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Abstract

We present a theoretical study of exciton dynamics in solutions and films of
fluorene-based molecules, complemented by experimental work carried out by our
colleagues at the University of St Andrews. We start by introducing the importance
and relevance of such a study, and the methods we use to model ultra-fast (pico-
and sub-picosecond) exciton photo-physics in these systems. We then demonstrate
that exciton transfer in solution of some branched star-shaped oligofluorene-based
molecules arises from molecular geometry relaxation, and, at a slower time-scale,
from Forster hopping between the arms. Straight oligofluorenes do not exhibit
ultra-fast exciton transfer in solution. Finally, we introduce improvements to the
standard line-dipole theory which we use to build a microscopic model for ultra-fast
exciton dynamics in polyfluorene films. Our results show very good agreement with
experiments and enable us to gain fundamental insight into the exciton transfer

processes in these materials.
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Chapter 1

Introduction

This thesis is focused on ultra-fast (pico- and sub-picosecond) exciton transfer
in polyfluorene-based organic semiconductors. In this introduction we will define
what organic semiconductors are and highlight some of their key properties, before
focusing on the ultra-fast photo-physics of these materials. We will then motivate
the importance of understanding the fundamental physics of these materials through
a study of their applications in devices, and highlight the current research challenges

that these material are facing.

1.1 Organic semiconductors: Background

“Organic semiconductors”, or “molecular semiconductors”, are materials which,
like any semiconductor, do not conduct charges as much as a metals do, but do
conduct better than isolators. They are molecular materials made of organic com-
pounds, whereas “inorganic semiconductors” are crystals made of elements from the
columns II to VI in the periodic table of elements [1]. A more rigorous definition,

as well as detailed basic physics principles, will be provided in Section 1.1.2.

1.1.1 A short history

Organic semiconductors emerged much later than their inorganic counterparts.
Indeed, the first report of highly conductive polymers was made in 1963 [2], whereas
the first inorganic semiconductor diode laser (made of gallium-arsenide) had al-
ready been created three years earlier [3]. Organic semiconductor devices therefore
appeared long after their inorganic equivalents: whereas an inorganic light emitting
diode (LED) was realised for the first time in 1962 [4], the first demonstration of an
organic LED (OLED) dates from 1987 [5]. Similarly, organic transistors were first
developed in 1986 [6], much later than the realisation of the first inorganic transistor
created in 1947 [7]. This is true for photovoltaic cells as well: the first silicon solar
cell was produced in 1954, with an efficiency of 6% [8]; in contrast, the first organic
cell, with an efficiency of around 1%, was created in 1986 [9]. However organic
lasers appeared quite early, in 1967, in the form of dye lasers, usually consisting of
crystals of dye-doped polymer [10,11], and even made a significant contribution to
the development of both organic and inorganic lasers [12]. Non-dye based, organic

semiconductor lasers appeared in 1992 [13].



The much more recent discovery and investigation of organic semiconductors,
compared to the longer history of inorganic semiconductors, is one of the main
reasons why organic semiconducting devices are not widely commercially available.
However, they are the subject of important research efforts due to their advantages
over inorganic semiconductors, and therefore their potential to replace them in the

near future, as we shall see in the rest of this introduction.

1.1.2 Basic photo-physics of organic semiconductors

Organic semiconducting materials can be either short molecules or extremely
long molecules called polymers, consisting of the repetition of a monomer unit [14].
Examples of such semiconducting molecules are presented in figure 1.1. Organic
semiconducting molecules, both short and long, have a backbone of carbon atoms
formed by the o-bonds between adjacent carbon atoms, created by the individual sp?
wavefunctions (or orbitals) [15]. They also possess a conjugated electronic system
formed by the m-molecular orbitals, which are orthogonal to the o-orbitals, and, in
general, arise from the p, atomic orbitals of the sp?-hybridized carbon atoms [16].
These bonds are illustrated in figure 1.2, where the ethylene molecular structure is
defined by the o-bonds. The m-bonds, sketched in figure 1.2, are orthogonal to the
structure of the molecule and are conjugated. This is why organic semiconducting
materials are often also called “conjugated molecules”. These m-bonds are much
weaker than the o-bonds, which hold the structure together, and therefore they
are responsible for most of the electronic and optical properties that characterise a
conjugated molecule [14].

It is common to use the acronyms HOMO and LUMO to respectively desig-
nate the highest occupied molecular orbital and the lowest unoccupied molecular
orbital [14]. In most organic semiconductors, the energy of the HOMO corresponds
to the top of the highest energy m-band, all the lower energy bands being filled as
well, and the LUMO corresponds to the bottom of the lowest energy 7*-band (* de-
notes an excited orbital), all the higher energy bands being empty [14]. The organic
semiconductor “bandgap” can therefore be defined by the energy difference between
LUMO and HOMO (at first approximation, neglecting the exciton binding energy,
for instance [18]). The 7 to 7* transitions are typically between 1 and 3 eV [19],
leading to light absorption and emission in the visible range. The n- and 7*-bands
are not necessarily extended over the whole molecule, and 7- or 7*-bands of very
close energies can be localised in different parts of a single molecule. The localisa-
tion on the molecule of the 7- and 7*- bands involved in an electronic transition
defines a chromophore [14]. Excitons in polymers are usually well represented as
one dimensional excitons, extended (a few nanometres) along the chain [20]; their

length is related to what is called the “conjugation length” [21], the typical length
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Figure 1.1: Example of a semiconducting small molecule (phthalocyanine) and semicon-
ducting polymeric molecules, which can be used in photovoltaic cells (from reference [17]).
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Figure 1.2: Sketch of the ethylene molecule, with representation of the HOMO, or 7-
bands (left) and LUMO, or 7*-bands (right) (from reference [17]).




of the polymer chain which is not significantly distorted so that the electronic prop-
erties are the ones of the straight chain. Usually, the definition of a chromophore
is restrained to the transitions in the visible spectra, but we extend it to any tran-
sition in this thesis - by chromophore length we mean the spatial extent of the
polymer where the transition of interest, whatever its energy, takes place. There-
fore, whereas in inorganic semiconductors the bandgap arises from the extended,
ordered lattice [22], in organic semiconductors the bandgap is created and present
in any individual molecule.

Under photo-excitation we can observe photo-conductivity: an electron is pro-
moted from the valence band (7-band) to the conduction band (7*-band) by photon
absorption [23]. As a result, mobile electrons and holes are created and can move
as a response to an electric field. This property makes organic semiconductors suit-
able for the fabrication of many electronic devices such as light emitters, displays,
transistors, photovoltaic cells and lasers. A detailed study of the photo-physics of
organic semiconductors will be conducted in the next Section, 1.2. We will review
the physics of such devices in Section 1.3.

Semiconducting polymers are stable in a variety of phases, such as gases, so-
lutions or solids (in crystalline, semi-crystalline or amorphous forms), depending
on the molecule and the processing techniques. The main difference between small
molecules and polymers lies in the way they are processed to produce thin-films.
Conjugated polymers need to be spin-coated or deposited by a printing-like tech-
nique, whereas small molecules are deposited onto the film from sublimation or
evaporation, or can also be grown as a single-crystal much more easily than poly-
mers [14].

We will highlight the advantages and drawbacks of organic semiconductors more
specifically in the context of their use in devices in Section 1.3, but one major lim-
itation of most organic semiconducting samples is their poor photo-chemical sta-
bility, particularly when exposed to water, oxygen and modest temperatures [23].
Techniques exist to overcome this limit, such as encapsulation, but could still be im-
proved [24]. One of the main advantages of organic semiconductors is the ease with
which they can be processed, with the possibility of utilising simple “printing tech-
niques” [12]. In contrast, inorganic semiconductors require more complex processing

techniques, such as chemical vapour deposition or molecular beam epitaxy [1].

1.2 Ultrafast photo-physics in organic semiconductors

1.2.1 Photo-excitation of a single molecule: simple picture

Following the absorption of a photon by the semiconducting molecule, an elec-

tron is promoted from the m-band to the 7*-band. A hole is created by the lack of



one electron in the HOMO, and this hole is bound to the electron due the attractive
Coulombic force between them. This electron and hole bound state is described by
a quasi-particle, called an “exciton” [25]. Two models exist for the exciton: the
Wannier exciton and the Frenkel exciton [18]. Wannier excitons do not possess
a strongly bound electron and hole (the binding energy is typically less than 0.01
eV [26]), and are therefore delocalised over many atoms, whereas electrons and holes
in the Frenkel model have much stronger binding energies (with values typically re-
ported from 0.4 to 1leV [27-29]). Wannier excitons usually describe excitons in
inorganic semiconductors [23], where the dielectric constant is much higher than in
organic semiconductors. Frenkel excitons usually occur in molecular semiconducting
systems [23]. Therefore, in the rest of this thesis, we will refer to Frenkel excitons
as simply “excitons”.

A chromophore can be, to a certain extent, compared to a harmonic quantum
oscillator; the outcome of this comparison is that the potential energy surface of
the molecule is typically parabolic, as a function of the nuclear coordinates [30] - a
parametrisation of the position of the nuclei of the chromophore. When unexcited,
the chromophore geometry is the ground-state geometry, the ground-state being
denoted in the rest of this thesis as the Sy-state. This geometry corresponds to the
minimum of the ground-state potential energy parabola. In the frame of the Born-
Oppenheimer approximation, the nuclei motions are slow compared to the electrons
(see Section 2.3 for more details), and as a consequence the absorption transition
is vertical: the geometry of the chromophore does not undergo any change during
the photon-absorption or emission process. In the rest of this thesis, all transitions
will be vertical: they take place without immediate molecular geometry change, as
sketched in figure 1.3. Just after photo-absorption the chromophore is in the first
excited-state (or any higher excited state, depending on the photon energy), that
we will call in the rest of this thesis the Si-state, and the potential energy surface
of the molecule has changed due to the presence of the excitation, leading to a
different combination of the oscillator modes (see figure 1.3). Due to the coupling
between the chromophore and its environment (solution, phonons), the chromophore
will consequently relax from the Sy geometry to the S; geometry, corresponding to
the minimum of the S; potential energy surface. This relaxation is fast, typically
100 fs [31,32]. Radiative decay mechanisms will then be responsible for the emission
of a photon at the emission energy, vertically from the S; to the Sy potential energy
surface. This will be followed by the relaxation of the molecule from the S; geometry
back to the ground-state Sy geometry.

This is illustrated in figure 1.3. From this figure it is clear why the absorption
energy is always higher than the emission energy (the difference between the absorp-

tion and emission energies is usually called “Stokes-shift” [14]). For an ensemble of



chromophores, due to thermal energy, the chromophores will individually experience
a number of geometrical configurations leading to a broadening of the equilibrium
absorption energy. This phenomena is defined as “inhomogeneous broadening of the

spectra’”.

CE Vibrational relaxation

( Geometry relaxation

Emission

Energy

Molecular coordinates

Figure 1.3: Sketch of the processes involved in the photo-excitation of a chromophore.

All these photo-physical processes do not change the orientation of the electronic
spins. The excitation, when created, is always a singlet because the pair of electrons
in the HOMO have opposite spins. Therefore, in the description above, only a
singlet exciton is considered. Change of orientation of the spins can nonetheless
occur, following a mechanism called inter-system crossing [14] and this results in
the creation of triplet excitons. The mechanisms for the creation of these triplet
excitons are generally slow (typically on the nanosecond timescale [33-35]) so in the
rest of the thesis, where the focus will be on the pico- and sub-picosecond excitation
dynamics, we will consider only singlet excitons.

In polymers, due to the strong m-orbital overlap arising from the closely spaced
neighbouring atoms of the monomeric units, the exciton wavefunction usually ex-
tends over several of these monomers [20]. As previously stated, the extent of this

wavefunction is called the conjugation length [21]. It is theoretically possible for the



exciton to be extended over chains belonging to neighbouring polymers because of in-
trachain interactions, and the resulting multichain exciton is called an exciplex [36].
However, the significant disorder in polymer films makes this delocalisation very
unlikely; as a result the formation of exciplexes will be ignored in the rest of this
thesis.

Non-radiative decay mechanisms also exist. A measure of the fraction of these
non-radiative decays is given by the photoluminescence quantum yield (PLQY). The
PLQY is defined as the ratio of the number of photons emitted over the number of
photons absorbed [14]. Values range from close to 0% to almost 100% quantum effi-
ciency, meaning that in the latter case almost all excitons follow the recombination

path described above.

1.2.2 DMolecular vibrations: Impact on photophysics

A more realistic model includes vibrations; indeed molecules made of hundreds
of atoms possess numerous degrees of freedom, leading to vibrations arising because
of thermal energy and photo-excitation [30]. Due to thermal energy, the energy of
the chromophore will actually not necessarily be the minimum of the ground-state
potential energy surface, but could have a range of values, depending on where the
vibrational modes are energetically situated. The transitions to the excited-state
which will be dominant are the ones reaching a vibrational state of the excited-state
energy potential [30]. Detailed mathematical treatment of the absorption probability
between electronic and vibrational states is given by the Franck-Condon principle,
which is developed in Section 2.4. These vibrations are very evident in the absorption
and emission spectra of a single chromophore, provided the homogeneous linewidth
(the spectral broadening appearing from the dephasing time of the excitation, see

Section 2.4) is not too wide.

