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Abstract (English)

Recent experimental advances have made it possible to record up to several
hundreds of neurons simultaneously in the cortex or in the retina. Ana-
lyzing such data requires mathematical and numerical methods to describe
the spatio-temporal correlations in population activity. This can be done
thanks to Maximum Entropy method. Here, a crucial parameter is the prod-
uct N x R where N is the number of neurons and R the memory depth of
correlations (how far in the past does the spike activity affects the current
state). Standard statistical mechanics methods are limited to spatial cor-
relation structure with R = 1 (e.g. Ising model) whereas methods based
on transfer matrices, allowing the analysis of spatio-temporal correlations,
are limited to NR < 20. In the first part of the thesis we propose a mod-
ified version of the transfer matrix method, based on the parallel version
of the Montecarlo algorithm, allowing us to go to NR ~ 100. In a second
part we present EnaS, a C++ library with a Graphical User Interface de-
veloped for neuroscientists. EnaS offers highly interactive tools that allow
users to manage data, perform empirical statistics, modeling and visualizing
results. Finally, in a third part, we test our method on synthetic and real
data sets acquired from retina and provided by neuroscientists partners. Our
non extensive analysis shows the advantages of considering spatio-temporal
correlations for the analysis of retina spike trains, but it also outlines the
limits of Maximum Entropy methods.
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Résumé (Francais)

L’évolution des techniques d’acquisition de I'activité neuronale permet dé-
sormais d’enregistrer simultanément jusqu’a plusieurs centaines de neurones
dans le cortex ou dans la rétine. L’analyse de ces données nécessite des
méthodes mathématiques et numeériques pour décrire les corrélations spatio-
temporelles de la population neuronale. Une méthode couramment employée
est basée sur le principe d’entropie maximale. Dans ce cas, le produit N x R,
ou N est le nombre de neurones et R le temps maximal considéré dans les
corrélations, est un paramétre crucial. Les méthodes de physique statistique
usuelles sont limitées aux corrélations spatiales avec R = 1 (Ising) alors
que les méthodes basées sur des matrices de transfert, permettant ’analyse
des corrélations spatio-temporelles (R > 1), sont limitées & N x R < 20.
Dans une premiére partie, nous proposons une version modifiée de la méth-
ode de matrice de transfert, basée sur un algorithme de Monte-Carlo paral-
lele, qui nous permet d’aller jusqu'a NR ~ 100. Dans la deuxiéme partie,
nous présentons la bibliothéque C-++ Enas, dotée d’une interface graphique
développée pour les neurobiologistes. Enas offre un environnement haute-
ment interactif permettant aux utilisateurs de gérer les données, effectuer
des analyses empiriques, interpoler des modéles statistiques et visualiser les
résultats. Enfin, dans une troisiéme partie, nous testons notre méthode sur
des données synthétiques et réelles (rétine, fournies par nos partenaires biol-
ogistes). Notre analyse non exhaustive montre Pavantage de considérer des
corrélations spatio-temporelles pour 'analyse des données rétiniennes; mais
elle montre aussi les limites des méthodes d’entropie maximale.
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Chapter 1

Introduction

Contents

M1 Tntroductionl .............. ... ... 13

(1.2 Neurons speak “spikes” . . . ... ... ....... 14

(1.3 Neuralcoding|. . . .. ... ... ... ... 14

(1.3.1  S|R relation and response variability| . . . . . . . . 16

[1.3.2  Probabilistic modeling categories| . . . . . . . . .. 18

(1.4 Review of approaches distinct tfrom Maximum |

| Entropy| . . .. .. .. i e 20

(1.5  Goal of the thesis .. ... ... ... ... ..., 21

1.6 Organization and chapters summary| . . . . .. .. 22

“Neurons are discrete and autonomous cells that can interact.” Santiago
Ramon Y Cajal, 1906.

1.1 Introduction

In this chapter we introduce the problematic we addressed. We begin with
an introduction to neurons without going into details because we do not
consider the neurons activity at a microscopic level (ions exchange, membrane
potential, etc ...) but only at a behavioral level (did the neuron spike or not!).
Afterwards, we briefly introduce the wide field of neural coding and we precise
in which niche this work fits. Finally, we present our goal and the chapters
organization.
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1.2 Neurons speak “spikes”

Sensory neurons (Figure |1.1(a)]) respond to stimulus and transmit corre-
sponding information to the brain. A stimulus induces changes in the voltage
across the neuron’s membrane, which, when it reaches a certain threshold,
it produces a signal: action potential. The action potential has always the
same shape for a given neuron. This fact made researchers substitute an
action potential with a “spike”, a vertical dash that expresses if a neuron fires
or not.

Neurons also interact with each other and communicate information
using spikes. So, this is their language. If one wants to study the information
transmitted by neurons, one has to study the spatio-temporal sequences of
spikes emitted by neurons: spike trains. The science of studying this infor-
mation is an emergent domain and called neural coding. In order to situate
our work, we give a brief introduction about the main axis of this field in the
next section.

The retina (Figure is one of the most challenging studied neural
networks because of its importance as a sensory organ as well as the possible
bio-inspired technologies (retinal prosthetic, robotics, image processing) that
benefits from the understanding of the retinal functioning.

1.3 Neural coding

One of the fundamental problems in systems neuroscience is that of determin-
ing the functional relationship between the stimulus and the spike responses
of neurons. This problem referred to as the “neural coding problem”. Tt is
like the dictionary “stimulus(S) &= response(R)”. Neural coding exists in two
modes: encoding and decoding. Encoding is mapping from stimulus to re-
sponse. Decoding is the inverse problem: what is the stimulus given some
response? Figure shows an example of neural coding. This example is
taken from |Gollisch and Meister, 2008] and illustrates the relation between
the stimulus that a retina receives and the response of the retinal ganglion
cells. We observe a systematic relation between the stimulus (here a gratings
with several spatial phases) and two measurable quantities in the response
of those cells (here spike count and the latency). That is, the retina trans-
lates the spatial phase of the grating into spike count and latency code. The
neural coding exists in several schemes:

e Rate coding: it assumes that information about the stimulus is con-
tained in the firing rates.

14
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Figure 1.1: (a) The neuron receives the information about the stimulus via
the dendrites terminals, processes it in the Soma and then transmits infor-
mation in the form of action potentials. As shown, there is a train of action
potentials. We substitute them with spikes or bits of information to make
processing easier. Modified from wikipedia.org. (b) The retina is system
of 5 cell layers (photo-receptors, bipolar cells, horizontal cells, amacrine cells
and retinal ganglion cells (RGC)). The photo-receptors transduce light to
electrical signals. The RGC transmit the information to the brain through
the optic nerve. RGC and other cells process the information before sending
it to the brain. Source: wikispaces.com,


wikipedia.org
wikispaces.com

e Spike count rate: also called temporal average. It consists in counting
the number of spikes during a single trial of the stimulus (usually of
length 500-1000 ms).

e Time-dependent firing rate: it consists on studying how the firing rate
evolves over the spike train. This techniques is also used to measure
the stationarity of data.

e Temporal coding: this technique assumes that the information is con-
tained in the precise time of spikes. For example, measuring the time
of the first spike after stimulating cells.

e Population coding: it considers that the information is coded in the
joint activity of neurons (such as interactions).

A detailed description on the neural coding schemes is investigated in
[Aldworth et al., 2011}, [Panzeri et al., 2010]. In this thesis we consider the
population coding scheme using a probabilistic modeling approach based on
the Maximum Entropy Principle.

1.3.1 S|R relation and response variability

Nothing guarantees that the response R will be the same if the stimulus S
is repeated on several trials. In fact, at each trial, we observe a variability
in the response of the retina. Figure[I.3shows the response an RGC over 18
trials of the same stimulus (data D;;, explained in chapter 5)). We observe
a variability in the response from one trial to another. We have seen also in
Figure that the rate and latency have been measured over several trials
because the variability of the response. This variability is caused by noise
artifacts, acquisitions systems reliability, spike sorting accuracy .... Some
studies also suggested that one of the reasons for which there is a variability
of the response is that there is a uniform noise in the retinal ganglion cells
themselves [Croner et al., 1993]. Thus, if the response is not the same at each
trial and for the same stimulus, this means that the empirical statistics that
we perform on the data are not the same. For this reason, a common belief,
which will be our working hypothesis, is that the response, and related sample
empirical averages, are generated by a hidden probabilistic model reflecting
some hidden laws and causality, that we try to infer from data. This is a
key step toward deciphering the neural code: having a probabilistic model
P[S|R], one can infer a probabilistic “dictionary” for the code, based on the
Bayes concept:
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Figure 1.2: Ganglion cell responses to flashed gratings with different spatial
phases. (A) Raster plots of spike responses from four ganglion cells to sev-
eral 150 ms presentations of each of eight gratings. Time is measured from
stimulus onset.(Left) Schematic drawings of the eight stimuli with different
spatial phases. The circles show 1-SD contour lines of the spatial receptive
fields of the four cells, correspondingly from left to right, in relation to the
stimuli. (B) Tuning curves of the elicited spike count. Here and in subse-
quent figures, all error bars show the standard deviation across trials with
the same stimulus. (C) Tuning curves of the first-spike latency. “Fast OFF”
and “biphasic OFF” cells typically showed strong tuning in the latency and
only mild tuning in spike count; despite their names, these cell types receive
input from both ON and OFF pathways (19). “Slow OFF” and “ON” cells, on
the other hand, displayed good tuning in the spike count and often did not
respond with spikes to all stimuli. The relatively long latencies are typical
for cold-blooded animals. From |Gollisch and Meister, 2008].
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Figure 1.3: The response of 1 neuron over 18 trials. The neuron is a ganglion
cell from the salamandar retina and the stimulus is a real movie (data set
Dy explained in chapter [5)).

P[R|S] x P[S] = PI[S|R] x P[R], (1.1)
g~ P o

Our aim is to find a probabilistic model P[R|S]: what is the probability
of having a response R if we know the stimulus S.

1.3.2 Probabilistic modeling categories

There are two main categories of probabilistic models:

e Stochastic models: those models are used to describe an undeterminis-
tic process. They consist of a collection of random variables which de-
scribes a process that evolves in an undeterministic way, independently
from the starting point (which means that the future state of the sys-
tem is unpredictable and may evolve in an infinite number directions).
The Gaussian model, that could be described by two parameters, mean
and standard deviation, is one example.

e Graphical models: Denotes the conditional dependence between the
random variables. In other words, it emphasizes the fact that the state
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of one random variable depends on the state of other random vari-

able(s). The graphical models contains two main subfamilies: Bayesian
networks and Markov Random Fields (MRF).

Since we are interested in studying the neural activity in a collective fash-
ion, we will concentrate on MRF because it offers the possibility to represent
the spatial and temporal dependencies between variables (which will be the
spiking events).

Modeling P[S|R]

We want a probabilistic model that fits to the data, taking into account the
following points:

e The spatial dependencies: it represent the dependence between two
or more neurons at the same time -instantaneous dependence. In
fact, neurons do not act independently. Correlations between neurons
have been investigated in several studies and they affect the statis-
tics, although they are very small compared to the individual activ-
ity (|Schneidman et al., 2006| [Ganmor et al., 2011a]). We can validate
this assumption by showing the error committed by an independent
model when we test how it predicts higher order activities (correla-
tions, interactions with delay ...). For example, if we assume that
the activity of neurons is independent, which mean that the model is
governed by a Bernoulli law, the model will not be able to accurately
predict the instantaneous correlations.

e The temporal dependencies: where there is a dependence between two
or more neurons, within a certain delay. In other words, the retinal
activity at an instant ¢ depends on the past activity. The memory con-
cept, which identifies how long the retina uses from its past activity
in order to determine the current state, should be in our probabilis-
tic model. In other words, the memory is one of the model charac-
teristics. The importance of temporal dependencies has been proven
to be essential for spike train statistical models in |[Tang et al., 2008,
Vasquez et al., 2012].

The Maximum Entropy P|[R|S]

The Maximum Entropy is the modeling framework we will use. It was first
introduced by [Jaynes, 1957] as a method to infer probabilistic models that
maximizes our knowledge about the data. This framework imposes itself as a
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natural candidate because it allows one to take into account any measurable
quantity (as a feature in the model) from the spike train. For instance, one
can consider that the model contains only individual activities of neurons
and see whether it permits to predict higher order activities such as pairwise
correlations. Adding pairwise with delay is also possible, yet not trivial.
Recently, [Vasquez et al., 2012] proposed a Maximum Entropy framework
that accounts for temporal dependencies (the spatial and spatio-temporal
models will be presented in details in the next chapter). However it allows one
to study 20 neurons maximum for spatial distribution and 5-10 neurons for
distribution with memory 1-2 time units. Here we propose another approach
allowing to analyze larger networks.

1.4 Review of approaches distinct from Maxi-
mum Entropy

Here we shortly review several interesting approaches attempting to decipher
the neural code with probabilistic models.

One approach is provided by the so-called Linear-Nonlinear (LN) models
and Generalized Linear Models (GLM) [Brillinger, 1988|,[McCullagh and Nelder, 1989,
Paninski, 2004, Truccolo et al., 2005} |Pillow et al., 2005, [Pillow et al., 2008
Ahmadian et al., 2011], [Pillow et al., 2011]. The idea is to model spike statis-
tics by a point process where the instantaneous firing rate of a neuron is a non-
linear function of the past network activity including feedback and interac-
tions between neurons [Simoncelli et al., 2004]. This model has been applied
in a wide variety of experimental settings [Brillinger, 1992} |Chichilnisky, 2001,
Theunissen et al., 2001, Brown et al., 2003, Paninski et al., 2004, |Iruccolo et al., 2005,
Pillow et al., 2008|. Here, neurons are assumed to be conditionally-independent
given the past. The probability to have a given spike-response to a stimulus,
given the past activity of the network, reads as the product of firing rates
(see e.g. eq. 2.4 in [Ahmadian et al., 2011]]. They define a Markov process
where transition probabilities are known. The main advantages of the GLM
are: (i) transition probability is known (postulated) from the beginning and
does not require the heavy normalization; (ii) The model parameters have
a neurophysiological interpretation, and their number grows at most as a
power law in the number of neurons (as opposite to the Maximum Entropy,
where the parameters are delicate to interpret and whose number can be-
come quite large, depending on the set of constraints). The main drawback
of this approach is the assumption of conditional independence between neu-
rons. Recently, Macke et al. [Macke et al., 2011] extended the GLM model
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to fix the lack of instantaneous correlations between neurons in the GLM.
They added a common input function that has a linear temporal dynamics.
However, one of the disadvantages of this technique is that its likelihood is
not unimodal, and thus that computationally expensive: Expectation Max-
imization algorithms have to be used to fit parameters. The GLM model is
usually used to model both the stimulus-response dependence as well as the
interaction between neurons, while the Maximum Entropy models usually
focus on the latter (but see [Tkacik et al., 2010]).

Another approach is the one presented in [Cocco et al., 2009]. Cocco
and co-workers consider retinal ganglion cells spiking activity with a dual
approach: on one hand they consider an Ising model (and higher order spatial
terms) where they propose an inverse method based on a cluster expansion
to find efficiently the coupling in Ising model from data; on the other hand,
they consider the problem of finding the parameters (synaptic couplings) in
a Integrate and Fire model with noise, from its spike trains. In the weak
noise limit the conditional probability of a spiking pattern given the past is
given by a least action principle. This probability is a Gibbs distribution
whose normalized potential is characterized by the action computed over an
optimal path. This approach allows the characterization of spatio temporal
events. Especially it gives a very good fit of the cross-correlograms.

Finally, |[Roudi and Hertz, 2011] consider a one step memory Markov
chain where the conditional probability has a time-dependent potential of
Ising type. Adapting a Thouless Anderson-Palmer [Thouless et al., 1977]
approach used formerly in the Sherrington-Kirkpatrick mean-field model of
spin glasses [Sherrington and Kirkpatrick, 1975] they propose an inversion al-
gorithm to find the model-parameters. As in the GLM their model assumes
conditional independence given the past.

1.5 Goal of the thesis

An interesting subject in today’s neuroscience is to study the neural code
at a large scale and decipher the importance of temporal and spatial depen-
dencies between neurons. This is currently not possible for large network
with existing frameworks based on Maximum Entropy models with spatio-
temporal constraints because of computational complexityﬂ In parallel, the
Multi-Electrode array technologies are evolving dramatically and the number

'We measure the scale using the product N x (D+1), where N is the number of neurons
and D is the memory effect taken into account in the model. We will consider that we are
in the large scale case when N x (D + 1) > 20.
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Figure 1.4: The evolution of the MEA technology over years. The number of
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was published in [Ferrea et al., 2012|. In 2020, we may have a 8100 channels
MEA systems. Taken from [Stevenson and Kording, 2011].

of neurons we can acquire simultaneously is doubling each 8 years (Figure
1.4). Hence, we are faced with a critical mass of neural data without the
possibility of studying the spatio-temporal models hidden in the activity of
neurons at large scale.

The goal of this thesis is to make one step toward exploring large scale
spike trains with spatio-temporal dependencies. We propose a mathematical
framework and a software for this issue.

The mathematical framework is based on the transfer matrix principle
but extended thanks to Montecarlo to allow analyzing large scale networks.
We also propose a method to fit the parameters of the statistical models.
This framework could be also a subject of study in order to improve it. One
of the aims of this thesis is also to precise critical aspects of the framework
and give roadmaps for further investigations. This issue is discussed in the
last chapter. Finally, we also wanted to provide a first version of a software
that could be interesting for researchers curious to understand neural coding.
This software has been released in a first version and could also be a subject
of improvement itself. In last chapter we suggest new features to add in the
software.
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1.6 Organization and chapters summary

This thesis is divided into 5 chapters. In the chapter [2] we present the mathe-
matical framework for inferring Maximum Entropy models from spike trains,
based on the transfer matrix technique, used to compute a probability distri-
bution given its parameters. We will discuss the case of spatial and spatio-
temporal models and give some examples used in the literature, such as Ising
model. The second chapter itself is an introduction to the third chapter.

Chapter [3] shows that it is possible to use the mathematical framework
explained in chapter 2| for large networks by changing the method of com-
puting the probability distribution from a given set of parameters. We will
replace the transfer matrix technique with a Montecarlo based method that
allows one to compute probability distributions for larger networks. We will
also show the parallelization of the Montecarlo method on multi processors
computers and clusters. In the second part of this chapter we will show a
method to compute the parameters. In fact, for small scale network, the
Kullback-Leibler divergence could be easily computed and then we can min-
imize explicitly this divergence in order to fit the parameters. However,
for large networks, where this divergence is hard to compute, we will use
another criterion for fitting the parameters. The method is inspired from
[Dudik et al., 2004] and extended to the spatio-temporal case. Overall, the
chapter [2] and [3] present the mathematical framework.

Chapter [] presents the EnaS library which contains the computational
tools we developed to perform empirical statistics and fitting models on spike
trains. This chapter will explain the main functionalities of the library. We
will also explain in details some of the computational techniques we used
to manage spike train data. Based on this library, we developed a highly
interactive graphical user interface (GUI) that allows non-programmers to
performs statistics on spike train data. We will explain this GUI as well as
the task that can accomplish.

In chapter [5] we show results on real data using the computational frame-
work we developed, EnaS. First, we explain briefly the Multi-Electrode ac-
quisitions from retina dissection until spike sorting. Afterwards, we explain
about the data sets that our collaborators provided and on which we per-
formed analysis on small and large scale. We show results on those data for
several models in spatial and spatio-temporal case.

Finally, chapter [0] is dedicated to discussions and perspectives. After
applying our mathematical framework on the real data, we suggest several
open questions that could be the subject of other projects.
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In this chapter we introduce the definitions we will use along the thesis
(section and then review the Maximum Entropy method for modeling
spatial and spatio-temporal distributions for spike train data (section .
In section [2.3]and 2.4l we explain the fitting parameters process and we give a
practical example to clarify the process. Finally, we highlight the limitations
of the existing methods in order to introduce the next chapter (section .

2.1 Definitions

2.1.1 Spiking objects

The spiking objects represent forms of activities in the spike train. We have
4 types of spiking objects (Figure :

e Event, represents the activity of a single neuron ¢ at a single time t. It
is defined by:

wilt) = { 1, if the neuron ¢ fires at time ¢, (2.1)

0, otherwise.

e Spike pattern, {w;(t)}i=1 n, represents the activity of the whole network
at a precise time ¢.

e Spike block, w;?> = {w(t);, <1<, }, represents the activity of the whole
network between two times t; and t,.

e spike train, w, is a set of events that represent the activity of a neural
network of size N over a time period T time-steps. We assume that
time has been discretized.

Spike trains are obtained after spike sorting of Multi-Electrode acquisi-
tions (MEA) acquisitions. The MEA allows the acquisition of many signals
in the same time. MEA and spike sorting are explained in details in the
chapter 5| since they are not crucial to understand the following mathemat-
ical framework. Here are some examples of spike patterns and blocks on a
set of 3 neurons:

. % is a spike pattern ( of depth 1 by definition) and it means that the

—O—

neuron 0 fires while other neurons are silent. 0 is also a spike pattern
and it means that neurons 0 and 2 fire together and neuron 1 is silent.
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Figure 2.1: The horizontal and vertical axis represent respectively time (usu-
ally in ms) and neuron index. The spike pattern corresponds to a 1 time-step
(green box). The spike block corresponds to several time-steps (red box). An
event (Eq. is defined by a neuron index and a time-stamp , (i,¢) (black
vertical sticks). Note that in this thesis, we consider counting neu-
rons beginning from 0, which is always at the bottom in the spike
train graph. As we go up, we plot neurons activities with higher
indexes.

is a spike block of depth 2. Tt represents the fact that the neurons
nd 2 fire together while the neuron 1 is silent, right after the neuron
fires and all other neurons are silent.

01
10
01

0a

1

We can have 2V*® possible patterns of time range R in a network of N

neurons. For instance, in a network of 3 neurons, we have 23%! = 8 possible
patterns of time range 1 and 22%3 = 64 patterns of depth 2.

2.1.2 Monomials

A monomial is a logical AND operator which associates the value 0 or 1 to
a raster. It reads,
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my(w) = ﬂwir(tr)

— o (b )y () i () (2.2)

Thus, m;(w) = 1 if and only if neuron ¢; fires at time ¢; ...neuron iy fires
at time ¢ in the raster w, and m;(w) = 0 otherwise.

