
HAL Id: tel-00992753
https://theses.hal.science/tel-00992753v1
Submitted on 19 May 2014 (v1), last revised 10 Sep 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling for a multithreaded dataflow architecture:
algorithms, tools, and experience

Feng Li

To cite this version:
Feng Li. Compiling for a multithreaded dataflow architecture: algorithms, tools, and experience.
Distributed, Parallel, and Cluster Computing [cs.DC]. Université Pierre et Marie Curie - Paris VI,
2014. English. �NNT : �. �tel-00992753v1�

https://theses.hal.science/tel-00992753v1
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie
École Doctorale Informatique, Télécommunications et Électronique

Compiling for a multithreaded

dataflow architecture:

algorithms, tools, and experience

par Feng LI

Thèse de doctorat d’Informatique

Dirigée par Albert COHEN

Présentée et soutenue publiquement le 20 mai, 2014

Devant un jury composé de:

, Président

, Rapporteur

, Rapporteur

, Examinateur

, Examinateur

, Examinateur

mailto:feng.li@inria.fr

I would like to dedicate this thesis to my mother

Shuxia Li, for her love

Acknowledgements

I would like to thank my supervisor Albert Cohen, there’s nothing

more exciting than working with him. Albert, you are an extraordi-

nary person, full of ideas and motivation. The discussions with you

always enlightens me, helps me. I am so lucky to have you as my

supervisor when I first come to research as a PhD student. I would

also like to thank Dr. Antoniu Pop, I still enjoy the time we were

working together, helped a lot during my thesis, as a good colleague,

and a friend.

I am grateful to my thesis reviewers: Prof. Guang Gao and Dr.

Fabrice Rastello. Thanks for your time carefully reading the thesis,

and providing the useful feedbacks. For the revised version of the

thesis, I would also like to thank Dr. Stéphane Zuckerman, he gives

very useful suggestions and comments.

I would like to thank all the members in our PARKAS team. Prof.

Marc Pouzet, Prof. Jean Vuillemin, and Dr. Francesco Zappa Nardelli

invite lots of talks in our group, bring in new ideas and inspirations.

Tobias Grosser, Jun Inoue, Riyadh Baghdadi, I still enjoy the time

we discussing together, climbing together and flying to conferences.

Boubacar Diouf, Jean-Yves Vet, Louis Mandel, Adrien Guatto, Tim-

othy Bourke, Cédric Pasteur, Léonard Gérard, Guillaume Baudart,

Robin Morisset, Nhat Minh Lê, you guys are wonderful people to

work with!

Special thanks to my friends, Wenshuang Chen and Shunfeng Hu,

always like your cooking! Also my friends Shengjia Wang, Ke Song,

Yuan Liu, enjoy our beer time, the moments we discuss and implement

a new idea.

Abstract

Across the wide range of multiprocessor architectures, all seem to share one com-

mon problem: they are hard to program. It is a general belief that parallelism

is a software problem, and that perhaps we need more sophisticated compilation

techniques to partition the application into concurrent threads. Many experts

also make the point that the underlining architecture plays an equally important

role: there needs to be a fundamental change in processor architecture before one

may expect significant progress in the programmability of multiprocessors.

Our approach favors a convergence of these viewpoints. The convergence

of dataflow and von Neumann architecture promises latency tolerance, the ex-

ploitation of a high degree of parallelism, and light thread switching cost. Mul-

tithreaded dataflow architectures require a high degree of parallelism to tolerate

latency. On the other hand, it is error-prone for programmers to partition the

program into large number of fine grain threads. To reconcile these facts, we aim

to advance the state of the art in automatic thread partitioning, in combination

with programming language support for coarse-grain, functionally deterministic

concurrency.

This thesis presents a general thread partitioning algorithm for transform-

ing sequential code into a parallel data-flow program targeting a multithreaded

dataflow architecture. Our algorithm operates on the program dependence graph

and on the static single assignment form, extracting task, pipeline, and data

parallelism from arbitrary control flow, and coarsening its granularity using a

generalized form of typed fusion. We design a new intermediate representation to

ease code generation for an explicit token match dataflow execution model. We

also implement a GCC-based prototype. We also evaluate coarse-grain dataflow

extensions of OpenMP in the context of a large-scale 1024-core, simulated mul-

tithreaded dataflow architecture. These extension and simulated architecture

allow the exploration of innovative memory models for dataflow computing. We

evaluate these tools and models on realistic applications.

Contents

Contents v

List of Figures ix

Nomenclature xii

1 Introduction 1

1.1 Hybrid Dataflow for Latency Tolerance 2

1.1.1 Convergence of dataflow and von Neumann 2

1.1.2 Latency Tolerance . 3

1.1.3 TSTAR Multithreaded Dataflow Architecture 5

1.2 Task Granularity . 7

1.3 Motivation . 9

1.4 Dissertation Outline . 10

2 Problem Statement 12

2.1 Explicit token matching shifts the challenges in hardware design

to compilation . 13

2.2 The complex data structure should be handled in an efficient way 14

2.3 Related Work . 15

2.3.1 Compiling imperative programs to data-flow threads . . . 15

2.3.2 SSA as an intermediate representation for data-flow com-

pilation . 16

2.3.3 Decoupled software pipelining 16

2.3.4 EARTH thread partitioning 17

v

CONTENTS

2.3.5 Formalization of the thread partitioning cost model 18

3 Thread Partitioning I: Advances in PS-DSWP 19

3.1 Introduction . 19

3.1.1 Decoupled software pipelining 20

3.1.2 Loop distribution . 21

3.2 Observations . 21

3.2.1 Replacing loops and barriers with a task pipeline 21

3.2.2 Extending loop distribution to PS-DSWP 22

3.2.3 Motivating example . 23

3.3 Partitioning Algorithm . 30

3.3.1 Definitions . 31

3.3.2 The algorithm . 32

3.4 Code Generation . 36

3.4.1 Decoupling dependences across tasks belonging to different

treegions . 36

3.4.2 SSA representation . 37

3.5 Summary . 40

4 TSTAR Dataflow Architecture 42

4.1 Dataflow Execution Model . 42

4.1.1 Introduction . 42

4.1.2 Past Data-Flow Architectures 43

4.2 TSTAR Dataflow Execution Model 47

4.2.1 TSTAR Multithreading Model 47

4.2.2 TSTAR Memory Model 48

4.2.3 TSTAR Synchronization 50

4.2.4 TSTAR Dataflow Instruction Set 52

4.3 TSTAR Architecture . 55

4.3.1 Thread Scheduling Unit 56

5 Thread Partitioning II: Transform Imperative C Program to

Dataflow Program 61

5.1 Revisit TSTAR Dataflow Execution Model 62

vi

CONTENTS

5.2 Partitioning Algorithms . 65

5.2.1 Loop Unswitching . 66

5.2.2 Build Program Dependence Graph under SSA 67

5.2.3 Merging Strongly Connected Components 69

5.2.4 Typed Fusion . 69

5.2.5 Data Flow Program Dependence Graph 71

5.3 Modular Code Generation . 74

5.4 Implementation . 76

5.5 Experimental Validation . 78

5.6 Summary . 82

6 Handling Complex Data Structures 83

6.1 Streaming Conversion of Memory Dependences (SCMD) 84

6.1.1 Motivating Example . 84

6.1.2 Single Producer Single Consumer 86

6.1.3 Single Producer Multiple Consumers 87

6.1.4 Multiple Producers Single Consumer 91

6.1.5 Generated Code for Motivating Example 92

6.1.6 Discussion . 96

6.2 Owner Writable Memory . 96

6.2.1 OWM Protocol . 97

6.2.2 OWM Extension to TSTAR 99

6.2.3 Expressiveness . 101

6.2.4 Case Study: Matrix Multiplication 102

6.2.5 Conclusion and perspective about OWM 103

6.3 Summary . 105

7 Simulation on Many Nodes 106

7.1 Introduction . 107

7.2 Multiple Nodes Dataflow Simulation 108

7.3 Resource Usage Optimization . 110

7.3.1 Memory Usage Optimization 110

7.3.2 Throttling . 115

vii

CONTENTS

7.4 Experimental Validation . 117

7.4.1 Experimental Settings . 117

7.4.2 Experimental Results . 118

7.4.2.1 Gauss Seidel . 121

7.4.2.2 Viola Jones . 124

7.4.2.3 Sparse LU . 126

7.5 Summary . 129

8 Conclusions and Future Work 131

8.1 Contributions . 131

8.2 Future Work . 132

Personal Publications 136

References 138

viii

List of Figures

1.1 TStar High level Architecture. 6

1.2 The Parallelism-Overhead Trade-off (from Sarkar) 8

2.1 General strategy for thread partitioning. 13

3.1 Barriers inserted after loop distribution. 21

3.2 Pipelining inserted between distributed loops. Initialize the stream

(left), producer and consumer thread (right). 22

3.3 Uncounted nested loop before partitioning. 24

3.4 Uncounted nested loop in SSA form. 25

3.5 Loops after partitioning and annotated with OpenMP stream ex-

tension. 26

3.6 Pipelining and parallelization framework. 27

3.7 Definition and use edges in the presence of control flow. 28

3.8 Control dependence graph of Figure 3.3. Express the definition of

treegion. 30

3.9 Split conditional statements to expose finer grained pipelining. . . 32

3.10 Algorithm for marking the irreducible edges. 33

3.11 Structured typed fusion algorithm. 35

3.12 Before partitioning (left), and After partitioning (right). Loop

with control dependences. 36

3.13 Normal form of code (left) and using streams (right). 37

3.14 Normal form of code (left) and SSA form of the code (right). . . . 37

3.15 Apply our algorithm to generate the parallel code. Producer thread

(left) and consumer thread (right). 39

ix

LIST OF FIGURES

3.16 Multiple producers with applied our algorithm, the generated code. 40

4.1 Firing rule example. 43

4.2 The basic organization of the static (a) and dynamic (b) model. . 44

4.3 Program dependence graph of an illustrative example. 50

4.4 Producer consumer relationship. 53

4.5 Producer consumer code. 54

4.6 TSTAR Highlevel Architecture. 57

4.7 Overview of the Thread Scheduling Unit (TSU). 58

5.1 Explicit Matching Operation. 62

5.2 Program Dependence Graph for explicit token matching compila-

tion example. 64

5.3 Running example (left) and after unswitching (right). 66

5.4 SSA form before unswitching (left) and after (right). 67

5.5 SSA representation after loop unswitching. 68

5.6 SSA-PDG for the code example in Figure 5.5. 68

5.7 SSA PDG after merging the SCC. 69

5.8 (A) SSA-PDG after typed fusion. (B) Data Flow Program Depen-

dence Graph. 71

5.9 Splitting data dependences: (A) the original SSA-PDG and (B)

the generated DF-PDG. 73

5.10 SSA representation for a simple loop carried dependence 74

5.11 Corresponding SSA-PDG (left) and a partial DF-PDG (right) for

code in 5.10. 74

5.12 Caller and callee, threaded version. 76

5.13 Implementation within GCC. 77

5.14 Merge Sort running on 4 cores. 80

5.15 Computing the 42th Fibonacci number on 4 cores (above) and 24

cores (below). 81

6.1 Non-linear access for array A within a loop. 84

6.2 Decouple computation and memory accesses with loop distribution. 85

6.3 Single producer single consumer 88

x

LIST OF FIGURES

6.4 Single producer multiple consumers 90

6.5 Multiple producers and single consumer 93

6.6 Generated code for control program using SCMD. 94

6.7 Generated code for control program using SCMD. 95

6.8 Owner Writable Memory. 100

6.9 Pipeline using OpenStream. 101

6.10 OpenStream cache example. 102

6.11 First phase: Matrix allocation and initialization. 103

6.12 Second phase: Matrix multiplication. 104

6.13 Third phase: Output the results. 104

7.1 COTSon Architecture. 107

7.2 Multiple nodes simulation on COTSon. 108

7.3 Code example for simple frame memory allocator 111

7.4 Simple frame memory allocator 112

7.5 Code example for simple frame memory allocator 113

7.6 Host Space TLS Frame Memory Allocator 114

7.7 Excessive parallelism. 116

7.8 Simulation Results . 119

7.9 Simulation Results . 120

7.10 Simulation Results . 121

7.11 Dependence of gauss seidel: A. same iteration dependences (left)

B. cross iteration dependences (right) 122

7.12 Gauss seidel implementation with OpenStream. 123

7.13 Gauss seidel implementation with OWM support. 124

7.14 Gauss seidel implementation with OWM support (final task). . . . 124

7.15 Viola Jones OpenStream kernel. 125

7.16 Cascade data structure. 126

7.17 Dynamic OWM memory allocation. 127

7.18 Dependence patterns of sparse lu: A. k = 0 B. k = 1. 128

7.19 Sparse lu OpenStream implementation for bdiv dependences. . . . 128

7.20 Sparse lu OpenStream implementation for bdiv dependences (with

OWM support). 129

xi

LIST OF FIGURES

8.1 High level overview of the compilation and simulation architecture. 134

xii

Chapter 1

Introduction

The design complexity and power constraints of large monolithic processors forced

the industry to develop Chip-Multiprocessor (CMP) architectures. Across the

diverge range of multiprocessor architectures, all seems to share one common

problem: they are hard to program. The application writer has to take detailed

architecture specific measures to improve the performance, and the resulting code

are hard to read, maintain or debug, and not even to mention performance porta-

bility.

It is a general belief that the difficulties of parallel programming is a software

problem. Perhaps we need more sophisticated compilers, to partition the appli-

cations into tasks that can run in parallel and to coordinate or synchronize them

to implement a given functional semantics. Or perhaps we need more abstract

parallel programming languages, allowing the programmer to write applications

or port legacy code in a productive way, and then rely on static and dynamic

algorithms to exploit the target architecture

It is also argued that the design and programming interface of a multipro-

cessor architecture plays an equally important role. It may very well be that

the conventional cache-coherent multiprocessors derived from the von Neumann

model are not suitable for the scalable and productive exploitation of parallelism.

Following this school of thought, there is a need for a fundamental change in

processor architecture before we can expect significant progress in the use of

multiprocessors.

This thesis presents a general thread partitioning algorithm for transform-

1

ing sequential code into a parallel data-flow program targeting a multithreaded

dataflow architecture. Our algorithm operates on the program dependence graph

and on the static single assignment form, extracting task, pipeline, and data

parallelism from arbitrary control flow, and coarsening its granularity using a

generalized form of typed fusion. We design a new intermediate representation to

ease code generation for an explicit token match dataflow execution model. We

also implement a GCC-based prototype. We also evaluate coarse-grain dataflow

extensions of OpenMP in the context of a large-scale 1024-core, simulated mul-

tithreaded dataflow architecture. These extension and simulated architecture

allow the exploration of innovative memory models for dataflow computing. We

evaluate these tools and models on realistic applications.

1.1 Hybrid Dataflow for Latency Tolerance

The early study starts from dataflow architectures. By contrast with von Neu-

mann architecture, the execution of an instruction in dataflow model is driven by

the availability of data. In 1975, Dennis and Misunas proposed the static dataflow

architecture Dennis & Misunas [1979], due to the limitation with iterative con-

structs and reentrancy Arvind & Culler [1986b], the dynamic, or tagged-token

dataflow architecture was proposed by Watson and Gurd Watson & Gurd [1979],

which exposes additional parallelism by allowing multiple instances of reentrant

code, the main disadvantage of the dynamic model is the extra overhead in match-

ing tags on tokens.

1.1.1 Convergence of dataflow and von Neumann

The limit of the static dataflow model and the large cost of dynamic dataflow

execution of individual instructions led to the convergence of dataflow and von

Neumann models. The hybrid architecture considered in this thesis moves from

fine-grained parallelism towards coarse-grained execution model, which combines

the power of the dataflow model for exploiting parallelism with the efficiency

of the control-flow model. Two key features supporting this shift are low-cost

sequential scheduling of instructions and the use of registers to temporarily hold

2

the results of instructions in a single thread.

Sequential instruction scheduling takes advantage of the fact that any dataflow

program displays some level of sequential execution. For example, in the case

where the output of one node goes to the next node, the dependences between

two nodes could never executed in parallel. Therefore, there is little point to

scheduling them to different processors. Sequential scheduling enables a coarser

grain of parallelism compared to one instruction per task in pure dataflow model,

allows to use of a simple control-flow sequencing within the grain. This comes

from the fact that the data-driven sequencing is unnecessarily general and at

a cost of overhead required to match tokens. Combining sequential scheduling

with instruction-level context switching also gives another perspective of dataflow

architectures: multithreading. In multithreaded architectures, a thread is defined

as a sequence of statically ordered instructions, where once the first instruction

is fired, the remaining will execute without interruption.

Multiple flavors of hybrid architectures exist: one approach essentially fol-

lows the von Neumann architecture with a few dataflow additions (large-grain

dataflow architecture), another approach extends a dataflow architecture with

some von Neumann additions (multithreaded dataflow architecture) Pa-

padopoulos & Traub [1991]; Lee & Hurson [1994]; Iannucci [1988]; Nikhil [1989];

Nikhil et al. [1992]; Culler et al. [1991].

1.1.2 Latency Tolerance

The term von Neumann bottleneck was coined by John Backus in his 1977 ACM

Turing Award lecture. According to Backus:

Surely there must be a less primitive way of making big changes in the

store than by pushing vast numbers of words back and forth through

the von Neumann bottleneck. Not only is this tube a literal bot-

tleneck for the data traffic of a problem, but, more importantly, it

is an intellectual bottleneck that has kept us tied to word-at-a-time

thinking instead of encouraging us to think in terms of the larger

conceptual units of the task at hand. Thus programming is basically

planning and detailing the enormous traffic of words through the von

3

Neumann bottleneck, and much of that traffic concerns not significant

data itself, but where to find it Backus [1978]

The shared bus between the program memory and data memory leads to the

von Neumann bottleneck, the limited communication bandwidth between the

CPU and memory limits the effective processing speed when the CPU is required

to perform minimal processing on large amount of data - which is also referred

as the memory wall. The memory wall is the growing disparity of speed between

CPU and memory outside the CPU chip. Because of the memory wall, enhancing

the CPU alone cannot guarantee improvements on system performance. From

1986 to 2000, CPU speed improved at an annual of 55 percent while memory speed

only improved at 10 percent. More over, when memory is physically distributed,

the latency of the network and network interface is added to that of accessing

the local memory on the node. Given these trends, it was expected that memory

latency would become an overwhelming bottleneck in computing performance.

As the rapid progress of the multiprocessor speed, two main issues has to

be addressed: latency and synchronization. Latency appears in various forms in

multiprocessor, from a few cycles at the instruction level such as pipeline bubbles

caused by branch instructions, to tens of cycles cause by cache misses (memory

latency), up to hundreds of cycles caused by inter-processor communication, or

even worse, thousands of cycles caused by the IO. Synchronization is equally

important to enforce the ordering of instruction executions according to their

data dependencies, in order to ensure deterministic behavior.

There are basically two ways of fighting latency, reducing and tolerating.

For instance, as a hardware approach, we might replace the disk with a new

storage media, as fast as RAM to reduce the IO latency, or we could apply the

software approach, removing some of the inter-process communications by apply

compiler optimizations, or apply the branch prediction at instruction level to

remove the pipeline bubbles. However, no matter how advanced the technology

is, we could not eliminate all latencies. The latencies caused by communication

and synchronization are inherent in parallel applications. Tolerating therefore

maybe the only available option under this circumstances.

Prefetching and multithreading are two ways of tolerating latencies. Prefetch-

ing is a mechanism that loads data into the cache or local memory before it is

4

actually used, anticipating it will be used in the near future. Thus prefetching is

very effective if the latency length can be predicted at compile time. By contrast,

multithreading is more general and flexible in coping with unpredicted latencies.

In a multithreaded dataflow architecture (or multithreading with dataflow

origin), a program is partitioned into multiple threads, each thread is the unit

of execution and scheduled to run dynamically. Within a thread, instructions

are issued to executed sequentially as on a von Neumann architecture. Among

threads, they are scheduled to run when the firing rule is satisfied. A strict firing

rule allows a thread to execute only when all its inputs are available. During the

execution of a thread, if there is a long latency operation, the processor can switch

to another ready thread and do other useful work. If there is enough parallelism in

application and a multithreaded machine can do fast thread switching, latencies

caused by long latency operations can be overlapped with the execution of useful

instructions from other threads. Thus latencies are effectively covered on such a

multithreading machine.

A key open question for multithreaded dataflow architecture is how best to

partition the programs into threads and what degree of granularity is best.

1.1.3 TSTAR Multithreaded Dataflow Architecture

TSTAR is a multithreaded dataflow architecture we target on, where in the inter-

thread level, threads are executed in a multithreading environment, scheduled

according to the dataflow model to better exploit parallelism, while in the intra-

thread level, each thread is compiled into sequential von Neumann processor.

TSTAR execution model is a feed-forward dataflow execution model with ex-

plicit token matching, where the producers write directly to their consumers. This

model origins from several inputs of our partners in the TERAFLUX project1 DDM

execution model from Arandi & Evripidou Arandi & Evripidou [2011]; T* instruc-

tion set from Portero et al. Portero et al. [2011]. We will present the TSTAR

execution model in detail in chapter 4.

Figure 1.1 shows the TSTAR top level architecture. C2 is the single core

which contains a processing element (x86-64 ISA with TStar extensions) along

1http://www.teraflux.eu

5

with its L1 cache. Each core also includes a partition of the L2 cache. In order to

support the dataflow execution of threads, each core includes a hardware mod-

ule that handles the scheduling of threads - the Local Thread Scheduling Unit

(L-TSU). In addition to cores, the nodes also contain a hardware module to coor-

dinate the scheduling of the data-flow threads among the cores - the Distributed

Thread Scheduling Unit (D-TSU), as well as a hardware module that monitors

the performance and faults of the cores - the Distributed Fault Detection Unit

(D-FDU).Each core is identified with a unique id, the Core ID (CID), and each

group of cores belongs to a node whose id is the Node ID (NID). Nodes are con-

nected via an inter-node network, the Network on Chip (NoC). Cores within a

node are connected via the NoC.

1.2 Task Granularity

An important issue in multiprocessor performance is the granularity of the pro-

gram execution. The granularity of a parallel program can be defined as the

average size of a sequential unit of computation in the program, with no inter-

processor synchronization or communications. For a given machine with multi-

processors, there is a fundamental trade-off between the granularity (amount of

parallelism) and the overhead of synchronization. It is desirable for a multiproces-

sor to have small granularity, so that it can exploit larger amount of parallelism.

It is also desirable for a parallel program to have larger granularity, so that the

synchronization and communication overhead could be relatively small compared

to the actual workloads.

Sarkar Sarkar [1989] articulates this trade-off as the competing contributions

of the ideal parallel execution time, the amount of time required to execute the

program in the absence of the overhead, with the overhead factor, the extra work

required to schedule and coordinate the tasks. The ideal parallel execution time

is multiplied by the overhead factor to yield actual parallel execution time, the

amount of time required to complete the problem for a given task granularity in

the presence of scheduling overhead.

Figure 1.2 (from Sarkar) illustrates the general characteristic of the parallelism-

overhead trade-off for a typical program running on a machine with ten proces-

6

Figure 1.1: TStar High level Architecture.

sors. This plot is suggestive of what was experienced running various programs

on contemporary multiprocessors, but it does not express the data from a specific

machine or application. The normalized execution time is the ratio n/s where

n is the number of processors and s is the actual speedup relative to a single

processor. The normalized ideal parallel execution time increases from 1 to n

as the task granularity increases from a single instruction, to 100,000 when the

entire program executes as a single task. The task overhead factor is given by

(g + o)/g where g is the task size in the instructions and the o is the per-task

7

overhead, in this case 1000 instructions.

Figure 1.2: The Parallelism-Overhead Trade-off (from Sarkar)

It shows for a given multiprocessor, there is a minimum program granularity

value below which the performance degrades significantly. Although the overhead

shows in this figure is relatively long (1000 instructions/task), but we believe as

the construct of the multiprocessor evolves, the overhead will decrease accord-

ingly. There is always a trade-off between the number of parallelism and the task

switching overhead. Within our multithreaded dataflow architecture, we assume

a relatively low task overhead, by means of one to ten instructions per task. The

hardware support largely reduce the synchronization and communication over-

head. So we assume task overhead is not a first order issue, and the objective for

thread partitioning is to expose the maximum amount of parallelism, and coarsen

the granularity stays as an optimization pass in the procedure.

8

1.3 Motivation

There are three fundamental problems to be solved when compiling a program

for parallel execution on a multiprocessor:

• Identifying parallelism in the program.

• Partitioning the program into sequential tasks.

• Scheduling the tasks on processors.

The problem of identifying or expressing parallelism belongs to the domain

of programming language. Scheduling the tasks on processors is managed by a

dedicated Thread Scheduling Unit (TSU) in the TSTAR multithreaded dataflow

architecture. Partitioning the program into sequential tasks and targeting on

TSTAR architecture is a main focus in this dissertation.

Multithreaded dataflow architectures require high-degree of TLP to tolerate

latency. It is error-prone to ask programmers to partition the program to a large

number of fine grain threads. On the other hand, porting the legacy code takes

a large amount of work. Therefore, it is essential to have compiler support for

multithreaded dataflow architectures so that they can be partitioned efficiently

and widely accepted.

Automatic program parallelization techniques plus programmer efforts (e.g.

annotations) can be applied to identify potential TLP. In our target architec-

ture, threads are non-preemptive: once a thread starts its execution, it cannot be

interrupted. In the non-preemptive model, thread start and end points are de-

cided at compile time. It is the compiler’s job to perform thread partitioning and

optimize the partitioned code at compile time. Because of this, a compiler target-

ing multithreaded dataflow architecture faces real challenges when automatically

partitioning threads:

• It must partition the program correctly with respect to the dependences

constraints.

• It should perform optimizations on threads partitioned to make them exe-

cute efficiently.

9

• It should handle the complex data structures (like arrays) in an efficient

way.

Thread partitioning is a challenging task in developing a compiler for mul-

tithreaded dataflow architectures. Measuring the performance metrics on the

multithreaded dataflow architecture plays an equally important role. Before the

real hardware processor is built, we need a flexible methodology to analyze the

behavior of the proposed architecture. By performing simulations and analyzing

the results with a full-system simulator, we can gain a thorough understanding

how the proposed architecture behaves, how to improve it, and validate the results

before it goes into the production cycle.

We will try to address all the issues mentioned above in this dissertation.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows.

In chapter 2 we present the problem statement when compiling for a multi-

threaded dataflow architecture.

As a preliminary research on thread partitioning, chapter 3 presents a thread

partitioning algorithm. The algorithm extends loop transformations and Paral-

lel Stage Decoupled Software Pipelining (PS-DSWP). Section 3.1 presents the

related work in PS-DSWP and loop distribution. Section 3.2 presents our obser-

vations with extending loop distribution to PS-DSWP and a motivating example.

Section 3.3 presents our thread partitioning algorithms based on SSA and treegion

representation. After deciding the partition point between the original treegions,

Section 3.4 explains the code generation challenges in presence of multiple pro-

ducers and consumers.

