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For if we are observed in all matters, we are constantly under threat of
correction, judgment, criticism, even plagiarism of our own uniqueness.
We become children, fettered under watchful eyes, constantly fearful that
— either now or in the uncertain future — patterns we leave behind
will be brought back to implicate us, by whatever authority has now
become focused upon our once-private and innocent acts. We lose our
individuality, because everything we do is observable and recordable.

— Bruce Schneier, The Eternal Value of Privacy
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2 CHAPTER 1. INTRODUCTION

How people interact with the Internet has changed fundamentally during the
past decade as the web is no longer a read-only service. It turned instead into a
collaborative platform, with which the users can interact and modify by expressing
their preferences and circulating news.

Moreover, social networks, like Facebook and Twitter, were designed to provide a
user-centric social experience on the web. Users are the main content producers and
their social acquaintances are the content consumers. The contents they produce,
beside their personal information (date of birth, job, hobbies, alma mater, and so
on), are typically of personal nature: their pictures, other pictures they liked, pieces
of news they were interested in, and so on. Acquaintances and friends are usually
chosen explicitly by the users, and a friendship relation can be symmetric (like in
Facebook) or asymmetric (like in Twitter).

Many other websites do not depend on an explicit social network, but still allow
users to express their interests. Such as Delicious, a collaborative bookmarking
platform, and Digg, a collaborative news aggregator. The information provided by
the users could be leveraged to extract trends and hot topics and then personalized
services could be provided to the users according to their preferences [1, 2, 3, 4,
5]. Moreover, similarities between the interests of users could be identified and
used to recommend items using collaborative filtering. To leverage this similarity
computation is at the heart of any system of personalization.

Privacy. Even though social networking has the potential to enhance the users’
experience, they are also surrounded with privacy concerns. Users share their per-
sonal information and interests, some of which they might want no one to know.
For instance, a Digg user might express her opinion to cancer-related news items in
order to get more of these items in her personalized news feed, but he might not
want someone else to know he is interested in cancer-related news because he con-
siders her health information to be sensitive. The website hosting the user’s private
data is expected to implement proper access-control mechanisms, for instance by
allowing the user to control who can access her data. Nonetheless, failure of such
access-control mechanisms is not uncommon, including security breaches. Moreover,
the recent National Security Agency (NSA) PRISM program [6] gives NSA access
to users’ private information in several websites, including Facebook and Google.

In addition, since friends influence each others, users’ private data can be har-
nessed for advertising by displaying them to the user’s friends [7, 8]. For example,
the website could advertise a specific movie by showing some user that his friends,
Alice and Bob, liked it, which is may be considered a privacy violation for Alice
and Bob. Even a stray internet user, given public and seemingly-harmless item rec-
ommendations and some auxiliary information, can still mitigate the access-control
mechanism and infer the private information of users. For instance, Calandrino,
Kilzer, Narayanan, Felten and Shmatikov [9] showed that just by observing the pub-
lic recommendations of items on Amazon, they could infer private purchases of some
users. In general, personalization often implies some form of privacy breach as the
user’s private data has to be used in the process [10].

Furthermore, even if the user did not associate her true identity with her profile
on a particular website, it is still possible, given the private information he submitted
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to the website, to link her user account to another website to which he has provided
her true identity [11], thus successfully inferring her true identity.

Peer-to-peer. From that we can see that delegating one’s private data to third
parties for storing or processing is not always safe as third parties cannot always
be trusted. Instead, it is preferable to deploy the social networks and applications
over Peer-to-Peer (P2P) overlay networks. Unlike classical centralized systems that
are composed of a central server processing clients’ requests in which clients com-
municate solely with the server and are oblivious to the existence of other clients in
the system, P2P systems are distributed and the service is provided via the explicit
and proactive collaboration among clients. Each client is generally a machine in
the system that shares part of the load of providing the service. The P2P overlay
network is the graph overlaid on the physical network topology, and whose nodes
represent clients and edges represent a direct collaboration between two clients (typ-
ically means that they can communicate directly). Clients in P2P systems do not
usually have a global knowledge of the network and are only aware of a small portion
of the total number of clients, hence P2P systems are notorious for their scalability
and robustness properties [12].

Since the applications we mentioned are user-centric, P2P system are a natural
candidate for implementing these application. In particular, each user alongside
with his personal information amounts to one node in the P2P network. This way,
the user will store his data on his own machine, having full control over it, and does
not need to trust anyone other than herself (given, of course, that his software and
hardware setup is trusted). Since the number of users of social networks is quickly
growing, the need to scale accordingly also gives a strong incentive for deploying
them as decentralized and P2P applications [13, 14], however, at the cost of increased
system complexity and synchronization overhead.

Similarity. Within this distributed framework, efficiently computing recommen-
dations or personalized search results while keeping network traffic reasonable is of
paramount importance. Many existing P2P systems achieve this by linking a user
only to other users with whom he shares common interests [1, 15, 16, 17], (i.e. with
which his similarity is relatively higher than other users.) Moreover, similarity be-
tween users can be cast as a form of a distance measure, which is a fundamental
primitive in many data mining applications. Distances can be used to perform the
tasks for clustering, nearest neighbors, or of direct interest to our context, collabo-
rative filtering, which allows providing personalized recommendations.

Therefore, having an primitive that provides user-to-user similarity is key to
provide social personalization in P2P collaborative platforms. This thesis is devoted
to constructing such a primitive in a way that provides privacy for users, while still
being efficient in terms of communication and computation costs. In the following
section we further detail the privacy aspects.



4 CHAPTER 1. INTRODUCTION

1.1 Privacy

In order to perform collaborative filtering, information involving multiple users’ data
need to be combined. In our case, this information is the user-to-user similarity. The
two users involved in computing their pair-wise similarity will be engaged in a dis-
tributed protocol in order to carry out that task. However there are two complimen-
tary aspects when privately carrying out such a protocol. Consider first the context
in which the privacy is defined. In particular, there is 1) a function to compute, 2)
the inputs of the function, whose privacy has to be protected, and 3) the resulting
value of the function (output). If there was only one party holding the input and
performing the computation, there would be no privacy issue in general. Problem
arises when there are several parties holding different parts of the input, in which
the part held by a given party is considered private to him.

A seminal example of Yao [18] was about two millionaires, each of which holding
his own amount of wealth as private input and they want to compute the function
“greater-than” to know which one of them is richer. Ultimately, the two parties in
this example have to be engaged in a protocol in order to combine their inputs and
compute an output, which is then revealed to both parties. During this process, a
particular party observes 1) the protocol transcript and 2) the output of the function.
The traditional definition of secure multiparty computation [19] is only concerned
about guaranteeing that the protocol transcript does not leak information about the
input. That is, to an adversary observing the protocol transcript, no information
about the private input of the honest users should be leaked. In that definition, there
is no guarantee about what the output value (as opposed to the protocol transcript
alone) may reveal about the input values.

In contract to that definition, privacy-preserving data mining [20] (such as [21]),
would be concerned only about what the output value may reveal about the input,
and not about how the output itself is computed. For example, the data may be
entrusted to a central curator who performs the required computation on them
before releasing the output publicly. In such setting, instead of guaranteeing the
exact answers as output, a slight deviation from the true answer is allowed in order
to gain in terms of privacy.

It is thus natural to aspire to immunize both the protocol transcript and the
output value from leaking to get the best of both worlds. General constructions
for secure multiparty protocols for implementing any functionality exist [22, 23, 24]
so it would be straight-forward to implement one of the many differentially-private
mechanisms using such a general construction. However, such general constructions
are very expensive and impractical. Specialized protocols may be constructed for
specific functions to achieve the task efficiently [25, 26]. This thesis extends this line
of work to the world of distributed systems, which raises a unique set of challenges,
such as dynamic large networks, offline peers, continuous computation (detailed later
as the privacy budget issue), and heterogeneity of privacy expectations across users.
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1.2 Differential privacy
An ideal privacy preserving function is one whose output does not leak any infor-
mation about its input. In particular, what could be learned after releasing the
function’s output could also trivially be learned without observing the function’s
output [27]. However, as long as the output provides information about the input
(i.e., utility as measured by min-entropy [28]), it has been long suspected [29], demon-
strated [30], and finally proven in [27] that this ideal is impossible to achieve. In
particular, Dwork and Naor [27] proved that if the output of the privacy preserving
function has n bits of min-entropy, then an n bit privacy breach can occur, given
that the adversary has some auxiliary information. In the same paper Dwork and
Naor suggest, as a solution, to move from the previous absolute concept of privacy to
a relative one, which they coined as differential privacy. Moreover, the new notion
does not depend on any assumptions regarding the auxiliary knowledge of the adver-
sary. The property of being differentially private is a property of the function alone
and not of its input, nor the adversary, which resulted in a strong and theoretically
appealing framework that was widely adopted afterwards in the privacy community.

The spirit of differential privacy is that a small change in the input should induce
no more than a small change also on the distribution of the output. The exact
definition of differential privacy depends on how the notion of “small” is defined. In
the traditional differential privacy literature, the function to compute takes vectors
as input; either a vector of zeros and ones, or a vector of records of individuals’ data.
In this context, a small change in the input amounts to a change in at most one
position in the vector. For example, for vectors of zeros and ones, a small change
is represented by a modification of Hamming distance by 1. This notion has been
generalized to arbitrary metrics in [31].

Differential privacy started in the context of statistical disclosure control [27]. In
this setting, the function’s inputs is a vector of records of individuals’ data, and the
small change in input is the presence or absence of the record of a single individual.
Hence, a user contributing his data, for instance, is assured that the output of the
function represents global trends among all users and only very little amount of
information specific to him. Thus, any resulting privacy breach (if any) has minimal
impact to his own, personal, privacy. In addition, even the mere fact of that he
contributed to the data at all (called membership privacy), is protected as well.
Moreover, this guarantee still holds even if the adversary knows all the other users
who contributed their data but her.

The benefits to user’s privacy in the statistical database model mentioned in the
previous paragraph is clear. However, it requires some clarification to show the same
in case of micro-data in which the input represents the data of a single individual,
which is the situation assumed throughout this thesis. In his setting, a small change
relative to which differential privacy is defined is the change in the presence or
absence of one item in the individual’s profile. Differential privacy will guarantee
that any information that could be deduced from the output did not depend on a
particular item. Therefore, the user has no reason to worry about whether to add
one particular item to his profile or not. However, global trends about the user’s
profile, such as the broad categories of his interests may be revealed.
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1.3 Contributions of the thesis
The goal of this thesis is to address the problem of privately computing similar-
ities between users in P2P collaborative platforms. Our contributions, after the
background in Chapter 2, are described in details.

Our first contribution in Section 3.2.2 is addressing the privacy budget issue (cf.
Section 2.3.1) which sets an upper bound on the number of similarity computations a
peer is allowed to engage in if he wants to achieve differential privacy. We introduced
of the concept of bidirectional anonymous channel, which provides anonymity for the
sender and for the recipient from each others, at the same time. Two protocols for
implementing such a channel are described, one for passive adversaries and another
one for active adversaries.

A two-party cryptographic protocol for deciding whether the similarity of two
peers is above a given threshold is described in Section 3.4. The protocol utilizes
several cryptographic primitives and sub-protocols in order to preserve the secrecy
of the inputs, which correspond to the private profiles of the two peers involved, and
releases nothing more than one bit of information.

We then describe a two-party protocol for securely computing similarity, with dif-
ferential privacy guarantees, in Section 3.5. Two protocols for two-party distributed
noise generation are presented. The impact of differential privacy to the threshold
similarity protocol, as measured by false positives and false negatives is theoretically
analyzed in Section 3.6.

Next, in Chapter 4 we describe a variant of differential privacy that can provide
diverse privacy guarantees for different peers with different privacy expectations.
Moreover, a single user can choose different privacy levels for different items in
his private profile. A mechanism satisfying this new definition is constructed and
evaluated.

Afterwards in Chapter 5, we introduce a non-interactive differentially private
mechanism for estimating similarity between users. This mechanism avoids the
need for the bidirectional anonymous channel while being more efficient in terms of
computational cost at the same time.

Moreover, in Chapter 5 we also provide a way to choose a value for the privacy
parameter ε in terms of utility and privacy. Utility is measured through a theoretical
bound on the deviation of the similarity value while privacy is analyzed through two
attacks. The value of ε should then be chosen such as it provides acceptable utility
while at the same time evades the two attacks.

Finally, in Chapter 6 we try to investigate how differential privacy behaves with
respect to an adversary with different kind of, but more realistic, side knowledge than
is typically assumed for differential privacy. We design two attacks and evaluate their
success.
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Abstract

In this chapter we describe the background and preliminaries for the
rest of the thesis. We provide the system model then give a detailed
description of the Gossple peer-to-peer semantic clustering protocol,
which we use for evaluating our techniques. Then we present differen-
tial privacy and the privacy budget issue. Finally, we also describe the
datasets used for evaluation throughout the chapters.

2.1 System model
Through out this thesis we consider a decentralized collaborative platform composed
of users, each user is a physical node in the network. A user has a profile which
expresses his interests in particular items by assigning a binary value to each item.
If the user likes an item, it is assigned the value 1 while if the user did not like
the item, or has never seen the item before, it is assigned the value 0. A user’s
profile is the collection of these assignments into a binary vector of n bits, where n
is the total number of items in the system. For example, if the system is Delicious
(a collaborative platform described later in Section 2.4), then there are n URLs. If
n = 3, then a user profile may look something like (1, 0, 1) if he likes the first and
third items.

2.2 Context of the thesis: Decentralized collabo-
rative filtering

In this section we provide an overview of the system in which our work takes place.

2.2.1 Overview of the system
The system on which our work is based is the Gossple system [1]. The goal of
Gossple is to cluster peers according to their interests. Such that neighbors are
likely to have shared interests. In his PhD thesis, Afshin Moin described techniques
for implementing collaborative filtering on top of Gossple, given that peers sharing
similar interests are connected to each other [32]. We describe an overview of how
Gossple clusters peers according to their interests in the following.

Gossple depends on two sub-protocols, the first is a random peer sampling
protocol [12, 33] that supplies each peer with a locally uniform random stream of
other peers. The other one is a semantic clustering protocol that consumes the
stream of random peers to perform clustering. Each of these sub-protocols maintain
a set of neighbors to the peer, which we call a view. The first protocol maintains
the random view ρ while the second maintains the clustering view c. The clustering
view of a peer is supposed to contain a list of peers similar to him; the list being
of constant length ℓ (usually ℓ = 10). The overall protocol operates in rounds as
described in the next paragraph, and is an instance of what is known as iterative
gossip-based protocols [34].
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In the following, let c
(r)
i be the clustering view of peer i at round r, and ρ

(r)
i

its random view at the same round. We describe Algorithm 1 of Gossple [1]. At
round r, every peer i selects the oldest peer j in his clustering view c

(r)
i , or from

ρ
(r)
i if c

(r)
i = ∅. Then let c′

i = c
(r)
i ∪ c

(r)
j ∪ ρ

(r)
i . Gossple uses a sophisticated group

similarity measure, which takes into account the combined utility of the entire view.
The sophisticated measure they use is computationally inefficient and needs special
heuristics to efficiently compute it. Not only the heuristic they provide very difficult
to compute in a secure multi-party protocol, it also requires the interaction of several
peers and therefore poses a serious challenge to the anonymity requirements needed
to solve the privacy budget issue (cf. Section 2.3.1). Therefore, we use a pair-
wise similarity metric instead and design the protocol such that the most similar
peers are kept in the clustering view. In particular, we set c

(r+1)
i ⊂ c′

i such that∣∣∣c(r+1)
i

∣∣∣ = min(ℓ, |c′
i|) and if a ∈ c

(r+1)
i , then sim(a, i) ⩾ sim(b, i) for all b ∈ c′

i \ c
(r+1)
i ,

for a specified similarity measure sim. This thesis is concerned about how to privately
compute such similarity measure, that is, while protecting the privacy of the peers’
profiles.

At the end of the clustering phase, i.e. when the views converge after a sufficient
number of rounds (around 20 rounds), each peer will have chosen the ℓ most similar
peers to him. Denote the clustering view of peer i at this stage c⋆

i . In case the
similarity computation were not perturbed in any way, we call this view the perfect
view.

Similarity. Cosine similarity [35] is used by Gossple to assess the similarity
between two binary vectors:

cos_sim(d,d′) = (d · d′)/∥d∥∥d′∥ . (2.1)

The value of the cosine similarity ranges from 0 to 1, in which 0 means nothing
in common and 1 means identical binary vectors. The cosine similarity can be
expressed in terms of inner products by noticing that ∥d∥2 = d ·d′ +d · (1−d′) and
∥d′∥2 = d · d′ + (1− d) · d′, for binary vectors d,d′. Although the similarity metric
used throughout this thesis, our protocol will work with any other binary metric as
well. In particular, since any binary similarity measure between two binary vectors
can ultimately be computed based on inner products of the original vectors or their
negation [36], we focus on computing the inner product function instead and derive
cosine similarity from it. The inner product of two binary vectors d,d′ ∈ {0, 1}n is
n∑

i=1
di × d′

i .

The focus of this thesis is mostly on how to compute similarity while preserving
privacy. For instance, in the baseline protocol just described, the similarity is always
computed based on the original unperturbed profiles. In Chapter 3 and 4, perturbed
similarity is computed in an interactive cryptographic protocol, while in Chapter 5
it is computed in a non-interactive manner. Moreover, in the interactive protocols,
if the perturbed similarity is below a specific threshold it will not be released (cf.
Section 3.4); because peers with low similarity will not need be in each other clus-
tering views and therefore there will be no need to use the similarity value to keep
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the most similar peers. In the following section we describe how our experiments
are designed to evaluate the utility of this system.

2.2.2 Conducting experiments
The experiment is conducted by simulating Gossple. Each node i randomly par-
titions its profile pi into two disjoint subsets, the training subset ti and the search
(or evaluation) subset si, such that ti ∪ si = pi and ti ∩ si = ∅ and |si|/|ti| ≈ 0.9
(the value 0.9 has been chosen to match [1]). The experiment is split into two steps:
the clustering (i.e., training) phase and the evaluation phase. The training phase
executes Gossple as described in the previous section but were the system is run
on the training profiles t instead of their actual profiles p. After a fixed number of
cycles the evaluation phase begins. Two metrics are going to be used to evaluate
utility. The first one is the ratio, for a peer i, between the cumulative similarity of
the clustering view

∑
j∈cr

i
sim(i, j) to the cumulative similarity of the perfect view∑

j∈c⋆
i

sim(i, j), where r is the cycle at which the evaluation phase started. The other
one is described in the next paragraph.

The clustering view provides utility if it is able to predict the items in the search
subset. This ability is useful for searching and collaborative filtering. Measuring the
ability to predict items is commonly evaluated using both the recall and precision.
The recall is the ratio of the training items successfully predicted, while precision is
the ratio of the correctly predicted items to all predicted items (i.e., including those
which were incorrectly predicted). A prediction algorithm that predicts all possible
items ({1, . . . , n}), regardless of its input, will give a recall of 1 but will have a very
low precision. However, because the clustering view contains only a constant number
of neighbors ℓ = |c⋆

i |, predicting all possible items is not possible (assuming that for
all j, |tj| = o(n), then |∪j∈c⋆

i
tj| = o(n) too). Hence, the recall alone will be sufficient

for the evaluation [1, Section 3.1].The profiles are split to training and search sets
such that elements in the search set are guaranteed to exist in the training set of at
least one other peer. That is, for all i, x ∈ si implies that x ∈ tj for some j ̸= i.
More formally, the recall ri for the peer i is:

ri =
|si ∩ (∪j∈c⋆

i
tj)|

|si|
. (2.2)

The experiment then will report the average recall over all peers r = Ei[ri].

2.3 Differential privacy
Differential privacy has been introduced by Dwork in 2006 [37] as an alternative def-
inition to privacy in response to an impossibility result presented in the same paper
asserting the impossibility of absolute privacy as long as there is a non-negligible
utility. It was meant to describe privacy as a property of the release mechanism
instead of the data or the adversary’s a priori or a posteriori knowledge of the data.
To achieve this objective, differential privacy was designed so as to render the re-
lease mechanism insensitive to changes in a single field (a single bit in case of binary
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vectors). In particular, if a single bit changes in the input profile, the distribution
of the mechanism’s outputs should not differ much. Thus, the release mechanism
should reflect only global features of the whole profile rather than of individual bits
(in the original paper a profile was a database and an individual bit was a row in
this database corresponding to real person). First, we need to define the notion of
adjacent (or neighboring) profiles.

Definition 2.1 (Neighboring profile [38]). Two profiles d,d(i) ∈ Rn are said to be
neighbors if there exists an item i ∈ {1, . . . , n} such that dk = d

(i)
k for all items k ̸= i.

This neighborhood relation is denoted by d ∼ d(i).

An equivalent definition states that d and d(i) are neighbors if they are identical
except for the i-th coordinate. For instance, the profiles (0, 1, 2) and (0, 2, 2) are
neighbored while the profiles (0, 1, 2) and (0, 2, 3) are not. The definition applies to
binary vectors as well. In case the coordinate of the item on which the two profiles
differ does not matter it may not be mentioned, and we will denote the relation as
d ∼ d′ instead. Differential privacy can be defined formally in the following manner.

Definition 2.2 (ε-differential privacy [37]). A randomized function M : Rn → R,
for some set R, is said to be ε-differentially private, if for all neighboring profiles
d ∼ d′ ∈ Rn and all S ⊂ Range(M):

Pr[M(d) ∈ S] ⩽ exp(ε) Pr[M(d′) ∈ S] ,

in which the probability is taken over the randomness of M, and exp refers to the
exponential function x 7→ ∑∞

n=0 xn/n!.

The ε parameter represents the privacy level provided, but it is still an open
research question to really understand its semantics [39, 40]. In general however,
the lower the value of ε is, the better the privacy guarantees are.

Differential privacy aims at reducing the impact that any single coordinate of
the profile can have on the output of a function. The maximal magnitude of such
impact is captured by the notion of global sensitivity.

Definition 2.3 (Global sensitivity [38]). The global sensitivity S(f) of a function
f : Rn → R is the maximum absolute difference obtained on the output of f over
all neighboring profiles:

S(f) = max
d∼d′∈Rn

|f(d)− f(d′)| . (2.3)

The maximal impact that a particular coordinate in the input vector can induce
is measured by the modular sensitivity instead.

Definition 2.4 (Modular sensitivity [41]). The modular sensitivity Si(f) of a func-
tion f : Rn → R is the maximum absolute difference obtained on the output of f
over all profiles that are neighboring on the item i:

Si(f) = max
d∼d(i)∈Rn

|f(d)− f(d(i))| . (2.4)
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Modular sensitivity was implicitly introduced in [41, Lemma 1]. In a nutshell,
the modular sensitivity of the item i reflects the maximum difference that i, in
particular, can cause to the value of the function f while keeping the values of all
other items fixed. Notice that S(f) = maxi Si(f).

Dwork, McSherry, Nissim, and Smith proposed a technique called the Laplacian
mechanism [38] that achieves ε-differential privacy by adding noise, proportional to
the global sensitivity of a function, to its output. The noise is distributed according
to the Laplace distribution with PDF x ∝ exp(−ε|x|/S(f)).

Theorem 2.1 (Laplacian mechanism [38]). For a function f : Rn → R, a random-
ized mechanism M achieves ε-differential privacy if it releases on input d

M(d) = f(d) + Lap (0, S (f) /ε) , (2.5)

in which S (f) is the global sensitivity of the function f and Lap (0, ·) a randomly
generated noise according to the Laplacian distribution with zero mean and variance
2S (f)2 /ε2.

2.3.1 Privacy budget
Consider a randomized, ε-differentially private mechanism M(d) for d ∈ Rn. We
can refer to the random coins used by M as r, then we can instead refer to the
deterministic mechanism M(d; r). (Technically, M is a probabilistic function, and
r should be an incompressible binary string of length p(n) bits, in which p is a
function bounding from above the number of stepsM takes on inputs of length n.)
The following lemma is central to differential privacy.

Lemma 2.1 (Composition and post-processing [42, 43]). If r1, . . . , rk are k inde-
pendent random strings and a ∈ {0, 1}n then the function

M(k) : d 7→ g(M(d; r1), . . . ,M(d; rk)) , (2.6)

for any randomized function g that does not depend on d, is (kε)-differentially private
( i.e., less private than M if k > 1).

Here, k represents the number of times the mechanism M is computed on the
same input d. In our case, this is the number of times the user computes his similar-
ity with another user. If kε is not bounded, complete disclosure occurs. Therefore,
either k has to be bounded, setting an upper bound on the number of users he is able
to compute similarity with, or ε has to be set negligibly small, practically destroying
the utility of the resulting similarity. This is known as the privacy budget issue,
in which each computation of the mechanism on the same input “spends” privacy
from a fixed total privacy budget. The fixed privacy budget in this case should be
finite, in particular kε is the budget that should not be exceeded. A third solution
is proposed in Chapter 3 to get around this problem, through the notion of bidi-
rectional anonymous channel which guarantees that different computations cannot
be linked together. Another solution which uses non-interactiveness, and thus the
function is only needed to be computed once and for all, is used in Chapter 5 as
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# of users # of items average profile size sparsity
Delicious 500 51453 135 0.26%
Digg 500 1237 317 25%
Survey 120 196 68 33%

Table 2.1 – Datasets characteristics

well. In particular non-interactive differential privacy [44]. Two non-interactive dif-
ferentially private mechanisms has been specifically designed for estimating pair-wise
similarity and distance. The first is the BLIP mechanism [40] and the second is the
Johnson-Lindenstrauss mechanism [45]. The former is based on randomized-response
and is designed to estimate inner product. The latter is based on sketching (using
dimensionality-reduction) and is designed to estimate Euclidean distance. However
Euclidean distance can be converted to inner product1, thus it can also implement
any binary similarity metric such as cosine similarity.

2.4 Datasets
We use three datasets to evaluate our approaches. They come respectively from
Delicious, Digg, and a survey conducted within our lab. About 120 users participated
in the survey and submitted their feedback (in forms of like/dislike) on approximately
200 news. Therefore, in the survey dataset a user’s profile consists of the news he
has liked, while for the Digg dataset a profile consists of the items that a user has
forwarded to others users. Finally, in the Delicious dataset, the profile of the user
consists of the items he has tagged. The characteristics of these datasets are briefly
summarized in the Table 2.1. The sparsity is number of likes in the dataset divided
by the number of users times the number of items. A low value for the sparsity
means that on average, a user has expressed his preferences towards a small fraction
of the items. More importantly, the sparsity indicates how many items does any two
users drawn at random share, and a lower value implies that it is harder for a user
to find good neighbors who share many items with him. Moreover, datasets with
low sparsity are likely to produce low recall.

• Delicious dataset. Delicious (delicious.com) is a collaborative platform for
keeping bookmarks in which users can tag the URLs of websites they liked. The
Delicious dataset consists in the profiles of 504 users, a profile being a set of
URLs that the user has tagged. The total number of URLs in the collective set
of users’ profiles is over 50000 URLs. In such a setting, the problem of similarity
computation arises naturally, when providing personalized services such as the
recommendation of URLs drawn from the ones tagged in Delicious. For the
sake of simplicity, in the experiments conducted, each URL was assigned a
unique identifier in the range of {1, . . . , 50000}, in order to handle identifiers
as integers instead of URL strings. The average size of a profile is 135 URLs.

1Via the identity 2⟨x, y⟩ = ∥x∥2
2 + ∥y∥2

2 − ∥x− y∥2
2.
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• Digg dataset. The dataset consists of 531 users of Digg (digg.com), a social
news website. The profile of these users is composed of the news that they
have shared over a period of 3 weeks in 2010. All the users considered have
shared more than 7 items per week and the dataset contains 1237 items, each
of which has been shared by at least 10 users. The average size of a profile is
317 items.

• Survey dataset. Around 196 randomly chosen news on various topics have been
shown to 113 colleagues and relatives, who have then submitted their opinion
in terms of like/dislike for each news. The average size of the profile is 68
(each user have responded to each and everyone of the 196 pieces of news; 68
represents the number of those pieces of news which was liked.)
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Abstract

In this chapter we address the challenges of computing a differential-
ly-private function in a distributed setting, which include the privacy
budget issue, distributed noise generation, and carrying out similarity
computation without having to trust a third party.

This chapter has been published as M. Alaggan, S. Gambs, and A.M. Kermar-
rec, “Private similarity computation in distributed systems: from cryptography to
differential privacy,” in Proceedings of the 15th International Conference On Princi-
ples Of Distributed Systems (OPODIS’11), ser. Lecture Notes in Computer Science,
A. Fernández Anta and G. Lipari and M. Roy, Ed., vol. 7109. Toulouse, France:
Springer, 13–16 December, 2011, pp. 357–377.

3.1 Introduction

In this chapter we describe a two-party cryptographic protocol allowing two peers
to compute the differentially-private similarity between their profiles without any of
them observing the profile of the other and without relying on a trusted third party.
Moreover, the protocol will abort if the differentially-private similarity between the
two peers is lower than a predetermined threshold. While we focus on cosine simi-
larity, our method is generic enough to be applied to other binary similarity metrics
as long as they depend on inner product and simple arithmetic [36].

We study the impact of the differential privacy (which requires the addition of
random noise) on the utility of the similarity measure, both through a theoretical
analysis of the false negatives and experimental validation of the recall in Gossple.

The work presented in this chapter combines existing and well known crypto-
graphic techniques and differential privacy mechanisms in the context of distributed
similarity computation. Our main contribution besides the threshold similarity, is
addressing the unique challenges of implementing differential privacy in a large and
dynamic P2P system.

For instance, we acknowledge the difficulty of handling the privacy budget is-
sue (cf. Section 2.3.1) in such large scale network and introduce the bidirectional
anonymous channel primitive. We also provide several methods for distributed noise
generation.

This chapter is organized as follows. First, Section 3.2 provides the required back-
ground and some preliminaries. Then, Section 3.3 reviews related work before intro-
ducing in Section 3.4 the threshold similarity protocol and prove its security with
respect to a passive adversary. Afterwards in Section 3.5, we describe differentially-
private protocols for the exact and threshold similarity. We analyze the utility in
Section 3.6 and validate with experiments in Section 3.7. Finally, we conclude in
Section 3.8.
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3.2 Background
In this section we review the relevant cryptographic notions and describe the bidi-
rectional anonymous channel.

3.2.1 Cryptographic background
Adversary model. In this chapter, we want privacy against a computationally-
bounded passive adversary [19] (also sometimes called semi-honest or honest-but-
curious) that can control a fraction of the peers. In this model (contrary to the
active one), peers follow the protocol and do not deviate from its specifications.
However, the adversary may try to infer as much information as possible from the
inputs of peers it controls and from the protocol transcript (the set of messages
exchanged during the protocol’s execution). Furthermore, we assume the commu-
nication channels between peers are private. The number of peers controlled by
the adversary is only relevant while analyzing the anonymity guarantee provided by
gossip-on-behalf (explained later) as described in [1].

Definition 3.1 (Privacy with respect to a passive adversary [46]). A multi-party
protocol is said to be private with respect to a computationally-bounded passive
adversary controlling a peer (or a collusion of peers), if the adversary cannot learn,
except with negligible probability, more information from observing the protocol’s
transcript than it could learn from its own input, the inputs of the peers it controls,
and the output of the protocol.

Secure multi-party computation. General feasibility results showing the pos-
sibility of constructing a secure multi-party protocol for any functionality exist
[18, 22, 23]. These feasibility results could be applied blindly to get a multi-party
protocol for any differentially private mechanism such as the Laplacian mechanism
[38]. However, such general results are extremely inefficient for practical use. For ex-
ample, the garbled circuit technique [18] works by constructing an encrypted binary
circuit of the desired functionality. Each binary gate in this circuit has two inputs
and four possible outputs. The outputs are given in encrypted form and the gate’s
inputs are the keys to decrypt the correct output, which is in turn the key to next
gate and so forth until the output gate. Instead, there are other techniques which are
more suitable for practice, albeit they need to be tailored for specific functionalities.
Such techniques are divided into two broad categories: homomorphic encryption
and secret-sharing schemes [47]. Secret sharing is more efficient than homomorphic
encryption and does not need cryptographic assumptions, providing privacy even
from computationally-unbounded adversaries. However, it requires more than two
parties so it is not suitable for our purposes, so we employ homomorphic encryption
instead.

Homomorphic encryption. A homomorphic encryption is an encryption that
allows computations to be performed on the encrypted text, without decrypting it.
For example, an additively-homomorphic encryption has a function that takes as
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input two encrypted numbers and their public key, and outputs another encrypted
number, which if decrypted will give the sum of the two original ones. It may
additionally allow multiplication with unencrypted numbers, an operation called
scalaring.

Definition 3.2 (Homomorphic cryptosystem). Consider a public-key (asymmetric)
cryptosystem where

1. Encpk (a) denotes the encryption of the message a under the public key pk, and

2. Decsk (a) = a is the decryption of this message with the secret key sk1.

This cryptosystem is said to additively homomorphic if there is an efficient op-
eration ⊕ on two encrypted messages such that Dec (Enc (a)⊕ Enc (b)) = a + b.
Moreover, such an encryption scheme is called affine if there is also an efficient
scalaring operation ⊙ taking as input a cipher-text and a plain-text such that
Dec (Enc (c)⊙ a) = c× a.

In addition to the previous elementary operations which can be carried out locally
by one peer, there are more sophisticated techniques for which multi-party protocols
exist, but require the active cooperation of more than one peer. For example, the
operation of determining which of two encrypted numbers is greater than the other,
without revealing any other information about the numbers [48, 49, 50]. Other
examples include the multiplication of two encrypted numbers [51], or extracting
the least significant bit [49], still in an encrypted form, out of an encrypted integer.

Paillier’s cryptosystem [52] is an instance of a homomorphic encryption scheme
that is both additive and affine. Moreover, Paillier’s cryptosystem is also semanti-
cally secure (cf. Definition 3.3) which means that a computationally-bounded adver-
sary cannot derive non-trivial information about a plain-text a given its encryption
Enc (a) and the public key pk. For instance, a computationally-bounded adversary
who is given two different cipher texts encrypted with the same key of a semantic
cryptosystem, cannot even decide with non-negligible probability if the two cipher
texts correspond to the encryption of the same plain text or not. In particular,
semantically secure cryptosystem is by essence probabilistic, meaning that even if
the same message is encrypted twice, the two resulting ciphertexts will be different
except with negligible probability. In this chapter, we will also use a threshold ver-
sion of Paillier’s cryptosystem [53] (cf. Definition 3.4), which requires the active
cooperation of the peers to decrypt.

Definition 3.3 (Semantic security [54]). An encryption scheme is said to be se-
mantically secure if a computationally-bounded adversary cannot derive non-trivial
information about the plain text from the cipher text and the public key only.

Definition 3.4 (Threshold cryptosystem). A (t, n) threshold cryptosystem is a pub-
lic key cryptosystem in which at least t > 1 peers out of n need to actively cooperate
in order to decrypt an encrypted message. In particular, no collusion of t − 1 or

1In order to simplify the notion, we will drop the indices and write Enc (a) instead of Encpk (a)
and Dec (a) instead of Decsk (a) for the rest of this chapter.
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Figure 3.1 – Threshold homomorphic cryptosystem: Both peers generate the keys
(step 1), encrypt their input values (step 2), and perform calculations on the en-
crypted values (step 3 and 4). To decrypt, in step 5 they need to use both their
secret keys and engage in a decryption protocol.

less peers can decrypt a cipher text. However, any peer may encrypt a value on
its own using the public key pk. After the threshold cryptosystem has been set up,
each peer i gets his own secret key ski (for i ∈ {1, . . . , n}), which is useless by itself
but must be used as input to a threshold-decryption protocol by t peers or more to
successfully decrypt a cipher-text.

In the previous definition, when we say that the peers cooperate to decrypt it
means that they engage in an interactive protocol: the decryption protocol, which
is part of the definition of the threshold cryptosystem. In such a protocol each
peer’s input is a part of the secret key, along with the cipher-text. After the peers
exchange certain messages according to the protocol, the output is the plain text
corresponding to the cipher text (i.e. effectively decrypting it).