Ezample: The events ensemble P = {(0,1),(2,0), (4,2)} corresponds to
the monomial m; = wo(1)ws(0)wy(2).
The monomial’s value depends only on the events identified by the set of
pairs P (in the example, the set of pairs is: (0,1), (2,0) and (4,2)). The range
of the monomial, R, corresponds to the difference between the biggest and
the smallest time-stamps in P (max|t; —t;]). We note D = R—1 (D will be
called later on “memory depth”). Hence, a monomial of range R, m;(w{’), is
a function which associates to the block wf the values {0,1}. Tt is 1 if and
only if the events in P are 1 in wf. Tt is useful to represent the monomial
by a mask:

8 =8
— 88 8
8 8 =

T T

The mask is a block of size N x R where the entries corresponding to P
are set to 1 and the other values are arbitrary (represented by an z). Hence,
my; = 1 if and only if all the 1s in the mask coincide with the 1s in the
spike block wi™!. The following table shows the value of the monomial m
in several cases:

0 0 0 0 0 0 10
. . . 0 0|0 0 O 0 0 10
If the spike train w is ooolioolooolo1o
0 011 0[0 0 0J0 0O
then the monomial
my = wo(1)we(0)ws(2) = K K K

There is a difference between “block” and “monomial” that merits to be
highlighted. In fact, the pattern represents the activity of all the neurons
without any exception. On the opposite, the monomial represents the activity
of a precised subset of neurons regardless the activity of other neurons. For
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example, the pattern § represent the fact that the neuron 0 fires while the

two other neurons are silent. However, the monomial %E means that the
neuron 0 fires and the rest of the neurons may be silent or active and it takes
the value 1 for all the following blocks:

0 1 1
,1,0 and 1
171 1

[ =J=]

2.1.3 Observables

An observable is a function that associates a real value to a spike train. The
range of an observable is the smallest integer (R > 1) such that f(w) =
f(w& 1. Any observable of range R can be written as a linear combination
of monomials with range R.

2NE_1

Ff™) = > i) (2.3)

A Gibbs potential is such an observable, it reads:

Hw) =Y Am(w), (2.4)

where L is the number of monomials in Gibbs potential and \;s are free pa-
rameters. Although statistical mechanics considers infinite ranges, we restrict
here to potentials with finite range R.

2.1.4 Empirical statistics

Empirical statistics (or descriptive statistics) are those which measure quan-
tities directly from data sets. In our case, empirical statistics helps us to
visualize information about a spike train w of length 7. Measuring the oc-
currence of the spike objects (events, spike blocks, spike patterns) we defined
in the previous section is an example of empirical statistics we can perform
on a spike train.

We mostly use the term “empirical average” which is the occurrence of
a spike object over some length. For instance, the empirical firing rate of a
neuron 7 is the empirical average of the event w;(0) (in our notations, neuron
i fires) and it reads,

7 [y = %;wm (25
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The empirical average of a spike block of depth D reads:

w0 [wf] = = 1 = 2:: 5(t) (2.6)

where

1, it =wp
ot) = { 0, otherwise.

The empirical average of a monomial reads:

w0 [y = —2— 3" A1) 2.7)

t=0

where
1, ifE, CFE b
1) = ) my = St
7(®) { 0, otherwise.

E,,, and szw are the ensembles of events that define respectively the

monomial m; and the spike pattern/block witP,

For example, the monomial % whose ensemble of events E,,, is {(0,0), (2,0)}
belongs to the pattern (1) and i but does not belong the patterns § , § and
all the other patterns who have the neurons 0 and 1 silent.

Figure[2.2]shows a real spike train on which we performed some empirical
statistics such as the occurrence of single neuron events, patterns and blocks.

The empirical average is a random variable, depending on the raster w,
as well as on the time length of the sample. It has Gaussian fluctuations

whose amplitude tends to 0, as T' — +o0, like \/LT (central limit theorem).

2.1.5 Statistical modeling

By definition, a model is the simplification of (a complex) reality. Statistical
modeling consist in (i) choosing features (in our case monomials) with which
we represent the statistics of random variables (in our case spike blocks)
in a process or a system (in our case spike train) and (ii) finding the best
distribution that corresponds to the data. The monomials choice affects the
goodness of the model. For instance, if we choose a Bernoulli model (where
all neurons are independent) to represent the statistics of patterns in a spike
train where instantaneous activity between neurons is significant, then the
model is not good. We evaluate the goodness of a model using two techniques
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Figure 2.2: An example of the empirical statistics measured on a real spike
train of 40 neurons (a). (b) the counts of single neurons activities. (c), (d),
and (e) show respectively the histograms of patterns of depth 1, 2 and 3.



explained below (the Kullback-Leibler divergence (KLD) and the confidence
plots).

Our aim is to find a statistical distribution p that is the closest possible
to the empirical distribution 7. We will explain in the next section how we
infer p from 7.

Kullback-Leibler divergence
The KLD between two probability distribution reads:

(T) [W(TJL]> 28)

dpi (T, JMA = lim - 7TT) log(
G Z ]

n—>+<>o n

In the spatial case, the KLD reads:

dia(w, ) ZW )| log <M> (2.9)

w(0)

Computing the KLD gives an idea about the distance between the model
and the spike train. Theoretically, the smaller the KLD, the better the model.

Confidence plots

Confidence plots is another way to evaluate a model. Since we are expecting
an error on the predicted probabilities of blocks, an interval of error should
be fixed in order to check whether the estimated values lie within this inter-
val or not. The expected predicted probabilities of monomials are random
variables whose exact value is equal to the expected value 4+ some error. The
relation between "expected“ and "true” value is given by the central limit
theorem which states the expected averages oscillates around the true value
as a normal distribution of mean equal to the true value of the monomial

average and a standard deviation equal to o = w

Figure H
show a Gaussian distribution and the 68 — 95 — 99.7 rule. The region o
m(wl) £ o covers 68% of the accepted expected averages and so on. We have
chosen to choose a confidence bounds which ensures that we cover 99.7% of
the expected averages. For that, our confidence bounds read:

O, = m(Wh) £ 3\/W<”3) . (;_ (W) (2.10)

An example of confidence plots will be shown in following chapters.
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Figure 2.3: The 68 —95—99.7 rule. It states that 68% of the values lie within
[1 — 0,7+ c], 95% of the values lie within [7 — 20, 7 + 20] and 97.3% of the
values lie within |7 — 30, ™ + 30].
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Figure 2.4: The confidence bounds, C,, and C, around the equality identity
Yy =x.
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Figure 2.5: An illustration of transition probability presenting the block w(’? -1
(for illustration, here D = 3) and the pattern w(D).

2.1.6 Markov Chain

In this thesis, we consider that the observed spike trains have been gener-
ated by a Markov chain with memory depth D, defined by a family of tran-
sition probabilities Plw(D)|wd '] (see Figure for an illustration). This
consideration results from the temporal dependencies assumption. In gen-
eral, those transition probabilities depend explicitly on time, but we focus
here on time-translation invariant processes (homogeneous Markov chain).
As a consequence, the Markov chain is fully described by the probabilities
Plw(D)|w™"] (in the general case, one would have to consider transition
probabilities P, [w(n)|w"”}], where the probability depends explicitly on the
time index n). A probability distribution u(w’™') is compatible with the
Markov chain if, for any block w{:

plot’] = Plo(D)wy Tu(ws ™) (2.11)
w(0)

1 is also called the invariant probability of the Markov chain. We shall assume
here that all transition probabilities are strictly positive, Plw(D)|wg "] > 0.
In this case, the invariant probability exists and is unique. Given the set
of transition probabilities and the invariant probability ., the probability of
blocks of depth n + 1 is given by the Chapman-Kolmogorov equation:
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plwg] = plwo(n),wfi)
= plwo(m)ley i),
= plw(n)|wg ™ plw(n — 1wy~ u(wy™?)
=TI Plom)lw;bDulwd ™ (2.12)

Eq. states that the probability to observe the block wj depends
on the pg—probability to start with the initial state wl ™' as well as on the
transition probabilities, taking into account, each time, how likely it is to
obtain a pattern w(r) given the previous state w/ J,.

On the opposite, if D = 0, the probability to have the spike pattern
w(D) does not depend on the past activity of the network (we call this the

memory-less case). In this case Plw(r)w.";] = pw(r)] and the probability

(Eq{2.12) of a block becomes:
plog] = T [ lw®)] (2.13)
1=0
Therefore, in the memory less case, spikes occurring at different times are

independent. This emphasizes the deep differences between the case D = 0
and D > 0.

2.2 Maximum Entropy Principle

The Maximum Entropy Principle (MEP) is a method to obtain, from the
observation of a statistical sample, a probability distribution that approaches
at best the statistics of the sample, taking only into account the information
available on this sample. In general, it relies on a fundamental assumption:
the statistical model that has generated the sample is stationary, although
some attempts to extend it to non stationary data has been proposed in
[Pressé et al., 2013]. This means that the average of an observable does not
depend explicitly on time.

Assigning equal probabilities (uniform probability distribution) to possi-
ble outcomes dates back to Laplace and Bernoulli (|[Garibaldi and Penco, 1985])
("Principle of insufficient reason"). Maximizing the statistical entropy with-
out constraints is equivalent to this principle. When one has some knowledge
about the outcomes, this knowledge has to be used to infer the probabilities
of these outcomes. In general knowledge is characterized by empirical average
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of prescribed observables: this constitutes a set of constraints. Maximizing
the statistical entropy given those constraints provides a distribution as far
as possible from the uniform and as close as possible to the empirical dis-
tribution. For instance, considering the empirical mean and variance of the
sample of a random variable as constraints results in a Gaussian distribution
as a prototype to fit the statistics of this sample. In our case, the natural
constraints are represented by the probability of occurrence of characteristic
spike events in the spike train, or, equivalently, by the average of specific
monomials. Classical examples of constraints are the probability that a neu-
ron fires at a given time (firing rate) or the probability that two neurons fire
at the same time.

2.2.1 Motivations

The Maximum Entropy Method provides a method to infer a Markov chain
of depth D, that fits best to data. In this thesis, D is fixed by the user, i.e.,
we haven not investigated a method to guess D from data (as proposed in
|Galves et al., 2012] and [Csiszar and Talata, 2006]). The goal is to find a
probability distribution p such that:

e 4 is inferred from an empirical raster w, by computing the empirical
average of a set of predefined monomials of range R = D+ 1. One asks
that the average of m; with respect to u satisfies:

wlm] =7 [my], 1=1,...,L. (2.14)

The mean of my, predicted by u is equal to the mean computed on the
experimental raster. The set of monomials m; defines the model pu.

e 1, has to be “as simple as possible”, with the least structure and a
minimum number of tunable parameters. In the Maximum Entropy
paradigm ([Jaynes, 1957]) these issues are (partly) solved by seeking
a probability distribution g which maximizes the entropy under the
constraints (EqR2.14). The entropy is defined explicitly below (see Eq.

and [2.35)) in our context.

e From the knowledge of i1 one can compute the probability of arbitrary
blocks (via Eq2.12)) and the average of other monomials than the nys.

In the following, we will present the mathematical framework for infer-
ring Maximum Entropy models from spike trains. The simplest form of the
Maximum Entropy Principle is to consider all neurons are independent. As
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we add more monomial, for instance those which represents interactions be-
tween neurons, the model and the computation get more complicated. In
addition, adding temporal effects is not trivial and changes completely the
mathematical framework. For that, we will begin by explaining the simplest
forms of Maximum Entropy, such as Bernoulli and Ising where monomials are
only spatial. Afterwards, we present the one time step Maximum Entropy
models and finally the spatio-temporal Maximum Entropy models which we
use as a general framework for both spatial and spatio-temporal models.

2.2.2 Maximum Entropy for spatial models

Spatial models have been studied widely in the literature, [Ohiorhenuan et al., 2010,
Schneidman et al., 2000}, [Tkacik et al., 2009, |(Ganmor et al., 2011a]. For in-
stance, [Schneidman et al., 2006] aimed at unraveling the role of instanta-
neous pairwise correlations in retina spike trains. Although these correlations
are weak, these researchers investigated whether they play a more significant
role in spike train statistics than firing rates. For instance, such models
would contain monomials that correspond to rates and n — uplets instan-
taneous interactions such as pairwise, triplets .... Firing rates correspond
to the average of monomials of the form w;(0),7 = 0,..., N — 1 (the time
index 0 comes from the assumed time-translation invariance) while instanta-
neous pairwise correlations correspond to averages of observables of the form
w;i(0)w;(0),0 < i < j < N — 1. Here, in the spatial case, we are assuming
that the spike train generation process has no memory. The entropy of p is:

S[ul == plw(0)]logu[w(0)], (2.15)
w(0)

where the sum holds on the 2%V possible spike patterns w(0). Note that the
time index (here 0) does not play a role since we have assumed p to be sta-
tionary.

The Maximum Entropy problem is now stated as follows. Find the
distribution g that maximizes the entropy (Eqi2.15|) given the constraints
(EqJ2.14). There is, additionally, the probability normalization constraint:

> plw(0)]=1. (2.16)
w(0)
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This provides a variational problem

L
= A ~1 A — 70
jr = argmax S[v]+Xo %V[W(())] +l§; (v ] =7l [m])
(2.17)

where M is the set of (stationary) probabilities on rasters.
Stated in this form, the Maximum Entropy is a Lagrange multipliers prob-
lem. The sought probability distribution is the classical Gibbs distribution:

1
pa[w(0)] = =), (2.18)
Zx
where
Zx=> el (2.19)
w(0)

is the partition function, and H = Zle Amy. Note that, in general the
number of monomials considered in the practical applications of the Maxi-
mum Entropy is much smaller than their possible number L(N, R) = 2VE,
Thus, here, most of the coefficients in Figure[2.4]are constrained to zero. The
value of the non zero \;s is fixed by the relation:
0 log Z)\ (T)

=T

plm] =
Additionally, note that the matrix M—gzl* is positive. This ensures the con-
vexity of the problem and the uniqueness of the solution.

Note that log Z» does not only allow us to obtain the averages of the ob-
servables, it also allows to characterize fluctuations. If a raster is distributed
according to the Gibbs distribution (Eq, then, as pointed out in sec-
tion [2.1.4] the empirical average of an observable has fluctuations. One can
show that these fluctuations are Gaussian (Central limit theorem). The joint

probability of ) [my],l=1,..., Lis Gaussian, with mean p[m; | given by
Eq. and covariance matrix % where the matrix X has entries:
82 log Z)\
Yip = ————2. 2.21
0N 0N (221)

In general, we do not expect that p to be equal to the (hidden) probability
shaping the observed sample. It is only the closest one satisfying the con-
straints (Eq. 2.14). The notion of closeness is related to the Kullback-Leibler
divergence, defined in the next section.
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Let us now discuss what this principle gives in two spatial cases consid-

ered:

(i)

Only firing rates are constrained. Then:
N—-1
H(w(0)) =Y Awi(0). (2.22)
i=0

It can be shown that the corresponding probability p is:

N-1 €>\i wi(O)

nlo@]=]]

1=0

1+ et

Thus, the corresponding statistical model is such that spikes emitted by
distinct neurons at the same time are independent. The parameter \;
is directly related to the firing rate r; since r; = p[w;(0) =1] = e
so that we have:

1+8)‘i ?

n wi(l —wj
M[WO]:H T ()(1—7”1‘)1 @

the classical probability of coin tossing with independent probabilities
(Bernoulli model). Thus, fixing only the rates as constraints, the Max-
imum Entropy principle leads to analyze spike statistics as if each spike
were thrown randomly and independently, as with coin tossing. This is
the “most random model”, which has the advantage of making as few
hypothesis as possible. However, when only constrained with mean fir-
ing rates, the prediction of even small spike blocks in the retina was not
successful. This was expected since this model assumes independence
between neurons, an assumption that has been proven wrong in earlier
studies (e.g. [Puchalla et al., 2005]).

Firing rates and pairwise correlations are constrained. In the
second model (introduced e.g. by [Schneidman et al., 2006]), The Max-
imum Entropy model is constrained with both mean firing rates and
instantaneous pairwise correlations between neurons. In this case,

1,j=0
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Here the potential can be identified with the Hamiltonian of a magnetic
system with binary spins. It is thus often called “Ising model” in the
spike train analysis literature, although the original Ising model has
constant and positive couplings, [Georgii, 1988]. The corresponding
statistical model is the least structured model respecting these first
and second order pairwise instantaneous constraints. The number of
parameters is of the ordei| of N2, to be compared with the 2V possible
patterns.

Schneidman et al showed that the Ising model model successfully pre-
dicts spatial patterns, a result which was confirmed by [Shlens et al., 20006
(see |[Nirenberg and Victor, 2007| for a review). Other works have used the
same method and found also a good prediction in cortical structure in-vitro,
[Tang et al., 2008], and in the visual cortex in vivo, [Yu et al., 2008|. Later
on, several authors considered higher order terms still corresponding to D = 0
(JOhiorhenuan et al., 2010} [Schneidman et al., 2006, Tkacik et al., 2009,/Ganmor et al., 2011
Note that these results have been obtained on relatively small subsets of
neurons (usually groups of 10). An interesting challenge is to test how these

results hold for larger subsets of neurons, and if other constraints have to be
added, [Ganmor et al., 2011D].

2.2.3 One time step spatio-temporal models

From the statistical mechanics point of view, a natural extension of the pre-
vious formalism consists of considering the space of rasters {2 as a lattice
where one dimension is "space" (neurons index) and the other is time. The
idea is then to consider a potential still of the form but where the ob-
servables correspond to spatio-temporal events. We assume that H has range
R=D+1,0<D < +oo. The potential of a spike block wi, n > D is:

H(wp) = S H(wPH) (2.21)

On this basis, restricting to the case where D = 1 (one time step mem-
ory depth) Marre et al have proposed in [Marre et al., 2009] to construct
a Markov chain, where transition probabilities P [w(l+ 1) |w(l)] are pro-
portional to eMwr™ It i is the invariant probability of that chain, the

application of Eq. (2.12)) leads to probability of blocks u[wf |, proportional
to e™(“8). the probability of a block is proportional to the exponential of

I Most approaches assume moreover that the pairwise coefficients are symmetric Ay =
A1 which divides the number of parameters by 2.
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its potential ("energy"). This approach is therefore quite natural from the
statistical mechanics point of view.

The main problem, however, is "what is the proportionality coefficient 7"
As shown in [Marre et al., 2009|, the normalization of conditional probabil-
ities does not reduce to the mere division by a constant partition function.
This normalization factor is itself dependent on the past activity.

To overcome this dependency, Marre et al assumed that the activity re-
spected a detailed balance. In this particular case, it can be shown that the
normalization factor becomes, again, a constant. But this is an important
reduction that could have implications for the interpretation of the data: for
example, with this simplification, it is not possible to give an account of
asymmetric cross-correlograms.

2.2.4 General spatio-temporal models

We now present the general formalism which allows to solve the variational
problem "maximizing entropy under spatio-temporal constraints". This ap-
proach is rigorous and the normalization problem is resolved without requir-
ing additional assumptions such as detailed balance. At the end of this sec-
tion, we briefly discuss other approaches considering spatio-temporal statis-
tics and their relations to potentials of the form (2.4)).

Markov Chain for spatio-temporal models

In this section we show how one can generate a Markov chain where transition
probabilities are proportional to eH(warD), for a potential H corresponding
to spatio-temporal events. We also solve the normalization problem. This
construction is well known and is based on the so-called transfer matrix (see
e.g. |Georgii, 1988| for a presentation in the context of statistical physics;
|[Parry and Pollicott, 1990] for a presentation in the context of ergodic theory
and [Vasquez et al., 2012] for a presentation in the context of spike trains
analysis).

This matrix is constructed as follows. Consider two spike blocks wy, wo of
range D > 1. The transition w; — ws is legal if w; has the form w(0)w?™*
and w, has the form w” 'w(D). The vectors w(0),w(D) are arbitrary but

the block w”~! is common. Here is an example of a legal transition :

o o 17. _[o 1 1
wlz[o 1 1};“12—[1 1 0}-

Here is an example of a forbidden transition

o o 17. _JTo 1 1
wlz[o 1 1};“12—[0 1 0}-
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Any block wf of range R = D + 1 can be viewed as a legal transition
from the block w; = wé)_l to the block wy = wlD and in this case we write
D
Wy ~ W1Wa2.

The transfer matriz L is defined as:

'H(wD) . . . D ~
Loy = { et o if wy,wy s legal with wy’ ~ wyws (2.25)

0, otherwise.

From the matrix £ the transition matrix of a Markov chain can be con-
structed, as we now show. Since observables are usually assumed to be
bounded from below, H(wl) > —oo, thus ¢"“0) > 0 for each legal transi-
tion. As a consequence of the Perron-Frobenius theorem [Gantmacher, 1998|
Seneta, 2006], £ has a unique real positive eigenvalue sy, strictly larger than
the modulus of the other eigenvalues (with a positive gap), and with right,
R, and left, L, eigenvectors: LR = s R, LL = s L, or, equivalentlyﬂ

S HBIR(WP) = syR (w7);

w(D)e{0,1}Y

Z L(wéj_l)eH(w‘]’D)zsAL(wlD).
w(0)e{0,1}Y

These eigenvectors have strictly positive entries R(.) > 0, L(.) > 0,
functions of blocks of range D. They can be chosen so that the scalar product
(L,R| =)1. We define:

P(H) = log sa, (2.26)

called "topological pressure or free energy". We discuss the origin of this
term and its properties below.

To define a Markov chain from the transfer matrix £ (Eq. ) we
introduce the normalized potential:

o(wy) = H(wg') — Galwy) (2.27)

2The right eigenvector R has 2P entries R,, corresponding to blocks of range D. It

obeys > Luw, Ruw, = sgRu,, where w; = wéjfl and where the sum runs over blocks

Wy = w{j. Since L, w, is non zero only if the entries wj,wy have the block wlD_l in

common, and since the right hand side (sgR,,) fixes the value of wy, this sum holds in
fact on all possible values of w(D). The notation R, although natural, does not make
explicit the block involved. This is problematic when one wants to handle equations such
as Eq. As a consequence, we prefer to use the notation R (block) to make explicit
this dependence. The same remark holds mutatis mutandis for the left eigenvector.
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with:
Gawd) =log R (wf™') —log R (w!) +log sa, (2.28)

and a family of transition probabilities:
P[w(D) |wP1] ¥ o) > 0. (2.29)

These transition probabilities define a Markov chain which admits a
unique invariant probability:

pwh) = R (07 L (). (230)

From the general form of block probabilities (Eq. the probability of
blocks of depth n > D is, in this case :

n n—D 4( D+l _ o
plwl] = eXi=o o(wi ),u [wd™]. (2.31)
thus, from Eq. 2.30] .27 and P.28]
n eH( wg ) n D1 L
plegl = WR (wn—D+1) L (wo ) ) (2.32)
A

where H (w{ ) is given by Eq.

Remarks

1. We have been able to compute the probability of any blocks w{. It is

. T . .
proportional to e"(“8) and the proportionality factor has been com-
puted. In the general case of spatio-temporal events, it depends on

D-1 , n
wp and wy p.y.