1.2.3 Multiple chromophores: Exciton transfer

Once the exciton is created, its transfer to another chromophore is possible. This
transfer can be realised by simple photoluminescence from one chromophore, and re-
absorption of the emitted photon by another chromophore. However, the radiative
lifetimes of the fluorene-bases molecules we investigated in this thesis are longer
than 100 ps [37], whereas we are interested in the picosecond and sub-picosecond
dynamics of such molecules. In the rest of this work, our interest will therefore be
restricted to non-trivial exciton transfer mechanisms, involving no photon-emission
and re-absorption.

We can distinguish two kinds of exciton transfer: either the exciton has reached

a chromophore of the same molecule or it has transferred into the chromophore of an-



other molecule. The first case corresponds to “intrachain” exciton transfer whereas
the second case is called “interchain” exciton transfer [38]. Interchain transfer re-
quires close neighbouring molecules and therefore does not take place in well diluted
solutions with small concentrations of organic semiconductors, nor in gas-phases.

Exciton transfer mechanisms lead to the transfer of excitation to low energy
chromophores. This phenomena plays a major role in the ultra-fast photo-physics
processes in organic semiconductors, by governing which subset of chromophores of
the whole ensemble is most likely to become excited after photo-excitation. This
is of crucial importance in devices such as organic light emitting diodes (OLEDs)
and organic photovoltaic cells (OPV), where the the device characteristics are based
on both the photo-physics and charge transport properties (see detailed device de-
scriptions in Section 1.3). It can also lead to the transfer of either the electron or
the hole only, creating a separated electron and hole pair - a quasi-particle which is
known as a “polaron” [36]. However such separation requires one to overcome the
strong exciton binding energy, typically 0.5 eV in polyfluorenes [12], and therefore
requires a specific structure and blend or semiconducting molecular species, as used
in organic photovoltaic cells (see Section 1.3). As we will only study pure-phase
samples of molecules without charge transfer character in this thesis, we will assume
that polaron formation is non-existent at the time-scale we are interested in. This is
also supported by the lack of observed polaron signatures seen during the realisation
of the experiments presented in Chapters 3, 4 and 6.

The need for a theory enabling the excitation transfer in organic materials ap-
peared in the middle of the twentieth century, when it was observed that the PQLY
of dye species were significantly different whether they were in solution or in solid
phase [39,40]. One of the explanations at this time was that the excitation was
transferred to lower energy molecules in films (in diluted solutions, non-aggregated
molecules behave like isolated molecules), and if these molecules to which the exci-
tation transferred were not fluorescent (dark), this resulted in the observed PLQY
loss [41].

Energy transfer processes are intimately linked to the interactions between chro-
mophores. In the following work, we will present three interaction regimes: the
weak, intermediate and strong coupling regimes. These regimes are determined by
the comparison of two distinct timescales [30]: the vibrational relaxation time Ty¢jq,
and the exciton transfer time Ty,qpnsfer- Treiaz 15 the time it takes for an excited chro-
mophore to return to the thermal equilibrium of the excited-state from the “hot”
out-of equilibrium vibrations induced by the vertical photo-induced electronic tran-
sition. It is intrinsically linked to the decoherence time, because such vibrational
relaxation induces dephasing. Therefore a system with fast relaxation times will

loose its quantum coherence quickly. Tiansfer is simply the typical time associated



with the movement of one exciton from an excited chromophore to a non-excited
chromophore in the ground-state; it is directly linked with the interaction strength
between these two chromophores, and with their spectral matching. All exciton

transfers arise from the following Hamiltonian [42]:

H = Hy+ He + He—vip (1.1)
with Hy being:
Hy =Y en|n) (n|+ > hwnibl oo , (1.2)
n n,k

where |n) is an excitation created in the n-th chromophore site, ¢, its associated
energy, lwy is the energy of the k-th vibrational state of the n-th chromophore,
with b}; . and b, being respectively its bosonic creation and annihilation operator.

H.; describes the intermolecular electronic coupling:

Ha=) > Jun(|n) (m|+|m) (n]) . (1.3)

m>n n

with J,, ,, being the electronic coupling between chromophores m and n. He_parn

represents the electronic interaction with the bath.

Hel—bath = Z Z 9n.k <bjrn7k + bn,k’) ‘n> <7’L| ) (14)
n k

where g, is the coupling of the k-th vibrational mode of the n-th chromophore
with the phonon bath.

The ratio between the energy difference and the electronic coupling of two chro-
mophores (|e,, — €,]/Jm.n) defines the localisation of the excited state [42].

The comparison of the electronic coupling between two chromophores and their
coupling with the phonon bath determines if the transfer is coherent or not. Indeed,
the electronic coupling is linked to the exciton transfer rate Tiyqnsfer, Whereas the
chromophore-phonon bath coupling relates to 7T,eiqz [30]-

We can therefore distinguish three cases, depending on the comparison between
these characteristic times [30, 42, 43]:

® Trclaz <K Tiransfer, I such a case the exciton transfer take place when the
chromophore is totally relaxed to the excited-state equilibrium geometry, and
therefore the coherences do not exist any more. This case is thus called inco-

herent transfer, or the weak coupling limit.

® Trclaz > Tiransfer- 1N this situation, coherence is long lived compared to the

transfer, so the exciton is a quantum mechanical wave packet. It can in conse-



quence move almost freely from chromophore to chromophore. Such transfer

is therefore called coherent transfer, or transfer in the strong coupling limit.

Trelaz ~ Tiransfer- 1his case is not trivial, as the exciton motion is at the
border between coherent and incoherent. Additionally, the definition of such a
system is not straightforward: if the molecular sample is made of aggregates,
it is possible that the exciton motion in an aggregate is coherent, whereas the
motion between aggregates is not. This regime is called partially coherent, or

the intermediate coupling limit.

In particular, the assumption that incoherent transfer is the dominating transfer
mechanism is consistent with the assumption that excitons are localised on one
chromophore - the weak coupling limit. We assume that in fluorene-based molecules,
|em — €n| > Jim.n, so that the exciton is localised on only one chromophore and that
weak coupling applies. This confirmed by results from Chapters 4 and 6.

The electronic coupling V' between the acceptor and donor molecules can be par-
titioned into two coupling mechanisms [43]: one coupling arising from the Coulombic
interaction between the charged particles, Vi, and one associated with the degree
of overlap between the molecular orbitals of the donor and acceptor, the exchange-

interaction V.
V=Ve+Vx. (1.5)

Two theories have developed to describe incoherent energy transfer, depend-
ing on which coupling energy is dominant. If the coupling energy is dominated by
Coulomb coupling, the associated coupling is called Forster transfer and is based
on resonant, dipole-induced energy transfer. Conversely, if the main coupling mech-
anism is the overlap between molecular orbitals, the transfer is Dexter-type and
relies on electron exchange. Therefore, Forster transfer deals with long-range en-

ergy transfer whereas Dexter transfer deals with short-range energy transfer.

1.2.4 Forster theory: Incoherent exciton transfer

It was first proposed that excitation transfer in organic semiconductors was
similar to energy transfer in coupled oscillators [42]: if one excites a spring which
is weakly coupled to another one, it is possible to see the oscillation spreading and
being transferred to the other coupled spring. In the case of chromophores, the
coupling is between the transition densities of each chromophore. Indeed, if these
charges are spatially distributed so that light interaction with the chromophore is
possible, an oscillating dipole is created on the chromophore, conceptually analogous
to an oscillating spring. In this frame, the coupling energy between chromophores

is therefore approximated as V = V. Knowing the wavefunction of state ¢ of
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chromophore X, ¢;(x1, 2, ...,2N), where x; is the coordinate of electron j, the

transition density between the ground and first excited states is given by [30]:

ngy(r) = N/qﬁg(wl,wz,...,:BN)¢’{(y1,y2,...,yN)dwz...da:Ndyz...dyN , (1.6)

where 7 = &1 —y;. These transition densities are coupled to each other by Coulom-
bic interaction, leading to the following interaction energy between the acceptor and

donor chromophores A and D:

2 D A
Ve = € /”01(r1)n10<r2>dr1dT2 _ (1.7)
4meg !7"1 - "'2’

If the distance between the chromophores is larger than the spread of the tran-
sition, then the dipole approximation can be used and the transition density distri-
bution can be reduced to a linear dipole [44].

It was also found experimentally, in 1948, that the efficiency of the excitation
transfer in molecular samples depends strongly on the absorption and emission en-
ergies [42]; more precisely, on the emission spectrum of the excitation donor and
the absorption of the acceptor. This is fundamentally the expression of the energy
conservation rule, and of the resonant character of these transfers. These exper-
imental findings motivated Forster to undertake theoretical work to predict these
observations. Using the Fermi Golden rule with second-order perturbation theory
treatment of the electronic coupling between donor and acceptor, Forster derived

an expression of the excitation transfer rate [44,45]:

ks = 7 V2 [ glh) dhs. (19
where fw is the excitation energy, g(hw) is the overlap between the normalised fluo-
rescence spectra of the donor and the normalised absorption spectra of the acceptor
and Ve the interaction energy between the chromophores. This interaction energy
depends on the photon energy through the dielectric screening of the Coulombic
interaction. The spectra used in the spectral overlap calculation need to include
vibrations as well [44, 45].

Forster used the point-dipole approximation to obtain a simplified expression of
this rate [43]: .
1 [ Ry
b (B) = 7 () (19)

T

where 7" is the radiative decay of the donor chromophore, R the centre to centre

separation and Ry the Forster radius, defined as the distance for which the transfer
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rate is equal to the radiative decay rate of the donor:

1
ka'rster(RO> - ; . (110)
It can be shown that this Forster radius Ry is, within the point-dipole approximation
[43]:
R 9000%2ng(hw) In 10
0 12875 Nant 7

with 7 the photoluminescence quantum yield, N4 Avogadro’s number, n the refrac-

(1.11)

tive index and k the orientation factor arising from the dipole-dipole interaction,
defined as:
k=da-dp—3(da-R)(dp-R) , (1.12)

where da (dp) is the direction of the dipole of the acceptor (donor) chromophore
and R is the acceptor centre to the donor centre vector. In the case of an ensemble
of spatially randomly oriented linear chromophores, we can calculate that an average
value for k is 2/3 [41].

The expression of equation (1.9) highlights the separation dependence of the
Forster energy rate, in 1/RS.

The use of the term “Forster energy transfer” usually implies a transfer rate
following the expression derived by Forster in the limit of the point-dipole approxi-
mation. However, the use of the point-dipole approximation is subject to a number
of conditions which are not fulfilled in standard organic semiconductor films. Numer-
ous approximations to “improve” Forster theory, consisting for instance of higher
dipole expansion [46], quantum electrodynamic theory [47-49] or transition den-
sity cubes obtained by quantum chemistry calculations [50-52], have been proposed
since. A complete review of these methods, and, in particular, the dipole approxima-
tions, as well as an accurate and efficient Coulombic interaction calculation method,
will be presented in Chapter 5. In the rest of this thesis, “Forster energy transfer”
designates the incoherent exciton hopping given by the rate of equation (1.8), what-
ever the method used for the calculation of the Coulombic coupling is (it will clearly
be stated when necessary). The other assumptions of Forster theory are that only
one electronic state of each of the two chromophores is involved in the process, that
the quantum coherence has vanished and that the bath around the chromophores

varies incoherently.

1.2.5 Dexter theory: Incoherent exciton transfer

The other incoherent exciton transfer mechanism which can take place was first
formulated by Dexter [46]. He stated that at short distance, V' &~ Vx and therefore

the main mechanism responsible for energy transfer is the electron exchange interac-
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tion. This interaction arises from the symmetrisation of the electronic wavefunctions.
In consequence, if two molecular species are very closely separated, their molecular
orbitals can overlap, leading to electron transfer from the donor to the acceptor.
Dexter stated that, as the molecular orbital tails decay exponentially (typically,
the tail 7' is proportional to exp(—aR), o being in the range of 1.2-2.0A~") [42],
therefore the electronic coupling Vy varies as Vy o« exp(—2aR), R being the centre-
to-centre separation of the molecular orbitals [53]. The Dexter electron transfer rate
is the same as for the Forster exciton transfer rate (it depends on the overlap of the
absorption spectra of the acceptor with the fluorescence spectra of the donor, and
on the square of this interaction energy), but the interaction energy is now derived
from the molecular orbital overlap [46]:

2T

kDemter = A V)%/g<hw)dhw . (113)

This interaction is quite weak compared to the dipole-dipole interaction, except
at short distances, typically for separations less than 5A, where Dexter transfer
dominates [42].

However, the original Dexter theory deals with electron transfer, not exciton
transfer. Indeed, the transfer of an exciton requires the hole to be transferred from
the donor to the acceptor as well. This means that the electron in the LUMO
of the exciton donor must be transferred to the LUMO of the exciton acceptor,
and in parallel, the spin-matching electron of the HOMO of the exciton acceptor
must relocate to the HOMO of the exciton donor [54], as sketched in figure 1.4.
This results in the expression of the transfer rate being somewhat more complex
than the rate formulae presented in equation (1.13), but as a first approximation
we can assume that dependence of the rate with the centre-to centre separation

(Vx o exp(—2aR)) is still valid. A more precise treatment is given in reference [54].

flw N

Double Dexter

p
/\ elmr
— A

Exciton Donor Exciton Acceptor Exciton Donor Exciton Acceptor

Figure 1.4: Sketch of the two electron transfers resulting in exciton transfer in the frame
of Dexter theory.

