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Chapter 1

Introduction

1.1 Context

Our research is conducted as part of the project ANR ModItère. The global
objective of this project is to develop a new type of geometric modellers for
computer-aided design systems (CAD), based on iterative methods following
the principle of fractal geometry.

In CAD systems, objects are often modelled based on the classic matching
process, that is, by combining different simple parts. Defining shapes by it-
eration allows us to generate new structures with specific properties, such as
roughness or lacunarity, which cannot be achieved with classic modelling. How-
ever these types of objects are conceivable and may be of interest: porous struc-
tures can be used for lighter objects while maintaining satisfactory mechanical
properties, rough surfaces can be used for acoustic absorption (see figure 1.1).

We propose to elaborate a set of modelling tools to adapt the fractal model,
keeping the facilities of existing CAD systems, while extending their capabilities
and application areas. Thus we provide algorithms for CAD systems to design
new kind of shapes based on the concept of fractal geometry in order to model
and fabricate these shapes.

1.2 Problems

Fractals are self-similar shapes composed of several parts, each of which is similar
to the entire shape. In mathematics, fractals are sets of points in a metric
space with a non-integer dimension (in the sense of Minkowski or Hausdorff
metric), that is, the metric dimension differs from the topological one.

Most of existing CAD modellers are based on classic geometry. They permit
modelling analytic curves and surfaces, which are usually polynomial or rational
and smooth. The shapes modelled by iterative methods are generally not smooth
because of their fractal structure. The topology can be controlled in order
to build curves and surfaces represented by parametrized functions, but these
functions are usually nowhere differentiable.

Generally, it is difficult or impossible to represent these shapes using classic
geometric models, although this iterative construction principle is exploited to
evaluate certain objects, such as subdivision surfaces [WW02, Lan04]. Specific
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(a) (b)

(c)

Figure 1.1: Several applications of fractal structures. (a) Example of application
in architecture, EPFL 2010 (b) The study of acoustical properties of fractal
structures (Emmanuel Redon LVA LYON I) (c) Examples of fractal shapes
fabrication (Project ANR ModItr̀e).
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iterative models were developed to generalize the answer to this problem: L-
system [PL90], IFS [Bar88, Gen92], LRIFS/CIFS [PH94], BCIFS [TBSG+06].
These models are mainly used to generate fractal structures in computer graph-
ics, but also to compress data [BS87, Fis95]. In this thesis, we use the term
fractal to denote a shape represented by these iterative models.

An Iterated Function System (IFS) is determined by a set of transformations.
The attractor of an IFS may be evaluated by iterating these functions. A
Controlled Iterated Function System (CIFS) is a more general system that allows
us to control certain parts of the IFS attractor. A CIFS denotes an IFS with
restrictions on the transformation sequences imposed by a control graph and
defines objects whose geometry can be complex. The attractor of a CIFS can be
evaluated by an automaton [MW88] defined on the control graph. Each state of
the automaton corresponds to different parts or sub-parts of the modelled object.
Transitions between states indicate that one sub-part is contained in another
one. It is then possible to control the attractor more precisely. However the
evaluation, analysis and characterization (location, size) of the resulting shape
can be complex.

From IFS and CIFS, various shapes can be modelled. However, it is diffi-
cult to control their topological properties. Shapes are determined by a set of
geometry operators. Modifying these operators leads to both global and local
changes in the shape, this affects not only geometry but also topology.

To separate global and local controls, attractors can be constructed in barycen-
tric spaces and then projected to a set of control points in the modelling
space [SLG05, Tos06, Gou09, ZT96]. The global shape can therefore be mod-
ified by moving the control points, while the local geometry (geometric texture)
is defined by subdivision operators, i.e. the CIFS transformations.

In order to control the topological structure of the modelled shapes, a CIFS
is enriched by integrating a topological model to obtain a Boundary Controlled
Iterated Function System (BCIFS) [TBSG+06]. It is thus possible to spec-
ify incidence and adjacency constraints [Tos06, Gou09] for the subdivision and
thereby to control the resulting topology: classic topology (curve, surface,. . . )
or fractal topology. The topological model in this case is more general than the
classic one [Gou09]. A topological cell may be a fractal object. For example,
a face can be a Sierpinski triangle or an edge can be a Cantor set, but the
topological structure remains consistent.

Fractal shapes can thus be modelled using BCIFS, but shape modelling in
CAD systems is complex, that is not confined to simply representing the shape.
To assist the user, geometric modellers are enriched by constructing operations
and algorithms. These operations are usually based on geometric properties of
modelled objects. Since for fractal shapes these properties are more complex
and more subtle [Ben09,BGN08] and sometimes even not defined, existing CAD
systems are not suitable to manipulate fractal structures. On the other hand,
Zäır and Tosan [ZT96] showed that the result of certain operations can be
obtained formally. For example, a tensor product of two fractal curves can be
obtained by forming the tensor product of BCIFS operator matrices.

Today, there is no CAD software to design or to model fractals. This is jus-
tified by the fact that this problem was not really of interest. Indeed, there was
no manufacturing process able to produce such objects. However, the emer-
gence of new techniques, such as stereo-lithography or laser fusion, opens up
new possibilities yet unused and even unexplored.
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The passage of the theoretical model to the physical object requires a num-
ber of treatments. For example, curves and surfaces must be thickened (dilated
with respect to Hausdorff distance) to become 3-dimensional. This must be
done without loss of rendering accuracy in order to preserve the aesthetics and
geometric properties such as topology (lacunarity) and differentiability (rough-
ness). The generated shapes must thus have a good translation into the physical
world.

The goal of our project is to develop a set of tools and algorithms that per-
mits one to evaluate, to characterize and to analyse different geometric proper-
ties (localisation, convex hull, volume, fractal dimension) of fractal shapes. It
is thus necessary to be able to evaluate a set operations (intersection, union,
. . . ) between fractal objects and classic CAD objects (splines, NURBS, cylin-
ders, . . . ). Finally, in order to fabricate these objects, it is also important to
take into account the manufacturing constraints. The idea is to integrate these
constraints as early as possible, i.e. during design. This leads to the following
advantages:

• the sequence conception-simulation-fabrication is more direct;

• the manufacturing time is shortened;

• the creativity of users (designers, architects, . . . ) is improved by opening
a wide range of modelling possibilities, that were not free in existing CAD
modellers;

• this creativity is better exploited, i.e. designed shapes are closer to the
constructed shapes, there are fewer losses and degradation of information.

1.3 Organization of thesis

This thesis consists of six parts and is organised as follows.
In chapter 2 we describe popular existing tools for geometric modelling, and

mention the various constructing operations used to assist the user in computer-
aided shape modelling. There exist many techniques to generate solid objects,
such as sweeping 2D surfaces, solid modelling, free-form surfaces. We describe
basic ideas of these techniques as well as discuss approaches in the iterative ge-
ometric modelling. After listing the constructing operations presented in most
of CAD systems, we identify the basic properties required for their realisation.
Preliminary analysis shows that CAD operations are based on four properties:
affine invariance, topological structure, parametrization and differential proper-
ties. The result is given in the form of a dependency graph.

Chapter 3 defines IFS, CIFS and BCIFS. We discuss mathematical aspects
that allow us to define irregular curves and surfaces. We also identify a system
of topological constraints and the notion of control polygons.

In chapter 4 we classify CAD operations adapting to BCIFS and we also
introduce our algorithms to approximate the operation. The approximation
algorithms are generic, i.e. defined for an arbitrary operation satisfying some
constraints that we explicit. These algorithms can thus be applied once we
implement the required set of operators (interface). The proof of convergence
of these algorithms is based on the results of domain theory.

4



In chapter 5 we define a self-similarity property of the operation and intro-
duce a generic algorithm to compute a formal representation of this result, i.e.
to compute a specific CIFS with the operation image as the attractor. Most
of CAD operations are semi-decidable, that is the result can be computed only
approximately. The presenting algorithm computes a CIFS automaton for the
required accuracy. The attractor of this CIFS is thus close enough to the re-
quired operation image. In special cases, when the automaton degenerates into
an single state, the constructed model represents a specific IFS and has a linear
complexity on the number of iterations.

Chapter 6 presents various examples and special cases and summarizes all
the results. After a general conclusion we announce prospects of our work and
discuss some open questions.

Appendix A describes the methods we used to compute a bounding ball
(not necessarily a tight one) of the IFS attractor. For CIFS attractors we thus
compute a set of bounding balls. We use these approaches in the initialization
steps of presented approximation algorithms.
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Chapter 2

CAD operations

Shape modelling in CAD systems is enriched by constructing operations and
algorithms. These operations are usually based on geometric properties of mod-
elled objects. However, for fractal shapes, these properties are more complex
and sometime not defined. Since most of existing CAD modellers are based
on classic geometry, the modellers are not suitable to manipulate fractal struc-
tures. We study how standard CAD operators can be defined and evaluated on
fractals.

Our goal is to identify the different cases that arise when we want to imple-
ment standard CAD operations on fractals. For this, we list the main standard
CAD operations presented in most of CAD systems and identify the proper-
ties on which these operations are based. We then identify the basic properties
required for their realisation. Preliminary analysis shows that operations are
based on four properties: affine invariance, topological structure, parametriza-
tion and differential properties. The result is given in the form of a dependency
graph.

Finally, we discuss existing iterative models, such as subdivision surfaces and
L-Systems, that define shapes by iteration. There are various existing algorithms
to manipulate these models, that will be described, before concluding.

2.1 Geometric modelling

In this section we identify general tools widely used for geometric modelling.
This survey does not pretend to be exhaustive; we considered only the methods
related to our work. There exist many techniques to generate solid objects, such
as sweeping 2D surfaces, solid modelling, free-form surfaces. We describe basic
ideas while details are available in many resources [Req77, Chi88, Hof89, HR91,
Gal00,Rao04].

2.1.1 Sweep or Extrusion

There are number of useful techniques for creating objects, such as extrude,
revolve, sweep, loft. These 3D geometric constructing methods extended from
2D, normally can be combined into two classes:

• linear extrusion or translational sweep,

6



• rotational sweep.

In general, for extrusion sweeping a 2D surface along a curve (see figure 2.1)
generates a 3D object. In linear extrusion, sweeping is applied along a straight
line. There exist further variations in sweep for generating more complex ge-
ometry. For example, it is possible to sweep in a linear direction with a taper
along the direction.

There are some cases where a sweep may fail to generate a valid solid. For
example, a line when swept transforms to a surface, but not a solid. Sweeping
must therefore forbid such cases by imposing some restrictions on the topology
and the geometry chosen for linear extrusion in order to produce a valid solid.

Figure 2.1: A 2D surface swept along a curve

Another type of construction is the rotational sweep (sometimes called “re-
volve” or “surface of revolution”), which can be used for axi-symmetric shapes,
such as bottles, glasses, vases and so on. It is also possible to add twist to sweep-
ing in the third dimension. Similarly, the rotational sweep can be enhanced by
adding axial or radial offset while sweeping to get helical or spiral objects.

2.1.2 Solid modelling

A well-known method for 3D solid constructing is the solid modelling technique,
often called “constructive solid geometry” (CSG). The idea is to create complex
objects by adding or subtracting predefined solid primitives, as illustrated in
figure 2.2.

For combining primitives one usually use basic set operators, called Boolean
operators. There are following classic boolean operations:

• Union of the sets A and B, denoted A ∪ B, is the set of all objects that
are a member of A, or B, or both.

• Intersection of the sets A and B, denoted A ∩ B, is the set of all objects
that are members of both A and B.

• Set difference of A and B, denoted A \ B, is the set of all members of A
that are not members of B.

7



Figure 2.2: Complex objects are created by adding or subtracting predefined
solid primitives. For combining these primitives one usually uses basic set op-
erators, called Boolean operators.

• Symmetric difference of sets A and B, denoted A 4 B, is the set of all
objects that are member of exactly one of A or B (elements which are in
one of the sets, but not in both): (A ∪B) \ (A ∩B)

• Cartesian product of A and B, denoted A×B, is the set whose members
are all possible ordered pairs (a, b) where a is a member of A and b is a
member of B.

CSG is a powerful technique for representing fairly complex objects relatively
easily. The boolean operators always guarantee that the object formed by these
rules is physically constructable. However, note that these operations can affect
both the geometry and the topology. To produce valid solid objects, one should
use regularized boolean operations [GVS12].

2.1.3 Free-form surfaces

Free-form surfaces are generally created by manipulating the control points, as
illustrated in figure 2.3. Surfaces are not stored or defined in CAD software in
terms of polynomial equations, but by their control points and a surface degree.
The degree of a surface determines its geometric properties.

There are many types of free-form surfaces that are widely used in CAD
systems, such as ruled, Bézier or B-spline surfaces.

Some operations (chamfering, rounding/filleting) are applied directly to the
model faces, edges and vertices to create a desired modification. A lofted surface
is a surface constructed by transitioning between two or more curves by using
a smooth blend between each section of the surface. Surface fillet is a tool to
automatically generate the fillet radius between two surfaces, which could be
uniform or vary linearly.

2.1.4 Transforms

All the modelling techniques have a number of simple and natural geomet-
ric transformations. There is an important class of geometric transformations,
called affine transformations. In geometry, an affine transformation is a trans-
formation that preserves straight lines (i.e. images of all points lying on a line,
also lie on a line) and ratios of distances between points lying on a straight line
(that is, the midpoint of a line segment remains the midpoint after transforma-
tion).

8



Figure 2.3: Free-form surfaces are generally created by manipulating the surface
control points

Examples of affine transformations include translation, homothety, rotation,
shear and also their composites.

Other examples of CAD operations simplifying geometric modelling are
“copy-paste” and “array”.

2.2 Operations graph

To exploit fractals in CAD systems we must be able to evaluate most standard
constructing operations for fractal objects. In this section we study the con-
structing operations presented in the CAD system Rhino. The choice of this
software was suggested by our industrial partners.

Some of these operations are composites, that is, we have to calculate several
elementary operations and then combine results. For example, to determine a
G1 connection between two curves, we must be able to calculate the tangents
at each curve end. But we also must be able to construct a curve with these
imposed tangents.

For preliminary analysis we structure operations by determining dependen-
cies between them. After listing the CAD operations, we construct a diagram
illustrating these relations in the form of a graph (see figure 2.4). This graph
illustrates the dependencies between the CAD operations and object proper-
ties. The basic properties and methods are marked by diamonds. Note that
this graph does not pretend to be exhaustive neither for operations nor depen-
dencies. However, it is constructed by considering at least one solution for each
operation.

All CAD operations are divided into two categories depending on the type
of the result:

• where a formal solution is provided (depicted by rectangles)

• where an approximate solution is provided (depicted by ellipses)

We now explain these categories.

9



Figure 2.4: Graph of the relations between the CAD operations and the object
properties.
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2.2.1 Operations with a formal solution

In this category there are operations that produce a formal representation of the
required result. That is, after an appropriate transform T , the NURBS surface
S, for example, remains a NURBS surface, and moreover, the result represents
the exact mathematical image T (S).

For instance, we consider the affine transformations. Let C be a NURBS
curve, defined by a set of control points {Pi | i = 1, . . . , k} as follows:

C(u) =

k∑
i=1

Ri,n(u)Pi,

where Ri,n are the rational basis functions:

Ri,n(u) =
Ni,n(u)wi∑k
j=1Nj,n(u)wj

,

with Ni,n the B-spline basis functions, n the degree of the B-spline basis func-
tions and wi the corresponding weights. The denominator is a normalizing
factor.

Every affine transformation is the composite of two functions: a translation
and a linear transformation. The linear part is represented as a multiplica-
tion by a matrix L and the translation as the addition of a vector b, an affine
transformation T acting on the curve C can thus be represented as

C ′(u) = T (C(u)) = b+ LC(u) = b+

k∑
i=1

Ri,n(u)LPi

Since all the Ri,n sums to 1:

C ′(u) =

k∑
i=1

Ri,n(u)b+

k∑
i=1

Ri,n(u)LPi =

k∑
i=1

Ri,n(u)(b+LPi) =

k∑
i=1

Ri,n(u)T (Pi).

To apply an affine transformation to a NURBS curve, we can thus simply trans-
form the control points of the curve. Moreover, the new curve obtained by
transforming the control points is also a NURBS curve. We have thus the
formal representation of the image under affine transformation.

Another example is determining curve endpoints. This can be done in a
natural way from the parametrisation of a curve by passing the bounding values
of a parameter.

2.2.2 Operations with an approximate solution

Sometimes it is difficult or even impossible to preserve the representation of an
object after applying a CAD operation. This category consists of operations
for which the result is computed approximately. A simple example is inter-
secting between subdivision surfaces [LFKN03,BKZ01]. There is no method to
represent formally the result. CAD systems therefore modify the initial repre-
sentation of objects after computing this operation.
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2.3 Iterative modelling and manipulations

There exists another approach to represent geometric solids, called iterative
modelling, where we define the shape implicitly by an algorithm that gener-
ates it. These geometric models are usually defined by a set of rules which
are applied to generate the ensuing iteration in a recursive manner, in con-
trast to shapes represented by boundary surfaces and volumetric models (CSG
and Spatial-partitioning). However, these distinctions are often blurred: for
instance, geometric shapes such as circles can be defined by implicit mathemat-
ical equations, and a fractal model reduces to a constructive model when its
recursive definition is truncated to a finite depth.

Iteration allows us to generate structures with complex properties, such as
roughness or lacunarity, which cannot be achieved with classic modelling. In
this section we discuss existing iterative models, that define shapes by iteration.
There are various existing algorithms to manipulate these models, which will
also be described.

2.3.1 Subdivision surfaces

One powerful iterative method for representing shape is called subdivision. Sub-
division surfaces allow smooth free-form surface modelling without topological
constraints. Subdivision have become a fundamental representation for smooth
geometry, particularly in the animated movies.

Subdivision defines smooth curve or surface as the limit of a sequence of suc-
cessive refinements of a mesh. The geometric domain is represented by piecewise
linear objects, usually polygons or polyhedra. The iteration consists of two dis-
tinct phases:

• Splitting: Each edge or face is split into edges or faces.

• Averaging: Each new vertex introduced by splitting is positioned at a
fixed affine combination of its neighbour’s positions. The initial points
could also be repositioned.

Subdivision thus produces a hierarchy of polyhedra that approximate the final
limit shape. This process is used mostly to produce highly smooth surfaces from
polyhedra of arbitrary topology.

The main benefit of subdivision is that it is simple to implement. In order to
implement a subdivision scheme, each vertex of a shape is tagged by specifying
whether the descendants of the vertex lie on a vertex, edge or face of the final
limit shape. During subdivision, the appropriate averaging mask can be chosen
based on this tag. By truncating to a finite depth the curved limit shape can
be approximated to any desired tolerance.

There exist a large number of different subdivision schemes: schemes that
operate on quadrilateral [CC98, Doo78] or triangular meshes [Loo87], schemes
whose limit surface either interpolates a control mesh [DLG90, Kob96] or ap-
proximates it [CC98, Doo78], as well as schemes that incorporate a rotation
of the grid directions [PR97, Kob00, LG00, VZ01]. There are also schemes
that use the flexibility of subdivision to mix refinement patterns in the same
mesh [SL03,SW05,PS04]. Comprehensive classifications of refinement patterns
are provided by Cashman [Cas12], Han [Han03] and Ivrissimtzis et al. [IDS04].
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Manipulation with subdivision surfaces

Given a subdivision scheme, the fundamental difficulties are to determine the
properties of the limit shape, to convert other representations, such as NURBS
or CSG, into a subdivision representation, and to perform geometric operations,
such as intersection, lofting or fairing.

T. Cashman [Cas12] surveys the high-performance evaluating techniques for
subdivision surfaces on both CPU and GPU which makes it possible to con-
sider subdivision surfaces in real-time applications such as computer games
[KMDZ09]. The survey also includes various techniques to analyse the first
and the second-order smoothness of subdivision surfaces.

To trim subdivision surfaces it is usually required to compute the parametric
pre-image of a trim curve in order to exclude for evaluation the relevant parts of
the surface. Litke et al. [LLS01] pointed out that with Levin’s [Lev99] combined
subdivision scheme, which can satisfy boundary constraints, it is possible to
meet a desired trim curve exactly without computing an exact pre-image. The
compromise they make is to modify (within a specified tolerance) the surface
near the trim curve.

Much work has been devoted to interference detection and surface inter-
section for analytical surfaces [RS97] and NURBS surfaces [KKM97, KKM99,
KM97], however few previous works have attempted to solve this problem for
subdivision surfaces. Subdivision surface intersection often involves truncating
the evaluation tree to a finite depth and then applying a mesh intersection al-
gorithm without considering properties of subdivision [BKZ01], which can be
costly to compute. The problem of interference detection was approximately
solved for a large class of subdivision surfaces [DKT98,GS01,WP04].

Lanquetin et al. [LFKN03] proposed an algorithm to intersect the subdivision
surfaces generated by the Loop scheme. The algorithm was later improved by
Severn and Samavati [SS06] by using the strong convex hull property in order
to produce a fast intersection for subdivision surfaces with arbitrary precision.
This approach can therefore be used with any subdivision scheme that has this
strong convex hull property. Biermann et al. [BKZ01] presented a method for
approximating boolean operations for subdivision surfaces. There were attempts
to improve robustness by using voxelization [LC07] or by operating on the limit
mesh [JS09].

J. Stam [Sta98] showed that Catmull-Clark subdivision surface and all
its derivatives can be evaluated in terms of a set of eigenbasis functions which
depend only on the subdivision scheme and he derives analytical expressions
for these basis functions. He implemented a technique to compute high quality
curvature plots of subdivision surfaces. The cost of the evaluation scheme is
comparable to that of a bi-cubic spline. Therefore, this method allows many
algorithms developed for parametric surfaces to be applied to Catmull-Clark
subdivision surfaces.

Subdivision schemes generate self-similar curves and surfaces. S. Schaefer
et al. [SLG05] demonstrated that subdivision curves and surfaces are in fact
special cases of the IFS attractors, that is, they can be generated by iterating
contractive transformations. The authors derived the associated IFS for many
different subdivision curves and surfaces without extraordinary vertices, includ-
ing B-splines, piecewise Bezier, interpolatory four-point subdivision, bi-cubic
subdivision. Moreover they showed how to build subdivision schemes to gener-
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ate traditional fractals such as the Sierpinski triangle and the Koch curve.

2.3.2 L-systems

An L-system or Lindenmayer [Lin68] system is a type of formal grammar. A
systematic study and formalisation was undertaken by P. Prusinkiewicz [PSS10,
PL90].

An L-system consists of an alphabet of symbols, a collection of production
rules that expand each symbol into some larger string of symbols, an initial
string from which to begin construction, and an algorithm to translate the
generated strings into geometric structures. The central concept of L-systems
is the notion of rewriting. Rewriting is a technique to build complex objects by
replacing parts of a simple initial object using local rewriting rules. L-systems
describe growing structures in terms of automatically maintained topological
(neighbourhood) relations between components. The context for applying the
rules is therefore always available.

Typically, L-systems are characterized by repetitive applying simple rules to
discrete structures with a changing number of components. More recently, inter-
pretations of L-systems based on affine geometry have been presented [DeR89,
Gol02]. These interpretations provide a brief description of subdivision curves.
In fact, the generating algorithm is similar to the one for generating fractal
curves and also resembles subdivision algorithms. Their modification rules can
thus be described in local terms and formalized as L-systems production rules.

P. Prusinkiewicz et al. [PSSK02] introduced parametric context-sensitive L-
systems with affine geometry interpretations as an alternative technique for
specifying and generating subdivision curves. Subdivision algorithms can thus
be formalized by L-systems in an intuitive manner, which leads furthermore to
their computer implementation.

Such fundamental algorithms as the Lane-Riesenfeld algorithm for gen-
erating uniform B-splines of arbitrary degree, the de Casteljau algorithm for
generating Bezier curves, and their extensions to rational curves, can also be
expressed using L-systems with affine geometry interpretations [PSS10].

I. Zammouri et al. [ZTA08] showed the exact mathematical relation between
L-systems and iterated function systems (IFS). They proposed a new method
to describe fractal shapes using parametric L-systems.

2.4 Conclusion

In this chapter we identified the general tools widely used for geometric mod-
elling and we described the various constructing operations used to assist users
in computer-aided shape modelling. There exist many techniques to generate
solid objects, such as sweeping 2D surfaces, solid modelling, free-form surfaces.
We described the basic ideas of these techniques.

