

Dynamique des structures cohérentes en turbulence magnétohydrodynamique

Johann Herault

Groupe de physique non-linéaire Laboratoire de Physique Statistique, UMR 8550, ENS-PARIS

Les écoulements turbulents

Turbulence hydrodynamique

Turbulence magnétohydrodynamique

Structure spatiale complexe : continuum d'échelles spatiales Dynamique impredictible : sensibilité aux conditions initiales Les structures cohérentes dans les écoulements turbulents

<u>Structure spatiale</u>: tourbillons, concentration de vorticité $\omega = \nabla \times u$

Dynamique cohérente

Temps de cohérence (>300 ans) > Temps de retournement (6 jours)

Grande tâche rouge de Jupiter

Les structures cohérentes et les symétries

Instabilité Dynamo : Expérience von Karman Sodium

Mode dipolaire à grande échelle engendré par un écoulement turbulent

Mode symétrique : $D \longrightarrow -D$

<u>Résultats</u>

Etude de la relaxation des modes magnétiques

Effet des turbines ferromagnétiques

<u>Circulation grande échelle en turbulence bidimensionelle</u>

Ecoulement à grande échelle U_L

Symétrie du forçage : $U_L \longrightarrow -U_L$

Les structures cohérentes en turbulence bidimensionnelle

<u>Définition</u>: écoulement plan ne dépendant que de deux composantes u(x, y, t)

Comment déterminer et quantifier l'émergence des structures aux grandes échelles ? Quelles sont la dynamique temporelle et la signature fréquentielle de ces structures ?

Ecoulement bidimensionel forcé périodiquement

Le montage Cellule remplie de Galinstan (métal liquide)

Hauteur	h=2cm
Largeur	L=12cm
Champ magnétique	$B_0 = 10^3 G$
Courant continu	$I = 10^2 A$

<u>Le forçage électromagnétique</u> $j = j_r e_r \quad B_0 = B_0 e_z$

La force de Laplace

$$\boldsymbol{f}_{L} = \boldsymbol{j} \times \boldsymbol{B}_{0} = -j B_{0} \boldsymbol{e}_{\theta}$$

<u>Techniques de mesure</u>

Sondes Vives

Force électromotrice $E = -\boldsymbol{u} \times \boldsymbol{B}_0$

Tension aux bornes des sondes Vives $\Delta V = -B_0 \int u \times e_z dl$

Vitesse moyenne
$$U_L$$
=

$$T_L = \frac{2}{L} \frac{\Delta V}{B_0}$$

$\begin{array}{c} U_L \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\$

$E = \begin{pmatrix} 0.04 \\ 0.02 \\ -0.02 \\ -0.04 \\ -0.06 \\ -0.06 \\ -0.04 \\ -0.02 \\ 0 \\ 0.02 \\ 0 \\ 0.02 \\ 0 \\ 0.02 \\ 0.04 \\ 0.06 \\ x [m]$

0.06

Velocimétrie par suivi de particules

Surface ensemencée par plus de 1 000 particules Positions des particules échantillonées à 60Hz Reconstruction trajectoires

Champ de vitesse convolué par un filtre gaussien

Velocimétrie par mesures Doppler ultrason

Ecoulement quasi-bidimensionel

Processus de bidimensionalisation

Amortissement magnétique des perturbations dépendantes de z

Couche limite de Hartmann
$$\delta_H = \sqrt{\frac{\rho v}{\sigma B_0^2}}$$
 et $Ha = \frac{h}{\delta_H} = 10^2$

L'équation de Navier-Stokes 2D

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla \pi + \boldsymbol{v} \Delta \boldsymbol{u} - \frac{1}{\tau_H} \boldsymbol{u} + \boldsymbol{f} \qquad \nabla \cdot \boldsymbol{u} = 0$$

 $\tau_H = \frac{h\delta_H}{v}$ Temps d'amortissement par friction due à la couche de Hartmann

