation is mainly ensured by the 

Insulin-like signalling (Nijhout, 2003). The TOR (Target of Rapamycin) signalling pathway is 

also a major regulator of cell growth control – by regulating both cell size and proliferation 

(Zhang et al., 2000). In  D. melanogaster, TOR activity is controlled by amino acids (Avruch 

et al., 2009; Colombani et al., 2003) and cellular energy levels (ATP/AMP ratio) – sensed by 

AMP-activated protein kinase (AMPK) (Hardie, 2007). The well-understood mechanisms 

underlying Drosophila growth control reveal how instructive environmental cues (e.g. 

nutrition) translate into developmental and metabolic changes and plastically modulate the 

final phenotype (e.g. body size) of an organism. 

 Environmental variability in yeast gene expression and nutritional control of 

Drosophila growth represent just two examples out of a diverse spectrum of environmentally 

sensitive processes. However, they clearly illustrate that environmental variation may have 

strong, wide-ranging phenotypic effects and that the environment may provide instructive 

information, critical in regulating key developmental decisions. 
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1.2.2. Developmental plasticity versus robustness in response to environmental variation 

As already mentioned, developmental responses to the environment may generate plastic or 

invariant (robust) phenotypic outcomes (Figure 1.1).  Differences in environmental sensitivity 

between genotypes for a given phenotype can be visualized using reaction norms (Figure 1.3), 

illustrating phenotypic changes across different environments.  

 

 

Figure 1.3. Visualizing the pattern of phenotypic responses using reaction norms. Reaction norms 

are used to represent the phenotypic response of a given genotype across environments. Genotype A is 

plastic across environments. Genotype B is non-plastic (robust) across environments. 

 

Developmental (or phenotypic) plasticity is the ability of a genotype to produce 

different phenotypes in response to environmental variation (Bradshaw, 1965; Pigliucci, 

2001; Schlichting and Pigliucci, 1998; Stearns, 1992). Developmental plasticity is a universal 

organismal feature, but which is most commonly used to refer to adaptive, flexible changes of 

development in response to specific environmental conditions (West-Eberhard, 2003). A clear 

and famous example of adaptive developmental plasticity concerns the morphology of the 

Daphnia water fleas (Woltereck, 1932) which grow a defensive “helmet” in response to 

chemical cues released by their fish predators (Tollrian, 1993) (Figure 1.4). 
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Figure 1.4. Developmental plasticity in Daphnia sp. In this picture two individuals of the same 

species. Daphnia water fleas display the ability to form a defensive “helmet” when exposed to 

predators. Left: exposed to predators. Right: absence of predators. Picture credits: Christian Laforsch. 

 

Other striking examples of developmental plasticity include temperature-induced sex 

determination (Crews et al., 1994), plastic caste determination in social insects (Simpson et 

al., 2011) or alternative diapausing phenotypes (dauer) in C. elegans (Hu, 2007). Such 

developmental plasticity is common for many other traits and species, e.g. for body size in 

various organisms, as illustrated in the above example of Drosophila. Understanding the 

molecular and genetic mechanisms of such developmental plasticity is a current key focus 

both in developmental and evolutionary biology, and much progress has been made using the 

model systems A. thaliana (Komeda, 2004), D. melanogaster (Flatt et al., 2013) and C. 

elegans (Braendle et al., 2008; Viney and Diaz, 2012).  

Developmental plasticity, reflecting environmental sensitivity of development, 

contrasts with environmental insensitivity of development, often termed (environmental) 

robustness (de Visser et al., 2003; Waddington, 1942). Developmental robustness is an 

essential feature of organisms, which have to face diverse sources of variation, including 

genetic, environmental and stochastic variation (Felix and Wagner, 2008). Developmental 

robustness describes the ability of a biological system to generate invariant outputs when 

facing such variation (Figure 1.5). 
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Figure 1.5. Robustness to different sources of variation.  In (a) the final phenotype is robust to 

internal stochastic variation (e.g. cellular concentration of a given molecule) represented in green and 

orange. In (b) the final phenotype is robust to genetic variation even if variation can occur at the 

intermediate level. In (c) the final phenotype is robust to environmental variation (E1 and E2, in purple 

and blue). Adapted from Félix and Wagner, 2008. 

 

Fundamentally, robustness of biological processes to diverse sources of variation may 

result through distributed robustness or redundancy (Felix and Wagner, 2008; Wagner, 2005a) 

(Figure 1.6). 

 

 

Figure 1.6. Distributed robustness versus redundancy. Both panel show hypothetical signalling 

cascades. The information from the upper circles (white) in transduced via numerous components 
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(different greys) to downstream effectors (black). In the case of distributed robustness (left) the 

information is distributed among several different paths – none of them performing the same function. 

In case of redundancy (right) the information processes through components that have exactly the 

same function (dark grey). Adapted from Félix and Wagner, 2008. 

 

In a distributed system no sub-section plays the same role and they constitute 

alternative paths. They are tightly connected and strongly interact. Conversely, redundancy 

results from the equivalence of different parts of a developmental system. Whether either type 

of robustness results simply through emerging network properties or through adaptive 

evolution remains, however, difficult to evaluate (Felix and Wagner, 2008; Wagner, 2005a). 

Importantly, robustness of biological processes to a given perturbation may also render them 

robust to other sources of perturbations, i.e. robustness shows congruence (Masel and Siegal, 

2009). Therefore, for example, robustness to environmental variation will make the system 

also robust to genetic or stochastic variation (de Visser et al., 2003; Meiklejohn and Hartl, 

2002; Proulx and Phillips, 2005) . 

 An important consequence of developmental robustness is that it may generate 

robustness to mutations, leading to the accumulation of cryptic genetic variation, i.e. 

evolutionary variation in the absence of evolutionary change of the phenotype (Gibson and 

Dworkin, 2004). Thus, robustness of the phenotype can have seemingly paradoxical 

evolutionary consequences and lead to increased genetic evolvability of such  system (Masel 

and Trotter, 2010). 

 

1.3. The study organism Caenorhabditis elegans 

1.3.1. General biology 

The free-living nematode Caenorhabditis elegans is a small (1 to 1.5mm), transparent and 

simple multicellular organism which lives in rotten matter, feeding on diverse microbes 

(Kiontke and Sudhaus, 2006; Kiontke et al., 2011). Since its introduction by Sydney Brenner 

(Brenner, 1974), C. elegans has become a well-characterized model organism for molecular, 

genetic and developmental studies. The invariant C. elegans cell lineage has been determined 

(Sulston and Horvitz, 1977; Sulston et al., 1983) and this nematodes was the first metazoan to 

have its genome completely sequenced (Consortium, 1998). Using C. elegans as a model 
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system has many advantages: easy culturing methods (individuals can be maintained on agar 

plates and fed with Escherichia coli), short life cycle (3.5 days at 20°C), and reproduction 

through self-fertilizing hermaphrodites, resulting in isogenic populations.  Male production is 

facultative and results through spontaneous X-chromosome non-disjunction during meiosis.  

Available resources (databases, literature, genetic maps and mutant libraries) and a 

wide range of established experimental techniques (RNAi, mutagenesis and transgenesis) as 

well as easy culturing (including cryopreservation of stocks) make C. elegans a model 

organism of choice. 

 

Life cycle 

Under laboratory conditions it takes about three and a half days to complete the C. elegans 

life cycle from egg to reproductive adult (Figure 1.7). The life cycle is composed of two 

phases: embryonic and post-embryonic development. The embryonic development starts in 

utero and eggs are laid as early embryos. After hatching, both hermaphrodites and males 

develop through four larval stages. At the end of each stage, larvae undergo a brief lethargus 

with arrest of pharyngeal pumping. This lethargus is associated with a moult during which a 

new stage-specific cuticle is synthesized. The last moult leads to the reproductively mature 

adult. 

 

Figure 1.7. The C. elegans life cycle. The C. elegans life cycle is comprised of embryonic and post-

embryonic development. Post-embryonic development is composed of four larval stages followed by 
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adulthood. During the L1 stage, individuals can arrest their development for several days under 

unfavourable conditions (i.e. starvation). When food becomes available again they re-enter the 

reproductive life cycle. At the end of the L1 stage, if the environment is harsh (high temperature, low 

food, crowding), they can undergo an additional developmental arrest: the dauer stage. Upon better 

conditions development will resume and individuals will form L4 larvae. Duration of each stage is 

indicated at 20°C. Image: Nausicaa Poullet. 

 

Morphology and reproductive mode 

All nematodes share the same unsegmented and cylindrical body plan. In C. elegans, both 

self-fertilizing hermaphrodite (XX) and male (XO) bodies are surrounded by a collagenous 

cuticle.  This outer tube – composed of hypodermis and cuticle – surrounds a pseudocoelomic 

cavity containing both digestive and reproductive tracts. Body shape is maintained by 

hydrostatic pressure. In laboratory conditions, individuals are mainly fed on the cultures of the 

bacterium E. coli. The bacteria are ingested through the mouth and pass through a two-lobed 

pharynx – which acts as a pump and grinder.  

The adult hermaphrodite is composed of 959 somatic cells, 302 of which are neurons 

and 95 of which are body wall muscles (White, 1988). C. elegans males are initially identical 

to the hermaphrodite larvae apart from a few male fate cells, but start to display typical 

budding shape of their posterior half during the L2 stage (Nguyen et al., 1999; Sulston and 

Horvitz, 1977; Sulston et al., 1980). The adult male is composed of 1031 somatic cells, 381 of 

which are neurons, mostly involved in mating behaviour (White, 1988). C. elegans males and 

hermaphrodites display sexual dimorphism in all tissues – except for the pharynx and the 

excretory system.  

The hermaphroditic reproductive system is composed of two symmetrical U-shaped 

gonad arms containing the germline, connected by the central uterus and the vulva (Figure 

1.8). The first germ cells produced are sperm. During the L4 stage, hermaphrodites produce 

around 160 sperm per gonadal arm and store them in the spermatheca. At the end of the L4 

stage an irreversible switch occurs and hermaphrodites start to produce oocytes (Ellis and 

Kimble, 1995) – which will be fertilized by sperm when entering the spermatheca. Embryos 

start to develop in the uterus until gastrulation and are then laid through the vulva. In contrast, 

the male gonad is composed of one single arm. Males produce sperm throughout life. The 

male's copulatory apparatus is located in the tail. The fan extends from the tail and contains 
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nine pairs of sensory rays. The proctodeum ends in the cloaca and posteriorly links the 

intestine and the gonad. The spicules are two particular sensilla covered by cuticle and 

playing a major role during mating, i.e. locating the hermaphrodite vulva and hold it open 

during sperm transfer. 

 

 

Figure 1.8. Morphology of C. elegans hermaphrodites and males. Schematic drawing of 

anatomical structures left lateral side. (A) Hermaphrodite. (B) Male. See text. Image: Nausicaa 

Poullet. 

 

1.3.2. Natural C. elegans habitat 

Despite the extensive knowledge accumulated on C. elegans development and genetics, little 

is known about its natural environment. However, C. elegans ecology has recently become a 

field of interest and led to the discovery of many new C. elegans wild isolates (Andersen et 

al., 2012) and Caenorhabditis species (Kiontke et al., 2011). Often described as a soil 

nematode, the cosmopolite C. elegans (Barriere and Felix, 2005) actually lives in 

decomposing vegetal matter, such as rotten plant, flowers or fruits. C. elegans wild 

populations have also been found in decomposing invertebrates. The C. elegans natural 

habitat is extremely variable in terms of food availability, temperature, oxygen and chemicals 

concentration. The C. elegans natural habitat thus represents a highly ephemeral environment 

undergoing strong fluctuations in nutritional conditions. 
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Compared to its wild habitat, the lab environment is very stable and standardized. 

Individuals are maintained on petri dishes filled with Nematode Growth Medium (NGM) 

(Brenner, 1974; Hope, 1999) and fed with a particular strain of E. coli (OP50). Plates are 

usually maintained at 20°C. This standard environment has been developed to optimize 

offspring production but as E. coli is a mammalian intestinal bacterium, thus unlikely to 

represent a highly relevant natural food source for C. elegans. 

 

1.3.3. Environmental sensitivity of C. elegans development 

Environmental variations can elicit both behavioural and developmental responses in C. 

elegans, such as attraction/avoidance (Bargmann et al., 1993; Troemel et al., 1997), 

morphological and locomotion changes in liquid culture (Szewczyk et al., 2006) or specific 

diapause-like states (i.e. L1 arrest, dauer and ARD) (Angelo and Van Gilst, 2009; Hu, 2007; 

Johnson et al., 1984). When encountering stressful conditions (i.e. starvation, crowding or 

high temperature), individuals can slow or arrest their development in several developmental 

stages (Ruaud and Bessereau, 2006). Food limitation (starvation) is one of the major 

environmental stressors that C. elegans individuals can encounter. If the embryos hatch in the 

absence of food, the L1 larvae arrest their development (Johnson et al., 1984). When food 

becomes available again, the arrested L1 are able to re-enter a normal life cycle (Slack and 

Ruvkun, 1997) (Figure 1.9). At the end of the L1 stage, if the environmental conditions are 

not favourable (low food availability, high temperature and crowding) the individuals enter a 

morphologically specific L2 stage, called L2d. L2d larvae retain the potential of forming L3 

larva but if environmental conditions remain unfavourable, these L2d enter the L3 dauer 

larval stage (Albert and Riddle, 1988; Golden and Riddle, 1982, 1984). This dauer stage can 

last for months until dauer larvae experience favourable conditions. Upon food re-exposure, 

dauers start to develop, and after 10 hours, the L3/L4 moult occurs and individuals re-enter 

the normal life cycle at the L4 stage (Figure 1.9). During dauer, feeding is completely arrested 

– defined as a non-aging state, and dauer larvae display a ‘‘waving behaviour’’ which may 

serve to find or attract hosts that may carry them to a location providing adequate resources 

(Riddle, 1988; Riddle and Albert, 1997). Dauer formation represents one of the best-

understood examples of developmental modulation by external cues – coupling both sensory 

and metabolic information. Dauer formation is regulated by a complex genetic network 

(Fielenbach and Antebi, 2008), revealed by the analysis of daf-c (dauer constitutive) and daf-d 

(dauer defective) mutants (Riddle and Albert, 1997). This network involves chemosensory 
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components of the cGMP pathway, such as G-protein, guanylyl cyclase and cGMP dependant 

cyclases (Birnby et al., 2000) but also metabolic components, such as Insulin (Li et al., 2003; 

Pierce et al., 2001). After the last moult, at the beginning of reproduction, individuals can also 

adopt a diapause-like state, called adult reproductive diapause (ARD) (Angelo and Van Gilst, 

2009), in which the germline size is reduced to a minimal pool of stem cells. When conditions 

are favourable the germline regrows and reproduction starts again (Figure 1.9). During 

adulthood, hermaphrodites also have an additional strategy to face an unfavourable 

environment (e.g. starvation). They can retain their embryos, which will hatch inside the dead 

adult (contrary to what happens in ARD) (Chen and Caswell-Chen, 2003). This is called 

“bagging” and may represent a strategy to protect progeny until they reach the resistant dauer 

stage (Chen and Caswell-Chen, 2003; Chen and Caswell-Chen, 2004) (Figure 1.9). 

 

 

Figure 1.9. Starvation responses during the C. elegans life cycle. Starvation during the L1 stage 

leads to a reversible L1 arrest. Starvation in late L1 and L2 causes adoption of the dauer stage. 

Starvation during the L4 stage leads to adult reproductive diapause whereas late L4 or adult starvation 

results in “bagging”, i.e. internal hatching of embryos. Adapted from Angelo and Van Gilst, 2009. 

 

1.3.4. Perception and transduction of environmental cues in C. elegans 

Immunity and stress response 

During its life C. elegans can experience highly stressful conditions (e.g. high temperature, 

hypo- and hyperoxia, starvation). Environmental perception (see below) and stress-triggered 

responses ensure the adjustment of cellular functions in critical environments and 

evolutionary conserved stress response mechanisms have been found in C. elegans (Koga et 

al., 2000; Lehtinen et al., 2006). DAF-21, for instance, is a member of the HPS90 family, 

expressed in all cells under stressful conditions (Inoue et al., 2003). C. elegans response to 
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hypoxia also involved evolutionary conserved mechanisms like the HIF (Hypoxia Inducible 

factor) complexes required for C. elegans physiological adaptation to hypoxic conditions  

(Jiang et al., 2001; Shen et al., 2005). 

C. elegans can be infected by a large variety of pathogens (Darby, 2005). Many of 

them colonize the C. elegans intestine, some adhere to the cuticle while others produce toxins 

and can kill C. elegans without any physical contact. C. elegans infection has been used as a 

powerful genetic system to study innate immunity (Engelmann and Pujol, 2010; Ewbank, 

2006). General stress response mechanisms are involved in pathogen response but C. elegans 

immune response also relies on major conserved signalling pathways like ERK, p38 MAPK, 

Insulin or TGF- (Engelmann and Pujol, 2010). 

 

Sensory perception 

Chemosensation 

The C. elegans chemosensory set of neurons is highly developed – 32 neurons can detect 

hundreds of chemicals (Bargmann, 2006), which are required to avoid noxious substances and 

to find food and mating partners. C. elegans males have numerous additional chemosensory 

neurons mainly involved in mating behaviour (Liu and Sternberg, 1995; Sulston et al., 1980). 

C. elegans chemosensory neurons can be directly or indirectly exposed to the environment, 

mainly through the amphid, the phasmid and the inner/outer labial organs (Ward et al., 1975). 

Only two specific neurons AQR and PQR– responsible with URX for oxygen sensing  (Chang 

et al., 2006; Cheung et al., 2005; Gray et al., 2004) and social feeding (Gray et al., 2004), are 

directly exposed to body fluids. Chemosensory neurons usually belong to left-right pairs and 

each pair can be distinguished from another through morphological criteria (White et al., 

1986). Chemicals are detected through hundreds of G protein-coupled receptors (GCPRs) 

(Robertson and Thomas, 2006) using cGMP as second messenger or relying on TRPV 

channels and allow C. elegans to integrate environment into both developmental and 

behavioural processes. 

Thermosensation 

In C. elegans a single pair of amphid neurons (AFD) is essential to for thermosensation and 

thermotaxis behaviour (Mori and Ohshima, 1995). The AFD neurons respond to warming and 

their ablation leads to cryophilic individuals (Kimura et al., 2004). Temperature sensing in C. 
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elegans acts in a small cellular circuit involving AIY, AIZ and RIA neurons (McKemy, 

2007). AIY and AIZ act as antagonists in thermal responses: AIY-ablated animals are 

cryophilic and AIZ-ablated animals are thermophilic. In addition to other sensory defects 

RIA-ablated animals are partially thermosensory-deficient. 

Mechanosensation 

Mechanosensory neurons serve to detect collisions with particles (e.g. debris, other animals) 

as well as forces generated by its own movement. Mechanosensation is ensured by 30 putative 

mechanoreceptor neurons (MRNs) in the hermaphrodite and 52 extra MRNs exist in the male 

– mainly involved in mating behaviour. In C. elegans, touch responses are involved in many 

behaviours like locomotion (Chalfie et al., 1985; Wicks and Rankin, 1995), egg laying 

(Sawin, 1996), feeding (Chalfie et al., 1985; Keane and Avery, 2003), defecation (Thomas, 

1990) and mating (Liu and Sternberg, 1995). Mechanical information is transduced by 

putative channels of the TRP (Transient Receptor Potential) superfamily in ciliated MRNs 

and of the DEG/ENaC (DEGenerin/Epithelial Na+ Channel) superfamily in non ciliated 

MRNs (Ernstrom and Chalfie, 2002; Goodman and Schwarz, 2003).  