After enumerating all the operations presented in the CAD system Rhino, we
constructed a diagram that illustrates dependencies between these operations
in the form of a graph. Operations were then classified into two categories
depending on type of the result: a formal representation of the result or an
approximate result.
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The constructing operations are usually based on geometric properties of
modelled objects. A preliminary analysis shows that CAD operations are based
on four basic properties: affine invariance, topological structure, parametriza-
tion and differential properties. For example, in order to align objects we must
be able to compute the bounding box and to translate the objects. If the objects
are not affine invariant, the computed bounding box will no longer be correct
after translating. Extracting surfaces of a solid or duplicating their borders can
be easily computed using the boundary representation. These basic properties
are therefore essential and we must find their equivalents in fractal geometry.
In fact, for fractal shapes, these properties are more complex and sometime
even not defined. That is why existing CAD systems are often not suitable to
manipulate fractal structures.

In fact, most of existing CAD modellers are based on classic geometry. These
modellers permit modelling analytic curves and surfaces, which are usually poly-
nomial or rational and smooth. The shapes modelled by iterative methods gen-
erally are not smooth because of their fractal structure. Their topology can
be controlled in order to build curves and surfaces represented by parametrized
functions, but these functions are usually nowhere differentiable.

Iterative models, such as L-systems, give a recursive definition of shapes
allowing us to generate structures with specific properties, such as roughness
or lacunarity. Shapes with these properties cannot be achieved with classic
modelling. To exploit these shapes in CAD systems, we must be able to evaluate
most standard constructing operations for fractal objects.

Being a parametric and an implicit model, a fractal reduces to a construc-
tive geometry when its recursive definition is truncated to a finite depth. The
CAD operations can therefore be applied directly to an approximation of a frac-
tal. However, the attractor approximation can be time-consuming, because the
number of objects grows exponentially with an increasing number of iterations.
In the next chapter we adapt CAD operations to fractals, we formalize the no-
tion of approximation by identifying situations for which it is possible to control
this approximation. We identify the constraints on operations in order to apply
general or optimised algorithms. These algorithms can thus be applied once we
implement the required set of operators (interface).

Together, the principles of iterative, geometric and solid modelling form
the foundation of computer-aided design and in general support the creation,
visualization, animation and annotation of digital models for physical objects.
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Chapter 3

Iterated Function Systems
and generalisations

In this chapter we define the iterative systems that will be used to represent
fractal objects. We discuss mathematical aspects that allow us to define irreg-
ular curves and surfaces. We also identify a system of topological constraints
and the notion of control polygons.

3.1 IFS

Iterated Function Systems (IFS) were introduced by Hutchinson [Hut81] as
a strictly mathematical model. Barnsley further developed and popularized
this model for applications in computer graphics [Bar88]. Much research has
followed on from this idea [Gen92,Mas97,BHS08,Tos06].

IFS are based on the self-similarity property. A modelled object is made up
of the union of several copies of itself; each copy is transformed by a function.
These functions are usually contractive, that is, bringing points closer together
and making shapes smaller. Hence, the modelled object, called attractor, is
made up of several possibly-overlapping smaller copies of itself, each copy also
made up of copies of itself, ad infinitum.

3.1.1 Definition of IFS

In this section we formally define IFS and we thus establish the notation used
in this thesis.

Definition. Given a complete metric space (X, d) with the associated metric
d, an IFS is defined by a finite set of continuous transformations T = {Ti}N−1

i=0

in the space X. Let Σ = {0, . . . , N−1} be the set of IFS transformation indices,
thus |Σ| = N . The IFS is then denoted by {X;Ti | i ∈ Σ}.

A simple example of an IFS can be constructed for a representation of real
numbers in [0, 1]. Let

Ti : x→ x+ i

3
: [0, 1]→ [0, 1],
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where i ∈ Σ = {0, 1, 2}. The IFS {[0, 1];T0, T1, T2} can thus express the repre-
sentation of any real number in [0, 1].

We are substantially interested in so-called hyperbolic IFS, whose transfor-
mations Ti are all contractive.

Definition. A transformation T : X → X is called contractive if and only
if there exists a real s, 0 6 s < 1 such that d(T (x), T (y)) < s · d(x, y) for
all x, y ∈ X. The minimal coefficient s which satisfies the inequality is called
the contraction coefficient of the transformation T . To distinguish contraction
coefficients of different transformations we also use the function notation s(T )
to denote the contraction coefficient of the transformation T .

Definition. For the set of non-empty compact subsets of X, denoted H(X),
we define the Hausdorff distance dX induced by the metric d:

dX(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

Since the metric space (X, d) is complete, the set (H(X), dX) is also complete [Bar88].
In the early 80’s, Hutchinson [Hut81] used the Banach fixed point theorem

to deduce the existence and the uniqueness of an attractor for a hyperbolic IFS,
i.e. the fixed point of the associated contractive map. It is thus possible to
define an operator T : H(X)→ H(X), called Hutchinson operator [Bar88], as
the union of the IFS transformations Ti:

T(K) =

N−1⋃
i=0

Ti(K).

The contraction coefficient of the Hutchinson operator is thus defined by:

smax = max
i=0,··· ,N−1

s(Ti).

Definition. If smax < 1 then T is also contractive in the complete metric
space (H(X), dX). According to the Banach fixed point theorem [Bar88], T has
a unique fixed point A. This fixed point is named the attractor of the IFS:

A = T(A) =

N−1⋃
i=0

Ti(A). (3.1)

3.1.2 Examples of an IFS

In the following examples we use the Euclidean plane R2 with the associated
Euclidean metric.

The first example is the Sierpinski triangle illustrated in figure 3.1. We
define an IFS with the three contractive transformations T0, T1 and T2, defined
by the homotheties with centres pi and ratios 1

2 as follows:

T0 = Hp0
1
2

T1 = Hp1
1
2

T2 = Hp2
1
2

.
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Figure 3.1: Sierpinski triangle

Figure 3.2: Attractor of an IFS composed of three homotheties with ratios 1
2

and centres pi.

Here Hp
s denotes the homothety centred at point p with ratio s.

The Sierpinski triangle is the attractor of this IFS, that is a non-empty
compact set satisfying the equation (3.1):

A = Hp0
1
2

(A) ∪Hp1
1
2

(A) ∪Hp2
1
2

(A).

The shape of the IFS attractor depends entirely on the transformations Ti.
The Sierpinski triangle has a number of particularities, which can generally be
found in other IFS attractors. One of the main characteristics, common to all
IFS attractors, is self-similarity with changing scale. Inside the attractor there
are subsets similar to the whole set, and this pattern occurs at any scale.

Figure 3.2 illustrates the same triangle with a slightly modified geometry.
Here, IFS transformations have the same ratio, but we modify the centre of the
homothety T2.

The following example demonstrates an IFS composed of three homotheties
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Figure 3.3: Attractor of an IFS composed of two homotheties with positive ratios
1
2 and one homothety with negative ratio − 1

2 . The centres of these homotheties
are pi for i = 0, . . . , 2.

whose centres form an equilateral triangle, but we change their ratios as follows:

T0 = Hp0
1
2

T1 = Hp1
1
2

T2 = Hp2
− 1

2 ,

The attractor of this IFS is shown in figure 3.3.
These examples show that a simple IFS system can produce complex self-

similar structures, but it is quite difficult to control the geometry and topology
of these objects, even though the geometry depends continuously on the trans-
formations [Bar88,Gen92].

3.1.3 IFS construction algorithms

The Banach fixed point theorem [Bar88] describes the existence and uniqueness
of the attractor for a hyperbolic IFS {X;Ti | i ∈ Σ}. In this section we describe
methods to approximate and to visualize the attractor.

There are two canonical ways to evaluate the attractor of a dynamical sys-
tem:

• By constructing a decreasing sequence of non-empty compact sets which
shrink down to the attractor. The smaller the compact set in the sequence,
the better the attractor approximation with respect to the Hausdorff
distance. Here, the initial compact set has to cover the attractor. This
method provides an approximation of the fractal exterior.

• By constructing an increasing sequence of non-empty compact sets whose
union has the attractor as its closure. Here, we have to start with a

19



compact set included in the attractor. In this case, the bigger the compact
set in the sequence, the better the attractor approximation.

Other construction and visualisation methods exist [PS88, HPS92], such as
the dynamic chaos game or non-deterministic algorithms [Bar88, BD85]. How-
ever, we are substantially interested in the deterministic method allowing us to
approximate most operations. In fact, in both these cases, we use a similar ap-
proximation algorithm, i.e. we recursively apply transformations to the initial
non-empty compact subset.

The attractor of an IFS may therefore be evaluated recursively. That is, the
attractor can be approximated by a sequence {Kn}n∈N converging to A. The
initial element in the sequence is defined by means of a primitive K ∈ H(X).
The following elements are defined recursively:

K0 = K

Kn+1 =
⋃
i∈Σ

Ti(Kn).

The elements Kn are images of composite functions applied to K.
Each element in the sequence represents an approximation of the IFS at-

tractor. Each term Kn is composed of Nn images of K by a composite of n
functions. For example, a sequence of the attractor approximations for an IFS
{X;T0, T1} is presented here:

K0 = K,

K1 = T(K0) = T0(K) ∪ T1(K),

K2 = T(K1) = T0T0(K) ∪ T0T1(K) ∪ T1T0(K) ∪ T1T1(K),

K3 = T(K2) = T0T0T0(K) ∪ T0T0T1(K) ∪ T0T1T0(K) ∪ T0T1T1(K) ∪
T1T0T0(K) ∪ T1T0T1(K) ∪ T1T1T0(K) ∪ T1T1T1(K),

...
...

...

Kn = T(K2) =
⋃
αi∈Σ

Tα1
Tαn(Kn−1).

In this iterative algorithm, a set of transformed primitives K is constructed
recursively and calculations can be represented by an evaluation tree. Each node
on the i-th level of the tree corresponds to the image of a composite of i IFS
transformations. This tree is traversed up to a given depth n, where we display
the image of K by the composite function associated with the current node, as
shown in figure 3.4.

Note that these composite functions are calculated from left to right. The
primitive K is finally transformed by a constructed composite function. In
practice, the IFS transformations Ti are affine operators and can therefore be
represented by matrices. A composite affine transformation can thus be repre-
sented by a product of transformation matrices.

In chapter 4 we use the notion of the evaluation tree to decompose an oper-
ation image and to optimize the approximation.
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Figure 3.4: The IFS evaluation tree calculated to the third level. Internal nodes
correspond to the calculation of a composite function. Leaves correspond to
subsets of K3 to construct or to visualise.

3.2 Controlled IFS

In IFS all the transformations are applied at each iteration. It is possible to
enrich this model by adding rules to control the iterations. This is the principle
of a CIFS (Controlled IFS).

CIFS are more general systems allowing us to control certain parts of the
IFS attractor. A CIFS denotes an IFS with restrictions on transformation se-
quences imposed by a control graph. This system is similar to “Restricted IFS”
(RIFS) [Bar88], and is also described [PH94, TT93] by means of formal lan-
guages, called LRIFS (Language-Restricted Iterated Function System). CIFS
allow us to handle fractals with subsets of different dimensions. CIFS define
objects whose geometry can be complex. However CIFS attractors are more
convenient and controllable than IFS attractors for manufacturability purposes.

The attractor of a CIFS can be evaluated by an automaton [MW88] defined
on the control graph. Each state of the automaton corresponds to different
parts of the modelled object. States are associated with construction spaces.
Transitions between states indicate that one sub-part is contained in another
one. It is then possible to control the attractor more precisely. However, it is
usually NP-complex to evaluate, to analyse and to characterize (location, size)
the resulting shape.

3.2.1 Definition of CIFS

Definition. A CIFS is given by an automaton, where each state q is associated
with an attractor Aq ∈ Xq, and each transition from q to w is associated with
an operator Xw → Xq. Here is a list of parameters describing the CIFS:

• An automaton (Σ, Q, δ), where Σ is an alphabet, Q is a set of states and
δ is a transition function δ : Q× Σ→ Q;
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• A set of complete metric spaces associated with the automaton states
{Xq}q∈Q;

• An operator associated to each transition T qi : Xδ(q,i) → Xq;

• A compact set Kq ∈ H(Xq), called primitive, associated with each state
q ∈ Q. Primitives are not used to define the attractor, but only to ap-
proximate it;

• Finally, the automaton is provided by an initial state, noted by \.

In the following, we denote by Σq the restriction of Σ by outgoing transitions
from the state q, i.e.:

Σq = {i ∈ Σ, δ(q, i) ∈ Q}

3.2.2 Attractor of a CIFS

The attractor of an IFS can be evaluated recursively.

Definition. A CIFS defines a family of attractors associated with the states:
{Aq}q∈Q, where Aq ∈ H(Xq). The attractors Aq are mutually defined recur-
sively:

Aq =
⋃
i∈Σq

T qi (Aδ(q,i)) (3.2)

A CIFS attractor, denoted A, is the attractor associated with the initial state
\, i.e.:

A = A\.
As for IFS, each CIFS attractor can be approximated by a sequence {Kq

n}n∈N
converging to Aq. Each state q ∈ Q is associated with a primitive Kq ∈ H(Xq),
which defines the initial element in the sequence. The following elements are
mutually defined recursively:

Kq
0 = Kq

Kq
n+1 =

⋃
i∈Σq T

q
i (K

δ(q,i)
n )

In this iterative algorithm a set of transformed primitives Kq is recursively
constructed and the calculations can also be represented by an evaluation tree.
Each node on the i-th level of the tree corresponds to the image of a composition
of i CIFS transformations, i.e. a path of length i in the automaton. This tree
is traversed up to a given depth n, where we display the image of Kq by the
composite function associated with the current node, as shown in figure 3.5.

Consider an example of the CIFS attractor, illustrated in figure 3.6. The
system is described by an automaton with two states: a and b. There are two
subdividing operators from the state a and three from b. Figure 3.7 shows the
automaton of this CIFS. Transition functions are the following:

δ(a, 0) = a δ(b, 0) = b
δ(a, 1) = b δ(b, 1) = b

δ(b, 2) = b
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Figure 3.5: CIFS evaluation tree calculated to the third level. Internal nodes
correspond to the calculation of a composite function. Leaves correspond to
subsets of K3 to construct or to visualise.

Figure 3.6: Attractor of a CIFS described by an automaton with two states: a
and b.

Figure 3.7: The automaton of the CIFS considered in the example. There
are two subdividing operators from the state a to construct an array of the
Sierpinski triangles and three operators from b to construct each triangle.

Each transition δ(q, i) = w of the automaton is associated with an operator
T qi : Xw → Xq. Assume that Xa and Xb are both the same Euclidean affine
plane. Let the operator between these spaces be the identity map Id and the
operators defined from the space into itself be the following homotheties:

T a0 = Hp3
0.42 T b0 = Hp0

0.5

T a1 = Id T b1 = Hp1
0.5

T b2 = Hp2
0.5,
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where Hp
s denotes the homothety centred at point p with ratio s.

Thus, the attractors Aa and Ab satisfy the following equations:

Aa =
⋃
i∈Σa

T ai (Aδ(a,i)) = T a0 (Aa) ∪ T a1 (Ab) = Hp3
0.42(Aa) ∪ Ab

Ab =
⋃
i∈Σb

T bi (Aδ(b,i)) = T b0 (Ab) ∪ T b1 (Ab) ∪ T b2 (Ab) =

= Hp0
0.5(Ab) ∪Hp1

0.5(Ab) ∪Hp2
0.5(Ab)

As can be deduced from defining Ab (see equation 3.2), this attractor is the
Sierpinski triangle with vertices p0, p1 and p2.

In figure 3.6 we can see that the attractor Aa is an infinite set of contracted
Sierpinski triangles.

Remark Attractors of a CIFS are uniquely defined if operators associated
with each cycle in the control graph are contractive. In the previous example,
the transition between the states does not need to be contractive.

3.2.3 Projection onto the modelling space

From IFS and CIFS, various shapes can be modelled. However, it is difficult
to control their topological properties. The shapes are determined by a set of
geometry operators. Modifying these operators leads to both global and local
changes in the shape and affects not only geometry but also topology.

To separate global and local control, we construct the attractor in a barycen-
tric space and then project this attractor according to a set of control points
in the modelling space. The global shape can therefore be modified by mov-
ing control points, while the local geometry (geometric texture) is defined by
subdividing operators, i.e. CIFS transformations [ZT96,SLG05].

Figure 3.8: The automaton of the CIFS considered in the example. There are
three subdividing operators from state S to itself and one projecting operator
from S to \.

Consider an example of the Sierpinski triangle as an attractor of a pro-
jecting CIFS. The system is described by an automaton with two states: \ (for
the modelling space) and S (to construct the triangle). There are three subdi-
viding operators from state S to itself and one projecting operator from S to
\. Figure 3.8 shows the automaton of this CIFS. Transition operators are the
following:

T \0 = P TS0 = H
(1,0,0)
0.5

TS1 = H
(0,1,0)
0.5

TS2 = H
(0,0,1)
0.5 ,
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Figure 3.9: Attractor of a CIFS described by an automaton with three states \,
C and S.

Figure 3.10: 4D barycentric space XC for constructing a square. Three subdi-
viding operators transform the space into itself by scaling with a ratio 0.5. The
fourth operator projects the Sierpinski triangle constructed in the space XS .

25



where P is the projecting operator and Hp
s denotes the homothety centred at

point p with ratio s.
In this case, the Sierpinski triangle is constructed in a 3D barycentric

space. We choose the centres of homotheties as the unit vectors to simplify the
following projection onto the modelling space. The projecting operator P has
the following matrix representation:

P =


p0[0] p1[0] p2[0]
p0[1] p1[1] p2[1]

...
...

...
p0[d] p1[d] p2[d]

 ,

where d is the dimension of the modelling space and {p0, p1, p2} is a set of control
points, called the control polygon. Here pi[j] denotes the j-th coordinate of point
pi. The projecting matrix is thus composed of the control point coordinates in
columns.

According to definition (3.2), the attractor A\ of this CIFS satisfies the
following equation:

A\ = P (AS).

Note that applying affine transformations becomes simple. In order to ap-
ply a transformation R to the attractor, we modify the projecting operator as
follows:

P ′ ← R ◦ P,
where P is the initial projecting operator and P ′ is the new one. Indeed, the
attractor of the modified CIFS, denoted by A\′ , can be determined as follows:

R(A\) = RP (AS) = P ′(AS) = A\′ .

Consider another example of a CIFS, illustrated in figure 3.9. The system is
described by an automaton with three states: \, C and S. State C is to construct
a square, and is associated with the 4D barycentric space XC , illustrated in
figure 3.10. The square is then projected to the modelling space X\. State S is
to construct the Sierpinski triangle in the 3D barycentric space XS , which is
then projected onto XC .

Figure 3.11: The automaton of the CIFS considered in the example. There are
four subdividing operators from C to construct a square, but the Sierpinski
triangle is inserted as one quarter. There are three subdividing operators from
S to construct the Sierpinski triangle. The result is then projected onto the
modelling space X\.

There are four subdividing operators from state C and three from S. Fig-
ure 3.11 shows the automaton of this CIFS. Transition functions are the follow-
ing:
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δ(C, 0) = C δ(S, 0) = S
δ(C, 1) = C δ(S, 1) = S
δ(C, 2) = C δ(S, 2) = S
δ(C, 3) = S

Each transition δ(q, i) = w of the automaton is associated with an operator
T qi : Xw → Xq. The subdividing operators are defined as follows:

TC0 = H
(1,0,0,0)
0.5 TS0 = H

(1,0,0)
0.5

TC1 = H
(0,1,0,0)
0.5 TS1 = H

(0,1,0)
0.5

TC2 = H
(0,0,1,0)
0.5 TS2 = H

(0,0,1)
0.5 ,

where Hp
s denotes the homothety centred at point p with ratio s. The projecting

map TC3 of the Sierpinski triangle onto the space XC is defined as follows:

TC3 =


0 0 0
0 0.5 0

0.5 0 0
0.5 0.5 1

 .

This matrix projects the 3D barycentric space XS , in which the triangle is
constructed, onto the 4D barycentric space XC by conforming the unit vectors of
XS to the control points (0, 0, 0.5, 0.5), (0, 0.5, 0, 0.5) and (0, 0, 0, 1), as illustrated
in figure 3.10. Finally, the projecting map P is defined as follows:

P =


p0[0] p1[0] p2[0] p3[0]
p0[1] p1[1] p2[1] p3[1]

...
...

...
...

p0[d] p1[d] p2[d] p3[d]

 ,

where d is the dimension of the modelling space and {pi | i = 0, . . . , 3} is the
control polygon.

According to definition (3.2), the attractors of this CIFS satisfy the following
equations:

A\ = P (AC),

AC = TC0 (AC) ∪ TC1 (AC) ∪ TC2 (AC) ∪ TC3 (AS),

AS = TS0 (AS) ∪ TS1 (AS) ∪ TS2 (AS).

Figure 3.12 illustrates the same attractor projected onto a different control
polygon.

3.3 BCIFS

From IFS and CIFS, various shapes can be modelled. However, it is difficult
to control their topological properties. The shapes are determined by a set of
geometry operators. Modifying these operators leads to both global and local
changes in the shape and affects not only geometry but also topology.

In order to control the topological structure of the modelled shape, one can
enrich CIFS by integrating the topological model to obtain BCIFS (Boundary
Controlled Iterated Function System) [TBSG+06].
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Figure 3.12: Attractor of the CIFS considered in the previous example with a
different projecting map P .

It is thus possible to specify incidence and adjacency constraints [Tos06,
Gou09] for subdivision and thereby to control the resulting topology: classic
topology (curve, surface,. . . ) or fractal topology. The topological model used
is more general than the classic one. A topological cell may be fractal. For
example, a face may be the Sierpinski triangle or an edge may be the Cantor
set, but the topological structure remains consistent.

3.3.1 Definition of BCIFS

The topological model is commonly used in CAD systems to represent geometric
objects. This formalism was introduced to separate the topology and the geo-
metric properties of a considered object. The topological structure is encoded
by a set of topological cells (faces, edges, vertices) interconnected by a set of
incidence and adjacency relations. The incidence relations are based on nesting
of cells: each face is bounded by a set of edges, and each edge is bounded by
two vertices. The adjacency relations are based on sharing cells: two adjacent
faces share a common edge, and two adjacent edges are bounded by a common
vertex. BCIFS is thus an extension of a CIFS enriched by the topological model.

Classic shape description includes a finite number of components. Each
shape is represented by a finite set of cells with incidence and adjacency rela-
tions using polynomial or rational (NURBS) functions. Topological structure
of these shapes is thus encoded by a finite graph. An iterative description of
fractal shapes thus consists of an infinite number of components generated by
subdivision. At each step, the algorithm generates an approximate mesh with an
increasing (potentially infinite) number of components. The topological struc-
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Figure 3.13: Subdivision of a face in the considered example of a BCIFS.

ture is encoded by a finite set of rules, according to which the current level of
approximation is obtained from the previous one. All topological rules on the
n-th subdivision level can thus be derived from the rules on the first level.

Each topological cell corresponds to an attractor in a certain space. A face
corresponds to the attractor Af of the IFS (Xf ;T f0 , T

f
1 , T

f
2 , T

f
3 ) (see figure 3.13).

An edge corresponds to the attractor Ae of the IFS (Xe;T e0, T e1) (see figure 3.14).
A vertex corresponds to the attractor Av of the IFS (Xv;T v0).

Figure 3.15 illustrates how a square can be decomposed into the topological
cells. Incidence operators are used to generalize the concept of edge. Each
included cell is defined by an embedding operator. Each face of the square is
bounded by four edges and each edge is bounded by two vertices. Embedding
of edges Ae in Xf is defined by four embedding operators qfi : Xe → Xf for
i = 0, . . . , 3:

qfiAe ⊂ Af .
Embedding of vertices Av in Xe is defined by two embedding operators qei :
Xv → Xe for i = 0, 1:

qeiAv ⊂ Ae.
There are two types of transition in the BCIFS automaton:

• transitions subdividing a topological cell;

• transitions embedding a topological cell in another one.

The alphabet Σ is also divided into:

• symbols of subdivision Σ÷ = {÷i | i ∈ N};

• symbols of incidence Σ∂ = {∂i | i ∈ N}.
Each subdividing transition δ(q,÷i) = w is associated with a subdividing oper-
ator T qi : Xq → Xw, where q, w ∈ Q and ÷i ∈ Σ÷. Similarly, each embedding
transition δ(q, ∂i) = w is associated with an embedding operator qqi : Xq → Xw,
where q, w ∈ Q and ∂i ∈ Σ∂ .
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Figure 3.14: Subdivision of an edge in the considered example of a BCIFS.