Paramètres sans dimensionvitesse, longueur:U , LLe nombre de Reynolds:

$$Re = \frac{[\boldsymbol{u} \cdot \nabla \boldsymbol{u}]}{[\boldsymbol{v} \Delta \boldsymbol{u}]} = \frac{UL}{\boldsymbol{v}} \sim 10^4 \qquad \qquad Rh = \frac{[\boldsymbol{u} \cdot \nabla \boldsymbol{u}]}{[\boldsymbol{\tau}_H^{-1}\boldsymbol{u}]} = \frac{U\boldsymbol{\tau}_H}{L} \sim 10$$

T 7

<u>Turbulence bidimensionelle</u> $Re \gg 1, Rh \gg 1$

<u>Cascades : la théorie KBL</u>

Conservation de l'énergie $|\boldsymbol{u}|^2$ et enstrophie $|\boldsymbol{\omega}|^2$

Transfert d'énergie préférentiellement vers les grandes échelles Transfert d'enstrophie préférentiellement vers les petites échelles

La condensation

Echelle de dissipation $l_d \sim L$ échelle de la cellule

Accumulation/condensation de l'énergie dans le mode à l'échelle de la cellule

Circulation à l'échelle de la cellule

 k_d

 k_{f}

Les régimes d'écoulement

Paramètres de contrôle Rh

$\left(Re/Rh\propto 10^3\right)$

Les régimes d'écoulement

Paramètres de contrôle Rh

$\left(Re/Rh\propto 10^3\right)$

Comment déterminer et quantifier l'émergence des structures aux grandes échelles ?

Quelles sont la dynamique temporelle et la signature fréquentielle de ces structures ?

Etude de l'amplitude de la circulation à grande échelle U_L

Emergence d'une amplitude préférentielle de la circulation

Spectres fréquentiels aux basses fréquences

Etude de la norme de U_L **:** $\langle U_L^2 \rangle^{1/2}$

Ecart au régime gaussien pour Rh>12.

La distribution devient bi-modale pour Rh>20.

Rh = 20

Décomposition des distributions (Guillaume Michel)

Somme de deux gaussiennes centrées en $U_{\scriptscriptstyle M}$ et de variance σ^2

$$P(U_L^*) = \frac{1}{2\sqrt{2\pi\sigma}} \exp\left(\frac{-\left(U_L^* - U_m\right)^2}{2\sigma^2}\right) + \frac{1}{2\sqrt{2\pi\sigma}} \exp\left(\frac{-\left(U_L^* + U_m\right)^2}{2\sigma^2}\right)$$

La variance σ^2 varie peu Bifurcation de l'amplitude la plus probable Estimation : $U_M \propto (Rh - Rh_c)^{1/4}$

Transition à Rh=12 : apparition d'une amplitude préférentielle de rotation

Spectre fréquentiel

$$\hat{U}_L(f) = \int U_L(t) \exp(i2\pi f t) dt \qquad E(f) = \frac{1}{T} \langle \hat{U}_L(f) \hat{U}_L(-f) \rangle$$

Basses fréquences:

Loi de puissance $E(f) \propto f^{-\alpha}$ avec $\alpha = 0,7$

Signature de la dynamique cohérente

$$f < \frac{\langle U_L^2 \rangle^{1/2}}{L} \approx 0,4 \ Hz$$

Pour Rh<30, le spectre aux basses fréquences : $E(f) \propto f^{-\alpha}$ avec $\alpha = 0,7 \pm 0,1$

Loi de puissance aux basses fréquences avec $\alpha = 0,7$. Absence de fréquence de coupure aux basses fréquences. Observé sur les signaux des sondes Doppler

Bruit en 1/f :

Loi de puissance aux basses fréquences avec $E(f) \propto f^{-\alpha}$, α compris entre 0 et 2 Processus auto-similaire: absence de temps caractéristique. Fréquence de coupure : $f_c \propto \frac{1}{T}$ avec T la durée de la mesure.

Systèmes complexes : fluctuations de résistivité, percolation, pluviométrie, écoulement von Karman...

<u>Présence d'une dynamique lente :</u> Comment cette dynamique lente affecte les spectres ?

Présence d'évènements longs de polarité constante

<u>Origine du bruit en 1/f</u>: évènements longs de polarité constante.

Quantification: transitions entre les états $U_L < 0$ et $U_L > 0$: étude du signe de U_L .