 

Metabolism 

Being able to coordinate and adjust energy levels in tune with prevailing environmental 

conditions is critical for cellular and organismal survival. Metabolic sensors are key 

regulatory elements that allow individuals to perceive their environment and adapt to it 

(Lindsley and Rutter, 2004). On a cellular level, metabolic sensors detect and respond to 

levels of macronutrients (e.g. glucose, amino acids and fatty acids, AMP/ATP ratio). On an 

organismal level, coordination of energetic status from different tissues is controlled by 

hormonal signals (Lindsley and Rutter, 2004).  

C. elegans presents highly conserved metabolic sensors. First, the IGF-1/Insulin 

signalling pathway connects nutrient levels to growth, development and longevity mainly 

through the DAF-16/FoxO transcription factor (Murphy and Hu, 2013). The second key 

metabolic sensor is the LET-363/TOR (Target of Rapamycin) signalling pathway. It couples 

nutrient levels to cell size and proliferation. In C. elegans, inactivation of LET-363/TOR and 

its partner DAF-15/Raptor leads to developmental arrest and fat accumulation (Jia et al., 

2004; Vellai et al., 2003). LET-363/TOR is directly regulated by nutrient levels but also by 
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the DAF-2-Insulin pathway to control dauer formation and longevity (Jia et al., 2004). The 

third major cellular sensor is the AMPK pathway. It responds to cellular AMP:ATP ratio as 

well as upstream kinase cascades (Kahn et al., 2005; Lindsley and Rutter, 2004). In C. 

elegans AAK -2, the orthologue of AMPK, regulates lifespan in response to AMP:ATP ratio 

and insulin-like signals. Nuclear hormone receptors (NHRs) also coordinate metabolic 

responses and function as regulators of metabolic gene expression (Van Gilst et al., 2005a; 

Van Gilst et al., 2005b). 

 

1.4. The study system: C. elegans vulval cell fate patterning 

C. elegans vulval development is an extensively studied and well-characterized 

developmental process involving conserved signalling pathways (Félix, 2012a; Félix and 

Barkoulas, 2012; Sternberg, 2005). This process underlies the formation of an essential 

reproductive organ, required for egg laying and mating with males.  

 

1.4.1. The C. elegans vulval signalling network 

At hatching, the C. elegans L1 larva possesses six pairs of ventral blasts: the Pn cells. During 

L1 each pair rotates and the twelve Pn cell aligned along the antero-posterior axis (Sulston 

and Horvitz, 1977). Each Pn cell will then asymmetrically generate two daughters: Pn.a and 

Pn.p. The Pn.a cells will primarily develop into ventral cord neurons (Sulston and Horvitz, 

1977) whereas the Pn.p cells adopt an hypodermal fate. During the L1 stage, P(3-8).p acquire 

competence to form vulval tissue: each of these cells is able to respond to the inductive signal 

and adopt a vulval fate (Kimble, 1981; Sternberg and Horvitz, 1986; Sulston and White, 

1980). The specification of these vulval precursor cells (VPCs) is ensured by the expression 

of the lin-39/Hox5 gene (Maloof and Kenyon, 1998; Salser et al., 1993), which encodes a 

homeodomain protein required for specification of mid-body region cell fates (Figure 1.12A). 

SEM-4, a zinc finger protein, is necessary for full lin-39/Hox5 expression (Grant et al., 2000). 

LIN-39/Hox5 acts with two homeodomain proteins co-factors ceh-20/pbx1-3 and unc-62/meis 

which are transcribed in all the Pn.p cells, except P12.p (Yang et al., 2005). CEH-13/Hox1, 

encoded by the ceh-13/Hox1 gene and expressed in cell nuclei all along the ventral cord 

(Brunschwig et al., 1999), antagonises LIN-39/Hox5 and promotes Pn.p fusion (Tihanyi et al., 

2010).  
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LIN-39/Hox5 activity is also required during the L2 stage to maintain VPCs 

competence (Chen and Han, 2001). During the L2 stage lin-39/Hox5 expression is under the 

control of the canonical Wnt pathway (Eisenmann et al., 1998). Combined with the Wnt 

pathway, the EGF/Ras/MAPK signalling is also involved in the maintenance of VPCs 

competence. For instance, gain of function mutations in the EGF-Ras-MAPK pathway 

diminishes fusion during the L2 stage (Chen and Han, 2001). Moreover and in a bar-1/-

Catenin mutant sensitized background, a let-23/egfr mutation aggravates the fusion phenotype 

(Eisenmann et al., 1998).  

As mentioned before, ablation experiments revealed that only P(3-8).p have 

competence to form vulval tissue (Kimble, 1981; Sternberg and Horvitz, 1986; Sulston and 

White, 1980). Nevertheless, the competence level of each VPC is not equivalent (Clandinin et 

al., 1997). LIN-39 expression, regulating VPC competence (Maloof and Kenyon, 1998), is 

variable along the antero-posterior axis leading to a differential sensitivity of the VPCs to the 

inductive signal (Pénigault and Félix, 2011b). P7.p and P8.p are less sensitive to the LIN-

3/EGF inductive signal due to the expression of mab-5/Hox7. mab-5/Hox7 encodes a 

homeodomain transcription factor required for specification of posterior cell fates. Moreover 

P3.p sensitivity can be explained by the graded action of two Wnt ligands egl-20 (Coudreuse 

et al., 2006; Whangbo et al., 2000) and cwn-1 (Hayashi et al., 2009) regulating lin-39/Hox5 

expression in the VPCs (Figure 1.10). 

 

 

Figure 1.10. Regulation of VPC competence in C. elegans. In C. elegans, vulval precursor cells are 

not equally sensitive to the inductive signal. This scheme represents the regulation of VPC 

competence along the antero-posterior axis. Disks represent the vulval precursor cells. The Wnt 

ligands egl-20 and cwn-1 are more expressed in the posterior part of larva and a long-range gradient 

diffuses until the midbody of the animal (Coudreuse et al., 2006). lin-39/Hox5 is expressed along the 

AP axis with low levels in P3.p and P4.p and a peak on P5.p. ceh-13/Hox1 and mab-5/Hox7 
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antagonize lin-39/Hox5 and are expressed respectively all along the AP axis and posteriorly. Adapted 

from Pénigault and Félix, 2011b.  

 

During the second larval stage (L2) the anchor cell (AC) induces vulva cell fates by 

expressing the EGF-like ligand LIN-3 (Hill and Sternberg, 1992) (Figure 1.11 and Figure 

1.12B). The AC is necessary and sufficient to induce vulva formation (Kimble, 1981). LIN-

3/EGF disperses as a morphogen and the Pn.p adopt different cell fate according to their 

location. P6.p is closest to the AC and receives the highest level of LIN-3/EGF causing it to 

adopt a 1° cell fate. P6.p then expresses Delta ligands which activate the Delta-Notch pathway 

in its neighbours, P5.p and P7.p. This activation causes them to adopt a 2° fate (Greenwald et 

al., 1983) and prevents them from adopting a 1° fate by inhibiting the EGF-Ras-MAPK 

pathway (Sternberg, 1988; Yoo et al., 2004) through the mitogen-activated protein (MAP) 

kinase phosphatase LIP-1 (Berset et al., 2001) (Figure 1.11). This cross-talk between EGF-

Ras-MAPK and Delta-Notch is a key to maintain a robust 2°-1°-2° spatial pattern.  However, 

a lower dose of LIN-3/EGF may also be responsive of the adoption of the 2° fate in P5.p and 

P7.P (Katz et al., 1995). Morphogen induction and signalling crosstalk act together to ensure a 

precise 2°-1°-2° pattern (Kenyon, 1995). Moreover, it has been recently shown that a switch 

from the canonical LET-60/Ras-LIN-45/Raf pathway to a LET-60/Ras-RGL-1-RAL-1 

signalling pathway can promote the 2° cell fate in P5.p and P7.p (Zand et al., 2011) (Figure 

1.11). P3.p, P4.p and P8.p do not receive enough signal (LIN-3/EGF or Delta- LIN-12/Notch) 

and adopt a 3°, non vulval fate (Hill and Sternberg, 1993). The Wnt signalling pathway, 

involved in Pn.p competence, seems to have a partially redundant role with the EGF-Ras-

MAPK pathway in Pn.p induction. Indeed, overactivation of the Wnt pathway can 

compensate vulval induction when the EGF-Ras-MAPK pathway is compromised (Gleason et 

al., 2002). The adult vulva is formed from the 22 descendants of P5.p, P6.p and P7.p 

according to an invariant and characterised lineage. 

Negative regulation of vulval induction is also ensured by synMuv (Synthetic 

Multivulva) genes. SynMuv genes are transcriptional repressors that negatively regulate lin-3 

expression in hyp7 (Cui et al., 2006; Sundaram, 2006; Thomas and Horvitz, 1999). There are 

three classes of synMuv genes: A, B and C. Two redundant sets of synMuv genes have been 

described: class A and class B. Mutation in only A or B genes leads to a normal vulval 

development whereas mutations in both A and B genes result in a Multivulva phenotype. 
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Figure 1.11. Overview of the vulval signalling network in C. elegans. Core components of the 

EGF-Ras-MAPK pathway are in the centre. The inductive signal LIN-3/EGF is sent by the anchor 

cell. This signal acts as a morphogen and is able to activate the EGF-Ras-MAPK pathway in the Pn.p 

cells.P6.p then adopts a primary (1°) cell fate. P6.p is the closest cell of the AC, thus the activation of 

the EGF-Ras-MAPK pathway is higher in this cell. In response, the Delta-Notch pathway is activated 

in P5.p and P7.p. This activation gives rise to the adoption of a secondary cell fate (2°) and to the 

repression of the EGF-Ras-MAPK pathway and upregulation of lip-1. This highly regulated process 

leads to an invariant pattern 2°-1°-2° vulval cell fate pattern. 

 

As described before there are two different vulval fates: 1° and 2°. P6.p usually adopts 

a 1° cell fate and P5.p and P7.p a 2° cell fate. During the L3 stage, the vulval lineage consists 

of three division cycles (Figure 1.12C). The two first steps are the same for the 1° and 2° 

fates. It consists in two cycles of longitudinal divisions (L) – following the AP axis. The last 

division cycle is particular for each fate. The four primary cells divide transversally (T) – 

following the left/right axis and give rise to 8 progeny cells. The secondary lineage is more 

complex: two secondary progeny cells of both P5.p and P7.p divide longitudinally (LL), one 

divides transversally (T) and the last one does not divide (U). The secondary lineage then 

gives rise to 7 progeny cells. P5.p and P7.p lineages are symmetrical. The asymmetry of each 

secondary lineage is independent of the gonad (Katz et al., 1996) but the reverse polarity of 
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P7.p is gonad-dependent and under the control of the Wnt pathway (Inoue et al., 2004). The 

fibroblast growth factor (FGF) pathway acts in concert with LIN-17/Frizzled to influence the 

localization of SYS-1, a component of the Wnt/β-Catenin asymmetry pathway (Minor et al., 

2013). The three remaining VPCs (P3.p, P4.p and P8.p) do not adopt a vulval fate. In 50% of 

the individuals of the lab reference strain N2, P3.p does not divide and fuses with the 

hypodermis during the L2 stage (F or 4° fate). In the other 50%, P3.p adopts a 3° cell fate like 

P4.p and P8.p. The 3° cell fate is a non-induced fate consisting in one division during the L3 

stage followed by fusion with the syncitial hypodermis hyp7 (SS) (Sulston and Horvitz, 

1977). During the L4 stage, the vulval cells start moving towards the anchor cell. The vulval 

invagination forms (Figure 1.12D), and cells fuse into seven toroids. The eversion occurs 

during the L4/adult moult. 
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Figure 1.12. C. elegans vulva development. The Caenorhabditis vulva develops from a subset of six 

ventral cells, P3.p to P8.p. (A) L1 stage: P3-8.p cells express the Hox gene lin-39 and acquire 

competence to form vulval tissue. (B) Late L2 stage: the anchor cell (AC) releases a LIN-3/EGF 

inductive signal. Only three of the six vulval precursor cells adopt a vulval fate. LIN-3/EGF acts as a 

morphogen and the receiving cells adopt different cell fates according to their location. P6.p receives 

the highest level of LIN-3/EGF causing it to adopt a 1° cell fate (blue). The expression of the Delta 

ligands in P6.p activates the Delta-Notch pathway in its neighbours, P5.p and P7.p. This activation 

causes them to adopt a 2° fate (red). The three remaining cells adopt a non-vulval 3° fate (yellow). 

However the fate of P3.p fate is variable and the undivided cell fuses with the hypodermis in 

approximately 50% of individuals (4° fate (brown)). The canonical Caenorhabditis vulval pattern is 

defined as 2°-1°-2°. (C) Late L3 stage: The invariant and fate-related cell division pattern leads to 22 

vulval cells. Cell divisions T: transverse (left-right) division, L: longitudinal (antero-posterior) 

division, U: undivided, SS: fusion to the epidermal syncytium (hyp7) after single division (3° fate); F: 

fusion to the syncytium in the L2 stage with no prior division (4° fate). 3° and 4° fate are non vulval. 

(D) L4 stage: vulval morphogenesis takes place. 
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Robustness of C. elegans vulval cell fate patterning 

Theoretical works show that many genetic and network features of developmental systems 

can contribute to their robustness, including: genetic epistasis and pleiotropy, redundancy, 

feedback loops and cross-talks (Meir et al., 2002; Siegal and Bergman, 2002; von Dassow et 

al., 2000; Wagner, 2005b). Due to its molecular and cellular organization, the C. elegans 

vulval developmental network displays high robustness (Figure 1.11 and Figure 1.12). This 

highly regulated process leads to an invariant pattern 2°-1°-2° of vulva cell fate.  Two 

different and non-exclusive models have been proposed to ensure this precise cell fate pattern 

formation: morphogen-based versus sequential induction. The morphogen-based model relies 

on a series of experiments demonstrating that an isolated VPC (laser ablation) can adopt a 

secondary cell fate (Katz et al., 1995). Under the control of an heat-shock promoter, lin-3/egf 

can be expressed at different doses. A high dose of LIN-3/EGF produces a 1° cell fate, an 

intermediary dose produces a 2° cell fate whereas a low dose produces a 3° cell fate. The 

sequential model relies on genetic mosaics experiments. The let-23/egfr gene is not required 

autonomously in 2° cells (Koga and Ohshima, 1995; Simske and Kim, 1995). In the absence 

of LET-23/EGFR, the 2° cell fate is adopted by cells adjacent to a 1° cell. The secondary cell 

fate can then be induced by the primary cell fate. Moreover, positives feedback loops are 

found in both EGF-Ras-MAPK and Delta-Notch pathways (Berset et al., 2005; Stetak et al., 

2006; Yoo and Greenwald, 2005). Multiple molecular cross-talks between these two pathways 

have been identified (Berset et al., 2001; Chen and Greenwald, 2004; Shaye and Greenwald, 

2002; Yoo et al., 2004). 

 

1.4.2. Evolution of Caenorhabditis vulval cell fate patterning 

Evolution within the Caenorhabditis genus 

The canonical 3°-3°-2°-1°-2°-3° vulval pattern is invariant within the Caenorhabditis genus 

(Félix, 2007; Kiontke et al., 2007). Nevertheless, P3.p division frequency varies extensively 

among the Caenorhabditis species (Delattre and Félix, 2001). Comparative analysis of more 

than 20 Caenorhabditis species reveals a decrease of P3.p competence in C. briggsae, in 

which P3.p is never competent, and close relatives (Kiontke et al., 2011). The invariable 

pattern is then considered as 3°-2°-1°-2°-3°.  

Another interesting difference between C. elegans and C. briggsae concerns the 

competence of P4.p and P8.p. In C. elegans, P4.p is more competent than P8.p (Katz et al., 
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1995) whereas in C. briggsae P8.p is the more competent (Félix, 2007). This posterior 

reduction of competence in C. elegans could be explained by mab-5/Hox7 expression in P7.p 

and P8.p (Clandinin et al., 1997) (see 1.4.1). Anchor cell ablation in the Caenorhabditis 

species reveals that the AC is necessary and sufficient for vulval induction among these 

species, except for C. sp1 in which more gonadal cells are involved (Félix, 2007; Kiontke et 

al., 2007). 

Uncovering cryptic genetic variation underlying Caenorhabditis vulval development 

Caenorhabditis vulval development robustly ensures the formation of an invariable 3°-2°-1°-

2°-3° pattern governed by intercellular signalling. As described before (see 1.2.2), such 

robustness may allow accumulation of cryptic genetic variation buffered in standard 

conditions. Revealing such cryptic genetic variation underlying vulval development among 

different isolates or species shows that an evolutionarily invariant phenotype (cell fate 

pattern) may go in hand with extensive evolutionary divergence of underlying developmental 

mechanisms. Cryptic variation in the vulval signalling network among C. elegans wild 

isolates (genotypes) has been uncovered through introgression of vulval mutations, 

measurements of pathway activities or exposure to different environments (Braendle and 

Félix, 2008; Milloz et al., 2008).  

 By introgressing vulval mutations, e.g. let-23/egfr into different wild isolates, Milloz et 

al. (2008) found that the genetic background strongly modified the penetrance of such 

mutations, revealing an interaction between the introgressed mutation and the wild genetic 

background. Moreover, EGF-Ras-MAPK pathway activity in VPCs was measured in different 

genotypes, indicating that pathway varies up to two-fold across these wild isolates (Milloz et 

al., 2008). Duveau et al. (2010) mapped such cryptic genetic variation in let-23/egfr 

penetrance among isolates, identifying nath-10 locus as responsible for this variation. The 

cryptic effect on  vulval signalling involving nath-10 seems to result from pleiotropy caused 

by nath-10 function in sperm production, and thus reproduction (Duveau and Felix, 2010). 

Cryptic genetic variation of vulval cell fate patterning was also revealed using accumulation 

of spontaneous random mutation: different C. elegans and C. briggsae isolates generated 

different frequencies and spectra of vulval patterning errors after 250 generations of mutation 

accumulation (Braendle et al., 2010). These experiments further suggested that mutational 

robustness of vulval cell fate patterning is subject to evolution. 
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The penetrance of vulval mutations was further assessed in different environments (i.e. 

temperature, liquid, starvation and dauer) (see also next sections for more details). The 

expressivity of these mutations varied with the environment revealing a mutation-

environment interaction (Braendle and Félix, 2008). Moreover,  such interactions were further 

modified depending on the genetic background examined, revealing cryptic variation in the 

form of complex genotype-mutation-environment interactions (Braendle and Félix, 2008).  

In addition, through tissue-specific perturbations of EGF-Ras-MAPK and Delta-Notch 

signalling pathways, Barkoulas and Felix (2013) have been able to determine the limits of the 

network’s robustness: they identified the first error pattern observed under each specific 

perturbation and then highlighted the quantitative interaction of these pathways in the vulval 

network (Barkoulas et al., 2013). An additional method to unravel cryptic variation of vulval 

patterning was quantification of cell fate patterns obtained after system impairment by either 

anchor cell ablation or LIN-3/EGF overexpression in different Caenorhabditis species (Félix, 

2007). These experiments revealed substantial variation in inductive signalling pathways as 

well as their time of action. Recent computational studies (Giurumescu et al., 2009; Hoyos et 

al., 2011) focused on understanding how such cryptic system differences among species may 

be explained by quantitative variation in activities of involved signalling pathways and 

network topology. 

 

1.5. Environmental sensitivity of the C. elegans vulval cell fate patterning 

1.5.1. Precision and robustness of the vulval cell fate patterning process in different 

environments 

The precision of the vulval cell fate patterning has generally been considered to be robust to 

stochastic, genetic and environmental variation, yet quantification of the actual degrees of 

robustness have rarely been measured. Braendle and Felix (2008) aimed at quantifying the 

patterning precision of C. elegans N2 and other wild isolates in different environmental 

conditions (i.e. starvation, dauer passage, different temperatures, liquid). Although 

environmental variation induced certain vulval defects and variants, pattern formation was 

very robust to such perturbations. Assessing the vulval pattern of 6000 individuals, revealed 

that defects leading to a non-functional vulva were very rare (0.25%) across environments  

(Braendle and Félix, 2008). These observations suggest that vulval cell fate patterning is 

indeed robust to various environmental conditions. 