Chapter 4 presents a general view of the TSTAR dataflow architecture. Sec-

tion 4.1 gives an overview of the dataflow execution model. Section 4.2 fur-

ther explains the TSTAR execution model from different aspects (multithreading

model, memory model and synchronization), and section 4.3 gives an overview of

the TSTAR architecture.

Chapter 5 presents a general algorithm for thread partitioning targets on

10

the TSTAR architecture, which transform sequential imperative programs into

parallel data-flow programs. The algorithm operates on a program dependence

graph in SSA form, extracting task, pipeline and data parallelism from arbitrary

control flow, and coarsening its granularity using a generalized form of typed

fusion. A prototype is implemented in GCC, and we give the evaluation results

in the final section.

Chapter 6 complements chapter 5. In this chapter, we studies the method of

handling complex data structure (such as arrays) in thread partitioning. Stream-

ing Conversion of Memory Dependences (SCMD) connects independent writes

and reads to the same memory location with stream dynamically. Owner Writable

Memory model (OWM) is proposed to reduce the communication overheads when

operating on complex data structures.

Chapter 7 presents the simulation infrastructure and benchmarks written with

OWM memory model to validate the approach.

We conclude and draw some perspectives in chapter 8.

11

Chapter 2

Problem Statement

Figure 2.1 shows a general strategy for automatic thread partitioning. A se-

rial program is translated to intermediate representations (Program Dependence

Graph and Data Flow Program Dependence Graph). The IR is an input to the

compile time analysis phase of the partitioning system. The output produced by

compile-time analysis is a partition of the program graph into subgraphs which

represent tasks. Finally, the code generation phase generate code for both x86

and TSTAR dataflow architectures.

Depending on the target, the compilation strategy diverges after thread par-

titioning. If the target is x86 architecture, the TSTAR backend in the compiler

is disabled, the generated code will be linked to x86 dataflow runtime library. If

target on TSTAR dataflow architecture, the backend will translate the dataflow

builtin functions to dataflow ISA, so that it could be simulated on the full-system

simulator.

Thread partitioning is a challenging task in developing a compiler for a multi-

threaded dataflow machine. Besides the points we discussed in previous chapter,

we stress a few more points in this section.

12

Figure 2.1: General strategy for thread partitioning.

2.1 Explicit token matching shifts the challenges

in hardware design to compilation

In the non-preemptive thread model, each thread runs to completion once started.

The data and control dependences need to be resolved and satisfied at partitioning

stage. Unlike tagged-token dataflow machines, the tokens are stored separately

in the Frame Memory, and use an explicit token matching strategy in TSTAR

13

execution model.

Tagged-token dataflow machines are implemented through a sophisticated

matching hardware, which dynamically schedules operations with available operands Arvind

& Culler [1986b] Memo & Culler [1983]. When a token arrives at a processor,

the tag it carries is checked against the tags present in the token-store. If a

matching token is found, it is extracted and the corresponding instruction is en-

abled for execution; otherwise, the incoming token is added to the store. This

allows for a simple non-blocking processor pipeline that can overlap instructions

from closely related or completely unrelated computations. However, the match-

ing operation involves considerable complexity on the critical path of instruction

scheduling Gajski et al. [1982].

The more subtle problem with the matching paradigm is that a failure to find

a match implicitly allocates resources within the token store. Thus in mapping

computations to processors places an unspecified commitment on the token stor-

age hardware, if this resource becomes overcommited, the program may deadlock.

Explicit Token Matching shifts the complications from the hardware design

of token-matching system to the compiler. The compiler has to match the pro-

ducers and consumers explicitly. In TSTAR execution model, as producer data

flow threads communicate by writing directly in the data flow frame of their

consumers, it is necessary that, along all data dependence edges of the program

dependence graph, the producer nodes know the data flow frame of the con-

sumer nodes. It becomes more complicates when the producer and consumer are

created by separate control programs, which means there needs to be a way to

communicate such information. We address this issue in chapter 5.

2.2 The complex data structure should be han-

dled in an efficient way

There are two basic approaches to represent data structures such as arrays: di-

rect and indirect access schemes Gaudiot & Wei [1989]. The direct access scheme

treats each structure element as individual data tokens. The dataflow function-

ality principle implies that all operations are side-effect free. The direct access

14

scheme is compatible with the dataflow principle. However, absence of side effect

also means the token carries vectors, arrays or other complex data structures

results in a new data structure, which will greatly increase the communication

overhead in practice.

On the other hand, in an indirect access scheme, data structures are stored in

special memory units and their elements are access through “read” and “write”

operations. Literature has shown that storing the data structures and represent-

ing them by indirect access incurs less overhead that the direct access scheme

in transmitting data, reconstructing the resultant array, and randomly accessing

array elements.

However, the indirect access approach is not free of charge. When the array

elements are stored in a separate storage, to preserve the functionality principle

of dataflow, a write to a single element in the array might result in copying the

entire array. If the array elements are stored in a virtual memory that is global

addressable to all nodes, the consistent view of the virtual memory to related

threads becomes a demanding task. We address this problem in Chapter 6.

2.3 Related Work

2.3.1 Compiling imperative programs to data-flow threads

The problem of compiling imperative programs for data-flow execution has been

widely studied. Beck et al. Beck et al. [1989] propose a method for translat-

ing control flow to data flow, and show that data-flow graphs can serve as an

executable intermediate representation in parallelizing compilers. Ottenstein et

al. Ottenstein et al. [1990] study such a translation using the Program Depen-

dence Web, an intermediate representation based on gated-SSA Tu & Padua

[1995] that can directly be interpreted in either control-, data-, or demand-driven

models of execution. Programs are transformed to the MIT dataflow program

graph Arvind & Nikhil [1990], targeting the Monsoon architecture.

Najjar et al. evaluated multiple techniques for extracting thread-level data-

flow Najjar et al. [1994]. These papers target a token-based, instruction-level

data-flow model, analogous to the simulation of hardware circuits. In contrast,

15

our data-flow model does not require tokens or associative maps, shifting the

effort of explicitly assign the consumer threads to their producers to the compiler.

The comparison between our approach and the token-based solution is further

discussed in chapter 5. In addition, thread-level data-flow requires additional

efforts to coarsen the grain of concurrency, handling the dynamic creation of

threads, and managing their activation records (data-flow frames).

2.3.2 SSA as an intermediate representation for data-flow

compilation

The static single assignment form (SSA) is formally equivalent to a well-behaved

subset of the continuation-passing style (CPS) Appel [1998]; Kelsey [1995] model,

which is used in compilers for functional languages such as Scheme, ML and

Haskell. The data-flow model has been tied closely to functional languages, since

the edges in a data-flow graph can be seen both as encoding dependence in-

formation as well as continuation in a parallel model of execution. The SSA

representation builds a bridge between imperative languages and the data-flow

execution model. Our algorithm uses the properties of the SSA to streamline the

conversion of general control flow into thread-level data-flow.

2.3.3 Decoupled software pipelining

Closely related to our work, and in particular to our analysis framework, is the

decoupled software pipelining (DSWP) technique Ottoni et al. [2005]. It parti-

tions loops into long-running threads that communicate via inter-core queues,

following the execution model of Kahn process networks Kahn [1974]. DSWP

builds a Program Dependence Graph (PDG) Ferrante et al. [1987], combining

control and data dependences (scalar and memory). In contrast to DOALL

and DOACROSS Cytron [1986] methods which partition the iteration space

into threads, DSWP partitions the loop body into several stages connected with

pipelining to achieve parallelism. It exposes parallelism in cases where DOACROSS

is limited by loop-carried dependences on the critical path, it handles uncounted

loops, complex control flow and irregular pointer-based memory accesses. Parallel-

16

Stage Decoupled Software Pipelining (PS-DSWP) Raman et al. [2008] is an ex-

tension to combine pipeline parallelism with some stages executed in a DOALL,

data-parallel fashion. For example, when there are no dependences between loop

iterations of a DSWP stage, the incoming data can be distributed over multiple

data-parallel worker threads dedicated to this stage, while the outgoing data can

be merged to proceed with downstream pipeline stages.

These techniques have a few caveats however. They offer limited support for

decoupling along backward control and data dependences. They provide a com-

plex yet somewhat conservative code generation method to decouple dependences

between source and target statements governed by different control flow.

2.3.4 EARTH thread partitioning

Another thread partitioning method closely related to our work is used in EARTH

architecture compilation technique Tang et al. [1997]. The thread partitioning

method operates on the Program Dependence Flow Graph (PDFG). A PDFG

graph could be built based on the Program Structure Tree (PST) representa-

tion. A PST tree of a program is a hierarchical representation of the control

structure of the program (similar to the control dependence graph we used in the

thesis). In the PST representation, all the nodes control dependent on the same

node belongs to the same region. The PDFG is built upon PST by introducing

data dependences inside each basic region. The cross region data dependences is

promoted up to the same region level.

Our thread partitioning method presents in Chapter 5 differs in several as-

pects:

• In the EARTH partitioning method, the promotion of cross region depen-

dences creates extra overhead upon each promotion — the outer regions

needs to create continuations to wait for the data passing from the inner

region. When the destination region get the data passing from the source,

it still needs to pass the data down to the lower region where the actual

dependence happens.

Our method, instead of dependence promotion, we reserve the point to point

cross region dependence, passing the consumer’s thread information to its

17

producer by building and analyzing the DataFlow Program Dependence

Graph (DF-PDG). A detailed algorithm is described in Chapter 5.2.5.

• Our method operates on the SSA-PDG form. There are two main reasons

for relying on a SSA-based representation of the PDG: 1. SSA is formally

equivalent to a well-behaved subset of the continuation-passing style model.

By making the reaching definitions unique for each use, effectively convert-

ing the scalar flow into a functional program. 2. Reducing the complexity

of analyzing def-use chains from O(N2) to O(N), as the number of def-use

edges can become very large, sometimes quadratic in the number of nodes.

2.3.5 Formalization of the thread partitioning cost model

Sarkar Sarkar [1989] has formally defined the macro-dataflow model and devel-

oped the cost model of the partitioning method targeting this dataflow archi-

tecture, shows that the problem of determining the optimal partition, with the

smallest execution time is NP-complete in the strong sense. Tang Tang & Gao

[1999] Tang et al. [1997] has formalized the EARTH dataflow execution model

and developed the cost model for this architecture, shows the thread partitioning

problem is NP complete.

The TSTAR dataflow architecture is similar to EARTH. The formalization

is not our focus in this thesis since it has already been proven. Thus, in this

thesis, we provide a simple heuristic algorithm for coarsening the granularity of

the dataflow threads.

18

Chapter 3

Thread Partitioning I: Advances

in PS-DSWP

As a preliminary research on thread partitioning, we presents a thread parti-

tioning algorithm in this chapter. The algorithm extends loops distribution with

pipelining to Parallel Stage Decouple Software Pipelining (PS-DSWP). By assert-

ting a synchronous concurrency hypothesis, the data and control dependences can

be decoupled naturally with only minor changes to existing algorithms that have

been proposed for loop distribution and loop fusion.

Section 3.1 presents the related works in PS-DSWP and loop distribution.

Section 3.2 presents our observations with extending loop distribution to PS-

DSWP and a motivating example. Section 3.3 presents our thread partitioning

algorithms based on SSA and treegion representation. After deciding the partition

point between the original treegions, Section 3.4 explains the code generation

challenges in presence of multiple producers and consumers.

3.1 Introduction

The most closely related work to this chapter is decoupled software pipelining and

loop distribution. We recall the state-of-the-art in both and present the original

finding at the source of this work: by extending loop distribution with pipelining

and asserting a synchronous concurrency hypothesis, arbitrary data and control

19

dependences can be decoupled very naturally with only minor changes to existing

algorithms that have been proposed for loop distribution Kennedy & McKinley

[1990].

3.1.1 Decoupled software pipelining

Decoupled Software Pipelining (DSWP) Ottoni et al. [2005] is one approach to

automatically extract threads from loops. It partitions loops into long-running

threads that communicate via inter-core queues. DSWP builds a Program De-

pendence Graph (PDG) Ferrante et al. [1987], combining control and data depen-

dences (scalar and memory). Then DSWP introduces a load-balancing heuristic

to partition the graph according to the number of cores, making sure no recur-

rence spans across multiple partitions. In contrast to DOALL and DOACROSS

Cytron [1986] methods which partition the iteration space into threads, DSWP

partitions the loop body into several stages connected with pipelining to achieve

parallelism. It exposes parallelism in cases where DOACROSS is limited by loop-

carried dependences on the critical path. And generally speaking, DSWP parti-

tioning algorithms handles uncounted loops, complex control flow and irregular

pointer-based memory accesses.

Parallel-Stage Decoupled Software Pipelining Raman et al. [2008] (PS-DSWP)

is an extension to combine pipeline parallelism with some stages executed in a

DOALL, data-parallel fashion. For example, when there are no dependences be-

tween loop iterations of a DSWP stage, the incoming data can be distributed over

multiple data-parallel worker threads dedicated to this stage, while the outgoing

data can be merged to proceed with downstream pipeline stages.

These techniques have a few caveats however. They offer limited support

for decoupling along backward control and data dependences. They provide a

complex code generation method to decouple dependences among source and

target statements governed by different control flow, but despite its complexity,

this method remains somewhat conservative.

By building the PDG, DSWP also incurs a higher algorithmic complexity than

typical SSA-based optimizations. Indeed, although traditional loop pipelining for

ILP focuses on innermost loops of limited size, DSWP is aimed at processing large

20

control flow graphs after aggressive inter-procedural analysis optimization. In

addition, the loops in DSWP are handled by the standard algorithm as ordinary

control flow, missing potential benefits of treating them as a special case. To

address these caveats, we turned our analysis to the state of the art in loop

distribution.

3.1.2 Loop distribution

Loop distribution is a fundamental transformation in program restructuring sys-

tems designed to extract data parallelism for vector or SIMD architectures Kennedy

& McKinley [1990].

In its simplest form, loop distribution consists of breaking up a single loop into

two or more consecutive loops. When aligning loop distribution to the strongly

connected components of the data-dependence graph, one or more of the resulting

loops expose iterations that can be run in parallel, exposing data parallelism.

Barriers are inserted after the parallel loops to enforce precedence constraints

with the rest of the program. An example is presented in Figure 3.1.

for (i = 1; i < N; i++) {

S1 A[i] = B[i] + 1;

S2 C[i] = A[i-1] + 1;

}

for (i = 1; i < N; i++)

S1 A[i] = B[i] + 1;

<barriers inserted here>

for (i = 1; i < N; i++)

S2 C[i] = A[i-1] + 1

Figure 3.1: Barriers inserted after loop distribution.

3.2 Observations

It is quite intuitive that the typical synchronization barriers in between dis-

tributed data-parallel loops can be weakened, resulting into data-parallel pipelines.

We aim to provide a comprehensive treatment of this transformation, generalizing

PS-DSWP in the process.

21

3.2.1 Replacing loops and barriers with a task pipeline

In the previous example, we could remove the barriers between two distributed

loops with pipelining so that the two loops could run in parallel.

/* Initialize the stream,

inserting a delay. */

void INIT_STREAM() {

produce(stream, A[0]);

}

/* Decoupled producer and

consumer. */

for (i = 1; i < N; i++) {

S1 A[i] = B[i] + 1;

produce(stream, A[i]);

}

for (i = 1; i < N; i++) {

tmp = consume(stream);

S2 C[i] = tmp + 1;

}

Figure 3.2: Pipelining inserted between distributed loops. Initialize the stream
(left), producer and consumer thread (right).

Figure3.2 shows that pipelined execution is possible: the INIT_STREAM func-

tion inserts one delay into a communication stream; the produce/consume prim-

itives implement a FIFO, enforcing the precedence constraint of the data depen-

dence on array A and communicating the value in case the hardware needs this

information.

When distributing loops, scalar and array expansion (privatization) is gener-

ally required to eliminate memory-based dependences. The conversion to a task

pipeline avoids this complication through the usage of communication streams.

This transformation can be seen as an optimized version of scalar/array expansion

in bounded memory and with improved locality Pop et al. [2009].

3.2.2 Extending loop distribution to PS-DSWP

The similarity between DSWP and distributed loops with data-parallel pipelines

is striking. First, both of them partition the loop into multiple threads. Second,

both of them avoid partitioning the loop iteration space: they partition the in-

structions of the loop body instead. But four arguments push in favor of refining

DSWP in terms of loop distribution.

22

1. Loop distribution leverages the natural loop structure, where the granular-

ity of thread partitioning can be easily controlled. Moreover, it is useful to

have a loop control node to which to attach information about the iteration

of the loop, including closed forms of induction variables; this node can also

be used to represent the loop in additional transformations.

2. Using a combination of loop distribution and fusion, then replacing barri-

ers with pipelining leads to an incremental path in compiler construction.

This path leverages existing intermediate representations and loop nest op-

timizers, while DSWP relies on new algorithms and a program dependence

graph.

3. Considering the handling of control dependences, a robust and general al-

gorithm already exists for loop distribution. McKinley and Kennedy’s tech-

nique handles arbitrary control flow Kennedy & McKinley [1990] and pro-

vides a comprehensive solution. The same methods could be applied for

DSWP, transforming control dependences into data dependences, and stor-

ing boolean predicates into stream. After restructuring the code, updating

the control dependence graph and data dependence graph, the code gener-

ation algorithm for PDGs Baxter & Bauer [1989]; Ferrante & Mace [1985];

Ferrante et al. [1988] can be used to generate parallel code. This solution

would handle all cases where the current DSWP algorithm fails to clone a

control condition.

4. Since loop distribution does not partition the iteration space, it can also

be applied to uncounted loops. Unfortunately, the termination condition

needs to be propagated to downstream loops. This problem disappears

through the usage of a conventional communication stream when building

task pipelines.

From this high-level analysis, it appears possible to extend loop distribution

with pipelining to implement PS-DSWP and handle arbitrary control depen-

dences. Yet the method still seems rather complex, especially the if-conversion of

control dependences and the code generation step from the PDG. We go one step

23

further and propose a new algorithm adapted from loop distribution but avoiding

these complexities.

3.2.3 Motivating example

Our method makes one more assumption to reduce complexity and limit risks of

overhead. It amounts to enforcing the synchronous hypothesis on all communi-

cating tasks in the partition Halbwachs et al. [1991]. A sufficient condition is to

check if the source and target of any decoupled dependence is dependent on the

same control node.

Consider the example in Figure 3.3. S1 and S7 implement the loop control

condition and induction variable, respectively. S2, S3 and S6 are control depen-

dent on S1. S3 is a conditional node, S4, S5 and L1 are control dependent on

it. In the inner loop, L2 and L3 are control dependent on L1. When we apply

DSWP to the outer loop, the control dependences originating from S1 must be

if-converted by creating several streams (the number of streams depends on the

number of partitions). When decoupling along the control dependence originat-

ing from S3, a copy of the conditional node must be created as well as another

stream.

S1 while (p != NULL) {

S2 x = p->value;

S3 if(c1) {

S4 x = p->value/2;

S5 ip = p->inner_loop;

L1 while (ip) {

L2 do_something(ip);

L3 ip = ip->next;

}

}

S6 ... = x;

S7 p = p->next;

}

Figure 3.3: Uncounted nested loop before partitioning.

Figure 3.4 shows the conversion to SSA form. Just like GCC, we use a loop-

closed SSA form distinguishing between loop-Φ and cond-Φ nodes. The latter

24

S1 while (p1 = Φloop(p0,p2)) {

S2 x1 = p1->value;

S3 if(c1) {

S4 x2 = p1->value/2;

S5 ip1 = p1->inner_loop;

L1 while (ip2 = Φloop(ip1, ip3)) {

L2 do_something(ip2);

L3 ip3 = ip2->next;

}

}

x3 = Φcondc1 (x1, x2);

S6 ... = x3;

S7 p2 = p1->next;

}

Figure 3.4: Uncounted nested loop in SSA form.

take an additional condition argument, appearing as a subscript, to explicit the

selection condition. The partitioning technique will build a stream to communi-

cate this condition from its definition site to the cond-Φ node’s task.

We build on the concept of treegion, a single-entry multiple-exit control-flow

region induced by a sub-tree of the control dependence graph. In the follow-

ing, we assume the control flow is structured, which guarantees that the control

dependence graph forms a tree. Every sub-tree can be partitioned into concur-

rent tasks according to the control dependences originating from its root. Any

data dependence connecting a pair of such tasks induces communication over a

dedicated stream. We call taskM_N the N-th task at level M of the control flow

tree.

In Figure 3.4, after building the control dependence tree, one may partition it

into 3 tasks (task1_1, task1_2 and task1_3) at the root level, and for task1_2,

one may further partition this task into inner nested tasks task2_1 and task2_2.

One may then check for data parallelism in the inner loops; if they do not carry

any dependence, one may isolate them in additional data-parallel tasks, such as

task3_1 in this example.

Figure 3.5 shows the task and stream-annotated code using an OpenMP syn-

tax. Figure 3.6 shows the nested pipelining and data parallelization corresponding

25

//task0-0(main task)

S1 while (p1 = Φloop(p0, p2)) {

//persistent-task1-1

#pragma task firstprivate (p1) output(x1)

{

S2 x1 = p1->value;

}

//persistent-task1-2

#pragma task output(c1, x2)

{

S3 if(c1) {

//persistent-task2-1

#pragma task firstprivate (p1) output(ip1) lastprivate(x2)

{

S4 x2 = p1->value/2;

S5 ip1 = p1->inner_loop;

}

//persistent-task2-2

#pragma task input(ip1)

{

L1 while (ip2 = Φloop(ip1, ip3)) {

//parallel - task3-1

#pragma omp task firstprivate (ip2)

{

L2 do_something(ip2);

}

L3 ip3 = ip2->next;

}

}

}

}

//persistent-task1-3

#pragma task input(c1, x1, x2)

{

x3 = Φcondc1 (x1, x2);

S6 ... = x3;

}

S7 p2 = p1->next;

}

Figure 3.5: Loops after partitioning and annotated with OpenMP stream exten-
sion.

26

Figure 3.6: Pipelining and parallelization framework.

to the partitioned code. The main task will be executed first, and a pipeline will

be created for the main task and its inner tasks three task1_1, task1_2 and

task1_3. Among these, the same variable x used to be defined in the control

flow regions of both task1_1 and task1_2, to be used in task1_3. This output

dependence must be eliminated prior to partitioning into tasks, so that task1_1

and task1_2 could be decoupled, while task1_3 may decide which value to use

internally.

Nested tasks are introduced to provide fine grained parallelism. It is of course

possible to adapt the partition and the number of nesting levels according to the

load balancing and synchronization overhead. The generated code will be well

structured, and simple top-down heuristics can be used.

In the execution model of OpenMP 3.0, a task instance is created whenever

the execution flow of a thread encounters a task construct; no ordering of tasks

can be assumed. Such an execution model is well suited for unbalanced loads, but

the overhead of creating tasks is significantly more expensive than synchronizing

persistent tasks. To improve performance, we use the persistent task model for

27

pipelining, in which a single instance will handle the full iteration space, consum-

ing data on the input stream and producing on the output stream Pop & Cohen

[2011a]. In Figure 3.6, all the tasks except task3_1 use the persistent model

to reduce the overhead of task creation; task3_1 is an ordinary task following

the execution model of OpenMP 3.0 (instances will be spawned every time the

control flow encounters the task directive). All these tasks will be scheduled by

the OpenMP runtime.

One problem with the partitioning algorithms is the fact that the def-use edges

(scalar dependences) can become very large, sometimes quadratic with respect

to the number of nodes Kennedy & Allen [2002]. Figure 3.7 (left) presents an

example that illustrates this problem, Statements S1, S2 define the variable x.

These definitions all reach the uses in the statements S3, S4 by passing through S5.

Because each definition could reach every use, the number of definition-use edges

is proportional to the square of the number of statements. These dependences

constitute the majority of the edges in a PDG. SSA provide a solution to this

problem. In SSA form, each assignment creates a different variable name and at

point where control flow joins, a special operation is inserted to merge different

incarnations of the same variable. The merge nodes are inserted just at the place

where control flow joins. Figure 3.7 (right) is the original program under SSA

form. A merge node (Φ) is inserted at S5, and killed the definition of S1 and

S2. We could see here, in the SSA form, we could reduce the definition-use edges

from quadratic to linear.

The systematic elimination of output dependences is also facilitated by the

SSA form, with a Φ node in task3_1. Notice that the conditional expression from

which this Φ node selects one or another input also needs to be communicated

through a data stream.

When modifying loop distribution to rely on tasks and pipelining rather than

barriers, it is not necessary to distribute the loop control node and one may run

it all in the master task, which in turn will activate tasks for the inner partitions.

The statements inside each partition form a treegion whose root is the statement

that is dependent on the loop control node. With pipelining inserted, distributed

loops could be connected with pipelining when there are data dependences.

One concern here is that loop distribution with task pipelines may not pro-

28

Figure 3.7: Definition and use edges in the presence of control flow.

vide expressiveness to extract pipeline parallelism. This is not a problem however,

since we may apply the same method to every conditional statement rooted tree-

gion, with some special care to the nested tasks, we could get fine grained paral-

lelism without explicitly decoupling the control dependences. Considering again

the example in Figure 3.3, its control dependence tree is given in Figure 3.8. The

root treegion includes all the nodes in the control dependence graph, treegion1_2

represents the treegion at conditional level 1 and its root is node 2, treegion1_3

is at conditional level 1 and includes nodes (S3,S4,S5,L1,L2,L3). treegion2_1 is

in conditional level 2 and its root is node (L1), which is the loop control node of

the inner loop.

So following our approach, we may start from the treegion at conditional level

0, which is the whole loop, an implicit task will be created as the master task.

For the treegions at level 1, we could create them as sub-tasks running at the

context of the main task. If there are data dependences between the treegions

at the same level and without recurrence, we will connect them with commu-

nication streams. If there is a dependence from the master task to one inner

task, the value from the enclosing context can be forwarded to the inner task

like in a firstprivate clause of OpenMP. Dependences from an inner task to

the master task are also supported, although lastprivate is not natively sup-

29

Figure 3.8: Control dependence graph of Figure 3.3. Express the definition of
treegion.

ported for OpenMP3.0 tasks, it is a necessary component of our streaming task

representation. lastprivate(x) is associated with a synchronization point at

the end of the task and makes the value of x available to the enclosing con-

text. The same algorithms could be recursively applied to the treegion at the

next inner level. e.g. For treegion1_3 at level 1, the sub treegion at level 2

is treegion2_4, treegion2_5 and treegion2_1, we could create sub-tasks by

merging treegion2_4 and treegion2_5 as one sub-task and treegion2_1 (which

is also the inner loop) as one sub-task, or just for part of them. To reveal data

parallelism, we can reuse the typed fusion algorithm introduced by McKinley

30

and Kennedy Kennedy & Mckinley [1993]: it is possible to fuse communicating

data-parallel nodes to increase the synchronization grain or improve the load bal-

ancing. In this example, the loop in node L2 does not carry any dependence, and

we need to decouple it from its enclosing task to expose data-parallelism.