Forster and Dexter transfer are therefore characterisable in real systems, as long
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as we can measure the distance dependence of the exciton transfers. Indeed, we have
shown that Forster transfer varies approximately in 1/R® whereas Dexter transfer
varies as exp(—2aR). In theory molecular systems can exhibit both behaviours [42],
depending on how close the chromophores are, and how they are arranged. In the
rest of this thesis, we however exclude Dexter transfer, as we believe fluorene based-
chromophores are not so closely packed that they are within the range of application
of Dexter transfer. Indeed, we show evidence in this thesis that Dexter theory is
not necessary to model exciton transfer in solutions of fluorene-based star-shaped

molecules (Chapter 4) and in polyfluorene films (Chapter 6).

1.2.6 Beyond Forster-Dexter theory: Incoherent exciton transfer

Recent corrections have been proposed to the original incoherent Forster-Dexter
energy transfer theories. Forster based his theory on the Coulombic effect, neglecting
the magnetic effects arising from the magnetic field associated with any electric field.
In most cases, this magnetic field is negligible; however when inter-chromophore
distances are comparable with the excitation wavelength 27c/w, where ¢ is the
speed of light and w the angular frequency of the excitation exchanged between
the chromophores, the full electromagnetic coupling should be taken into account,
and not only the Coulombic coupling [47,55]. However, due the conditions on the
virtual photon exchanged and the distance between the two involved chromophores
(the wavelength of the photon has to be typically a few nanometers), this applies
only for high energy photons, such as photons in the ultraviolet range [54], and is
mostly relevant for biological systems exposed to such radiations, such as nucleic
acids in DNA [56]. As the fluorene-based molecules we present in the rest of this
thesis emit in the visible spectra, we will be not using this correction to the Forster
theory in our work. More details about this correction to the Forster theory, called
“photon-mediated energy transfer”, are available in the literature, for instance in
reference [54].

Another long-range correction is “bridge-mediated energy transfer” [57,58]. This
correction is based on the idea that the transfer of energy from the donor chro-
mophore to the acceptor chromophore can be mediated by one or more “interme-
diate” chromophores. For instance, if the donor and acceptor are different species
which are very different energetically, direct Forster transfer between these two chro-
mophores will be unlikely. However, if a neighbouring chromophore with an energy
between the energies of the donor and acceptor species exists, the excitation could
transfer more efficiently from the donor to to this intermediate chromophore, and
then from there to the final acceptor chromophore. Because we use pure-phase
fluorene-based molecular samples in the rest of this thesis, we neglect any bridge-

mediated energy transfer theory to calculate “improved” Forster rates. For refer-
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ence, detailed theoretical results concerning this correction are given in reference [54].
Additionally, this corrective transfer is intrinsically included in the model of Forster
based exciton transfer that we present in Chapter 6, and an “improved” Forster
rate is not necessary in this case. We will also demonstrate, in Chapter 6, that in
pure fluorene-based materials, none of these corrections are necessary to predict the

experimentally observed exciton transfer.

1.2.7 Coherent exciton transfer

In the strong coupling limit, energy transfer is coherent and excitons are delo-
calised over several chromophores, so that the incoherent Forster-Dexter theories
are not applicable any more. Coherent effects are pure quantum mechanical effects,
the excitation being described by wavefunctions whose phases are conserved [42].
This means that quantum interferences can occur, exactly like in the Young slits
experiment, because multiple pathways exist for the transfer of excitation from one
delocalised site to another one. These interferences imply oscillatory dynamics of
the electronic eigenstates, which are coupled to each other by the coherences. In
the basis of the chromophores (where the excitation is described as the excitation
density on each chromophoric site), coherent effects are characterised by the spread
of an exciton over many of these chromophores, with local oscillations of the exciton
density on a particular chromophoric site, coupled with other sites. The only way
to deal accurately with the modelling of such quantum coherent excitations is the
utilisation of the density matrix approach, combined with a master equation [42].
However, the modelling of the interaction between a molecular exciton and the sur-
rounding bath is still a theoretical challenge, even though some relatively satisfying
treatments exist (based on a small-polaron transformation for instance [59-61]) be-
yond the scope of this thesis. A detailed presentation of density matrix theory,
used in conjunction with a particular master equation approach (the optical Bloch
equations), can be found in Chapter 2.

Coherent energy transfer has long been neglected because of the belief that co-
herence was very-short lived compared to any other typical time-scales in molecular
semiconducting systems (typically less than a hundred femtoseconds) [62-64]. How-
ever, recent experiments seem to indicate that quantum coherent superposition of
states occur over much longer times than originally thought [65-68], and that there-
fore quantum coherent energy transport phenomena could play an important role in
the overall energy transfer process. Many of the systems where such long-lived co-
herences have been observed are biological light-harvesting systems [42]; in fluorene
based molecules, to the best of our knowledge, no indication of long-lived coherent
effects has been demonstrated, and we therefore neglect coherent exciton transfer

mechanisms in the rest of this thesis.
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1.2.8 Partially-coherent exciton transfer

When the molecular coupling is of the same order as the coupling of the exci-
tons to the bath, the energy transfer regime is intermediate between coherent and
incoherent. This case is particularly challenging, as it covers a lot of different sce-
narios [30,42]. For instance, the relative strengths of these two couplings can be
similar over the whole chromophoric ensemble, or different depending on the region,
due to the local order of chromophores for instance. In this latter example, the ex-
citon will be delocalised and its transfer will be coherent within the locally ordered
chromophores, but become incoherent when the exciton reaches another region of
space. For this reason, it is still a challenge to establish a reliable theory describing
this regime, as no theory is currently satisfying, and the recent attempts [69-71]

need further investigation.

1.3 Principles of the operation of organic semiconducting devices

Conjugated organic materials are the subject of intensive research for a range
of optoelectronic applications. These include light sources such as light-emitting
diodes [5], light-emitting field-effect transistors [72] or lasers [12], as well as photo-
detectors [73] and photovoltaics [74]. In this Section we will review the principles of
three common devices most relevant to our research, that can currently be fabricated
from organic semiconductors: lasers, light emitting diodes and photovoltaic cells.
We will highlight how organic semiconductors are used in these devices, and what
particular challenges and advantages are associated with the use of these materials

for these devices.

1.3.1 Lasers

The first laser using organic semiconductors was built in 1967 [10]. However, as
with inorganic lasers, it required growing high quality crystals, which is a difficult,
expensive and demanding process. The great stride forward in the field of organic
lasers came with the realisation of a laser made of a polymer in solution, in 1992
[13], which opened up the possibility of fabricating lasers much more easily than
conventional inorganic lasers [12].

Lasers are made of two distinct components: a cavity and a amplifier (or optical
gain material) [75]. The cavity is made of two reflecting surfaces, usually mirrors,
so that light can travel back and forth between the two mirrors. It acts as a light
resonator and therefore selects a certain number of possible optical modes. The
amplifier is inside this cavity. Its role is to emit the light and compensate for the
losses light suffers during its reflection inside the cavity. This leads to a coherent

emitted light, which can have an extremely well defined frequency and a very narrow
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beam. The active part of the amplifier is the organic semiconducting material, as it
emits additional photons through stimulated emission by incident photons. Energy
is provided to the amplifier material by an external power source. In the rest of this
Section, we will focus on gain materials, as this is the laser component which can
be realised from organic materials.

The first generation of organic amplifiers were made of crystals of small molecules,
such as anthracene [76] (see figure 1.5). The discovery that film amplifiers could be
fabricated by simpler processes such as evaporation of small molecules (for example
aluminium tris(quinolate) [12]) or spin-coating and ink-jet printing techniques for
conjugated polymers (such as poly(phenylene-venylenes) (PPV) [77,78] or polyflu-
orenes (PFO) [79] - see figure 1.5), resulted in numerous advances in the field of or-
ganic lasers [12]. Hybrid molecular structures also exist, such as the dendrimers [80].
In contrast to the conjugated polymers which are linear, the dendrimers are branched
structures. They consist of a core and branched conjugated arms, the dendrons, with
attached surface groups. The core and the conjugated arms are responsible for the
main electronic properties, whereas the surface groups ensure very good solubility of
the molecule. For this last reason, they are nowadays also commonly used as laser
amplifiers [81,82].

Figure 1.5: Sketch of the anthracene, aluminium tris(quinolate) (Algs), polyfluo-
rene (PFO) and poly(phenylene-venylenes) (PPV) molecules, from left to right. These
molecules are commonly used as laser materials.

The principle of an optical amplifier is to emit photons through stimulated
emission [75]: once a site (chromophore) has absorbed a photon, an incoming photon
will trigger the emission of an additional photon, of the same phase, energy and
direction as the latest incident photon, giving rise to an amplified coherent light
beam. Inversion of population is required for stimulated emission to take place. In
a ensemble of two-level systems, this requires most of the chromophores to be in
the excited state, and therefore strong intensities, which are difficult to generate
and which can damage the materials, in addition to intrinsic excitonic effects, such
as exciton-exciton annihilation (see Chapter 6), which will prevent high excitation
densities from being long-lived.

However, real chromophores behave more like a model four-level system. Indeed,
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we have seen in Section 1.2, and illustrated in figure 1.3, that the excitation of a
chromophore involves a vertical transition to a vibrational level, before relaxation
of the molecule to the equilibrium geometry of the excited state. A photon is then
emitted by the transition from the equilibrium geometry of the excited state to a
vibrational state of the ground-state, before relaxation from this vibrational state to
the equilibrium geometry takes place. Therefore, it is possible to obtain significant
population inversion between the equilibrium excited-state geometry and the vibra-
tional mode of the ground-state geometry, even if a small fraction of the ensemble of
chromophores is excited [12]. In addition, this process results in stimulated emission
occurring at the emission energy, distinct from the absorption energy; this guaran-
tees minimum re-absorption of the coherent beam to be amplified - if the system is
well tuned [12].

The difference between the absorption and emission energies is further increased
by the energy transfer processes which lead to localisation of the excitons to low
energy sites. If two species of different energies are mixed together, it is possible
to further enlarge this energy difference and even control it, by judicious choice
of the low energy species. This clear distinction between absorption and emission
energies results in even lower threshold lasing operation. By performing transient
absorption measurements, it has been demonstrated that some organic materials
could reach high optical gains [83,84], making them particularly suitable for lasers.
One additional reason for this high gain is that organic materials absorb strongly (a
100 nm thick film can absorb 90% of the incoming light [85]): if absorption is strong,
stimulated emission will be strong as well, and only a small quantity of material is
necessary.

Compared to inorganic lasers, organic lasers possess a much lower charge carrier
mobility [86] and much higher exciton binding energy [27-29], creating issues for
electrical pumping (see below). However, their advantages are their relative insen-
sitivity to temperature change (due to the localised character of the excitons [87]),
compared to inorganic lasers, the wide range of materials with emission energy in
the visible spectra [88,89] and the ease of the processing techniques [24]. These ad-
vantages make organic lasers particularly suited for displays, spectroscopy, sensing
and data communication [12]. Compared to dye lasers, organic semiconductors do
not need to be at low concentrations in solid state to offer high photoluminescence
quantum yield, resulting in increased optical gain. Dye lasers cannot transport
charges, so the possibility of electrical pumping does not even exist [12].

The inability to electrically pump organic lasers is the main drawback limiting
the commercial development of these promising devices, and this limitation is the
subject of intense research efforts. The low mobility of charges in organic materials

is one of the main reasons explaining the impossibility of pumping lasers electrically:
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this would require very high current densities, which would overheat and destroy
the device [12]. High densities of excitation would create additional losses by high-
order processes such as exciton-exciton annihilation. Triplet formation and contacts

would be responsible for further losses.

1.3.2 Photovoltaic cells

Solar photovoltaic cells are a major field of application of organic semiconduc-
tors. They potentially play a role in meeting the challenge of increasing the world
production of electric energy from renewable sources, at a low cost per final unit of
energy produced.

The first inorganic, silicon solar cell appeared in 1954 and had an efficiency of
6% [8], whereas the first organic cell (with an efficiency of around 1%) was produced
in 1986 [9]. Currently, the best inorganic cells have over 40% efficiency (Multi-
junction cells [90]), with common commercial photovoltaic cells having an efficiency
of around 20% [91]. Recently, organic cells with efficiencies greater than 10% have
been demonstrated [92], increasing the hope for future research developments of
very efficient cells. However, the real commercial efficiency measure is the cost per
unit of energy produced [91], and the prospect of organic cells potentially having a
better commercial efficiency than inorganic cells is the main reason for the current
research interest in them, as we shall see in this Section.

The fundamental aim of any solar cell is to absorb photons from the Sun and
convert them into electricity. For this purpose, a material which can create charges
following photon absorption is necessary - these materials are typically semiconduc-
tors. Once the excitation is created, it is necessary to overcome the exciton binding
energy in order to separate the electron and hole and thus create free charge carriers,
which need to be collected by two specific electrodes and therefore create an elec-
tric field and current. In inorganic semiconducting materials, charges are separated
by the utilisation of two oppositely doped materials, forming a “p-n junction” [8].
In organic semiconductors, where band theory is not applicable, there is no such
junction, but instead a blend of two materials. One molecular species is the “elec-
tron acceptor”, and the other one the “electron donor” [24]. MEH-PPV, P3HT or
PCDTBT (see figure 1.6) are some of the common hole conductors [93], or equiva-
lently electron donors. Fullerene (Cgy or Crp), with its high mobility and ultrafast
photo-induced charge transfer is considered the best acceptor [94] and is very often
the acceptor material under the PCBM molecular structure (see figure 1.7).