39 
 

 

1.5.2. Environmental sensitivity of the C. elegans vulval network 

Despite this apparent robustness in vulval cell fate pattern generation in the presence of 

environmental variation, several studies show that underlying signalling pathways are 

environmentally sensitive. Ferguson and Horvitz (1985) initially reported that the penetrance 

of several loss-of-function mutations in genes of the EGF-Ras-MAPK signalling cascade (lin-

2, lin-3, lin-7, lin-24, lin-33 and let-23) that usually result in vulval hypoinduction was 

reduced after starvation or dauer passage (Ferguson and Horvitz, 1985). Braendle and Felix 

(2008) later quantitatively confirmed that the hypoinduced vulval phenotype (Vulvaless) of 

mutations in the EGF-Ras-MAPK (e.g. lin-3, let-23) was suppressed by starvation or dauer 

passage (Braendle and Félix, 2008). Using reporter genes they detected significant differences 

in the activity of signalling pathways in these different environments, particularly between 

standard and starvation conditions. In both wild-type and lin-3/egf(rf) mutant background they 

observed an upregulation of egl-17::cfp (EGF-Ras-MAPK reporter) expression in P6.p and an 

upregulation of lip-1::gfp (Delta-Notch reporter) expression in P5.p and P7.p under starvation 

conditions. These observations suggest that specific environmental conditions, such as 

starvation, may increase activities of vulval signalling pathways. Contrarily, compromising 

Wnt pathway activity through bar-1/-Catenin(null) that causes mild hypoinduction in the 

standard environment was strongly aggravated in starvation conditions. This result indicated 

that Wnt activity for vulval induction could be particularly important in starvation conditions 

and also contribute to the observed starvation suppression of Vulvaless mutations. Thus, 

starvation may modulate multiple, partially redundant vulval signalling pathways (Figure 

1.13). 
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Figure 1.13. External and internal cues influencing C. elegans vulva development. Summary of 

studies reporting environmental and metabolic modification of C. elegans vulval induction. In purple: 

Braendle and Félix, 2008, in orange: Nakdimon et al., 2012, in blue: Moghal et al., 2003 and in red: 

Battu et al., 2003. See text. 

 

Several additional studies have examined environmental modulation of vulval 

signalling pathways. Moghal et al. (2003) described liquid suppression of Vulvaless mutations 

(Moghal et al., 2003). They first showed a rare occurrence of ectopic vulval tissue in egl-

30(tg26gf) (Doi and Iwasaki, 2002) suggesting that activated EGL-30/Gq could promote 

vulval induction. They examined the effect of this overactivation in sensitized mutant 

backgrounds (e.g. lin-3/egf, let-23/egfr or let-60/Ras). The severity of these Vulvaless 

mutations was reduced. By driving egl-30/Gq expression, they demonstrated that EGL-

30/Gq activity was required in neurons. This suppression of Vulvaless mutations was also 

shown to require muscle excitation through the L-type voltage gated calcium channel EGL-

19, to act parallel or downstream of LET-60/Ras and to be sensitive to functional levels of 
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BAR-1/-Catenin. In fact, a bar-1(mu63) weak mutation was able to block the suppression of 

let-23(sy-1) by egl-30(tg26gf). This novel pathway capable of inducing vulval cells through 

excitable cells and muscles could be linked to the suppression of Vulvaless mutations that 

they observed in liquid environment, suggesting that EGL-30/Gq, EGL-19/ L-type voltage 

gated calcium channel and BAR-1/-Catenin are required for liquid stimulation of vulval 

induction (Figure 1.13).  

 

Battu et al. (2003) further observed that starvation may negatively regulate the EGF-

Ras-MAPK pathway through chemosensory signalling mediated by the GPCR SRA-13 (Battu 

et al., 2003). Starved let-60(n1046gf) animals exhibited a reduced penetrance of the 

Multivulva phenotype, and this effect was suppressed in sra-13/gpcr(o) animals as well as in 

other chemosensory defective mutants. Moreover, a recent study demonstrated that metabolic 

cues can directly influence vulva development. Further genetic analysis by Nakdimon et al. 

(2012) revealed that DAF-2/InsR stimulates whereas the DAF-18/PTEN inhibits EGF-Ras-

MAPK pathway (Nakdimon et al., 2012). Interestingly the action of DAF-18/PTEN seems to 

be independent of the canonical Insulin signalling and other PI3K, such as age-1, vps-34 or 

piki-1. DAF-18/PTEN has been shown to negatively regulate the EGF-Ras-MAPK pathway 

downstream of SOS-1/SOS1 and upstream or at the level of MPK-1/MAPK (Figure 1.13).

  

These studies show how an apparent robust developmental system, involving highly 

conserved signalling pathways, may exhibit substantial environmental flexibility. C. elegans 

vulval induction may be modulated by multiple distinct environmental factors affecting this 

process through different sensory and metabolic pathways, which ultimately target different 

signalling pathways (Figure 1.13). However, many questions remain to be addressed to fully 

understand how vulval development molecularly integrates environmental information and 

what the functional consequences of such environmental sensitivity are. 
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1.6. Objectives of PhD research project 

How genetic and environmental factors interact during development is a key question in 

biology, yet little is known about how molecular and cellular processes integrate 

environmental information. C. elegans vulva development is an extensively studied and well-

characterized process, which shows extensive environmental sensitivity. In my PhD project, I 

took advantage of this model system to study specific interactions between the environment 

and molecular signalling pathways. This project also had the objective to integrate 

evolutionary aspects of this system, ultimately aimed at understanding whether and how the 

observed environmental variability of molecular signals contribute to the phenotypic 

robustness of the system. The specific objectives of this project were: 

 

(1) to understand how C. elegans modulates vulval induction in response to nutrient 

deprivation, i.e. starvation. Using primarily genetic analyses and quantitative phenotyping of 

vulval induction, I addressed how starvation signals are genetically transduced and how they 

modulate specific signalling activities. 

 

(2) to quantify the evolution of environmental sensitivity of the Caenorhabditis vulval 

network. Using different C. elegans and C. briggsae strains, I characterized how strong 

thermal perturbations disrupt the precision of patterning process and compare these effects 

between strains and species. 
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1.7. Outline of PhD thesis 

The present Chapter 1 introduces the motivation and rationale of my PhD project. I present 

some relevant key concepts on environmental sensitivity of development, and a more detailed 

discussion of known mechanisms of C. elegans responses to environmental variation, 

followed by a summary of current insights on the vulval developmental system. In Chapter 2, 

I present my analysis of how nutrient deprivation modulates activity of vulval signalling 

pathways, in particular, the EGF-Ras-MAPK pathway. In Chapter 3, I present results of a 

project that aimed to explore how the environmental sensitivity of the vulval developmental 

system evolves within and between Caenorhabditis species. In Chapter 4, I discuss and place 

my findings into a more general context and I outline ideas for future research projects.
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2. Nutrient deprivation modulates EGF-Ras-MAPK pathway 

activity during C. elegans vulval induction 

 

2.1. Introduction 

Animal development is inherently sensitive to environmental variation. Moreover, specific 

environmental conditions, such as nutrient availability or temperature, may reflect cues 

controlling growth and other critical developmental decisions, such as developmental timing, 

diapause entry and production of alternative phenotypes (Braendle et al., 2008). 

Developmental integration of environmental cues has become increasingly understood, 

primarily in the context of nutritional and metabolic regulation of growth and lifespan, e.g. in 

Drosophila (Geminard et al., 2006) and C. elegans (Fielenbach and Antebi, 2008). In contrast 

to the understanding of such instructive environmental cues in development, very little is 

known about whether and how environmental variation impacts other, highly diversified 

developmental processes, seemingly unaffected by the environment as they maintain their 

function and corresponding phenotypic outputs when facing such variation. However, such 

stability of the phenotypic output may go in hand with an underlying flexibility of 

developmental mechanisms in changing environmental (and genetic) contexts (Felix and 

Wagner, 2008; Greenspan, 2001). 

C. elegans vulval development provides one clear example of a developmental 

process, which robustly generates an invariant phenotypic output (cell fate pattern) although 

activities and interactions of underlying molecular signalling pathways are environmentally 

sensitive (Braendle and Félix, 2008). C. elegans vulval cell fate patterning involves a network 

of highly conserved signalling pathways, EGF-Ras-MAPK, Delta-Notch and Wnt pathways 

that reliably establish a stereotypical cell fate pattern in hypodermal vulval precursor cells 

(VPCs) (Félix, 2012a; Sternberg, 2005) (Figure 2.1A). The VPCs represent a subset of Pn.p 

cells, P3.p to P8.p, competent to adopt vulval cell fates. Competence of VPCs is due to Wnt-

regulated expression of the Hox gene lin-39 preventing them from fusion with the 

surrounding hypodermis (Eisenmann et al., 1998). The key events of the vulval patterning 

process take place from mid L2 to early L3 stages and involve intercellular signalling between 

the gonadal anchor cell (AC) and the VPCs (Figure 2.1A,B).  
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Figure 2.1. C. elegans vulval cell fate patterning. The Caenorhabditis vulva develops from a subset 

of set six ventral Pn.p cells, P3.p to P8.p. (A) Late L2 stage/early L3 stage: the anchor cell (AC) 

releases the morphogen-like LIN-3/EGF inductive signal. Detailed signalling in (B). P6.p adopts a 1° 



47 
 

cell fate (blue) via EGFR-Ras-MAPK activation, which via secreted Delta ligands activates Delta-

Notch signalling in its neighbours, P5.p and P7.p. They adopt a 2° vulval cell fate (red). The 

competent cells, P4.p and P8.p, adopt a non-vulval 3° fate (yellow), while the fate of P3.p fate varies 

among individuals, either adopting a 3° fate or a 4° fate, also referred to as F(used) fate  (grey). In a 

total of six potential vulval precursor cells, only P5.p, P6.p and P7.p adopt actual vulval cell fates in a 

stereotypical 2°-1°-2° sequence. Vulval cell divisions occur during the L3 stage and generate 22 vulval 

cells. The fate assignments correspond to stereotypical cell division patterns that are invariant (with 

exception of P3.p). T: transverse (left-right) division, L: longitudinal (antero-posterior) division, U: 

undivided, SS: fusion to the epidermal syncytium (hyp7) after a single division (3° fate); F: fusion to 

the syncytium in the L2/L3 stage with no prior division (4° fate). (B) Vulval development-detailed 

signalling pathways: the anchor cell (AC) releases a LIN-3/EGF inductive signal. LIN-3/EGF acts as a 

morphogen and the receiving cells adopt different cell fates according to their location. P6.p receives 

the highest level of LIN-3/EGF causing it to adopt a 1° cell fate. The expression of the Delta ligands in 

P6.p activates the Delta-Notch pathway in its neighbours, P5.p and P7.p. This activation causes them 

to adopt a 2° fate (red) and represses the primary fate. A switch from the canonical LET-60/Ras-LIN-

45/Raf pathway to a LET-60/Ras-RGL-1-RAL-1 signalling pathway can also promote the 2° cell fate 

in P5.p and P7.p. (C) Schematic representation of previously reported environmental and metabolic 

effects on C. elegans vulval induction (for details, see introduction). Colour coding: Braendle & Félix 

(2008) (purple), Battu et al. (2003) (red), Moghal et al. (2003) (blue),  Nakdimon et al. (2012) 

(orange). 

 

In brief, LIN-3/EGF ligand released from the AC induces the primary (1°) vulval cell 

fate by activating the EGF-Ras-MAPK pathway in P6.p, which receives the highest dose of 

this signal (Hill and Sternberg, 1992). EGF-Ras-MAPK activation induces production of a 

lateral signal via the Delta-Notch pathway, promoting 2° and inhibiting 1°cell fates in the 

neighbouring cells, P5.p and P7.p  (Berset et al., 2001; Greenwald et al., 1983; Sternberg, 

1988; Yoo et al., 2004). Moreover, it has been recently shown that a switch from the 

canonical LET-60/Ras-LIN-45/Raf pathway to a LET-60/Ras-RGL-1-RAL-1 signalling 

pathway can promote the 2° cell fate in P5.p and P7.p (Zand et al., 2011). The remaining three 

VPCs, although competent, adopt non-vulval cell fates (3° for P4.p and P8.p, and 3° or 4° for 

P3.p) as they do not receive sufficient doses of either signal. In addition to EGF-Ras-MAPK 

and Delta-Notch pathways, the canonical Wnt pathway, regulating vulval competence through 

expression of LIN-39/Hox5 in VPCs, may also be involved in vulval induction: overactivation 

of the Wnt pathway, e.g. through pry-1/Axin mutation, increases vulval induction of strong 

reduction-of-function mutations in the EGF-Ras-MAPK cascade (Braendle and Felix, 2008; 
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Gleason et al., 2002). C. elegans vulval development thus involves a regulatory network of 

three key molecular cascades and their cross-talk ensures a reliable and precise patterning 

output in the presence of both genetic and environmental perturbations (Braendle et al., 2010; 

Braendle and Felix, 2008; Félix and Barkoulas, 2012; Gleason et al., 2002; Hoyos et al., 2011; 

Milloz et al., 2008).  

Despite the apparent robustness to environmental perturbations, multiple reports 

demonstrate that the C. elegans vulval cell fate patterning process is responsive to 

environmental and physiological inputs (Braendle and Felix, 2009; Braendle et al., 2008; 

Félix, 2012a; Félix and Barkoulas, 2012; Sternberg, 2005) (summarized in Figure 2.1C). 

Various Vulvaless mutations (lin-2, lin-3, lin-7, lin-24, lin-33 and let-23) were found to be 

suppressed by starvation and/or dauer passage (Ferguson and Horvitz, 1985), which suggested 

that key signalling cascades, such as EGF-Ras-MAPK, may be environmentally sensitive. 

Detailed studies later confirmed that specific chemical elements, such as zinc (Bruinsma et 

al., 2002; Yoder et al., 2004), and growth conditions indeed modulate vulval inductive 

signalling: Moghal et al. (2003) reported that liquid culture increases vulval inductive signals 

via the neuronally expressed heterotrimeric Gq protein, EGL-30. The EGL-30/Gq signal is 

transduced via the voltage-gated calcium channel, EGL-19, in muscle cells and its positive 

effect on vulval induction is mediated by Wnt signalling via BAR-1/β-Catenin (Moghal et al., 

2003). Battu et al. (2003) further found evidence for a starvation signal that negatively affects 

vulval induction via chemosensory perception. In this study, starvation conditions were found 

to suppress vulval hyperinduction, for example, induced by let-60/Ras(gf). This negative 

starvation effect requires the G-protein-coupled receptor, SRA-13, to modulate EGF-Ras-

MAPK activity (Battu et al., 2003). Consistent with a sensory-mediated nutritional 

modulation of vulval signalling, compromised DAF-2 Insulin signalling mimics the negative 

starvation effects on vulval induction (Battu et al., 2003; Nakdimon et al., 2012). A recent 

study (Nakdimon et al., 2012) further indicates that DAF-18/PTEN negatively regulates EGF-

Ras-MAPK activity during vulval induction, suggesting that key metabolic and sensory 

pathways can interact with vulval signalling pathways. Braendle & Félix (2008) examined the 

effects of diverse environmental conditions (different temperatures, starvation, liquid culture, 

dauer passage) on vulval induction using a large set of known mutations in EGF-Ras-MAPK, 

Delta-Notch and Wnt pathways. A majority of mutations showed differential penetrance 

depending on the environment, with starvation and dauer environments showing the most 

pronounced effects (Braendle and Félix, 2008). Consistent with the results of Ferguson & 

Horvitz (1985), yet contrary to the results obtained by Battu et al (2003), starvation increased 
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vulval inductive levels, leading to drastic suppression of the Vulvaless phenotypes caused by 

lin-3/egf(rf) and let-23/egfr(rf) mutations (Braendle and Félix, 2008). Genetic analysis 

suggests that this starvation signal acts at the level or upstream of LET-23EGFR (Braendle 

and Félix, 2008). That starvation positively affects vulval induction was confirmed by 

quantification of pathway activities in wild type animals, which indicates that EGF-Ras-

MAPK pathway activity was significantly increased in the 1° cell P6.p whereas Delta-Notch 

activity was  increased in 2° cells, P5.p and P7.p (Braendle and Félix, 2008). In addition, the 

same study found that this starvation effect potentially modulate vulval induction via the Wnt 

pathway as vulval induction was strongly compromised in starved bar-1/-Catenin(0) 

animals. 

 In summary, previous results suggest that starvation signals may have both positive 

(Braendle and Félix, 2008; Ferguson and Horvitz, 1985) and negative (Battu et al., 2003) 

effects on vulval induction. While negative starvation effects have been shown to be mediated 

by the sensory system (Battu et al., 2003), it has not been studied how positive starvation 

effects are perceived and transduced to modulate vulval induction. In addition, how these 

apparently antagonistic starvation effects emerge and interact remains unclear. 

Here we aimed to characterize in detail how starvation signals modulate C. elegans 

vulval cell fate patterning. In this study, we present quantitative analyses of starvation effects 

on lin-3/egf(rf) mutations, demonstrating that this environmental stimulus has a strong 

positive effect on vulval induction during the entire period of vulval induction, spanning from 

early L2 to early L3 stages. We show that such starvation suppression of lin-3/egf(rf) does not 

rely on Wnt signalling as proposed by Braendle & Felix (2008) and in contrast to the 

observed effects of liquid culture on vulval induction (Moghal et al., 2003). Testing various 

candidate mechanisms that could transduce and elicit observed starvation effects, we find that 

compromised sensory signalling of DAF-2 Insulin or DAF-7 TGF- does not abolish lin-

3/egf(rf) starvation suppression. Instead, nutrient-deprived animals induced by mutation of the 

intestinal peptide transporter pept-1 (in a food-rich environment) strongly mimicked lin-

3/egf(rf) starvation suppression, and we find that reduction of pept-1 activity is sufficient to 

increase both EGF-Ras-MAPK and Delta-Notch pathway activities. These and additional 

experiments indicate that positive starvation effects on vulval induction occur via modulation 

of the central nutrient-sensing let-363/TOR pathway, acting at the level or upstream of LET-

23/EGFR. Taken together, our results present evidence for a cross-talk between TOR and 

EGF-Ras-MAPK signalling during C. elegans vulval induction. 
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2.2. Material and Methods 

2.2.1. Strains and general procedures 

Strains were maintained on NGM agar plates (55mm petri dishes, 1.7% agar) carrying a lawn 

of E. coli OP50 (Brenner, 1974; Wood, 1988b). Animals were grown at 20°C unless indicated 

otherwise and both mutant and wild type strains were freshly thawed prior to experiments. 

Our analysis included the C. elegans N2 wild-type reference strain and the mutations listed 

below, all of which had been previously isolated and described. 

LGI: egl-30(ad805)  

LGII: let-23(sy1)  

LGIII: daf-7(e1372), mpk-1(ku1), daf-2(e1370), lin-39(n2110), zhIs4 [lip-1::GFP] 

LGIV: lin-3(e1417), lin-3(n378), lin-45(sy96) 

LGV: arIs92[egl-17p::NLS-CFP-lacZ, unc-4(+), ttx-3::GFP]  

LGX: daf-12(rh61rh411), bar-1(mu63), bar-1(ga80), sem-5(n2019), pept-1(Ig601) 

 

2.2.2. Scoring of vulval phenotypes  

The vulval phenotype was observed using Nomarski optics in early to mid L4 individuals, 

anaesthetized with sodium azide (Wood, 1988b). We counted the Pn.p progeny and 

determined their fates as previously described (Braendle and Felix, 2008; Sternberg and 

Horvitz, 1986). 

 

2.2.3. Experimental environments 

Experimental populations were age-synchronized by hypochlorite treatment and liquid arrest 

(24 hours) at the beginning of the experiment. Individuals examined in different environments 

or of different strains were always scored in parallel and derived from populations kept in 

identical environmental conditions over at least two generations.  

