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Foreword

This work focuses on the interplay between two important bacterial traits: cooperation

and horizontal gene transfer. Bacterial interactions can be analyzed in terms of social

evolution, which has yielded insight into why bacteria present seemingly paradoxical be-

haviours such as the production of public goods, as well as increased the general under-

standing of the evolution of cooperation. Horizontal gene transfer is another widespread

phenomenon in bacteria, mainly associated with the existence of mobile genetic elements

such as plasmids that can move among potentially unrelated bacteria. The mechanisms,

ecology and evolutionary consequences of gene mobility have been widely studied, but

mobility itself has rarely been studied in the light of social evolution, even though it can

alter the behaviour and fitness of interacting cells

Here, I analyze gene mobility while taking into account social interactions, and identify

the selective pressures acting on horizontal gene transfer. I investigate the coevolution of

gene mobility and sociality in bacteria, showing that both traits strongly influence each

other. The coevolution involves not only these two traits, but also at least two types of

genetic units: bacterial host chromosomes and mobile elements themselves.

In the introduction, I first present the theory of social evolution, focusing on its appli-

cation to bacteria (Chapter I). I then describe the mechanisms and ecology of horizontal

gene transfer (Chapter II), and finally focus on the coevolution of mobile genetic elements

with their hosts (Chapter III).

My work involved both mathematical modelling and experimental work to test the

hypotheses generated by modelling. The experimental part required the construction of

a synthetic system that I describe first (Chapter 1). I then focus on the consequences

of horizontal gene transfer on the maintenance of cooperation (Chapter 2) and on the

selection of transfer ability from the host side (Chapter 3), with both chapters presenting

the modelling work and experimental tests in parallel. Finally, I adress with simulations

the interactions that can occur when both transfer and cooperation coevolve (Chapter 4).
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Chapter I

Social evolution: between cooperation and

conflict

Evolution by natural selection is based on differential reproduction: biological traits that

maximize fitness (the average number of offspring) of entities expressing them will be

positively selected. The theory of evolution by natural selection was first introduced

by Darwin, and focused primarily on individual organisms [Darwin, 1859]: individuals

were thought to maximize their individual fitness in a given environment. This focus on

individual fitness suggested that organisms would interact mainly by competition, as em-

bodied in the expression "struggle for existence", and selfish behaviours would be selected.

However, organisms often appear to be altruistic, performing costly behaviours that help

others, with a decrease in their own individual fitness. One of the most extreme exemples

is the one of social insects, where sterile workers do not reproduce at all themselves : their

individual fitness is zero [Queller and Strassmann, 1998]. Behaviours where interactions

between organisms are not pure competition thus need another explanation, which can

be provided by social evolution theory.

Classification of social behaviours

Social evolution is concerned with social behaviours, ie behaviours that have fitness con-

sequences on individuals other than the actor (called recipients). Social behaviours have

been partitioned into four classes by Hamilton [Hamilton, 1964b, 1970], according to the

direct fitness consequences they have for both the actor and the recipient:

Behaviours that provide a direct benefit to actors (positive effect) are selfish if they

have a negative effect on recipients, but mutually beneficial if recipients also benefit from

it. Behaviours with a cost to the actors (negative effect) are separated into altruism,

when recipients benefit, and spite, when recipients experience a cost. Cooperation can be

defined as any behaviour which provides a benefit to a recipient, and which is selected in

actors because of this benefit in recipients (excluding one-way byproduct benefits) [West

et al., 2007c]. This broader category includes mutual benefits and altruism, which differ by

the effects they have on the actor. Inter-species cooperation is usually called mutualism.

7



Chapter I. Social evolution: between cooperation and conflict

The evolution of both altruism and spite is difficult to explain by natural selection, as

those behaviours reduce the relative fitness of individuals performing them, even if they

are beneficial for their neighbours or at the scale of a group. Social evolution is thus

mainly concerned with explaining how and under which conditions altruistic or spiteful

behaviours can occur instead of selfish, competitive behaviours. In this chapter I will

adress different aspects of social evolution in more detail, using bacterial examples:

Firstly, I will describe generally social behaviours among organisms, as well as the main

theory that aims at explaining them, the inclusive fitness theory. Secondly, I will focus on

another approach, which concentrates on the occurrence of multiple levels of selection and

is appropriate when selection acts in opposing ways among the levels, as between hosts

and symbionts. Finally, I will examine the horizontal transmission of symbionts, which is

particularly relevant to host-symbiont coevolution towards parasitism or mutualism.

I.1 The evolution of social behaviours

I.1.1 The diversity of social behaviours

Many behaviours can have a social component, affecting organisms other than the one per-

forming them. Social behaviours include the production of public goods, and behaviours

that actively target other organisms, either by helping or by harming them. I focus here

on behaviours which seem difficult to explain by natural selection: altruism and spite.

Public good production

Public goods are goods that are produced by given organisms, but accessible to other

organisms as well, as opposed to private goods. When these public goods are beneficial

but their production or preservation is costly, producing or preserving them is a social,

cooperative behaviour which can be exploited by cheaters, individuals that benefit from

the behaviour without contributing to it.

Examples of public goods in human societies are environmental goods such as air qual-

ity, or human productions such as public libraries. Bacteria also produce a wide range of

compounds that are secreted in their common environnement and can act as public goods

[Crespi, 2001, West et al., 2007c]. Examples of public goods include molecules involved

in nutrient acquisition like siderophores which are iron chelators [Griffin et al., 2004],

in protection against antibiotics like β-lactamases [Dugatkin et al., 2005] or in competi-

tion like toxins or antibiotics [Chao and Levin, 1981]. Structural components like biofilm

polysaccharides or biosurfactants can also be considered as public goods [Absalon et al.,

8



Chapter I. Social evolution: between cooperation and conflict

2011, Xavier et al., 2011]. Finally, quorum-sensing is a form of bacterial communication

that involves the production of diffusible molecules, auto-inducers, that above a thresh-

old concentration induce various behaviours in recipients . For instance, Pseudomonas

strains produce different auto-inducers in the N-acyl-homoserine lactone (HSL) family,

which control the production of multiple virulence factors (Figure I.1). In the case of

quorum-sensing, cooperation can happen at two stages: production of the auto-inducer

and response to high auto-inducer concentration by the secretion of other public goods

[Diggle et al., 2007b, Sandoz et al., 2007].

C4#HSL'

rhlI%rhlR%

RhlI'

SAM'

Rhl'regulon'

RhlR'

Figure I.1: Pseudomonas aerugi-

nosa Rhl quorum-sensing system.
The enzyme RhlI produces the autoin-
ducer C4-HSL (in red) from SAM (S-
adenosylmethionine). C4-HSL then diffuses
in the extracellular environment and in
neighbouring cells (red arrows). Above a
threshold concentration, C4-HSL binds to
the RhlR receptor and induces expression
of the Rhl regulon, that includes public
good genes like genes for the production of
rhamnolipids, surfactants responsible for
swarming motility.

Public good production is often linked to pathogen virulence. Virulence is defined

as the harm a pathogen causes to its host and it often involves toxin production, or the

secretion of molecules into host cells. These molecules can be produced by a few cells

only, but have global consequences on the host, behaving as pathogen public goods. For

instance, Salmonella typhimurium injects virulence factors in the gut tissue of mice to

induce global inflammation, which then benefits all individual Salmonella typhimurium

cells by affecting competitor species [Ackermann et al., 2008].

Division of labor

Division of labor happens when different individuals of a population engage in different,

complementary tasks. It often includes altruistic behaviours, where some individuals

reproduce less or not at all. For instance, sterile social insects only help other individuals

to reproduce, and never have offspring of their own. Division of labor also happens in

some microorganisms where multicellularity is facultative, as in the cooperative building

of fruiting bodies in Dictyostelium or Myxococcus species. Fruiting bodies allow for more

efficient spore dispersal, but also require some cells to die for them to be constructed

9



Chapter I. Social evolution: between cooperation and conflict

[Strassmann et al., 2000, Velicer et al., 2000].

Spiteful behaviours

Spite is defined as an individual harming itself (decreasing its lifetime fitness) in order

to harm another. One widespread example of spite in microbes is the production of

bacteriocines, proteic toxins that are produced by bacteria in stressful conditions, and kill

neighbouring bacteria that are not resistant [Riley and Gordon, 1999].

Bacteriocin production is costly, and bacteriocin release often happens through cell

lysis, causing death of the producing cell. Clones of the producing cell, however, are not

killed, as the bacteriocin and lysis genes are tighly linked to a gene providing immunity to

the bacteriocin. Still, spite presents here the same paradox as altruism: mutants resistant

to the bacteriocin, that do not pay the cost of producing and releasing it, will get a direct

fitness advantage over bacteriocin producers [Levin et al., 1988].

I.1.2 Evolutionary explanations for social behaviours

Darwin already suggested that altruism in social insects may be explained by effects on

kin [Darwin, 1859]. This idea was then taken up by other scientists like Haldane, who

famously said that he would give his life "to save two brothers or eight cousins", meaning

that as siblings are on average 50% identical by descent, reproductive success through

these relatives is equivalent to direct reproductive success through one’s own offspring

[Haldane, 1932]. However, early formal theories about natural selection mainly neglected

interactions between relatives, until Hamilton’s contribution [Hamilton, 1964a].

Hamilton’s rule

Hamilton emphasized that the fitness of an individual is the sum of the direct effect of its

own genotype and of effects due to its neighbours (neighbour-modulated fitness). When

neighbours are related, a gene present in both the actor and the recipient can thus have

an indirect effect on the actor via its expression in recipients. Reversely, a given behaviour

will influence both the direct fitness of the organism performing it, but also the fitness

of neighbours. Its effect on fitness will then be the sum of direct fitness effects, due to

offspring of the actor, and indirect fitness effects, due to offspring of related neighbours:

this sum is called inclusive fitness.

Effects on indirect fitness are weighted by the genetic relatedness between the actor and

the recipient of the behaviour, as not all neighbours have the same probability of bearing

the actor’s genes responsible for the behaviour. This is summarized in Hamilton’s rule,
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Chapter I. Social evolution: between cooperation and conflict

which states that a behaviour is favored when:

b× r − c > 0

with c being the direct fitness cost for the actor, b being the fitness benefit to recipients,

and r the genetic relatedness between actors and recipients. c is thus the impact of a

behaviour on direct fitness, and b× r its impact on indirect fitness.

Hamilton’s rule can be derived rigorously by computing either neighbour-modulated

or inclusive fitness [Frank, 1998]. Relatedness then appears as the regression coefficient

of the recipient’s genotype to the actor’s genotype. Relatedness is a relative coefficient:

it describes the genetic similarity between actors and recipients, relative to the global

similarity of individuals in the population.

Hamilton’s rule framework also leads to a classification of evolutionary explanations

for cooperation into direct and indirect benefits of a behaviour [West et al., 2007b]. Di-

rect benefits correspond to mutually beneficial behaviours, indirect benefits to altruistic

behaviours.

Direct benefits of cooperation

Cooperation might first be beneficial simply because of by-product benefits [Sachs et al.,

2004]. This is the case with cross-feeding, when members of two species each feed on

by-products of the other. Cooperation can also be beneficial because of feedbacks from

recipients, if actors and recipients interact long enough that actors benefit from those feed-

backs (partner fidelity feedback, [Sachs et al., 2004]). This mechanism does not necessarily

involve kin and can thus happen in inter-species mutualism. The sustained interaction

can happen during the life of the actor, or across generations, as in the case of verti-

cal transmission of microbial symbionts (I will focus on symbiont transmission and its

consequences in section I.3.1).

Secondly, enforcement mechanisms can maintain cooperation, for instance by making

defection from cooperation costly. One enforcement strategy is reciprocity: individuals

help preferentially other individuals that helped them in the past [Trivers, 1971]. Another

enforcement strategy is the active policing of non-cooperative individuals. For instance, in

the legume-rhizobium mutualism soybeans have been shown to penalize rhizobia nodules

that do not engage in N2 fixation, decreasing their reproductive success [Kiers et al., 2003].
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Chapter I. Social evolution: between cooperation and conflict

Indirect benefits of cooperation

Indirect benefits of cooperation arise from actors and recipients sharing the alleles respon-

sible for the cooperative behaviour. Shared alleles usually happen between kin, arising

from a common ancestor. Because of this, selection because of shared alleles between

actors and recipients has been termed kin selection by Maynard Smith [Foster, 2010].

Kin selection can thus be defined as the process by which traits are favoured because of

their beneficial effects on the fitness of relatives [West et al., 2007c] (however, in specific

cases I will discuss later, shared alleles that lead to indirect fitness benefits do not arise

through common ancestry). Hamilton defined two mechanisms that can lead to high

genetic relatedness: limited dispersal and kin discrimination [Hamilton, 1964b].

Limited dispersal of individuals leads to the proximity of relatives, so that individuals

are likely to interact with relatives purely by chance. Limited dispersal is thought to be

important for the evolution of public good production in microorganisms: public goods

are released in the medium at a scale where neighbours are likely to be relatives [West

et al., 2006]. However, the competition between relatives also has to be taken into account,

as it also increases with limited dispersal, and decreases the benefits of cooperation. The

relative scale of cooperation and competition will thus determine the effect of limited

dispersal: cooperation can still be favored if the scale of competition is larger than the

scale of cooperation [Griffin et al., 2004].

Kin discrimination or kin recognition refers to mechanisms that allow cooperators

to distinguish relatives from non-relatives, and direct cooperation only toward relatives

[West et al., 2007b]. Cooperation can also be restricted to relatives if some mechanism

ensures that only relatives can benefit from it, for instance when unrelated individuals

cannot benefit from specific public good molecules. This happens in the case of the pro-

duction of opines, metabolites that can be used only by cells that carry opine catabolism

genes, in Agrobacterium tumefasciens [Platt et al., 2012]. Cooperative bacteria induce

the host plant to produce opines by transferring the T-DNA fragment of their coopera-

tive plasmid to plant cells. The plant then produces opines that diffuse towards bacteria.

However, Agrobacterium cells without the cooperative plasmid do not bear genes for opine

catabolism, and thus do not benefit from it.

The most extreme specificity is observed in greenbeards: genes that specifically direct

cooperation towards other individuals that carry the same gene (such as one gene causing

formation of a green beard and simultaneously directing cooperation to individuals that

12



Chapter I. Social evolution: between cooperation and conflict

have a green beard [Dawkins, 1976]). Greenbeards are probably rare, but are known in

microorganisms, and are often genes coding for cell adhesion proteins, like the csa gene

in the social amoeba Dictyostelium discoideum [Queller, 2003] or the FLO1 gene in the

budding yeast Saccharomyces cerevisiae that leads to yeast flocculation [Smukalla et al.,

2008]. The concept of greenbeards underlines a fundamental feature of inclusive fitness:

it considers genetic relatedness at a specific locus, and not a whole-genome genealogical

relationship. Those will generally be similar, as usually genes will be shared among

organisms because they are genealogical relatives [Gardner and West, 2010], but not

always, especially in microbes, as we will see in section I.1.3.

The selection of spiteful behaviours

Spiteful behaviours are defined as having benefits b<0 for recipients, and costs c >0 for

actors. Following Hamilton’s rule, they can be selected when b × r − c > 0: relatedness

therefore has to be negative. This is possible, as relatedness is a relative coefficient. If a

focal individual is more related to some fraction of the population, its relatedness to the

rest of the population will be negative [Hamilton, 1970]. For spiteful behaviours to be

selected, some kind of discrimination has to take place between positively and negatively

related individuals in the population. In the absence of active mechanisms for kin dis-

crimination such as greenbeards, positive relatedness to self can be sufficient, but will be

significant only in very small populations where the focal individual is a significant part

of the population [Gardner and West, 2004]. In other cases, active discrimination must

take place. In the case of bacteriocin production, for instance, the genes for bacteriocin

production and immunity to its effect are strongly linked: only individuals that carry the

antidote gene associated to the toxin will survive [Riley and Wertz, 2002]. This leads to

effective kin discrimination, as kin are not killed by the toxin. Recipients of the behaviour

are here non-kin, with negative relatedness to the actor.

I.1.3 Social evolution theory in microbes

It is not surprising that microbes have been frequently used to study social evolution [West

et al., 2006, 2007c]. They are particularly social organisms and engage in multiple coop-

eration and communication behaviours. For instance, 6-10% of Pseudomonas aeruginosa

genome has been found to be under quorum-sensing control [Schuster et al., 2003]. The

reason for such extensive sociality may be that a single bacterial cell generally will not be

able to change its environment significantly enough to get benefits from it. Social evolu-

13



Chapter I. Social evolution: between cooperation and conflict

tion theory thus allows us to better understand multiple microbial behaviours (including

some with consequences to human health), while microbes simultaneously allow testing

general hypotheses of social evolution theory. Finally, they also possess unique proper-

ties, most prominently the influence of microbial population structure and horizontal gene

transfer on relatedness.

Microbes as a testing ground of social evolution theory

Microbes have been widely used to test social evolution theory, as they are amenable to

extensive manipulation. The social characteristics of a given behaviour can be tested, of-

ten by using specific mutant strains that do not perform this behaviour. Then, conditions

where cooperation is maintained can be explored.

One of the most studied cooperative traits in microbes is the production of siderophores.

Experiments have confirmed the importance of relatedness and of the scale of competi-

tion [Griffin et al., 2004]; and highlighted additional factors like the regulation of public

good production [Kümmerli and Brown, 2010]. Quorum sensing has also been extensively

analyzed, demonstrating that both induction and response to quorum sensing can be

cooperative [Diggle et al., 2007b].

Finally, synthetically engineered systems can be used in bacteria to decrease unin-

tended interactions with other cell processes [Tanouchi et al., 2012]. For instance, a

synthetic system for public good production was constructed by Chuang et al. [2009]. A

quorum-sensing signal (HSL) originally present in Pseudomonas aeruginosa is introduced

into and expressed in engineered Escherichia coli cells. Those cells have been further

modified to respond to HSL by inducing the expression of antibiotic resistance. As Es-

cherichia coli does not naturally produce HSL molecules, the cooperation system should

interact minimally with other cell components and enable precise study of parameters

governing the selection of cooperation. I will focus on this system later, as we use it for

our experiments.

Origins of population structure in microbes

Because of microbial specificities, relatedness will often arise through mechanisms that

differ from what happens in social animals, which have long been the main focus of social

evolution theory. Kin discrimination based on genetic or environmental cues is thought

to be rare in microbes, as mechanisms for kin recognition often require cognitive abilities

[Strassmann et al., 2011]. Discrimination will more often be due to specificity, with specific

public good molecules that only the producing strain can use, or greenbeard mechanisms.
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Except for this, population structure in microbes will mostly arise through limited

dispersal. Limited dispersal is extreme in the case of clonal growth of non-motile individ-

uals, leading to the formation of microbial colonies. Furthermore, even with initial mixing,

subsequent growth on solid surfaces leads to spatial segregation of genotypes by sector

formation [Hallatschek et al., 2007]. Simulations of biofilm formation have shown that

this can favor cooperative phenotypes [Nadell et al., 2010]. It was also shown experimen-

tally in yeast that clonal growth favors cells that cooperatively produce the exoenzyme

invertase (providing extracellular sucrose digestion), as successful sectors of producer cells

arise. In less extreme cases than growth on solid surfaces, medium viscosity can impact

both individual motility and public good diffusion, favoring cooperation [Kümmerli et al.,

2009a]. In the absence of viscosity, a metapopulation composed of multiple patches will

also be structured if subpopulations differ in genotype frequencies: this is besides a way

to study cooperation dynamics experimentally, by culturing bacteria in patch-structured

metapopulations, where inclusive fitness and multilevel selection parameters can be easily

estimated [Chuang et al., 2009, Dumas and Kümmerli, 2012, Datta et al., 2013]. More-

over, differences in frequencies can arise naturally in the absence of complex mechanisms,

simply through stochastic variations in founder populations [Chuang et al., 2009].

Origin of gene and relatedness changes in bacteria

Relatedness in bacteria arises mainly through limited dispersal, leading to spatial struc-

turing of populations. However, a striking particularity of bacteria is the widespread

horizontal gene transfer that I will describe in Chapter II: genetic changes arise not only

by mutation, but also by gene transfer from other organisms, via mobile genetic elements

on which natural selection also acts [Levin and Bergstrom, 2000]. This further implies

that different genes do not share the same relatives, and relatedness can differ among

genes in the same organism [West et al., 2007c]. Particularly, genes responsible for social

behaviours can spread in a population [Smith, 2001], modifying relatedness and indirect

fitness effects at the social locus [Nogueira et al., 2009]. The consequences of these relat-

edness changes are not obvious, and make us wonder about the selective pressures acting

on mobile but also non-mobile genome loci affecting social behaviours. Part of my work

will focus on better understanding and quantifying the importance of relatedness in the

social evolution of microbes.

We have analyzed here situations where all organisms that engage in cooperative or
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competitive behaviours were of the same kind. However, interactions can happen between

entities present at different levels: this will happen in symbioses where one partner hosts

the other, like intracellular parasites or mutualists (endosymbionts), or when different

individuals cooperate in a way that leads to a higher-level entity.

I.2 Conflicts between levels of selection

I.2.1 Levels of selection: definition and examples

Definition

Lewontin pointed out that natural selection is a very general mechanism, which applies to

any entity that has the properties of variation, reproduction and heritability [Lewontin,

1970]. Entities under selection must present phenotypic variation, with different pheno-

types leading to differences in fitness. Finally, the characters of parents and offspring

must be correlated (heritability). With these properties natural selection will act, leading

to the selection of fittest entities and evolutionary change.

Thus, natural selection does not apply only to the traditional level of individual or-

ganisms, but can also apply to within-individual entities, like genes, or higher entities,

like populations. Levels of selection are levels of the biological hierarchy at which natural

selection acts [Okasha, 2010].

Selection within cells

Variants of a molecule can be characterized by differential reproduction and heritable

characters within individuals. The most common cases are DNA sequences that dif-

fer in fitness through diverse mechanisms leading to differential reproduction, as DNA

has obviously both properties of variation (through mutations) and heritability (through

replication). DNA sequences that multiply more effectively than others accumulate within

cells, a process called molecular drive. Multiplication can be due to sequences leading to

biased replication, like repeated sequences, or to specific functions like the transposition

mechanisms of transposable elements. Sequences with no known functions other than

self-replication have been called selfish DNA [Orgel and Crick, 1980].

Selection also happens among other molecules that can vary in copy number within

the cell. This is the case with bacterial plasmids, which are DNA molecules that are

independent from the chromosome, and are present in the cytoplasm in varying numbers.

Variants with higher copy number, for instance with an altered control of replication
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[Paulsson, 2002], will have a higher chance of being transmitted to daughter cells during

cell division, leading to intra-cellular selection on plasmid copy number. Similarly, eucary-

otic organelles can also proliferate more or less within cells depending on their genotype.

For instance, mitochondria with genome deletions can be selected for in Saccharomyces

cerevisiae cells [Taylor et al., 2002].

Selection within multicellular organisms

For multicellular organisms, selection can also happen at the cellular level. Cancers are

a clear example of cellular selection, with cell variants that differ in their reproductive

success, leading to proliferation within an organism [Merlo et al., 2006]. Cellular selection

also takes place in regular development, as with the acquired immunity of vertebrates,

where lymphocytes with receptors that recognize specific antigens will either be activated,

leading to multiplication, or killed.

Selection among groups

Finally, selection can also happen among populations or groups of organisms. The topic

of group selection has been widely discussed, the debate focusing partly on the existence

and definition of group selection and partly on the possibility for group selection to be

significant compared to within-group selection. For instance division into isolated groups

and variation among groups has been seen as essential for group selection, which represents

quite restrictive conditions in nature [Maynard Smith, 1976]: group selection will be

favored over within-group selection only if migration between groups is extremely low,

maintaining differences between groups [Leigh Jr, 2010b]. Thus, group selection has been

thought as unlikely to be significant as a major evolutionary force [Maynard Smith, 1976].

Another less restrictive type of group selection was termed "trait-group selection" or

"new group selection" [West et al., 2006, Wilson, 1975]. This theory considers cases where

interactions take place in groups only at specific stages of the life cycle of individuals (for

instance non-dispersal stages), and selection can act on those "trait-groups". This version

of group selection can actually be mathematically reconciled with a kin selection approach

[West et al., 2006, Queller, 1992].

What can be seen as a clear example of group selection [Lewontin, 1970] is the coevo-

lution of rabbits and myxoma, viruses that cause myxomatosis, after introduction of the

virus in Australia. Viruses were first strongly lethal, but became less virulent after coevo-

lution. Those viruses could not be transmitted from dead rabbits, leading to very strong

between-group selection for decreased virulence. In this case, selection at the group level
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is clearly visible, because groups are easily distinguished (each of them within a host).

I.2.2 Diverging interests between levels of selection

When selection happens at different levels, the direction of selection can differ among

levels, leading to conflicts. Selection acting within organisms can harm the organism;

selection between organisms within groups can lead to costs at the group level.

Conflicts within organisms

Molecules that proliferate within cells, or cells that do so within multicellular organisms,

often lead to costs at the level of the organism. Uncontrolled cell division causes cancers;

accumulation of repeated DNA sequences can give rise to diseases, like Huntington’s

disease, a neurodegenerative disorder arising from the accumulation of repeats in the

sequence of a protein-coding gene [Rubinsztein et al., 1994]. Transposition can cause

chromosome breakage and reduced fertility, and insertions are often lethal [Burt and

Trivers, 2006]. Increases in plasmid copy number are also costly for the cell [Harrison

et al., 2012], leading to a conflict between plasmids and cells [Paulsson, 2002]: plasmids

variants with increased replication have a higher chance of being present in daughter cells,

so are selected within cells, but cells containing these plasmids are counter-selected.

The tragedy of the commons

Diverging selective pressures at the individual and group levels is another way of analyzing

cooperation: selection at the individual level leads to a tragedy at the group level.

The tragedy of the commons was a metaphor introduced to describe the dynamics of

shared resources [Hardin, 1968]. It describes herders grazing cattle on a common land,

each of them benefiting from adding more animals. However, this behaviour leads to over-

exploitation and destruction of the common resource. This metaphor has been applied in

evolutionary biology to describe cases where individual selfishness lowers the mean fitness

of all individuals in the group [Rankin et al., 2007]. Examples of individual selfishness

can be the overexploitation of external resources, but also the act of not contributing to

a resource, like not producing a public good, or engaging in active competition (instead

of restraining from it).

Evolution of virulence

The case of host-parasite coevolution is itself a case of tragedy of the commons: each

individual parasite has a short-term interest in maximum exploitation of the host, leading
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to competition among pathogens within hosts. Overexploitation of host ressources can

lead to death of the host, and collapse of the population of parasites. Prudent exploitation

is then a form of cooperation, and increased relatedness should thus lead to decreased

virulence [Frank, 1996]. For instance, restricted migration (leading to high relatedness)

was shown to select for prudent host exploitation in an experimental evolution study

between bacteriophages and their hosts [Kerr et al., 2006].

However, real cases are often more complex, as virulence itself can be due to coopera-

tive traits [Brown, 1999]: numerous virulence factors are public goods. For instance, the

cooperative production of siderophores is involved in Pseudomonas aeruginosa virulence

in an insect host [Harrison et al., 2006]. So, high relatedness can also favor increased

virulence, and the effects of social conflicts on virulence will depend on the type of social

interactions involved in virulence [Brown et al., 2002, Buckling and Brockhurst, 2008].

I.2.3 The outcome of conflicts: multilevel selection

The outcome of conflicts between levels of selection can be studied by a multilevel selection

approach, which analyzes the strengh of selection at different levels. Mathematically, the

multilevel selection approach uses the Price equation, allowing us to quantify selection at

different levels. This approach can then be applied to cooperative behaviours, particularly

when they happen in group-structured populations.

The Price equation

The Price equation [Price, 1972] describes how the average value of a character changes

from one generation to the next. It is derived from a mapping between individuals in

parent and offspring generations, and can be applied to any given character. With the

character value being z, its change from individual to offspring ∆z and the number of

offspring w, the mean change from individual to offspring in the population ∆z follows

Price equation (where w is the population mean fitness):

∆z = cov(w/w, z) + E((w/w)∆z) (I.1)

The first component cov(w/w, z), or change due to selection, is the covariance between

character value and reproductive success. The second component E((w/w)∆z), or change

due to transmission, is the expectation of changes from individual to offspring, weighted

by individual number of offspring: it describes how, in average, offspring differ from their

parents [Gardner, 2008].
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Price equation can simply be applied to individuals: in this case, it describes natural

selection at the individual level. However, it can also be applied to groups when the

parent and offspring entities are social groups. Indexing groups with i ∈ N , this yields:

∆z = covN(wi/w, zi) + EN((wi/w)∆zi) (I.2)

The first term corresponds to between-group selection, and the second term to within-

group selection. The proportion of individuals in a population structured in groups can

thus be followed by taking into account changes within and among groups (Figure I.2).
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Figure I.2: Price equation components and multilevel selection. A population
with the initial proportion of z red individuals is distributed in N subpopulations (of
equal size, for the sake of simplicity), each with initial proportion zi of red individuals.
In each subpopulation i, this proportion changes to z′i (changes due to transmission),
and the subpopulation size is multiplied by the factor wi (success of subpopulation i).
When subpopulations are mixed, selection occurs among them (changes in z depend on
zi correlation with wi, or cov(wi, zi), leading to a final population with the proportion z′

of red individuals.