Même information dans les spectres de U_L et $sign(U_L)$.

Propriétés statistiques de cette dynamique lente ?

Distribution des durées entre deux changements de signe successifs

 $P(\tau)$

Existe-il une relation entre α **et** β **?**

Prédiction théorique

Lowen and Teich, P.R.E, 1993 Niemann et al., P.R.L., 2013

 $P(au) \propto au^{-eta}$ Système à 2 états avec distribution des temps de séjour

alors

L'exposant β contrôle la valeur de l'exposant α du spectre.

<u>Turbulence avec</u> structures aux grandes échelles

Distributions non gaussiennes pour Rh>12.

Amplitude préférentielle de la circulation à grande échelle.

Bruit en 1/f aux basses fréquences $E(f) \propto f^{-\alpha}$

Dynamique lente : distribution des durées $P(\tau) \sim \tau^{-\beta}$

Relation $\alpha = 3 - \beta$

Emergence d'une configuration préférentielle de vorticité

Renversement circulation grande échelle.

Champs moyen de vorticité sur 100 temps de retournements

Emergence d'une configuration de vorticité

Turbulence : ergodicité/récurrences

Turbulence avec structures grande échelle

Régime condensé

Changement de la structure de l'attracteur turbulent ?

Récurrence dans les systèmes dynamiques

Eckmann et al, EPL, 1987

Analyse du flot et de zones préférentielles dans l'espace des phases.

Présence de point fixe, cycle instable...

Méthode de capture des récurrences

Produit scalaire entre les deux vecteurs unitaires

$$\omega'(x_k, t_i)$$
, $\omega'(x_k, t_j)$

Corrélation spatiale aux deux instants t_i , t_j

$$c(t_i, t_j) = \sum_k \omega'(x_k, t_i) \omega'(x_k, t_j)$$

<u>Fonction indicatrice de récurrence</u> $C_{i, j}(\epsilon_c)$

 t_i

$$C_{i,j} = 0 \quad \text{si} \quad c(t_i, t_j) < \epsilon_c \quad \text{(blanc)}$$
$$C_{i,j} = 1 \quad \text{si} \quad c(t_i, t_j) > \epsilon_c \quad \text{(noir)}$$

<u>Tracé de récurrences sur 100 secondes</u> (6000 instantanés) $\epsilon_c = 0.55$

En augmentant Rh, l'écoulement passe de plus en plus de temps proche d'une configuration de vorticité 26

Pourcentage de temps passé au voisinage du champ de vorticité $\omega'(x_k, t_i)$

$$T_i = \frac{1}{N} \sum_{j} C_{i,j}(\epsilon_c) \quad \text{avec} \quad \frac{1}{N} < T_i < 1$$

N : le nombre d'instantanés de vorticité

<u>Mode le plus probable</u> $T^{(1)} = max_i(T_i)$

Transition vers Rh=30

Moyenne cohérente et structure du mode le plus probable

KN = 34

 $\epsilon_c = 0.55$

Rh=30

Rh=38

Décomposition de Fourier

$$\omega(x, y) = \sum \hat{\omega}(n_x, n_y) \sin\left(n_x \pi \frac{x}{L}\right) \sin\left(n_y \pi \frac{y}{L}\right)$$

Structure de l'écoulement

 $(n_x, n_y) = (3,3), (3,5)$ Vorticité à petite échelle $(n_x, n_y) = (1, 1)$ Ecoulement à grande échelle $(n_x, n_y) = (2, 4)$ Mode du forçage

Interactions triadiques

Etat condensé pour un forçage stationnaire

Gallet and Young, 2013

50

0 x [mm]

Renversements entre deux états symétriques

Renversements erratiques entre les deux sens de rotation.

Décroissance exponentielle de la fréquence $F_r = \tau_c^{-1} C \exp(-\alpha Rh)$ avec $\tau_c^{-1} = \sqrt{f/L}$

Distribution des temps entre renversements

$$P(\tau_{renv}) = C \exp(-\tau_{renv}/\tau_0)$$

Dynamique des renversements

Rh=38

Rh = 48

Concentration des trajectoires lorsque Rh augmente

Dynamique de basse dimension?