The same arises in statistical mechanics when dealing with boundary
conditions. The forms (2.31) and (R.32), remind Gibbs distributions on
spin lattices, with lattice translation-invariant probability distributions
given specific boundary conditions. Given a spin-potential of spatial-
range n, the probability of a spin block depends upon the state of the
spin block, as well as spins states in a neighborhood of that block.
The conditional probability of this block given a fixed neighborhood
is the exponential of the energy characterizing physical interactions,
within the block, as well as interactions with the boundaries. In Eq.
spins are replaced by spiking patterns; space is replaced by time.
Spatial boundary conditions are here replaced by the dependence upon

D-1 n
Wy and Wn_Dy1-
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As a consequence, as soon as one is dealing with spatio-temporal events
the normalization of conditional probabilities does not reduce to the
mere division by:

Zy =3 M), (2.33)

n
wo

as easily checked in Eq. (2.32).

2. The topological pressure obeys nevertheless:

P(H) = lim lloan, (2.34)

n—-4oo N,

and is analogue to a thermodynamic potential density (free energy, free

enthalpy, pressure). This analogy is also clear in the variational prin-

ciple (Eq. below. To our best knowledge the term "topological

pressure" has its roots in the thermodynamic formalism of hyperbolic

(chaotic) maps [Ruelle, 1978| [Parry and Pollicott, 1990, Beck and Schloegl, 1995].
In this context, this function can be computed as the grand potential

of the grand canonical ensemble, as a cycle expansion over unstable

periodic orbits. It is therefore equivalent to a pressureﬂ depending on
topological properties (periodic orbits).

3. In the case D = 0 the Gibbs distribution reduces to (Eq. [2.18). One
can indeed easily show that:

expGa=sx=» O =7,
w(0)

where Zy is the partition function (Eq. [2.19)). Additionally, since spike
patterns occurring at distinct time are independent in the D = 0 case,
Z, in Eq. can be written as Z, = Z} so that P(H) = log Zx.

4. In the general case of spatio-temporal constraints, the normalization
requires the consideration of normalizing function Gy depending as well
on the blocks wP. Thus, in addition to function H normalization intro-
duces a second function of spike blocks. This increases consequently
the complexity of Gibbs potentials and Gibbs distributions compared
to the spatial (D = 0) case where Gy reduces to a constant.

3The grand potential ® obeys ® = —PV, where P is the physical pressure and V the
volume. Therefore, the grand potential density is (minus) the physical pressure.
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2.2.5 Application of the Maximum Entropy principle

We now show that the probability distribution defined this way solves the
variational problem “maximizing entropy under spatio-temporal constraints”.

We define the entropy rate (or Kolmogorov-Sinai entropy):

S onlep]logulet],  (239)

n
Wo

S[p] = — limsup

n—oo T 1

where the sum holds over all possible blocks w{. Note, that in the case of a
Markov chain S [p] also reads [Cornfeld et al., 1982]:

Slp] = —Z ,u[wéj} P[w(D) ‘wé)_l} logP[w(D) |w(])j_1], (2.36)

D
wo

whereas, when D = 0, s[p] reduces to the definition (Eq. [2.15)).

As a general result from ergodic theory [Ruelle, 1978 [Keller, 1998 [Chazottes and Keller, 2008§]
and mathematical statistical physics |Georgii, 1988], there is a uniqueﬂ proba-
bility distribution p such that [Ruelle, 1978 [Keller, 1998 [Chazottes and Keller, 2008]:

PlH]= suwp (h[v]+v[H)])=S[u] + pulH], (2.37)

VeM'Ln'U

where P[H] is given by Eq. [2.26] My, is the set of all possible time-
translation invariant probabilities on the set of rasters with /N neurons and
vIH] =3 .p H(wl)v(wlP) is the average value of H with respect to the
probability v.

Looking at the second equality, the variational principle (Eq. selects,
among all possible probabilities v, a unique one realizing the supremum.
This is exactly the invariant distribution of the Markov chain and is the
sought Gibbs distribution. It is clear from Eq. [2.37] that the topological
pressure is the formal analogue to a thermodynamic potential density, where
H somewhat fixes the "ensemble": v[H] = Sr A [my] plays the role
of AE (canonical ensemble), A\E' — uN (grand canonical ensemble), ... in
thermodynamics [Beck and Schloegl, 1995].

“The result is straightforward here since we consider bounded potentials with finite
range.
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2.3 Inferring the parameters )\,

The inverse problem of finding the values of \;s from the observables av-
erage measured on the data is a hard problem with no exact analytical
solution. However, in the context of spatial models with pairwise interac-
tions the wisdom, coming from statistical physics and especially Ising model
and spin-glasses, as well as from the Boltzmann machine learning commu-
nity, can be used. As a consequence, in this context, several strategies
were proposed. Ackley et al [Ackley et al., 1985] proposed a technique to
estimate the parameters of a Boltzmann machine. This technique is ef-
fective for small networks but it is time consuming. In practice, the time
necessary to learn the parameters increases exponentially with the num-
ber of units. To speed up the parameters estimation, analytical approxi-
mations of the inverse problem have been proposed, which express the pa-
rameters \; as a nonlinear function of the correlations of the activity (see
for example [Tanaka, 1998| [Roudi et al., 20094, [Sessak and Monasson, 2009,
Ackley et al., 1987, Roudi et al., 2009bl |Ackley et al., 1985 Higuchi and Mezard, 2009,
Kappen and Rodriguez, 1998|.

These methods do not give an exact result, but are computationally fast.
We do not pretend to review all of them here, but we quote a few prominent
examples. In [Sessak and Monasson, 2009|, the authors proposed a system-
atic small-correlation expansion to solve the inverse Ising problem. They were
able to compute couplings up to the third order in the correlations for generic
magnetizations, and to the seventh order in the case of zero magnetizations.
Their resulting expansion outperforms existing algorithms on the Sherrington
Kirkpatrick spin-glass model [Sherrington and Kirkpatrick, 1975).

Based on a high-field expansion of the Ising thermodynamic potential,
Cocco et al [Cocco et al., 2009] designed an algorithm to calculate the pa-
rameters in a time polynomial with N, where the couplings are expressed as
a weighted sum over the power of the correlations. They did not obtained
a closed analytical expression, but their algorithm could run in a time that
was polynomial in the number of neurons.

Other methods, based on Thouless-Anderson-Palmer equations [Thouless et al., 1977
and linear response [Kappen and Rodriguez, 1998|, or information geome-
try |[Tanaka, 1998], initially proposed in the field of spin-glasses, have been
adapted and applied to spike train analysis (see e.g. the work done by Roudi
and collaborators [Roudi and Hertz, 2011]).

The success of these approximations depends on the data set, and there
is no a priori guarantee about their efficiency at finding the right values of
the parameters. However, by getting closer to the correct solution, they can
potentially speed up the convergence of the learning by starting with a seed
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much closer to the real solution than if taking a random starting point.

Note also that all the techniques mentioned above have been designed for
the case where there is no temporal interaction (except [Cocco et al., 2009,
Roudi and Hertz, 2011] which are discussed in the section . Now, we
explain how the parameters estimation can be done in the spatio-temporal
models.

In the general case parameters \;s can be determined thanks to the fol-
lowing properties.

e P[H]is a log generating function of cumulants. First:

0P [H]
L . 2.
5 = ] (2.39)
This is an extension of Eq. to the time-dependent case.
e Second: .
= = Coim , 2.39

where Cy, 1, (n) is the correlation function between the two monomials
m; and my at time n. Note that correlation functions decay exponen-
tially fast whenever M has finite range. So that >  Cpm (n) <
+00.

Eq. characterizes the variation in the average value of m; when
varying \; (linear response). The corresponding matrix is a susceptibil-
ity matrix. It controls the Gaussian fluctuations of observables around
their mean (central limit theorem) [Ruelle, 1978 [Parry and Pollicott, 1990,
Chazottes and Keller, 2008]. This is the generalization of Eq. to
the time dependent case. As a particular case, the fluctuations of the
empirical average 75 [m; ]w of m; around its mean u[m; ] are Gaus-
plmy ) (1—pmy ]
T
It is clear that the structure of the linear response in the case of spatio-
temporal constraints is quite a bit more complex than the case D = 0
(see Eq. ) Actually, for D = 0, all correlations C,,, ,, (n) vanish

for n > 0 (distinct times are independent).

sian with a mean-square deviation

e P(H) is a convex function of A. As a consequence, if there is a set of
A value, A\*, such that .

OP [H]
oN;

= plmi] =G, (2.40)
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then this set is unique. Thus, the solution of the variational problem

(Eq. [2.37)) is unique.

Basically, Eq. .38, [2.39 and 2.40], tell us that techniques based on free en-
ergy expansion in spatial models can be extended as well to spatio-temporal
cases, where the free energy is replaced by the topological pressure. Obvi-
ously, estimating (not to speak of computing) the topological pressure can
be a formidable task. Although, the transfer matrix technique allows the
computation of the topological pressure, the use of this method for large N
is hopeless (see section . However, techniques based on periodic orbit ex-
pansion could be useful [Cofré and Cessac, 2013]. Additionally, cumulative
expansions of the pressure, Eq. and corresponding to the two first
orders, suggest that extension of methods based on free energy expansion
could be used. In addition to the works quoted above, we also think of con-
straint satisfaction problems by Mézard and Mora [Mézard and Mora, 2009|
and approaches based on Bethe free energy [Welling and Teh, 2003]. Finally,
as we checked, the properties of spatio-temporal Gibbs distributions allows to
extend the parameters estimation methods developed for the spatial case in
[Dudik et al., 2004] Broderick et al., 2007] to spatio-temporal distributions
(we explain this extension in detail in the section |3.6)).

2.4 Maximum Entropy modeling process in prac-
tice

In this section, we show what are the models we usually use, the process
from obtaining the spike train until models evaluation. For that, we give
first an idea about the models/potentials shapes and then we apply on some
examples.

2.4.1 Potential’s typical canonical forms

Canonical potentials are those which are typically used to shape typical Max-
imum Entropy models. Bernoulli and Ising are the simplest ad-hoc mod-
els and they have been respectively defined in Eq. and The
triplets model is also an important canonical model and has been studied by
[Ganmor et al., 2011a]. Tts potential reads:

H= Z Aiw; (0) + Z Aijwi(0)w;(0) + ) Aijrwi(0)w; (0)wi(0)  (241)

i7j7k
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where w;;), corresponds to the triplet interactions, i.e., the 3 neurons 4, j and
k fires in the same time.

Finally, the potential of pairwise models with delay, where temporal in-
teractions take place, reads:

H=> Awi+ Y Mwi(0)w;(d), (2.42)
l i,5,0

where ¢ is the variable that rises the temporal effect. The pairwise mono-
mial (w;(0)w;(1)) corresponds to the fact that the neuron ¢ fires 1 time-bin
after the neuron j, and so on. The maximum ¢ that we can have is related
to the Range of the potential, i.e., § € {0, R — 1 = D}.

Computing the Kullback-Leibler divergence in practice

In the spatio-temporal case, computing the KLD using Eq. is computa-
tionally impossible. For that, we use another tractable version:

dir (v, px) =P[A] —v[H] — S[v]. (2.43)
Replacing v by m(uT), we have:
dir, (70 ux) = P[A] — 7D [H] — S [«]. (2.44)

For small networks, we can compute the exact value of the divergence
because we know the exact value of the pressure and the monomials averages.
The entropy S [m(uT)} is computed directly from the raster using the technique
of Strong ([Strong et al., 1998]).

Computing the exact divergence for NR > 20 is impossible since we
cannot compute the exact values of the pressure and the monomials averages.
For that, section is dedicated to present a method to compute the KL.D
for larger networks.

2.4.2 From the spike train to the model

The process of inferring the probabilistic model from a spike train consists
on the following steps (Figure [2.6)):

e Data preparation: one chooses the neurons and the binning.

e Model choice: one chooses one of the ad-hoc models presented above.
Note that thanks to EnaS which we will present in chapter [4] one can
chooses one of those models as well as define customized models.
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e Computing the empirical distribution (this will set up the constraints).

e Fitting the parameters A: here we go through a process of minimization
of the KLD criterion. For small network we have used the method
presented in [Vasquez et al., 2010]. We shall see in the next chapter
another method which is more suitable for larger networks.

e Evaluation via confidence plots and KLD.

2.5 The advantages and limits of transfer ma-
trix method

The advantage of the transfer matrix technique method is that it is mathe-
matically exact: given a potential H, it gives the Gibbs distribution and topo-
logical pressure without computing a partition function; given the parametric
form (Eq. where the parameters A\gs has to be determined (“learned”),
it provides the unique solution. On numerical grounds, this method provides
an optimal estimation, in the limits of the error made when observing the
observables empirically, this error being characterized by the central limit
theorem. Its main drawback is that the transfer matrix £ has 2V% entries !
Although, most of those entries are zero (2" non zero entries per row, thanks
to the compatibility conditions) it is simply too huge to handle cases where
NR > 24.

Focusing thus on the huge number of states in the set of blocks, it is
clear that any method requiring the extensive description of the phase space
fails as N R grows. Additionally, while the accessible phase space is huge, the
observed phase space (e.g. in an experimental raster) is rather small. Several
strategies exist to avoid the extensive description of the phase space. Here,
we propose an approach based on Montecarlo sampling.

The idea is the following. Given a potential H we find a strategy to ap-
proximately compute the average p[m; | of observables m; under the Gibbs
distribution u, using a statistical Montecarlo sampling of the phase space.
For that purpose, the algorithm generates a raster following the statistics
defined by the potential H, and computes the observables on this artificial
raster. Thanks to the estimation of the observables, the parameters of the
model (\gzs) can be found by modifying their values to minimize iteratively
the distance between the values of the observables estimated on the real
raster, and the values estimated with the Montecarlo sampling. Powerful
algorithms exist for that, taking into account the uncertainty on the em-
pirical averages ruled by the central limit theorem (|[Dudik et al., 2004] and
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Figure 2.6: Given a spike train (a) and a model (which represents the con-
straints/features /monomials) (b), the first step is to compute the empirical
averages of the monomials (¢). The next step is to compute the parameters.
(¢) To find the parameters, we iterate from an initial condition in order to
update the parameters step by step. Once we update the parameters based
on some criterion, we compute the target probability distribution that cor-
responds to the found parameters. Computing this probability distribution
could be performed whether via the transfer matrix (explained in chapter E}
or with Montecarlo that will be explained in this chapter. The last step is
the evaluation (d). We compute the probabilities of all the possible pattern
(until an limited depth (1-5 time steps typically) in order to compare the
predictions of the models with the empirical measures.



|Broderick et al., 2007])). These algorithms initially developed for the spatial
case have been extended by us as explained in the Chapter

2.6 Conclusion

The methods presented in the literature are confronted with three main lim-
itations:

1. Limitation to purely spatial models in the case of large networks |[Tkacik

2. Limitation to small network in the case of Maximum Entropy models
with spatio-temporal constraints.

Hence, non of the existing frameworks is able to compute Maximum En-
tropy models for large networks with spatio-temporal constraints. We will
define large scale networks as those where N x R is bigger than 20. As a
consequence, we wanted to develop a new technique that is able in the same
time to:

e Analyze large scale networks (Solution for 1).

e Take the spatio-temporal constraints and the instantaneous correla-
tions between neurons into account ( Solution for 2).

In the next chapter, we will show a method we developed, based on
Montecarlo principle in order to be able to analyze large network taking into
account instantaneous correlations as well as memory effects.
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Modeling large scale spiking data
sets with spatio-temporal
constraints using Montecarlo
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In this chapter, we present an approach based on Montecarlo sampling
to analyze large scale spike trains. We consider the case when NR > 20.
In this approach, the generation of the target distribution is based on a
Montecarlo algorithm (section with a parallelized version (section [3.3))
on multi-processors computers. In section we show validation test for
the Montecarlo algorithm as well as the computation time in section |3.5]
The parameters fitting is based on minimizing an equivalent criterion of the
Kullback-Leibler divergence (section . Finally, we present the results
on synthetic data in section [3.7] and finish with concluding remarks on the
method.

3.1 Results on synthetic data

3.2 Computing spatio-temporal Gibbs distribu-
tions with Montecarlo method

3.2.1 The Montecarlo-Hastings algorithm

The Montecarlo-Hastings method consists of sampling a target probability
distribution p by constructing a Markov chain whose invariant probability is
p [Hastings, 1970]. The transition probability of this Markov chain, between
two states w) and w® is:

QWM w?) p [w® ]
Qw®Nw®) p[wm]’
The function Q() can have different forms, allowing in particular to boost

the convergence rate of the algorithm. Such specific forms are highly depen-
dent on the form of H, and there is no general recipe to determine @), given

PlwW|wP] = max(

1). (3.1)
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H. The contribution of @ cancels in Eq. [B.I] whenever @ is symmetric
(Qwlw') = Q(w'|w)). We make this assumption in the sequel. Practically,
we take () as the uniform distribution corresponding to flipping one spike at
each iteration of the method. This is not necessarily the best approach as
e.g. clusters update would be more efficient. But we do not know about any
cluster algorithm for spatio-temporal potentials.

In classical Montecarlo approaches in statistical physics, the normaliza-
tion factor of the Gibbs distribution, the partition function, cancels when

u[w® ] U
. The situation is dif-

ferent in the presence of spatio temporal constraints, as shown in Eq.
“boundary terms” L ( w ™! ), R (wﬁf D41 ) remain. Actually, the same would
hold in statistical physics problem with spatial interactions if one were to
compare the probability of bulk spin-chains with distinct boundary condi-
tions.

This problem can however be circumvented thanks to the following re-

marks:

computing the ratio of two blocks probabilities

1. If one compares the probability of two blocks w® w® of range n >

2D + 1, with wé)_l’(l) = wéj_l’@) and w:f?)ﬂ = wZﬁ%H then Eq. [2.32
reads:

H wn’(1> n _
]S () ()

n?(l) - H wn,(2) —
n[d ] S R () e ()

B

(3.2)

SZ_D *1ig the same in the numerator and the denumerator. However,

R (waQL))H) and R (waBH) are not the same. Nor L (wZﬁ%H)

and L waBH are the same. If we keep those 4 terms in the ratio,

we will be obliged to compute them during the Montecarlo process.

The tricks we used to circumvent this problem is to keep blocks wé) -1

and w,_p,; unchanged when updating the states of the Montecarlo
spike train. As a consequence, we will have:

n,(1 n,(2
R (wn—(D)+1> =R <Wn—(D)+1>

n,(1 n,(2
L (wn—(D)+l> =L <wn—(l%+1)
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As a consequence, we will have:

plos®] ) "
u [wg,,(l) ] BH(wg,(a)) .
_ eAH(w(l),w@),D,n)

with

A'H(w(l),w(m,{]?n) =H (wg’(l)) —H (wi,"*”) .

Thus, the Montecarlo transition probability (Eq. B.1) is only expressed
as a difference of potential of the two blocks.

2. AHwW,w® 0,n) = Eszl AeAmy(w®, w® 0,n), with:

w!

ne
Amy(w,w? 0,n) = [mg (wEDH’(Q)) —my (wIDH’(l))] .
1=0

. . r

Since the mys are monomials, many terms my(w;" ™) —my (wi?) cancel.
Assuming that we flip a spike at position (k,t), k € {1,..., N}, t €
{D,n — D}, we have indeed:

t
Amy (0D, 0@, 0,n) = Z [mz (WEDH,(Q)) —my (w;3+£,(1))]
I=t—D
Since the difference my wEDH’(Q) — my wlpﬂ’(l)) € {—1,0,1}, the

computational cost of Amy(w™®,w® 0,n) is minimal if one makes a
list of monomials affected by the flip of spike (k,r), 7 =0,...D.

Figure[3.I]details the computing of the theoretical probability distribution
with the Montecarlo algorithm. We begin with a random spike train of size N
neurons and length Nypes time-steps. We choose one neuron randomly in the
interval [R,T — R] and we flip its state (if the neuron fired we make it silent
and if it was silent we make it firing). This process is to judge which state
(firing or silent) is more likely to make the theoretical probability distribution

of the raster closer to the empirical probability. We check this by computing
n.(2)

the [ 0

——m 1f this value is bigger that a random number in [0, 1], we accept
Bl wy”

the change, otherwise, we reject it. We repeat this step Ny, times.
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Figure 3.1: The generation of a spike train whose distribution is close to the
empirical distribution.



3.2.2 Convergence rate

The goal of Montecarlo-Hastings algorithm is to generate a sample of a target
probability obtained by iteration of the Markov chain defined by Eq. [3.1]
In our case, this sample is a raster wl ', distributed according to a Gibbs
distribution p. Call Ny, the number of 1terat10ns (“flips” in our case) of the
Montecarlo algorithm As Nyiip — +oo the probability that the algorithm
generates a raster wl * tends to u [ I= 1]. Equivalently, if one generates
Nevod rasters and denote # ( Wy ) the number of occurrences of a specific
bloc wi !, then:

T-1
W,
lim lim —#( 0 ) u[wépl}.
Nseeq—+00 Nyjip—+00 Nseed
The convergence is typically exponential with a rate depending on H.
Now, the goal here is to use a Montecarlo raster to estimate p[m;] by
. y (T)
performing the empirical average 7y ' [m;]w on that raster. However, as
explained in section even if the raster is distributed according to pu
(corresponding thus to taking the limit Ny, — +o00) the empirical aver-
3 (T) . .
ge M, ' [my]w is not equal to p[my], it converges to pu[my;]| as T — +oo,
with an exponential rate. More precisely, the probability that the difference

‘ 7 ) w — [y ‘ exceeds some € > 0 behaves like exp(—7"x I (¢)) where

I(e€), called large-deviations rate, is the Legendre transform of the topological
pressure [Chazottes and Keller, 2008].
When 7' is large we have:

—T x €
(1) ~
T mplw—pulmy|| >e|l 2exp(—— 3.4
where o (my) \/,u [my] p[my]) is the mean-square deviations of m.

As a consequence, to obtam the exact average 1 [m; ] from our Montecarlo
algorithm we would need to take the limits:

T—1
. . . # ( Wo )
lim lim llm ——2~
T—+o00 Nseed_>+oo Nflip_’+oo Nseed

7 (3:5)

in that order: they do not commute. A prominent illustration of this point
is illustrated in Figure

For notation homogeneity we note from now on 7' — 1 = Ny;es for the
raster length. When dealing with numerical simulations with a finite number
of sample, the goal is to minimize the probability that the error is bigger than
a real number ¢, by suitable choice of:
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Figure 3.2: Error as a function of Ntimes, for several values of Nflip (1000,
10000, 100000). (a) N = 3; (b) N = 7. For the same Ntimes value, the
error committed on the target distribution decreases when Nflip increases.
Likewise, when we look at one curve that describes how the error increases
as Ntimes increases for a fixed Nflip value, this is but a justification that the
value of Nflip is not enough for such sample size. From |[Nasser et al., 2013].



e The raster length: T'— 1 = Nyjpes-
e The number of flips: Ny,

e The number of seed: Ngeeq-

Let us now establish a few relations between those parameters. First, it
is somewhat evident that Ny;, must be at least proportional to N X Nyjmes
in order to give a chance to all spikes in the raster to be flipped at least once.
This criterion respects the order of limits in Eq.