 Starvation treatment: L1 larvae were grown on standard NGM plates until they 

reached the mid L2 stage (23 hours after L1 transfer back on NGM seeded plates) unless 

mentioned otherwise.  At this stage, animals were washed three times with sterile M9 buffer 

and transferred on starvation plates, i.e. unseeded NGM plates containing 1mg/ml of 

ampicillin to prevent bacterial growth. After 48 hours, animals were transferred back to 
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regular NGM plates seeded with E. coli OP50 and the vulval phenotype was scored when 

animals had reached the early or mid L4 stage (approximately 15-20 hours later).  Control 

animals were kept on NGM plates seeded with E. coli OP50 from L1 to L4. This starvation 

treatment drastically reduced, yet did not completely stop, developmental progression of 

worms: after 48 hours most animals had developed into the early to mid-L3 individuals. Note 

that this starvation treatment did not induce dauer formation. 

 

2.2.4. RNAi experiments 

RNAi by bacterial feeding was performed as described by Timmons et al. (2001). The HT115 

bacterial strain carrying the empty RNAi expression vector L4440 served as a negative 

control. We used RNAi plates composed of standard MGN with 50ug/ml of ampicillin and 

1mM of IPTG. Late L2/ early L3 individuals were transferred on RNAi bacteria. The vulval 

phenotype was scored in the L4 of the F1 generation. To assess starvation response late L2/ 

early L3 individuals were maintained on RNAi plates for 5 generations prior to the starvation 

exposure. L4 individuals were transferred to fresh plates to avoid overgrowing by the next 

generation. All the RNAi clones were from Julie Ahringer's RNAi library (Kamath and 

Ahringer, 2003; Kamath et al., 2003) or Marc Vidal's RNAi library (Rual et al., 2004). The 

following RNAi clones were used: pept-1 (clone K04E7.2, Ahringer Library), daf-16 (clone 

R13H8.1, Ahringer Library), daf-18 (clone T07A9.6, Ahringer Library), aak-2 (clone 

T01C8.1, Ahringer Library) and rsks-1 (clone Y47D3A.16, Vidal ORFeome Library). 

 

2.2.5. Quantification of pept-1 RNAi effects on Ras and Notch pathway activities 

To quantify EGF-Ras-MAPK and Delta-Notch pathway activities in response to pept-1 RNAi 

we used previously generated transgenic strains containing integrated transcriptional reporter 

constructs: the JU480 strain carries the egl-17::cfp-LacZ transgene (EGF-Ras-MAPK activity 

reporter) derived from the strain GS3582 (Yoo et al., 2004) and the AH142 strain carries the 

lip-1::gfp transgene (Delta/Notch activity reporter) (Berset et al., 2001). Late L2/ early L3 

individuals were randomly allocated to pept-1 RNAi (K04E7.2 clone) or control (L4440 

empty vector) plates. EGF-Ras-MAPK and Delta-Notch pathway activities were measured in 

lethargus 2 / early L3 of the F1 generation.  
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We quantified reporter gene activity in VPCs as previously described (Braendle and Félix, 

2008). In brief, CFP or GFP signal quantification was performed when individuals had 

reached the stage of lethargus L2/L3 or early L3. Pn.p cells of live, anesthetized individuals 

were first identified using DIC imaging, followed by measurement of pixel signal intensity in 

P5.p, P6.p and P7.p for each individual. Images were acquired using an Olympus BX61 

microscope at 40X magnification, equipped with a Coolsnap HQ2 camera. To quantify signal 

intensity of each cell, we first selected a fixed sub-region within nuclei of target VPCs and 

then measured the mean signal intensity of this region. After background subtraction, we used 

the mean signal intensity as a measure of the corresponding signalling pathway activity in 

each Pn.p. 

 

2.2.6. Statistical Analyses 

Data were transformed (e.g. Box-Cox- or log-transformed) where necessary to meet the 

assumptions of ANOVA procedures (homogeneity of variances and normal distributions of 

residuals) (Sokal and Rohlf, 1981). For post hoc comparisons, Tukey’s honestly significant 

difference (HSD) procedure was used. Statistical tests were performed using the software 

programs JMP 9.0 or SPSS 19.0 for Macintosh. 

 

2.3. Results 

2.3.1. Starvation suppresses the Vulvaless phenotype of lin-3/egf(rf) mutations  

We first re-examined the effect of L2 starvation on reduction-of-function alleles of lin-3/egf. 

The Vulvaless phenotypes caused by lin-3(e1417) and lin-3(n378) were strongly suppressed 

by starvation (Figure 2.2A,D), consistent with previous results (Braendle and Félix, 2008). 

Starvation resulted in increased mean number of induced vulval cells and a higher proportion 

of individuals with a canonical 2°-1°-2° cell fate pattern (P5.p to P7.p), and these suppression 

effects were consistently stronger in lin-3(n378) compared to lin-3(e1417) (Figure 2.2A-F, 

and data not shown). In lin-3(n378) individuals, the proportion of individuals with complete 

induction increased from 12% in food to 50% after starvation, and most of these individuals 

showed a correct 2°-1°-2° pattern for P5.p to P7.p (Figure 2.2E,F).  

 We next asked how 48h starvation exposure at different developmental time points 

affects suppression of lin-3(n378) (Figure 2.2G). Starvation exposure consistently increased 
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vulval induction from late L1/early L2 to early L3, indicating that starvation sensitivity 

extends over the entire period of the vulval cell fate patterning process. Exposing lin-3(n378) 

animals to different durations of starvation (0-120h) in the mid L2 stage shows similarly high 

suppression of the Vulvaless phenotype after 48-120h of starvation compared to an 

intermediate suppression after 19-24h of starvation, yet no suppression was observed after a 

brief (2h) exposure to starvation or early L1 starvation (12h) in liquid medium (Figure 2.2H). 

 

Figure 2.2. Starvation suppresses the Vulvaless phenotype caused by lin-3/egf(rf) mutations. (A-

F) Starvation effects on vulval induction of lin-3/egf(rf) mutations. Bars indicate the mean number of 
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induced vulval cells, also referred to as the vulval index (WT=3 cells induced). (A) Starvation 

significantly increased vulval induction of lin-3(e1417) animals relative to control food conditions 

(ANOVA, F1,66 = 9.97, P = 0.0024). (B, C) Schematic representation of lin-3(e1417) fate patterns of 

P4.p to P8.p in (B) food versus (C) starvation conditions. (D) Starvation significantly increased vulval 

induction of lin-3(n378) animals relative to controls (ANOVA, F1,66 = 33.75, P < 0.0001). (E, F) 

Individual lin-3(n378) fate patterns of P4.p to P8.p in (G) food versus (H) starvation conditions. (G) 

Differences in vulval induction of lin-3(n378) animals exposed to starvation (48 hours) at different 

developmental stages. Starvation suppression of lin-3(n378) differed significantly between exposed 

developmental stages (ANOVA, F5,239 = 14.02, P < 0.0001), with strongest effects observed in mid L2 

to early L3 stages. Values with different letters indicate significant differences (Tukey’s HSD). (H) 

Effects of starvation duration on vulval induction of lin-3(n378). Animals (derived from egg-laying 

windows) were exposed to starvation at the mid L2 stage for different time periods except for the first 

treatment where animals were starved in liquid for 12 hours directly after hatching (N=80 per 

treatment). Starvation duration significantly affected vulval induction (ANOVA, F5,239 = 14.02, P < 

0.0001) with strongest suppression of lin-3(n378) occurring at 48-120 hours of starvation. Values with 

different letters indicate significant differences (Tukey’s HSD). 

Vulval cell fate patterns of P4.p to P8.p (B,C,E,F) were, whenever feasible, separately 

inferred for Pn.pa and Pn.pp in cases of half-induced fates. Each line represents the vulval pattern of a 

single individual, and individuals are ordered from highest to lowest index (I) of vulval induction. 

Black lines separate individuals with complete vulval induction (I=3), partial induction (0 < I <3) and 

no induction (I=0). Colour coding of vulval cell fates (1°: blue, 2°: red) and non-vulval cell fates (3°: 

yellow, 4°: grey). Non-induced cells that could not be clearly assigned a 3° or 4° fate are coded in 

white. 

Numbers displayed in bars represent the number of individuals scored; error bars indicate ± 1 

SEM. 

 

2.3.2. Wnt pathway activity does not contribute to starvation suppression of lin-3/egf(rf) 

mutations 

Previous results suggested that the Wnt pathway may contribute to the suppression of lin-

3/egf(rf) alleles under starvation conditions (Braendle and Félix, 2008), consistent with the 

observation that Wnt pathway overactivation may compensate for reduced EGF-Ras-MAPK 

activity (Gleason et al., 2002). Hypoinduction of the null mutant of bar-1/-Catenin (allele 

ga80) (Eisenmann et al., 1998) was strongly aggravated under starvation conditions, and the 

Vulvaless phenotype of lin-3(n378); bar-1(ga80) double mutant did not show any suppression 

by starvation (Braendle and Félix, 2008). These results implied that Wnt pathway activity is 
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required for starvation suppression of lin-3/egf(rf); however, it remained unclear to what 

extent starvation compromised vulval induction versus competence in bar-1(ga80) because in 

this study animals were exposed to starvation in the late L1 stage (Braendle and Félix, 2008). 

To distinguish between these two different scenarios, we exposed bar-1(ga80) animals to 

starvation in late L1 versus mid L2 stage and found that mid L2 starvation did not alter vulval 

induction whereas late L1 starvation caused strong hypoinduction (Figure 3A), primarily due 

to Pn.p fusion, i.e. loss of competence of vulval precursor cells, including P5.p to P7.p (Figure 

3B-E).  

 

Figure 2.3. Wnt pathway activity does not contribute to starvation suppression of lin-3/egf(rf) 

mutations. (A-E) Starvation effects on vulval induction of bar-1(ga80) in late L1 versus mid L2. (A) 
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Time point of starvation exposure had a significant effect on bar-1(ga80) vulval induction (ANOVA, 

F2,121 = 50.27, P < 0.0001), with a significantly reduced vulval index for starvation-exposed late L1 

individuals whereas mid L2 starvation had no effect on vulval induction. Bars indicate the mean 

number of induced vulval cells (WT=3 cells induced). (B) Proportion of Pn.p adopting 4° (fused) fate 

in control, starvation-exposed late L1 versus starvation-exposed mid L2 bar-1(ga80) individuals. The 

proportions of 4° fates for each of P5.p to P7.p were significantly higher after L1 starvation (P5.p: 

37%, P6.p: 23%, P7.p: 44%) compared to L2 starvation (P5.p: 12%, P6.p: 0%, P7.p: 3%). (C-E)  

Individual bar-1(ga80) fate patterns of P4.p to P8.p in (C) food (control) conditions, (D) after late L1 

starvation and (E) after mid L2 starvation. (F) Starvation increased vulval induction of lin-3(n378); 

bar-1(mu63) relative to food (control) conditions (ANOVA, F1,98 = 18.84, P < 0.0001). (G) Starvation 

increased vulval induction of egl-30(ad805); lin-3(n378) relative to food (control) conditions 

(ANOVA, F1,59 = 7.28, P = 0.0091). 

Vulval cell fate patterns of P4.p to P8.p (C-E) were, whenever feasible, separately inferred for 

Pn.pa and Pn.pp in cases of half-induced fates. Each line represents the vulval pattern of a single 

individual, and individuals are ordered from highest to lowest index (I) of vulval induction. Black 

lines separate individuals with WT vulval induction (I=3), partial induction (0 < I <3) and no induction 

(I=0). Colour coding of vulval cell fates (1°: blue, 2°: red) and non-vulval cell fates (3°: yellow, 4°: 

grey). Non-induced cells that could not be clearly assigned a 3° or 4° lineage are coded in white. 

Numbers displayed in bars represent the number of individuals scored; error bars indicate ± 1 SEM.  

 

This result shows that late L1 starvation aggravates bar-1(ga80) fusion defects prior to 

vulval induction, yet L2 starvation, i.e. the starvation-sensitive time period of lin-3/egf(rf) 

mutations, does not alter inductive levels of this mutant. We conclude that starvation has no 

effect on vulval induction when Wnt pathway activity is compromised, and that starvation 

suppression of lin-3/egf(rf) is not mediated by the Wnt pathway.  

 A previous study showed that liquid culture of animals suppressed the Vulvaless 

phenotype of lin-3/egf(rf) and other EGF-Ras-MAPK mutations (Moghal et al., 2003) through 

the Wnt pathway. This environmental modulation is based on activation of the heterotrimeric 

Gαq protein, EGL-30, which acts with muscle-expressed EGL-19 to promote vulval induction 

downstream or in parallel to LET-60/Ras in a Wnt-dependent manner (Moghal et al., 2003). 

This liquid effect on vulval induction is abolished when Wnt pathway is mildly compromised 

(Moghal et al., 2003), i.e. in a bar-1(mu63) context (Maloof et al., 1999). In contrast, we 

found that starvation suppression of lin-3(n378) did not change in a bar-1(mu63) background 

(Figure 3F), consistent with our observations of bar-1/-Catenin(0) (Figure 3A). Furthermore, 

loss of egl-30/Gq (Brundage et al., 1996) did not alter starvation suppression of lin-3(n378) 
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(Figure 3G). Therefore, the positive starvation effects on vulval induction are not Wnt-

dependent and seem to be distinct from previously observed environmental effects (liquid) 

promoting vulval induction (Moghal et al., 2003). 

 

2.3.3. Starvation suppression of lin-3/egf(rf) acts independently of sensory signalling 

mediated by Insulin and TGF-β pathways 

To address how starvation conditions are transduced to affect vulval induction, we tested for 

an implication of TGF-β and Insulin signalling: two key signalling pathways involved in 

sensory transduction of environmental stimuli, and which specifically mediate diverse 

developmental and metabolic responses to changes in nutritional status, such as dauer 

formation (Fielenbach and Antebi, 2008). Reducing TGF-β pathway activity, did not abolish 

starvation suppression as shown by the double mutant daf-7(e1372); lin-3(e1417) (Figure 

2.4A).  Similarly, reduced activity of the DAF-2 Insulin receptor caused by the daf-2(e1370) 

mutation did not abolish starvation suppression of lin-3(n378) (Figure 2.4B). However, daf-

2(e1370) aggravated the Vulvaless phenotype of lin-3(n378) in food conditions, consistent 

with previous observations that reduced Insulin signalling may reduce levels of vulval 

induction in sensitized backgrounds, such as let-60/Ras(gf) (Battu et al., 2003; Nakdimon et 

al., 2012). daf-2(e1370) reduced the degree of lin-3(n378) vulval induction very similarly in 

both food and starvation environment, indicating that DAF-2 Insulin and positive starvation 

effects on vulval induction behave additively, i.e. these effects act in parallel. 

To confirm that TGF-β and Insulin signalling do not mediate positive starvation 

effects on vulval induction, we further examined the role of a central genetic component, the 

DAF-12 steroid receptor, integrating downstream effects of these two signals (Fielenbach and 

Antebi, 2008) using the daf-d mutant, daf-12(rh61rh411)  (Antebi et al., 2000). Consistent 

with our previous results, lin-3(n378); daf-12(rh61rh411) did not abolish starvation 

suppression of the Vulvaless phenotype (Figure 2.4C).  

Taken together, these results indicate that Insulin and TGF-β pathways, and thus by 

implication, associated environmental signal transduction via these pathways, do not play a 

significant role in positive starvation effects on vulval induction. Yet, we confirm previous 

observations (Battu et al., 2003; Nakdimon et al., 2012) that reduced DAF-2 Insulin activity 

lowers vulval induction in sensitized backgrounds, such as lin-3/egf(rf) in both food and 

starvation conditions. Nevertheless, we still observed strong, albeit slightly reduced, 

starvation suppression of the Vulvaless phenotype in daf-2(e1370); lin-3(n378), suggesting 
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that the negative starvation signal is significantly weaker than the positive starvation signal. 

Therefore, while Insulin signalling and sensory perception seem to mediate a mild negative 

starvation signal (Battu et al., 2003; Nakdimon et al., 2012), we provide evidence for an 

additional, strong positive starvation signal acting independently of Insulin and sensory 

signalling. Consequently, starvation triggers multiple signalling events acting antagonistically 

on C. elegans vulval induction.  

 

Figure 2.4. Starvation suppression of lin-3/egf(rf) acts independently of sensory signalling 

mediated by Insulin and TGF-β pathways. (A) Starvation effects on daf-7(e1372); lin-3(ne1417) 
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versus lin-3(e1417). Starvation increased vulval induction irrespective of genotype (ANOVA, effect 

genotype: F1,128 = 0.76, P = 0.38, effect environment: F1,128 = 15.41, P < 0.0001, interaction genotype X 

environment: F1,128= 0.66, P = 0.42). (B) Starvation effects on daf-2(e1370); lin-3(n378) versus lin-

3(n378). daf-2(e1370) significantly reduced vulval induction in both control and starvation 

environment, yet starvation still significantly increased vulval induction of lin-3(n378) and daf-

2(e1370); lin-3(n378) (ANOVA, effect genotype: F1,196 = 32.87, P < 0.0001, effect environment: F1,133 

= 98.25, P < 0.0001, interaction genotype X environment: F1,196 = 0.10, P = 0.75). (C) Starvation 

effects on lin-3(n378); daf-12(rh61rh411) versus lin-3(n378). Starvation increased vulval induction 

irrespective of genotype (ANOVA, effect genotype: F1,141 = 3.29, P = 0.07, effect environment: F1,141 = 

38.23, P < 0.0001, interaction genotype X environment: F1,141= 0.14, P = 0.70)  

Values with different letters indicate significant differences (Tukey’s HSD). Numbers 

displayed in bars represent the number of individuals scored; error bars indicate ± 1 SEM.  

 

2.3.4. Disruption of the intestinal peptide transporter pept-1 mimics starvation 

suppression of lin-3/egf(rf) mutations 

We next tested how disruption of central genetic elements integrating C. elegans nutritional 

and metabolic responses (aak-2/AMPK, daf-16/FoxO, daf-18/PTEN) (Lapierre and Hansen, 

2012)) modulates starvation suppression of lin-3/egf(rf) using RNAi assays.  RNAi knock-

down of these three major metabolic genes did not alter vulval induction of lin-3(n378) in 

food or starvation conditions (Figure 2.5A), arguing against an implication of associated 

pathways in lin-3/egf(rf) starvation suppression.  

 Testing for an implication of LET-363/TOR (target of rapamycin) signalling, a key 

pathway in nutritional sensing (Hietakangas and Cohen, 2009; Jia et al., 2004), we observed 

that knock-down of rsks-1/S6K (Pan et al., 2007) significantly increased the vulval index of 

lin-3(n378) animals in food conditions (Figure 2.5B). Moreover, RNAi knockdown of pept-1/, 

an intestinal oligopeptide transporter known to interact with the TOR pathway (Meissner et 

al., 2004), suppressed the Vulvaless of lin-3(n378) even more strongly (Figure 2.5B). RNAi of 

rsks-1/S6K and pept-1 in food conditions thus mimicked starvation suppression of lin-

3/egf(rf), suggesting that TOR nutrient sensing mechanisms are involved in the starvation 

modulation of vulval induction.  

 To consolidate these results, we constructed double mutants of pept-1(lg601) 

(Meissner et al., 2004) with lin-3(n378) and lin-3(e1417), respectively. Assaying these mutant 

combinations revealed extreme suppression of the Vulvaless phenotype caused by either lin-
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3/egf allele (Figure 2.5C,D). The suppression was very strong in lin-3(n378) where mean 

vulval induction approached wild type levels (2.93 ± 0.03 cells induced) and a majority of 

individuals adopted a correctly vulval patterning sequence of 2°-1°-2° cell fates for P5.p to 

P7.p (Figure 2.5C). (Note, however, that pept-1(lg601) single mutants never showed 

hyperinduction or any other frequent vulval defects (N>300)). 