Figure 3.1 gives an example of a threshold homomorphic cryptosystem in which
peers perform computations on the cipher-text. To decrypt the result both peers
must cooperate using their secret keys.

3.2.2 The bidirectional anonymous channel
The privacy budget issue (cf. Section 2.3.1) occurs when a peer needs to engage
in more similarity computations than his privacy budget can afford. Let d be the
peer’s profile and M be a differentially private probabilistic function on d whose
running time is bounded by some polynomial g(n), in which n is the length of d.
Let r1 �= r2 be two random binary strings of length g(n) representing the random
coins used by M. Then f1(d) = M(d, r1) and f2(d) = M(d, r2) are deterministic
functions. Suppose, for the sake of the argument, that if the adversary received
either f1(d) or f2(d), but not both, then it would not be able to breach the peer’s
privacy, while if it held both f1 and f2 it will be able to breach his privacy. The
peer could protect his privacy from being breached by either computing M only
once in his lifetime, or alternatively, by ensuring that the adversary cannot receive
both values. Ensuring that the adversary cannot get both values is very difficult
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Figure 3.2 – Bidirectional anonymous channel: The peer A cannot distinguish sce-
nario 1 from scenario 2. In particular, peer A is not able to tell whether peer B and
peer B’ are the same individual or two different ones.

in a P2P system due to vulnerabilities such as Sybil2 attacks [55]. Instead, our
objective is to prevent the adversary from linking both values to each others. In
particular, even if the adversary was able to obtain both values, it would not be
able to tell if they belong to the same peer, as illustrated in Figure 3.2. Requiring
sender anonymity [56] alone is not sufficient because of the symmetric nature of P2P
networks. Both peers carrying out a similarity computation need to have the same
guarantee. Therefore, we describe the notion of bidirectional anonymous channel to
fulfill this purpose.

The definition of unlinkability in [57] states that two items are unlinkable if the
probability that they are related stays the same before (a priori knowledge) and
after an execution of the system (a posteriori knowledge). In our definition, the two
items that we require to be unlinkable are two similarity values computed over two
different channels. An execution of the system, relative to which we measure the
a priori and a posteriori knowledge, refers to the establishment of the channel, but
does not take into account what is exchanged over that channel after it is established
[57]. For instance, if a peer sends his identity over the channel, this would break the
unlinkability. We consider that the attacker is one of the two correspondents of the
channel and that it always has access to what is transmitted over it.

Definition 3.5 (Bidirectional anonymous channel). Let A, B, and C be three differ-
ent peers. Before establishing communication channels to B and C, A has a priori
knowledge that peers B and C might be the same peer with probability p. The
channels are called bidirectional anonymous if and only if (for all A, B �= A, C �= A)
after A establishes those channels and before any information is exchanged, the a
posteriori knowledge of A that B and C might be the same peer is still exactly

2A Sybil attack is an attack in which the adversary creates more than one identity to overcome
identity-based restrictions.
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p. Moreover, if B = C, then the a posteriori knowledge of B that he has two si-
multaneous channels to A is the same as his a priori knowledge. If B ̸= C and B
was colluding with C, then their a posteriori knowledge that both their channels
transmit to the same peer is the same as their a priori knowledge.

Gossip on behalf. In this section we describe two methods for implementing a
bidirectional anonymous channel. The first method is more efficient but is suitable
only against a passive adversary while the second method is more expensive but is
more secure against a malicious adversary. We stress that we still do not consider
a malicious adversary in this thesis but we present the second variant to show the
feasibility of constructing a bidirectional anonymous channel.

A random peer sampling technique that is resilient to adversarial manipulation is
used to make it less likely that the random choice of peers is biased by the adversary
[33]. In particular, when we say in the following that a peer is chosen randomly, this
means that the probability that the chosen peer belongs to the adversary is equal to
the ratio of adversary-controlled peers to the total number of peers in the system.

The first variant, shown in Figure 3.3, a peer A starts by choosing at random
another peer P in his neighborhood. Then, P selects one of his own acquaintances,
denoted B, as the second peer with which A computes similarity. Peer P does not
disclose the identity of B to A or vice-versa, effectively acting as an anonymizer.
Then A and B initiate a key exchange protocol [58] with each other to make their
communications private and unreadable by P . For example, A generates a pair of
public key/secret keys for this channel and lets P transmit the public key to B.
Afterwards, B uses the public key to encrypt a symmetric cipher’s (such as AES)
private key and transmits it back to A via P . A can decrypt the message and obtain
the AES private key. A and B can now exchange encrypted messages through P ,
so P learns nothing about the information exchanged during the life time of this
channel (besides the number of messages and their size). Peers A and B now have a
private bidirectional anonymous channel, given that P does not collude with either
one of them.

The second, more secure variant, is shown in Figure 3.4. For this variant, we
need every peer in the network to have a public key of his own, that is spread with
his address by the random sampling protocol. A peer A chooses a random peer
A′ at random. Next, A initiates a traditional anonymous channel (that provides
anonymity only for A but not for A′ 3), such as [60], to A′. Using the public key of
A′, A performs key exchange with A′ to make their channel private. Note that by
using the public key of A′, A validates that there is no man-in-the-middle between
him and A′. Notice that the path between A and A′ may be re-initiated using a
different anonymous channel from time to time, as traditional anonymous channels
require to avoid traffic analysis attacks. Now, A′ is the proxy of A, valid only for one
bidirectional anonymous channel. On the other hand, another peer B does the same
steps and denotes B′ as his proxy. When A′ meets B′ in his random view, A′ sends
A the public key of B′, and B′ sends B the public key of A′. Using this information,
A and B engage in a key-exchange protocol with each other in the following way. A

3The hidden-services (randezvous points) of Tor [59] provides anonymity to one end and
pseudonymity to the other end, but not anonymity to both ends.
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Figure 3.3 – Gossip-on-behalf: Peer P makes sure peer A and B does not know
each others’ identities. Step 1 and 2 is for securing the channel via exchanging an
AES symmetric encryption key. Step 3, a bidirectional anonymous secure channel
is established via peer P who cannot read the encrypted contents of the channel.

Figure 3.4 – Secure gossip-on-behalf. Peer A has an anonymous channel to A′, and
similarly for peer B. When A′ and B′ encounter each others A and B initiate a key-
exchange protocol such that A′ and B′ cannot mount a man-in-the-middle attack
unless they collude together.
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initiates a one-way4 anonymous channel to B′ using the public key of B′, and B does
the same to A′, then the key exchange protocol is performed by A sending a suitable
message to B′, which forwards it to B, which performs the appropriate computation
and sends the result back to A via A′. This is done so that no man-in-the-middle
attack may be mounted except if A′ and B′ collude together if A and B are honest.
A and B now can communicate through A′ and B′ with bidirectional anonymity.

3.3 Related work
In this section, we describe work related to this chapter and how it compare to
our contributions. In particular, we discuss anonymous channels and distributed
noise generation. For the general system of providing both peer clustering according
to interests in a P2P system, a protocol for nearest neighbor search in distributed
settings has been proposed in [61] but it was designed only within the cryptography
framework and not the differential privacy context. Differentially private protocols
for collaborative platforms have also been considered in centralized systems such as
[62] for analyzing the recommender system of Netflix, but the data are still entrusted
to a central entity.

3.3.1 Anonymity
In the context of a communication channel, anonymity can be one of three types
[56]: anonymity of the recipient, anonymity of the sender, and unlinkability of sender
and receiver. Note that the latter (which is called relationship anonymity) is weaker
than the first two [57] and can be achieved via a MIX-net [63], assuming that an
adversary does not have full control on all the MIXes. In this scenario, even if an
adversary wiretapped the similarity value, he cannot use this information directly
unless he knows the sender and the receiver. However, the adversary may learn for
a certain receiver its similarity distribution with respect to the network. This is not
an issue in our protocol because an adversary who is not controlling either one of
the two peers cannot eavesdrop because the channel between two peers is a private
channel (implemented via cryptographic means).

The closest to bidirectional anonymous channels is Tor’s hidden services [59], in
which a client communicates with a server. The client is anonymous with respect
to the web server. However, the web server is only pseudonymous with respect to
the client. That is, two different clients know for sure that they are communication
with the same server. This is not what a bidirectional anonymous channel provides.
However, bidirectional anonymous channels solve a different use case than Tor’s
hidden services. For instance, a client using a bidirectional anonymous channel can-
not choose which server he connects to. The AP3 system [64] provides decentralized
anonymous communication for P2P systems. The provide secure pseudonyms, which
does not serve our purpose of unlinkable channels. They also provide anonymous

4A one-way anonymous channel is a channel where messages pass only in one direction. One-
way anonymous channels may be cheaper than two-way anonymous channels because they do not
need to maintain state enabling the recipient to reply.
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channels, providing sender anonymity only. The publish-subscrib framework they
describe suffers from the same drawback as Tor’s hidden services. Finally, D-Crowds
[60] extends Crowds [65], which is also for P2P systems, but only provides sender
anonymity.

The bidirectional anonymous channel provides both sender anonymity and re-
cipient anonymity. Therefore, it may not be useful for client-server architectures
because there is no way to initiate a connection to the desired server. However, it
is a perfect match for P2P gossiping protocols in which there is no special role for
any particular peer.

3.3.2 Distributed noise generation

Differential privacy requires randomness to operate, and this randomness must re-
main secret to the party receiving the differentially-private output. Otherwise, the
noise could removed and the differential privacy guarantee would be violated. There-
fore, since the two peers involved in the two-party computation are also the ones
receiving its output, neither one of them should know the randomness used by the
mechanism. More specifically, the task of generating the noise cannot be delegated
to one of them; they have to engage in an interactive protocol to generate noise.
Furthermore, the noise they generate collaboratively should be generated in an en-
crypted form.

The protocols used to generate random coins are known as coin-tossing protocols.
It is known that in the two-party case, a malicious adversary can bias the coin with
additive Θ(1/r), where r is the number of rounds of the coin-tossing protocol [66].
Since we assume a passive adversary in this thesis, we are able to generate unbiased
coins, otherwise we could use the optimal two-party coin-tossing protocol from [66]
to generate biased coins and then use the differential privacy mechanism from [67]
which can provide differential privacy even from unbiased coins.

There are several coin-tossing protocols for the multi-party case (honest majority)
[51, 25, 50, 68], which do not necessarily apply for the two-party case of this thesis.
Thus we only mention the multi-party protocol of [25] (ODO framework) which is
designed for generating noise specifically for differential privacy. ODO it is still not
necessarily applicable to the two-party setting of this thesis. ODO framework can
generate private Binomial and Poisson random variables, approximating Gaussian
and Laplacian noise, respectively. However, their generated noise results in a relaxed
variant of ε-differential privacy called (ε, δ)-differential privacy which is a strictly
weaker definition [69]. To provide ε-differential privacy instead, query answers have
to be bounded. In this chapter we describe a semi-honest two-party noise generation
protocol that satisfies ε-differential privacy without bounding the query answers.
Moreover, instead of generating noise jointly like [25], in our protocol, each party
will generate noise locally and incorporate it with the other party’s noise by addition,
making the noise generation step more efficient, but is only secure against a passive
adversary.
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3.4 Threshold similarity
In this section, we introduce the concept of threshold similarity. The key idea of this
concept is to avoid revealing the similarity value if it is below a given publicly known
threshold. The motivation is two-fold. First, releasing only one bit of information
(whether the similarity is below a threshold or not) is definitely better in terms of
information lekage than releasing the value of the similarity itself. Second, it makes
it more difficult for an adversary to guess the profile of a particular peer, for instance
the situation in which the adversary keeps guessing items progressively to increase
the similarity with a particular peer until he fully reconstructs his profile. In this
case, threshold similarity makes it more difficult for the adversary because he gets
no clues and thus its initial estimate of the profile must be considerably good.

In the rest of this section we discuss how to provide a secure implementation
for threshold similarity computation that provides privacy in the secure multi-party
computation model. The protocol is composed of several steps, including computing
the inner product, squaring it, and then finally comparing whether the cosine sim-
ilarity is greater than a predetermined threshold. In the following section we start
by describing the first step: computing the inner product.

3.4.1 Computation of the inner product
There are several types of protocols that which can be used to compute the inner
product between two binary vectors. The first type of protocols is the protocols di-
rectly computing the inner product while the second type is the cardinality set inter-
section protocols. A cardinality set intersection protocol takes two sets of integers as
inputs and outputs the number of integers they have in common. This protocol can
also be used to compute the inner product of two binary vectors because each binary
vector v ∈ {0, 1}n could be represented as a set of integers {i | vi = 1, i ∈ {1, . . . , n}}.
The cardinality set intersection protocols could provide a performance advantage
when n is big and the binary vectors are sparse (i.e. the number of bits set to 1 is
small compared to the number of bits set to zero).

There are advantage and drawbacks for both set intersection based and inner
product based approaches. To our knowledge, all existing secure set intersection
protocols [70, 71, 72, 73] include steps proportional to the number of ones in the
binary vectors, hence revealing this information. On the other hand, inner product
protocols [74, 75, 76, 77] inherently require communication complexity proportional
to n, which is independent of the number of ones in the binary vectors, although
at the cost of an increased communication. On the computational size, the inner
product approach has a linear computational complexity while the set intersection
approach has a quadratic complexity. Since our primary interest is privacy, we
selected the inner product approach since it hides the number of ones. First, we will
give an overview of different inner product protocols in the literature in the following
section as well as set intersection protocols.

Inner product approach. The protocols for inner product can be divided into
two main branches, those based on secret-sharing [78, Section 4.3], and those based
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Figure 3.5 – inner product protocol: Peer B adds the encrypted bits of the peer A,
which correspond to the ones of peer B to get the encrypted inner product.

on homomorphic encryption [74, 75, 76]. The one based on secret-sharing, although
providing no inherent advantage on the message communication complexity, provides
substantial advantage in the bit communication complexity because secret-sharing
scheme provides perfect secrecy and thus does not required large cipher-texts.

Unfortunately, secure multiplication in secret-sharing needs at least 3 peers, thus
requiring a semi-trusted5 third party [78]. It would be possible, if we are using gossip-
on-behalf for anonymization, to use the anonymizer as this semi-trusted third party.

The protocol in [76] reveals a permuted sum of the two vectors. This protocol
is only secure if the other vector is uniformally distributed over the integers, which
is definitely not secure for binary vectors as a peer could easily learn the number of
zeros and number of ones in our case.

Both [74], [75] proposed the same protocol. We use this, to which we will refer as
“ InnerProduct”, to implement our inner product step in Algorithm 1. In a preprocess-
ing step to this protocol, the two peers engage in the setup phase of a key generation
protocol for an threshold affine homomorphic cryptosystem [53]. At the end of this
key generation phase, both peers have received the same public key pk that can
be used to homomorphically encrypt a value and each one of the two peers has, as
private input, a secret key, respectively ska for the first peer and skb for the second
peer. The threshold cryptosystem6 is such that any peer can encrypt a value using
the public key pk but that the decryption of a homomorphically encrypted value
require the active cooperation of the two peers. Figure 3.5 illustrates this protocol.
For illustration purpose, we call the first peer Alice and the second peer Bob. This
protocol is also illustrated in Algorithm 1.

Cardinality set intersection approach. We do not use cardinality set intersec-
tion in our work but we mention it for the sake of completeness.

Similarly to the inner product protocols, the protocols for computing the size of
the set intersection are also divided into those who rely on secret-sharing schemes
[70] and those based on homomorphic encryption [72, 73, 79]. The protocol in [70]

5Semi-trusted here refers to a passive adversary.
6The threshold cryptosystem should not be confused with the threshold similarity.
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Algorithm 1 InnerProduct(d = (d1, . . . ,dn),d′ = (d′
1, . . . ,d′

n))
1: for i = 1 to n do
2: Alice computes Enc (di)
3: end for
4: Alice sends Enc (d1) , . . . , Enc (dn) to Bob
5: Bob sets s = Enc (d1) if d′

1 equals 1, and sets s = Enc (0) otherwise.
6: for i = 2 to n do
7: if d′

i = 1 then
8: Bob sets s = s⊕ Enc (di)
9: end if

10: end for
11: Bob sends s to Alice

is based secret-sharing and requires the help of a third party in the two-party case,
therefore we focus instead on [72, 73, 79].

The protocols proposed in [73, Section 4.4] and [72, Section 5.2] rely on the same
idea. More precisely, they both represent sets as polynomials, in which the roots
of the polynomial are the set items represented as integer. The first protocol is a
two-party one while the second protocol is a multi-party one. In both protocols, all
items must be compared to each others, which leads to complexity that is quadratic.
Inan, Kantarcioglu, Ghinita, and Bertino [79] relaxes this requirement by providing
a differentially private protocol to block some unneeded comparisons. In the example
they presented, they could save up to 17% of the comparisons needed compared to
[73] and [72].

3.4.2 Threshold cosine similarity
We are interested in a form of similarity that outputs no more than one bit of
information stating whether (or not) the similarity between two profiles is above
some predetermined threshold τ .

Definition 3.6 (Threshold similarity). Two peers are said to be τ -similar if the
output of applying some similarity measure sim on their respective profiles d,d′ is
above a chosen threshold 0 ⩽ τ ⩽ 1 (i.e. sim(d,d′) > τ).

In practice, the value of the threshold τ depends on the application and is set
empirically so as to be significantly above the average similarity in the population.
Nonetheless, in Section 3.6 we provide heuristic for selecting the threshold as a
function of the desired acceptance ratio.

The threshold similarity protocol takes as input two profiles d and d′ (one profile
per peer) represented as binary vectors and output one bit of information that is 1
if d and d′ are τ -similar (i.e. sim(d,d′) > τ for sim a predefined similarity measure
and τ the value of the threshold), and 0 otherwise. The threshold similarity is very
appealing with respect to privacy as it guarantees that the output of the similarity
computation will reveal no more than one bit of information, which is potentially
much less than disclosing the exact value of the similarity measure. In order to
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Figure 3.6 – Threshold similarity: The peer accepts only the peers having a similarity
with him above a certain threshold. The similarity is based on the common items
in their profiles, shaded in gray.

implement the threshold step, we employ a secure integer comparison protocol. In
the next section, we review the relevant secure integer comparison literature.

3.4.3 Integer comparison step
The integer comparison problem is known as the socialist millionaires’ problem in
which two parties have their own private inputs and want to compare them without
revealing anything about their inputs. A variety of solutions to this problem have
been developed since Yao [80] proposed it.

Nonetheless, all these protocols can be gathered as two different families, both of
which depend on bit-wise operations. One family of approaches is based on encrypted
truth tables, while the other exploits homomorphic operations on encrypted bits.

The encrypted truth table technique requires the input to be known (i.e. in plain-
text) to its owner as opposed to being passed as it is without requiring decryption
after being evaluated from a previous circuit. The homomorphic operations on
encrypted bits takes advantage of the homomorphic properties of a cryptosystem to
achieve the same with less communication overhead than encrypted truth tables but
at the expense of using asymmetric encryption.

Some homomorphic methods require both parties to know the value of their
inputs to be able to correctly setup the protocol [81], while others can work directly
on the bit-wise encryption of these inputs [48, 49]. In the situation in which the value
as a whole is encrypted but the bit-wise encryption is not available, bit decomposition
protocols are used.

Bit decomposition. Since all these methods depend on bit-wise operations, an
important ingredient of these protocols is a bit decomposition scheme. A bit de-
composition scheme takes a homomorphically encrypted integer and outputs the
homomorphically encrypted values of each bit of this integer [82, 50]. Nishide and
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Ohta [49] provide better solution for integer-comparison protocol by requiring only
the least significant bit to be computed instead of the entire bit decomposition. This
method worked originally for secret-sharing schemes but can be adapted to homo-
morphic encryption as well. Lin’s method [81] requires at least one peer to know
his number in plain-text while Garay’s method [48] is less efficient than Lin’s as it
requires both homomorphic addition and multiplication to operate on the encrypted
bits. We reject the former as both peers will not have their input in plain-text, and
we reject the latter because Nishide’s protocol (presented in the following paragraph)
is more efficient than both Lin’s protocol and Garay’s protocol it as it uses only the
least significant bit instead of all the bits.

To the best of our knowledge, Nishide’s protocol [49] is potentially the most
efficient protocol in terms of computation and communication. It operates only
on the least significant bit as detailed. This method was originally presented in
the context of secret-sharing, but we translate it to the setting of homomorphic
encryption in Algorithm 2. In this algorithm, we use the notation x̄ to denote the
negation of a bit x (i.e. x̄ = 1−x). We also use the notation x∨y to denote the OR
gate, such that x ∨ y is 1 if and only if at least one of x or y is 1. The sub-protocol
LeastSignificantBit is defined in [49] as well.

Algorithm 2 CompareIntegers(Enc (a) , Enc (b))
a, b integers, k is the cryptosystem modulus [49]

1: w ← LeastSignificantBit (2Enc (a) mod k)
2: x← LeastSignificantBit (2Enc (b) mod k)
3: y ← LeastSignificantBit (2 (Enc (a)− Enc (b)) mod k)
4: if Dec (wx̄ ∨ w̄x̄ȳ ∨ wxȳ) = 1 then
5: Output “a < b”
6: else
7: Output “a ⩾ b”
8: end if

Checking the least significant bit of 2a mod k, is equivalent to checking whether
a < k/2 or not, in which k is the RSA modulus of the homomorphic encryption (or
the secret-sharing scheme field cardinality).

Nishide and Ohta have showed using a truth-table that using w, x, y it is possible
to uniquely determine each corresponding output for a < b. This method is efficient
because it only uses affine multiplication, and a very shallow binary circuit with only
3 least significant bit protocol invocations (which is the just first round of any bit
decomposition protocol).

Unfortunately, since affine homomorphic cryptosystems cannot provide multipli-
cation of encrypted values, they cannot be used to compute the last binary circuit
(the “if statement”). To handle this step, a method such as the conditional gate from
[83] has to be used7.

7The conditional gate provides multiplication for binary values, and it should not be confused
with the multiplication gate used in the following section to multiply integers.
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The conditional gate is an interactive protocol to multiply two bits x, y ∈ {−1, 1}8,
which involves each peer in turn multiplying the same random number si ∈ {−1, 1}
(i = 1 for the first peer and 2 for the second peer) of his choice to both bits, ending
up with Enc (s1s2x) and Enc (s1s2y). Finally they perform a threshold decryption of
the former before scalarizing it with the other to obtain s1s2x ⊙ Enc (s1s2y) which
yields Enc

(
xy �����: 1(s1s2)2

)
= Enc (xy) as desired. The conditional gate along with the

negation gate9 compose a NAND gate, which is universal for binary circuits, and is
used to evaluate the Boolean logic expression in the protocol.

3.4.4 Private similarity computation
The cosine similarity as denoted in (2.1) requires the extraction of square root, which
is a non-trivial operation to implement as it requires costly homomorphic encryption
operations. Instead, we compute the squared cosine similarity. To do this, the
numerator, namely the inner product, needs to be squared and this is achieved
using the multiplication gate from [51] to multiply it by itself. The denominator can
be easily computed. The first peer sends a homomorphic encryption of the number
of ones in his binary vector to the second peer (i.e. Enc(∥d∥1)), who will scalarize it
by his own set cardinality by doing ∥d′∥1 ⊙ Enc(∥d∥1) to obtain Enc(∥d∥1 × ∥d′∥1).

Recall, that the objective of the protocol is only to learn if the similarity between
d and d′ is above a certain (publicly known) threshold τ . We assume that the
threshold is in Q and therefore can be represented as a fraction τ = τ1/τ2 (for τ1
and τ2 positive integers such that τ1 ⩽ τ2). Our objective is to verify whether or not
the following condition holds

(d · d′)2

∥d∥1 × ∥d′∥1
>

τ1

τ2
⇐⇒ τ2 (d · d′)2

> τ1 ∥d∥1 × ∥d
′∥1 (3.1)

The left side and right side of the inequality can be compared by secure protocols
for integer comparison (cf. Section 3.4.3). We choose to apply specifically the
comparison technique from [49] as it neither require knowledge of the input10, nor
a full bit decomposition of the input as other protocols. Although this protocol
was developed initially for secret-sharing, it can be implemented with homomorphic
encryption as well. The output of this comparison step is one bit stating whether
or not the squared cosine similarity is above the threshold τ . This protocol is called
ThresholdCosine and is detailed in Algorithm 3. For illustration purpose, we call the
first peer Alice and the second peer Bob.

Theorem 3.1 (Protocol for threshold cosine similarity). The protocol ThresholdCo-
sine is private with respect to a passive adversary (in the secure multi-party compu-
tation sense) and returns 1 if two peers are τ -similar and 0 otherwise. The protocol
has a communication complexity of O(n) bits and a computational cost of O(n).

8In case the encrypted bits was from the domain {0, 1}, it is straight-forward to convert them
to {−1, 1} using the affine homomorphic encryption properties.

9The negation gate of an encrypted bit Enc (x) is simply 1⊕ (−1⊙ Enc (x)) = Enc (1− x).
10Therefore, the input can be the encrypted output of a preliminary cryptographic protocol.
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Algorithm 3 ThresholdCosine(d,d′,τ = τ1/τ2)
1: Alice and Bob generates the keys of the threshold homomorphic encryption
2: Alice receives ska, Bob receives skb and they both get the public key pk
3: Alice and Bob compute Enc (d · d′) using the protocol InnerProduct

(Algorithm 1)
4: Alice applies the multiplication gate from [51] to obtain Enc

(
(d · d′)2

)
5: Alice computes Enc

(
(d · d′)2

)
⊙ τ2 = Enc

(
τ2 (d · d′)2

)
6: Alice computes Enc (∥d∥1) and sends it to Bob
7: Bob computes Enc (∥d∥1)⊙ (τ1 ∥d′∥1) = Enc (τ1 ∥d∥1 × ∥d′∥1)
8: Alice and Bob use the integer comparison protocol CompareIntegers

(Algorithm 2) of [49] on Enc
(
τ2 (d · d′)2

)
and Enc (τ1 ∥d∥1 × ∥d′∥1)

9: if Enc
(
τ2 (d · d′)2

)
> Enc (τ1 ∥d∥1 × ∥d′∥1) then

10: output 1 to state that Alice and Bob are τ -similar
11: else
12: output 0
13: end if

Proof. All the communication exchanged between Alice and Bob is done using a ho-
momorphic encryption scheme with semantic security (cf. Definition 3.3), therefore
the encrypted messages exchanged do not leak any information about their content.
Moreover as the encryption scheme is a threshold version, it means that neither Alice
nor Bob alone can decrypt the messages and learn their content. The multiplication
gate [51] as well as the integer comparison protocol [49] are also semantically secure,
which therefore guarantees that the protocol is secure against a passive adversary.

Regarding the correctness, it can be seen from the execution of the protocol that
if Alice and Bob are τ -similar then this will result in τ2 (d · d′)2 > τ1 ∥d∥1 × ∥d′∥1
when the integer comparison protocol is executed (and therefore an output of 1)
and in 0 otherwise. The multiplication gate and the integer comparison protocols
are independent of n and can be considered as having constant complexity (both in
terms of communication and computation) for the purpose of analysis. On the other
hand, the protocol InnerProduct requires the exchange of O(n) bits between Alice
and Bob as well as O(n) computations which result in a similar complexity for the
global protocol ThresholdCosine.

3.5 Differentially private similarity computation
Cryptography gives us the tools to compute a distributed function in such a way that
the computations themselves reveal nothing that cannot be learned directly from the
output of the function. This is a strong privacy guarantee but at the same time it
does not preclude the possibility that the output itself might leak information about
the private data of individuals. Differential privacy provides guarantees on what the
output itself may reveal. In order to obtain the best of both worlds (secure multi-
party computation and differential privacy), the main idea is to use cryptographic
techniques to securely compute a differentially private mechanism. In this section,
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we give efficient and secure algorithms for computing a differentially private version
of threshold similarity presented in the previous section.

For this chapter we use the notion of bounded differential privacy [84], in which
two sets are considered to be neighbors if one of them could be obtained from the
other by replacing one item, leaving the set cardinality unmodified (as opposed to the
unbounded differential privacy in which one of the two sets could be obtained from
the other by adding or removing one item). The adoption of this notion simplifies
the computation of the global sensitivity of the cosine similarity. In our context,
in which we treat binary vectors as a representation of sets, bounded differential
privacy amounts to declaring two binary vectors to be neighbors if their Hamming
distance is exactly 0 or 2 (both vectors have the same number of ones).

Global sensitivity of cosine similarity. The following lemmas state the sensi-
tivity of inner product (equivalent to the sensitivity of cardinality set intersection)
and the squared cosine similarity.

Lemma 3.1 (Sensitivity of the inner product). The global sensitivity of the function
inner product function a, b 7→ ∑

i aibi for binary vectors is 1.

Proof. Let a′ be a neighbor to a. Let j ̸= k be the only two positions at which a′

differ from a. This implies that ai ̸= aj and a′
i ̸= a′

j. Without loss of generality let
ai = 0, aj = 1 and a′

i = 1, a′
j = 0. Then, for some binary vector b we have

|(a′ · b)− (a · b)| = |(a′ − a) · b| = |(a′
i − ai)bi + (a′

j − aj)bj| = |bi − bj| ⩽ 1 . (3.2)

It follows from the previous lemma that the sensitivity of cosine similarity, for
bounded differential privacy, is 1/ ∥d∥1 ∥d′∥1. However for the squared cosine simi-
larity, the situation is described by the following lemma.

Lemma 3.2 (Sensitivity of the squared inner product). The global sensitivity of the
squared inner product function a, b 7→ (∑i aibi)2 for binary vectors assuming a and
b are not the vector of all zeroes, is

2 min(∥a∥, ∥b∥)− 1 . (3.3)

Proof. Let the vector a′ be a neighbor of the vector a, which means that, they differ
on exactly two positions. Then for any binary vector b we have

∣∣∣(a · b)2 − (a′ · b)2
∣∣∣ =

∣∣∣(a · b)2 − (a · b + z)2
∣∣∣ , (3.4)

for some z ∈ {−1, 0, 1} by Lemma 3.1, then∣∣∣(a · b)2 − (a · b + z)2
∣∣∣ =

∣∣∣(a · b)2 − (a · b)2 − 2z(a · b)− z2
∣∣∣ =

∣∣∣−2z(a · b)− z2
∣∣∣ .

(3.5)
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Choosing z = −1 maximizes the expression |(a · b)2 − (a′ · b)2|:
∣∣∣(a · b)2 − (a′ · b)2

∣∣∣ ⩽ |2(a · b)− 1| . (3.6)

In case a · b ⩾ 1, it follows that

|2(a · b)− 1| = 2(a · b)− 1 ⩽ 2 min(∥a∥, ∥b∥)− 1 , (3.7)

and for a · b = 0, we use the assumption that both a and b have at least one non-zero
entry to show that

|2(a · b)− 1| = |−1| = 1 = 2 min(1, 1)− 1 ⩽ 2 min(∥a∥, ∥b∥)− 1 . (3.8)

Corollary 3.1. The sensitivity of the squared cosine similarity between two binary
vectors a, b for bounded differential privacy is

2 min(∥a∥1 , ∥b∥1)− 1
∥a∥1 ∥b∥1

. (3.9)

Proof. Note that in the bounded differential privacy model we treat ∥a∥ and ∥b∥ as
constants, hence |cos_sim(a, b)2 − cos_sim(a′, b)2| for a′ a vector that is a neighbor
of a (therefore ∥a′∥ = ∥a∥) is simply

∣∣∣∣∣ (a · b)2

∥a∥∥b∥
− (a′ · b)2

∥a′∥∥b∥

∣∣∣∣∣ = |(a · b)2 − (a′ · b)2|/∥a∥∥b∥ , (3.10)

and the rest follows from Lemma 3.2.

According to Theorem 2.1, to provide differential privacy it is sufficient to add
Laplacian noise proportional to the sensitivity of the function to the true answer
before releasing it.

This can be done interactively in a centralized environment in which a curator
is holding the data and replying to queries. For the distributed setting, we discuss
three possible alternatives for replacing the curator in the following sections. The
first one depends on the availability of a semi-trusted third party while the last two
are fully distributed.

We denote the noise that is to be added as the random variable

N = Lap
(

0,
2 min(∥d∥1 , ∥d′∥1)− 1

ε ∥d∥1 ∥d′∥1

)
. (3.11)

Specific values drawn from this distributed will be denoted by a lower case ni, for
some i ∈ N. It shall not be confused with the total number of items in the system,
n, because it will be subscripted with some index.
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3.5.1 Using a semi-trusted third party
In the context of gossip-on-behalf, the peer that acts as an anonymizer in the bidi-
rectional anonymous channel could also generate the required random noise. Note
that while the anonymizer is assumed not to break anonymity, it should not observe
the true value for the similarity. For instance, the anonymizer can add the random
noise using the homomorphic property of the cryptosystem (as it may know the
public key) to the similarity value that has been computed. Afterwards, the two
peers that have been involved in the similarity computation can recover the result
using threshold decryption. Algorithm 4 describes this procedure.

The noise has ultimately a finite representation on a digital computer and hence
can be represented as a rational number. Rationals can be encoded using the stan-
dard Paillier cryptosystem [85] (while preserving the homomorphic addition and
scalaring operations) given that the numerator is in [−R, R], for some R, and the
denominator is in (0, S] for some S, such that 2RS < k, in which k is the RSA
modulus used by the Paillier cryptosystem. However, having finite precision (be-
ing rational) and a bounded range (the bound on R and S) may affect the privacy
guarantees unless certain precautions are taken [86, 87]. These precautions are re-
lated to the noise generation, which may be performed locally by the anonymizer in
plain-text, and to rounding the result after adding the noise, which could be using
a constant number of rounds of a bit decomposition protocol [82, 50] by computing
the low-order bits and subtracting them [86].

Algorithm 4 DifferentialSquaredCosine(d, d′, ε)
1: Alice and Bob generates the keys of the threshold homomorphic encryption
2: Alice receives ska, Bob receives skb and they both get the public key pk
3: Alice and Bob compute Enc

(
(d · d′)2

)
= InnerProduct(d,d′)2

4: Alice and Bob compute Enc (∥d∥1 ∥d′∥1)
5: Alice and Bob compute Enc

(
(∥d∥1 ∥d′∥1)

−1
)

using the inversion gate from [88]
6: Alice, Bob and the anonymizer compute Enc

(
(d · d′)2 (∥d∥1 ∥d′∥1)

−1
)

using
the multiplication gate from [51]

7: The anonymizer adds Laplacian noise n1 where n1 ∼ N to obtain
Enc

(
(d · d′)2 (∥d∥1 ∥d′∥1)

−1 + n1
)

8: The anonymizer sends the perturbed squared cosine similarity (which is
homomorphically encrypted) to Alice and Bob

9: Alice and Bob cooperate to decrypt the homomorphically encrypted value and
use [85] to decode the value as a rational number

Theorem 3.2 (Protocol for differential squared cosine). Algorithm 4 is ε-differen-
tially private and is secure with respect to a passive adversary. The protocol has
communication cost of O(n) bits and a computational complexity of O(n).

Proof. It follows from Theorem 3.1 that the first part of the protocol before the inver-
sion step, is secure with respect to a passive adversary. The inversion gate needs the
parties to jointly generate a random integer, which can be done efficiently with se-
mantic security [51], so is the multiplication gate, both in constant number of rounds
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and with communication complexity O(n). The anonymizer has only the knowledge
of the public key and thus cannot decrypt the messages he sees. Moreover, the mes-
sages are semantically secure and therefore leak no information to the anonymizer.
At the end of the protocol, assuming that the anonymizer does not collude with Al-
ice or Bob, Alice and Bob only get to learn cos_sim(d,d′)2 +Lap (0, S(cos_sim2)/ε),
which ensures the ε-differential property of the protocol according to Theorem 2.1.
In terms of complexity, due to the use of the protocol InnerProduct as a subroutine,
the protocol DifferentialSquaredCosine has a communication cost of O(n) bits as well
as a computational cost of O(n), for n the number of items in the system (we con-
sider here that the threshold decryption has constant complexity and is negligible
with respect to the cost of the inner product).