Since p is ergodic one can in principle estimate the average of observables
by taking Ng..q = 1 and taking Ny;,.s large. However, the larger Ny,es the
larger Ny, and too big Nyimes leads to too long simulations. On the opposite,
one could generate a large number Ny..q of raster with a small Ny,es. This
would have the advantage of reducing Ny, as well. However, the error (Eq.
3.4) would then be too large. So, one needs to find a compromise: Nyjpmes
large enough to have small Gaussian fluctuations (Eq. and small enough
to limit Ny, Then, by increasing Ngeeq, one approaches the optimal bound
on fluctuations given by Eq. 3.4l In our simulations, the number of flips is
determined using the following formula:

Niip = k X N X Nijmes (3.6)

where k is a constant to be determined by the user. We recommend k
to be bigger than 30. In order to show the effect of k£, we did the following
experience: we fitted a pairwise model of a range R = 2 on a real spike
train of 5 neurons with the transfer matrix method which gives us an exact
solution for the parameters and the expected monomials averages. From this
set of parameters, we computed the target distribution using the Montecarlo
algorithm for several values of k (we tested with Ny,.s = 10° and 10°).
Afterwards, we computed the erroifl|(as a function of k) between the reference
(exact) values of monomials averages (those of the transfer matrix) and the
monomials averages computed with the Montecarlo algorithm. We observe
that this error decreases as k increase (Figure [3.3)).

In fact, if £ = 1, the events in the Montecarlo spike train will be toggled
uniformly since we are performing randomly N X Nyjnes toggles in a matrix
of size N X Nyjmes- Giving the chance to all events to be toggled only once
time does not allow the distribution to converge. Each of the events should
be toggled sufficiently many times because their states depend on the states
of the surrounding events. For instance, if an event w;(a) was toggled and

We used the Hellinger Distance (defined in as an error criterion.
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Figure 3.3: The error between a target distribution computed with the trans-
fer matrix and Montecarlo as a function of k. On a set of 5 neurons, we
computed the parameters using the transfer matrix process. From the exact
set of parameters, we computed the target distribution with Montecarlo for
k=1...751in two cases: (a) Nymes = 100 000 and (b) Nyjmes = 1000 000.
The error decreases as k increase. After £ = 40 we observe a steady state,
e.g., the increase of k£ does not decrease the error. By consequence, it is
useless to compute the distribution with a k£ > 40.



its new configuration is accepted based on other two events w;(b) and wy(c);
when one of those events changes afterwards if they have been chosen to be
toggled, the configuration of w;(a) will not be necessarily correct. Hence,
we would toggle it another time in order to see which configuration to keep.
Ideally, if & — oo, the Montecarlo algorithm would give the same results as
the transfer matrix. However, Figure |3.3 shows that £ = 30 is good enough.

3.3 Parallelization of Montecarlo algorithm

Computing the target distribution is computationally heavy and time con-
suming. We decided to circumvent this obstacle by parallelizing the compu-
tation during the Montecarlo process. The parallelization is possible thanks
to the OpenMP framework that allows many processors on the same ma-
chine to work in parallel and in the same time on one data set. OpenMP or
Open Multi-Processing is an API (application programming interface) that
supports multi-platform shared memory multiprocessing programming in C,
C+-+, and Fortran, on most processor architectures and operating systems.
Another parallelization framework exists, the MPI (Message Passing Inter-
face) that is possible only on clusters. A computer cluster consists of a set of
connected computers that work together so that in many respects they can
be viewed as a single system. We found out that the MPI is less advantageous
than the OpenMP, for the reasons that will be explained later.

3.3.1 Parallelization over the spike train size with OpenMP

The idea is based on decomposing the Montecarlo spike train to N, parts,
where N, is the number of available processors on the computer. Given
that the Montecarlo spike train is of length Ny,..s, each processor will be
responsible on updating the raster over N*N’; time steps. Hence, we will

have N, target distributions generated from a set of parameters A;. By
dividing the spike train into N, parts, the memory although shared, but each
processors has the right to access only one part of the spike train (Figure.
Each processor applies the Montecarlo update independently from the other
on its dedicated piece of raster.

The critical flips During flipping, and since choosing the events is random,
it may happen that two neighbor processors toggle events at their common
boundaries. Updating one of the events depends on its surrounding, which
should be not changing. In the case where the surrounding is changing, the
result of the update is wrong because updates from the processors are not
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Figure 3.4: An example of parallel processing over OpenMP with a computer
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spike train, that is stocked in a shared memory space. Note that we have
to add R time step (random events) before the beginning and after the end
of the spike train because of the critical boundaries. The critical boundaries
presented here are those at the beginning and the end of the Montecarlo spike
train. Another example of critical boundaries that exist between processors
is presented in Figure
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Figure 3.5: Toggling event at the critical boundaries of two adjacent parts
of the spike train gives wrong results. However, due its low probability of
happening and the big size of the Montecarlo spike train, we consider that it
does not affect the result of the target distribution.

independent. This is because, each time we toggle a neuron, we compute the
change in energy (Eq. , which depends from the surrounding events. If
the surrounding events are changing in the same time, computing the Eq.
will be based on wrong events. The probability that this case happens is

low It can nevertheless affects the results if 1" is too small.

1
(NT)?*

3.3.2 Parallelization over the number of flips with OpenMP

Parallelizing over Ny, means that all the processors will have the access
to the whole Montecarlo spike train (in opposite to parallelizing over Nymes
where each processor has access to one part of the spike train) but they share
the parallelized task which is toggling events. So, each processor would be
responsible of toggling M times the events. This case would be more
advantageous if we have more processors.

This implies that the IV, processors will flip simultaneously the events and
in order to accept/or not the toggling. Unfortunately, this algorithm is not
true. This case of parallelization allows any of the N, processors to (simul-
taneously) toggle randomly chosen events in the spike train. The probability

1

of choosing any event is p = 5. This probability is small. The probabil-
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ity that two processors choose the same (or neighbor) event(s) is then p?.
When the number of processors increases, the probability of accessing the
same (or neighbor) event(s) in the same time increases. For instance, if there
are 3 processors, the probability is p* + C3p? ... n processors, the probability
is p™Nr + Cg}f—lep + .... As we explained before that toggling instanta-
neously two neighbor events gives wrong result, then the bigger the number
of processors, the bigger the probability to have wrong computations during
Montecarlo. The extreme case, where the number of processors is equal to
the size of the spike train, the probability of having wrong computations is
equal to 1.

3.3.3 Parallelization with MP1

We performed also the parallelization on our cluster using MPI, where we
can have much more bigger number of processors than on personal computers
(2, 4 or 8 processors). Our cluster is called Nef Torque (Figure [5.15) https:
//nef-services.inria.fr/ at INRIA Sophia-Antipolis research center. It
contains 37 nodes that consists on a total of 876 processors. We found out
that the time needed to finish the computation decreases with the number of
processors. However, after some critical number of processors, the computa-
tion time begins to increase and the use of parallel computing on the cluster
is not advantageous anymore. The reason is that, the more the number of
processors used for the computing, the more the number of exchanged mes-
sages between processors. As a consequence, the processors spend more time
to send messages to each other instead of performing the computing.

3.3.4 OpenMP on clusters

We opted for an alternative solution by taking benefits from the cluster com-
puting power and the OpenMP algorithm where the memory is shared and
processors do not need time to communicate. As we precised lately, run-
ning the algorithm on personal computers with OpenMP is restricted with
the limited number of processors. We found that the alternative could be
running the Montecarlo process on the cluster using OpenMP.

3.4 Validation of the Montecarlo algorithm

We generate a potential with a known probability distribution (the mono-
mials are generated randomly, but they are known). For each potential, the
monomial set corresponds to rates and higher order monomials. The higher
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Figure 3.6: The Nef Torque cluster, at INRIA Sophia-Antipolis research
center. A cluster with 37 nodes and 876 processors.

order monomials are created from randomly generated masks. The number
of higher order monomials is set according to the range of of the potential
(we used usually 5 x R higher order and spatio-temporal monomials).

In order to test the performance of Montecarlo, we do the following test:
given the known potential, we compute the target distribution that corre-
sponds to this potential with the transfer matrix method on one hand and
with the Montecarlo method on the other hand. In fact, with the transfer
matrix method we get the exact target distribution used as a reference with
which we compare the results of Montecarlo. This comparison limits us to
a small number of neurons. Figure shows the comparison of the target
distribution features averages.

Finally, we tested the convergence of the algorithm by computing the
Kullback-Leibler divergence in term of the sample size (the length of the
spike train generated with Montecarlo). Figure show that the Kullback-
Leibler divergence vanishes as the length of the sample increases. This follows
the CLT theorem and shows the generating the target distribution with Mon-
tecarlo convergences. We performed the test in the case of both dense and
sparse spike train. Dense spike train show higher firing rate than sparse ones,
both are explained in details in the section |3.7.1
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Figure 3.7: We generated random potential with several number of neurons.
We computed the monomials averages with the the transfer matrix method
(on the abscissa) and the Montecarlo method (on the ordinate). Note that in
the Montecarlo case, we computed 10 target distribution is each case and the
ordinate axis show the point with mean and standard deviation over the 10
target distribution. The y = x axis show that the Montecarlo algorithm for
computing the Gibbs distribution is close to the transfer matrix technique.

3.5 Computation time

Let us call, respectively, ¢, and t,,., the time needed to compute a target
distribution with the transfer matrix and Montecarlo. In order to determine
how t; and t,,. evolves with respect to N, we did the following experiment:
given a number of neurons N (from N = 3 until N = 8), we generate L
random monomial of range 3 and we associate random parameters for the
distribution. L depends on the number of neurons. For each set, we generate
N rates monomials, w pairwise and w monomials with delay.
From the set of parameters, we compute for each N a target distribution
with the transfer matrix on one hand and with the Montecarlo on the other
hand. We plot the time taken for each neuron’s set in a log scale, Figure [3.9

If we compare the two computation times in a log scale (Figure , we
observe that t,,. increases linearly and ¢; increases exponentially as N gets
larger. This means, also, that t; increases faster that, i.e., the difference
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Figure 3.8: The decay of the KLD with the length of the sample size. (a)
Dense. (b) Sparse (explained in detail in section [3.7.1)). The red and green
curves show the decay of the DKL using respectively the transfer matrix and
Montecarlo methods. Note that, for each point, we generate 10 randoms
distribution and we compute the mean and variance of the error over the 10
samples. The similar decay of DKL both with Montecarlo and the Transfer
matrix shows the efficiency of the Montecarlo sampling for generating the
target distribution.



between the two computation times gets very large for larger N. As shown
in Figure apart from 7 neurons, t; begins to increase dramatically. %,,.
is also still growing, but with a lower speed.

We would like to give an idea about the computational complexity for
computing a target distribution with Montecarlo and determine the relation
between t,,. and the computation variables such as N, Nymes, Nyiip - ... As
Figure [3.1] shows, we have a loop over which the processor runs. The itera-
tions of this loop are equal to k X N X Nymes. At each iteration, we compute
the value of e2™, call it ta5. Then, the total time needed is:

tme = k X N X Nyimes X tan (3.7)

where tay is a function of the number of monomials L. There is no
explicit form for tay = f(L). However, we know that f(L) is not linear
in L nor in N because of the reasons explained below. Since k& and Nyjpes
are usually constante, we will express then the computational complexity
to compute the target distribution from now on as: O(f(N,L)). The 2
reasons for which f(L) is not linear in N nor in L:

e [ is not proportional to N: the dimensions of the canonical model
shapes does not increase linearly while increasing N expect for Bernoulli
model. The table below show the number of parameters with 4 typical
canonical model form:

Potential | Coefficients number L O(f(N, L))

Bernoulli | N O(N,N)

Ising N 4+ YD O(N,3(N —|— NQ))

Triplets N + ]\; D MDD [ O(N, N + )

Pairwise R | N + YO -UCHD O(N,N(R+ %)+ N*(R— 1))

e The time to update 2 is not linear in L: in fact, while updating
the Montecarlo spike train and computing e®”* at each iteration, we
compute it while making a sum over all the monomials and adding the
change due to each of the monomials. Computing the changes due to
each monomial is not the same for all the monomials. The reason is
that some monomials contain 1 events (those of rates), some contain 2
events (pairwise) and others contain 3 events (triplets) and we might
have more.

Those two facts explains why the curve shown about the computing time
using Montecarlo is a power law in the linear scale (equivalent to a linear law
in the logscale as in Figure [3.9)).
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Figure 3.9: During the experiment of Figure we computed the time
needed to compute the target distribution with both methods. The +/x
signs shows the computation time and the lines show the fit. In the case
of Montecarlo, the computing time increases linearly with the number of
neurons. However, with the transfer matrix, the time increases exponentially.

3.5.1 Using the Montecarlo principle to compute the
Kullback-Leibler divergence

As for large networks we cannot compute the exact value of pressure and
monomials averages, then having an exact value of the KLD is impossible.
In this case, we compute and estimated divergence. From Eq. [2.44] we can
write:

DY ua) = pa[H]+S[pa] — 7D [H] =S [aD] (3.8)
= [H]—w“[HHS[ NEIE S
= Dz w) fmi]) + S [ = 8 [77)]

From the parameters A, we compute a spike train distributed as A\ using
the Montecarlo method. From this spike train, we compute the monomi-
als of averages ux[m;] and the entropy S[pa] using the method of strong
(|Strong et al., 1998]). il [m;] and S[WEJT)] are computed directly from the
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empirical data.

3.6 Fitting the parameters \s

Eq. or provide an analytical way to compute the coefficients of
the Gibbs distribution from data. However, they require the computation of
the partition function or of the topological pressure which becomes rapidly
intractable as the number of neurons increases. Thus, researchers have at-
tempted to find alternative methods to compute reliably and efficiently the
Ais. An efficient method has been introduced in [Dudik et al., 2004] and ap-
plied to spike trains in |[Broderick et al., 2007]. Although these papers are
restricted to Gibbs distributions of the form (2.18) (models without memory)
we show in this section how their method can be extended to general Gibbs
distributions.

3.6.1 Bounding the Kullback-Leibler divergence varia-
tion
The spatial case

The method developed in [Dudik et al., 2004] by Dudik et al is based on the
so-called convex duality principle, used in mathematical optimization theory.
Due the difficulty in maximizing the entropy (which is a concave function),
one looks for a convex function easier to investigate. Dudik et al showed that,
for spatially constrained Maxent distributions, finding the Gibbs distribution
amounts to finding the minimum of the negative log likelihOO(ﬂ:

L (A) = —m [log ua] . (3.9)

Indeed, in the spatial case, the Kullback-Leibler divergence between the
.. (T) . R e
empirical measure 7, ° and the Gibbs distribution at puy is:

=" [lognl"] — wll [logpa], (3.10)

w

(@)
diep (rT) 1) = (1) | 1087w
w w log [

so that, from Eq. [2.43}
L.oy(A) =P[A] -l [H]

w

2We have adapted [Dudik et al., 2004] to our notations. Moreover, in our case m(JT)

corresponds to the empirical average on a raster w whereas 7 in [Dudik et al., 2004] cor-
responds to an average over independent samples.
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Since P is convex and 75 [H] linear in A, L_r)(A) is convex. Its unique
minimum is given by Eq.
Moreover, we have:

LX) =L (X)) =P[XN]=P[A] -V [AH], (3.11)
with AH = Hx — H. From Eq. 218§
Z[N] 1 Hyr ((0)
ZA] ~ ZA]
w(0)
= ) A0y [w(0)]
0)
= pa[e?T] (3.12)

and since P[A] = log Z[A] in the spatial case:

PIN]—=P[A] =logux[e]. (3.13)
Therefore:

LW(T)(A,) - LW(T)(A) = 10g [75\ [GAH} - 7T£T) [AH] . (314)
The idea proposed by Dudik et al is then to bound this difference by an
easier-to-compute convex quantity, with the same minimum as L_cr)(\), and
to reach this minimum by iterations on A. They proposed a sequential and
a parallel method. Let us summarize first the sequential method. The goal

here is not to rewrite their paper [Dudik et al., 2004] but to explain some
crucial elements that are not directly appliable to the spatio-temporal case.

In the sequential case one updates XA as X’ = X + de;, for some [, where
e, is the canonical basis vector in direction [, so that AH = dm;, and

L y(N) = L_y(A) =log ux [€”™ ] — 6m" [my].
Using the following property:
e <14 (2 — 1), (3.15)
for x € [0,1] and since m; € {0, 1}, we have:

log rix [e‘sml} <log (1+ (e — V)ux[my] ). (3.16)
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This bound, proposed by Dudik et al, is remarkably clever. Indeed, it replaces
the computation of the average px [e‘smﬁ ], which is computationally hard, by
the computation of uy [m;], which is computationally easy. Finally,

LX) = Ly (A) < —6m” [my] +log (14 (¢ — Dpa[mu]) . (3.17)

In the parallel case, the computation and results differ. One now updates
L . .
Aas X = A+)>7,., dre. Moreover, one has to renormalize the mys in my = 7
. . L
in order that Eq. m below holds. We have therefore AH =)",", dmy.

Thus,

L
L @) (X) = L_n(X) = log pa [ezitlé‘mE ] — Z o) [m)].
=1

Using the following property [Collins et al., 2002]:

L
eXimdimy < 1 4 > mp (eh—1), (3.18)

1=1
for § € R and mj > 0, Ele my < 1, we have:
; L
1=1
Since log(1 + z) < z for z > —1, Dudick et al obtain that:

(e —1) palmi],

log px [ezf;l ‘5””5] <

L
=

provided E{;l (8‘55 — 1) pa[my] > —1. (This constraint has to be checked
during iterations). Finally, using the definition of m:

L L
' 1 (T) 5
LX) = LoQ) =7 | - ?ﬂﬁm [mu] + z§=1: (e —1) palmy
(3.19)

To be complete, let us mention that Dudik et al consider the case where
some error € is allowed in the estimation of the coefficient );. This relaxation
on the parameters alleviates the overfitting.



In this case, the bound on the right hand side in Eq. (sequential
case) becomes:

Fi(A,6) = =07 [my] + log (1+ (¢ = Dua[mu]) + e (| M +3] = M)

(3.20)
whereas the right hand side in Eq. becomes 3.1, Gi(A, 8) with:
1
Gl<)\,6) = Z [—517T£)T) [ml] + (€6l - 1) /LA[TTL[H +€l(|>\l—|—(5| - |>\l|)7

(3.21)
The minimum of these functions is easy to find and one obtains, for a given
A the variation & required to lower bound the log-likelihood variation. The
authors have shown that both sequential and parallel method produce a
sequence A¥) which converges to the minimum of Lﬁg) as k — +oo.

Extension to the spatio-temporal case

We now show how to extend these computations to the spatio-temporal case,
provided one replaces the log-likelihood L (D) by the Kullback-Leibler diver-

gence (Eq. [2.43] - The main obstacle is that the Gibbs distribution does not

have the form é We obtain thus a convex criterion to minimize Kullback-

T
Leibler dlvergence variation, hence reaching it minimum, 7r£, ),

Replacing v in Eq. 2.43I) by 7T£, ), the empirical measure, one has:

dir(mD pn) — dgr (7 pn) = PN — P[A] — oD [AH],  (3.22)

because the entropy S [WU(JT)

] cancels. This is the analogue of Eq. (3.11]).

The main problem now is to compute P [N ] — P[A].
Gibbs distribution obeys ([Bowen, 2008]):

Lix [ n— 1]
A< — < B, (3.23)
@—(n DYP[A ]eH(Wo )

Then,
A~ (n=D)P[A] Z Mg ™) o AH(wg )

< Z [ [wg—l] eAH(wg_l)

< Be~(n=D)PIA] Z H(wy ™) pAH(wp ™)
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so that:

n—oo M

1 o1 .
lim — [logA— (n—D)P[A]+log ( Z M(wy ™) gAH(wg 1))

< nh_)noloﬁlog < Z MA }eAH(wg—l))

wy 1
]_ n—1
< lim = |log B — (n — D)P ] )eAH(ws )
< lim — | log B = (n— D)P +0g(ze >
(3.24)
Since Hy (wi™ ") = H(wy™) + AH(wy™), from Eq.
lim ~ 1 M TDARET) = PN,
Jim w2 =P
Therefore:
1 n—1
N —P[A] = lim =1 n—17 gAH(wy ), 2
PXN]=P[A] nggonognz_lm[% Je (3.25)
“o

This is the extension of Eq. to the spatio temporal case. In the spatial
case it reduces to Eq. [3.13]from Eq. This equation is obviously numer-
ically intractable, but it has two advantages: on one hand it allows to extend
the bounds (Eq. sequential case) and (Eq. parallel case), and on
the other hand it can be used to get a d-power expansion of P [N ] —P[A].
This last point is used in the section [3.6.2

To get the analogue of Eq. - in the sequentlal case where AH (wj™1) =
>, D=1y (wrtP), one may still apply Eq. [3.15{ which holds prov1ded

my(wy™h) = my(witP) < 1 (3.26)
So, compared to the spatial we have to replace m; by 5 in AH (wy 1. We

have therefore:
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D palwp et Vo= > pafwp!] Smpmi(es )

n—1 n—1
wo “o

n—D—1
1 -1 D
Ay mu(wy ) = (wr?)
n_D;
0
1 n—D—1
= —5 ; palmi]
= pxlm]
so that: )
> [ T <1 (¢ = D[]

nl

At first glance this bound is not really useful. Indeed, from Eq. we

obtain:
PIN]=PIA] < lim log (1+ (¢ = 1 [mu] ) = 0.

Since this holds for any § this implies P[AX']| = P[A]. The reason for this
is evident. Renormalizing m; as we did to match the Condition imposed by
bound (Eq. [3 is equivalent to renormalizing 6 by —%. As n — +o0o this
perturbation tends to 0 and X' = A. Therefore, the clever bound (Eq. -
would be of no interest if we were seeking exact results. However, the goal
here is to propose a numerical scheme, where, obviously 7 is finite. We replace
therefore the limit n — oo by a fixed n in the computation of PIN]|=P[A]

Keepmg in mind that m; must also be renormallzed in 75" [ AH] and using
1 < —L the Kullback-Leibler difference (Eq. [3.22)) obeys:

1
n—D

dicr (87, px) —drer (780, pa) <

[—oml" [my] +log (1+ (¢ = Dpun[mu]) ],
(3.27)
the analog of Eq.