 

Figure 2.5. Disruption of the intestinal peptide transporter PEPT-1 mimics starvation 

suppression of lin-3/egf(rf) mutations. (A) Starvation effects on lin-3(n378) animals treated with 

aak-2/AMPK, daf-16/FoxO, daf-18/PTEN RNAi feeding versus controls (empty vector strain, E. coli 

HT115). Starvation consistently increased vulval induction of lin-3(n378) irrespective of RNAi 

treatment (ANOVA, effect environment: F1,313 = 126.13, P < 0.0001, effect RNAi treatment: F1,313 = 

4.46, P = 0.0044, interaction environment X RNAi treatment: F1,313 = 0.23, P = 0.88). (B) Effects of 

rsks-1/S6K and pept-1 RNAi versus control RNAi (empty vector strain, E. coli HT115) in lin-3(n378) 

(food conditions). RNAi knock-down of rsks-1/S6K and pept-1 significantly increased vulval 

induction (ANOVA, F2,146 = 59.90, P < 0.0001). (C) pept-1(lg601) strongly increased vulval induction 
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of lin-3(e1417) animals (ANOVA, F1,77 = 30.10, P < 0.0001). (D) pept-1(lg601) strongly increased 

vulval induction of lin-3(n378) animals (ANOVA, F1,118 = 334.65, P < 0.0001). 

Values with different letters indicate significant differences (Tukey’s HSD). Numbers 

displayed in bars represent the number of individuals scored; error bars indicate ± 1 SEM. 

 

Compromised pept-1 activity leads to physiologically starved animals in a food-rich 

environment (Meissner et al., 2004) and our results indicate that such internal perception of 

starvation status is sufficient to strongly suppress lin-3/egf(rf) mutations. Given that reduced 

amino acid availability caused by pept-1(lg601) primarily acts through TOR signalling 

(Meissner et al., 2004) and that rsks-1 RNAi similarly mimics starvation effects, we conclude 

that the observed starvation modulation of vulval induction occurs via the TOR nutrient 

sensing pathway. 

 

2.3.5. pept-1 RNAi increases EGF-Ras-MAPK and Delta-Notch pathway activities 

Starvation conditions have previously been shown to increase EGF-Ras-MAPK activity in the 

1° cell, P6.p, and Delta-Notch activity in the 2° cells, P5.p and P7.p of the wild type strain N2 

(Braendle and Félix, 2008). We therefore tested whether pept-1 RNAi mimicked these 

starvation effects using the same reporter genes, i.e. egl-17::cfp to quantify EGF-Ras-MAPK 

pathway activity (Yoo et al., 2004) and lip-1::gfp to quantify Delta-Notch activity  (Berset et 

al., 2001) (Figure 2.6A). pept-1 RNAi effects closely mirrored previously quantified 

starvation effects on report gene activities (Braendle and Félix, 2008), with pept-1 RNAi 

increasing EGF-Ras-MAPK pathway activity in P6.p and increasing Delta-Notch pathway 

activity in P5.p and P7.p (Figure 2.6B,C).  

Consistent with these changes, we also observed that pept-1/ RNAi reduced Delta-

Notch activity in P6.p while reducing EGF-Ras-MAPK activity in P5.p and P7.p (Figure 

2.6B,C). These results show that pept-1 RNAi tightly recapitulates previously observed 

starvation effects on the two key inductive vulval signalling pathways (Braendle and Félix, 

2008). In both experiments, changes in pathway activities may be explained by distinct effects 

on EGF-Ras-MAPK and Delta-Notch pathways, or by effects mediate solely by the EGF-Ras-

MAPK pathway, given the cross-talk between the two pathways (Yoo et al., 2004). However, 

observed starvation and pept-1 RNAi suppression of lin-3/egf(rf) do not indicate obviously 

distinct effects on Delta-Notch activity. 
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Figure 2.6. pept-1 RNAi increases EGF-Ras-MAPK and Delta-Notch pathway activities. Effects 

of pept-1 RNAi on transcriptional reporter activity egl-17::cfp (EGF-Ras-MAPK activity) (Yoo et al., 

2004) and lip-1::gfp (Delta/Notch activity) (Berset et al., 2001) quantified in lethargus L2/L3 and 

early L3 stages. (A) Schematic overview of intercellular EGF-Ras-MAPK (red) and Delta-Notch 

(blue) signalling and corresponding downstream transcriptional targets assayed via the two fluorescent 
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reporters in P5.p to P7.p. (B) Mean signal (pixel) intensity of the EGF-Ras-MAPK pathway reporter, 

egl-17::cfp in P5.p to P7.p. Values indicate Least Square Means for the interaction cell x RNAi 

treatment (F2,62 = 15.52 , P < 0.0001) (Table 2.1A). (C) Mean signal (pixel) intensity of the Delta-

Notch pathway reporter, lip-1::GFP in P5.p to P7.p. Values indicate Least Square Means for the 

interaction cell x RNAi treatment (F2,52 = 13.73 , P < 0.0001) (Table 2.1B). 

For complete statistical analysis and results, see Table 1. Values with different letters indicate 

significant differences (Tukey’s HSD). Numbers displayed in bars represent the number of individuals 

scored; error bars indicate ± 1 SEM.  

 

Table 2.1. Effects of pept-1 RNAi on EGF-Ras-MAPK reporter egl-17::cfp (A) and Delta-Notch 

reporter lip-1::gfp (B). Results of statistical tests for transcriptional reporter assays (Figure 6). We 

used an ANOVA testing for the fixed effects of RNAi treatment, Individual (nested in RNAi 

treatment), Pn.p cell and the interaction between RNAi treatment and Pn.p cell using mean signal 

intensity as a response variable. Including the effect Individual (RNAi treatment), allowed controlling 

for the non-independence of signal intensity in P5.p, P6.p, and P7.p measured in a given individual. 

Data was long-transformed prior to analysis. 

 

 

A) egl-17::cfp 

    
     Source DF Sum of Squares F Ratio P 

RNAi Treatment 1 26.56 0.04    0.8413 

Individual (RNAi Treatment) 31 2792.82 0.14    1.0000 

Pn.p cell 2 538247.46 409.63 < 0.0001 

Pn.p cell x RNAi Treatment 2 20392.73 15.52 < 0.0001 

Error 62 40733.51     

 

 

B) lip-1::gfp 

    

     Source DF Sum of Squares F Ratio P 

RNAi Treatment 1 456.59 0.34    0.5607 

Individual (RNAi Treatment) 26 24120.94 0.70    0.8403 

Pn.p cell 2 200764.78 75.39 < 0.0001 

Pn.p cell x RNAi Treatment 2 36553.06 13.73 < 0.0001 

Error 52 69237.88 
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2.3.6. Nutrient deprivation induced by pept-1 RNAi modulates vulval induction at the 

level of EGF/EGFR 

To characterize how genetically-induced nutrient deprivation interacts with vulval signalling 

pathways to modulate inductive levels, we characterized effects of pept-1 RNAi on several 

components of the core EGF-Ras-MAPK cascade using corresponding hypoinduced mutants 

(Table 2.2). In addition to lin-3/egf(rf) mutations, pept-1 RNAi suppressed, to different 

degrees, the Vulvaless phenotypes of let-23(sy1)/egfr, sem-5(n2019)/grb2 and mpk-

1(ku1)/mapk (Table 2.2). Although these results suggest that nutrient deprivation due to pept-

1 RNAi may act downstream of MAPK, interpretation is limited given that these mutations do 

not represent null alleles (most of the null alleles are lethal). We therefore used a double 

mutant let-23(sy1); lin-3(n378) that exhibits a fully penetrant Vulvaless phenotype, indicating 

absent or very low levels of basal EGF-Ras-MAPK activity (Braendle and Félix, 2008). 

Vulval induction of let-23(sy1); lin-3(n378) animals treated with pept-1 RNAi remained 

virtually unaltered compared to controls (Table 2.2), with only 4/60 individuals showing some 

induced vulval cells (versus 0/45 in food conditions). Nutrient deprivation induced by pept-1 

RNAi thus interacts with vulval signalling upstream or at the level of LET-23/EGFR, 

consistent with previous analysis of starvation effects, which did not suppress let-23(sy1); lin-

3(n378) (Braendle and Félix, 2008).   
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Table 2.2. Effects of pept-1 RNAi treatment on vulval induction of different mutants of the EGF-

Ras-MAPK signalling cascade.  Statistical tests (ANOVAs) were performed for each mutation 

separately (* P < 0.05, **  P < 0.01, ***  P < 0.0001, ns: non-significant). 

 

Genotype 

 

Treatment 

 

Induced cells 

(Mean ± SE) 

 

N 

    

lin-3(e1417) Control 

pept-1 RNAi  

0.46 ± 0.13 

1.16 ± 0.09 ***  

60 

60 

 

lin-3(n378) 

 

 

Control 

pept-1 RNAi 

 

0.27 ± 0.05 

2.26 ± 0.17 ***  

 

60 

60 

 

let-23(sy1) 

 

 

let-23(sy1);lin-3(n378) 

 

 

sem-5(n2019) 

 

 

mpk-1(ku1) 

 

 

Control 

pept-1 RNAi 

 

Control 

pept-1 RNAi 

 

Control 

pept-1 RNAi 

 

Control 

pept-1 RNAi 

 

0.12 ± 0.08 

1.36 ± 0.17 ***  

 

0.00 ± 0.00 

0.09 ± 0.06 ns 

 

0.81 ± 0.15 

1.60 ± 0.12 ***  

 

2.69 ± 0.05 

2.99 ± 0.01 * 

 

48 

60 

 

45 

60 

 

48 

55 

 

45 

45 

 

    

 

 

2.4. Discussion 

Quantification of starvation effects on C. elegans vulval induction using mutants and reporter 

gene analysis allowed us to clarify how environmental inputs modulate C. elegans vulval 

signalling pathways. Specifically, we found that starvation during the time period of the 

vulval patterning process consistently increases levels of vulval induction. We present 

evidence that these positive starvation effects on vulval induction do not require Wnt pathway 

activity as previously proposed (Braendle and Félix, 2008) and are therefore distinct from 
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similar vulval-promoting effects observed in liquid culture, which were shown to be Wnt-

dependent  (Moghal et al., 2003). 

 

2.4.1. Antagonistic starvation signals modulate C. elegans vulval induction 

Our results partly resolve seemingly contradictory previous results reporting both positive 

(Braendle and Felix, 2008; Ferguson and Horvitz, 1985; Sternberg and Horvitz, 1986) and 

negative effects (Battu et al., 2003) of starvation on vulval induction. We confirm here that 

starvation results in a strong and consistent increase in vulval induction, e.g. illustrated by the 

strong starvation suppression of lin-3/egf(rf) mutations (Figure 2.2). We show that this 

positive starvation effect acts independently of sensory signalling mediated by Insulin and 

TGF- signalling and, as suggested by Braendle & Félix (2008), acts the level or upstream of 

LET-23/EGFR. In contrast, the negative starvation signal reported by Battu et al. (2003) acts 

via chemosensory perception to affect EGF-Ras-MAPK activity. This study used sensitized 

backgrounds causing vulval hyperinduction (Multivulva, Muv phenotype), such as a gain-of-

function mutation in let-60/Ras, to assess starvation effects: starvation decreased vulval 

induction in strains with overactivated LET-60/Ras and MPK-1/MAPK signalling, yet had no 

effect on strains producing excessive LIN-3/EGF or LET-23/EGFR (Battu et al., 2003). These 

results were interpreted to suggest that overstimulation of EGF/EGFR may overcome the 

negative starvation signal, however, it remained ambiguous at which level of the EGF-Ras-

MAPK cascade the signal may integrate. The negative starvation effects on strains with 

excessive LET-60/Ras or MPK-1/MAPK activation were abolished in chemosensory-

defective mutants (osm-5, che-3, sra-13), implying starvation signal transduction via the 

sensory system (Battu et al., 2003). Moreover, daf-2/InsR(rf) suppression of the Multivulva 

phenotype caused by let-60/Ras(gf) in food conditions was interpreted to suggest mimicking 

(of observed) starvation effects via reduced Insulin signalling (Battu et al., 2003), but it was 

not tested how vulval induction of daf-2(rf); let-60(gf) responds to starvation. Our results 

reporting an overall positive effect of starvation on vulval induction suggest that sensory 

perception is not required for this effect to occur. Importantly, however, and in line with the 

results by Battu et al. (2003), we also found that a compromised DAF-2 Insulin activity 

reduces vulval induction in lin-3/egf(rf) to similar extents in both food and starvation 

conditions, yet without abolishing starvation suppression of lin-3/egf(rf). Taken together, 

these different results suggest that starvation has both positive and negative effects on C. 

elegans vulval induction, with a positive starvation signal acting independently of sensory 



67 
 

signalling, likely mediated by internal metabolic regulation (this study), and a sensory-

system-mediated negative starvation signal, likely mediated by DAF-2 Insulin signalling (this 

study; Battu et al. 2003). Despite the presence of two antagonistic starvation signals acting in 

parallel, there is a strong net positive starvation effect, suggesting that negative starvation 

effects are significantly weaker. 

 

2.4.2. Starvation promotes EGF-Ras-MAPK activity via the TOR pathway during C. 

elegans vulval induction 

We find that genetic disruption of the low affinity/high capacity oligopeptide transporter pept-

1 (Meissner et al., 2004) in a food-rich environment strongly mimics environmental starvation 

effects on vulval induction. This finding supports the above argument that sensory perception 

of the external environment is not required for positive starvation effects on vulval induction. 

Rather, internal perception of nutrient deprivation induced seems sufficient to exert this 

effect. PEPT-1 is expressed in the intestine, localized to apical membranes, and is responsible 

for the uptake of intestinal peptides: genetic disruption of pept-1 therefore causes amino acid-

deprivation, leading to significantly reduced growth rates and reproduction (Benner et al., 

2011; Meissner et al., 2004; Spanier et al., 2009; Spanier et al., 2010). RNAi knock-down of 

pept-1 or pept-1 deletion mutants, such as pept-1(lg601) essentially induce physiologically 

starved animals in the presence of abundant food (Meissner et al., 2004). The observed effects 

of pept-1 RNAi and pept-1(lg601) on vulval induction therefore very likely correspond to the 

effects caused by external starvation. Strikingly, we found that the pept-1(lg601) mutation 

may increase vulval inductive levels more strongly than applied starvation treatments, 

resulting in nearly complete suppression of lin-3(n378) mutations. Such an increased effect of 

pept-1(lg601) may be due to the permanent nutrient deprivation in these animals compared to 

temporarily starved individuals. In addition, the negative starvation effects on vulval 

induction acting via DAF-2 Insulin sensory signalling (Battu et al. 2003) should be absent in 

pept-1(lg601) under food conditions. 

 Genetic analyses show that PEPT-1 interacts with LET-363/TOR pathway (Benner et 

al., 2011; Meissner et al., 2004; Spanier et al., 2009; Spanier et al., 2010), a highly conserved 

key nutrient sensing pathway (Hietakangas and Cohen, 2009; Jia et al., 2004). Reduced amino 

acid availability induced by pept-1 deletion has been shown to affect development, 

reproduction and lifespan via downstream effects on LET-363/TOR (Meissner et al., 2004). 

Therefore, pept-1 effects on vulval induction are likely mediated by differential regulation of 
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the TOR pathway. This interpretation is supported by the observed effects of rsks-1/S6K 

RNAi, which also increased lin-3/egf(rf) vulval induction. RSKS-1, the C. elegans ribosomal 

protein S6 kinase orthologue, is a direct target of the TORC1 complex (Hietakangas and 

Cohen, 2009; Jia et al., 2004). Taken together, we conclude that reduction of PEPT-1 function 

recapitulates observed starvation effects on vulval induction, and that this effect acts, at least 

partly, via the TOR pathway. Nevertheless, additional experiments are required to test for a 

direct implication of TOR in modulating vulval induction (see Chapter 4.2). 

 

2.4.3. Effects and integration of PEPT-1/TOR into vulval signalling pathways 

Quantification of pept-1 RNAi effects on EGF-Ras-MAPK and Delta-Notch activities in 

vulval precursor cells provides direct evidence that nutrient deprivation increases vulval 

induction. These results are congruent with previously observed starvation effects on EGF-

Ras-MAPK and Delta-Notch activities (Braendle et al., 2010). Although we cannot 

completely rule out additional, distinct effects on Delta-Notch signalling, current 

experimental evidence indicates that nutrient deprivation increases EGF-Ras-MAPK activity 

through targets at the level of LET-23/EGFR or LIN-3/EGF. Therefore, nutrient deprivation 

likely acting through TOR signalling may act in distinct cell types: the EGF-producing 

gonadal anchor cell (AC) and/or the EGF-receiving vulval precursor cells. However, it is also 

possible that starvation causes inappropriate expression of LIN-3/EGF in other cells or 

tissues, e.g. through defective LIN-3/EGF repression as observed in certain mutants (Saffer et 

al., 2011). Future experiments using cell-specific RNAi knock-down of TOR pathway 

components should resolve these open questions (see Chapter 4.2). 