3.5.2 Distributed noise generation
Instead of depending on a third party to generate the noise, this section address two
possibilities of distributed noise generation.

Difference of two exponentials. This method used the observation that the
difference of two exponential random variable is a Laplacian random variable11. Alice
and Bob generate (each one on his own) two exponential random variables n1 and
n2 with parameter λ = ε/S(cos_sim2). Afterwards, during the protocol, Alice adds
n1 to the encrypted squared cosine similarity while Bob subtracts n2.

If the similarity value is revealed, an honest-but-curious peer may remove his
exponential noise from the revealed value. For example, if the output value was
x = s+n1−n2, where s is the true similarity, the peer who generated n2 could remove
it from x once he received it. The value he ends up with is x + n2 = s + n1 satisfies
a weaker variant of differential privacy called (ε, δ)-differential privacy [25], as a
consequence this method is only recommended for threshold similarity computation
in which the perturbed similarity value is not revealed.

Two Laplacians. This method is based on a secure protocol for computing the in-
ner product. The sensitivity of the inner product function is 1 hence only Lap (0, 1/ε)
noise is needed. Suppose that Alice and Bob want to release the result of the inner
product between their two profiles. At the end of the protocol Alice and Bob could
both simply add independently generated random noise with distribution Lap

(
0, 1

ε

)
using the homomorphic property of the encryption scheme. Afterwards, they could
cooperate to perform the threshold decryption and they would both get to learn the
perturbed inner product. Then, Alice can subtract her own noise from the released
output to recover a version of the inner product which have been perturbed only
with Bob’s noise (which she cannot remove). We provide in Algorithm 5 a proto-
col for inner product that satisfies ε-differentially privacy using the two Laplacians
technique.

Theorem 3.3 (Protocol for differential inner product). The protocol Differential-
InnerProduct (Algorithm 5) is secure with respect to a passive adversary and is

11Follows by multiplying the characteristic function f(t) of the exponential distribution by f(−t).
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Algorithm 5 DifferentialInnerProduct(d,d′,ε)
1: Alice and Bob generates the keys of the threshold homomorphic encryption
2: Alice receives ska, Bob receives skb and they both get the public key pk
3: Alice and Bob compute Enc

(
(d · d′)2

)
= InnerProduct(d,d′)

4: Alice generates Laplacian noise nA parametrized by 1
ε

and computes
Enc ((d · d′))⊕ nA = Enc ((d · d′) + nA) and sends the result to Bob

5: Bob generates Laplacian noise nB parametrized by 1
ε

and computes
Enc ((d · d′) + nA)⊕ nB = Enc ((d · d′) + nA + nB)

6: Alice and Bob cooperate to decrypt the homomorphically encrypted value and
get as output ((d · d′) + nA + nB)

ε-differentially private. The protocol has a communication cost of O(n) bits and a
computational complexity of O(n), in which n is the total number of items in the
system.

Proof. From an argument similar to one used in Theorem 3.2, the proof follows for
the security against a passive adversary, the ε-differential privacy, and the complex-
ity. Security against a passive adversary holds because all the messages exchanges
during the protocol are semantically secure. Moreover, the output is ε-differentially
private because it instantiates the Laplacian mechanism. Because of the use of the
protocol InnerProduct as a subroutine, the protocol DifferentialInnerProduct has a
communication cost of O(n) bits as well as a computational cost of O(n) (we con-
sider here that the threshold decryption has constant complexity and is dominated
with respect to the cost of the inner product).

3.6 Utility analysis
When doing threshold similarity, adding noise will result in false positive and false
negatives when it comes to deciding whether similarity is above a certain threshold.
More precisely, a false negative arises when the protocol outputs that two peers
are not τ -similar when in fact they are, and outputs that they are τ -similar when
in fact they are not for false positive. False negatives may reduce utility while
false positive may reduce privacy if it results in releasing the true similarity value
afterwards. Nonetheless, as our experiments show in Figure 3.11, privacy is twice
better than the baseline case where no threshold step takes place, even in presence
of false positives.

We measure utility in terms of the false negative rate. In particular, the lower
the false negative rate the better the utility. In the following section, we describe a
theoretical model to estimate both the false negative rate and the false positive rate.
For a fixed ε, when the threshold increases, both false positive rate and false negative
rate decrease, which is better for both privacy and utility. For example, if τ = 1,
then all comparisons will be true negatives, and false negatives and false positives
will be identically zero. Thus, the false negative rate cannot be the only utility
measure, since in this case the false negative rate indicates optimum utility but the
peers still fail to get clustered according to their interests. Thus, the recall measure
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experimentally evaluated in Section 3.7 should also be considered in conjunction
with the false negatives.

3.6.1 Model
We describe here the statistical model that we use for our analysis. This model can
also be used as for choosing the threshold τ as well as the privacy parameter ε (cf.
Section 3.6.4).

Let x = ∥d∥1 and y = ∥d′∥1 be the number of items in the profiles of the
two peers computing their threshold similarity. Denote N , the additive noise, as a
Laplace random variable with mean 0 and the scale parameter used in Section 3.5.
For a random variable X, we denote by FX(x) = Pr[X < x] and fx(x) = Pr[X = x].
We model the inner product between d and d′ with the random variable S. In
Lemma 3.3, we prove that if d and d′ follow the uniform distribution on {0, 1}n,
then S follows a Hypergeometric distribution (cf. Definition 3.7). The similarly
function is the squared cosine similarly and is equal to the random variable S2/xy.

Definition 3.7 (Hypergeometric distribution [89]). A hypergeometric distribution
Hypergeometric(n, m, N) is a model of a box that contains N balls, among which
there are m white balls. Afterwards, n balls are drawn at random from that box
without replacement. We count a success when a white ball is drawn. A Hypergeo-
metric random variable corresponds to the numbers of successes in such a run. The
maximum number of successes is m.

Lemma 3.3 (Inner product follows hypergeometric distribution). Assuming that d
and d′ are drawn from a uniform distribution over {0, 1}n, then the random variable
S representing their inner product follows

Hypergeometric(max(x, y), min(x, y), n) ,

in which x = ∥d∥1 and y = ∥d′∥1.

Proof. In this proof, we treat d as the set {i | di = 1} and similarly for d′. Without
loss of generality, assume that d is the smaller set of the two. Assume that d′ is a
collection of y items picked randomly from {1, . . . , n} without replacement. A pick,
or alternatively a member of d′, is called successful if it belongs to d. Therefore, the
number of possible successes is at most m = x. A successful pick adds 1 to S, the
inner product of d and d′, because it belongs to both. Therefore, S is the number
of successes and follows its distribution, which is hypergeometric.

3.6.2 False negative rate
Theorem 3.4 (False negative rate). The false negative rate is:

U−(x, y, n, τ, ε) =
min(x,y)∑

s=⌊√
xyτ⌋+1

fS(s)FN(τ − s2

xy
)

1− FS

(
⌊√xyτ⌋

) . (3.12)
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Figure 3.7 – The false negative probability model versus simulation results. Marks
refer to the simulation results while the solid lines correspond to our model. Discrep-
ancies may be due to the assumption that items are distributed uniformly. When
the threshold increases, the false negative rate decreases (ε kept constant). The
explanation being that when τ increases, the true positives decrease faster than the
false negatives increase, and having the false negative rate = false negatives /(false
negatives + true positives) explains the rest, because the numerator increases, while
the denominator decreases.

Proof. The probability that a peer gets accepted is Pr[S2/xy > τ ], in which τ is the
public threshold value. The probability of being rejected after adding the Laplacian
noise is Pr[S2/xy + N ⩽ τ ] = Pr[N ⩽ τ − S2/xy]. Let θ = √xyτ and γ = τ − s2

xy
,

then

Pr [rejected after adding the noise|accepted before adding the noise] =

Pr
[
N ⩽ γ

∣∣∣∣∣S2

xy
> τ

]
= Pr [N ⩽ γ|S > θ]

= Pr [N ⩽ γ ∧ S > θ]
1− Fs (θ)

=
∑
s>θ

∫ γ
−∞ fN,S(n, s) dn

1− Fs (θ)

=
∑
s>θ

∫ γ
−∞ fN(n)fS(s) dn

1− FS (θ)
=
∑
s>θ

fS(s)
∫ γ

−∞ fN(n) dn

1− FS (θ)

=
∑
s>θ

fS(s)FN(γ)
1− FS (θ)

.

This summation runs from ⌊θ⌋+ 1 to min(x, y).

We validate the model with our experiments that are detailed in Section 3.7,
whose results are shown in Figure 3.7.

3.6.3 False positive rate
In this section, we analyze the false positive rate as a measure of privacy. Indeed, a
false positive may cause an exchange of the similarity even if the similarity is less
than the threshold, which has a negative impact on privacy.
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Figure 3.8 – The false positive probability model versus simulation results. Marks
refer to the simulation results while the solid lines correspond to our model. The
plot confirms the intuition that a higher threshold is better for privacy.

By a construction similar to that of Theorem 3.12, we find that the false positive
rate is equal to

U+(x, y, n, τ, ε) = Pr
[
N > τ − S2

xy

∣∣∣∣∣S2

xy
⩽ τ

]

=
⌊√

xyτ⌋∑
s=0

fS(s)(1− FN(τ − s2

xy
))

FS

(
⌊√xyτ⌋

) ,

in which x and y are the number of items in the two profiles computing similarity,
N is the random variable representing the Laplacian noise added, τ is the threshold
value, and S is the random variable representing the number of items in common
between the two profiles.

Since N is a Laplacian random variable symmetric around 0, 1 − FN(n) =
FN(−n), hence the false positive rate is equal to

U+(x, y, n, τ, ε) =
⌊√

xyτ⌋∑
s=0

fS(s)FN( s2

xy
− τ)

FS

(
⌊√xyτ⌋

) . (3.13)

This model was validated experimentally in Section 3.7, whose results are shown
in Figure 3.8.

3.6.4 Selecting the threshold
Assume that a peer does not want to exchange his similarity with more than r = 20%
of the peers he meets, which we call his acceptance rate. If the distribution of
user-user similarities is known, then the threshold could be set to the rth quantile.
Otherwise, the peers could select the threshold in a preprocessing step using the
inverse cumulative density function (inverse CDF, or F −1) of the hypergeometric
distribution in the following manner. The constraint can be expressed as

r = Pr
[

S2

xy
> τ

]
= 1− FS(√xyτ) , (3.14)
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hence
F −1

S (1− r) = √xyτ , (3.15)
and therefore

τ =
[
F −1

S (1− r)
]2

/xy . (3.16)
A third solution in case the two peers wish to avoid the computational cost

associated with securely evaluating the inverse CDF is for each peer to choose an
initial value for the threshold at random then adjust it as he meets new peers,
augmenting or decrementing in response to the observed acceptance ratio.

3.7 Experimental evaluation.
We have also studied experimentally the impact of the proposed mechanisms in the
context of Gossple (cf. Section 2.2). In the baseline version of the clustering
protocol (which we refer to simply as “baseline” thereafter), each peer samples the
network and exchange his true profile with other peers, to compute pair-wise simi-
larities. In our experiments, we compare three different privacy models against the
baseline model.

Threshold In this model, a threshold similarity protocol is run, in which peers ex-
change their true similarity only if the threshold protocol (Algorithm 4), out-
puts 1. This protocol privately computes the similarity measure and outputs
1 if the similarity between the two peers exceeds the predetermined threshold
τ . If a peer has in his view less than ℓ peers whose similarity is above τ , the
rest of the view is chosen at random and the similarity are not transmitted.

Threshold & differentially private (TDP) This model is a variant of the thresh-
old version in which we equip the cryptographic protocol with ε-differential
privacy. In particular, two peers exchange their true similarity only if their
perturbed true similarity (perturbed by adding Laplacian noise) is greater
than the threshold. Computing similarity between two peers uses O(n) bits,
in which n is the number of items in the system.

Noisy Release In this model, the perturbed (noisy) similarity value is release di-
rectly without a threshold step. For this reason, this model is directly compa-
rable to the non-interactive case in Chapter 5.

Evaluations are conducted through the simulation of a network of peers from
the datasets described in Section 2.4. The threshold values have been selected as
per Section 3.6.4. In particular, we choose the thresholds to be equal to the user-
user similarity quantiles {50%, 75%, 85%, 95%} for each dataset. We let the privacy
parameter ε vary in the set {10−3, 10−2, 10−1, 100, 101, 102}.

We evaluate the three models (threshold, TDP, and noisy release) according to
the following metrics:

Utility The utility is measured in terms of the percentage of perfect view of the
clustering view of a peer (Figure 3.10 and Figure 3.13), and the recall, defined
in Section 2.2 (Figure 3.9 and Figure 3.12).
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Figure 3.9 – Recall after convergence vs. several values of ε. The different lines
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Figure 3.10 – Percentage of perfect view after convergence for vs. several values of ε.
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Privacy The privacy is measured as the number of encounters in which the true
similarity was exchanged (Figure 3.11).

3.7.1 Results
We discuss the experimental results in this section.

Convergence The values for the recall and percentage of perfect view is plotted
for every cycle of the protocol in Figure 3.12 and Figure 3.13. A first observation
is that the different datasets take different number of cycles to converge. For the
Survey dataset around 10 cycles are enough to converge for the percentage of perfect
view, although the recall stabilizes on the 5th cycle, indicating that an increase in the
percentage of perfect view does not necessarily imply an equal increase in the value
of the recall. For the Digg dataset the percentage of perfect view stabilizes around
the 40th cycle, however the recall demonstrates a more intriguing behavior. The
baseline recall for Digg reaches a peak on the 6th cycle then keeps decreasing until is
levels off on the 50th cycle. Taking into account that the corresponding percentage
of perfect view increases while the recall decreases it appears that this behavior is
due to overfitting. Therefore it becomes clear why the perturbed approach does not
succumb to this overfitting phenomenon where its recall does not decrease. The
Delicious dataset converges for the percentage of perfect view after 100 cycles while
the recall levels off after 50 cycles. The number of peers of Digg and Delicious is
roughly the same so it may not be the reason why Delicious takes double the number
of cycles to converge. Instead, it might be related to the sparsity of the dataset (cf.
Table 2.1).

After convergence In Figure 3.9, 3.10, and 3.11, the x-axis represents the privacy
parameter ε. The larger ε is, the less privacy (i.e., noise) is added.

One general observation that the higher the threshold value, the less the recall
and percentage of perfect view are, giving less utility. However, the number of
similarity exchanges also decreases, giving higher privacy. For lower values of ε the
similarity exchanges approach 50% as expected, giving low privacy and high utility,
regardless of the threshold. In particular, for Survey and Digg, for high and low
values for ε, utility is high and privacy is low (for high ε exchanges are low but
non-exchanges may reveal information). The right balance seems to be when the
value of ε is in the middle (ε = 1), where privacy is high and utility is almost high.
This explains the valley in the recall curves at ε = 1 (and corresponding peak in the
percentage of perfect view curves).

Another observation is in Digg, in which we observe that the recall for low ε is
higher than the baseline recall, while the corresponding percentage of perfect view
is lower than the baseline percentage. This is explained by observing the evolution
of the recall against cycles in Figure 3.12, in which we concluded in our analysis of
the convergence that the baseline decreases due to overfitting.

For the privacy as measured by the number of exchanges of true similarity (when
the perturbed similarity is higher than the threshold) in Figure 3.11, we observe that
Delicious needs higher values of ε compared to the other datasets in order to activate
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the thresholds. This is due to the sparsity of the dataset which makes the user-user
similarity distribution much more concentrated around its mean.

To summarize, applying the threshold protocol impacts only slightly the recall,
but reduces up to 50%− 90% the number of similarities exchanged, thus providing
higher privacy. Hence, we conclude that it is possible to achieve reliable cluster-
ing and high recall when using a differentially private threshold mechanism before
exchanging the true similarity between peers.

3.8 Conclusion
In this chapter, we have provided a secure multi-party protocol for the computation
of pair-wise threshold similarity, in a way that addresses the unique set of challenges
faces in a large scale dynamic P2P system. More precisely, we discussed how to
handle the privacy budget issue through the bidirectional anonymous channel, then,
we provided several methods for distributed noise generation, as well as a theoret-
ical model for the false positives and false negatives resulting from the threshold
similarity and validated it experimentally. Furthermore, we carried out simulations
to validate that the utility (as measured by recall and the percentage of the perfect
view), is still maintained at the same time while providing a high level of privacy.
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Abstract

Most of the proposed approaches to preserve privacy in personalization
systems usually address this issue uniformly across users, ignoring the
fact that users have different privacy attitudes and expectations (even
among their own personal data). In this chapter, we propose to account
for this non-uniformity of privacy expectations by introducing the con-
cept of heterogeneous differential privacy. This notion captures both the
variation of privacy expectations among users as well as across different
pieces of information related to the same user. We also describe an ex-
plicit mechanism achieving heterogeneous differential privacy, which is a
modification of the Laplacian mechanism by Dwork, McSherry, Nissim,
and Smith. The basic idea underlying the mechanism is manipulating
the sensitivity of the function using a linear transformation of the in-
put domain. Finally, we evaluate on real datasets the impact of the
proposed mechanism with respect to Gossple. The results of our exper-
iments demonstrate that heterogeneous differential privacy can account
for different privacy attitudes while sustaining a good level of utility as
measured by the recall.

4.1 Introduction
Most of the approaches to privacy implicitly assume homogeneity by considering
that users have uniform privacy requirements [10, 90, 40, 21, 91, 92, 93, 94, 21, 27,
38, 26]. However, in an environment composed of a myriad of communities, such as
the Internet, it is highly plausible that users have heterogeneous privacy attitudes
and expectations. For instance, in a collaborative social platform like the ones we
consider in this thesis, it is natural to expect that for a particular user, some items
in his profile are considered more sensitive by him than others, thus calling for a
system that can deal with different privacy requirements across items. Similarly,
Alice might be more conservative about her privacy than Bob, requiring different
privacy requirements across users.

This non-uniformity of privacy attitudes has been acknowledged by major social
networking sites [95, 96]. For instance in Facebook, a user can now set individual
privacy settings for each item in his profile. However in this particular example,
privacy is mainly addressed by restricting, through an access-control mechanism,
who is allowed to access and view a particular piece of information. Our approach
can be considered to be orthogonal but complementary to access-control. More
precisely, we consider a personalized service, such as recommendation algorithm,
and we enforce the privacy requirements of the user on its output. Heterogeneous
privacy requirements might also arise with respect to pictures, depending on the
location in which the picture was taken or the persons appearing [96]. In the future,
users are likely to expect item-grained privacy for other services1.

1Note that systems supporting item-grained privacy can also provide user-grained privacy (i.e.,
for instance by setting the privacy level of all items in some user’s profile to the same value in the
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Furthermore, as highlighted by Zwick and Dholakia in 1999 [97] and as evidenced
by anthropological research, privacy attitudes are highly dependent on social and
cultural norms. A similar point was raised in 2007 by Zhang and Zhao in a paper on
privacy-preserving data mining [98] in which they mentioned that in practice it is
unrealistic to assume homogeneous privacy requirements across a whole population.
In particular, their thesis is that enforcing the same privacy level across all users
and for all types of personal data could lead to an unnecessary degradation of the
performance of such systems as measured in terms of accuracy. More specifically, en-
forcing the same privacy requirements upon all users (even those who do not require
it) might degrade the performance in comparison to a system in which strict privacy
requirements are only taken into account for those who ask for it. The same type of
argument can also be made for different items of the same user. Hence, designing
a system supporting heterogeneous privacy requirements could lead to a global im-
provement of the performance of this system as compared to a homogeneous version.
Therefore, the main challenge is to be able to account for the variety of privacy re-
quirements when leveraging personal data for recommendation and personalization.

In this chapter, we address this challenge through the introduction of the concept
of heterogeneous differential privacy, which considers that the privacy requirements
are not homogeneous across users and items from the same user (thus providing
item-grained privacy). This notion can be seen as an extension of the concept of
differential privacy [92] introduced originally by Dwork in the context of databases.
We also describe an explicit mechanism achieving heterogeneous differential privacy,
which we coin as the “stretching mechanism”. This novel mechanism achieves het-
erogeneous differential privacy by modifying the sensitivity of the function to be
released (and therefore the function itself) before applying the standard Laplacian
mechanism. We derive a bound on the distortion introduced by our mechanism,
which corresponds to a distance between the expected output of the mechanism and
the original value of the function to be computed. Finally, we conduct an exper-
imental evaluation of our mechanism on Gossple (cf. Section 2.2) on three real
datasets (cf. Section 2.4). The results obtained show that the proposed approach can
still sustain a high utility level (as measured in terms of recall) while guaranteeing
heterogeneous differential privacy.

The outline of the chapter is as follows. First, in Section 4.2, we describe the
background of differential privacy as well as some preliminaries on matrices and
sets necessary to understand our work. Then, in Section 4.3, we present the related
work on heterogeneous privacy mechanisms. Afterwards in Section 4.4, we introduce
the novel concept of heterogeneous differential privacy along with the description of
an explicit mechanism achieving it. Then, we assess experimentally the impact of
the proposed mechanism by evaluating it on Gossple in Section 4.5. Lastly, we
conclude with a discussion on the limitations of the approach as well as possible
extensions in Section 4.6.

privacy setting of this user), and therefore the former can be considered as a generalization of the
latter. However, this assumes that the privacy weights have a global meaning across the entire
system, and are not defined only relative to a user.
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4.2 Background
In this section, we briefly introduce the background on differential privacy as well
as some notions on matrices and sets that are necessary to understand the concept
of heterogeneous differential privacy

Before delving into the details of our approach, we need to briefly introduce some
preliminary notions on matrices and sets such as the concept of shrinkage matrix [99].
A shrinkage matrix is a linear transformation that maps a vector to another vector
with less magnitude, possibly distorting it by changing its direction.

Definition 4.1 (Shrinkage matrix). A matrix A is called a shrinkage matrix if
and only if A = diag(α1, . . . , αn) such that each diagonal coefficient is in the range
0 ⩽ αi ⩽ 1.

For example, the matrix  0.7 0 0
0 0.3 0
0 0 1


is a shrinkage matrix.

Definition 4.2 (Semi-balanced set). A set D ⊆ Rn of column vectors is semi-
balanced if and only if for all shrinkage matrices A = diag(α1, . . . , αn), and for all
x ∈ D, we have Ax ∈ D.

For instance, the set

{x = (x1, x2) ∈ R2 | 0 < x1, x2 < 1}

is a semi-balanced set (imagine a square from (0, 0) to (1, 1) in the Euclidean plane).

4.3 Related work
The majority of previous works on heterogeneous privacy has focused only on user-
grained privacy [100, 101], in which each user may define his own privacy level
(instead of having the same privacy guarantee for all users across the system). As
opposed to item-grained privacy, which allows each item of an individual user to
have a different privacy weight, user-grained privacy restricts all the items of the
same user to the same privacy weight. For instance, Das, Bhaduri, and Kargupta
[100] have proposed a secure protocol for aggregating sums in a P2P network. In
this setting, each peer has an input vector, which could be for instance a profile.
In a nutshell, in this protocol, each peer picks at random a few other peers of the
system with whom it computes some local function2 in a private manner (the local
function begins with a sum as well). The more peers a specific peer chooses to
participate to the computation, the higher the privacy will be obtained by this peer
according to the considered definition of privacy. More precisely, in their setting,

2The function is local in the sense that it depends only on the inputs of the peer and the peers
it has chosen.
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privacy is mainly quantified by the probability of collusion of the peers chosen by
a particular peer when the aggregation protocol is run. This probability can be
made smaller by choosing a larger set of peers, the main intuition being that for
a particular peer running the aggregation protocol with a larger group diminishes
the probability that all these peers will collude against him. Thus, the best privacy
guarantees could be obtained by running the protocol with the entire set of peers
but this would be too costly in practice. The main objective is this protocol is to
be adaptive by providing a trade-off between the privacy level chosen by a user and
the resulting cost in terms of computation and communication. In particular, each
user has the possibility to choose heterogeneously the peers with whom he wants
to run the aggregation protocol by taking into account his own privacy preferences.
However, this work does not seem to be easily extendable to integrate item-grained
privacy.

Another work due to Kumar, Gopal, and Garfinkel [101] is a form of generaliza-
tion of k-anonymity [102]. The standard definition of k-anonymity requires that in
the sanitized database that is released, the profile of a particular individual should
be indistinguishable from at least k−1 other individuals (thus here k can be consid-
ered as being the privacy parameter). The proposed generalization [101] essentially
enables each user to require a different value for k for each attribute in his profile.
For example, a user may require that his data should be included in the published
database only if there are at least 4 other users sharing his ZIP code and at least
8 other users whose age difference with him is at most 3 years. The possibility of
setting the range of a particular attribute could be regarded as item-grained het-
erogeneous privacy in the sense that an attribute whose privacy range is large is
less likely to be useful for de-anonymizing the user than a less private attribute. To
summarize, the main objective of this approach is to protect the privacy of a user
by anonymizing it (e.g., to prevent de-anonymization and linking attacks), while in
our work the main objective is to prevent the possibility of inferring the presence or
absence of a particular item in the profile.

A line of research on auctions for privacy has provided almost the same defini-
tion for the heterogeneous differential privacy as ours [103, 41]. The key difference
from our contribution is that they do not provide a mechanism to realize heteroge-
neous difference privacy. Instead, they only use the definition to realize the privacy
guarantees offered by the release. In their model, the participants are composed of a
data analyst and a group of users. Each user has as input a private bit and the data
analyst wants to estimate in a differentially-private manner a global function of the
private bits of all users, such as the sum or the weighted sum. The data analyst is
willing to pay each user for the loss of privacy he incurred by participating to this pro-
cess. More precisely, each user i has a privacy valuation vi(εi) : R+ → R+ indicating
the amount of his loss given the privacy guarantee he gets. The user has no control
over εi (i.e., the privacy guarantee he ends up with), which is decided solely by the
auction mechanism. As such the valuation function vi merely affects the payment of
the user, as his payment is decided indirectly by the mechanism given the valuation
function and is not decided directly by him. Therefore, our work is incomparable
to theirs, because the privacy parameter εi acts mainly as an indication about the
level of privacy reached, while in our setting the privacy parameter represents the
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user’s requirement about the privacy of a particular item of his profile. Moreover, in
[103] it is stated that users finally end up having completely homogeneous privacy
guarantees. More precisely, each user ends up having ε-differential privacy, with
some ε being the same for all users. On the contrary in [41], users effectively have
heterogeneous privacy guarantees. However, these guarantees are determined by the
public weights of the auctioneer, which the auctioneer chooses so as to compute the
weighted average of the users’ inputs and independently of the privacy valuations of
the users.

Finally, Nissim, Raskhodnikova and Smith [104] have investigated how the amount
of noise necessary to achieve differential privacy can be tailored by taking into ac-
count to the particular inputs (i.e., profiles) of participants, in addition to the sen-
sitivity of the function considered. The main objective of this approach is to reduce
the amount of noise that needs to be added to inputs that are not locally sensitive
(i.e., for which the output does not change much if only one item is changed). How-
ever, they also show that the amount of noise added may itself reveal information
about the inputs. Hence, they defined a differentially private version formalizing the
notion of local sensitivity called smooth sensitivity, guaranteeing that the amount of
noise added is itself ε-differentially private. Similarly, we have ensured that for our
notion of heterogeneous differential privacy, the amount of noise added is not im-
pacted by the specific profile considered or by the privacy requirements formulated
by a user. Rather, we have modified the function under consideration and its sen-
sitivity, which also impacts the distortion induced of the output (cf., Section 4.4.2).
We have also proven that the privacy requirements of a user expressed in the form
of private weights remain private are they are also covered by ε-differentially privacy
guarantees. Thus, it is difficult for an adversary observing the output of an hetero-
geneous differentially private mechanism to guess the privacy weight that a user has
put on a particular item of his profile.

4.4 Heterogeneous differential privacy
In this section, we introduce the novel concept of heterogeneous differential privacy
(HDP). We start by giving the necessary definitions in Section 4.4.1, before de-
scribing in Section 4.4.2 how to construct the stretching mechanism, which ensures
heterogeneous differential privacy. More precisely, we first detail how to construct
the privacy-preserving estimator. Afterwards, we discuss why and how the privacy
vector expressing the privacy expectations of a user should also be kept private.
Finally, an upper bound on the distortion induced by the stretching mechanism is
provided.

4.4.1 Definitions
We now define HDP-specific notions such as the concept of privacy vector, which is a
key notion in HDP. This vector contains the privacy requirements of each coordinate
(i.e., item) in the input profile (i.e., vector) of a user, and is defined as follows.
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Definition 4.3 (Privacy vector). Given a profile d ∈ D in which D is a semi-
balanced set of column vectors composed of n coordinates, let v ∈ [0, 1]n be the
privacy vector associated with the profile d. The owner of item di is responsible for
choosing the privacy weight vi associated to this item (by default vi is set to be 1 if
it was not explicitly specified by the owner). A privacy weight vi of zero corresponds
to absolute privacy while a value of 1 refers to standard privacy, which in our setting
directly correspond to the classical definition of ε-differential privacy.

The mere presence of the privacy vector introduces potential privacy breaches,
thus this vector should also be protected. Therefore, we need to ensure that in
addition to the profile, the privacy vector v also remains private, such that each
entry vi of this vector should only be known by its owner. Otherwise, the knowledge
of a privacy weight of a particular item might leak information about the profile
itself. For instance, learning that some items have a high privacy weight may reveal
that the user has high privacy expectations for and is therefore interested in this
specific type of data. We define heterogeneous differential privacy in the following
manner.

Definition 4.4 ((Heterogeneous) (ε,v)-differential privacy). A randomized function
M : D → R is said to be (ε,v)-differential privacy if for all items i, for all neighboring
profiles d ∼ d(i), and for all possible outputs t ∈ R of this function, the following
statement holds:

Pr[M(d) = t] ⩽ exp(εvi) Pr[M(d(i)) = t] , (4.1)

in which exp refers to the exponential function.

Since a privacy weight vi ⩽ 1, heterogeneous differential privacy implies the
standard notion of ε-differential privacy as shown by the following remark.

Remark 4.1 (Equivalence of (ε,v)-DP and ε-DP.). Let ε = εv and ε = εv, such that
v = maxi vi (the maximum privacy weight) and v = mini vi (the minimum privacy
weight). Then, we have: ε-DP =⇒ (ε,v)-DP and (ε,v)-DP =⇒ ε-DP . As a
consequence, (ε,1)-DP holds if and only if ε-DP also holds, in which 1 = (1, · · · , 1).

4.4.2 The stretching mechanism
Thereafter, we describe a generic mechanism achieving heterogeneous differential
privacy that we coin as the Stretching Mechanism. We assume that the privacy
preferences for each item are captured through a privacy vector v (cf. Definition 4.3).
Given an arbitrary total function f : D → R, in which D is a semi-balanced set
of columns vectors of n coordinates, and whose global sensitivity S(f) is finite,
we construct a randomized function f̂(d,v, ε) estimating f while satisfying (ε,v)-
differential privacy.

Before delving into the details of this method, we provide a little intuition on how
and why it works. A lemma in [41, Lemma 1] asserts that the Laplacian mechanism
M(d) = f(d) + Lap(σ) with mean 0 and standard deviation σ provides

Pr[M(d) = t] ⩽ exp(εi) Pr[M(d(i)) = t] , (4.2)
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in which εi = Si(f)/σ. Thus, the achieved level of differential privacy for a par-
ticular coordinate when the Laplacian mechanism is used, depends on the modular
sensitivity. Therefore, a natural approach for enforcing heterogeneous differential
privacy is to manipulate the modular sensitivity Si(f) by modifying the function f
itself.

Constructing the estimator. Let T : [0, 1]n → Rn×n be a function taking as
input a privacy vector v and returning as output a shrinkage matrix, with the
property that T (1) = I, such that I is the identity matrix and 1 = (1, · · · , 1). Let
also R be a mapping sending a function f : D → R and a privacy vector v ∈ [0, 1]n
to the function R(f,v) : D → R with

R(f,v)(d) = f(T (v) · d) . (4.3)

Recall that the Laplace distribution centered at 0 with scale parameter σ has
the following probability density function

h(x) = exp(−|x|/σ)/2σ . (4.4)

Finally, let N be a Laplacian random variable with parameter σ = σ(f, ε) = S(f)/ε,
in which S(f) refers to the global sensitivity of the function f and ε the privacy
parameter. The following statement proves that this Stretching Mechanism R (4.3)
satisfies heterogeneous differential privacy.

Theorem 4.1 (Achieving HDP via stretching mecanism). Given a privacy vector
v, if the function T (v) satisfies Si(R(f,v)) ⩽ viS(f) then the randomized function
f̂(d,v, ε) = R(f,v)(d) + N satisfies (ε,v)-differential privacy.

Proof. For all two neighboring profiles d,d(i), and for all outputs t ∈ R of the
function f we have

Pr[f̂(d,v, ε) = t]
Pr[f̂(d(i),v, ε) = t]

= h(t−R(f,v)(d))
h(t−R(f,v)(d(i)))

(4.5)

⩽ exp(ε|R(f,v)(d)−R(f,v)(d(i))|
S(f)

) (4.6)

⩽ exp(εSi(R(f,v))
S(f)

) (4.7)

⩽ exp(εvi���S(f)
���S(f)

) = exp(εvi) , (4.8)

in which h(·) is defined as (4.4), thus proving the result.
In a nutshell, T (v) is a shrinkage matrix, whose shrinking factor in each co-

ordinate is computed independently of all other coordinates. More precisely, the
shrinking factor for a particular item depends only on the privacy weight associated
to this coordinate. The value used by the mechanism is the lowest amount of shrink-
age (i.e., distortion) still achieving the target modular sensitivity of that coordinate.
In the following section we provide an explicit construction of T (v) for which we
prove (Lemma 4.1) that the condition of Theorem 4.1 is satisfied, and therefore that
f̂ achieves (ε,v)-differential privacy.
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Computing the shrinkage matrix. The HDP mechanism f̂(d,v, ε) adds Lapla-
cian noise to a modified function

R(f,v)(d) = f(T (v) · d) . (4.9)

In this section, we specify how to construct T (v) such that f̂ satisfies HDP. There-
after, we use R to denote R(f,v) for the sake of simplicity. Let T (v) = diag(w)
for some w ∈ [0, 1]n to be computed from the privacy vector v and S(R,w) be the
sensitivity of R = f(T (v) · d) = f(diag(w) · d) given w. Similarly, let Si(R,w) be
the modular sensitivity of R given w. We denote by (w−i, w′

i) the vector resulting
from replacing the item wi in w to w′

i (e.g., (1−i, wi) = (1, . . . , wi, . . . , 1)). Each wi

can be computed from vi by solving the following optimization problem:

maximize wi ,
subject to: Si(R, (1−i, wi)) ⩽ viS(f) .

(4.10)

Note that a solution satisfying this constraint always exists and is reached by
setting wi to 0. The wi’s are never released after they have been computed locally
by the rightful owner, and the modular sensitivity Si(R) is only used in the proof and
is not revealed to the participants as well as the noise generated. The participants
only have the knowledge of the global sensitivity S(f). Therefore, the only way in
which the profile d could leak is through its side effects to the output, which we
prove to achieve ε-DP in Theorem 4.2.

Lemma 4.1 (Premise of Theorem 4.1). If T (v) = diag(w) such that for all i:

Si(R, (1−i, wi)) ⩽ viS(f) (4.11)

(the constraint of (4.10)), then R satisfies:

Si(R,w) ⩽ viS(f) (4.12)

for all i.
This lemma follow from the following series of facts.

Proposition 4.1 (Monotonicity of subdomain optimization). Let θ and θ′ be the
result of two maximization problems p1 and p2 of the function g in which the maxi-
mization is over domains J and J ′, respectively. Then, if J ⊆ J ′, this implies that
θ ⩽ θ′. The opposite statement also holds for minimization problems.