À Rh grand, concentration des trajectoires et simplification des renversements.

Structure de l'état condensé indique une dynamique de basse dimension.

L'intermittence de crise.

Collision entre deux attracteurs chaotiques.

Loin du seuil de collision, renversements complexes.

Distribution exponentielle des temps entre renversements.

Conclusion

Comment déterminer et quantifier l'émergence des structures aux grandes échelles ? Quelles sont la dynamique temporelle et la signature fréquentielle de ces structures ?

Conclusion

Conclusion

Turbulence avec structures grandes échelles 12 < Rh < 30

Distributions non gaussiennes.

Emergence d'une amplitude préférentielle de la circulation

Spectre en 1/f: $E(f) \propto f^{-\alpha}$

Distribution $P(\tau) \propto \tau^{\beta}$

Relation entre les exposants α , β : $\alpha + \beta = 3$

Etat condensé *Rh*>30

Emergence d'une structure de vorticité particulière.

Interactions entre l'écoulement à grande échelle et le forçage.

Renversements de la circulation .

Fréquence des renversements décroit avec Rh.

Simplification des renversements à haut Rh.

Perspectives

Turbulence avec structures grandes échelles 12 < Rh < 30

Comprendre la transition à Rh=12 : origine de la décomposition en deux gaussiennes ?

<u>Piste</u> : bruit dans forme normale / processus stochastique.

Origine de la distribution en loi de puissance : $P(\tau) \propto \tau^{-\beta}$?

<u>Piste</u> : analyser la stabilité des structures à grande échelles.

Etendre l'approche à d'autres systèmes comportant du bruit en 1/f.

Piste: écoulement von Karman

Etat condensé *Rh*>30

Origine de la structure préférentielle de vorticité : point fixe, cycle limite..?

Piste: outil numérique : capture cycle instable (Chandler and Kerswell, 2013).

Etudier la dynamique des renversements à Rh grand.

<u>Piste</u>: adapter le montage pour injecter des courants plus importants.

Merci de votre attention

<u>Arguments qualitatifs</u> $2 < \beta < 3$

Signal $u(t) = \pm 1$ avec des durées de séjour dans chaque polarité, distribuées par $P(\tau) \sim \tau^{-\beta}$

<u>Stratégie:</u> calcul du spectre à partir de la fonction d'auto-corrélation (Wiener-Khintchine)

Fonction d'auto-corrélation :
$$C(t) = \frac{1}{T_f} \int u(T-t)u(T) dT$$

Wiener-Khintchine $E(f) = \int C(t) \exp(i2\pi f t) dt$

L'auto-corrélation est dominée par la contribution des phases de durée $\tau > t$

Calcul de la fonction d'auto-corrélation

$$C(t) \approx \frac{1}{T_f} \int_{t}^{T_f} (\tau - t) \langle n \rangle P(\tau) d\tau$$
$$P(\tau) = C \tau^{-\beta} \qquad 2 < \beta < 3$$

Application

$$C(t) \propto \int_{t}^{T_{f}} \tau^{-\beta+1} d\tau \quad \text{ainsi} \quad C(t) \propto t^{-\beta+2}$$

$$E(f) \propto \int t^{-\beta+2} e^{i2\pi ft} dt \quad \text{en posant} \quad E(f) \propto f^{\beta-3} \int u^{-\beta+2} e^{i2\pi u} du$$

$$u = ft$$

<u>Finalement</u>

$$E(f) \propto f^{-\alpha}$$
 avec $\alpha + \beta = 3$

Espace des phases (U_L, U_S)

La vitesse moyenne entre le centre et la moitié de la cellule U_s

Renversements chaotiques passant proche de l'origine

Renversements déterministes

La grandeur U_M indique une bifurcation : La variance σ^2 varie faiblement

$$U_M \propto (Rh - Rh_c)^{1/4}$$
 $Rh_c = 12$

$$K = \frac{U_{M}^{4} + 6\sigma^{2}U_{M}^{2} + 3\sigma^{4}}{U_{M}^{4} + 2\sigma^{2}U_{M}^{2} + \sigma^{4}}$$