This equation allows us to separate selection in among- and within-groups components.

The relative strength of these components will determine the final direction of evolutionary

change. Conflicts between levels of selection are cases where these two components have

opposite signs. Moreover, Price equation further highlights that group selection will

happen whenever there is a correlation between the genetic composition of a group and
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group success.

Group selection and kin selection

The validity of group selection and kin selection approaches and the relationship between

them has been the subject of numerous debates [Leigh Jr, 2010b]. Still, Hamilton’s rule

can be rigourously derived using Price equation [Hamilton, 1970], as well as group selection

results. It can also be shown that group selection and kin selection are mathematically

equivalent [Lehmann et al., 2007]. Both approaches essentialy rely on the fact that inter-

actions occur within groups, and individuals are more related within groups than among

groups. In a multilevel selection framework, relatedness can be thought of as the fraction

of the total weighting of selection that happens at the group level, or as the fraction of

the total variance that is among groups [Frank, 2012]. To maintain cooperation, benefits

have to be redirected to cooperators, which in a group-structured population is equivalent

to saying that some groups are enriched in cooperators.

Group selection and kin selection are thus two ways of studying the same processes

[West et al., 2006]. The multilevel selection approach is by nature well suited to analyze

selection by looking at groups. However, it is less easy to apply when populations are not

structured in clearly defined groups. Still, when groups can be defined, cooperation will

very often increase group size, affecting the covariance component in Price equation (the

covN(wi/w, zi) term in Equation I.2). In the cases described below, both the multilevel

and the kin selection approaches can be used.

Cooperation with effects on group size

Cooperation can increase group fitness by increasing local carrying capacity. This is very

often the case with microbial public goods [West et al., 2007c, Platt and Bever, 2009],

for instance siderophores or secreted exoenzymes, that lead to higher local density. Even

without clearly defined groups, a local increase in bacterial density thanks to public goods

can favor cooperators.

With clearly defined groups, effects on group size and their consequences on the main-

tenance of cooperation can be easily followed. This has been done in experiments with the

synthetic system we have mentioned, and that we will also use [Chuang et al., 2009]: the

authors designed a population structure with subpopulations differing in their initial pro-

portion of public good producers, providing positive relatedness between producers at the

metapopulation scale. Population growth was dependent on the proportion of producers,

providing the covariance between cooperative ability and reproductive success needed to
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select for cooperation at the group level.
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Figure I.3: Principle of Simpson’s paradox (adapted from [Chuang et al., 2009]).
In two groups with given proportions of P element, the proportion of P decreases within
each group but increases overall. The right side shows the change in two subpopulations
represented by pie charts of P (green) slices; the initial and final subpopulations with
respectively pi and p′i proportions of P are connected by black arrows. The left side
shows the corresponding composition of the initial and final global population formed by
these two subpopulations, with respectively p and p’ proportions. Simpson’s paradox is
that P decreases in each subpopulation (∆pi < 0 for every group i) but increases overall
(∆p > 0), because the global proportion of P is a group size-weighted average that differs
from the nonweighted average.

This population structure and benefits of cooperation lead to an instance of Simpson’s

paradox (Figure I.3), as interpreted by the authors to refer to a well-known statistical

paradox: despite a decrease in producers frequency in all populations (because public

good production is costly), producers increase in frequency at the global scale when all

populations are pooled. Here, pooling corresponds to a global competition among groups,

where populations with more producers contribute more to fitness.

In conclusion, selection can act at different levels, which often leads to conflicts when,

for example, fitness benefits at an individual scale are costly at a group scale. A further

complication is that transmission of genes or individuals can happen not only by multipli-

cation within groups, but also by migration between groups. This is particularly the case

of symbioses where groups of symbionts are living within a host: migration of symbionts

between groups is equivalent to horizontal transmission from the perspective of the host.
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I.3 Horizontal transmission and its consequences

I.3.1 Symbionts with vertical or horizontal transmission

Symbiosis refers to a close and long-term interaction between species. It sometimes ex-

clusively describes only the beneficial associations, but usually also includes parasitism,

while beneficial symbioses are called mutualism [Herre et al., 1999]. Symbioses are often

asymmetric [Leigh Jr, 2010a], with one partner living within the cells or the body of the

other partner, or host. Mobile genetic elements, that I will describe extensively in Chap-

ter II, can be seen as symbionts living in association to host genes, if symbiosis is seen in

a broad sense as an association between genetically dissimilar units [Smith, 2007].

Costs and benefits of symbiosis

Symbionts vary in their costs and benefits to the host. One extreme example is harmful

parasites, that can lead to host disease and death. Other symbionts may provide benefits,

like nutrients or antibiotics [Leigh Jr, 2010a, Sachs et al., 2011]. The net effect of symbionts

on their host depends on the environment. For instance, bacterial plasmids bear antibiotic

resistance genes, that will benefit their host only in the presence of antibiotics.

Symbionts usually benefit from the host, that provides protection or nutrients, but

vary in their dependance to the host [Herre et al., 1999]. Some symbionts have a free-

living phase and can survive in the environment; other are completely dependant on their

host, like obligate endosymbionts. The dependance of hosts and symbionts is related to

the ability of symbionts to undergo horizontal transmission between hosts.

Vertical and horizontal transmission

Vertical transmission is the transmission of symbionts from parent to offspring. It charac-

terises obligate endosymbionts like Buchnera bacteria in insects. Horizontal transmission

is the transmission of symbionts between different hosts, that are not necessarily related

(Figure I.4). Horizontal transmission happens for infectious parasites, but also for mutu-

alistic symbionts like Rhizobium. Sometimes, horizontal transmission is in fact analogous

to vertical transmission, when it happens at a local scale and leads to the re-infection of

host offspring.

Horizontal transmission also characterises selfish genetic elements like plasmids. In

bacteria, mobile genetic elements are sequences that have the ability to move between

bacteria (horizontal gene transfer). More generally, selfish genetic elements can be con-
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Figure I.4: Vertical and horizontal
transmission. Vertical transmission
happens from parent to offspring (yel-
low individuals), horizontal transmis-
sion happens between individuals that
are not parent and offspring (yellow to
green here). Examples represented are
mitochondria (with vertical transmis-
sion, in blue) and the myxoma virus
causing myxomatosis (with horizontal
transmission, in red) in rabbits.

sidered as having horizontal transmission from the gene’s perspective [Smith, 2007], even

if they are transmitted from parent to offspring, like segregation distorters during meiosis

in Eukaryotes [Burt and Trivers, 2006], as their transmission differs from the transmission

of host genes: they effectively invade new host gene lineages during sexual reproduction.

Consequences on symbiosis

With vertical transmission, both hosts and symbionts benefit from host reproduction by

increased reproductive success [Herre et al., 1999]. This effect of vertical transmission

can be seen as an example of partner-fidelity feedback, one of the mechanisms ensuring

the maintenance of cooperation between species cited in section I.1.2 [Sachs et al., 2004].

Strict vertical transmission has led to some of the major evolutionary transitions, after

which symbionts cannot replicate independently anymore, but only as a part of a larger

whole [Szathmary and Smith, 1995]. This is the case of some eucaryotic organelles, such

as mitochondria, that arised from formerly free-living, symbiotic bacteria.

With horizontal transmission, symbionts gain access to new hosts, decoupling their

fitness from initial hosts [Herre et al., 1999]. Selection can then favor symbiont traits that

are deleterious for initial hosts. Particularly, symbiont traits increasing horizontal trans-

mission can be selected as they lead to increased reproductive success for the symbiont.

These traits can be costly for the host. Host-symbiont conflicts about reproduction can

also happen: symbionts with maternal transmission in sexual species, as mitochondria

or Wolbachia bacteria for instance will benefit from biased sex ratios towards females.

However, symbionts generally benefit as well from not harming the host, by increased

vertical transmission or increased period of interaction.
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I.3.2 A trade-off between vertical and horizontal transmission

The transmission-virulence trade-off

The transmission-virulence trade-off is a general hypothesis about host-parasite interac-

tions, including both long-term interactions with vertical transfer and transitory infec-

tions. Virulence is the harm a parasite does to its host, either by increasing mortality, or

by non-lethal effects that reduce fecondity [Alizon et al., 2009]. The trade-off hypothesis

relies on the idea that there is a genetic trade-off between the rate of parasite horizontal

transmission between hosts and the duration of the infection, because increasing transmis-

sion increases virulence [Anderson and May, 1982, Ewald, 1987]. Decreasing the duration

of the infection then decreases the probability of further transmission. This can lead to

an evolution of optimal virulence, maximizing global transmission, which has been shown

in some studies. For instance, intermediate virulence maximises transmission in Daphnia

parasites [Jensen et al., 2006]. Still, the trade-off may not always exist, as for instance

virulence can be non-adaptive, ie not linked to increased horizontal transmission (for ex-

ample, meningitis is caused by the rare infection of the meningeal space by bacteria that

are not likely transmitted further from this space [Frank, 1996]).

For parasites with vertical transmission, the transmission-virulence trade-off becomes

a vertical transmission - horizontal transmission trade-off, as increased virulence also

reduces vertical transmission of the parasites [Lipsitch et al., 1996]. If increasing horizontal

transmission is costly for host fitness, it will also decrease the part of parasite fitness due

to vertical transmission.

Evolution of horizontal transmission

The evolution of horizontal transmission should depend on its benefits relative to accrued

costs to the initial hosts, which decrease vertical transmission. Benefits from investing

in horizontal transmission will mainly depend on the availability of new hosts [Anderson

and May, 1982]: if many hosts are available, then horizontal transmission will contribute

more to fitness than vertical transmission.

This hypothesis has been confirmed by some experimental studies. For instance, fila-

mentous bacteriophages are bacterial viruses that can be transmitted by both vertical and

horizontal transmissio, which ratio can be controlled experimentally. Bull and coauthors

showed that evolution with more opportunities for vertical or horizontal transmission

leads to respectively lower or higher virulence [Bull et al., 1991, Messenger et al., 1999].
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They further confirmed that low virulence was adaptive in the absence of available hosts

for horizontal transmission, and high virulence was adaptive in the absence of vertical

transmission, increasing horizontal transmission.

We focused here on the trade-off between symbiont horizontal transmission and host

reproductive success. However, there are cases where symbiont transmission can actually

benefit the host, through indirect effects.

I.3.3 Benefits of horizontal transmission for symbiosis

Symbiont transmission can be beneficial to the host if other populations in the community

are taken into account. Indeed, populations in a community interact in multiple and often

antagonistic ways. The transmission of symbionts can affect these interactions in a way

that favors initial hosts (summarized in Figure I.5).

VT#
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Figure I.5: Consequences of horizontal transmission on host fitness. Potential con-
sequences of symbiont horizontal transmission (HT) to a non-related individual (green)
for both the host (yellow) and the symbiont (red) vertical transmission (VT). HT neg-
atively affects the host because of its costs (trade-off, red arrow); but can be indirectly
beneficial (blue arrows) because it frees up resources from the non-related individual, or
because it helps the host lineage in competition with the non-related lineage.

Apparent competition via parasites

Populations of different species or ecotypes are often in competition. Competition hap-

pens first of all when populations use the same resources (exploitation competition, by

resource consumption). But competition can also be due to direct active behaviours that

interfere with the other population (interference competition, for instance by aggression).

Finally, another mechanism of competition is apparent competition [Price et al., 1986],
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which happens indirectly through common parasites or predators: the presence of one

population increases the density of these ennemies, which then increase the harm to the

other population. Apparent competition is a form of interference competition, where

interference happens through shared predators or parasites.

In this context, horizontal transmission can be seen as a mechanism of interference

competition, where hosts benefit from increased horizontal transmission of their parasites

to competitors (Figure I.5, violet arrows). An advantage of that strategy compared to

interference competition not involving parasites is that parasites can amplify on com-

petitors, and have a long-lasting effect. Recently, examples of interference competition

have been found in microbes and their symbionts. For instance, virus carriers in Es-

cherichia coli where found to outcompete sensitive cells thanks to virus spread [Brown

et al., 2006], initial hosts being protected from lysis by bearing the virus in a lysogenic

state. Amplification of the virus on sensitive cells was essential for this effect.

In an evolutionary context, interference competition is analogous to spite, so its main-

tenance is again difficult to explain, with individuals that do not perform a spiteful be-

haviour still benefiting from the harm done on competitors. Spite is even more difficult

to explain than altruism, as it requires negative relatedness between actor and recipients

(see section I.1.2). Spite through parasites could be easier to maintain, as amplification

in recipients reduces costs for actors [Dionisio, 2007], and actors can often be protected

by immunity, allowing a form of kin discrimination.

Manipulation via horizontal transmission

Transmission of parasites can also be beneficial because they induce a specific reaction in

recipients that is beneficial to initial bearers of the parasite (Figure I.5, blue arrow). For

instance, herbivore insects are vectors of plant pathogenic viruses [Belliure et al., 2004]

that inhibit the plant response against insects. Insects can also secrete symbiotic bacteria

[Chung et al., 2013], which fake a bacterial attack and inhibit the response to herbivory.

A more specific case of manipulation by horizontally transmitted symbionts is the case

of polydnaviruses [Strand and Burke, 2012]. Those viruses are transmitted vertically in

insect parasitoides, and virions are produced only when larvae are injected into the host

insect. Virions then infect cells of this host insect, where their expression inhibits the

immune response and interferes with growth, allowing the development of larvae. In a

similar way, Agrobacterium tumefasciens bacteria transfer a specific DNA sequence to

plant cells they parasitize, the T-DNA. This segment bears genes with plant-specific ex-
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pression that are involved in the production of specific metabolites that the bacteria can

use [Otten et al., 1992] (see Figure III.2). In those last cases, symbionts are horizontally

transmitted at a short timescale, but do not actually reproduce in the secondary host.

They benefit only from vertical transmission in their original host, with no direct increase

in fitness through horizontal transmission.

In conclusion, individuals affect their neighbours in multiple ways. A major factor

controlling the evolution of social interactions towards cooperation or conflict is the oc-

currence of shared genes, or relatedness, between interacting individuals. Shared genes

usually arise from common descent, but horizontal gene transfer in bacteria modifies this

heritability pattern. Mobile genetic elements have two sides: they are responsible for

horizontal gene transfer, but are also bacterial symbionts with patterns of transmission

that natural selection will act on. In the following chapters, I focus on the properties of

these peculiar bacterial symbionts.
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Mobile genetic elements as bacterial symbionts

Mobile genetic elements (MGEs) are defined as segments of DNA that encode proteins

mediating the movement of their own DNA within genomes or between cells [Frost et al.,

2005]. Mobile genetic elements are not specific to prokaryotes. However, they are strongly

affected by a key feature of prokaryotes, reproduction through clonal multiplication. Thus,

mobile elements do not spread in populations through sexual reproduction like in Eu-

caryotes, but through other mechanisms, decoupled from reproduction. Archaeal mobile

elements seem to be generally similar to bacterial ones, but are little known [Smillie et al.,

2010]. For this reason, I focus on bacterial mobile elements.

Here, I will first describe the different mechanisms by which genes can spread between

bacterial cells, and then the maintenance of mobile elements in bacterial populations by

both vertical and horizontal transmission. I will focus on a class of mobile elements most

relevant to my work, plasmids.

II.1 Mechanisms of horizontal gene transfer in bacteria

Horizontal gene transfer between bacteria can happen in three ways: transfer of naked

extracellular DNA (transformation), direct transfer through cell-cell contact (conjugation)

or transfer through bacterial viruses (transduction).

II.1.1 Natural transformation: transfer of naked DNA

Discovery of horizontal transfer

The discovery of horizontal gene transfer is actually linked to the discovery of the nature of

genetic material. First, Griffith’s experiment showed that an agent, so-called "transform-

ing principle" originating from virulent pneumococci transformed another non-virulent

strain into a virulent one [Griffith, 1928]. This transforming principle was then shown

to be DNA [Avery et al., 1944]. DNA was thus able to be taken up by cells unrelated

to the cells it originated from, demonstrating the existence of horizontal gene transfer.

By analogy to the horizontal transmission of symbionts, horizontal gene transfer refers to

the transmission of genetic information between organisms that does not happen through
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reproduction, but between potentially unrelated organisms.

Mechanisms of natural transformation

Transformation is one mechanism of horizontal transfer where DNA is acquired from

the extracellular environnement. Transformation can be enforced experimentally through

physical or chemical treatments, but natural transformation is an active uptake of extra-

cellular DNA [Johnsborg et al., 2007], that takes place in some bacterial species. Natural

transformation involves the binding of DNA to specific receptors on the cellular surface,

then uptake of single-strand DNA. Finally, non-replicating DNA molecules will be main-

tained in the cell only if they are integrated by homologous recombination.

All these processes happen in so-called competent bacteria: competence, the ability

to take up extracellular DNA, has to be induced by the cell. Natural transformation is

well described in some model species like Bacillus subtilis, but it is not known whether

it happens in many other species. Competence may exist, but require specific conditions

that have not yet been tested in the lab. For instance, Escherichia coli can be natu-

rally competent after growth under static conditions [Sun et al., 2006]. On the contrary,

competence may have been selected only in a few bacterial species.

The origin of transformed DNA

Transformed DNA molecules are not always random. In some cases, DNA uptake can

be sequence-specific, like in Neisseria species: efficient uptake occurs only for molecules

containing a specific sequence around 10bp in length, which is enriched in the genome of

the corresponding species. In other cases, the DNA present in the environment of the cell

can be non-random: its release from neighbouring bacteria can be active. In streptococci,

induction of competence leads to the lysis of a subpopulation of cells [Steinmoen et al.,

2002]. This has been interpreted as a way of ensuring transformation of homologous DNA

when there is no sequence specificity in DNA uptake. Finally, another active mechanism

for ensuring that some DNA sequences get imported is the active secretion of DNA via a

type IV secretion system in Neisseria gonorrhoae [Hamilton et al., 2005].

II.1.2 Transduction: transfer through bacterial viruses

A second mechanism for horizontal transfer was discovered in Salmonella [Zinder and

Lederberg, 1952]. Here, gene transfer involved a "filtrable agent" adsorbed by bacte-

rial cells. This process was defined as transduction: the transfer of genetic information

mediated by bacteriophages, or bacterial viruses.
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Life cycles of bacteriophages

Bacteriophages consist of a DNA or RNA genome, protected by a proteic capsid. They

attach to the surface of the cell and inject their genome inside the cytoplasm. Lytic phages

immediately replicate using the cellular machinery, and then lyse the cell when virions

are liberated. Temperate phages do not immediately lyse the cell: they go through an

additional phase, called lysogeny, where the viral genome integrates in the host genome

as a prophage.

Gene transfer via transduction

Bacteriophages can transfer parts of the host genome in different ways [Canchaya et al.,

2003]. In specialized transduction, the chromosomal DNA adjacent to the phage integra-

tion site is packaged with phage DNA because of imprecise excision of the prophage. In

generalized transduction, any part of the host genome can be accidentally packaged in

the capsule instead of phage DNA. Transduction can involve up to 100kb of DNA, and is

limited by the content of DNA present in the capsule.

Transduction is also part of a peculiar form of genetic exchange, known in only a few

bacterial species, that involves gene transfer agents (GTA) [Lang et al., 2012]. GTAs

are phage-like entities that, unlike phages, always contain a random part from the cell’s

genome but are too small to package all the genes predicted to encode GTA particles

themselves: GTA genes do not spread through viral infection, contrary to phages.

Finally, prophages themselves can carry genes that provide a new phenotype to host

cells, a process called lysogenic conversion. For instance, a filamentous phage is responsible

for the production of cholera toxin in Vibrio cholerae [Waldor and Mekalanos, 1986]. Gene

transfer via bacteriophages is widespread on an evolutionary timescale: many bacteria

contain multiple prophages, that can represent up to 16% of chromosomal DNA, and are

often involved in host virulence, being expressed during lysogeny and independently from

the rest of the prophage genome [Canchaya et al., 2003].

On a shorter timescale, the frequency of horizontal gene transfer by transduction is

linked to phage dynamics. Both generalized transduction and GTAs involve rare events of

gene packaging from the whole genome. Specialized transduction and lysogenic conversion

concern specific genes, but happen at much higher rates, closer to phage infection rates.
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II.1.3 Conjugation: transfer through cell-cell contact

Discovery of conjugation

This third mechanism for horizontal transfer was discovered by Tatum and Lederberg by

studying auxotrophic mutants in Escherichia coli. They showed that genetic recombina-

tion was happening in mixed cultures, and that this phenomenon needed cell-cell contact

between bacteria [Tatum and Lederberg, 1947]. Conjugation was then defined as a process

by which DNA is transferred from a donor to a recipient cell during cell-cell contact.

Moreover, this phenomenon did not take place in all the strains that were studied

and was asymmetrical: transfer happened from "donor" to "recipient" cells. Additional

studies revealed that conjugation was driven by the presence of an "infective factor", then

called the F factor, present in donor cells [Hayes, 1953]. Finally, it was shown that this

factor was a DNA molecule, independant from the host chromosome, that transferred

between cells [Marmur et al., 1961]: the F plasmid. The same mechanism of conjugation

was also involved in the transfer of a molecule conferring drug resistance [Watanabe,

1963], indicating the existence of multiple kinds of plasmids.

Overview of the conjugation steps

Conjugation involves several steps. Donor and recipient cells are brought into close contact

by the process of mating-pair formation, through specific organelles called conjugative pili

[Arutyunov and Frost, 2013], which are formed by a type IV secretion system (T4SS). In

parallel, DNA is associated to a protein complex called the relaxosome and transported to

the mating pore. The nicked DNA strand (T-strand) is then transferred to the recipient,

where it is recircularized. Finally, both strands are replicated.

Mating-pair formation

Mating-pair formation involves the assembly of pili by a type IV secretion system (T4SS)

[Arutyunov and Frost, 2013]. Pili are constructed by polymerization of pilin in a helical

array, and can measure from 1 to 20 µm in length and 8 to 11 nm in diameter for F

plasmid. Pili mediate the recognition of recipient cells.

Pili involved in conjugation are classified according to their morphology [Bradley et al.,

1980]. Rigid pili are not able to retract or stabilize mating pairs, so they are associated

with transfer in solid environments only. Thick flexible pili, including F plasmid pili,

can retract by depolymerization, which brings together donors and recipient cells and

stabilizes the mating pair. Unlike rigid pili, thick flexible pili allow efficient transfer in
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liquid medium. DNA can transfer through extended pili [Babic et al., 2008], but transfers

more efficiently after pilus retraction.

DNA mobilization

DNA mobilization is the processing of DNA by transfer and replication proteins. A key

protein is the relaxase, that binds specifically to a cognate oriT sequence. In association to

accessory proteins, the relaxase forms a complex with DNA called the relaxosome [Alvarez-

Martinez and Christie, 2009]. This complex is then recognized by the coupling protein

(T4CP), which brings it to the mating pore. The relaxase cleaves the oriT sequence at

the nicking site (nic), then stays associated with the 5’ end of the cleaved DNA strand.

Single-strand DNA associated to the relaxase is transferred to the recipient cell, where

the relaxase ensures plasmid recircularization. oriT is therefore a specific sequence that

is needed for a DNA molecule to be recognized by the relaxase and mobilized. Moreover,

as oriT is the only determinant of transfer in cis, transfer proteins encoded on another

genetic element can mobilize in trans any sequence bearing oriT. However, the recognition

by the relaxase is highly precise: just a few base pairs differences between sequences can

prevent recognition [Harley and Schildbach, 2003].

Mobilization concerns both plasmid or chromosomal molecules. Plasmids are inde-

pendant DNA molecules, but can be integrated in the bacterial chromosome, leading to

mobilization from the integrated oriT and transfer of parts of the chromosome. This is

what happens in Hfr (High frequency of recombination) cells in Escherichia coli, where

recombination of loci on the chromosome is due to the insertion of F plasmid, initiating

conjugation from the chromosome. Other chromosomal sequences, called Integrated and

Conjugative Elements (ICE), bear their own oriT. They undergo an additional step of

excision to create a circular intermediate, from which mobilization occurs.

Finally, two other potentially widespread mechanisms of gene transfer have still been

discovered recently. DNA transfer within and between species was shown to happen

through nanotubes bridging neighbouring cells [Dubey and Ben-Yehuda, 2011]. Similarly,

DNA transfer through membrane vesicles has also been observed [Yaron et al., 2000].

II.1.4 Mobile elements: gene vectors and symbionts

Except in the case of natural transformation, horizontal gene transfer is mainly associated

to the spread of mobile elements: these elements actively transfer themselves and mobilize

occasionally other sequences, by either transduction or conjugation.
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Diversity of mobile elements

The most well-known mobile elements are bacteriophages and plasmids, but many other

elements exist. Bacteriophages are characterized by an extracellular phase where DNA is

encapsulated. However, some prophages like the P1 prophage are also maintained as plas-

mids in the cytoplasm during lysogeny. Conjugation can be mediated by a huge diversity

of mobile elements, whose boundaries are often not precisely defined [Osborn and Bölt-

ner, 2002], and include plasmids (extrachromosomal elements), but also genomic islands

or conjugative transposons (integrative chromosomal elements), which are widespread but

less studied than plasmids [Wozniak and Waldor, 2010]. In comparison to plasmids, these

do not encode maintenance functions, but additionally encode excision functions.

We will here mainly focus on plasmids, that carry more diverse genes than the small

cargo regions of phages, and have been shown to be responsible for most of the transfer

events between bacteria [Halary et al., 2009].

Plasmid definition and prevalence

The word plasmid was first introduced as a "generic term for any extra-chromosomal

hereditary determinant" [Lederberg, 1952], which included mitochondria or viruses, by

analogy to endosymbioses. Nowadays, a plasmid is typically defined as "a stable, self-

replicating entity, which is smaller than the cellular chromosome and which usually does

not contain genes required for essential cellular functions" [Frost et al., 2005]. The crite-

rion of not bearing essential genes is often difficult to test, as it strongly depends on the

ecological context, with some genes being essential only in specific conditions.

Although the prevalence of plasmids in bacteria is insufficiently quantified, we know

it varies greatly. In Escherichia coli, cells carry on average between 0.45 and 2.6 plasmids

per cell depending on isolates [Souza et al., 1999]. However, in the extreme case of Borrelia

species, up to 21 plasmids can coexist in some strains [Casjens et al., 2000].

The structure of plasmids

Plasmids are generally double-stranded circular DNA molecules, but exceptions exist,

like the linear plasmids of Streptomyces [Frost et al., 2005]. Plasmid sizes are hugely

diverse and range from 0.85 kb to 2 Mb for some megaplasmids [Slater et al., 2008a].

Plasmids are generally organized in functional genetic modules [Toussaint and Merlin,

2002]: replication, copy number control and maintenance modules ensure vertical transfer,

conjugation or mobilization modules ensure horizontal transfer, and adaptation modules,
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consisting of so-called accessory genes, increase the prevalence of plasmid-bearing cells in

the population by providing benefits to the cell in some conditions (Figure II.1).

Tra$

operon$

oriT%
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oriV$

F$plasmid$
56811$bp$

Figure II.1: Plasmid structure: the
example of F. The F plasmid shown is
pOX38::Tc [Anthony et al., 1994]. Genes
involved in conjugation are represented in
blue. The ones located at the right of oriT
ensure plasmid maintenance in recipients af-
ter conjugation. The blue arrow indicates
the region that first enters the recipient cell.
Yellow indicates replication and copy num-
ber control genes. Maintenance genes are
represented in red, accessory genes are rep-
resented in green. oriT and origins of repli-
cation (oriV and oriS) are indicated. Se-
quences in gray are insertion sequences.

All these modules will play a role in the maintenance of plasmids in host populations,

by affecting either vertical transmission or horizontal transmission of plasmids.

II.2 Vertical transmission of plasmids

Vertical transmission of plasmids depends on two parameters: the maintenance of plas-

mids during host cell division and the net effect of plasmids on host fitness. Plasmid

effect on host fitness determines if plasmid-free cells have a selective advantage compared

to plasmid-bearing cells.

II.2.1 Plasmid maintenance mechanisms

For plasmids to be maintained in both daughter cells after division, several maintenance

mechanisms are needed (Figure II.2). First, plasmid replication has to be coupled to the

growth of the cell. They further have to be accurately distributed between daughter cells

at division, which involves partitioning (ensuring that each daughter cell gets at least one

plasmid copy) and multimer resolution systems (that counteract plasmid multimerization

leading to unequal sharing of plasmids between daughter cells). If any of these mecha-

nisms fails, plasmid-free cells may arise. Those will usually not reproduce, because of the

existence of post-segregational killing mechanisms that kill plasmid-free cells.
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Figure II.2: Plasmid maintenance mechanisms. Mechanisms enhancing plasmid
maintenance in bacterial lineages are indicated with blue arrows, factors that decrease
it or failures of maintenance mechanisms are indicated with red arrows.

Plasmid replication and copy number

Circular plasmids replicate by rolling circle, theta-type or strand-displacement mecha-

nisms [del Solar et al., 1998]. Generally one essential plasmid region contains the loci

associated to replication: the origin(s) of replication (called ori, such as oriV and oriS

for F plasmid), often a gene coding for a protein involved in the initiation of replica-

tion, termed Rep protein, and additional genes involved in the regulation of replication.