Proof. Since θ′ is the optimal result of p2 over J ′, this means that by definition:

g(θ′) ⩾ g(j) , (4.13)

for all j in J ′.
Moreover, since any result θ for p1 will always be in J , and therefore in J ′, then

g(θ′) ⩾ g(θ) by (4.13). The proof that the opposite statement holds for minimization
problems follows from the same arguments and therefore we choose to omit it.

Lemma 4.2 (Shrinkage matrices composition). If A and B are two shrinkage ma-
trices and D a semi-balanced set, then ABD ⊆ BD ⊆ D.
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Proof. By definition of semi-balanced set, we have BD ⊆ D. Then it remains to
prove that ABD ⊆ BD (or equivalently, that BD is a semi-balanced set). We
observe that a vector w belongs to ABD if and only if w = ABb for some b ∈ D.
Because shrinking matrices commute, w = BAb. Let a = Ab, then by definition of
semi-balanced set, a ∈ D. Therefore, w = Ba for a ∈ D, which means w belongs
to BD by definition of BD.

Lemma 4.3 (Monotonicity of the global sensitivity). If w′ ⩽ w then S(R,w′) ⩽
S(R,w).

Proof. Let c be such that

ci =

w′
i/wi if wi ̸= 0

0 otherwise
, (4.14)

and let C = diag(c) is a shrinkage matrix. We have that w′ = Cw. Let T ′ =
diag(w′) and T = diag(w) be two other shrinkage matrices. In this case T ′ = CT .
By Lemma 4.2 and since D is semi-balanced:

T ′D = CTD ⊆ TD ⊆ D . (4.15)

The result follows from Proposition 4.1 because S(R,w) is over the domain TD
while S(R,w′) is a maximization problem over the domain T ′D ⊆ TD.

Corollary 4.1 (Monotonicity of the modular sensitivity). If w′ ⩽ w then Si(R,w′) ⩽
Si(R,w) for all i.

Proof. By Lemma 4.3, we have that S(R,w′) ⩽ S(R,w). Let i∗ = arg maxi Si(R,w)
and therefore S(R,w) = Si∗(R,w). In order to get a contradiction, we assume that
Si∗(R,w′) > Si∗(R,w), thus we have

S(R,w′) = max
i

Si(R,w′) > Si∗(R,w) = S(R,w) , (4.16)

which is a contradiction.

Now we can finally prove Lemma 4.1.

Proof of Lemma 4.1. Since w ⩽ (1−i, wi) for all i, then:

Si(R,w) ⩽ Si(R, (1−i, wi)) for all i, (4.17)
⩽ viS(f) for all i, (4.18)

in which the first inequality follows from Corollary 4.1 and the second inequality
follows from the premise of the lemma, thus concluding the proof.
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Hiding the privacy vector. The privacy weights by themselves, if released pub-
licly, could reveal private information [103, 41]. Therefore, their impact on the ob-
servable output of the mechanism should be studied. The following theorem states
that when the profile d is fixed, the randomized function f̂ satisfies ε-differential
privacy over neighboring privacy vectors v ∼ v(i). Thus, the privacy vector can also
be considered to be hidden and protected by the guarantees of differential privacy.

Theorem 4.2 (Protecting the privacy vector with ε-DP). The randomized function
f̂ provides ε-differential privacy for each individual privacy weight of v. This means
that for all neighboring privacy vectors v ∼ v(i), for all outputs t ∈ R and profiles
d, the following statement holds:

Pr[f̂(d,v, ε) = t] ⩽ exp(ε) Pr[f̂(d,v(i), ε) = t] .

We will need the following two propositions to prove this theorem.

Proposition 4.2 (Semi-balanced sets are closed under shrinkage.). If D is a semi-
balanced set and A is a shrinkage matrix, then AD is also a semi-balanced set.

Proof. Follows from the proof of Lemma 4.2.

Proposition 4.3 (T (v) and T (v(i)) are neighbors). T (v).d and T (v(i)) · d are
neighbors on item i, since wi is a function of vi only.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Let d∗ = T (v) · d and d
(i)
∗ = T (v(i)) · d. By Proposition 4.3,

d∗ and d
(i)
∗ are neighboring profiles. Moreover due to Proposition 4.2, they still

belong to D, thus |f(d∗)− f(d(i)
∗ )| ⩽ Si(f) ⩽ S(f). Therefore, we have:

Pr[f̂(d,v, ε) = t]
Pr[f̂(d,v(i), ε) = t]

= h(t−R(f,v)(d))
h(t−R(f,v(i))(d))

(4.19)

⩽ exp(ε|R(f,v)(d)−R(f,v(i))(d)|
S(f)

) (4.20)

= exp(ε|f(d∗)− f(d(i)
∗ )|

S(f)
) (4.21)

⩽ exp(ε���S(f)
���S(f)

) = exp(ε) , (4.22)

in which h(·) is defined in (4.4), thus proving the result.

Estimating the distortion induced by HDP. Let f be a continuous and dif-
ferentiable function on a semi-balanced set D, and let (v,d) ∈ [0, 1]n×D be respec-
tively, the privacy vector and the profile considered. The following theorem provides
a bound on the distortion introduced on the output by modifying the global sensi-
tivity of the function f as done by the HDP (i.e., stretching) mechanism described
previously.
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Theorem 4.3 (Bound on the distortion induced by the stretching mechanism). Let
f : D → R be a function from a semi-balanced set D to the reals, and let v ∈ [0, 1]n
be a privacy vector and T : [0, 1]n → Rn×n be a function taking a privacy vector to
a shrinkage matrix. Finally, let R be a mapping sending a function f and a privacy
vector v to the function R(f,v) : D → R such that R(f,v)(d) = f(T (v) · d) for all
vectors d. The distortion ( i.e., distance) between f and R(f,v) is bounded by:

|f(d)−R(f,v)(d)| ⩽ (1− w)∥d∥
(

max
0⩽c⩽1

∥∇f(B · d)∥
)

, (4.23)

where B = cI + (1 − c)T (v), w = mini wi is the minimum of w (the diagonal of
T (v)), and ∇f is the gradient of the function f .

Proof. Let y = d and x = T (v) · d, then by the mean value theorem [105, Theo-
rem 14.4, p. 301], there exists a constant 0 ⩽ c ⩽ 1 depending on d and T (v) and
f such that:

f(y)− f(x) = ∇f((1− c)x + cy) · (y − x) , (4.24)
in which · denotes the inner product. Therefore, by the Cauchy-Schwarz inequality,
we have:

|f(y)− f(x)|⩽ ∥∇f((1− c)x + cy)∥∥y − x∥ . (4.25)
Finally, by the fact that

∥y − x∥ = ∥d− T (v) · d∥ = ∥(I − T (v)) · d∥ (4.26)

=
√∑

i

((1− wi)di)2 (4.27)

⩽ (1−min
i

wi)
√∑

i

d2
i = (1− w)∥d∥ , (4.28)

in which T (v) = diag(w), and that

(1− c)x + cy = (1− c)T (v) · d + cd (4.29)
= (cI + (1− c)T (v)) · d , (4.30)

the theorem follows directly.

Intuitively, if w is the minimum of w (the diagonal of T (v)), and d is the input
profile, then the distortion introduced by stretching the function as measured in
terms of absolute additive error is bounded by 1−w times the norm of d multiplied
by the norm of the gradient of the semi-stretched function at d.

This bound is particularly useful in situations in which the norm of the gradient
of the function f is bounded from above by a constant. However, even in the cases in
which the norm of the gradient is not bounded by a constant, the bound can still be
useful. For instance, in the case of the inner product function f(d) = ∑n/2

i=1 didi+n/2,
the gradient is ∥B · d∥ ⩽ ∥d∥ (since B is a shrinkage matrix). Hence, the bound on
the distortion will be (1 − w)∥d∥2, and since in case of the inner product function
w = v, the distortion is (1 − v)∥d∥2 ⩽ (1 − v)n2. This distortion corresponds to
the bias of the estimator, which is distinct from the actual expected error due to the
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randomization. From this, some constraints may be enforced on v to guarantee any
desired upper bound on the distortion. For instance, if the distortion should be less
than log(n)d

√
n for some d > 0, then v should be greater than 1− log(n)d/n3/2. One

restriction on the application of this bound is that the function f to be protected
should have a finite global sensitivity, and therefore the inner product function
mentioned has to restrict its domain to be finite, thus preventing the distortion
bound from being infinite.

4.5 HDP in practice
To assess the practicality of our approach, we have applied the HDP mechanism to
Gossple (Section 2.2). In this context, we are interested in providing heterogeneous
differential privacy guarantees to peers. More precisely, we consider the scenario in
which a particular peer can assign a privacy weight, between 0 and 1, to each item of
his profile. The value 0 corresponds to the strongest privacy guarantee in the sense
that the presence (or absence) of this item will not affect the outcome (the clustering)
at all, while the value 1 is the lowest level of privacy possible in our framework.
However, even this lowest level of privacy still provides the standard guarantees of
ε-differential privacy. Thus, the privacy weights of a peer directly reflect his privacy
attitudes with respect to particular items of his profile, and as a side effect determines
the influence of this item in the clustering process. In particular, an item with a
higher weight will contribute more to the clustering process, while a item with a
lower weight will influence less the resulting clustering.

Let SP(x,y) = x · y refers to the inner product between the two profiles. The
privacy vector v is composed of two parts, one for the profile x and the other for
the profile y: (vx,vy). Consider the matrix T (v) = diag(v) and let R(SP,v) =
SP(T (vx) · x, T (vy) · y) be the Stretching Mechanism, in which T is the stretch
specifier (which describes how to stretch every coordinate). This mechanism R
satisfies the premise of Theorem 4.1 and therefore the choice of T (v) = diag(v) also
ensures HDP, as proven in the following lemma.

Lemma 4.4. Consider a matrix T (v) = diag(v) and a mechanism R(SP,v) =
SP(T (vx) · x, T (vy) · y), such that x and y correspond to profiles, vx and vy to
their associated privacy vectors, and v = (vx,vy). In this situation, the following
statement is true for all i:

Si(R(SP,v)) ⩽ viS(SP) . (4.31)

Proof. Each profile being represented as a binary vector, the global sensitivity of
the inner product is one (i.e., S(SP) = 1). Thereafter, for the sake of simplicity,
let R denotes R(SP,v). As T (v) is a diagonal matrix, it is strictly identical to its
transpose T (v)⊤. We can assume without loss of generality that d(i) = (x,y(j)) for
item j = i− dim(x), and therefore that:

Si(R) = max
d∼d(i)

|T (vx)x · T (vy)y − T (vx)x · T (vy)y(j)| (4.32)

= max
d∼d(i)

|(x⊤T (vx)T (vy)) · (y − y(j))| . (4.33)
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However, the vector y − y(j) has all its coordinates set to 0 except for the jth

coordinate. Therefore, the maximum is reached when yj = 1, x = 1 = (1, · · · , 1),
and is such that:

vx
j v

y
j ⩽ vi = vi × 1 = viS(SP) , (4.34)

which concludes the proof.

The previous lemma proves that the proposed modified version of inner product
is differentially private (by Theorem 4.1), while the next lemma (which is a hetero-
geneous variant of the post-processing lemma, cf. Lemma 2.1) simply states that
if we rely on this differentially private version of inner product to compute the co-
sine similarity (or any similar metric), the outcome of this computation will still be
differentially private.

Lemma 4.5 (Effect of post-processing on HDP). If a randomized function f̂ satisfies
(ε,v)-differential privacy, then for any randomized function g : Range(f̂) → R
independent of the input to f̂ , the composed function g ◦ f̂ also satisfies (ε,v)-
differential privacy. The randomness of the function g is assumed to be independent
of the randomness of f̂ in order for this property to hold.

Proof. The theorem is equivalent to prove that for any two neighboring profiles
d ∼ d(i) the following holds:

Pr[g ◦ f̂(d) = t] ⩽ exp(εvi) Pr[g ◦ f̂(d(i)) = t] . (4.35)

To prove this, consider any two neighboring profiles d ∼ d(i):

Pr[g ◦ f̂(d) = t] =
∫

s∈Range(f̂)

Pr[f̂(d) = s] · Pr[g(s) = t] (4.36)

⩽
∫

s∈Range(f̂)

exp(εvi) Pr[f̂(d(i)) = s] · Pr[g(s) = t] (4.37)

= exp(εvi) Pr[g ◦ f̂(d(i)) = t] , (4.38)

thus concluding the proof.

4.5.1 Calibrating the threshold
Similar to Chapter 3.4, we have considered a threshold version of the similarity
computation. The output of the computation of the threshold similarity consists
of only one bit of information whose value is 1 if the similarity computed between
two profiles is above a predefined threshold τ , and 0 otherwise. As the value of
the similarity function will be modified by HDP, the threshold τ considered should
be also updated to take into account this modification. Thereafter, we describe an
heuristic procedure for this purpose.

Consider two different profiles x and y, and fix the profile x and its privacy
vector vx. From the viewpoint of x, we have that for any possible profile y, if
vx = 1 = (1, · · · , 1) for all items of the profile (the homogeneous case), then the
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value of the heterogeneous inner product is at most ∥x∥1. Otherwise, the value of the
heterogeneous inner product is at most ∥v̂x∥1, such that v̂x is defined similarly to vx,
with the exception that v̂x

i = 0 if the item i /∈ x. In this situation, it is natural for
the peer whose profile is x to compensate for the difference induced by the modified
inner product. For instance, if originally the threshold for the inner product was
τ , then this peer should consider to use a different threshold τ ′, which is a scaled
version of τ . We suggest to use the scale ∥v̂x∥1/∥x∥1, which results in the relation
τ ′/∥v̂x∥1 = τ/∥x∥1. The new threshold can be computed locally by a peer but is
also likely to be different for each peer, which results in an asymmetric computation
of the heterogeneous cosine similarity. As a consequence, the cryptographic protocol
comparing the output of the cosine similarity computation should have two outputs,
one given to the first peer and the other being sent to the second peer. This is to
be contrasted with the homogeneous case in which the threshold is supposed to be
the same for each peer, thus resulting in the same output for both peers involved in
the similarity computation.

4.5.2 Experimental evaluation
For the experiments, we assume that in real life, peers will assign different privacy
weights to the items in their profiles. In order to simulate this, we generate pri-
vacy weights uniformly at random from a set of n equally-spaced values in a fixed
range [u, u]. More formally, each item is associated with a privacy weight sampled
uniformly at random from the set {u, u + δ, . . . , u − δ, u}, δ = (u − u)/(n − 1), for
0 ⩽ u < u ⩽ 1. For instance, if u = 0.5, u = 1 and n = 3, then the weights assigned
to items will be uniformly chosen from the set {0.5, 0.75, 1}.

We simulate the Gossple system described in Section 2.2 on the three datasets
described in Section 2.4 namely Delicious, digg, and survey.

In Figure 4.1, we have plotted the three cases for which the interval (u, u) is set
to be (0, 1), (0.5, 1), and (0.9, 1). The x-axis represents u, while the y-axis is the
recall averaged over all slices (from n = 1 to n = 10) for the experiment in the range
[x, 1]. Afterwards in Figure 4.2, we have fixed the range u ∈ {0, 0.5, 0.9} and u = 1
and plot the average recall over all peers over all runs versus n, the number of slices
(ranging from 1 to 10). In both figures, the error bars represent the variance.

From Figure 4.1 (Delicious), we can observe that there is not much difference
in terms of utility between the situations in which u = 0.5 and u = 0.9, as both
situations are close to the utility obtained with the baseline algorithm. Indeed,
the largest difference is obtained when u is set to 0, in which case the utility gets
closer to the utility obtained through a random clustering. Furthermore, Figure 4.2
(Delicious) demonstrates that varying the number of slices has almost no effect on
the utility achieved by u ∈ {0.5, 0.9}, but has a significant impact on the situation
in which u = 0, for which the utility decreases as the number of slices increases. One
possible interpretation is that as the number of slices n increases, there are more
and more items whose privacy weight differs from 1. In a nutshell, this suggests
that items with high privacy weights (above 0.5) have an important impact on the
utility. Combining this observation with the fact that, when u ⩾ 0.5 the utility was
not affected, shows that items with low privacy weights (less than 0.5) can harm the
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utility in a non-negligible manner. While this may seem strange at first glance, it
actually solves an apparent contradiction when taken from a different point of view.
Consider for instance that a privacy weight is changed by 0.1 (e.g., from 0.9 to 0.8 or
from 0.1 to 0.2). The impact on utility resulting from this change depends not only
on the value of the difference, but also on the original value being changed. On one
hand, the utility gain resulting from modifying the privacy weight from 0.1 to 0.2
is less than the utility loss if the privacy weight were modified from 0.9 to 0.8. On
the other hand, changing u from 0.5 to 0 can cause a significant damage to utility
because the average privacy weight drops from 0.75 to 0.5.

4.5.3 Varying privacy attitudes among users
The results of the previous section were obtained for the setting in which all peers
draw their privacy weights from the same distribution (i.e., all users have the same
privacy attitude). However, according to a recent survey [106], users of information
systems can be classified in at least three very different groups called the Westin
categories [107]. These three groups are: Privacy Fundamentalists, Privacy
Pragmatists and Privacy Unconcerned. The first group is composed of the
users concerned about their privacy, while on the contrary the third group is com-
posed of the ones that are the least concerned (according to a particular definition of
concern detailed in the cited poll), while finally the second group is anything in be-
tween. For the following experiments, we have adopted the spirit of this classification
and consider the three groups of users defined thereafter.

Each group is equipped with a different distribution from which they pick their
privacy weights as follows.

1. The Unconcerned group corresponds to users that do not really care about
their privacy and thus all their items have a privacy weight of 1.

2. The Pragmatists group represent users that care a little bit about their
privacy, such that all their items have a privacy weight chosen uniformly at
random among {0.5, 0.75, 1}.

3. The Fundamentalists group embodies users that really care a lot about
their privacy and whose items have a privacy weight chosen uniformly at ran-
dom among {0, 0.5, 1}.

The main issue we want to investigate is how the presence of a relatively conservative
group (i.e., having relatively high privacy attitudes) affect the utility of other groups.
More specifically, we want to measure whether or not the presence of a group of peers
with high privacy attitudes indirectly punish (i.e., reduce the utility) of other more
open groups.

During the experimentations, we have tried different proportions of these groups
for a total number of users of 500. Each value plotted in Figure 4.3, has been
averaged over 10 runs but the partition in groups is fixed for a given set of runs. All
experiments are averaged on ε ∈ {0.1, 0.5, 1, 2, 3}. According to a 2004 poll [106],
the percentage of each of the privacy groups Fundamentalists, Pragmatists
and Unconcerned are respectively, 34%, 43% and 23%. Nonetheless, we also



64 CHAPTER 4. HETEROGENEOUS DIFFERENTIAL PRIVACY

..........0.94 .
0.95

.

0.96

.

0.97

.

0.98

.

0.99

.

1

.

R
ec

al
l

.. ............... ............... ...............

.......0.92 .
0.93

.

0.93

.

0.94

.

0.94

.

0.95

.

0.95

.

R
ec

al
l

..

..........

..

..........

..

..........

..

..
2

10

.
3

10

.
6

10

.
7

10

.
8

10

.0.1 .
0.12

.

0.14

.

0.16

.

0.18

.

0.2

.

0.22

.

Fundamentalists

.

R
ec

al
l

..

..
2

10

.
3

10

.
6

10

.
7

10

.
8

10

.......

Fundamentalists

..

..
2

10

.
3

10

.
6

10

.
7

10

.
8

10

.......

Fundamentalists

..

..
2

10

.
3

10

.
6

10

.
7

10

.
8

10

.....

Fundamentalists

.

Su
rv

ey

.

D
ig

g

.

D
el

ic
io

us

.

Pragmatists = 10%

.

Pragmatists = 20%

.

Pragmatists = 60%

.

Pragmatists = 70%

..
. ..Fundamentalists;
. ..Pragmatists;
. ..Unconcerned

Figure 4.3 – Results obtained for the Delicious, Digg and survey datasets. The
heterogeneous differential privacy has been computed for 3 groups with different
privacy attitudes. For a particular figure and a particular x tick, the percentage of
Unconcerned group is fully determined as (1− Pragmatists − x).

experiment a combination of several other distributions in order to investigate other
possible settings. In particular, we have also tried the following percentages for
each group: the proportion of the Unconcerned group and Pragmatists group
vary in the following range {10%, 20%, 60%, 70%}, while the Fundamentalists
group is assigned to the remaining percentage (i.e., there is only two degrees of
freedom). If Unconcerned group + Pragmatists group > 100%, then this
combination is discarded. In Figure 4.3, the x-axis represents the percentage of the
Fundamentalists group, while the y-axis corresponds to the recall. Each of the
three lines correspond to the recall of one of the three groups (Fundamentalists,
Pragmatists, and Unconcerned). For each of the four plots, the proportion
of the Pragmatists group is denoted in the plot by the expression Pragmatists
= some value. The proportion of the remaining group (Unconcerned) can be
directly inferred by subtracting the proportions of the two other groups from 100%.

From the results obtained, we can conclude that (1) Pragmatists and Uncon-
cerned always have better recall than Fundamentalists and (2) Unconcerned
often have a better recall than Pragmatists, though not always. This seems to
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indicate that the group caring more about privacy usually is punished more (i.e., its
utility is lower) than groups that are more liberal with respect to privacy expecta-
tions. This not really surprising as a low privacy weight will result in users from the
Fundamentalists group segregating themselves from other users in the clustering
to the point that they will not necessarily have meaningful neighbors in their view.
Finally, to the question whether (or not) more liberal groups will be punished by
conservative groups, the answer seems to be negative. Indeed it can be seen from the
results of the experiments, that conservative groups are punished more than liberal
groups. For instance, the utility of liberal groups only decreases from 0.22 to 0.19
as the percentage of conservative groups increases from 20% to 80%.

4.6 Conclusion
In this chapter, we have introduced the novel concept of heterogeneous differential
privacy that can accommodate for different privacy expectations not only per user
but also per item as opposed to previous models that implicitly assume uniform
privacy requirements. We have also described a generic mechanism achieving HDP
called the Stretching Mechanism, which protects at the same time the items of the
profile of user and the privacy vector representing his privacy expectations across
items of the profile. We applied this mechanism for the computation of the cosine
similarity and evaluate its impact on Gossple by using the recall as a measure of
utility. Moreover, we have conducted an experimental evaluation of the impact of
having different groups of users with different privacy requirements.
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Abstract

In this chapter, we describe a non-interactive protocol for private peer-
to-peer similarity computation. The need for a non-interactive protocol
arises from the privacy budget issue, which enforces an upper bound on
the number times the similarity may be computed (cf. Section 2.3.1).
Non-interactive protocols are not subject to this bound because they are
computed only once. Moreover, a non-interactive protocol avoids the
need to use cryptographic tools, allowing for more efficient execution
and small communication cost; as its output may be cached. Another
advantage of this non-interactive mechanism is that similarity computa-
tion may take place even when the user is offline, which is impossible to
achieve with interactive mechanisms.

We introduce a novel privacy mechanism called BLIP (for BLoom-and-
flIP) for this purpose. In brief, the profile of a user will be represented
in a compact way, as a Bloom filter (cf. Section 5.2.1) that will be
perturbed via the flipping of some bits. The main objective is to privately
estimate the similarity between two users using this perturbed Bloom
filter representation.

An analysis of the protection offered by BLIP is provided with the
objective of deriving an upper and lower bound for the value of the dif-
ferential privacy parameter ε, for which it is difficult to grasp an intuition
for. More specifically, we define a probabilistic inference attack, called
the “Profile Reconstruction Attack”, that can be used to reconstruct the
profile of an individual from his perturbed Bloom filter representation,
along with the “Profile Distinguishing Game” which measures whether
an adversary can distinguish a change in one item. An upper bound for
ε is a value that makes one of these attacks succeed. The lower bound is
both given by a theoretical bound on the deviation from the true answer,
and empirically by finding the values of ε which provide a poor utility
for a particular application.

This chapter is an expanded version of M. Alaggan, S. Gambs, and A.M. Kermar-
rec, “Blip: Non-Interactive Differentially-Private Similarity Computation on Bloom
Filters,” in Proceedings of the 14th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS’12), ser. Lecture Notes in Computer Sci-
ence, A. W. Richa and C. Scheideler, Eds., vol. 7596. Toronto, Canada: Springer,
October 1–4, 2012, pp. 202–216.

5.1 Introduction
One of the limits of interactive differential privacy is that each time a differentially
private mechanism is computed, new information is released, thus incurring privacy
costs. Therefore, if this computation takes place too many times, the adversary may
be able to reconstruct almost all of the user’s profile. For example, if the additive
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noise for each computation is o(n)1, n being the number of items in the system, then
if an exponential number of computations takes place an adversary can reconstruct
the profile [30, Theorem 2]. Moreover, the Laplacian mechanism [38] can only be
computed a sublinear number of times in n [108]. Therefore, an upper bound on the
number of computations taking place needs to be set. If the mechanism provides
ε-differential privacy and the total privacy budget (cf. Section 2.3.1) is rε, then the
number of computations of this mechanism cannot exceed r computations due to
the composition lemma (Lemma 2.1 shown in [42, 43]).

However, in a large scale system with potentially millions of users as the one
we consider, setting a bound on the maximum number of similarity computations
that can occur is typically not applicable for iterative gossip-based protocols (cf.
Section 2.2). In particular, since new peers keep joining the system continuously, an
interactive mechanism would be of limited applicability without extra assumptions
(cf. Section 3.3.1).

To simultaneously address the privacy and scalability issues, we propose BLIP
(for BLoom-then-flIP), a non-interactive differentially private mechanism, which
computes a standard Bloom filter [109] from the profile of a peer, and then per-
turbs it prior to its public release in order to ensure high privacy guarantees. This
randomized Bloom filter can be used an unbounded number of times to compute
the similarity of this peer with other profile without breaching the privacy of the
profiles. Moreover, this approach has exactly the same communication cost as plain
(i.e, non-perturbed) Bloom filters, while offering much higher privacy guarantees,
but at the cost of a slight decrease of utility.

In differential privacy, the trade-off between utility and privacy can be set through
the privacy parameter ε. However, being able to choose an appropriate value for
this parameter is still an open research question, which has not really been investi-
gated, with a few exceptions [39, 28]. However, the Dwork-Naor impossibility proof
[27] may suggest one way of choosing ε. Basically, they assume that the privacy
mechanism M is non-trivial in the sense that an adversary observing M(x), for a
private profile x, but without any auxiliary information, cannot compute a privacy
breach about x, even if he has a prior distribution D on x. In this chapter, we set
ε to the value that (partly) realizes this assumption. We do this by proposing two
attacks where both try to create a different privacy breach2, and neither of them
assumes auxiliary information. Moreover, to keep things simple, we do not assume
correlations exist between items (correlations are handled in Chapter 6). Therefore
the value for ε for which our attacks succeed is merely an indicative upper bound,
which is still considered progress given that we may have very little clue otherwise.
The attacks are probabilistic inference attacks. The first attack is called the “Profile
Reconstruction Attack” as it can be used to reconstruct the profile of a peer from
its perturbed Bloom filter representation. The other attack is called the “Profile Dis-

1For comparison, the Laplacian mechanism [38] used in the previous chapters corresponds to
O(1) = o(n) additive noise, while the BLIP mechanism of this chapter incurs O(

√
n) = o(n)

additive noise with constant probability.
2For this, it is necessary to assume what constitutes a privacy breach, but in the context of

Dwork-Naor impossibility result, it must be a piece of information about the database instance at
hand. For the profile distinguishing game, this piece of information is whether the profile has the
ith bit set to one or not. For the other attack, it is an approximation of the profile.
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tinguishing Game”, in which the adversary tries to distinguish two profiles, differing
only by one item, by observing the perturbed Bloom filters of both profiles. More
specifically, we provide an analysis of the protection and the utility offered by BLIP
against these attacks by deriving upper and lower bounds for the required value of
the differential privacy parameter ε.

In short, the lower bound gives theoretical guarantees on the resulting approxi-
mation error generated by a specific value of the privacy parameter, while the upper
bound demonstrates experimentally that the privacy parameter must be below a
certain threshold to be able to prevent these attacks. Furthermore, we evaluate ex-
perimentally the trade-off between privacy and utility that can be reached with BLIP
on Gossple (cf. Section 2.2) in which peers are grouped based on the similarity
between their profiles.

The chapter is organized as follows. First, in Section 5.2, we present background
on Bloom filters and differential privacy necessary to understand our work. Then,
we give an overview of the related work in Section 5.3. Afterwards, we propose BLIP,
a non-interactive differentially private mechanism for randomizing Bloom filters in
Section 5.4 and analyze in details the privacy guarantees it provides. In Section 5.5,
we evaluate the impact of this mechanism on utility, as measured in terms of recall
on Gossple. In Section 5.6, we describe novel inference attacks, called the profile
reconstruction attack, that can reconstruct a profile from its Bloom filter represen-
tation, and another one called the profile distinguish game, and show how BLIP can
be used to drastically reduce its impact. Finally, we conclude in Section 5.8.

5.2 System model and background
In this chapter, we consider a computationally-unbounded adversary that can ob-
serve the flipped Bloom filter (the differentially-private version of the user’s profile),
but not the internal state of a peer owning that Bloom filter. This is unlike previous
chapters where the adversary had to be computationally-bounded because of the use
of cryptographic constructions.

5.2.1 Bloom filters
A Bloom filter [109] is a probabilistic data structure composed of a vector B ∈
{0, 1}m. A set H of k independent hash functions is used to specify its operation.
Each hash function maps an item to a uniform and independent random index
{1, . . . , m} in the Bloom filter. Bloom filters form a compact representation of sets
as they can represent any set with no more than m bits, for a given trade-off between
m, the size of the structure, and the false positive probability (i.e., the probability
of an item is believed to belong to the Bloom filter while it is not). Bloom filters
are often used for applications in which the storage space is limited or for protocols
for which the communication cost has to be low but some false positives can be
tolerable.

Bloom filters are associated with two operations: the add operation inserts an
item into the Bloom filter while the query operation tests if an item is already present
in it (some types of Bloom filters also support the removal of items [110] but we do
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not consider them in this thesis). Both operations start by applying the k hash
functions from H to the item in question in order to obtain a subset of {1, . . . , m}
of indexes into B. With an abuse of notation, we denote this step as H(item), that
is

H(item) = {i | i = h(item), h ∈ H} . (5.1)

The add operation inserts the item by setting the bits corresponding to those indexes
to one in B, and does this independently of the previous values of these bits. For
instance, the post condition to add(item) when applied to a Bloom filter B is that
Bi = 1 for every i ∈ H(item), whereas all the other bits are left unchanged. The
query operation checks if an item is included in the Bloom filter by verifying whether
or not all the bits whose index is in H(item) are set to one. If the item is included
in the Bloom filter, query returns 1, while it returns 0 otherwise. For the rest of
this chapter, we use the notation i ∈ B to express the statement query(i,B) = 1, or
equivalently that i is a member of B.

For example, consider a Bloom filter with a length of m = 4 bits, equipped with
k = 2 hash functions H. Fix for a particular item, say i1, to be mapped by the hash
functions to {2, 4} (i.e. H(i1) = {2, 4}). Given an empty Bloom filter represented
as B = (0, 0, 0, 0), the item i1 is then inserted in the Bloom filter by setting the 2nd

and 4th bits to one, ending up with (0, 1, 0, 1). Verifying that the same item i1 is
present in a Bloom filter simply requires to check whether the 2nd and 4th bits are
equal to one. As a different example, consider the scenario in which starting from
an empty Bloom filter, two items are inserted, respectively to positions {1, 4} and
{1, 2}, which results in the corresponding Bloom filter (1, 1, 0, 1). In this situation,
the operation query(i1, (1, 1, 0, 1)) will lead to believe that i1 was present in the
Bloom filter although it was never explicitly inserted, thus causing a false positive.

The probability of such false positive is a function of m, k, and the number of
items inserted in the Bloom filter. In general, the values of m and k are chosen
according to a trade-off decision between the space usage and the false positive rate
(an upper and lower bound for this trade-off is provided in [111]). The number of
hash functions k does not imply a huge computational cost, given that it is possible
to efficiently generate k hash values using only two hash operation [112].

5.2.2 Non-interactive differential privacy
Both the Laplacian mechanism (Theorem 2.1) and the exponential mechanism, pro-
posed by McSherry and Talwar [113], which provides differential privacy for func-
tions whose output is structured (e.g., graphs or trees), are instances of interactive
mechanisms. In particular, they both need to know the query before releasing the
output. More specifically, they require interaction between the data holder and the
user performing the query, hence the name.

On the other hand, a non-interactive mechanism releases a sketch of the data,
which could be used later by anyone to compute a wide array of queries about the
data (the queries belong to some class of queries) from that pre-computed sketch
without requiring any interaction or access to the original data. This setting can be
seen as a one-way communication protocol.
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In a non-interactive setting, the answer to a query is not computed by the non-
interactive mechanism itself. Rather, the answer can be computed from the output
released by the mechanism. Thus, after publishing his output, the data owner may
go offline.

Examples of non-interactive mechanisms for differential privacy include [26, 114,
45], which we mention in the related work section (cf. Section 5.3). Our proposition
of differentially-private Bloom filters is based on the work of Beimel, Nissim and
Omri [26] in which the authors address the “binary sum” problem, which deals with
privately computing the number of ones in a bit vector. More precisely, we adapt
their non-interactive mechanism to Bloom filters, with the goal of computing inner
product between two Bloom filters. We review this related work in Section 5.3.

5.3 Related work

5.3.1 Non-interactive differential privacy
Most of the previous works studying non-interactive mechanisms in the context of
differential privacy [115, 114, 45] have considered mechanisms that release a synthetic
database that can be used to perform queries instead of the original one. The first
work [115] is very inefficient due to its high computational complexity while [114]
considers only input databases that have a sparse representation. However, the
latter [114], depends on the exponential mechanism, which is inefficient, to choose its
parameters.The Johnson-Lindenstrauss transform of [45] provides a relaxed variant
of differential privacy, called (ε, δ)-differential privacy, which is strictly weaker than
ε-differential privacy [69].

5.3.2 Privacy and Bloom filters
The literature on using Bloom filters for designing privacy-preserving techniques is
quite diverse but often assumed a kind of client-server model, in which the owner
of the Bloom filter (server) wants to answer some query asked by the client. In this
context, some solutions focus of concealing the content of the query from the server,
thus ensuring client’s privacy (similarly to private information retrieval schemes),
while others try to prevent the client from getting more information than the an-
swer to its query, thus ensuring server’s privacy (in the spirit of oblivious transfer).
The application domains of these techniques include searching document indexes
[116, 117, 118], private information retrieval [119], private matching [120], private
publication of search logs [121] and anti-counterfeiting in supply chains [122]. The
closest to our work is [121], which provides a probabilistic version of differential
privacy (i.e., the privacy guarantee holds for all except a small fraction of items).
However, this technique only works for multi-sets and it is not straightforward it to
apply on normal sets such as user profiles.

Both [116, 123] provide semantic security (indistinguishability) for the query sent
by a peer, while [118, 119] require to salt the query with spurious bits (or hashes)
with the approach developed in [119] also aims at setting a high number of possible
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pre-images of the query. Some authors have considered the setting of an honest-but-
curious third party that relies on cryptographic techniques [120], while other works
propose a non-interactive solutions such as the release of a perturbed counting Bloom
filter3 [121] or non-interactive zero-knowledge proofs [122]. Moreover, these last two
works provide information-theoretical security for the privacy of the client as we do
with BLIP.

With respect to the privacy of the server (i.e., protecting the content of the Bloom
filter), some previous work [116] relies on the use of trapdoor function to limit the
number of items that the client can query. Other techniques use a zero-knowledge
proof issued by the server [122] or the obligation to have the approval of a trusted
censor server [118] in order to limit the quantity of information (i.e., queries) that the
client can learn. Some approaches protect at the same time the client and the server
privacy through the use of semi-trusted third party combined with cryptographic
techniques [120] or provide simulation guarantees against malicious clients [123].