Figure 3.15: Decomposition of the square into the topological cells (face, edge,
vertex).
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Usually edges share certain vertices. An example of shared vertices is il-
lustrated in figure 3.15. These relations can be translated into adjacency con-
straints on the embedding operators qfi , i = 0, . . . , 3:

qf0 q e
0 = qf3 q e

1

qf0 q e
1 = qf1 q e

1

qf1 q e
0 = qf2 q e

1

qf2 q e
0 = qf3 q e

0,

There is a correspondence between subdivided borders of a face and the
borders of subdivided faces, which can be expressed by the following incidence
constraints:

T f0 q f
0 = qf0T e0

T f1 q f
0 = qf0T e1

T f1 q f
1 = qf1T e1

T f3 q f
1 = qf1T e0

T f3 q f
2 = qf2T e1

T f2 q f
2 = qf2T e0

T f2 q f
3 = qf3T e0

T f0 q f
3 = qf3T e1,

One can prove that these constraints imply coherence between the borders on
all levels of subdivision.

To ensure the continuity of the shape, subdivided faces can also share edges.
These relations can be translated into adjacency constraints between borders of
the subdivided faces:

T f0 q f
1 = T f1 q f

3

T f1 q f
2 = T f3 q f

0

T f3 q f
3 = T f2 q f

1

T f2 q f
0 = T f0 q f

2 ,

All the incidence and adjacency constraints are thus illustrated in figure 3.16.
In this case, there are twelve constraints that guarantee the absence of holes in
the surface. These constraints define a system of constraints on subdividing and
embedding operators and establish an equivalence of paths in the automaton for
the first level of subdivision. The equivalence on the next levels of subdivision
can thus be derived from this system of equations.

Objects modelled using BCIFS do not necessarily have specific fractal prop-
erties; shapes with a classic topology can be modelled as well. The topological
constraints of BCIFS guarantee the topological structure of the limit shape.
However, by choosing appropriate initial compact sets, these constraints guar-
antee the coherence and integrity of the topological structure for all the approx-
imation levels as well. Moreover, the topological constraints are easy to solve
regardless of the nature of the embedding operators [Gou09].

For simplification purposes, in this thesis, we primarily describe the ideas
for an IFS, keeping in mind that generalization to a CIFS is immediate.
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Figure 3.16: All the incidence and adjacency constraints for a square subdivided
into four similar squares.

3.4 Manipulations with iterative models

Despite the difficulty of controlling the final shape defined by an iterative system
there exist construction algorithms and methods to manipulate their attractors.
In this section we describe some existing algorithms.

3.4.1 Model reconstruction

Much work has been done on the so-called “inverse problem” for IFS and its
generalisations. This problem involves developing methods to find a set of con-
tractive mappings whose attractor is close to a given shape in the sense of a
predefined error measure.

Barnsley [Bar88] proposed a method to determine the transformations asso-
ciated with a given attractor, called the Collage Theorem. The theorem states
that to find an IFS whose attractor is close to a given set, one must determine a
set of contraction mappings on a suitable space, within which the given set lies.
The union of the images of the given set under these transformations must be
close to the given set with respect to the Hausdorff metric. More precisely,
the theorem implies that finding an IFS {X;Ti | i ∈ Σ} whose attractor is close
to a given image K is equivalent to the minimization of the distance

dX(K,
⋃
i∈Σ

Ti(K)).

Roll, Lutton et al. [RLG+95] developed a method to solve the ”general”
inverse problem for IFS within a reasonable computation time by using variable-
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sized structures in the genetic programming algorithm, which seems to perform
a more efficient search in a large space.

3.4.2 Bounding the attractor

Methods to approximate the convex hull of an IFS attractor have already been
developed.

Strichartz, Wang, Kenyon et al. [SW98, KLSW99] studied the boundaries
and the convex hulls of self-affine tiles that can be considered as attractors of
very special affine IFS, for which all the transformations have the same linear
part.

Lawlor and Hart [LH03] presented an algorithm to construct a tight bound-
ing polyhedron of the IFS attractor. An algorithm expresses the IFS-bounding
as a set of linear constraints on a linear objective function, which can then
be solved via standard techniques for linear convex optimization. This method
works for a predetermined number of convex hull faces and shows the interactive
rate only when this number is small.

More recently, Duda [Dud07] and Martyn [Mar09a] have presented methods
to calculate the approximate convex hull of an affine IFS attractor. The two
methods are similar. The first is based on so-called “width function” that maps
a point to the nearest bounding half-space in a given direction. The second is
based on constructing a sequence of balls that bound corresponding parts of the
attractor to approximate the convex hull. This latter approach is presented in
2D only.

Another well studied problem involves determining a bounding ball for the
attractor of an IFS.

Gentil [Gen92] described an approach based on the dichotomous search for
the minimal radius of a ball bounding the IFS attractor. The approach can
be applied in a multi-dimensional space and the result is calculated for a given
precision.

Hart and DeFanti [HD91] introduced a method which starts with a unit ball
centred at the origin. The algorithm iteratively produces a sequence of balls
converging to the limit ball that bounds the attractor. Rice [Ric96] improved
the approach of Hart and DeFanti by optimizing the radius of the bounding ball
using the generic optimization package. He also showed that the centre of the
limit ball can be determined analytically by solving a system of linear equations.
Martyn [Mar09a] showed that the solution of this system is the centroid of
the attractor with particular weights. To obtain a better approximation, he
presented an heuristic iterative method, called “balancing the attractor”. The
algorithm is not limited by the dimension of the space in which the attractor
lies.

More recently, Martyn [Mar09b] presented a novel approach to approximate
the smallest disc to enclose an affine IFS attractor at any accuracy. The method
is based on a concept of spanning points he introduced to describe the extent
of the IFS attractor.

We studied the convex hull approximation for a given affine IFS attrac-
tor [MGLS12]. Our work can be considered as a generalization and an opti-
mization of Martyn’s method. The algorithm constructs a sequence of convex
hull approximations using the self-similarity property of the attractor in order
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to reduce the number of necessary operations. In addition, we have introduced
a method to simplify the approximate convex hull without losing accuracy.

3.4.3 Combination approaches

Thollot [Tho96] proposed a model generalising IFS based on Languages Theory.
This model permits us to compose two attractors by means of specific language
operations, such as union, condensation, mixing and intersection. The author
studied the relation between attractors defined by languages L and L′ and also
the attractor L� L′ defined by combining these languages. Certain operations
were introduced and studied. The attractor defined by condensation of these
languages can be interpreted as the attractor associated with the first language
fabricated by iterating the attractor of the second one. Mixing is the operation
that “fills the space” between two initial attractors. The language intersection of
two IFS is equivalent to the intersection of their sets of transformations. Note
that the language intersection is not equivalent to a classic set intersection.
In fact two different languages may have the same attractor and the result
thus depends on the choice of languages. In addition, this study presented an
algorithm to construct the result of these operations in the case of rational
languages.

Zäır and Tosan [ZT96], Thollot et al. [TZTV97] presented an approach to
fractal modelling which is based on IFS theory. The authors used free-form
techniques to provide a practical and efficient way to build controlled fractal
attractors. They also showed that it is possible to manipulate fractals with
methods used for classic geometric design, such as control point editing, defor-
mations or tensor products.

Martyn [Mar04] studied the affine stable morphing of 2D affine IFS fractals.
The affine stability of metamorphosis can be described by the two following
properties:

• intermediate shapes should preserve the topology under affine deforma-
tions of the key fractals;

• intermediate shapes should be at least as similar to the key fractals as
they are to each other.

The approach presented in the paper satisfies these conditions. The author
also considered morphing fractals specified by IFS with different numbers of
transformations and gave a number of solutions.

Recently, Podkorytov et al. [PGSL13] developed tools based on BCIFS to
construct and to control a junction between two fractal curves. The authors
also deduced conditions that guarantee continuity of the intermediate curve by
studying the eigenvalues of the subdividing operators. Moreover, the authors
suggested a method to control the differential behaviour at the connection points
between the initial curves and the intermediate one.

Gentil and Neveu [GN13] developed a formalism based on IFS that builds
parametric shapes (curves, surfaces, . . . ) with a non-uniform local aspect: to
every point is assigned a “geometric texture” that evolves continuously from
a smooth to a rough aspect. The principle is to blend shapes with uniform
aspects to define the shape with a variable aspect. A blending function controls
the influence of each initial shape.
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Chapter 4

Calculation of CAD
operations on fractals

Our goal is to identify the different cases that arise when we want to evaluate
CAD operations on fractals and to study the approximation of these operations.
In section 2.2, we listed the main standard CAD operations presented in most
CAD systems and identified the properties on which the operations are based.
A preliminary analysis shows that the operations are based on four basic prop-
erties: affine invariance, topological structure, parametrization and differential
properties. These properties are therefore essential and we must determine their
equivalents in fractal geometry.

In this chapter, we classify these operations by adapting them to fractals in
three categories. The first category consists of operators for which the result
can be formally represented. The second is composed of operators that require
extending or adapting to fractals because of their specific properties. And the
third category corresponds to cases for which we can approximate the result.

We then discuss in detail the last category, that in which we can approxi-
mate the operation. In studying and identifying the constraints on operations
to evaluate this result, we introduce several algorithms. The approximation al-
gorithms are generic, i.e. defined for an arbitrary operation satisfying certain
constraints that we state. These algorithms can be applied once we implement
the required set of operators (interface).

The proof of convergence of these algorithms is based on Domain theory and
computability of functions, as presented by Edalat in solid modelling in [EL02].
In studying measure theory and IFS fractals [Eda95], A. Edalat described a
computational model for dynamical systems using the upper space and the
probabilistic power domains. More particularly, he developed a constructive
framework to study IFS attractors and he described when the attractor of a
dynamical system is computable.

4.1 Classification in the context of fractals

Fractals have more complex and more subtle properties than classic shapes, and
existing CAD systems are not suitable to manipulate fractal structures. In this
section, we study to what extent the standard CAD operators can be defined
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and evaluated on fractals. We are primarily interested in shapes represented by
BCIFS described in section 3.3.

By analysing the graph of operations presented in section 2.2, we identify
the basic properties on which the CAD operations are based. These properties
are thus required for their realisation.

A preliminary analysis shows that CAD operations are based on four basic
properties: affine invariance, topology, parametrization and differential proper-
ties. For shapes described by a BCIFS, the affine invariance property is immedi-
ately verified, because objects are defined using control points. In order to apply
an affine transformation we can simply modify the control points in the same
way as for NURBS surfaces. The topology is formalized by the model and ex-
tends concepts of classic topology to fractal topology [Gou09,GTWS10,GHT11].
Parametrization is obtained in terms of a BCIFS address function [Bar88]. Fi-
nally, differential properties have been rarely studied [Ben09, BGN08] and, for
example, the notion of Frenet basis has still not been adapted for fractal
curves.

These basic properties are thus partially defined and it is then possible to
adapt CAD operations and algorithms to fractals. Here, we distinguish three
cases:

1. The operation result has a formal expression;

2. The operation requires a generalization because of the specific properties
of fractals;

3. The operation result cannot be represented formally at the moment, but
it can be approximated.

The first category is the same as in the classification described in section 2.2.
An operation Op preserves the BCIFS of an object S, and the output BCIFS
has T (S) as its attractor. The first example is consists of applying an affine
transformation. As for NURBS surfaces, we simply need to apply the transfor-
mation to control points, hence the BCIFS attractor is projected according to
the set of transformed control points (see section 3.2.3).

There are certain other examples mentioned in section 3.4, such as tensor
products of fractal curves [ZT96], specific language operations [Tho96] (union,
condensation, mixing, language intersection), some studies on blending between
two fractal curves [PGSL13].

The second category corresponds to operations that have not yet been de-
fined for fractals. For example, “pulling curve onto surface” cannot be used in
the original form. This operation projects a given curve onto a given surface
along the normal to the surface. Since fractal surfaces are nowhere differentiable,
this projection would be discontinuous. To obtain a more intuitive result, it is
therefore necessary to redefine or to generalise the operation.

In fact, most of operations in this category depend on the differential proper-
ties of shapes. Because of the lack of continuity, applying this kind of operation
becomes inconvenient. Examples are “network”, determining tangents, or the
extrusion by the normal direction. Nevertheless, some of these operations may
be generalised to a more convenient analogue. Inversely, in some cases the oper-
ations can be restricted to a set of suitable cases, in which they may be applied.
For example, we can require a surface to have a tangent plane at any point of
an edge to apply a “patch”.
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Figure 4.1: Construction steps for the Koch curve (from left to right, and
from top to bottom). The curve is constructed by starting with a single line
segment, and by repeating the following three steps recursively: (1) divide the
line segment into three segments of equal length, (2) draw an equilateral triangle
that has the middle segment obtained from step 1 as its base and points outward,
(3) remove the line segment that is the base of the triangle from step 2.

Furthermore, some operations, such as the curvature graph or calculating
curve length, are based on properties that are not defined for fractals. For
instance, consider the attractor of the von Koch curve. Starting with a single
line segment, the von Koch curve can be constructed by recursively altering
each line segment as follows (see figure 4.1):

1. divide the line segment into three segments of equal length;

2. draw an equilateral triangle that has the middle segment obtained from
step 1 as its base and points outward;

3. remove the line segment that is the base of the triangle from step 2.

The number of sides Nn on the n-th iteration is therefore:

Nn = Nn−1 · 4 = 4n,

where N0 = 1. After each iteration, the number of sides increases four times,
because we add two segments in the middle of each segment.

Let l be the length of the initial segment. The length of each segment Ln
on the n-th iteration is thus:

Ln =
Ln−1

3
=

l

3n

After each iteration, the length of each segment is three times smaller. The
length of the von Koch curve after n iterations can therefore be determined
by the following equation:

Pn = Nn · Ln = l ·
(

4

3

)n
−−−−→
n→∞

∞.
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The von Koch curve itself is of infinite length.
Operations such as the chamfer operation or dividing a curve by its length

cannot be applied directly. These operations must either be restricted to frac-
tal curves with a finite length, or redefined in a more convenient way so that
they can be applied to curves with an infinite length (the same for surface and
volume).

Certain new operations that are natural for fractals can also be included in
this category, such as fractal dimensions, for example.

After all, it is possible to apply operations from this category to an attractor
approximation as a classic object. Approximating the attractor is described in
detail in chapter 3.3. The time complexity, in this case, depends exponentially
on the number of iterations.

For the last category, we develop generic algorithms to approximate the
operator result. These algorithms are defined for any operator satisfying cer-
tain explicit properties. We show that with some additional constraints these
algorithms can be optimized by exploiting the self-similarity property.

4.2 Approximation of a CAD operator image

In this section, we formalise application of an arbitrary CAD operation and we
establish the notation used in this thesis. To simplify explanations we describe
the idea on IFS; a generalization to CIFS is thus immediate.

To denote a CAD operation we use the symbol Op and the function nota-
tion. Note that the operator Op may be any algorithm that takes a non-empty
compact subset B in a complete metric space X as input, and generates the
resulting set Op(B). We then describe the algorithm to approximate the image
Op(A), where A is the attractor of our iterative system, and we show how to
optimize the algorithm when the operator verifies certain specific properties.

Definition. Given a hyperbolic IFS {Ti}N−1
i=0 defined in a complete metric

space (X, dX) with the attractor A. Let Σ = {0, . . . , N − 1} be the set of IFS
transformation indices. An arbitrary operator Op could be any algorithm that
takes a non-empty compact subset in a complete metric space X as input, i.e.:

Op : H(X)→ Y,

where Y denotes the target space of the operator. This space may be a metric
space, as for most CAD operations. However, it may also be a non-metric space,
as for the membership predicate or any other classifying operation.

In studying measure theory and IFS [Eda95], A. Edalat developed a con-
structive framework to study IFS attractors. He determined when the attractor
of a dynamical system is computable. As mentioned in section 3.1.3, there are
two canonical ways to evaluate the attractor of a dynamical system:

• By constructing a decreasing sequence of non-empty compact sets which
shrinks down to the attractor.

• By constructing an increasing sequence of non-empty compact sets whose
union has the attractor as its closure.
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In fact, in both cases we use similar approximation algorithms, i.e. we recur-
sively apply transformations to an initial non-empty compact subset.

Starting with an arbitrary compact subset B ∈ H(X), we construct a se-
quence of compact sets converging to the attractor A:

(Bn)n∈N = Tn(B),

where T is the Hutchinson operator corresponding to a given IFS. Figure 4.2
illustrates this process.

Figure 4.2: Approximation of the attractor illustrated by a tree whose leaves
are the images of an initial compact subset B by applying sequences of IFS
transformations.

Statement. We denote r = dX(A, B). The Hutchinson operator is contrac-
tive, we therefore have:

dX(A, Bn) 6 s(T)n · r −−−−→
n→∞

0,

where s(T) < 1 is the contraction coefficient of the Hutchinson operator and
n is the number of iterations.

Therefore, ∀ε > 0 ∃m ∈ N : ∀n > m dX(A, Bn) < ε, or equivalently,

Bn −−−−→
n→∞

A.

The Hutchinson operator is thus continuous at the attractor A.
The idea of our generic algorithm is to apply the operation to attractor

approximations, i.e. to calculate Op(Bn), in order to obtain a sequence of
approximate results. If the operator Op is continuous at the point A, then this
sequence converges to the required result Op(A).

For instance, we consider the operator determining the distance from a given
point to the attractor. Let p ∈ X be a point; the operator Op is then defined as
follows:

Opp(A) : A 7→ min
a∈A

d(p, a).

In this case, the space Y is the set of real numbers (R). One can show that this
operator is continuous at point A and, moreover, that it is a Lipschitz function.
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We can therefore construct the attractor approximations Bn and compute the
images Op(Bn).

Statement. For a given accuracy ε, the number of iterations is determined
as follows:

n =

⌈
log( ε

Lr )

log(s(T))

⌉
, (4.1)

where r = dX(A, B), s(T) < 1 is the contraction coefficient of the Hutchinson
operator and L is the Lipschitz constant of the operation (L = 1 in this
example).

4.3 Continuity of the generic algorithm

Definition. An operatorOp is called continuous at pointA iff for any sequence
(Bn)n∈N of non-empty compact subsets of X converging to attractor A, the
corresponding sequence (Op(Bn))n∈N converges to Op(A).

In general, most CAD operations are not continuous. However, in our case
we construct only particular sequences defined by applying the Hutchinson
operator T and convergence for any sequence is unnecessary. This issue is closely
related to computability in solid modelling [EL02] and more particularly to the
question of domain choice.

For example, such basic predicates and operations as membership, subset
inclusion and intersection are not continuous and, therefore, are not computable.
However, in some cases we can restrict the domain of the operator Op (that is,
the choice of the sequences (Bn)n∈N) to guarantee the continuity at the attractor
A.

4.3.1 Directed complete and continuous posets

In this section we introduce the basic notation of domain theory and we explain
how continuous domains can be effectively presented to guarantee the conver-
gence of our algorithms.

Definition. A set P with a binary relation v is called a partially ordered set
(poset), if the following conditions are satisfied ∀x, y, z ∈ P :

• x v x (Reflexivity)

• x v y & y v z ⇒ x v z (Transitivity)

• x v y & y v x⇒ x = y (Antisymmetry)

Figure 4.3 illustrates two simple examples of partially ordered sets.

Definition. A non-empty subset D ⊆ P of a poset (P,v) is directed iff for
any pair of elements x, y ∈ D there exists an upper bound z ∈ D with x, y v z.
In other words, a directed set is a non-empty set with a reflexive and transitive
binary relation v, with the additional property that every pair of elements has
an upper bound.
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Figure 4.3: Two simple partially ordered sets. The pointed domain of booleans
{+,−}⊥ is illustrated on the left, and an increasing chain on the right.

Directed sets are used to define nets, which generalize sequences. An increas-
ing chain is the simplest example of a directed set. In the theory of information,
a directed set D corresponds to a consistent set of inputs and outputs of a given
program (see figure 4.4): for any two elements in D, there exists an element
which refines the information of both elements. The total information in a di-
rected subset must therefore be represented by an element of the domain. A
domain should thus contain a least upper bound of each directed subset.

Definition. A directed complete partial order (dcpo) is a partial order in which
every directed subset D has a least upper bound (lub), denoted by

⊔
D.

Figure 4.4: In the theory of information, a directed set corresponds to a consis-
tent set of inputs and outputs of a given program.

There is a natural topology on dcpos given by Scott.
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Definition. Let (P,v) be a dcpo. A set O ⊆ P is open iff:

1. x ∈ O and x v y ⇒ y ∈ O;

2. whenever D ⊂ P is directed set and
⊔
D ∈ O then D ∩O 6= ∅.

The first condition thus introduces the nature of open sets in the Scott topol-
ogy and the second condition means that the border of the set O is not included.

Definition. An operator F : P → P ′ from a dcpo P to another dcpo P ′ is
monotone if for any directed set D ⊆ P and for any pair of elements x, y ∈ D,

x vP y ⇒ F (x) vP ′ F (y).

Definition. An operator F is continuous iff F is monotone and it preserves a
least upper bound of directed sets, i.e.⊔

x∈D
F (x) = F (

⊔
x∈D

x),

for all directed subsets D ⊆ P .
The key idea of transitioning to domain theory is that functions may be

discontinuous with respect to the Hausdorff metric, but continuous in the
less restrictive Scott topology.

Consider the following example. Let f : R → R be a real-valued function
defined by:

f(x) =

{
x+ 1 if x > a,

x otherwise.

The plot of this function is shown in figure 4.5.

Figure 4.5: Plot of the function f considered in the example.

In the standard topology this function is not continuous. As illustrated in
figure 4.6, in the standard topology, a neighbourhood of the point a is bounded
on both sides. By considering the pre-image of this neighbourhood, we do not
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Figure 4.6: In the standard topology this function is not continuous, but lower
semi-continuous.

obtain an open set. Thus, there exists a sequence xn → a whose tail does not
fall entirely in the neighbourhood.

However, this function is lower semi-continuous. Note that a function F :
X → R for a topological space X is lower semi-continuous iff the set {x ∈
X | F (x) > r} is open for all r ∈ R. This function is thus continuous with
respect to the Scott topology on R. Indeed, a neighbourhood of the point a
is only bounded on the bottom. As illustrated in figure 4.7, the pre-image of
this neighbourhood is always open. Thus, we remove from consideration the
sequences converging on the right side.

This simple example demonstrates that convergence in the Scott topology
is less restrictive than in the classic topology. In general, most CAD operations
are not continuous. Continuity in the Scott topology requires that a smaller
set of sequences converge. Moreover, when applying the operation to fractals
we construct only a single sequence defined by applying an iterative algorithm
and convergence for all sequences is unnecessary.

We will now define the so-called order of approximation, which is also more
suggestively called the way-below relation.

Definition. An element x ∈ P is way-below y ∈ P , or equivalently x approx-
imates y, denoted by x � y, iff whenever y v ⊔D for a directed set D with
a lub, there exists z ∈ D such that x v z. This condition implies that x v y,
since the singleton set {y} is directed.

Consider the interval domain with the subset inclusion order:

[a, b] v [c, d]⇔ [a, b] ⊇ [c, d],

where [a, b] and [c, d] are intervals. One can show that

[a, b]� [c, d]⇔ (a, b) ⊇ [c, d].

Indeed, if the intervals share the left border a, there exists a directed set D =
{[a − 1

n , a] | n ∈ N} with the lub a. There is no element z ∈ D such that
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Figure 4.7: Lower semi-continuous functions are continuous in the Scott topol-
ogy.

[a, d] v z. The interval [a, d] thus does not approximate the interval [a, b]. By
analogy, there is no interval [c, b] that approximates [a, b]. Whenever the interval
[c, d] is strictly included in [a, b], one can find a small enough interval z that lies
inside [a, b]. The way-below relation thus means that all the boundaries of the
object x are refined by passing to the approximated element y.

However, being way-below of an element is a relative notion and does not
reveal much about the element alone. For example, one would like to character-
ize finite sets in an order-theoretic way, but even infinite sets can be way-below
any other set. The special property of these finite elements is that they are
way below themselves, i.e. x� x. An element with this property is also called
compact. Yet, such elements need not be finite nor compact in any other math-
ematical usage of the terms. Compact elements of a domain have the important
special property that they cannot be obtained as a limit of a directed set in
which these elements did not already occur.