Replication itself then involves both plasmid-encoded and host-encoded proteins.

Each plasmid is characterized by a copy number, the number of plasmid copies per

cell under specific growth conditions, which is usually regulated at the initiation stage

by negative regulatory circuits [del Solar et al., 1998]. Negative regulators reduce the

probability of replication when the number of plasmid copies in each cell increases. The

reduction is mainly achieved by regulation of the expression of Rep proteins. The regula-

tion of the copy number lowers the burden on the host cell by preventing excessively high

numbers of plasmids per cells. It also reduces the variance in copy number, decreasing

the probability that plasmid-free cells arise during bacterial division [Paulsson, 2002].

This negative control of copy number has consequences on plasmid competition within

cells. Two plasmids with identical replicons cannot stably coexist within a cell lineage,

as they share the same regulatory mechanism: the copy number will be regulated for

the sum of both plasmids, effectively decreasing the copy number of each of them. This
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leads to loss of one of both plasmids, a phenomenon called plasmid incompatibility. For

this reason, the classification of plasmids was historically based on incompatibility groups

(Inc): groups of incompatible plasmids, for which we can deduce that they share the same

replication mechanisms.

Plasmids can be separated in two categories based on their copy nomber. High-copy

number plasmids (typically around 20 copies per cell, but up to 200 copies in some cases

[Smillie et al., 2010]) can rely on random partitioning, as cells not bearing any plasmid

will arise very rarely by chance. Low-copy number plasmids (up to 5-10 copies per cell

[Thomas, 2000]) have a high chance of being lost randomly at division in absence of

partitioning mechanisms.

Plasmid partitioning and addiction

Plasmids, and mainly low-copy plasmids, have multiple mechanisms that favor their equal

distribution to both daughter cells. Homologous recombination between identical plasmids

first leads to multimerization of plasmids. This phenomenon causes a decrease in the

effective number of molecules segregating at division, increasing the chance of plasmid

loss. Many plasmids bear a multimer resolution system that counters multimerization,

increasing their effective copy number [Bahl et al., 2009]. Low copy number plasmids

further bear active partitioning systems, consisting in an ATPase associated to a DNA-

binding protein. These proteins bind on a specific plasmid site, functioning as centromere-

like elements. The ATPase forms filaments and ensures migration of plasmids during

division, so that both daughter cells receive at least one plasmid copy [Bahl et al., 2009].

Despite these mechanisms, some plasmid-free cells may still arise. Additional mech-

anisms, called addiction systems or post-segregational killing (PSK) systems, ensure the

elimination of plasmid-free cells after division. PSK systems are based on two genes,

encoding a protein toxin and a corresponding antitoxin that is either an antisense RNA

or a protein, and prevents toxin function (Figure II.3). The key feature of these systems

is that the toxin is more stable than the antitoxin: after plasmid loss, the expression of

both genes stops, and the toxin remains present longer than the antitoxin, killing the cell

or stopping its growth. PSK systems ensure that plasmid-free cells do not outcompete

plasmid-bearing cells. However, they do not always bring a direct advantage to a plasmid,

but mainly need to be understood in terms of competition between plasmids [Cooper and

Heinemann, 2005]: when two plasmids with and without PSK compete within the same

cell, plasmids with PSK systems have a selective advantage against plasmids without
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them, as PSK will bias plasmid segregation in favor of plasmids carrying them.
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Figure II.3: PSK system in the F plasmid. When F is present in a cell, both ccdA and
ccdB genes are expressed. CcdA protein forms a complex with CcdB protein, preventing
the diffusion of CcdB monomers. When F is lost upon division, CcdA is rapidly degraded
by proteases. CcdB protein targets the DNA gyrase and inhibits it, leading to cell death.

Plasmid loss

Despite these maintenance mechanisms, plasmid segregation (loss after cell division) will

still occur at low rates. Actual rates of segregation are difficult to measure, as plasmid-free

cells spread rapidly when plasmids impose a cost on the host [Lenski and Bouma, 1987]:

differential growth effects are much stronger than actual loss. Loss rates measured by

high-throughput methods and minimal times of growth are actually extremely low: R1

plasmid with a non-functional partition system was estimated to have a loss rate as low

as 10−3 per cell per generation, and loss of R1 with a functional partition system was not

measurable [Lau et al., 2013].

When partitioning and addiction systems are functional, the major force acting on the

vertical maintenance of plasmids will thus be their effects on host fitness.

II.2.2 Plasmid effects on host fitness

First, plasmid maintenance in cells leads to unavoidable costs for the host. Then, accessory

genes can be either beneficial or costly to the host depending on the environment. The

net effect of plasmids on host fitness will thus be strongly variable.

Costs of bearing plasmids

Plasmid presence in a cell has been shown to lead to numerous costs. This has been called

the "metabolic burden" of plasmids, and can lead to increased lag phase or decrease of

the exponential growth rate of cells in culture [Diaz Ricci and Hernández, 2000]. First,

plasmid replication and maintenance are costly. Both plasmid copy number and plasmid
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size have an influence on this cost. However, the main factor in plasmid cost seems to

be the expression of genes carried by the plasmid. Gene expression is metabolically more

costly than replication, and leads to a competition in the cell for limiting ribosomes and

RNA polymerase [Bailey et al., 1986], which can strongly outweigh any costs of plasmid

replication [Bentley et al., 2009]. Finally, PSK systems also impose a cost on the host, as

plasmid-free cells that arise do not reproduce [Cooper and Heinemann, 2005].

Some costs of plasmids are increased by plasmid mobility between unrelated hosts, as

plasmid genes may be maladaptive in the context of the new host [Baltrus, 2013]. For

instance, proteins may misfold, or interact with cellular networks and metabolism in a

detrimental way. Codon usage will also differ for genes originating from distant hosts,

increasing the cost of gene expression. A high cost of protein expression can also be

explained by recent horizontal transfer, with non-optimal expression of new proteins. In-

terestingly, mechanisms are known that specifically reduce these costs of plasmid gene

expression: H-NS like proteins are global regulators of gene expression that have a pref-

erence for AT-rich sequences, which corresponds usually to horizontally acquired genes.

H-NS-like protein binding to plasmid genes suppresses the expression of these genes [Luc-

chini et al., 2006]. Moreover, some plasmids actively diminish their cost to the cell by

encoding H-NS like proteins themselves, thus supplementing host H-NS proteins [Doyle

et al., 2007]. Finally, in the case of transferable plasmids, horizontal transfer mechanisms

are also costly to the host cell. I describe these costs in greater detail below.

Costs of plasmid transfer

Plasmid conjugation is thought to be costly to the cell, first because of metabolic costs.

Costs of conjugation are mainly observed for plasmids with derepressed conjugation (as we

will see in section II.3.1, conjugation is often repressed, reducing strongly the expression

of transfer genes). Derepressed plasmids strongly express transfer genes, including pilin

synthesis and T4SS assembly genes.

In experimental plasmid-host coevolution, a correlation between plasmid conjugation

rate and plasmid cost to the cell has often been found [Turner et al., 1998]. Derepressed

plasmids generally decrease the growth rate of the cell: for instance, the R1-16 derepressed

plasmid increases the generation time of Escherichia coli cells by 14%, while R1 plasmid,

which conjugation is repressed, increases it only by 6% [Haft et al., 2009]. Finally, the

synthesis of the type IV secretion system affects the integrity of the cell enveloppe, and

elicits extracytoplasmic stress responses [Zahrl et al., 2006].
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In natural environments, a further cost linked to plasmid transfer is due to the exis-

tence of male-specific phages. These phages target specifically bacterial cells that bear

conjugative plasmids, because their entry in the cell is based on specific binding to con-

jugative pili. For instance, M13 and R17 phages recognize specifically domains of the

F pilin subunit [Manchak and Frost, 2002], and can infect only Escherichia coli cells

that bear F plasmid. The costs imposed by bacteriophages will vary depending on bac-

teriophage abundance and their accessibility to bacterial cells, and also on the type of

bacteriophage (some male-specific phages, including M13, are filamentous phages that

are liberated from the cell by secretion, so only reduce the cell growth rate but do not

lyse the cell).

Benefits of bearing plasmids

Benefits of bearing plasmids are hugely variable, and depend on plasmid accessory genes.

Some plasmids, called cryptic plasmids, do not bear any genes known to be involved in

other functions than maintenance or transfer.

The earliest described and most studied function of plasmid genes benefiting the cell

is antibiotic resistance [Watanabe, 1963]. So-called R-plasmids often bear multiple resis-

tance genes, and are responsible for the transfer of multiple antibiotic resistance between

distantly related species. Plasmids can also provide resistance to heavy metals, or specific

metabolic abilities like enzymes degrading specific substrates. Some plasmids confer viru-

lence properties to their hosts, by bearing toxin production genes, like the S-endotoxin in

Bacillus thuringiensis [González et al., 1982] or the Ti plasmid of Agrobacterium tumefa-

sciens that is responsible for pathogenicity [Otten et al., 1992]. Plasmids are also involved

in the mutualistic behaviour of bacteria, as in the case of nodulation in Rhizobium, where

nodulation and N2 fixation genes are present on symbiotic plasmids [Sachs et al., 2010],

or in bacterial warfare, as in the case of bacteriocines, bacteriocidal proteins that kill

bacteria closely related to the producing strain [Riley and Wertz, 2002].

The reason why plasmids bear some specific classes of accessory genes is a crucial

evolutionary question, that I will address further in section III.2.1 and in my work.

II.3 Horizontal transmission of plasmids

Horizontal transmission of plasmids happens mainly by conjugation, and plasmids can

be classified according to their transfer properties: self-transmissible or conjugative plas-

mids carry themselves both mobilization and mating-pair-formation genes. Mobilizable
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plasmids are plasmids that use other mating-pair formation systems present in the cell

(usually of a co-infecting self-transmissible plasmid), but carry mobilization genes (at

least a relaxase recognizing their own oriT, sometimes also the type IV coupling protein).

Finally, non-mobilizable plasmids do not spread by conjugation at all. In sequenced plas-

mids of proteobacteria, the frequency of conjugative plasmids was estimated as 28%, and

another 24% were classified as mobilizable, based on the presence of relaxase or T4SS

sequences [Smillie et al., 2010]. The rate of plasmid transmission by conjugation is highly

variable, as it depends not only on plasmid and chromosomal factors, but also on donor

and recipient cells, as well as environmental conditions.

II.3.1 Regulation of transfer in donor cells

Plasmid transfer by the donor cell is mainly regulated by changes in the expression of

transfer proteins. The expression of the transfer apparatus imposes a burden on the cell,

diminished by regulation. The regulation of gene expression involves both plasmid and

chromosomal genes. Here I will mainly focus on F-like plasmids, as the F plasmid is one

of the most studied conjugative plasmids, and the one we will use in our experiments.

Self-regulation of transfer by plasmids

Conjugative plasmids control their own transfer, by regulating the expression of transfer

proteins [Zatyka and Thomas, 1998]. In the case of F, the transfer region consists in

approximately 40 genes, coding for pilin and pilus assembly proteins, DNA metabolism

and regulation of transfer. The transfer region is adjacent to the origin of transfer that

contains the nicking site nic (Figure II.4). It contains two monocistronic operons, encoding

traM and traJ, followed by the 30-kb long tra operon whose first gene product is traY.

For transfer to happen, the tra operon needs to be expressed, yielding T4SS assembly

and mating-pair formation. In parallel, the relaxosome is assembled with the relaxase

TraI. Nicking by the relaxase is performed after receiving a signal, through TraM, that a

functional mating pair has been formed.

In F-like plasmids, the expression of the tra operon is usually repressed, so that only

0.1% of the bacteria actually transfer plasmids to recipients. F plasmid is a derepressed

plasmid: all cells actively transfer plasmids. This is due to the interruption of finO

by an IS3 insertion sequence [Cheah and Skurray, 1986], that inactivates the repression

mechanisms. Repression is based on the fertility inhibition system FinOP, that consists

in two genes, FinO and FinP. FinP encodes the antisense RNA FinP, that is transcribed
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Figure II.4: Details of oriT and adjacent genes map, and key elements of trans-
fer initiation. OriT is in blue, with known protein binding sites indicated in brown.
Adjacent genes are represented in green (traM and traJ are truncated). The nicking site
nic is shown in red. Regulatory interactions are indicated by blue arrows.

constitutively, and binds to the ribosome binding site for traJ, preventing traJ translation.

FinO protein stabilises FinP.

Activation of the transfer operon happens with a positive feedback loop involving

TraM, TraJ and TraY (Figure II.4): TraJ activates the transcription of the tra operon.

TraY, the first protein expressed from the tra operon, also activates itself the transcription

of the tra operon, and traM expression.

This mechanism of fertility inhibition is thought to be responsible for the transient

derepression known for F-like plasmids : new transconjugants are characterized by high

frequency transfer, leading to an "epidemic spread" of plasmids in a population of naive

cells [Lundquist and Levin, 1986]. This could happen because after transfer, FinO and

FinP are not immediately present in new plasmid-bearing cells, so there is a huge transient

expression of the tra operon.

F-like plasmids are thus characterized by a tight control of tra gene expression, lead-

ing to only a small part of the population expressing transfer functions. Other systems

will behave differently: for instance, IncP plasmids have a low but constant level of pili

expression [Zatyka and Thomas, 1998].

Control of gene transfer by the host

Chromosomal genes are also involved in the regulation of transfer [Frost and Koraimann,

2010]. Escherichia coli mutants where pili production and transfer are inhibited have

been discovered early [Beutin and Achtman, 1979]. Most of those genes are transcription

factors, acting as global regulators of gene expression. IHF is a nucleoid-associated pro-

tein involved in relaxosome assembly and nicking by the relaxase, and also in tra gene

expression. Another transfer control protein that was discovered early is ArcA: ArcA is a
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response regulator of a two-component system involved in sensing the redox state of the

cells, and also activates transcription from the tra operon promoter [Strohmaier et al.,

1998].

Numerous nucleoid-associated proteins have been shown to interact with the expres-

sion of tra genes, often at the level of traJ expression (Figure 1.6). As mentioned previ-

ously, H-NS proteins globally repress the expression of AT-rich sequences, including the

tra operon. The interaction of plasmid and chromosomal components is complex: some

plasmids encode H-NS-like proteins; and TraJ actually seems to activate tra gene expres-

sion by inhibiting the silencing effect of H-NS [Will and Frost, 2006]. This regulation by

host proteins is highly variable. Related plasmids are often not regulated in the same way

by the proteins from the same host [Serna et al., 2010].

Many additional host factors play a role in plasmid transfer and are involved in sensing

environmental changes. For instance, cpxAR is a two-component system, involved in the

response to extracytoplasmic stress. Cpx stands for "conjugative plasmid expression",

as cpxA was discovered because of mutations decreasing transfer ability. Factors such as

CpxAR will thus allow a regulation of plasmid transfer by environmental conditions.

Regulation by environmental conditions

Regulatory systems may also modulate plasmid transfer depending on various kinds of en-

vironmental signals. For instance, ArcA activates transfer of the Salmonella typhimurium

virulence plasmid under microaerobiosis conditions, which mimic conditions of the mouse

intestine [Serna et al., 2010]. This activation could be an adaptation allowing transfer

in high density environments, where recipients are potentially abundant. Transfer is of-

ten regulated by the availability of nutrients: F transfer is upregulated in the presence

of glucose for instance, and repressed in stationary phase [Frost and Manchak, 1998].

Temperature is also known to regulate transfer: R27, a resistance plasmid in Salmonella

typhi, transfers optimally at 25̊ C, where repression by H-NS proteins is absent. At 37̊ C,

H-NS proteins repress transfer [Forns et al., 2005]. Finally, transfer can be influenced by

social cues: in Agrobacterium tumefasciens or Rhizobium species, transfer is regulated by

quorum sensing [Zatyka and Thomas, 1998], that indicates high density of cells.

In conclusion, plasmid conjugation can be modulated by numerous factors. Some of

these factors signal changes in the environment that probably are favorable to transfer,

like the availability of recipients. Some factors are plasmid-encoded, while others are

encoded by the host chromosome: the host has thus the ability to control plasmid transfer.
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However, this does not imply that the observed regulation mechanisms necessarily benefit

either the host or the plasmid. Indeed, the activation of a host protein could for instance

be the result of exploitation by the plasmid, that diverts the function of this protein to

its own interest.

II.3.2 Regulation of transfer in recipient cells

The expression of transfer genes is regulated in the donor cell, but effective transfer also

involves the recipient cell. First, mating-pair formation relies on contacts between donor

and recipients, that depend on the recipient surface properties. Then, plasmid entry and

maintenance in the recipient cell depend not only on its capacity to replicate and be

maintained in the recipient cell, but also on recipient defense mechanisms. Finally, the

regulation of transfer in the donor cell can itself depend on signalling involving recipients.

Chromosomal factors modifying plasmid entry

Recipient genes involved in plasmid entry have been discovered early, with reports of Es-

cherichia coli mutants with reduced F recipient ability [Reiner, 1974] Those mutants were

sensitive to multiple stresses, suggesting membrane alterations. It was then shown that

most of these strains were mutated in either OmpA or lipopolysaccharide (LPS) synthesis

genes, each of them reducing 100-fold the cell recipient ability [Manoil and Rosenbusch,

1982]. Both OmpA and LPS are major cell enveloppe components. They are specifically

recognized by TraN and TraG proteins of F plasmid during mating-pair formation [An-

thony et al., 1999]. This recognition of cell-surface receptors will contribute to the host

range specificity of plasmids (the range of hosts in which a plasmid is transmitted and

maintained): broad host range plasmids can form mating pairs with various cell types,

allowing transfer to distant species. The most extreme case is the transfer of T-DNA from

Agrobacterium tumefasciens to eucaryotic cells [Bundock et al., 1995].

Thus, cell surface receptors control plasmid host range. However, inside a given species,

mutations in these genes are strongly deleterious to the cell, reducing the possibility

for variation in recipient ability in natural conditions. A high-throughput screening of

Escherichia coli mutants, conducted in solid medium, concluded that no non-essential

recipient genes had an essential role in conjugation [Pérez-Mendoza and de la Cruz, 2009].

LPS genes are actually not essential for mating-pair-formation in solid conditions. Still,

a few genes, like the nhaA gene, a membrane antiport protein, affect recipient ability also

in solid conditions. Other recipient factors actively involved in plasmid entry seem to be
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rare, as the transport of DNA is essentially controlled by the donor cell.

Still, a mechanism actively limiting plasmid entry has been discovered very recently

[Ho et al., 2013]. It is based on T6SS secretion systems, that are generally involved

in antagonistic behaviours between bacteria: they act by delivering toxic effectors to

neighboring cells. In Pseudomonas aeruginosa cells, one of these T6SS is activated in

response to attack from neighbouring T6SS+ cells. It was shown that the same T6SS

acts against the conjugation of RP4 plasmid, in response to mating-pair formation. This

strongly reduces plasmid conjugation rate (86% decrease compared to T6SS− cells), and

imposes a strong cost on RP4-bearing cells, as donor cells are killed in the process.

Exclusion of plasmid entry by plasmid genes

Actually, the most efficient system reducing recipient ability is not encoded on the bac-

terial chromosome, but on plasmids themselves: it was discovered early that F-bearing

cells are not efficient recipients for conjugation [Lederberg et al., 1952]. This phenomenon

is plasmid-specific: a plasmid prevents the entry of a similar plasmid. Part of this is

due to plasmid incompatibility which I already described, but the main part of it, called

entry exclusion, is an active barrier to the physical transfer of DNA between cells carrying

closely related plasmids [Garcillán-Barcia and de la Cruz, 2008].

Entry exclusion can happen at two steps: mating aggregates stabilization (surface

exclusion) and DNA entry in the cell (entry exclusion in the strict sense). In F plasmid,

both surface and entry exclusion take place. Surface exclusion is due to TraT, an outer

membrane protein that inhibits the stabilization of mating aggregates, decreasing transfer

10-fold. Entry exclusion is due to TraS, an inner membrane protein, that decreases trans-

fer up to 1000-fold. TraS seems to inhibit transfer by interacting with the TraG protein

present in the inner membrane of donor cells [Audette et al., 2007]. Entry exclusion has

been interpreted as a mechanism that diminishes the competition between related plas-

mids [Garcillán-Barcia and de la Cruz, 2008]. Simulations demonstrated that a plasmid

with entry exclusion can gain an advantage in competition against a plasmid without

entry exclusion [van der Hoeven, 1985]. Still, entry exclusion does not completely prevent

plasmid transfer. For instance, entry exclusion is reduced in stationary phase for the F

plasmid, leading to the phenomenon of "F− phenocopies": F-bearing cells in stationary

phase are efficient recipients, behaving similarly to F-free cells [Frost and Manchak, 1998].
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Defense mechanisms against horizontal transfer

While chromosomal mechanisms controlling plasmid entry into the cell are rare, there

are numerous systems that actively defend the cell against the further establishment of

plasmids (or, more generally, horizontally transferred DNA) (Figure II.5).

Resident(

plasmid(

Chromosome(

Conjuga(ve+pilus+

Receptor+

CRISPR7

Cas+
Entry+

exclusion+

Restric(on+

Figure II.5: Summary of the main mechanisms controlling cell recipient ability.
The incoming plasmid and pilus are represented in black, defense mechanisms encoded
on the chromosome in blue, and defense mechanisms encoded on a resident plasmid in
red. Cell receptors and entry exclusion act at the plasmid entry stage; restriction and
CRISPR-cas sytems target plasmid DNA after circularization and replication.

Restriction-modification (RM) systems are composed of a restriction enzyme, an en-

donuclease that cleaves DNA after recognition of a specific sequence (the restriction site),

and a modification enzyme, that protects the restriction site, hindering its recognition

by the restriction enzyme, usually by methylation. RM systems decrease the efficiency

of horizontal transfer when the transferred DNA contains restriction sites that are not

protected by modification.

Plasmid transfer can be strongly decreased by the presence of RM systems in recipients:

adding three restriction sites to the RK2 plasmid decreased its transfer efficiency by a

factor of 105 [Guiney, 1984]. However, RM is not an efficient protection at an evolutionary

timescale: a plasmid or phage that escapes restriction (if by chance modification happens

faster than restriction) is then protected by methylation and can invade new hosts sharing

the same RM system. Plasmids are also relatively protected against restriction, compared

to phages, as they enter the cell through conjugation in a single-strand form that is not

recognized by restriction enzymes. Still, RM systems seem to impose an evolutionary

pressure against plasmids, as there are fewer restriction sites on plasmids than expected by

chance [Guiney, 1984]. Finally, many plasmids also encode anti-restriction genes, located
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in the region of the plasmid that is first transferred. They are rapidly expressed in the

recipient cell, where their product protects plasmid DNA from restriction by binding to

the DNA or by modulating RM activity [Tock and Dryden, 2005].

Another recently discovered defense mechanism against plasmids is the CRISPR-cas

system. CRISPR stands for "Clustered, Regularly Interspaced Short Palindromic Re-

peat". CRISPRs are short repeats that are separated by spacers, sequences that match

bacteriophage or plasmid sequences [Marraffini and Sontheimer, 2010]. The spacers spec-

ify the targets of CRISPR. They are transcribed, processed by Cas (CRISPR-associated)

proteins, and then serve as guides for recognition of the target DNA. This recognition then

leads to resistance against phages or plasmids that bear this target DNA, by mechanisms

that are still poorly known [Barrangou et al., 2007, Marraffini and Sontheimer, 2008].

A key feature of CRISPRs is that spacers can be rapidly acquired upon infection by

a phage or a plasmid, representing a form of acquired immunity. CRISPR presence and

spacer content is thus highly variable among bacterial species and strains. For instance,

F plasmid is not targeted by CRISPRs in the classical Escherichia coli laboratory strain

K12, but a corresponding spacer is present in other strains [Westra et al., 2013].

Overall, a huge diversity in the effective recipient ability of bacteria is caused not

only by a passive absence of cell recognition or plasmid entry, but also via active defense

mechanisms against horizontal transfer.

The case of pheromone plasmids

A peculiar case of plasmid transfer control is the case of sex-pheromone plasmids in Ente-

rococcus faecalis, where the control of transfer involves both plasmid donor and recipient

cells [Dunny, 2012]. In the model plasmid of this group, pCF10, a clumping reaction

that leads to very efficient plasmid transfer can be observed specifically when donor cells

and recipient cells (not bearing the plasmid) are mixed together. Clumping is due to the

secretion of small peptides, the sex pheromones, by recipients. Donors then sense the

presence of the pheromone and in response synthetize a surface adhesin, the aggregation

substance that is responsible for clumping. The striking feature of this system is that sex

pheromone genes are encoded on the chromosome, and pheromone synthesis is repressed

by plasmids present in the cell (Figure II.6).

The Enterococcus faecalis chromosome actually encodes numerous pheromone genes,

and each of them induces conjugation of a specific pheromone-plasmid family. Each

plasmid encodes a corresponding inhibitor peptide, that represses the synthesis of the
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Figure II.6: Regulation of pCF10 plas-
mid conjugation (modified from [Dunny,
2012]). The plasmid-free recipient cell se-
cretes the pheromone cCF10, encoded by a
chromosomal gene; the donor cell contains
the pCF10 plasmid, which bears genes cod-
ing for a conjugation system synthesized in
response to the presence of cCF10 in the
medium. The plasmid also codes for pro-
duction of two negative regulators, PrgY
and iCF10, which prevent self-induction of
donors by endogenous cCF10. PrgY reduces
the amount of cCF10 secreted by the donor
cell, whereas iCF10 acts as a competitive
inhibitor of cCF10.

pheromone in cells bearing this plasmid. The evolution of this system is scarcely known

and deserves more investigation, but clearly involves a strong coevolution between plas-

mids and hosts. The existence of pheromones could be interpreted as an active mechanism

for receiving plasmids in recipient cells, where receiving a plasmid would be beneficial

(which implies that recurrent plasmid loss occurs in recipients). However, chromosomal

pheromones could also be host proteins exploited as cues by selfish plasmids. This be-

haviour is, as far as we know, restricted to the species Enterococcus faecalis.

II.3.3 Plasmid maintenance through horizontal transfer?

Plasmids bear numerous modules that favor their vertical and horizontal transmission.

However, they also impose a cost on their hosts, reducing vertical transmission, and hor-

izontal transmission can be limited for multiple reasons, including host resistance mech-

anisms. Thus, a key question is how and under which conditions are plasmids actually

maintained in bacterial populations. Put differently, are plasmids parasitic or mutualistic

symbionts? Are they maintained mainly because of infectious transfer, or thanks to the

benefits they bring to their hosts?

Population dynamics of bacterial plasmids

Population dynamics of plasmids has been extensively studied with mathematical mod-

elling, beginning with a seminal paper from Stewart and Levin [Stewart and Levin, 1977].

The model described the growth of bacteria bearing a conjugative plasmid in a chemostat,

and showed that at equilibrium, a plasmid is maintained if the following relation holds:

γN > αρ+ τ
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where γ is the rate of plasmid transfer, N the equilibrium recipient density, α the negative

effect of the plasmid on host growth rate, ρ the rate of cell turn-over in the chemostat and

τ the plasmid segregation rate. Globally, this means that plasmid infectious transmission

(γN) has to overcome plasmid loss through segregation and spreading of plasmid-free

cells. Infectious transmission will be a function of plasmid transfer rate and cell density:

high cell densities are favorable to transfer. This result also formalized the fact that a

plasmid with little or no transfer ability will need to bring some advantage to its host

to overcome segregation. Reversely, a plasmid with a given cost will need some minimal

transfer ability to be maintained in the population as a parasitic element.

Plasmid rate of transfer is thus a key parameter of plasmid maintenance in populations.

To be able to compare transfer among studies, where the cell densities, donors to recipients

ratio and conjugation time can vary, the intrinsic plasmid transfer rate coefficient γ has

been introduced [Levin et al., 1979]. Transfer is assumed to depend on random encounter

between donor and recipient cells, following a mass-action law. γ is then defined as the

proportionality constant that gives the number of new transconjugants over a given period

of time, as a function of the densities of plasmid-bearing (donor) and plasmid-free cells

(recipient) cells:

Ṫ = γ ×D ×R

with T (transconjugants), D (donors) and R (recipients) expressed in cells mL−1. Ṫ is

the change in the number of transconjugants in a unit of time, γ is thus expressed in mL

cell−1h−1. γ can be estimated either with a short encounter of donors and recipients, or

by sampling at the end of growth, which is called the end-point method [Simonsen et al.,

1990] and relies on multiple assumptions, including a random distribution of cells, and

both equal transfer and equal growth rate for all cells in the population.

The intrinsic plasmid transfer rate coefficient is widely used when experiments are

coupled to modelling of plasmid transfer. However, experiments aimed at estimating the

actual invasion of populations often measure more intuitive parameters, like the proportion

of transconjugants compared to recipients (T/R), or compared to donors (T/D).