Some non-interactive mechanisms based on Bloom filters have also been proposed.
For instance, [117] provides “probable innocence” (the probability that an adversary’s
claim that the server has an item i is true is in the range (0, 0.5]) while [121], that
provides a probabilistic version of differential privacy (i.e., the privacy guarantee
holds for all except a small fraction of case), is the closest to our work. However, this
technique only works for multi-sets as the release mechanism removes items whose
count (after adding noise) is less than a predefined threshold. In our context, there is
no notion of counting items, which make their work incomparable to ours. Moreover,
we aim at achieving full differential privacy (i.e, in the sense of information-theoretic
security) while [121] provides only probabilistic differential privacy (a strictly weaker
guarantee).

5.4 The bit-flipping mechanism
We propose a novel approach relying on bit flipping to achieve differential privacy.
The intuition behind our proposed mechanism is simple: before releasing a Bloom
filter, each bit is flipped with a given probability so as to ensure differential privacy
on the items of the profile from which the Bloom filter is derived.

If the profile is composed of n bits, in which n is the number of items in the
system, then if n changes over time, it will be possible to breach the privacy of
users just be observing the size of their flipped profile. For example, it would be
possible to exclude certain items from being present in the user’s profile just by
learning that their index is greater than n. Bloom filters were chosen because the
size of the flipped Bloom filter does not depend on n, allowing n to vary over time
if the system supports it. Moreover, Bloom filters will be small even if n is huge,
allowing less communication overhead. A challenge arises, however, because the
mapping between bits and items is not one-to-one and is defined via hash functions,
rendering it difficult to understand how flipping those bits relates to the privacy of

3A counting Bloom filter is an array of m buckets, in which each bucket can count from 0 up to
some integer z. Buckets play a role similar to the bits in a “plain” Bloom filter, with the exception
that instead to set the bit to one, the bucket value is increased by one.
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the items.
In this section, we provide a formal definition of our mechanism and compute the

flipping probability that has the least impact on utility while preserving differential
privacy. A particular challenging task is to derive how the flipping of bits influences
the privacy of the items themselves, which we address in Section 5.4.2.

5.4.1 Bloom-then-flip
More formally, the proposed non-interactive mechanism is a randomized function
that for each bit of a Bloom filter, tosses a biased coin and based on the result,
either outputs the original value of the bit or its opposite (i.e., flip it). Since the
mechanism flips the Bloom filter representation of a profile, we call it BLIP (for
Bloom-then-flip). For example, the mechanism may take as input the Bloom filter
(0, 1, 1, 0) and randomly (with probability 0 < p < 1/2 to be defined in Theorem 5.2)
decide to flip the first two bits, thus outputting (1, 0, 1, 0).

Let the function b : {0, 1}n → {0, 1}m be the function that maps a user’s profile
to its corresponding Bloom filter representation. That is, if B = b(d), then the bit
Bi will be set to 1 if and only if i belongs to H(j) for some index j such that dj = 1,
in which H is the set of hash functions used by b. Then, BLIP can be described
as a M(d) = F (b(d)), or alternative M = F ◦ b, in which F : {0, 1}m → {0, 1}m

is a randomized function that flips each bit of its input with flipping probability
p. More precisely, each bit output is the opposite as the corresponding bit of the
input with probability p (otherwise the bit remains same). BLIP consists of (1)
generating the Bloom filter representation of the profile first, and then (2) flipping
the resulting Bloom filter (which is a binary vector). The flipping process may
introduce permanent artifacts but the additive error is bounded by O(

√
m) with

constant probability, in which m is the number of bits of the Bloom filter, as shown
in Section 5.4.4.

The idea of randomizing each bit independently (as opposed to perturbing the
final answer itself) is also known as the randomized response [124], and precedes
the notion of differential privacy. The use of randomized response for differential
privacy was previously studied [26] but the definition of differential privacy adopted
([26, Definition 2.4]) slightly differs from ours. In their model, each individual bit
belongs to and is held by a different peer, which is very close to the setting of secure
multiparty computation, as opposed to our model (of this chapter) where the input
belongs to one and only one peer.

The following is the theorem that randomized response can ensure differential
privacy.

Theorem 5.1 (Differential privacy (randomized response)). Consider the random-
ized function f : {0, 1} → {0, 1} that is ε-differentially private. Thus, for all values
y, y′ ∈ {0, 1}, and for all output t ∈ {0, 1}:

Pr[f (y) = t] ⩽ exp(ε) Pr[f (y′) = t] , (5.2)

in which the probability is taken over the randomness of f , and exp refers to the
exponential function. Then, the function F (x1, . . . , xm) = (f (x1), . . . , f (xm)), also
denoted as F = ⊗m

i=1 f , is ε-differentially private.
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Proof. Let x = {0, 1}m, and let (x−i, y) denotes the vector resulting from replacing
the i-th coordinate of x with y, which means: (x−i, y) = (x1, . . . , xi−1, y, xi+1, . . . , xm).
x and (x−i, y) are neighbors (i.e. x ∼ (x−i, y)). Then, for any two neighboring vec-
tors x ∼ (x−i, y):

Pr[F (x) = t]
Pr[F (x−i, y) = t]

= Pr[f (xi) = ti]
Pr[f (y) = ti]

((((((((((∏
j ̸=i Pr[f (xj) = tj]

((((((((((∏
j ̸=i Pr[f (xj) = tj]

⩽ exp(ε) , (5.3)

for all t = (t1, . . . , tn) ∈ {0, 1}m. In the above formula, the equality is obtained by
independence.

In the following section, we will analyze the function f in isolation instead of F .

5.4.2 The flipping probability
The local perturbation function f of Theorem 5.1 takes a bit x and outputs 1−x with
probability p < 1/2 and x otherwise. If f inverts the value of a bit with probability
p = 1/2, this provides the best privacy guarantees as each flipped bit conveys zero
information, but this also destroys the utility. Therefore, the main challenge is to
find the optimal probability p that f should use in order to maximize utility as
a function of the privacy parameter ε. With respect to the utility, the smaller p
is, the more accurate the output and therefore the best utility can be obtained by
minimizing p.

Remember that BLIP mechanism M = F ◦ b, in which b is the function that
encodes the user’s profile as a Bloom filter, and F = ⊗m

i=1 f . Analyzing the differ-
ential privacy guarantees with respect to the input of M must take into account
both F and b. More precisely, only analyzing F or equivalently f , without taking b
into account, is not sufficient to prove that M provides differential privacy for the
individual items of the profile that are encoded in the Bloom filter. For instance,
recall that an item can impact up to k different bits due to the use of k different
hash functions. In particular, differential privacy is guaranteed for individual items
by the randomized mechanismM if for each pair of neighboring profiles d ∼ d′ and
for all bit strings t ∈ {0, 1}m, the following condition holds (which is equivalent to
the differential privacy condition in Definition 2.2):∣∣∣∣∣ln Pr(F (B) = t)

Pr(F (B′) = t)

∣∣∣∣∣ ⩽ ε , (5.4)

in which B is the Bloom filter of d and B′ the Bloom filter of d′.

Theorem 5.2 (Privacy guarantees for items). Setting the bit-flipping probability p
to 1/(1 + exp(ε/k)) satisfies condition (5.4) and thus provides ε-differential privacy
for items. Thus, flipping the bits of a Bloom filter with this probability guarantees
ε-differential privacy for the items encoded in this Bloom filter.

Proof. Given a Bloom filter B equipped with a set H of hash functions, and an
item i, let T = H(i) be the set of indexes whose corresponding bits in B are equal
to one if i is in B, and let k′ = |T | ⩽ k = |H| be the number of those indexes.
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We partition the Bloom filter B into two vectors: BT = ⊗
i∈T Bi ∈ {0, 1}|T | and

B−T = ⊗
i∈{1,...,m}\T Bi ∈ {0, 1}m−|T |, in which the former is the restriction to the

bits whose indexes are in T , and the latter is the restriction to all other bits. A
partition of any vector t ∈ {0, 1}m is defined similarity: tT and t−T . We denote by
q = 1− p, the probability of not flipping a bit (it is always the case that q > p).

As the profiles (and therefore the Bloom filters as well) are universally quantified,
hence they can be treated as constants and not random variables. As a consequence,
they do not affect the independence property of F = ⊗

f . Notice that if d ∼ d′,
then B−T = B′−T . The proof proceeds as follows. For all t ∈ {0, 1}m:∣∣∣∣ln Pr(F (B) = t)

Pr(F (B′) = t)

∣∣∣∣ =
∣∣∣∣∣ln Pr(F (BT ) = tT ) Pr(F (B−T ) = t−T )

Pr(F (B′T ) = tT ) Pr(F (B′−T ) = t−T )

∣∣∣∣∣ by independence

=
∣∣∣∣∣ln Pr(F (BT ) = tT )

Pr(F (B′T ) = tT )

∣∣∣∣∣ because B−T = B′−T

=

∣∣∣∣∣∣∣∣∣ln
Pr(F (

k′︷ ︸︸ ︷
1, . . . , 1) = tT )

Pr(F (B′T ) = tT )

∣∣∣∣∣∣∣∣∣ as i is in B

=
∣∣∣∣∣ln pzqk′−z

δ

∣∣∣∣∣ =
∣∣∣∣∣ln
[

qk′

δ

(
p

q

)z
]∣∣∣∣∣ let δ = Pr(F (B′T ) = tT ) ,

in which z ∈ {0, . . . , k′} is the number of zero bits in tT (i.e z = m− ∥tT∥1).
If p = 1/(1 + exp(ε/k′)) then qx = (1 − p)x = exp(εx/k′)px, for x ∈ (0,∞),

and (p/q)x = exp(−εx/k′). Then since pk′ ⩽ δ ⩽ qk′ (recall that B′T is a constant
bit vector), pk′ ⩽ δ ⩽ exp(ε)pk′ or 1 ⩽ δ/pk′ ⩽ exp(ε) implying that 1 ⩾ pk′

/δ ⩾
exp(−ε), and hence 0 ⩾ ln(pk′

/δ) ⩾ −ε. Then∣∣∣∣∣ln
[

qk′

δ

(
p

q

)z]∣∣∣∣∣ =
∣∣∣∣∣ln
[

exp(ε)pk′

δ
exp(−εz/k′)

]∣∣∣∣∣ =
∣∣∣ln(pk′

/δ) + ε(k′ − z)/k′
∣∣∣ . (5.5)

Then, we have

ln(pk′
/δ) + ε(k′ − z)/k′ ⩽ ln(pk′

/pk′) + ε(k′ − z)/k′ ⩽ ln(1) + εk′/k′ = ε . (5.6)

Afterwards, we want to show that ln(pk′
/δ) + ε(k′ − z)/k′ ⩾ −ε. Since 1 ⩾

pk′
/δ ⩾ exp(−ε) then

ln(pk/δ) + ε(k − z)/k ⩾ ln(exp(−ε)) + ε(k − k)/k ⩾ −ε , (5.7)

and hence ∣∣∣∣∣ln Pr(F (B) = t)
Pr(F (B′) = t)

∣∣∣∣∣ =
∣∣∣ln(pk′

/δ) + ε(k′ − z)/k′
∣∣∣ ⩽ ε , (5.8)

thus proving the theorem. Moreover, equality can be obtained by setting z = 0,
and having B′T be the exact opposite of tT . The previous argument was for p =
1/(1 + exp(ε/k′)) ⩽ 1/(1 + exp(ε/k)), which proves the theorem.

Remark 5.1 (Optimality of p.). The case k = 1 reduces to protecting individual bits.
In order to compute the values of p that ensures differential privacy for a single bit
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(in accordance to Theorem 5.1), it is easy to verify that p = 1
1+exp(ε) is the minimum

value for which ∣∣∣∣∣ln Pr(f(y) = t)
Pr(f(y′) = t)

∣∣∣∣∣ ⩽ ε

holds for all t, y, y′ in {0, 1}. Therefore, there exists a value for k ⩾ 1, in which
f flips the input bit with probability p, for which p < 1

1+exp(ε/k) does not ensure
ε-differential privacy.

In the following section, we show how construct an unbiased estimator for inner
product using BLIP.

5.4.3 Estimating inner product from flipped Bloom filters
Let B be a fixed Bloom filter before it is flipped, and B̃ be the random variable
denoting the output of the BLIP mechanism applied on B. Instead of publishing
the original Bloom filter, the owner of B releases publicly B̃ instead. When a peer
receives B̃, it can use it to estimate the similarity between B (which this peer does
not know) and its own Bloom filter B′. Since the computation is performed locally
at the level of the peer that owns the Bloom filter B′, this Bloom filter does not
need to be perturbed. The similarity between B and B′ is inferred by computing the
perturbed inner product S̃P = B̃ ·B′ = ∑

i B̃iB′
i. Given the perturbed inner product,

we introduce an unbiased estimator for the inner product and denote is as ŜP in
the following theorem.

Theorem 5.3 (Unbiased estimator for inner product). The function ŜP = S̃P −p∥B′∥1
1−2p

is an unbiased estimator for SP = B · B′, in which p is the flipping probability used
by BLIP. Note that ∥B′∥1 = ∑

i|B′|, or equivalently in this context, the number of
ones in B′.

Proof. To prove the theorem we need to show that E[ŜP ] = SP . Since E[ŜP ] =
(E[S̃P ]− p∥B′∥1)/(1− 2p) and E[S̃P ] = E[∑i ci] = ∑

i E[ci] in which ci = B̃iB′
i and

noticing that we have

E[ci] = BiB′
i(1− p) + (1− Bi)B′

ip = B′
ip + B′

iBi(1− 2p)

then substitution proves the theorem.

5.4.4 Error bounds
In this section, we prove a concentration bound on the inner product that is esti-
mated from the flipped Bloom filter. Let SP be the true inner product, and ŜP
be the random variable that represents the estimation, in which the randomness is
taken over the flipping of the bits. Let ŝp be the observed value of ŜP . We will
prove that the probability that the error ŜP − SP is larger than

√
m is constant in

m, in which m is the total number of bits (the size of the Bloom filter).
Given a random variable ṽi for a bit flipped with probability p and another con-

stant bit bi, an unbiased estimator ŝpi for vibi is ŝpi = (ṽi−p)bi/(1−2p). Recall that
ŝp = ∑

i ŝpi is the unbiased estimator of the inner product SP from Theorem 5.3.



78 CHAPTER 5. BLIP

Theorem 5.4 (Hoeffding’s Inequality [125]). Let X1, . . . , Xm be independent vari-
ables such that for i ∈ {1, . . . , m}, a ⩽ Xi ⩽ b for some a < b ∈ R independent of i.
Let X = ∑

i Xi, then

Pr[|X − E[X]| ⩾ t] ⩽ 2 exp
(
−2t2

m(b− a)2

)
.

Therefore we can prove the following theorem by setting t =
√

m and substituting
a = p/(2p − 1), b = (1− p)/(1 − 2p), since p/(2p − 1) ⩽ ŝpi ⩽ (1 − p)/(1 − 2p), in
which p < 1/2.

Theorem 5.5 (BLIP error bound). If B̃ is a flipped Bloom filter of m bits, in which
each bit is flipped with probability p = 1/(1+exp(ε/k)), and B′ is an ordinary Bloom
filter, and ŜP is the unbiased estimator of SP = B̃ · B′ introduced in Section 5.4.3,
then

Pr
[∣∣∣ŜP − SP

∣∣∣] ⩽ √m (5.9)

with probability at least 1− 2 exp(−2 tanh(ε/2k)2).

5.5 Utility evaluation
In this section, we evaluate experimentally how the utility is impacted by the BLIP
mechanism by applying it on Gossple (described in Section 2.2). In this setting, we
measure the utility in terms of the recall. Each profile is encoded as a Bloom filter
of m = 5000 bits using 18 different hash functions. We also use the three datasets
Delicious, Digg, and Survey, described in Section 2.4. We also compare the result
to those obtained from the noisy release protocol from Chapter 3.

We provide in Figure 5.1 the results of the experiments for the recall, averaged
over 100 runs, versus privacy parameter ε. On this plot, we use p = 1/(1+exp(ε/k))
for the flipping probability (k = 18). The main plot displays the recall obtained
when using the cosine similarity based on the bias-corrected inner product (Theo-
rem 5.3). The other lines show the recall obtained for two different cases that act
as a baseline: (1) when the similarity is computed on totally random Bloom filters
(i.e., Bloom filters whose bits are flipped with probability 0.5) and (2) when the
similarity is computed with a plain Bloom filters that have not been flipped at all.
Note that the intrinsic value of the recall that can be reached and the gap between
the baseline (1) and baseline (2) are directly dependent of the characteristics of the
dataset considered.

From these plots, we observe that the utility remains relatively high even for
values of ε that are small, in comparison to the utility obtained with totally ran-
domized Bloom filters (which leads to a random neighborhood for each peer). In
general the utility obtained is far from the non-private solution (for Delicious the
value is about 0.261) in which peers directly exchange their profiles. However, this
is inherent to the fact that the similarity is computed based on the Bloom filters
(and not the profiles themselves) and this is not a drawback due to our flipping
mechanism. When combined with the results of the experiments described in the
next section (resilience to inference attacks), it is possible to observe the trade-off
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Figure 5.1 – Recall obtained with BLIP. The bars correspond to the standard devi-
ation. The dotted line called “Laplacian” is the noisy release from Chapter 3.

between privacy (i.e., resilience against the profile reconstruction attack and the
profile distinguish game) and utility (i.e., recall).

In comparison to the interactive case (the noisy release protocol of Chapter 3)
we expect the recall of the non-interactive case to be lower, since the perturbation
introduced by BLIP is Θ(

√
m), in which m is the number of bits in the Bloom

filter, versus Θ(1) for the Laplacian mechanism used in the interactive case. The
experiments confirm this for the Digg and Survey datasets, but not for Delicious,
perhaps because of the trade-off between the sparsity of Delicious and the factors
hidden by the asymptotic notation of the perturbation. Nonetheless, the difference,
as observed, is not too big. Notice that for Survey the recall from the Laplacian
mechanism for high epsilon is greater than recall achieved when Blooms are not
flipped at all, which is due to the fact that the Blooms, even if not flipped, still
introduce a small amount of perturbation.

5.6 Profile reconstruction attack
In this section, we try to answer some of the fundamental questions raised by the
use of differential privacy such that “How to choose the value of ε?” or “What does
it mean for ε to be equal to 0.5 or 1?” by considering a particular inference attack.
The main objective of the adversary is to infer the description of the profile of a
peer from its Bloom filter representation. We assume that in the same manner
as other peers in the network, the adversary (which in fact could simply be one
of these peers) can easily have access to the ε-differentially private Bloom filters
released by the BLIP mechanism. We describe thereafter an inference attack, called
the “profile reconstruction attack”, by which the adversary produces as output a
guess of the original profile behind a given Bloom filter. In doing so, we aim at
empirically computing an upper bound on the privacy parameter that will prevent
this attack from being effective. Another attack, called the “profile distinguishing
game” is described in Section 5.7.

We consider a computationally-unbounded adversary. In the profile reconstruc-
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tion attack, the adversary exhausts the Bloom filter by querying it on all the possible
items of the application domain. More precisely, the attack works as follows: the
adversary is given a Bloom filter whose bits are independently and randomly flipped
with probability p, which is assumed to be public. Afterwards, the adversary per-
forms some computation (possibly during an unbounded duration) and outputs a
set of items that corresponds to its guess of the underlying profile behind the given
Bloom filter. We measure the success of this attack by measuring how close the
reconstructed profile is to the original one in terms of the cosine similarity (cosine
similarity equals the square root of recall times precision). Note that due to the
probability of false positives inherent to Bloom filters, the exact reconstruction of
the original profile with 100% confidence may not always be possible.

Algorithm 6 ReconstructProfileFromFlippedBloom(B: Bloom filter, H: set of hash
functions, m: number of bits in the Bloom filter, n number of items in the system,
c ∈ (0, 1))

1: reconstructedProfile ← ∅
2: for all item i = 1 to n do
3: Let k0 ← |{z : Bz = 0 ∧ z ∈ H(i)}|
4: if q(k0, |H(i)| − k0) > c then
5: reconstructedProfile ← reconstructedProfile ∪ {i}
6: end if
7: end for
8: return reconstructedProfile

The profile reconstruction attack is described in Algorithm 6. In a nutshell,
the profile reconstruction attack works as follows. For each item in the system,
the adversary checks its corresponding bits in the Bloom filter it observed. Then,
k0 is set to be the number of those bits that were found to be 0 while k1 is the
complementary quantity. Using those two values, the adversary calls a predicate
q to determine if an item should be included or not in the reconstructed profile.
More precisely, the predicate q(k0, k1) > c is defined as pk0(1 − p)k1

(
k1+k0

k0

)
> c, for

0 < c < 1 a constant and p the flipping probability applied by the BLIP mechanism.
The main intuition behind the use of q(k0, k1) is that it represents the probability
that k0 bits were flipped while k1 bits were not flipped.

5.6.1 Experimental evaluation
In order to assess how the variation of the privacy parameter ε affects the success
of the attack, we conduct an experiment on Delicious, Digg, and Survey datasets
introduced earlier. The objective of this experiment is to empirically derive an upper
bound on ε, such that for all c, the success of the adversary in reconstructing the
profile through the inference attack is as low as possible. In this experiment, the
adversary performs the profile reconstruction attack on each Bloom filter of each user
for different values of ε and c. Finally, the cosine similarity is computed between the
reconstructed profile and the original profile. All values of c between 0 and 1 in steps
of 0.01 have been considered. Then, for each ε the adversary success is measured
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by the maximum, over all values of c, of the expected similarity value, where the
expectation is taken over the users.

Figure 5.2 shows the success of this attack on the three datasets. For instance,
the smallest cosine similarity attained in the Survey dataset is about 0.56 whereas
it is 0.04 in the Delicious dataset. This variation may stem from the difference in
sparsity between the datasets (i.e., the average number of items in a peer’s profile
compared to the total number of the items in the system). The baseline, which
corresponds to the left-most point in the plot at ε→ 0 is the cosine similarity when
the adversary performs a blind guess without observing the flipped Bloom filter. No
privacy-preserving system can lead the adversary to output a guess with a similarity
that is worse than the baseline, as the adversary could just ignore the output of the
system and guess blindly. The success of BLIP in protecting the privacy should be
measured relative to that baseline. Hence, we can conclude that BLIP successfully
prevents this attack from producing a reconstructed profile having a cosine similarity
significantly higher than the baseline when ε is less than 10, for all the considered
datasets. Therefore, 10 would be a candidate for being the upper bound on ε for
these three datasets.
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Figure 5.2 – Profile reconstruction attack. The vertical bars represent the standard
deviation. The values on the y-axis are cosine similarity between the original profile
and the reconstructed profile.

To summarize, the exact value of the similarity threshold above which the profile
reconstructed attack is considered successful may depend not only upon the applica-
tion considered but also upon the privacy preferences of the individual from which
the Bloom filter is computed. However, choosing this value to be too conservative
(i.e., too low) is likely to decrease dramatically the utility of the output. Therefore,
the achievable trade-off between utility and privacy should be set by also taking into
account the error bounds discussed in Section 5.4.4.



82 CHAPTER 5. BLIP

5.7 Profile distinguishing game
Thereafter, we also describe another inference attack in the form of a game that
highlights the risk of adding an item to a profile in terms of whether an adversary
would be able to guess its presence (or absence). The motivation behind this attack
is that protecting the presence or absence of a single item is the main objective of
differential privacy. In order to verify for which values of ε this promise holds in
practice, we design the profile distinguishing game. The profile distinguishing game
works as follows:

1. Given a profile d, pick an index i at random such that di = 1.

2. Define a new profile d′, such that d′
j = dj for j ̸= i and d′

i = 0.

3. BLIP both profiles, which generates respectively B and B′.

4. Give the adversary either (B,B′) or (B′,B) uniformly at random.

5. The adversary should guess the Bloom filter representing d.

6. A outputs 1 if it guessed the Bloom filter at position 1, and outputs 0 if it
guessed it was the Bloom filter at position 2.

Algorithm 7 Guess(B: Bloom filter, H: set of hash functions, m: number of bits
in the Bloom filter, c ∈ (0, 1), i: item to distinguish)

1: Let k0 ← |{z : Bz = 0 ∧ z ∈ H(i)}|
2: return q(k0, |H(i)| − k0) > c

Algorithm 8 DistinguishProfile(B1,B2: Bloom filter, H: set of hash functions, m:
number of bits in the Bloom filter, c ∈ (0, 1), i: item to distinguish)

1: guessB1 ← Guess(B1,H, m, c, i)
2: guessB2 ← Guess(B2,H, m, c, i)
3: if guessB1 = guessB2 then
4: return choose uniformly at random from {B1,B2}
5: end if
6: if guessB1 then
7: return B1
8: else
9: return B2

10: end if

The best privacy guarantees occurs when the probability of making the right
guess is close to 0.5, which is the value that an adversary would obtain by guessing
completely at random by tossing a fair coin. In general, the adversary may use any
strategy it wants and can have arbitrary background information.However, we have
designed a heuristic that would at least provide (empirically) a lower bound on the
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Figure 5.3 – Profile Distinguishing Game. The bars represent the standard deviation.

success rate of the guessing probability of the adversary. This strategy follows closely
the strategy used in the profile reconstruction attack (Section 5.6), in the sense that
it relies on the same predicate q indicating whether or not an item belongs to a
BLIPed profile. The full algorithm is in details in Algorithm 8.

The proposed algorithm have been tested experimentally on the same three
datasets used throughout the chapter. In these experiments, the adversary per-
forms the profile distinguishing game on each Bloom filter of each user for different
values of ε and c (the value used by the predicate q, similar to Section 5.6.1). For
each user and each setting, the BLIPping is done 100 times, each time with different
random coins. The average number of successes is taken to be the expected success
probability for this user and this setting. This value is averaged over all users and
the standard deviation is taken over all users as well. After that, for each ε the
maximum success rate is taken over all value for c (therefore, for different values of
ε, a different value for c may be the one chosen). This last value, the maximum
success rate, is the one plotted against ε in Figure 5.3.

From the figure we can see figure out that if we want the success probability to
be less than 55% we should set ε to be below 3.6. Therefore this attack gives a
better upper bound for the privacy parameter than the previous attack.

5.8 Conclusion
In this chapter, we proposed BLIP (for BLoom-then-flIP), a differentially private
non-interactive mechanism that releases a randomized version of the Bloom filter
representation of a profile. The randomized Bloom filter offers high privacy guar-
antees (in the sense of differential privacy) while still maintaining a good level of
utility. For instance, the differentially private Bloom filter can be used to compute
a similarity measure, such as cosine similarity or inner product with another Bloom
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filter in a non-interactive manner. We have demonstrated how the BLIP mechanism
affects the privacy of the underlying profile and how to guarantee privacy at the
level of items (as opposed to bits of the Bloom filter) by tuning the flipping proba-
bility. We have also described generic inference attacks against the flipped Bloom
filter, including the profile distinguishing game and the profile reconstruction attack,
the latter enabling reconstruction of the full original profile (almost) if applied on a
plain (i.e., non-randomized) Bloom filter but does no longer work on the perturbed
Bloom filter if the value of the parameter ε is chosen wisely. For future research it
would be interesting to investigate variations that provide more accuracy without
sacrificing much privacy or efficiency.

5.8.1 Interactive vesrus Non-interactive
On the question of whether to use the interactive protocols of Chapter 3 of the non-
interactive protocol of this chapter, we note that each one has is pros and cons. The
interactive protocol provide higher accuracy, although not much higher. However,
they also support dynamic profiles and thus are more suitable for applications where
the list of items a user has liked change very often, such as micro-blogging platforms
for instance. On the other hand, the non-interactive protocol might only have a
limited support for dynamic profiles; where older items are removed and a new
release of the profile occurs only when the current profile is disjoint from the one
associated with the previous release, which make the non-interactive protocol more
relevant for applications where the user does not add new items to his favorites except
rarely, such as an application in which users express their interest in Renaissance
artists. Nonetheless, other advantage of the non-interactive protocols is that is
incurs much less computational cost, rendering them more suitable for weak devices
or devices in which the emphasis is on preserving energy, such as mobile phones.
Moreover, non-interactive protocols would not require the active participation of the
user in computing similarity with other users. In particular, the user may deposit his
flipped Bloom filter somewhere, either with other users or on a centralized server4,
and turn offline. Additionally, since there is no need to hide the identity of the user
when using the non-interactive protocol (as there is not privacy budget issue), it is
easier to save the identities of the users in the current clustering view over several
sessions; saving the time needed to find them again when the user reconnects. It also
makes it possible to exchange the users from the clustering view with other users
from the clustering view of other users.

4It is even possible in this case to delegate the responsibility of finding similar peers to the
centralized server without worrying about privacy, in which case this is a hybrid system between
centralized and decentralized architectures.
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Abstract

Differential privacy has been widely used in recent years as a method
for providing strong privacy guarantees for query answers over binary vec-
tors. In particular, it guarantees that the query answers are insensitive
to individual bits. Therefore, while protecting privacy of individual bits,
it still captures global information about the binary vector as a whole.
This privacy guarantee holds relative to a strong adversary who knows
all bits except one, along with arbitrary auxiliary information. However,
somehow counter-intuitively, the privacy guarantees are not as strong
for a more common and weaker adversary who does not know the exact
value of any bit, but instead is aware of the correlations between bits.
The inter-dependencies between bits is leveraged to cluster bits together
into landmarks. Then, we study two attacks that this adversary could
use to reconstruct the binary vectors given differentially-private answers
to a few chosen counting queries defined by those landmarks.

6.1 Introduction
Kifer and Machanavajjhala [84] raised the concern of the existence of dependencies
between the bits of a profile when considering the guarantees provided by differen-
tial privacy for binary vectors [84]. In particular, they demonstrated an artificial
example of correlations enabling an adversary to fully reconstruct the private data
given a differentially-private query answer. The real issue underpinning this is not
the presence of correlations per se, but rather that the adversarial model typically
assumed by differential privacy is too strong. By “strong”, we mean that the adver-
sary is assumed to know too much about the private data. Their example succeeds
in breaching the privacy only for a weak adversary, but not for the strong one as-
sumed by the differential privacy definition. Informally, a privacy breach occurs
when an adversary gains non-negligible amount of information after observing a
privacy-preserving query answer. If the adversary is so strong that it already knows
everything about the private data, then even if the entire data was released then
no privacy breach takes place as the adversary did not gain any new information.
However, if the adversary turns out to be weaker instead, then a privacy breach can
take place. By analogy, in differential privacy the adversary is assumed to know
every bit except one (i.e. every bit in a binary vector except one), while in reality
an adversary is much weaker. Relative to the assumption that an adversary knows
every bit but one, then if the adversary ends up knowing every bit except one after
the release, no privacy breach occurs. However, whether a privacy breach actually
occurs or not is relative to what the adversary knew before the release. Thus, if
the adversary did not know anything but ended up learning each bit except one, a
privacy breach does occur, although differential privacy as a condition on the release
mechanism alone still holds. The ability of the adversary that does not know any
bit (a blind adversary) to learn bits it could not learn before release depends on the
auxiliary knowledge it has. In this chapter, we assume a type of auxiliary knowledge
that is useless on its own (i.e., before release), but is nonetheless realistic to assume
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that an adversary has, which is the correlations between bits. Although correlations
are not necessary for this breach to occur, they act as an amplifier that allows to
obtain a higher success rate. We develop two attacks that employ correlations.

Non-interactive private similarity. Dinur and Nissim noticed that if the amount
of perturbation to the inner product is o(

√
n), then k = n log2(n) queries are suffi-

cient to reconstruct the binary vector with arbitrary precision [30]. In this chapter,
we analyse non-interactive differential privacy mechanisms [44]. Two non-interactive
differentially private mechanisms has been specifically designed for estimating pair-
wise similarity and distance. The first is the BLIP mechanism (cf. Section 5) and
the second is the Johnson-Lindenstrauss mechanism [45]. The former is based on
randomized-response and is designed to estimate inner product. The latter is based
on sketching (using dimensionality-reduction) and is designed to estimate Euclidean
distance. Since Euclidean distance can be converted to inner product1, our attack
employs inner product and is agnostic to the underlying mechanism.

The chapter is organized as follows. In Section 6.2 we describe the theory behind
the phenomenon and the attack. Then in Section 6.3 we present the results of the
experiments before concluding in Section 6.4.

6.2 Attacks
We describe several attacks exploiting item correlations in this section. The ad-
versary is attacking a collaborative platform with m users and n items, thus User
profiles are n-dimensional binary vectors. The adversary is assumed to have knowl-
edge of all the profiles within the platform except one and he uses this knowledge to
extract the correlations between items as shown in the following section. The aim
of the adversary is to reconstruct the profile of a particular user given only a sketch
of the user’s profile. The sketch can be used to estimate similarity between the
user’s profile and arbitrary binary vectors chosen by the adversary, such that these
similarities are ε-differentially private. Those binary vectors are called landmarks
and we explain how the adversary chooses them in the next section.

6.2.1 Landmarks
The attacks start by collecting correlated items together into clusters, called land-
marks. The items are collected into landmarks using a hierarchical clustering tech-
nique [126]. To compute the clustering, a distance function between pairs of items
is needed. In our setting, we use the Hamming distance between the corresponding
profiles of the items as the distance function. An item profile is the binary vector
indexed by users, assigning ones to users who have the item and zero to users who do
not have it. The Hamming distance captures the number of users who have exactly
one of the two items but not the other, therefore insisting on the fact that we would
like the two items to be co-occurring (i.e. correlated). The criterion used to merge
the clusters is the Ward’s criterion [126], which minimizes the inter-cluster variance.

1Via the identity 2⟨x, y⟩ = ∥x∥2
2 + ∥y∥2

2 − ∥x− y∥2
2.
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We set the target number of clusters to ⌊n/k⌋, resulting in an average cluster size
of k item, a parameter to be chosen. In particular, the number of similarity values
(queries) the adversary uses is bounded from above by ⌊n/k⌋. However, since the
differentially-private mechanism is non-interactive, the perturbation is done once and
randomness cannot be averaged out, independently of the number of queries were.
This means that the parameter k only affects the success of the attack because of
properties inherent to the attack semantics itself and not the release mechanism.
The formal definition of a landmark is provided next.

Definition 6.1 (Landmark). A landmark is a binary vector ℓ ∈ {0, 1}n satisfying the
following conditions: (a) at least 2 bits are set to one, and (b) if a profile p is drawn
uniformly at random from the dataset and z = {i|ℓi = 1} then the distribution on
x = ∑

i∈z pi has most of its probability weight in the tails. Similarly, we can say that
it is more likely to find the bits (pi)i∈z agreeing on a common value than otherwise.

Consider an arbitrary profile p ∈ {0, 1}n, if p contains a landmark ℓ or equiv-
alently ⟨p, ℓ⟩ = ⟨ℓ, ℓ⟩ then we say that ℓ ∈ p. If p does not contain any part of ℓ
or equivalently ⟨p, ℓ⟩ = 0 then we say that ℓ /∈ p. Both statements can be simul-
taneously false, for instance, if p contains some bits of ℓ but not all of them. If a
landmark ℓ has nℓ ones, that is ⟨ℓ, ℓ⟩ = nℓ, then the inner product ⟨p, ℓ⟩ to a profile
p may produce up to nℓ + 1 distinct values, namely {0, . . . , nℓ}. The adversary is
trying to decide whether p contains ℓ or not. More precisely, the adversary is trying
to distinguish the two cases ℓ ∈ p and ℓ /∈ p. Let z = {i|ℓi = 1} be the set of indexes
whose corresponding value in ℓ is 1, then let p(1) ∈ {0, 1}n be an arbitrary binary
vector such that ℓ ∈ p(1), and let p(2) be such that ℓ /∈ p(2) but p

(1)
i = p

(2)
i for i /∈ z.