In the parallel case, similar remarks holds. In order to apply the bound

(Eq. [3.18) we have to renormalize the mys in mj; = L(niD). As for the
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spatial case we also need to check that SO (€% —1) palmy] > —1. (This
constraint is not guarantee and has to be checked during iterations). One
obtains finally:

(T)
~ L(n—D)

L L
1
A (7l pa)—dir (78 pa) € ——— | — E S [my] + E (e =1) palmy] |,
=1

=1
(3.28)
the analogue of Eq. .19

Compared with the spatial case, we see therefore that n mustn’t be too
large to have a reasonable Kullback-Leibler divergence variation. It mustn’t
be too small, however, to get a good approximation of the topological pres-
sure.

3.6.2 Updating the target distribution when the param-
eters change

When updating the parameters A, one has to compute again the average
values ux [my ] since the probability uy has changed. This has a huge com-
putational cost. The exact computation (e.g. from Eq. [2.20| and [2.38))
is not tractable for large N so approximate methods have to be used, like
Montecarlo (|[Nasser et al., 2013]). Again, this is also CPU time consum-
ing especially if one recomputes it again at each iteration, but at least it is
tractable.

In this spirit, Broderick et al [Broderick et al., 2007] propose to generate
a Montecarlo raster distributed according to uy and to use it to compute py
when ||A" — Al is sufficiently small. We expose their method, limited to the
spatial case, in the next section, and we explain why it is not applicable in
the spatio-temporal case. We then propose an alternative method.
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The spatial case

The average of m; is obtained by the derivative of the topological pressure
P[A]. In the spatial case, where P(A) = log Zx, we have:

IP(N)
N,

1

= ] 2@ )
w(0)

A

= ZIA N (0D A0 . T
7] 2O O)] (529

pa ] =

Using Eq. [3.12] one finally obtains:

pa [ma((0)) €700

1259 [ml] - Lix [GAH(w(O)) ] ’ (330)

which is eq. (18) in [Broderick et al., 2007]. Using this formula one is able
to compute the average of m; with respect to the new probability u only
using the old one, puy.

Extension to the spatio-temporal case

We now explain why the Broderick et al method does not extend to the
spatio-temporal case. The main problem is that if one tries to obtain the
analogue of the Eq. one obtains in fact an inequality:

B e
gy bl s lim = ux[em(wz}‘”] < v lmds o (3:31)

where A, B are the constants in Eq. [3.23] They are not known in general
(they depend on the potential) and they are different. However, in the spatial

case A = B = 1 whereas jix [ml (wg™) ARG | = 4y [y (w(0)) eAH )]
because the potential has range 1. Then, one recovers Eq. Let us now
explain how we obtain Eq.

The averages of quantities are obtained by the derivative of the topological
pressure (Eq. (2.38])). We have:
B oP - dlim,, o %bg Zyp [N']
o\ O\ '

i [y ] (3.32)
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Assuming that the limit and the derivative commute (see e.g. [Mayer and Urbanski, 2010]),
gives:

. 1 1 n—1 H /(wn—l)
] =i T 2 L
wo
- ] l 1 Z m (wnq ) eAH(wg’l)eH(wg’l)
nﬁoonZn[A,] R 0
0
1 u.)nfl my (u}gil ) eAH(Wg_l)eH(wg_l)
= hm - . n—1 n—1
n—oo N, ng—l eAM(wy ™) pH(wy ™)
(3.33)
From Eq. |3.23}
Ae—(n—D)'P[)\} Z my (wg—l ) eAH(wgfl)eH(wgfl)
w371
n—1
< () S i 1]
n—1
Wo
< B e (n=D)PIA] my (wnq ) eAH(wgfl)eH(wgfl)
(3.34)
and:
< Z 6AH(wg*1)MA [wg_l}
w871
< Be~(n=D)PIA] eAM(wg ™) Hlwg ™)
Therefore:

A Z n—1 ml (wg_l ) eAH(wgil)eH(wgil)
—_— (’JO
B S ar @AMEET D

“o

D G L Y

>~ ng71 eAH(wgfl)MA I:w('r)z—l}
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Now, from |[Chazottes and Keller, 2008|, Keller, 1998, Eq. [3.33) gives|3.31]

Taylor expansion of the pressure

The idea is here to use a Taylor expansion of the topological pressure. This
approach is very much in the spirit of [Kappen and Rodriguez, 199§|, but
extended here to the spatio-temporal case. Since X’ = X + 8§, we have:

19) m 0? m
px [mi] = [my +Z M)‘ 1 Z 8/?8)\; 00k + ...
8*P A OoPIA
— L 5 s+.(3
[ +Z N aAl Z ox, aAk(?/\l bt (3:39)

The second derivative of the pressure is given by [Ruelle, 1978, [Bowen, 1975,
Georgii, 1988 [Chazottes and Keller, 2008|:

82
DON 3)\1 Z Ci(n) = X [A], (3.36)

where:
Ci(n) = palm;myoo™] — px[m; ] px[m], (3.37)
is the correlation function between m;, m; at time n, computed with re-
spect to fix. is a version of the fluctuation-dissipation theorem in
the spatio-temporal case. ¢™ is the time shift applied n times. The third
derivatives can be computed as well by taking the derivative and us-

ing (3.32). This generates terms with third order correlations and so on
[Mayer and Urbanski, 2010]. Up to second order we have:

L
px [ma] = pa[m] + > x [A]6;+ . (3.38)
j=1
Since the observable are monomials they only take the values 0 or 1 and
the computation of xj; is straightforward, reducing to counting the occur-
rence of time pairs t,t 4+ n such that m;(¢) = 1 and my(t +n) = 1.

On practical grounds we introduce a parameter A = ||’ — A|| which
measures the variation in the parameters after update. If A is small enough
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(smaller than some A.), the terms of order 3 in the Tayor expansion are
negligible, then we can use . Otherwise, if A is big, we compute a
new Montecarlo estimation of ufy (as described in [Nasser et al., 2013]). We
explain in section how A, was chosen in our data. Then, we use the
following trick. If ||8]] > A, we compute the new value pux [m;]. If A, >

|6]] > 4¢, we use the linear response approximation of p. Finally,
if ||6] < £ we use px[my] instead of px [my] in the next iteration of
the method . Thus, in the case, [|d|| < A, we use the Gibbs distribution
computed at some time step, say n, to infer the values at the next iteration.
If we do that several successive time steps the distance to the original value
A, of the parameters increases. So we compute the norm ||A, — A, ;x| at
each time step k, and we do not compute a new raster until this norm is

larger than A..

3.6.3 The algorithms

We have two algorithms, sequential and parallel, which are very similar to
Dudik el al. Especially, the convergence of their algorithms, proved in their
paper, extends to our case since it only depends on the shape of the cost
functions (Eq. and . We describe here the algorithms coming out
from the presented mathematical framework, in a sequential and parallel
version. We iterate the algorithms until the distance ¢ = d (uA,W(EJT)> is

smaller than some ¢.. We use the Hellinger distance:

d(inrll) == Z (VA ) = Vi ) (3.39)

Sequential and parallel algorithms are shown respectively in table |1} and

3.6.4 Demo: inferring the Maximum Entropy distribu-
tion during the iterations

Here we show, on an example of 10 neurons with R = 3, how the parameters,
the error and the predicted probability of monomials evolves from the initial
condition until convergence. The example is shown in Figure [3.10| by showing
the results at several steps in the updating algorithm.
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Input: The features probabilities 7.’ [my]

Output: The vector of parameters A
initialization: \; = 0 for every [, A =0
while € > ¢, do
(0,1) = argmin; 5 Fj(X, 0)
>\l — )\l + )
A—A+|§|
if A > A, then
Compute a new Gibbs sample using Montecarlo method
[Nasser et al., 2013

else
Compute the new features probabilities using Taylor expansion

(Eq.
end
end
Algorithm 1: Sequential algorithm. ¢ is the learning rate by which we
change the value of a parameter )\;. € is the convergence criterion (Eq.
3.39)). A is the parameter allowing us to decide whether we update the
parameters change by computing a new Gibbs sample or by the Taylor

expansion. F} is given by Eq.

Input: features probabilities 7' [ ]

Output: parameters )\,
initialization: A\; = 0 for every [, A =0
while € > ¢. do
for [ — 1to L do
| 0, = arg ming G;(A, §)
end
A—A+90

A A2+ 3 6
if A > A, then
Compute a new Gibbs sample using Montecarlo method

|[Nasser et al., 2013|

else
Compute the new features probabilities using Taylor expansion

(Eq. [3.38)
end

end
Algorithm 2: The parallel algorithm. G is given by Eq.
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Figure 3.10: A demo for fitting the parameters. We adopted the strategy
of iterating the parallel algorithm before the sequential one in order to have
faster convergence. for small scale, 50 parallel iterations and 100 sequential
are enough. For large scale, we need around 200 parallel iterations and as
much parameters in the model for the sequential algorithm. (a)-(d) show
the coefficients values and the comparison between expected averages and
empirical averages of monomials (with errors bars) at some stages from the
algorithm. (f) shows the Hellinger distance between the empirical and com-
puted distribution during parallel and sequential update. The 5 neurons are
chosen randomly from the data set (Ds) and binned with 20 ms.



3.7 Results on synthetic data

In this section we perform several tests on our method. We first consider
synthetic data generated with a known Gibbs potential and recover its pa-
rameters. This step also allows us to tune the parameter A. in the algo-
rithms. Then, we consider real data analysis where the Gibbs potential form
is unknown.

3.7.1 Synthetic data generation

Synthetic data are obtained by generating a raster distributed according to a
Gibbs distribution whose potential is known. We consider two families
of Gibbs potentials. For each family there are L > N monomials whose
range belongs to {1,..., R}. Among them, there are N "rate monomials"
wi(D),i=1...N, whose average gives the firing rate of neuron i, denoted r;
; the L — N other monomials, with degree & > 1, are chosen at random with
a probability law ~ e~* which favors therefore pairwise interactions. The
difference between the two families comes from the distribution of coefficients
Al

1. "Dense" rasters family. The coefficients are drawn with a Gaussian
distribution with mean 0 and variance % to ensure a correct scaling of

the coefficients dispersion as L increases (Figure [3.11(a)). This pro-

duces typically a dense raster (Figure [3.11(b))) with strong multiple
correlations.

2. "Sparse'" rasters family. The rate coefficients in the potential are
very negative: the coefficient h; of the rate monomial w;(D) is h; =

T
1—r;

log < ) where r; € [0 : 0.01] with a uniform probability distribution.

Other coefficients are drawn with a Gaussian distribution with mean
0.8 and variance 1 (Figure |3.12(a)n). This produces a sparse raster

(Figure |3.12(b)b) with strong multiple correlations.
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3.7.2 Tuning A,

For small N, R (NR < 20) it is possible to exactly compute the topological
pressure using a transfer matrix technique [Vasquez et al., 2012]. We have
therefore a way to compare the Taylor expansion (Eq. and the exact
value.

If we perturb A by an amount ¢ in the direction j, this induces a variation
on px[m;], j = 1...L, given by the Taylor expansion (Eq. B.3§). To the

lowest order gy [m]] pa [m; ]+ OW, so that:
Z | px [my ] — pa[my] |
| NX m; ]|

is a measure of the relative error when considering the lowest order expansion.
In the same way, to the second order:
px [my ] = i [my ] + X [A] 6 + O,
so that: .
1 3 | [y | = pa [my T = X [A] 0k |
| px [my] |

Y

is a measure of the relative error when considering the next order expansion.

In Figure [3.13 we show the relative errors eV, ¢ (in %), as a function of
0. For each pomt we generate 25 potentials, Wlth N =5 R=3,L =12. For
each of these potentials we randomly perturb the A;s, with a random sign,
so that the norm of the perturbation ||§|| is fixed. The linear response x is
computed from a raster of length 7" = 100000.

These curves show a big difference between the dense and sparse case. In
the dense case, the second order error is about 5% for A, = 1 whereas we
need a A. ~ 0.03 to get the same 5% in the sparse case. We choose to align
on the sparse case and in typical experiments we take A. = 0.1 corresponding
to about 10% of error on the second order.

3.7.3 Test experiences

Here, we test the method on synthetic data where the shape of the sought
potential is known: only the ;s have to be estimated. Experiments were
designed according to the following steps:

e We start from a potential Hy« = Zleﬁ Afmy. The goal is to estimate
the coefficient values A\ knowing the set £ of monomials spanning the
potential.
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Figure 3.13: Error on the average px [m; ] as a function of the perturbation
amplitude §. First order corresponds to ¢ and second order to €? (see
text). The curves correspond to N = 5, R = 3, L = 12. Left: Dense case;
Right: Sparse case.

e We generate a synthetic spike train (w;,) distributed according to the
Gibbs distribution of H-«.

e We take a potential Hy = Zleﬁ Aym; with random initial coefficients

A;. Then we fit the parameters )\; to the synthetic spike train ng).

e We evaluate the goodness of fit.

For the last step (goodness of fit) we have used two criteria. The first

one simply consists of computing the L, error d; = %Zle ‘ A — )\l(eSt)

where /\,(:St) is the final estimated value. d; is then averaged on 10 random

potentials. Figure shows the committed error in the case of sparse and
dense potentials. The main advantage of this criterion is to provide an exact
estimation of the error made on coefficients estimation. Its drawback is that
we have to know the shape of the potential which generated the raster: this
is not the case anymore for real neural networks data. The method showed
a good performance, both in dense and sparse case, for large N x R ~ 60.
We therefore used a second criterion (on sets of 40 neurons with Ising and
pairwise models): confidence plots. For each spike block w appearing in the
raster ws we draw a point in a two dimensional diagram with, on abscissa,
the observed empirical probability mg) [wéj } and, on ordinate, the pre-
dicted probability pix [w(’? } Ideally, all points should align on the diagonal
y = z (equality line). However, since the raster is finite there are finite-size
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fluctuations ruled by the central limit theorem. For a block wf generated

by a Gibbs distribution gy and having an exact probability py [w(?} the

empirical probability W&s) [wé? ] is a Gaussian random variable with mean

D _ D
I73% [w(?] and mean-square deviation o = VR ]X\E,J,_l, iafed ]) The proba-

bility that w&? [ wd ] € [,u;\ [w(?} — 30, px [w(?] + 30} is therefore of about

99,6%. This interval is represented by confidence lines spreading around the
diagonal.

We have tested the following cases.

1. Spatial case, 40 neurons, (N R = 40): Ising model (Eq. 2.23). Figure
5. 10 .

(a) Monomial averages. (b) Patterns of Depth 1.

(¢) Patterns of Depth 2.

Figure 3.15: Data were generated with an Ising distribution. After
fitting with an Ising model, we show the comparison between observed
and predicted probabilities of monomials in (a). (b,c,d) The compar-
ison of predicted and observed probabilities of patterns of Depths 1, 2
and 3, respectively. In the four plots, the x-axis represents the observed
probabilities and the y-axis the predicted probabilities. The estimated
Kullback—Leibler divergence is 0.0107.
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2. Spatio-temporal, 40 neurons, R = 2 (NR = 80): Pairwise model with

delays (Eq. 2.42)). Figure [3.16]
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(a) Monomial averages. (b) Patterns of Depth 1.
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(c) Patterns of Depth 2. (d) Patterns of Depth 3.

Figure 3.16: Data were generated with a pairwise distribution of range
R = 2. After fitting with a pairwise model of range R = 2, we show the
comparison between observed and predicted probabilities of monomials
in (a). (b,c,d) The comparison of predicted and observed probabilities
of patterns of Depths 1, 2 and 3, respectively. In the four plots, the x-
axis represents the observed probabilities and the y-axis the predicted
probabilities. The estimated Kullback-Leibler divergence is 0.0174.

After fitting the model, the first thing to look at is the monomials av-
erages. We expect that the monomials probabilities predicted by the model
are close to the observed ones. Figure |3.16(a)| and [3.15(a)| show that mono-
mials averages are well predicted the spatial and spatio-temporal case, with
40 neurons. Concerning the prediction of pattern probabilities, Figure |3.15
shows that the fitted model is able to predict well the pattern of depth 1,2
and 3, which is an another argument on the validity of the algorithm.
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3.8 Conclusion

This chapter consists on four important contributions of my thesis:

1. A Montecarlo method to compute target Gibbs distributions from a
given set of parameters.

2. Parallelization of the Montecarlo method.

3. Extension of the convex-duality principle to compute the parameters
for spatio-temporal Maximum Entropy distributions.

4. Computing an approximated value of the Kullback-Leibler divergence
for large networks using Montecarlo.

We have seen that computing the target distribution using Montecarlo
gives the expected results as shown in Figure 3.7, The parameters fitting
algorithm gives excellent results on both small and large scale (Figure [3.10]
[3.14] 13.15| and |3.16}).

In term of computation time, we are still faced with long computations
despite using the parallel version of Montecarlo with clusters. The computa-
tion time depends not only of the length of the target distribution, but also
the coefficient k, the number of neurons N and the number of parameters L.
For instance, on a cluster of 64 cores, we need around 5 minutes to compute
a target distribution for 20 neurons with a pairwise r = 2 model, around 10
minutes for 40 neurons with Ising and around 20 minutes for 40 neurons with
pairwise R = 2. The time of computing the parameters will be multiplied by
the number of parallel and sequential iterations. In general, we run 100-200
parallel iterations and 200-300 sequential to get the convergence. Overall,
we need 1 day for a pairwise R=2 on 20 neurons, 3.5 days for an Ising on 40
neurons and 6 days for a pairwise R = 2 on 40 neurons.

As we recommend k = 30 — 50 and Nypes = 10%, the only way yo reduce
the computation time is to reduce the number of monomials. In this spot,
filtering monomials from the distribution will be twofold:

e Eliminating the risk of infinite fluctuations on the parameters.

e Reduce the computation time.
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Chapter 4

EnaS: a new software for large
scale spike train analysis

Contents
4.1 EnaS: concept and design| . . . . ... ... ... .. 98
4.2 The main functionalities in fpad . . . ... .. .. 102
42.1 RasterBlockl . . . ... ... ... .00, 102
422 Grammar . .. .. ... 105
4.2.3  Observables & Gibbs potentiall . . . . . . ... .. 110
[4.3 Codes development awareness| . . . . ... .. ... 112
[4.3.1 Namingrules| . . . .. .. ... ... ... ..... 112
[4.3.2 Codmmgrules . . ... ... ... ... ..., 113
[4.4  EnaS: The graphical user interface] . . . . ... .. 115
[4.4.1  Spike train management window| . . . . .. .. .. 116
4.4.2  Pattern Histogram and filtering window| . . . . . . 116
4.4.3  Probabilistic modeling module] . . . ... ... .. 118
[£.4.4  The spike/stimulus display window| . . . . . . . .. 118
4.5 Conclusionl. . . . . ... ... 0oL, 123

This chapter presents FnaS (Event Neural Assembly Simulation), a soft-
ware dedicated for analyzing large scale spike trains. EnaS is based on the
tools presented in chapters 2 and 3, as well as many other statistical modules.
EnaS exists as a C++ code and a graphical user interface (GUI). The GUI
is dedicated to make easy use of the library, especially for End-users, such
as biologists. This software is compatible with Linux, Windows and Mac
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operating systems and can be used with Matlab. FnaS is available online on
this web-page http://enas.gforge.inria.fr/.

This software project has been initiated in 2007 with a first version,
thanks to the works of Prof. Bruno Cessac and Thierry Viéville. As of
today, 2014, we are at version 3 with a graphical user interface thanks to
the works of several scientists and developers. My main contributions to this
software are:

e Implementation and validation of the Montecarlo and Parallel Monte-
carlo method.

e Implementation of the fitting parameters methods and providing tests.

e Contribution in the design of the software (testing, debugging, etc ...).

EnaS performs both empirical and theoretical statistics. Empirical statis-
tics modules allow the user to manipulate spike trains, load data, select neu-
rons, display the activity and the pattern occurrences and saving plots of
the network activity. Theoretical modules allow to choose the hypothesized
model, fit it to data and evaluate how empirical and theoretical distribu-
tion are close to each other, providing tools to evaluate the models such as
Kullback-Leibler divergence and confidence plots. EnasS also contains a tool
to create empirical distributions from customized theoretical distributions
configured by the user.

Thanks to the Montecarlo method [Nasser et al., 2013|, EnaS is able to
perform statistics for large networks with spatio-temporal constraints. EnaS
can be run in parallel processing. We have implemented the possibility
of parallel computing using OpenMP and MPI. Furthermore, the user can
choose between computing methods: transfer matrix (for small size network,
NR < 20) or Montecarlo (for larger networks). The user is also given the
freedom to choose the potential type (Bernoulli, Ising, Pairwise, triplets as
well as completely customized potentials using a monomial file E[) These
points are developed below in details.

4.1 EnaS: concept and design

Enal implements functionalities to manipulate data, perform statistics and
display results of empirical and theoretical computations. Figure shows
the three major cores of EnaS :

'The monomial file contains the set of monomials that constitute the features of the
Gibbs potential
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Figure 4.1: The concept of EnaS. FnaS reads data in 3 formats (details in
Figure and perform empirical and theoretical analysis. The empirical
analysis are performed directly on data, such as counting patterns occur-
rences and computing firing rates are directly measured on the data (for
example, see Figure . Theoretical analysis requires defining the models
and the fitting parameters as well as the empirical measures.

e Performing empirical statistics on spike trains.
e Fitting of general spatio-temporal statistical models.

e Display results of statistics.

The FEnaS library contains about 40 classes coded with C++. Some
classes are dedicated to manage spike train data and empirical measurement
Others classes are dedicated to define the models and fit the parameters. We
also introduced some classes dedicated to purely technical tasks, like those
using graphics (Gnuplot for instance) or other standard libraries for printing
and generating random numbers. We adopted the C++ language for many
practical reasons:

1. Speed: Because of its intermediate programming level, C+-+ ensures
a speed in computation and a compromise between speed and coding
easiness.

2. Inheritanceﬂ the concept by which derived classes (or sub-classes) can
inherit attributes and behaviors from super (or parent) classes. This

2Inheritance is the process by which new classes called derived classes are created from
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concept implies a hierarchy in the code and allows its reusability (from
parent to sub classes). Hence, this allows saving time and effort, keep-
ing the library more structured and prevents from adding redundant
codes at many places in the library.

3. Popularity: C++ is one of the most popular languages and is imple-
mented on a wide variety of hardware and operating system platforms.
Installing EnaS requires installing free libraries which are available on-
line but does not need any IDE El such as Matlab, Visual studio, etc

4. Possibility of interfacing the library with other programming languages
(i.e., python and java) as well as IDEs.

Note on classes and objects The Object Oriented Programming (OPP)
offers the possibility to create objects and classes. This has several advan-
tages for the developers. For instance: the reusability, the inheritance and
the organization of the code. In EnaS, for example, we can consider that as
spike train is an object which has attributes and functions.

