G. Allaire, S. Clerc, and &. Samuel-kokh, A Five-Equation Model for the Simulation of Interfaces between Compressible Fluids, Journal of Computational Physics, vol.181, issue.2, pp.577-616, 2002.
DOI : 10.1006/jcph.2002.7143

]. D. Anderson-98, G. B. Anderson, &. A. Mcfadden, and . Wheeler, DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.139-165, 1998.
DOI : 10.1146/annurev.fluid.30.1.139

J. D. Bernardin and &. I. Mudawar, The Leidenfrost Point: Experimental Study and Assessment of Existing Models, Journal of Heat Transfer, vol.121, issue.4, pp.894-903, 1999.
DOI : 10.1115/1.2826080

A. Biance, C. Clanet, and &. David-quéré, Leidenfrost drops, Physics of Fluids, vol.21, issue.6, pp.1632-1635, 2003.
DOI : 10.1115/1.3450019

URL : https://hal.archives-ouvertes.fr/hal-00014747

]. Borges, M. Carmona, B. Costa, and &. Wai-sun-don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics, vol.227, issue.6, pp.3191-3211, 2008.
DOI : 10.1016/j.jcp.2007.11.038

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.510.3810

J. B. Brzoska, F. Brochard-wyart, &. F. Chang, T. Y. Hou, B. Merriman et al., Motions of droplets on hydrophobic model surfaces induced by thermal gradients Cité à la page 11. [Caro 04] Florian Caro. Modélisation et simulation numérique des transitions de phase liquide vapeur A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows, Cité aux pages 12 et 25. [Chang 96, pp.432-438, 1989.

V. Daru, M. Duluc, O. L. Maître, D. Juric, &. Patrick et al., Mod?lisation et simulation num?rique du changement de phase liquide?vapeur en cavit?, Comptes Rendus M?canique, vol.334, issue.1, pp.25-33, 2006.
DOI : 10.1016/j.crme.2005.10.015

P. G. De-gennes, F. Brochard-wyart, D. Quéré, M. Fermigier, and &. C. Clanet, Gouttes, bulles, perles et ondes, 2002.

J. Delhaye, Transferts de chaleur associés à l'ébullition ou à la condensation des corps purs sur des parois, 1990.

J. Donea, A. Huerta, J. Ph, &. A. Ponthot, and . Rodríguez-ferran, Arbitrary Lagrangian-Eulerian Methods, Cité à la page 26. [Duvaut 98] Georges Duvaut. Mécanique des milieux continus. Dunod, pp.10-15, 1998.
DOI : 10.1016/S0045-7825(01)00313-9

G. Faccanoni, Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition, Ecole Polytechnique X, pp.9-12, 2008.

P. Ronald, T. Fedkiw, B. Aslam, &. Merriman, and . Stanley-osher, A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational Physics, vol.152, issue.2, pp.457-492, 1999.

F. Gibou, L. Chen, D. Nguyen, and &. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier?Stokes equations with phase change, Journal of Computational Physics, vol.222, issue.2, pp.536-555, 2007.
DOI : 10.1016/j.jcp.2006.07.035

]. S. Gottlieb and &. W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation of the American Mathematical Society, vol.67, issue.221, pp.73-85, 1998.
DOI : 10.1090/S0025-5718-98-00913-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.4521

C. Hirt and &. B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1981.
DOI : 10.1016/0021-9991(81)90145-5

J. S. Hou, &. M. Lowengrub, and . Shelley, Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials, Journal of Computational Physics, vol.169, issue.2, pp.302-362, 2001.
DOI : 10.1006/jcph.2000.6626

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.192.536

M. Ishii and &. Hibiki, Thermo-fluid dynamics of two-phase flow, pp.11-56, 2006.

D. Jamet, O. Lebaigue, N. Coutris, and &. J. Delhaye, The Second Gradient Method for the Direct Numerical Simulation of Liquid?Vapor Flows with Phase Change, Journal of Computational Physics, vol.169, issue.2, pp.624-651, 2001.
DOI : 10.1006/jcph.2000.6692

D. Jamet, D. Torres, and &. J. Brackbill, On the Theory and Computation of Surface Tension: The Elimination of Parasitic Currents through Energy Conservation in the Second-Gradient Method, Journal of Computational Physics, vol.182, issue.1, pp.262-276, 2002.
DOI : 10.1006/jcph.2002.7165

J. Kim and &. J. Lowengrub, Interfaces and Multicomponent Fluids, Encyclopedia of Mathematical Physics, pp.135-144, 2006.
DOI : 10.1016/B0-12-512666-2/00275-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.414.2847

S. Labbé, Modélisation et simulation de quelques systèmes non linéaires et linéaires. Habilitation à diriger des recherches, 2006.

H. Linke, B. J. Alemán, L. D. Melling, M. J. Taormina, M. J. Francis et al., Self-Propelled Leidenfrost Droplets, Physical Review Letters, vol.116, issue.15, p.154502, 2006.
DOI : 10.1007/s003390201401

A. Magni, Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport, p.44, 2011.

L. Mahadevan and Y. Pomeau, Rolling droplets, Physics of Fluids, vol.11, issue.9, pp.2449-2453, 1999.
DOI : 10.1016/0020-7225(95)00141-7

Q. Duc, R. P. Nguyen, &. Fedkiw, and . Kang, A Boundary Condition Capturing Method for Incompressible Flame Discontinuities, Journal of Computational Physics, vol.172, issue.1, pp.71-98, 2001.

S. Osher, &. James, and A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.413.5254

S. Osher, &. Ronald, and P. Fedkiw, Level set methods and dynamic implicit surfaces, pp.10-45, 2003.
DOI : 10.1115/1.1760520

V. Suhas and . Patankar, Numerical heat transfer and fluid flow, of Series in Computational Methods in Mechanics and Thermal Sciences, p.79, 1980.

G. Russo and &. Peter-smereka, A Remark on Computing Distance Functions, Journal of Computational Physics, vol.163, issue.1, pp.51-67, 2000.
DOI : 10.1006/jcph.2000.6553

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.398.6810

C. Shu and &. Stanley-osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

C. Shu and &. Stanley-osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, Journal of Computational Physics, vol.83, issue.1, pp.32-78, 1989.
DOI : 10.1016/0021-9991(89)90222-2

C. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and, 1997.

C. Shu, High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD, International Journal of Computational Fluid Dynamics, vol.9, issue.2, pp.107-118, 2003.
DOI : 10.1006/jcph.1998.6062

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.4896

A. Smolianski, Finite-element/level-set/operator-splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces, International Journal for Numerical Methods in Fluids, vol.12, issue.3, pp.231-269, 2001.
DOI : 10.1007/978-1-4615-9988-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.362.1718

]. Tanguy, T. Ménard-&-alain, and . Berlemont, A Level Set Method for vaporizing two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.837-853, 2007.
DOI : 10.1016/j.jcp.2006.07.003

URL : https://hal.archives-ouvertes.fr/hal-00649783