Both profiles are identical except for the fact that one of them contains all the bits
of ℓ while the other contains none. If M : {0, 1}n → R is an ε-differentially private
mechanism then the following statement [43] follows directly from the definition of
differential privacy for all S ⊆ R:

exp(−εnℓ) ⩽
Pr[M(p(1)) ∈ S]
Pr[M(p(2)) ∈ S]

⩽ exp(εnℓ) , (6.1)

since the Hamming distance between p(1) and p(2) is nℓ. This fact will be used later
in Section 6.2.3.

Thus, for a ε-differentially private inner product ⟨̃p, ℓ⟩ between landmark ℓ and
a profile p we have

Pr[⟨̃p, ℓ⟩ ⊆ S|ℓ /∈ p]
Pr[⟨̃p, ℓ⟩ ⊆ S|ℓ ∈ p]

⩽ exp(εnℓ) ,
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for all S ⊆ R. Hence, using Bayes rule [127] we have for all S ⊆ R

Pr[⟨̃p, ℓ⟩ ⊆ S | ℓ /∈ p]
Pr[⟨̃p, ℓ⟩ ⊆ S | ℓ ∈ p]

= Pr[⟨̃p, ℓ⟩ ⊆ S ∧ ℓ /∈ p]
Pr[⟨̃p, ℓ⟩ ⊆ S ∧ ℓ ∈ p]

× Pr[ℓ ∈ p]
Pr[ℓ /∈ p]

(6.2)

= Pr[ℓ /∈ p | ⟨̃p, ℓ⟩ ⊆ S]
Pr[ℓ ∈ p | ⟨̃p, ℓ⟩ ⊆ S]

×��������
Pr[⟨̃p, ℓ⟩ ⊆ S]

��������
Pr[⟨̃p, ℓ⟩ ⊆ S]

× Pr[ℓ ∈ p]
Pr[ℓ /∈ p]

(6.3)

= Pr[ℓ /∈ p | ⟨̃p, ℓ⟩ ⊆ S]
Pr[ℓ ∈ p | ⟨̃p, ℓ⟩ ⊆ S]

× Pr[ℓ ∈ p]
Pr[ℓ /∈ p]

, (6.4)

then by (6.1)

exp(−εnℓ)×
Pr[ℓ /∈ p]
Pr[ℓ ∈ p]

⩽ Pr[ℓ /∈ p | ⟨̃p, ℓ⟩ ⊆ S]
Pr[ℓ ∈ p | ⟨̃p, ℓ⟩ ⊆ S]

⩽ exp(εnℓ)×
Pr[ℓ /∈ p]
Pr[ℓ ∈ p]

, (6.5)

which means that the posterior of the adversary given its prior probability would be
bounded for any attack on any differentially-private mechanism.

6.2.2 Attack 1: Threshold per landmark
Consider an adversary that has access to a set of profiles P ∈ {0, 1}(m−1)×n different
from profile p that is currently being attacked. The adversary uses P to generate a set
L of landmarks in which each landmark ℓ belongs to {0, 1}n. Let the number of ones
in the landmark ℓ be nℓ (i.e,, nℓ = ∥ℓ∥1). The adversary computes a threshold value
τℓ for each landmark ℓ, as described in the following paragraph. To reconstruct the
unknown profile p, the adversary computes the differentially-private inner product
between p and each landmark in L. Denote such perturbed inner product as ⟨̃p, ℓ⟩.
and by C be the set of landmarks whose perturbed inner product with p is greater
than their corresponding thresholds (i.e. C = {ℓ ∈ L | ⟨̃p, ℓ⟩ > τℓ}). The adversary’s
guess is the smallest (with the least number of ones) profile that contains all the
landmarks in C.

Threshold computation. The adversary constructs two sets of profiles for each
landmark Aℓ = {p ∈ P | ⟨p, ℓ⟩ = 0} and Bℓ = {p ∈ P | ⟨p, ℓ⟩ = nℓ}. The first set
Aℓ is the set of profiles whose true inner product with the landmark is zero, and
the other set Bℓ is the set of profiles whose true inner product with the landmark
is maximal (equal to the number of ones in the landmark). If Bℓ = ∅, ignore ℓ in
which case the bits in ℓ never occur together; that they are strongly anti-correlated.
This can occur for large k, and may affect the success rate of the attack because
those ignored bits will never be predicted.

Next, the adversary queries the differentially-private mechanism for the per-
turbed inner product between the landmarks and each of these profiles, ending up
with Ãℓ = {⟨̃p, ℓ⟩ | p ∈ Aℓ} and B̃ℓ (defined similarly) representing the perturbed
inner products. The threshold τℓ is then chosen as the value that separates Ãℓ and
B̃ℓ. Let dA(x) = ∑

a∈Ãℓ
|x − a|/|Ãℓ| be the average distance from y to every value
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in Ãℓ (dB(x) is defined similarly). Then the threshold value for the landmark ℓ is
chosen as:

τℓ = arg min
y

(dA(y) + dB(y)) . (6.6)

6.2.3 Attack 2: Hypothesis testing
Given a profile p and a landmark ℓ, then with high probability either p contains all
of ℓ or none of it, due to the definition of landmark. This is equivalent to saying that
with high probability ⟨p, ℓ⟩ is either 0 or n. This attack exploits this observation
by testing two null hypotheses: H>

def= [⟨p, ℓ⟩ > 0] (versus the alternative hypothesis
H/∈

def= [⟨p, ℓ⟩ = 0]) and H<
def= [⟨p, ℓ⟩ < n] (versus the alternative hypothesis H∈

def=
[⟨p, ℓ⟩ = n]). The tests used are likelihood ratio tests, explained in the following
section. If either of the two tests rejects, then the attack decides and terminates.
If both fail to reject (inconclusive case) then the adversary rejects H< (i.e., decide
that ℓ belongs to p, the profile under attack) with probability equal to the prior
probability of the landmark ℓ. The prior probability of a landmark ℓ is the fraction
of profiles in the training set that contain it. Due to the way they are constructed,
both tests cannot reject simultaneously.

Likelihood ratio test. Let ⟨̃p, ℓ⟩ be the perturbed inner product obtained from a
differentially-private mechanism. Then, the likelihood ratio [127] of the event ℓ ∈ p
given the perturbed inner product s is

Λ∈(s) = Pr[⟨̃p, ℓ⟩ = s | ⟨p, ℓ⟩ = nℓ]
Pr[⟨̃p, ℓ⟩ = s | ⟨p, ℓ⟩ = 0]

= L[⟨p, ℓ⟩ = nℓ | s]
L[⟨p, ℓ⟩ = 0 | s]

= L[ℓ ∈ p | s]
L[ℓ /∈ p | s]

, (6.7)

in which L(θ | x) def= Pr[x | θ] is the likelihood function. Moreover, the likelihood
ratio of the event ℓ /∈ p given the perturbed inner product s is

Λ/∈(s) = 1/Λ∈(s) = L[ℓ /∈ p | s]
L[ℓ ∈ p | s]

. (6.8)

According to the likelihood ratio test the adversary should reject the null hypoth-
esis H< if the likelihood ratio Λ∈(S) is less than some threshold η∈. This threshold
is chosen according to α, the desired probability of Type I error (the error of incor-
rectly rejecting a null hypothesis) using the Neyman-Pearson lemma [127]. More
precisely, we fix α and then choose η∈ that satisfies the following equation

Pr[Λ∈(s) ⩽ η∈ | ℓ ∈ p] = α . (6.9)

The adversary will perform the two hypothesis tests using α/2 for each, so that
total probability of Type I error is α. If ⟨̃p, ℓ⟩ is a random variable satisfying dif-
ferential privacy, then both Λ∈ and Λ/∈ cannot be lower than exp(−εn) as shown in
(6.1). In addition, if η∈ < exp(−εn), then the test will always fail to reject. Hence,
ε sets a lower bound on the Type I error probability α.

If the likelihood function of the particular differential privacy mechanism used is
not known or is difficult to compute, the adversary can use kernel density estimation
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[128, 129] to estimate it and based on it obtain the required thresholds η∈ and η/∈
needed for the likelihood ratio test. This approach requires the knowledge of the
true inner product between each landmarks and each profile in the training set.

6.3 Experimental evaluation
To evaluate the impact of having correlations in the dataset, we have tested our
attacks on the Survey dataset (cf. Section 2.4) and a synthetic dataset generated
out of the survey dataset with similari priors for the bits but each bit is otherwise
generated independently from the others (thus its bits are uncorrelated). We com-
pare with a Naïve Bayes attack (adapted from 5.6 to incorporate item priors). We
also carry out our attack using two different differentially private mechanisms, BLIP
(cf. Section 5) and Johnson-Lindenstrauss [45], which we call JL for brevity.

Our attacks use both mechanisms, BLIP and JL, as a black box, considering only
the perturbed inner product computed by both of them. The Naïve Bayes attack, on
the other hand, is specific to BLIP and uses the flipped Bloom filter output by BLIP
as a white box by taking into account the mechanics of the Bloom filter, however
without exploiting correlations. Thus, the Naïve Bayes attack is not a baseline but
rather an incomparable attack.

We measure the success of the attack by how close the reconstructed profile is
to the true profile in terms of cosine similarity (cf. Section 2.2). For comparison,
we also plot the cosine similarity between the constant binary vector of all ones
(1, . . . , 1) and the true profile.

In Figure 6.1, we evaluate the effectiveness of the attacks with respect to the
parameter k at ε = 100. It is clear that for the threshold per landmark (TPL)
attack, the higher k is, the less effective the attack. However, the hypothesis testing
(HT) attack maintains its effectiveness even as k varies. The value of ε = 100
provides very low privacy as evidenced by the 100% success rate of the Naïve Bayes
attack, but TPL and HT attacks are not able to catch up except for the TPL
attack on the BLIP dataset at k = 2. We can also observe that the success rate
dramatically decreases, for the TPL attack on both the BLIP and JL mechanisms
when the same attacks are run on an uncorrelated but similar dataset, indicating
that the correlations are key to its performance, while the HT attack does not seem
to depend that much on correlations. The uncorrelated dataset is generated from
the original dataset by randomly generating profiles whose bits have the same prior
probability as the original dataset but are instead generated randomly of other bits,
hence the bits are uncorrelated to one another.

For Figure 6.2, we plot the effectiveness of the attacks for k = 5 while ε varies. We
observe that the attacks seem to achieve better results as ε increases (less privacy) for
the correlated dataset, while they seem insensitive to ε in the uncorrelated dataset.

6.4 Conclusion
In this chapter, we analyzed the privacy guarantees provided by differential privacy
when the adversary is weaker than what is generally assumed. The rationale be-
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Figure 6.1 – Survey at ε = 100. The plot on the left is for the survey dataset, while
the plot on the right is for an uncorrelated version of the survey data, where each
item is generated according to its probability of occurrence. TPL (Threshold-Per-
Landmark) is the attack from Section 6.2.2, while HT (Hypothesis Testing) is the
attack from Section 6.2.3.
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hind the analysis is that a piece of information may be useless to a knowledgeable
adversary, causing no breach, but valuable to a weaker adversary, resulting in an
unexpected privacy breach. In particular, the traditional adversary in differential
privacy knows every bit in the private binary vector except for one, but we consider
an adversary with knowledge only about the correlations between the bits but not
the values of the bits themselves. This type of adversary is especially realistic in the
context of collaborative filtering systems. We designed two attacks to exploit these
correlations given access to a non-interactive differentially private mechanism. We
also considered two different non-interactive differentially private mechanisms, one
that is provided in this thesis and another one from the literature. We evaluate our
attacks against a real life dataset and a stripped-down version of the same dataset
but without correlations.

We conclude that an adversary that knows correlations between bits has an ad-
vantage over a blind adversary. Such an adversary is able to reconstruct a significant
portion of the profile, even when a relatively stronger adversary cannot guess the
single bit that is unknown to him (cf. Section 5.7). We also observe that a white box
adversary targeting the mechanics of a particular mechanism outperforms a black
box adversary, thus understanding what is possible in white box versus black box
attacks is an interesting research direction.
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This chapter concludes the thesis by summarizing the main results of the thesis
and highlighting potential directions for future work.

Summary
In this thesis, we have addressed the problem of privately computing pair-wise sim-
ilarity in a large-scale and dynamic peer-to-peer collaborative platform.

In Chapter 3, we described a secure two-party implementation of a differentially-
private mechanism for this task, that does not reveal the similarity value if it is below
a certain threshold. Then, we evaluated the resulting protocols and empirically
shown that it is feasible to maintain privacy without hurting too much the utility. A
theoretical analysis of the false negative rate and false positive rate was provided and
empirically validated. We also addressed the privacy budget issue, which otherwise
would have imposed a serious restriction on dynamic peer-to-peer systems, by setting
a fixed upper bound on the number of interactions for similarity computations a peer
can have. To solve this problem we proposed two solutions, one of them is through
implementing a non-interactive differentially-private mechanism in Chapter 5. The
other one in the interactive setting is via introducing the concept of bidirectional
anonymous channels and two realizations of it for passive and malicious adversaries.

Heterogeneity of privacy expectations. In Chapter 4, we jointly address the
problem of diversity of privacy expectations among users, and the problem of di-
versity of sensitivity among the items of one user. More precisely, we described a
variant of differential privacy that can capture the diversity of privacy valuations
among items. The valuations of one user is on the same scale of the valuations of
another user, and so is directly comparable. Providing heterogeneous privacy expec-
tations among users is thus a byproduct of choosing an upper bound for the privacy
valuations of one’s items on the common privacy valuation scale. We presented the
stretching mechanism that can fulfill this variant of differential privacy with some
distortion in the output. Our experiments showed that if the percentage of overly
strict users is small, the system is capable of providing good utility.

Efficiency. In Chapter 5, we introduce a highly efficient non-interactive protocol
for similarity computation. Beside being efficient it also lifts the needs for the
bidirectional anonymous channel, which strengthens the robustness of the peer-to-
peer network. For instance, peers can log off and then log back in without worrying
about losing connections to their personalized but anonymous neighbors. Moreover,
peers can computer their similarity with other peers who are offline as long as their
BLIPed profiles exist in the network.

The meaning of the privacy parameter. The Dwork-Naor impossibility result
[27], states that for any privacy-preserving mechanism, if we do not restrict the
auxiliary information accessible to the adversary, then a privacy breach (of size
equal to the min-entropy of the utility) always occurs. Not only this motivated the
notion of differential privacy, it also highlighted that the first step to understanding
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privacy (as lack of privacy breaches) is to understand what auxiliary information
is accessible to an actual adversary and what the adversary can do with it. In
this spirit, we investigated the meaning and implications of the value of the privacy
parameter ε, in Chapter 5 and Chapter 6. In particular, we investigated three models
for auxiliary information. The first model assumed no auxiliary information and is
used a baseline (the profile reconstruction attack), while the second considered the
knowledge of all the profile except one item (the profile distinguishing game), and
the last one considered the correlations between bits.

Perspectives.
The meaning of the privacy parameter. While the results we obtained when
we studied the meaning of the privacy parameter were informative for the context
of this thesis, it still may not be entirely accessible to the average user who may be
asked by the application’s user interface for the value for ε. In particular, the average
user should not have to understand the attacks or the technicalities of particular
assumptions about the adversary. Attempting to provide an intuitive explanation
about ε that is tangible to the user may not be entirely technical. In fact, it may
include social and philosophical aspects, which may differ substantially between
different communities and cultures. Building a unified model that is capable of
capturing these aspects as parameters is a great challenge, but is crucial for wide
adoption of differential private mechanisms. Such a unified model should not be
restricted to a specific differentially-private mechanism and should provide insight
into any such mechanism.

Distortion in HDP mechanisms. Although the stretching mechanism can be
applied to a wealth of functions, it is nonetheless not directly applicable to some
natural functions, such as the ℓ0-norm or the minimum. Indeed, when computing the
ℓ0 norm (i.e., the number of non-zero coordinates in a given vector), each coordinate
contributes either zero or one regardless of its value. Since the stretching mechanism
modifies this value, this mechanism would always output the exact value as long as
no privacy weight has been set to zero. For the case of the minimum, due to the fact
that the stretching mechanism shrinks each coordinate by a factor corresponding
to its privacy weight, the resulting output may not have anymore a relation to the
intended semantics of the function min.

Another challenge is to enable users to estimate the amount of distortion in the
output that they received out of an heterogenous differentially private mechanism.
For instance, for functions such as the sum, recipients will not be able to estimate
the correct value without being given the distortion. Although the distortion has an
upper bound given by Theorem 4.3, the information needed to compute the upper
bound is private. Therefore, releasing the distortion (or even its upper bound) would
constitute a violation of privacy. We believe this issue could be solved partially by
releasing an upper bound using the traditional Laplacian mechanism at an additional
cost of ε amount of privacy.

An important future work includes the characterization of functions that have a
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low and high distortion when the Stretching Mechanism is applied to them. Indeed,
functions having a high distortion are not really suitable for our HDP mechanism.
We also leave as open the question of designing a different mechanism than the
Stretching Mechanism achieving HDP with a lower distortion or no distortion at all.

Dynamic profiles for non-interactive mechanisms. In this thesis we consid-
ered fixed profiles (i.e., profiles that do not change over time). Dealing with dynamic
profiles means that if some peer A updates his profile then he may need to recom-
pute his similarity with some peers in his view or to gradually remove the oldest, in
order to keep his view evolving. Recomputing the similarity over the same channel
means running into the privacy budget issue and thus the number of similarity com-
putations over the same channel will have to be bounded eventually, restricting the
number of times the profile of the users may be updated. As an alternative, removing
old peers from the view, perhaps after they run out of their quota of recomputations,
is a solution. Nonetheless, it does not work for non-interactive mechanisms such as
BLIP because a user who releases two different flipped Bloom filters consumes twice
as much from his privacy budget than if he only released one. The number of releases
of BLIP would have to be bounded. Although [130] provide a solution for what they
call “continual observation”, the total number of such observations still has to be
bounded. Hence, addressing the problem of dynamic profiles for mechanisms that
do not employ the bidirectional anonymous channel, such that the number of releases
is unbounded as needed by peer-to-peer systems, remains open.
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Résumé en Français

La manière dont les gens interagissent sur Internet a fondamentalement changé au
cours de la dernière décennie, car le web est devenue une plate-forme collaborative.
C’est devenu une plate-forme collaborative, avec laquelle les utilisateurs peuvent
interagir et qu’ils peuvent modifier en exprimant leurs préférences et en partageant
des informations.

En outre, les réseaux sociaux, comme Facebook et Twitter, ont été conçus pour
offrir une expérience sociale centrée sur l’utilisateur. Les utilisateurs sont les princi-
paux producteurs de contenu et leurs amis sont les principaux consommateurs. Le
contenu qu’ils produisent, outre de leurs informations personnelles (date de nais-
sance, travail, loisirs, alma mater , etc.), sont généralement de nature personnelle :
leurs photos, d’autres photos qu’ils ont aimées, des articles d’information qu’ils ont
trouvé intéressants, et ainsi de suite. Amis et connaissances sont habituellement choi-
sis explicitement par les utilisateurs, et une relation d’amitié peut être symétrique
(comme dans Facebook) ou asymétrique (comme dans Twitter).

Beaucoup d’autres sites ne dépendent pas d’un réseau social explicite, mais per-
mettent tout de même aux utilisateurs d’exprimer leurs intérêts, comme Delicious,
une plate-forme collaborative de bookmarking et Digg, un agrégateur collaboratif
de news. Les informations fournies par les utilisateurs peuvent être exploitées pour
extraire les tendances et les sujets d’actualité et ensuite des services personnalisés
pourraient être fournis aux utilisateurs en fonction de leurs préférences [1, 2, 3, 4, 5].
En outre, les similarités entre les intérêts des utilisateurs pourraient être identifiées
et utilisées pour recommander des éléments en utilisant le filtrage collaboratif. Pour
tirer parti de ces informations, le calcul de similarité est au cur de tout système de
personnalisation.

Vie privée. Même si les réseaux sociaux ont le potentiel d’améliorer l’expérience
des utilisateurs, ils soulèvent également des problèmes importants en terme de vie
privée. Les utilisateurs partagent leurs informations et leurs intérêts personnels, dont
certains qu’ils pourraient vouloir garder secret. Par exemple, un utilisateur de Digg
pourrait exprimer son opinion pour des informations liées au cancer afin d’obtenir
plus de ces informations dans son fil de nouvelles personnalisé, mais il pourrait ne
pas vouloir que quelqu’un d’autre sache qu’il est intéressé par les nouvelles liées
au cancer parce qu’il considère que les informations sur sa santé sont sensibles. Le
site hébergeant les données privées de l’utilisateur est supposé mettre en uvre des
mécanismes de contrôle d’accès appropriés, par exemple en permettant à l’utilisateur
de contrôler qui peut accéder à ses données. Néanmoins, l’échec de ces mécanismes
de contrôle d’accès n’est pas rare, y compris du à des failles de sécurité. En outre,
le récent programme PRISM de la National Security Agency (NSA) [6] donne accès
à la NSA aux renseignements personnels des utilisateurs collectées par des géants
d’Internet tel que Facebook ou Google.

De plus, étant donné que les amis s’influencent les uns les autres, les données
privées des utilisateurs peuvent être exploitées pour afficher de la publicité aux amis
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de l’utilisateur [7, 8]. Par exemple, le site pourrait présenter un film à un utilisateur
en montrant que de ses amis, Alice et Bob, l’ont aimé, ce qui peut être considéré
comme une violation de la vie privée pour Alice et Bob. Même un internaute égaré,
recevant des recommandations publiques et apparemment inoffensives, et quelques
informations auxiliaires, peut encore atténuer le mécanisme de contrôle d’accès et
déduire les informations personnelles des utilisateurs. Par exemple, Calandrino, Kil-
zer, Narayanan, Felten et Shmatikov [9] ont montré que, rien qu’en observant les
recommandations publiques d’un objet sur Amazon, ils pouvaient déduire les achats
privés de certains utilisateurs. En général, la personnalisation implique souvent une
certaine forme de violation de la vie privée car les données privées de l’utilisateur
doivent être utilisées dans le processus [10].

En outre, même si l’utilisateur n’a pas associé sa véritable identité à son profil
sur un site donné, il est toujours possible, étant donné les informations privées qu’il
a donné au site, de relier son compte utilisateur à un autre site Web auquel il aurait
donné sa vrai identité [11], et donc de le dé-anonymiser.

Réseau pair-à-pair. A partir de cela nous pouvons voir que déléguer les données
privées d’un utilisateur à des tiers pour le stockage ou le traitement n’est pas forcé-
ment sûr, car les tiers ne sont pas toujours fiables. Au lieu de cela, il est préférable
de déployer les réseaux sociaux et les applications sur un réseau Pair-à-Pair (P2P).
Contrairement aux systèmes centralisés classiques qui sont composés d’un serveur
central traitant les requêtes des clients, dans lesquels les clients communiquent uni-
quement avec le serveur et ne sont pas conscients de l’existence d’autres clients dans
le système, les systèmes P2P sont distribués et le service est fourni via la collabo-
ration explicite et proactive entre les clients. Chaque client est généralement une
machine dans le système qui partage une partie de la charge de la fourniture du
service. Le réseau P2P est le graphe superposé sur la topologie du réseau physique,
et dont les nuds représentent les clients et les arêtes représentent une collaboration
directe entre deux clients (ce qui signifie généralement qu’ils peuvent communiquer
directement). Les clients dans les systèmes P2P n’ont généralement qu’une connais-
sance partielle du réseau, ainsi P2P systèmes sont connus pour leur capacité à passer
à l’échelle et leur robustesse [12].

Étant donné que les applications dont nous avons parlé sont centrés sur l’uti-
lisateur, les système P2P sont des candidats naturels pour la mise en uvre de ces
applications. En particulier, chaque utilisateur, avec ses informations personnelles,
équivaut à un noeud du réseau P2P. De cette façon, l’utilisateur va stocker ses don-
nées sur sa propre machine, gardant le contrôle complet sur ses données, et n’a pas
besoin de faire confiance à quelqu’un d’autre qu’elle-même (étant donné, bien sûr,
que son logiciel et son matériel soit fiables). Étant donné que le nombre d’utilisa-
teurs des réseaux sociaux augmente très rapidement, la nécessité de passer à l’échelle
donne également une forte incitation pour déployer des applications de manière dé-
centralisée et en P2P [13, 14], au prix cependant d’une complexité accrue du système
et un surcout de synchronisation.

Similarité. Dans ce cadre distribué, calculer efficacement des recommandations
ou des résultats de recherche personnalisés tout en gardant le trafic réseau raison-
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nable est d’une importance primordiale. De nombreux systèmes P2P existants y
parviennent en associant un utilisateur uniquement à d’autres utilisateurs avec les-
quels il partage des intérêts communs [1, 15, 16, 17] (c’est-à-dire, dont sa similarité
est relativement plus élevée qu’il aurait avec d’autres utilisateurs.) En outre, la si-
milarité entre les utilisateurs peut être vue comme une forme de mesure de distance,
ce qui est une primitive fondamentale dans de nombreuses applications de fouille de
données. Ces distances peuvent être utilisées pour effectuer des tâches de clustering,
de calcul des plus proches voisins, ou d’un intérêt direct pour notre contexte, du
filtrage collaboratif, qui permet de fournir des recommandations personnalisées.

Par conséquent, avoir une primitive qui fournit des valeurs de similarité entre les
utilisateurs est la clé pour assurer de la personnalisation sociale dans les plateformes
de P2P collaboratif. Cette thèse est consacrée à la construction d’une telle primitive
d’une manière qui assure le respect de la vie privé des utilisateurs, tout en étant
efficace en termes de coûts de communication et de calcul. Dans la section suivante,
nous détaillons plus en profondeur la problématique de la vie privée dans un tel
contexte.

Vie privée
Afin d’effectuer le filtrage collaboratif, les informations concernant les données de
plusieurs utilisateurs doivent être combinées. Dans notre cas, cette information est
la similarité d’utilisateur à utilisateur. Les deux utilisateurs impliqués dans le calcul
de leur similarité seront engagés dans un protocole distribué afin de mener à bien
cette tâche. Cependant, il y a deux aspects complémentaires dans l’exercice d’un
tel protocole. Considérons tout d’abord le contexte dans lequel la vie privée est
définie. En particulier, il faut examiner 1) une fonction à calculer, 2) les entrées de
la fonction, dont la vie privée doivent être protégée, et 3) la valeur résultant de la
fonction (sortie). S’il n’y avait qu’une seule partie détenant les entrées et effectuant
le calcul, il n’y aurait pas de problème de vie privée. Le problème se pose lorsqu’il
y a plusieurs parties détenant des différentes parts de l’entrée, dans lequel la part
détenue par une partie donné est considérée comme privée pour lui.

Un exemple fondateur de Yao [18] est celui de deux millionnaires, chacun consi-
dérant sa richesse comme entrée privée, qui veulent calculer la fonction “supérieur
à” pour savoir lequel d’entre eux est plus riche. Les deux parties de cet exemple
doivent être engagées dans un protocole afin de combiner leurs entrées et de calculer
une sortie, qui est ensuite révélée aux deux parties. Au cours de ce processus, un
participant observe 1) la transcription du protocole et 2) la sortie de la fonction.
La définition traditionnelle de calcul multiparti sécurisé [19] ne se préoccupe que de
garantir que la transcription de protocole ne divulgue pas d’information à propos
des entrées des participants. C’est à dire, pour un adversaire observant la transcrip-
tion du protocole, aucune information sur l’entrée privée des utilisateurs honnêtes ne
devrait être divulguée. Dans cette définition, il n’existe aucune garantie sur ce que
la valeur de sortie (par opposition à la transcription du protocole seul) peut révéler
sur les valeurs d’entrée.

En accord avec cette définition, la fouille de données [20] préservant la vie privée
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(comme [21]), ne s’est préoccupée que de ce que la valeur de sortie peut révéler sur
l’entrée, et non sur la manière dont la sortie est elle-même calculée. Par exemple,
les données peuvent être confiées à un tiers parti de confial centralisé qui effectue le
calcul nécessaire avant de publier la sortie. Dans ce cadre, au lieu de garantir que
la sortie est la réponse exacte, une légère déviation de la vraie réponse est permise
afin de gagner en terme de respect de la vie privée.

Il est donc naturel d’aspirer à empêcher à la fois la transcription du protocole
et la valeur de sortie de laisser fuire de l’information sur les entrées de participants.
Des constructions générales pour les protocoles sécurisés multipartis pour simuler
toute fonctionnalité existent [22, 23, 24] donc il serait simple de mettre en uvre l’un
des nombreux mécanismes de differential-privacy en utilisant une telle construction.
Toutefois, ces constructions générales sont très coûteuses et irréalisables. Des pro-
tocoles spécialisés peuvent être construits pour des fonctions spécifiques afin d’être
plus efficace [25, 26]. Cette thèse étend cette ligne de travail dans le monde des sys-
tèmes distribués, ce qui soulève un ensemble unique de défis, tels que la dynamicité
des systèmes large échelle, les déconnections possibles des pairs, la calcul continu (dé-
taillé plus loin que la question du budget de privacy), et l’hétérogénéité des attentes
de la vie privée des différents utilisateurs.

Differential privacy
Une fonction de préservation de la vie privée idéale est une fonction dont la sortie ne
relâche aucune information sur son entrée. En particulier, ce qui pourrait être appris
après la publication de la sortie de la fonction devrait également être trivialement
appris sans observer la sortie de la fonction [27]. Toutefois, si la sortie fournit des
informations sur l’entrée (c’est-à-dire, dont l’utilité est mesurée en terme de min-
entropy [28]), il a été longtemps soupçonné [29], démontré [30], et enfin prouvé
dans [27] que cet idéal est impossible à réaliser. En particulier, Dwork et Naor [27]
ont prouvé que si la sortie de la fonction préservation de la vie privée a n bits de
min-entropie, alors une faille de n bits de vie privée peut se produire, étant donné
certaines connaissances auxiliaires de l’adversaire. Dans le même papier Dwork et
Naor suggèrent, comme une solution, de passer du précédent concept absolu de la vie
privée à un relatif, qu’ils ont nommé differential privacy. En outre, la nouvelle notion
ne dépend pas d’hypothèses concernant la connaissance auxiliaire de l’adversaire. En
particulier, la propriété de differential privacy est une propriété de la seule fonction
et non de son entrée, ni de l’adversaire, qui a abouti à un cadre fort et théoriquement
attrayant qui a été largement adopté par la suite dans la communauté de protection
de la vie privée.

L’esprit de la differential privacy est qu’un petit changement dans l’entrée de-
vrait ne pas induire plus qu’un petit changement sur la sortie de la production. La
définition exacte de la différential privacy dépend de la façon dont la notion de “petit”
est défini formellement. Dans le littérature traditionnelle de la differential privacy,
la fonction de calcul prend un vecteur en entrée ; soit un vecteur de zéros et de uns,
ou un vecteur d’informations individuelles. Dans ce contexte, une petite variation de
l’entrée s’élève à un changement de tout au plus une position dans le vecteur. Par
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exemple, pour les vecteurs de zéros et de uns, un petit changement est représenté par
une modification de la distance de Hamming par 1. Cette notion a été généralisée
pour des distances arbitraires dans [31].

La différential privacy a commencé dans le cadre du contrôle de la divulgation
statistique au niveau des bases de données [27]. Dans ce contexte, l’entrée de la
fonction est un vecteur de données d’individus, et un petit changement dans l’entrée
est la présence ou l’absence des données d’un seul individu. Ainsi, un utilisateur
fournissant ses données, par exemple, est assuré que la sortie de la fonction représente
les tendances globales entre tous les utilisateurs et contient très peu d’informations
qui lui sont spécifiques. Ainsi, tout bris global de vie privée a un impact minimal sur
sa propre vie privée. En outre, même le simple fait d’avoir contribué aux données, est
protégé lui aussi. De plus, cette garantie tient toujours même si l’adversaire connait
tous les autres utilisateurs qui ont fourni leurs données.

Les avantages pour la vie privée de l’utilisateur dans le modèle de base de don-
nées statistiques mentionné dans le paragraphe précédent est clair. Cependant, elle
nécessite quelques précisions pour montrer les mêmes avantages dans le cas des micro-
données dans laquelle l’entrée représente les données d’une seule personne, ce qui
est la situation considérée tout au long de cette thèse. Dans cette configuration, un
petit changement est défini par rapport à l’absence ou la présence d’un élément dans
le profil d’un individu. La différential privacy garantira que toutes les informations
qui pourraient être déduites de la sortie ne dépend pas d’un élément particulier. Par
conséquent, l’utilisateur n’a aucune raison de s’inquiéter du fait d’ajouter un article
en particulier a son profil ou non. Cependant, les tendances globales sur le profil de
l’utilisateur, tels que les grandes catégories de ses intérêts peuvent être dévoilées.

Contributions de la thèse
L’objectif de cette thèse est d’aborder le problème du calcul de similarité de manière
privée entre les utilisateurs de plateformes collaboratives de type pair-à-pair. Nos
contributions sont résumées ici.

Canal anonyme bidirectionnelle Notre première contribution se penche sur la
question du budget de confidentialité. Le problème du budget de confidentialité appa-
rait lorsqu’un adversaire est en mesure d’obtenir k calculs de similarité indépendants
d’un mécanisme préservant la vie privée. Si le mécanisme respecte la differential pri-
vacy, alors k doit avoir une limite de part le lemme de composition [42, 43]. En outre,
si le mécanisme est efficace (c’est-à-dire qu’il s’exécute en temps polynomial), alors
k doit être Õ(n2), où n est le nombre d’éléments dans le système [131]. En outre,
si le mécanisme ajoute o(

√
n) de bruit, alors k doit être Õ(n) [30]. De plus, pour

le mécanisme de Laplace, qui offre la differential privacy pour O(1) bruit, k doit en
plus être contraint à être sous-linéaire o(n) [108]. Dans notre cas, k est le nombre de
fois où le pair calcule sa similarité avec un autre pair. Par conséquent, si k est borné,
alors les pairs ne seront pas en mesure de calculer leur similarité avec de nouveaux
pairs rejoignant le système. Cette limitation est très contraignant pour les systèmes
pair-à-pair, où de nouveaux pairs continuent de rejoindre le système tout le temps.
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Pour contourner cette limitation, nous remarquons que la réalisation d’ un nombre
illimité de calculs de similarité, en soi, n’est pas suffisant pour soulever la question
du budget de vie privée. Par ailleurs, la question du budget de la confidentialité
n’aura pas besoin d’être considéré même si l’adversaire a obtenu les sorties de tous
ces calculs de similarité. En effet, l’adversaire doit également relier tous ces calculs
de similarité au même paire. Par conséquent, nous introduisons le concept de canal
anonyme bidirectionnelle pour empêcher l’adversaire de relier la sortie de calculs
de similarité effectués sur différents canaux anonymes au même peer. Si le calcul
de similarité se déroule sur un canal privé entre exactement deux pairs, alors cet
objectif, que nous nommons non-chaînabilité, est réalisé en fournissant l’anonymat
aux deux pairs.

Le terme “anonymat” se définit comme la séparation de l’identité (comme l’adresse
IP) du profil privé d’un pair [1, 132], ou des services qu’il fournit, comme dans les
services cachés de Tor [59]. Ces systèmes, en fait, offrent des pseudonymes plutôt
que l’anonymat. En effet, utiliser un pseudonyme peut assurer la séparation entre
l’identité (IP) et un profil privé. Toutefois, cela ne répond pas à l’objectif de non-
chaînabilité et donc ne résout pas la question du budget de vie privée. Par consé-
quent, ce que nous entendons dans cette thèse en utilisant le terme “anonymat”
est strictement plus fort que les pseudonymes. En particulier, l’anonymat assure
la non-chaînabilité alors que les pseudonymes ne le font pas. Par exemple, alors
que FreeRec [132] fournit des pseudonymes pour les deux pairs aux extrémités
d’un canal de communication, a la fois les services cachés de Tor [59] et AP3 sys-
tème éditeur-abonné anonyme [64] fournissent des pseudonymes pour un des pairs et
l’anonymat pour l’autre, car ils sont conçus pour le modèle client-serveur. Toutefois,
comme dans FreeRec, étant donné que les pairs sont dans un système symétrique,
notre canal anonyme bidirectionnel permet l’anonymat a la fois pour l’expéditeur et
le destinataire du canal de communication.