The previous thoughts raise another question: is it possible to guarantee that
any element of a domain can be obtained as a limit of much simpler elements?
This is quite relevant in practice, since we cannot compute infinite objects but we
may still hope to approximate these objects arbitrarily closely. More generally,
we would like to restrict to a certain subset of elements as being sufficient to
obtain all other elements as least upper bounds.

Definition. A basis of a poset P is a subset B ⊆ P , such that, for each x ∈ P ,
the set of elements in B that are way-below x contains a directed set with lub
x. We say P is continuous if it has a basis. The poset is ω-continuous if it has
a countable basis.

A dcpo is pointed if it has a least element. We can always add a bottom
element to a domain to make it pointed.
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4.3.2 Solid domain

In this section we introduce a domain chosen to represent the attractor of it-
erative systems and to extend the operator in a continuous and computable
way.

Definition. The solid domain of a topological space X is the set of ordered
pairs (A,B) of disjoint open subsets of X endowed with the information order:

(A1, B1) v (A2, B2)⇔ A1 ⊆ A2 and B1 ⊆ B2.

An element (A,B) is called a partial solid: A and B are intended to capture,
respectively, the interior and the exterior of a solid, possibly, at some finite stage
of computation (see figure 4.8). The border of the solid is thus somewhere in
between. The solid domain is a mathematical model to represent rigid solids.

Figure 4.8: Partial solid (A,B). The sets A and B are intended to capture,
respectively, the interior and the exterior of a solid, possibly, at some finite
stage of computation.

A. Edalat and A. Lieutier have shown [EL02] that the basic predicates and
operations are continuous and computable in the solid domain (SX,v). We
can thus represent the attractor in the solid domain and then apply continuous
operations to it.

A. Edalat presented a domain-theoretic model for iterated function sys-
tems [Eda97]. He constructed computational models for classic spaces using
continuous dcpo and provided applications in IFS theory. A domain-theoretic
model for IFS gives a unifying framework to study various properties and pro-
vides a set of new results in the theory and applications of these systems. In
particular, this domain-theoretic approach allows us to prove convergence of the
developing algorithms and to approximate operations on fractals.

In the study of computable partial solids, A. Lieutier [Lie99] introduced con-
ditions on the domain to be an ω-continuous dcpo and showed when a continuous
function f : D → E on the ω-continuous domains D and E is computable.

Definitions.
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• A function is called recursive if the program computing this function ends
within a finite number of steps for each input.

• A function is called partial recursive iff for some values given as inputs, a
program computing this function may run forever.

• Computable functions are partial functions that can be computed by the
Turing machine.

Definitions. We use the equivalent notion of partial recursive functions as a
map that can be computed by a general purpose computer or a (finite length)
program written in a general purpose language. For a countable set X:

• a subset O ⊆ X is called recursive, if there is an algorithm which decides,
whether a given element k ∈ X is in O or not;

• a subset O ⊆ X is called recursively enumerable, if it is empty or if there
is a recursive function which lists all elements k ∈ O;

Definition. In a metric space X, a sequence (On)n∈N is said to converge ef-
fectively toward O ⊆ X if and only if there exists a recursive function f such
that:

∀m,n ∈ N,m > f(n)⇒ dX(O,Om) 6 2−n.

Note that, in defining the computability of O ⊆ X, the existence alone of a
computable sequence of approximations converging to O is not sufficient; the
convergence has to be effective.

If X is a second countable locally compact Hausdorff space, the solid do-
main is thus ω-continuous bounded complete dcpo’s. An ω-continuous domain
can be effectively presented with respect to the enumeration of a basis by requir-
ing that the way-below relation restricted to the basis elements be recursively
enumerable. This requirement allows us to compute the number of iterations n
needed to achieve accuracy ε.

4.3.3 Attractor in the solid domain

Generally speaking, most CAD operations are not continuous and therefore
not computable. Figure 4.9 illustrates the overall idea of our method. We
construct a representation of the attractor in the solid domain and then apply
a continuous extended operation to it. We use the symbol SOp to denote the
continuous extension of the operator Op to the solid domain:

SOp : SX→ SY.

For any subset K of a topological space, ∂K, K̄, Ko and Kc denote, respectively,
the border, the closure, the interior and the complement of K.

To represent the attractor A in the solid domain we consider the partial
solid (Ao,Ac). However, constructing the attractor interior is quite complex,
and we therefore often use the empty set as an approximate interior, i.e. (∅,Ac),
as illustrated in figure 4.10. This partial solid is not the maximal element and,
generally, is not a classic solid. However, to apply for example the boolean
operations or the Minkowski sum, it is sufficient to consider the exterior only.
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Figure 4.9: We consider a continuous extension of the operator SOp on an ω-
continuous dcpo (D,v). Thus we construct a representation of the attractor
in this domain, apply the continuous operation to it and then return to the
modelling space X by approximating the attractor with the accuracy ε.

Note that for such basic operations as membership predicate, subset inclusion or
difference between two fractals, one must also find a non-empty approximation
of the attractor interior.

Figure 4.10: Attractor A represented in the solid domain by a pair of open sets
(∅,Ac). We use the empty set as an interior approximation.

In fact, when the interior of a partial solid is empty, this means that we do
not know the attractor interior Ao. The operation is therefore computed using
only the exterior approximations. The membership predicate, for example, is
semi-decidable in this case, because we can say if a point is outside the attractor,
but cannot determine if the point is inside.

Statement. When avoiding the approximation of the attractor interior, we do
not distinguish the objects (A1, B) and (A2, B) if the following equality holds:

(Ā1)o = (Ā2)o.
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The objects illustrated in figure 4.11 will not be distinguished without approxi-
mating the interior. However, this is never the case for IFS (or CIFS) attractors.
These models are defined on a set of non-empty compact subsets of a complete
metric space X. The attractors are therefore compact sets and the attractors
with the same exterior cannot have different interiors.

Figure 4.11: Two partial solids which differ on a set of a zero measure. These
partial solids will not be distinguished without approximating the interior.

4.3.4 Algorithm convergence

In this section we discuss convergence of constructed partial solids to the attrac-
tor of a given iterative system. We identify necessary conditions for the initial
partial solid to constitute a directed set with the attractor as the lub. Here we
assume the operator SOp to be continuous in the Scott topology.

Theorem. Let An be a sequence of open sets, Bn be a sequence of non-empty
compact sets and SA = (Ao,Ac) be the attractor of our iterative system in the
Scott topology. Let SOp be a continuous operator (for example, a boolean
operator or the Minkowski sum [EL02]). If the partial solids SBn = (An, B

c
n)

constitute a directed set with the lub SA then we can write the following equa-
tion: ⊔

n

SOp((An, B
c
n)) = SOp(

⊔
n

(An, B
c
n)) = SOp((Ao,Ac)).

The proof is based on defining continuous functions in the solid domain.
The simplest and most commonly used example is when this sequence SBn

constitutes an increasing chain, where we thus improve the information about
the attractor with each iteration. The sequence SOp(SBn) thus converges to
the image of the attractor SA and this sequence can be computed with respect
to the effective structure on SX, as described in section 4.3.2. Note that the
image under the Hutchinson operator T(SB) gives (T(A),T(B)c). We can
then apply the IFS transformation to partial solids in the same manner.

In fact, constructing SOp((An, B
c
n)) is equivalent to constructing Op(An)

and Op(Bn). In this case, we use very particular sequences of approximations
and we therefore converge to Op(A).

To exploit the solid domain, we should firstly verify that the sequence of
the partial solids (An, B

c
n) constitutes a directed set and, more precisely, an
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increasing chain. We need to verify the following inequality:

(A0, B
c
0) v (A1, B

c
1) v . . . v (An, B

c
n),

or equivalently:

A0 ⊆ A1 ⊆ . . . ⊆ An
Bc

0 ⊆ Bc
1 ⊆ . . . ⊆ Bc

n,

It is easy to show that by choosing an initial compact subset B such that
Ti(B) ⊆ B ∀i ∈ Σ (see appendix A) the following inclusions hold:

Tn(B) ⊆ . . . ⊆ T2(B) ⊆ T(B) ⊆ B,

or equivalently:

Bc = Bc
0 ⊆ Bc

1 ⊆ Bc
2 ⊆ . . . ⊆ Bc

n = (Tn(Bc)).

The interior part A = A0 of the initial partial solid must thus be chosen to
satisfy the following constraint:

A ⊆ T(A).

If the interior A is chosen properly, the sequence of partial solids (An, B
c
n)

constitutes a directed set and the sequence of Op(Bn) converges to the required
image Op(A). Note that if the initial interior part A0 is chosen as the empty set,
the sequence of partial solids (An, B

c
n) also constitutes a directed set. However,

in this case the lub of this set would be (∅,Ac).
Let B ∈ H(X) be a non-empty compact subset and A ⊂ B be a non-empty

open set. Let the sequence SBn = (An, B
c
n) be a directed set constructed by

applying the Hutchinson operator to (A,Bc). In order to identify the lub of
this sequence, consider the partial solid (Qi, Qe) such that:

(An, B
c
n) v (Qi, Qe) ∀n.

By the definition of partial order in the solid domain, this system of inequalities
is equivalent to the following:

An ⊆ Qi and Bc
n ⊆ Qe,

or
An ⊆ Qi and Qc

e ⊆ Bn. (4.2)

Now we consider the relation between the attractor A and the set Qe. Let
us assume that A ⊂ Qc

e. Let a be a point of Qc
e \ A. This means that a does

not belong to the attractor and there exists a non-zero distance between them:

d(a,A) = ε > 0.

Since the sequence of compact subsets Bn converges to the attractor A with
respect to the Hausdorff distance, there exists a number m ∈ N such that:

∀n > m dX(A, Bn) < ε
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This implies that the point a does not belong to any of these sets Bn for ∀n > m:

a /∈ Bn but a ∈ Qc
e \ A ⊂ Qc

e ⊆ Bn.

The contradiction means that the set Qc
e \ A = ∅ or equivalently:

Qc
e ⊂ A ⇔ Ac ⊂ Qe.

Both sets Qe and Ac are open and the set Qe can thus be represented as the
union of Ac with an open set C ⊆ X, i.e.:

Qe = Ac ∪ C. (4.3)

Since the open sets Qi and Qe are disjoint and by inclusion (4.2), we can
therefore write the following:

An ⊆ Qi ⊂ Qc
e = A ∩ Cc ⊆ A.

Thus:
Qi ⊆ Ao. (4.4)

Hence the set An is open and non-empty, there exists a compact subset
A′ ⊂ A0 and we can write the following:

Tn(A′) ⊂ An ⊂ A ∩ Cc ⊆ A.

One can thus derive the following inequality for the distances:

dX(Tn(A′),A ∩ Cc) 6 dX(Tn(A′),A) −−−−→
n→∞

0.

By uniqueness of the limit, the sets A ∩ Cc and A are equal, i.e.:

A ⊆ Cc ⇔ C ⊆ Ac.

We can thus simplify the definition (4.3) as follows:

Qe = Ac ∪ C = Ac. (4.5)

One can similarly show that:

Q̄i = A.

Thus we identified the following restrictions on the lub of the directed set
SBn:

Qi ⊆ Ao; (4.6)

Q̄i = A; (4.7)

Qe = Ac. (4.8)

That is, the lub (Qi, Qe) exists only when the exterior part Qe is equal to Ac

and the closure of the interior part equals A.
Note that if the attractor interior is empty, that is Ao = ∅, one can write:

An ⊆ Qi ⊆ Ao = ∅,
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which implies that the set A0 must also be the empty set.
Thus we identified the lub of the sequence SBn to be the partial solid

(D,Ac) v SA, where D̄ = A. The only possibility for SBn to have the lub
SA is to choose the initial open set A0 = Ao, which corresponds to the case
D = Ao. In fact, another set D prevents the convergence SBn → SA with
respect to the Scott topology.

Consider the following example. Let {X;Ti | i = 0, . . . , 3} be an IFS subdi-
viding square in four parts, as illustrated in figure 4.12.

Figure 4.12: Subdivision of a square by four transformations.

Let A = A0 ⊆ Ao be an open set and B = B0 be a bounding ball of
this square such that A ⊆ T(B) ⊆ B, as illustrated in figure 4.13. On the
following iteration we apply the Hutchinson operator to this partial solid (see
figure 4.14). The resulting set is no longer connected, since the images of a
border appear in the middle of the square.

Figure 4.13: Initial partial solid (A0, B
c
0) considered in the example.
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Figure 4.14: The first iteration partial solid (A1, B
c
1) considered in the example.

Figure 4.15: The n-th iteration partial solid (An, B
c
n) considered in the example.

On the n-th iteration we obtain the set Bn, which is close enough to Ac, and
the set An, for which there is always some empty space near the middle of the
square.

Objects described by BCIFS are usually so-called just-touching IFS (CIFS).
This means that the subdivided attractor parts intersect only by the boundary.
The interiors of these parts do not intersect with each other:

∀i, j ∈ Σ, i 6= j Ti(Ao) ∩ Tj(Ao) = ∅.

By choosing the initial interior set A ⊆ Ao we always obtain a case similar to
that considered in the example. For these BCIFS, the empty set is the single
option for the initial interior part in order to construct a directed set:

SBn = (∅, Bc
n).

However, this directed set has the lub (∅,Ac).
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Nevertheless, for some operations such as the distance from a point for ex-
ample (see section 6.2), the interior part of the operator image SOp(SB) can
be constructed even without approximating the interior part of the attractor.

In addition, constructing a directed set is not the only way to have the
convergence SOp(SB) → SOp(SA). In some cases, even if the partial solids
SBn = (An, B

c
n) do not constitute a directed set the convergence can still be

stated.

Statement. If the sequence SBn converges to the attractor SA with respect
to the Scott topology, then by the Scott-continuity of the operator SOP we
can write the following:

SOp((An, B
c
n))→ SOp((Ao,Ac)).

Consider the following example. Let {R;T0;T1} be an IFS with the following
transformations:

T0 : R→ R : x 7→ x/2,

T1 : R→ R : x 7→ (x+ 1)/2.

The attractor of this IFS system is thus the segment [0, 1].
Consider the images of an arbitrary interval (a, b) under the IFS transfor-

mations:

T0((a, b)) = (a/2, b/2),

T1((a, b)) = ((a+ 1)/2, (b+ 1)/2).

We note that these images do not intersect when b− a > 1.
Let (A0, B

c
0) be the initial partial solid defined as follows:

(A0, B
c
0) = ((1, 3), (−∞, 0) ∪ (3,∞)).

Several first elements of the sequence SBn are illustrated in figure 4.16. One
can prove that the sequence SBn = (1/2n, 1 + 1/2n) converges to the attractor
(Ao,Ac) according to the Scott topology.

Indeed, for any neighbourhood V of the attractor SA in the Scott topology
there exists an open set U = (Ui, Ue) v SA. By the definition of open sets, the
interior part Ui of U has no common borders with the attractor A = [0, 1]:

Ūi ⊂ A.

There is a non-zero distance between these sets, which implies that ∃m ∈ N
from which Ui is included in all An.

By analogy, there exists a number after which the exterior part Ue of U is
included in all Bc

n. This consequence implies that after a certain number of
iterations we will exceed Ue, that is U v SBn, or by the definition of Scott
open sets:

∃m ∈ N ∀n > m SBn ∈ V.
The sequence SBn thus converges to the attractor A according to the Scott
topology. The elements SBn are not comparable to each other and, therefore,
do not constitute a directed set.
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Figure 4.16: Several elements of the sequence SBn in the considered example.
The interior and the exterior parts are in blue and red, respectively.

Finally, constructing a directed set is not limited to constructing an increas-
ing chain. To satisfy the definition of directed sets, we need to find a common
maximum for each pair of elements:

(An, B
c
n) v (C(n,m), D

c
(n,m)),

(Am, B
c
m) v (C(n,m), D

c
(n,m)).

These inequalities are equivalent to the following:

C(n,m) ⊇ An ∪Am,
D(n,m) ⊆ Bn ∩Bm.

We consider a special case of this property, called IFS with condensation.
Let A = A0 ⊆ X be an initial open set and B = B0 be the attractor bounding
ball such that T(B) ⊆ B. Let A ⊂ B for (A,Bc) be a partial solid. All the
following partial solids are constructed by applying the Hutchinson operator.

Let C0 = A0 and C1 = A0 ∪ A1 = A0 ∪ T(A0) = T′(C0), where T′ is the
Hutchinson operator associated with the IFS: {X;F, Ti | i ∈ Σ}. Thus we add
a transformation F : K 7→ A0, for K ⊆ X to the set of transformations.

Introduce the two following sequences:

Cn = T′(Cn−1) = T′n(C0) = A0 ∪A1 ∪ . . . ∪An,
Dn = Bn−1 ∩Bn = Bn.

The sequence (Cn, D
c
n) thus constitutes a directed set. In the beginning of this

section, we identified the restrictions on the lub of the directed set SBn. The
new directed set (Cn, D

c
n) thus has the same restrictions and does not converge

to the attractor SA according to the Scott topology (see figure 4.17).
Finally, one can imagine a completely different method to construct a di-

rected set converging to the attractor. For example, after applying the Hutchin-
son operator we can merge certain subdivided parts based on the adjacency
constraints of the BCIFS. We leave this question open for future studies.
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Figure 4.17: Example of the directed set constructed by applying an IFS with
condensation. Condensation set is the circle in the center. The interior and the
exterior parts are in blue and red, respectively.

In conclusion, we have described a generic algorithm calculating an approx-
imate operation image for a fractal shape represented by an IFS or a CIFS. We
use the solid domain to ensure the calculability of most standard CAD opera-
tions, and we can therefore state that whenever the initial approximation SB is
properly chosen, the sequence of operator images SOp(SBn) converges to the
required result SOp(SA). However, approximating the attractor itself can be
time consuming. Applying the operator directly to SBn is thus not always the
optimal way to compute the result. In the following sections we consider certain
properties of the operator that allow us to optimize the SOp(SBn) construction.

4.4 Image decomposition

In the previous section we established the generic algorithm and proved con-
vergence to the required result. In the following sections we show how this
algorithm can be optimized by exploiting certain specific properties of fractals.

Approximating the attractor can be time-consuming, because the number
of objects (in Tn(SB)) grows exponentially as the number of iterations in-
creases. First of all, each IFS transformation is applied to the initial par-
tial solid SB. On the next iteration, we repeat the same procedure. Since
T (A∪B) = T (A)∪T (B) ∀A,B ∈ SX, the calculation of SBn can be illustrated
by a tree whose nodes are images of the initial compact subset SB obtained by
applying sequences of the IFS transformations (see figure 4.2) [Eda95]. The
union of compact subsets in the n-th level of the tree represents the correspond-
ing approximation SBn.

If SOp satisfies certain conditions, the construction of SOp(SBn) can be
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optimized by exploiting the self-similarity property of our iterative system. In
the following explanations we assume that the required number of iterations n
is chosen according to the effective structure of the domain used, as described
in section 4.3.2 (in simple cases, this method reduces to the expression 4.1).

In the algorithm, we calculate the approximation SBn and then apply the
operator SOp to this approximation. The complexity of the algorithm is thus
O (fSOp (Nn)), where fSOp (x) is the complexity of the operator SOp evaluated
on the union of x objects andN is the number of IFS transformations. Generally,
applying SOp to the union of an exponential number of objects is expensive.
The idea of this optimization is to evaluate SOp(SBn) by applying the operator
to more simple objects, that is, to each leaf of the tree (see figure 4.18).

Statement. If there exists an associative operation Θ defined on SY as fol-
lows:

SOp(A ∪B) = SOp(A) Θ SOp(B), (4.9)

the image of SBn = Tn(SB) can be obtained by composing the images of each
leaf, i.e.:

SOp(
⋃
i

Ti(SB)) = Θ
i
SOp(Ti(SB)).

Figure 4.18: Calculation of the approximate operation result by applying the
operation to each leaf of the tree. We then compose the results by means of an
associative binary operation Θ.
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Statement. The property of the image decomposition is not always verified.
For example, calculating the volume V ol cannot be decomposed by Θ:

∀Θ : SY× SY→ SY ∃A,B ∈ SX : V ol(A ∪B) 6= V ol(A) Θ V ol(B).

Indeed, the volume operator is translation invariant and on the right side we
therefore do not have the information about the relative positions of A and B
or their intersection. That is, we cannot determine the common part of these
sets to identify V ol(A∪B). Nevertheless, in some cases, the volume of the IFS
attractor can be computed as a sum of the volumes of its parts:

∀i, j ∈ Σ V ol(Ti(A) ∩ Tj(A)) = 0⇔ V ol(A) =
∑
i∈Σ

V ol(Ti(A)).

Defining the operator Θ allows us to redefine the algorithm in many ways,
depending on how we traverse the evaluation tree. This choice primarily affects
the order in which we combine the results of the tree leaves. There exist two
canonical ways to traverse the tree defined up to the ordering of branches: the
iterative breadth-first and the recursive depth-first algorithms. Our generic
algorithm can accordingly be redefined in these two ways. We describe the two
algorithms in the following sections.

4.4.1 Breadth-first algorithm

In this section we describe the breadth-first algorithm for approximating the
operator SOp image. We choose the required number of iterations n according
to a given accuracy ε, as described in section 4.3.2. The idea of the breadth-first
algorithm is to first calculate all the operator results at the n-th level of the tree,
and then compose these results by means of the operation Θ.

The following function illustrates an implementation of this algorithm:

Function BFAlgo
Global variables:
SB is the initial partial solid
SOp is the operator required to evaluate
{Ti}i∈Σ is the set of IFS transformations
Input:
n is the number of levels left to pass
Output: an approximate operator result SOp(Tn(SB))
Body:
// Compute set of composite IFS transformations
ts← {Tα1 ◦ . . . ◦ Tαn | αi ∈ Σ}
// Combine all the results
return Θ

T∈ts
SOp(T (SB))

End

Note that in the breadth-first algorithm we apply the operator SOp to a
transformed initial partial solid in each node of the n-th tree level, i.e. Nn

times. The operation Θ is evaluated only once to compose all the operator
results. The complexity of this algorithm is therefore:

O (Nn · fSOp (1) + fΘ(Nn)) = O (Nn + fΘ(Nn)) ,

where fSOp is the complexity of the operator SOp evaluation, fΘ is the com-
plexity of the operation Θ as a function of the number of parameters and N is
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the number of IFS transformations. Note also that fSOp (1) does not depend
on the number of iterations.

4.4.2 Depth-first algorithm

In this section we describe the depth-first algorithm to approximate the image
of the operator SOp. Here also, we choose the required number of iteration
n according to a given accuracy ε, as described in section 4.3.2. A depth-first
algorithm recursively calculates results for each branch of the tree and then
composes the results by using the operation Θ.

The following recursive function illustrates an implementation of this algo-
rithm:

Function DFAlgo
Global variables:
SB is the initial partial solid
SOp is the operator required to evaluate
{Ti}i∈Σ is the set of IFS transformations
Input:
T is a composite IFS transformation
n is the number of levels left to pass
Output: the approximate operator result SOp(Tn(SB))
Body:
if n = 0 // End of the recursion

return SOp(T (SB))
endif
return Θ

i∈Σ
DFAlgo(T ◦ Ti, n− 1)

End

In the depth-first algorithm we also apply the operator SOp to a transformed
initial partial solid in each node of the n-th tree level, i.e. Nn times. However,
in this case, the operation Θ is evaluated in each recursive call, i.e. 1+N+N2 +
. . . + Nn−1 = Nn−1

N−1 times to compose N results. The algorithm complexity is
therefore:

O
(
Nn · fSOp (1) +Nn−1 · fΘ(N)

)
= O (Nn) ,

where fSOp is the complexity of the operator SOp evaluation, fΘ is the com-
plexity of the operation Θ as a function of the number of parameters and N is
the number of IFS transformations.

Statement. The described algorithms have different complexities and the op-
timal choice depends on the operation Θ. If it is better to compose the Nn

results once, we choose the breadth-first algorithm, and if it is better to com-
bine N operator results Nn−1

N−1 times, we use the depth-first algorithm. One can
prove that if evaluating the operator Θ is more complex than linear, i.e.:

lim
x→∞

fΘ(x)

x
=∞, (4.10)

then the depth-first algorithm is obviously the better choice.
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4.5 Adaptive tree cutting

In this section we describe how to optimise the algorithms, described in sec-
tion 4.4, by collecting information about the solution in intermediate levels of
the evaluation tree.