Current generation from solar energy is achieved in four steps [95]. First, the
incident light must be absorbed by the solar cell to create an exciton. As we have
seen above, organic semiconductors possess very good absorption properties, and

therefore thin-film layers of typically 100 nm [96] are thick enough for absorption
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Figure 1.6: Sketch of the electron donors P3HT, PCDTBT and MEH-PPV, from left to
right.

Figure 1.7: Sketch of the electron acceptor PCBM.

of most of the incident photons. It is crucial to choose organic materials with
absorption energies matching the solar spectra for efficient energy conversion from
the sunlight. With many materials possessing large absorption bands in the visible
spectra, organic semiconductors are well suited for this purpose [24].

Once the exciton is created, numerous mechanisms exist for the exciton to trans-
fer away from the chromophore where it was first created, as highlighted in Section
1.2. The exciton will therefore diffuse until de-excitation or until it reaches an in-
terface between the electron donor and the electron acceptor, where the charges will
separate with an efficiency of almost 100% [93] (if the donor and acceptors are well
designed). Therefore, the longer the exciton diffusion length, the more likely the ex-
citon will successfully be separated into free carriers. However, in organic materials,
the exciton diffusion length is typically around 10 nm [97], much shorter than the
thickness of the film.

The last step, after charge separation, is charge transport to the electrodes.

This process can lead to exciton formation and therefore loss of overall efficiency. In
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organic materials, due to the low charge mobilities (from 107 to 1072 cm?- V1 .s71

[86]), the charge collection length is also less than 100 nm, making it difficult for
this process to occur in a typical solar cell.

Common device architectures are presented in figure 1.8. The morphology of the
films plays an important role. For instance, increased overall efficiency (due to better
energy transport) is achieved in cells where the acceptor and donor chromophores are
mixed together (mixed phase cell), in an optimised way, compared to devices where

the acceptor and donor materials are layered on top of each other (for instance, a
bilayer cell) [98].

electrode 1

electrode 1 ’ (ITO, metal)
(ITO, metal)

electron donor

dispersed heterojunction electron acceptor

electrode 2 electrode 2
(AL, Mg, Ca) (Al, Mg, Ca)

Figure 1.8: Sketch of a mixed phase cell (left) and a bilayer cell (right) (from reference
[17]). ITO stands for indium-titanium oxide.

The main advantages of organic solar cells compared to inorganic cells are, as
for all organic devices, the possibility of using simple fabrication techniques, such as
roll-to-roll printing, in addition to being lightweight and flexible [24] - this facilitates
the integration of solar cells in buildings and other common accessories, such as
clothes. However, serious issues remain. The two main drawbacks that limit the
cells being available on the market are the low carrier mobility and their lifetime [99].
The low carrier mobility (and small exciton diffusion length) makes the design of
efficient devices particularly challenging. The stability problems come from the
interactions between the molecular material and oxygen and water (vapour, etc.),
and also from the chemical reactions with the electrodes. We have shown here that
organic photovoltaic cells suffer from a certain number of drawbacks, which need
to be solved for their viable commercialisation. If these problems can be overcome,
considering their potential major advantages, they should meet commercial success

in the future.
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1.3.3 Organic light emitting diodes (OLEDs)

The most commercially successful device to date is without question the or-
ganic light emitting diode (OLED) [24]. Electrolumiscence was achieved in organic
crystals in 1965 [100], but the first thin-film OLED created by vacuum deposited
molecular materials dates from 1987 [5], and the first OLED from solution processed
polymers was realised in 1990 [101]. After the demonstration of these functioning
devices, research has been focused on using OLEDs for displays, and such displays
can already be found on the market. In addition, since the beginning of the twenty-
first century, numerous researchers have investigated the utilisation of OLEDs for
lighting purposes [102-105].

The fundamental principles of OLEDs are in many respects the same as for a
photovoltaic cell, except that an OLED operates in “reverse-mode”. Indeed the
injection of electric energy into an OLED creates an emission of photons. The steps
leading to light emission are [106]: application of an external voltage for the injection
of free charges through the electrodes of the OLED, transport of these free charges in
the device, leading to exciton formation, and finally radiative decay of this exciton.

The injection of the free carriers is realised by two electrodes situated at opposite
sides of the device. As for solar cells, at least one of these electrodes needs to be
transparent. ITO (indium-titanium oxide) is very commonly used as the anode [107],
as it is a high work-function transparent metal. After injection of the holes at the
anode, the holes will fill the HOMOs of the chromophores of a conduction layer,
the hole-transport layer. This layer needs a high mobility to guarantee efficient
transport of the holes away from the anode. TPD, a-NPD, PEDOT:PSS and S-
TAD are common materials used for hole transports [106] (see figure 1.9). Similarly,
electrons are injected from the cathode (usually made of aluminium, magnesium
or silver [107]), before being transported further away by the electron transport
layer, where the electrons will fill the LUMOs of the semiconductors of this region.
Materials used for electron transport are for instance Alqs, BCP or BPhen [106] (see
figure 1.10). Having these extra electron or hole transport layers could be seen as
problematic for the overall efficiency of the device; however, this in fact enables an
efficiency improvement if all the layer materials and thickness are well chosen and
tuned [106]. After transport of the free charges through the transport layer, the

free charges reach the recombination region where they need to °

‘meet” (enter their
Coulombic attraction region) in order to form excitons. Due to the multiplicity of
three of the triplet states, three quarters of the excitons formed in this way will be
triplets states, with only one quarter being singlet excitons [108]. Therefore, the
molecular species in the recombination region need to be efficient phosphorescent

materials (radiative decay from a triplet state) rather than fluorescent (light emission
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from a singlet exciton) to ensure efficient light production [109]. In addition, systems
possessing short triplet lifetimes (to minimise the probability of non-radiative bi-
excitonic quenching processes) and efficient inter-system crossing (conversion of a
singlet exciton to a triplet exciton) will lead to the most efficient semiconducting
organic materials [107]. Finding molecular species which can match all these criteria
and make a consistent ensemble of layered species, in addition to being stable, is a
challenging issue. Heavy-metal centred metal organic complexes have been shown
to be good candidates [110-112] (examples provided in figure 1.11), with the main

issues remaining stability, in addition to the availability of the raw compounds [106].

Figure 1.9: Sketch of some common hole transport materials: TPD, a-NPD, PEDOT,
PSS and S-TAD, from left to right, top to bottom.
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Figure 1.10: Sketch of some common electron transport materials: Algs, BCP and
BPhen, from left to right.

One of the main advantages of OLEDs compared to LEDs is the possibility of
making flexible and efficient devices by using simple fabrication techniques [24]. In
addition, as organic semiconducting emitters possess an intrinsically broad lumi-
nescence spectrum, by combining several layers of various materials it is possible
to create efficient white light OLEDs [102,113]. These are particularly suitable for

lighting applications as a replacement for the less efficient incandescent and flu-
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Figure 1.11: Sketch of a green phosphorescent emitter, Ir(ppy)s and of a red phospho-
rescent emitter, Ir(MDQ)2(acac), from left to right.

orescent light bulbs as general lighting sources. Another advantage is that when
small organic molecules are used as the emitting molecules, the light source can be
quite focused (“point-like”) [106], whereas when polymers are used as emitters, the
light source is delocalised over a large surface area, creating large, uniform light
sources [106] which can have many more applications than usual light bulbs. Such
complex “white OLED” devices need also to be carefully designed: for instance,
energy transfer needs to be accounted for carefully, to ensure that the excitons dis-
sociate in the right regions of the device and can lead to the emission of photons of
various energies from all the emitter layers.

We have shown that OLEDs possess numerous advantages over conventional
LEDs, which explain their current commercial success in display applications. Ap-
plications for these devices as light sources are also undergoing tremendous research,
driven by the promise of significantly improved light sources compared to the current,
commercially available light bulbs. However, the most critical remaining challenge
is the stability of these devices and their materials, with degradation resulting from
a variety of processes, from chemical transformations in the recombination region
to effects originating from energy transfer [114].

In the previous Sections we have given an overview of the current knowledge of
ultra-fast processes in organic semiconductors, and of the state-of-the-art organic
devices, with the challenges still associated with their commercialisation. We have
shown that these challenges are linked with the fundamental ultra-fast intrinsic
physics of these materials. In the next Section, we will further expand on the
current research challenges in the field, to guide our research work for the rest of
this thesis.

1.4 Current challenges

We have demonstrated in this introduction the importance of organic electronics
for the realisation of a new generation of promising electronic devices. Neverthe-

less, most of these devices are not commercially available yet, with the exception
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of OLEDs which are available in only one area of their two possible uses. From
the introduction, it is clear that the current research challenges are numerous and
particularly arduous for the route to mass-produced, commercially available de-
vices. These challenges cover a wide area of science, with physics, chemistry and
engineering being the fundamental disciplines that enable the understanding and
improvement of these materials. For instance, it is crucial to develop new materials
with improved intrinsic properties, such as an increased charge mobility or charge-
transfer character [115], in addition to being easy to synthesise and to process, with
widely available, cheap compounds [115]. These materials and device structures
also need to be stable under repeated electrical- or photo-excitations, and to not
chemically react with other species (such as oxygen or water) in a time-span which
should ensure a good device life-time [115]. Control of the fabrication processes also
needs to be improved [115] to avoid batch to batch variations, and to realise more
efficient device morphologies. Indeed, fundamental questions about morphologies
still remain (what is a typical polymer morphology in films, and how does this affect
its semiconducting properties?). The way electron donor and acceptor polymers
are blended in solar cells is still not clear [116], for instance. Similarly, the role of
interfaces in the efficiency of a device is very complex and far from being elucidated.

More generally, very fundamental physics issues remain. One major issue is
the role of energy transfer in organic systems, and the difficulties in modelling such
processes - as highlighted in Section 1.2.3, these mechanisms are complex and in-
volve many parameters and approximations - for instance identifying the appropriate
transfer regime. Analytical models are still emerging and are far from being able
to simulate the physics of a real system [117], especially as in-depth observation of
energy transfer is not often directly accessible experimentally. However, the avail-
ability of such analytical models, and, for instance, the understanding of the role
of coherent versus incoherent regimes in energy transfer, would definitely help to
improve devices. In addition, coherent effects are still not well understood, and
extensive research remains to be undertaken to understand the early stage of exci-
ton creation, such as to what extent the coherent exciton is delocalised and where
and how the exciton localises when decoherence appears [31]. More generally, many
ultra-fast physical processes (exciton creation, charge separation, molecular relax-
ation and energy transfer, among others) take place in typically sub-picosecond
time-scales [118-122], making experimental probes of such processes particularly
challenging, and consequently, theoretical formulations are not easily verifiable by
experiments.

Excited-state processes are also very difficult to model and therefore theoretical
knowledge of such processes is very limited [123]. However, they play an important

role in the physics of the device, through phenomena like, among others, excited-
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state absorption, damages by ionisation or exciton-exciton annihilation.

1.5 Aim of the thesis

We have shown the importance of organic semiconducting materials for the reali-
sation of a new generation of devices which are extremely promising as a replacement
for conventional, inorganic semiconductor devices. We have seen that the challenges
facing the fabrication of commercially-ready organic devices are still numerous, and
require the collaboration of many disciplines, such as process engineering for improv-
ing the actual fabrication steps of the devices, to fundamental physics to understand
the mechanisms responsible for the intrinsic properties of the materials.

In this thesis, to address some of these challenges, we will focus on the fundamen-
tal physical aspects, and study the theory of exciton transfer in a single, star-shaped
molecule (Chapters 3 and 4) and in an ensemble of chromophores mimicking a poly-
mer thin-film (Chapters 5 and 6). These star-shaped molecules are a novel class
of fluorene-based materials that increase the ease of experimental processing. The
polymer is polyfluorene, currently very often used because of its good physical prop-
erties, and because it constitutes a good model system (see Chapter 2). We will
confront these theoretical studies with experimental results from our collaborators
at the university of St Andrews. We aim to model exciton transfer in a realistic
way to obtain useful knowledge about the important mechanisms that govern such
transfers.

In the next Chapter, we present the theoretical methods that we will use to

achieve these goals.
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Chapter 2

Methods

In this Chapter, we introduce the methods that are used in the rest of the
research presented in this thesis. Indeed, in order to successfully model and un-
derstand the theory of ultra-fast photo-physics in organic semiconductors, reliable
methods and a study of preliminary basic concepts are necessary to underpin any

deep theory work.

2.1 Introduction

In the field of organic semiconductor theory, there are some well-established
theoretical methods which describe the quantum effects regulating the properties of
small molecular systems, or the structure-related properties of larger systems. They
are usually referred to as “Quantum Chemistry” (QC) [124], and will be presented in
Sections 2.2 and 2.3. In this thesis, if not indicated otherwise, “system” designates
an isolated ensemble of atoms, for instance one molecule (typically, a “small system”)
or an ensemble of thousands of interacting molecules (a “large system”).