Nous décrivons deux protocoles pour la mise en uvre du canal anonyme bidirec-
tionnel, une pour les adversaires passifs et une autre pour les adversaires actifs. Un
adversaire passif suit la recette du protocole et ne triche pas, mais il est seulement
capable de lire les messages qui passent à travers les pairs qu’il contrôle. A l’inverse,
un adversaire actif est capable de modifier les messages, d’effacer des messages, voire
d’en créer de nouveaux.

La première méthode pour construire des canaux anonymes bidirectionnels sécu-
risé contre des adversaires passifs, utilise un pair supplémentaire entre l’émetteur et
le récepteur agissant comme un anonymiseur, en supposant qu’il n’est de connivence
avec aucun des deux pairs. Supposons qu’un canal anonyme bidirectionnel doit être
construit entre Alice et Bob. Alors Alice utilise un service d’échantillonnage aléatoire
par les pairs [12] afin de choisir l’anonymiseur uniformément au hasard dans l’en-
semble du réseau. Étant donné que l’anonymiseur est choisi uniformément au hasard,
la probabilité qu’il s’agisse d’un adversaire est égal au rapport des pairs contrôlés
par l’adversaire sur le nombre total de pairs. L’anonymiseur choisit ensuite aléatoi-
rement un autre pair Bob et permet à Alice et Bob d’effectuer un échange de clés
[58] à travers lui sans révéler leurs identités mutuelles. Si l’anonymiseur s’avère être
un adversaire, alors il est un adversaire passif et ne peut pas monter une attaque de
l’homme du milieu afin de compromettre l’échange de clés et donc, une fois l’échange
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de clé effectué, il n’est pas capable de lire le messages échangés entre Alice et Bob.
Ce canal n’est valable que pour une seule utilisation et ne doit pas être réutilisée afin
de fournir la non-chaînabilité et ainsi éviter la question du budget de vie privée. La
même exigence vaut également pour la deuxième méthode de construction de canal
anonyme bidirectionnel, qui est sûre contre des adversaires actifs.

La seconde méthode utilise une technique d’échantillonnage aléatoire des pairs
qui résiste à des adversaires actifs [33]. De plus, il y aura deux pairs impliqués dans
le canal anonyme bidirectionnel entre Alice et Bob, respectivement le proxy d’Alice
et le proxy de Bob. Alice choisit son proxy uniformément au hasard à l’aide du pro-
tocole d’échantillonnage de pairs aléatoire [33], puis en utilisant la clé publique du
proxy, elle lancera un canal anonyme vers lui en utilisant la technique décrite dans
[60]. Le canal anonyme entre Alice et son proxy fournit l’anonymat pour Alice mais
pas pour son proxy. Bob réalise les mêmes étapes pour lancer un canal anonyme à
son proxy. Par la suite, lorsque les deux proxys se rencontrent, par échantillonnage
aléatoire, le proxy de Alice envoie la clé publique et l’adresse IP du proxy de Bob
à Alice, et le mandataire de Bob envoie la clé publique et l’adresse IP du proxy
d’Alice à Bob. En utilisant cette information, Alice et Bob conduisent alors un pro-
tocole d’échange de clés d’une manière particulière, pour éviter que leurs proxys
puissent monter une attaque de l’homme du milieu, aussi longtemps que l’un des
deux proxy est honnête. Autrement dit, le proxy d’Alice et le proxy de Bob ne seront
pas en mesure de monter une attaque de l’homme du milieu à moins qu’ils soient
en collusion, ce qui implique que les deux soient contrôlés par le même adversaire
actif. La probabilité que deux proxys appartiennent au même adversaire, puisque le
service d’échantillonnage aléatoire fournit des pairs de manière aléatoire uniforme,
est p2 < p, dans lequel p est le rapport entre les pairs contrôlés par l’adversaire
pour le nombre total de pairs dans le système, en supposant bien sûr que Alice et
Bob soient honnêtes. Le protocole d’échange de clé commence par Alice initiant un
canal anonyme à sens unique1 vers le proxy de Bob, ainsi évitant complètement son
proxy. Alice utilise ce canal pour envoyer un message a Bob via le canal anonyme
et le proxy de Bob, selon le protocole d’échange de clés Diffie-Hellman. Ensuite Bob
effectue les calculs nécessaires et envoie la réponse à Alice via un autre canal de
communication a sens unique qu’il construit entre lui et le proxy d’Alice. Ce proto-
cole empêche les proxys d’effectuer une attaque de l’homme du milieu car une telle
attaque nécessite de controler dans les deux sens le protocole d’échange de clefs, ce
qui ne peut pas être fait a moins que les deux proxys ne collaborent. Ensuite, Alice et
Bob peuvent communiquer de façon privée via le canal anonyme bidirectionnel alors
que leurs proxys ne peuvent pas lire leurs messages. Nous répétons que dans cette
thèse tous nos protocoles considèrent un adversaire passif, néanmoins nous décrivons
cette construction pour démontrer la faisabilité du canal anonyme bidirectionnel.

Enfin, la question du budget de la vie privée peut aussi être évitée en utilisant
des mécanismes non interactifs de differential privacy, car ils libèrent leur sortie une
fois pour toutes (c’est-à-dire k = 1). La sortie d’un mécanisme de protection des
renseignements personnels non interactif est habituellement une esquisse qui peut
être utilisé plus tard pour estimer la similarité avec le pair possédant ce croquis,

1Les canaux anonymes a sens unique peuvent être moins couteux a construire que les canaux
bidirectionnels car ils n’ont pas besoin de fournir au destinataire un moyen de répondre.
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autant de fois que souhaité, au prix d’un taux d’erreur élevé. Nous décrivons un tel
mécanisme plus tard sous le nom de BLIP.

Protocole en deux parties pour similarité de seuil. Comment font deux pairs
pour calculer la similarité entre leurs profils ? Dans le système Gossple, sur lequel
est basé notre système, les pairs envoient leurs profils les uns aux autres [1]. De
toute évidence, cela ne préserve pas la vie privée puisque les profils sont des données
privées. Au lieu de cela, en utilisant le calcul multiparti sécurisé, qui emploie des
techniques cryptographiques, les pairs pourraient émuler un tiers de confiance qui
reçoit leurs profils privés en entrée et envoie en sortie la similarité entre les deux
profils aux pairs [19]. En outre, cela est possible tout en ne révélant rien d’autre
sur les profils privés autres que leur similarité. Pour plus de sécurité, nous exigeons
également que le protocole ne révèle pas la valeur de la similarité, mais plutôt un
seul bit d’information précisant si elle est supérieure à un seuil donné ou non. Non
seulement libérer un seul bit d’information est plus privé que de libérer la valeur
de similarité, mais il rend aussi plus difficile pour un adversaire de deviner le profil
d’un pair particulier, par exemple dans la situation dans laquelle l’adversaire devine
des articles afin d’augmenter progressivement la similarité avec un pair particulier
jusqu’à ce qu’il reconstitue entièrement son profil. Dans ce cas, le seuil de similarité
rend les choses plus difficiles pour l’adversaire, car il n’obtient aucun indice et donc
son estimation initiale du profil doit être très bonne.

Des résultats généraux de faisabilité montrant la possibilité de construire un
protocole multiparti sécurisé pour toutes les fonctionnalités existent [18, 22, 23].
Ces résultats de faisabilité pourraient être appliquées aveuglément pour obtenir un
protocole multiparti de tout mécanisme differentially private tels que le mécanisme
de Laplace [38]. Toutefois, ces résultats généraux sont extrêmement inefficaces pour
une utilisation pratique. Au lieu de cela, il y a d’autres techniques qui sont plus
adaptées, mais ils doivent être adaptés pour des fonctionnalités spécifiques. Ces
techniques sont divisées en deux grandes catégories : le chiffrement homomorphe
et procédé de partage de secrets [47]. Le partage de secret est plus efficace que le
cryptage homomorphe et n’a pas besoin d’hypothèses cryptographiques, fournissant
la privacy même face à un adversaire disposant d’une puissance de calcul illimité.
Cependant, elle nécessite plus de deux parties et n’est donc pas adaptée à nos besoins,
où il n’y a que deux parties qui sont intéressées dans le calcul de leur similarités. Nous
employons donc le cryptage homomorphe à la place. Le cryptage homomorphe est
un chiffrement qui permet aux pairs d’effectuer des calculs sur le texte chiffré, sans
décryptage. Par exemple, un cryptage additif-homomorphes dispose d’une fonction
qui prend en entrée deux nombres chiffrés et la clé publique utilisée pour chiffrer et
émet un autre numéro crypté, qui, si décrypté donnera la somme des deux nombres
originaux. Il peut également permettre la multiplication de numéros non chiffrés, une
opération appelée scalaring. Encpk (a) désigne le chiffrement du message a en vertu de
la clé publique pk, pendant que Decsk (a) = a est le déchiffrement de ce message avec
la clé secrète sk. Afin de simplifier la notion, nous allons laisser tomber les indices et
écrire Enc (a) au lieu de Encpk (a) et Dec (a) au lieu de Decsk (a). Il y a une operation
efficace ⊕ sur deux messages cryptés de telle sorte que Dec (Enc (a)⊕ Enc (b)) = a+b
il y a également une opération efficace de scalaring ⊙ prenant en entrée un texte
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chiffré et un texte clair tels que Dec (Enc (c)⊙ a) = c× a.
En plus des opérations élémentaires précédentes qui peuvent être effectuées sur

place par un pair, il existe des techniques plus sophistiquées pour lesquels il existe
des protocoles multipartis, mais nécessitent la collaboration active de plusieurs pairs.
Par exemple, l’opération consistant à déterminer lequel de deux nombres cryptés
est supérieure à l’autre, sans nous révéler d’autres informations sur les numéros
[48, 49, 50]. D’autres exemples incluent la multiplication de deux nombres cryptés
[51], ou l’extraction du bit le moins significatif [49], encore sous forme chiffrée, à
partir d’un nombre entier crypté.

Le cryptosystème de Paillier [52] est une instance d’un schéma de chiffrement
homomorphe. En outre, le système de chiffrement de Paillier est également séman-
tiquement sûr. Cela signifie qu’un adversaire avec une capacité de calcul bornée ne
peut pas tirer des informations non triviales sur un texte clair a compte tenu de son
cryptage Enc (a) et la clé publique pk seulement. Par exemple, un adversaire avec
une capacité de calcul bornée qui est reçoit deux textes chiffré différents chiffrés avec
la même clé, ne peut même pas décider avec une probabilité non négligeable si les
deux textes chiffrés correspondent au cryptage du même texte en clair ou pas. En
particulier, le cryptosystème sémantiquement sûr est par essence probabiliste, ce qui
signifie que même si le même message est chiffré deux fois, les deux textes chiffrés
résultants seront différents, sauf avec une probabilité négligeable. La propriété de
la sécurité sémantique est essentielle pour prouver que nos protocoles sont sécurisés
contre un adversaire passif. Pour nos protocoles, nous allons aussi utiliser une version
a seuil de la cryptographie de Paillier [53] qui exige la coopération active des pairs
pour décrypter. Un cryptosystème a seuil (t, n) est un système à clé publique dans
lequel au moins t > 1 pairs sur n ont besoin de coopérer activement afin de déchiffrer
un message chiffré. En particulier, aucune collusion de t− 1 ou moins pairs ne peut
déchiffrer un texte chiffré. Cependant, tout pair peut chiffrer une valeur lui même
en utilisant la clé publique pk. Après que le système de cryptage de seuil ait été mis
en place, chaque pair i obtient sa propre clé secrète ski (pour i ∈ {1, . . . , n}), qui
est inutile en soi, mais doit être utilisé comme entrée d’un protocole de décryptage à
seuil par t pairs ou plus pour réussir à déchiffrer un texte chiffré. Dans la définition
précédente, lorsque nous disons que les pairs coopèrent pour décrypter cela signifie
qu’ils s’engagent dans un protocole interactif : le protocole de décryptage, qui fait
partie de la définition du système de chiffrement de seuil. Dans un tel protocole
l’entrée de chaque pair est une partie de la clé secrète, avec le texte chiffré. Après
que les pairs aient échangé certains messages selon le protocole, le résultat est le
texte brut correspondant au texte chiffré.

Nous décrivons deux protocoles, l’un pour le calcul de produit scalaire et l’autre
pour le calcul de similarité cosinus. Notre approche ne se limite pas à la simila-
rité cosinus et peut être appliquée à toute métrique de similarité binaire, comme
la similarité Jaccard, la distance de Hamming, la distance euclidienne et d’autres,
puisque toute métrique de similarité binaire peut être implémentée en utilisant les
produits scalaires seul [36]. Le protocole de produit scalaire est utilisé comme un
sous-protocole par le protocole de similarité cosinus. Par conséquent, nous allons les
décrire comme un protocole de similarité cosinus avec seuil. Comme il est difficile
de mettre en uvre la racine carrée nécessaire pour la similarité cosinus dans le cal-
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cul multiparti sécurisé, nous mettons en uvre la similarité cosinus carré à la place.
Monter au carré la similarité cosinus n’a aucune incidence sur l’utilité parce que la
fonction carré est monotone.

Le protocole est composé de plusieurs étapes, y compris le calcul du produit sca-
laire, l’élever au carré, l’utiliser pour calculer la similarité cosinus carré, puis enfin
comparer si la similarité cosinus carré est supérieure à un seuil prédéterminé. Nous
les décrivons dans l’ordre. Il existe plusieurs types de protocoles qui peuvent être
utilisés pour calculer le produit scalaire entre deux vecteurs binaires. Le premier
type de protocoles sont les protocoles calculant directement le produit scalaire tan-
dis que le deuxième type est les protocoles d’intersection d’ensembles de cardinalité.
Un protocole d’intersection d’ensemble de cardinalité prend deux ensembles d’en-
tiers en entrées et retourne le nombre d’entiers qu’ils ont en commun. Ce protocole
peut aussi être utilisé pour calculer le produit scalaire de deux vecteurs binaires car
chaque vecteur binaire peut être représenté comme un ensemble de nombres entiers
correspondant aux positions dans le vecteur qui sont égales à 1. Les protocoles d’in-
tersection d’ensembles de cardinalité pourrait fournir un avantage de performance
quand n est grand et les vecteurs binaires sont peu denses (à savoir le nombre de bits
égal à 1 est faible par rapport au nombre de bits à zéro). Il y a des avantages et des
inconvénients pour les approches basées sur les intersections d’ensembles et les pro-
duit scalaires. À notre connaissance, tous les protocoles d’intersection d’ensembles
sécurisés existants [70, 71, 72, 73] comportent des étapes proportionnels au nombre
de uns dans les vecteurs binaires, révélant ainsi cette information. D’autre part, les
protocoles de produits scalaires [74, 75, 76, 77] nécessitent intrinsèquement une com-
plexité de communication proportionnelle à n, qui est indépendante du nombre de
uns dans les vecteurs binaires, au prix cependant d’une augmentation de la commu-
nication. Du point de vue de la complexité de calcul, l’approche à base de produit
scalaire a une complexité de calcul linéaire tandis que l’approche de a base d’inter-
section d’ensembles a une complexité quadratique. Étant donné que notre intérêt
principal est la vie privée, nous avons choisi l’approche a base de produit scalaire
car il cache le nombre de uns. La thèse présente un aperçu des différents protocoles
à base de produits scalaires dans la littérature ainsi que des protocoles d’intersection
d’ensembles. Nous allons utiliser le protocole à base de produit scalaire présenté dans
[74, 75]. A des fin d’illustration, nous appelons le premier pair Alice et le second pair
Bob. Alice crypte chaque bit dans son vecteur binaire et les envoie à Bob, qui choisit
uniquement les bits chiffrés d’Alice dont la position dans son propre vecteur binaire
est 1. Bob ajoute les textes clairs choisis, en utilisant la propriété homomorphes de
la cryptographie afin d’obtenir ainsi un cryptage du produit scalaire. Puis Alice et
Bob utilisent la porte de multiplication de [51] pour obtenir une clé de cryptage du
produit scalaire au carré (soit, en multipliant le produit scalaire par lui-même). Le
produit scalaire au carré est le numérateur de la similarité cosinus carré. Le déno-
minateur est calculé séparément lorsque Alice envoie à Bob une valeur chiffrée du
nombre d’éléments de son profil, puis Bob scalarise cette valeur chiffrée en utilisant
le nombre d’éléments dans son profil. La valeur de seuil est alors également scindée
en un numérateur et un dénominateur (ce qui est toujours possible puisque le seuil
est représenté avec arithmétique à précision finie). L’affirmation selon laquelle la si-
milarité cosinus carré est supérieur au seuil pourrait alors être reformulée en faisant
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multipliant les deux dénominateurs des deux côtés de l’autre côté. Cela peut être
fait aussi par des opérations de scalarisation parce que le seuil est un paramètre
public et n’est pas crypté. Ensuite, le protocole de comparaison de nombre entier de
[49] est utilisé pour obtenir le bit de sortie indiquant si la similarité cosinus carré est
supérieure au seuil. Dans la thèse, nous examinons également les protocoles de com-
paraison d’entiers sécurisés dans la littérature. Dans la pratique, la valeur du seuil τ
dépend de l’application et est fixé de façon empirique de manière à être nettement
supérieur à la similarité moyenne dans la population. Néanmoins, nous proposons
une euristique pour la sélection du seuil en fonction du taux d’acceptation voulue,
en utilisant un modèle statistique pour le produit scalaire de deux vecteurs binaires.

La génération de bruit distribué pour la differential privacy. La differential
privacy nécessite de l’aléatoire pour fonctionner, et ce caractère aléatoire doit rester
secret pour le parti qui reçoit la sortie differentially private. Sinon, le bruit pourrait
être enlevé et la garantie de differential privacy serait violée. Par conséquent, étant
donné que les deux pairs impliqués dans le calcul à deux parties sont aussi ceux
recevant sa sortie, alors aucun d’eux ne devrait connaitre l’aléatoire utilisé par le
mécanisme. Plus précisément, la tâche de la génération du bruit ne peut être déléguée
à l’un d’eux, ils doivent s’engager dans un protocole interactif pour générer du bruit.
En outre, le bruit qu’ils engendrent en collaboration doit être généré sous une forme
cryptée.

Les protocoles utilisés pour produire des pièces aléatoires sont connus comme
des protocoles pile ou face. On sait que dans le cas des deux partis, un adversaire
malveillant peut biaiser la pièce avec un additif Θ(1/r), dans lequel r est le nombre
de tours du protocole pile ou face [66]. Comme nous supposons un adversaire passif
dans cette thèse, nous sommes en mesure de produire des pièces non biaisées, sinon
nous pourrions utiliser le protocole pile ou face optimal des deux partis de [66] pour
générer des pièces biaisées et ensuite utiliser le mécanisme de differential privacy de
[67] qui peut assurer la differential privacy, même pour des pièces non biaisés.

Il existe plusieurs protocoles pile ou face pour le cas multi-partis (majorité hon-
nête) [51, 25, 50, 68], qui ne s’appliquent pas nécessairement au cas à deux parties
de cette thèse. Ainsi, nous ne mentionnons que le protocole multi-parties de [25]
(Cadre ODO) qui est conçu pour générer un bruit spécifique pour la differential
privacy. ODO n’est toujours pas nécessairement applicable à la configuration en
deux partis de cette thèse. Le framework ODO peut générer des variables aléatoires
privées Binomiales et de Poisson, approximant respectivement les bruits Gaussiens
et Laplaciens, respectivement. Toutefois, le bruit qu’ils génèrent dans une variante
détendue de l’ε-differential privacy appelé (ε, δ)-differential privacy ce qui est une
définition strictement plus faible [69]. Pour fournir ε-differential privacy à la place,
les réponses aux requêtes doivent être borné. Nous décrivons un protocole de géné-
ration de bruit des deux parties semi-honnête qui satisfait ε-differential privacy sans
borner les réponses des requêtes. En outre, au lieu de générer un bruit conjointe-
ment comme [25], dans notre protocole, chaque partie va générer du bruit au niveau
local et l’intégrer avec le bruit de l’autre partie par addition, ce qui rend l’étape de
génération de bruit plus efficace, mais est sécurisée seulement contre un adversaire
passif.
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Au lieu de dépendre d’un tiers pour générer du bruit, nous offrons deux possi-
bilités de génération de bruit distribué. Le premier utilise deux variables aléatoires
exponentielles. Cette méthode utilise l’observation que la différence de deux variable
aléatoire exponentielle est une variable aléatoire de Laplace. Alice et Bob genèrent
(chacun de leur côté) deux variables aléatoires exponentielles n1 et n2. Ensuite, pen-
dant le protocole, Alice ajoute n1 à la similarité cosinus carré cryptée tandis que
Bob soustrait n2. Si la valeur de similarité est révélée, un pair honnête mais curieux
peut retirer son bruit exponentiel de la valeur révélée. Par exemple, si la valeur de
sortie était x = s + n1 − n2, où s est la vraie similarité, le pair qui a généré n2
pourrait le retirer de x une fois qu’il l’a reçue. La valeur avec laquelle il termine est
x+n2 = s+n1 qui satisfait une variante plus faible de la differential privacy appelée
(ε, δ)-differential privacy [25], en conséquence cette méthode est seulement recom-
mandée pour la similarité par seuil dans laquelle la valeur de similarité perturbé
n’est pas révélé. La deuxième méthode consiste à utiliser deux variables aléatoires
de Laplace. Supposons que Alice et Bob veulent publier le résultat du produit sca-
laire entre les deux profils. A la fin du protocole Alice et Bob pourraient tous les
deux simplement ajouter du bruit de Laplace aléatoire généré indépendamment en
utilisant la propriété homomorphe du schéma de chiffrement. Ensuite, ils pourraient
coopérer pour effectuer le décryptage de seuil et ils seraient tous deux arrivés à
apprendre le produit intérieur perturbé. Ensuite, Alice peut soustraire son propre
bruit de la sortie libérée pour récupérer une version du produit intérieur qui ont été
perturbés qu’avec le bruit de Bob (qui elle ne peut pas supprimer).

L’impact de la différential privacy au protocole de similarité avec seuil, telle
que mesurée par les faux positifs et de faux négatifs est également analysé dans
la thèse avec un modèle théorique. Le modèle est également validé par l’évaluation
expérimentale.

Differential privacy hétérogène. Nous proposons une variante de la differential
privacy, appelé differential privacy hétérogène, qui peut fournir diverses garanties de
confidentialité pour les différents pairs avec des attentes différentes de confidentia-
lité. Par ailleurs, un seul utilisateur peut choisir différents niveaux de confidentialité
pour différents articles dans son profil. Nous décrivons également un nouveau mé-
canisme, appelé “mécanisme d’étirement” et prouvons formellement qu’il satisfait la
différential privacy hétérogène. Chaque élément du profil est associé à un poids de
confidentialité entre 0 et 1 décrivant sensibilité, 0 étant le niveau de confidentialité
le plus élevé. Le poids de confidentialité doit également être protégé de peur que leur
magnitude ne révèle des informations à propos des items dont ils décrivent la sensibi-
lité. Nous prouvons que notre mécanisme d’étirement fournit la differential privacy
classique pour ces poids de confidentialité. Notre mécanisme d’étirement modifie la
sensibilité de la fonction par l’application d’une transformation linéaire de l’entrée,
avant d’appliquer le mécanisme de Laplace standard. Étant donné que le mécanisme
modifie la fonction, de la distorsion est introduite à la sortie. Nous dérivons une
borne sur la distorsion additionnelle et montrons qu’elle est de Õ(

√
n) lorsque le

poids de la vie privée est 1− Õ(1/n3/2), pour la fonction de produit scalaire.
Nous avons effectué une évaluation expérimentale et démontré que la differential

privacy hétérogène peut assurer des niveaux différents de privacy tout en maintenant
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un bon niveau de service. Nous considérons également que si les pairs sont divisés
en trois groupes avec des attentes différentes de la vie privée : un groupe qui est
pointilleux sur sa vie privée (fondamentalistes), un groupe qui est moins pointilleux
mais attend tout de même un peu de vie privée (pragmatiques), et un groupe qui
est plus indifférent, et d’étudier comment les variations dans les proportions de ces
groupes les uns aux autres affectent les garanties d’utilité de chacun. Par exemple,
comment serait affectée l’utilité fournie au groupe des indifférents si le groupe fon-
damentaliste formait la majorité des pairs dans le système. Nous concluons de nos
expériences que (1) les pragmatiques et les indifférents ont toujours un meilleur rap-
pel que les fondamentalistes et (2) les indifférents ont souvent un meilleur rappel que
les pragmatiques, mais pas toujours. Cela semble indiquer que le groupe se souciant
le plus de la vie privée est en général puni plus (c’est-à-dire, son utilité est faible)
que les groupes qui sont plus ouvert en ce qui concerne les attentes de la vie privée.
Ce n’est pas vraiment surprenant car un faible poids de vie privée se traduira par les
utilisateurs du groupe de fondamentalistes se séparant des autres utilisateurs dans
le regroupement, au point qu’ils n’auront pas nécessairement de voisins significatifs
à leurs yeux. Enfin, à la question de savoir si (ou non) des groupes plus libéraux
seront punis par des groupes conservateurs, la réponse semble être négative. En effet,
il peut être vu à partir des résultats de ces expériences que les groupes conservateurs
sont punis plus que les groupes libéraux.

Bien que le mécanisme d’étirement peut être appliquée à une multitude de fonc-
tions, il n’est cependant pas directement applicable à certaines fonctions naturelles,
telles que le ℓ0-norme ou le minimum. En effet, lors du calcul de la norme ℓ0 (soit
le nombre de coordonnées non nulles dans un vecteur donné), chaque coordonnée
contribue zéro ou un peu de sa valeur. Comme le mécanisme d’étirement modifie
cette valeur, ce mécanisme retournerait toujours la vraie valeur tant qu’aucun poids
de confidentialité n’a été mis exactement à zéro. Pour le cas du minimum, en raison
du fait que le mécanisme d’étirage rétrécit chaque coordonnée par un facteur corres-
pondant à son poids de confidentialité, la sortie résultante peut ne plus avoir aucun
rapport à la sémantique de la fonction minimum.

Un autre défi est de permettre aux utilisateurs d’estimer la quantité de distorsion
dans la sortie qu’ils ont reçu d’un mécanisme de differential privacy hétérogène.
Par exemple, pour des fonctions telles que la somme, les bénéficiaires ne seront
pas en mesure d’estimer la valeur correcte sans recevoir la distorsion. Bien que la
distorsion ait une limite supérieure, les informations nécessaires pour calculer cette
limite supérieure sont privés. Par conséquent, publier la distorsion (ou même sa
borne supérieure) constituerait une violation de la vie privée. Nous pensons que
ce problème pourrait être résolu partiellement en libérant une limite supérieure en
utilisant le mécanisme de Laplace traditionnel avec un cout supplémentaire de ε
montant de vie privée.

Un important travail futur comprend la caractérisation des fonctions qui ont une
distorsion basse et haute quand le mécanisme d’étirage est appliquée sur eux. En
effet, les fonctions comportant une forte distorsion ne sont pas vraiment adaptés à
notre mécanisme d’étirement. Nous laissons aussi ouverte la question de savoir s’il est
possible d’atteindre la differential privacy hétérogène avec une distorsion inférieure
à celle du mécanisme d’étirement ou sans distorsion du tout.
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BLIP : calcul de similarité non-interactif pour filtres de Bloom. Nous
décrivons un mécanisme de differential privacy non-interactif pour le calcul de simi-
larité en pair à pair. Etant non-interactif, il permet d’éviter la question du budget de
la vie privée, qui impose une limite sur le nombre de fois que la similarité peut être
calculé, car le mécanisme est calculée une seule fois. Par conséquent, le mécanisme
évite la nécessité du canal anonyme bidirectionnel, fournissant des calcul de simila-
rité plus efficace en termes de cout de calcul et de communication, car il n’est pas
nécessaire d’utiliser des outils cryptographiques, et aussi que sa sortie peut être mis
en cache. Un autre avantage de ce mécanisme non-interactif est que le calcul de simi-
larité peut avoir lieu même lorsque l’utilisateur est hors ligne, ce qui est impossible
à réaliser avec des mécanismes interactifs. Notre nouveau mécanisme de protection
des renseignements personnels est appelé BLIP (pour BLoom-and-flIP). Pour s’atta-
quer simultanément aux problèmes de confidentialité et d’évolutivité, nous proposons
BLIP (Bloom-and-FLIP), un mécanisme de differential privacy non-interactif, qui
calcule un filtre de Bloom standard [109] du profil d’un pair, puis le perturbe avant
sa diffusion publique en vue d’assurer de hautes garanties de confidentialité. Un
filtre de Bloom est une structure de donnés compacte de taille fixe permettant de
représenter des ensembles, économisant de l’espace contre un taux de faux positifs.
Ce filtre de Bloom aléatoire peut être utilisé un nombre illimité de fois pour estimer
la similarité d’un pair avec un autre profil sans violer la vie privée des profils. En
outre, cette approche a exactement le même cout de communication que les simples
(c’est-à-dire, non perturbé) filtres de Bloom, tout en offrant des garanties de confi-
dentialité beaucoup plus élevés, mais au prix d’une légère diminution de l’utilité. Par
exemple, le filtre de Bloom differentially private peut être utilisé pour calculer une
mesure de similarité, par exemple en similarité cosinus ou en produit scalaire avec
un autre filtre de Bloom de façon non interactive.

Nous fournissons une analyse théorique du compromis entre la vie privée et d’uti-
lité dans la forme de l’erreur d’estimation de la similarité pour un paramètre de
confidentialité donnée. En particulier, nous montrons que l’erreur ajoutée au pro-
duit scalaire entre deux filtres de Bloom est délimitée par

√
m, dans lequel m est la

taille du filtre de Bloom, avec une probabilité d’au moins 1−2 exp(−2 tanh(ε/2k)2),
dans lequel k est le nombre de fonctions de hachage utilisées pour le filtre de Bloom.
En outre, nous évaluons expérimentalement le compromis entre la vie privée et l’uti-
lité qui peut être atteint avec BLIP et montront qu’il offre un bon niveau d’utilité.

Comme travaux futurs, il serait intéressant d’étudier les variations qui offrent
une plus grande précision sans pour autant sacrifier la vie privée ou l’efficacité.

Choisir le paramètre de confidentialité. Habituellement, la valeur du para-
mètre de confidentialité de differential privacy ε est difficile à choisir, et être capable
de choisir une valeur appropriée pour ce paramètre est toujours une question ouverte,
qui n’a pas vraiment été étudiée, à quelques exceptions près [39, 28]. Nous abordons
ce problème en fournissant un moyen de choisir une valeur pour le paramètre de
confidentialité ε pour BLIP, notre protocole de non-interactive, en termes d’utilité
et de vie privée. Alors que l’utilité est mesurée par la borne théorique décrite plus
tôt, la vie privée est analysée au travers de deux attaques. La valeur de ε devrait être
choisi de telle sorte qu’elle présente une utilité acceptable tout en évitant ces deux
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attaques. En particulier, en utilisant ces attaques nous fournissons expérimentale-
ment une borne supérieure au paramètre de vie privée afin d’empêcher ces attaques.
La justification est de garantir que le mécanisme n’est au moins pas ouvertement
non-privé [133]. Nous faisons cela en proposant deux attaques où chacun essaie de
créer une brèche différente de la vie privée, et aucune des deux ne suppose la dis-
ponibilité d’informations auxiliaires. Par ailleurs, pour simplifier les choses, nous ne
supposons pas que des corrélations existent entre les éléments (les corrélations sont
traitées dans une autre attaque plus tard). Par conséquent, la valeur de ε pour les-
quels nos attaques réussissent est simplement une limite supérieure indicative, qui
est toujours considéré comme un progrès, étant donné que nous pouvons avoir très
peu d’indices autrement. Les attaques sont des attaques d’inférence probabiliste. La
première attaque est appelée l’“Attaque par reconstruction de profil” car elle peut
être utilisé pour reconstruire le profil d’un pair a partir de sa représentation en filtre
de Bloom perturbé. L’autre attaque est appelé le “Jeu de distinction de profil”, dans
Lequel l’adversaire tente de distinguer deux profils différents sur un seul point, en
observant les filtres de Bloom perturbé de deux pairs. Plus précisément, nous propo-
sons une analyse de la protection et de l’utilité offert par BLIP contre ces attaques,
en dérivant une borne supérieure a la valeur requise pour le paramètre de differential
privacy ε qui garantit que les deux attaques échouent. Nous avons démontré que le
mécanisme de BLIP est capable de garantir la confidentialité du profil sous-jacent
à la valeur recommandée pour le paramètre de confidentialité tout en offrant de
l’utilité.

Attaques d’inférence. Kifer and Machanavajjhala [84] ont soulevé la préoccu-
pation de l’existence de dépendances entre les bits d’un profil lors de l’examen des
garanties prévues par la differential privacy pour les vecteurs binaires. En particu-
lier, ils ont montré un exemple artificiel de corrélations permettant à un adversaire
de reconstruire entièrement les données privées étant donné la réponse à requête de
façon differentially private. La vraie question qui sous-tend n’est pas la présence de
corrélations en soi, mais plutôt que le modèle d’adversaire habituellement assumée
par la differential privacy est trop fort. Par “fort”, nous voulons dire que l’adversaire
est supposé en savoir trop sur les données privées. Leur exemple ne réussit à violer la
vie privée que pour un adversaire faible, mais pas pour le fort pris par la définition
de la differential privacy. De manière informelle, une violation de la vie privée se pro-
duit quand un adversaire gagne quantité non négligeable d’information après avoir
observé la réponse à une requête préservant la vie privée. Si l’adversaire est si fort
qu’il sait déjà tout sur les données privées, alors même si l’ensemble des données a été
libéré aucune violation de la vie privée ne se produit car l’adversaire n’a pas gagné
de nouvelle information. Toutefois, si l’adversaire se révèle en fait être plus faible,
alors une une violation de la vie privée peut avoir lieu. Par analogie, en differential
privacy l’adversaire est censé connaitre tous les bits sauf un (c’est à dire tous les bits
dans un vecteur binaire sauf un), alors qu’en réalité l’adversaire est beaucoup plus
faible. Par rapport à l’hypothèse selon laquelle l’adversaire connait chaque bit sauf
un, alors si l’adversaire finit par connaitre tous les bits sauf un après la publication,
aucune violation de la vie privée ne se produit. Toutefois, le fait qu’une violation de
la vie privée se produise réellement ou pas est relatif à ce que l’adversaire savait avant
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la publication. Ainsi, si l’adversaire ne savait rien, mais a fini par apprendre chaque
bit, sauf un, une violation de la vie privée se produit, même si les conditions de
differential privacy sur le mécanisme de publication seul tient toujours. La capacité
de l’adversaire qui ne connait aucun bits (un adversaire aveugle) à apprendre des
bits qu’il ne pouvait pas apprendre avant la publication dépend de la connaissance
auxiliaire dont il dispose. Nous supposons un type de connaissance auxiliaire qui est
inutile en soit même (c’est-à-dire, avant libération), mais qu’il est néanmoins réaliste
de supposer que l’adversaire a, qui sont les corrélations entre les bits. Bien que les
corrélations ne soient pas nécessaires pour cette violation de vie privée se produise,
elles agissent comme un amplificateur qui permet d’obtenir un taux de réussite plus
élevé. Nous employons des corrélations entre les bits afin de regrouper en points
de repères. Ensuite, nous étudions deux attaques qui utilisent ces points de repères
pour reconstituer les vecteurs binaires étant donné les réponses differentially private
a quelques requêtes définies par ces points de repère. Nous montons nos attaques
contre deux mécanismes non interactifs differentially private, BLIP, que nous avons
introduit plus tôt, et le mécanisme Johnson-Lindenstrauss [45]. Les mécanismes pro-
duisent des réponses perturbées aux requêtes des produits scalaires. Nos attaques
emploient le produit scalaire et est agnostique au mécanisme sous-jacent.