3.3 Partitioning Algorithm

In this section, we present our partitioning algorithm, based on the SSA and

treegion representations. We define our model and the important constructs that

will be used by our algorithm, then we present and describe our algorithm.

3.3.1 Definitions

In this work, we are only targeting natural structured loops Böhm & Jacopini

[1966]. Such loops are single-entry single-exit CFG sub-graphs with one entry

block and possibly several back edges leading to the header from inside of the

loop. break and continue statements can be preprocessed to comply with this

restriction, but we plan to lift it altogether in the future.

Treegion The canonical definition of a treegion is a non-linear, single-entry

multiple-exit region of code containing basic blocks that constitute a sub-graph

of the CFG. We alter this definition to bear on the Control-Dependence Graph

(CDG) instead, so we will be looking at single-entry multiple-exit sub-graphs of

the CDG.

Loop Control Node In the representation we employ later, we will use the

loop control node to represent the loop. The loop control node include statements

which will evaluate the loop control expression and determines the next iteration.

Although control dependences in loops can be handled by the standard algo-

rithm by converting them to a control flow graph, there are advantages in treating

them as a special case with coalescing them in a single node (loop control node):

not only the backward dependence is removed by building the loop control node

31

so that the control dependence graph will form a tree, but also, this node can be

used to represent the loop in all sort of transformations.

Conditional Level The control dependence graph of the structured code is a

tree after building the loop control node. The root of the tree is the loop control

node at the loop’s outermost level. We define the conditional level for every node

in the control dependence graph as the depth of the node in the tree. The root

of the tree with depth 0 has conditional level 0.

We define the conditional level for the treegion is the conditional level of the

root node of the treegion (subtree). We define treegionN_M to identify a treegion

where N is the conditional level of the treegion and M is the root node number of

the treegion.

3.3.2 The algorithm

The algorithm takes an SSA representation of a single function, and returns a

concurrent representation annotated with tasks and communication streams.

Step 1: Transform Conditional Statements to Conditional Variables

To achieve fine-grained pipelining, conditional statements are split to conditional

variables. As showed in Figure 3.9. Full conversion to three-address SSA form is

also possible (as it is performed in GCC or LLVM, for example).

if (condition(i))

//is transformed to

c1 = condition(i)

if (c1)

Figure 3.9: Split conditional statements to expose finer grained pipelining.

Step 2: Build the Program Dependence Graph under SSA By building

the program dependence graph, the control dependence graph, data dependence

graph (through memory) and scalar dependence graph (through registers) are

built together.

32

The control dependence graph for the structured code is a tree, the root of the

tree is the loop control node. The leaves of the tree are non-conditional statements

and the other nodes inside the tree are the conditional statements or the loop

control node of the inner loops. We start from building the control dependence

graph, and evaluate the conditional level for each node in the graph. Every

node inside the control dependence graph is an statement from the compiler’s

intermediate representation of the loop except for the loop control node. The loop

control node will be built by searching the strongly connect component started

from the loop header node (at each loop nest level) in the program dependence

graph.

The data dependence graph could be built by the array dependence analysis

Kennedy & Allen [2002] for the loop. We should analyze every pair of data

dependences to mark the irreducible edges in a later step if there are recurrence.

Step 3: Marking the Irreducible Edges A partition can preserve all de-

pendences if and only if there exists no dependence cycle spanning more than

one output loop Allen & Kennedy [1987]; Kuck et al. [1981]. In our case, for the

treegion at the same conditional level which shares a common immediate parent,

if there are dependences that form a cycle, we mark the edges in between as

irreducible. If we have statements in different conditional level or does not share

a common immediate parent, we find the least common ancestor of both nodes,

and walk backwards along the CDG, till reach the immediate nodes of the least

common ancestor, and mark the edge in between as irreducible. The algorithm

is presented in Figure 3.10.

Step 4: Structured Typed Fusion Before partitioning, to reveal data paral-

lelism, we type every node in the dependences graph as parallel or !parallel.

If there are loop-carried dependence inside this node, then it should be typed as

!parallel, otherwise, typed as parallel.

The parallel type nodes are candidates for data parallelization. The goal is

to merge this type of nodes to create the largest parallel loop, reducing synchro-

nization overhead and (generally) improving data locality. Further partitioning

can happen in the following step, starting from this maximally type-fused con-

33

// input: PDG Graph PDG(V,E) PDG--Program Dependence Graph

// input: CDG Graph CDG(V,E) CDG--Control Dependence Graph

// output: irreducible_edge_set Irreducible_edge_set

SCCS = find_SCCs(PDG)

For each SCC in SCCs:

for each pair of node (Vx,Vy) in SCC:

// CL represents for conditional level

// in the Control dependence graph.

// Find the least common ancestor of both nodes, and walk

// backwards along the CDG, till reach the immediate nodes of the

// least common ancestor, and mark the edges in between as

// irreducible.

Vca = get_least_common_ancestor (Vx, Vy)

Vx = up_n_level(CDG, Vx.CL - Vca.CL - 1)

Vy = up_n_level(CDG, Vy.CL - Vca.CL - 1)

//mark edge (Vx,Vy) irreducible

Irreducible_edge_set.insert(edge(Vx,Vy))

Figure 3.10: Algorithm for marking the irreducible edges.

figuration. Given a DAG with edges representing dependences and the vertexes

representing statements in the loop body, we want to produce an equivalent pro-

gram with minimal number of parallel loops. We want it to be as large as possible

to balance the synchronization overhead. Even when we do not want that coarse

grained parallel loops, we could also partition between iterations if possible.

In our case, we need a structured typed loop fusion algorithm. We revisit

McKinley and Kennedy’s fast typed fusion Kennedy & Mckinley [1993] into a

recursive algorithm traversing the control dependence tree. Starting from the

treegion at conditional level 0, which is the whole loop, we will check if there

are loop carried dependences between iterations. If there are no loop carried

dependence, we stop here by annotating the whole loop as parallel. If there are,

we are going into each inner treegion, identifying those that have no loop carried

dependences. If some of them carried no loop carried dependence, mark the

nodes as parallel and try to merge them. There are some constraints when we

fuse the nodes: (1) parallelization-inhibiting constraints; (2) ordering constraints.

The parallelization-inhibiting fusion is that there are no loop-carried dependences

before fusion, but will have the loop carried dependences after. So we should skip

34

this kind of fusion which will degrades data parallelism. The ordering constraints

describe that two loops cannot be validly fused if there exists a path of loop-

independent dependences between them that contains a loop or statement that

is not being fused with them.

The time complexity of the typed fusion algorithms is O(E+V) Kennedy &

Mckinley [1993], and our structured extension has the same complexity.

void StructuredTypedFusion()

Queue queue = new Queue()

queue.push(treegions_at_level_0)

while (not queue.empty()) {

treegions = queue.pop()

G = build_pdg_by_treegion(treegions)

for each treegion in treegions:

if loop_carried_no_dependence (treegion) {

parallel_treegion.insert(treegion)

update_typed_dependence_graph(G, treegion.num)

}else{

treegions_at_inner_level.insert(treegion)

}

queue.push (treegions_at_inner_level)

B = Get_parallelization_inhabiting_edges

(parallel_treegion)

t0 = ’parallel’

TypedFusion (G, T, B, t0)

}

procedure TypedFusion(G, T, B, t0)

//G=(V,E) is the TYPED dependences graph,

//including control,data,scalar dependences.

//type(n) will return the type of a node.

//B is the set of parallelization-inhabiting edges.

//t0 is a specific type for which we will find a minimal fusion

end TypedFusion

Figure 3.11: Structured typed fusion algorithm.

Step 5: Structured Partitioning Algorithms Updating the CDG after

typed fusion, start from the treegion which has conditional level 0 for our par-

titioning algorithms, and for all of its child treegions at conditional level 1, we

should decide where to partition. The partition point could be any point between

35

each of these treegions at the same level except the irreducible edges that we have

created in step 3. The algorithm may decide at every step if it is desirable to

further partition any given task into several sub-tasks. Note: we did not pro-

vide any heuristic for making the partitioning decision (coarsen the granularity

etc.). A detailed partitioning algorithm is presented in Chapter 5 where a simple

heuristic algorithm for coarsen the granularity is applied.

Look at the example Figure 3.12:

for(i...)

x = work(i)

if (c1)

y = x + i;

if (c2)

z = y*y;

q = z - y;

for (i...)

BEGIN task1_1

x = work(i)

END task1_1

BEGIN task1_2

if (c1)

BEGIN task2_1

y = x + i;

END task2_1

BEGIN task2_2

if (c2)

z = y*y;

END task2_2

BEGIN task2_3

q = z - y;

END task2_3

END task1_2

Figure 3.12: Before partitioning (left), and After partitioning (right). Loop with
control dependences.

The code in Figure 3.12 (left) is partitioned into 2 tasks, and one task (task1_2)

is partitioned further into 3 sub-tasks.

3.4 Code Generation

After the partitioning algorithms, we have decided the partition point between

the original treegions, with the support of the stream extension of OpenMP. We

ought to generate the code by inserting the input output directives. With the

support of nested tasks, relying on the downstream, extended OpenMP com-

pilation algorithm (called OpenMP expansion). But some challenges remain,

36

especially in presence of multiple producers and consumers. We are using SSA

form as an intermediate representation and generating the streaming code.

3.4.1 Decoupling dependences across tasks belonging to

different treegions

Clearly if we decouple a dependence between tasks in the same treegion, the

appropriate input and output clauses can be naturally inserted. But what about

the communication between tasks at different level?

Considering the example in Figure 3.13, if we decide to partition the loop to 3

main tasks: task1 1 with S1, task1 2 with (S2,S3), and task1 3 with S4, task1 2 is

further divided to task2 1 with S3. If we insert the produce and consume directly

into the loop, unmatched production and consumption will result.

for (...) {

S1 x = work(i)

S2 if (c1)

S3 y = x + i;

S4 ... = y;

}

for (i = 0; i < N; I++) {

S1 x = work(i)

produce(stream_x, x) //task1_1 end

x = consume(stream_x)

S2 if (c1) //task1_2 start

x = consume(?) //task2_1 start

S3 y = x + i;

produce(?, y) //task2_1 end

produce(stream_y, y) //task1_2 end

y = consume(stream_y)

S4 ... = y; //task1_3 end

}

Figure 3.13: Normal form of code (left) and using streams (right).

The answer comes from following the synchronous hypothesis and slightly

modifying the construction of the SSA form in presence of concurrent streaming

tasks.

3.4.2 SSA representation

We are using the Single Static Assignment (SSA) form as an intermediate rep-

resentation for the source code. A program in SSA form if every variable used

37

in the program appears a single time in the left hand side of an assignment. We

are using the SSA form to eliminate the output dependences in the code, and to

disambiguate the flow of data across tasks over multiple producer configurations.

/* Normal form of the code. */

S1: r1 = ...

S2: if (condition)

S3: r1 = ...

S4: ... = r1

/* Code under SSA form. */

S1: r1_1 = ...

S2: if (condition)

S3: r1_2 = ...

S4: r1_3 = phi(r1_1, r1_2)

S5: ... = r1_3

Figure 3.14: Normal form of code (left) and SSA form of the code (right).

Considering the example in Figure 3.14, if we partition the statements into

(S1), (S2,S3), (S4), we need to implement precedence constraints for the output

dependence between partition (S1) and (S2,S3), which decreases the degree of

parallelism and induces synchronization overhead.

Eliminating the output dependences with the SSA form leads to the introduc-

tion of multiple streams in the partitioned code. In order to merge the information

coming from different control flow branches, a Φ node is introduced in the SSA

form. The Φ function is not normally implemented directly, after the optimiza-

tions are completed the SSA representation will be transformed back to ordinary

one with additional copies inserted at incoming edges of (some) Φ functions. We

need to handle the case where multiple producers in a given partition reach a

single consumer in a different partition. When decoupling a dependence whose

sink is a Φ node, the exact conditional control flow leading to the Φ node is not

accessible for the out-of-SSA algorithm to generate ordinary code.

Task-closed Φ node In SSA loop optimization, there is a concept called loop-

closed Φ node, which implements the additional property that no SSA name is

used outside of loop where it is defined. When enforcing this property, Φ nodes

must be inserted at the loop exit node to catch the variables that will be used

outside of the loop. Here we give a similar definition for task-closed Φ node: if

multiple SSA variables are defined in one partition and used in another, a phi

node will be created at the end of the partition for this variable. This is the place

where we join/split the stream. We need to make sure that different definitions of

38

the variable will be merged in this partition before it continues to a downstream

one. This node will be removed when converting back from SSA.

Task-closed stream Our partitioning algorithms generate nested pipelining

code to guarantee that all communications follow the synchronous hypothesis. For

each boundary, if there are one or more definitions of a variable coming through

from different partitions, we insert a consumer at this boundary to merge the

incoming data, and immediately insert a producer to forward the merged data at

the rate of the downstream control flow.

1. When partitioning from a boundary, if inside the treegion, there are multi-

ple definitions of a scalar and it will be used in other treegions which has

the same conditional level, we create a Φ node at the end of this parti-

tion to merge all the definitions, and also update the SSA variable in later

partitions.

2. If there is a Φ node at the end of a partition, insert a stream named with

the left-hand side variable of the Φ node.

3. At the place where this variable is used, which is also a Φ node, add a

special stream-Φ node to consume.

4. To generate code for the stream-Φ, use the boolean condition associated

with the conditional phi node it originates from.

Let us consider the SSA-form example in Figure 3.14 where we partition the

code into (S1,S2,S3) and (S4,S5). A Φ node will be inserted at the end of the

first partition, r1 4 = phi(r1 1, r1 2), the Φ node in a later partition should be

updated from r1 3 = Φ(r1 1, r1 2) to r1 5 = Φ(r1 4). In the second step, we

find out that in partition (S1,S2,S3), there is a Φ node at the end, so we insert

a stream to produce there. And in partition (S4,S5), after the Φ node there is a

use of the variable, so we insert a stream consume. The generated code will look

like Figure 3.15.

This example illustrates the generality of our method and shows how fine-grain

pipelines can be built in presence of complex, multi-level control flow.

39

/* Producer. */

S1: r1_1 = ...

S2: if (condition)

S3: r1_2 = ...

r1_4 = phi(r1_1, r1_2)

produce(stream_r1_4, r1_4)

/* Consumer. */

S4: r1_5 = phi(r1_4)

r1_5 = consume(stream_r1_4, i)

S5: ... = r1_5

Figure 3.15: Apply our algorithm to generate the parallel code. Producer thread
(left) and consumer thread (right).

If we decide to partition the statements into (S1), (S2,S3), (S4,S5), which is

the case for multiple producers, the generated code will look like in Figure 3.16.

/* Producer 1. */

S1: r1_1 = ...

r1_2 = phi(r1_1)

produce(stream_r1_2, r1_2)

/* Producer 2. */

S2: if (condition)

r1_3 = ...

r1_4 = phi(r1_3)

produce(stream_r1_4, r1_4)

/* Consumer. */

S4: r1_5 = phi(r1_2, r1_4)

if (condition)

r1_5 = consume(stream_r1_4, i)

else

r1_5 = consume(stream_r1_2, i)

S5: ... = r1_5

i++

Figure 3.16: Multiple producers with applied our algorithm, the generated code.

For multiple consumers, the stream extension of OpenMP will broadcast to

its consumers, which is appropriate for our case.

3.5 Summary

In this chapter, we propose a method to decouple independent tasks in serial

programs, to extract scalable pipelining and data-parallelism. Our method lever-

ages a recent proposition of a stream-processing extension of OpenMP, with a

persistent task semantics to eliminate the overhead of scheduling task instances

each time a pair of tasks need to communicate. Our method is inspired by the

synchronous hypothesis: communicating concurrent tasks share the same control

flow. This hypothesis simplifies the coordination of communicating tasks over

nested levels of parallelism. Synchronous also facilitates the definition of gen-

40

eralized, structured typed fusion and partition algorithms preserving the loop

structure information. These algorithms have been proven to be essential to the

adaptation of the grain of parallelism to the target and to the effectiveness of

compile-time load balancing.

These partitioning algorithms also handle DOALL parallelization inside a task

pipeline. We are using a combination of SSA, control dependence tree and (non-

scalar) dependence graph as an IR. With the support of SSA, our method elimi-

nates the nested multiple producer and multiple consumer problems of PS-DSWP.

SSA also provides additional applicability, elegance and complexity benefits.

persistent task model. The persistent task model benefits from eliminat-

ing the overhead of scheduling task instances, however, it reduces the potential

parallelism in recurrent control structure.

synchronous hypothesis. The structured partitioning algorithm assumes

a synchronous hypothesis, which simplifies the coordination of communicating

tasks over nested levels of parallelism. However, this hypothesis results in too

coarsen grained tasks sometimes (e.g. when marking the irreducible edges, if

we have statements in different conditional level, we promote the inner to its

ancestor until both of them are in the same treegion, and mark both root nodes

as irreducible).

Conclusion. The partitioning algorithm presents in this chapter serves a pre-

liminary study, the persistent task model and synchronous hypothesis restrict the

exploration of parallelism. Enough parallelism is the key to cover latency. So in

chapter 5, we present a more mature thread partitioning algorithm by removing

the synchronous restricts which target on TSTAR dataflow architecture with a

non-preemptive thread model, where we could exploit maximum parallelism. The

TSTAR architecture and its detailed execution model is presented in chapter 4.

41

Chapter 4

TSTAR Dataflow Architecture

In this chapter, we present several abstraction layers of the TSTAR dataflow ar-

chitecture, from the threading model to the dataflow ISA extensions. Section 4.1

gives an overview of the dataflow execution model and past dataflow architectures.

Section 4.2 further explains the TSTAR execution model from different aspects

(threading model, memory model ,synchronization details and ISA extension),

and section 4.3 gives an overview of the TSTAR architecture.

4.1 Dataflow Execution Model

4.1.1 Introduction

In the data flow execution model, a program is represented by a directed graph Arvind

& Culler [1986a]; Dennis et al. [1974]; Dennis & Misunas [1979]; Karp & Miller

[1966]. The nodes of the graph are primitive instructions such as arithmetic

or comparison operations. Directed arcs between the nodes represents the data

dependencies between the instructions.

Execution of a test or operation is enabled by availability of the required value.

The completion of one operation makes the resulting value or decision available

to the elements of the program whose execution depends on them.

When the program begins, special activation nodes place data onto certain

key input arcs, triggering the rest of the program. Whenever a specific set of

input arcs of a node (called a firing set) has data on it, the node is said to be

42

fireable Arvind & Culler [1986a]; Veen [1986]; Davis & Keller [1982]. A fireable

node is executed at some undefined time after it becomes fireable. The action of

firing the actor results in removing the data token from each node in the firing

set, performs its operation, and places new data token on its output arcs. It then

cease the execution and waits to become fireable again.

The execution of a data flow program could be described by a sequence of

snapshots. Each snapshot shows the data flow program with tokens and associ-

ated values placed on some arcs of the program. Execution of a data flow program

advances from one snapshot to the next through the firing of some link or actor

that is enabled in the earlier snapshot.

Figure 4.1: Firing rule example.

4.1.2 Past Data-Flow Architectures

The original motivation for dataflow study origins from the exploration of massive

parallelism. One school of thoughts held that the conventional architecture is not

suitable for the exploitation of parallelism, where the global program counter

and global updatable memory becomes bottlenecks. The early study starts from

dataflow architectures.

The static architecture. The static dataflow model was proposed by Dennis

and Misunas Dennis & Misunas [1975]. In this model, the FIFO design of arcs

is replaced by simple design where each arc could hold at most one data token.

When there is a token on each input arc, and no token on any of the output arcs,

43

the node fires. Figure 4.2 (a) shows the general organization of the static data flow

machine. The activity store contains instruction templates that represents the

nodes in a dataflow graph. Each instruction template contains an operation code,

slots for the operands, and destination addresses. To determine the availability

of the operands, slots contain presence bits. The update unit is responsible

for detecting instructions that are available to execute. When this condition is

verified, the unit sends the address of the enabled instruction to the fetch unit

via the instruction queue. The fetch unit fetches and sends a complete operation

packet containing the corresponding opcode, data and destination list to one of

the operation units and clears the presence bits. The operation unit performs the

operation, forms result tokens, and sends them to the update unit. The update

unit stores each result in the appropriate operand slot and checks the presence

bits to determine whether the activity is enabled.

Figure 4.2: The basic organization of the static (a) and dynamic (b) model.

Advantage and Disadvantage. The main advantage of static dataflow model

is its simplified mechanism for detecting the availability of required operands

(fireable nodes). However, the static dataflow model has a serious drawback: the

additional acknowledgement arcs increase data traffic by a factor of 1.5 to 2.0

in the system when dealing with iterative constructs and reentrancy Arvind &

Culler [1986a]. The acknowledge scheme can transform a reentrant code into an

44

equivalent graph that allows pipelined execution of consecutive iterations, but the

single token per arc limitation restricts that the execution of consecutive iterations

can never fully overlap, even there is no loop carried dependences exist.

The dynamic architecture. The dynamic, or tagged-token architecture was

proposed by Watson and Gurd Watson & Gurd [1979], Arvind and Culler Arvind

& Culler [1983]. It exposes additional parallelism by allowing multiple instance

of the reentrant code. The firing rule is: A node is enabled as soon as tokens with

identical tags are present at each of its input arcs. Figure Figure 4.2 (b) show the

general organization of the dynamic dataflow model. Tokens are received by the

matching unit, which is a memory containing a pool of waiting tokens. The unit’s

basic operation brings together tokens with identical tags. If a match exists, the

corresponding token is extracted from the matching unit, and the matched token

set is passed to the fetch unit. If no match is found, the token is stored in the

matching unit to await a matched token. In the fetch unit, the tags of the token

pair uniquely identify an instruction to be fetched from the program memory.

Advantage and Disadvantage. The main advantage of dynamic dataflow model

is its support for iterative constructs and reentrancy, higher parallelism is ob-

tained by allowing multiple tokens on an arc. For example, a loop can be dy-

namically unfolded at runtime by creating multiple instances of the loop body

and allowing concurrent execution of the iterations. It has been studied that

this model offers maximum possible parallelism in any interpreter Arvind et al.

[1977]. The main disadvantage of this model is the extra overhead in match-

ing tags on tokens. Instead of simple presence or absence checking as in static

dataflow model, tagged-token dataflow model execution requires a token to be

checked against all other waiting tokens for a match. If a match is found then

the matching token must be extracted from the waiting storage. The matching

function and associated storage is most often realized with a large hash table

and sophisticated insertion and extraction algorithms. The resulting hardware

is highly complex and slow. A more subtle problem with token matching is the

complexity of allocating memory cells. A failure to the matching mechanism

implicitly allocates extra memory within the matching hardware. Usually the

memory on such hardware is limited, once it is overused, it might leads to dead-

45

lock.

The hybrid architecture The limit of static dataflow model and the overhead

in dynamic dataflow model led to the convergence of dataflow and von Neumann

models. The hybrid architecture moves from fine-grained parallelism towards

coarse-grained execution model, which combines the power of dataflow model for

exploiting parallelism with the efficiency of the control-flow model.

The hybrid architecture diverge in two directions: one approaches are es-

sentially von Neumann architectures with a few dataflow additions (large-grain

dataflow architecture), another are essentially dataflow architectures with some

von Neumann additions (multithreaded dataflow architecture) Iannucci [1988]; Nikhil

[1989]; Nikhil et al. [1992] Culler et al. [1991].

In multithreaded dataflow model, the dataflow principle is adjusted so that

a sequential instructions is issued consecutively by the matching unit without

matching further token except for the first instruction of the thread. Data passed

between instructions from the same thread is stored in register instead of writing

them back to memory. In large-grain dataflow model, the dataflow graph is ana-

lyzed and divided to subgraphs, the subgraphs are then compiled into sequential

von Neumann processes. These processes are executed in a multithreaded envi-

ronment, scheduled according to the dataflow model to better exploit parallelism.

Large dataflow machines typically decouple the matching stage from the execu-

tion stage by FIFO buffers. In which case off-the-shelf microprocessors can be

used for the execution stage.

Large grain dataflow architectures. The large grain dataflow architecture

is well studied and developed in the 1990s. *T Nikhil et al. [1992] is a direct

descendant of dataflow architectures, especially of the Monsoon Papadopoulos &

Culler [1990], and unifies them with von Neumann architecture. In the Associa-

tive Dataflow Architecture ADARC Strohschneider & Waldschmidt [1994], the

processing units are connected via an associative communication network. The

Pebble Roh & Najjar [1995] architecture is a large grain dataflow architecture

with decoupling of the synchronization unit and the execution unit within the

processing elements.

46

The EARTH Maquelin et al. [1996] Hendren et al. [1997] architecture is

based on the Multithreaded Architecture and dates back to the Argument Fetch

Dataflow Processor Dennis & Gao [1988]. An MTA node consists of an execution

unit that may be an off-the-shelf RISC microprocessor and a synchronization unit

to support dataflow thread synchronization. The synchronization unit determines

which threads are ready to be executed. Execution unit and synchronization unit

share the processor local memory which is cached. Accessing data in a remote

processor unit communicate via FIFO queues: a ready queue containing ready

thread identifiers link the synchronization unit with the execution unit, and an

event queue holding local and remote synchronization signals connects the execu-

tion unit with the synchronization unit, but also receive signals from the network.

A register use cache keeps track of which register set is assigned to which function

activation. Our threading model is similar to EARTH threading model, both rely

on non-preemptive threads.

4.2 TSTAR Dataflow Execution Model

4.2.1 TSTAR Multithreading Model

The basic execution model of TSTAR is a multithreading execution model that

exploits application parallelism at different levels. It derives from the dataflow

execution model, where the communication and synchronization latencies caused

by inter-processor communication can overlap with useful information.

In TSTAR execution model, the instructions are not synchronized and sched-

uled individually, but are combined into larger units called DF-threads. A DF-

thread is a sequence of instructions that execute sequentially and run to comple-

tion once started (non-preemptive).

DF-Thread DF-Thread is a non-preemptive dataflow thread, and have the

following properties:

• They are activated only when all their input data are available. This data

is available either in the DF-frame (Frame Memory) of the thread or in the

OWM of the producer threads.

47

• They write their output to either the consumer threads allocated DF-frames

in Frame Memory or to its own OWM (Owner Writable Memory).

• Each thread has a single entry point and a single exit point. Therefore

there are

– No jumps between DF-threads and

– No jumps within a DF-thread.

• The compiler controls thread granularity for the most efficient execution.

• Data consistency is guaranteed, because it does not allow threads that read-

/write the same address simultaneously.

The TSTAR execution model is based on U-Interpreter principles. The thread

meta-data, such as producer-consumer relationships and ready count (the number

of producers) of each thread are generated at compile time. The compiler also

inserts the necessary code to perform the initialization which consists of loading

meta-data of the threads into the Thread Scheduling Unit (TSU). The meta-

data is stored in the Graph Memory (GM). Each instantiation of a thread is

distinguished by its unique context that is maintained at execution time. The

dynamic context is combined with static meta-data to uniquely identify each

thread Ready Count (RC) entry and its input and output data. The DF-thread

is ready to be scheduled to run when all its producers have finished execution

and so their data are available. This guarantees that even though the results of

a thread are written during the execution of the thread and to global memory

space, they are only made “visible” to the consumers when the thread completes

its execution. As a result, we can safely restart the thread’s execution, in case of

a failure.