Diversity of transfer rates among plasmids and strains

In the laboratory, transfer rates are usually estimated by following antibiotic resistance

markers located on plasmids. With this method, R1 plasmid transfer rate measured

among natural isolates of Escherichia coli was shown to vary between 10−18 and 10−11 mL

cell−1h−1 [Gordon, 1992]. Other parameters concerning plasmid population dynamics were
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roughly estimated, under the growth conditions of Escherichia coli in the gut [Simonsen,

1991]. With those estimations, R1 transfer rate should be at least 10−10 cells mL−1 in order

for R1 to be maintained as parasitic DNA. It was thus concluded that the maintenance

of plasmids as parasites is hugely unlikely.

However, both plasmid cost and bacterial densities are poorly known in reality, so lower

transfer rates could be sufficient to maintain plasmids. Moreover, it has been shown that

for the same plasmid R1, "amplifier strains" with high transfer rates can have a key role

in plasmid maintenance, even if present in low frequencies [Dionisio et al., 2002]. Transfer

ability was shown to vary over eight orders of magnitude among Escherichia species, and

adding an amplifier strain allowed plasmid invasion of recipients even when starting from

an initial donor strain with low transfer ability. The existence of amplifier strains with

high donor or recipient ability is itself a striking fact that I will focus on later, but in any

case it favors plasmid maintenance. Another feature favoring plasmid maintenance is the

phenomenom of transitory derepression shared by many plasmids [Lundquist and Levin,

1986], which can allow epidemic spread of plasmids in a new population of cells. Finally,

plasmid transfer will be strongly dependent on the environmental conditions, that will

influence bacterial densities and the regulation of transfer.

Plasmid horizontal transfer in situ

In natural environments, many parameters influence both the amount of horizontal trans-

fer and the actual spread of horizontally transferred plasmids, that additionally takes

selection of transconjugants into account [Slater et al., 2008a]. Horizontal transfer is mea-

sured by following plasmid-encoded phenotypes after the introduction of donor strains

in a given environment. One extensively used technique is to mark a plasmid with a

fluorescent marker, allowing detection by fluorescence microscopy: plasmids marked with

the green fluorescent protein (GFP) allow the detection of transconjugants with more

sensitivity compared to antibiotic resistance markers, because this method removes the

need for growth on selective agar plates [Hausner and Wuertz, 1999].

Studies of horizontal transfer in situ have generally shown the existence of "hot spots"

for horizontal transfer: environments where the total number of gene-transfer events is

high [Elsas and Bailey, 2002], usually soil or plant surfaces, or surfaces in aquatic envi-

ronments, which are characterized by high nutrient concentrations. Transfer is favored by

a high intrinsic conjugation rate, but also by high densities of both donor and recipient

cells, and by a local spatial structure that favors interactions between cells. In environ-
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ments with low cell densities, such as bulk soil, observed transfer frequencies are generally

below 10−5 transconjugants per donor cell. In conjugation hotspots, they can go up to

10−1 transconjugants per donor cell.

Many studies have concluded that the kinetics of transfer is profoundly different in

natural environments compared to in vitro studies: for instance, a plasmid was shown to

transfer more efficiently in the gut than what could be measured in vitro [Netherwood

et al., 1999]. A Bacillus thuringiensis plasmid that encodes genes for production of Bt

toxin was found to invade up to 80% recipient cells in host insect larvae, despite low

conjugation frequency in culture or in soil [Vilas-Bôas et al., 1998]. The regulation of

transfer probably often involves unknown signals or cues, that indicate environmental

conditions adequate for plasmid transfer, and are absent in laboratory conditions.

Finally, plasmid transfer can be favored in biofilms: biofilms are communities of bac-

terial cells associated with surfaces, generally enclosed in a extracellular matrix. They are

stable environments characterized by a high density of cells, with high metabolic activity

and numerous cell-cell contacts. Correspondingly, the frequency of conjugation has often

been shown to be higher in biofilms compared to liquid environments [Molin and Tolker-

Nielsen, 2003]. Conjugation can however be limited by the accessibility of recipients in

biofilms [Reisner et al., 2012]. Strikingly, plasmid conjugation itself has been shown to

promote biofilm formation [Ghigo, 2001], because of aggregation driven by conjugative

pili. This can lead to a positive feedback, favoring both biofilm formation and horizontal

transfer [Madsen et al., 2012]. The dynamics of tranfer in biofilms is still not well under-

stood, and would benefit from modelling studies that take into account the aggregation

driven by plasmids.

Conclusion: plasmid parasitic maintenance through horizontal transfer?

Rates of plasmid horizontal transmission are hugely variable across strains, plasmids and

environments. Horizontal transfer was thought to be too low to allow maintenance of

parasitic plasmids, but it can actually be greatly increased by mechanisms like transitory

derepression in recipients, or the existence of a few amplifier strains. In some cases, hor-

izontal transfer is indeed essential for plasmid maintenance in populations: for instance,

an Escherichia coli plasmid was shown to decline in frequency in the gastrointestinal tract

in the absence of conjugation. Conjugation allowed this plasmid to be stably maintained

[Bahl et al., 2007]. Strikingly, numerous plasmids are not transmissible by conjugation

or mobilization [Smillie et al., 2010]. They may transfer horizontally at low frequen-
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cies through other mechanisms, like exchange through nanotubes or co-integration within

other mobile elements. Still, absence of high transfer rates in these plasmids suggests that

they do not behave as parasites and have very low net costs to their host cells.

When transfer is necessary for maintenance, transfer seems to be indeed a parasitic

feature of conjugative plasmids. However, plasmid hosts can potentially control plasmid

horizontal transfer, as numerous chromosomal genes are involved in plasmid conjugation

and its regulation, and the same plasmid has hugely variable transfer rates, both among

strains and species [Dionisio et al., 2002]. This should allow coevolution between plasmids

and hosts to take place.

In a coevolutionary context, the existence of strains with very high transfer ability

requires an explanation. High transfer ability could be due to two reasons: either the

host is being manipulated by parasitic plasmids and high transfer ability has not actually

been selected for, or plasmid transfer actually benefits the host, which could explain

the selection of chromosomal genes favoring transfer. Plasmid transfer thus needs to be

studied in an evolutionary way with specific attention to the following questions: (1) what

are the selective pressures acting on it? and (2) how are they influenced by ecological

conditions and plasmid-host co-evolution?

General knowledge about the evolution of cooperation, conflict and horizontal trans-

mission suggests that both the fitness effect of plasmids on the host and the horizontal

transfer of plasmids will be strongly affected by plasmid-host coevolution. The focus of

my work will be the evolution of transfer ability, specifically viewed from the perspective

of the host. In the next chapter, I describe what is currently known about plasmid-host

coevolution, particularly concerning the evolution of transfer.
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Plasmid-host coevolution

Plasmids have various rates of horizontal transmission and can bring both costs and ben-

efits to their bacterial host. The net effect of all these factors can be an increase or

decrease of the host fitness in presence of plasmids, leading to either mutualism or par-

asitism. Additionally, the evolution of the bacteria-plasmid symbiosis is affected by the

level at which selection acts (within or among bacterial hosts), as well as by the horizontal

transmission rate. The resulting bacteria/plasmid coevolution can classically be analyzed

in terms of horizontal vs vertical transmission patterns described in Chapter I, seing plas-

mids as bacterial symbionts. However, because plasmids transmit genetic information

among hosts, the bacteria-plasmid symbiosis also has striking peculiarities we must con-

sider. For example, coevolution also involves changes in the content of genes located on

plasmids vs chromosomes. In this chapter, I will summarize the current knowledge of the

forces shaping the coevolution between plasmids and their bacterial hosts.

III.1 Evolution of plasmids and transmission pathways

I first focus on the classical patterns of horizontal vs vertical transmission, excluding social

effects of symbiont transfer.

III.1.1 Plasmid-host coevolution with vertical transmission

Pure vertical transmission of symbionts is thought to be rare, and lead to an alignment

of interests between hosts and symbionts, as symbionts that do not provide a net benefit

to their hosts will lead to the extinction of their host lineage [Ebert, 2013]. Concerning

plasmids, while horizontal transmission can be absent or strongly reduced, vertical trans-

mission is always widespread. For many plasmids, no conjugation mechanism (self-transfer

or mobilization sequences) is known [Smillie et al., 2010]. These plasmids may still be

transmitted horizontally through other mechanisms, like transformation, but probably at

much lower rates. Lysogenic phages also undergo mainly vertical transmission (sometimes

as plasmids, as in the case of P1 prophage).
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Alignment of interests in the absence of transfer

Plasmid-host coevolution in the absence of transfer has been extensively studied in ex-

perimental coevolution studies. These studies were motivated by the issue of antibiotic

resistance, trying to predict if antibiotic resistant plasmids disappear in the absence of an-

tibiotics selective pressure. Experiments usually start with a parasitic plasmid imposing

a cost on its host, and have repeatedly found a decrease in plasmid costs to the host, with

sometimes even evolution towards mutualism, where the evolved plasmid brings benefits

to its host. Genes responsible for the change in plasmid effects can be located on the chro-

mosome, [Bouma and Lenski, 1988], the plasmid [Modi et al., 1991] or both [Dahlberg

and Chao, 2003, Dionisio et al., 2005].

Evolution can happen extremely rapidly: indeed, many studies did not even impose

a positive selection pressure on plasmid maintenance, so adaptations were selected before

plasmid loss occured, even for plasmids lacking stabilizing mechanisms like PSK [Harrison

and Brockhurst, 2012]. Adaptations can involve deletions of plasmid genes that are not

beneficial in the conditions of the experiment: for instance, a large deletion including a

tetracycline resistance gene was selected in the absence of tetracycline [Modi et al., 1991],

removing the cost of resistance gene expression.

In the case of conjugative plasmids, a decrease in plasmid conjugation rate can also be

observed [Dahlberg and Chao, 2003]. Here, horizontal transmission was theoretically pos-

sible, but not favored, as all cells initially carry the plasmid, effectively reducing transfer

rates due to plasmid exclusion. Reducing costly horizontal transmission favored plasmid

vertical transmission by favoring the host.

Within-host plasmid competition

Despite the alignment of interests between the plasmid and its host due to vertical trans-

mission, within-host competition is still possible if plasmid variants coexist in the cell.

Competition is thought to be limited, as vertical transmission leads to successive bot-

tlenecks in plasmid populations [Paulsson, 2002], decreasing the chances for long-term

coexistence of variants. Moreover, selection pressures acting among cells are stronger

than within cells: cell population size is generally higher than plasmid population size

within cells, allowing more efficient selection. Additionally, heritability at the group level

(groups of plasmids within cells) is very high, with reduced migration between groups

(even with high rates of horizontal transfer by conjugation, vertical transfer is still more

frequent at the cell level).
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In the context of within-host competition, plasmid horizontal transmission through

conjugation has two opposing effects. When conjugation happens to a plasmid-free cell,

it creates a bottleneck [Paulsson, 2002], as only one plasmid molecule is transferred during

conjugation, increasing relatedness between plasmids in each newly infected cell. However,

when conjugation happens to a cell bearing a competing plasmid (which is rarer because

of entry exclusion mechanisms), it increases the within-cell competition between plasmids.

But horizontal transmission will also influence plasmid-host coevolution in other ways.

III.1.2 Evolution of plasmid horizontal transmission

Horizontal transmission generally leads to a decoupling of hosts and symbiont interests,

which can favor the evolution of parasitism. In the case of conjugation, horizontal transfer

indeed can decouple plasmid and host interests, but also has other consequences on the

host cell that I will mention briefly, linked to biofilm formation.

A trade-off between horizontal and vertical transfer

As we already saw, horizontal transmission by conjugation is costly to the host ([Turner

et al., 1998]), which can decrease vertical transmission, materializing the trade-off be-

tween vertical and horizontal transmission described in section I.3.2. The selection of

either vertical or horizontal transmission is then thought to depend on the accessibility of

recipient, plasmid-free cells: in their absence, vertical transmission will be favored; with

many plasmid-free cells, vertical transmission will decline, being a less substantial part of

plasmid fitness.

When plasmid-free cells are present in a limited amount, vertical transmission is fa-

vored in the long-term: a competition experiment between R1 plasmid and its derepressed

mutant R1-16 (with 1000-fold higher conjugation rate) showed first a faster invasion by

R1-16, but then an increase in R1 frequency, as R1-16-bearing cells declined in frequency

compared to R1-bearing cells, and no plasmid-free cells were left [Haft et al., 2009]. When

the cost of horizontal transfer is high, transfer can also be counter-selected: for instance,

the exposure to male-specific phages was shown to select for the loss of plasmid con-

jugative ability [Jalasvuori et al., 2011]. Enforcing various rates of plasmid horizontal

transmission is complicated, as no direct selection of horizontal transmission is possible

(there is no extracellular phase that can simply be selected for, like in the case of phages),

and vertical transmission is always present. When the tradeoff between vertical and hor-

izontal transfer was first confirmed [Turner et al., 1998], the authors did not observe an
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effect on recipient availability on the evolution of horizontal transfer. This may be due to

the fact that the effective proportion of plasmid-free cells is constantly changing during

the experiment and is not always high. Indeed, mathematical models have shown that

increasing the rate of horizontal transmission can actually lead to more vertical trans-

mission at equilibrium, as the whole population is rapidly invaded [Lipsitch et al., 1995,

1996]. Predicting the evolution of either vertical or horizontal transmission based on the

assumed availability of recipient cells is thus difficult.

Moreover, the relationship between plasmid horizontal transfer and virulence to the

host is complicated by competition of plasmids within cells, which is also enhanced with

opportunities for horizontal transmission. Particularly, when the density of plasmid-

bearing cells is high, superinfection (secondary infection of a cell that already bears a

plasmid) can evolve between plasmids and bypass entry exclusion mechanisms [Smith,

2011]. The mechanism of superinfection is not known, but superinfection has been shown

to be highly deleterious to the host, leading to a tragedy of the commons with strongly

reduced final host density [Smith, 2012].

Horizontal transmission thus decouples plasmid and host interests, leading to accrued

costs to the host and indirectly allowing increased competition between plasmids.

Direct benefits of plasmid conjugation

Despite its costs to the host, plasmid horizontal transmission can also benefit the host

directly in some conditions. Indeed, plasmid conjugation very often enhances the forma-

tion of biofilms by host cells. Derepressed plasmids, that strongly express the conjugation

machinery, were first shown to allow biofilm formation in an Escherichia coli strain un-

able to form biofilms in the absence of plasmids [Ghigo, 2001]. At least in the case of F

plasmid, this is due to non-specific contacts, with conjugative pili acting as adhesion fac-

tors to both other cells and abiotic surfaces. Plasmids also influence biofilm formation in

other ways. They often bear other genes promoting aggregation, as for instance clumping

factors [Luo et al., 2005], or are involved in the regulation of chromosomal genes. For

instance, R1 plasmid induces a stress response and decreases motility [Yang et al., 2008].

Moreover, conjugation by itself is necessary for the spread of biofilm-related genes, as

it amplifies their expression. When plasmid-free recipients are present, epidemic spread

takes place with transitory derepression of transfer. In many cases, synergistic biofilm

formation is then observed when different natural strains are mixed, following conjugative

plasmid transfer [Reisner et al., 2006].
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In a chemostat-like environment, where sticking to surfaces is advantageous, biofilm

formation will represent a strong benefit of conjugation for the host cell. Biofilms may also

provide protection to cells, including protection against male-specific phages that target

conjugative pili, as phages have less access to cells within biofilms [May et al., 2010]. As

we saw in the previous chapter, biofilms themselves favor horizontal transmission through

a high proximity between cells. Increasing biofilm formation could then be seen as a way

to increase both vertical and horizontal transmission of plasmid genes.

Horizontal transmission strongly influences the coevolution between plasmids and their

hosts, and leads to both costs and benefits to the host. Still, we have analyzed here

coevolution in terms of the symbiosis between fixed host and plasmid entities, considering

only one type of host. As horizontal transfer can happen between unrelated hosts, another

consequence of horizontal transmission is plasmid host range.

III.1.3 Horizontal transfer and plasmid host range

Variation in plasmid host ranges

Plasmid host range is defined as the diversity of host species in which a plasmid can be

maintained [Bahl et al., 2009], and is hugely variable across plasmids. A narrow-host-range

(NHR) plasmid is present in only a few bacterial species or genera, like IncF plasmids

that are confined to Enterobacteriaceae. On the other hand, a broad-host-range (BHR)

plasmid can be maintained in very different host species. IncP plasmids, for instance,

are able to be transferred to and replicate in most Gram-negative species. BHR plasmids

often carry specific adaptive traits, like multiple replication proteins used in different hosts

[Adamczyk and Jagura-Burdzy, 2003].

Host range is generally thought to be limited by the plasmid ability to replicate and

be maintained in distant hosts, rather than by the conjugation range itself. Indeed,

conjugation can happen between very distant organisms: the most striking example is

that of Agrobacterium tumefasciens T-DNA, that can be transferred by conjugation to

plant cells. Even the NHR F plasmid can be transferred to Pseudomonas bacteria, but

is not maintained after conjugation [Guiney, 1984]. Overall, the horizontal transmission

is generally a successful process but does not always imply long-term maintenance of

plasmids in recipients.
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Evolution of plasmid host range

Plasmid host range can evolve and change with only a few mutations, often concerning

replication proteins, and either expand [De Gelder et al., 2008] or shift the host range

[Sota et al., 2010]. The evolution of host range can be seen as the evolution of generalist

(transferring between distinct hosts) or specialist plasmids (remaining in one host), with

a probable trade-off between the maintenance in one host and the ability to replicate in

others [Sota et al., 2010].

Plasmids that transfer frequently among distinct hosts will experience lower selective

pressures for mutualism towards each of these hosts. Moreover, being able to infect

different hosts can also benefit plasmids: for instance, the coexistence of hosts with varying

transfer rates was shown to favor plasmid maintenance [Dionisio et al., 2002, Dionisio,

2005]. "Amplifier strains" provide efficient horizontal transmission, but suffer a high cost

because of the presence of male-specific phages, which leads to a high risk of both strain

and plasmid extinction when in isolation. Non-amplifier strains do not suffer such cost, so

ensure plasmid long-term maintenance in populations despite low horizontal transmission.

In some cases, horizontal transmission happens for mobile elements that are in reality

extremely specialized towards one host. This is the case of polydnaviruses in insect para-

sitoides [Strand and Burke, 2012] or Agrobacterium plasmid T-DNA [Otten et al., 1992],

both described in section I.3.3, that are transmitted to hosts where they are not stably

maintained (host insects and plants, respectively): transfer here benefits the primary host

in the short term but is not actually horizontal transmission in the evolutionary sense, as

mobile elements are not transmitted again from secondary hosts.

Long-term coevolution of plasmids and hosts thus also involves the issue of specializa-

tion. Specialization can also be analyzed at the level of genes, asking why a given gene

would be located on a plasmid or on the chromosome, which I will do in sections below.

III.1.4 The paradox of plasmid beneficial genes

Many plasmid genes are strongly beneficial to the host, at least in some environments.

A major question is thus to understand why genes are located on mobile elements, and

not on the chromosome [Eberhard, 1989, 1990]. Indeed, recombination between plasmids

and chromosomes happens frequently. Genes have thus access to both plasmids and

chromosomes on an evolutionary timescale. From the perspective of the host, beneficial

traits should be integrated into the bacterial chromosome, which would remove the cost
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of plasmid maintenance [Bergstrom et al., 2000]: cells with the beneficial gene integrated

into the chromosome would outcompete cells where this gene is on the plasmid. Except

for the genes that are involved in plasmid maintenance or infectious spread, the presence

of additional genes on plasmids must be explained by specific properties of these elements.

First, one specificity of plasmids, compared to the chromosome, is the increased gene

dosage. This can be selected when high gene expression is beneficial for the cell: for

instance, high concentration of an antibiotic can select, in the short term, for increased

copy number rather than rare promoter mutations [Thomas, 2004].

Secondly, another particular feature of plasmids is exactly their ability to transfer

horizontally. Besides the direct advantage of horizontal transmission for the plasmid as

a parasite, we must wonder whether the horizontal transmission could benefit either the

host, or some accessory genes, and in turn explain the location of those genes on plasmids.

III.2 Plasmids and the transfer of genetic information

The pool of genes that transfer horizontally by association to mobile genetic elements is

not random: different sorts of genes that are preferentially transferred can be identified,

in addition to the genes involved in plasmid maintenance and transfer.

III.2.1 Classes of horizontally transferred genes

Accessory genes: benefits in specific environments

A common feature of many plasmid genes is that they bring optional benefits to the host in

specific conditions or environments. This includes genes involved in antibiotic resistance,

in the degradation of specific substrates, or genes responsible for the host specificity

of pathogenic or mutualistic bacteria [Eberhard, 1989]. Accessory genes are thus often

involved in local adaptation of bacteria. Benefits of carrying plasmids have indeed been

shown to vary at short spatial scales and with environmental conditions in the case of a

plasmid coding for mercury resistance [Slater et al., 2008b]. This observation has lead to

the vision of mobile genetic elements constituting a "communal pool" of genes [Norman

et al., 2009] that are available, when needed, to procaryotic organisms in the environment.

In the same way, plasmids were considered as "agents of open source evolution" [Frost

et al., 2005]. Such plasmid role indeed has major consequences for bacterial evolution,

but does not explain why accessory genes are specifically found on mobile elements.

At the gene level, one argument for the presence of accessory genes on mobile elements
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is that mobility would allow them to persist without continued positive selection in a

given local population or a given genotype [Eberhard, 1990, Bergstrom et al., 2000]. In

a structured environment with only sporadic selection for accessory genes, they would be

regularly lost from populations that are not under this selection (for instance, presence

of antibiotics). However, if other populations are under selection at this point, the genes

will be maintained and will be able to re-infect initial populations

Sporadic selection can explain the observation of accessory, transiently beneficial genes

being located on mobile elements. However, it does not imply that the donor host directly

benefits from transferring accessory genes: receiving them is indeed beneficial, but favoring

competitors by providing them with a beneficial allele is not.

Genes involved in social interactions

Plasmids and other mobile elements also frequently bear genes involved in social interac-

tions between bacteria [Rankin et al., 2010]. Indeed, many emblematic social genes are

known to be mobile. Antibiotic resistance is in many cases a social trait, when it involves

degradation or inactivation of the antibiotic present in the environment: neighbouring

bacteria that do not participate in inactivation can still benefit from it. The most preva-

lent example of social antibiotic resistance is β-lactamases, secreted proteins that degrade

antibiotics extracellularly, and are predominantly located on plasmids [Barlow and Hall,

2002]. Spiteful interactions also involve mobile genes: bacteriocines are a widespread

example, and are very often located on plasmids [Riley and Wertz, 2002].

Many genes involved in the interaction between symbiotic bacteria and their hosts

are also located on mobile elements. For instance, the cholera toxin is located on a

filamentous phage that is characterized by high rates of transduction in the gut [Waldor

and Mekalanos, 1986]. Bacillus thuringiensis endotoxin gene, that causes host death, is

plasmidic, with high rates of conjugation in vivo [Vilas-Bôas et al., 1998]. For mutualistic

interactions, the trend is the same: in Synorhizobium meliloti, transferable plasmids bear

all the genes involved in nodulation and mutualistic nitrogen fixation for the host plant

[Blanca-Ordonez et al., 2010]. Interactions between bacteria and hosts can usually be

considered as social at the bacterial level, because the behaviour of a few cells influences

the response of the host to many bacteria, not only the ones performing this behaviour.

The pool of genes present on mobile elements can moreover be analyzed quantitatively.

The rigorous proof that some behaviour is social requires experimental work, but an

indirect indication of the social property of proteins is given by their localization: proteins
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are more likely to be involved in social interactions if they are secreted or present at

the surface of cells, where they can be used by, or interact with neighbouring cells. A

bioinformatic analysis of Escherichia genomes has revealed that genes predicted to encode

secreted proteins are overrepresented on plasmids or mobile regions of the chromosome

compared to non-mobile regions of the chromosome [Nogueira et al., 2009].

Genes involved in social interactions thus seem to have a strong evolutionary relation-

ship with mobile genetic elements. Here, contrary to the case of local adaptation genes,

gene transfer may have a beneficial effect on the donor cell, as it may modify the social

behaviour of the neighboring, recipient cell.

Mobilization of chromosomal loci at a low frequency

Finally, the existence of mobility mechanisms is in some cases linked to the random mo-

bilization of chromosomal genes at a low level. This is sometimes due to the rare event of

plasmid integration into the chromosome, as in the case of Hfr cells in Escherichia coli, or

to the errors in packaging during bacteriophage production (see section II.1). However,

some gene transfer mechanisms actually seem to have no other consequences than chro-

mosomal gene mobilization. Gene transfer agents (GTA), for instance, are involved only

in the transfer of random fragments of the chromosome [Lang et al., 2012] (see section

II.1.2). As genes coding for GTA production cannot be packaged in a single GTA particle,

this mechanism does not seem to be selected by allowing infectious spread of GTAs, but

is more likely the consequence of actual gene exchange between host chromosomes.

We can conclude that gene transfer has the potential to benefit the host, in more

or less direct ways, depending on the transferred genes: either because of the spread of

beneficial genes, or by effects on bacterial sociality. I describe both hypotheses in more

detail below.

III.2.2 Gene transfer benefits through obtaining novel genes

Novel genes could benefit the host in two ways: first directly, if the host receives a

beneficial allele through horizontal transfer, or more indirectly, if sexual recombination is

beneficial in a given environment.

Fitness effects of receiving plasmids

Recipient ability itself does not seem to be costly as reducing it requires active defense

mechanisms that are probably costly (see section II.3.2). Still, recipient ability can present
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a strong cost in very specific conditions, as recipients can die when donor cells are in excess,

which has been called lethal zygosis [Skurray and Reeves, 1973]. Lethal zygosis is not well

understood and is probably linked to membrane alterations. Cell death due to plasmid

reception is also reduced when entry exclusion genes are expressed [Garcillán-Barcia and

de la Cruz, 2008], but could still represent a significant cost if transfer is abundant.

More indirectly, receiving a plasmid can be either beneficial or costly for a bacterium,

as determined by the plasmid net effect on fitness. If the plasmid is costly for the cell,

defense mechanisms can be selected for. For instance, CRISPR-mediated immunity may

be maintained in the presence of costly plasmids [Levin, 2010]. Reversely, when genes

present on the plasmid benefit the host, defense mechanisms can be selected against.

When artificial selection of conjugation events is applied, deletions in the corresponding

CRISPR loci targeting the beneficial plasmid are found in the chromosome [Jiang et al.,

2013]. More generally, a negative correlation has been observed between the presence of

CRISPRs and multidrug resistance in Enterococci [Palmer and Gilmore, 2010].

The cell recipient ability, when it has short-term benefits for the focal cell, can thus be

selected. Gene recombination, or sex, may also be selected in more indirect ways, which

I detail below.

Horizontal transfer and the evolution of sex

Sex can be defined in various ways in bacteria: it has been thought to encompass any DNA

inheritance from a source other than the parent cell [Narra and Ochman, 2006], including

all mechanisms for horizontal gene transfer. However, other definitions insist on the fact

that the mechanisms considered should additionally be selected for due to the benefits of

genetic exchange themselves, by opposition to side-effects of mobile elements infectious

spread [Redfield, 2001]. Studies about the evolution of sex in bacteria generally focus

on chromosomal recombination [Levin, 1988], which can still be a side effect of plasmid

integration (the case of Hfr cells), or involve phage-like mechanisms (the case of GTAs).

Many theoretical studies have analyzed in which conditions gene recombination can

evolve [Otto and Lenormand, 2002]. One effect of genetic recombination is to reduce link-

age desequilibrium (non-random genetic association between alleles at different loci). This

allows beneficial mutations that arise in different lineages to be associated in the same

genome, reducing the phenomenon of clonal interference. Recombination can thus gener-

ate variability, by creating genotypes with new allele combinations. This is thought to be

beneficial in changing environments, where variability allows faster adaptation [Becks and
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Agrawal, 2012]. Benefits of sex have indeed been experimentally identified in bacteria.

For instance, a naturally competent Helicobacter pylori strain adapted faster to a new en-

vironment that its non-competent mutant, generating a fitness advantage for competence

[Baltrus et al., 2007]. Recombination mediated by F plasmid conjugation also increased

the speed of adaptation in Escherichia coli populations [Cooper, 2007]. Benefits of sex

can thus be an indirect benefit of the spread of mobile genetic elements.

Horizontal transfer benefits here not only mobile elements themselves, but also host

bacteria. Still, benefits of sex do not explain why some genes are transferred at much

higher frequencies than others, by association to mobile elements, particularly genes in-

volved in social interactions. Here, it seems that gene transfer could benefit not only

recipient cells, but also donors, as it can alter the behaviour of their neighbours.

III.2.3 Gene transfer benefits through bacterial sociality

Transferring mobile elements can act on social interactions in two ways. Mobile elements

can generally modify the fitness of recipient cells, which can participate to competition

between bacterial strains. Moreover, genes controlling specific social behaviours can be

expressed in recipients, with consequences for neighbouring donor or recipient cells.

Gene transfer and bacterial warfare

Mobile elements can have a deleterious effect on recipients, participating in bacterial

warfare. Such effect has mainly been shown with bacteriophages characterized by lysis

and lysogenization states. Bacteria that bear the lysogenic phage in an integrated form

are protected from lysis. When a small fraction of the population undergoes lysis, the

abundant produced virions can have a strong impact on susceptible competitor cells.