Attributes for such objects are:

e Number of neurons.

e Length of the spike train.

e Binning value.

o ...

Functions for such objects could be:

e Computing the firing rate.

e Concatenating two or more spike trains.
e Extracting subsets of neurons.

o ...

Another example of objects is the model, which can have the list of mono-
mials as an attribute and the method of fitting parameters as a function.

existing classes called “base classes”. The derived classes have all the features of the base
class and the programmer can choose to add new features specific to the newly created
derived class.

3IDE: Integrated Development Environment.
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Figure 4.2: EnaS functionalities. (a) The main tasks of each (sub) module.
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several sub-classes (derived classes). Here we present only the main sub-
classes. For instance, the RasterBlock is responsible for coding the raster
data, concatenating and making algebraic shifts (the iterator facility, Figure
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is responsible for refining the RasterBlock structure by identifying only the
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bilities. (¢) Examples on some empirical statistics using Rasterblock (Firing
rates (top) and patterns occurrences (bottom)). (d) Coefficients display and
(e) confidence plots: results of the theoretical statistics performed by the
Observable/Gibbs potential functionality.



4.2 The main functionalities in EnaS

In the following, we will explain in details the main functionalities of FnasS:
e RasterBlock (and its derived class Grammar).
e Observable (and its derived class Gibbs potential).
e Utilities (and its derived class Plot).

Figure 4.2/ shows the functionalities tree (where we emphasize the inheritance
property), their main roles and some of the results we can obtain by using
them.

4.2.1 RasterBlock

RasterBlock is the EnaS input data manager. Data are supposed to be event-
based. Events happen when a neuron fires a spike, which leads to the event

pair (neuron, time). Hence, event-based data only contains firing event pairs.
The supported data (Figure [4.3) format are:

e Unit-time (two columns data, where the first one corresponds to the
firing cell index and the second one corresponds to the time stamps).

e Time-unit (like unit-time, but the first column corresponds to the time
stamp and the second one corresponds to the cell index).

e Unit-by-line (each line contains the time stamps of one neuron); clearly,
data are event-based, e.g., only time stamps when the neuron fire exists.

e Neuron-per-column with MEA coordinates, where each column con-
tains the events of 1 neurons with its MEA coordinates (Figure 4.13]).

RasterBlock coding strategy: We used C++ sets in order to store
the spikes data. Sets are containers that store elements (events) following
a specific order. We used sets because we are interested in a structure that
allows fast access to the stored elements. Sets are the fastest containers
that C++4 provide. The speedy access to the elements in the sets is of high
importance because usually spike train acquisitions are heavy and when it
comes to counting the specific events and search for them in the set, one
needs to traverse a lot of memory cells.

EnaS implements a specific iterator. Like iteration over a real integer
number, we need to iterate over a variable of type RasterBlock. Figure [1.4]
gives a typical example of iteration over a RasterBlock of size 3 neurons
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Time-Unit Unit-Time

5.00 0 05.00
ST
7.60 2 27.60 set pair<int time, int neuron>
800 0 08.00
910 2 29010 Neuron
980 1 1880 (5000,0) (6900,0) I I
1959 9133 (8000,0) (10400,0)
1121 112 __5  (11700,0) (6800,1) > |1
' ‘ (9800,1) (11200,1) TN
Unit-By-Line (7600,2) (91000,2) , , .
(9600,2) (11000,2)
0# 5.00 6.90 8.00 10.40 11.70 Time (s)
1# 6.80 9.80 11,20
2% 7.60 9.10 9.60 11.00
(a) (b) (c)

Figure 4.3: Data management in EnaS. (a) EnaS can read spike trains with
one of the following three formats: time-unit, unit-time and unit-by-line.
We defined those formats as acceptable formats because they are the most
used in the community. When importing the spike train file, the user should
precise what is the format of the data. (b) EnaS stores those data in C++
sets and displays them. The C++ set features sorts automatically events
in increasing order with respect to neuron index and time stamp. The time
stamps are processed with respect to the sampling period and finally trans-
formed to integer values for technical reasons (at many stages in processing
the spike trains, we might need to compare time stamps of two neurons).
The comparison of double values is not precise because of the floating points.
Hence, we transform them to integer values). (c¢) The spike train drawn using
plotting facilities provided by EnaS.
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Figure 4.4: The Iterator facility provided by RasterBlock. It is a tool that
implements an iterator over a RasterBlock. The integer numbers outside the
circle are only set for clarification. Like iteration over integer number(0 —
1—-2—-3—4—5—6—7), the iterator perform an incrementation
of the RasterBlock which is a Boolean array (000 — 001 — 010 — 100 —
101 — 110 — 111). It begin with 000 and at each iteration. It performs
simple incrementation on the correspondent Boolean array.

and 1 time-step. The iterator follows the order of Boolean representation of
integers. We use this iterator in EnaS to scan spiking patterns in order to
compute their probabilities.

RasterBlock functions Apart from reading data, the RasterBlock func-
tionality offers many other tools:

e Extracting sub-spike trains, those who correspond to neurons the user
selects, i.e., creating another spike train with less number of neurons
specified by the user.

e Extracting the activity between two times from the spike train (t; =
“beginning time” and t; = “ending time” are precised by the user) .
The user can analyze or visualize this specific part of the spike train if
desired.

e Concatenating two or more raster blocks together. An example of using
this facility is when we have a spike train with many stimuli and want
to make spike trains that corresponds each to one of the stimulus.

e Binning: the sampling period for a spike train. Basically, spike trains
are acquired at various sampling period (e.g. 0.1 or 1 ms). EnaS allows
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the user to change this sampling period if the user desires. Figure [1.5]
gives two example of the binning process.

e Creating random spike trains with a given Gibbs distribution. The
idea consists on generating a spike train from a set of monomials and
parameters. This is nothing but generating a target distribution with
Montecarlo (this issue is detailed in Figure [3.1). It is also possible to
generate the target distribution with the transfer matrix, but only for
small networks or small number of neurons.

e Comparing two raster blocks by comparing the mutual events of both
raster blocks.

e Computing the Hamming distance between two data sets: measuring
how dissimilar they are.

D(w,w') = ) lwilt) = wi(1)] (4.1)

e Read and/or change a neuron state at any time: tells if the neuron fire
or not and the possibility of toggling the value of an event.

e Performing periodic and non periodic shifts on the spike blocks. The
spike block wi™! of size R is a set of consecutive R spike patterns (w(0),
w(l) ...w(R)). The shift consists on moving all the spike patterns
toward the left. w(1) replaces w(0), w(2) replaces w(1) and so on. The
difference between periodic and no periodic shit is the following: in
the periodic case, when w(0) gets shifted, it replaces w(R), however,
in the non periodic case w(R) is replaced by w(R + 1) and w(0) goes
away. This functionality has been used to infer the form of the Gibbs
potential from a spike train (e.g., [Cofré and Cessac, 2013)).

4.2.2 Grammar

The Grammar sub-functionality is derived from RasterBlock. It is an anal-
ogy with language grammar, which represents the speaking or writing rules.
Likewise, for a spike train, which would contain 2N possible transitions,
the grammar is a tool to conclude, from a spike train, the rule of observed
legal transition (see section[2.2.4)). In other words, the grammar scans all the
spike train and maps only the observed transition blocks. It represents the
obtained value in a C+-+ map.
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Figure 4.5: The binning concept. Binning is the process by which we change
the basic sampling period of a raster. Basic sampling period is the one used
during the acquisitions. Usually, it is in the order of 0.1 or 1 ms. (a) binning
at 10 ms. The process consists on scanning time windows of 10 ms along the
raster and consider a spike whenever the time window contains at least one
spike. If the time window does not contain any spike, then the binned raster
event will be set to 0. (b) binning at 20 ms. Same like (a), but we scan time
windows of 20 ms.



The transition block represents the states of the whole network at two
adjacent time window: the past (of size D) called prefix and the current
pattern that represent the state of the network (of size 1), called suffix.
Prefix and suffix together make a RasterBlock of size D+1 = R. Hence, we
look at transitions by looking directly at blocks occurrences of range R. For
example, in a network where D = 3, we look at the occurrences of blocks
of size 3. Hence, the appearance of the block (g é (1)) means that there is a
transition from ((1] (1)) to ((1))

00 1

It is important to know how the Grammar stores the blocks in order to
understand the efficiency of the structure as well as its importance. As for
sets, the grammar structure contains key values and mapped values. A key
value corresponds to a prefix of size D. The mapped value corresponds to a
set of suffixes of size 1. This set of suffixes corresponds to the legal transition
that are found in the raster block. This gives a tree which is clearly illustrated
in Figure [4.6]

For N neurons and R time steps there are 2V possible transitions whereas
in an experimental raster of length T there are T'— R transitions. Typically,
T = 1057 whereas NR = 100. For example, in a network of 100 neurons,
withing a range of 3 time steps, we have 23% possible transitions. However,
in real acquisitions, the detected transactions constitute a small percentage
among all the possible ones. Take for example the short spike train presented
in Figure with 3 neurons. Let us display the zeros and ones of this spike

train. It reads:
Neuron#0 : 0001000001100

Neuron#1 : 0000001001001
Neuron#2 : 0000101010110

Each line corresponds to the activity of a single neuron and each column
corresponds to a 1 time step. Theoretically, this spike train would contain
512 possible transitions, which are the following:

000 000 000 000 111
Transition blocks 000 000 100 100 ... 111
000 100 000 100 111
Integer equivalent 0 1 2 3 ... bl2

However, in this raster block, we find only 8 possible transitions
blocks, which are:

000 001 010 100 000 000 000 001 011 110 100
000 000 000 000 o001 010 100 001 010 100 001
000 000 001 010 101 010 101 010 101 011 110
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Figure 4.6: C++ set for spike train grammar. The Grammar facility gener-
ates a C++ set that corresponds to transitions in the spike train. A transition
block is a concatenation between a prefix and a suffix. The suffix is always
a spike pattern of size 1 time step. The prefix size depends on the memory
of the potential, D = R — 1. The Grammar generates a tree where keys cor-
respond to the prefixes. For each key / prefix, we associate a set of mapped
values which are the suffixes. This will allow, not only to find the transi-
tion easily, but also to compute their occurrence. For instance, in order to
count the occurrence of the transition block (§ § §) , the Grammar finds the
prefix (§ §) and then count how many times their (§) happens. Doing this
instead of scanning again the spike train allows us to gain efficiency in the

computation and avoiding long computation periods.
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Figure 4.7: An example of the Grammar facility. (a) An example of a 13
time-steps spike train for 3 neurons. (b) The Grammar counts the occur-
rences of all possible blocks (as shown in the histogram/lookup table for
illustration), and then saves only the patterns whose occurrences is bigger

cut off the patterns considered by the user as statistically irrelevant.

Note that, in the 2 tables above, each transition block corresponds to a
concatenation between a prefix of size D = R — 1 = 2 and a suffix of size 1.

Therefore, the Grammar figures out the possible/legal transition that
happen in a spike train and creates a look-up table of transitions-probabilities
using C++ maps. This reduces the space given to store the possible transac-
tions and their occurrences. In addition, it constitutes a structure on which
we rely to compute other empirical averages, such as conditional probabili-
ties. The key values in the map are the transition blocks and the mapped

ralues are their probability. The structure obtained from such sorting will
look like the tree in the figure

Another main issue about Grammar is thresholding. After counting the
possible transitions, one can eliminate the transitions with small occurrences
because they are not statistically relevant. Figure [l.7]explains the concept.

To summarize, the main task of the Grammar functionality is to help cre-
ating an organized structure of spike blocks in order to compute the empirical
(joint, conditional and marginal) probabilities of patterns and features.
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4.2.3 Observables & Gibbs potential

This functionality offers tools to design a statistical model: monomials and
parameters. Gibbs Potential inherits some attributes from the observables
class. Figure show how Gibbs potential and Observables are connected
together. The main tools that Gibbs Potential and Observable offer are:

e Managing observables: definition and printing the observable in an
explicit way (((w1(0) — 1)w2(0)w;(2) for instance).

e Defining a Gibbs potential:

— Parametric : A set of observables that could be chosen and edited
by the user (H =, \my).

— Spatial-based potential: EnaS offers the possibility of configuring
potentials with pre-implemented shapes, such as:

x Bernoulli - where neurons are considered to fire independently:
Eq.

« Ising - Only firing rates and instantaneous pairwise interaction
are considered: Eq.

x Triplet - triplets instantaneous interactions are considered:
Eq.

— Spatio-temporal based potential, such as:

x Pairwise with delays - It contains instantaneous as well as
temporal interactions: Eq.

x Triplets with delays - triplets interactions with delays and so
on.

Computing the theoretical conditional probabilities.

Computing the entropy and the Kullback-Leibler divergence.

Generating a spike train from given a probability distribution.

Computing a target probability distribution with the Montecarlo tech-
nique.

Fitting the parameters \;.
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Figure 4.8: Gibbs Potential and Observables. Each Gibbs potential is defined
by the monomials and their correspondent free parameters \;s. We presented
monomials as masks in the equation in order to clarify how those monomials
are implied in shaping the Gibbs Potential. The free parameter associated to
a monomial represents the statistical weight of such monomial. For example,
the parameters related to firing rates are negative and the more negative

they are the less active the cells is.



4.3 Codes development awareness

We implemented the functionalities with precise coding and naming rules,
ensuring the robustness and usability of the code. We also optimized the
codes in such a way it takes the minimum possible time when one runs a
task using EnaS. Since EnaS has been developed by many scientists, we de-
termined coding and naming rules that each co-developer should follow. We
also created common network (subversion repository) where co-developers
can add and change the library codes.

4.3.1 Naming rules

The naming rules determine the conventions on how to choose, write and
administer names for all entities over which the programmer has control.
This guarantees that programs are easier to understand, read and maintain.
The rules are:

e The name of the header file should be the same as the name of the class
it defines, with a suffix ".h" appended. Example : The header file for
the class RasterBlock would have the name RasterBlock.h.

e The name of the implementation file should be the same as the name of
the class it implements, with a project dependent suffix appended. Ex-
ample : The implementation file for the class RasterBlock would have
the name RasterBlock.cpp. The template implementation file (if ex-
ists) for the class RasterBlock would have the name RasterBlock.tpp.

e Co-developer should use pronounceable names, or acronyms used in the
experiments.

e Using names that are English and self-descriptive.

e Names of classes, methods and important variables should be chosen
with care, and should be meaningful. Abbreviations are to be avoided,
except where they are widely accepted.

e Do not use identifiers that begin with an underscore.
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4.3.2 Coding rules

We determined a number of coding rule to manage and control the content
of the code. Organization of the code, control flow Iﬂ object life cycle EI,
conversions, object-oriented programming, error handling, parts of C+-+ to
avoid, portability, are all examples of issues that are covered withing the
coding rules. The purpose of the following rules is to highlight some useful

ways
some

to exploit the features of the programming language, and to identify
common or potential errors to avoid:

Each header file should be self-contained: If a header file is self-contained,
nothing more than the inclusion of the single header file is needed to
use the full interface of the class defined.

Avoid unnecessary inclusion: This is necessary to guarantee that the
dependencies present in the implementations are only those foreseen in
the design. Example : unnecessary inclusion in the header file.

file A.h:
#include "B.h"

file C.h:
#include "B.h" // NOT necessary, avoid
#include "A.h"

Header files should begin and end with multiple-inclusion protection.

#ifndef enas ClassName h

#define enas ClassName h

// The text of the header goes in here
#endif // enas_ ClassName_h

Use forward declaration instead of including a header file, if this is
sufficient

class Line

class Point {

public

// method definition

}

Here it is sufficient to say that Line is a class, without
giving details which are inside its header. This saves
time in compilation and avoids an apparent dependency
upon the Line header file .

“The C/C++ control statements: If, elseif, switch, break, while, for
5The object life cycle states the rules of programming an object by assigning and
instructor, destructor, and by managing the copying of the objects
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Each header file should contain one class declaration only. This makes
easier to read your source code files. This also improves the version con-
trol of the files for example the file containing a stable class declaration
can be committed and not changed anymore

Implementation files should hold the member function definition for a
single class as defined in the corresponding header file. This is for the
same reason as above.

Each header file should never contain “using namespace “directive.

Each template implementation should be called at the end of the cor-
responding header file.

ClassName.h :

#ifndef enas ClassName h

#define enas ClassName h

// The text of the header goes in here
#include "ClassName.tpp"

#endif // enas_ClassName_h
ClassName. tpp

#ifndef enas ClassName tpp

#define enas ClassName tpp

// The text of the template implementation goes in
here

#endif // enas_ClassName_tpp

Enas uses one namespace that should be define in each Header file (.h)
and Implementation file (.cpp) of the library. The namespace should
appear after each include file 3 and before the class declaration. To
export from a DLL (windows compilation) all of the public data mem-
bers and member functions in a class, the keyword ENAS EXPORT
must appear to the left of the class name. Here is an example with
“"RasterBlock.h ™:

#ifndef enas RasterBlock h
#define enas RasterBlock h
#include "sys.h"

#ifdef NAMESPACE

namespace enas {

#endif

class ENAS EXPORT RasterBlock {

// The text of the class goes in here

}
#ifdef NAMESPACE
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}
#endif

#endif // enas_ RasterBlock_h

e Comment each header file using Doxygen documentation syntax.

4.4 EnaS: The graphical user interface

The implemented tools in C+—+ could be used by any programmer who de-
sires to analyze spike trains. In addition to this library, we implemented a
graphical user interface (GUI) where the user can exploit all the resources in

EnaS without writing C++ code. The three main reasons for creating the
GUIT are:

1. Make the analysis easier. With the GUI, we only need to click on
buttons and edit boxes in order to analyze the data. On the opposite
side, writing the C++ codes are time-consuming and implies debugging
all the time.

2. Creating a tool for non programmers. Biologists and experimentalists
who desire to analyze the spiking data, have a tool that makes them
analyze the data without any knowledge in programming. We did also
an effort in order to make the GUI notations understood by scientist.

3. Interactive tool and display: the GUI allows the user to interact with
the data and the models using the peripherals of the computer. We
can load data, run computations, display data and save the results.

The functionalities of GUI are:

e Spike train management window (Figure [1.9).

e Pattern Histogram and filtering window (Figure [4.10)).
e Probabilistic modeling window (Figure [1.11)).

e The spike/stimulus display window (Figure [4.12).

We designed FnaS in such a way that empirical statistics are separated
from modeling so that the user is able to understand easily the use of the
software. In addition, we added several interactive tools that allow the user
to save and load data. The user can also save the whole project in a file of
extension .ens. The idea of creating a Graphical User Interface came from
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our interest in creating a common framework for all the neuroscientists to
analyze spike train. A very ambitious project, where methods now consists
of displaying empirical data and fitting MaxEnt models in a highly interac-
tive environment. Section “The future of EnaS” in the last chapter is
dedicated to discuss a future opportunity with this software.

4.4.1 Spike train management window

This window is responsible of managing the spike train, whether they are
saved on computer or generated with EnaS. The tasks that this window

(Figure can perform are:

e Reading spike trains with a specific sampling period and specific format.

Displaying spike trains with a specific binning value.

Sorting neurons by index or firing rates (and possibility of saving the
selected neurons data in a separate file).

Possibility of analyzing selected number of neurons (and not only the
whole raster).

Generation of artificial raster with customized probability distribution.

4.4.2 Pattern Histogram and filtering window

This module is dedicated to display the occurrence of patterns and spike
blocks. It also allow us to filter pattern that appears less than a certain
number of times that is identified by the user. More precisely, this window
allows us to:

e Display the number of occurrences of all the possible spike block until
a certain time size that is precised by the user.

e Display the occurrences of features. In this case, the user has to choose
the model. For instance, if the user chooses Bernoulli, then EnaS will
display only firing rates. Likely, if the user chooses Ising, EnaS displays
the rates and the instantaneous pairwise interactions.

e Filter the monomials. If the user to take into account the features that
appears only more than a certain number of times in the raster, he has
to precise the threshold and EnaS will filter the monomials. The user
can use those non-filtered monomials as features in order to construct a
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Figure 4.9: The empirical statistics module. This module allows to manage
spike train data. It contains the import panel that allows to load a spike
train. The user can also precise the format and sampling time of the data.
The neuron panel displays the neurons and their occurrences. It also allows
sorting neurons by activity, selecting some neurons and saving data of the
selected neurons with the format of choice. The firing panel displays the
histogram of neurons activities. The spike data manager allows to change
the binning value and change the maximum time of the displaved raster. The
chosen neurons are displayed as a spike train in the right-down part of the
window. Spikes are displayed in several colors (See the event scale at right
of the spike train) because of binning. Indeed, the colors corresponds to the
number of spike found in one time bin. Finally, the data generation panel
allows to create spike train with specific probability distributions. The user
sets the distribution shape (Bernoulli, pairwise, ...), network size, range and
raster length. (b) The plot setting panel is dedicated to control the outlook
of the plot. The user can change the font size, axis name and colors. In this
example, the spike train shown in (a) is the same of the one shown in (b)
but with different outlook settings.



model that could be fitted in the probabilistic modeling window (Figure
41Tl

4.4.3 Probabilistic modeling module

The probabilistic modeling module (Figure allows the user to choose a
hypothesized model and fit it to the data configured in the Empirical statis-
tics modules (Figure . The potential configuration panel is dedicated to
choose the configuration of the hypothesized model (Shape, range, length
of Montecarlo chain). The computing configuration panel allows the user
to choose the computing technique (Montecarlo or transfer matrix). If the
computing technique is Montecarlo, the user has also the possibility to tune
other variables related for parameters fitting. For instance, the convergence
bound and threshold for updating the Montecarlo distribution. The user has
also the possibility to customize his own potential by choosing a monomial
file via the monomial panel.

In this window, EnaS displays the comparison of patterns probabilities in
data with those predicted by the model. This graph contains the confidence
bounds (the area where the error is permitted), the equality axis and the
divergence value. The last 3 tools helps the user to judge whether the models
fits to the data or not. The monomial histogram displays the values of the
free parameters that corresponds to the potential monomial. If we click on
a monomial in this histogram, we will see right to the histogram the binary
form that corresponds to such monomial. Finally, the form of the Gibbs
potential with the value of free parameters and the analytic expressions of
monomials appears on the top-right of the window. The error, displayed in
red, is the Hellinger distance EI is computed at each iteration in parameters
fitting in the case of Montecarlo.

4.4.4 The spike/stimulus display window

During the development cycle of EnaS, we asked the following question: Is it
enough to fit the models without any information about the cell nature and
position? The answer is obviously, no. For that, we wanted to add another
functionality in EnaS that allows to show the stimulus and instantaneously
the activity of cells respecting their repetitive fields. The ultimate goal from
this module is to be able to characterize cell type and in order to select
subset of the whole network on which we test models (not exclusively MaxEnt
models, but also other. See section for more details).