4.2.2 TSTAR Memory Model

TSTAR memory model is a hybrid memory model. It consists the thread local

storage, the owner writable memory and the frame memory. The thread local

storage allows better exploit the locality in one single DF-thread. The owner

48

writable memory is served as a global addressable memory, to reduce the cost of

the communication of complex data structures like arrays, vector etc. The frame

memory is used to manage the synchronization of dataflow threads.

Thread Local Storage (TLS) Sequential scheduling avoid the overhead of the

inefficient communication of tokens among nodes in past dataflow architectures.

The TLS allows better exploit the locality in one single DF-thread. TLS is part

of the thread’s address space. Only the owner thread can read or write to this

memory.

Whenever a DF-thread is ready to execute, it reads the input data from its

associate Frame Memory (or Owner Writable Memory), and during the sequential

execution of the DF-thread, the temporary variables could be stored in TLS, avoid

extra overhead.

Owner Writable Memory (OWM) One general criticism leveled at dataflow

computing is the management of data structures. The dataflow functionality

principle implies that all operations are side-effect free. However, absence of side

effect also means that if tokens are allowed to carry vectors, arrays, or other

complex data structures, an operation on a data structure results in a new data

structure. Which will greatly increase the communication overhead in practice.

The problem of efficiently represent and manipulate complex data structures in

dataflow execution model remains a challenge.

We proposed the OWM memory model to reduce the communication over-

heads when complex data structures passed over the threads. OWM is the global

addressable memory, before a thread could write to a portion of memory, it has

to claim ownership before hand. At any time point only the thread who has the

ownership of the memory could write to it. When write ownership is successfully

acquired, any read from another thread is not guaranteed to see consistent data.

When write ownership is released, a consistent view of data must be visible to

any other thread. Note the release operation could be performed explicitly by the

thread or implicitly by the model. The latter is achieved when the OWM is used

by a thread to write its results, which are made available to the consumer thread

upon the completion of the execution of the thread. This memory can serve the

49

requirements of the single assignment semantics required for functional objects.

However, the ability for other threads to subsequently reclaim write ownership

adds to flexibility of usage.

Frame Memory (FM) FM is used to manage the synchronization of dataflow

threads. The inputs to a consumer thread are written to its frame by one or

more producer threads. Each thread has a synchronization count (SC) and it is

decreased by each write. When the SC reached zero, the thread is ready to run.

4.2.3 TSTAR Synchronization

Figure 4.3 shows the illustrative examples. BB1, BB2, BB3 and BB4 are code

regions corresponding to 4 different threads. Data dependences — represented

by solid arrow lines — and control dependences — represented by dashed arrow

lines — enforce a partial ordering on threaded execution.1 Together, these data

and control dependences form the Program Dependence Graph (PDG) of the

function. BB2 may only be executed after its input value z and x have been

produced by BB1.

To express producer-consumer and control dependences, we define an abstract

data-flow interface suitable for parallelization passes in compilers as well as expert

programmers developing low-level data-flow code.

The interface defines two main components: data-flow threads, or simply

threads when clear from the context, together with their associated data-flow

frames, or simply frames.

The frame of a data-flow thread stores its input values, and optionally some

local variables or thread metadata. The frame’s address also serves as an identifier

for the thread itself, to synchronize producers with consumers. Communications

between threads are single-sided: the producer thread knows the address of the

data-flow frames of its dependent, consumer threads. A thread writes its output

data directly into the data-flow frames of its consumers.

Each thread is associated with a Synchronization Counter (SC) to track the

satisfaction of producer-consumer dependences: upon termination of a thread,

1Control dependence arcs are not to be mistaken for control flow arcs Wolfe [1995].

50

Figure 4.3: Program dependence graph of an illustrative example.

the SC of its dependent threads is decremented. A thread may execute as soon

as its SC reaches 0, which may be determined immediately when the producer

decrements the SC. The initial value of the SC is derived from the dependence

graph: it is equal to the number of arguments of the thread, each one correspond-

ing to an externally defined use.

In contrast, token-based approaches require checking the presence of the nec-

essary tokens on incoming edges. This means that either (1) a scanner must pe-

riodically check the schedulability of data flow threads, or (2) data flow threads

are suspendable. The former poses performance and scalability issues, while the

latter requires execution under complex stack systems (e.g., cactus stacks) that

may introduce artificial constraints on the schedule. The SC aggregate the in-

formation on the present and missing tokens for a thread’s execution, allowing

producer threads to decide when a given consumer is fireable.

In our example, thread BB2 has input z and x, it is not control dependent on

51

any node, therefore its initial SC is 2; thread BB3 has input z and it is control

dependent on thread BB2, but its initial SC is 1 (BB3 will be created by BB2,

thus satisfy the control dependence).

4.2.4 TSTAR Dataflow Instruction Set

We introduce the TSTAR dataflow instruction set to support our dataflow exe-

cution model. TSTAR dataflow instructions are inspired by T* ISA Giorgi et al.

[2007]; Portero et al. [2011], and as an extension to x86 architecture. Paolo Fara-

boschi from HP Lab also contributes to the design of the interface.

They are implemented as compiler builtins, recognized as primitive opera-

tions of the compiler’s intermediate representation. They can be implemented

efficiently both in software or hardware. We will started describing the TSTAR

ISA sets with a simple example, then in detail for each instruction.

Figure 4.4 shows a producer consumer pipeline relationship, producer pro-

duce value x and consumer consumes this value. Figure 4.5 shows the detailed

implementation with TSTAR builtin functions.

A. The main thread

The main DF-thread takes care of creating the producer and consumer

DF-threads and register dependences. In S1,S2, tschedule creates the

DF-threads for producer and consumer, the synchronization counter could

be either initialized due to the number of its producers (e.g. in S2, the

consumer DF-thread’s SC is initialized to 1), or used for controlling the

schedule time of a certain thread (e.g. in S1, the producer DF-thread does

not dependent on any other thread, but the SC is initialized to 1 at first,

and decrease by 1 in S5. In S3, we use tcache to cache the DF-frame of

the producer thread locally, so that we could directly read/write to it. And

in S4, we register the consumer thread id to the producer thread, so that

when the producer thread executed, it could get the frame address of the

consumer, and write the results directly to it. S5 decrease the SC of the

producer, and the producer thread will be ready to execute (SC reached

zero after decrementation).

52

B. The producer thread

The producer thread will do its computation (if have any), and pass the

results to its consumers. In this example, S7 loads the DF-frame of the

current thread with tload. The cfp is locally cached and read only. In

S8, it gets the consumer thread id that has been registered in the main

thread and S9 cache the consumer DF-frame locally. In S11, the result x is

directly written to its consumer thread’s DF-frame, and in S12, decrements

(tdecrease) the SC of the consumer after writing, at which point the SC

is decremented to zero, so the consumer thread will be ready to execute.

C. The consumer thread

The consumer thread load the DF-frame of the current thread in S14, and

read the value written by the producer thread. Till now, the communication

between producer and consumer has finished.

Figure 4.4: Producer consumer relationship.

Here is a detailed description of TSTAR instruction set interface.

dfthread p tschedule (void (*func)(), int sc, int size);

Creates a new data-flow thread and allocates its associated frame. func

is a pointer to the argument-less function to be executed by the data-flow

53

A. Main task

/* Main task, takes care of creating producer and

consumer tasks, resolve dependences in between. */

void main ()

{

/* Create producer task, the synchronization

counter is set to 1. */

S1 producer_tid = tschedule (task_producer, 1, sz);

/* Create consumer task, the synchronization

counter is set to 1. */

S2 consumer_tid = tschedule (task_consumer, 1, sz);

S3 producer_fp = tcache (producer_tid);

S4 producer_fp->field_consumer_tid = consumer_tid;

S5 tdecrease (producer_tid);

S6 tdestroy ();

}

B. Producer task

/* Producer task. Pass x to the consumer task. */

void task_producer ()

{

S7 cfp = tload ();

S8 consumer_tid = cfp->field_consumer_tid;

S9 consumer_fp = tcache (consumer_tid);

S10 x = 5;

S11 consumer_fp->x = x;

S12 tdecrease (consumer_tid);

S13 tdestroy ();

}

C. Consumer task

/* Consumer task. Get x from the producer. */

void task_consumer ()

{

S14 cfp = tload ();

S15 x = cfp->x;

S16 y = x;

S17 tdestroy ();

}

Figure 4.5: Producer consumer code.

54

thread, sc is the initial value of the thread’s synchronization counter, and

size is the size of the data-flow frame to be allocated. It returns a pointer

to the allocated data-flow frame.

Once created, a thread cannot be canceled. Collection of thread resources

is triggered by the completion of the thread’s execution.

void tdecrease(dfthread p tid, n);

Marks the target thread designated by frame pointer fp to be decremented

by n upon termination of the current thread (lazy tdecrease). Once the

current thread terminates, the synchronization counter of the target thread

is decremented by n. When the synchronization counter of the target thread

reach zero, it will be moved from the waiting queue to the ready queue.

In contrast with lazy tdecrease, there is also an eager tdecrease mode avail-

able in the implementation. Eager tdecrease will decrease the synchroniza-

tion counter instantly at the moment tdecrease is called. There is always

tread off between lazy tdecrease and eager tdecrease, lazy tdecrease will

cache the potential tdecrease upon the thread termination, which poten-

tially reduce the communication between threads, while on the other hand,

the eager tdecrease’s in time communication between threads makes the

target thread becomes available as soon as possible, potentially increase

the parallelism in the system.

void destroy();

Terminate the current thread and deallocates its frame. If it is running on

lazy mode, the tdecrease will be merged and executed.

void *load();

Loads the DF frame of current thread into a locally allocated memory trunk

(read only) that is directly accessible by the thread with standard loads.

void *cache(void *tid);

Allocates the frame of target thread id tid to a locally allocated memory

chunk that is directly accessible by the thread with standard loads and

stores.

55

4.3 TSTAR Architecture

TSTAR architecture is a multithreaded dataflow architecture, where in the inter-

thread level, threads are executed in a multithreading environment, scheduled

according to the dataflow model to better exploit parallelism, while in the intra-

thread level, each thread is compiled into sequential von Neumann processor.

Figure 4.6 shows the TSTAR top level architecture. C2 the single core which

contains a processing element (x86-64 ISA with TSTAR extensions) along with

its L1 cache. Each core also includes a partition of the L2 cache. In order to

support the dataflow execution of threads, each core includes a hardware mod-

ule that handles the scheduling of threads - the Local Thread Scheduling Unit

(L-TSU). In addition to cores, the nodes also contain a hardware module to coor-

dinate the scheduling of the data-flow threads among the cores - the Distributed

Thread Scheduling Unit (D-TSU), as well as a hardware module that monitors

the performance and faults of the cores - the Distributed Fault Detection Unit

(D-FDU).Each core is identified with a unique id, the Core ID (CID), and each

group of cores belongs to a node whose id is the Node ID (NID). Nodes are con-

nected via an inter-node network, the Network on Chip (NoC). Cores within a

node are connected via the NoC.

4.3.1 Thread Scheduling Unit

In TSTAR architecture, scheduling DF-threads is done by TSU. TSU is composed

of local thread scheduling units (L-TSU) in each core and distributed thread

scheduling units (D-TSU) in each node. Hence, management of resources, mainly

continuations and DF-frames is done by TSU. The D-TSU is also informed by

the FDU of any fault core, and so it includes execution recovery mechanisms.

Figure 4.7 shows the overview of the TSU.

Each DF-threads is uniquely associated with a DF-frame. The DF-frame

stores the data and meta data a DF-thread needed during execution. DF-threads

are ready to run when all their input data is available in its associated DF-frame.

The TSU track and update the Synchronization Counter (SC) which stored in

the meta data section in each DF-frame. At the time a DF-thread is created, the

SC will be initialized equal to the number of its producers. Each time when a

56

Figure 4.6: TSTAR Highlevel Architecture.

producer writes to its consumer, the consumer’s SC will be decreased by 1.DF-

threads are ready to run when SC decreased to 0 (all input data is ready).

Continuation is used to keep track of all the information of each thread. It

consists of a tuple of three values:

1. The Frame Pointer (FP): the address of a DF-frame (unique for every DF-

thread).

2. The Instruction Point (IP): the address of the DF-thread’s code.

57

Figure 4.7: Overview of the Thread Scheduling Unit (TSU).

3. The Synchronization Counter : the number of input data required by the

DF-thread before it can start execution.

Local Thread Scheduling Unit (L-TSU) The L-TSU handles the schedul-

ing within the core in addition to the allocation and management of the DF-

frames. The L-TSU uses three units to perform these operations:

• Waiting List (WL): The waiting list stores the continuations (IP, SC, FP)

of newly created DF-threads. There SCs are equal to the number of their

producers.

• Pre-LoadQueue (PQ): It stores the IP and FP of the DF-threads that are

ready to execute, their associated SCs are decreased to 0. It is organized

as a FIFO queue.

• Free Frame List (FFL): It contains the FPs of the free DF-frames of the

core. Whenever a DF-thread runs to completion, the associated DF-frame

will be freed and added back to FFL.

The L-TSU keeps track of the dynamic continuations of threads in the Waiting

List (WL). When a producer thread runs to completion and writes data to its

58

consumers, the SC value in the continuation will be decremented. When the

SC reaches zero, it will be moved to the Pre-LoadQueue (PQ) and ready for

execution.

• Thread Creation. The TCREATE instruction communicates to the L-TSU

the IP and SC of the newly created DF-thread. This triggers the L-TSU

to allocate a new DF-frame for the newly created DF-thread. The L-TSU

locates the FP of the new DF-frame from the FFL. The L-TSU then stores

in the WL the continuation (FP, IP, SC tuple) of the DF-thread. If there

are no free DF-frames in FFL, then the TCREATE request is forwarded by

the L-TSU to its node’s D-TSU.

• Thread Communication. Producers and consumers communicate with each

other through TWRITE. By using TWRITE, the producer thread could

write its result(s) directly to its consumer(s). And once a TWRITE is

issued, the SC of its consumer(s) will be decremented by one immediately

(eager execution) or delayed to the end of the thread (lazy execution). When

the SC decrease to zero, it will be placed to PQ. The TWRITE is snooped

by the L-TSU so that L-TSU can decrement the SC associated with the

DF-thread. If the TWRITE affects a DF-frame that is not stored locally, it

will be routed by the NoC to the appropriate node where similar snooping

actions will be performed.

• Thread Completion. When a DF-thread runs to completion, it invokes the

TDESTORY instruction, which triggers the L-TSU to do a few things. It

places the allocated DF-frame associated with the DF-thread on the FFL. It

also transfers the continuation of the next ready DF-thread to the pipeline

so that execution of that DF-thread begins and frees its associated PQ

entry. Finally, L-TSU checks the WL for entries whose SCs have reached

zero, and moves the FPs and IPs of those entries to the PQ and clears those

entries in the WL.

Distributed Thread Scheduling Unit (D-TSU) Each node in the system

contains a D-TSU that communicates with all the L-TSUs on the cores inside

59

that node. The D-TSU also communicates with the D-TSUs on the rest of the

nodes in the system. The D-TSU communicates with the Fault Detection Unit

(FDU) responsible for fault detection for the cores, the TSU in the node, as well

as neighboring FDUs.

The D-TSU handles inter-core and inter-node thread scheduling. The D-TSU

uses three units to perform those operations:

• Free Frame Table (FFT). The FFT stores the number of free DF-frames

for each core in its node, which corresponds to that cores number of FFL

filled entries. When a DF-frame is allocated/released in a core, the cores’

corresponding entry in the FFT is decremented/incremented.

• Frame Request Queue (FRQ). The FRQ stores the frame allocation requests

• Threads to Cores List(TCL). The TCL keeps the information of all the DF-

threads that exists in all the cores of its node. This information is used for

fault recovery.

A D-TSU receives a TCREATE requests from other D-TSUs or from any of its

nodes’ L-TSUs. An L-TSU forwards a TCREATE request to a D-TSU when there

are no free DF-frames locally in its core. A D-TSU forwards a TCREATE request

to another nodes’ D-TSU when there are no free DF- frames in its node. In both

cases, when a TCREATE request arrives at a D-TSU it selects another core with

free DF-frames to provide a free DF-frame. It first stores the TCREATE request

in its FRQ, then checks its FFT to locate a core with a free DF-frame. It then

forwards the IP and SC of the new DF-thread to a local L-TSU in its node that will

provide the free DF-frame. When it receives the FP of the newly allocated DF-

frame it forwards it to whoever made the TCREATE request (whether remotely

from other D-TSUs or locally from one of its node’s L-TSUs).

When a DF-thread invokes a TWRITE instruction with an FP that is remote

(not local in the core where it is executing), the TWRITE is forwarded to the D-

TSU of that DF-thread’s node. The D-TSU then forwards it to the appropriate L-

TSU if it is local in the node, otherwise it sends it over the NoC to the appropriate

D-TSU where its core is located. Note that, the FP is unique for every DF-frame

and holds information about the node and core at which the DF-frame is located.

60

Chapter 5

Thread Partitioning II:

Transform Imperative C

Program to Dataflow Program

We discuss a different way of looking at imperative programs in this chapter—as

data-flow threads. These data-flow threads can be extracted from a conventional

static single assignment (SSA) representation. Starting from the extraction of

fine-grained parallelism, grain-coarsening transformations reduce synchronization

overhead while avoiding significant loss of parallelism. As an important contribu-

tion, we lift all restriction on data dependence and control flow patterns, allowing

for irreducible control flow and recursive calls. Our compilation algorithm also

emphasizes modularity (separate compilation) and integration with existing de-

velopment practices and binary interfaces.

This chapter is limited to the exploitation of scalar data dependences, expect-

ing programmer intervention to expose producer-consumer relations from array

and pointer code by means of explicit scalar dependences. Handling arrays and

complex structures are further discussed in Chapter 6. Our approach is comple-

mentary to programming language efforts to express inter-task dependences as

pragma annotations Planas et al. [2009]; Pop & Cohen [2011a]; Pop et al. [2009];

Stavrou et al. [2008]; it contributes to reducing the verbosity of such annotations.

61

5.1 Revisit TSTAR Dataflow Execution Model

We revisit the TSTAR dataflow execution model in this section, and explain in

details on compilation challenges with the explicit token matching.

The Explicit Token Store To optimize the token matching problem in dy-

namic data flow architecture, Papadopoulos Papadopoulos & Culler [1990] pro-

posed the explicit token store method. This method encodes the explicit ren-

dezvous point for tokens to meet within a global address.

As shown in Figure 5.1, every location that corresponds to an activation of a

two-input operator is augmented with a presence bit that is initially in the empty

state. When the first token arrives, it notices the empty state, and writes its

value, v, into the location. The presence bit is then set into the present state.

The second token notices the present state and reads the location, and then sets

the presence bit back to empty. The operation defined by the instruction s (from

the tag) is performed on the incoming token’s value and the value read, and a

new token is generated with the resulting value, the same c, but a different s.

Figure 5.1: Explicit Matching Operation.

TSTAR Explicit Token Store We adapt the concept of explicit token store in

TSTAR execution model to multiple inputs with introducing the synchronization

62

counter. The global addressable storage (Frame Memory) for dataflow frames is

used to encodes the explicit rendezvous point. We will explain in details in the

following paragraph.

TSTAR Dataflow Execution Model To express producer-consumer and

control dependences, we define an abstract data-flow interface suitable for paral-

lelization passes in compilers as well as expert programmers developing low-level

data-flow code.

The interface defines two main components: data-flow threads, or simply

threads when clear from the context, together with their associated data-flow

frames, or simply frames.

The frame of a data-flow thread stores its input values, and optionally some

local variables or thread metadata. The frame’s address also serves as an identifier

for the thread itself, to synchronize producers with consumers. Communications

between threads are single-sided: the producer thread knows the address of the

data-flow frames of its dependent, consumer threads. A thread writes its output

data directly into the data-flow frames of its consumers.

Each thread is associated with a Synchronization Counter (SC) to track the

satisfaction of producer-consumer dependences: upon termination of a thread,

the SC of its dependent threads is decremented. A thread may execute as soon

as its SC reaches 0, which may be determined immediately when the producer

decrements the SC. The initial value of the SC is derived from the dependence

graph: it is equal to the number of arguments of the thread, each one correspond-

ing to an externally defined use.

In contrast, token-based approaches require checking the presence of the nec-

essary tokens on incoming edges. This means that either (1) a scanner must pe-

riodically check the schedulability of data flow threads, or (2) data flow threads

are suspendable. The former poses performance and scalability issues, while the

latter requires execution under complex stack systems (e.g., cactus stacks) that

may introduce artificial constraints on the schedule. The SC aggregate the in-

formation on the present and missing tokens for a thread’s execution, allowing

producer threads to decide when a given consumer is fireable.

63

The challenges in compilation Explicit Token Matching shifts the compli-

cations from the hardware design of token-matching system to the compiler. The

compiler has to match the producers and consumers explicitly. In TSTAR exe-

cution model, as producer data flow threads communicate by writing directly in

the data flow frame of their consumers, it is necessary that, along all data de-

pendence edges of the program dependence graph, the producer nodes know the

data flow frame of the consumer nodes. It becomes more complicates when the

producer and consumer are created by separate control programs, which means

there needs to be a way to communicate such information.

Figure 5.2 is the program dependence graph of a simple program. The dashed

line represents control dependence and the solid line represents data dependence.

If we partition each node as a task, we need a way to satisfy the control and data

dependences. One simple way of satisfying the control dependences is to treat

the control dependence edges as thread creation dependence (thread creation

dependence is defined as, the target of the dependence will be created by the

source of the dependence). In which way, S1 and C2 will be created by control

node C1, and S2 will be created by control node C2, the only dependence left is

the data dependence between S1 and S2.

Figure 5.2: Program Dependence Graph for explicit token matching compilation
example.

64

The problem needs to be solved is: How could we register S2(the con-

sumer)’s DF-Frame information at the point S1 is created? S1 is created

by C1, at the point when S1 is created, S1 does not have its consumer’s infor-

mation at all. It does not even know when S2 will be created (S2 is created by

C2, the execution of C2 depends on the dataflow execution model). We discuss

the solution in details in later section with the help of our new IR (Data Flow

Program Dependence Graph).

5.2 Partitioning Algorithms

The general approach for transforming sequential imperative programs into par-

allel data-flow programs extracts the finest grain of thread-level parallelism, split-

ting basic blocks at the statement level, which is then coarsened through typed fu-

sion to reduce communication overhead. Strongly Connected Components (SCC)

of the program dependence graph, where no parallelism can be exploited, are also

coalesced.

Our algorithm operates on a low-level program representation in Static Single

Assignment (SSA) Cytron et al. [1990, 1991] form, common in modern produc-

tion compilers like GCC and LLVM. Our algorithm is implemented as a new

parallelization pass of GCC’s middle-end.

We only consider scalar data dependences and control dependences. As stated

in the introduction, arrays and pointers are currently ignored from the dependence

analysis. The correctness of program transformations requires programmers to

expose dependences as scalar dependences in the source program.

Description of the algorithm We first build the Program Dependence Graph

Ferrante et al. [1987] under SSA form (SSA-PDG) from the serial program, then

coarsen the granularity by merging the SCCs in the graph and apply typed fusion.

To align the flow of values and data-flow frames with the control dependences, we

define the Data-Flow Program Dependence Graph (DF-PDG), translated from

the SSA-PDG. The DF-PDG is then used to generate target data-flow code.

We illustrate our algorithm on the example in Figure 5.3 (left), where we

assume that all functions are pure (no side effects, no state). In the loop body,

65

bar(i) is evaluated at each iteration, but only the last computed value will be

used outside of the loop, along with the last value of i.

5.2.1 Loop Unswitching

The SSA form uses a unique name for each assignment to a variable. In this

way, each use of a variable has a unique reaching definition. A merging Φ node is

introduced in the SSA form at points where multiple control flow paths converge

and a given variable is defined on more than one path. For the example on the

left side of Figure 5.3, the Φ nodes for variables i, a and b will be placed before

S9, in the loop header, as shown in Figure 5.4 (left).

Some of these Φ nodes in the header carry redundant data flow: the Φ node

for variable i defines a value used inside the loop body, while the Φ nodes for a

and b only define values used outside of the loop. To differentiate the type of Φ

node, we apply loop unswitching so that the inductive Φ node for variable i will

remain at the header while the Φ nodes capturing the last values of a and b will

be placed at loop exit, before their respective uses, as in Figure 5.4 (right).

S1 a = 0;

S2 i = 0;

S3 b = 0;

S9 while (i < 100) {

S6 a = i;

S7 b = bar (i);

S8 i = next (i);

}

S12 if (a > b)

S13 ret = a;

else

S14 ret = b;

S16 return ret;

S1 a = 0;

S2 i = 0;

S3 b = 0;

S4 if (i < 100) {

do {

S6 a = i;

S7 b = bar (i);

S8 i = next (i);

S9 } while (i < 100);

}

S12 if (a > b)

S13 ret = a;

else

S14 ret = b;

S16 return ret;

Figure 5.3: Running example (left) and after unswitching (right).

66

i1 = Φ (i0, i2);

a1 = Φ (a0, a2);

b1 = Φ (b0, b2);

S9 while (i1 < 100) {

S6 a2 = i1;

S7 b2 = bar (i1);

S8 i2 = next (i1);

}

/*use of a1, b1. */

if (i1 < 100) {

do {

i1 = Φ (i0, i2);

S6 a2 = i1;

S7 b2 = bar (i1);

S8 i2 = next (i1);

S9 } while (i1 < 100);

}

a1 = Φ (a0, a2);

b1 = Φ (b0, b2);

/* use of a1, b1. */

Figure 5.4: SSA form before unswitching (left) and after (right).

5.2.2 Build Program Dependence Graph under SSA

There are two main reasons for relying on a SSA-based representation of the

PDG:

1. making the reaching definitions unique for each use, effectively converting

the scalar flow into a functional program;

2. reducing the complexity from O(N2) to O(N), as the number of def-use

edges can become very large, sometimes quadratic in the number of nodes Kennedy

& Allen [2002].

In SSA form, multiple reaching definitions for a use are factored through Φ nodes,

which ensures that the number of def-use chains is bounded by the number of

chains in the control flow graph.

Each node in the SSA-PDG represents a statement in SSA form and edges

in the graph represent either control or data dependences. Control dependences

can form several weakly connected graphs. We add control dependences from the

entry node of the function to the root node of each weakly connected graph. The

root node of each weakly connected graph is defined as the first node in the graph

reached by the control flow.