Cross-talk between TOR and EGF-Ras-MAPK signalling cascades has been reported 

in diverse processes of organisms, including mammals (Mendoza et al., 2011). Effects of 

TOR on the EGF-Ras-MAPK pathway may occur at multiple levels and often involve 

modulation of targets downstream of MAPK via S6K (Mendoza et al., 2011). Analysis of 

Drosophila neurogenesis further specifically revealed intersection of TOR and EGF-MAPK 

signalling pathways in developing photoreceptors, apparently also downstream of MAPK in 

S6K-dependent manner (McNeill et al., 2008). These studies provide the basis for further 

analysis to examine how TOR signals modulate directly or indirectly EGF-Ras-MAPK 

activity during C. elegans vulval development. 
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2.4.4. Environmental sensitivity versus robustness of C. elegans vulval cell fate 

patterning 

This study and several others (Battu et al., 2003; Braendle & Felix, 2008; Ferguson and 

Horvitz, 1985; Moghal et al., 2003) show that C. elegans vulval cell fate patterning is 

sensitive to diverse environmental inputs, which may act through distinct mechanisms to 

affect vulval signalling pathways. While these results show that specific developmental 

processes and underlying genetic pathways are responsive to the environment, several key 

question remain: What are the consequences of this environmental sensitivity? How does the 

observed modulation of vulval signalling impact function and precision of this patterning 

process?  Fundamentally, two opposed hypothetical scenarios can be considered to address 

these questions. First, environmental sensitivity of vulval development may be inevitable, so 

that environmental effects represent inherent environmental sensitivity of involved 

mechanisms. If this scenario holds true, the question is whether such environmental 

sensitivity translates into deleterious effects, such as patterning defects. In a second scenario, 

environmental sensitivity may reflect a specific developmental modulation to maintain or to 

enhance functioning and precision in different environmental conditions. This scenario would 

imply a vulval developmental system whose environmental flexibility has some adaptive 

origin. It is currently not known which of these scenarios apply to the observed environmental 

sensitivity of C. elegans vulval development. However, a previous study (Braendle and Félix, 

2008) has quantified functioning and precision of vulval cell fate patterning in different 

environmental conditions: wild-type animals of multiple C. elegans isolates showed a very 

low rate of patterning defects in diverse, harsh environments, including starvation. Although 

starvation significantly increased levels of vulval induction (Braendle and Félix, 2008), vulval 

patterning errors indicative of such increased inductive levels (e.g. hyperinduction) remained 

very rare (N2 strain, starvation: 3/1000 versus control: 2/1000 individuals) (Braendle and 

Félix, 2008). Therefore, starvation modulation of vulval signalling pathways does not 

translate into an increased rate of corresponding errors, indicating that this process tolerates 

considerable changes in pathway activities. These observations reinforce the notion that the C. 

elegans vulval developmental system is robust to extensive signal fluctuations of involved 

pathways (Barkoulas et al., 2013; Braendle et al., 2010; Félix and Barkoulas, 2012; Hoyos et 

al., 2011; Milloz et al., 2008). Nevertheless, although current results clearly demonstrate 

robustness, i.e. tolerance of the vulval developmental system to environmental variation, it 

remains to be evaluated whether specific environmental modulation of signalling pathways 

enhances the fidelity and precision of the vulval patterning output. 
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2.4.5. Significance of interactions between environmental variation and molecular 

signalling pathways 

C. elegans vulval cell fate patterning provides an ideal system to examine how environmental 

variation impacts development and involved signalling pathways. Sensitized genetic 

background, e.g. Vulvaless mutants, allow easy quantification of environmental effects on 

vulval induction and fate differentiation. These analyses can then be complemented using 

highly sensitive assays to quantify activities of relevant pathways, such as EGF-Ras-MAPK 

and Delta-Notch pathways. The findings that specific conditions, such as starvation, modulate 

activities of highly conserved key signalling pathways, such as EGF-Ras-MAPK, are 

fundamentally relevant in that they shed light on the frequently neglected interaction between 

genetic and environmental factors during development. That environmental variation may 

affect developmental processes in important ways is not new, however, quantitative analysis 

of interactions between specific environmental cues and genetic pathways is still rare. The 

environmental sensitivity of the vulval developmental system represents an ideal model 

system to gain insights into the ubiquitous environmental context-dependence of 

developmental processes. Moreover, understanding the environmental sensitivity of major 

signalling pathways – whose deregulation is frequently implied in diverse human pathologies, 

such as cancer – specifically addresses the molecular basis of gene-environment interactions 

and  should thus be of central biomedical interest. 
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3. Thermal perturbations reveal evolution of environmentally 

sensitive parameters in Caenorhabditis vulval development 

3.1. Introduction 

Organismal development is inherently sensitive to variation in the external environment, but 

such environmental sensitivity may or may not translate into variation of corresponding 

phenotypic outcomes. Relative insensitivity of a phenotype to environmental variation is 

termed environmental robustness and contrasts with phenotypic plasticity where 

developmental sensitivity to the environment results in different phenotypic outcomes (Flatt, 

2005; Masel and Siegal, 2009; Wagner, 2005b). Environmental robustness of any 

developmental system has limits and may break down in response to specific environmental 

conditions. Such developmental debuffering may lead to the production of “novel”, usually 

deleterious phenotypic variants, which are indicative of environmentally sensitive aspects of 

the underlying developmental processes. Developmental errors induced by the environment 

may therefore be informative by revealing the type and spectrum of environmentally-sensitive 

aspects of a given developmental system (Braendle et al., 2010; Braendle and Félix, 2008; 

Braendle and Felix, 2009). In classical developmental biology, the application of heat shock 

or other environmental perturbations to induce phenocopies or to determine the timing of a 

developmental process of interest provides an example of how environmental debuffering has 

been used to characterize developmental mechanisms and their environmental sensitivity 

(Goldschmidt, 1935; Peterson, 1990; Welte et al., 1995). Upon developmental debuffering by 

a given environmental perturbation, the frequency, type and spectrum of phenotypic variants 

induced may be highly variable, often showing genotype-dependence (Braendle et al., 2010; 

Braendle and Félix, 2008; Braendle and Felix, 2009). Experimental demonstration that 

environmental sensitivity of development shows genetic variation is provided by the classical 

Drosophila experiments performed by Waddington (Waddington, 1953, 1956). These 

experiments revealed the presence of cryptic genetic variation, i.e. standing genetic variation 

that is usually phenotypically silent but may become expressed in response to environmental 

and genetic perturbations (Gibson and Dworkin, 2004). The phenotypic manifestation of 

cryptic genetic variation is therefore condition-dependent, variation arising through genotype-

by-environment interactions or genetic interactions (epistasis). Empirical evidence reporting 

the presence of  cryptic genetic variation is thus old, and recent research shows that such 

“hidden” genetic variation is very common (Chandler et al., 2013; Chari and Dworkin, 2013; 
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Gibson and Dworkin, 2004; Wagner, 2005b). This research emphasizes the need for a better 

understanding of condition-dependent phenotypic variation, both from a mechanistic and an 

evolutionary perspective. While there are many examples of biological systems in diverse 

organisms harbouring cryptic genetic variation (Chandler et al., 2013; Chari and Dworkin, 

2013; Gibson and Dworkin, 2004; Wagner, 2005b), the molecular genetic identity of  such 

variation has only rarely been elucidated (Duveau and Félix, 2012; Dworkin et al., 2003; 

Gibson and Hogness, 1996), and despite important claims (Queitsch et al., 2002; Rutherford 

and Lindquist, 1998), the evolutionary significance of cryptic genetic variation in adaptive 

phenotypic evolution is still unclear (Braendle and Flatt, 2006; Meiklejohn and Hartl, 2002; 

Mitchell-Olds and Knight, 2002). 

The phenomenon of cryptic genetic variation is tightly linked to the notion of 

developmental robustness (Felix and Wagner, 2008; Gibson and Dworkin, 2004; Masel and 

Siegal, 2009; Masel and Trotter, 2010; Wagner, 2005b). Robustness that causes phenotypic 

insensitivity to genetic perturbations (e.g. the accumulation of novel mutations), is the 

supposed key property generating cryptic genetic variation. Thus, developmental robustness 

may lead to evolutionary stability at the phenotypic level in the presence of evolutionary 

change in the underlying genetic architecture (Felix and Wagner, 2008; Gibson and Dworkin, 

2004; Wagner, 2005a). Although difficult to evaluate, both theoretical and empirical evidence 

suggest that environmental robustness causes genetic robustness, and vice versa (Meiklejohn 

and Hartl, 2002). Consistent with this scenario, different sources of perturbations may disrupt 

the same features of a given developmental process, i.e. genetic and environmental 

perturbations may act interchangeably in the production of specific developmental defects (cf. 

phenocopies and genocopies) (Goldschmidt, 1935; Welte et al., 1995).  

Debuffering of a developmental system leading to an usually invariant phenotypic 

outcome allows exploration of possible phenotypic defects and underlying developmental 

deregulation, thus allowing identification of the system’s most sensitive parameters to the 

applied perturbation. However, very little research has systematically quantified the spectrum 

and frequency of inducible developmental variants or errors, which would permit such 

inferences about developmental system sensitivity. Moreover, whether type and spectrum of 

such condition-dependent developmental variants show evolutionary variation (i.e. cryptic 

genetic variation) has rarely been quantitatively examined (Braendle et al., 2010; Braendle 

and Félix, 2008; Rutherford and Lindquist, 1998).  Here we therefore aimed to explore the 

environmental sensitivity of a robust developmental system, which generates an invariant 

phenotype across different genotypes and species. We use the well-characterized process of 
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vulval cell fate patterning in Caenorhabditis nematodes to characterize which specific 

parameters of this process are most sensitive to extreme environmental perturbations, and to 

quantify how this developmental sensitivity to the environment varies among different 

genotypes.  

The C. elegans hermaphrodite vulva differentiates from a subset of six ventral 

hypodermal cells, called Pn.p cells, through a molecularly well-understood signalling network 

regulating the induction of specific vulval cell (Sternberg, 2005) (Figure 3.1). P3.p to P8.p 

acquire competence to adopt vulval cell fates through expression of the HOX gene lin-39, 

regulated by the canonical Wnt pathway (Figure 3.1A). The key steps of vulval induction and 

fate differentiation are regulated by an interplay of EGF-Ras-MAPK and Delta-Notch 

pathways (Figure 3.1B) (Felix and Barkoulas, 2012; Sternberg, 2005). During the late L2 

/early L3 stage, the gonadal  anchor cell (AC) releases the EGF-like ligand LIN-3, which 

induces the primary (1°) vulval cell fate in the closest cell, P6.p, through activation of the 

EGF-Ras-MAPK pathway (Hill and Sternberg, 1992). In turn, activation of this pathway in 

P6.p triggers a lateral intercellular signalling event, mediated by the Delta-Notch pathway, 

promoting the adoption of a secondary (2°) cell fate by the neighbouring cells, P5.p and P7.p. 

Notch activity in these cells further inhibits the 1° cell fate by activating negative regulators 

of the EGF-Ras-MAPK pathway (Berset et al., 2001; Greenwald et al., 1983; Sternberg, 1988; 

Sternberg and Horvitz, 1986; Yoo et al., 2004) (Figure 3.1B). Moreover, a switch from the 

canonical Ras-Raf pathway to a Ras-RGL-1-RAL-1 signalling pathway promotes the 2° cell 

fate in P5.p and P7.p (Zand et al., 2011), and the Wnt pathway, primarily involved in vulval 

competence, may contribute to vulval induction (Gleason et al., 2002).  The remaining vulval 

precursor cells adopt non-vulval cell fates (3° and 4°)  as they do not receive sufficient doses 

of either signal: in C. elegans, P4.p and P8.p adopt the 3° cell fate while P3.p shows 

stochastic variation, either adopting a 3° or 4° cell fate (Pénigault and Félix, 2011a; Sulston 

and Horvitz, 1977). Cell ablation experiments indicate, however, that  P3.p, P4.p and P8.p are 

competent to adopt  1° or 2° vulval cell fates and capable of replacing missing cells of the 

P5.p-P7.p group (Braendle and Félix, 2008; Katz et al., 1995; Sternberg, 2005). The different 

cell fate patterns (1° to 4°) correspond to distinct, invariant cell division patterns of the Pn.p 

cells, which occur during the mid to late L3 stage (Figure 3.1C). The canonical cell fate 

sequence of P3.p to P8.p is therefore 3°/4°-3°-2°-1°-2°-3 – a pattern that is largely conserved 

within the Caenorhabditis genus comprising 26 described species (Félix, 2007; Kiontke et al., 

2007; Kiontke et al., 2011; Pénigault and Félix, 2011a). P3.p, the only cell with variable 

vulval cell fate in C. elegans, may show different ratios of 3°/4° cell fates depending on 
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species and isolates, and has lost vulval competence completely in some species; in addition, 

the competence of P4.p and P8.p to adopt vulval cell fates shows variation between species 

(Félix, 2007; Felix and Barkoulas, 2012; Pénigault and Félix, 2011a).  

 

 

Figure 3.1. Caenorhabditis vulval cell fate patterning. The Caenorhabditis vulva develops from a 

set of six ventral hypodermal cells, P3.p to P8.p. (A) L1 stage: P3-8.p cells express the Hox gene lin-

39 and acquire competence to adopt vulval cell fates. (B) Late L2 /early L3 stage: the anchor cell (AC) 

releases the morphogen-like LIN-3/EGF inductive signal. P6.p receives the highest level of LIN-

3/EGF inducing a 1° cell fate (blue) via EGFR-Ras-MAPK activation, which in turn activates lateral 

signalling through the expression of the Delta ligands targeting the Delta-Notch pathway in its 

neighbours, P5.p and P7.p. This lateral signalling induces the 2° vulval cell fate (red) via Delta-Notch 

activity and further represses the 1° cell fate in these cells. The competent cells, P4.p and P8.p, adopt a 

non-vulval 3° fate (yellow), while the fate of P3.p varies among individuals, either adopting a 3° fate 

or a 4° fate (grey, also referred to as F(used) fate). Therefore, of a total of six potential vulval 

precursor cells, only P5.p, P6.p and P7.p adopt actual vulval cell fates in a 2°-1°-2° sequence, which is 

conserved among Caenorhabditis species. (C) Mid to late L3 stage: Vulval cell divisions. The fate 

assignments correspond to stereotypical cell division patterns that are invariant (with exception of 

P3.p). The three cells adopting the 2°-1°-2° vulval fates generate a total of 22 vulval cells by the end 

of the L3 stage. T: transverse (left-right) division, L: longitudinal (antero-posterior) division, U: 
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undivided, SS: fusion to the epidermal syncytium (hyp7) after a single division (3° fate); F: fusion to 

the syncytium in the L2/L3 stage with no prior division (4° fate). 3° and 4° fates are non-vulval fates. 

(D) L4 stage: vulval morphogenesis. 

 

 

The Caenorhabditis vulval signalling network possesses a wide range of properties 

that contribute to a robust patterning output, including partial redundancy and crosstalk 

among signalling pathways, manifold regulatory inputs and feedback loops within the EGF-

Ras-MAPK (Braendle et al., 2010; Braendle and Félix, 2008; Braendle and Felix, 2009; Félix, 

2012a; Felix and Barkoulas, 2012; Felix and Wagner, 2008; Sternberg, 2005). Key among 

these properties is the regulatory cross-talk between EGF-Ras-MAPK and Delta-Notch 

pathways, which ensures  a reproducible establishment of the 2°-1°-2° vulval cell fate pattern 

of P5.p to P7.p despite extensive variation in parameter space (Barkoulas et al., 2013; Felix 

and Barkoulas, 2012; Hoyos et al., 2011).  

Caenorhabditis vulval cell fate patterning – a relatively simple cell fate determination 

process involving a molecularly very well-characterized signalling network – has emerged as 

an important model system for quantitative developmental studies, system robustness and 

evolution as well as cryptic genetic variation (Felix and Barkoulas, 2012). Comparative 

developmental studies of intra- and interspecific variation in Caenorhabditis nematodes have 

revealed extensive cryptic variation in genetic and developmental parameters underlying the 

evolutionarily conserved vulval pattern (Felix and Barkoulas, 2012). Cryptic variation has 

been revealed through application of genetic (e.g. mutation accumulation, introgression of 

vulval mutations into different wild isolates, insertion of transgenes into different species, 

accumulation of spontaneous random mutation) and environmental perturbations (Barkoulas 

et al., 2013; Braendle et al., 2010; Braendle and Félix, 2008; Delattre and Félix, 2001; Duveau 

and Félix, 2012; Félix, 2007; Hoyos et al., 2011; Milloz et al., 2008; Pénigault and Félix, 

2011a). These results indicate that diverse system properties (e.g. cell competence, pathway 

activities and their interactions) may evolve without leading to changes in the final vulval cell 

fate pattern. 

Quantitative analysis of vulval development in different environments (intermittent 

starvation, passage through the dauer stage, different temperatures, liquid culture) indicates 

that vulval pattern establishment is robust despite environmental sensitivity of underlying 

signalling cascades (Braendle and Félix, 2008). Of 6000 animals assessed in these different 

environments only 0.25% showed apparent vulval defects and an additional 2.10% showed 
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non-canonical vulval patterning variants with an intact 2°-1°-2° sequence. Moreover, certain 

environmental conditions induced specific variants whose frequencies were further strongly 

genotype-dependent. For example, starvation during the L2 stage consistently induced vulval 

centering shifts on P5.p in the C. elegans N2 strain but very rarely in  other strains of C. 

elegans or C. briggsae (Braendle and Félix, 2008). This and other examples suggest that 

certain system properties (e.g. a specific pathway or a specific Pn.p cell) are more 

environmentally sensitive than others, and that this sensitivity is further subject to 

evolutionary change. However, these conclusions are based on limited data because 

previously examined environments induced variant and defective patterns only at very low 

frequencies, rendering quantitative analysis of environmental sensitivity and its evolution 

difficult (Braendle and Félix, 2008).  

In this study we took advantage of the Caenorhabditis vulval developmental system to 

characterize its response to extreme environmental perturbations, low and high temperature 

extremes, and how such response evolves. In contrast to previous studies (Braendle et al., 

2010; Braendle and Félix, 2008), we aimed to maximally disrupt the precision of the 

patterning process to be able to better understand (a) which underlying developmental and 

cellular aspects are most sensitive, (b) whether such specific system sensitivity evolves within 

and between species, and (c) whether genotype-specific patterns of such environmentally-

induced phenotypic variation correlate with mutationally-induced phenotypic variation.  

 

3.2. Material and Methods 

3.2.1. Strains 

We examined the same C. elegans and C. briggsae strains (wild isolates) as used in (Braendle 

et al., 2010): the reference lab strain, C. elegans N2 (Bristol, UK), C. elegans PB306 

(Connecticut, USA), C. briggsae HK104 (Okayama, Japan), C. briggsae PB800 (Ohio, USA). 

These strains had been used to derive mutation accumulation lines over 250 generations (Baer 

et al., 2005). 

 

3.2.2. Temperature assays 

To quantify and characterize temperature effects on the production of vulval pattern variants 

and defects, we exposed the four strains to three temperatures, 6°C,  20°C (control) and 30°C, 

during the time window of vulval cell fate patterning (mid L2 to mid L3). Strains were 
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derived from frozen stocks and maintained on NGM agar plates (1.7% agar) seeded with E. 

coli OP50  (Wood, 1988a) at 20°C. For each experimental repeat, mid L2 individuals from 

each of the four strains were randomly allocated to the three temperature treatments. (Note 

that the four strains had very similar developmental times). In the cold treatment, animals 

were exposed to 6°C for 20 hours, then transferred back to 20°C for 24 hours prior to scoring 

of the vulval phenotype (note that developmental progression was strongly slowed down, if 

not arrested, at 6°C). In the heat treatment, animals were exposed to 30°C for 16 hours, 

immediately after which the vulva phenotype was scored. Control animals at 20°C reached 

the mid L4 stage at the same time as animals of the heat treatment and were scored in parallel. 

 

3.2.3. Scoring of vulval cell fates and variant patterns 

We scored the vulval phenotype of 300 individuals for each strain in each of the three 

temperature treatments (Ntotal = 3’600 scored individuals), derived from 15 experimental 

repeats in each of which the four strains were scored in parallel as outlined above.  Cell fate 

patterns of P3.p to P8.p were inferred through observation by Nomarski optics in early to mid 

L4 individuals as previously described (Braendle et al., 2010; Braendle and Félix, 2008; 

Sternberg and Horvitz, 1986). The characteristics of different vulval cell fates and 

corresponding cell lineages are described in Figure 1.  Phenotypic characterization of vulval 

cell fate patterns variants deviating from the canonical Caenorhabditis 3°/4°-3°-2°-1°-2°-3 

pattern follows the variant classes established by Braendle et al. (2010) (Figure 3.2). We refer 

to any deviation from the canonical pattern as variant while defect only refers to variant 

patterns of class A, i.e. patterns where the 2°-1°-2° adoption of vulval cells is disrupted. We 

defined 15 distinct non-canonical cell fate patterns, which are grouped into Class A, B, C and 

D variant categories as described in detail in legend of Figure 2.  Note that we established an 

additional class C variant other than listed in Braendle et al (2010): #14, i.e. individuals that 

showed a 4° fate for both P4.p and P8.p. 

 

3.2.4. Measurement of temperature effects on lip-1::gfp activity  

We inferred Delta-Notch pathway activity in P5.p to P7.p using a transgenic strain containing 

an integrated transcriptional reporter construct, lip-1::gfp (strain AH142, derived from the 

reference strain N2) (Berset et al., 2001). Experimental populations were age-synchronized by 

hypochlorite treatment and liquid arrest at 20°C (Wood, 1988b). Young L1 larvae were 
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transferred to NGM plates until they reached the mid L2 stage at which point they were 

randomly allocated to 20°C (control) or 30°C treatments. lip-1::gfp quantification was 

performed when individuals had reached the lethargus L2/L3 or early L3 stages. The Pn.p 

cells of live, anesthetized individuals were first identified using Nomarski optics, followed by 

measurement of signal (pixel) intensity in P5.p, P6.p and P7.p for each individual as  

previously described in Braendle & Félix (2008) using an Olympus BX61 epi-fluorescence 

microscope equipped with a Coolsnap HQ2 camera (at 40X magnification).  This experiment 

was repeated once, and a total of 33 and 34 individuals were scored at 20°C and 30°C, 

respectively.  