Both algorithms have an exponential complexity according to the number
of iterations n, since we explore the entire tree to approximate the operator
result. Due to the self-similarity of IFS attractors, in some cases we can predict
the operator results in the leaves of the tree by calculating SOp in intermediate
levels of the tree. If these results do not affect the overall composition by Θ,
then it is not necessary to compute the corresponding branch of the tree. We
call this method adaptive tree cutting optimization.

To describe this optimization more precisely, we introduce the following
notation. Firstly, we define the subdomain SbY of bounded partial solids:
SbY = {(A,B) ∈ SY | Bc is compact} ∪ {(∅, ∅)}, ordered by inclusion. Re-
call that SY is the target space of the operator SOp. The continuous predi-
cate [EL02] ⊆: SbY× SY→ {+,−}⊥ is then defined by:

(A,B) ⊆ (C,D) =


+ if B ∪ C = Y,
− if A ∩D 6= ∅,
⊥ otherwise.

Definition. The information about where the solution can be found, con-
tained in each node of the evaluation tree, is called solution set. We denote the
solution sets by SOp(T (SB)), where T is a composite IFS transformation. The
solution set thus corresponds to an approximate part of SOp(SA). All these sets
are subsequently composed to approximate the resulting image SOp(SA). Since
this image is composed iteratively, to optimize we can define the approximate
result as a global variable and use it in the following iterations.

Statement. Consider a solution set of some node SOp(T (SB)), where T is a
composite IFS transformation. By composing this set with the global solution
set S, we can deduce whether it is suitable, i.e. whether it changes the overall
composition. More precisely, if the following conditions hold:

SOp(T (SB)) v SOp(T ◦ T(SB)), (4.11)

SOp(T (SB)) ⊆ S, (4.12)

we can stop iterations for this branch of the tree without changing the resulting
solution set S. Relation v here is the partial order of the solid domain. Condi-
tion (4.11) implies that by applying the Hutchinson operator we increase the
precision of the solution set and that if this current solution does not improve
the result (see condition (4.12)), we can then avoid unnecessary computations.

Note that condition (4.11) is always verified when the partial solids SBn
constitute a directed set, due to the continuity of SOp and T . Otherwise, this
condition has to be verified additionally. Hereafter, we use the term stopping
criterion to refer to condition (4.12) and assume that the initial partial solid SB
is properly chosen (see section 4.3).
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Composing the solution sets by Θ at each iteration, we thus restrict the set of
possible solutions, or, in terms of domain theory, we approximate the resulting
partial solid SOp(SA).

The algorithms described in section 4.4 can both be optimized by construct-
ing a global solution set S, i.e. an approximation of the solution, and by verifying
the stopping criterion (4.12). The following recursive function illustrates this
optimization applied to the breadth-first algorithm:

Function BFAlgoOpt
Global variables:
SB = (∅, Bc) is an initial partial solid such that T(B) ⊆ B
SOp is the operator required to evaluate
S is the solution set
Input:
n is a number of levels to pass
Output: an approximate operator result SOp(Tn(SB))
Body:
ts← [Id] // A set of composite IFS transformations
for k = 1 to n do

ts′ ← [] // Build a new set of composite IFS transformations
S ← (∅,Y) // Reset S to avoid the comparison with the precedent tree level
foreach T ∈ ts such that SOp(T (SB)) * S // Stopping criterion (4.12)

S ← S Θ SOp(T (SB))
ts′.push(TTi), ∀i ∈ Σ

endfor
ts← ts′

endfor
return Θ

T∈ts
SOp(T (SB))

End

The price we must pay for this optimization is applying the operator Nn+1−1
N−1

times, instead of Nn, that is roughly N
N−1 times more, and applying Θ roughly

2 times more, as illustrated in figure 4.19. More precisely, the complexity of the
optimized breadth-first algorithm is:

O
(
Nn · fSOp (1) + fΘ(Nn) +Nn−1 · fΘ(2)

)
=

O (Nn + fΘ(Nn)) ,

where fSOp is the complexity of the operator SOp evaluation, fΘ is the com-
plexity of the operation Θ as a function of the number of parameters and N is
the number of IFS transformations. Note that the best-case running time for
this optimized algorithm is O(1). This is the case in which SOp(SB) returns
the empty partial solid (∅,Y).

One can also, by analogy, adapt the depth-first algorithm. The following
function thus shows the complexity of the optimized depth-first algorithm:

O
(
Nn · fSOp (1) +Nn−1 · fΘ(N) +Nn · fΘ(2)

)
= O (Nn) .

In optimistic non-trivial scenarios the depth-first algorithm shows better
running-times. However, on average, the breadth-first algorithm cuts the tree
much earlier than the depth-first algorithm and the breadth-first algorithm
therefore has a better average running-time (see section 7). The evaluation
tree of the optimized depth-first algorithm is presented in figure 4.20.
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Figure 4.19: Modifying the evaluation tree allows us to optimize the generic
algorithms. We apply the operator SOp on intermediate levels of the tree to
prevent unnecessary calculations as early as possible.

Figure 4.20: Modifying the evaluation tree that allows us to optimize the depth-
first generic algorithm. We apply the operator SOp on intermediate levels of
the tree to prevent unnecessary calculations as early as possible. During the
calculation we construct the solution set S and verify the stopping criterion 4.12.

4.5.1 Image with an unknown interior

Let T be a composite transformation considered in an arbitrary step of the
algorithm. To test the inclusion SOp(T (SB)) ⊆ S we must be able to compute
the interior part of these partial solids.

We have already described the constraints required for the interior part of
the initial partial solid SB (see section 4.3.4). It is sometimes difficult to con-
struct the interior of SOp(SB), and accordingly the interior of all SOp(T (SB)).
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We therefore use the empty set ∅ to approximate the interior; that is, only the
exterior is used to approximate the solution. In this case, the stopping crite-
rion (4.12) is verified only for the empty partial solid (∅,Y). To implement, we
can then simply verify if SOp(T (SB)) is equal to (∅,Y) and avoid calculating
the solution set S, as illustrated in figure 4.21. This leads to slightly different
algorithms with the same complexities.

Figure 4.21: Simplification of the stopping criterion. We also apply the operator
SOp on the intermediate levels of the tree, but we compare the result with the
empty partial solid (∅,Y) only. Thus we avoid constructing the global solution
set S.

For instance, we consider an operator determining whether a given point
belongs to the attractor. Let p ∈ X be a point; the extended operator SOp is
then defined as follows:

SOp((A,B)) =


+ if p ∈ A,
− if p ∈ B,
⊥ otherwise.

In this case, the space Y is a set {+,−}⊥ without a metric. The operator
SOp satisfies all conditions and we can write the following:(

p ∈
⋃
i

Ti(B)

)
⇔ OR

i
(p ∈ Ti(B)) .

The composing operator Θ is therefore the boolean operator OR.
Note that, since we do not construct the interior of the initial partial solid

SB, the operator SOp never returns +. We therefore cannot determine whether
or not the point belongs to the attractor. The problem is therefore semi-
decidable. However, we can bound the distance from point p to the attractor,
and after n iterations, we can determine whether it is small enough, i.e.:

SOp(SBn) = ⊥ ⇒ p /∈ Bc
n ⇒ p ∈ Bn ⇒ dX(p,A) < ε.
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In this example, the stopping criterion (4.12) is only verified for the ele-
ment −. That is, we need to determine if SOp(SB) = −. If this is the case, we
stop the algorithm and deduce that SOp(Tn(SB)) = −, that is, the operator
result is false. Otherwise, we determine SOp(Ti(SB)),∀i ∈ Σ. If all results are
equal to − we deduce that SOp(T(SB)) = − and that the point does not be-
long to Tn(B). If there exists i0 such that SOp(Ti0(SB) 6= −, we then continue
explorations by determining SOp(Ti0Tj(SB), ∀j ∈ Σ. For the images that give
− we stop the exploration, for the others we continue up to level n.

4.6 Conclusion

In this chapter we studied the possibility of applying an arbitrary CAD oper-
ation to fractals represented by a BCIFS (see section 3.3). We classify most
standard constructing operations by adapting them to BCIFS. Thus we en-
countered three categories depending on the type of result. The first category
corresponds to cases, in which we have a formal expression of the operation
result. Applying operations from the second category is not immediate. The
properties of fractals are more specific than those of conventional geometric ob-
jects (concepts of roughness or lacunarity, for example) and we have to study the
underlying concepts of these operations in order to generalize or to adapt. The
last category consists of operations for which we can construct an approximate
result without specifying a formal representation.

In studying and identifying constraints on the operations to evaluate an
approximate result, we introduced seven algorithms, which are the following:

• direct application to the approximate attractor;

• the breadth-first and the depth-first algorithms using image decomposi-
tion (see section 4.4);

• two optimized algorithms using the additional stopping criterion (see sec-
tion 4.5);

• two simplified algorithms without constructing the interior part (see sec-
tion 4.5.1).

These algorithms are generic, i.e. they can be applied to any CAD oper-
ation satisfying certain constraints once we implement the required interface.
The first step is to verify the continuity of the operator. If it is possible to
construct a continuous extension of the operator on the solid domain, we can
thus construct the approximate image by using the effective structure on this
domain. Moreover, this allows us to optimize the approximations. Otherwise,
we cannot say with certainty that the sequence of approximate images converges
to the required result.

If there exists an associative operation Θ described in detail in section 4.4,
the approximate image can be obtained by composing images of each leaf, i.e.
we can decompose the approximate result on separate parts. This leads to the
breadth-first and depth-first algorithms.

Image decomposition allows us to subdivide the calculations in order to
abandon the unnecessary parts, therefore noticeably optimizing the calculations.
By using the solid domain we formalize solution set notation. Thus, we identify a
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set of possible solutions which are suitable for the current approximation level.
This set is therefore restricted while iterating the algorithm. The presented
algorithms can thus be optimized by verifying the stopping criterion (4.12). In
certain cases, this criterion can also be simplified by simply comparing the result
with (∅,Y), as described in section 4.5.1.

At the moment, we cannot provide the full automation of this process. This
means that to apply a CAD operator we have to perform some preliminary work.
Firstly, we need to define the extended operator, which must be continuous on
the solid domain. We then have to design and code the image decomposition
operator Θ, which may be any algorithm satisfying the definition (4.9). Finally,
we must be able to verify the stopping criterion (4.12), by calculating the in-
clusion. Once we implement this interface we can apply the presented generic
algorithms.

In the next chapter, we define a self-similarity property of the operation
and introduce a new generic algorithm to formally represent an approximate
operation result, i.e. to compute a specific CIFS with the approximate image
as the attractor. In special cases, when the automaton degenerates into a single
state, the constructed model is a specific IFS and has a linear complexity on
the number of iterations.

In chapter 6, we consider some examples and special cases to evaluate dif-
ferent CAD operations. Based on the operation properties, we choose the ap-
propriate algorithms presented in this section. We then analyse results and
compare the performance of our algorithms.
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Chapter 5

Formal representation of
the operator image

In chapter 4 we presented several algorithms which could be used to approx-
imate an operation. Once we implement the required interface, the operation
image can be computed for the required accuracy ε. In this chapter, we identify
some additional properties of the operation used to formally represent the ap-
proximate result. The idea is to build a specific iterated system (CIFS or IFS)
for which the operation image would be the attractor. To this end we have to
formalize the self-similarity property of the constructing set.

If the operation image satisfies the self-similarity property, we can then con-
struct a CIFS with the generalised Hutchinson operator generating the at-
tractor close to the operation image. First, we define this property and then
introduce a new generic algorithm to construct this CIFS. In order to keep the
process as simple as possible, we describe the idea on IFS. Since CIFS can con-
tain transitions between spaces of different dimensions, generalizing to CIFS
involves additional manipulations that we discuss in section 5.1.1.

Because of the semi-decidability of the real numbers comparison, the result
can only be computed approximately. The final construction algorithm thus
computes a CIFS automaton for a given accuracy γ > 0. In certain cases, when
the automaton degenerates into a single state, the constructed model represents
an IFS and has a linear complexity on the number of iterations.

5.1 Self-similarity property

In all the algorithms described in chapter 4, we apply the extended operator
SOp to a transformed initial partial solid B in each node of the n-th tree level,
i.e. Nn times (see figure 4.18), or even more in the optimized versions. These
calculations can be expensive if the operator SOp has a relatively high complex-
ity or if the number of iterations n is large, sometimes these calculations can
also be optimized.

Let us remind you that we approximate the operation by constructing a
sequence of partial solids:

SOp(SBn) = SOp((An, B
c
n)) −−−−→

n→∞
SOp((Ao,Ac)).
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Here, (Bn)n∈N = Tn(B), (An)n∈N = Tn(A) and T is the Hutchinson operator
corresponding to a given iterative system. The initial partial solid SB = (A,Bc)
is chosen as described in section 4.3.4.

In this section we define the self-similarity property of the images SOp(SBn).
The constructing algorithm uses the image decomposition, described in sec-
tion 4.4, and we also assume that the operator SOp is continuous to guarantee
the convergence of the sequence SOp(SBn) to SOp(SA) (see section 4.3.4).

The principle of the self-similarity property is that instead of applying the
operator to transformed partial solids, we factor out the transformation, and
thus always apply the operator to the same partial solid SB before transforming
it, as illustrated in figure 5.1. However, the operator has to be modified, in this
case, preserving the continuity and image decomposition, described in chapter 4.

Definition. The self-similarity property of an operator SOp image is defined
for all transition operators T of the model as follows:

∀T ∃T̃ : SY→ SY such that SOp(T (SB)) = T̃ SOpT (SB), (5.1)

where SOpT is the operator SOp modified using the corresponding transforma-
tion T .

Figure 5.1: Self-similarity property of the operator SOp. The principle is that
instead of applying the operator to transformed partial solids, we factor out
the transformation, and apply the operator to the initial partial solid SB before
transforming it. However, the operator has to be modified preserving continuity
and image decomposition.

If the operator SOp is, for example, a binary operation applied to a fractal
A and an object K:

SOp : A 7→ A�K,
we can write the following:

SOp(T (SB)) = T (SB)�K.

In simple cases, when transformation T has distributivity under binary opera-
tion �, i.e.:

T (A�B) = T (A)� T (B),

66



and the transformation is right-invertible, by factoring it out we obtain

SOp(T (SB)) = T (SB)�K = T (SB � T−1
right(K)) = TSOpT (SB),

where T−1
right is the right-inverse operator.

However, generally, transformation T does not have this distributivity prop-
erty, and we therefore have to perform some additional actions to maintain the
equality, that is:

SOp(T (SB)) = T (SB)�K = T̃ (SB � T−1
right(K)) = T̃ SOpT (SB).

Here T−1
right is the right-inverse operator, transformation T̃ can differ from T .

If transformation T is not invertible, by factoring it out we obtain

SOp(T (SB)) = T (SB)�K = T̃ (SB �K ′) = T̃ SOpT (SB),

where
T (K ′) = K.

We should thus find all points that are transformed into K under T .

5.1.1 Examples and special cases

As a first example, consider the operator intersecting an IFS {X;Ti | i ∈ Σ}
with a line L:

SOp : SA 7→ SA ∩ L : SX→ SX.

Assume that all the IFS transformations are invertible. One can prove that
for any non-empty partial solid SB ∈ SX and an invertible transformation
T : SX→ SX the following property holds:

T (SB) ∩ L = T (SB ∩ T−1(L)),

or in terms of the operator SOp:

SOp(T (SB)) = T (SOpT (SB)),

where SOpT is the same intersecting operator applied to another object T−1(L),
that is, SOpT (SB) = SB∩T−1(L). This operator thus has the same properties
(continuity, image decomposition) as the initial operator SOp and the image is
self-similar [HD91,Gen92].

Consider another example introduced in section 3.2.3, which corresponds to
a case of non-invertible transformation. In a CIFS each state of the automaton
is associated with a space. A transformation between two spaces with different
dimensions is generally non-invertible. In this example we demonstrate how
to deal with such cases. Figure 5.2 illustrates the attractor of a given CIFS
and a line to intersect with it. The CIFS is described by an automaton with
three states: \, C and S. State C corresponds to a square, and is associated
with the 4D barycentric space XC , illustrated in figure 3.10. The result is then
projected onto the 2D modelling space X\ = R2. State S is used to construct
the Sierpinski triangle in the 3D barycentric space XS , which is then projected
onto XC as one of the quarters.
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Figure 5.2: Example of an intersection between a CIFS and a line L. The
system is described by an automaton with three states: \, C and S. The image
illustrates attractor A\ in the 2D modelling space.

Let L be a line in the modelling space defined parametrically for t ∈ R as
follows:

L =

(
0
1

)
+ t

(
1
−1

)
=

(
t

1− t

)
.

To simplify notation, we here use the equality sign, meaning that each point of
set L has this structure for a given value of parameter t ∈ R, that is, in fact:

L = {p =

(
t

1− t

)
| t ∈ R}.

Let SOp : SX\ → SX\ be extended to the solid domain operator calculating
the intersection with a line L.

SOp : SA 7→ SA ∩ SL,
where SL is a representation of the line L in the solid domain. We approximate
the operation by constructing a directed set {SOp(SBn) | n ∈ N}:

SOp(SBn) −−−−→
n→∞

SOp(SA) = SOp((∅,Ac)),

where SBn is an approximation of the attractor A = A\ in the solid domain,
such that (see section 4.3.4):

SB0 v SB1 v . . . v SBn.
Each transition δ(q, i) = w of the automaton is associated with an operator

T qi : Xw → Xq. Looped subdividing operators are defined as follows:
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TC0 = H
(1,0,0,0)
0.5 TS0 = H

(1,0,0)
0.5

TC1 = H
(0,1,0,0)
0.5 TS1 = H

(0,1,0)
0.5

TC2 = H
(0,0,1,0)
0.5 TS2 = H

(0,0,1)
0.5 ,

where Hp
s denotes the homothety centred at point p with ratio s. These opera-

tors are invertible, and we thus have the self-similarity property (5.1):

T̃ qi = T qi , for i = 0, 1, 2 and q ∈ C, S,

since the operators are continuous and therefore have distributivity under the
intersection.

Let P be a projection to the 2D modelling space defined as follows:

P =

(
0 1 0 1
1 1 0 0

)
.

Projection P is not invertible and for the self-similarity property we therefore
have to find a set of points, denoted L′, such that:

P (L′) = L.

Let L′ be defined parametrically in a barycentric space for a, b, c ∈ R as
follows:

L′ =


a
b
c

1− a− b− c

 .

We therefore have

P (L′) =

(
1− a− c
a+ b

)
=

(
t

1− t

)
= L,

which implies {
1− a− c = t

a+ b = 1− t.

Here we have two equations for four variables. Set L′ thus defines a plane.
Let t and c be parameters, we can write the following:

L′ =


1− c− t

c
c

t− c

 .

This plane L′ is projected onto line L by P . This operator thus verifies the
self-similarity property (5.1) and the operator SOpP is defined as follows:

SOpP : SB 7→ SB ∩ L′,

which implies:

P (SOpP (SB)) = P (SB ∩ L′) = P (SB) ∩ L = SOp(P (SB)).
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Figure 5.3: Instead of intersecting attractor A\ with line L in the 2D modelling
space, now we have to intersect the attractor AC with the plane L′ in the 4D
barycentric space. Plane L′ is then projected onto L by the operator P .

Instead of intersecting attractor A\ with line L in the 2D modelling space,
now we have to intersect the attractorAC (an attractor associated with the state
C) with the plane L′ in the 4D barycentric space XC as shown in figure 5.3.

Since P projects the 4D subset L′ to the 2D subset L, the solution L′ of the
equation P (L′) = L can always be found. The last transformation corresponds
to another case, where we have to project a 3D subset to the 4D barycentric
space. The projection TC3 of the Sierpinski triangle to the space XC is defined
as follows:

TC3 =


0 0 0
0 0.5 0

0.5 0 0
0.5 0.5 1

 .

Also we have to find a set of points, denoted L′′, that gives L′ after trans-
formation by TC3 :

TC3 (L′′) = L′.

This equation generally has no solution, because we have to match the 3D
subset L′′ with the 4D subset L′ and the system would consist of four equations
for three variables. However, the transformation TC3 places the attractor AS
following the control polygon ((0, 0, 0.5, 0.5), (0, 0.5, 0, 0.5) and (0, 0, 0, 1)). Thus
we know that the set TC3 (AS) lies in a plane H formed by these control points.
We have to find a set L′′ that gives L′ ∩H after transforming by TC3 :

TC3 (L′′) = L′ ∩H.

This is equivalent to finding a set L′′ such that PTC3 (L′′) = L. We will use the
second equation, as it is easier to implement.

One can derive the following:

PTC3 =

(
0.5 1 1
0 0.5 0

)
.
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Let L′′ be defined parametrically as follows:

L′′ =

 e
f

1− e− f

 ,

where e, f ∈ R are real variables.
We therefore have

PTC3 (L′′) =

(
1− 0.5e

0.5f

)
=

(
t

1− t

)
= L,

which implies {
1− e

2 = t
f
2 = 1− t

Therefore

L′′ =

 e
e

1− 2e

 .

By construction, this line projects by TC3 onto the intersection L′ ∩ H and
then projects onto the line L. Instead of intersecting the transformed attractor
TC3 (AS) with the plane L′ in the 4D barycentric space XC , we have now to
intersect the attractor AS with the line L′′ in the 3D barycentric space XS .

The self-similarity property (5.1) is satisfied for all the transition operators
and the algorithm can therefore be applied to construct a CIFS automaton
to approximate the operator SOp image. In the next section we introduce
this construction algorithm. The intersection between the attractor and the
considered line is illustrated in figure 5.4.

5.2 Approximate iterative model

In this section we introduce a generic algorithm to formally represent the ap-
proximate operation result. For simplicity purposes, we first describe the idea
on IFS, a generalization to CIFS requires additional manipulations to verify the
self-similarity property (see section 5.1.1).

5.2.1 Preliminaries

Let {X;Ti | i ∈ Σ} be a hyperbolic IFS defined in a complete metric space (X, dX)
with the attractor A. An extension of an arbitrary operator Op : H(X) → Y
to the solid domain SOp : SX→ SY could be any algorithm that takes a non-
empty partial solid as input (see section 4.3.4). We approximate the operation
by constructing a directed set {SOp(SBn) | n ∈ N}:

SOp(SBn) −−−−→
n→∞

SOp(SA) = SOp((Ao,Ac)),

where SBn = Tn(SB) is an approximation of the attractor A in the solid do-
main, and SB ∈ SX is an initial partial solid chosen as described in section 4.3.4.

Assume also that the operator SOp satisfies the image decomposition (see
section 4.4) and is continuous to guarantee the convergence of the sequence
SOp(SBn) to SOp(SA).
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Figure 5.4: Intersection between a CIFS and a line L. The output CIFS au-
tomaton consists of three states, we denote these states by the corresponding
calculating sets A\∩L, AC ∩L′ and AS ∩L′′. The intersection between the line
and the Sierpinski triangle is thus computed in the state AS ∩ L′′, it is then
placed in the 4D barycentric space according to the control points, and finally
projected onto the modelling space.

The self-similarity property of the operator SOp image is defined for each
IFS transformation Ti, i ∈ Σ as follows:

∃T̃i : SY→ SY such that SOp(Ti(SB)) = T̃iSOp
Ti(SB). (5.2)

Here SOpTi is the operator SOp modified somehow using the corresponding
transformation Ti (see section 5.1).

5.2.2 Construction algorithm

In this section we describe an algorithm to construct a specific CIFS with an
approximate operator image as the attractor. The attractors of this CIFS are
mutually recursively defined for each state q ∈ Q by the generalised Hutchin-
son operator:

SAq = Θ
i∈Σq

T̃ qi (SAδ(q,i)), (5.3)

We describe in detail the steps for constructing the CIFS automaton. In gen-
eral, the algorithm produces an automaton with an infinite number of states,
and we therefore have to bound the approximating accuracy to be able to com-
pute the result in finite time.

The key idea of the algorithm is to apply a classic evaluation and verify the
similarities between constructed sub-attractors, as illustrated in figure 5.5. Thus
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we start with the initial state and then loop through all the IFS transformations
checking which of the alternatives the corresponding sub-attractor hits:

• the sub-attractor is empty. We do not add any special state to construct
the empty set, so we continue the iteration.

• the sub-attractor is similar to one that was already parsed, denotes s′. In
this case, we close the transition to the state s′.

• otherwise, we should continue the iteration recursively.

The algorithm thus finds the similar parts in the output set and constructs a
CIFS automaton with the corresponding attractor.