However, the description of the photophysics of a large system is a much more
complex problem, and an important current research topic [125]. Two main ap-
proaches prevail in modelling the photo-physics of organic semiconductors: a method
based on the Monte-Carlo simulation of charges or quasi-particles (such as excitons)
moving around in the system [126-134]; and a method based on a master-equation
type approach, which enables the calculation of the evolution of exciton densities
at the microscopic level [125,135-138]. The approach used in this work being much
closer to this latter method, the Monte-Carlo method will not be developed in this
Section. A simple master-equation type approach, the “Optical Bloch Equations”
(OBE), is presented in Section 2.4 to introduce some generic approximations and
results that will be used in the rest of this thesis.

We are interested in the photo-physics of molecular systems. Therefore we aim
to calculate molecular transition properties, such as energy, dipole and density, and
time-dependent excitonic properties, such as polarisation or the exciton densities
of large ensembles of molecules. The former quantities will be obtained by the
electronic structure methods presented in Section 2.3 and the later time-dependent

properties will be calculated by the OBE, as presented in Section 2.4.
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2.2 Quantum chemistry

2.2.1 Large-scale atomistic systems methods

These methods, for the investigation of a large atomistic system (thousands of
atoms), usually enable either access to information on the structural properties or
predict the time-dependent photo-physics of an ensemble of chromophores. The
methods used to obtain the structural details are generally referenced under the
name “Molecular Dynamics” (MD) or sometimes “Molecular Mechanics” (MM).
They are mostly based on classical physics: they use a force-field to obtain the
electronic energy as a function of the position of the nuclear coordinates, and use
Newton’s Law to describe the nuclear motions [124,139]. These methods therefore
enable time-dependent simulations of the interactions between a large number of
atomistic and molecular components at low computational cost. They enable, for
instance, the calculation of geometries, relative energies (such as torsional or bending
energies) and energy barriers for interconversion between different conformations.
They have been applied successfully in biology and biophysics to study large-scale
processes, such as protein folding or interactions [140, 141], but their application
to organic semiconductors is more recent [142] and their reliability is therefore not
as well-established. Indeed, the correct force field for such components is usually
not known. For this reason, these methods have not been used at any stage of the
research work presented here and so will not be described in more detail in this

thesis.

2.2.2 Small-scale atomistic systems methods

The methods dealing with a small-scale atomistic system are usually described
under the generic term “electronic structure methods” [124,143]. This term covers
common methods such as the Hartree-Fock approximation or Density-Functional
Theory (DFT), and are typically used for calculating the electronic and vibrational
properties of a single molecule. We have been using these methods extensively in
our research to predict the electronic properties of a number of polyfluorene-based
molecules. For this reason, in Section 2.3, we will review, in detail, the basics of
electronic structure methods calculations, and how they have been used to produce

some of the results presented later in this thesis.
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2.3 QC: Electronic structure methods

2.3.1 Background

Electronic structure methods encompass a very wide range of methods, approx-
imations and techniques, with the aim of predicting, as accurately and efficiently
as possible, the quantum-related properties of any molecule (including geometric or
electronic properties [124]). The goal is simply to calculate the solution of the M-
particle Schrédinger equation f[gbi(rl, To,...,Tn) = €;0i(T1,T2,...,Tp, 1), Where
H is the Hamiltonian of the system, ¢; the M-body wavefunction of the i-th excited-
state and ¢; its energy, from which it is possible to derive all other system properties.
The Hamiltonian is the sum of the kinetic and potential energy terms: H=T+ V,
the potential energy 1% being the Coulomb interaction between each pair of charged
entities, and the kinetic energy T being the sum of the individual kinetic energies
of each particle in the molecule.

Unfortunately, for molecules it is impossible to solve this Schrodinger equation
exactly. The electronic structure methods aim at making this solution tractable with
modern computers, at the price of some approximations. These electronic structure
methods are divided into three categories [143]: semi-empirical methods, ab-initio
methods and Density Functional Theory (DFT).

Two approximations are common to any electronic structure method [144]: the
adiabatic approximation and the Born-Oppenheimer approximation. In the adia-
batic approximation [145], the coupling between different electronic states is ne-
glected; systems involving these electronic states coupling are photochemical reac-
tions and beyond the scope of this work. The Born-Oppenheimer approximation
goes further than the adiabatic approximation, by stating that, as the nuclei are
much heavier than the electrons (by at least a factor of a few thousand), the move-
ments of the nuclei can be neglected compared to the movement of the electrons [146].
The kinetic energy of the nuclei is thus assumed to be zero and the electronic motion
is described as occurring in a field of fixed nuclei. This means that the total Hamil-
tonian for the M-particle system can be rewritten as H = ﬁezec, FIelec depending
only on the N electrons in the system. It is also important to note that the particles
are considered as non-relativistic.

The further principles and differences between the three methods are presented
in the following Subsections, with a particular emphasis on DFT, as this is the
method we have been using to obtain our theoretical knowledge of the fluorene-

based molecules presented in the rest of this thesis.
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Semi-empirical methods

Semi-empirical methods are based on a series of experimental parameters, to
simplify the solution of the Schrodinger equation [144], but nonetheless keeping
it realistic. Examples of common methods include the Austin Model 1 (AM1) or
Modified Neglect of Diatomic Overlap (MNDO). However, these methods are by
essence very sensitive to the system they are employed for [144]. Indeed, they are
parametrised from experimental data for a system of molecules, and the results they
produce can only be trusted if the system studied theoretically is very “close” to
the experimental system which parametrised the method - “close” being difficult to
quantify. Despite being computationally inexpensive, we decided not to use these
methods because of this aforementioned limitation: for instance, the star-shaped
truxene-cored molecules we investigated, presented in the next Chapter, have not
been extensively studied and they have been relatively recently synthesized [37];
therefore parametrising a semi-empirical method would have been challenging and

without any guarantee of success.

Ab-initio methods

Ab-initio methods, on the other hand, do not involve any experimental results
in their algorithms, but are based solely on the laws of quantum mechanics and
theoretical properties obtained using these laws [144]. The most popular methods
in this category are the Configuration Interaction method (CI), the Mgller-Plesser
perturbation theory (MP) and the Coupled Cluster Methods such as CCSD and
CCSD(T). These methods are better than the semi-empirical methods in the sense
that, as they do not rely on experimental data, they can be used on any kind
of system [124]. However, the computational cost of such methods is much higher
than for semi-empirical methods [144], making then less practical for large molecules
(more than 10 atoms for CCSD(T'), more than a hundred for CI). For this reason, we
have not been using any of these ab-initio methods, but instead used the more recent
DFT, which offers a good compromise between computational cost and accuracy,

and is for this reason already very popular.

Density Functional Theory

Rather than directly calculating the wavefunction from the Schrodinger equa-
tion, like the semi-empirical methods and ab-initio methods do, DFT calculates the
charge density of the system, from which it is possible to obtain the wavefunctions.
Indeed, DFT is based on the theorem demonstrated by Hohenberg and Kohn [147].
This theorem states that the potential of an interacting system is fully determined

by its electronic density, and that there is a functional expressing the total energy
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as a function of the electronic density, valid for any potential. For a particular po-
tential, the energy minimising the functional is the energy of the ground state, and
its associated density is the ground state density.

The main advantage of this theorem is that the many-body problem (N electrons
and therefore 3N variables) can be simplified into a single-body problem with only
three variables, as only the one-particle probability density is necessary to obtain
all the information about the ground-state. This single-particle probability density
n(r) is defined as:

—N/.../|¢i('r','r2,...,rN)\2d37"2...d3rN . (21)

The difficulty is now to obtain the one-particle density of the system. This can
be done relatively easily by the Kohn-Sham algorithm [148]. The work realised by
Kohn and Sham consists of separating the total electronic energy ﬁelec[n] into the
kinetic energy T.iee and the electronic potential energy V[n], itself divided into the

series of following terms ([n] designates a functional of n):

~

Helec[n] = Telec + V[n] = 7A_’elec + Vnn + ‘7671 + ‘766 + VXC’[”] ) (22)

where ... is the kinetic energy of the electrons, given by:

o h2 9
Totee = — —V, 2.3
elec i m i ( )
Vnn is the Coulomb interaction between the nuclei. In the frame of the Born-
Oppenheimer interaction, this term is constant.

Ven is the nuclear-electron Coulomb interaction, and of course depends on the elec-

Ven 47?50 Z/ |R; —T[ (24)

where Z; is the charge of nuclei ¢ and R; its centre. Vee is the electron-electron

tron density n(r):

Coulomb interaction, depending on n(r):

~ e? 1 n(r)n(r')
= = ————drdr’ . 2.
Vee 47r502i:2// P — 7| rar (25)

ch[n] is the exchange-correlation term, which can be further decomposed into
the exchange term Vy[n] and the correlation term Vg [n] [143]: Vye[n] = Vx[n] +

Veln]. Vx[n] is the exchange energy arising from the antisymmetry of the electronic

wavefunctions and Vg [n] is the dynamic correlation in the motions of the individual
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electrons. This term VXC is the functional that gave its name to DFT. It is a
functional in the sense that it is a function of a function. Indeed, this potential
ch[n] is not known exactly and therefore many alternatives exist to calculate it.
They will be detailed in Section 2.3.2.

In practice, the steps of the Kohn-Sham algorithm, which enables the calcu-
lation of the electronic density and therefore the electronic wavefunctions, are the
following [143]:

1) Guess of an initial electron density n(r).

~ A~ ~

2) Calculation of the effective potential V[n] =V 4+ Vo + Ve + volnl.

3) Solving the Schrodinger equation:

A

Helec[n] (Tla : 7TN>)¢2' (Tla s 7TN7) = €i¢i (rla <. '7TN7) ’ (26)

which provides the electronic wavefunctions ¢; (r1, -, 7N, ) and energies ¢;.

4) Calculation of the new electronic density using:

W)= le )P (2.7

5) If the new electronic density n* (r) is very close to n (r), then the problem is

solved; otherwise we iterate starting from step 2) until convergence is achieved.

This method would therefore be exact (with the exception of approximations
such as the Born-Oppenheimer approximation mentioned previously) if we knew how
to express the exchange-correlation potential. This is not the case, and this is the
main limitation of DFT: knowing how to express this exchange-correlation potential
and thus which functional to use. The inclusion of such a corrective term is still a
strong point of DFT, compared for instance to methods such as Hartee-Fock, where
the correlation is calculated on average, using a mean-field electron density, and the
way it is included in the theory means it is much more computationally efficient
than ab-initio methods. This explains the popularity of DFT: almost obtaining
the accuracy of ab-initio methods, at only the computational cost of semi-empirical
methods.

It is worth noting that this method deals with the ground-state only. How-
ever, most phenomena relevant for the photo-physics study of molecules are excited-

state processes. Fortunately, a method based on DFT was recently developed to
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enable such excited-state studies: Time Dependent - Density Functional Theory
(TD-DFT). This is the subject of the next Section.

Time Dependent - DFT (TD-DFT)

DFT aims to solve the stationary Schrodinger equation to obtain the ground-
state electronic properties of the system; the purpose of TD-DFT is to solve the
time-dependent Schrodinger equation [149]:

9¢i
ot

th :H¢z (Tl,...,TN,t) s (28)
to obtain the excited-state electronic properties. The electronic Hamiltonian con-

tains similar terms as previously, except that they are now time-dependent:

A ~

Heeo(t)[n] = T(t) + V(1) [n] + W(t) (2.9)
with W(t) = SN, w(r;, t) being an external potential. w is often written as [150]:
w(r,t) =0(t —to)wi(r, t) , (2.10)

where w; is the initial external potential at ¢y and 6(t — ty) is a Heaviside function
(0(t — to)=1if t > ty, & = 0 otherwise), so that the time-dependent potential is
switched-on at t = ¢.

Additionally, the continuity equation regulates the electronic density n(r,t)

[151]:
hg—?(r,t) = -Vj(r,t), (2.11)

with the current 5 being defined as

N

G, ) =1/2i Y [ (r,0)" Vigi (r,) — ¢i (r,) Vigy (v, 1)"] . (2.12)

1

The time-dependent equivalent to the Hohenberg-Kohn theorem is the Runge-
Gross theorem. This theorem states that two electronic systems in the same initial
state, but undergoing different time-dependent external potentials, will result in
the systems in two different states [152]. Therefore, similarly to the Hohenberg-
Kohn theorem, we can write the time-dependent potential v(t) of the system as a

functional of the density and the initial state ¢g:

v(r,t) =vln, go|(r,t) . (2.13)

We can observe that in the case where the initial state is the ground state, as
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the Hohenberg-Kohn theorem asserts that the ground-state wavefunctions are a
functional of the density only, then the time-dependent potential is a function of the
density only as well. The time-dependent Kohn-Sham algorithm is almost the same
as for DFT [150], now using time-dependent densities and potentials, and solving
ih% = Aelec(t)[n]gbi (r1, -, TN, t) instead of [:]elec[n] (r1, -srN, ) O (11, -, 7N,) =
€:¢; (r1, -,rN,). When the algorithm has provided a self-consistent density, the
excited-state of the system is determined.