 

3.2.5. Statistical analysis and data presentation 

Effects of environment, species and strain on frequency of vulval variants: Data representation 

in Figures 3 and 4 represent the mean percentage of classes and their variants averaged across 

experimental repeats (N=15). We performed an ANOVA (JMP 9.0, SPSS statistics) testing 

for the fixed effects of species, strain (nested in species), temperature and the interactions of 

species x temperature and strain (species) x temperature using Class A-C variant frequencies 

obtained per experimental repeat as a response variable (N =15). Data was arcsine-square-root 

transformed prior to analysis (Sokal and Rohlf, 1981).  

 

Quantification of  lip-1::gfp activity:  We performed an ANOVA (JMP 9.0, SPSS statistics) 

testing for the effects of block (i.e. experimental repeat, N=2),  temperature (20°C versus 

30°C) , cell (P5.p, P6.p, P7.p), individual and all possible interactions using mean signal 

intensity as a response variable. Including individual as an effect allowed controlling for the 

non- independence between measures of P5.p, P6.p, and P7.p taken from the same individual. 

Data was log-transformed prior to analysis (Sokal and Rohlf, 1981). Post-hoc tests (Tukey’s 

HSD) were then performed to determine differences in signal expression between 

temperature, treatments and cells (P5.p. P6.p, P7.p). Data represented in Figure 6C show 

Least-Square Means of the cell x temperature interaction. 
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Figure 3.2. Variant patterns of Caenorhabditis vulval precursor cells. (A) The canonical cell fate 

pattern of P3.p to P8.p is represented with P3.p adopting a 3° fate, and cells adopting a vulval cell fate 

are underlined. We defined 14 non-canonical subcategories of variants relative to P(4-8).p fates, 

grouped into three different classes. As P3.p fate is a highly variable trait, it is presented in its own 

class. (B) Class A: Disrupted 2°-1°-2° pattern leading to a defective vulva. (C) Class B: Complete 2°-

1°-2° pattern but altered fates for the VPCs. (D) Class C: Complete 2°-1°-2° pattern and variable 

adoption of 3° versus 4° fate by P4.p and/or P8.p. (E) Class D: Complete 2°-1°-2° pattern and variable 

adoption of 3° versus 4° fate by P3.p.   
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Detailed description of vulval pattern variants: (B) Class A (1-4): This class groups vulval 

variants that cause a strongly disrupted vulval pattern, likely leading to a defective vulval organ. (1) 

Hyperinduction: more than three induced VPCs (1° or 2° fate) that prevent the formation of a complete 

vulva.(For example adjacent 1°-fated cells) (2) Hypoinduction due to adoption of a 3° or a 4° fate, 

resulting in fewer than three induced VPCs (1° or 2° fate). For example: P7.p adopts a 3° cell fate. (3) 

Hypoinduction due to missing cells: fewer than three induced cells because of the absence of one or 

several Pn.p cells. For example: missing P7.p and P8.p, leading to only two induced cells (P5.p and 

P6.p). (4) Misspecification of vulval fates (other than hyper- or hypoinduction): three VPCs are 

induced but their lineages deviate from the canonical pattern. For example, P7.p misspecification: the 

canonical UTLL lineage is replaced by LLTU, referred to as Bivulva phenotype (Inoue et al., 2004). 

(C) Class B: This class groups variants with complete 2°-1°-2° vulval patterns, yet deviating from the 

overall canonical pattern of VPCs. Vulva formation is not obviously disrupted, however, the impact of 

such variants on egg-laying or other functions remains unclear (Braendle and Félix, 2008). (5) 

Hyperinduction: more than three induced VPCs. For example: P4.p adopts a vulval fate (2°) and 

creates a second, non-functional invagination. (6–7) Centering shifts: the three correctly induced VPCs 

are shifted to the anterior (centering on P5.p) or posterior (centering on P7.p). For example: anterior 

centering, P5.p adopts a 1° cell fate and its neighbours, P4.p and P6.p, adopt a 2° fate; the anchor cell 

is centered on P5.p. (8–9) Missing cells: One or more VPCs are missing. For example: P8.p adopts a 

2° fate because P7.p is missing; in this case, it is not possible to distinguish whether this variant was 

due to a missing P7.p or P8.p cell. We can only distinguish whether the missing cell(s) is anterior 

(P3.p to P5.p) or posterior (P7.p and P8.p). (10–11) Supernumerary cell divisions: P3.p, P4.p or P8.p 

divides more than once, generating three to four daughter cells that fuse with the hypodermis. For 

example: P4.p divides twice (ssss lineage instead of SS). (D) Class C: P4.p or P8.p adopts a 4° instead 

of a 3° fate. (12) P4.p adopts a 4° fate, fusing with the hypodermis without prior division. (13) P8.p 

adopts a 4° fate. (14) P4.p and P8.p adopt 4° fates. (E) Class D: Adoption of 4° fate instead of 3° fate 

by P3.p. It corresponds  to variant (15).  (F-I)  Nomarski images of vulval cells in the mid L4 stage: (F) 

canonical vulval pattern, (G) hypoinduction (variant #2), (H) misspecification (variant #4), (I)  

hyperinduction (variant #5). 

 

3.3. Results 

3.3.1. Extreme temperatures debuffer vulval development inducing diverse variants and 

defects 

The two temperature extremes caused a significant increase in vulval pattern variants, thus 

debuffering this developmental process. Types of temperature-induced vulval variants varied 

greatly, covering the whole range of previously observed variants (Braendle et al., 2010) yet 
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at much higher frequencies  (Figure 3.4). At the standard temperature of 20°C,  variants 

deviating from the canonical vulval cell fate patterns were rare for all strains, with defects 

(Class A) occurring at a frequency of < 1% (Figure 3.3). At  20°C, as previously found 

(Braendle et al., 2010; Braendle and Félix, 2008; Delattre and Félix, 2001; Pénigault and 

Félix, 2011a), C. briggsae strains, compared to C. elegans, showed an increased tendency of 

P3.p, P4.p and P8.p to adopt 4° fates (Class C and D) (Table 3.1C: main effect Species). 

Exposure to temperature extremes caused a significant increase in all variant classes for all 

strains (Table 1A-C: main effect Temperature) with an overall highest increase at 30°C, 

leading to defect frequencies (Class A) of up to 12% (Figure 3.3). For all strains, variants of 

class C, i.e. P4.p and/or P8.p adopting a 4° fate, were consistently highest at 30°C (Figure 3.3 

and Figure 3.4). Strains and species differed in the frequency of P3.p adopting the 4° fate, but 

the ratio of 4°:3° fates of P3.p was not sensitive to temperature variation (Figure 3.4E); this 

contrasts with previous results where the ratio of 4°:3° cell fate for P3.p was found to be 

highly sensitive to environmental variation (Braendle and Félix, 2008). 

 

Figure 3.3. Effects of temperature and genotype on variant class frequencies. Bars indicate the 

mean percentage of individuals showing vulval variants in three classes A-C (N=15 experimental 

repeats, N=300 individuals per strain/temperature, N=900 per strain). Error bars indicate ± 1 SE. 
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Figure 3.4. Effects of temperature and genotype on frequencies of specific vulval variants. 

Frequency of specific vulval variants at different temperatures for the C. elegans strains N2 (A) and 

PB306 (B), and the C. briggsae strains HK104 (C) and PB800 (D).  (E) Frequency of individuals with 

P3.p adopting a 4° fate. Bars indicate the mean percentage of individuals with a given vulval variant 

(N=15 experimental repeats, N=300 individuals per strain/temperature, N=900 per strain). A detailed 

description of different types of vulval variants is given in Figure 3.2. Error bars indicate ± 1 SE. 
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Table 3.1. Effects of environment, species and strain on frequency of vulval variant classes A-C. 

ANOVA testing for the fixed effects of species, strain (nested in species), temperature and the 

interactions of species x temperature and strain (species) x temperature. Data was arcsine-square-root 

transformed prior to analysis (Sokal and Rohlf, 1981). 

 

A) Class A 

    
     Source DF DFDen F Ratio P 

Species 1 168 2.89 0.0912 

Strain(Species) 2 168 2.39 0.0947 

Temperature 2 168 15.90 < 0.0001 

Species x Temperature 2 168 16.43 < 0.0001 

Strain(Species) x Temperature 4 168 0.86 0.4896 

     
     
     B) Class B 

    
     Source DF DFDen F Ratio P 

Species 1 168 2.11 0.1482 

Strain(Species) 2 168 1.30 0.2752 

Temperature 2 168 6.18 0.0026 

Species x Temperature 2 168 1.04 0.3541 

Strain(Species) x Temperature 4 168 0.62 0.6478 

     
     
     C) Class C 

    
     Source DF DFDen F Ratio P 

Species 1 168 24.89 < 0.0001 

Strain(Species) 2 168 1.11 0.3309 

Temperature 2 168 33.42 < 0.0001 

Species x Temperature 2 168 0.47 0.6247 

Strain(Species) x Temperature 4 168 1.55 0.1915 

 

 

3.3.2. Genotype-dependence of temperature-induced vulval pattern variants 

Frequency and type of temperature-induced vulval variants differed between species as well 

as between strains within each of the species (Figure 3.3 and Figure 3.4; Table 3.1). The two 
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species showed converse responses to the two temperature extremes as indicated by the 

significant species x temperature interaction (Table 3.1A). C. elegans strains showed an 

increased frequency of variants, including vulval defects, at 30°C yet no increase at 6°C, 

while C. briggsae strains were more sensitive to 6°C (Figure 3.3). The increased frequency of 

vulval variants was mainly due to an increase of class C variants (P4.p and/or P8.p adopting a 

4° fate) in C. briggsae whereas in C. elegans we observed an increase of class C and class A 

(i.e. defect with disrupted 2°-1°-2° pattern) variants. 

 C. briggsae strains showed similar variant frequencies across temperatures for most 

variant types in all three classes (Figure 3.4C,D). In contrast, variant types varied qualitatively 

and quantitatively between the C. elegans strains at 30°C; although both strains exhibited a 

high frequency of vulval defects (Class A), the nature of these defects was different: in N2, 

the majority of defects (7.7%) were due to hypoinduction (variant #2) whereas this variant 

was very rare (0.2%) in PB306, which mainly showed defects due to other misspecification 

events of the vulval precursor cells (5.8%)  (Figure 3.4A,B). In addition, also at 30°C, N2 

showed an higher increase of P4.p and P8.p fusion (variants #12-14) relative to PB306. 

 

3.3.3. Environmental sensitivity of specific system features 

Vulval hypoinduction (variant #2) at high frequency (7.7%) was specifically displayed by C. 

elegans N2 individuals exposed to 30°C. N2 hypoinduction at 30°C was primarily due to 

adoption of 3° fates by P5.p and P7.p (23 out of 25 individuals) rather than 4° fates (2 of out 

of 25 individuals), and never due to missing cells (Figure 3.5A). In contrast, the central 1°-

fated cell, P6.p, was never hypoinduced. Induction of 2°-fated vulval cells, P5.p and P7.p, was 

therefore more sensitive to high temperature.  

 We therefore next asked how high temperature affects the activity of the key signalling 

pathway involved in 2° vulval fate determination, the Delta-Notch pathway (Sternberg, 2005). 

Using the highly sensitive transcriptional reporter gene lip-1::gfp in the N2 background 

(Berset et al., 2001), we quantified pathway activities at 20°C and 30°C during vulval fate 

patterning in P5.p to P7.p (lethargus L2/L3 and early L3 stages) (Figure 3.5B). Temperature 

affected Delta-Notch activity in a cell-specific manner: at 30°C lip-1::gfp expression, was 

significantly decreased in P5.p while it was increased in P6.p (Figure 3.5C). These 

observations are consistent with a reduced stability of 1°-2°-1° pattern establishment at high 

temperature, which seem to primarily disrupt the induction of 2° cells as reported above 

(Figure 3.5A). The detection of reduced mean Delta-Notch activity specifically in P5.p may 
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account for its higher proportion of hypoinduction compared to P7.p (Figure 3.5A).  In 

contrast, despite an apparent mean increase of its Delta-Notch activity,  P6.p was never found 

to be hypoinduced at 30°C; however, multiple other misspecification defects (variant #4), 

observed for N2 at 30°C, also affected P6.p (Figure 3.4A).  

 

Figure 3.5. Effects of high temperature on C. elegans N2 vulval induction and Delta-Notch 

pathway activity. (A) Frequency of vulval hypoinduction (variant #2) due to adoption of 3° or 4° fate 

in C. elegans N2 at 30°C. Considering the total of 25 hypoinduced variants, P5.p was more frequently 
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affected than P7.p (Fisher’s Exact Test, P=0.043) and the majority of variants were due to adoption of 

3° cell fate (N=22/25). (B) Merge of Nomarski and fluorescence images of lip-1::gfp individuals 

exposed to 20°C and 30°C at L2/L3 lethargus. (C) Measurement of Notch pathway activity through 

lip-1::gfp analysis at 20°C and 30°C. Bars indicate mean signal (pixel) intensity, i.e. Least Square 

Means for the interaction cell x temperature (F2,72 = 8.03 , P = 0.0007), controlled for block and 

individual effects. Values labelled with different letters are significantly different (Tukey’s HSD). 

Error bars indicate ± 1 SE. 

 

3.3.4. Environmental versus mutational perturbation of vulval cell fate patterning 

A previous study (Braendle et al., 2010) had quantified vulval variants of mutation 

accumulation (MA) lines derived from the same C. briggsae and C. elegans strains used here, 

allowing comparison of mutationally versus environmentally induced vulval variants. Overall, 

the frequency of vulval variants observed after extreme temperature stress exposure was much 

higher than after 250 generations of MA (Figure 3.6).  

 

 

Figure 3.6. Comparison of vulval variants induced by temperature versus mutation 

accumulation. Proportion of individuals with vulval variants after temperature exposure to 6°C and 

30°C (T°) or after mutation accumulation (MA) (Braendle et al., 2010). Bars indicate the total 

percentage of individuals with a variant pattern of the three classes after the two treatments (T° or 

MA). For details of the MA experiment, see Braendle (2010).  
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Across species and strains, both MA and exposure to temperature extremes triggered a 

similarly wide spectrum of vulval developmental variants, yet variant spectra for most strains 

were overall narrower after temperature perturbations. For example, C. briggsae PB800 had a 

50% reduced variant spectrum in response to thermal perturbations relative to the MA assay. 

In addition, we also found cases where variant types in certain strains were only generated in 

response to temperature but not MA. For example, variant #13 (4° of P8.p) in the N2 strain 

was never observed after MA but occurred at relatively high frequency in this strain at  30°C 

(Figure 3.4A). Similarly, hypoinduction variants (#2) frequently observed at high temperature 

for N2 (Figure 3.4A) were very rare after MA for the same strain (Braendle et al., 2010). 

While quantitative comparison between mutationally and environmentally induced vulval 

variants is difficult given the low penetrance of variants after MA, several examples illustrate 

that genotype-dependence of variant production can be observed in response to either source 

of perturbation. For example, the 3° vulval precursor cells, P4.p and P8.p, are most sensitive, 

frequently adopting a fused 4° fate (Class C variants) upon either mutational or environmental 

perturbation in both C. elegans and C. briggsae (Figure 3.3 and Figure 3.4) (Braendle et al., 

2010) . In another example, centering variants on P7.p (variant #7) were never observed for C. 

elegans N2 after either type of perturbation, while they occurred at low frequency in all other 

strains. Hence, mutational and environmental perturbation of vulval cell fate patterning may 

disrupt the same specific developmental system features (e.g. specific precursor cells), yet for 

both types of perturbations the degree and type of disruption was usually dependent on the 

genetic background of individuals examined. 

 

3.4. Discussion 

We used extreme temperatures to perturb the Caenorhabditis vulval cell fate patterning 

process, allowing us to quantitatively assess debuffering of this developmental system 

through analysis of non-canonical vulval patterning variants. Applying such strong 

environmental perturbations enabled us to detect environmental sensitivity of different system 

parameters as well as their evolutionary variation. 
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3.4.1. Environmental sensitivity of the vulval cell fate patterning process shows 

evolutionary variation 

Extreme temperatures consistently impaired the precision of vulval cell fate patterning in all 

tested strains. We found that extreme temperatures induce vulval patterning variants in > 10% 

of individuals while such variants are absent or very rare in control conditions. Type and 

frequency of variant vulval patterns were temperature-, species- and genotype-dependent, 

showing significant differences among tested species and strains within species (Table 1). 

Although exposure to 30°C induced the highest proportion of variant patterns for all strains, 

only C. elegans strains showed an increased frequency of defects (Class A variants) at this 

temperature. In contrast, such defects were increased at 6°C for C. briggsae strains, 

suggesting that the two species differ in their thermal tolerance to hot versus cold 

temperatures, respectively. Thermal preference analysis indicates that C. briggsae is generally 

more tolerant to high temperature compared to C. elegans (Anderson et al., 2011; Harvey and 

Viney, 2007; Prasad et al., 2011) and our data suggest that C. briggsae may also show 

reduced cold tolerance.  Therefore, thermal tolerance of reproductive traits may correlate with 

thermal robustness of other traits, such as the developmental patterning process examined 

here.  

Species differences were most marked for pattern variants affecting P3.p, P4.p and 

P8.p, i.e. vulval precursor cells adopting non-vulval cell fates in the canonical situation. As 

found in previous studies (Braendle et al., 2010; Braendle and Félix, 2008; Delattre and Félix, 

2001; Pénigault and Félix, 2011a), C. briggsae strains showed a significantly higher 

proportion of individuals with P3.p adopting the 4° fate compared to C. elegans strains (at all 

temperatures). Additionally, even at the standard temperature of 20°C,  P4.p and P8.p  

showed a low, yet consistently elevated propensity to adopt the 4° fate instead of the 

canonical 3° cell fate (Class C, variants #12 to 14), which further increased at both 

temperature extremes. Similarly, increased Class C variants for C. briggsae strains have been 

observed after exposure to starvation conditions (Braendle and Félix, 2008).  In C. elegans, 

the proportion of the same variants was increased only at 30°C, yet more so in N2 than in 

PB306. Although their frequency was modulated by both temperature and genotype, Class C 

variants were overall most frequent, indicating that fate specification of P4.p and P8.p is 

sensitive to environmental perturbations, particularly in C. briggsae. 
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3.4.2. Different features of the vulval patterning process vary in their environmental 

sensitivity in a genotype-dependent manner 

C. elegans strains generated more defects than C. briggsae strains in response to 30°C, with 

specifically induced vulval hypoinduction in the N2 strain. The triggering of this 

developmental defect was primarily due to adoption of non-vulval cell fates (3° fate) by P5.p 

and P7.p while the 1° fate of P6.p remained unperturbed. Temperature perturbations therefore 

preferentially disrupted induction of 2° rather than 1° vulval cell fates, and their 

corresponding Pn.p cells. Consistent with these observations we found that high temperature 

modulates the Delta-Notch pathway – the central pathway for  2° fate specification –  through 

reduction of its activity in 2° fate cells and an increased activity in the 1°  fate cell. This 

temperature effect on Delta-Notch activity may result through increased activity in P6.p alone 

(e.g. through down-regulation of the EGF-Ras-MAPK pathway), which would then weaken 

lateral activation of the Delta-Notch pathway in P5.p and P7.p. Alternatively, Delta-Notch 

and/or EGF-Ras-MAPK are directly affected in all three cells, P5.p to P7.p. In either case, the 

observed effects indicate a weakened cross-talk between EGF-Ras-MAPK and Delta-Notch 

pathways, resulting in a reduced reinforcement of the 2°-1°-2° vulval fate pattern. The lower 

activity of Delta-Notch in 2° fate cells suggests lower levels of vulval inductive signal, 

consistent with the frequent hypoinduction defects of these cells in C. elegans N2. However, 

decreased Delta-Notch activity at 30°C in 2° fate cells was asymmetric, more frequently 

affecting P5.p than P7.p. It is unclear why P5.p is more sensitive to high temperature than 

P7.p, but several studies indicate that C. elegans vulval precursor cells, including P5.p to 

P7.p, differ in expression of Wnt-regulated Hox genes involved in vulval competence and 

sensitivity to inductive signals (Clandinin et al., 1997; Pénigault and Félix, 2011a, b). 