Figure 5.5: The key idea of the algorithm is to apply a classic evaluation and
verify the similarities between constructed sub-attractors. If the sub-attractor
is similar to one that was already parsed, we process these sub-attractors as the
same set and unite the corresponding states.

If the operator SOp verifies the self-similarity property (see equality 5.2)
we can construct a specific CIFS with the attractor SOp(SA) as follows. We
start with the initial state associated to the attractor SOp(SA) construction.
We then add the transitions Ti for all i ∈ Σ from the initial state to the new
states associated to the corresponding attractors SOpTi(SA) and continue this
process recursively.

If a partial solid SOpTi(SB) is empty, that is equal to (∅,Y), then it is not
necessary to add a new state, because such state is associated with the empty
attractor.

Consider the k-th iteration of this recursion. Let consider two composite
transformations given by two sets of indices:

αi ∈ Σ for i = 1, . . . , k

βj ∈ Σ for j = 1, . . . , l.

Here k and l, l 6 k represent the lengths of these composites. αi and βj are the
IFS transformations indices. We are going to add a new state corresponding
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to the composition Tα1
◦ . . . ◦ Tαk . If there exists a state q associated to the

composition Tβ1
◦ . . . ◦ Tβl for which the following equality holds:

SOpTα1◦...◦Tαk (SB) = SOpTβ1◦...◦Tβl (SB),

then the corresponding states are associated with the same sub-attractors. It
is thus not necessary to add a new state, and we simply close the transition to
the state q.

Figure 5.6 illustrates an example of a CIFS automaton produced by the
presented algorithm. In general, the operator image SOp(SA) is an aperiodic
set, and the algorithm thus produces an automaton with an infinite number of
states. Sub-attractors equality is semi-decidable and is related to the issue of
comparing real numbers, where we can only say if the numbers are close enough,
but we cannot determine if the numbers are equal.

Figure 5.6: CIFS automaton constructed by the presented algorithm. Each
node corresponds to a state of the automaton with the associated CIFS attrac-
tor. Attractors are defined by the generalised Hutchinson operator. Directed
edges correspond to the transitions and they are marked by the associated trans-
formations. The initial state of the automaton is associated with the attractor
SOp(SA).

By setting the accuracy at γ > 0 we instead verify if the sub-attractors
are close enough. This allows us to determine whether the sub-attractors are
relatively similar and, moreover, to bound the required number of iterations.
Thus we verify the following inequality:

dSY
(
SOpTα1◦...◦Tαk (SB), SOpTβ1◦...◦Tβl (SB)

)
< γ,

To simplify the notation, we use a relation '
γ

to denote this inequality, i.e.:

SOpTα1
◦...◦Tαk (SB) '

γ
SOpTβ1◦...◦Tβl (SB). (5.4)

Note that in the evaluation algorithm, the constructing sub-attractors will be
placed later on the output attractor by a composite of contractive transfor-
mations (see figure 5.5). The accuracy for this inequality, denoted ε, could
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be greater than the initial γ. More precisely, the accuracy should satisfy the
following inequality:

ε 6 γ ·min{s(Tα1 ◦ . . . ◦ Tαk), s(Tβ1 ◦ . . . ◦ Tβl)}. (5.5)

The inequality (5.4) holds when the sub-attractors are relatively close to
each other. In this case, it is not necessary to overly complicate the automaton.
By definition, the attractor A is a compact set, it therefore has a finite covering
by sub-attractors which are not close to each other. Our algorithm thus always
stops.

Consider the previous example of intersecting with a line L ∈ SX:

SOp : SA 7→ SA ∩ L : SX→ SX.

As described in section 5.1, for an invertible transformation T : SX→ SX with
a distributivity under the boolean intersection, i.e.

T (SB) ∩ L = T (SB ∩ T−1(L)),

the self-similarity property (5.2) is satisfied, as we can rewrite this in terms of
the operator SOp:

SOp(T (SB)) = T (SOpT (SB)),

where SOpT is the operator calculating the intersection with a line T−1(L),
that is:

SOpT (SB) = SB ∩ T−1(L).

This operator has the same properties (continuity, image decomposition, self-
similarity) as the initial operator SOp.

To determine similar sub-attractors we verify the following inequality:

T−1
αk
◦ . . . ◦ T−1

α1
(L) '

ε
T−1
βl
◦ . . . ◦ T−1

β1
(L), (5.6)

where the tolerance ε can be chosen by the inequality (5.5). It implies the
inequality (5.4) and does not contain applications of SOp, here we only verify
whether two transformed lines are close enough.

The constructing algorithm thus goes through the IFS evaluation tree and
checks the emptiness of sub-attractors and the inequality (5.4). In the first
case, we stop the iterations, in the second one we close the transition to the
corresponding state. Figure 5.6 illustrates an example of a CIFS automaton
produced by this algorithm. The following function illustrates the algorithm
implementation:

Function CIFSAlgo
Input:
SOp is the operator required to evaluate
γ is the calculation tolerance
Output: a CIFS with the attractor close to SOp(SA)
Body:
Q← [(Id, \)] // an output set of CIFS states and composite transformations
F ← [] // an output set of CIFS transitions
S ← [(Id, \)] // a temporary list of states and composite transformations
while (S is not empty)

S′ ← []
for ∀(t, s) ∈ S
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for ∀Ti i ∈ Σ
t′ ← t ◦ Ti
if SOpt

′
(SB) = (∅,Y)

go to next iteration
endif
// Find similar sub-attractors

if ∃s′ : (tt, s′) ∈ Q and SOpt
′ '
ε
SOptt, where ε = γ ·min{s(t′), s(tt)}

F.push(a new transition s −−→
Ti

s′)

else
s′ ← a new state
Q.push((t′, s′))
S′.push((t′, s′))
F.push(a new transition s −−→

Ti
s′)

endif
endfor

endfor
S ← S′

endwhile
return (Q[1], F )
End

Here Q is a list of pairs (t, s), where s is a CIFS state and t is the corresponding
composite transformation. In the return statement we denote by Q[1] a set of
states in Q, that is:

Q[1] = {s | ∃(t, s) ∈ Q}.
The algorithm runs as follows. We start with an initial state \. The cor-

responding composite transformation is obviously the identity map. We then
loop through all the IFS transformations Ti for i ∈ Σ, and check which of the
alternatives the corresponding sub-attractor hits:

• the sub-attractor is empty. We do not add any special state to construct
the empty set, so we continue the iteration.

• the sub-attractor is similar to one that was already parsed, denoted s′. In
this case, we close the transition at the state s′.

• otherwise, we should continue the iteration recursively.

The algorithm returns a set of states and transitions composing a CIFS
automaton. By construction, all the sub-attractors are close enough to corre-
sponding parts of SOp(SA).

Statement. For the attractor SB of the output CIFS the following inequality
holds:

SB '
γ
SOp(SA)⇔ dSY(SB, SOp(SA)) < γ.

As usual, we can approximate the CIFS attractor SB by an increasing chain of
partial solids.

Let {X;Ti | i ∈ Σ} be a hyperbolic IFS defined in a complete metric space
(X, dX) with the attractor A. Let SOp : SX → SY be an extended operation
that satisfied all the required conditions to apply the presented algorithm, and
γ > 0 be a calculation accuracy. The algorithm returns a CIFS automaton

76



(Q,F ), where Q is a set of states and F is a set of CIFS transitions. Denote the
attractor of this system by SB. By construction, one can state the following:

SB '
γ
SOp(SA).

Statement. The number of states |Q| is equal to the number of iterations,
for which we did not find any similar (for the accuracy γ) sub-attractor or for
which the sub-attractor was empty. In other words, it is equal to a number of
sub-attractors that make up the attractor, which are not similar to each other.
Since the attractor is compact and the distances between sub-attractors are
greater than γ, this number of states |Q| is finite.

The maximal number of states can roughly be calculated as follows. The
idea is that we cover the attractor SB by sub-attractors that are not similar to
each other. the similarity is defined with respect to the Hausdorff distance
between the sub-attractors which cannot thus be less than γ. Assuming that
all sub-attractors are points, we cover the attractor B by balls of radius γ. In
the evaluation algorithm we can use a bounding ball as the initial compact
subset. The radius r of this ball can be mutually recursively determined (see
appendix A). By applying the evaluation algorithm we obtain a coverage of the
attractor by balls of radius at most γ. The maximal number of iterations k can
be computed as follows:

k =

⌈
log(γ/r)

log(s)

⌉
,

where s is the maximal contraction coefficient of the IFS transformations. In the
worst case, we thus need Nk balls to cover the entire attractor B. This means
that the maximal number of iterations required to obtain a resulting CIFS for
the accuracy γ, is equal to Nk+1.

|Q| 6 |F | 6 Nk+1,

where N is the number of the IFS transformations.
In the worst case, the number of iterations exponentially depends on k, and

k logarithmically depends on the accuracy γ, the algorithm complexity is thus:

O(Nk) = O

((γ
r

)1/ logN (s)
)
.

5.3 Exact iterative model for solution

In the previous section we introduced a generic algorithm to formally represent
the operation result. In this section we discuss how to construct an exact iter-
ative model of the CAD operation image, that is the CIFS with the attractor
SOp(SA), defined by the generalised Hutchinson operator. Recall that the
attractors of this CIFS are mutually recursively defined for each state q ∈ Q by
the generalised Hutchinson operator:

SAq = Θ
i∈Σq

T̃ qi (SAδ(q,i)), (5.7)

In fact, the presented algorithm expresses a finite list of well-defined in-
structions for formally representing the operation image. The only instruction
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that cannot be calculated exactly is the one used to verify sub-attractors self-
similarity (5.4), because it involves real numbers comparisons, which are semi-
decidable. However, all these instructions can be carried out manually, that is if
we can prove that two sub-attractors are self-similar, then the closed transition
represents a part of the automaton with the exact solution as the attractor.
The problem is that, in general, there is an infinite number of such verifica-
tions. Nevertheless, there exist cases where the solution SOp(SA) itself can be
represented by an automaton with a finite number of states. In these cases,
performing the algorithm instructions manually allows us to determine an exact
model of the solution.

Figure 5.7: Intersecting the Sierpinski triangle with a line L in the 3D barycen-
tric space.

Consider an example of intersecting the Sierpinski triangle A with a line L
in the 3D barycentric space X, illustrated in figure 5.7. We define an IFS with
the three contractive transformations T0, T1 and T2, defined by homotheties
centered at the unit vectors with the ratios 1

2 as follows:

T0 = H
(1,0,0)
1
2

T1 = H
(0,1,0)
1
2

T2 = H
(0,0,1)
1
2

Let the line L be defined as follows:

L =

 t
t

1− 2t

 ,

where t ∈ R is a real variable. Let SL be a representation of the line L in the
solid domain SX. Let SB ∈ SX be an initial partial solid, which represents a
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bounding ball centered in the point

c =

1/3
1/3
1/3

 ,

with radius
√

2/3 and with an empty interior.

Figure 5.8: Intersecting the Sierpinski triangle with the lines T−1
i (L) for i ∈ Σ.

In order to verify self-similarity on the first iteration (see figure 5.8) we must
compare the line SL with T−1

i (SL) for i ∈ Σ. To avoid overly complicated
explanations, we present here the calculations for the line L, instead of SL. For
the first IFS transformation T0 we thus have the following:

T−1
0 (L) =

1 −1 −1
0 2 0
0 0 2

 t
t

1− 2t

 =

2t− 1
2t

2− 4t

 =

 x
x

1− 2x

 ,

where x ∈ R. We therefore have the system of equations: 2t− 1 = x
2t = x

2− 4t = 1− 2x
,

which obviously has no solution. This means that the lines are not the same,
and neither are the sub-attractors. For the second IFS transformation T1 we
have the same, by symmetry.

Finally, for the last IFS transformation T2 we can write the following:

T−1
2 (L) =

 2 0 0
0 2 0
−1 −1 1

 t
t

1− 2t

 =

 2t
2t

1− 4t

 =

 x
x

1− 2x

 ,
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where x ∈ R. We therefore have the following system of equations: 2t = x
2t = x

1− 4t = 1− 2x
,

which has the solution x = 2t. This means that the line T−1
2 (L) is the same as

L, and the corresponding sub-attractors are also the same. We can thus close
the current transition to the initial state.

On the next iteration, we compare the line T−1
0 (L) with T−1

i T−1
0 (L) for

i ∈ Σ. For i = 0 we have:

T−2
0 (L) =

1 −3 −3
0 4 0
0 0 4

 t
t

1− 2t

 =

4t− 3
4t

4− 8t

 .

This line does not intersect with the ball SB as well as the line T−1
2 T−1

0 (L).
For i = 1 we can write the following:

T−1
1 T−1

0 (L) =

 2 −2 −2
−1 3 −1
0 0 4

 t
t

1− 2t

 =

4t− 2
4t− 1
4− 8t

 .

Comparing this line with the line T−1
0 (L) we obtain the following system of

equations:  4t− 2 = 2x− 1
4t− 1 = 2x
4− 8t = 2− 4x

,

where x ∈ R. This system has a solution x = 2t − 1
2 , which implies that

the line T−1
1 T−1

0 (L) equals to the line T−1
0 (L), and the corresponding sub-

attractors are therefore the same. We can thus close the current transition to
the corresponding state. By analogy, we can deduce that T−1

1 (L) = T−1
0 T−1

1 (L).

Figure 5.9: Automaton of the CIFS considered in the example. The attractor
of this CIFS is exactly the set SL ∩ SA.

Since all other lines do not intersect with the ball SB the algorithm stops and
we thus obtain an exact CIFS with the attractor SOp(SA) = SA ∩ SL. The
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automaton is illustrated in figure 5.9. In special cases, when the automaton
degenerates into a single state, the constructed model represents an IFS and
has a linear complexity on the number of iterations. We discuss conditions for
constructing an IFS in the following section 5.3.1.

Figure 5.10 illustrates another example of intersection between the Sierpin-
ski triangle and different lines.

Figure 5.10: Example of intersection between the Sierpinski triangle and dif-
ferent lines.

5.3.1 Iterated function system

In section 5.2 we described the algorithm constructing a specific CIFS with
the approximate operator image as the attractor. To determine similar sub-
attractors we verify the inequality (5.4). In section 5.3 we showed that if the
operation image is self-similar, it is possible to manually construct the exact
CIFS of the image. In certain cases, when the inequality (5.4) holds for all the
transformations, the output CIFS degenerates to an IFS. In this section, we
identify the condition for constructing iterative model to be an IFS.

To avoid overly complicated explanations, we describe the idea in IFS, a
generalization to CIFS is thus immediate with minor additional manipulations
(see section 5.1.1).

Given a hyperbolic IFS {X;Ti | i ∈ Σ} defined in a complete metric space
(X, dX) by a finite set of contractive transformations Ti. Let SB = (A,Bc) ∈ SX
be an initial partial solid such that T(B) ⊆ B and A ⊆ Ao (see section 4.3.3).
Suppose that the extended operator SOp is continuous and verifies the self-
similarity property (5.2), i.e. ∀i ∈ Σ:

∃T̃i : SY→ SY such that SOp(Ti(SB)) = T̃iSOp
Ti(SB).

Statement. If all the modified operators are equal, i.e.:

SOpTi(SB) = SOpTj (SB) for ∀i, j ∈ Σ, (5.8)
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then the presented algorithm (see section 5.2) produce an IFS with the attrac-
tor SOp(SA) as shown in figure 5.11. The produced IFS has the same set of
transformations as the initial one and it is possible to redefine a generalised
Hutchinson operator T̃ : SY→ SY, by composing the transformations T̃i:

T̃(SY ) = Θ
i∈Σ

T̃i(SY ),

where SY ∈ SY. Θ here is the decomposition operator chosen as described in
section 4.4.

Figure 5.11: Graph for operators satisfying the condition (5.8). The automaton
is degenerated to a single state associated with the attractor SOp(SA). All the
transitions are closed to this state. The result is an IFS.

The sequence defined by applying this operator thus converges to the oper-
ator image SOp(SA). Consider a sequence of partial solids T̃n(SOp(SB)). For
the first iteration (n = 1) we have:

T̃(SOp(SB)) = Θ
i∈Σ

T̃i(SOp(SB)) = Θ
i∈Σ

SOp(Ti(SB)) = SOp(T(SB))

and on the n-th iteration:

T̃n(SOp(SB)) = SOp(Tn(SB)) = SOp(SBn) −−−−→
n→∞

SOp(SA).

To approximate the operator image SOp(SA) we thus apply the generalised
Hutchinson operator n times, where the number of iterations n is chosen ac-
cording to the effective structure of the used domain, as described in section 4.3.2
(in simple cases, by expression 4.1).

To verify the condition (5.8) for the constructing iterative model to be an
IFS one must perform a theoretical analysis of the operation to verify the self-
similarity property (5.2). Once the transformations T̃i are determined and the
condition (5.8) holds, we can define the generalised Hutchinson operator and
thus construct an IFS with the attractor SOp(SA). Note that we thus obtain
a precise formal model of the operation image.

In this case, the complexity of constructing SOp(SA) equals to the complex-
ity of evaluating the IFS, that is it linearly depends on the number of iterations
n:

O (n · fΘ(N)) ,

where fΘ is the complexity of the operation Θ as a function of parameters count
and N is the number of IFS transformations.

For instance, consider the convex hull operator Op = conv and an extended
operator SOp defined by:

SOp : (A,B) 7→ (conv(A), (conv(Bc))c).
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There exists an associative binary operation Θ merging two convex hulls, i.e.:

(A,B) Θ (C,D) = (merge(A,B),merge(Cc, Dc)c).

Suppose that the IFS transformations are affine, we can therefore write the
following equality:

conv(Ti(A)) = Ti(conv
Ti(A)) = Ti(conv(SA)) ∀i ∈ Σ,

the self-similarity property (5.2) of the operator is therefore verified.
Moreover, the equality of all sub-attractors holds:

SOpTi(SA) = SOp(SA) ∀i ∈ Σ.

All the conditions for constructing the IFS with the attractor SOp(SA) are
satisfied. Let SB ∈ SX be an initial non-empty partial solid. It is thus possible
to define the generalised Hutchinson operator:

T̃(SB) = merge
i∈Σ

Ti(SB).

And the operator image can be determined by constructing the corresponding
attractor:

SOp(SA) = T̃(SOp(SA)) = lim
n→∞

(T̃n(SB)).

Since merging N convex hulls requires O(hN2), where h is the number of
convex hull vertices and N = |Σ| is the number of IFS transformations, the
total time complexity for constructing the convex hull is O(nhN2). Note that
it linearly depends on the number of iterations n.

Constructing an iterative function system significantly reduces the number of
operations performed to compute the operator image, and this therefore provides
a qualitative gain in execution time. This is the fundamental advantage of this
method, since there exist many tasks in which it is necessary to calculate the
operator result in real time. Another important advantage is that this method
does not depend on computational accuracy. Indeed, the operation image is
represented formally.

5.4 Conclusion

In this chapter we introduced an algorithm constructing a CIFS with the gen-
eralised Hutchinson operator (5.7), whose attractor is close enough to the
operation result with respect to the Hausdorff metric. The output automa-
ton consists of states for sub-attractors of the operation image and transitions
to embed these sub-attractors together. Each transition is associated with one
of the initial transformations, the algorithm does thus not produce any new
transformation.

On each iteration we check, which of the alternatives the corresponding sub-
attractor hits:

• the sub-attractor is empty.

• the sub-attractor is similar to one that was already parsed.
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• otherwise, we should continue the iteration recursively.

In the case of the empty sub-attractor, we do not add any special state to
construct the empty set, so we continue the iteration. To preserve the self-
similarity of the output set we verify the similarity of sub-attractors that are
already constructed. Thus we defined a condition (5.1) to determine the sim-
ilar sub-attractors. The self-similarity property is defined for every transition
operator in the input model.

Because of the semi-decidability of real number comparisons, we cannot
verify this equation automatically. In order to construct an exact model of
the required solution, if it exists, we must prove all the necessary similarities
manually.

To evaluate the algorithm in finite time one can set the computation accu-
racy γ. Thus we identified the self-similarity property in terms of approximate
calculations and proved that the algorithm requires a finite number of iterations
in this case. For a given accuracy γ the algorithm constructs a CIFS with the
attractor, defined by the generalised Hutchinson operator, that is close enough
to the operation image. Using the evaluation algorithm, described in section 3,
we can approximate the attractor by the union of the transformed primitives.
However, in the case of the set calculation tolerance γ, the distance between the
attractor and the operation image cannot be less that γ.

In some cases, as demonstrated in section 5.3, the output iterative model
degenerates to an IFS. We specify a condition when this is the case, however to
verify this condition one must perform a theoretical analysis of the operation.
Once the condition (5.8) holds, we can thus construct an IFS with the operation
image as attractor. Note that we thus obtain an exact formal model of the
operation image. Evaluating the operation is thus reduced to evaluating this
IFS which has a linear complexity on the number of iterations.
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Chapter 6

Examples and special cases

In this chapter we present various examples and special cases. We consider
several examples of CAD operators applied to fractal shapes. We use the algo-
rithms presented in this thesis based on operator properties. After discussing
the examples we provide experimental results by comparing the running-time
of the approximation algorithms and we then summarize all the results.

For purposes of simplicity, we describe most examples for IFS, a generaliza-
tion to the CIFS is thus immediate (see section 5.1.1).

6.1 Prerequisites

In this section we summarize the results already presented in chapters 4 and 5.
More precisely, we describe methods which need to be implemented manually
in order to apply the presented generic algorithms.

Given a CIFS defined by an automaton (Σ, Q, δ), where Σ is an alphabet, Q
is a set of states and δ is a transition function δ : Q×Σ→ Q. An initial partial
solid SBq ∈ SXq is associated to each state q ∈ Q. Thus we have to implement
a function GetInitial : q 7→ SBq that gives the initial partial solid for a given
state q ∈ Q.

After that, the operator SOp : SX → SY has to be defined. For this we
should decide how the solution will be represented, that is to say that we define
the nature of solids in SY. In the presented algorithms, the following methods
are applied to partial solids in SY:

• The inclusion predicate ⊆;

• GetAccuracy - returns an accuracy value for a given partial solid (C,D) ∈
SY, i.e. dY(C,Dc).

The first method is required to optimize calculations, and the second is used
to stop the algorithm when the required accuracy is achieved. In cases where
the solution interior is empty we use the simplified stopping criterion (see sec-
tion 4.5.1) and do not use the GetAccuracy method. Note that we do not need
to be able to represent any partial solid in SY. We only deal with the trans-
formed initial bounding balls SBq and their compositions by Θ. For example,
when Θ is the union operator, the partial solid can be represented as a list of
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pairs (T, SBq), T is a composite CIFS transformation and SBq is the initial
partial solid for a given state q ∈ Q. After defining these methods the operator
SOp itself should be implemented.

If the operator image can be decomposed, as described in section 4.4, the
corresponding operator Θ : SY × SY → SY has to be implemented as well.
In the breadth-first algorithm this operator could also compose a whole list of
intermediate results, i.e. Θ : SYk → SY, where k is the number of input results.

Figure 6.1 illustrates a class diagram for our algorithms. We also imple-
mented GetDFA, GetBFA, GetDirectAlgo methods returning the corresponding
algorithm to apply to a CIFS. The SetX and SetY classes represent partial
solids respectively of SX and SY. The SetY class is thus abstract, because its
implementation depends on the operation.

Constructing the formal representation, as it is described in chapter 5, re-
quires additional theoretical analysis of the operator. First we should verify the
self-similarity property (5.1) and define all the corresponding transformations
T̃ : SY → SY. Second, we have to be able to verify the relation '

γ
(see the

inequality (5.4)) between the automaton’s states. Here we can store the ap-
proximate attractor for each state, however in some cases the inequality can be
transformed to an even simpler comparison (see the inequality (5.6)).

During the study of the self-similarity property (5.1) one can also verify
the condition (5.8). If this condition is verified, applying the operator SOp is
thus reduced to applying the generalised Hutchinson operator. Otherwise the
approximate solution can be generated. Once we identify the transformations T̃
and implement the method to verify self-similarities, the algorithm, presented
in section 5.2.2, can be applied to produce a CIFS with an attractor that is close
to the operator image SOp(SA).

Finally, after computing the approximate partial solid SOp(SA) one should
be able to obtain the required approximate solution Op(A) by applying the
BuildSolution method.

These are all the methods which have to be implemented to apply the oper-
ator to fractals.

6.2 Distance from a point

In this section we consider the operator for computing the distance from a
given point. We also present the implementation of prerequisites, described in
section 6.1.