Strains of Salmonella enterica bear multiple functional prophages, which were shown to

confer a strong fitness advantage to strains that carry them in coculture with susceptible

strains [Bossi et al., 2003]. In an invasive context, biological weapons are more efficient

than toxins, as they are amplified on recipient cells [Brown et al., 2006]. However, the

advantage of bearing prophages is only transient, as phages can become lysogenic in

recipient cells, protecting them from further lysis [Gama et al., 2013].

When mobile elements act like biological weapons, their infectious transfer clearly

benefits the initial host, at least in the short term. However, plasmids have not yet been

shown to act as weapons. Plasmids would probably have a lower impact on the fitness
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of recipients than phages, as they do not lead to cell lysis. Still, plasmids with a higher

cost in recipients compared to donors could bring a competitive advantage to donor cells.

One potential observation of bacterial competition through plasmids is the fact that the

transmission of IncN plasmids by conjugation to Klebsiella recipients leads to the death

of the recipients [Rodríguez et al., 1995]. However, the mechanisms of death and the

selective pressures acting on it are not known and deserve more investigation.

Transfer of altruistic traits and bacterial cooperation

Transfer of genes coding for altruistic behaviours to recipients could be another benefit of

transfer for donor cells. As we have seen, the maintenance of public good production, like

other cooperative behaviours, is threatened by the spread of cheaters, which benefit from

the public good without producing it. It has thus been proposed that plasmid localization

of many public good genes can be explained by the fact that horizontal gene transfer helps

maintain cooperation. Two different explanations have been proposed:

(A) The first hypothesis relies on the enforcement of cooperation in previously non-

producing cells by horizontal transfer [Smith, 2001]. A public good gene, encoded on a

transferable plasmid, converts non-producer cells into producers after plasmid conjuga-

tion (Figure III.1, A and B). It should be noted that "enforcement" refers here to the

change in genotype of the recipient cell following cooperation gene transfer, and not to its

classical use in social evolution, that describes mechanisms favoring cooperation through

manipulating costs and benefits of cooperative behaviours ([West et al., 2007b], see section

I.1.2).

This hypothesis assumes that non-producing cells do not bear the corresponding plas-

mid. Plasmid transfer simply enforces cooperation through infectious spread, which com-

pensates for the competitive disadvantage of the producing allele. However, cheater plas-

mids bearing a non-producing allele are not considered in this model, even though these

plasmids will likely appear easily, for instance by deletion of the production allele from

a producing plasmid. If cheater plasmids have the same, or higher, transfer rate com-

pared to cooperative plasmids (Figure III.1-C), the infectious advantage of cooperative

alles disappears and cooperation is again threatened by the spread of cheaters, now at

the plasmid level [Mc Ginty et al., 2011].

The consideration of cheater plasmids suggests that enforcement of cooperation by

infectious plasmid spread is not a stable strategy, and does not explain the observed

localization of public good genes on mobile elements [Nogueira et al., 2009].
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Figure III.1: Enforcement hypothesis for the maintenance of cooperation,
adapted from [Smith, 2001]. A: in the absence of plasmids, producers (green) are outcom-
peted by non-producers (yellow). B: when the production allele (dark green) is located
in a plasmid (red circle), it can be transferred to non-producers (red arrows), convert-
ing them to producers: producers are maintained. C: when both the cooperative (dark
green) and cheater (blue) alleles are able to transfer horizontally (red arrows), benefits of
infectious transfer cancel each other, and producers are outcompeted again.

(B) The second explanation focuses on social evolution theory: most explanations

for the maintenance of cooperation rely on the existence of positive genetic relatedness

between actors and recipients of the cooperative behaviour. Relatedness should thus be

analyzed in the context of horizontal gene transfer. In the model we just described [Smith,

2001], there could be no positive relatedness, as the population was well-mixed. However,

the second model studied a patch-structured population, where patches can differ in

producer proportions, providing relatedness at the meta-population level [Nogueira et al.,

2009].

The model follows relatedness, as well as the effect of horizontal transfer. When hor-

izontal transfer is included in the model, it increases relatedness at the meta-population

level, as it increases the probability that two individuals in a subpopulation carry the

same allele by spreading this allele within the subpopulation. When any allele spreads by

infectious transfer within patches of a metapopulation, this has the net effect of increas-

ing the total variation in allele frequencies among subpopulations, which is equivalent to

increasing relatedness. This is a general result, and does not specifically focus on coop-

erative or cheating alleles. Still, as increasing relatedness favors cooperation, horizontal

65



Chapter III. Plasmid-host coevolution

transfer should generally promote cooperation in a structured population.

More detailed population genetics models have recently been analyzed, including both

population structure and producing/non-producing alleles, and confirming that both in-

fectious transmission and indirect effects on relatedness could favor the maintenance of

cooperative alleles by the two mechanisms described above [Mc Ginty et al., 2013].

Indirect selection of transfer through public good benefits

The goal of the two models just described was mainly to explain why cooperation genes are

located on plasmids, and to identify mechanisms that can maintain cooperation. However,

the maintenance of cooperation can itself be interpreted as an indirect benefit of horizontal

transfer: when cooperation is beneficial, this could allow transfer to be selected. This

could be a form of second-order selection, via the effect of transfer on cooperation.

Transferring plasmids to another population, or another species, can also be beneficial

if it makes recipients cooperate, even if the donor cell is not involved in the cooperative

behaviour itself. This can be seen as a case of manipulation via plasmid transfer. An

extreme example is the transfer of plasmid T-DNA to plant cells in Agrobacterium tume-

fasciens, where the transferred T-DNA induces the formation of tumours in plants, and

manipulates host cells to produce molecules that benefit bacterial growth (Figure III.2).

A segment of the virulence pTi plasmid, called the T-DNA, is excised and undergoes con-

jugation to cells of the host, where it is integrated into the genome and expressed [Otten

et al., 1992]. The T-DNA segment bears genes coding for the production of opines, spe-

cialized molecules that then can be used for growth by bacteria, and also growth factors

that enhance tumour formation [Platt et al., 2012].

Interestingly, bacteria do not contribute to the "cooperative" behaviour here, as the

T-DNA genes are expressed only in host cells. However, transferring the T-DNA is itself

a cooperative behaviour, as neighbouring cells that do not transfer it could still benefit

from opines secreted by the plant.

The induction of cooperative behaviours in recipient cells, either from the same pop-

ulation (promoting cooperation) or in another strain or species (manipulation) seems to

represent an indirect benefit of plasmid conjugation through gene transfer. This could

provide a selective pressure for the evolution of horizontal transfer, from both chromoso-

mal and plasmid genes sides.
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T"DNA&

opines&growth&

pilus&

tumour&hormones&

Agrobacterium-

tumefasciens&cells-
Host&vegetal&cell&

Figure III.2: Consequences of
T-DNA transfer by Agrobac-

terium tumefasciens. The T-
DNA is transferred through a con-
jugative pilus to host plant cells,
where it integrates into the nuclear
genome. The cell then synthetizes
both plant hormones, that lead
to tumour formation, and opines,
that are used for bacterial growth.

In conclusion, the coevolution between plasmids and their bacterial hosts is strongly

linked to the occurrence of horizontal transfer, which impacts the evolution of plasmids

into parasites or mutualists. Moreover, selective pressures also act at the gene level to

determine if genes are located on mobile elements or on the chromosome. Mobile elements

leading to genetic exchange among hosts can provide benefits of sex and of access to a

common gene pool to their hosts, including the possibility of changing the genotype of

the host’s social partners. The interactions between plasmids and their hosts create a

challenge I will address in the next chapters: understanding and quantifying the selective

pressures governing the selection of plasmid horizontal transfer exerted by the host.
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PhD project

In this work, I focus on the link between the selection of horizontal gene transfer and

cooperation in bacteria. The observed bias in the pool of genes present on mobile ele-

ments [Nogueira et al., 2009] suggests an evolutionary link between horizontal transfer

and cooperation. Modelling work has further shown that plasmid transfer could favor

the maintenance of cooperative behaviours [Smith, 2001, Nogueira et al., 2009, Mc Ginty

et al., 2013]. Moreover, the strong variability in transfer abilities in bacteria, on both

donor and recipient sides, is controlled by plasmid as well as chromosomal loci. Because

of this dual control, both will be able to respond to selective pressures acting on transfer

rates. To understand the evolution of plasmid transfer, selective pressures thus have to

be understood for both plasmids and chromosomes.

From the perspective of the host, transferring plasmids could be beneficial for various

reasons. One of them is the maintenance of cooperation; another is apparent competition

via parasites, in an inter-species context (where one bacterial species or strain would differ

significantly, in terms of coevolution with the plasmid, from a competing strain). Here, I

focus on an intra-species case, in the sense that I do not analyze interactions where donors

and recipients strongly differ in plasmid cost, plasmid gene expression or other traits, but

only in plasmid presence or plasmid transfer rate.

IV.1 Questions

I first focus on the hypothesis that plasmid transfer promotes the maintenance of cooper-

ation; in a second step, I analyze in which conditions transfer could be selected through

benefits to the host cell.

IV.1.1 Can plasmid transfer promote cooperation?

This question has been adressed with numerous mathematical models that I have pre-

sented in section III.2.3 [Smith, 2001, Nogueira et al., 2009, Mc Ginty et al., 2011, 2013].

These models provide insight into the ways in which plasmid transfer could promote co-

operation: either by direct enforcement of cooperation in recipient cells by transfer of
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cooperation genes, or by an indirect effect on population structure, changing the related-

ness of horizontally transferred genes. However, these models lack experimental valida-

tion. Particularly, they do not identify the rates of transfer that would be necessary to

provide the expected effect on cooperation. Moreover, some key constraints influencing

the process of conjugation in natural systems, like the physical ones, could be missed.

I thus aim here at testing the two hypotheses about the link between cooperation

and conjugation experimentally. Besides experiments, I will also use models to help

understanding population dynamics. By coupling the two research methods, I will test

the following two hypotheses (Chapter 2): (1) can transfer simply promote cooperation

by enforcement? and (2) can the indirect effect of transfer on relatedness provide for a

more stable maintenance of cooperation than (1), and under which conditions?

IV.1.2 Can cooperation promote plasmid transfer?

The second part of this work is to study if plasmid transfer can be selected because of

benefits to the bacterial host. This novel hypothesis has not been investigated before,

either in experimental or in modelling studies. We wish to understand how and when

plasmid transfer could be beneficial through its effect on the maintenance of cooperation,

and if this could in return select for transfer itself, despite potential transfer costs.

Plasmid horizontal transfer is obviously directly beneficial from the perspective of the

plasmid: it helps the plasmid to gain access to new hosts (unless the trade-off with vertical

transmission strongly disfavors horizontal transmission). Our hypothesis thus has to be

addressed separately in the cases of plasmid and chromosomal genes. Can chromosome

genes promoting transfer be favored at all? Can plasmid genes promoting transfer be more

strongly selected in the context of cooperation? Finally, what happens when selection acts

simultaneously on cooperation and on gene transfer? I will first focus on the selection

of chromosome genes controlling the transfer of a given plasmid, distinguishing between

donor and recipient abilities (Chapter 3). I will then analyze the simultaneous selective

pressures acting on transfer and cooperation genes from both plasmid and chromosomal

sides (Chapter 4).
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IV.2 Strategy

IV.2.1 Experimental approach

To answer these questions, I will separately manipulate both cooperation and conjugation

in our system. We chose a synthetic approach, where we independantly control public

good production and plasmid transfer. The synthetic system I adopted and modified

is described in Chapter 1: it is a combination of public good production genes from

Pseudomonas aeruginosa, and the transfer control system of Escherichia coli F plasmid.

This synthetic system is not a truly natural system, but a combination of well-studied

natural components. The main benefit of the synthetic approach is the reduction in the

risk of unwanted interactions: we can then study the effect of precisely the factors we

are interested in. Indeed, unwanted interactions could be especially prevalent in natural

systems: the maintenance of cooperation is influenced by many factors, particularly by

the existence of complex regulatory mechanisms in cooperative strains [Kümmerli et al.,

2009b, Xavier et al., 2011]. Plasmid transfer is also strongly regulated by host and environ-

mental factors [Frost and Koraimann, 2010]. A given cooperative behaviour and plasmid

transfer could thus be regulated by the same signal in a natural system. This could be due

to independant reasons (the signal indicating environmental conditions that are favorable

to both transfer and cooperation), or precisely to previous co-evolution of transfer and

cooperation, but distinguishing between both cases in laboratory conditions would be dif-

ficult. Concerning horizontal transfer, naturally occuring plasmids carry genes involved

in many traits, which could lead to side-effects unrelated to the hypothesis we want to

test. Moreover, adding fluorescent markers to the strains and plasmids used allows us to

precisely follow both transfer and competitors. With this system, I compete strains or

plasmids that differ in public good production or transfer ability, but not in other traits

except fluorescence.

Finally, the experimental set-up involves either well-mixed populations, or a simple

meta-population that consists of patches of well-mixed populations with varying pro-

portions of competitors, providing non-random population structure and following the

approach of [Chuang et al., 2009].

IV.2.2 Modeling approach

First, I created a detailed model of the population dynamics of bacterial strains, plasmids

and transfer (Chapters 2, 3 and 4). I used numerical solutions of differential equation
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systems that closely follow the experiments, and are parametrized based on experimental

estimations. Using such modeling approach allows for a deeper understanding of the sys-

tem dynamics and the effect of transfer on it. We are also able to vary the transfer rates

and other properties of transfer in a more flexible way than in the experiments, and avoid

or control for unwanted side-effects that still are unavoidable in experiments.

In addition to this detailed model, I constructed a more general one capturing the

selective pressures acting on chromosomal genes controlling transfer ability, in order to

broadly analyze the conditions that allow for selection of transfer and its interaction with

the evolution of cooperation (Chapter 3), which have not yet been described.
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Note about the structure of the results

My work has involved both mathematical modelling and experiments. The experimental

synthetic system is generally common to all experiments. I first describe it in Chapter

1, and detail the different parts of the system I have constructed and the experimental

protocol that I developed.

The three last chapters (2, 3 and 4), presenting both experimental and modelling

results, have been written as independent chapters, as I am in the process of submitting

them for publication as separate articles. For this reason, some explanations are repeated

in all of them, namely:

- Chapter 2 and Chapter 3 contain experimental results, and as such each of them

describes some of the associated strains, plasmids and protocols already presented in

Chapter 1.

- In Chapters 2, 3 and 4, mathematical simulations that closely follow the experimental

system are presented. Although presented independently, all the simulations are closely

related, and share much of the nomenclature.

Finally, additional experimental details are presented in Annexes: strains and plasmid

construction (Appendix A), identification of strains, plasmids and transfer by plating and

flow cytometry techniques (Appendix B).
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Chapter 1

A synthetic system for plasmid transfer and

public good production

To study the selection of both cooperation and horizontal plasmid transfer, we need a

genetic system with the following components:

(1) production and non-production alleles controlling the production of a public good

(2) transfer and no-transfer alleles controlling the transfer of the production and non-

production alleles. Transfer ability genes can be on the transferred plasmids (plasmid

control of transfer), or on the chromosome of the initial plasmid-bearing strains (chromo-

somal control of transfer). Chromosomal genes can also control recipient ability.

(3) a way to distinguish strains and plasmids, evaluate fitness and follow transfer.

To create such a system, I started from an existing synthetic system, constructed

to study public good production [Chuang et al., 2009]. I added plasmid transfer and

fluorescent markers to follow multiple genotypes and transfer, and obtained the synthetic

system I used in all my experiments, which I describe in this chapter.

1.1 Public good production and benefits

1.1.1 Description of the system

The published bacterial cooperation system [Chuang et al., 2009] consists of two strains

of Escherichia coli, called producers (P) and non-producers (NP) (Figure 1.1). Producers

constitutively express the RhlI enzyme, which produces the quorum-sensing auto-inducer

C4-HSL (N-butyryl-L-homoserine lactone). C4-HSL is a membrane-permeable molecule

that diffuses in the medium, and is able to induce gene expression in cells expressing the

rhlR gene. Both P and NP cell types express RhlR, and also bear a chloramphenicol-

resistance gene under control of the Prhl∗ promoter, localized on the chromosome. C4-HSL

binds to RhlR and induces resistance to low concentrations of the antibiotic chlorampheni-

col (Cm) in both P and NP cells. P cells can be identified by fluorescence, because the

public good production allele is linked to the GFP coding sequence, and both are located

on a plasmid that we call P+GFP. NP cells also bear a control plasmid, representing the
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non-production allele, that we call P−. Both plasmids share the same backbone with

SC101∗ origin of replication and a kanamycin resistance marker, and are generally refered

to as pZS plasmids (arising from the pZ vector system [Lutz and Bujard, 1997]).

 

 

 

P+GFP% P&%R
%

R
%

Figure 1.1: Original producer and non-producer strains (adapted from [Chuang
et al., 2009]). The RhlI enzyme synthetizes the Rhl autoinducer C4-HSL, which by binding
to the RhlR receptor induces expression of the catLVA sequence, coding for Cm resistance,
from the Prhl∗ promoter. In P cells, the rhlI gene is linked to GFP and localized on P+GFP
plasmid; NP cells bear a control P− plasmid. Plasmids have SC101* replication origin
and are maintained with kanamycin resistance genes (kanR).

1.1.2 Properties of the system

Expected properties of a cooperation system

This system has all the general characteristics of a public good system:

First, the public good production is beneficial at the population level (Figure 1.2-A):

the growth of a culture in the presence of Cm is strongly positively correlated with the

proportion of producers in the culture.

Secondly, producing the public good and GFP has a cost: producers decline in fre-

quency within populations. This cost corresponds to a 1.04 to 1.05 increase in NP fre-

quency per generation, in the absence of Cm [Chuang et al., 2009].

Finally, Chuang et al. showed that cooperation can be maintained in this system

by controlling population structure: they initiate a metapopulation that consists in 10

subpopulations with increasing proportions of P. The correlation between the growth of

subpopulations and producer proportions within subpopulations leads to a global increase

in producer proportion when pooling subpopulations, despite the local decrease in each

population (Figure 1.2-B). This result can be analyzed either in terms of multilevel selec-
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Fig. 2. Simpson’s paradox observed in a synthetic microbial system. (A

Figure 1.2: Benefits and costs of public good production from [Chuang et al., 2009].
Subpopulations containing producers and nonproducers mixed in 12 different proportions
were first grown in the absence of Cm and then diluted 100-fold into Cm at time 0.
A: Normalized growth of subpopulations in the presence of Cm as a function of initial
producer proportion. Dots indicate initial producer proportion pi in each subpopulation
i; the end of each line indicate final producer proportion p′

i. B: Initial (p) and final (p’)
proportions of producers after pooling all non-pure populations represented in A, squares
being predicted p’ values calculated by using the data from individual subpopulations of
(A). Each color represents an independant trial.

tion - individual costs and group benefits, leading to Simpson’s paradox [Chuang et al.,

2009] (see section I.2.3) - or in terms of Hamilton’s rule - relatedness arising from the

distribution of initial proportions within groups [Chuang et al., 2010].

Pre-induction necessary to obtain public good benefits

To enable the use of the Chuang et al. system in our work, we further characterized its

behavior. A key constraint is that a long pre-incubation with producers of C4-HSL is nec-

essary to induce Cm resistance in non-producers before adding Cm (pre-induction step):

if producers and non-producers are mixed only when confronted to the antibiotic, produc-

ing C4-HSL presents a direct advantage instead of a cost. Indeed, producers have already

been confronted to C4-HSL and expressed the Cm-resistance enzyme. Non-producers have

not, and cannot directly grow as rapidly as producers in the presence of Cm.

We tested the influence of pre-induction time on P relative fitness when mixtures of

P and NP were launched in the presence of Cm. 4 hours of pre-induction are necessary

to observe a net cost to producers (Figure 1.3). This result is likely a combination of two

effects: production of C4-HSL by producers depending on P density, then induction of

gene expression in non-producers.
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Figure 1.3: Effect of pre-induction time on P vs NP fitness. Stationary phase
cultures of P and NP were mixed equally with a 100-fold total dilution during a varying
pre-induction time. They were then diluted again by 100-fold and 6.25ng.µL−1 Cm was
added. The change in frequency of P after 12h of growth in the presence of Cm, at 37̊ C,
is shown as a function of pre-induction time.

Transient benefits of cooperation

Another feature of the system is that cooperation acts on the growth rate and not on

the final yield: when the concentration of Cm used is low (such as the 6.25 ng.µL−1

we use), cells manage to grow slowly even in the absence of C4-HSL. Thus, the benefits

of cooperation are transient: after enough time, all cultures will reach the same final

density, so the correlation between producers proportion and culture growth (that leads

to Simpson’s paradox) will be lost. We tested this effect by analyzing the kinetics of the

producer ratio.
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Figure 1.4: Transient benefits of co-
operation. The frequency of produc-
ers at the metapopulation scale (10-well
pools, blue) and within subpopulations
(red), with the same population structure
as in [Chuang et al., 2009] (see Figure
1.2), is shown as a function of time in
the presence of Cm at 37̊ C, after 12h of
pre-induction.

We confirm that the selection of cooperators is indeed transient, peaking around 7h

after the dilution in Cm-containing medium at 37̊ C (Figure 1.4). After this, subpopula-

tions with fewer producers manage to reach the same densities as populations with more

producers, and the benefit of production disappears.
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1.2 Plasmid transfer

1.2.1 Design of the system

As the cooperation system is based on growth in a metapopulation, with well-mixed

subpopulations that ensure efficient diffusion of the public good within them, the transfer

system should work efficiently in liquid. We chose to work with the F plasmid, one of the

best-studied Escherichia coli plasmids [Frost et al., 1994], that transfers by conjugation

at high rates in liquid cultures.

Mobilization of oriT in trans

F conjugation machinery recognizes a specific sequence, the origin of transfer (oriT ),

where it initiates transfer. oriT is normally localized on the F plasmid itself, but another

plasmid bearing oriT can be mobilized by the F machinery [Johnson et al., 1981] (see

section II.1.3). Based on this, we decided to insert oriT in the two pZS plasmid types

(P+ and P− described above, additionally containing fluorescence genes I will detail in

section 1.3: either GFP or YFP), creating respectively P+oriT and P−oriT, and provide

the conjugative machinery separately, with a helper F plasmid (Figure 1.5). F plasmid

should also be unable to transfer itself, as F transfer to recipients could affect the system

and the outcome of competitions. This can be achieved by mutating F plasmid own oriT

sequence (Figure 1.5).

FH!

oriT!

oriTm!

Transfer 
machinery!

Transfer 
operon!

pZS!

Figure 1.5: Design of the system: mobi-
lization of pZS plasmids by a mutant F
plasmid. FH plasmid is a helper F plasmid
bearing oriTm, a mutant oriT not recognized
by the F conjugation machinery coded by F
transfer operon. The transfer machinery acts
only in trans, and mobilizes the pZS plasmids
bearing the wild-type oriT (black arrow).

Mimicking plasmid or chromosomal control of donor ability

To mimic plasmid control of transfer (Figure 1.6-A), we compete pZS plasmids with or

without oriT, in experiments where all cells bear a F plasmid. Plasmids with oriT (T+)

can be transferred, plasmids without oriT (T−) cannot. For recipients to first receive

transferred plasmids, entry exclusion needs to be inactivated by a deletion in traS gene.

We call the F plasmid FHR (helper plasmid with recipient ability).
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Chromosomal genes known to regulate plasmid transfer are mainly global regulators

[Frost and Koraimann, 2010] (see section II.3.1), so mutating them would affect not only

transfer but also other functions of the cell. We mimic a chromosomal control of donor

ability without modifying the chromosome. To do so, we use one of two experimental

setups that will be used in Chapter 3: in the first one (Figure 1.6-B), donor cells can

mobilize pZS plasmids to both donor and non-donor cells (transfer can happen within

kin, see Chapter 3), as none of the cells express entry exclusion genes. Transfer ability is

controlled by the presence of FHR plasmid in the donor cells. In the second setup (Figure

1.6-C), transfer can happen only to a separate recipient strain (transfer does not happen

towards kin, see Chapter 3), as both donor and non-donor strains bear the non-mobile F

helper plasmid that expresses functional entry exclusion, called FHE. Donor strains bear

a pZS plasmid with oriT, so can mobilize it to recipients. Recipients are a separate strain

unable to transfer the plasmid, as they do not bear F plasmid.

A: plasmid transfer ability !

FHR!
oriT!

oriTm!

FHR! oriTm!

FHR! oriTm!
ΔtraS!

ΔtraS! Recipient strain 

Mobile plasmid 

Non‐mobile plasmid 

ΔtraS!

pZS 

pZS 

B: chromosomal donor ability within kin!

C: chromosomal donor ability to non-kin!

FHE!
oriT!

oriTm!

FHE! oriTm!

Recipient strain 

Donor strain 

Non‐donor strain 

pZS 

pZS 

FHR!
oriT!

oriTm!

Donor strain 

Non‐donor strain 

pZS ΔtraS!

oriT!

pZS 

FHR!

oriTm!

ΔtraS!

Figure 1.6: Control of donor
ability. Black arrows represent
mobilization of pZS plasmids by F
conjugation machinery; thick black
cell membranes represent func-
tional entry exclusion; pili repre-
sent the presence of F conjugation
machinery in the cell. A: Plas-
mid control of transfer. Plas-
mid transfer is controlled by oriT
presence on the pZS plasmid. traS
mutation suppresses entry exclu-
sion and allows transfer to recipi-
ents bearing FHR. B: Chromoso-
mal donor ability within kin.
Donor ability is controlled by FHR

presence in the cell, all pZS plas-
mids bear oriT. C: Chromoso-
mal donor ability to a separate
recipient. All transfer happens
from the initial donor strain bear-
ing FHE plasmid and a pZS plas-
mid with oriT to recipients.
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Mimicking chromosomal control of recipient ability

To control recipient ability, we use again F entry exclusion (see section II.3.2). Recipients

bear FHR with deficient entry exclusion, non-recipients (with strongly reduced recipient

ability) bear FHE (Figure 1.7).

F
HE
!

oriT!

oriTm!

F
HR
!
oriTm!

F
HE
!
oriTm!

Non$Recipient+

Donor+

Recipient+
pZS+

ΔtraS!
Figure 1.7: Control of recipient abil-
ity. Black arrows represent mobilization
of pZS plasmids by F conjugation machin-
ery; thick black cell membranes represent
functional entry exclusion inhibiting plas-
mid entry into the cell; pili represent the
presence of F conjugation machinery in the
cell. Donors and non-recipients bear FHE,
recipients bear FHR. Donors additionally
bear a pZS-oriT plasmid, which can be
transmitted mainly to recipients.

1.2.2 Mobilization of plasmids

The F plasmid should mobilize plasmids bearing oriT, without transferring itself. To this

end, I designed F plasmid mutants with different versions of oriT, and tested both their

ability to mobilize pZS-oriT plasmids and their own transfer rate.

Mutant oriTs

A mutant of F with deletion of the whole oriT, F-oriT::frt, was found to mobilize other

plasmids with low efficiency (see Figure 1.9 left). The deletion of oriT probably alters

expression of the nearby transfer operon (see Figure II.4). Thus, I then constructed

mutant oriTs that are close to the wild-type sequence, but should be poorly recognized

by the transfer machinery (Figure 1.8). First, the origin of transfer of R100 plasmid

1. F-oriT C A C C A C A C C C C A C G C A1. F-oriT

2. F-oriT-R100

3. F-oriT-7

4. F-oriT-78

C A C C A C A C C C C A C G C A

C A C C A C A C A C T A C G C A
C A C C T C A C C C C A C G C A
C A C C T C A G C C C A C G C A

R100

Figure 1.8: Sequences of F oriT mutants tested for mobilization efficiency.
The red line indicates the nicking site; deviations from the wild-type F oriT sequence are
highlighted in mutant sequences.

(from the same family that F) differs from F-oriT by only 2 nucleotides near the nicking
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site, which was shown to lead to 1000-fold reduction in transfer by F machinery [Harley

and Schildbach, 2003]. The other sequences F-oriT -7 and F-oriT -78 were also shown to

decrease the F-relaxase binding affinity in structural studies [Stern and Schildbach, 2001].

Mobilization efficiency

All mutant F plasmids except the one with oriT deletion mobilized pZS-oriT plasmids

at at high rate in liquid (Figure 1.9). Moreover, their self-transfer ability was strongly

decreased compared to the wild-type F plasmid. We chose to use the F-oriT -78 mutant as

FHE: its self-transfer is near the detection limit (the measured transfer rate corresponds

to only a few colonies recovered after 30-min mating at high densities) and 1000-fold

smaller than its mobilization efficiency for pZS-oriT plasmids.

1,E$14&

1,E$13&

1,E$12&

1,E$11&

1,E$10&

1,E$09&

1,E$08&

1,E$07&

F$oriT::frt& F$oriT$R100& F$oriT7& F$oriT78&

M
o
b
il
iz
a
(
o
n
*r
a
te
*(
m
L/
ce
ll
/h
)*

pZS$oriT&plasmid&

F&plasmid&

Figure 1.9: Mobilization efficiency by F mutants to the control recipient strain MG
NalR RifR. Results are a geometric mean of at least 7 replicates. Results obtained for
the two pZS-oriT plasmids (P+GFPoriT and P−oriT were pooled for each F mutant,
as they did not differ significantly from each other. Geometric standard deviations are
shown. F-oriT::frt self-transfer was never detected.