Figure 5.5 shows the SSA representation, after loop unswitching, for the code

on Figure 5.3 (right), and the corresponding SSA-PDG is presented on Figure 5.6,

where dashed edges represent control dependences and solid edges represent data

67

dependences. We add control dependences from the function entry point foo to

S2, S4, S1, S3, S10, S11, S12, S15, S16.

int foo () {

S1 a0 = 0;

S2 i0 = 0;

S3 b0 = 0;

S4 if (i0 <= 99)

goto S5;

else

goto S10;

S5 # i1 = Φ(i0, i2);

S6 a1 = i1;

S7 b1 = bar (i1);

S8 i2 = next (i1);

S9 if (i2 <= 99)

goto S5;

else

goto S10;

S10 # a2 = Φ(a0, a1)

S11 # b2 = Φ(b0, b1)

S12 if (a2 > b2)

goto S13;

else

goto S14;

S13 ret0 = a2;

goto S15;

S14 ret1 = b2;

S15 # ret2 = Φ(ret0, ret1)

S16 return ret;

}

Figure 5.5: SSA representation after loop unswitching.

Figure 5.6: SSA-PDG for the code example in Figure 5.5.

68

5.2.3 Merging Strongly Connected Components

In the SSA-PDG, SCCs present no parallelization opportunities. Their execution

is sequential, so generating data flow threads would mostly incur parallelization

overhead.1 We coalesce SCCs, as shown on Figure 5.7 where the new node SCC1

replaces nodes S5, S8 and S9 from Figure 5.6. This SCC corresponds to the

induction on variable i in the loop.

Figure 5.7: SSA PDG after merging the SCC.

5.2.4 Typed Fusion

Before partitioning, we coarsen the granularity of each data-flow thread using

a generalized form of the typed fusion algorithm of McKinley and Kennedy

Kennedy & Mckinley [1993]. In SSA-PDG, we assign a type to each node accord-

ing to its control dependences: all nodes sharing identical control dependences

are assigned the same type. Nodes of the same type are candidates for typed

fusion. On Figure 5.7, the nodes S6 and S7 have the same type, as both are

control dependent on S4, and can potentially be fused. Similarly, nodes S2, S4,

S1, S3, S10, S11, S12, S15 and S16 could be fused, but this would lead to

1Some latency-hiding benefits exist, but we concentrate on parallelism extraction in this
paper.

69

adverse side effects, in particular reducing parallelism by creating artificial SCCs.

In our example, such a fused node would lead to SCC with nodes S13 and S14

because of the dependence chains S10-S13-S15 and S11-S14-S15.

For this reason, we limit the fusion algorithm to avoid introducing new SCCs

or increasing the size of existing SCCs, which are on the critical path of the

program’s execution.

Our approach for typed fusion follows a simple greedy algorithm, which starts

from a random node in each typed set and adds new nodes of the same type

to the fusion set as long as: (1) the new additions do not lead to creating a

new SCC in the SSA-PDG after fusion; and (2) the fusion set does not contain

SCCs itself. As this algorithm is applied after fusing the existing SCCs, the latter

condition simply means that nodes that have self-dependences are not considered

candidates even if their type matches.

Figures 5.7 and 5.8 (A) present one possible outcome of typed fusion applied

to the running example. There are five different types in the graph on Fig-

ure 5.7: (foo), (S2, S4, S1, S3, S10, S11, S12, S15, S16), (SCC1, S6,

S7), (S13) and (S14). Note that S13 and S14 have distinct types because their

control dependences correspond to different truth values for S12.

For the typed set (SCC1, S6, S7), SCC1 cannot be fused with any other node

as it would increase the size of an existing SCC (restriction (2)). This only leaves

S6 and S7, which can be fused and yield the fused node F2 on Figure 5.8 (A). For

the typed set (S2, S4, S1, S3, S10, S11, S12, S15, S16), there are many

possible outcomes, depending on the traversal order of typed sets. In this case

and as we discussed above, restriction (1) does not allow, for example, nodes S4

and S10 to be in the same fusion set because of the dependence chain S4-S6-S10.

The algorithm will always lead to at least three fusion sets for this type due to

the long dependence chain S4-S6-S10-S13-S15.

This technique coarsens the granularity of data flow threads, without inserting

redundant computations and without increasing the number of instructions be-

longing to SCCs (which usually happens when relying on basic blocks to partition

the computation).

70

Figure 5.8: (A) SSA-PDG after typed fusion. (B) Data Flow Program Depen-
dence Graph.

5.2.5 Data Flow Program Dependence Graph

As data flow threads communicate by writing directly in the data flow frame

of their consumers, it is necessary that, along all data dependence edges of the

SSA-PDG, the producer nodes know the data flow frame of the consumer nodes.

We transform the SSA-PDG graph to reflect the communication required to this

effect.

Thread creation point Thread creation occurs, conditionally, along each con-

trol dependence edge of the SSA-PDG. The thread creation points for a given

node are its predecessor nodes in the control dependence graph. On Figure 5.8

(B), where dashed lines represent control dependences, the nodes foo, F1, F3

and SCC1 are thread creation points as they have outgoing control dependence

edges. Control dependences can be conditional, like in the case of F3 which creates

either S13 or S14 depending on the conditional statement S12, or unconditional

in the case of the function entry point foo.

At a thread creation point, the data-flow frame for the newly created thread

is known and it needs to be passed to all threads producing data for this new

thread.

Passing data-flow frame information The DF-PDG for our running exam-

ple is shown on Figure 5.8 (B). We add data dependences to the SSA-PDG for

71

passing the data-flow frame information of consumer threads to producer threads.

The edges with white triangular arrow communicate the data-flow frame of F4

(consumer) to the data-flow threads S13, S14 (producers). The values of ret0

and ret1, produced in S13 and S14 are consumed by F4. As the data is stored

directly in the frame of the consumer, the producer must get a pointer to the

frame of F4. The thread creation point for F4 is the function entry point, foo,

and it needs to forward this frame pointer to all producers, which involves thread

F3 in our example.

We rely on the following algorithm to pass the data flow frame pointers of

consumers to producers. For each data dependence from a node A to a node B in

the SSA-PDG, we visit the predecessors of each node along control dependences

until we reach a common predecessor P.

• If P is an immediate predecessor of the consumer node B, then P is the thread

creation point for B and therefore knows the data-flow frame of B. We add

data dependences for the frame pointer of B along all control dependence

paths in the graph to A.

• If P is not an immediate predecessor of B, we need to split the data de-

pendence as the frame of the consumer cannot be known due to diverging

control flow paths, as illustrated on Figure 5.9. We remove the original

data dependence from A to B and we add data dependences, for the same

variable, from A to all successors D of P in the SSA-PDG such that there is

a control dependence path from D to B. We further add data dependences

for the data flow pointer of D from P to A and also for the data itself, from

D to B.

This second case is illustrated on Figure 5.9, where data dependences from S1

to S2 and S3 need to be split. The common predecessor is the function entry node

foo, which is not an immediate predecessor of either S2 or S3. The successor of

foo that is a predecessor of S2 and S3 is C1, which is used to forward the data

produced by S1. The frame pointer of C1 is sent to S1 from its thread creation

point.

72

Figure 5.9: Splitting data dependences: (A) the original SSA-PDG and (B) the
generated DF-PDG.

Strongly connected components in the DF-PDG The algorithm for build-

ing the DF-PDG presented above introduces additional data dependences that

can lead to new SCCs in the graph. These new constraints need to be enforced,

which serializes the execution. For this reason, we perform one additional pass

of fusion of SCCs once the DF-PDG is constructed.

The example on Figure 5.10 and corresponding SSA-PDG in Figure 5.11 illus-

trate this issue. There are two data dependences: S1 to S2 and the loop-carried

dependence S3 to S1. For the latter, the DF-PDG construction algorithm explores

every control dependence paths linking S3 and S1 from a common predecessor,

namely C0→S3 and C0→C1→S1. As S1 is only reached through C1, the data

dependence is split and the data forwarded to S1 through C1, as shown by the

extra data dependence edges on Figure 5.11 (right). Similarly, the data depen-

dence from S1 to S2 needs to be split, resulting in the gray path. There are

four different combinations for each data dependence and we only show one on

Figure 5.11, yet it already results in a SCC involving nodes S1, S3 and C1.

73

C0 if (c) goto S1;

else goto D1;

S1 a2 = Φ (a0, a1);

S2 ... = a2;

S3 a1 = ...;

C1 if (c) goto S1

else goto D1

D1 ...

Figure 5.10: SSA representation for a simple loop carried dependence

Figure 5.11: Corresponding SSA-PDG (left) and a partial DF-PDG (right) for
code in 5.10.

5.3 Modular Code Generation

We put a strong emphasis on generality and flexible integration of data-flow

compilation tools in a state-of-the-art development process. Modularity has not

been considered a first-class objective in previous thread-level data-flow algo-

rithms. We show that modular code generation is possible, provided that each

processor core (or instruction fetch unit) is associated with a private user-level

stack. The stack only needs to be accessed by this particular core. Data-flow

threads themselves do not need any internal stack; they are non-suspendable and

run sequentially w.r.t. other data-flow threads scheduled on the same core. Any

data-flow thread scheduled on a given core is free to use the core’s private stack.

This stack streamlines the implementation of classical (blocking) function calls.

74

It may also be used to spill registers within a thread, although data-flow frames

may accommodate free space for this purpose.

For modular compilation purposes, externally visible functions in a compila-

tion unit should be cloned, to preserve the original control flow interface, while

the clone is compiled into data-flow threads. The original function can be used

when calling the function from outside of a parallel data-flow region or to avoid

saturating the system with threads. The clone must be exported among the

module’s symbols to seamlessly compose threaded code over separately compiled

modules.

Within a parallel region, all functions are called asynchronously. Internal

functions, within the scope of the compilation unit, are directly compiled into

data-flow threads. External functions, linked from separately compiled modules,

and builtin functions from the compiler are wrapped into a data-flow thread in

which they are called synchronously.

Every threaded clone of a function is split into three stages: the entry thread,

multiple compute threads, and the return thread.

• The entry thread implements the entry block of the control flow graph,

creating all the threads for the blocks that are unconditionally executed

upon entering the function.

• The compute threads are systematically created by the immediate predeces-

sors in the control dependence graph, as described in the previous section.

Thread creation is conditional on the predicate at the source of the control

dependence. Input arguments and pointers to the frames of the dependent

threads are handled according to the DF-PDG.

• The return thread propagates the return value to the continuation threads

at the call site of the function.

Figure 5.12 illustrates the calling convention. Calling a data-flow function

creates the entry thread (callee.entry) of the callee and the caller’s continuation

thread (caller.bb.2); the latter will wait for the value of the callee’s return

thread (callee.return).

75

Figure 5.12: Caller and callee, threaded version.

5.4 Implementation

We target data-flow execution on a shared-memory multiprocessor with hardware

coherence.

Our prototype has been implemented within GCC (GNU Compiler Collec-

tion) 4.7.0. GCC has been widely used for compilation/architecture research

like automatic vectorization Nuzman et al. [2006] Nuzman & Henderson [2006],

thread level speculation Liu et al. [2006] Renau et al. [2005], induction variable

recognition Trifunovic et al. [2010] etc.

Compilation Figure 5.13 illustrates the GCC compilation framework. The

compilation framework could be splitted into 3 parts: the front end, the middle

end, and the back end. The middle end is independent of language or architecture,

and most optimizations happens here. Language dependent code in the front end

will be lowered to GENERIC. GENERIC is an IR that provides a language-

independent way of representing an entire function in trees, and GENERIC will

be lowered to GIMPLE (gimplification) in the middle end. GIMPLE is a three-

address IR derived from GENERIC by breaking down GENERIC expressions into

76

tuples of no more than 3 operands. Most optimizations happens with GIMPLE

representation.

The partitioning algorithm is implemented as an optimization pass in GCC

(THREAD PARTITION). We first build the Program Dependence Graph under

SSA form (SSA-PDG) from the serial program, then coarsen the granularity by

merging the SCCs in the graph and apply typed fusion. To align the flow of

values and data-flow frames with the control dependences, we define the Data-

Flow Program Dependence Graph (DF-PDG), translated from the SSA-PDG.

The DF-PDG is then used to generate target data-flow code.

Figure 5.13: Implementation within GCC.

Runtime It replaces the libgomp OpenMP runtime of GCC. Parallel data-flow

code runs within an omp parallel single region, extending the scheduler for

OpenMP tasks. The runtime system is called dfrt and is implemented in C++.

77

Worker threads are created by libgomp. Upon entering an omp parallel region,

they start scheduling tasks from the (shared) ready queue. The scheduler takes

data-flow threads whose SC reached 0 and moves them to the ready queue.

We currently assume there are enough ready threads to occupy the proces-

sor cores and hide latency. This hypothesis eliminates the need for a waiting

queue collecting threads whose SC has not reach 0, since we do not need to

start prefetching data or code for these threads. Revisiting this hypothesis may

be necessary when studying applications with limited parallelism degree where

scheduling and memory latencies are harder to hide.

Data-flow frames are allocated from a dedicated memory pool. This pool

internally uses slab allocation to accelerate the allocation and deallocation of

frames of predefined sizes. The frame structure itself is laid out as follows:

• a thread template pointer referring to invariant meta-data shared by all

thread instances of this template, including the function (code) pointer and

the size of the frame;

• the thread’s synchronization counter (SC);

• pointers to frames of data- and control-dependent threads;

• the thread’s arguments.

The last two items correspond to the frame structure exposed in the abstract

data-flow interface and generated by the compiler.

5.5 Experimental Validation

We validate our approach on two universal examples of tree recursion, Fibonacci

and merge sort. The objectives are:

1. checking the method on diverse data and control flow, including loops over

arrays, divide and conquer recursion, and data-dependent conditions;

2. Fibonacci exhibits the finest-grain threads possible, which gives a precise

reference on the break even point and scalability for thread-level data flow

compared to fine-grain data flow;

78

3. merge sort is more realistic and allows to illustrate typed fusion for grain

coarsening.

We target an Intel Core i7-2720QM 4-core laptop (Sandy Bridge chip) and an

AMD Opteron 6164 HE 24-core blade server (two Magny Cours chips). Both

benchmarks are recursive, sequential C programs, and automatically parallelized.1

To assess the effect of thread granularity, we set a threshold for parallel recur-

sive calls. Below this threshold, the serial version is executed. This programmer-

controlled granularity complements the effects of the automatic typed fusion al-

gorithm. Modular compilation allows the serial version to be called seamlessly as

an external function.

As an illustration, in the Fibonacci implementation below, fib.threaded will

be transformed to data-flow threads, and fib.serial will not since it is declared

as an external function.

extern int fib.serial (int);

int fib.threaded (int n) {

if (n < THRESH)

return fib.serial (n);

else

return fib.threaded (n-1) + fib.threaded (n-2);

}

Figure 5.14 reports the performance of merge sort on 200, 000 random integers

between 0 and 10, 000. The compiler automatically partitions the function into

data-flow threads, then converts the data and control dependences into the proper

frame operations. The algorithms not only parallelize the recursive division of

the array, but also the merge operation. The latter is a good candidate for typed

fusion: the array comparisons and assignments are dominated by the same loop

header and can be fused into a coarser-grain thread.

1The array dependences in merge sort are covered by scalar dependences on the indexes,
and can safely be ignored.

79

The grain threshold ranges from 20 to 218 (262, 144, effectively sequentializing

the execution). The figures show the speedup as a function of the granularity

of the parallel threads. As the grain threshold increases, speedup gained from

parallel execution on multiple cores exceeds the overhead of thread creation. The

generated code breaks even at the threshold of 24. This low break-even threshold

is a benefit of the applicability of typed fusion on the merge operation. As a

divide and conquer algorithm, the problem size is reduced in each division, the

array eventually fitting into the cache; it reaches a maximal speedup of 2.82.

Figure 5.14: Merge Sort running on 4 cores.

Figure 5.15 shows the performance results for fib(42). Fibonacci is an ex-

treme case where typed fusion is ineffective, since no pairs of instructions share

the same control dependence. The generated code breaks even when setting the

threshold at fib(15), where 227 threads are created. But as granularity increases,

the overhead of thread synchronization decreases. Our results on 24 cores reach

a speedup of 11.86, which validates our algorithm’s ability to exploit parallelism

effectively.

80

Figure 5.15: Computing the 42th Fibonacci number on 4 cores (above) and 24
cores (below).

81

5.6 Summary

We presented an automatic parallelization algorithm to compile arbitrary im-

perative control flow to a multithreaded data-flow model in this chapter. The

algorithm operates on an SSA form PDG, extracting task, pipeline and data

parallelism, then applying a generalized form of typed fusion to coarsen the syn-

chronization grain, and finally expressing the communications in a suitable way

for tokenless threaded data-flow execution. Our prototype is implemented in a

production compiler; it currently supports scalar dependences only.

In next chapter, we complement this algorithm with two methods of handling

complex data structures.

82

Chapter 6

Handling Complex Data

Structures

One general criticism leveled at dataflow computing is the management of data

structures. The functional nature of pure dataflow programs implies that all

operations are side-effect free. The absence of side effect means that if tokens are

allowed to carry vectors, arrays, or other complex data structures, an operation

on a data structure results in a new data structure. Which will greatly increase

the communication overhead in practice. The problem of efficiently representing

and manipulating complex data structures in a dataflow execution model remains

a challenge.

In this chapter, we propose two methods of handling complex data structures.

Section 6.1 presents Streaming Conversion of Memory Dependences (SCMD), a

hybrid compilation-time and runtime algorithm, which decouples the memory ac-

cesses with computations automatically and connects independent accesses to the

same memory locations with streams in finest granularity. Section 6.2 present the

Owner Writable Memory (OWM) model to reduce the communication overhead

when complex structures passed over threads.

83

6.1 Streaming Conversion of Memory Depen-

dences (SCMD)

Streaming Conversion of Memory Dependences (SCMD) is a hybrid compilation-

time and runtime algorithm that automatically parallelize programs with arrays

at the finest granularity, it connects independent writes and reads access to the

same memory location with streams dynamically, in which way, the computation

could be decoupled with even dynamic memory access patterns. In conventional

dataflow, arrays are treated as a single memory region, the dependences are

coarsened accordingly, and the parallelism opportunity is largely reduced.

6.1.1 Motivating Example

Figure 6.1 shows a general data access pattern for array A. S1 writes to memory

location A[m(i)], S2 reads from memory location A[g(i)] and S3 writes to memory

location A[f(i)]. m(int), g(int), f(int), compute 1(int) and compute 2(int)

are side effect free functions.

for (i = 0; i < N; i++)

{

S1 A[m(i)] = compute_1(i);

S2 a = A[g(i)];

S3 A[f(i)] = compute_2(i);

}

Figure 6.1: Non-linear access for array A within a loop.

The dynamic array accesses and unknown dependences make it impossible

to be parallelized with compile time analysis. One might think a solution to

decouple the computation and memory accesses with loop distribution and then

parallelize the distributed loops as presented in Figure 6.2.

But there are a few caveats here:

• The loop distribution method, as we discussed in Chapter 3, inserts a bar-

rier between distributed loops. In this example, the barriers are inserted

between L1 and L2, L2 and L3. L3 could only be executed after parallel

for execution of L2 finishes.

84

L1 parallel for (i = 0; i < N; i++)

{

Compute1[i] = compute_1 (i);

}

L2 parallel for (i = 0; i < N; i++)

{

Compute2[i] = compute_2 (i);

}

L3 for (i = 0; i < N; i++)

{

A[m(i)] = Compute1[i];

a = A[g(i)];

A[f(i)] = Compute2[i];

}

Figure 6.2: Decouple computation and memory accesses with loop distribution.

• L3 could not be executed in parallel. But at run time, there are still paral-

lelization opportunities. Consider the situation where g(i), f(i) and m(i)

are all evaluated to (0, 1, 2, . . . , N) at runtime. By using SCMD, the tasks

could be matched automatically and executed in parallel.

• Loop distribution works when the loop is well structured. When complex

control dependences get involved, the computation and memory accesses

can be hardly analyzed at compilation time.

SCMD decouples the memory accesses with computations automatically and

connects the accesses to different memory locations with streams in finest gran-

ularity, which could exploit maximum parallelism in the program at execution

time. We will explain SCMD in details.

Consider the access order for a single memory location {A[m]|m ∈ [0, N−1]}.

Let ~Sm denotes the access order for memory locationA[m], and for {{x ∈ ~Sm}, x ∈

{W,R}}. W denotes write access and R denotes read access. The access order

represents the read and write accesses to a single memory location during the

execution of the program. In our motivating example, ~Sm depends on how m(i),

g(i) and j(i) evaluate in the code. e.g., if N = 1, m(i) , g(i) and f(i)

all evaluate to 0, we have the access order ~S0 = {W,R,W}; if N = 2, and m(i)

85

evaluates to {0, 1}, g(i) evaluates to {1, 1} and f(i) evaluates to {1, 0}, then the

access order for memory location A[0] = {W,W}, and A[1] = {R,W,W,R}. Note

in the access order for each memory location, the first element in the sequence

must be W (producer always comes before consumer). The access order for

memory location A[1] we showed here is just a partial access order, the A[1] must

be initialized before this loop (e.g. when the array is initialized the first time).

In SCMD, in order to get the finest granularity and maximum parallelism, each

write to a memory location with its computation are forked as a producer, and

each read to a memory location with its computation are forked as a consumer.

In which way, the reads and writes to a each memory location will be connected

with a dataflow stream.

In the TSTAR dataflow execution model, the producer writes to its con-

sumer(s) directly, which indicates, the producer has to have the knowledge of its

consumer(s) before it is being executed. But in a program with dynamic array

access patterns, at the point the producer is created, its consumers are unknown

until the next access to the same memory location is executed.

The question is, in a totally dynamic program, how do we connect

writes and reads to the same memory location with dataflow streams?

We will consider the access order separately in 3 possibly sequences, and

discuss each in the following sections:

• Single producer and single consumer where ~Sm = {W,R}.

• Single producer and multiple consumers where ~Sm = {W,R,R}.

• Multiple producers and single consumer where ~Sm = {W,W,R}.

6.1.2 Single Producer Single Consumer

Assume we have the access order ~Si = {W,R} for memory location {A[i]|i ∈

[0, N − 1]}. When the value assigned to A[i] is produced (W in its access order
~Si), we do not have the knowledge in which iteration of the for loop, it will be

consumed (R in its access order ~Si). In order to solve this problem, a proxy thread

will be created and wait for the result produced by the producer, and also, wait

for its consumer’s information (DF-Frame). When the consumer is created, The

86

pointer to its DF-Frame will be written to this proxy thread. When the proxy

thread have both the result and the pointer to its consumer’s DF-Frame, it will

be executed and write this result to its consumer.

Figure 6.3 illustrates this solution. The dotted line with white triangle rep-

resents the execution order in the control program: the control program for con-

sumer 1 (CPC1) could only be executed after control program for producer A

(CPPA) finishes its execution. The dashed lines represent thread creation relation-

ship from its source to its destination, in this case, CPPA will create the producer

thread (ProducerA) and the its proxy thread (proxy p), store the frame pointer

of proxy p (fp proxy p) to shared buffer CTBL indexed by memory location A(i).

The proxy thread has SC initialized to 2, and wait for the result from producer

thread and the DF-Frame address of the consumer. CPC1 will create the consumer

thread, and write the frame pointer of the consumer (fp consumer) to fp proxy

by looking up the shared memory indexed by memory location A(i). When the

synchronization counter of proxy p decrease to 0, it will write the result to the

consumer thread pointed by fp consumer, and then the consumer will be ready

for execution.

6.1.3 Single Producer Multiple Consumers

Assume we have the access order ~Si = {W,R,R} for memory location {A[i]|i ∈

[0, N − 1]}. In this case, we have multiple consumers that needs to consume

the same value produced by the same producer. One might have the solution

that count for the number of its consumers Nc, and have a proxy thread with

SC equals to Nc + 1. Wait for the information of all its consumers, and when

all the consumers are created, broadcast the result. This method will block the

execution of all its consumers till the last consumer is created, and works only if

the number of consumers are known when proxy thread is created. In a dynamic

program like Figure 6.1, we do not have the knowledge how many consumers one

producer have until the entire loop is executed.

So instead of one single proxy thread for the producer, we also create one

proxy thread for each consumer. This consumer proxy thread will wait for the

result passed from previous proxy thread, the DF-Frame information from the

87

Figure 6.3: Single producer single consumer

88

next consumer, and next consumer’s proxy thread. Once a proxy thread got those

information, it will write the result to the consumer and this consumer’s proxy

thread.

Figure 6.4 illustrates this solution. The dotted line with white triangle rep-

resents enforced dependence in the control program: the control program for

consumer 1 could only be executed after control program for producer A finishes

its execution. The dashed lines represent thread creation relationship from its

source to its destination, and the red and blue lines represent the data depen-

dences.

• CTBL. CTBL is the check up table indexes for each memory location.

CTBL resides in the shared memory, it is used by the control program to

resolve the dependences between producers and consumers.

• The control program. The control program takes care of thread cre-

ation and matching producers with its consumers. For example, the control

program for Producer A (CPA) creates the producer thread (ProducerA)

and its proxy thread (proxy p). And set CTBL for memory location A[i]

to this proxy thread’s DF-Frame address (fp proxy p); the control pro-

gram for consumer1 (CPC1) creates the consumer thread (consumer1) and

its proxy thread (proxy c1), and writes the DF-Frame information of this

proxy thread, and the consumer thread to the previously created producer’s

proxy thread (proxy p). The previous proxy thread’s DF-Frame address

could be retrieved from CTBL. The same applies for consumer2.

• The producer thread. The producer thread does the computation, and

stores the result to its proxy thread once it is finished (ProducerA in this

example). Note the producer and its proxy thread are created together by

CPA, the proxy thread’s DF-Frame pointer is written to the producer’s DF-

Frame when both are created, so that the producer thread could restore its

proxy thread at execution.

• The proxy thread. The proxy thread takes three inputs: one field for

the result, one field for its next consumer, and one field for the next proxy

thread of this consumer. Once this proxy thread gets all the inputs, it is

89

Figure 6.4: Single producer multiple consumers

90

ready for execution. Once being executed, it will write the result to the

consumer thread and the consumer proxy thread. For example, producer

A’s proxy thread (proxy p) have SC initialized to 3, and its dataflow frame

waits for 3 inputs: result, its consumer thread (fp consumer) and its

consumer’s proxy thread (fp proxy c). Both fp consumer and fp proxy c

are written to proxy p by the control program for consumer1 (CPC1) at the

point they are created.

• The consumer thread. The consumer thread takes one input for the

result produced by its producer. The result is written to the consumer

thread by its producer’s proxy thread (consumer1 gets result from proxy p)

or by previous consumer’s proxy thread (consumer2 gets its result from

proxy c1).

6.1.4 Multiple Producers Single Consumer

Assume we have the access order ~Si = {W,W,R} for memory location {A[i]|i ∈

[0, N − 1]}. In this case, we have multiple producers and one single consumer to

the same memory location. In the case with access order ~Si = {W,W,R}, the

first produced value should be abandoned and the second should be consumed.

Since the access order is not statically decidable, at the time the first producer is

created, we do not have the knowledge if another producer to the same memory

location will be created right before the consumer is created.