Using the linear-response function of the system it is possible to obtain the
excitation energies of the system [150]. The idea of linear response theory is to treat
the time-dependent external potential v; as a perturbation potential, and using
perturbation theory, calculate the first-order resulting change in the ground-state
density (for in depth analysis of linear response theory, see for instance reference
[149]). Doing this, it is possible to obtain self-consistently the eigenmodes of the
oscillations in the system, where the only perturbation is considered to be the density

itself, resonating self-consistently at the excitation energies of the system.

2.3.2 DFT: Choice of functional and basis-sets
Functional

As shown in Section 2.3.1, DFT requires the knowledge of a functional for the

calculation of the exchange-correlation potential. In this Section, we will give an
overview of the general principles of functionals, and then will focus on the func-
tionals used in the rest of this work.
There are two main categories of approximations for the exchange-correlation func-
tional [144]; one based on the Local Density Approximation (LDA), where the system
is assumed to be a uniform electron gas, and the other one based on the GGA (Gen-
eralized Gradient Approximation) where the gradient of the density is also taken
into account.

In the LDA case, the local exchange function has the form [144]:

2 1/3
EiPA = <3 ( 5 ) /n(r)4/3d'r ) (2.14)

N 477'60 2 E

whereas a GGA functional, as developed by Becke in 1988 [153], has a corrective

gradient term:

2

e
ECGGA _ pLDA _
X X Y Areg

n(r)*3N(r)?

, 2.15
1+ 6ysinh ™ N(r) " (2.15)

with N(r) = n(r)~%? |Vn(r)| and v being a fitting parameter, obtained thanks to

the known exchange energy of noble gases. Similarly, local or gradient-corrected
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formulations exist for the electronic correlation potential [154].
Hybrid functionals are a very popular class of functional, based on either local or
gradient-corrected approximations. They are called hybrid as their exchange term

is calculated as a mixture of DFT and Hartree-Fock theory exchange energies [124]:

Hybrid
EXy i __ CHFE§F + CDFTE)D(FT H DFT

functional. In the theory presented in the rest of this thesis, three functionals have

where cF" and ¢ are constants defined by the
been used, because they are found to be accurate for the materials we investigated:
B3LYP, CAM-B3LYP and M06-2X.

Indeed, B3LYP is the functional most commonly used to study semiconducting
molecules. It yields very good results compared to experimental measurements on
fluorene-based molecules; B3LYP is therefore the functional we used the most. The
B3LYP acronym stands for Becke, 3 parameters, Lee, Yang and Parr and designates
a hybrid functional which was developed in 1992 [155]. CAM-B3LYP and the M06
series of functionals, and especially the M06-2X functional, are more recent but are
growing in popularity. CAM-B3LYP is based on B3LYP, with the correction added
by CAM, meaning Coulomb Attenuating Method. It takes into account longer-range
Coulombic effects, such as charge transfer, and therefore is believed to increase the
accuracy of B3LYP [156]. MO06 is a new range of functional designed by Zhao et
al. [157]. It claims to be the most efficient amongst all the functionals in many
common situations. In particular, the functional M06-2X is said to be the best
functional to date for Time Dependant-DFT (TD-DFT) calculations with charge
transfer phenomena.

We shall compare the accuracy and range of application of these three functionals

on fluorene-based star-shaped molecules in Chapter 3.

Basis Set

In addition to the functional, another parameter of importance has to be chosen
to perform a DFT calculation (or any other electronic structure method): the basis
set. Indeed, most electronic structure methods involve an assumption regarding the
molecular orbitals: they are approximated as a linear combination of one-electron
functions. These functions are called basis functions, they are normalised, and are
similar to molecular orbitals in the sense that they are centred on the nuclei. It is
therefore necessary to decide which kind of functions to use as basis functions and
how to apply them. The “basis set” refers to this choice for a given calculation.

As for functionals, lots of basis sets exist, but we can highlight some extensively
used ones, the so-called Gaussian basis sets, created in the seventies by John Pople
and co-workers [158,159]. They are the basis sets we utilised to produce the quantum
chemistry results presented in this thesis. They are obviously based on Gaussian

functions. Their nomenclature typically has the form: X-YZ G, where X, Y and

35



7 are numbers. G indicates that the functions are Gaussians, the number of digits
on the left of the hyphen is the number of functions describing the core orbitals,
and on the right the number of functions describing the valence orbitals, the actual
digits being the number of Gaussians used in the basis set. These basis sets are
commonly 3-21G, 6-31G and 6-311G. For instance, the first basis set means there is
one function made of three Gaussians to describe the core orbital and two functions
made of two and one Gaussians to respectively describe the valence orbitals.

Extra functions have been developed to describe more accurately polarisation
and diffusion effects. Extra “polarisation functions” are necessary for accurate chem-
ical bonding calculations, polar molecules and molecules made of heavy atoms [160].
Diffusion effects are important in the case of weakly bound anions [161]. To signify

* symbols after

their use, extra polarisation functions are denoted by one or two
the G, and extra diffusion functions by one or two + symbols before the G [162].
Of course, the more functions the basis set contains, the more accurate it is going
to be, but this will obviously incur a greater computational cost and slow down the
calculations significantly. Once more, a careful choice of the basis set is therefore
required.

As the 6-31G basis set has shown very good results compared to experiments
and there is no variation in the results for more extended basis sets for oligofluorene
molecules [163], if not otherwise specified, it is the basis we used for all the quantum

chemistry results presented in this thesis.

2.3.3 Calculation scheme
Gaussian09

All the quantum chemistry work presented in this thesis has been carried out
using a commercial package called Gaussian09 [164], which has been developed since
the seventies by John Pople [165], the scientist who introduced the Gaussian basis-
sets - hence the name of the program. This software package is used by a large
percentage of the molecular quantum chemistry community. It provides a huge
number of trusted implementations of ab-initio, semi-empirical and DFT methods,
and, since the 2009 version of the software, TD-DFT. This package was therefore a
natural choice for us. I used the common bundled graphical user interface, called
GaussView [166], which has been used to prepare all the geometries, visualise the
electronic properties of the molecules, and produced all the quantum chemistry
figures that are displayed in this thesis.

The rest of this Section shows how Gaussian enables the calculation of the
electronic properties presented in this thesis and what parameters we used in the

program. It will feature some preliminary results showing evidence that Gaussian09
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functions perform as well as expected and that we can have confidence in the way

we run the Gaussian09 calculations, and therefore the results we obtain.

Calculation steps

To gain relevant knowledge of the photo-physics of the molecules, we performed
DFT calculations to determine their ground-state geometries, and then TD-DFT
calculations to calculate their excited-state properties: absorption and emission en-
ergies and dipoles, and excited-state geometries.

First of all, for the study of a molecule by the means of quantum chemistry,
the molecule needs to be “built” numerically. For this we used GaussView. The
molecule should be built in a realistic way (as the chemist would expect it to look),
but there is no need to know all the geometric parameters exactly. Indeed, quantum
chemistry methods aim to calculate the equilibrium geometries of the investigated
molecules.

For this purpose, the algorithm used in Gaussian is the following [162]. The
location and number of electrons of each atom is specified, and after having cho-
sen an electronic structure method (in our case, DET), the package calculates the
energy of the molecule (in our case, by using the Kohn-Sham algorithm), and then
computes the internal atomic forces to estimate a new possible and likely position of
the atoms. The energy of this new geometrical configuration is calculated, and com-
parison with the energy and atomic forces of the previous configuration is made to
determine if this new configuration is closer to or further from a local ground-state.
This is repeated until some convergence criteria are met. In Gaussian09, there are
five convergence criteria: the relative variation of the total energy, the relative vari-
ation of the total atomistic displacements, the maximum atomistic displacement,
the relative variation of the total atomic forces, and the maximum strength of the
atomic forces. The first criteria and three out of the four latter criteria need to be
met for Gaussian09 to consider that a local minimum has been reached; the cur-
rent geometry is then believed to be the ground-state geometry. This minimum is
not necessarily the global minimum, and depends on the initial guess made about
the molecular geometry, hence the importance of building the molecule as close to
the global minimum as possible. Sometimes, it can be worth building various ini-
tial geometrical configurations to check which resulting local minimum produced by
Gaussian09 is most likely to be the global minimum. Additionally, it is worth noting
that in most cases, the convergence criteria used are the Gaussian09 default values,
unless a detailed geometrical study is necessary, in which case the convergence crite-
ria are the tightest allowed by Gaussian09. Once we are in possession of a molecular
ground-state geometry, a TD-DFT calculation gives the corresponding absorption

energies and dipoles. Using TD-DFT once more, now for a geometry optimisation,
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it is possible to obtain the excited-state geometry of the molecule, corresponding to
the excited-state of interest (it is not necessarily the lowest excited-state, depending
on whether it is bright or not). To guarantee meaningful results during the optimi-
sation of the molecule into the excited-state geometry, the initial geometry must be
the ground-state geometry. Finally, a TD-DFT calculation for this geometry gives
the emission properties.

All these calculation steps are summarised under the form of a sketch in figure
2.1. It is important to conduct all these steps at the same level of theory (functional

and basis set) to ensure consistency of the results.

Building
molecule

energy calc.

So geometry Absorption S1 geometry Emission
properties properties

Figure 2.1: Sketch of the series of steps followed to conduct a full calculation of photo-
physics properties of a molecule.

Later in this thesis, some figures show a “transition density plot”. This plot
has been obtained by subtracting the electron density of the excited-state from the
electron density of the ground-state. The resulting textures are therefore the places
where the electrons are moved from or to during photo-absorption or emission.

Unless otherwise specified, no solvent has been used for these calculations, mean-
ing that they are conducted in the gas-phase, at zero temperature. Gaussian09 can
perform calculations in solution using the polarisable continuum model (PCM).
However, as the solvent used by the experimental team is non-polar, it is believed
that gas-phase calculations should accurately reproduce the experimental conditions
for molecular solutions. This has been checked with the star-shaped molecules pre-
sented in Chapter 3. In addition, in Chapter 4, we have investigated the effects of
molecular geometry changes, as would occur in the presence of solvent, and found
the effects of such changes to be very small in oligofluorenes.

Most of the time, there are few difficulties arising from these quantum chemistry
calculations. However, issues can be present from time to time, and the difficulty
the quantum chemist faces is to detect and solve them. These issues can be very
varied, from difficulty in finding a reasonable optimised molecular geometry to the
non-convergence of the Kohn-Sham algorithm. Experience and the use of the online

Gaussian09 user’s guide taught us how to detect and solve these issues.
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Preliminary Results: Oligofluorenes

Some preliminary results are highlighted in this Section, showing evidence that
the choice of functional and basis set is good, in the sense that the results obtained
for some well-studied molecules agree with the literature. We performed these pre-
liminary calculations on a series of oligofluorene molecules. Indeed, all the molecules
we investigated and presented in this thesis are fluorene-based. This is why it is im-
portant to demonstrate that the method we applied for the quantum chemistry
calculations of oligofluorenes are judiciously chosen, in order that any new results
for fluorene-based molecules can be trusted. Numerous articles presenting electronic
properties exist for oligofluorenes already, for instance in references [163,167-171].
The aim with these preliminary results is not to contribute further to the research
on these molecules but instead to ensure that we were able to use Gaussian09 to
reproduce these already published results.

We decided to use the B3LYP functional together with the 6-31G basis set
to investigate the electronic properties of a series of fluorene oligomers, as results
obtained with this choice of functional and basis set have previously shown very
good agreement with experiments [163,168,169]. We compared the results of our
quantum chemistry calculations with the experiments published by N. Montgomery
et al. [163]; their experiments were realised on F8 oligomers - this abbreviation
means that the monomer units possess side chains made of eight carbon atoms. A

fluorene unit (monomer) is sketched in figure 2.2.

Figure 2.2: Sketch of a F8 fluorene monomer unit.

In all the quantum chemistry calculations involving fluorenes in this thesis, the
CgH;7 side chains attached to the fluorene arms have been replaced by shorter CHj
chains. This reduction of the structure is an approximation significantly reducing
the computational costs of the calculations, without diminishing the accuracy of the
results, as it is commonly understood that side chains are largely uninvolved in the
electronic excitations of the molecules [163]. We have explicitly validated this for
the benzene-dendrimer B2 (a fluorene-based star-shaped molecule, presented in the
next Chapter) for which we have carried out the calculation including the full CgHy;
side groups as well. Compared to the calculation with the shorter CHjs groups,
the change in absorption energy and dipole is 0.6% and 2.4%. This comparison

clearly demonstrates that side-chains are not contributing to electronic transitions.
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If the side-chains are replaced by an hydrogen atom only, the variation is 1.7% in
absorption energy and 3.6% for the absorption dipole moment, compared to the full
chains. Therefore, CH3 chains are the best compromise to allow for accurate results
and efficient computation.

Following this approximation, the O4 (fluorene quadrimer) we built, for instance,

is represented in figure 2.3. Some of the results we obtained, compared to the

Figure 2.3: Fluorene quadrimer, as used in the quantum chemistry calculations.

theoretical values published by S.Schumacher et al. [163], are displayed in table 2.1.

Absorption | Absorption Emission FEmission
Energy (eV) | Dipole (eA) | Energy (eV) | Dipole (eA)
01 This work 4.70 0.8 4.18 1.07
Schumacher et al. | 4.70 0.7 4.24 1.1
03 This work 3.47 2.63 2.91 3.08
Schumacher et al. | 3.51 2.7 2.98 3.1
08 This work 3.13 4.65 2.70 4.74
Schumacher et al. | 2.86 5.0 2.69 4.7

Table 2.1: Comparison of the theoretical results obtained from the literature, by Schu-
macher et al. [163] and some of our results for a series of a-phase oligomer molecules,
calculated using B3LYP 6-31G.