Given an IFS defined by a finite set of contractive transformations {Ti}i∈Σ

and the operator Op : X→ R+ defined as follows:

p ∈ X Op : A 7→ d(p,A) = min
a∈A

d(p, a).

It is easy to show, that for any sequence (Bn)n∈N of non-empty compact
subsets of X converging to A, the corresponding sequence of the distances
(d(p,Bn))n∈N converges to d(p,A), that is, the distance operator Op is con-
tinuous at A. We can thus apply the generic algorithm approximating the
distance to the attractor.

Since the following equality holds:

d(p,A ∪B) = min{d(p,A), d(p,B)},
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Figure 6.1: Class diagram for the presented solution.
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there exists an associative operation Θ = min{. . .} decomposing the image
Op(Bn). The complexity of the operator Θ as a function of a count of parameters
is therefore:

fΘ(x) = O(x).

The initial compact set B can be chosen as a point, that is to say, each time
we apply the operator to a single transformed point. The complexity of the
operator Op is constant:

fOp (1) = O(1).

As described in section 4.4, we defined two approximation algorithms. There
is no difference between applying Θ one time to many elements and applying
Θ many times to N elements (see 4.4.2). Both the breadth-first and depth-first
algorithms have the same complexity O (Nn), where N is the number of the
IFS transformations and n is the number of iterations chosen by equation (4.1).
However, both algorithms have the same complexity as that of simply computing
Op(Bn).

The optimization described in section 4.5 requires the notion of interior
and exterior bounds of the approximate solution. In order to optimize the
computation we should thus extend the operator Op to the solid domain SR+.

As described in section 4.3, we choose the initial compact subset B as an
attractor bounding ball, such that Ti(B) ⊆ B ∀i ∈ Σ. Thus we consider the
operator defined by:

SOp : (∅, Bc) 7→ ((max
b∈B

d(p, b),+∞), (0, min
b∈B

d(p, b))).

The values min
b∈B

d(p, b) and max
b∈B

d(p, b) correspondingly indicate the lower and

upper bounds for the operator result SOp(SA). On the next iterations we will
precise these bounds, that is to say that we will restrict the set of possible solu-
tions up to the required precision ε. The complexity of the extended operator
SOp evaluated for a single transformed ball is the same.

In the optimized algorithm we always compute the operator on a single
transformed initial partial solid. By choosing the initial compact subset B as
an attractor bounding ball B(c, r) as described in section 4.3, the lower and
upper bounds can be simply computed as follows:

min
b∈B

d(p, b) = d(p, c)− r,

max
b∈B

d(p, b) = d(p, c) + r

The operator Θ, in this case, is the continuous union operation:

(A,B) Θ (C,D) = (A ∪B,C ∩D).

The complexity of the operator Θ as a function of the number of parameters
is therefore fΘ(x) = O(x), due to the fact that each composition requires two
comparisons of real numbers.

The algorithm steps are the following. At the beginning, we identify the
initial solution set, as illustrated in figure 6.2:

S = SOp(SB) = ((d+ r,+∞), (0, d− r)),
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Figure 6.2: Initial solution set. The lower and upper bounds of the solution
are computed as the minimal and maximal distances to the attractor bounding
ball. The exact result SOp(SA) is thus situated somewhere in between.

where B = B(c, r) is the initial bounding ball and d = d(p, c) is the distance
from its center to the point p.

To be able to restrict the set of possible solutions, we should not compare
solution sets between different tree levels. Thus we reset S to be able to obtain
a more accurate result on the next iteration. We then start a loop for all the
IFS transformations Ti, ∀i ∈ Σ.

Let us consider, for example, the first transformation T0. We compute the
solution set:

SOp(T0(SB)) = ((d0 + r0,+∞), (0, d0 − r0)),

where d0 = d(p, T0(c)), r0 = r · s0 and s0 is the contraction coefficient of T0.
The stopping criterion obviously does not return +. We therefore specify the
global solution set S by composing with SOp(T0(SB)):

S ← S Θ SOp(T0(SB)) =

= ((min{d+ r, d0 + r0},+∞), (0,min{d− r, d0 − r0}))
= ((d0 + r0,+∞), (0, d− r)),

and we continue the iterations for this branch of the tree by adding T0 to the list
(ts′ in the implementation BFAlgoOpt) of transformations for the next iteration.

For the next transformation T1 we execute the same steps. We compute the
corresponding solution set:

SOp(T1(SB)) = ((d1 + r1,+∞), (0, d1 − r1)),

where d1 = d(p, T1(c)), r1 = r ·s1 and s1 is the contraction coefficient of T1. We
verify the stopping criterion (4.12) for this solution set:

SOp(T1(SB)) ⊆ S =


+ if d1 − r1 > d0 + r0,

− if d1 + r1 6 d0 − r0,

⊥ otherwise.
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If it returns +, we can deduce that for all solutions in this branch of the tree
there exists a better one in the previous branch associated with T0. We can
therefore avoid unnecessary computations and stop iterations for this branch T1.
Otherwise, we also add T1 to the list (ts′ in the implementation BFAlgoOpt) of
transformations for the next iteration.

After n iterations of the algorithm we obtain a solution set of the following
form:

((b,+∞), (0, a)),

where a, b ∈ R+ are correspondingly the lower and upper solution bounds. The
exact solution is therefore somewhere in the segment [a, b]. We also know that
the distance between the exact solution and a (the same for b) is inferior to the
given precision ε. That is to say, any point between a and b is an appropriate
result.

In the pessimistic case where the stopping criterion is never verified, we have
to go over the entire tree. The worst-case running time is therefore exponential
O(Nn), where N is the number of the IFS transformations and n is the required
number of iterations. However, the best-case running time of the closest ball
search is equal to the depth of the tree, that is to say, O(logNn) = O(n).

6.2.1 Implementation

In this section we present the implementation of prerequisites for the operator
used in computing the distance from a given point.

As described in section 6.1, the first function to be implemented determines
the initial partial solid for a given state q ∈ Q, i.e. q 7→ SBq. We compute the
bounding balls Bq for each CIFS attractor Aq using the algorithm, presented
in appendix A. The initial partial solids SBq are thus the pairs (∅, Bqc).

As described in section 6.2, we represent the solution sets in SY by pairs of
the following form: ((a,+∞), (0, b)), where a, b ∈ R are two real values. The
following pseudo-code illustrates how we define the solids of SY:

Object DistanceSetY implements SetY
Body:
in ∈ R is the interior part of the partial solid
ex ∈ R is the exterior part of the partial solid

Function GetAccuracy
Output: An accuracy of a given partial solid.
Body:
return |in− ex|
End

Function Inclusion predicate ⊆
Input: A,B are objects of type DistanceSetY.
Output: A ⊆ B.
Body:

return


+ if B.in 6 A.ex,

− if A.in 6 B.ex,

⊥ otherwise.

End

End
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Thus we defined the nature of solids in SY, and the operator SOp itself can
now be implemented. The following function illustrates the implementation of
the operator SOp:

Function OP
Input:
SB is the input partial solid in SX representing a transformed ball
Output: The distance from the point p ∈ X to the partial solid SB
Body:
dist← |p− SB.center|
return DistanceSetY with

in = dist+ SB.radius
ex = max{0, dist− SB.radius}

End

In simpler terms, for a transformation T we approximate the transformed ball
T (B(c, r)) by the ball B(T (c), s(T ) · r). Thus we denote the center of the
transformed input ball SB by SB.center and its radius (or the semi-major axis
for ellipses) by SB.radius.

The decomposing operator Θ is simply defined for two partial solids in SY
by the following function:

Function Θ
Input: A,B are objects of the type DistanceSetY.
Output: A Θ B
Body:
return DistanceSetY with

in = min{A.in,B.in}
ex = min{A.ex,B.ex}

End

In the breadth-first algorithm this operator could also compose a whole list of
intermediate results, i.e. Θ : SYk → SY, where k is the number of input results.
For this we simply apply the operator Θ to the first two elements in the list,
and we then recursively compose the result with the following elements.

Finally, after computing the approximate partial solid SOp(SA) of the type
DistanceSetY, one should be able to obtain the real distance from the given
point p to the attractor A. We therefore define a mapping SY→ R as follows:

Function BuildSolution
Input: A is an object of the type DistanceSetY approximating SOp(SA).
Output: An approximate operator image Op(A)
Body:

return A.in+A.ex
2

End

These are all the methods we need to implement in order to use the presented
algorithm.

6.3 Convex hull

In this section we consider the convex hull computing operator for a given affine
IFS.
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Consider an IFS defined by a finite set of affine contractive operators {Ti}i∈Σ

and the convex hull operator Op = conv. There exists an associative binary
operation Θ merging two convex hulls, i.e.:

conv(A ∪B) = merge(conv(A), conv(B)).

One can prove that the operator conv is continuous at point A. Merging convex
hull runs faster that recalculating the overall convex hull, because in merging
we use information according to which the initial sets are convex [MGLS12].

However, in order to apply the optimized algorithm, we should extend the
operator to the solid domain. Let us consider the convex hull of the fixed points
fix(Ti) for ∀i ∈ Σ. We can only find fixed points approximately. Let δ > 0 be
the accuracy used in calculating the fixed point. We then compute the offset on
a distance −δ to ensure that the resulting set will be inside the exact convex
hull conv({fix(Ti) | i ∈ Σ}). This set is an interior part of the initial partial
solid SB. The exterior can be chosen simply as a bounding ball of the attractor.

Let us consider an extended operator SOp defined by:

SOp : (A,B) 7→ (conv(A), conv(Bc)c).

One can see that SOp(SB) = SB and the interior part of the image can thus
be constructed. The interior of partial solids SOp(T (SB)) for an arbitrary
composite transformation T can be constructed as well. We therefore have both
the interior and the exterior parts of the solution. Moreover, the operation
images constitute an increasing chain, that is we can apply the optimization
described in section 4.5.

The operator Θ is merging:

(A,B) Θ (C,D) = (merge(A,B),merge(Cc, Dc)c).

Merging two convex hulls is linear on the number of points in the convex hulls.
So, merging x convex hulls requires O(h · x2) time, where h is the number of
convex hull vertices. The complexity of the operator Θ as a function of the
parameters count is therefore:

fΘ(x) = O(x2).

Note that the equation (4.10) is satisfied, that is to say that, the depth-first
algorithm is better than the breadth-first one.

The algorithm performs the following steps. We start by identifying the
initial partial solid SB as described in section 4.3.4 and get down to the n-th
level of the IFS tree. We then compute the solution set SOp(Tn0 (SB)) and
therefore assign the global solution set to S = SOp(Tn0 (SB)). similarly, on the
next N iterations we compute the solution sets SOp(Tn−1

0 Ti(SB)) for ∀i ∈ Σ
and merge the corresponding convex sets by Θ.

On the next sub-branch of the tree we have to compute the solution set
SOp(Tn−2

0 T1(SB)) to verify the stopping criterion (4.12). If this solution set
is inside the global solution set S, we can deduce that all the tree leaves will
also lie inside S, that is to say, all this sub-tree has already been counted in the
solution. We therefore stop iterations for this sub-tree. Otherwise we should
continue to explore the tree, because each leaf can potentially extend the final
result.
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T2(Ei)

T0(Ei)

T1(Ei)

Ei+1

Ei

Figure 6.3: Iterative construction of approximations. Given an εi-
approximation of the convex hull, we calculate its images by applying all the
IFS transformations to its vertices. We then merge all these images to obtain
the εi+1-approximation of the convex hull.

The process is repeated iteratively to achieve an approximate convex hull of
the required precision. Figure 6.3 illustrates these iterations.

At a given time, we compute the operator Θ for N convex hulls maximum.
This takes O(hN2) time, where h is the number of convex hull vertices, and N
is the number of the IFS transformations. The complexity of evaluating Θ is
therefore constant on the number of iterations n. On the other side, the breadth-
first algorithm compute one final operation Θ on at most Nn elements. This
takes O(hN2n) time, which is exponentially worse than the chosen algorithm.

Note that if the output convex hull has an infinite number of vertices, these
algorithms quickly go beyond the space and time limits, because merging de-
pends on the number of convex hull vertices and is evaluated at most Nn times
to achieve the n-th level of the tree.

As described in section 5.3.1, it is possible to formally represent the convex
hull. Since the IFS transformations are affine, the self-similarity property of the
operator is verified:

∀i ∈ Σ conv(Ti(SB)) = Ti(conv
Ti(SB)) = Ti(conv(SB)).

Moreover, we also have the equality of all the sub-attractors (see 5.8):

convTi(SB) = conv(SB) ∀i ∈ Σ.

In other words, the algorithm starts with the initial state \. Since all the
sub-attractors convTi(SB) are equal, for each transformation Ti we add a cyclic
transition from the state \ to itself and then the algorithm stops. The pro-
duced generalised IFS constructs the attractor conv(SA) by iteratively applying
the generalised Hutchinson operator T̃(SB) = merge

i∈Σ
(Ti(conv(SB))), as de-

scribed in section 5.3.1. Evaluating the convex hull is thus reduced to evaluating
this IFS.

Note that in this method we do not construct the IFS evaluation tree with
its exponential number of objects. Instead, we compose all the results on each
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iteration, which is, in fact, a more natural way of evaluating the IFS. In this
case, both the space and time complexities are reduced, because our composing
operator simplifies the resulting approximate object in contrast to the union
operator.

Since merging N convex hulls requires O(hN2), where h is the number of
convex hull vertices and N = |Σ| is the number of IFS transformations, the total
time complexity necessary for constructing the convex hull is O(nhN2). Note
that it linearly depends on the number of iterations n.

6.3.1 Simplification of the convex hull approximation

The presented results confirm our previous analysis for the convex hull of affine
IFS [MGLS12]. However, sometimes the algorithms could be optimized by using
operator specific properties. For instance, the approximate convex hull can be
simplified without any loss of accuracy.

rnew ≤ εi

cnew
c′

c

rc′

rc

Figure 6.4: Illustration of the simplification. If two neighboring points c and c′

are close, i.e. d(c, c′) + rc + rc′ 6 2εi we can then replace these points with the
middle point without any loss of accuracy.

We simplify the approximate convex hull at each iteration by replacing ver-
tices that are close enough to one another with one single vertex. To identify
such vertices, we simply need to check the neighbouring points on the approxi-
mate convex hull.

If two neighbouring points c and c′ satisfy:

d(c, c′) + rc + rc′ 6 2εi (6.1)

we can then replace these points with the middle point without any loss of
accuracy, as shown in figure 6.4.

Thus, the number of points considered in constructing intermediate convex
hulls is reduced and intermediate convex hulls are simplified without losing any
accuracy. To avoid a constant rebuilding of data structures the simplification
can be performed during the merge. This method of simplification can therefore
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easily be integrated into our approach by redefining the composing operator Θ
in the following way:

(A,B) Θ (C,D) = (mergeAndSimplify(A,B),mergeAndSimplify(Cc, Dc)c),

where the method mergeAndSimplify takes into account distances between
neighbouring points, as described above.

6.3.2 Results and discussion

We examined the presented algorithm for various IFS attractors and different
precision levels in 2D and 3D spaces. It should be pointed out that all tests
were performed on an ordinary PC (Intel R©CoreTM2 Duo T7500 2.2GHz 3GB
RAM) without any additional computational facilities.

Several results for various IFS attractors are presented in figures 6.5 and
6.6. For each attractor, the program generates an approximation of the convex
hull at the specified accuracy. The execution time of our algorithm is presented
in Table 1.

Attractor N smax dim ε time(ms)
Sierpinski triangle 3 0.5 2 10−9 16
von Koch curve 4 0.25 2 10−9 27
Dragon curve 2 0.70711 2 10−9 62
Tree 5 0.66762 2 10−9 94
Sierpinski tetrahe-
dron

4 0.5 3 10−9 109

IFS dragon 2 0.91944 2 10−9 265
Barnsley fern 4 0.85094 2 10−9 484
FIF 4 0.86603 3 10−3 3541
3D Barnsley fern 4 0.85586 3 10−3 10951

Table 1. Execution time of our algorithms for several IFS attractors with the
precision ε. Here N is the number of the IFS transformations, smax is their
maximal contraction coefficient and dim is the dimension of the space in which
the attractor lies.

An approximation of the convex hull is computed in an interactive rate for all
of the 2D attractors and also for the attractors whose convex hulls have a finite
number of vertices.

We compare our method for computing an approximate convex hull with
Martyn’s approach [Mar09a]. Table 2 demonstrates the execution time of our
algorithm compared to Martyn’s for 2D IFS attractors.
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Dragon curve von Koch curve

IFS dragon Tree

Barnsley fern Sierpinski triangle

Figure 6.5: Results for 2D IFS attractors at precision ε = 10−9
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Fractal interpolation function Fractal interpolation function

3D Barnsley fern 3D Barnsley fern

Figure 6.6: Results for 3D IFS attractors at precision ε = 10−2
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Attractor N smax Martyn’s method Our algorithm
time, ms time, ms

von Koch curve 4 0.25 125 16
Sierpinski triangle 3 0.5 647 16
Dragon curve 2 0.70711 756 16
Tree 5 0.66762 1131 31
Barnsley fern 4 0.85094 45630 250
IFS dragon 2 0.91944 more than 60 sec 78

Table 2. Execution time of the algorithms for several IFS attractors with a given
precision ε = 10−3. Here N is the number of the IFS transformations and smax
is their maximal contraction coefficient.

One can see that Martyn’s approach strongly depends on the maximal contrac-
tion coefficient smax whereas our algorithm depends more on the number of the
approximate convex hull vertices h.

The stopping criterion (4.12) can significantly reduce the number of oper-
ations, and our optimization therefore provides a qualitative gain in execution
time.

Simplifying the convex hull is another important process. To improve colli-
sion tests performance it is necessary to verify whether an object intersects with
the convex hull of our attractor. This process requires testing all the faces of
the convex hull faces. The simplified convex hull involves a smaller number of
vertices and faces, verifying the intersections will therefore take less time. The
number of approximate convex hull vertices for ε = 10−3 are presented in the
following table:

Attractor without simplification with simplification
Tree 30 pts. 25 pts.
IFS dragon 67 pts. 59 pts.
Barnsley fern 186 pts. 101 pts.
3D Barnsley fern 4577 pts. 359 pts.

On average, the efficiency of the simplification is about 46%, in 2D, but it
decreases, when we increse the level of precision. In 3D, this process is much
more efficient - we eliminate about 90% of vertices. However, such efficiency can
be achieved only for the attractors whose convex hulls have an infinite number
of vertices.

Another important advantage is that we can improve the precision of the
obtained approximation by further iterating our algorithm. That is to say,
to improve the precision of the process it is not necessary to recalculate all k
iterations, we start with the approximation first obtained and continue to iterate
the algorithm. This can be useful advantage when it is necessary to compute a
sequence of the approximate convex hulls (to obtain different levels of detail for
example).

6.4 Boolean intersection

In this section we present an example of the operator used in calculating the
intersection between a given IFS and a given set of X. We also present the
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implementation of prerequisites, as it was described in section 6.1.
Given an IFS defined by a finite set of contractive transformations {Ti}i∈Σ

and the operator Op : X→ X defined as follows:

L ⊆ X Op : A 7→ A ∩ L,

where L is an object intersect a given IFS.
The boolean intersection is not continuous for the Hausdorff metric. To

apply the generic algorithms and also to optimize the process as described in
section 4.5, we should extend the operator Op to the solid domain SX. More
precisely, we consider the operator defined by:

SOp : (∅, Bc) 7→ (∅, (B ∩ L)c).

Here, the initial compact set SB is chosen as (∅, B(c, r)c), where B(c, r) is an
attractor bounding ball. In this case, we do not construct the interior part,
because it is difficult and not always possible. The interior is therefore ap-
proximated by the empty set ∅, that is to say, only the exterior is used to
approximate the solution, as described in section 4.5.1. We also consider some
modified algorithms without constructing the global solution set S.

It can easily be shown, that the operator Θ is the union operator:

Op(Ti(SB) ∪ Tj(SB)) = (∅, ((Ti(B) ∪ Tj(B)) ∩ L)c) =

= (∅, ((Ti(B) ∩ L) ∪ (Tj(B) ∩ L))c) =

= (∅, (Ti(B) ∩ L)c ∩ (Tj(B) ∩ L)c) =

= Op(Ti(SB)) ∪Op(Tj(SB)),

where Ti and Tj are the IFS transformations, L is the object intersecting them,
and B is the initial compact subset. The complexity of the operator Θ as a
function of the parameters count is therefore linear:

fΘ(x) = O(x).

While evaluating the algorithm, we apply the operator SOp only to trans-
formed balls. Intersecting between classic shapes does not depend on the number
of iterations. The complexity of the operator SOp is therefore:

fSOp (1) = O(1).

As described in section 4.4, we defined two approximation algorithms. As
composing by Θ is linear on the number of parameters, there is no difference
between applying Θ one time to many elements or applying Θ many times to N
elements (see 4.4.2). Both the breadth-first and depth-first algorithms have the
same complexity O (Nn), where N is the number of IFS transformations and n
is the chosen number of iterations as described in section 4.3.2.

We do not construct the interior and the stopping criterion (4.12) therefore
reduces to the following:

SOp(T (SB)) = (∅,Y).
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This simplification reduces the running-time, because we do not construct the
global solution set S. Nevertheless, the asymptotic complexity remains the
same.

Moreover, the self-similarity property is also verified, which allows us to
factor out the transformation, and to always apply the operator to the same
partial solid SB before transforming, as described in section 5.1. One can
thus find the corresponding transformations T̃i (see section 5.1.1) in order to
construct the approximate iterative model (see section 5.2).

The modified operator SOpT , for a corresponding composite transformation
T , differs from the original operator SOp by intersecting the initial partial solid
SB with the modified object L. In the case of an invertible transformation T
we have:

SOpT : (∅, Bc) 7→ (∅, (B ∩ T−1(L))c).

How to deal with the non-invertible transformation was described in section 5.1.1.
The generic algorithm, described in section 5.2, produces a CIFS with the at-
tractor that is close enough to the operator image SOp(SA).

In some cases, when the solution is exactly self-similar, the algorithm stops
for any approximation accuracy. This is the case when only a finite number of
semi-decidable equations have to be verified. If all these equations are proved
manually the resulting CIFS formally represents the exact solution, that is to
say, its attractor SOp(SA) is defined by applying the generalised Hutchinson
operator.

Figure 6.7: Subdivision of the intersection between a plane and the Menger
sponge.

Figure 6.7 shows an example of intersection between a plane and the Menger
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Sierpinski triangle sections Approximate Menger sponge section

Approximate models of the Menger sponge sections

Exact models of the Menger sponge sections

Figure 6.8: Attractors of various intersection images.
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sponge. The output automaton’s states illustrated on the CIFS attractors are
shown in the figure. There are three states: a, b and c. The attractor Aa is in
the shape of an hexagon, and the attractors Ab and Ac are triangles. Figure 6.8
illustrates several examples of intersection.

One can also compute a set difference and a symmetric difference by express-
ing these operators in terms of union, intersection and complement.

6.4.1 Implementation

In this section we present an implementation of the prerequisites for the operator
to compute the intersection with a given line L. Let the line L be defined by a
point L.ref and a vector L.dir representing the reference point on the line and
the direction correspondingly.

As for the distance example in section 6.2.1, the first function which has
to be implemented determines the initial partial solid as a bounding ball Bq

of the attractor Aq for a given state q ∈ Q using the algorithm, presented in
appendix A. The initial partial solids SBq are thus the pairs (∅, Bqc).

Solution sets in SY are represented by a set of segments on the line L as the
exterior part and the empty interior part. The following pseudo-code illustrates
how to define partial solids in SY:

Object IntersectionSetY implements SetY
Body:
segments is the list of segments

Function GetAccuracy
Output: an accuracy of a given partial solid.
Body:
// We do not use this stopping criteria
return ∞
End

// We use the simplified stopping criterion (see section 4.5.1).
Function Inclusion predicate ⊆
Not applicable

End

Thus we defined the nature of partial solids in SY, and the operator SOp itself
can now be implemented. The following function illustrates the operator SOp
implementing:

Function OP
Input:
SB is the input partial solid in SX representing a transformed bounding ball
Output: an intersection SB ∩ L represented by IntersectionSetY
Body:
v ← SB.center − L.ref
h← v · L.dir
if SB.radius2 − |v|2 + h2 6 0

return (∅,Y)
endif

l←
√
SB.radius2 − |v|2 + h2

return IntersectionSetY with
segments = [(h− l, h+ l)]

End
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The decomposing operator Θ is simply defined for two partial solids in SY
by the following function:

Function Θ
Input:
A,B are objects of the type IntersectionSetY.
Output: a composition A Θ B
Body:
return IntersectionSetY with

segments = A.segments ∪B.segments
End

Here the union of two lists means the pairwise unite of all segments in the
first list with segments in the second one. Whenever two segments (a, b) and
(c, d) intersect with each other we union them, i.e. (min{a, c},max{b, d}). The
segments, which do not intersect, may be left unchanged.