If we follow the method as in single producer single consumer discussed before,

it will still work. CTBLmaintains a mapping from the memory location to the most

recent producer’s proxy thread. At the time the consumer to the same memory

location is created, it looks up in CTBL and gets the most recent producer’s proxy

thread. It then writes back the consumer’s dataflow thread information. But

note in this way, the first producer’s proxy thread will become a zombie thread,

and will never be executed.

So we adapt the algorithm, once a producer is created, it lookups in the table

CTBL, if the lookup for this its memory location is not empty, it means either a

previously created producer’s proxy thread (multiple consumers situation) or a

consumer’s proxy thread (multiple consumers situation) is already created. In

91

either way, both the proxy thread should be deallocated since a new write to

the same memory location comes. Write a NULL value instead of newly created

consumer thread’s DF-Frame pointer, in which case, at the time the proxy thread

is being executed, it could deallocate itself by checking if this value is NULL.

Figure 6.5 illustrates this solution. 2 producers for the same memory location

A[i] are created before the consumer. The first producer (producer1) is created

by the control program for producer 1 (CPP1). CPP1 set CTBL to the DF-Frame

pointer of proxy thread for producer 1 (fp proxy p1). The second producer

(producer2) is created by the control program for producer 2 (CPP2). CPP2 will

first lookup in the table CTBL for this memory location A[i], and get previously

created producer 1’s proxy thread fp proxy p1. It will write a NULL value to

this proxy thread and decrease the SC by 2. When proxy p1 is executed and get

this NULL value, it will run to deallocate itself and release the resources.

6.1.5 Generated Code for Motivating Example

Figure 6.6 and Figure 6.7 presents the generated code by applying SCMD algo-

rithm for our motivating example in Figure 6.1.

Figure 6.6 shows the dataflow tasks generated. For each producer, a proxy

thread will be created, waits for the computation decoupled from the producer

task, and also waits for its consumer’s DF-Frame information. The producer task

computes the result, and writes the result back to its proxy thread once compu-

tation is finished. e.g. func s1 is the producer thread, it gets the current DF-

Frame information (get cfp()), and loads the inputs it needs (i for computation

and producer proxy for its proxy thread’s DF-Frame). Once the computation

finishes, it writes the result to proxy thread’s DF-Frame, and decrease the SC

by 1 (tdecrease (producer proxy)). The proxy thread (func proxy s1) waits

not only for the result computed from the producer thread, but also waits for

its consumer’s information. When it gets its consumer’s DF-Frame, its consumer

proxy’s DF-Frame and the computed result, it will be ready for execution. In case

of multiple producers’ case (~Si = {W,W,R}), the NULL value is written as the

consumer’s DF-Frame. When the producer get a NULL value (if (fp consumer

== NULL)), it deallocates itself by calling tdestroy.

92

Figure 6.5: Multiple producers and single consumer

93

/* Producer thread (S1). */

void func_s1 ()

{

current_fp = get_cfp ();

i = current_fp->i;

result = compute_1 (i);

producer_proxy = current_fp->proxy;

tdecrease (producer_proxy);

tdestroy ();

}

/* Producer’s proxy thread (S1). */

void func_proxy_s1 ()

{

current_fp = get_cfp ();

result = current_fp->result;

fp_consumer = current_fp->consumer;

/* Multiple producers case. Destroy

this zombie proxy thread. */

if (fp_consumer == NULL)

tdestroy ();

fp_consumer->result = result;

tdecrease (fp_consumer);

fp_consumer_proxy =

current_fp->consumer_proxy;

fp_consumer_proxy->result = result;

tdecrease (fp_consumer_proxy);

tdestroy ();

}

/* Consumer thread (S2). */

void func_s2 ()

{

current_fp = get_cfp ();

result = current_fp->result;

tdestroy ();

}

/* Consumer’s proxy thread (S2). */

void func_proxy_s2 ()

{

current_fp = get_cfp ();

result = current_fp->result;

fp_consumer = current_fp->consumer;

if (fp_consumer == NULL)

tdestroy ();

fp_consumer->result = result;

tdecrease (fp_consumer);

fp_consumer_proxy =

current_fp->consumer_proxy;

fp_consumer_proxy->result = result;

tdecrease (fp_consumer_proxy);

tdestroy ();

}

Figure 6.6: Generated code for control program using SCMD.

For each consumer, a proxy thread will also be created in multiple consumers’

case (~Si = {W,R,R}). At the time consumer task is executed, it will get the

current DF-Frame, and load the result for further processing. The consumer’s

proxy thread (func proxy s2) takes care of passing the result computed by the

producer to the next consumer in case of multiple consumers. And will be deal-

located automatically when a NULL value is received.

Figure 6.7 shows the generated control program. The control program takes

care of resolving all the memory dependences. We will take the control program

for producer S1 as an example. We specify each statement with Ln, represents

94

the nth line in the code in the following discussion.

1 void foo.control (){

2 init_CTBL ();

3 for (i = 0; i < N; i++){

4 // Control Program for producer S1

5 idx_m = m(i);

6 /* Create producer thread. */

7 fp_producer_s1 = tschedule (func_s1, 1, sz_p_s1);

8 /* Create producer’s proxy thread. */

9 fp_producer_proxy_s1 = tschedule (func_proxy_s1, 1, sz_pp_s1);

10 /* Register the proxy thread of the producer. x */

11 fp_producer_s1->proxy = fp_producer_proxy_s1;

12 fp_producer_s1->i = i;

13 /* Schedule the producer to execute */

14 tdecrease (fp_producer_s1);

15
16 tmp = get_CTBL (idx_m);

17 fp_current_proxy = tmp.val;

18 status = tmp.status;

19 /* handle multiple producers case. Write NULL (dummy) value to

20 destroy the proxy thread. */

21 if (status != EMPTY){

22 fp_current_proxy->val = NULL;

23 tdecrease (fp_current_proxy.val);

24 }

25 set_CTBL (idx_m, fp_producer_proxy_s1);

26
27 // Control Program for consumer S2.

28 idx_g = g(i);

29 /* Create the consumer thread. */

30 fp_consumer_s2 = tschedule (func_s2, 1, sz_p_s2);

31 /* Create the consumer’s proxy thread. */

32 fp_consumer_proxy_s2 = tschedule (func_proxy_s2, 1, sz_pp_s2);

33 fp_current_proxy = get_CTBL(idx_g).val;

34 /* Register both consumer and consumer’s proxy in case of

35 multiple consumers. */

36 fp_current_proxy->consumer = fp_consumer_s2;

37 fp_current_proxy->consumer_proxy = fp_consumer_proxy_s2;

38 set_CTBL (idx_g, fp_consumer_proxy_s2);

39 // Control Program for producer S3. Similar to S1, omited.

40 }

41 }

Figure 6.7: Generated code for control program using SCMD.

L7 creates the producer thread, and L9 creates the producer’s proxy thread.

L11 register the proxy thread’s DF-Frame to the producer by writing to the pro-

95

ducer thread’s DF-Frame. L12 writes i to the producer’s DF-Frame. tdecrease

(fp producer s1) in L14 decreases the SC of producer thread, schedules the

producer to execute.

get CTBL gets the proxy thread’s information stored in CTBL (L16). L21

will check multiple producer’s case. If it is not empty, it means either a previous

producer or a consumer’s proxy thread is written to CTBL for this memory loca-

tion. To deallocate this unused producer proxy thread and release the resources

it allocates, writes a NULL value so that it could deallocate itself once it is be-

ing executed. set CTBL sets the CTBL with memory location A[idx m] to the

producer’s proxy thread just created.

6.1.6 Discussion

SCMD decouples the memory access with computation automatically and con-

nects the accesses to different memory locations with streams in a finest gran-

ularity, which could exploit maximum parallelism in the program at execution

time — at the cost of thread creation. For each memory location, at least one

thread will be created. As we discussed in chapter 1, we assume the cost of task

creation is relatively cheap in TSTAR architecture, and the extracted parallelism

and decoupled computation still benefits.

6.2 Owner Writable Memory

The Owner Writable Memory model (OWM) is used to reduce the communication

overheads when complex data structures passed over threads. The name and idea

origins from Prof. Ian Watson from Unversity of Manchester, our work in this

chapter mainly includes the design from compilation point of view.

OWM is the global addressable memory, before a thread could write to a

portion of memory, it has to claim ownership before hand. At any time point

only the thread who has the ownership of the memory could write to it. When

write ownership is successfully acquired, any read from another thread is not

guaranteed to see consistent data. When write ownership is released, a consistent

view of data must be visible to any other thread. Note the release operation could

96

be performed explicitly by the thread or implicitly by the model. The latter is

achieved when the OWM is used by a thread to write its results, which are

made available to the consumer thread upon the completion of the execution of

the thread. This memory can serve the requirements of the single assignment

semantics required for functional objects. However, the ability for other threads

to subsequently reclaim write ownership adds to flexibility of usage.

6.2.1 OWM Protocol

For a complete description of the OWM memory model, we also include the

OWM protocol here. The OWM protocol was firstly formalized by François

Gindraud Gindrand et al. [2013], who is doing his master thesis at our lab. We

give a short introduction here, and continue with our work from compilation side

for OWM design in later sections.

The OWM protocol is inspired from a distributed, directory-based MSI cache

coherence protocol. The global OWM memory address is mapped locally to each

node on the NoC. Before a task can access to an OWM subregion, it has to claim

ownership before hand. The owner will always keep track of the nodes that holds

a valid copy of the subregion. One important property of resolving the ownership

of a OWM subregion is handled as follows:

• The global addressable OWM memory is distributed to each nodes, we

could tell the node it is allocated at the first place by the address, we call

this node as its first owner.

• When the ownership changes, the first owner always keeps the information

of the current owner. When claim ownership or data requests has been

received, it forwards the requests to its owner and renew the ownership

information.

One problem with the MSI is the atomicity of bus events. On the NoC, we

assume all the messages will eventually arrive without packet loss or duplication,

in any order. So we must ensure that a task accesses a region in W mode will

invalidate all the copies of that region on other nodes before the tasks depends

on being executed.

97

We assure this property by adding a memory semantic tpublish. When all

the modifications are done within the OWM subregion, the owner task has to

execute tpublish on the region explicitly to ensure all the other nodes depend on

the new data will be invalidated.

Protocol description Each node on the NoC operates on two message queues,

a send queue and a receive queue. Nodes communicates via messages. The mes-

sage sending is abstracted as removing one message from the send queue of the

source node, and add it atomically to the receive queue of the destination node.

The protocol could be divided into three message types: (DataRequest, DataAn-

swer), (OwnerRequest, OwnerAnswer), (InvalidateRequest, InvalidateAck). We

will discuss each in details.

• Data request. DataRequest and DataAnswer messages are equivalent to

BusRd event in MSI. The request will be sent to the first owner of this

region, and forwarded to the current owner. When the owner node receives

this request, it replies with a DataAnswer message contains the fresh data,

and add the request node to the list of valid nodes. When the request node

receives the DataAnswer, it update the local copy of the OWM region, sets

the valid flag as true, and resets the requested flag.

• Ownership request. OwnerRequest and OwnerAnswer are similar to the

BusM event in MSI. In snooping MSI the bus is guaranteed that only one

busM event could occur. In OWM memory model, the enforced depen-

dences are added between tasks so that no ownership change could occur if

there is another node claimed the ownership and did not publish the data

yet. The request message will be sent to the first owner of this region,

and will be forwarded to the current owner. The first owner will update

the ownership information by checking the OwnerRequest message. When

the destination node receive this message, it sets the valid flag to be true,

and send OwnerAnswer which packs the data and ownership response meta

data information to the new owner. When the request node receives this

message, it will update the region it requests by the data received. The

valid set information is also sent in the meta data by the previous owner,

98

the request node will update this information, and add the previous owner

to this set.

• Invalidation request. Invalidation complements the ownership transfer

process. We explicitly send invalidation request to other nodes that have

a local copy upon modification. The InvalidateRequest is sent to all the

nodes in the valid set. The valid set will be copied to waiting invalida-

tion acknowledge set (WIAS) before it is reset. When the node receive a

InvalidateRequest, it set the valid flag to false, and send back the Inval-

idateAck message to acknowledge the sender. When the sender receives

InvalidateAck, it removes the source node from WIAS.

6.2.2 OWM Extension to TSTAR

OWM is one single memory region, but it could be further divided into smaller

subregions for finer granularity. We introduce owm tsubscribe and owm tpublish

as an extension to the TSTAR ISA for supporting OWM. One could subscribe (by

calling owm tsubscribe) part of OWM region to a thread, which means, before

this thread is executed, the ownership of the subregion should be acquired, and

ready for access. One thread could publish the modifications to the OWM region

it acquired by calling owm tpublish. Before the modifications are published, any

read from another thread is not guaranteed to see consistent data.

OWM is a weak memory model, it is the programmer’s responsibility to take

care of data consistency and dependences. In Figure 6.8, OWM subregion A is

subscribed both to DF-thread A and DF-thread B. At the time DF-thread B

is executed, the data it sees depends on whether owm tpublish in DF-thread

A is executed. If it is executed, then it sees the modified version, otherwise, it

sees the old data. If you want DF-thread B always sees the updated data, the

programmer should add an enforced dependence from DF-thread A to DF-thread

B.

Here is the detailed description for the OWM ISA:

void owm tsubscribe(void *tid, int off, int offowm, int size, int mode);

99

Figure 6.8: Owner Writable Memory.

Subscribe the OWM subregion described by (offowm, size, mode) to be

cached before executing dataflow thread with thread id tid: offowm is

the initial offset to the global OWM region, size is the size of the OWM

subregion to be subscribed, mode describes the access mode to the region, it

could be read-only, write-only or read-write. The pointer to the local

cached OWM region is stored in DF-frame described by (tid, off), where

tid is the thread id, and off is the offset in the thread’s DF-frame.

void owm tpublish(void *regptr, int size)

Publish the modification to the OWM region described by (regptr, size).

If size is 0, it writes the region starting at regptr using the size that was

registered during the owm subscribe operation. This way, different threads

can be subscribed to different segments of the same region using different

sizes.

100

6.2.3 Expressiveness

OWM is integrated into OpenStream compiler as a language extension. Open-

Stream is a highly expressive stream-computing extension to OpenMP3.0 de-

signed by Antoniu Pop Pop & Cohen [2011b]. One could use OpenStream to

decompose programs into tasks and explicits the flow of data among them, thus

exposing data, task, and pipeline parallelism.

The code in figure 6.9 shows a simple example of expressing pipeline paral-

lelism with OpenStream. x is defined as a stream. The first loop produces value

to stream x and the second loop consumes from this stream. For more informa-

tion about OpenStream, interested readers could refer to Pop & Cohen [2013]

and Pop & Cohen [2011b].

int x __attribute__((stream));

for (i = 0; i < N; ++i) {

#pragma omp task output (x)

x = ... ;

}

for (i = 0; i < N; ++i)

#pragma omp task input (x)

... = x;

}

Figure 6.9: Pipeline using OpenStream.

OWM extension to OpenStream OWM extension extends OpenStream

with OWM memory model, thus reduces the communication overhead when com-

plex data structures involved. The extension is a simple cache pragma:

#pragma omp task cache (ACCESS_MODE: MEM[OFF:SIZE])

The cache pragma subscribes the task with OWM subregion described by

MEM[off:size] with read (R) ,write (W) or read-write (RW) access mode. The

current pragma supports only one dimension array, but it could be easily extended

to multiple dimension arrays.

101

The simple usage of the pragma is described in Figure 6.10. tstar owm alloc

allocates the OWM memory with size N*N*sizeof(DATA). Task 1 writes to this

OWM memory region and task 2 reads from this OWM region. Note two tasks

are synchronized by stream sync, task 2 will only be executed when task 1

finishes.

int sync __attribute__ ((stream));

DATA *A = tstar_owm_alloc (N * N * sizeof (DATA));

/* task 1. */

#pragma omp task cache (W: A[:N*N]) output (sync)

{

for (i = 0; i < N; i++)

A[i][i] = i;

}

/* task 2. */

#pragma omp task cache (R: A[:N*N]) input (sync)

{

for (i = 0; i < N; i++)

... = A[i][i];

}

Figure 6.10: OpenStream cache example.

6.2.4 Case Study: Matrix Multiplication

Matrix multiplication is a good example to illustrate the expressiveness of OWM

extension in user cases. We illustrate this example in three phases: in the first

phase, one task allocates and initializes all the matrices in the OWM memory; in

the second phase, the matrix is partitioned to several blocks, each task will cache

the OWM subregion it needs and compute the results, then store the results to

the output matrix; and a final task will wait till the end of all the previously

created tasks, print and verify the results. We will explain in details following

the path of the three phases.

Matrix allocation and initialization. Figure 6.11 shows the code for matrix

allocation and initialization. The input matrices A,B and output matrix C are

102

allocated by calling tstar owm allocate, fill matrix initialize all the matrices.

The cache pragma subscribes matrices A, B, C in write mode. At the time

fill matrix is executed, all the OWM subregion it subscribes will be ready for

writing. The modification will be published at the end of the task. Stream init

is used to synchronize between phase one and phase two, so that the computation

could only be started when the initialization finishes.

int init __attribute__((stream));

DATA *A = tstar_owm_alloc (N * N * sizeof (DATA));

DATA *B = tstar_owm_alloc (N * N * sizeof (DATA));

DATA *C = tstar_owm_alloc (N * N * sizeof (DATA));

#pragma omp task cache (W: A[:N*N], B[:N*N], C[:N*N]) output (init)

fill_matrix (A, B, C, N);

Figure 6.11: First phase: Matrix allocation and initialization.

Matrix multiplication. The main computations are done in this phase. Fig-

ure 6.12 shows the code for matrix multiplication. The matrix is divided into

blocks, each thread caches BLOCKSZ rows of matrix A, and the entire matrix B in

read mode, and BLOCKSZ rows of matrix C in write mode. Once the thread is

executed, it computes ABLOCKSZ∗N ∗ BN∗N = CBLOCKSZ∗N at the end of each

thread, the modification to matrix C is published and thus available for reading

by other threads. Each task creates in this phase writes a single value to stream

finish. Stream finish acts as a waiting barrier in the last task, which will wait

for the termination of all threads created in this phase.

Output the results. Figure 6.13 shows the final thread, which waits for the

termination of all the threads created in phase two. Once all the computations

are done, it will output the results and do the verification if necessary. Stream

finish acts as a barrier, waits for N/BLOCKSZ inputs from stream finish. Each

thread created in phase two writes to stream finish once finished.

103

for (j = nb = 0; j < N; j += BLOCKSZ, ++nb) {

int aoff = N * j; int boff = 0; int coff = N * j;

#pragma omp task cache (R: A[aoff:N*BLOCKSZ], B[boff:N*N]) \

cache (W: C[coff:N*BLOCKSZ]) output (finish)

{

for (int jj = j; jj < j + BLOCKSZ; ++jj) {

for (int i = 0; i < N; i++) {

DATA t = 0;

for (int k = 0; k < N; k++) {

t += A[jj * N + k] * B[k * N + i];

}

C[i + jj * N] = t;

}

}

}

}

Figure 6.12: Second phase: Matrix multiplication.

#pragma omp task cache (R: A[:N*N], B[:N*N], C[:N*N]) \

input (finish >> final_view[N/BLOCKSZ])

{

dump_result_and_verify (A, B, C, N);

}

Figure 6.13: Third phase: Output the results.

6.2.5 Conclusion and perspective about OWM

The validation of OWM memory model is presented in Chapter 7. We have

studied four benchmarks with OWM support (matrix multiplication, sparse LU,

gauss seidel and viola jones), those benchmarks are valided with a system level

simulator.

In this chapter, we stress a few points here:

• The OWM memory model is a loosely coupled memory model.

Compared to word-based cache coherence, the protocol is largely simplified

with the assumption that users have to synchronize all the tasks that access

to the same OWM subregion to preserve the ownership atomicity. There

is usually a trade off between programmability and flexibility, we shift the

104

complexity of the hardware design to the user, but at the same time, provide

a compilation tool chain to simplify this procedure.

• OWM extension to OpenStream provides an easy to use com-

pilation support. As we presented in matrix multiplication case study,

the OWM extension could be easily integrated into dataflow programs, the

user could use OpenStream to synchronize between tasks. In chapter 7, we

present another user case where dynamic memory allocation could also be

easily replaced with OWM extension with less effort. We have also inte-

grated our backend support to OpenStream compiler, the lowered builtin

functions will be translated directly to TSTAR ISA, and linked with part of

the OpenStream library (runtime related with streaming operations), and

part of the runtime support in our simulator. The user could just write

OpenStream programs, and leave the rest for the compilation support, au-

tomatically target for our multithreaded dataflow architecture.

• The OWM extension could be easily extended to support multiple

dimension arrays. One of the limitation of current OWM support is the

lack of support on multiple dimension arrays. In the implementation of

benchmarks where two dimensional arrays are used, we usually have to

remap the memory regions as a single dimension array, which might have

extra cost. But the OWM extension could be easily extended. An abstract

polyhedral representation could be used in this case to represent an OWM

region in multiple dimension arrays situation.

6.3 Summary

To complement the thread partitioning algorithm proposed in chapter 5, we pre-

sented two ways of handling complex data structures in this chapter: SCMD is

used to decouple computations and memory accesses in finest granularity, which

exploits as much parallelism as possible. The OWM memory model is used to

reduce overhead when complex data structures are exchanged across threads. For

expressiveness and as part of our compilation tool chain, we extend OpenStream

105

with OWM extension, the programmer could write dataflow programs with OWM

support easily.

106

Chapter 7

Simulation on Many Nodes

Thread partitioning is a challenging task in developing a compiler for multi-

threaded dataflow architecture. Measuring the performance metrics on the mul-

tithreaded dataflow architecture plays an equally important role. Before the real

hardware processor is built, we need a flexible methodology to analyze the behav-

ior of the proposed architecture. By performing simulations and analyzing the

results with a full-system simulator, we can gain a thorough understanding how

the proposed architecture behaves, how to improve it, and validate the results

before it goes into the production cycle.

Our focus in this chapter is not about the precise timing model in simulation,

but the capability of simulating interesting benchmarks on thousands of cores

(multiple nodes) targeting TSTAR architecture. We have rewritten and adapted

a few interesting benchmarks targeting for TSTAR architecture, and simulate

with manycore configuration, show its potential scalability provided a precise

timing model presents.

Another focus in this chapter is the resource requirements in many nodes

simulation. Multiple nodes simulation of parallel programs requires more re-

sources than single node simulation and sequential execution. Unless precautions

are taken, programs with tremendous parallelism or large number of nodes will

saturate, and even deadlock, in a host machine with reasonable size.

As one of our contribution to the simulator, we analyze the resource require-

ments in host and guest machine, and propose our solutions which could large

reduce the memory usage both in host machine and guest machine. The solutions

107

are implemented and integrated in COTSon simulator.

This chapter is organized as follows. Section 7.1 gives a short introduction

on the COTSon simulation framework. Section 7.2 presents the many nodes

simulation scenario. Section 7.3 presents the memory usage optimization and

thread throttling for resource management. Section 7.4 presents our benchmarks

and the results of experimental validation.

7.1 Introduction

Figure 7.1 sketches the structure of COTSon architecture. COTSon uses AMD’s

SimNow simulator for the functional simulation of each node in the cluster. For

the timing simulation, COTSon attached a specific timing model for each com-

ponent (i.e., cores, caches, memory, disks and network interfaces) of the target

architecture.

Figure 7.1: COTSon Architecture.

The support for a many-nodes simulation is given by interconnecting a large

108

number of COTSon nodes. Each node is composed of a certain number of cores

with their hardware components. Nodes are connected with each other through

their network interfaces.

When a particular application needs to communicate using the network, it

executes some code that eventually reaches the NIC. This procedures a NIC

event that reaches the NIC synchronous timing model. The response time from

the timing model is then used by the functional simulator to schedule the emission

of the packet into the external world. The packet is sent to an external entity

which is called the network mediator.

7.2 Multiple Nodes Dataflow Simulation

Figure 7.2: Multiple nodes simulation on COTSon.

Figure 7.2 shows the multiple nodes simulation structure on COTSon. It

constitutes several components: the host machine, the guest machine, and the

COTSon nodes.

The host machine is where the COTSon instances are running on. COTSon

109

supports multiple nodes simulation by allowing multiple instances of COTSon,

the communication and synchronization of the instances go through the mediator.

The guest machine is the machine (both hardware and operating system level)

that is simulated by COTSon instance. We create one worker for each CPU

within the guest machine. Each worker will poll the centralized task queue for

ready tasks.

At the execution of each task, the TSTAR instructions will be trapped by

COTSon for functional simulation. In Figure 7.2, task1 in worker 4 (COTSon

node 1), TCREATE and TCACHE will be trapped by COTSon, and call the registered

functions tcreate and tload on COTSon node where guest machine simulated

on respectively. We will describe the TSTAR instructions accordingly in the

COTSon infrastructure.

TCREATE. TCREATE will be trapped by COTSon to the functional simulation,

and then the registered function tcreate will be called (Figure 7.2, step 1 and

2). It will try to allocate a new DF-frame for the new DF-thread in the shared

memory. If allocation is successful, the new identifier for the DF-frame (TID1 in

this case) will be returned as the result of the execution of the assemble TCREATE.

DF-frames in shared memory is shared by all COTSon processes, and pro-

tected with locks.

TCACHE. TCACHE is used to cache the remote frame locally. It will be trapped

by the functional simulation, and then the registered function tcache will be

called. The DF-frame id is passed along with TCACHE. In step 2, it will look up

for TID3 in the shared DF-Frames, if it is found, the entire DF-frame will be copied

from host to guest, more precisely, the DF-frame will be copied from the shared

memory to the local heap for this worker thread. And the local copy’s pointer

will be returned to TCACHE finally (step 5). Then in this task, we could directly

modify/read this DF-frame. At the time tdestroy is called, the modifications

will be synchronized and could be seen by other tasks/nodes.

TLOAD. TLOAD is a shortcut for TCACHE (current thread). It will be trapped

by the functional simulation, and then the registered function tload will be called.

110

The current thread id is stored within thread local storage and used to get cur-

rent DF-frame in the shared DF-Frames, if it is found, the DF-Frame will be

copied from host to guest, and the local copy’s pointer will be returned to TLOAD.

Another difference between TLOAD and TCACHE is that the frame loaded by TLOAD

is read-only. The data stored in the DF-frame is needed by the computations in

the current thread.

TDECREASE. TDECREASE makes the target thread designated by thread id

to be decremented by n either at the time it is called (eager tdecrease) or upon

termination of the current thread (lazy tdecrease, at the time TDESTORY is called).

It will be trapped by the functional simulation, and the registered function

tdecrease will be called. In eager tdecrease, the target DF-frame id and n

is passed along with TDECREASE. It will look up for the target DF-frame, once it

is found, decrease the SC by n. Check the value SC after decrement, if it reaches

to zero, move it to the ready queue. In lazy tdecrease, the TDECREASE instruction

will be cached.