All of our results are extremely similar to the theoretical results in reference [163],
even though not identical. The reason for this discrepancy comes from the length of
the side chains. Indeed, where we used longer —CHj3 groups, only an hydrogen atom
has been used by S. Schumacher et al. [163]. We have validated this explanation on
the O5 and O3 molecules: we built molecules with only an hydrogen atom per side
chain, and the results were identical to the ones of S. Schumacher et al. We have
also checked that the geometries of the molecules we computed correspond to the
current knowledge about oligofluorenes. The ground-state geometries we obtained
are the global energy minima of the molecular structure, with the dihedral angle
between two fluorene units being about +36°, resulting in a helix-shaped molecule,

in agreement with references [163,168].
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Additionally, comparative checks with an extended basis set (6-31G*) were
made, and the final values always varied by less than 2%. Similar conclusions were
also reached in references [163,169].

These preliminary results enabled us to gain confidence and expertise in the use
of quantum chemistry methods for oligofluorenes. The excellent agreement between
theoretical and experimental transition dipoles and energies, as shown in reference
[163], is obviously preserved by our results. This demonstrates that DF'T and TD-
DFT calculations performed at the BSLYP 6-31G level of theory can accurately
describe the physics of oligofluorenes, and therefore fluorene-based molecules.

In summary, we have highlighted the principles of DFT, shown some examples
of the application of this theory with the BSLYP functional, and shown that some
common basis sets obtain good results compared with experiments. This enables
the calculation of the transition dipoles and vertical energies, and the visualisation
of the molecular orbitals, the transition densities and the geometries.

DFT is useful to obtain the properties of single molecules. These properties can
then be utilised for realistic dynamics studies of a few molecules, using the Optical
Bloch Equations (OBE).

2.4 Bloch equations

2.4.1 Background

The optical Bloch equations (OBE) are a version of the original Bloch equations,
which were first developed by Bloch to describe the magnetic resonant effect of
nuclear spin rotation [172]. These were then successfully applied to other physical
systems, for instance predicting the dynamics of a two-level system interacting with
an optical field [173], for inorganic semiconductors [174] and for molecules [175].

The OBE can be written in many ways. We will start by expressing the OBE
as an explicit system of coupled differential equations, to better explore what these
equations govern and imply. Following this we will use the more compact and
practical, but less physically direct, density matrix approach to express the same
equations. The OBE govern the excitation population nX of the fermionic level i of a
multi-level system X. Typically, the systems we are interested in are chromophores.
The fermionic levels ¢ and j of the same chromophore X are coupled through the
polarization term pfg . Two chromophores X and Y can also be coupled through the
OBE.

In the next Section, we will present how the OBE can be used in practice to
model the photo-physics of organic semiconductors. We will start by presenting the
equation for a simple single two-level system, before introducing a more realistic

six-level system to model an oligofluorene molecule in the next Subsection. Finally,
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we will present results for systems of these coupled chromophores.

2.4.2 Application for the photo-physics of organic semiconductors

The OBE have been successfully applied to organic systems, for instance for the
modelling of non-interacting oligofluorenes [125] or for the modelling of interacting
light harvesting complexes, such as LHC II [176]. The main advantages of the OBE
is that they include coherences (defined as the off-diagonal term of the density ma-
trix, such as polarisation), and can therefore model coherent effects. They enable
one to gain exact knowledge of the exciton population in a system including vir-
tually any kind of interaction effects (such as exciton diffusion and exciton-exciton
annihilation), and vibrational levels and their relaxation - providing we know all the
necessary parameters (coupling energies, relaxation times, etc.).

The work by Richter et al. [176] consists of modelling the LHC II chromophores
by two-level systems, and then simulating the interactions between fourteen of these
two-level systems. It can predict the ultra-fast photo-physics of such a system, even
at high intensities where Pauli blocking and exciton-exciton annihilation play a
major role in the photo-dynamics. However, real systems of organic semiconductors
cannot be described by such a small number of chromophores. Indeed, organic films
are large-scale systems of interacting chromophores and require, at the very least,
thousands of model chromophores in order to be modelled accurately.

In addition, Schumacher et al. [125] have shown that a two-level model does
not accurately describe an oligofluorene chromophore, as a two-level model does not
account for vibrations. Instead, they used six-level systems, but did not couple them
together, as this would be too computationally expensive.

In the next Section, we will show how to apply the OBE to model organic
electronic systems, introduce results showing the fundamental processes that are
important in such systems, and demonstrate how to implement them accurately in
the OBE. We will also show that an exact formulation of the OBE cannot be utilised
to model large-scale system. However, the OBE still enable one to understand the
theoretical concepts that are needed to establish a simplified yet accurate model.
This simplified model, derived from the OBE, will be the subject of Chapter 6.

2.4.3 Preliminary results

A single two-level system

The Hamiltonian H of a two-level system with energies g and €1, €1 > £, with

optical pumping, is, using the usual second quantisation operators:

~

H = eocheo + ercler + <c§cod01E(t) + cgcodTOE*(t)) : (2.16)
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¢, is the fermionic annihilation operator of state x, whereas cl is the fermionic
creation operator of state x. E (t) is the excitation field. d,, is the transition dipole
for the transition from level x to level .

This system can be described by two state-variables: the polarisation p =
<CJ{CO>, and the probability of occupation of the level 1, n; = <CJ{01>. Indeed,
the knowledge of the occupation density ngy of level 0 is directly linked to ni, as
ng+n =1

The equations of motion are derived using the Heisenberg’s equation (dA/dt =

i/h[H, A], where A is an non-explicitly time-dependent observable [173])

% - %<CICO>:—%<[CLH} co + ¢} [CO,H}> , (2.17)
(Z? - %<Cgc">__%<[cj’H} ci+cf [%H]> : (2.18)

. 2 . .
Expressing the commutators and using ¢? = 0 and cg = 0 for fermions, we derived

the resulting equations:

d
z‘hd—f = —Aep—(1—2m)dnE(t) , (2.19)
d

h% = 2Im [dopE" ()] | (2.20)

where Ae = g1 — &.

However, in reality, any system will have a polarisation dephasing constant,
also called “pure dephasing” [177], v = h/T5,, Ty being the dephasing time, and a
radiative decay time [14] T}. Adding these extra terms empirically, the system can

be rewritten as:

dn h
hd—; = 2Im [dopE* (t)] — - (2.22)

The linear susceptibility x can be easily derived (assuming linear regime, and
therefore (1 — 2ny) = 1):

P(CU)_ d01
E(w) hw—As—iy’

() = (2.23)
capital letters denoting Fourier coefficients and w being a photon angular frequency.
The susceptibility shows that the polarisation is resonant with the field when the
field energy hw is equal to hwy = Ae. For field energies far-off hwy, the response

of the two-level system is therefore strongly attenuated. Knowing this, and by
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rewriting a real sinusoidal field of energy hw, F (t) = Ejcos (wt) as:

E . . ~ .
E(t) = 5> (e +e7™) = E (1), (2.24)
with s
B (1) = = (elrent g emitotent) (2.25)

we remark that this F () has two characteristic angular frequencies, one at w — wy
and one at w + wy. As we are interested in angular frequencies w near the resonant
angular frequency wqy of the system only, the response of the system being almost
null if w is far-off wy, we can neglect the fast oscillatory term e “«t«o)t of E (1),
compared to the much slower e!“=«0)t term. This approximation is commonly called
the Rotating-Wave-Approximation (RWA) [177]. Under the RWA, the real electric

field can thus be simply approximated as:
E (t) = —eilwmwolt (2.26)

The advantage of this approximation is that for angular frequencies w near wy,
this field E (¢) is slowly varying. And if we observe that, as E (t) = E (t) ¢! and
pE* = ﬁE*, we can rewrite the system of the OBE as:

dnl ~T% h
gt = 2m [dOIpE (t)} g (2.28)

We have therefore obtained an expression for the OBE that depends only on these
slowly varying envelope terms, enabling a significant reduction of the computational
cost of numerically solving this system of coupled differential equations.

Taking v = 0 and A/T} = 0 and a monochromatic source of angular frequency

w, it is easy to analytically calculate the population of the highest energy level:

ny = — sin® — | (2.29)

where ) = \/Q%% + (w — wp)?, Qg being the Rabi frequency [173] defined as Q =
do1E/h. This expression shows that if the monochromatic pump pulse is resonant
with the energy difference between the two levels, both levels will oscillate between
being totally depleted and totally occupied, at any pump intensity. The pump
magnitude regulates the period of these oscillations only. For instance, when w = wy,
we can use the formula £ = hm/dyt to choose the pump intensity so that we obtain

oscillations of 1 ps. The resulting calculated excited state occupations are shown
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in figure 2.4. These results have been obtained by numerical solution of the OBE,
using a 4-th order Runge-Kutta algorithm [178]. Tt is the algorithm which has been
used for numerical solving of all differential equations in this thesis. Also presented
in figure 2.4 are population oscillations resulting from pump excitations at energies
slightly off the resonance energy. At an energy of only 99% of the resonance energy,
the system barely responds, which validates the RWA. Additional calculations have
been carried out with the optical field being written mathematically as a real field,
and without using the RWA. Apart from the need to use much smaller time-steps
for the numerical resolution of the equations, no differences in the results have been
noticed. Therefore, we utilised the RWA in the rest of the work on the Bloch

equation.
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Figure 2.4: Excited-state population n; calculated using equation (2.27), without the
dissipative terms, for different pump excitation energies.

If we now assign a value to the dissipative terms, either ~ or h/T}, the os-
cillations become damped. We keep h/T} = 0, as this term is simply an overall
time-constant for depopulating the electronic state, but assign different values to
the pure-dephasing, as its role is not as obvious as for T;. We use the polarisa-
tion dephasing time literature values of 44 fs [125], but also much higher values, to
observe their effect. As we expected, the slower the dephasing time is, the more
pumping is achieved at constant pump intensity, as displayed in figure 2.5.

Obviously, pure monochromatic sources do no exist in real life. Instead, ultra-

fast lasers typically create a Gaussian-like pump, of the form:

C(t—t)’
aAt

with @ = 1/v/21In2 and At the Full Width at Half Maximum (FWHM) of the pump

E(t) = Aexp cos (wt) , (2.30)
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Figure 2.5: Excited-state population n; calculated using equation (2.27) with 7} = oo
and various values for the pure-dephasing -y, for sinusoidal pump excitation at w = wy,

starting at t=0. The system response is therefore a transient response, converging to the
steady-state response.

intensity (the square of the pump field).
To solve equation (2.27), the pump field in the frame of the RWA is:

C(t—t)’
alt

Results using Gaussian pumps are presented in figure 2.6, for various pump in-

E(t) = g exp

eilw=wolt (2.31)

tensities. We notice that at high pump intensities oscillations appear due to the
Pauli exclusion principle, before the two levels become equally occupied. At low

intensities, no such non-linear phenomena occur.
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Figure 2.6: Excited-state population n; calculated using equation (2.27) with Gaussian
pumps of various amplitudes.

Such Gaussian pumps are used in the rest of this thesis to model the ultra-fast

laser pulses.
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A single six-level system

A two-level system is certainly not a very realistic model of a chromophore.
Indeed, a chromophore usually possesses numerous excitable (“bright”) electronic
levels, in addition to a multitude of associated vibrational levels [14]. Bright elec-
tronic excited states are usually separated from the ground electronic states by
bandgaps of a few electronvolts (typically 3 eV for polyfluorene) and are similarly
far apart from each other, so that we can neglect any other electronic state that is
not tuned with the pump excitation. However, vibrational levels are usually energet-
ically close to electronic levels (typically 0.1 eV in polyfluorenes) and therefore can
play an important role in the photo-physics of molecules. Schumacher et al. [125]
have shown that, from the point of view of the photo-physics, a 6-level model is a
very good approximation of an oligofluorene molecule. In this part we will show
how the OBE are modified to include six levels instead of only two, and highlight
some particular results of interest.

According to Schumacher et al. [125], the four additional levels to include in the
model correspond to two vibrational levels for each electronic level. The levels of the
same electronic state are dipole forbidden and therefore are not optically coupled, so
that the ground state levels are only optically coupled with the excited states. The
energy of these six levels is taken from the values published by S. Schumacher [125].
It is assumed that the transition dipoles are the same between any vibrational level of
the same electronic state, the corrections to this being given by the Franck-Condon
factors (see below).