Interestingly, self-transfer of FHE, already very low when in association to pZS-oriT

plasmids, is completely undetectable when in association to pZS plasmids, ie in the ab-

sence of the wild-type oriT sequence in the cell (data not shown). The association of the

relaxase to the wild-type sequence probably favors the transfer of mutated sequences.

1.2.3 Entry exclusion in recipients

Entry exclusion caused by FHE

The mobilization rate is strongly reduced when recipients bear FHE compared to recipients

without a F plasmid (Figure 1.10). This reduction leads to only a few percent of plasmid

invasion overnight, compared to almost full invasion in its absence.
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Figure 1.10: Entry exclusion
caused by F plasmids. The mo-
bilization efficiency of P+YFP- oriT
plasmid to the control recipient strain
MG NalR RifR was measured with
FHE in donor cells and with or without
FHE or FHR in recipient cells. Results
are the geometric mean of 3 replicates,
standard deviations are shown.

This result implies first that transfer between cells containing F plasmids will be

strongly reduced if plasmids bear functional entry exclusion systems. This allows us

mimic chromosomal control of transfer to non-kin, as described before (Figure 1.6-B).

Reversely, entry exclusion will hinder plasmid control of transfer (Figure 1.6-A), so entry

exclusion genes need to be mutated in this set-up.

Entry exclusion with F traS mutant

With traS deletion, the recipient ability of cells bearing FH plasmid is restaured (Figure

1.10). In all experiments, we will use F-oriT-8 plasmid with traS deletion as the FHR

plasmid (helper with high recipient ability). Using this construct, we will be able to

study the selection of recipient ability by competing strains with FHR and FHE, and

mimic plasmid control of transfer by putting FHR in all cells.

1.3 Fluorescent markers for strains and plasmids

1.3.1 Design of the system

Our goal is to follow at least two different competitors simultaneously in order to evaluate

fitness, and to follow transfer. To this end, we use a combination of fluorescent proteins

to distinguish strains and plasmids, that we follow with flow cytometry (see Appendix B

for a description of the flow cytometry analysis).

Choice of fluorescences

To mark the strains, we use either fluorescence genes located on non-transmissible plas-

mids, or a chromosomal marker. To mark plasmids and follow their potential transfer to

recipients, we use fluorescence genes located on plasmids themselves.

The exact combination of fluorescence markers used depends on the competition under
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study. Generally, one strain is marked with the red fluorescence protein (RFP) gene,

localized either on the chromosome or on a non-mobilizable plasmid (pSB plasmid). RFP

identifies either one of the two competitor strains, or distinguishes the initial donors from

recipients. Plasmids of interest (pZS plasmids, with or without oriT ) are marked with

distinguishable green fluorescent protein (GFP) or yellow fluorescent protein (YFP) genes.

I present here the setup we used the most (chapter 2 and chapter 3 section 3.3.2),

where RFP on the non-mobile pSB plasmid identifies recipients (R). Transfer results in

cells that are marked with two fluorescent proteins (Figure 1.11). The set-up implicitely

R,#Pi#

DPi#

R#

R,#Pj#

DPj#

pZS$ pZS$

pZS$pZS$

pSB$

pSB$ pSB$

Figure 1.11: Exemple set-up to follow two plasmids and strains. Recipients
(R) are distinguished from initial plasmid-bearers (D) with the RFP expressed by pSB
plasmid; two plasmids of interest Pi andP j are pZS plasmids that can be identified with
GFP and YFP. They can be mobilized to recipients (if they bear oriT, not shown here),
which leads to cells marked by two fluorescences.

assumes that transfer happens only from initial plasmid-bearers to recipients. This will

mostly be the case when mimicking chromosomal control of donor ability to non-kin,

thanks to the entry exclusion. However, with plasmid control of transfer or chromosomal

control of donor ability to kin (where entry exclusion is absent), who receives the plasmid

will mostly depend on strain frequencies: conjugation is governed by mass-action laws,

so transfer will mostly happen to recipients if recipients are the majority of cells. We can

quantify the process since the double GFP+YFP cells are apparent in flow cytometry.

Maintenance of markers

Chromosomal markers for the strains are stably maintained, but plasmid markers are

not, because of plasmid loss. The ideal way to maintain them would be to have specific

antibiotic resistance markers for each plasmid. However, when tested with ampicilline
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resistance, the antibiotic marker lead to a huge delay in growth. This is probably due to

the high cost of bearing multiple plasmids and antibiotic resistance genes. We thus work

only with the initial antibiotic marker, kanamycin. pZS plasmids and the pSB plasmid are

both kanamycin-resistant, but have different replication origins to avoid plasmid incom-

patibility (Figure 1.11). Initially, all plasmids are maintained with kanamycin. As transfer

happens, one of the plasmids could possibly be lost in recipients, but these events should

be rare, as experiments are done on a time-scale of few generations. We confirmed this in

our experiments: we do not observe any decrease of RFP fluorescence for populations of

recipient cells that received pZS plasmids (data not shown).

Final combinations of genotypes and their phenotypes

I cloned the genes for YFP and GFP in association with all pZS plasmids, with or without

oriT (see plasmid maps, Appendix A). Transfer from donors is controlled by the combi-

nation of oriT sequence on the pZS plasmid, and the presence of a F helper plasmid in

the cell; recipient ability is controlled by the traS allele present on F (table 1.12).

Property Phenotype Genotype (pZS plasmid) Genotype (host)

public good production P+ rhlI -

P− - -

strain donor ability D+ oriT FHR

- to kin D− oriT -

D+ oriT FHE

- to a separate strain D− - FHE

strain recipient ability R+ - FHR

R− - FHE

plasmid T+ oriT FHE

autonomous transfer T− - FHE

fluorescence green GFP -

yellow YFP -

red - RFP

Figure 1.12: Summary of the relevant strain and plasmid phenotypes and
genotypes controlling them. Genotypes include genes on pZS plasmids, and "host"
non-mobile genes that can be localized either on the chromosome or on a non-mobile
plasmid.
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1.3.2 Combining transfer and fluorescence

At this stage, we have all the components needed to study the interplay between transfer

and cooperation. However, we have not yet tested how they behave when combined. The

following paragraphs describe the issues that arose when combining all the components

of the system, and their resolution.

The issue of temperature

We first needed to choose the temperature that would optimize plasmid transfer and

facilitate the best flow cytometry measurements. GFP and YFP are well distinguished by

flow cytometry at 30̊ C. However, populations of cells expressing GFP and YFP overlap

up to 10% at 37̊ C, because of the appearance of low-fluorescent cells in both populations,

that cannot be properly classified. This lead us to use 30̊ C for measurements of the final

system (with transfer, public good production and fluorescences). Unfortunately, transfer

efficiency is strongly reduced at low temperature (all our initial measures of transfer were

done at 37̊ C). Transfer efficiency decreases linearly with temperature, and is up to a

10-fold less at 30̊ C than at 37̊ C. This is confirmed by studies that have shown that F

piliation depends strongly on temperature [Novotny and Lavin, 1971, Sowa et al., 1983].

To resolve these issues, we settled on a compromise protocol: the growth during the pre-

induction step is at 35̊ C, where transfer happens quite efficiently, while all other steps

(including pre-culture of individual strains and growth in the presence of Cm) are done

at 30̊ C (see the final protocol in Figure 1.17).

Flow cytometry measurements

When testing the generic design shown in Figure 1.11, recipients are clearly distinguished

from initial plasmid-bearers with flow cytometry (Figure 1.13). Moreover, this distinc-

tion is stable over time as transfer happens, confirming that red fluorescence is not lost

from recipient cells on the timescale of our experiments, despite the reduced selection for

plasmid maintenance when two kanamycin-resistant plasmids are present in the cell.

GFP and YFP are also clearly distinguished in initial plasmid-bearing cells, without

any overlap between the fluorescences. The distinction is less accurate in recipient cells

after transfer (Figure 1.13), with up to 2.5% overlap between YFP- and GFP-positive pop-

ulations (measured by comparing separately grown populations). This overlap is mainly

due to cells with lower fluorescence intensity, that may have received a plasmid recently.
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Figure 1.13: An example of the
identification of cells and transfer
with flow cytometry. Initial plas-
mid bearers and recipients with or with-
out plasmids are first distinguished (A)
based on RFP fluorescence (Pe-Cy5-
H axis) and mixed GFP- and YFP-
fluorescence (FITC-A axis), then GFP
and YFP expressing cells are sepa-
rated with specific filters (AmCyan-H
vs FITC-A) for both recipients bearing
plasmids (B) and initial plasmid-bearers
(C). The flow cytometry analysis is de-
scribed in Appendix B.

Double transfer events

When two types of mobilizable plasmids are present, transfer with both GFP and YFP

plasmids may also happen to the same recipient cell. In the absence of entry exclusion,

it may further happen between initial plasmid-bearing cells. A key parameter controlling

transfer partners is the initial cell frequency, because plasmid transfer is governed by a

mass-action law: if initial plasmid-bearing cells are low in frequency, we only observe

cells with either GFP or YFP. When they are high in frequency, the distinction between

GFP and YFP populations is blurred in initial as well as in secondary bearers, which

corresponds to the appearance of cells containing both fluorescent proteins (Figure 1.14).

1.4 Combining transfer and cooperative behaviour

In the previous section I described the system that makes it possible to follow transfer of

two plasmids to recipient cells, and identify them accurately. Before starting experiments,

we must also examine the interactions between the transfer and the cooperation system.

1.4.1 Transfer affects the response to public goods

After dilution in the presence of Cm, we observed the appearance of a population of donor

cells with low green fluorescence when mixing donor strains (with both FHE plasmid and

pZS-oriT plasmids) with recipients (data not shown). Those cells are not clearly marked

by propidium iodide or other markers of death, but they do not grow on LB-agar plates.

This low-fluorescent population appears only in the presence of recipients, and is strongly
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Figure 1.14: Distinction be-
tween GFP- and YFP- pos-
itive cells. Separate mixes
of GFP-(blue) and YFP-(red)
plasmids donors with recipi-
ents are compared to a popula-
tion with both GFP- and YFP-
plasmids (green) in a mix with
recipients, with low (2.5%) or
high (25%) initial frequency of
plasmids.

reduced at 30̊ C compared to 37̊ C, suggesting a link with effective transfer. It moreover

affects more non-producers than producers, and adding C4-HSL to the medium further re-

duces this population. Finally, even with sufficient pre-induction time, P− donors decrease

in frequency in competition with P+ donors when adding Cm. All these observations sug-

gest an altered permeability to C4-HSL or a less efficient induction of gene expression by

C4-HSL, in some way linked to plasmid transfer.

We did not investigate further this behaviour, but searched for conditions that reduce

its effect on our experiments. The final protocol we settled on includes an additional

dilution step at 30̊ C, after transfer but before dilution with Cm (see the final protocol

in Figure 1.17). This step almost completely suppresses the low-fluorescent population,

probably because it decreases the expression of the transfer operon before cells are exposed

to Cm.

1.4.2 Modified public good benefits

Frequency-dependance of benefits

Studying the interplay between transfer and cooperation implies that the initial proportion

of producer cells will be reduced as recipients are added to the mix. We found the relative

fitness of producers in the presence of Cm to be frequency-dependant at low frequencies

of producers (Figure 1.15):
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When initially present in a frequency of 1%, producers appear to have an advantage

over non-producers (with huge variation across replicates) instead of a cost. When C4-

HSL is added, it restores the apparent cost of producers. Although the percent change

in frequency between populations with and without C4-HSL is higher for the initial 10%

frequency of P +, we expect that this difference arises from an increased number of genera-

tions when more public good is present. The frequency-dependance suggests a differential

benefit of low public-good concentrations for producers, which could be explained by

incomplete diffusion or intake of C4-HSL.

Poor induction of recipients

We observed that recipients bearing pSB plasmid grow poorly in the presence of Cm.

This is due to an inefficient response to C4-HSL, and not a lower basal growth in the

absence of C4-HSL: when C4-HSL is added exogenously, recipients are outcompeted by

initial plasmid bearers in the presence of Cm. The observed effect was unexpected: the

only thing that makes these cells different is that the RFP gene is localized on a plasmid

with higher copy number, which seems to affect the response to C4-HSL in an unknown

way. We did not observe poor growth in presence of Cm for recipients marked with the

chromosomal RFP marker.

Such growth difference could alter the conclusions of our experiments when recipient

and non-recipient strains are competed, or when plasmids are competed (as poor growth

of recipients will also decrease the plasmid fitness gain from transfer to recipients). Com-

petitions concerning recipient ability (Chapter 3) were done with chromosomally marked

recipients, avoiding this issue.
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Public good benefits with transfer

An implicit expectation for our system is that plasmids should have the same behaviour in

recipients as in the initial plasmid-bearers: the rhlI gene should be expressed in recipients

and promote growth in the presence of Cm as well as it does in donors. To confirm the

uniform plasmid behavior across strains, I measured growth in the presence of Cm for

mixes of producers and recipients, comparing producers with or without transfer ability.

After 13 h of growth at 30̊ C, transfer increases overall population growth when com-

paring populations with or without transfer, started with equal frequencies of initial

plasmid-bearing cells (Figure 1.16-A). The maximal benefit is observed for 30% of ini-

tial producers. Moreover, if growth is plotted as a function of the total percentage of

producers before dilution in Cm (including recipients that received P+oriT plasmid), the

curves become roughly similar for both strains (Figure 1.16-B). These results suggest that

recipients with P+oriT plasmid are effective at promoting growth: rhlI is expressed and

active.
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Figure 1.16: Effect of the transfer of the public good production gene on
population growth. Mixes of strains bearing FHE and P+GFP (no transfer) or P+GFP-
oriT (transfer) with recipients were diluted in the presence of Cm after transfer and
pre-induction. The optical density at 600nm (OD600) was measured after 13h of growth
at 30̊ C, and expressed as a function of the initial frequency of initial plasmid-bearers
(excluding recipients, A) or total plasmid-bearers (including recipients, B).
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1.5 Final set-up and discussion

1.5.1 The experimental system

Strains and plasmids

We have constructed multiple bacterial strains with a combination of production/non-

production, transfer/non-transfer and fluorescent alleles (see Figure 1.12). Depending on

the set-up (see Figure 1.6), those alleles can or cannot be transferred to recipients. We

can thus directly adress questions about the interplay between transfer and cooperation.

Additionally, we can use this system to study selection of transfer in the absence of public-

good cooperation (see Chapter 3 section 3.3.1).

Possible experiments using this system

We can distinguish two competitors (D+/D−, R+/R−, T+/T− or P+/P−), and the trans-

fer of two plasmids to recipients (Figure 1.11). We can thus do pairwise competitions in

the presence of recipients. The choice of markers (GFP and YFP) will be done as a

function of desired costs: the net apparent effect of production as well as transfer ability

should be costly. Surprisingly, transfer ability is actually costly in this set-up (see next

chapters), even when F plasmid is present in all cells: this means that here the transfer

itself is a significant part of transfer cost, and not only the pili production.

Transfer seems to be efficient enough for us to observe its consequences in our exper-

iments. Indeed, the transfer rates achieved in the experiments are high: instantaneous

transfer rates in liquid are more than 10−9 mL cell−1h−1, which is in the range of dere-

pressed plasmids like F itself [Simonsen, 1991]. Moreover, the transfer of production genes

increases benefits of cooperation, as needed (higher growth rate in the presence of Cm).

Precision and robustness of the system

As shown in section 1.3.2, the precision of flow cytometry measurements is good in the

absence of transfer (no overlap between populations). With transfer, the accuracy of

identifying genotypes declines, as populations of recipients with YFP- or GFP-expressing

plasmids overlap up to 2.5%. Unfortunately, this hinders very precise measurements

of plasmid fitness differences. Still, we are mainly interested in measures of among-

population selection, which remain possible: these measures rely on the distinction be-

tween among- and within-population changes, independantly from the precise boundary

between populations.
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As transfer is very efficient, cells with both GFP- and YFP-expressing plasmids may

appear when plasmid frequencies are high. This complicates the set-up, and goes against

simplifying assumptions from the models (no transfer between plasmid donors, recipients

are either producers or non-producers). However, as shown in section 1.3.2, this issue can

be limited by setting low initial plasmid frequencies.

1.5.2 The experimental protocol

The generic protocol

First, we mix cells with a 10-fold dilution of cultures previously grown to stationary phase

at 30̊ C (t0). Cultures then grow at 35̊ C up to an optical density (OD) of 3. Transfer

mainly happens at this step. We then dilute cultures 10-fold at 30̊ C and let cells grow

to stationary phase (OD around 5, t1). Finally, we dilute cultures 100-fold at 30̊ C in the

presence of Cm. Cultures grow until t2, at which point the experiment is stopped.

t
0
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C4-HSL dependant 
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1
! t
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Figure 1.17: Generic protocol merging transfer and cooperation. Black arrows
show growth conditions, with growth temperature indicated. Blue numbers indicate dilu-
tion, performed at the OD (600nm) indicated in black. The 5-fold dilution step is optional
and amplifies transfer.

Protocol constraints

Our initial experiments have shown that producers get a differential benefit when present

at frequencies below 2%, thus, C4-HSL has to be supplied exogenously. This will not

prevent us to study benefits of transfer, provided that C4-HSL is supplied in both with

and without transfer conditions, and that benefits of transfer are significantly higher than

benefits of this low concentration of C4-HSL.

Finally, the synthetic cooperation system was shown not to be robust at long time-

scales: Julien Bénard-Capelle (post-doc collaborator from INSERM U1001) found that

non-producers rapidly evolve to grow faster in the presence of Cm (unpublished data).
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The success of non-producers may be due to mutations in genes responding to C4-HSL

that allow for constitutive expression of Cm-resistance. Because of such genotype and

phenotype changes, the system can be only used for experiments on ecological but not on

evolutionary timescales.

1.5.3 Potential future system improvements

Fluorescence markers

Although the appearance of cells expressing both GFP and YFP is an issue in our exper-

iments, it corresponds to a real biological phenomenon: plasmid superinfection [Smith,

2011]. So far we excluded plasmid superinfection from our studies. Analyzing it is possi-

ble, but would require a change in fluorescence markers, as GFP and YFP are too similar

for their combinations to be accurately distinguished.

Changes in the public-good set-up

Another interesting modification of the system would be to change the response to coop-

eration. Currently, the response to public good presence is an increase in growth rate,

resulting in transient and thus unstable benefits. Potential effects of transfer can be ob-

served only during a limited window of time. Using effects on growth yield instead would

be more robust measurements, not restrained to a precise time interval. Such effects

would also correspond to the interesting situations in which cooperation gives individuals

the access to new ecological niches, for example the ability to consume new nutrients. An

option could be to replace the coding sequence for Cm-resistance by another gene like the

β-galactosidase coding sequence that allows growth on lactose. I attempted to do this

with the β-galactosidase, but with no success.

Modulating transfer and cooperation

It would be interesting to modulate the intensity of transfer or cooperation, instead of

having only two states (high/absent). We can change effective transfer rates by ma-

nipulating temperature and cell densities, but we do not have strains with intermediate

transfer or cooperation abilities. Moreover, no regulations of cooperation or transfer are

implemented. Absence of regulation allows us to rigorously study the selection of transfer

or cooperation abilities, but is quite different from real biological systems. We expect that

cooperation and transfer are generally present only when they can be efficient (at high

densities for instance), which probably strongly decreases net costs for these behaviours

[Kümmerli and Brown, 2010, Haft et al., 2009].
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Chapter 2

Genetic information transfer promotes

cooperation

2.1 Introduction

Microorganisms cooperate via the production of secreted factors such as signalling, ressource-

scavenging, virulence or anti-competitor molecules. These molecules generate shared ex-

tracellular benefits, or "public goods", that affect crucial processes defining population

growth and virulence of pathogenic bacteria. Public good molecules are costly to produce

but benefit not just the organism secreting them but their neighbours as well [Crespi, 2001,

West et al., 2007c]. Therefore, the maintenance of cooperative behaviours is threatened

by the spread of cheaters, individuals that benefit from cooperation without contributing

to it. Social evolution theory predicts that cooperation can be maintained when ben-

efits of cooperation are directed preferentially to organisms carrying cooperation genes,

as summarized by Hamilton’s rule [Hamilton, 1964a, Frank, 1998]: a behaviour will be

selected when r× b > c, where b is the benefit to recipients, c is the cost to the actor, and

r is the relatedness, or assortment, between actors and recipients of the behaviour.

Social evolution theory has been successfully applied to micro-organisms [Griffin et al.,

2004, Gilbert et al., 2007, Diggle et al., 2007b], highlighting numerous factors that can pro-

mote cooperation. Particularly, positive assortment or relatedness among cooperators can

arise through limited dispersal of relatives [Kümmerli et al., 2009a], or kin discrimination

[Strassmann et al., 2011]. However, the meaning of relatedness is particularly ambiguous

for bacteria. Bacterial genomes are extremely plastic, with high mutation rates and pe-

culiar forms of sex [Levin and Bergstrom, 2000, Narra and Ochman, 2006]: genes transfer

horizontally within and between bacterial lineages at high frequencies, mainly by associ-

ation to mobile genetic elements such as plasmids or phages [Thomas and Nielsen, 2005,

Frost et al., 2005]. Relatedness is therefore expected to be variable and locus-specific in

bacteria [West et al., 2006], as opposed to more homogenous relatedness patterns across

genomes determined by sexual reproduction in Eukaryotes.
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Cooperative alleles could actually benefit from horizontal transfer in two ways. First,

horizontal transfer of a cooperative allele may enforce cooperation by infection, converting

previous cheaters to cooperators [Smith, 2001]. However, this enforcement is predicted

to be unstable in the face of cheats [Nogueira et al., 2009, Mc Ginty et al., 2011], as a

non-cooperative allele will displace the cooperative allele when it also transfers horizon-

tally. Nevertheless, genes coding for cooperative traits are over-represented on mobile

elements [Nogueira et al., 2009, Rankin et al., 2010], suggesting some link between social

behaviours and horizontal transfer. To explain this trend, theoretical work suggests that

horizontal gene transfer increases locus-specific relatedness by spreading mobile alleles

within populations [Nogueira et al., 2009, Mc Ginty et al., 2011]. Genes associated with

mobile genetic elements will thus have higher relatedness than other genes in the genome,

which should favour cooperation at mobile loci. Both infection and kin selection could

then influence cooperation in complementary ways [Mc Ginty et al., 2013]. However, so

far there is no experimental evidence that either of those mechanisms is able to maintain

cooperation. Here, we conduct experiments and simulations to test whether transfer can

promote cooperation, either by pure infection or by increasing relatedness in structured

populations.

2.2 Design of the study

To study cooperation and transfer, we developed a synthetic system with independent

control of cooperation and conjugation in Escherichia coli. This system builds on a syn-

thetic cooperation system where cooperators are producers of a secreted public good (the

quorum sensing molecule C4-HSL) that provides faster growth in both producers and non-

producers in the presence of the antibiotic chloramphenicol, by activating expression of a

chloramphenicol resistance enzyme [Chuang et al., 2009]. Populations with varying pro-

portions of public-good producing bacteria can provide assortment between cooperators,

and the faster growth of populations enriched in cooperators leads to a case of Simpson’s

paradox, allowing transient selection of cooperation at the metapopulation scale [Chuang

et al., 2009].

We add plasmid transfer to this system to study the effect of transfer on coopera-

tion when producer, non-producer or both alleles are able to transfer by conjugation to

recipient cells (Figure 2.1). We use the conjugation machinery of the F plasmid [Frost

et al., 1994]: a helper F plasmid (FHR) mobilises the transfer of F-oriT bearing producer
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Figure 2.1: Experimental system. A: Experiment design. Public good producers
(P+, red) and non-producers (P−, blue) are mixed at t0 with recipients (R) in populations
with varying ratios of P+ to P−. T− plasmids (T−P+ and T−P−, pale colors) cannot
be transmitted. T+ plasmids (T+P+ and T+P−, bright colors) can be transmitted to
recipients, yielding respectively new P+ and P−. Populations are then diluted in chlo-
ramphenicol (Cm)-containing medium (t1), where subsequent growth (until t2) depends
on P+ proportion. B: Synthetic system for conjugation and cooperation. P+

cells express the synthase RhlI that produces Rhl auto-inducer (red dots), which diffuses
(red arrows) and activates expression of Cm resistance (CmR) in all cells. FHR plasmid
expresses F conjugation machinery and mobilizes plasmids bearing oriT (T+) to recipient
cells (black arrows), leading to RP+ and RP−, whereas plasmids without oriT (T−) are
not mobilized. C: Flow cytometry. Recipients are marked with RFP, plasmids with
YFP (P+) or GFP (P−). Initial plasmid bearers and recipients without or with plasmids
are first distinguished with green and red filters, followed by separation of P+ and P−

using green and cyan filters.

(P+) or non-producer (P−) plasmids to recipient cells (Figure 2.1-B). Recipients, P+ and

P− plasmids are marked with distinguishable fluorescent proteins to enable monitoring

of strain and plasmid dynamics using flow cytometry (Figure 2.1-C and Methods). This

synthetic approach allows us to study the effect of horizontal transfer without interference

from other processes or plasmid-host co-adaptation [Tanouchi et al., 2012].

In parallel, we use mathematical modelling to analyze more deeply the effects of

varying transfer, with realistic parameters derived from our experiments (see Methods).

Briefly, we follow the two plasmids P+ and P−, that can transfer by conjugation to re-

cipient cells (R) within populations. Public good production is costly and decreases the
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growth rate of cells bearing P+ plasmid, but benefits the population in the presence of

Cm, where the growth rate of cells is function of the proportion of P+-bearing cells in the

population.

2.3 Results

2.3.1 Enforcement of cooperation in a well-mixed population

We first model (Figure 2.2-A) and test experimentally (Figure 2.2-B) the effect of horizon-

tal transfer in a single well-mixed population where initially the majority of cells (97.5%)

are recipients. In the absence of transfer, producer plasmids are slightly outcompeted by

non-producer plasmids, as producer cells pay the cost for public good production (3%

decrease in P+ ratio, Figure 2.2 blue, p=0.03): cooperation is not maintained. When

P+ bear F-oriT, they are transferred to recipients. As expected [Smith, 2001], the trans-

missible producer plasmid outcompetes the static non-producer plasmid thanks to P+

invasion of recipients (Figure 2.2 green, p=0.004), leading to enforcement of cooperation.

However, P− plasmids also invade recipients in the same way when bearing F-oriT, dis-
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Figure 2.2: Transfer favors producers as well as non-producers in a well-mixed
population. Initial frequencies are 1.25% P+, 1.25% P− and 97.5% R. The change in
frequency of P+among all plasmids P+/(P+ +P−) is computed in the absence of Cm (t0
to t1). A: Simulated change in P+ frequency in the absence of transfer (blue point) and as
a function of transfer rate, when P+ (green line),P− (orange line) or both plasmids (red
line) can be transferred. B: Experimental change in P+ frequency depending on P+ and
P− transmission genotypes (association to T+ or T−), shown as means ± s.e.m. (N=9).

98



Chapter 2. Genetic information transfer promotes cooperation

favoring the selection of cooperation when P+ plasmids are not transmissible (Figure 2.2

orange, p=5.10-6). When both plasmids transfer at the same rate, the benefit of transfer

cancels out and producers are outcompeted again (7% decrease in P+ ratio, Figure 2.2

red, p=3.10-6). Thus, as predicted by theory [Mc Ginty et al., 2011], transfer is not

sufficient to maintain cooperation in a well-mixed population, if both P+ and P− alleles

are allowed to transfer.

2.3.2 Selection for cooperation in a structured population

We then move to a metapopulation consisting of distinct populations with varying pro-

portions of producers, providing positive relatedness, or assortment. Sufficiently high

relatedness can generate Simpson’s paradox: despite the local decrease in producer fre-

quency in each population, the global frequency of producers increases thanks to the

faster growth of populations enriched in producers [Chuang et al., 2009]. Our simple

metapopulation consists of two populations with different ratios of P+ to P− and a con-

stant proportion of R. Populations grow separately until t2, where the two populations

are mixed (Figure 2.1-A). We focus on the case where both plasmids transfer.

Simulations predict that under this simple population structure, adding plasmid trans-

fer to both plasmids (with the same transfer rate) will increase the global ratio of P+ to

P− plasmids across populations, allowing the selection of cooperation (Figure 2.3 inset).

We then confirm this behaviour with our experimental system: producers are outcom-

peted in the absence of transfer, but they outcompete non-producers when both plasmids

transfer, with a 10% increase in the frequency of P+ compared to P− thanks to transfer

(p=6.10-6, Figure 2.3 left). Thus, in a metapopulation setup, the direction of selection is

reversed thanks to transfer.