In the breadth first algorithm the operator Θ could also compose a whole
list of the intermediate results, i.e. Θ : SYk → SY, where k is the number of
input results. We simply apply the defined operator Θ to the first two elements
in the list, and then we recursively compose the result with each the following
element.

Finally, after computing the approximate partial solid SOp(SA) in the form
of the IntersectionSetY object, the output result can be obtained by using its
segments:

Function BuildSolution
Input:
A is the objects of the type IntersectionSetY approximating SOp(SA).
Output: an approximate operator image Op(A)
Body:
return A.segments
End

As described in section 5.2.2, to determine similar sub-attractors we verify
the inequality (5.6). It implies the inequality (5.4) and does not contain any
applications of the operator SOp, that is to say that we verify it only if two
transformed lines are close enough.

These are all the methods which have to be implemented to apply the opera-
tor using the presented algorithm. Moreover, for this example we can construct
a CIFS with the attractor that is close to the solution SOp(SA).

6.5 Offset

The offsetting map produces a shape driven out from an original shape in equal
distance and direction, normally or perpendicularly to the original shape. One
usually distinguishes between the offsetting on a positive distance and on a
negative distance. In this section we consider both offsetting maps and describe
whether the maps could be computed by our approach.

Consider first the operator Op : X → X defined through the Minkowski
sum as follows:

r > 0 Op : A 7→ A \ (Ā⊕B(0, r)),
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where B(0, r) is a ball centered at the origin with the radius r. The operator
thus performs offsetting at a negative distance r.

Consider Op(A ∪ B) calculating, where A and B are two intersecting sets,
as illustrated in figure 6.9. There is no relatively simple method to compose
the results Op(A) and Op(B) in order to obtain Op(A ∪ B), because Op(A)
and Op(B) do not contain any information about the intersection A ∩ B. The
operation Op image cannot thus be decomposed and to offset on a negative
distance we have to apply the operation directly to the approximate attractor,
as described in section 4.2.

Figure 6.9: Counterexample where the offsetting on a negative distance cannot
be decomposed by Θ operator.

Now we consider the positive offsetting operator Op : X → X, defined as
follows:

r > 0 Op : A 7→ A⊕B(0, r),

where B(0, r) is a ball centered at the origin with the radius r. Thus the operator
offsets at a positive distance r.

The Minkowski sum can be extended [EL02] for partial solids of X = Rd
as a function ⊕ : SbRd × SRd 7→ SRd defined by:

(A1, B1)⊕ (A2, B2) = (A1 ⊕A2, (B
c
1 ⊕Bc

2)c).

This map is thus well defined and continuous [EL02].
For this example, the initial compact set SB is chosen as (∅, B(c, r)c), where

B(c, r) is an attractor bounding ball, as for the distance example (see 6.2). We
do not construct the interior part, because it is difficult and not always possible.
The interior is therefore approximated by the empty set ∅, that is to say, only
the exterior is used to approximate the solution, as described in section 4.5.1.
The operator extended to the solid domain is thus:

SOp : SB 7→ SB ⊕ SR,

where SR = (B(0, r)o, B(0, r)c).
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It can be shown, that the operator Θ is the union operator:

SOp(Ti(SB) ∪ Tj(SB)) = {x+ b | x ∈ Ti(SB) ∪ Tj(SB), b ∈ B(0, r)} =

= {x+ b | x ∈ Ti(SB), b ∈ B(0, r)}∪
∪ {x+ b | x ∈ Tj(SB), b ∈ B(0, r)} =

= SOp(Ti(SB)) ∪ SOp(Tj(SB)),

where Ti and Tj are the IFS transformations, SB is the initial partial solid. The
complexity of the operator Θ as a function of the parameters count is therefore
linear:

fΘ(x) = O(x).

Evaluating the algorithm only involves applying the operator SOp to trans-
formed balls. If the IFS transformations are affine, the initial bounding ball
is transformed into ellipses and offsetting these ellipses can be computed in
constant time.

As described in section 4.4, we defined two approximation algorithms. Com-
posing by Θ is linear on the number of parameters, there is thus no difference
between applying Θ one time to many elements or applying Θ many times to N
elements (see 4.4.2). Both the breadth-first and depth-first algorithms have the
same complexity O (Nn), where N is the number of the IFS transformations
and n is the number of iterations chosen as described in section 4.3.2.

If we do not construct the interior, the stopping criterion (4.12) is simplified
to the following:

SOp(T (SB)) = (∅,Y),

This is never the case because:

(T (B)⊕B(0, r))c = Y⇔ T (B)⊕B(0, r) = ∅.

This simplification does not reduce the running-time, because we always
reach all the leaves of the evaluation tree and there are Nn leaves.

Now we consider the self-similarity of the Minkowski addition. Assume
that all the IFS transformations are affine and can therefore be represented as
follows:

Ti(x) = Li(x) + vi, for i ∈ Σ, x ∈ X,

where Li is the linear part of the transformation and vi is a vector used for trans-
lation. We can thus write the following for any composite IFS transformation
T (x) = L(x) + v, x ∈ X:

T (B)⊕B(0, r) = {T (x) + b | x ∈ B, b ∈ B(0, r)} =

= {L(x) + v + b | x ∈ B, b ∈ B(0, r)} =

= {L(x) + b− v + 2v | x ∈ B, b ∈ B(0, r)} =

= {L(x+ L−1(b− v)) + 2v | x ∈ B, b ∈ B(0, r)} =

= {T (x+ T−1(b)) + v | x ∈ B, b ∈ B(0, r)} =

= {T̃ (x+ T−1(b)) | x ∈ B, b ∈ B(0, r)}
= T̃ (B ⊕ T−1(B(0, r))),
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where T̃ (x) = T (x) + v is the corresponding transformation providing the self-
similarity. The operator SOp thus satisfies the self-similarity property and the
corresponding modified operators are the following:

SOpT : SB 7→ SB ⊕ T−1(SR).

As described in section 5.1.1, in the case of non-invertible transformation T we
have to find a set B′ such that:

T (B′) = SR,

where SR = (B(0, r)o, B(0, r)c). Once we determine this set we can write the
following:

T (B)⊕B(0, r) = {T (x) + b | x ∈ B, b ∈ B(0, r)} =

= {T (x) + T (b′) | x ∈ B, b′ ∈ B′} =

= {T (x+ b′) + v | x ∈ B, b′ ∈ B′} =

= {T̃ (x+ b′) | x ∈ B, b′ ∈ B′} =

= T̃ (B ⊕B′).

We could thus continue the CIFS automaton construction as described in sec-
tion 5.2.

Figure 6.10: Worst-case running time of the optimized algorithms and the direct
Op(Bn) calculating for the Sierpinski triangle. The operation is the distance
from a point, defined as described in section 6.2.
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6.6 Results and discussion

In this section we show the gain derived from using the optimized algorithms
and we compare the presented algorithms on different examples.

All the presented algorithms were designed and coded in C# language and
tested on an ordinary laptop (Intel Core i7-2720QM CPU @2.2GHz).

Figure 6.10 illustrates the worst-case running-time for the presented algo-
rithms. All the algorithms have an exponential running-time. However, the
tree-cutting optimisation of the breadth-first algorithm is triggered earlier com-
pared with the depth-first algorithm. As illustrated on the chart, the running
time of the breadth-first algorithm is better than that of the depth-first algo-
rithm. But the space complexity of the breadth-first algorithm is exponential,
since on the i-th iteration we have to keep all the N i tree nodes in accessible
memory to compute the approximate result. The algorithm therefore runs out
of memory very quickly. This does not happen with the depth-first algorithm,
since on each iteration we need to keep only one branch of the evaluation tree
in accessible memory.

Figure 6.11: Worst-case running time of the optimized algorithms without con-
structing the solution interior part, and the direct Op(Bn) calculating for the
Sierpinski triangle. The operation computes the intersection with a line, as
described in section 6.4.

Figure 6.11 illustrates the worst-case running-time for the presented simpli-
fied algorithms. As described in section 4.5.1, we do not construct the interior
part of the approximate result. Only the exterior is therefore used to approxi-
mate the solution. In this case, the stopping criterion (4.12) is only verified for
the empty partial solid allowing us to simplify the verifications. The algorithms
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also have an exponential running-time.
As in the previous example, compared to the depth-first algorithm, the

breadth-first algorithm is triggered earlier and has a better running-time. How-
ever, the algorithm also runs out of memory very quickly, which does not hap-
pen with the depth-first algorithm. Compared to the direct algorithm both
optimized algorithms still show a considerable gain in running time.

The best-case running time of both the optimized and simplified algorithms
is constant, representing the gain over the direct algorithm which exponentially
depends on the number of iterations.

The following table illustrates the complexities of the algorithms described
in this thesis:

Algorithm Time Space
Direct O (fSOp (Nn)) O (Nn)
Breadth-first (BFA) O (Nn + fΘ(Nn)) O (Nn)
Optimized BFA O (Nn + fΘ(Nn)) O (Nn)
Simplified BFA O (Nn + fΘ(Nn)) O (Nn)
Depth-first (DFA) O (Nn) O (N)
Optimized DFA O (Nn) O (N)
Simplified DFA O (Nn) O (N)
CIFSAlgo O (Nn) O (Nn)
Generalised IFS O (n · fΘ(N)) O (N)

We recall that fSOp (x) is the complexity of the operator SOp evaluated on
the union of x objects, fΘ is the complexity of the operation Θ as a function
of parameters count, N is the number of the IFS transformations and n is the
required number of iterations. Optimized algorithms do not depend on the
operator SOp complexity because the operation is evaluated only for a single
object. The function fSOp (x) is therefore constant on the number of iterations
n.
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Chapter 7

Conclusion and prospects

Our research is conducted as part of the ANR ModItère project . The global
objective of this project is to develop a new type of geometric modellers for
computer-aided design systems (CAD), based on iterative methods following
the principles of fractal geometry.

Most existing CAD modellers are based on classic geometry. These modellers
allow a user to model analytic curves and surfaces, which are usually polynomial
or rational and smooth. Fractal shapes have more complex and specific geomet-
ric properties. Fractal shapes can generally be rough, lacunar, porous, they are
not smooth and usually not differentiable in any way. It is therefore difficult
or impossible to represent these shapes by using classic geometric models. To
generalise the answer to this problem specific iterative models such as IFS, CIFS
and BCIFS were developed, in which we are substantially interested. Defining
shapes by iteration allows us to generate fractal structures with all the diversity
of their specific properties, which cannot be achieved with classic modelling.

Shape modelling in CAD systems is complex, in that it is not confined to
the simple shape representation. To assist the user, geometric modellers are im-
proved by construction operations and algorithms. These operations are usually
based on the geometric properties of the modelled objects. Existing CAD sys-
tems are not suitable to manipulate fractal structures because of their specific
properties. After listing the constructing operations presented in most of CAD
systems, we identify the basic properties required for their realization. A pre-
liminary analysis shows that the operations are based on four properties: affine
invariance, topological structure, parametrization and differential properties.
The result is given in the form of a dependency graph.

From this graph, we classified CAD operations by adapting to BCIFS : cer-
tain operations require generalization because of the specific properties of frac-
tals, for certain operations the result can be approximated. For approximating
CAD operations, we thus introduced generic algorithms defined for arbitrary
operations satisfying some constraints that we explicit.

The proof of convergence of these algorithms is based on domain theory.
Most CAD operations are not continuous. We consider continuous extensions
of CAD operations to the solid domain. Thus we represent the attractor in this
domain, apply the continuous operation to the approximate attractor and then
return to the modelling space (see figure 4.9).

The presented approximation algorithms are iterative. Domain theory allows
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us to formalize the notion of solution sets that represent the information on the
solution at the current approximation level. On each iteration we compute a
local solution set representing a part of the global solution. In the optimized
algorithms we use a criterion determining whether a local solution set could
potentially improve the global one. The global solution set is restricted up to
the required accuracy while iterating the algorithm. We then identify cases in
which this criterion can also be simplified to a comparison with a constant.

Given a CAD operation which satisfies the image decomposition, it is pos-
sible to construct a CIFS with a generalised Hutchinson operator, whose at-
tractor is close enough to the operation result with respect to the Hausdorff
metric. Thus we introduce a generic algorithm to compute such CIFS for a
given accuracy. We define the self-similarity property of the operation. This
property defines a set of transformations, which are used in the output iterative
system. Starting with the initial state, the algorithm iteratively traverses the
evaluation tree of the input BCIFS. In order to provide a self-similar nature of
the output set the algorithm verifies the similarity of the sub-attractors that
were already parsed.

In order to construct an exact CIFS (with a generalized Hutchinson oper-
ator) of the operation, if it exists, we must prove all the necessary similarities
manually. We also explicit the condition of the operation to be represented
by an IFS with a generalised Hutchinson operator. In this case, only this
condition should be proved manually.

We studied the complexity of all the presented algorithms and performed
some experiments: a convex hull calculation, boolean set operations (intersec-
tion, union, difference) between fractal objects and classic CAD objects (lines,
planes, splines, cylinders). A primary goal for our future works could be the
integration of these approaches to our geometric modeller.

Several questions remain unanswered. As we described in section 4.3.4,
there are restrictions on the choice of the initial partial solid. Constructing a
suitable initial interior part is generally challenging, and we often have no choice
except to work without approximating the interior. This makes it impossible to
apply important operations such as the membership predicate and the subset
inclusion.

Another question is related to representing the operation result. As de-
scribed in chapter 5, when the self-similarity property (5.1), is satisfied, it is
possible to construct a CIFS whose the attractor is close enough to the opera-
tion image. However, it is also interesting to derive the topological model of the
output iterative system, that is to say to construct a BCIFS representing the op-
erator image. For example, in applying a boolean intersection, some constraints
of incidence and adjacency can be induced from the initial BCIFS constraints.
However, the additional constraints for the new edges and faces somehow have
to be identified.

Finally, a whole class of operations working with multiple attractors remains
unexplored. Of course, for approximate computations we could replace the
attractors with their approximations, and calculate the result using available
techniques. However, the effectiveness of this approach may to be questioned.
The key difficulty here is that we have to increase the level of approximation in
all attractors in parallel, that is to say, to find a balance between the rates of
their evolution.

110



Appendices

111



Appendix A

Computing the attractor
bounding ball

A.1 Bounding ball for the attractor of an IFS

Methods to determine a bounding ball for the attractor of an IFS have already
been developed.

Gentil [Gen92] described an approach based on the dichotomous search for
the minimal radius of a ball that bounds the attractor of an IFS. The approach
can be applied in a multi-dimensional space and calculates the result for a given
precision.

Hart and DeFanti [HD91] introduced a method which starts with the unit
ball centered at the origin. The algorithm iteratively produces a sequence of
balls converging to the limit ball that bounds the attractor.

Rice [Ric96] improved on Hart and DeFanti’s approach by optimizing the
radius of the bounding ball using a generic optimization package. He also showed
that the centre of the limit ball can be determined analytically by solving a
system of linear equations.

Martyn [Mar03] showed that the solution of this system is the centroid of
the attractor with particular weights. To obtain a better approximation, he
presented a heuristic iterative method called “balancing the attractor”. The
algorithm is not limited by the dimension of the space in which the attractor
lies.

More recently, Martyn [Mar09b] presented a novel approach to approximate
the smallest disc to enclose the affine IFS attractor at any accuracy. The method
is based on the concept of spanning points he introduced to describe the extent
of an IFS attractor.

In this thesis, we require the initial compact subset B to be not only the
bounding ball (not necessarily a tight one), but also the set, for which the
following inclusion holds:

T(B) ⊆ B,
because with this property we have the continuous approximation of the attrac-
tor exterior. Each element of this sequence is included in the next one.

We have chosen the method suggested in [Gen92] because it satisfies all the
requirements and also because of it is simple to implement. In addition to
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efficiency, this approach allows us to achieve better convergence as it computes
the minimum bounding ball for a given accuracy.

A.2 Bounding ball for the attractor of a CIFS

Here we describe a method for computing a set of bounding balls for the at-
tractor of a CIFS. For each CIFS attractor we thus find a bounding ball (not
necessarily a tight one) centered in a point of the attractor.

A path in the CIFS graph is a sequence of the automaton states {qk}l+1
k=1

which satisfies the following conditions:

• ∀k = 1, · · · , l ∃i : qk+1 = δ(qk, i)

• qi 6= qj ∀i, j, i 6= j

Here l ∈ N is called length of the path and denotes a number of transformations
applied to reach the state ql+1.

A simple cycle in the CIFS graph is a path which is closed on its first state:

• q1 = ql+1

An operator of the simple cycle is a composite of the transformations T qki be-
tween the cycle states. Let us denote the simple cycle from the state a (i.e.
q1 = ql+1 = a) by ξa.

Finally, let θa be a set of all simple cycles from the state a.
The CIFS system defines a family of attractors associated with the states.

Since the attractors are mutually recursively defined, we construct the balls by
depth-first searching in the CIFS control graph.

Let us consider an example of a CIFS attractor, illustrated in figure A.1.
The system is described by an automaton with the initial state a and several
simple cycles.

Figure A.1: An example of a CIFS. The system is described by an automaton
with the initial state a and several simple cycles

The attractor Aa is defined as follows:

113



Aa =
⋃
i∈Σa T

a
i (Aδ(a,i))

= T a0 (Ab)
= T a0 T

b
0 (Aa) ∪ T a0 T

b
1 (Ac)

= T a0 T
b
0 (Aa) ∪ T a0 T

b
1T

c
0 (Aa)

This CIFS is thus equivalent to the IFS with two transformations T a0 T
b
0 and

T a0 T
b
1T

c
0 .

We compute the ball Ba = B(ca, ra) satisfying the following inclusions:

Ba ⊇ T a0 T b0 (Ba),

Ba ⊇ T a0 T b1T c0 (Ba).

The radius ra is computed as follows:

ra = max
ξa∈θa

d(Tξa(ca), ca)

1− sξa
,

where Tξa is an operator of the simple cycle ξa and sξa is its contraction coeffi-
cient. A ball center ca is computed as a fixed point of Tξa , where ξa is any cycle
in θa.

It is convenient to compute the radius ra for each simple cycle ξa ∈ θa

separately and then take the maximum one.
Let us consider another example of a CIFS attractor, illustrated in figure A.2.

There is a path {q1 = \, q2, . . . , ql, ql+1 = a} to the several simple cycles ξai ∈
θa. As described above, we firstly compute a ball Ba using the simple cycle
transformations. Secondly, we compute the balls Bqi recursively verifying the
following inclusions:

B(cqi , rqi) = Bqi ⊇ T qi(Bqi+1), ∀i = l, . . . , 1.

That is, we compute the radius rqi as follows:

rqi = max(rqi , d(T qi(cqi+1), cqi) + rqi+1 · s(T qi)),
If the ball center cqi has not defined yet, we compute it as the image of cqi+1 .

The attractor of any CIFS is formed by schemes shown in figure A.2. Since
each simple cycle is considered separately, we can then find all schemes by depth-
first searching in the CIFS control graph. For each simple cycle ξa found we
firstly compute the ball Ba, and secondly we compute the balls through the
path to this cycle.

Figure A.2: An automaton of the CIFS. There is a path {q1 = \, q2, . . . , ql, ql+1 =
a} to the several simple cycles ξai ∈ θa.

To perform a depth-first search in the control graph, we use a recursive
function. The algorithm starts off by calling this function for the initial state \.
When the whole graph is gone through, all the required radii and centres will
be defined.

Given a CIFS with an automaton (Σ, Q, δ) and an initial state \. Here is the
described initialization method implemented on pseudocode:
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// To perform a depth-first search in the automaton’s
// graph, we use a recursive function. Algorithm starts
// off by calling this function with q = \ and empty lists
Function CheckState
Input:
q is a current state q ∈ Q
states is a list of traversed states
t is a list of applied transformations
Output: initial bounding balls Bq = B(cq , rq) ∀q ∈ Q
Body:
{

// We are looking for a cycle
index← states.indexof(q)
if index = −1
{

// It is not a cycle, continue to search
for each i ∈ Σq

{
CheckState(δ(q, i), states + [q], t + [T qi ])

}
// Whole branch has been traversed and
// the required radii and centres were defined
exit

}
// We found a cycle. It is a tail of the list t
// Calculate a cycle length
cLen← t.count−index
// Extend the list t on cycle transforms
// to simplify the following loop
t← t+ t.sublist(index)
// Change the cycle state balls
for i = states.count−1 to index
{

w ← states[i]

tcycle ←
∏i+cLen
j=i t[j]

if cw is not defined
then cw ← a fixed point of tcycle

else rw ← max(rw,
d(tcycle(cw),cw)

1−scycle
)

}
// Change the balls on the path to simple cycle
for i = index− 1 to 0
{

w ← states[i]
y ← states[i+ 1]
if cw is not defined
then cw ← t[i](cy)
else rw ← max(rw, d(t[i](cy), cw) + ry · s(t[i]))

}
}
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[GN13] C. Gentil and M. Neveu. Mixed-aspect fractal surfaces. Comput.
Aided Des., 45(2):432 – 439, February 2013.

[Gol02] R. Goldman. On the algebraic and geometric foundations of com-
puter graphics. ACM Trans. Graph., 21(1):52 – 86, January 2002.
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Résumé :

La définition de formes par ces procédés itératifs génère des structures avec des propriétés

spécifiques intéressantes : rugosité, lacunarité. . . . Cependant, les modèles géométriques classiques

ne sont pas adaptés à la description de ces formes.

Dans le but de développer un modeleur itératif pour concevoir des objets fractals décrits à l’aide du

BCIFS, nous avons développé un ensemble d’outils et d’algorithmes génériques qui nous permettent

d’évaluer, de caractériser et d’analyser les différentes propriétés géométriques (la localisation, le

calcul de l’enveloppe convexe, de la distance à partir d’un point, etc) de fractals. Nous avons identifié

les propriétés des opérations standards (intersection, union, offset, . . . ) permettant de calculer une

approximation d’image des fractales et de plus d’optimiser ces algorithmes d’approximation.

Dans certains cas, il est possible de construire un CIFS avec l’opérateur de HUTCHINSON généralisé

dont l’attracteur est suffisamment proche du résultat de l’opération par rapport à la métrique de

Hausdorff. Nous avons développé un algorithme générique pour calculer ces CIFS pour une précision

donnée. Nous avons défini la propriété d’auto-similarité de l’opération, qui définie un ensemble de

transformations utilisé dans un système itératif résultant.

Pour construire un CIFS exact de l’image, si il existe, il faut prouver tous les similitudes nécessaires

manuellement. Nous explicitons également la condition de l’opération, quand le résultat peut être

représenté par un IFS avec un opérateur de HUTCHINSON généralisé. Dans ce cas, il n’est que cette

condition à prouver manuellement.

Mots-clés : Fractal, modélisation géométrique, conception assistée par ordinateur, géométrie algorithmique,

informatique graphique

Abstract:

Defining shapes by iteration allows us to generate new structures with specific properties (roughness,

lacunarity), which cannot be achieved with classic modelling.

For developing an iterative modeller to design fractals described by a BCIFS, we developed a set of

tools and algorithms that permits one to evaluate, to characterize and to analyse different geometric

properties (localisation, convex hull, volume, fractal dimension) of fractals. We identified properties of

standard CAD operations (intersection, union, offset, . . . ) allowing us to approximate them for fractals

and also to optimize these approximation algorithms.

In some cases, it is possible to construct a CIFS with generalised HUTCHINSON operator, whose

attractor is close enough to the operation result with respect to the HAUSDORFF metric. We introduced

a generic algorithm to compute such CIFS for a given accuracy. We defined the self-similarity property

of the operation defining a set of transformations, which are used in the output iterative system.

In order to construct an exact CIFS of the image, if it exists, we must prove all the necessary

similarities manually. We explicit also the condition of the operation to be represented by an IFS with

a generalised HUTCHINSON operator. In this case, only this condition should be proved manually.

Keywords: fractal, geometric modelling, computer-aided design, computational geometry, computer gra-

phics