A sketch of the system is presented in figure 2.7. The same method as for the
two-level model is used to derive the OBE for this six-level system. The Rotating
Wave Approximation is used as well. As in the previous Subsection, extra empirical
terms have been included in the equations. They are the pure dephasing Yaephas,
the vibrational relaxation ;e and the Franck-Condon factors F, . (n). Vrelas is a
term which takes into account the fast-relaxation of excited vibrational states into
the lower electronic state; it therefore depletes the vibrational states to the benefit
of electronic states, and induces dephasing to the polarisation. The Franck-Condon
factors F, ,(n) give, for each vibrational mode, the overlap between the vibrational
state v of Sy with the vibrational state v' of Sy [179]:

_sn vl v'—v v —v 2
F,w(n)=e 3 mﬁn Ly (62) (2.32)

with LY~ (3?) the Laguerre polynomial:

' 9 v — 1) ZZ
nrE) = 2 ﬂ(v(—zl))!(vf (—Bv)—i—z’)!’ (2.33)

i=max(0,v—v")
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Energy

Molecular coordinates

Figure 2.7: Sketch of the model six-level system. The black parabola represents the
ground-state, the blue one the excited state. The solid lines are electronic states, the
dashed lines vibrational modes (only the first level of two vibrational modes are considered.
The values for n, v and v’ are used for determining the Franck-Condon factors. Optical
transitions are allowed between one level and the three levels of the other state. Vibrational
levels relax directly to the lowest level of the state.

and 32 = R, with R,, being the Huang-Rys factors for each oscillator mode n. The
Huang-Rys factor is simply the oscillator displacement for the mode n, compared
to the electronic state [179]. The model six-level systems include two vibrational
modes, each of which has only one vibrational state, so that n = 1 or n = 2 and
v,/ =0orv,v =1.

The Huang-Rys factors can be obtained by standard vibration calculations using
DFT, and S. Schumacher has published them for the two vibrational modes that
we consider in the model [125]: f; = 0.45 and f; = 0.42. The Huang-Rhys fac-
tor is a dimensionless relative displacement between two potential energy surfaces,
R, = (ge(n) — g4(n))?, with g, (g,) being the dimensionless shift of the potential
energy surface of the excited-state (ground-state), g.(n) = —\/%qf;, wy, and ¢ be-
ing respectively the angular frequency and wave-function of the n oscillator mode
of the excited-state (ground-state) [30].

The vibrational relaxation time is taken to be 7..., = 100fs and the pure-
dephasing time to be T, = 44 fs, following the results published by Schumacher et
al [125].

There are six differential equations for the population (one for each level), and
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nine equations for the polarisation (three for the interactions between each ground
state level and the three excited-state levels). For instance, the equation governing
the population of the electronic excited state, fy, is:

dn ~ ~ ~ N T
h—" = 2Im |d (Fo.0(1)Fo,0(2)p1a + F10(1) Fo.0(2)Pas + Foo(1)F10(2)pas) E (2)

dt
+Vrelax (n5 + nﬁ) : (234)

The level referenced as number 4 is the electronic excited-state (see figure 2.7),
which is coupled to the electronic ground state (level 1) and to the first and second
vibrational ground-state modes (level 2 and 3). The Franck-Condon factors are,
for level 1 to 4, Fy0(1)Fo0(2), as no vibrational states are involved. For level 2 to
4, the Franck-Condon factors are Fjo(1)Fjo(2). Indeed, this transition is from the
first vibrational ground-state mode to an electronic state, hence the use of Fj o(1).
The second vibrational mode is not involved, therefore the second factor is Fp o(2).
The last term, Yyeaz (75 + ng), describes an excitation migration from the excited-
vibrational modes to the electronic excited-state through vibrational relaxation.
Similarly, the equation governing the population of the first vibrational mode of
the excited state, f, is:
h% = 2Im |d (Fy1 (1) Foo(2)P1s + Fi1(1) Foo(2)Pas + Foi (1) F1(2)pss) E* (¢)
—YrelazTs - (2.35)

This equation is similar to the previous equation, with a notable difference in the
last term, —7,e102m5, as this vibrational mode (level 5) relaxes into the electronic
excited-state. The higher vibrational mode (level 6) also relaxes directly into level
4, and not through the lower vibrational mode, level 5.

The equations for the polarisation follow an analogous principle. For instance,
the equation for the polarisation between the level of the first excited-state vibra-

tional mode (level 5) and the electronic ground-state level (level 1), is:

) 1 - ~
= (55 — &1+ hwy — YYdephas — Z—Welax) p15—F0,1(1)F0,0(2) (nl - ns) do B (75) .

2
(2.36)

We observe that this polarisation is created when the levels 1 and 5 have differ-

e
dt

ent occupations, and that the vibrational relaxation affects the polarisation of the
system, following the quantum decoherence idea - this polarisation being a purely
quantum coherent effect.

Similarly, the equation for the polarisation between the levels representing the
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two different states of the first vibrational mode is:

zh% = (€5 — €2 + Ao — Ydephas — retaz) P25 — F1,1(1) Fo,0(2) (n2 — ns) doE (t) .
(2.37)

Again, it is important to note the difference from the previous equation concerning

the factor describing vibrational relaxation.

This model enables prediction of phenomena that the two-level system would
not describe well at all, such as optically pumping the system with a pump pulse
tuned to the first excited vibrational mode. Comparison between this model and
the two-level model is presented in figure 2.8, and clearly shows the superiority of

the six level model in this case.
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Figure 2.8: Comparison of the excited-state populations obtained by using the 2- and
6- level models, for pump excitation to the electronic excited state (left) and to the 1st
vibrational level of the 1st vibrational mode of the excited state (right).

Even though this six-level system is better for describing an oligofluorene molecule
than the two-level system, these simulations concern only one molecule. To make
them appropriate for describing real systems, we need the molecules to interact with
each other by mechanisms such as Coulomb coupling. This is why the model needs
to be extended.

Two coupled two-level systems

We began by using a couple of two-levels models to represent two molecules. A
sketch of this model is presented in figure 2.9. The model uses a two-level system to
describe each of the two molecules, these molecules being able to interact through
electronic coupling, so that excitation can transfer from one two-level system to the
other [43]. The Bloch Equations account for both coherent and incoherent energy
transfer, as they are derived from the full Hamiltonian and the Schrédinger equation.

Instead of writing implicitly the differential equations, from now on we will use

the density matrix formalism to keep them more compact and tractable. In practice,
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Molecule A Molecule B

Figure 2.9: Sketch of the two coupled two-level systems. Excitation can hop between
the two systems due to electronic coupling.

this means that the OBE are solved by calculating the density matrix p at each step,
as the time-evolution of density matrix is given by the equation:

dp 1

- = ——p, Heoupted] - 2.38

dt h [p7 pl d] ( )
with Heoupieq being the Hamiltonian of the coupled system. It can be written in the

following form:

ey teg  dpEA(t)  dREP(1) 0
dAEA) et el Vg dB EB(t)
A EP(t)* Vi o +ef doAlEA(t)

0 dBEB(t) diyEA(t)* eft + &P

, (2.39)

coupled —

with & the electronic ground state energy of molecule X and &7 its electronic
excited state energy. E*(t) is the optical field seen by molecule X, d? the transition
dipole between its two states, and Vg the interaction energy between both two-level
molecules. In the frame of Forster theory, the electronic coupling energy is simply
the Coulomb coupling between the two molecules, the short-range coupling coming
from the molecular orbitals being ignored [43].

The density matrix p(¢) for this Hamiltonian H.gupeq contains all the infor-
mation about all the polarisation and occupation probabilities. For instance, the
polarisation p?(t) between the states of molecule A will be given by the sum:
pA(t) = pi2 + pss. poe will be the probability of occupation of the excited state
of molecule A and of the ground state of molecule B, so the probability of occupa-
tion of the excited state of molecule A alone will be given by: nf! = pyy + pus.

The Rotating Wave Approximation is used and pure dephasing is empirically
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implemented, so the time-evolution equation is actually:

dp 1
E = _%, ([P, Hcoupled] + LP) > (240)
with the matrix L being:
0 th - i'Ydephas Wo — Z'f}/dephas 0
I — Wo + Z:’Ydephas . 0 _izf)/dephas Wo — ?Vdephas (241)
wo + 1Ydephas ZQ'Ydephas 0 Wo — YYdephas
0 wo + Z.deephas wo + Z.’Ydephas 0

This simple model enables us to illustrate energy transfer effects. In figure 2.10
we have plotted the time-evolution of the excited population of molecule A and
molecule B, with Ae? = ¢! — & = 3eV and Ae? = & — ¢! = 3.1eV. The
pump is resonant with A. When the two molecules are not coupled, molecule B is
barely excited. We observe that the excitation transfer from molecule A to molecule
B becomes faster with increasing electronic coupling. The values of the electronic
coupling used are typical of Coulombic interaction between chromophores in films
[180]. The effect of the excitation is very significant; energy transfer mechanisms are
indeed dominant mechanisms which cannot be ignored for standard chromophore

interactions in films.
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Figure 2.10: Excited-state occupation of molecule A (left) n{ and of molecule B (right)
nf for different coupling strengths, when molecule A is preferentially excited by the pump.

In addition, this model allows us to observe the effect of electronic coupling on

the absorption spectra of the system. The absorption spectra A(w) is given by [177]:

Aw) = ™ 1 [PW)/EW)] | (2.42)

n,c
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with P(w) and E(w) being the Fourier transform of the polarisation and the pump
respectively, ¢ the velocity of light in vacuum and n, the refractive index of the
propagation medium. Using a very short pump pulse, the Fourier transform of this
pump is wide enough to accurately calculate the ratio P(w)/FE(w). The results
of this calculation for two identical two-level systems coupled through electronic
coupling are presented in figure 2.11. As predicted, when the two-level systems are
not coupled, the absorption spectra is simply a Lorentzian of width equal to the
dephasing rate, centred on the absorption energies Fg, = 4! — ¢f = 8 — &8 of the
two-level systems. When the systems are coupled, the absorption spectra features
two peaks, situated at E,, — Vap and E,s + Vag. The Hamiltonian H of two

identical oscillators of energy FE, coupled by the coupling energy V', can be written

H= (E V) . (2.43)
V E

It is easy to calculate that the eigenvalues of this Hamiltonian, and therefore

as

the energy modes of the system, are £ —V and E + V. However, as shown in figure
2.11, only one of these two transitions is optically active (has a non-zero dipole):
either the lowest one if V4p < 0 (such coupling corresponds, for instance, to two
chromophores aligned on the same line [180]) or the highest one if V45 > 0 (such
coupling corresponds, for instance, to two parallel chromophores on top of each other
[180]). A low energy shift of the absorption corresponds to a J-aggregate whereas
the higher energy shift corresponds to an H-aggregate arrangement [181,182].

_ 0.8 ==V, =—50meV
\‘:‘;', 06l VAB=—10meV
S — VAB=0meV
*%0-47 - .VAB=10meV
§ VAB=50meV

o
N

8.9 2.95 3 3.05 3.1
Energy (eV)

Figure 2.11: Absorption spectra calculated according to the equation (2.42) for two
identical two-level systems coupled together through various Coulomb energies.

It is clear that this model predicts realistic results for two-level systems. Nev-
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ertheless, to obtain realistic results for the simulation of two coupled oligofluorene
chromophores it is necessary to use a much more realistic model: the six-level model

instead of the two-model.

Two coupled six-level systems

The model for the two six-level systems coupled to each other is presented in

figure 2.12. We used the same methods as previously described: the equations are

Energy

Molecule A Molecule B

>

Molecular coordinates

Figure 2.12: Sketch of the model for two coupled six-level molecules. The black parabola
represents the ground-state, the blue one the excited state. The solid lines are electronic
states, the dashed lines vibrational modes (only the first level of two vibrational modes are
considered). Optical transitions are allowed between one level and the three levels of the
other state. Vibrational levels relax directly to the electronic level of the state. Excitation
can transfer from one level to any other level. Franck-Condon factors are implemented
to take into account the different transition probabilities due to the different vibrational
overlaps.

derived using the density-matrix theory. Franck-Condon factors, pure dephasing,
vibrational relaxation and the RWA are implemented. The Hamiltonian of the
system is now a 36 x 36 matrix; there are 666 free coupled differential equations
describing the system. We chose to write the Hamiltonian in this way, to make
things tractable: the first six diagonal terms of the Hamiltonian correspond to all
the possibilities of the energy levels of B for the first level of A, the six next diagonal
term correspond to the six level of B for the second level of A, and so on. These
levels are then coupled through the appropriate off-diagonal terms, either optically

or through electronic coupling.
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Results for a system of two six-level molecules are presented in figure 2.13. Both
molecules are identical to the single 6-level model molecule presented earlier, except
that the excited-state energy levels of molecule A are shifted by the vibrational
energy of the first vibrational mode, so that the electronic excited state level of
molecule A (level 4) is resonant with the first vibrational mode of the excited state of
molecule B (level 5). Such energy difference between otherwise identical molecules
can happen in real systems due to conformational disorder. The pump pulse is
resonant with the electronic excited-state of molecule A (and therefore the level
5 of B), and the molecules are coupled by an energy of 10 meV. We observe a
quick transfer of excitation from molecule A to molecule B, mediated by vibrational
relaxation of molecule B, leading to oscillations during the pumping process. On the
other hand, assuming all other parameters being identical, such phenomena do not

appear if we do not account for the vibrational levels (2-level systems), as shown in
figure 2.13.
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Figure 2.13: Comparison of the excited-state population obtained by using the 2- and
6- level models, for two molecules of different energies - see details in the text.

However, the RWA does not seem to be useful any more. We now clearly need

very small time steps to have the same precision as obtained before with larger time
steps.

2.4.4 Limitations of this approach

This model has also been extended to three coupled 6-level model molecules.
The Hamiltonian is in this case a 216 x 216 matrix (and so can be expanded by the
density matrix theory into 23 436 free coupled differential equations). The execution
time of the program has thus been multiplied by approximately a