Increase of cooperation due to transfer could be the result of within- or among-

population dynamics. To distinguish between the two, we analyze plasmid dynamics

at the population level. The ratio of P+ to P− within each population does not increase

with transfer (Figure 2.3, right and inset), as observed previously in the case of a single

well-mixed population, confirming that we do not observe here a direct infectious benefit

of P+ plasmids. However, the part of the global P+ frequency explained by differential

growth among populations, which can be calculated using the parameter d (see Methods)

increases from 0.08 to 0.37 with transfer (p=4.10-5). Thus, the analysis of population

dynamics shows that transfer promotes cooperation by increasing among-population vari-
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Figure 2.3: Transfer selects for cooperation in structured populations. The
metapopulation consists of 2 populations, with initial P+/P- ratio of 1/4 and 4/1, and
97.5% R. The change in frequency of P+ among all plasmids P+/(P++P−) is computed
without (open columns) and with (filled columns) transfer of both P+ and P− plasmids,
and shown as means ± s.e.m. (N=9). The inset shows the simulated change in P+

frequency as a function of transfer rate, among (solid line) and within (dashed line)
populations, the shaded area indicating estimated experimental transfer rates.

ation in growth, which amplifies the effect of Simpson’s paradox.

2.3.3 Effect of transfer on population structure

This effect of transfer on among-population variation suggests a change in population

structure, and can be further analyzed in terms of relatedness coefficients describing the

association between alleles in the population [West et al., 2006] (see Methods for relat-

edness definition). We computed relatedness after transfer happens, but before coopera-

tion becomes beneficial (t1, see Figure 2.1-A). Relatedness at the producer plasmid locus

increases strongly with transfer, both in simulations and in experiments (p=0.01, Fig-

ure 2.4-A), while relatedness at a non-mobile locus (the producer locus considering only

founder P+ cells, excluding recipients) does not increase (it actually decreases, as founder

P+ cells decrease in frequency when they transfer P+ plasmid: p=0.005).

We then use simulations to further investigate the dynamics and effect of relatedness.

Following plasmid invasion, relatedness increases strongly after mixing plasmid donors

and recipients (Figure 2.4-B). This increase relies on the fact that plasmid transfer is a lo-
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Figure 2.4: Transfer selects for cooperation by increasing relatedness. Parameters
are the same as in Figure 2, except recipient’s proportion which is 97.5% for Figure 2.4-
A and 2.4-B, and 75% for Figure 2.4-C. A: Relatedness computed at t1, without (open
columns) and with (filled columns) transfer, shown as mean ± s.e.m (N=9). The inset
shows simulated relatedness function of transfer rate for mobile (solid line) and non-mobile
(dashed line) loci, the shaded area indicating estimated experimental transfer rates. B:
Simulated relatedness as a function of time, without transfer (dashed line) or with transfer
rate 8.10−10 at the cooperation locus P+ (solid line). C: Change in P+ frequency from
t1 to t2 in simulations as a function of P+ relatedness, with transfer within populations
(solid line) or randomized across populations (dashed line). Arrows indicate the direction
of increasing transfer rates, the dot indicating absence of transfer.

cal event that happens strictly within populations, which amplifies pre-existing variations

in producer proportions among populations and increases assortment at the metapopu-

lation scale. Increasing the rate of transfer in simulations leads to a parallel increase in

relatedness and in the proportion of producers (Figure 2.4-C, solid line).

To test if transfer indeed acts on cooperation through changing relatedness, we finally

prevent the effect of transfer on relatedness in our simulations. As the increase in related-

ness is due to within-population transfer, we simulated a global mixing of all transferred

plasmids across populations at t1, keeping other parameters constant. This treatment

actually causes a decrease in relatedness with transfer, as the proportion of producers be-

comes more homogeneous across populations (Figure 2.4-C, dashed line). Subsequently,

we observe a decrease in the P+ to P− ratio, despite no change in costs or benefits of co-
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operation, or in the total transfer events for both P+ and P−. Thus, simulations confirm

that the effect of transfer on cooperation is due to the local nature of transfer and the

resulting increase in relatedness.

2.3.4 Effect of epidemic spread among recipients

As the effect of transfer relies on the presence of recipients, we expect that the fate

of producers versus non-producers will be affected by variations in the proportion and

properties of recipients. In simulations, lowering the proportion of plasmid-bearing cells

in a population of recipients progressively decreases the strength of selection for producers

in the absence of transfer (Figure 2.5, black arrows). As fewer producers are present in

a population of recipients, they get less and less benefits from their own public good

production and are counter-selected. Adding plasmid transfer (Figure 2.5, red arrows)

restores the selection of producers, up to its maximal level when recipients are fully invaded

by plasmids: transfer effectively opposes dilution of producer genes by allowing plasmids

to invade recipients. Thus, transfer is more effective with a lower initial proportion of

plasmids.
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Figure 2.5: Transfer has a more pronounced effect when recipients are abun-
dant and amplify transfer. The metapopulation consists of 2 populations, with initial
P+/P− ratio of 1/4 and 4/1. Surfaces represent the change in frequency of P+ among all
plasmids P+/(P++P−) in the presence of Cm (from t1 to t2), as a function of transfer rate
and initial frequency of plasmids (P++P−). A: Change in P+ frequency when recipients
do not transfer plasmids. B: Change in P+ frequency when recipients also transfer plas-
mids. Black arrows indicate decreasing plasmid proportion, red arrows indicate increasing
transfer rates.

The effect of transfer will also depend on recipient’s subsequent transfer ability. We

compare here two extreme situations: recipients with the same transfer ability as donors,
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thus behaving as secondary donors, and recipients with no transfer ability at all. We

see a strong effect of recipients (Figure 2.5-A vs 2.5-B): transfer is more efficient when

recipients behave as secondary donors of plasmids (which is the case in our experiments),

especially when the initial proportion of plasmids is low. In the absence of secondary

transfer, initial donors do not convert enough recipients into plasmid-bearers to have a

strong impact, and effective transfer is low despite high transfer rates from initial plasmid-

bearers. We can conclude that the impact of conjugation on cooperation depends not only

on initial plasmid donors, but also on the behaviour of recipients. Transfer ability can

be highly variable in recipients, and this heterogeneity has been shown to lead to a huge

amplification of plasmid spread in bacterial communities [Dionisio et al., 2002].

2.3.5 Invasion of populations by rare production alleles.

In our experiments, transfer acts by amplifying the existing variation among populations

but it does not explain the origin of such variation, which we previously created by

fixing arbitrary ratios of producers to non-producers in initial populations. Variation in

frequencies of producers could arise through different mechanisms, like founder effects

or extinction and recolonisation in metapopulation dynamics. In the case of plasmid

genes, such variation will arise when a few plasmid-bearing cells colonise a population

of recipients. In this situation, we expect some synergy between infectious transfer and

public good production: the relatedness of producers will be too low for them to be

selected without transfer.

We simulated this process by applying strong dilutions to our simulated populations.

Such dilutions lead to stochastic differences between populations [Chuang et al., 2009],

with the number of founder cells in each population following a Poisson distribution. We

vary both the dilution factor of founder cells and the transfer rate of plasmids, and show

that producers are selected only when both the dilution and the transfer rate are high

(Figure 2.6). If dilution is not strong enough, the stochastic variation in the number

of founder cells is too low to provide sufficient difference in producer frequency across

populations. In the absence of transfer, the proportion of producers is too low to allow

for the selection of cooperation. Transfer simultaneously amplifies the variation created by

dilution and overcomes the scarcity of cooperators created by the dilution. Notably, the

producer as well as non-producer plasmids invade recipients thanks to horizontal transfer,

but producers outcompete non-producers thanks to their ability to exploit increasing
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Figure 2.6: Transfer allows rare producer genes to invade bacterial metapopula-
tions. The simulated metapopulation consists of 96 populations initiated from a strongly
diluted mix of (1%P+, 1%P−, 98%R), giving rise to Poisson distribution of P+ and P−

across populations. The change of P+ frequency among all plasmids P+/(P+ + P−) in
the presence of Cm (t1 to t2) is shown as a function of transfer rate and mean initial
number of plasmid-bearing cells per population, averaged over 20 simulations.

relatedness - generating the Simpson’s paradox.

2.4 Discussion

Both our experiments and simulations demonstrate that horizontal transfer favours coop-

erators in structured populations. In non-structured populations, transfer directly ben-

efits any transferred allele, but not particularly the producer one: cooperation can be

very strongly enforced by infectious transfer but only on a short timescale. As soon as

a cheating plasmid that can also transfer arises, the producer plasmids will lose their

infectious benefit. In contrast, horizontal transfer specifically favors cooperative alleles

in structured populations by increasing relatedness at the gene level, which ensures that

benefits of cooperation feedback on producer genes. This mechanism requires two condi-

tions: some initial variation in producer versus non-producer frequencies, and an initial

abundance of plasmid-free cells.

We first arbitrarily set a defined population structure in order to dissect population

dynamics, showing that the increase in relatedness at plasmid loci following transfer al-

lows cooperative alleles to be selected at these sites. We then study a case where the

initial population structure arises through strong dilution of plasmid-bearing cells lead-
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ing to stochastic variations in frequencies. Simulations show that conjugation allows

plasmid-encoded cooperative alleles to overcome rarity and invade bacterial populations,

the initial variation being amplified thanks to infectious transfer. This scenario could be

relevant in natural populations, with the migration of a few plasmid-bearing cells to a

new environment that contains only plasmid-free cells. Populations of plasmid-free cells

are probably encountered often, as a huge variability of plasmid distribution is observed

across bacterial isolates [Boyd et al., 1996]. Benefits and costs of carrying a plasmid are

also dependant on environmental conditions, which can change on a short spatial scale or

be frequency-dependant [Ellis et al., 2007]. In naturally varying environments, we thus

expect plasmids to be lost when disfavored, which will repeatedly ensure formation of

plasmid-free cells.

In conclusion, horizontal transfer can increase the parameter space where cooperation

is favoured, by infecting recipients and increasing assortment. In natural environments,

assortment can be the result of dilution and limited dispersal, but it will be opposed by

migration. Horizontal transfer amplifies assortment because it happens at a local scale:

conjugation, the most prominent mechanism of horizontal transfer, is necessarily local as

it requires cell contact. In that sense, horizontal transfer is similar to other clustering

mechanisms like multicellularity [Pfeiffer and Bonhoeffer, 2003, Koschwanez et al., 2011],

range expansion [Datta et al., 2013] or formation of groups [Powers et al., 2011], that

can lead to increased relatedness. However, its striking particularity is that it affects

only specific genes: in constrast with sexually reproducing organisms, the plasticity of

bacterial genetic systems and the efficiency of horizontal gene transfer lead to a very dif-

ferent relatedness for different genes in the same genome: relatedness can vary extremely

rapidly as horizontal transfer is decoupled from cell division (and can happen much faster).

Our results highlight the fact that in the context of cooperation, relevant relatedness is

measured at the locus controlling cooperation, and not at the whole genome scale [West

et al., 2006]. They can also explain the observed overrepresentation of social genes on

mobile genetic elements [Nogueira et al., 2009, Rankin et al., 2010], as these genes will

especially benefit from increased relatedness. Additionally, mobile genetic elements are

often associated with biofilm formation, another way of cell clustering, and plasmid con-

jugation itself has been shown to physically induce biofilm formation via conjugative pili

[Ghigo, 2001] or other genes [Madsen et al., 2012]. Biofilms will thus be another way for

mobile elements to increase relatedness. There, the increase in relatedness will not be

gene-specific, but will still preferentially favour cooperation genes. Reciprocally, biofilms
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are particularly favorable to horizontal gene transfer [Madsen et al., 2012], which could

increase its gene-specific effect on relatedness.

Finally, our work suggests that horizontal transfer could provide additional adaptive

benefits when associated with cooperative behaviours, and therefore cooperation may

influence selection on horizontal transfer mechanisms, and contribute to the observed

diversity in plasmid transfer rates among bacterial isolates [Dionisio et al., 2002]. In bac-

teria, cooperation would thus represent an indirect selection pressure for sex, defined as

any process selected by the benefits of genetic exchange [Redfield, 2001], additionally to

any existing advantages of transfer for mobile elements th emselves. Reciprocally, tar-

geting conjugation mechanisms [Lujan et al., 2007] could hinder cooperative behaviours

involved in the virulence of pathogenic bacteria by decreasing the range of conditions fa-

voring cooperation, in addition to preventing the dissemination of virulence and antibiotic

resistance genes.

2.5 Materials and methods

2.5.1 Plasmids and strains.

The background strain is JC1191, an E. coli strain that can grow in low concentrations

of chloramphenicol (Cm) in the presence of C4-HSL, thanks to the addition of Pseu-

domonas quorum sensing machinery [Chuang et al., 2009]: JC1191 contains the att::rhl-

catLVA(SpR) segment with both an Rhl auto-inducer-responsive promoter (Prhl∗) driving

an unstable version of cat responsible for Cm resistance, and the rhlR gene under the weak

constitutive promoter Pq
lacI , integrated into the chromosome with the spectinomycin re-

sistance gene SpR.

P+ plasmid carries an artificial operon of YFP and rhlI under control of the strong

promoter PR. RhlI enzyme produces the Rhl auto-inducer C4-HSL [Chuang et al., 2009].

P− plasmid carries GFP under control of PR. Recipients (R) bear pSB3K3-RFP plasmid,

that carries mRFP1 under control of the strong promoter PlacI . P
+, P− and pSB3K3-

RFP plasmids are maintained with kanamycin resistance genes.

To provide transfer ability, all cells bear the helper plasmid FHR, a mutant of pOX38::Tc

[Anthony et al., 1994] with reduced mobilization efficiency by the F relaxase (1000-fold

reduction compared to F), and a deletion of the traS gene primarily responsible for the

entry exclusion of F plasmid [Achtman et al., 1977]: recipient cells bearing FHR can re-

ceive T+ plasmids efficiently, and behave as secondary donors. T+ versions of P+ and P−
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plasmids additionally carry the wild-type oriT sequence of F plasmid. Genotypes and

relevant phenotypes of competitor plasmids are summarized in Figure 2.7.

A"

P$T+"

P$T$"

P+T+"

P+T$"

B"

R,"P$T+"P$T+"

R"

R,"P+T+"P+T+"

R"

Figure 2.7: Plasmids used in experiments and strain identification. Plasmids are
colored according to the fluorescence genes they bear. A: Plasmids used in exper-
iments. Plasmids are colored according to the fluorescence genes they bear. pSC101-
origin (pSC101*) bearing plasmids are responsible for transfer and production phenotypes.
P− and P+ indicate public good production status: P+ plasmids express rhlI synthase
and YFP ; P− plasmids express only GFP. T− and T+ indicate transfer status: T+ are
transferable as they bear F oriT. Recipients bear a compatible plasmid (with p15A repli-
cation origin) expressing RFP. p15A-origin and pSC101-origin bearing plasmids all bear
a kanamycin resistance gene (kanR). B: Identification of strains with plasmid fluo-
rescence genes. Initial strains are marked with only one fluorescence plasmid (the case
of T+ plasmids is represented here). With transfer, recipients bearing two plasmids arise,
and are identified by the combination of RFP and GFP or RFP and YFP fluorescence.

2.5.2 Growth and experiment conditions.

Cells were grown in Luria-Bertani (BD Difco) medium with 25 µg/mL spectinomycin (Sp,

Sigma-Aldrich) and 50 µg/mL kanamycin (Kn, Sigma-Aldrich), and with or without 6.25

µg/mL chloramphenicol (Cm; Sigma-Aldrich) and 0.75 µM C4-HSL (CAS# 67605-85-0,

Cayman Chemical). Experiments were conducted under well-mixed conditions with 5mL

medium in 50 mL tubes (Sarstedt).

For competition experiments, strains were mixed at various ratios (vol/vol) and first

grown from a 10-fold dilution (t0; Figure 2.1-A) into medium lacking Cm at 35̊ C, up

to an optical density of 3. This temperature allows transfer to happen, as F transfer is

strongly reduced at 30̊ C. When the initial frequency of P+ and P− plasmids was low,

this step was repeated with maximum 2 successive dilutions into medium lacking Cm in

order to increase plasmid transfer. Cultures were then diluted 10-fold until stationary

phase at 30̊ C, which allows pre-induction of Cm-resistance by C4-HSL in non-producer

as well as producer cells and enhances the fluorescence signal. Finally, for experiments
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involving cooperation, cultures were diluted 100-fold into medium containing 6.25 µg/mL

Cm (t1; Figure 2.1-A) and grown for 12 to 16 hours (t2; Figure 2.1-A) at 30̊ C. 0.75 µM

C4-HSL was added to the medium from the 30̊ C-dilution step for competitions with less

than 3% initial producers, as P+ were found to outcompete P− at low initial frequencies,

suggesting a differential benefit of very low public-good concentrations for producers. 0.75

µM C4-HSL (mimicking the production of 2.5% P+) restored the apparent cost of P+,

maintaining the configuration of the system in an altruistic state.

While transfer can happen from T+ to any of the cells present, our experimental

setup ensured transfer to happen mainly to R cells. T+ cells were placed in very low

initial frequencies, making transfer events with other T cells as recipients rare. Double

GFP+YFP positive cells, arising either from transfer between T+ cells or from transfer

of both P+ and P− plasmids to R cells, represented less than 2% of all cells analyzed

and were excluded from the analysis. Cultures were analyzed for strain and plasmid

proportions by flow cytometry.

It should be noted that markers are not stably maintained after transfer, as both T+

and pSB3K3-PlacI-RFP plasmids bear Kn-resistance markers, and one of the plasmids

could be lost without the loss of resistance of the cell. However, this problem is minimized

in our experimental set-up: both types of plasmids are compatible, as they have different

replication origins, and cells are cultured for only a short time period after the transfer

actually happens. In spite of potential for long-term marker loss, RFP fluorescence still

accurately identifies cells on the timescale of our experiments. Indeed, we see no shift in

the red fluorescence signal of transconjugants (that stays clearly distinct from the one of

donor cells) compared to recipients during our experiments (data not shown).

2.5.3 Data analysis

Selection of cooperation.

The selection of cooperation was evaluated at the plasmid level as the change in the

frequency of producer plasmids among all plasmids P+/(P+ + P−) , excluding recipients

that do not bear P+ or P− plasmids. The global frequency at the metapopulation level

was measured by pooling equal volumes of populations, effectively taking into account

differential growth among populations. The frequency within populations was computed

as the mean of ratios within populations, excluding the effect of differential growth. To

quantify the difference of within and among-population ratios in a normalized way across

experiments, we computed a coefficient d that represents how differential growth biases
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the global ratio. Let Y1 and Y2 be ratios in the two populations, and Ym be the global

ratio, d is defined by :

Ym =
(1− d)Y1 + (1 + d)Y2

2
(2.1)

thus

d =
2Ym − Y1 − Y2

Y2 − Y1
(2.2)

Relatedness.

Relatedness is defined as the measure of how an individual’s social environment covaries

with the individual’s genotype, which can be calculated as the linear regression coefficient

connecting an individual’s genotype with the genotype of its interactants [Damore and

Gore, 2012]. Here, we focus on the relatedness of the cooperation allele (P+), considering

that the social environment of an individual corresponds to the population it belongs to.

Let pi and ni be respectively the proportion of producers and number of bacteria within

population i (i ∈ (1, 2)), and ptot and ntot be respectively the proportion of producers and

number of bacteria in the metapopulation. Then, assuming populations are of the same

size, which is the case at t1, the relatedness of producers rP can be calculated as follows:

rx =

∑

i

pi
ni

×
pi
ptot

−
ptot
ntot

1− ptot
ntot

(2.3)

Statistical analysis.

Differences between conditions with and without transfer were tested with two-sample,

two-sided t-tests. The normality of distributions was confirmed with Shapiro-Wilkinson

tests, rejecting the null hypothesis of normality when p<0.05. When normality was re-

jected (Figure 2.2-B when both plasmids transfer; Figure 2.4-A, relatedness at the P+

locus), the non-parametric Wilcoxon signed-rank test was used instead of the t-test.

2.5.4 Model.

We model the dynamics of producer (P+) and non-producer (P−) alleles, carried on

horizontally transmitted, incompatible plasmids that can be transferred to recipients (R)

only. Producer cells pay a cost of cooperation c, non-producers do not.

Transfer happens at rates γ+p and γ−p respectively for P+ and P−, following a mass-

action law [Levin et al., 1979], and growth follows a logistic function saturating at carrying

capacity K, mimicking growth to stationary phase. Transfer saturates in the same way
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at carrying capacity K, as F transfer has been shown to strongly decrease when cells

approach stationary phase [Frost and Manchak, 1998].

We explicitely follow the experimental set-up by modeling the two steps: first pre-

incubation, where pre-induction of Cm resistance and transfer happen before cooperation

is needed (from t0 to t1), then growth in the presence of Cm, where growth rate depends on

the public-good concentration (from t1 to t2). We modelled the effect of the public good

in a simplified way by assuming that it is proportional to the proportion of producing cells

in the local population. During the pre-incubation step, the growth rate ψ is the constant

rate ψ1. In the presence of Cm, the growth rate ψ noted ψ2 depends on the proportion of

producers as follows: ψ2 = ψ0(1+ b×
P+

ntot
). General equations for growth and transfer are

common to both steps. We modelled two cases, with or without amplification of transfer

by recipients (that become secondary donors).

With amplification, initial and secondary plasmid donors are not distinguished:

dP+

dt
= [ψ(1− c) + γ+PR]× P+

× (1−
ntot

K
)

dP−

dt
= [ψ + γ−PR]× P−

× (1−
ntot

K
)

dR

dt
= [ψ − (γ+P P

+ + γ−P P
−)]×R× (1−

ntot

K
)

ntot = P+ + P− +R

Without amplification of transfer in recipients, initial plasmid-bearers (transmitters, T)

and recipients (R) are considered as separate genotypes:

dTP+

dt
= ψ(1− c)× TP+

× (1−
ntot

K
)

dTP−

dt
= ψ × TP−

× (1−
ntot

K
)

dR

dt
= [ψ − (γ+P TP

+ + γ−P TP
−)]×R× (1−

ntot

K
)

dRP+

dt
= [ψ(1− c)×RP+ + γ+P × TP+

×R]× (1−
ntot

K
)

dRP−

dt
= [ψ ×RP− + γ−P TP

−
×R]× (1−

ntot

K
)

ntot = TP+ + TP− +R +RP+ +RP−

The pre-incubation time from t0 to t1 was set to 12h after 100-fold initial dilution from

stationary phase cultures at carrying capacity, and growth in presence of the antibiotic was

allowed for 60h after a second 100-fold dilution. To analyze the effect of pure infectious
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transfer (Figure 2.2), changes in P+ proportion were computed from t0 to t1. When

cooperation was involved (all other simulations), changes in P+ proportion were computed

from t1 to t2. As the public good acts on growth rate, the benefit of cooperation is

only transient [Chuang et al., 2009] and t2 has to be chosen before all populations reach

stationary phase. For each simulation, t2 is defined as the time point where the selection

of P+ is maximal over all conditions tested.

Parameters values are shown below and were estimated from our experimental data:

Parameter Symbol Estimation

Carrying capacity K 4.109 cells mL−1

Growth rate in the absence of Cm ψ1 0.96 h−1

Growth rate coefficient in the presence of Cm ψ0 0.12 h −1

Benefit of cooperation on growth rate b 4

Cost of public good production on growth rate c 0.04

The rate of transfer γ (γ+P or γ−P ) was varied from 0 to 2.10−9 mL.cell−1L−1, which en-

compasses the range of transfer rates that can be measured, and knowing that derepressed

plasmids transferring at a rate around 10−9 mL.cell−1L−1 [Levin et al., 1979]. This rate

was divided by 10 in the presence of Cm, to mimic experiments where growth in Cm hap-

pens at 30̊ C and transfer is reduced. We did not attempt to measure γ experimentally,

as the transfer rate is not constant during the duration of the experiments (because of

successive dilutions and shifts in temperature). However, we can estimate an effective

transfer rate leading to the same plasmid invasion than observed at t1 in experiments.

Effective transfer rates vary from 5.10−8 to 10−9 mL.cell−1L−1 in our experiments.

To study the effect of relatedness on the selection of cooperation (Figure 2.4-C),

plasmid-bearing cells that arose from transfer (RP+ and RP−) were distributed in equal

proportions in the two populations at t1, keeping all other population parameters con-

stant, and relatedness was computed after mixing. To study the effect of strong cell

dilution (Figure 2.6), cells were distributed in 96 populations each of 10 µL, following

a Poisson distribution of parameter λ (λ ∈ [1 : 15] for P+ and P−) and 98×λ (for R),

ensuring an initial frequency of 2% plasmids. Because of the strong initial dilution, the

pre-incubation time was set at 24h and a second 10-fold dilution step was added before

t1. Results were averaged over 20 replicate simulations, as strong variance arises from

Poisson distribution. Computer simulations were conducted using MATLAB.
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Chapter 3

Indirect selection on chromosomal genes for

horizontal transfer

3.1 Introduction

Bacteria bear numerous mobile elements that have the ability to undergo horizontal trans-

fer between unrelated hosts [Frost et al., 2005]. Mobile elements are the main actors of

genetic exchange among bacteria, because they carry not only the genes involved in their

own maintenance and transmission, but also additional "accessory" genes. The collec-

tion of accessory genes is not random: some gene classes are overrepresented on mobile

elements. Specifically, plasmids often encode optional traits, beneficial only in some en-

vironments [Eberhard, 1989], such as genes for antibiotic resistance or specific substrate

metabolism. Mobile genes may also be involved in social interactions between cells [Rankin

et al., 2010], such as the well-known exemple of β-lactamases, responsible for extracellular

degradation of antibiotics [Yurtsev et al., 2013], or the secreted cholera toxin [Waldor and

Mekalanos, 1986]. Bioinformatic studies have confirmed that genes coding for secreted

proteins, ones likely to participate in social interactions, are overrepresented on mobile

elements [Nogueira et al., 2009]. The observed enrichment in some classes of genes raises

the question of gene mobility : why are some genes more mobile than others [Eberhard,

1989, Rankin et al., 2010] ?

Classically, horizontal transfer by conjugation has been considered as a parasitic fea-

ture promoting selfish plasmid spread [Turner et al., 1998]. Indeed, plasmid conjugation

is costly to the host: it decreases host growth rate and fitness [Turner et al., 1998, Haft

et al., 2009], and makes cells sensitive to male-specific phages [Jalasvuori et al., 2011]. At

the gene level, mobility could allow accessory genes to persist in the environment in the

absence of continued selection for these genes in a given local population [Bergstrom et al.,

2000]. In a structured environment with sporadic selection, genes can be lost from a given

population in the absence of selection but maintained in neighbouring populations from

where they can re-infect the focal population. This hypothesis, that focuses on selection
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acting at the level of plasmid genes, can explain the prevalence of optional genes on selfish

plasmids - these genes would particularly benefit from mobility - but not the prevalence

of social genes on plasmids. Also, in this scenario, the localization of specific genes on

mobile elements does benefit the plasmid, but not directly the host.

On the other hand, the transfer of accessory genes could be beneficial for the host.

Indeed, we must take into account that the mobility of a given gene can be influenced

by other chromosomal - less mobile - genes. Both plasmidic and chromosomal factors are

involved in the regulation of transfer in donor cells [Frost and Koraimann, 2010]. Diverse

defense mechanisms like restriction-modification systems [Luria and Human, 1952] or

CRISPRs [Marraffini and Sontheimer, 2008] also control the establishment of plasmids in

recipient cells. Actual transfer rates have been shown to vary greatly, up to eight orders of

magnitude for the same plasmid depending on host background [Gordon, 1992, Dionisio

et al., 2002], and both donor and recipient ability have been shown to be extremely

variable. The strong variation in host donor and recipient abilities remains to be explained,

and suggests that selective pressures can act on host genes to modify transfer rates. Two

potential benefits of transfer to the host have been highlighted:

Firstly, mobile elements have been described as constituting a "communal pool" of

genes [Norman et al., 2009] that are available, when needed, to bacteria. The localization

of accessory genes on plasmids and their horizontal transfer would generally benefit the

whole population, which would promote horizontal transfer. Recipient ability for ben-

eficial accessory genes can be directly selected here, as transfer to a recipient cell will

directly affect its fitness. For instance, CRISPR immunity was shown to be lost in re-

cipient cells in the presence of beneficial plasmids [Jiang et al., 2013]. However, benefits

for donor hosts are less obvious: the donor cell does not directly benefit from transferring

genes, and favoring competitors by providing them a beneficial allele does not seem to

be profitable. Population-wide benefits are thus not sufficient to explain how host genes

promoting costly transfer would be selected [Rankin et al., 2010]. Selection acting on

donor ability has to be analyzed more precisely in a social context, taking into account

both the costs and the benefits of plasmid transfer for a given host genotype.

Secondly, transfer can effectively manipulate recipient’s behaviour to its neighbour’s

benefit, particularly in the case of social genes. One major social behaviour is cooperation,

that includes public good production: the maintenance of cooperation is threatened by

the spread of cheaters, individuals that benefit from cooperation without contributing to

it [West et al., 2007a]. We have shown experimentally (Chapter 2) that the horizontal
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transfer of public good genes promotes the maintenance of public good cooperation in two

ways. Firstly, horizontal transfer can enforce cooperation in previously non-producing

cells [Smith, 2001]. Secondly, in a structured population, horizontal transfer promotes

cooperation even when non-producing plasmids also transfer (excluding a direct infectious

benefit for producing plasmids). The effect on cooperation is due to the local properties

of transfer, that increase relatedness for mobile alleles: new producer cells, arising from

transfer, are more strongly associated to other producers, favoring cooperation [Nogueira

et al., 2009]. Transfer promoting cooperation suggests there may also exist an indirect

benefit of transfer when cooperative behaviours are beneficial, allowing for second-order

selection of transfer through cooperation.