TDESTROY. TDESTROY will be trapped by the functional simulation, and call

the registered function tdestroy. tdestroy will terminates the current thread

and deallocates its DF-frame in Shared DF-Frames. If running on lazy mode, it

will aggregate and execute the cached instructions (e.g. several TDECREASE to the

same thread will be aggregated to a single TDECREASE) before deallocation.

7.3 Resource Usage Optimization

We consider two approaches to reduce resource usage at runtime. The first one op-

timizes memory usage irrespectively of the number of concurrently active threads.

The second one aims at throttling task creation in highly parallel applications.

7.3.1 Memory Usage Optimization

The TLS corresponds to each worker in the GUEST MACHINE is a chunk of

preallocated heap memory. At the time TCACHE or TLOAD is called, the allocator

111

will allocate certain memory from the TLS heap memory before the DF-frame is

copied, and the heap memory will be released at the end of the thread.

Consider the code example in Figure 7.3:

/* A task example */

void task ()

S0 {

S1 current_fp = tload ();

S2 i1 = current_fp->i1;

S3 consumer_tid = current_fp->consumer_tid;

S4 consumer_fp = tcache (consumer_tid);

S5 i2 = consumer_fp->i2;

S6 consumer_fp->result = i1+i2;

S7 tdecrease (consumer_fp);

S8 tdestroy ();

}

Figure 7.3: Code example for simple frame memory allocator

Figure 7.4 shows how the simple allocator works for this code example. Each

worker is initialized with its TLS heap memory for caching the DF-Frames locally.

In this example, cp points to the start of the heap (0x80000000). At the point

(tload) (S1) is called, the current DF-Frame will be cached locally (copied from

shared memory to TLS heap memory), cp will advance by the size of this DF-

Frame. In the meantime, the mapping between allocated TLS DF-Frame and

thread id will be inserted, in which way, another call to tcache/tload in the

same thread will return cached DF-Frame directly. At the point tcache is called

(S4), the DF-Frame will be cached locally with consumer fp, and cp will advance

by the size of consumer DF-Frame. The mapping between TLS and shared DF-

Frame will be inserted. At the point tdestroy is called, the local TLS heap

memory will be freed by pointing cp to the beginning of the heap (0x80000000).

The simple allocator is simple yet efficient, it operates on a task basis, at the

end of each task, the TLS memory will be freed. It satisfies our needs at most of

the time. However, for the control tasks, it occurs that more tcache involved.

The control task takes care of task creation, initialization and dependence res-

olution. In the dependence resolution, the consumer’s thread id needs to be writ-

ten to its producer after both are created. e.g. In Figure 7.5, the control task

112

cp (S0)(S8)

cp (S1)

cp (S4)

Figure 7.4: Simple frame memory allocator

113

creates producer and consumer tasks, it register the consumer thread id in the

producer thread’s DF-Frame. In order to write to a thread, it has to cache this

thread locally and then operates on it. The tcache will be called NUM of times

for different thread id. When the NUM increase, the preallocated heap will raise

out of memory error.

/* A task example */

void control_task ()

S0 {

for (i = 0; i < NUM; i++) {

S1 producer_tid = tschedule (task_p, 1, sz);

S2 consumer_tid = tschedule (task_c, 1, sz);

S3 fp = tcache (producer_tid);

S4 fp->consumer = consumer_tid;

S5 tdecrease (producer_tid);

}

S6 tdestroy ();

}

Figure 7.5: Code example for simple frame memory allocator

In order to solve the memory consumption problem in the guest machine, we

will need to consider the question:

• Where the allocator should be implemented for TLS heap mem-

ory?

One obvious option is to implement the allocator in the guest space, since

the TLS heap memory reside in guest memory. We could add a builtin

function tls alloc before tcache/tload is called. And pass the returned

TLS frame pointer to tcache as a new argument for caching it locally. And

at the point where the cached frame is not used any more, insert a new

builtin function tls free, free the allocated memory. But this method push

too much pressure either on the compiler or the programmer. The compiler

or the programmer needs to decide where the tls alloc or tls free should

be inserted.

Another option is to manipulate the TLS heap memory from host space.

tcache or tload represent the exact allocation point , then it will be

114

Figure 7.6: Host Space TLS Frame Memory Allocator

trapped by the functional simulation. The allocator then could allocate

the memory needed and return the guest space address. But still, the

tls free needs to be inserted when the cached frame is no longer being

used. tlf free could be inserted by the compiler at the point where the

cached frame will not be used anymore to free the memory, at the cost of

one more instruction. Or being merged directly into tdecrease.

Figure 7.6 shows how the code in Figure 7.5 works with new allocator. The

new allocator is implemented in host space, manipulate TLS heap memory. The

free list stores a vector of currently available TLS heap memories. The ADDRESS

and SIZE marks the start and the end of the free region. The allocated list stores

the allocated TLS heap memories. The ADDRESS and SIZE marks the start and

the end of the allocated region.

At the start of the worker, Free list will be initialized with the entire TLS heap

115

memory, and allocated list will be empty (S0). At the first iteration, tcache (S3)

will be trapped by functional simulation, and the new allocator will be used to

allocate the new TLS DF-Frame. The allocator will look in the free list, try to

find the exact matched free memory location. If exact match does not exist, it

will try to find the closest match (In this case, it is 0x1024), and split the memory,

move the allocated memory into the allocated list. At the point tdecrease (S5)

is called, the allocator will free the cached TLS DF-Frame and push it back to

the free list.

In the next iteration, since the cached size will always be the same, the exact

match will apply with the (ADDRESS, SIZE) tuple (0x80000000, 0x256) in the

free list. And it will be freed and pushed back when tdecrease (S5) is called. In

this special case, the memory allocator will always work with any NUM iterations.

7.3.2 Throttling

Parallel execution of programs requires more resources and more complex resource

management than sequential execution. Unless precautions are taken, programs

with tremendous parallelism will saturate, and even deadlock, a machine of rea-

sonable size. This resource problem arises in any system which allows dynamic

generation of concurrent tasks, especially in dataflow architectures where the

parallelism is well exploited. Ideally, enough parallelism should be exposed to

fully utilize the machine on which the program is executing, while minimizing

the resource requirements of the program.

A particularly nasty case occurs in certain loops, consider the example in

Figure 7.7. The loop L0 in the control task executes very rapidly and all the

tasks created within this loop are started at about the same time, the memory

usage is proportional to N, the number of iterations. Disaster! Control the

parallelism with throttling is necessary in this case.

Culler Culler & Arvind [1988] proposed the K-bounded loop technique as a

dynamic software solution. The compiler analyzes the code and determines the

maximum store usage for a loop cycle. At runtime, the hardware decides how

many loop cycles are allowed to execute in parallel from the activity level of the

machine and the static information about maximum store usage per cycle.

116

void control_task ()

L0 {

for (i = 0; i < N; i++) {

S1 producer_tid = tschedule (task_p, 1, sz);

S2 tdecrease (producer_tid);

}

S3 tdestroy ();

}

Figure 7.7: Excessive parallelism.

The problem with K-bounded loops is that it is not a general solution (e.g.,

it cannot handle recursion), and there is the overhead of the extra instructions

inserted to control the loops.

Our solution is a hardware solution, trying to solve the problem of resource

limitation on the frame memory, but it should also apply to other type of re-

sources. Frame memory is used each time a new thread is created (where tschedule

is executed), and is freed at the end of the thread when tdestroy is executed. We

mark the thread that is going to create other tasks, where the resource usage will

always increase once being executed, as greedy, and mark the thread that does

not create tasks, as generous. Once a generous thread is executed, it assures to

release the resources in the end and increase the total available resources in the

entire system.

Our heuristic is simple, each time tschedule is executed, it will check the

availability of the resources for the allocation of the thread, if available, it allocates

the resources it needs and returns the allocated DF-Frame address. If not, it will

try to schedule a ready task marked as generous and execute it right away. Once

the resources occupied by this generous thread is released, it will check again the

availability, continue scheduling generous threads until enough resources being

released. If there are no threads marked as generous in the ready queue, executes

greedy threads will only increase the demands in the resources. In this case, the

program will raise exception for insufficient resources and exit.

117

7.4 Experimental Validation

We conducted multiple-nodes simulation on 6 benchmarks: Fibonacci, Gauss

Seidel, Matrix Multiplication, Sparse LU and Viola Jones.

The benchmarks have been implemented in two different flavors. One fla-

vor is to write programs with the low level TSTAR instruction set directly (Fi-

bonacci and Matrix Multiplication); the other flavor uses OpenStream and com-

piler support to express dataflow parallelism, and has been used for the more

complex benchmarks (Gauss Seidel, Sparse LU and Viola Jones). The multi-

node implementation for the latter benchmarks use the OpenStream extension

for OWM. The runtime support library for OpenStream (to match dependences

over streams) is integrated into the COTSon runtime.

7.4.1 Experimental Settings

The experimental evaluation involved the work and support of several collabo-

rators. Including Dr. Paolo Faraboschi from HP Labs who led the design and

implementation of the TSTAR extension of COTSon, and the group of Prof.

Roberto Giorgi at the University of Siena for the hardware platform and support

running the simulations.

Software stack We use the DF-proxies branch of OpenStream compiler, where

we integrated our TSTAR backend implementation and OWM support. The sim-

ulated architecture uses SimNow version 4.6.2, and the most recent version of

COTSon with support for TSTAR architecture (the TSUF branch). We also have

our resource usage optimization implementation integrated in TSTAR.

Hardware stack The host machine for simulation is a DL-Proliant DL585 G7

based on AMD OpteronTM 6200 Series, with 64 CPUs and 1TB RAM. The guest

machine is configured using SimNow with different number of CPUs and RAM

size configuration. The guest machine is running Ubuntu 9.10.

Applications We have chosen five benchmark for evaluation: Fibonacci, Gauss

Seidel, Matrix Multiplication, Sparse LU and Viola Jones. Except for Fibonacci,

118

all the other benchmarks are integrated with OWM support, which is used to

reduce the communication overhead and enable multiple nodes support.

• Fibonacci is a simple benchmark which recursively compute the nth Fi-

bonacci number. In the dataflow version, it spawns tasks recursively.

• Gauss Seidel is an iterative method which is being widely used to solve a

linear system of equations in numerical linear algebra.

• Matrix Multiplication is a well known algorithms that get the product

of two matrices.

• Sparse LU factors a matrix as the product of a lower triangular matrix

and an upper triangular matrix.

• Viola Jones is an object detection framework proposed by Paul Viola and

Michael Jones to provide competitive object detection rates in real-time.

7.4.2 Experimental Results

Figure 7.8 shows the simulation results with functional simulation. Our focus

in this chapter is not about the precise timing model in simulation, but the

capability of simulating interesting benchmarks on multiple nodes configuration

targeting TSTAR architecture with OWM support. All benchmarks are written

with OpenStream with OWM extension.

The simulation includes multiple node configurations. Each shared-memory

node runs 4 cores, so in the case of the 128 cores configuration we have 32 nodes

in action. Each node is a COTSon instance, simulating a guest machine with our

selected operating system. The timing of all nodes are synchronized via COTSon’s

network mediator. And in term of the application level synchronization, one node

will be selected as master node, where the other nodes are left as salve nodes. The

master node initializes all the shared resources between nodes (e.g., the shared

task queue) and waits for the the slave nodes to finish their initialization. Each

worker will poll from the centralized task queue and schedule the task when the

task is ready.

119

Figure 7.8: Simulation Results

The functional simulation reflects the parallelism in each benchmark (Fi-

bonacci >Viola Jones >Matrix Multiplication >Gauss Seidel >Sparse LU). The

non linear speed up shows the potential overhead in the compilation and simu-

lation environment. The overhead mainly comes from the control program. The

control program takes care of creating all the tasks and resolves dependences.

OpenStream manages stream data structures through shared memory, so we have

to constrain all the control programs to be scheduled on the same node.

Figure 7.9 shows the simulation results of viola jones with up to 1024 cores

(tuned for the number of cores). We tuned the results by adapting the scale

parameter in this benchmark, so that in each configuration, we have enough

tasks for each worker. From the simulation results, we could see that it is fully

functional in manycores simulation, and the results show quite nice parallelism

opportunities.

120

Figure 7.9: Simulation Results

121

Figure 7.10: Simulation Results

Figure 7.10 shows the simulation results of viola jones with up to 1024 cores

with scale parameter fixed (scale = 1.01). The problem size of the benchmark

limits the parallelism in the simulation — from 128 cores, the speedup stop in-

creasing, the total amount of tasks does not satisfy the large number of workers.

We provide a detailed analysis of each benchmark in the following subsections.

(Matrix Multiplication is skipped since it was presented in chapter 6).

7.4.2.1 Gauss Seidel

Figure 7.11 shows the dependence details of Gauss Seidel. In this figure, (A)

shows the dependences in the same iteration and (B) shows the cross iteration

dependences. We will go through both in detail.

In Figure 7.11, every square represents a block in seidel computation. The

red line represents the dependence in the same iteration, and the dashed black

122

Figure 7.11: Dependence of gauss seidel: A. same iteration dependences (left) B.
cross iteration dependences (right)

line represents cross iteration dependences. We take the block in the center as

an example (the light grey square in left figure), the computation of this block

depends on its left neighbor block and its top neighbor block. But we should

note the computation of the center block does not depends on all the values

of the top and the left block, just the part marked in the green rectangle. So

we could actually just pass the relevant data in dataflow streams to remove the

unnecessary cost of passing the entire block. The dependence from the center

block to its right and bottom neighbor block should also be preserved, it needs

the old value of those two blocks before they are computed in this iteration

(marked as a grey rectangle).

Figure 7.12 shows our OpenStream implementation of the dependences of

this center block. In this code, sbottom ref, stop ref, sright ref, sleft ref,

scenter ref are array of streams for the computation. e.g. in the input clauses,

stop[green rect t] represents the stream for the computed value from its top

neighbor (green rectangle) and sbottom ref[sbottom ref] represents the stream

for the computed value from its bottom neighbor (grey rectangle). The input

streams and output streams should be correctly indexed so that the computation

123

gets the correct value: the top and left rectangle should come from the computa-

tion in this iteration, the right and the bottom rectangle should come from the

computation of the previous iteration. In the output clauses, when the compu-

tation has been done, the value of this center block in this iteration has been

updated, the borders of this centered block will be sent to the output streams.

gauss seidel df computes the center block with all its inputs and sends the

results to output streams.

for each block

#pragma omp task \

input(sbottom_ref[grey_rect_b] >> top_in[block_size], \

stop_ref [green_rect_t] >> bottom_in[block_size], \

sright_ref [grey_rect_r] >> left_in[block_size], \

sleft_ref [green_rect_l] >> right_in[block_size], \

scenter_ref[lgrey] >> center_in[block_size*block_size]) \

output(stop_ref[next_t] << top_out[block_size], \

sbottom_ref[next_b] << bottom_out[block_size], \

sleft_ref [next_l] << left_out[block_size], \

sright_ref [next_r] << right_out[block_size], \

scenter_ref[next_c] << center_out[block_size*block_size])

{

gauss_seidel_df(

blocks_x, blocks_y, block_size, numiters,

it, id_x, id_y,

left_in, top_in, bottom_in, right_in, center_in,

left_out, top_out, bottom_out, right_out, center_out);

}

Figure 7.12: Gauss seidel implementation with OpenStream.

The dependence pattern of Gauss Seidel does not incur communication over-

head, we just pass the relevant data in streams. But still, we could use OWM

memory model to further reduce the communication overhead by implementing

the matrix in OWM. The initialization tasks and the terminal tasks could directly

write to this matrix instead of communicating via streams. Figure 7.13 shows the

terminal task that directly cache the relevant block, and write the result to this

matrix. In this figure, matrix is stored in OWM memory, and this task cache

the relevant block matrix[matrix offset:block elements], matrix offset is

the offset of this block and block elements is the size of this block. It is cached

124

with write mode, and gauss seidel df finish will directly write the final result

of this block to matrix. Note the final stream acts as a barrier stream, waits

for all the computations are done and the final task could read results from this

matrix as showed in Figure 7.14.

for each block

#pragma omp task

input(sleft_ref[numiters*blocks+id] >> left_in[block_size], \

stop_ref[numiters*blocks+id] >> top_in[block_size], \

scenter_ref[numiters*blocks+id] >> center_in[block_elements]) \

cache (W: matrix[matrix_offset:block_elements]) output (final_stream)

{

gauss_seidel_df_finish(&matrix[matrix_offset],

id_x, id_y, N, block_size,

left_in, top_in, NULL, NULL, center_in);

}

Figure 7.13: Gauss seidel implementation with OWM support.

In Figure 7.14, the final stream waits for all terminal tasks to finish before

this task is executed. Currently, the OWM interface supports only one dimen-

sional array, so in this seidel implementation, we have another extra step which

transform back to two dimensional array. This step will be eliminated with mul-

tiple dimensional array support in the OWM interface.

#pragma omp task

input (final_stream >> final_view[blocks_x * blocks_y])

cache (R: matrix[:N*N])

{ /*use the results matrix. */}

Figure 7.14: Gauss seidel implementation with OWM support (final task).

7.4.2.2 Viola Jones

Viola jones is an object detection framework which provides competitive object

detection rates in real-time proposed by Paul Viola and Michael Jones Viola &

Jones [2001]. The first version we used is implemented by Daniel Gracia Perez

from Thales Research and Technology. We have integrated OWM support in this

implementation so that it could run on multi-node instances.

125

Figure 7.15 shows the OpenStream version of the computation intensive part

in Viola Jones (we omitted some parts in this display example for simplicity),

runStageOnTile does the main computation work. The parallelism in the code

is straight forward, in both phases, we could either parallelize the code in the

outermost loop (scaleIndex), or for finer granularity, the inner loops (irow or

icol). The dependence between phase one and phase two could be synchronized

via array of streams sycn. And in second phase, the computed information

centerX, centerY and other information could be passed to the final task via

dataflow streams.

for (scaleIndex=0; scaleIndex < scaleIndexMax, scaleIndex++){

/* Phase one: Detection. */

#pragma omp task output (sync[scaleIndex])

for (irow = 0; irow < nTileRows; irow += rowStep) {

for (icol = 0; icol < nTileCols; icol += colStep) {

for (iStage = 0; iStage < nStages; iStage++) {

if (goodPoints[irow * width + icol]) {

// Update goodPoints according to detection threshold

if (runStageOnTile(imgInt_f, imgSqInt_f, irow, icol,

tileHeight, tileWidth, height, width,

&(cascade->stageClassifier[iStage]), scaleFactor,

scale_correction_factor)) {

goodPoints[irow * width + icol] = 0;

}}}}}

/* Phase two: Determine the position of the object detection. */

#pragma omp task input (sync[scaleIndex]) \

output (centerX_stream << m_centerX[NB_MAX_DETECTION]) \

output (centerY_stream << m_centerY[NB_MAX_DETECTION] \

...

for (irow2 = 0; irow2 < gpRows; irow2++) {

for (icol2 = 0; icol2 < gpCols; icol2++) {

if (goodPoints[irow2][icol2]) {

// Calculation of the Center of the detection

centerX = (tileWidth - 1) * 0.5 + (icol2 * colStep);

centerY = (tileHeight - 1) * 0.5 + (irow2 * rowStep);

}

}}

}

Figure 7.15: Viola Jones OpenStream kernel.

Viola Jones accesses large amounts of shared data, most of which are complex

126

data structures and read only. How convenient it is to integrate OWM into

this benchmark is an important and interesting question. Figure 7.16 shows

the data structure of cascade—one of many complex data structures in Viola

Jones. The structure of CvHaarClassifierCascade is through several level of

indirect references. The cascade is dynamically allocated from heap memory and

initialized once, used read only throughout the entire program.

/* cascade or tree of stage classifiers */

typedef struct CvHaarClassifierCascade {

int count; /* number of stages */

int orig_window_sizeR;

int orig_window_sizeC;

/* array of stage classifiers */

CvHaarStageClassifier* stageClassifier;

} CvHaarClassifierCascade;

Figure 7.16: Cascade data structure.

In order to simplify the usage of OWM memory in this scenario, we provide

customized replacements for malloc and free. One could link malloc and free

in the program to the OWM version without modifications in the allocation and

deallocation of those data structures.

Figure 7.17 shows this solution. We cached the OWMmemory pool (owm mem pool)

used for allocation in the first task. loadImage and readClassifCascade are the

initializer for the image and cascade. We link malloc and free with our OWM

version without any modifications in the code. The returned allocated pointer to

OWM global memory address will be stored and passed between tasks through

firstprivate. The firstprivate is implicit by default in OpenStream, we em-

phasize the point by making it explicitly. As we could see in the final code, to

use OWM memory as a global addressable read only memory is very easy even

in the case of dynamic allocation.

7.4.2.3 Sparse LU

The dependence pattern for Sparse LU is more restrictive in terms of parallelism

exploitation, as shown in Figure 7.18. Each block in the graph represents a

read+write block. The lines with arrows represent dependences between blocks,

127

CvHaarClassifierCascade* cascade = NULL;

CvHaarClassifierCascade** cascade_p = &cascade;

Image *pgm = NULL;

Image **pgm_p = &pgm;

#pragma omp task output (sync_stream) \

cache (W: owm_mem_pool[:MAX_POOL_SIZE])

{

*pgm_p = loadImage((char *)imgName);

*cascade_p = readClassifCascade(haarFileName);

}

#pragma omp task input (sync_stream) \

firstprivate (cascade_p) firstprivate (pgm_p) \

cache (R: owm_mem_pool[:MAX_POLL_SIZE])

{

CvHaarClassifierCascade* cascade = *cascade_p;

Image *pgm = *pgm_p;

/* Usage of cascade and pgm. */

}

Figure 7.17: Dynamic OWM memory allocation.

both the source and destination block will be read by the corresponding function,

and when the computation is done, the results will be written to the destination

block. E.g., for the red dotted line, the destination block is computed by dest =

bdiv(src, dest), and for the green solid line, the destination block is computed by

dest = bmod(src1, src2, dest).

Figure 7.18 A shows the dependences when the outer loop iteration equals 0

(k = 0), and inner loops executes in serial. B shows the dependences when the

outer loop iteration equals to 1 (k = 1). Due to the dependence patterns, the

next iteration of the outer loop should not start until it is previous iteration fin-

ishes. But the computation in each iteration could be executed following dataflow

dependences. Part of the implementation for the dependences represented by red

line in this figure is presented in Figure 7.19

One characteristic in Sparse LU is its communication pattern. Entire blocks

will be passed via dataflow streams multiple times due to its dependence pattern.

e.g. In Figure 7.18 A, block(0,0) will be passed to block(0,1), block(0,2),

128

Figure 7.18: Dependence patterns of sparse lu: A. k = 0 B. k = 1.

for (k = 0; k < num_blocks; ++k){

for (i = k + 1; i < num_blocks; ++i) {

if ((*fill_flags)[i][k] != 0)

{

#pragma omp task \

input (streams[i*num_blocks + k] >> iview[bds]) \

output (streams[i*num_blocks + k] << oview[bds]) \

peek (streams[k*num_blocks + k] >> iview2[bds])

{

bdiv (block_size, iview2, iview);

memcpy (oview, iview, bds * sizeof (double));

}

}}}

Figure 7.19: Sparse lu OpenStream implementation for bdiv dependences.

block(1,0) and block(2,0). Those overheads could be reduced with OWM,

where the synchronization patterns keeps the same, but we keep the matrix in

OWM, so that when the dependence satisfies, the task could directly read and

write to the relevant OWM region. The OWM version corresponds to Figure 7.19

is presented in Figure 7.20.

129

for (k = 0; k < num_blocks; ++k){

for (i = k + 1; i < num_blocks; ++i) {

if ((*fill_flags)[i][k] != 0)

{

#pragma omp task \

input (streams[i*num_blocks + k] >> iview) \

output (streams[i*num_blocks + k] << oview) \

peek (streams[k*num_blocks + k] >> iview2) \

cache (RW: matrix[(i*num_blocks+k)*bds:bds]) \

cache (R: matrix[(k*num_blocks+k])*bds:bds)

{

bdiv (block_size, &matrix[(i*num_blocks+k)*bds],

&matrix[(k*num_blocks+k)*bds]);

}

}}}

Figure 7.20: Sparse lu OpenStream implementation for bdiv dependences (with
OWM support).

7.5 Summary

This chapter covered the following:

• Simulator Resource usage optimization largely reduce the memory

constraints on host machine. With the optimization applied on COT-

Son, the dataflow programs could free and reuse the frame memory allocated

on guest machine constantly (leads to loose the memory constraints on host

machine), so that the memory consumption with multiple nodes simulation

becomes affordable.

• Simulator Throttling enables larger size application simulatable.

Simulation scales to many cores needs larger input size for the benchmarks,

the current implementation in OpenStream generate one control task that

creates all the tasks in advance. The task creation speed exceeds the task

execution, where the resource demands keeps stacking up. Our throttling

methods could release the resources being used by scheduling the generous

task when the resource shortage happens in allocating a new task.

• Compiler OWM extension for OpenStream make it easier to write

130

dataflow programs with OWM support. The OWM extension inte-

grated into OpenStream is straightforward and easy to use for the program-

mer. It could be automatically lowered down into builtin functions in GCC

middle end, and compiled to OWM ISA in the compiler backend, and then

simulated on COTSon with TSTAR support.

• Compiler+Simulator A great effort has been made in simulating

OpenStream programs on COTSon. OpenStream has made efforts

with its efficient runtime system, one part of which is used for managing

streams, resolving dependences; and another part is used for scheduling,

managing threads creation etc. We have to replace the scheduling and

threads creation part with TSTAR backend, generating TSTAR ISA, and

still linking the stream management in the objective file. On COTSon, the

runtime system on guest machine, that hooking as a pre main function, for

workers creation, has also to be linked within the final objective file.

• Benchmarks A few interesting benchmarks are simulated with OWM

support. We have written a few interesting benchmarks with OWM sup-

port, to express the parallelism and to minimize the communication over-

head. Those benchmarks are compiled down to TSTAR ISA and being

simulated on COTSon under multiple nodes environment (up to 32 nodes).

Note Our focus in this chapter is not about the precise timing model in simula-

tion, but the capability of simulating interesting benchmarks on thousands of cores

targeting TSTAR architecture. But still, it will be interesting to see the results

with a precise timing model provided. This thesis is related to TERAFLUX Soli-

nas et al. [2013] Giorgi et al. [2014] 1 project, and the timing model is taken

care of by our other partner, at the time this thesis is being written, the timing

model still suffers in multiple nodes simulation (multiple nodes sync mechanism

conflicting with other lock mechanism in the simulator, which results in potential

deadlock issues). We will provide a simulation results with precise timing model

given its available.

1more information about this project could refer to http://www.teraflux.eu

131

Chapter 8

Conclusions and Future Work

To conclude this thesis, we review our main contributions, and then present on-

going and future work opportunities for our thread partitioning work.

8.1 Contributions

The contributions in this dissertation includes:

• A compilation algorithm extending loop transformations and Parallel Stage

Decoupled Software Pipelining (PS-DSWP). By asserting a control-flow hy-

pothesis inspired from synchronous concurrency, the data and control de-

pendences can be decoupled naturally with only minor changes to existing

algorithms that have been proposed for loop distribution and typed fusion.