5For details about the Hellinger Distance, see section W
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Figure 4.10: The Histogram module. The user chooses the maximum range
of patterns (e.g. the maximum size of time-steps of patterns) wanted in
the histogram. FEnaS sorts the occurrence probabilities and draw them in a
histogram from the highest value until the lowest one. The x-axis represents
the measured pattern. The user can click on the letter “M* in order to see
the binary representation of the pattern. In this example, the chosen pattern
corresponds to: the neurons #6, #10 and # fire simultaneously right after
the neuron #11.
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Figure 4.11: The probabilistic modeling module. This the window of pa-
rameters fitting. The user configures the hypothesized model (at left of the
window) and sees the results of parameters fitting at the right side. EnaS
display the results in a highly interactive way: The error (red and blue curves
that corresponds to the confidence bounds) is displayed at each iteration and
the user can stop the computation if he sees a dramatic increase in error.
Monomials and their averages are displayed also, where the use can choose
the monomial to display. Finally, pattern probabilities, those predicted by
the model and those measured on the spike train are equally displayed.



Image sequence

Import
Import

atistics Analyse | Retina
¥

Raster St
Images Times

i
!;!, Data
B
B

Images

File

Figure 4.12: The retina module. The activity of neurons is shown in real time
in synchronization with the stimulus on the retina. Data courtesy: Adrian
Palacios and Maria-Jose Escobar (Centro de Neurosciencia de Valparaiso).
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Figure 4.13: Illustration of data file with MEA coordinates (neuron-per-
column). Each column contains the name of the neurons (which contains
explicitly its MEA coordinates) and its corresponding events.

For now, the module is dedicated to display the response vs stimulus. The
response has two attributes: the activity of cells and their receptive field. In
the current version, we consider that the receptive fields are the same as the
neurons coordinates in the MEA. But, we are working on implementing a
functionality to compute the receptive fields of cell and will introduce it in the
next version of EnaS. The synchronization between the stimulus and network
activity display is assured by a specific file that contains the synchronization
information.

As a consequence, the user has to have the following files in order to run
the animation:

e A file that contains the spike train along with the cells position in the
MEA (Figure [£.13])

e The directory of the frames: the frames should be named in an increas-
ing order. For example, if we have 300 frames, the images should be
named IMGO001.jpg, IMG002.jpg . ..IMG300.jpg.

e The synchronization file, it contains two column: the first corresponds
to the frame index IMGxxx.jpg and the second corresponds to the
exposure time.
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4.5 Conclusion

We have shown in this chapter the library that I contributed to develop
during my PhD. The graphical user interface is also one of the fruits of my
participation. We arrived finally to a highly interactive version. However,
we want this software to be the base of something bigger, a reference by the
neuroscientists for testing statistical models and analyzing their spike trains
from MEA acquisitions. Currently, we can imagine many perspective to
improve the software at the computational level as well as to improve the user
experience. At the computational level, we did a big effort to parallelize the
Montecarlo method but still, we believe that we can improve the algorithms
and reduce the computation cost by parallelizing other parts of the library.
We have also encountered the problem of the very big number of parameters
to fit when the networks get larger, which we will discuss in details in the
perspective part.

At the user experience level, we consider the current version of EnaS as
the intermediate between the biologists and the computer scientists. Both of
the two communities are interested in interpreting the statistical models in
order to discover the network structure and functionalities in the biological
neural networks. The current version provides a primordial framework for
the ultimate goal. For that, other perspectives are expected at this level, we
cite some of them here:

e Adding algorithms to detect the receptive fields and showing the cor-
responds stimulus for each neuron.

e Creating tools to recognize the type of cells, whether they are OFF or
ON. We believe that this type of information may help in analyzing
the data.

e Adding tools to make the features selection in order to avoid the in-
creasing number of parameters. The methods we developed in this PhD
allow to work with large number of neurons, but the large number of
parameters, especially those that are not relevant statistically add bias
to the estimation (see the last chapter).
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Chapter 5

Analyzing real spike trains with
EnaS

Contents
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b.3 Conclusionl. . . ... ... ... . o 000 145

We present in this chapter the application of our method on real data
acquired with MEA. Analyzing the MEA data has been a big challenge and
it was, actually, more difficult than analyzing data generated synthetically.
One of the main reasons is that, in this case, we do not know a priori which
potential form to choose. We have seen in chapter [3| that the Maximum
Entropy performs well on artificial data. Artificial data have been generated
with a known probability distribution. This implies that we know already
the parameters and features. In contrary, we have no clue about biological
data and we do not have a reference probability distribution to compare to
the obtained results. After development of techniques that allow large scale
statistics in spatio-temporal scale and testing it on artificial data, our aim
is to apply this method on real data in order to figure out the interactions
that govern the dynamics in the spike train. This chapter is divided into two
main parts. The first part ( section presents the MEA acquisition from
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dissection of the retina until spike sorting, more precisely what I learned from
my 3 weeks visit to the Centro de Neurosciencia de Valparaiscﬂin Chile,
where I participated in each part of the experiments. These experiments
have been realized in the context of KeopsEI7 a Franco-Chilian project (ANR -
CONYCIT) where retinal behavior with natural images is of main interest. In
the second part (section , I show the results obtained when applying our
Montecarlo estimation method on real data. Finally, we present a conclusion
on analyzing real data and the encountered problems.

5.1 Data acquisition and preparation

From retina preparation to data acquisition, there are 5 main steps:
e Designing the stimulus.
e Preparation of the solution.

Dissection of the retina.

Calibration and verification of the acquisition system.

Launching experiments.

5.1.1 Designing the stimulus

We are obliged to respect two constraints related to the stimulus in the
experimentation. First, the stimulus should not last for more than a certain
time (1 hour in general) because the retinal pigments disappear along the
experiment, and since the retina is not in the animal body, no pigment could
be regenerated. Second, we have to respect some amount of light in order
not to make an over-exposure and damage the tissues. From the last two
points, one should choose the stimulus content, time and protocol in an
intelligent manner. It has been suggested that stimulus could be given with
a high frequency exposure in order to get as much responses samples as we
can. However, stimulus frequency varies from one equipment to another.
The Chilean team adopted a frequency of 30 fps (Maximum capacity of the
provided projector). 120 fps has been used by [Fairhall et al., 2006], but
with non-natural image stimuli. For their experiments, they decided to use
four different natural stimuli (Figure show two sample images from the

"http://cinv.uv.cl/en/
’https://project.inria.fr/keops/
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(a) Sample 1. (b) Sample 2.

Figure 5.1: Two sample images captured using a robot camera that moves
like a Degu. The images show a sample of the environment in which the
videos were taken.

frames environment), taken with a robot camera that walks around on a
barren (Simulation of the Degu movement):

e Toward motion (the animal walks in the forward direction).
e Exit motion (the animal walks backward).
e Circular motion (the animal moves its head in a circular trajectory).

e Attention motion (the animal does not move, but it moves only his eyes
randomly in the scene). This is an analogue of saccade motion.

Here are the constraints of the experiments, with numbers:

e 20 minutes a synthetic stimulus, contains 50% white and 50% black
square, in order to estimate the receptive field (Figure |5.2(a))).

e Stimulus 400 x 400 pixels size is embedded into an image of 800 x 800
pixels (Figure [5.2(b)). The image also contains a red horizontal bar,
who intensity changes from a frame to another (24 then 64 then 128
then 256 then 24 ...). This code is used as a time stamp in order to
know at which time each stimulus was exposed.

e Exposure frequency : 30 fps.

The chronogram (Figure of the stimulus begins with 20 minutes
of black/white images, where the positions of black/white squares changes
along the 20 min, keeping equal the number of white and black squares. The
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Figure 5.2: The stimulus frame.
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Figure 5.3: The stimulus chronogram. 20 min of black /white squares stimu-
lus followed by 40 minutes of real films stimulus, with ~ 13 repetitions, each,
with different order at each repetition.

4 natural stimuli are given afterwards by shuffling randomly the order of the
films. Each film is exposed for 15 seconds. A total of 1 hour has been used,
which means 60 repetitions for each stimulus.

5.1.2 Preparation of the solution

The retina, after isolation from the animal body, needs -to stay alive- to be
saved in a quasi-biological medium (solution). The prepared solution will be
used during the dissection as well as during the acquisitions. The solution
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contains:

o Sterilized water, Figure [5.4(a)|

e Ames Solution (A mixture of different substances, conceived especially

for in-vitro experiments), Figure |5.4(b)

We use a low-sensitivity balance in order to get an accurate weight of the

given solution (Figure [5.4(c)).

4

(a) Sterilized water. (b) The Ames solution.  (c) High-sensitivity balance.

B
4T e

Figure 5.4: First steps in the solution preparation: mixing of sterilized water
with Ames Solution.

Once having this mixture, we measure its PH (Acidity level) -with a PH
sensor (Figure — and we regulate its value whether by adding an acidic
solution (HCL - Hydrogen chloride) or a basic solution (NAOH - Sodium
hydroxide). The PH level should be 7.5.

The solution will be saved at a 30 degrees temperature level, using a

heater (Figure [5.5(b)]).

5.1.3 Dissection of the retina

For the experimentation, we used the Degu (Figure . It is a mam-
malian animal whose retina cones are sensitive to blue and green, exclusively.
Consequently, this animal does not see in the red light. This advantageous
characteristic allows one to make experimentation where the technician can
use the red light in order to see and supervise the experiment. During the
dissection and the acquisition it is mandatory to use the red light and try
to not allow any other light to come inside the experimentation room. The
Degu is left for 5 minutes in a little box, where already sprayed anesthetic
were injected in order to make the animal fall asleep, completely.
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(a) The PH sensor. (b) The solution heater.

Figure 5.5: Regulating the solution with acid /basic solution and heating until
30 degrees.

ht "
(a) The degu (Octodon degus).  (b) Taking out the whole eye from the
animal.

Figure 5.6: The degu’s eye.

Using a microscope and the dissection tools, one proceeds to the eye
extraction, under red light, an ambient temperature of 20 degrees (Figure
p.6(b)).

Once the two eyes are out, one puts each of them in a solution, and
keeps an oxygen connection in order to simulate the animal body medium.
One now takes one of the two eyes and proceed to the dissection, under
the microscope. The dissection of the retina should be done carefully and
precisely in order to avoid any injury to the retina tissue:

e The first step is to create a hole at the level of the Sclera (the tissue
that separates retina from the rest of the eye cup).

e With a scissors, one begins from the hole to cut all around the eye in
order to take out the eye cup.
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e One separates retina from the Sclera.
e Both retinas are put afterwards in the biological medium.

Figure shows what are the steps followed after the eye extraction.

5.1.4 Calibrating and verification of the acquisition sys-
tem

Once the retina is ready, one puts it between the MEA and a membrane
(technique known as sandwich since the retina is between two parts). Ob-
viously, the ganglion cells should be on the MEA side. The membrane has
two main functions. First, it ensures that the retina does not move. Second,
it is a pathway where oxygenated solution flows during the experimentation
(Figure |5.8(a)| and |5.8(b)| show respectively the MEA and the membrane,
where the white tube carries the oxygenated solution).

The acquisition system
The acquisition system consists of:

e The stimulation computer. It sends the stimulus through electrical
connectors to the projectors.

e The optical path, where the stimulus goes through some optics in order
to arrive and fit in the MEA.

e The MEA cage (including the MEA itself, the retina and the mem-
brane).

e An analog to digital converter. It performs pre-filtering and ampli-
fication, and converts analog signal to digital and sends them to the
computer, where data are monitored and saved.

e The display and post processing computer. It displays raw data in
real time. It also stocks the acquisition that will be used later for a
post-processing on the same computer or another one.

Figure shows a diagram for the acquisition system. In order to
synchronize the stimulus with the acquisition, one takes benefit from the
fact that the Degu retina does not perceive the red light and put in each
image a red-bar, whose intensity changes with stimulus, as an indicator of
the exposure time of each stimulus (Figure shows the light separation
within the optical path).

131



!

Enucleated eye cup ¥

from one animal

1—

|-

Sample 2
MEA-Sample 2
v
MEA sample 2

sealed and stored
bubbled buffer at

i
30%C

if not
viable

&
1l
MEA sample 2

L 4

C

m
o

A

up

Isolation of the retina

| Preparation of twa

retinal samples from

ane retina
=3
Sample 1 _ y
Mounting of retinal
samples ontwo MEAS
MEA-Sample 1

f:nn l = SBtart of perfusion
| -Lli t=0

MEA sample 1

I

Light stimulus sequence
after t = 10 min to test
viability of sampie 1

l if yes

Start of expenment
after additional 15 min

t=10: test stimulus
if viable : =25 min
star of experiment

equilibration time

Experimental
time about 1h

Figure 5.7 Retina
[Multi Channel Systems, 2013|

dissection

road map. Taken from



(a) The multi-electrode array. (b) The membrane with tubes carry-
ing the oxygenated solution.

Figure 5.8: The multi-electrode array and the membrane.

The MEA cage (Figure should be isolated from external noise, as
much as possible. Isolation is performed by the aluminum metal around the
MEA. This disposition will keep the MEA safe from any external electrostatic
noise. Oxygen and solution supplies should be always in the membrane.

Calibration and verification of the acquisition system

Before sending the stimulation frames, it is recommended to verify that 1-
the whole system is well setup and 2- the light stimulus that will be exposed
at the retinal tissue will not burn the tissue. For the system verification,
one monitors the local field potential (LFP) (Figure [5.12), the signal gen-
erated by the whole retinal cells. In the same time, one exposes, gradually,
a uniform stimulus, in order to see if the LFP is being generated. For the
calibration, while increasing linearly the stimulus intensity, one monitors the
retinal sensitivity (which is supposed to be a sigmoid function of light inten-
sity of the projector). The used intensity will be the inflection point of the
sigmoid function.

5.1.5 Pre-processing and spike sorting

The acquired data contains high and low frequency signals. The low fre-
quency signals corresponds to the local field potential. We are interested
in the signals that carry the spikes, those of high frequency. The acquisi-
tion system is designed in such a way that we can choose the transmission
channels, whether to transmit the high or low frequency signals. This first
pre-processing step proceeds the spike sorting.

133



MEA-+Hmagen

[]Dhjeﬁm
Camara
i , /
Espejo2 Dicroico
BO-20

Espejol

Figure 5.9: The optical pathway. Red light path is separated from the stim-
ulus path.



__ Sampled Signal

Signal < Analog
display to digital
computer > converter
Red light / Chrono Solution
Signal Projector Retina G
display 5|gnals az
computer
Stimuli
o
i 0
Photometer MEA 3
deplay < NOLON Measure | l A S
i | Faraday 0
I cage o
e Stimulus signal | M%A %
——@ Solution path I
y—', Chamber -
(a) The block diagram of the acquisition system
Solution

Membrane

Waste

Stiiilii Electordes

(b) The retina between the membrane and the MEA sensor

Figure 5.10: The acquisition system and the MEA sandwich.



Figure 5.11: The MEA cage. A Faraday cage to avoid the electrostatic noise.

Each electrode in the MEA can receive signals from many surrounding
cells. Each of the surrounding cells can send signals to many surrounding
electrode. The spike sorting consists of determining the number of neurons
sensed by each electrode as well as the time stamps of each neuron spikes
(Figure . They performed the spike sorting using the Plexon software.

The spike sorting consists on many signal processing step. Figure
shows a brief description of those steps. The idea is not to explain the spike
sorting in details, but just to give a general view. The spike sorter receives
the raw data, that contains high frequency signals from the electrodes. We
ensure first the data band by applying a band pass filter [300-3000] Hz. Then,
we detect the location of the spikes along the whole signal time window by
applying a threshold to the raw filtered data. For the threshold, we use the
formula presented in [Quiroga et al., 2004] :

]
0.6745

} (5.1)

thr = 50, on = median{

where x is the band-pass filtered signal and o, is an estimate of the
standard deviation of the background noise. Once the spikes are located, we
store all the spike signal (2 ms around the spike peak). For each detected
spike, we take the signal from all the other surrounding electrodes, at the
same time stamp in order to make the clustering. This data set will allow
us to discover what is happening in the surrounding electrodes in the same
time window, in order to make the classification.

One uses now those data, for each electrode/spike now, with the indepen-
dent component analysis (with 5 components) and clusters them using only
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Figure 5.12: The waveform of the local field potential. For the calibration,
we must see this signal appearing from the electrodes in order to confirm that
we can begin the experiment. One also use the peak of this signal to draw
the sigmoid function of the of signal (intensity) in order to get the inflection
point.

TR R e o ST
g A 4 LA L
A A A

A
A
A A A i Spike detection
e

o ad L A

AA A A4 Y | [ o S——
—_— i e Splke sorting

Figure 5.13: Each electrode captures signal from many cells. The electrode
signal is amplified and then high-pass filtered

the first two components. For example, Figure [5.15| shows that there are 3
neurons in the cluster.

Now, one will have one or more time stamp vectors for each electrode.
Each of them corresponds to a neuron. However, there is a possibility that
the same neuron fires at two different electrode and then the same neuron will
be represented twice with two different time stamp vectors. Those vectors
could be eliminated automatically by detecting a null inter-spike interval or
manually by observing the closed time stamp vectors.

Figure [5.16] shows one example of the raster plots obtained at the CINV.
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Figure 5.14: A brief description of the spike sorting steps (from
[Quiroga et al., 2004]).

5.2 Real data analysis

In the previous section, we discussed the acquisition details. Afterwards, we
are interested in analyzing the acquired data. The process consists on:

1. Suggesting a hypothesis model. We can choose models that have
been used widely in the literature such as pairwise, triplet. quadruplet.
Thanks to EnaS, we can use one of these models as well as model with
spatio-temporal constraints. Furthermore, we can edit our own model.

2. Parameters fitting. This step that has been explained in chapter
aims to find the parameters that ensure that the model is as close
as possible to the data (the one with the minimum Kullback-Leibler
divergence).

3. Model evaluation. It consists of evaluating how close is the hypoth-
esized model to data. For that, we use quantitative tools that allows
us to evaluate the error committed using such model. Those tools are:
Kullback-Leibler divergence and confidence plots (for details about the
confidence plots and KLD, refer to the section .

The data set we used is a spike train of 40 neurons (Figure |5.17) provided
by one of our collaborators: Olivier Marre and Michael Berry from the univer-

sity of Princeton. This data set has been studied before in [Schneidman et al., 2006]
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Figure 5.15: Clustering of two main components of the ICA, three cells are
resulting. Taken from [Quiroga et al., 2004].
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Figure 5.16: An example of the raster plots obtained at the CINV. This spike
train has been spike sorted from retinal acquisition on the Degu. The retina
was stimulated by a movie of natural images.

but on 10 neurons only for fitting an Ising model. We fitted an Ising and a
pairwise model of range 2 on 20 and 40 neurons using this data set. We
show (in the coming figures) the comparison of monomials and patterns
probabilities (observed and predicted) in both cases. We also show an ex-
ample of error (Hellinger distance) evolving during fitting the parameters
in the case of pairwise R = 2. The data is binned at 20 ms similarly to
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Figure 5.17: A set of 40 neurons acquisitions on salamader retina. Spike
train length = 3179551 ms. Courtesy: Olivier Marre.

[Schneidman et al., 2006].

Figure [5.18] shows the evolution of the Hellinger distance during the pa-
rameter update both in the parallel and sequential update process.

After estimating the parameters of an Ising and pairwise model of range
R = 2 on a set of 20 neurons, we evaluate the confidence plots. Figures
and show, respectively, the confidence plots for patterns of Ranges
1, 2 and 3 after fitting with an Ising model and the pairwise model of
range R = 2. Our results on 20 neurons confirm the observations made
in [Vasquez et al., 2012] for N = 5, R = 2: a pairwise model with mem-
ory performs quite better than an Ising model to explain spatio-temporal
patterns.
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Figure 5.18: Evolution of the Hellinger distance during the parallel (a) and
the sequential (b) update in the case of modeling a real data set with a
pairwise model of range R = 2. The parallel update provides a fast conver-
gence; however, it is steady after a hundred iterations. The,n we iterate the
sequential algorithm.
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Figure 5.19: A 20-neuron data set binned at 20 ms with an Ising model. After
fitting, we show the comparison between observed (in the real spike train)
and predicted average values of monomials in (a). (b,c,d) The comparison
of predicted and observed probabilities for patterns of Ranges 1, 2 and 3,
respectively. In (a), (b), (¢) and (d), the x-axis represents the observed
probabilities and the y-axis the predicted probabilities. The computation
time is equal to 18 hours on a small cluster of 64 processors (around 5 min
per iteration). The estimated Kullback—Leibler divergence is 0.307.
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Figure 5.20: A 20-neuron data set binned at 20 ms with a pairwise model of
Range 2. After fitting, we show the comparison between observed (in the real
spike train) and predicted average values of monomials in (a). (b,c,d) The
comparison of predicted and observed probabilities for patterns of Ranges 1, 2
and 3, respectively. In (a), (b), (¢) and (d), the x-axis represents the observed
probabilities and the y-axis the predicted probabilities. The computation
time is equal to 40 hours on a small cluster of 64 processors (around 12 min
per iteration). The estimated Kullback—Leibler divergence is 0.281.

We then made the same analysis for 40 neuron. Figures [5.21] and [5.27]
show, respectively, the confidence plots for patterns of Ranges 1, 2 and 3
after fitting with an Ising model and the pairwise model of range R = 2. In
this case, we were not able to obtain a good convergence for N = 40, R = 2.
This is presumably due to the insufficient length of the data set, which does
not allow us to estimate accurately the probability of some monomials. This
aspect is discussed in the next section.
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Figure 5.21: A 40-neuron data set binned at 20 ms with an Ising model. After
fitting, we show the comparison between observed (in the real spike train)
and predicted average values of monomials in (a). (b,c,d) The comparison
of predicted and observed probabilities for patterns of Ranges 1, 2 and 3,
respectively. In (a), (b), (¢) and (d), the x-axis represents the observed
probabilities and the y-axis the predicted probabilities. The computation
time is equal to three days on a small cluster of 64 processors (around 21
min per iteration). The estimated Kullback—Leibler divergence is 0.930.
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Figure 5.22: A 40-neuron data set binned at 20 ms with a pairwise model of
Range 2. After fitting, we show the comparison between observed (in the real
spike train) and predicted average values of monomials in (a). (b,c,d) The
comparison of predicted and observed probabilities for patterns of Ranges 1, 2
and 3, respectively. In (a), (b), (¢) and (d), the x-axis represents the observed
probabilities and the y-axis the predicted probabilities. The computation
time is equal to seven days on a small cluster of 64 processors (around 47
min per iteration). The estimated Kullback—Leibler divergence is 0.983.