Therefore, vulval precursor cells are not equivalent in their potential to adopt vulval cell fates, 

and our results suggest that they further show distinct sensitivities to a same environmental 

perturbation. 

 

3.4.3. Environmental and mutational perturbations reveal genotypic biases in the 

production of vulval developmental variants 

Comparison between vulval developmental variants induced by temperature extremes versus 

250 generation of mutation accumulation (MA) (Braendle et al., 2010) indicate that 

environmental and genetic perturbations may affect the same features of this developmental 

system. For example, adoption of the 4° fate by P4.p and/or P8.p (Class C variants), is overall 
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most easily induced by either type of perturbation in both C. elegans and C. briggsae. In 

contrast, induction of the 1° fate, usually by P6.p, seems generally most robust, i.e. least 

affected by different perturbations as shown in this study and before (Braendle et al., 2010; 

Braendle and Félix, 2008).  Certain Pn.p cells and their specific properties (e.g. competence, 

cell fate) are therefore more sensitive to both environmental and genetic perturbations. 

Moreover, genotype-dependence of the frequency and type of vulval patterning variants may 

occur, so that a given genotype produces a biased spectrum of variants irrespective of the type 

of perturbation. Examples include the near-absence of certain variant patterns (centering on 

P7.p, hyperinduction) in C. elegans N2, which are regularly observed in other strains, or the 

increased frequency of Class C variants in C. briggsae relative to C. elegans strains (Braendle 

et al., 2010; Braendle and Félix, 2008). Furthermore, in this study we found that C. elegans 

N2 showed an increased tendency for hypoinduction errors (yet no hyperinduction errors) in 

response to high temperature. In contrast, hypoinduction errors were rare (0.2%) in C. elegans 

PB306. One potential explanation for this difference is that basal levels of the vulval inductive 

signal are higher in PB306 than in N2, consistent with previous measurements of EGF-Ras-

MAPK pathway activity in these two strains (Braendle et al., 2010). Thus, if high temperature 

similarly reduced vulval induction in both strains, this reduction would not be sufficient to 

elicit hypoinduction errors in PB306. A similar difference in the production of hypo- versus 

hyperinduced variants between N2 and PB306 has also been observed after MA (Braendle et 

al., 2010): hypoinduction was rare for PB306 but common in N2, while hyperinduction was 

frequent in PB306 but virtually absent in N2. Both MA and high temperature therefore 

induced a consistent, genotype-biased pattern of hypo- versus hyperinduced variants, which 

are congruent with the difference of basal EGF-Ras-MAPK activity detected in these two C. 

elegans strains (Braendle et al., 2010). These observations suggest that specific properties of 

the vulval developmental system, such as the inductive signal level, are more sensitive to both 

environmental and genetic perturbations; and this sensitivity may consistently vary among 

different genotypes. Understanding such developmental and genotypic biases in the 

production of developmental variants is relevant as they are indicative of the accessible 

phenotypic spectrum, which modulate potential evolutionary trajectories (Arthur, 2004; 

Braendle et al., 2010; Dichtel-Danjoy and Félix, 2004; Félix, 2012b; Yampolsky and 

Stoltzfus, 2001). 

Overall, however, the frequency and type of induced vulval pattern variants observed 

for a given strain in response to temperature treatments did not recapitulate the patterns 

observed after MA. For example, in C. elegans N2 we repeatedly found P8.p fusion (variant 
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#13) in response to temperature perturbations, yet this variant was never found after MA 

(Braendle et al., 2010). Such comparison between mutationally and temperature-induced 

developmental variants is obviously limited given that MA induces a wide spectrum of 

random mutation while temperature represents only one specific condition out of an infinite 

range of environmental conditions to assess. Moreover, vulval pattern variants induced by 

MA occurred at very low frequencies, making the detection of such correlations between the 

two treatments difficult. Taken together, the currently available data suggest that there is 

environmental specificity in the induction of variants, which is further genotype-dependent. 

For example,  Braendle & Félix (2008) found that starvation exposure in the L2 stage 

consistently induced shifts of vulval patterns centered on P5.p (variant #6) in C. elegans (N2 

but not in other C. elegans or C. briggsae strains). These examples indicate that 

environmental sensitivity of the vulval developmental system depends on subtle interactions 

between specific environments and genetic background. 

 

3.4.4. Characterizing cryptic genetic variation to study developmental evolution of 

environmental sensitivity 

The observed genotype-dependence of vulval variant production in response to temperature 

reflects cryptic genetic variation uncovered by environmental perturbations, and thus 

corresponds to genotype-by-environment interactions. Because many of the temperature-

induced variant patterns represent defects or deviants decreasing precision of the pattern 

establishment, this variation reflects evolutionary variation in environmental sensitivity of 

vulval development.  Such evolutionary variation in the environmental sensitivity of the 

vulval patterning output can – as explained above – likely be traced back to evolutionary 

variation in underlying system parameters, including differential activity of vulval signalling 

pathways (Braendle et al., 2010; Braendle and Félix, 2008; Duveau and Félix, 2012; Felix and 

Barkoulas, 2012; Milloz et al., 2008) or different levels of competence in VPCs (Braendle et 

al., 2010; Braendle and Félix, 2008; Félix, 2007; Pénigault and Félix, 2011a). It remains the 

open question, however, to what extent such cryptic genetic variation arises because of the 

vulval system’s robustness to genetic and environmental variation and whether this variation 

is largely selectively neutral. As shown here, cryptic genetic variation corresponds to genetic 

variation in environmental sensitivity and therefore may also include adaptive variation 

contributing to developmental robustness, for example, resulting from evolution in divergent 

environmental conditions. 
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4. Conclusions and perspectives 

4.1. General conclusions 

In my PhD research, I aimed to address the fundamental problem of how molecular and 

developmental processes respond to environmental variation. I addressed this problem using 

the network of C. elegans vulval signalling pathways as a model system (Figure 4.1). 

Specifically, I characterized the mechanisms by which environmental signals alter activities 

and interplay of the vulval signalling pathways. In addition, I examined evolutionary variation 

in environmental sensitivity of the vulval developmental system.  

 

 

 

Figure 4.1. Environmental sensitivity of C. elegans vulval cell fate patterning. The single C. 

elegans N2 genotype generates an invariant vulval output under various environmental conditions (S: 

starvation, L: liquid, T: high temperature). The effects of these different inputs can overlap at the 

intermediate level. Nevertheless, some extreme inputs like heat stress (T) can generate developmental 

variants/errors at low frequency. 

 

To address these objectives I used two different and complementary approaches. First, 

studying the effect of a specific environmental input (i.e. starvation) on C. elegans vulval 

development allowed me to show that nutrient sensing mechanisms increase vulval inductive 

levels via EGF-Ras-MAPK upregulation (Chapter 2). Second, comparing the response of the 
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vulval patterning system to extreme thermal perturbation across different species and strains 

allowed me to characterize how sensitivity of different system features are modulated by 

specific interactions between environmental perturbation and genetic background (Chapter 3). 

This study provides insights into the universal, yet rarely studied environmental 

dependence of biological processes and indicates how specific environmental factors interact 

with key molecular signalling pathways. These pathways, such as EGF-Ras-MAPK, are 

strongly conserved and play crucial roles in human development and disease, such as cancer. 

Understanding the environmental sensitivity of this and other pathways therefore may also 

contribute to a more comprehensive view of how genes and environment interact in the origin 

and progression of pathologies, and are thus relevant to biomedical research. 

 

4.2. Nutrient deprivation modulates EGF-Ras-MAPK pathway activity 

during C. elegans vulval induction (Chapter 2) 

4.2.1. Summary 

How molecular processes integrate environmental information is of fundamental importance 

to understand organismal development. Here we aimed to quantitatively characterize how 

starvation signals modulate C. elegans vulval development, a robust, yet environmentally 

sensitive process. Our main objective was to integrate previous, seemingly contradictory, 

observations of how growth conditions modulate vulval inductive signalling. We present 

quantitative analyses of starvation effects on lin-3/egf reduction-of-function mutations, 

demonstrating that this environmental stimulus has a strong positive effect on vulval 

induction. We show that starvation suppression of lin-3/egf(rf) does not rely on Wnt 

signalling as suggested by previous studies. Testing various candidate mechanisms that could 

transduce the observed starvation effects, we find that compromised DAF-2-Insulin or DAF-

7/TGF- signalling does not abolish lin-3/egf(rf) starvation suppression. Instead, nutrient-

deprived animals induced by mutation of the intestinal peptide transporter pept-1 (in a food-

rich environment) strongly mimicked lin-3/egf(rf) starvation suppression, and we find that 

reduction of pept-1 activity is sufficient to increase both EGF-Ras-MAPK and Delta-Notch 

pathway activities. These and additional experiments indicate that positive starvation effects 

on vulval induction occur via modulation of the central nutrient-sensing let-363/TOR 

pathway, acting at the level or upstream of LET-23/EGFR (Figure 4.2). Taken together, our 

results present evidence for a novel cross-talk between TOR and EGF-Ras-MAPK signalling 
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during C. elegans vulval induction, illustrating how specific environmental signals modulate 

activity of major signalling pathways. 

 

 

Figure 4.2. New insights on external and internal cues influencing C. elegans vulva development. 

Summary of studies reporting environmental and metabolic modification of C. elegans vulval 

induction. In grey: Braendle & Félix (2008), Nakdimon et al., (2012), Moghal et al., (2003) and Battu 

et al., (2003), in pink : this study. See text. 

 

4.2.2. Perspectives and future experiments 

Future experimental objectives based on this work will aim to characterize the precise nature 

of the interaction between TOR and EGF-Ras-MAPK signalling pathways in standard and 

starvation conditions (Figure 4.3).  
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Figure 4.3. Model of the interplay of TOR and EGF-Ras-MAPK in C. elegans vulval 

development. Under favourable conditions, TOR signalling activity is high in response to nutrient 

availability. Under starvation condition (mimicked by pept-1(0) mutation), TOR activity is decreased  

causing an increase in EGF-Ras-MAPK activity. 

 

 

rsks-1/S6K RNAi suppression of lin-3/egf(rf) highlights a role of the TOR signalling 

pathway in the regulation EGF-Ras-MAPK activity. By using RNAi of other members of the 

TOR cascade (e.g. daf-15/Raptor or let-363/TOR), we now have to confirm the involvement 
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of the TOR signalling pathway in EGF-Ras-MAPK modulation under food and starvation 

conditions. We will then study how the TOR signalling pathway ultimately affects the vulval 

signalling network. To do so, we will aim to target TOR signalling in specific target cells. We 

will knock-down TOR activity in vulval precursor cells and the anchor cell, given that the 

TOR signal appears to act the level of LET-23/EGFR or LIN-3/EGF. This can be achieved 

using cell-specific RNAi. Corresponding strains for vulval precursor cells and anchor cell 

(AC) have recently been generated (M. Barkoulas and M.-A. Felix, ENS, Paris).  

In complement to these experiments, we will investigate whether the EGF-Ras-MAPK 

pathway activity relates to differences in LIN-3/EGF production by the anchor cell (AC). To 

do so, we can quantify lin-3/egf expression levels in food versus starvation environment using 

single molecule fluorescent in situ hybridization (smFISH) (Ji and van Oudenaarden, 2012). 

This experiment would also indicate whether LIN-3/EGF may be expressed in other tissues 

than the anchor cell (AC) upon starvation, which could also potentially explain increased 

EGF-Ras-MAPK activity. 

Although the involvement of sensory system response in the positive starvation effects 

is not supported by my experimental results, we cannot completely exclude an additional 

minor contribution of sensory signalling in this response. We will therefore test whether 

specific sensory defects, e.g. in different neurons or specific chemoreceptors, may modulate 

starvation effects. For example, we will use mutations disrupting sensory neuron morphology 

(e.g. daf-6, daf-19) (Perens and Shaham, 2005; Swoboda et al., 2000) and chemosensation 

(e.g. che-2, osm-5, sra-13, nph-1) (Battu et al., 2003; Haycraft et al., 2001; Vowels and 

Thomas, 1992; Winkelbauer et al., 2005). These mutations will be assayed in food versus 

starvation conditions in a lin-3/egf(rf) genetic background.  

 Finally, we still need to clarify the role of DAF-2-Insulin signalling in the observed 

starvation effects on vulval signalling. Our current results suggest that that Insulin signalling 

mediates a negative starvation signal and acts in parallel to the positive starvation signal (this 

study; (Battu et al., 2003)). Future experiments should explicitly test whether the effect of 

starvation on lin-3/egf(rf) acts exclusively via LET-363/TOR but not DAF-2-Insulin. Indeed, 

pept-1 RNAi display an higher suppression of lin-3/egf(rf) than starvation, suggesting a 

potential downregulation of this positive signal. This experiment could be performed using by 

examining pept-1 RNAi effects on daf-2(rf); lin-3(rf). If, as our current results suggest, DAF-

2-Insulin does negatively contribute to starvation effects, pept-1 RNAi suppression of this 

double mutant should be lower than in the simple lin-3/egf(rf). 
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4.2.3. Significance 

This project sheds light on an important question in current biological research: how do major 

signalling pathways respond to environmental variation?  This study reveals that specific 

environmental signals, i.e. starvation, can significantly alter the activity of a key molecular 

cascade, the EGF-Ras-MAPK cascade. Moreover, the experimental system using lin-3/egf(rf) 

mutations shows that mutational penetrance is highly sensitive to environmental variation, 

suggesting that the expressivity of deleterious mutation may be modulated by the 

environment. Understanding the environmental sensitivity of both pathway activity and 

mutational penetrance are likely very relevant to biomedical research. 

EGF-Ras-MAPK and TOR are key pathways that control cell survival, proliferation, 

motility, and metabolism. Components of these pathways were among the first discovered 

proto-oncogenes. Cancer is caused by a complex interplay of genetic and environment. 

Understanding cancer onset and development therefore requires better knowledge of how 

major oncogenes respond to environmental fluctuations. Studying specific environmental 

effects on C. elegans vulva signalling pathways, e.g. through analysis of interactions between 

EGF-Ras-MAPK and TOR, may thus provide an excellent model system to elucidate such 

fundamental and biomedically relevant questions. 

 

4.3. Thermal perturbations reveal evolution of environmentally sensitive 

parameters in Caenorhabditis vulval development (Chapter 3) 

4.3.1. Summary 

Understanding the robustness of developmental systems requires insights into the sensitivity 

of underlying molecular and cellular parameters to perturbations, and how such sensitivity 

evolves. To address these issues we examined Caenorhabditis vulval cell fate patterning – a 

system that is simple and robust to diverse perturbations. We applied strong temperature 

perturbations to maximally disrupt this developmental system, allowing us to quantify and 

compare environmental sensitivity of different system parameters between distinct genotypes 

of C. elegans and C. briggsae. Thermal perturbations induced diverse patterning variants, 

including defects. Common variants reflected loss of competence in vulval precursor cells and 

errors in cell fate induction and differentiation. The frequency and spectrum of such variant 
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patterns were, however, strongly species- and genotype-dependent, suggesting that the 

environmental sensitivity of specific system properties is subject to evolutionary changes. 

High temperature induced a genotype-specific decrease of vulval induction in the C. elegans 

N2 strain caused by frequent hypoinduction of the 2° fate cells, P5.p and P7.p. In contrast, 

hypoinduction of the 1° fate cell, P6.p, was never observed. Precursor cells and associated 

fates therefore differ in temperature sensitivity, and this cell-specific sensitivity shows 

evolutionary variation (Figure 4.4).  

 

 

Figure 4.4. Environmental sensitivity of vulval precursor cells depends on genotype and 

environment. Frequency of deviations from the canonical cell fate pattern for each vulval precursor 

cell (P3.p to P8.p) for C. elegans N2 and PB306 C. briggsae HK104 and PB800. (A) 6°C, (B) 20°C 

and (C) 30°C. The mean percentage of individuals with a given cell showing a vulval variant/deviant 

pattern are represented in the diagrams. (N=15 experimental repeats, N=300 individuals per 

strain/temperature, N=900 per strain).  

 

We further compared spectra of temperature-induced vulval variants to the ones 

induced by mutation accumulation in the same genotypes and found that a subset of variants 

is more easily induced by either perturbation, yet in a genotype-dependent manner. Taken 

together, our results detail how sensitivity of different system parameters underlying 

Caenorhabditis vulval development are shaped by subtle, specific interactions between 

environmental perturbation and genetic background. 
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4.3.2. Perspectives and future experiments 

Experimental results uncovered quantitative evolutionary variation in thermal sensitivity of 

the Caenorhabditis vulval network. Extreme temperature induced diverse developmental 

variants and defects, which were strongly genotype- and species-dependent. The frequency of 

certain developmental defects induced by extreme temperature reveals that the vulval 

precursor cells and the associated signalling pathways display differential environmental 

sensitivity (Figure 4.4).  

From a mechanistic perspective, it will be interesting to better understand how high 

temperature results in the triggering of specific vulval variants, such as the high frequency of 

hypoinduction found in C. elegans N2 at 30°C. This could be done by first examining the 

potential role of the heat-shock response system by reducing the activity of some specific 

particular genes (e.g. hsf-1, daf-21/hsp-90, hsp-70) (Birnby et al., 2000; Garigan et al., 2002; 

Heschl and Baillie, 1990). In addition, one could further test whether additional thermal 

responses are involved in the mediation of this effect, for example, through analysis of 

thermal sensory responses mediate by the nervous system (e.g. analysis of mutations in ttx-1, 

cmk-1, tax-4, ncs-1) (Eto et al., 1999; Gomez et al., 2001; Hedgecock and Russell, 1975; 

Komatsu et al., 1996). 

 From an evolutionary perspective, the results provide new insights into evolution of 

developmental sensitivity and robustness to environmental perturbations. It would be valuable 

to specifically test whether temperature adaptation of different species and strains can explain 

the observed variation in thermal sensitivity of the vulval patterning process. Here we only 

analysed four different strains from two species, and such inferences are difficult to make. 

However, the results are consistent with previous observations that C. briggsae is more heat-

tolerant than C. elegans (Prasad et al., 2011). To perform a more quantitative and more 

conclusive analysis on the evolution of developmental sensitivity to thermal stress, one could 

examine a large number of C. briggsae isolates, which differ in their climatic origin and 

which group into different clades according to these climatic regions (Prasad et al., 2011). C. 

briggsae groups into tropical versus temperate clades, so it would be possible to specifically 

compare isolates of these two groups.  

 

4.3.3. Significance 

Applying such strong environmental perturbations enabled us to detect environmental 

sensitivity of different system parameters as well as their evolutionary variation. The observed 
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genotype-dependence of vulval variant production in response to temperature reflects cryptic 

genetic variation uncovered by environmental perturbations, and thus correspond to genotype-

by-environment interactions. Because many of the temperature-induced variant patterns 

represent defects or deviants decreasing precision of the pattern establishment, this variation 

reflects evolutionary variation in environmental robustness of vulval development. These 

results show that a developmental system generating an identical phenotype may not only 

differ in its genetic architecture but may further differ in its environmental sensitivity. 

Moreover, we show that environmental and mutational perturbation can generate the same 

genotype-biased production of vulval developmental variants, indicating that some (but not 

all) perturbations may affect the same system properties irrespective of the source of 

perturbation (Figure 4.5). 

 

 

Figure 4.5. Integrating environmental and mutational inputs in the Caenorhabditis vulval 

genotype-phenotype map. Two different genotypes and their response to environment (E) or 

mutation (M) are represented in A and B. (A) The environment induces variation in the intermediate 

level and some variants/errors can be generated at the final phenotypic level at low frequency. (B) 

Mutation induces variation in the genotypic level and some variants/errors can be generated at the final 

phenotypic level at low frequency. The two genotypes can sometimes generate common errors under 

both environmental and mutational perturbations. 
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