• The design of the TSTAR instruction set to support our dataflow execu-

tion model, and its implementation within GCC as part of an end-to-end

compilation tool chain.

• A complete algorithm that extracts dataflow parallelism from imperative

programs. Our algorithm operates on a program dependence graph in static

single assignment form. It exhibits task, pipeline, and data parallelism

from arbitrary control flow, and allows to coarsen its granularity using a

generalized form of typed fusion. A new intermediate representation — the

Data Flow Program Dependence Graph (DF-PDG) — has been designed

132

to ease code generation for explicit token match, or feed-forward dataflow

execution models. A prototype is implemented as an optimization pass in

GCC.

• The design of a programming interface for Owner Writable Memory model

(OWM), to support complex data structures and thread partitioning with

in-place computations. The OWM extension gas been proposed and evalu-

ated as an extension of the OpenStream research language and the hardware

interface has been implemented in GCC backend.

• A hybrid compilation-time and runtime algorithm for the Streaming Con-

version of Memory Dependences (SCMD), to automatically parallelize pro-

grams with complex data structures at the finest granularity. SCMD de-

couples the memory accesses from computations and connects the accesses

to different memory locations through streams and a dynamic dependence

resolution method.

• Enhancements to a simulation platform for large-scale dataflow architec-

tures based on the COTSon framework. These include memory usage opti-

mization for multi-node configurations, and contributions to the implemen-

tation of TSTAR in COTSon.

• Conversion of realistic benchmarks for multithreaded dataflow execution,

and evaluation of these on the large-scale simulation environment with

OWM support.

8.2 Future Work

Figure 8.1 shows our general attempt to address the problem described in the

introduction section: “How to program a large-scale, multithreaded dataflow

architecture in an efficient way?”

The attempt has been conducted in two directions in our lab: a language

design to express the data, task and pipeline parallelism in a program, and an

133

automatic thread partitioning method to exploit finer grain thread level paral-

lelism.

Following the first direction, Antoniu Pop designed the OpenStream research

language. It is a highly expressive stream-computing extension to OpenMP3.0.

Combining OpenStream with the second direction detailed in this thesis, one may

decompose programs into tasks and explicit the flow of data among them, while

relying on automatic parallelization techniques in the compiler and at runtime to

expose finer grain data, task and pipeline parallelism.

The two directions and the associated methods are implemented in GCC as

two separate passes. Our goal is to eventually combine the two paths. One could

use OpenStream to identify the coarse grain parallelism in the program, and the

automatic thread partitioning method will further exploit finer grain parallelism

inside each task.

The final view is pictured in Figure 8.1. The OpenStream Parallel Program

written by the user could be passed through the compiler front end, then in the

compiler middle end, two passes will be applied : the OpenStream Compilation

Pass will transform the program into coarse grain dataflow tasks communicated

with dataflow streams. Each of those tasks will be further passed to Automatic

Thread Partitioning Pass, which will automatically analyze each task, generate

finer grain dataflow tasks. Then in the code generation pass, the compiler backend

will generate code depends on user’s choices, either on x86 architecture with

TSTAR runtime support, or directly on TSTAR architecture, which could be

simulated on COTSon with TSTAR support.

But there are still challenges in combining the two passes:

• Intermediate Representation. OpenStream pass uses control flow graph

(CFG) as its IR, and the tasks and their dependences will be outlined by the

annotation boundary. Automatic Thread Partitioning pass uses Program

Dependence Graph (DF-PDG) and DataFlow Program Dependence Graph

(DF-PDG) as its IR. There needs to be a consistent way of representing

tasks and their dependences in both passes.

• Communication. The way coarse grain tasks are partitioned by Open-

Stream, as well as the dependences/communications channels between the

134

Figure 8.1: High level overview of the compilation and simulation architecture.

coarse grain tasks, should be preserved after Automatic Thread Partition-

ing pass. We may need an outlet input task and an outlet output task,

and probably their continuations in each coarse grain task, to consume in-

puts from the outlet outputs from other coarse grain tasks, and to produce

135

outputs to outlet inputs in other coarse grain tasks.

• Implementation. OpenStream pass is an early pass in GCC middle

end, the program is represented with GIMPLE representation. Automatic

Thread Partitioning is implemented in an late pass in GCC middle end,

where SSA representation is available in the GIMPLE-SSA form. How to

communicate/encodes the dependences information generated at the first

pass to the second pass without losing information remains a challenge.

Another interesting future work related with the timing model, as part of

TERAFLUX project, the compilation framework generate code for a simulated

multithreaded data-flow architecture. In order to evaluate the results more pre-

cisely, an accurate timing model needs to be integrated into COTSon. This work

will be done in collaboration with partners of the project to complete the valida-

tion of the approach.

136

Personal Publications

1. Li, F., Pop, A. & Cohen, A. (2012b). Automatic extraction of coarse-grained

data-flow threads from imperative programs. Micro, IEEE, 32, 1931.

2. Li, F., Arnoux, B. & Cohen, A. (2012a). A Compiler and Runtime System Per-

spective to Scalable Data-Flow Computing. In 5th Workshop on Programmability

Issues for Heterogeneous Multicores (MULTIPROG), Paris, France.

3. Li, F., Antoniu, P. & Cohen, A. (2011). Advances in Parallel-Stage Decoupled

Software Pipelining. In Workshop on Intermediate Representations (WIR), Cha-

monix, France.

4. Solinas, M., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P., Faraboschi, P.,

Fechner, B., Gao, G.R., Garbade, A., Girbal, S., Goodman, D., Koliai, S., Li, F.,

Lujn, M., Morin, L., Mendelson, A.,Navarro, N., Pop, A., Trancoso, P., Ungerer,

T., Valero, M.,Weis, S., Watson, I., Zuckermann, S. & Giorgi, R. (2013). The

teraflux project: Exploiting the dataflow paradigm in next generation teradevices.

In Euromicro DSD, Santander, Spain.

5. Trifunovic, K., Cohen, A., Razya, L. & Li, F. (2011). Elimination of memory-

based dependences for loop-nest optimization and parallelization. In GCC Re-

search Opportunities Workshop (GROW11), Chamonix, France.

6. Trifunovic, K., Cohen, A., Edelsohn, D., Li, F., Grosser, T., Jaga- sia, H., Ladel-

sky, R., Pop, S., Sjo din, J. & Upadrasta, R. (2010). GRAPHITE Two Years

After: First Lessons Learned From Real-World Polyhedral Compilation. In GCC

Research Opportunities Workshop (GROW10), Pisa, Italie.

137

7. Giorgi, R., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P., Faraboschi, P.,

Fechner, B., Gao, G.R., Gayatri, R., Garbade, A., Girbal, S., Goodman, D.,

Khan, B., Koliai, S., L, N.M., Li, F., Lujn, M., Morin, L., Mendelson, A., Navarro,

N., Patejko, T., Pop, A.,Trancoso, P., Ungerer, T., Weis, S., Watson, I., Zucker-

mann, S. &Valero, M. (2014). Teraflux: Harnessing dataflow in next generation

teradevices. MICPRO Special Issue on European Projects in Digital Systems

Design.

138

References

Allen, R. & Kennedy, K. (1987). Automatic translation of FORTRAN pro-

grams to vector form. ACM Trans. on Programming Languages and Systems ,

9, 491–542.

Appel, A.W. (1998). SSA is functional programming. SIGPLAN Not., 33, 17–

20.

Arandi, S. & Evripidou, P. (2011). Ddm-vmc: The data-driven multithread-

ing virtual machine for the cell processor. In Proceedings of the 6th International

Conference on High Performance and Embedded Architectures and Compilers ,

HiPEAC ’11, 25–34, ACM, New York, NY, USA.

Arvind & Culler, D.E. (1986a). Annual review of computer science vol. 1,

1986. chap. Dataflow Architectures, 225–253, Annual Reviews Inc., Palo Alto,

CA, USA.

Arvind & Culler, D.E. (1986b). Dataflow architectures. Annual Review of

Computer Science, 1, 225–253.

Arvind, A. & Culler, D. (1983). The tagged token dataflow architecture

(preliminary version). Tech. rep., Tech. Rep. Laboratory for Computer Science,

MIT, Cambridge, MA.

Arvind, A., Gostelow, K.P. & Plouffe, W. (1977). Indeterminacy, mon-

itors, and dataflow. ACM SIGOPS Operating Systems Review , 11, 159–169.

Arvind, K. & Nikhil, R.S. (1990). Executing a program on the MIT tagged-

token dataflow architecture. IEEE Trans. Computers , 39, 300–318.

139

REFERENCES

Backus, J. (1978). Can programming be liberated from the von neumann style?:

A functional style and its algebra of programs. Commun. ACM , 21, 613–641.

Baxter, W. & Bauer, H.R., III (1989). The program dependence graph

and vectorization. In Proc. of the 16th ACM SIGPLAN-SIGACT Symp. on

Principles of programming languages , POPL ’89, 1–11, ACM, New York, NY,

USA.

Beck, M., Johnson, R. & Pingali, K. (1989). From control flow to dataflow.

Tech. rep., Cornell University.

Böhm, C. & Jacopini, G. (1966). Flow diagrams, turing machines and lan-

guages with only two formation rules. Commun. ACM , 9, 366–371.

Culler, D.E. & Arvind (1988). Resource requirements of dataflow programs.

SIGARCH Comput. Archit. News , 16, 141–150.

Culler, D.E., Sah, A., Schauser, K.E., von Eicken, T. & Wawrzynek,

J. (1991). Fine-grain parallelism with minimal hardware support: A compiler-

controlled threaded abstract machine. SIGARCH Comput. Archit. News , 19,

164–175.

Cytron, R. (1986). Doacross: Beyond vectorization for multiprocessors. In Intl.

Conf. on Parallel Processing (ICPP), Saint Charles, IL.

Cytron, R., Ferrante, J. & Sarkar, V. (1990). Experiences using control

dependence in PTRAN. In Selected papers of the second workshop on Languages

and compilers for parallel computing , 186–212, Pitman Publishing, London,

UK, UK.

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N. & Zadeck,

F.K. (1991). Efficiently computing static single assignment form and the con-

trol dependence graph. ACM Trans. on Programming Languages and Systems ,

13, 451–490.

Davis, A. & Keller, R. (1982). Data flow program graphs. Computer , 15,

26–41.

140

REFERENCES

Dennis, J. & Misunas, D. (1979). Data processing apparatus for highly parallel

execution of stored programs. US Patent 4,153,932.

Dennis, J., Fosseen, J. & Linderman, J. (1974). Data flow schemas. In

A. Ershov & V.A. Nepomniaschy, eds., International Symposium on Theoretical

Programming , vol. 5 of Lecture Notes in Computer Science, 187–216, Springer

Berlin Heidelberg.

Dennis, J.B. & Gao, G.R. (1988). An efficient pipelined dataflow proces-

sor architecture. In Proceedings of the 1988 ACM/IEEE Conference on Super-

computing , Supercomputing ’88, 368–373, IEEE Computer Society Press, Los

Alamitos, CA, USA.

Dennis, J.B. & Misunas, D.P. (1975). A preliminary architecture for a basic

data-flow processor. In Proceedings of the 2nd annual symposium on Computer

architecture, ISCA ’75, 126–132, ACM, New York, NY, USA.

Ferrante, J. & Mace, M. (1985). On linearizing parallel code. In Proc. of the

12th ACM SIGACT-SIGPLAN Symp. on Principles of programming languages ,

POPL ’85, 179–190, ACM, New York, NY, USA.

Ferrante, J., Ottenstein, K.J. & Warren, J.D. (1987). The program

dependence graph and its use in optimization. ACM Trans. on Programming

Languages and Systems , 9, 319–349.

Ferrante, J., Mace, M. & Simons, B. (1988). Generating sequential code

from parallel code. In Proceedings of the 2nd international conference on Su-

percomputing , ICS ’88, 582–592, ACM, New York, NY, USA.

Gajski, D., Padua, D., Kuck, D. & Kuhn, R. (1982). Second opinion on

data flow machines and languages. Journal Name: Computer .

Gaudiot, J.L. & Wei, Y.H. (1989). Token relabeling in a tagged token data-

flow architecture. Computers, IEEE Transactions on, 38, 1225–1239.

Gindrand, F., Cohen, A. & Nardelli, F.Z. (2013). Definition, code gener-

ation, and formal verification of a software controlled cache coherence protocol.

In Master thesis .

141

REFERENCES

Giorgi, R., Popovic, Z. & Puzovic, N. (2007). DTA-C: A Decoupled multi-

Threaded Architecture for CMP Systems. In SBAC-PAD , 263–270.

Giorgi, R., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P., Fara-

boschi, P., Fechner, B., Gao, G.R., Garbade, A., Gayatri, R., Gir-

bal, S., Goodman, D., Khan, B., Kolia, S., Landwehr, J., L, N.M.,

Li, F., Lujn, M., Mendelson, A., Morin, L., Navarro, N., Pate-

jko, T., Pop, A., Trancoso, P., Ungerer, T., Watson, I., Weis, S.,

Zuckerman, S. & Valero, M. (2014). Teraflux: Harnessing dataflow in

next generation teradevices. Microprocessors and Microsystems , –.

Halbwachs, N., Caspi, P., Raymond, P. & Pilaud, D. (1991). The syn-

chronous dataflow programming language lustre. Proceedings of the IEEE , 79,

1305–1320.

Hendren, L., Tang, X., Zhu, Y., Ghobrial, S., Gao, G., Xue, X.,

Cai, H. & Ouellet, P. (1997). Compiling c for the earth multithreaded

architecture. International Journal of Parallel Programming , 25, 305–338.

Iannucci, R.A. (1988). Toward a dataflow/von neumann hybrid architecture.

SIGARCH Comput. Archit. News , 16, 131–140.

Kahn, G. (1974). The semantics of a simple language for parallel programming.

In J.L. Rosenfeld, ed., Information processing , 471–475, North Holland, Ams-

terdam, Stockholm, Sweden.

Karp, R. & Miller, R. (1966). Properties of a model for parallel computations:

Determinacy, termination, queueing. SIAM Journal on Applied Mathematics ,

14, 1390–1411.

Kelsey, R.A. (1995). A correspondence between continuation passing style and

static single assignment form. In Papers from the 1995 ACM SIGPLAN work-

shop on Intermediate representations , IR ’95, 13–22, ACM, New York, NY,

USA.

142

REFERENCES

Kennedy, K. & Allen, J.R. (2002). Optimizing compilers for modern archi-

tectures: a dependence-based approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

Kennedy, K. & McKinley, K.S. (1990). Loop distribution with arbitrary con-

trol flow. In Proceedings of the 1990 ACM/IEEE conference on Supercomput-

ing , Supercomputing ’90, 407–416, IEEE Computer Society Press, Los Alami-

tos, CA, USA.

Kennedy, K. & Mckinley, K.S. (1993). Typed fusion with applications to

parallel and sequential code generation. Tech. rep., Rice University.

Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B. & Wolfe, M. (1981).

Dependence graphs and compiler optimizations. In ACM SIGPLAN-SIGACT

symp. on Princ. of Prog. Lang., POPL ’81, 207–218, ACM, New York, NY,

USA.

Lee, B. & Hurson, A. (1994). Dataflow architectures and multithreading.

Computer , 27, 27–39.

Li, F., Antoniu, P. & Cohen, A. (2011). Advances in Parallel-Stage De-

coupled Software Pipelining. In Workshop on Intermediate Representations

(WIR), Chamonix, France.

Li, F., Arnoux, B. & Cohen, A. (2012a). A Compiler and Runtime Sys-

tem Perspective to Scalable Data-Flow Computing. In 5th Workshop on

Programmability Issues for Heterogeneous Multicores (MULTIPROG), Paris,

France.

Li, F., Pop, A. & Cohen, A. (2012b). Automatic extraction of coarse-grained

data-flow threads from imperative programs. Micro, IEEE , 32, 19–31.

Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J. & Tor-

rellas, J. (2006). Posh: A tls compiler that exploits program structure. In

Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming , PPoPP ’06, 158–167, ACM, New York, NY,

USA.

143

REFERENCES

Maquelin, O., Gao, G.R., Hum, H.H.J., Theobald, K.B. & Tian, X.M.

(1996). Polling watchdog: Combining polling and interrupts for efficient mes-

sage handling. In Proceedings of the 23rd Annual International Symposium on

Computer Architecture, ISCA ’96, 179–188, ACM, New York, NY, USA.

Memo, C.S.C. & Culler, D.E. (1983). Tagged token dataflow architecture.

Najjar, W., Roh, L. & Wim Bhm, A. (1994). An evaluation of

medium-grain dataflow code. Intl. J. of Parallel Programming , 22, 209–242,

10.1007/BF02577733.

Nikhil, R.S. (1989). Can dataflow subsume von neumann computing?

SIGARCH Comput. Archit. News , 17, 262–272.

Nikhil, R.S., Papadopoulos, G.M. & Arvind (1992). T: A multithreaded

massively parallel architecture. SIGARCH Comput. Archit. News , 20, 156–

167.

Nuzman, D. & Henderson, R. (2006). Multi-platform auto-vectorization. In

Proceedings of the International Symposium on Code Generation and Optimiza-

tion, CGO ’06, 281–294, IEEE Computer Society, Washington, DC, USA.

Nuzman, D., Rosen, I. & Zaks, A. (2006). Auto-vectorization of interleaved

data for simd. In Proceedings of the 2006 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’06, 132–143, ACM,

New York, NY, USA.

Ottenstein, K.J., Ballance, R.A. & MacCabe, A.B. (1990). The pro-

gram dependence web: a representation supporting control-, data-, and

demand-driven interpretation of imperative languages. In Proc. of the ACM

SIGPLAN 1990 Conf. on Programming Language Design and Implementation,

PLDI ’90, 257–271, ACM, New York, NY, USA.

Ottoni, G., Rangan, R., Stoler, A. & August, D.I. (2005). Automatic

Thread Extraction with Decoupled Software Pipelining. In IEEE/ACM Intl.

Symp. on Microarchitecture, vol. 0, 105–118, IEEE Computer Society, Los

Alamitos, CA, USA.

144

REFERENCES

Papadopoulos, G.M. & Culler, D.E. (1990). Monsoon: An explicit token-

store architecture. SIGARCH Comput. Archit. News , 18, 82–91.

Papadopoulos, G.M. & Traub, K.R. (1991). Multithreading: A revisionist

view of dataflow architectures. In Proceedings of the 18th Annual International

Symposium on Computer Architecture, ISCA ’91, 342–351, ACM, New York,

NY, USA.

Planas, J., Badia, R.M., Ayguadé, E. & Labarta, J. (2009). Hierarchical

Task-Based Programming With StarSs. Intl. J. on High Performance Comput-

ing Architecture, 23, 284–299.

Pop, A. & Cohen, A. (2011a). A Stream-Comptuting Extension to OpenMP.

In Proc. of the 4th Intl. Conf. on High Performance and Embedded Architectures

and Compilers (HiPEAC’11).

Pop, A. & Cohen, A. (2011b). A Stream-Computing Extension to OpenMP.

In Intl. Conf. on High Performance and Embedded Architectures and Compilers

(HiPEAC’11).

Pop, A. & Cohen, A. (2013). Openstream: Expressiveness and data-flow com-

pilation of openmp streaming programs. ACM Trans. Archit. Code Optim., 9,

53:1–53:25.

Pop, A., Pop, S. & Sjödin, J. (2009). Automatic Streamization in GCC. In

GCC Developer’s Summit , Montreal, Quebec.

Portero, A., Yu, Z. & Giorgi, R. (2011). T-Star (T*): An x86-64 ISA

extension to support thread execution on many cores. In HiPEAC ACACES-

2011 , 277–280, Fiuggi, Italy.

Raman, E., Ottoni, G., Raman, A., Bridges, M.J. & August, D.I.

(2008). Parallel-stage decoupled software pipelining. In Proc. of the 6th annual

IEEE/ACM Intl. Symp. on Code Generation and Optimization, CGO ’08, 114–

123, ACM, New York, NY, USA.

145

REFERENCES

Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K. & Torrellas, J.

(2005). Tasking with out-of-order spawn in tls chip multiprocessors: Microar-

chitecture and compilation. In Proceedings of the 19th Annual International

Conference on Supercomputing , ICS ’05, 179–188, ACM, New York, NY, USA.

Roh, L. & Najjar, W.A. (1995). Design of storage hierarchy in multithreaded

architectures. In Proceedings of the 28th annual international symposium on

Microarchitecture, 271–278, IEEE Computer Society Press.

Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for Multi-

processors . MIT Press, Cambridge, MA, USA.

Solinas, M., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P., Fara-

boschi, P., Fechner, B., Gao, G.R., Garbade, A., Girbal, S., Good-

man, D., Koliai, S., Li, F., Lujn, M., Morin, L., Mendelson, A.,

Navarro, N., Pop, A., Trancoso, P., Ungerer, T., Valero, M.,

Weis, S., Watson, I., Zuckermann, S. & Giorgi, R. (2013). The ter-

aflux project: Exploiting the dataflow paradigm in next generation teradevices.

In Euromicro DSD , Santander, Spain.

Stavrou, K., Nikolaides, M., Pavlou, D., Arandi, S., Evripidou, P.

& Trancoso, P. (2008). TFlux: A Portable Platform for Data-Driven Mul-

tithreading on Commodity Multicore Systems. In Intl. Conf. on Parallel Pro-

cessing (ICPP’08), 25–34, Portland, Oregon.

Strohschneider, J. & Waldschmidt, K. (1994). Adarc: A fine grain

dataflow architecture with associative communication network. In EUROMI-

CRO 94. System Architecture and Integration. Proceedings of the 20th EU-

ROMICRO Conference., 445–450, IEEE.

Tang, X. & Gao, G.R. (1999). Automatically partitioning threads for mul-

tithreaded architectures. Journal of Parallel and Distributed Computing , 58,

159 – 189.

Tang, X., Wang, J., Theobald, K.B. & Gao, G.R. (1997). Thread parti-

tioning and scheduling based on cost model. In Proceedings of the Ninth An-

146

REFERENCES

nual ACM Symposium on Parallel Algorithms and Architectures , SPAA ’97,

272–281, ACM, New York, NY, USA.

Trifunovic, K., Cohen, A., Edelsohn, D., Li, F., Grosser, T., Jaga-

sia, H., Ladelsky, R., Pop, S., Sjödin, J. & Upadrasta, R. (2010).

GRAPHITE Two Years After: First Lessons Learned From Real-World Poly-

hedral Compilation. In GCC Research Opportunities Workshop (GROW’10),

Pisa, Italie.

Trifunovic, K., Cohen, A., Razya, L. & Li, F. (2011). Elimination of

memory-based dependences for loop-nest optimization and parallelization. In

GCC Research Opportunities Workshop (GROW’11), Chamonix, France.

Tu, P. & Padua, D. (1995). Gated SSA-based demand-driven symbolic analysis

for parallelizing compilers. In Proc. of the 9th Intl. Conf. on Supercomputing ,

ICS ’95, 414–423, ACM, New York, NY, USA.

Veen, A.H. (1986). Dataflow machine architecture. ACM Comput. Surv., 18,

365–396.

Viola, P. & Jones, M. (2001). Robust real-time object detection. In Interna-

tional Journal of Computer Vision.

Watson, I. & Gurd, J. (1979). A prototype data flow computer with token

labelling. Managing Requirements Knowledge, International Workshop on, 0,

623.

Wolfe, M.J. (1995). High Performance Compilers for Parallel Computing .

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

147

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Hybrid Dataflow for Latency Tolerance
	1.1.1 Convergence of dataflow and von Neumann
	1.1.2 Latency Tolerance
	1.1.3 TSTAR Multithreaded Dataflow Architecture

	1.2 Task Granularity
	1.3 Motivation
	1.4 Dissertation Outline

	2 Problem Statement
	2.1 Explicit token matching shifts the challenges in hardware design to compilation
	2.2 The complex data structure should be handled in an efficient way
	2.3 Related Work
	2.3.1 Compiling imperative programs to data-flow threads
	2.3.2 SSA as an intermediate representation for data-flow compilation
	2.3.3 Decoupled software pipelining
	2.3.4 EARTH thread partitioning
	2.3.5 Formalization of the thread partitioning cost model

	3 Thread Partitioning I: Advances in PS-DSWP
	3.1 Introduction
	3.1.1 Decoupled software pipelining
	3.1.2 Loop distribution

	3.2 Observations
	3.2.1 Replacing loops and barriers with a task pipeline
	3.2.2 Extending loop distribution to PS-DSWP
	3.2.3 Motivating example

	3.3 Partitioning Algorithm
	3.3.1 Definitions
	3.3.2 The algorithm

	3.4 Code Generation
	3.4.1 Decoupling dependences across tasks belonging to different treegions
	3.4.2 SSA representation

	3.5 Summary

	4 TSTAR Dataflow Architecture
	4.1 Dataflow Execution Model
	4.1.1 Introduction
	4.1.2 Past Data-Flow Architectures

	4.2 TSTAR Dataflow Execution Model
	4.2.1 TSTAR Multithreading Model
	4.2.2 TSTAR Memory Model
	4.2.3 TSTAR Synchronization
	4.2.4 TSTAR Dataflow Instruction Set

	4.3 TSTAR Architecture
	4.3.1 Thread Scheduling Unit

	5 Thread Partitioning II: Transform Imperative C Program to Dataflow Program
	5.1 Revisit TSTAR Dataflow Execution Model
	5.2 Partitioning Algorithms
	5.2.1 Loop Unswitching
	5.2.2 Build Program Dependence Graph under SSA
	5.2.3 Merging Strongly Connected Components
	5.2.4 Typed Fusion
	5.2.5 Data Flow Program Dependence Graph

	5.3 Modular Code Generation
	5.4 Implementation
	5.5 Experimental Validation
	5.6 Summary

	6 Handling Complex Data Structures
	6.1 Streaming Conversion of Memory Dependences (SCMD)
	6.1.1 Motivating Example
	6.1.2 Single Producer Single Consumer
	6.1.3 Single Producer Multiple Consumers
	6.1.4 Multiple Producers Single Consumer
	6.1.5 Generated Code for Motivating Example
	6.1.6 Discussion

	6.2 Owner Writable Memory
	6.2.1 OWM Protocol
	6.2.2 OWM Extension to TSTAR
	6.2.3 Expressiveness
	6.2.4 Case Study: Matrix Multiplication
	6.2.5 Conclusion and perspective about OWM

	6.3 Summary

	7 Simulation on Many Nodes
	7.1 Introduction
	7.2 Multiple Nodes Dataflow Simulation
	7.3 Resource Usage Optimization
	7.3.1 Memory Usage Optimization
	7.3.2 Throttling

	7.4 Experimental Validation
	7.4.1 Experimental Settings
	7.4.2 Experimental Results
	7.4.2.1 Gauss Seidel
	7.4.2.2 Viola Jones
	7.4.2.3 Sparse LU

	7.5 Summary

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work

	Personal Publications
	References