5.3 Conclusion

We gave in this chapter an idea about the workflow from retinal dissection
until fitting Maximum Entropy models passing through acquisition and spike
sorting. The experiments with the Degu animal were realized in the Centro de
Neurosciencia de Valparaiso under the supervision of Pr. Adridn Palacios.
Participating to those experiments was enriching and it showed how the
process is complicated and when we analyzing real data, we are not only
analyzing data with unknown model shape, but also with noise that comes
from acquisitions, inaccuracy in the measurement and spike sorting.
Concerning analyzing the real data we encountered a problem with two
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faces: the big number of parameters L. The problem of having thousands of
parameters to fit in a distribution is big obstacle when it comes to real data.
We will discuss this problem from several angles:

e The big computational time we are still facing. As we showed in the
previous chapter that the computational time increases in a power law
with the increasing number of models parameters. For instance, on a
cluster of 64 processors, one needs 1 day to fit an Ising model and 2
days to fit a pairwise model.

e The risk of divergence: since we are analyzing canonical form poten-
tial, we have an a priori set of monomials in the model. Some of the
monomials do not appear in the empirical distribution which affects the
convergence of the fitting process. Those monomials do not only cause
an error on themselves, but also on the estimation of other parameters.
This issue is discussed in details in the last chapter. To circumvent this
problem, we imposed a coefficient value equal to —oo for monomials
that appear less than 2 times in the spike train. This issue allowed the
process to consider literately that those monomials does not appear
in the data which is convenient with the Maximum Entropy paradigm
(increasing knowledge about the data).

e The model choice issue: this is a question of concept. If we know that
some data follow an Ising law and we fit the model to the data only to
estimate the parameters, fitting process goes very nice. However, real
data where generated with an unknown distribution which we believe
that it is more complicated at the interactions level (non canonical)
and contains less parameters that we impose with the canonical forms.

From the last issues, we conclude that analyzing real data with at least a
known model form is better and will be much helpful to make us understand
the data, save computation time, guarantee the problem convergence.

We have also shown that data at a large scale are not distributed as an
Ising model. This model allows to predict patterns of depth 1, however, it
cannot predict patterns of depth 2.

One of the most challenging task for analyzing data at a large scale was
tuning the variables of the simulation, especially £ and the number of needed
iterations. If one would use EnaS to compute the parameters, we recommend
the following trade-off:

e After choosing the model, compute 100 parallel iterations with k& = 5
for an Ising model and k& = 10 for a triplets or spatio-temporal model.
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This will make the solution converge faster. We know that the bigger
the k£ the better the convergence. However, in the first iterations, k is
not that sensitive.

Afterwards, if you see that the monomials averages are still far to be
aligned on the the equality axis, run more 50 parallel iterations. To
give an idea of what we consider “far to be aligned”, see Figure
If you see that the parallel algorithm gave somewhat good estimation
(for example as the one shown in [5.23(b)|) on the monomials, you can
go to the next step.

Before proceeding to the next step, it is important to note the follow-
ing remark: in the implementation of the algorithm, we allow more
relaxation in the parallel update that in the sequential update. For in-
stance, the error we allow on estimating the monomials is smaller when
the sequential algorithm is run. The reason is that we realized that the
parallel update algorithm does not allow very small errors on the esti-
mation since it is updating all the parameters at once. The sequential
algorithm allows to do so because it is updating one parameter at once.

Now, proceed to the sequential iterations. Choose Ny, = 30 and
run 200 iterations. Normally, this amount of iterations is enough. You
might need to do more, but not more that 2 runs of 50 iterations.

Once you arrive to a good convergence, for instance Figure you
can compute the Kullback-Leibler divergence and the confidence plot.
At this stage, one must choose a big k, for instance 50-100 in order
to compute a Montecarlo raster that represent at best the estimated
parameters. On this Montecarlo spike train, FnaS computes the KLD
and the predicted patterns probabilities.

It is preferred to run this process of a cluster of at least 16 processors
for 10-20 neurons and 64 processors for more than 30-40 neurons.
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Figure 5.23: An example of monomials averages after parallel update. (a)
presents the case where we still need more iterations to converge and (b)
presents the case where we stop the parallel algorithm and go for the sequen-
tial updates. (c) presents and example of the monomials averages comparison
after the convergence.
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Chapter 6

Conclusion and perspectives

Contents
(6.1 On the binning of the spike trains| ... ... ... 151
[6.2 On the non-existing canonical potential monomials|152
[6.2.1 Is there any possible solution?. . . . . . .. .. .. 156
[6.3 What to do after fitting|. . . . .. ... ... .... 156
6.4 The future of Fnad . . ... ... ... ... ... .. 159
[6.4.1  Competitors and existing tools| . . . . . ... ... 161
[6.4.2  The market and the product] . . ... . ... ... 161
6.5 General conclusionl. . . . . . ... .00 0L 162
[6.6 The list of publications| . . . . ... ... ...... 164
[6.6.1 Papers in international journalsf . . . . . . . .. .. 164
[6.6.2 Conference papers/posters| . . . . . . ... ... .. 164

A number of questions raised up during this work, especially concerning
fitting the parameters and the advantages of our Montecarlo framework with
respect to existing framework. We will uncover those questions in this chap-
ter, discuss them and suggest road maps for possible upcoming perspectives.

6.1 On the binning of the spike trains

The binning (see Figure for details) is an influential parameter in analyz-
ing the spike trains and indeed, it should be taken into account rigorously.
The fact that a 10 or 20 time steps of the activity of a neuron (in the spike
train before binning) is replaced by 1 time step (in the spike train after
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binning) is, definitely, a loss of information. In the other counterpart, re-
searchers have always used binned spike trains to fit Maximum Entropy mod-
els ([Schneidman et al., 2006] |Ganmor et al., 2011al, [Vasquez et al., 2012]).

An example of the empirical statistical changes that could result from
binning is presented in the Figure |6.1] The test is applied on the data set
Dsy. We plot the histogram of patterns in the data where we bin at 1, 5,
10 and 20. Figure [6.1] shows that as we increase the binning, more patterns
appear in the spike train. For instance, when the binning is 20, the number
of pattern increase by 700% than when binning is 1!

The change in the empirical distribution due to binning implies the change
of the whole set of constraints. The Maximum Entropy Principle that is
investigated here is based on constraining the monomials. By consequence,
we are finally studying the binned activity of the neural ensemble and not
the activity at their biological time scale. One advantage that may result
from binning data is that, when using canonical form potentials, we have
less monomials with empirical probability equal to 0 and so we have less
risk for the solution to diverge (we explain in the next section why non-
appearing monomials affects the estimation). However, in the same time, we
might be adding monomials that do not exist in the spike train. Also another
counterpart, binning at 1 may result shedding the canonical form of potential
because we will have more non-appearing monomials than appearing ones,
especially for higher order models. The solution that may overcome this kind
of problematic is a features selection method, which we discuss in the next
section.

6.2 On the non-existing canonical potential mono-
mials

With a set of 40 neurons, relatively small compared to the new technologies of
MEA systems, we find ourselves fitting models with thousands of parameters
for dozens of neurons. For instance, as Figure shows, for 40 neurons the
number of canonical potential parameters (L) in the case of the following
models is:

b Lfszng:N_f'w = 820

o Lipiprers = N + 220D 4 MXUEUXINE2) — 10700
e Pairwise with memory D: Ly, jpets = N—i—W—i—(H—l) XNx(N-1)

1. For R =2, we have L = 2380 parameters.
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Figure 6.2: The number of parameters dramatically increase whenever the
model is of higher dimensions.

2. For R = 3, we have L = 3940 parameters.

It has definitely no sense to represent such data sets with this number
of parameters. Furthermore, this may imply huge errors during the fitting
process if we use canonical form potential without any filtering. This error
comes from the fact that some monomials, are not only non useful for the
models, but also affect the estimation of other monomials in the distribution.

In the case of Maximum Entropy the situation can be described as follows.
We generate a finite raster wl from a known distribution - with a potential

of the form Denote pix« [m | the vector with entries pix« [m; | and P [m ]

the vector with entries WEJT) [my]. From we have g [m] = VP.
This exact solution is obtained when the Gibbs distribution px+ can be
exactly sampled, namely, for an infinite raster. For a finite raster, if T’
is large enough to apply the central limit theorem, the empirical distribu-
tion 7" [m] is Gaussian with mean yux[m] and covariance +X given by

(3.36). We have therefore 7 [m] = px-[m] + n where n is centered
Gaussian with covariance %X- Solving ‘2.38|i where the exact probability

i+ 1s replaced by the empirical one rr , one obtains an approximate so-

lution of A, A* with : A = A* + ¢, where VP = 7. [m]. Therefore,
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VAP = pix- [m] 4+ 1 = VayeP = VP + ex + O(Jl€]|?). Hence, € = x'n.
X is invertible since P is convex.

The fluctuations of the estimated solution A around the exact solution A*
are therefore Gaussian, centered, with covariance E [e.€] = E[x '.m.n.x ']
Since x is symmetric we have E[e.¢] = x LE[n.f].x"! = &£ x~'. We arrive
therefore at the conclusion that the fluctuations on the estimated coeffi-
cients A are highly constrained by the convexity of the pressure, as expected.
Mathematically, everything goes nicely since P is convex. However, when
we estimate the solution numerically, it may happen that P is quite flat in
some directions/monomials. This arises a fortiori since we are not handling
the exact values but estimations. Therefore, when considering potentials of
the form (2.4) it is expected that some terms (monomials) not only are irrel-
evant, but also dramatically deteriorate the estimation problem, introducing

almost zero eigenvalues in y.

0.2

/L

= 0.1

0 0.2 0.4 0.6 0.8 1
i/L

Figure 6.3: The correlation matrix y, computed using Eq. The color bar
at right shows the color-value map of xy. Each point in the matrix represents
one x;; entry.

In order to validate this point of view, we have computed the spectrum
of x for two classes of potentials, dense and sparse (explained in [3.7.1)), with
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5 neurons and R = 2 .To analyze the typical spectrum of y we generate 1000
potentials of the two types. Although such potential has only N R non zero
monomial coefficients we consider it as a potential with d = 2VF — gN(R-1)
canonical entries where most coefficients are 0. Thus, x has a dimension
d. For each of these potentials we compute y and its spectrum. Then, we
average the matrix y over the 1000 samples as well as the spectrum. The
result are plotted in Figure [6.3] This figure shows that a big percentage of
this matrix is very small or even zero.

6.2.1 Is there any possible solution?

In order to answer this question, we have to ask the following question first:
Is it useful to have a model with 4000 parameters for 40 neurons? We be-
lieve that this has completely no sense. Indeed, it is normal to get such
number of monomial because we want to represent more neurons and higher
order models. Thus, a feature selection method is useful and should com-
plement this work. There are many direction we can take in the favor of
the monomials selection. For instance, selecting the monomials on threshold
(|[Rosenfeld et al., 1994, [Koeling, 2000]), using a x* method ([Chen and Rosenfeld, 1999])
as well as incremental feature selection algorithm ([Berger et al., 1996|, [Zhou and Wu, 2003|)
Other methods based on periodic orbit sampling ([Cessac and Cofre, 2013])
and information geometry ([Nakahara and Amari, 2001}, [Amari, 2001])) would
be very useful to improve the fitting method.
Another way to make a feature selection is to adapt this model to in-
formation we know already about the retina from recent work that tried
to discover the functional architecture of the retina. For instance, from
|[Bloomfield and Volgyi, 2009], we know a priori that neighbor neurons are
more likely to fire with a small delay and distant neurons with a bigger delay.
This give us a set of constraints that we can impose on the canonical form
in order to reduce their complexity.

6.3 What to do after fitting

This question is very important and it plays a big role in the valorization of
any work in probabilistic modeling for neural data. How we can invest the
parameters we found from the fitting process? Let us assume here the perfect
case: we have a data set and we have the pairwise model with a range R = 2
that fits perfectly to those data. We can conclude that:

e Instantaneous pairwise interactions and pairwise of memory 1 and 2
time step are essential in the data.
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e Other interactions such as triplets and pairwise within more than 2
time steps are useless.

e From the parameters values, we can know what is the statistical influ-
ence of each monomial. For instance, the greater the parameter value
(in general) the more the monomial is statistically influencing in the
data.

The question is now: what can we do with those parameters? This question
could be answered in two parts.

e The parameters are a tool and not an aim: this means that once we ob-
tain the parameters, we are only interested in computing the Kullback-
Leibler divergence, making confidence plots and enjoy the scientific
truth behind the statistical model of retinal data. However, this is not
enough.

e For that, the parameters should be an aim and not a tool: not only use
them to compute the KLD and the confidence plots but also use them
for applications.

We propose now two suggestions at this level.

Mixing the Maximum Entropy with GLM-like models

We discussed in the introductory chapter that GLM models provide a neu-
rophysiological interpretation of their parameters. However, they consider
neurons are independent. [Macke et al., 2011] added shared input to partly
circumvent this inconvenience. The added dependencies comes then from
the shared input. However, dependencies comes also from the connections
between neurons. One way to improve the GLM models is to add Maximum
Entropy parameters as statistical weight between neurons in order to take
into account not only the stimulus, but also the network architecture (which
includes dependencies between neurons).

Parameters/Stimulus relation

An important question to uncover is the relation between the stimulus and
the Maximum Entropy parameters. From the data sets Dyy, Do, D13 and
D14 which corresponds to 4 different stimuli on the same retina, if we fit a
pairwise model with range R = 2 (for only 5 neurons), we can see that the
parameters change from stimulus to another. This means that the probability
distribution P[R|S] represented by those coefficients could be investigated to
infer the P[S|R].
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6.4 The future of EFnaS

FEnaS was born with the idea of providing retina researchers to analyze their
data acquisition and understand the relation between stimulus and response
in order to understand the retinal architecture. Researchers want to under-
stand the retinal architecture because they want to create retinal implants
and visual bio-inspired technologies.

As a co-developer of EnaS, aware of the increasing emergence of the visual
neuroscience field and its future applications, I wanted to make from this
software a starting point for a future potential project. This action will
not be without my will and enthusiasm to perform a technology transfer
action from research to industry. Figure |6.5]is an attestation that shows the
prize I got from the “UNICE Foundation” and it was the highest prize in an
“annual enterprise creation competition”. One of the target application of
the project was an EnaS-like project (whether adding new features to EnaS
or developing another application in the spirit of spike train analysis and
neural coding). In this section, I discuss an EnaS based application and the
potential opportunity that could offer.

We can look at the opportunity that EnaS presents from two angles,
implying two different business models:

e Commercial: where the software could be taken in charge by a private
company, develop it and commercialize it.

e Open-source: where we build a community around it by making it open
source and adding continuously new advances in neural coding.

We can also imagine many configurations that mixes the two business
models, e.g., a freemiunﬂ and community based software with the possibility
of commercializing some modules. However, here we will discuss the first
option (purely commercial). Before discussing it, it is very useful to present
the currently available tools presented by direct and indirect competitors as
well as target clientsﬂ

!Freemium is a pricing strategy by which a proprietary product or service (typically a
digital offering such as software, media, games or web services) is provided free of charge,
but money (premium) is charged for advanced functionalities or virtual goods. Source:
http://en.wikipedia.org.

“Direct competitors are those who provide the same service. Indirect competitors are
those who provide a similar service.
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6.4.1 Competitors and existing tools

Without distinguishing between what is commercial or community based,
we show a (non-exhaustive) list of the main tools used in the market for
analyzing spike trains (Table. The table show that there are two type
of competitors: those who are mainly hardware manufacturers and need to
supply software to their clients so that they can acquire and analyze data and
those who are only software providers and there is only one: Nex technologies.
In addition, the NeuroExplorer is sold by many MEA manufacturers such as
Multi Chanel systems and Plexon.

Company # Electrodes | software

Alpha MED Scientific Inc. 64 Mf)bms Qt
Spike sorting

Axion integrated studio

Axion biosystems 64 and 768 Real time analysis module
. Brainwave
3Brain 4096 Real time analysis module
32, 60 NeurShare & NeuroExplorer

Multi Chanel systems 120, 240 Data Analysis

Offline sorter
Spike sorting

Plexon 16 to 256 NeuroExplorer
Data analysis
Bionic Technologies NeuroShare
Cambridge Electronics
Design

Nex Technologies NeuroExplorer

Empirical Data Analysis

Bernstein Center for

M . k .
Computational Neuroscience Spyke Viewer

Table 6.1: A table showing a (non-exhaustive) list of direct and indirect com-
petitors. The table includes software and hardware manufacturers (because
they also sell their own or their collaborators software).

6.4.2 The market and the product

The market of analyzing spike train is increasing over the year, especially
with the increasing interest of research centers in exploiting MEA data. The
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fact that the first application we used in EnaS is for retinal data, opens
the opportunity not only for MEA analysis market, but also for other niche
market such as: retinal prosthetic and vision based robotics.

FEnaS in it current version offers a friendly and highly interactive environ-
ment for analyzing and fitting spike trains. Its added value is the work done
by thesis, “Analyzing large scale with spatio-temporal constraints”. This is
surely not enough for a market entry, nor for a lean (go to market and improve
based on feedback) development. Empirical statistics are offered by many
suppliers that have been shortly presented in the table If we found a
way to serve researchers from using the results of fitting, then we answer the
“so what” and we can have a concrete added value.

Such a product needs some more improvements in order to fit for clients
needs. In fact, before studying the neural coding, the clients might be inter-
ested in the following applications:

e Spike sorting.

e Performing a wide range of empirical analysis and neural coding (such
those provided by NeuroExplorer).

e Studying several methods of neural coding (time series coding, proba-
bilistic modeling (for instance, the work done in this thesis)).

e Integrating a retinal simulator ( VirtualRetina for instance).
e Possibility of using the computed parameters in the retinal simulator.

e Data adapter that offers a interface to read/write the most common
data types in neuroscience community.

Taking into account the needs cited up, we can imagine a future product
that satisfies the clients needs after data acquisitions. In fact, one of the
problem that the analysts often encounter is when they use many software
(one for spike sorting, one for empirical analysis ... ) is the conflicts between
formats. A full package software not only fulfill the A-Z needs but circumvent
the problem of formats.

6.5 General conclusion

In this thesis, we were able to contribute at several levels:

e A mathematical framework, that allows to compute large scale target
distribution using Montecarlo algorithm.
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The parallelization of the Montecarlo algorithm on multi-processors
computers and clusters.

A method to fit parameters for large scale Maximum entropy models.

Method for evaluating the goodness of fit such as Kullback-Leibler di-
vergence, for large networks.

Contribution to the development of EnaS software, a highly interactive
and friendly tool to allow analyzing large scale data.

Results of analysis applied on large scale data set from experiments.

The main asset of this thesis is that we were able to provide a tool to allow
analyzing large scale spike trains with Maximum Entropy. The value that this
method adds is its capacity to determine the dominant interactions between
neurons taking into account memory effects. This opens the opportunity to
go further at the level of many projects, which we list here:

Working on the method itself:

— Optimize the Montecarlo algorithm. Although we did our best
to provide an optimized Montecarlo algorithm, but we believe we
still can optimize more.

— Rethinking of the model shape: we have shown that the canonical
form potentials cause some troubles for the parameters estimation.
We believe that a filtering method should be developed, not using
filtering, but using other framework such that iterative features
selection.

— Study the effect of binning: together with the filtering, binning
should be studied rigorously and it might affect also the features
selection method since, as we have shown, empirical data contains
less monomials when we take binning equal to 1.

Finding a way to use the parameters: the parameters represent the
statistical weight that a monomial have in the data. Those parameters
might be used to be integrated in the GLM model or as a statistical
connectivities in the VirtualRetina.

Improve the software. EnaS would be better if we add more features
such as time-series analysis, other neural coding schemes taken from lit-
erature, spike sorting, retina modeling plugins (such as VirtualRetina),
possibility of identifying cell types, stimulus design adds .... In this
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way, it would be a one place (and maybe a reference place) to study
the retina.

We hope that we were clear in explaining our ideas and perspectives and
we wish that this work is useful and inspiring for the fellow projects.

6.6 The list of publications

Below is the list of official publications in international journals, international
and national conferences.

6.6.1 Papers in international journals

e Nasser H, Cessac B and Kraria S. EnaS: a new software for neural
population analysis in large scale spiking networks. Hassan Nasser,
Selim Kraria and Bruno Cessac. In preparation.

e Nasser H, Cessac B. Parameter Estimation for Spatio-Temporal Maxi-
mum Entropy Distributions: Application to Neural Spike Trains. En-
tropy. 2014; 16(4):2244-2277.

e Nasser H, Cessac B and Marre O. Spatio-temporal spike train analy-
sis for large scale networks using the maximum entropy principle and
Monte Carlo method. Journal of Statistical Mechanics: Theory and
Experiment. 2013; 03006.

6.6.2 Conference papers/posters

e Toward a realistic input for visual cortex models, Hassan Nasser, Bruno
Cessac, Bodgan Kolomiets, Pierre Kornprobst, Serge Picaud, TAUC
2010.

e Spike trains statistics in Integrate and Fire Models: exact results,
Bruno Cessac, Hassan Nasser, Juan-Carlos Vasquez, Proceedings of
the NeuroComp2010 Conference.

e Parametric estimation of Spike train statistics by Gibbs distributions:
an application to bio-inspired and experimental data, Juan-Carlos Vasquez,
Hassan Nasser, Adrian Palacios, Bruno Cessac, Thierry Viéville, Hora-
cio Rostro-Gonzalez, Proceedings of Neurocomp 2010 (Lyon).
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Analyzing large-scale spike trains data with spatio-temporal constraints,
Hassan Nasser, Olivier Marre, Bruno Cessac, SCNE 2012. Wien, Aus-
tria, September 2012. Sensory Coding and Natural Environment.

Spatio temporal Gibbs distribution analysis of spike trains using Monte
Carlo method, Hassan Nasser, Olivier Marre, Michael J. Berry II,
Bruno Cessac, AREADNE 2012 Research in Encoding And Decoding
of Neural Ensembles.

Spatio-Temporal modeling of large-scale retinal networks using Monte
Carlo principle, Hassan Nasser, Olivier Marre, Bruno Cessac, Inaugu-
ration INT, 2012.

Analyzing large-scale spike trains data with spatio-temporal constraints,
Hassan Nasser, Olivier Marre, Bruno Cessac, NEUROCOMP 2012.
Bordeaux, France, October, 2012. The NeuroComp/KEOpS 12 work-
shop.

On the ubiquity of Gibbs distributions in spike train statistics, Bruno
Cessac, Rodrigo Cofré, Hassan Nasser, 3rd annual meeting of the GDR
2904 “Multi-electrodes systems and signal processing to study neural
networks”, 2012, Marseille.
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