Nous évaluons nos attaques sur un jeu de données réelles et une version allégée du
même ensemble de données, mais sans corrélations. Nous concluons qu’un adversaire
qui connait les corrélations entre les bits a un avantage sur un adversaire aveugle.
Un tel adversaire est capable de reconstruire une partie importante du profil, même
lorsqu’un adversaire relativement plus fort ne peut pas deviner le seul bit qui lui
est inconnu. Nous observons également qu’un adversaire boite blanche, ciblant le
fonctionnement d’un mécanisme particulier, fait mieux qu’un adversaire boite noire,
étant agnostique au mécanisme, donc comprendre ce qu’il est possible dans les at-
taques boite blanche par rapport aux attaques boites noires est un axe de recherche
intéressant.



Bibliography

[1] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec, and V. Leroy, “The Goss-
ple Anonymous Social Network,” in Proceedings of the 11th International Mid-
dleware Conference (Middleware’10), ACM/IFIP/USENIX, Bangalore, India,
November 2010, pp. 191–211.

[2] Y. Zeng, N. Zhong, X. Ren, and Y. Wang, “User Interests Driven Web Per-
sonalization Based on Multiple Social Networks,” in International Workshop
on Web Intelligence & Communities, (WI&C’12), R. Akerkar, P. Maret, and
L. Vercouter, Eds. Lyon, France: ACM, April 2012, pp. 9:1–9:4.

[3] X. Zhou, Y. Xu, Y. Li, A. Josang, and C. Cox, “The State-of-the-Art in Per-
sonalized Recommender Systems for Social Networking,” Artificial Intelligence
Review, vol. 37, no. 2, pp. 119–132, 2012.

[4] Z. Wen and C.-Y. Lin, “How Accurately Can One’s Interests Be Inferred from
Friends?” in Proceedings of the 19th International Conference on World Wide
Web (WWW’10), M. Rappa, P. Jones, J. Freire, and S. Chakrabarti, Eds.
Raleigh, North Carolina, USA: ACM, April 2010, pp. 1203–1204.

[5] F. Liu, C. Yu, and W. Meng, “Personalized Web Search for Improving Re-
trieval Effectiveness,” IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 1, pp. 28–40, January 2004.

[6] G. Greenwald and E. MacAskill, “NSA Prism program taps in to user data
of Apple, Google and others,” The Guardian, June 2013. [Online]. Available:
http://www.guardian.co.uk/world/2013/jun/06/us-tech-giants-nsa-data

[7] P. World, “Facebook’s Beacon more intrusive than previously thought,”
November 2007. [Online]. Available: http://www.pcworld.com/article/
140182/article.html

[8] H. D’Andrade, “MySpace and Facebook plan to use
personal data for “targeted advertising”,” September
2007. [Online]. Available: https://www.eff.org/deeplinks/2007/09/
myspace-and-facebook-plan-use-personal-data-targeted-advertising

[9] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov,
““You Might Also Like:” Privacy Risks of Collaborative Filtering,” in 32nd
IEEE Symposium on Security and Privacy, S&P 2011. Berkeley, California,
USA: IEEE Computer Society, May 2011, pp. 231–246.

115



116 BIBLIOGRAPHY

[10] E. Toch, Y. Wang, and L. Cranor, “Personalization and Privacy: a Sur-
vey of Privacy Risks and Remedies in Personalization-Based Systems,” User
Modeling and User-Adapted Interaction, vol. 22, no. 1-2, pp. 203–220, 2012,
10.1007/s11257-011-9110-z.

[11] A. Narayanan and V. Shmatikov, “Robust De-anonymization of Large Sparse
Datasets,” in 29th IEEE Symposium on Security and Privacy, S&P 2008. Oak-
land, California, USA: IEEE Computer Society, May 2008, pp. 111–125.

[12] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-Based Peer Sampling,” ACM Transactions on Computer Systes
(TOCS’07), vol. 25, no. 3, August 2007.

[13] V. Leroy, “Distributing social applications,” Ph.D. dissertation, IRISA, De-
cemter 2010.

[14] A.-M. Kermarrec, “Towards a Personalized Internet: a Case for a Full De-
centralization.” Philosophical Transactions. Series A, Mathematical, Physical,
and Engineering Sciences, vol. 371, no. 1987, March 2013.

[15] X. Bai, R. Guerraoui, A.-M. Kermarrec, and V. Leroy, “Collaborative per-
sonalized top-k processing,” ACM Transactions on Database Systems, vol. 36,
no. 4, p. 26, 2011.

[16] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec, “What-
sUp Decentralized Instant News Recommender,” in Proceedings of the 27th
IEEE International Parallel & Distributed Processing Symposium (IPDPS’13).
Boston, Massachusetts, USA: IEEE Computer Society, May 2013, pp. 741–752.

[17] D. Frey, A. Jégou, and A.-M. Kermarrec, “Social Market: Combining Explicit
and Implicit Social Networks,” in Proceedings of the 13th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS’11),
ser. Lecture Notes in Computer Science, X. Défago, F. Petit, and V. Villain,
Eds., vol. 6976. Grenoble, France: Springer, October 2011, pp. 193–207.

[18] A. C.-C. Yao, “Protocols for Secure Computations (Extended Abstract),” in
Proceedings of 23rd Annual Symposium on Foundations of Computer Science
(FOCS’82). Chicago, Illinois, USA: IEEE Computer Society, November 1982,
pp. 160–164.

[19] O. Goldreich, “Cryptography and cryptographic protocols,” Distributed Com-
puting, vol. 16, no. 2–3, pp. 177–199, 2003.

[20] C. C. Aggarwal and P. S. Yu, Eds., Privacy-Preserving Data Mining: Models
and Algorithms, ser. Advances in Database Systems. Springer US, 2008,
vol. 34.

[21] F. McSherry and I. Mironov, “Differentially Private Recommender Systems:
Building Privacy into the Netflix Prize Contenders,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and



BIBLIOGRAPHY 117

Data Mining (KDD’09), J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and
M. J. Zaki, Eds. Paris, France: ACM, June 2009, pp. 627–636.

[22] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Ab-
stract),” in Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC’88), J. Simon, Ed. Chicago, Illinois, USA: ACM, May
1988, pp. 1–10.

[23] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental Game or
A Completeness Theorem for Protocols with Honest Majority,” in Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC’87),
A. V. Aho, Ed. New York, New York, USA: ACM, 1987, pp. 218–229.

[24] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty Unconditionally Secure
Protocols (Extended Abstract),” in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC’88), J. Simon, Ed. Chicago,
Illinois, USA: ACM, May 1988, pp. 11–19.

[25] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
Data, Ourselves: Privacy via Distributed Noise Generation,” in Proceedings of
the 25th International Conference on the Theory and Applications of Crypto-
graphic Techniques, Advances in Cryptology (EUROCRYPT’06), ser. Lecture
Notes in Computer Science, S. Vaudenay, Ed., vol. 4004. St. Petersburg,
Russia: Springer, May 2006, pp. 486–503.

[26] A. Beimel, K. Nissim, and E. Omri, “Distributed Private Data Analysis: on
Simultaneously Solving How and What,” in Proceedings of the 28th Annual
International Cryptology Conference - Advances in Cryptology (CRYPTO’08),
ser. Lecture Notes in Computer Science, D. Wagner, Ed., vol. 5157. Santa
Barbara, CA, USA: Springer, August 2008, pp. 451–468.

[27] C. Dwork and M. Naor, “On the difficulties of disclosure prevention in sta-
tistical databases or the case for differential privacy,” Journal of Privacy and
Confidentiality, vol. 2, no. 1, pp. 93–107, 2010.

[28] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, and C. Palamidessi, “On the
Relation Between Differential Privacy and Quantitative Information Flow,” in
Part II of the Proceedings of the 38th International Colloquium on Automata,
Languages and Programming (ICALP’11), ser. Lecture Notes in Computer Sci-
ence, L. Aceto, M. Henzinger, and J. Sgall, Eds., vol. 6756. Zurich, Switzer-
land: Springer, July 2011, pp. 60–76.

[29] T. Dalenius, “Towards a Methodology for Statistical Disclosure Control,”
Statistik Tidskrift, vol. 15, pp. 429–444, 1977.

[30] I. Dinur and K. Nissim, “Revealing Information while Preserving Privcy,” in
Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’03), F. Neven, C. Beeri, and T. Milo,
Eds. San Diego, California, USA: ACM, June 2003, pp. 202–210.



118 BIBLIOGRAPHY

[31] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi,
“Broadening the Scope of Differential Privacy Using Metrics,” in Proceed-
ings of the 13th International Symposium on Privacy Enhancing Technolo-
gies (PETS’13), ser. Lecture Notes in Computer Science, E. D. Cristofaro and
M. Wright, Eds., vol. 7981. Bloomington, IN, USA: Springer, July 2013, pp.
82–102.

[32] A. Moin, “Recommendation and Visualization Techniques for Large Scale
Data,” Ph.D. dissertation, Université Rennes 1, July 2012.

[33] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine Resilient Random Membership Sampling,” Computer Networks,
vol. 53, no. 13, pp. 2340–2359, 2009.

[34] A.-M. Kermarrec and M. van Steen, “Gossiping in distributed systems,” Op-
erating Systems Review, vol. 41, no. 5, pp. 2–7, 2007.

[35] J. Imbrie and E. G. Purdy, “Classification of Modern Bahamian Carbonate
Sediments,” Classification of Carbonate Rocks, a Symposium, pp. 253–272,
1962.

[36] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A Survey of Binary Similarity
and Distance Measures,” Journal on Systemics, Cybernetics and Informatics,
vol. 8, no. 1, pp. 43–48, 2010.

[37] C. Dwork, “Differential Privacy,” in Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming (ICALP’06), Part II,
ser. Lecture Notes in Computer Science, M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, Eds., vol. 4052. San Servolo, Venice, Italy: Springer, July
2006, pp. 1–12.

[38] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensi-
tivity in Private Data Analysis,” in Proceedings of the 3rd Theory of Cryptog-
raphy Conference (TCC’06), ser. Lecture Notes in Computer Science, S. Halevi
and T. Rabin, Eds., vol. 3876. New York, NY, USA: Springer, March 2006,
pp. 265–284.

[39] J. Lee and C. Clifton, “How Much is Enough? Choosing ε for Differential
Privacy,” in Proceedings of the 14th International Information Security Con-
ference (ISC’11), ser. Lecture Notes in Computer Science, X. Lai, J. Zhou, and
H. Li, Eds., vol. 7001. Xi’an, China: Springer, October 2011, pp. 325–340.

[40] M. Alaggan, S. Gambs, and A.-M. Kermarrec, “BLIP: Non-Interactive
Differentially-Private Similarity Computation on Bloom Filters,” in Proceed-
ings of the 14th International Symposium on Stabilization, Safety, and Secu-
rityof Distributed Systems (SSS’12), ser. Lecture Notes in Computer Science,
A. W. Richa and C. Scheideler, Eds., vol. 7596. Toronto, Canada: Springer,
October 2012, pp. 202–216.



BIBLIOGRAPHY 119

[41] P. Dandekar, N. Fawaz, and S. Ioannidis, “Privacy Auctions for Inner Product
Disclosures,” CoRR, vol. abs/1111.2885, 2011.

[42] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith,
“What Can We Learn Privately?” in Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’08). Philadelphia,
Pennsylvania, USA: IEEE Computer Society, October 2008, pp. 531–540.

[43] F. D. McSherry, “Privacy Integrated Queries: an Extensible Platform for
Privacy-Preserving Data Analysis,” in Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, (SIGMOD’09), U. Çetintemel,
S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds. Providence, Rhode Island,
USA: ACM, June 2009, pp. 19–30.

[44] D. Leoni, “Non-Interactive Differential Privacy: a Survey,” in Proceedings of
the 1st International Workshop on Open Data (WOD’12), G. Raschia and
M. Theobald, Eds. Nantes, France: ACM, May 2012, pp. 40–52.

[45] K. Kenthapadi, A. Korolova, I. Mironov, and N. Mishra, “Privacy via the
Johnson-Lindenstrauss Transform,” CoRR, vol. abs/1204.2606, 2012.

[46] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications.
New York, NY, USA: Cambridge University Press, 2004.

[47] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[48] J. A. Garay, B. Schoenmakers, and J. Villegas, “Practical and Secure Solu-
tions for Integer Comparison,” in Problem of the 10th International Confer-
ence on Practice and Theory in Public-Key Cryptography (PKC’07), ser. Lec-
ture Notes in Computer Science, T. Okamoto and X. Wang, Eds., vol. 4450.
Beijing, China: Springer, April 2007, pp. 330–342.

[49] T. Nishide and K. Ohta, “Multiparty Computation for Interval, Equality, and
Comparison Without Bit-Decomposition Protocol,” in Problem of the 10th
International Conference on Practice and Theory in Public-Key Cryptography
(PKC’07), ser. Lecture Notes in Computer Science, T. Okamoto and X. Wang,
Eds., vol. 4450. Beijing, China: Springer, April 2007, pp. 343–360.

[50] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally
Secure Constant-Rounds Multi-party Computation for Equality, Comparison,
Bits and Exponentiation,” in Proceedings of the 3rd Theory of Cryptography
Conference (TCC’06), ser. Lecture Notes in Computer Science, S. Halevi and
T. Rabin, Eds., vol. 3876. New York, NY, USA: Springer, March 2006, pp.
285–304.

[51] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty Computation from
Threshold Homomorphic Encryption,” in Proceedings of the International Con-
ference on the Theory and Application of Cryptographic Techniques, Advances



120 BIBLIOGRAPHY

in Cryptology (EUROCRYPT’01), ser. Lecture Notes in Computer Science,
B. Pfitzmann, Ed., vol. 2045. Innsbruck, Austria: Springer, May 2001, pp.
280–299.

[52] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes,” in Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques, Advances in Cryptology (EU-
ROCRYPT’99), ser. Lecture Notes in Computer Science, J. Stern, Ed., vol.
1592. Prague, Czech Republic: Springer, May 1999, pp. 223–238.

[53] I. Damgård and M. Jurik, “A Generalisation, a Simplification and Some Ap-
plications of Paillier’s Probabilistic Public-Key System,” in Proceedings of the
4th International Workshop on Practice and Theory in Public Key Cryptog-
raphy (PKC’01), ser. Lecture Notes in Computer Science, K. Kim, Ed., vol.
1992. Cheju Island, Korea: Springer, February 2001, pp. 119–136.

[54] O. Goldreich, Foundations of Cryptography: Basic Tools. New York, NY,
USA: Cambridge University Press, 2000.

[55] J. R. Douceur, “The Sybil Attack,” in Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS’02), ser. Lecture Notes in Com-
puter Science, P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, Eds., vol.
2429. Cambridge, Massachusetts, USA: Springer, March 2002, pp. 251–260.

[56] A. Pfitzmann and M. Waidner, “Networks without User Observability: Design
Options,” in Proceedings of the Workshop on the Theory and Application of of
Cryptographic Techniques, Advances in Cryptology - (EUROCRYPT’85), ser.
Lecture Notes in Computer Science, F. Pichler, Ed. Linz, Austria: Springer,
April 1985, vol. 219, pp. 245–253.

[57] A. Pfitzmann and M. Köhntopp, “Anonymity, Unobservability, and
Pseudonymity – A Proposal for Terminology,” in Proceedings of the Interna-
tional Workshop on Design Issues in Anonymity and Unobservability, Design-
ing Privacy Enhancing Technologies, ser. Lecture Notes in Computer Science,
H. Federrath, Ed., vol. 2009. Berkeley, CA, USA: Springer, July 2000, pp.
1–9.

[58] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, 2nd ed. New York, NY, USA: John Wiley & Sons, Inc., 1995.

[59] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The Second-
Generation Onion Router,” in Proceedings of the 13th USENIX Security Sym-
posium (USENIX’04). San Diego, CA, USA: USENIX, August 2004, pp.
303–320.

[60] G. Danezis, C. Díaz, E. Käsper, and C. Troncoso, “The Wisdom of Crowds:
Attacks and Optimal Constructions,” in Proceedings of the 14th European
Symposium on Research in Computer Security (ESORICS’09), ser. Lecture
Notes in Computer Science, M. Backes and P. Ning, Eds., vol. 5789. Saint-
Malo, France: Springer, September 2009, pp. 406–423.



BIBLIOGRAPHY 121

[61] M. Shaneck, Y. Kim, and V. Kumar, “Privacy Preserving Nearest Neighbor
Search,” in Proceedings of the 6th IEEE International Conference on Data
Mining (ICDM’06). Hong Kong, China: IEEE Computer Society, December
2006, pp. 541–545.

[62] F. McSherry and I. Mironov, “Differentially Private Recommender Systems:
Building Privacy into the Netflix Prize Contenders,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’09), J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and
M. J. Zaki, Eds. Paris, France: ACM, June 2009, pp. 627–636.

[63] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–88, Febru-
ary 1981.

[64] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach, “AP3:
Cooperative, Decentralized Anonymous Communication,” in Proceedings of
the 11st ACM SIGOPS European Workshop, Y. Berbers and M. Castro, Eds.
Leuven, Belgium: ACM, September 2004.

[65] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”
ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[66] T. Moran, M. Naor, and G. Segev, “An Optimally Fair Coin Toss,” in Pro-
ceedings of the 6th IACR Theory of Cryptography Conference (TCC’09), ser.
Lecture Notes in Computer Science, O. Reingold, Ed., vol. 5444. San Fran-
cisco, California, USA: Springer, March 2009, pp. 1–18.

[67] Y. Dodis, A. López-Alt, I. Mironov, and S. Vadhan, “Differential Privacy
with Imperfect Randomness,” in Proceedings of the 32nd Annual Cryptology
Conference – Advances in Cryptology (CRYPTO’12), ser. Lecture Notes in
Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Santa
Barbara, California, USA: Springer, August 2012, pp. 497–516.

[68] M. O. Rabin, “Randomized Byzantine Generals,” in Proceedings of the 24th
Annual Symposium on Foundations of Computer Science (FOCS’83). Tucson,
Arizona, USA: IEEE Computer Society, November 1983, pp. 403–409.

[69] A. De, “Lower Bounds in Differential Privacy,” in Proceedings of the 9th The-
ory of Cryptography Conference (TCC’12), ser. Lecture Notes in Computer
Science, R. Cramer, Ed., vol. 7194. Taormina, Sicily, Italy: Springer, March
2012, pp. 321–338.

[70] G. S. Narayanan, T. Aishwarya, A. Agrawal, A. Patra, A. Choudhary, and
C. P. Rangan, “Multi Party Distributed Private Matching, Set Disjointness
and Cardinality of Set Intersection with Information Theoretic Security,” in
Proceedings of the 8th International Conference on Cryptology and Network
Security (CANS’09), ser. Lecture Notes in Computer Science, J. A. Garay,
A. Miyaji, and A. Otsuka, Eds., vol. 5888. Kanazawa, Japan: Springer,
December 2009, pp. 21–40.



122 BIBLIOGRAPHY

[71] R. Li and C. Wu, “An Unconditionally Secure Protocol for Multi-Party Set
Intersection,” in Proceedings of the 5th International Conference on Applied
Cryptography and Network Security (ACNS’07), ser. Lecture Notes in Com-
puter Science, J. Katz and M. Yung, Eds., vol. 4521. Zhuhai, China: Springer,
June 2007, pp. 226–236.

[72] L. Kissner and D. X. Song, “Privacy-preserving set operations,” in Proceedings
of the 25th Annual International Cryptology Conference, Advances in Cryp-
tology (CRYPTO’05), ser. Lecture Notes in Computer Science, V. Shoup, Ed.
Santa Barbara, California, USA: Springer, August 2005, vol. 3621, pp. 241–
257.

[73] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient Private Matching and
Set Intersection,” in Proceedings of the International Conference on the The-
ory and Applications of Cryptographic Techniques, Advances in Cryptology
(EUROCRYPT’04), ser. Lecture Notes in Computer Science, C. Cachin and
J. Camenisch, Eds., vol. 3027. Interlaken, Switzerland: Springer, May 2004,
pp. 1–19.

[74] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, “On Private Scalar
Product Computation for Privacy-Preserving Data Mining,” in Revised Se-
lected Papers from the 7th International Conference on Information Security
and Cryptology (ICISC’04), ser. Lecture Notes in Computer Science, C. Park
and S. Chee, Eds. Seoul, Korea: Springer, December 2004, vol. 3506, pp.
104–120.

[75] R. N. Wright and Z. Yang, “Privacy-Preserving Bayesian Network Structure
Computation on Distributed Heterogeneous Data,” in Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’04), W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, Eds.
Seattle, Washington, USA: ACM, August 2004, pp. 713–718.

[76] A. Amirbekyan and V. Estivill-Castro, “A New Efficient Privacy-Preserving
Scalar Product Protocol,” in Proceedings of the 6th Australasian Data Min-
ing and Analytics Conference (AusDM’07), ser. CRPIT, P. Christen, P. J.
Kennedy, J. Li, I. Kolyshkina, and G. J. Williams, Eds., vol. 70. Gold
Coast, Queensland, Australia: Australian Computer Society, December 2007,
pp. 209–214.

[77] C. A. Melchor, B. A. Salem, and P. Gaborit, “A Collusion-Resistant Dis-
tributed Scalar Product Protocol with Application to Privacy-Preserving Com-
putation of Trust,” in Proceedings of The 8th IEEE International Symposium
on Networking Computing and Applications (NCA’09). Cambridge, Mas-
sachusetts, USA: IEEE Computer Society, July 2009, pp. 140–147.

[78] I.-C. Wang, C.-H. Shen, J. Zhan, T. sheng Hsu, C.-J. Liau, and D.-W. Wang,
“Toward empirical aspects of secure scalar product,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C, vol. 39, no. 4, pp. 440–447, 2009.



BIBLIOGRAPHY 123

[79] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino, “Private record match-
ing using differential privacy,” in Proceedings of the 13th International Con-
ference on Extending Database Technology (EDBT’10), ser. ACM Interna-
tional Conference Proceeding Series, I. Manolescu, S. Spaccapietra, J. Teub-
ner, M. Kitsuregawa, A. Léger, F. Naumann, A. Ailamaki, and F. Özcan, Eds.,
vol. 426. Lausanne, Switzerland: ACM, March 2010, pp. 123–134.

[80] A. C.-C. Yao, “How to Generate and Exchange Secrets (Extended Abstract),”
in Proceedings of the 27th Annual Symposium on Foundations of Computer
Science (FOCS’86). Toronto, Canada: IEEE Computer Society, October 1986,
pp. 162–167.

[81] H.-Y. Lin and W.-G. Tzeng, “An Efficient Solution to the Millionaires’ Prob-
lem Based on Homomorphic Encryption,” in Proceedings of the 3rd Interna-
tional Conference on Applied Cryptography and Network Security (ACNS’05),
ser. Lecture Notes in Computer Science, J. Ioannidis, A. D. Keromytis, and
M. Yung, Eds., vol. 3531, New York, NY, USA, June 2005, pp. 456–466.

[82] B. Schoenmakers and P. Tuyls, “Efficient Binary Conversion for Paillier En-
crypted Values,” in Proceedings of the 25th International Conference on the
Theory and Applications of Cryptographic Techniques, Advances in Cryptol-
ogy (EUROCRYPT’06), ser. Lecture Notes in Computer Science, S. Vaudenay,
Ed., vol. 4004. St. Petersburg, Russia: Springer, May 2006, pp. 522–537.

[83] ——, “Practical Two-Party Computation Based on the Conditional Gate,” in
Proceedings of the 10th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Advances in Cryptology (ASI-
ACRYPT’04), ser. Lecture Notes in Computer Science, P. J. Lee, Ed., vol.
3329. Jeju Island, Korea: Springer, December 2004, pp. 119–136.

[84] D. Kifer and A. Machanavajjhala, “No Free Lunch In Data Privacy,” in Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’11), T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Vele-
grakis, Eds. Athens, Greece: ACM, June 2011, pp. 193–204.

[85] P.-A. Fouque, J. Stern, and J.-G. Wackers, “CryptoComputing with Ratio-
nals,” in Proceedings of the 6th International Conference on Financial Cryp-
tography (FC’02), Revised Papers, ser. Lecture Notes in Computer Science,
M. Blaze, Ed., vol. 2357. Southampton, Bermuda: Springer, March 2002, pp.
136–146.

[86] I. Mironov, “On Significance of the Least Significant Bits for Differential Pri-
vacy,” in Proceedings of the ACM conference on Computer and Communica-
tions Security (CCS’12), T. Yu, G. Danezis, and V. D. Gligor, Eds. Raleigh,
North Carolina, USA: ACM, October 2012, pp. 650–661.

[87] I. Gazeau, D. Miller, and C. Palamidessi, “Preserving differential privacy
under finite-precision semantics,” INRIA, Research Report, 2013. [Online].
Available: http://hal.inria.fr/hal-00780774



124 BIBLIOGRAPHY

[88] J. Bar-Ilan and D. Beaver, “Non-Cryptographic Fault-Tolerant Computing
in Constant Number of Rounds of Interaction,” in Proceedings of the 8th
Annual ACM Symposium on Principles of Distributed Computing (PODC’89),
P. Rudnicki, Ed. Edmonton, Alberta, Canada: ACM, August 1989, pp. 201–
209.

[89] W. L. Harkness, “Properties of the Extended Hypergeometric Distribution,”
The Annals of Mathematical Statistics, vol. 36, no. 3, pp. 938–945, 1965.

[90] M. Alaggan, S. Gambs, and A.-M. Kermarrec, “Private Similarity Compu-
tation in Distributed Systems: From Cryptography to Differential Privacy,”
in Proceedings of the 15th International Conference on the Principles of Dis-
tributed Systems (OPODIS’11), ser. Lecture Notes in Computer Science, A. F.
Anta, G. Lipari, and M. Roy, Eds., vol. 7109. Toulouse, France: Springer,
December 2011, pp. 357–377.

[91] S. Venkatasubramanian, Privacy-Preserving Data Mining, ser. Advances in
Database Systems. Springer US, 2008, vol. 34, ch. Measures of Anonymity,
pp. 81–103.

[92] C. Dwork, “Differential Privacy: a Survey of Results,” in Proceedings of the
5th International Conference on Theory and Applications of Models of Com-
putation (TAMC’08), ser. Lecture Notes in Computer Science, M. Agrawal,
D.-Z. Du, Z. Duan, and A. Li, Eds., vol. 4978. Xi’an, China: Springer, April
2008, pp. 1–19.

[93] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan, “Computational Dif-
ferential Privacy,” in Proceedings of the 29th Annual International Cryptol-
ogy Conference – Advances in Cryptology (CRYPTO’09), ser. Lecture Notes
in Computer Science, S. Halevi, Ed., vol. 5677. Santa Barbara, CA, USA:
Springer, August 2009, pp. 126–142.

[94] A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar, and S. Vad-
han, “The Limits of Two-Party Differential Privacy,” Electronic Colloquium
on Computational Complexity, Tech. Rep. 106, August 2011.

[95] S. Preibusch and A. R. Beresford, “Privacy-Preserving Friendship Relations
for Mobile Social Networking,” in Proceedings of the W3C Workshop on the
Future of Social Networking, Barcelona, Spain, January 2009.

[96] Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing Face-
book Privacy Settings: User Expectations vs. Reality,” in Proceedings of the
Internet Measurement Conference, Berlin, Germany, November 2011, pp. 61–
70.

[97] D. Zwick and N. Dholakia, “Models of Privacy in the Digital Age: Implications
for Marketing and E-Commerce,” September 1999.

[98] N. Zhang and W. Zhao, “Privacy-Preserving Data Mining Systems,” Com-
puter, vol. 40, no. 4, pp. 52–58, April 2007.



BIBLIOGRAPHY 125

[99] A. Jeffrey, Matrix Operations for Engineers and Scientists: An Essential Guide
in Linear Algebra. Springer Netherlands, 2010, ch. Linear Transformations
and the Geometry of the Plane, pp. 239–272.

[100] K. Das, K. Bhaduri, and H. Kargupta, “Multi-Objective Optimization Based
Privacy Preserving Distributed Data Mining in Peer-to-Peer Networks,” Peer-
to-Peer Networking and Applications, vol. 4, no. 2, pp. 192–209, 2011.

[101] R. Kumar, R. D. Gopal, and R. S. Garfinkel, “Freedom of Privacy: Anonymous
Data Collection with Respondent-Defined Privacy Protection,” INFORMS
Journal on Computing, vol. 22, no. 3, pp. 471–481, 2010.

[102] L. Sweeney, “k-Anonymity: A Model for Protecting Privacy,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5,
pp. 557–570, 2002.

[103] A. Ghosh and A. Roth, “Selling Privacy at Auction,” in Proceedings of the 12th
ACM Conference on Electronic Commerce (EC-2011), Y. Shoham, Y. Chen,
and T. Roughgarden, Eds. San Jose, CA, USA: ACM, June 2011, pp. 199–208.

[104] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth Sensitivity and Sam-
pling in Private Data Analysis,” in Proceedings of the 39th Annual ACM
Symposium on Theory of Computing (STOC’07), D. S. Johnson and U. Feige,
Eds. San Diego, California, USA: ACM, June 2007, pp. 75–84.

[105] H. Dym, Linear Algebra in Action. Weizmann Institute of Science - AMS,
2007.

[106] C. Jensen, C. Potts, and C. Jensen, “Privacy Practices of Internet Users:
Self-Reports versus Observed Behavior,” International Journal of Human-
Computer Studies, vol. 63, no. 1-2, pp. 203–227, July 2005.

[107] Harris Interactive, “The Harris Poll® ♯17: Most People are ‘Privacy
Pragmatists’ who, while Concerned about Privacy, will Sometimes
Trade it off for Other Benefits,” 2003. [Online]. Available: http:
//www.harrisinteractive.com/harris_poll/index.asp?PID=365

[108] A. Roth, “New algorithms for preserving differential privacy,” Ph.D. disserta-
tion, Carnegie Mellon University, July 2010.

[109] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[110] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice of
Bloom filters for distributed systems,” IEEE Communications Surveys & Tu-
torials, vol. PP, no. 99, pp. 1–25, April 2011.

[111] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid,
and Y. Tang, “On the false-positive rate of Bloom filters,” Information Pro-
cessing Letters, vol. 108, no. 4, pp. 210–213, 2008.



126 BIBLIOGRAPHY

[112] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: Building a
better bloom filter,” in Proceedings of the 14th Annual European Symposium
on Algorithms (ESA’06), ser. Lecture Notes in Computer Science, Y. Azar and
T. Erlebach, Eds., vol. 4168. Zurich, Switzerland: Springer, September 2006,
pp. 456–467.

[113] F. McSherry and K. Talwar, “Mechanism Design via Differential Privacy,” in
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’07), Providence, RI, USA, October 2007, pp. 94–103.

[114] Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang, “Compressive mechanism: uti-
lizing sparse representation in differential privacy,” CoRR, vol. abs/1107.3350,
2011.

[115] A. Blum, K. Ligett, and A. Roth, “A Learning Theory Approach to Non-
Interactive Database Privacy,” in Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing (STOC’08), C. Dwork, Ed. Victoria, British
Columbia, Canada: ACM, May 2008, pp. 609–618.

[116] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive 2003/216, Tech. Rep.,
March 2004.

[117] M. Bawa, R. J. Bayardo, R. Agrawal, and J. Vaidya, “Privacy-preserving
indexing of documents on the network,” The VLDB Journal, vol. 18, no. 4, pp.
837–856, August 2009.

[118] S. M. Bellovin and W. R. Cheswick, “Privacy-enhanced searches using en-
crypted Bloom filters,” Columbia University CUCS-034-07, Tech. Rep., 2007.

[119] R. K. Pon and T. Critchlow, “Performance-Oriented Privacy-Preserving Data
Integration,” in Proceedings of the 2nd International Workshop on Data Inte-
gration in the Life Sciences (DILS’05), ser. Lecture Notes in Computer Science,
vol. 3615. San Diego, CA, USA: Springer, July 2005, pp. 240–256.

[120] A. Shikfa, M. Önen, and R. Molva, “Broker-Based Private Matching,” in Pro-
ceedings of the 11th International Symposium on Privacy Enhancing Technolo-
gies (PETS’11), ser. Lecture Notes in Computer Science, vol. 6794. Waterloo,
ON, Canada: Springer, July 2011, pp. 264–284.

[121] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke, “Privacy in
search logs,” CoRR, vol. abs/0904.0682, 2009.

[122] F. Kerschbaum, “Public-Key Encrypted Bloom Filters with Applications to
Supply Chain Integrity,” in Proceedings of the 25th Annual WG 11.3 Con-
ference on Data and Applications Security and Privacy XXV (DBSec’11), ser.
Lecture Notes in Computer Science, vol. 6818. Richmond, VA, USA: Springer,
July 2011, pp. 60–75.

[123] R. Nojima and Y. Kadobayashi, “Cryptographically secure Bloom-filters,”
Transactions on Data Privacy, vol. 2, no. 2, pp. 131–139, 2009.



BIBLIOGRAPHY 127

[124] S. L. Warner, “Randomized response: a survey technique for eliminating eva-
sive answer bias,” Journal of the American Statistical Association, vol. 60, no.
309, pp. 63–69, March 1965.

[125] D. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of
Randomized Algorithms, 1st ed. New York, NY, USA: Cambridge University
Press, 2009.

[126] J. Ward, Joe H., “Hierarchical grouping to optimize an objective function,”
Journal of the American Statistical Association, vol. 58, no. 301, pp. 236–244,
March 1963.

[127] J. A. Rice, Mathematical Statistics and Data Analysis. Cengage Learning,
2006.

[128] M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density
Function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832–837,
1956.

[129] E. Parzen, “On Estimation of a Probability Density Function and Mode,” The
Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[130] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential Privacy
Under Continual Observation,” in Proceedings of the 42nd ACM Symposium
on Theory of Computing (STOC’10), June 2010, pp. 715–724.

[131] J. Ullman, “Answering n2+o(1) Counting Queries with Differential Privacy is
Hard,” in Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC’13), D. Boneh, T. Roughgarden, and J. Feigenbaum, Eds.
Palo Alto, California, USA: ACM, June 2013, pp. 361–370.

[132] A. Boutet, D. Frey, A. Jégou, A.-M. Kermarrec, and H. B. Ribeiro, “FreeRec:
An Anonymous and Distributed Personalization Architecture,” in Proceedings
of the 1st International Conference on Networked Systems (NETYS’13), ser.
Lecture Notes in Computer Science, V. Gramoli and R. Guerraoui, Eds., vol.
7853. Marrakech, Morocco: Springer, May 2013, pp. 58–73.

[133] C. Dwork, F. D. McSherry, and K. Talwar, “The Price of Privacy and the
Limits of LP Decoding,” in Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC’07), D. S. Johnson and U. Feige, Eds. San
Diego, California, USA: ACM, June 2007, pp. 85–94.

[134] S. Vaudenay, Ed., Proceedings of the 25th International Conference on the
Theory and Applications of Cryptographic Techniques, Advances in Cryptol-
ogy (EUROCRYPT’06), ser. Lecture Notes in Computer Science, vol. 4004.
St. Petersburg, Russia: Springer, May 2006.

[135] T. Okamoto and X. Wang, Eds., Problem of the 10th International Conference
on Practice and Theory in Public-Key Cryptography (PKC’07), ser. Lecture
Notes in Computer Science, vol. 4450. Beijing, China: Springer, April 2007.



128 BIBLIOGRAPHY

[136] J. Simon, Ed., Proceedings of the 20th Annual ACM Symposium on Theory
of Computing (STOC’88). Chicago, Illinois, USA: ACM, May 1988.

[137] D. S. Johnson and U. Feige, Eds., Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing (STOC’07). San Diego, California, USA:
ACM, June 2007.

[138] S. Halevi and T. Rabin, Eds., Proceedings of the 3rd Theory of Cryptography
Conference (TCC’06), ser. Lecture Notes in Computer Science, vol. 3876. New
York, NY, USA: Springer, March 2006.

[139] J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and M. J. Zaki, Eds., Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’09). Paris, France: ACM, June 2009.