We thus focus on hosts, and analyze the selective pressures acting on chromosomal

genes controlling transfer ability, in order to understand if and under which conditions the

hosts can benefit from plasmid transfer. We first analyze theoretically selective pressures

in a general case where transferred plasmids can carry both private goods and public goods

genes, then distinguish between private and public goods for further analysis. Moreover,

we analyze separately the selective pressures acting on donor and recipient abilities. We

first use a general, direct fitness approach to generate predictions, which we test with

further experiments and simulations by competing strains that differ strongly in either

donor or recipient ability.

3.2 Selection of chromosomal control of transfer: direct

fitness approach

Here we model the consequences on host fitness of small changes in transfer rate, under

the control of host genes that are not transferred themselves. For the sake of simplicity,

we assume that the basal transfer rate is common to all plasmids, with no changes in

plasmid genes controlling transfer.

3.2.1 Description of the model

Our model uses a neighbour-modulated fitness approach, which partitions fitness into the

effect of an individual’s own genotype and the effect of social neighbors [Taylor and Frank,

1996]. We assume that the population is structured in distinct patches, and both the ef-

fects of social behaviours and horizontal transfer happen within patches. Indeed, conjuga-

tion requires cell-cell contact, so by definition it happens among neighbours. Furthermore,
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we assume that there is only one plasmid type in the population. Each individual in the

population is characterized by three different traits:

(1) The presence and effects of the plasmid in the cell. The plasmid may produce

public and private goods, that translate into a private effect xp on its host, and a public

effect yp on all individuals in the patch. In the case of public good production genes, xp

is negative (cost of public good production), and yp is positive (benefit of public good

presence). In the case of private good genes, xp is positive and yp is zero.

(2) The donor ability of the host, q. Donor ability confers a direct cost cq to the host.

The effect of donor ability at the group scale will depend on effective transfer in the patch

and plasmid effects in recipient cells, and is thus not explicitely modelled.

(3) The recipient ability of the host, r. Recipient ability has a direct effect cr to the

host which may be negative (cost of receiving) or positive (cost of immunity in cells with

low recipient ability). The effect of recipient ability at the group scale will, like the one

of donor ability, depend on effective transfer and plasmid properties.

Notations concerning those three traits are summarized in Table 3.1. We indicate

individual-level behaviours with lowercase letters, and patch-level behaviours (arising from

the sum of individual’s behaviours in the patch) with uppercase letters.

Property individual behaviour patch average individual effect group effect

good production p P xp yp

donor ability q Q cq ∆Pt, ∆pt

recipient ability r R cr ∆Pt, ∆pt

Table 3.1: Notations of the direct fitness model. ’Individual behaviour’ indicates the

intensity of trait expression in the focal cell, ’patch average’ the mean of trait expression

within a patch. All individual and group effects are effects on fitness W . ∆Pt and ∆pt are

proportions of cells that received transferred plasmids: they are not explicitely modelled,

but derived from genotype’s frequencies within patches (see text, Equations 3.2 and 3.3).

We assume that plasmid and host traits are distributed independently in the popu-

lation, ie plasmid presence in a cell is independant from the cell’s genotype concerning

donor or recipient ability.

We model first the effects of the plasmid genes, that can include genes coding for both

private and public goods, on the host fitness (W ). The private effect of plasmid genes on

cells bearing the plasmid is proportional to their level of expression (xp×p). At the patch-

level, public good production modulates population size (elastic population regulation
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with public goods), and the effect of plasmid public good production is proportional to

the mean public good production in the patch (yp × P ). Thus,

W = 1 + yp × P + xp × p (3.1)

Transfer modifies fitness directly, through the direct costs of transfer on the cell (cq

and cr), and indirectly, through the effects of the transferred plasmids: the indirect effects

of transfer are the changes in private and public effects of the plasmid genes in recipient

cells due to plasmid transfer. For simplicity, we assume that the plasmid effect is binary:

cells can have either p = 1 (plasmid-bearing cells) or p = 0 (plasmid-free cells), and P

is equivalent to the proportion of plasmid-bearing cells in the patch. Transfer happens

within patches, and leads to the appearance of new plasmid-bearing cells from previously

plasmid-free cells, at a rate proportional to cell donor and recipient abilities, and following

a mass-action law: it is proportional to the density of both plasmid-bearing and plasmid-

free cells [Levin et al., 1979]. Neglecting secondary transfer from recipients, we thus

consider that for a genotype with q donor ability and r recipient ability, the number of

transfer events is q × r × g × P (1− P ), g being the basal plasmid transfer rate.

For simplicity, we also assume that the total donor ability in a patch Q is the weighted

average of q for all genotypes present in the patch in proportion to their frequency, and the

total recipient ability in a patch R is the weighted average of r for all genotypes present

in the patch in proportion to their frequency. This is approximately the case when tested

in simulations in the absence of secondary transfer. Secondary transfer from recipients

leads to amplification of transfer, and the overall efficiency of transfer gets higher than

predicted by the arithmetic averages. Secondary transfer also has an impact on the total

amount of transfer across patches, as there is more transfer in patches enriched in cells

with high transfer abilities. We neglect this phenomenon here, but will analyze it in

simulations.

We use ∆Pt to mark the proportion of cells that received the plasmid in a patch

because of transfer, and ∆pt the proportion of cells sharing the focal genotype for host

traits (q and r) that received the plasmid in the patch. The mean proportion of cells that

received the plasmid following transfer in a patch ∆Pt is with our assumptions:

∆Pt = Q×R× g × P (1− P ) (3.2)
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where P and (1−P ) are respectively the frequencies of plasmid-bearing and plasmid-free

cells in the patch.

However, for cells sharing chromosomal alleles, the probability of receiving a plasmid

∆pt does depend on their own recipient ability r instead of the mean recipient ability in

the patch R, thus:

∆pt = Q× r × g × P (1− P ) (3.3)

Using P0 and Pt to mark the global proportion of plasmid-bearing cells in the population

before and after transfer, and p0 and pt to mark the proportion of plasmid-bearing cells

in cells with the focal genotype before and after transfer, yields: Pt = P0 + ∆P and

pt = p0 +∆p. Substituting Equation 3.2 and Equation 3.3 into Equation 3.1 (considering

fitness and thus proportions of plasmids after transfer), and adding direct effects of transfer

on fitness, yields:

W = 1+ yp[P +Q×R× g×P (1−P )] + xp[p+Q× r× g×P (1−P )]− cqq− crr (3.4)

Here we explicitely express fitness as a function of plasmid presence as well as added

effects that are due to plasmid transfer.

3.2.2 Selection of chromosomal donor ability

Model analysis

We analyze the consequences on fitness of a small change in donor ability q, by calculating

the derivative of W depending on q from 3.4. We obtain:

dW

dq
= g × P (1− P )× [ypR + xpr]×

dQ

dq
− cq (3.5)

g × P (1− P ) term acts on the efficiency of transfer: transfer is proportional to plas-

mid basal transfer rate, plasmid-bearing and plasmid-free cell frequencies. The effect of

transfer on fitness is a function of actual transfer events, and is stronger when P (1− P )

is high, ie when the plasmid is present in patches, but has not completely invaded them.

We distinguish between global and individual recipient ability: global recipient ability

within a patch affects the total transfer events in a patch, and thus the amount of public

good produced by the plasmid (ypR); individual recipient ability affects the individuals

plasmid-bearing status, and thus the private effects of the plasmid (xpr).

The dQ

dq
term, the change in patch donor ability given a change in individual donor
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ability, corresponds to the relatedness or assortment among cells concerning donor ability

q. dQ

dq
is positive when cells with higher donor ability within patches are associated with

each other more than randomly. Since all effects of transfer events are weighted by this

relatedness among donors, some structure in the population must exist in order for benefits

of transfer to feed back on donor cells.

The last term cq is the direct effect of transfer on the cell. When transfer is costly,

cq < 0. For an increase in transfer ability to be selected (dW
dq

> 0), benefits of transfer

(ypR + xpr when beneficial) weighted by actual transfer g × P (1 − P ) and relatedness

among donors dQ

dq
have to outweigh the cost of transfer cq.

Interpretation

Except the direct cost of transfer cq, all effects are indirect, as they act through the

transfer to recipients, and play a role on donors only through the assortment between

donor cells. Indirect effects can then be separated into private and public effects:

(1) yp is the public effect of the plasmid. Its effect on the selection of transfer increases

as a function of global transfer in the patch, which yields more public good production.

From the donor’s side, transfer to a related or non-related cell are equivalent.

(2) xp is the private effect of the plasmid on the recipient. Its effect on the selection

of donor ability increases as a function of the probability of transfer to a recipient of the

same genotype. If the genotype’s recipient ability r is 0, the private effect of the plasmid

will not play any role in the selection of donor ability (transfer to kin is not possible). If

its recipient ability r > 0, selection on donor ability will be modified by the direct effect

of the plasmid on fitness of related recipients.

We can focus on two extreme cases of transferred plasmids.

(1) Private effects only. For a plasmid with only private effects on its host (yp = 0),

the change in fitness depending on q is now (from Equation 3.5):

dW

dq
= g × P (1− P )× r × xp ×

dQ

dq
− cq (3.6)

Here, selection on transfer happens through plasmid effect xp on the fitness of recipi-

ents. For related recipients (when dQ

dq
> 0, so transfer is biased towards kin as cells sharing

high donor ability are clustered together), increasing transfer can be positively selected

for a plasmid with beneficial effects on fitness of the carrying cells, as it favors relatives

of the donor cells, providing that these cells have some recipient ability for the plasmid
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(r > 0).

(2) Public benefits only. For a plasmid with public effects, for instance one that codes

for the production of a public good, we have yp > 0 (benefit of the public good) and xp ≤ 0

(cost of public good production). Here, increasing transfer ability can be selected when

the total amount of transfer is high, leading to a high level of public good production

in the patch. But this will be hindered by the decrease in fitness caused by paying the

production cost in related cells that received the plasmid.

Equation 3.5 can be seen as a form of second-order Hamilton’s rule concerning donor

ability: increasing donor ability can be selected when the benefits of transfer, weighted

by relatedness between donors, outweigh the cost of transfer. This is complicated by the

fact that transfer acts in two ways, directly on recipients’s fitness, and indirectly on total

public good production.

Moreover, actual transfer depends on population structure parameters, particularly

the coexistence of both plasmid-bearing and plasmid-free cells within patches. A major

issue here is the possibility for the existence of population structures that would lead

to the selection of transfer. Indeed, the selection of transfer requires two apparently

opposed conditions. Firstly, the population has to be structured in a way that results in

a positive relatedness (preferential interactions) between the cells sharing donor ability

(dQ
dq
> 0). Secondly, for transfer to happen, plasmid-bearers must encounter plasmid-free

cells in order for P (1 − P ) to be maximized, which will be hindered by a strong spatial

population structuring where plasmid-bearing and plasmid-free cells will be separated. I

will address this issue by conducting simulations described below (see section 3.5).

3.2.3 Selection of recipient ability

Model analysis

We analyze the consequences of a small change in recipient ability r on fitness, by calcu-

lating the derivative of W depending on r from Equation 3.4. We obtain:

dW

dr
= g × P (1− P )×Q× [yp

dR

dr
+ xp]− cr (3.7)

cr is the direct effect of recipient ability. cr is positive if the immunity against plasmid

entry is an active and costly mechanism.

g × P (1− P )×Q term modifies the efficiency of transfer: transfer is proportional to

plasmid basal transfer rate, plasmid-bearing and plasmid-free cells frequencies, and global
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donor ability in the patch. The effect of transfer on fitness is function of actual transfer

events, and gets stronger when P (1− P ) increases.

Plasmid transfer acts in two ways: first through public good production, weighted by

the relatedness between cells sharing the same recipient ability (yp
dR
dr

). Increased public

good production following the appearance of new producers benefits all cells in the patch.

Secondly, transfer acts through the private effect of the plasmid on fitness of recipients

(xp). As the effect is direct, there is no weighting by relatedness among recipients here.

Interpretation

Contrary to donor ability, under these conditions the recipient ability can be directly

selected, when the transferred plasmid increases direct fitness of its host (xp > 0). For

isntance, this could be the case of antibiotic resistance plasmids in the presence of an-

tibiotics: cells able to receive the plasmids will be directly selected for, without need for

assortment among recipients.

In the case of a plasmid coding for public good production, however, we have xp < 0

and yp > 0. Here, benefits of cooperation can select indirectly for recipient ability, if

relatedness among cells sharing recipient ability( dR
dr

) is greater than zero: benefits from

the public goods produced in neighbouring plasmid recipients feedback on recipient cells.

As for the selection of donor ability, the structure of the population seems to have

opposite effects on relatedness and on the possibility for transfer to happen. This will be

adressed in simulations.

3.2.4 Summary of the direct fitness model

We summarize here the selective pressures acting on the chromosomal control of transfer

in our model, by separating the direct and indirect consequences of transfer on fitness,

and separating further the effect of transferred plasmids on fitness (Table 3.2):

Trait Direct effect

Effect through transfer ×gP (1− P )

on cell fitness
via public good

of the focal cell of neighbours

donor ability cq - r dQ
dq
xp RdQ

dq
yp

recipient ability cr Qxp - QdR
dr
yp

Table 3.2: Selective pressures acting on chromosomal transfer control for donor

and recipient abilities. Effects acting through transfer are weighted by the factor gP (1−P )

that acts on transfer efficiency.
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(1) Changing both donor and recipient abilities has a direct effect on fitness, linked to

the mechanistic cost of modifying cell donor or recipient properties.

(2) Transferred plasmids have a direct effect on cell fitness in recipients. This translates

into a direct effect of changing recipient ability for a given genotype. This also leads to

an indirect effect of changes in donor ability through the effect on the donor’s neighbours

that receive the plasmid, when these neighbours are related to the focal donor cell.

(3) Finally, effects occuring through public good production are similar for donor and

recipient abilities: both affect fitness generally when relatedness is non-zero.

In the model, we assumed very small changes in donor or recipient ability. However,

mutations affecting these traits can have a large effect. Moreover, this model does not

explore the population structure needed for relatedness to occur, or for transfer to be

maximized, and neglects the potential associations between q, r and p traits. In order

to investigate this, we move to simulations and experimental tests, where we now com-

pete strains that can bear a plasmid with genes involved in the production of either a

private good or a public good, and also differ significantly in transfer ability. Simula-

tions explicitely follow the experimental system, with realistic parameters derived from

our experiments (see Methods), and results from experiments and simulations are thus

presented together.

3.3 Selection for transfer in a simple metapopulation

Here we analyze the outcome of competition between two strains differing in transfer

abilities in a simple metapopulation that consists of two well-mixed populations with ar-

bitrarily chosen competitor frequencies. This set-up provides non-random assortment, or

relatedness, at the metapopulation scale. We start by assuming a given initial proportion

of plasmid-free cells, but will later vary proportions of plasmid-free cells.

3.3.1 Selection for transfer of private good genes

In our experiments we use antibiotic resistance genes, which are very often present on

plasmids, as an example of private good genes. The plasmids K carry the aph gene coding

for the Aph enzyme, which inactivates the antibiotic kanamycin and provides resistance.

Aph could theoretically also have a public effect, as it decreases antibiotic concentration

in the growth medium, but at the antibiotic concentrations used, resistant cells provide

no or very low protection to sensitive neighbours. The benefit of carrying a plasmid is
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extreme in presence of antibiotics: plasmid-free cells die and only plasmid-bearing cells

can survive and grow. In experiments described below, we focus on the selective pressures

acting on donor ability.

Design of the study

We focus on two strains that differ in the ability to donate the plasmids K: D+ strain

transfers plasmids with donor ability q, D− strain does not (Figure 3.1-A). For both D+

and D−, the same initial proportion of cells (called respectively D+
p and D−

p ) initially

carries K. In experiments, D+ et D− carry initially two versions of K, respectively K-

YFP and K-GFP, that can be distinguished as they bear respectively YFP and GFP

fluorescence genes. The metapopulation consists of two populations, s1 and s2, differing

in their D+ to D− ratio: s1 is enriched in D− cells, and s2 in D+ cells (Figure 3.1-B).

Cells are mixed (t0), then transfer and growth take place within populations. After growth

to saturation (t1), populations are pooled and diluted 100-fold in kanamycin-containing

medium, where only plasmid-bearing cells are able to grow, until saturation (t2).

A!

t0! t1!

B!

Non-donors! D-!

Donors!

Non-donors + plasmid!

Donors + plasmid!

D+!

D+p!

D-p!

t2!

s
1
#

s
2
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D+p
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D-p
!

FHR!

FHR!

D+
!

D-
!

kanR!kanR!
K! K!

Kn!

Figure 3.1: Selection of donor ability for private good genes: experiment de-
sign. A: Experimental strains. The two competing strains (D+ and D−) differ in
donor ability for plasmids K that code for antibiotic resistance (kanR), and fluorescence
(plasmid background color). D+ bears FHR plasmid that confers high donor ability with-
out interfering with recipient ability (indicated by pili), D− does not bear FHR and can
receive plasmids but not transfer them. D+

p transfers K plasmid to both D− and D+

plasmid-free cells (black arrows). B: Experimental setup. D+ and D− are competed:
initially (t0), a small proportion of D+ and D− cells (D+

p and D−

p ) bear K plasmids.
The metapopulation consists of two populations, s1 and s2, that differ in D+ vs D− ra-
tio. After growth and transfer from D+

p (t1), populations are pooled and antibiotic (Kn)
selection is applied: only K-bearing cells can grow to saturation (t2).
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Results

We follow the change in frequency of D+ strain from t0 (the beginning of the competition)

to t1 (after transfer, before antibiotic selection) to t2 (after antibiotic selection), when

K plasmids are initially present in 1% of both D+ and D− cells. In simulations, when
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Figure 3.2: Change in frequency of D+ strain transferring private good genes.
The metapopulation consists of 2 populations, with initial D+/D− ratios of 1/9 and 9/1,
and 1% K-bearing cells for each strain. The change in frequency of D+ compared to
D−, D+/(D+ +D−) is computed from t0 to t1 (before antibiotic selection) or to t2 (after
antibiotic selection) for the pool of s1 and s2 populations, and shown as means ± s.e.m.
(N=6). The inset shows the simulated change in D+ frequency as a function of its donor
ability q, from t0 to t1 (dashed line) and t0 to t2 (solid line), the shaded area indicating
estimated experimental transfer rates.

measured at timepoint t1 D
+ frequency slightly decreases with an increase in donor ability

(Figure 3.2 inset, dashed line) but at t2 it increases with an increase in donor ability

(Figure 3.2 inset, solid line). Experimental results show the same pattern: D+ strain

decreases in frequency at t1 compared to t0 (-4%, p=0.002), but then increases at t2 (11%

increase compared to t0, p=0.01). The decrease from t0 to t1 is caused in simulations

by the cost of transfer, assumed to be proportional to donor ability. In experiments, D+

bears a mutant of F plasmid, FHR which may impose a strong cost on the carrying cell in

comparison to D−, which does not bear any version of F. In both cases, the decrease at t1

suggests that the subsequent increase in frequency at t2 is due to selection for antibiotic

resistance, and not to a direct benefit of donor ability to D+ strain.

As antibiotics act by selecting for K-bearing cells, we next analyze the dynamics

of K plasmids to understand the observed increase in frequency of D+. Within each
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population, K plasmids are present in D+ and D− in proportion to the frequency of D+

and D− themselves at t0 and at t1 (Figure 3.3-A), both in simulations and in experiments.

This means that in well-mixed conditions, D+
p cells may transfer the plasmid to both D+

and D− cells, in proportion to their frequencies in the population (the slight decrease

observed in D+
p frequency follows the decrease in the frequency of D+ strain caused by

the cost of transfer forD+ cells). However, we observe a bias in the transfer to recipients at

the metapopulation level: D+
p increases in comparison to D−

p a few hours after t0 (when

transfer happens) in simulations as well as in experiments (Figure 3.3-A, black line).

Since the bias does not happen within populations, it must be due to among-population
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Figure 3.3: Biased transfer in simulations and experiments. A: Frequency of D+p
vs D−p function of time. The black line is the frequency in the metapopulation; blue
and red lines are frequencies within populations s1 and s2 respectively. Dotted lines
indicate frequencies of D+ vs D− (including both plasmid-bearing and plasmid-free cells;
they are superposed to D+p vs D−p frequencies within populations). Crosses indicate
experimental ratios for strains, circles indicate experimental ratios for plasmids. B: Total
proportion of plasmid-bearing cells in the populations s1 (blue) and s2 (red). Dots indicate
experimental proportions. Simulations and experiments are the same as in Figure 3.2.
Simulations focus on a strain D+ with donor ability q = 0.45.

dynamics. Indeed, total plasmid transfer is more prevalent in the s2 population enriched

in D+ cells (Figure 3.3-B), biasing transfer towards D+ cells at the metapopulation level.

Experiments and simulations thus confirm the major prediction of Equation 3.6: donor

ability can be selected when effective transfer is biased towards cells sharing high donor

ability, which arises through population structure.

3.3.2 Selection for transfer of public good genes

Here we examine the scenario in which the transferred plasmid carries public good genes.

As an example of public good genes, we use the public good system characterized in
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previous studies [Chuang et al., 2009, 2010]. The gene rhlI encodes the rhlI enzyme,

which catalyzes the production of a secreted public good, the quorum-sensing C4-HSL

auto-inducer (see Figure 3.4-A). C4-HSL provides faster growth in the presence of the

antibiotic chroramphenicol (Cm) in all cells bearing the cat gene under control of the Prhl∗

promoter. Based on these properties we use a plasmid with the rhlI gene as a public-good

plasmid (P+), and a plasmid without rhlI as a control plasmid (P−). Competitions aiming

to test the effect of public good production are done in a growth medium containing Cm,

where the public good C4-HSL is beneficial.

Design of the study

A! B!

D+p
!

R!

CmR!

D-p
!

FHE!
CmR!

rhlI!

Auto-inducer!

FHE!

rhlI!

Rp
!

CmR!

CmR!

rhlI!

oriT!

oriT!

t0! t1! t2!
Cm!

Recipients! R!

Recipients + plasmid!

Donors!

Non-donors!

Rp!

D-p!

D+p!

Cm! pool!

P+! P+!

Figure 3.4: Selection of donor ability for public good genes: experiment design.
A: Experimental strains. The two strains D+ and D− carry FHE plasmid (indicated
by pili) that mobilizes oriT -bearing plasmids and provides entry exclusion (indicated
by thick cell membranes). D+

p carries a plasmid containing oriT (PT+ plasmid, see
Methods), and can mobilize it to recipient cells R, yielding Rp cells. D−

p carries a plasmid
that cannot be mobilized (PT− plasmid, see Methods). Plasmids can be either P+ or
P−: the P+ plasmid coding for public good production is represented. Plasmids also
code for fluorescence, indicated by their background color. All cells can respond to the
auto-inducer produced by P+-bearing cells by expressing antibiotic resistance (CmR). B:
Experimental setup. D+

p and D−

p are competed. At t0, the metapopulation consists in
two populations differing in their D+ vs D− ratio, with the same proportion of R. After
growth and transfer (t1), cells are confronted to chloramphenicol (Cm), and subsequent
growth is dependant on auto-inducer concentration. Populations are then pooled and
measured at t2.

Based on Equation 3.5, the selection of donor ability for public-good producing plas-

mids should be possible because of feedbacks from public good production. Equation 3.5

also predicts that transfer to kin does not bring additional benefits - on the contrary, re-

lated cells suffer from the additional cost of public good production. The effects on donor
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cell fitness of this additional cost (cpr in Equation 3.5) would be difficult to distinguish

experimentally from the direct cost of transfer (cq in Equation 3.5). For this reason, we

chose to focus experimentally on the selection of donor ability to unrelated recipients. We

analyze the case of transfer to kin later, in simulations.

We use distinct strains as primary plasmid-bearers (D+
p and D−

p , that differ in donor

ability) and secondary plasmid-bearers (recipients, R). We compare situations which

differ by the presence of public good genes on plasmids. In the first condition, D+
p and

D−

p both bear a public-good production plasmid (P+), while in the second they both

bear an empty control plasmid (P−). D+ can transfer the plasmid to recipients (R,

leading to Rp), D
− and R cells cannot (Figure 3.4-A). The metapopulation consists in

two populations differing in their D+vs D− ratio (Figure 3.4-B). Cells are mixed (t0),

then transfer takes place within populations, similarly to the previous section. After

transfer (t1), populations are diluted in the presence of Cm, where population growth

is function of the concentration of C4-HSL produced by P+-bearing cells. Finally, at

t2 equal proportions of the two populations are mixed to evaluate frequencies at the

metapopulation level.

Results

We tested experimentally the case in which 75% of cells are initially R cells. Faster growth

is observed in the presence of Cm for populations enriched inD+ cells when the transferred
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Figure 3.5: Effect of transfer by D+ cells on population growth. The optical
density at 600nm (OD600) was measured after 14h of growth in the presence of Cm (t2),
in two populations differing in D+ strain proportion, and carrying either a public-good
production plasmid (P+) or a control plasmid (P−), that D+ can transfer. OD600 is shown
as a function of D+ proportion at t1. Results shown are three replicate experiments done
the same day.
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plasmid carries public-good genes (P+ plasmid) but not when it lacks them (P− plasmid)

(Figure 3.5). The difference suggests that selection can act among populations when

public good genes are transferred: transfer would yield benefits at the group level.

We then analyze the dynamics of the frequency of D+, in the experiments as well

as in simulations. Simulations (Figure 3.6 inset) predict that D+ cells are outcompeted

when a non-producing plasmid is transferred, and outcompete D− cells when production

of public goods from the plasmid genes increases. We observe the same behaviour with
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Public good production

Figure 3.6: Selection of chromosomal donor ability for public good genes. The
metapopulation consists of 2 populations, with initial D+/D− ratio of 1/4 and 4/1, and
80% R. The change in frequency of D+ from t1 to t2, D

+/(D+ + D−), is computed for
strains carrying a plasmid with (open columns) or without (filled columns) public good
production, and shown as mean ± s.e.m. (N=9). The inset shows the simulated change
in D+ frequency as a function of public good production rate by plasmid genes, among
(solid line) and within (dashed line) populations.

our experimental system: at the metapopulation scale (among populations, Figure 3.6

left), plasmid donor proportion tends to decrease when they transfer P− plasmid (1%

decrease among populations in D+ frequency, not significant, p=0.23), but outcompete

non-donor cells when they transfer P+ plasmid (14% increase in the frequency of D+,

p=0.002). Donor ability is thus selected here because of public good gene transfer.

To confirm that this effect is the result of metapopulation dynamics, we analyze strain

dynamics at the population level. The frequency of D+ compared to D− within each

population decreases in experiments as well as simulations (Figure 3.6, right and inset),
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with a 1% experimental decrease for both P+ and P− plasmid transfer (p=0.006 and

p=0.001 respectively): within populations, transfer is costly. The decrease confirms that

the selection of donor ability is not a direct benefit of plasmid transfer for the donor

cells within populations. However, the difference between among-population and within

population changes is strongly significant (p=0.001). Thus, the analysis of population

dynamics shows that host genes promoting plasmid transfer are selected when the trans-

ferred plasmid carries public good production genes. Selection is due to faster growth of

populations enriched in plasmid donors, which is strong enough to compensate for the

direct cost of transfer for donor cells.

This experiment further shows that some structure in the metapopulation is neces-

sary to observe selection of transfer, as donor ability is not selected within well-mixed

populations. The results are in accordance with the role of relatedness among donors in

Equation 3.5.

3.3.3 Selection of recipient ability for public good genes

Direct selection on recipient ability for private traits has been demonstrated with CRISPR

systems [Jiang et al., 2013]. We focus here on recipient ability for public good genes, and

use the same plasmids that in section 3.3.2. We assume that variation in recipient ability

confers no direct fitness cost to the host, but can have a long-term cost associated to

plasmid burden. The public good is costly to produce and provides a population-wide

benefit.

Design of the study

Two strains R+ and R− are competed here: R+ cells can receive efficiently plasmids,

R− cells receive them at a much lower rate. As for the selection of donor ability, we

experimentally use a distinct strain as the initial plasmid donor, D+
p , now in order to

exclude differences in donor ability as reasons for selection. Indeed, we take advantage

of the entry exclusion properties of F plasmid to control for recipient ability: the FHE

plasmid expresses functional entry exclusion, so receives plasmids very poorly. The FHR

plasmid is mutated in entry exclusion genes, so receives plasmids at a high rate (see Figure

1.10). As we use different F plasmids in R+ and R− cells to control for recipient ability

(Figure 3.7-A), donor ability could also differ if strains were used as both recipients and

donors. In simulations, we assume that R− cells do not receive plasmids at all.

The metapopulation consists in two populations differing in their R+ vs R− ratio (Fig-
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Non-recipients!
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Figure 3.7: Selection for recipient ability: experimental design. A: Experimen-
tal strains. The two strains R+ and R− do not initially carry plasmids. D+

p strain
transfers P+ or P− plasmid (P+ plasmid that codes for public good production is rep-
resented here) to R+ with high efficiency, and to R− with very low efficiency, as FHE

plasmid present in R− cells expresses entry exclusion genes (represented by a thick black
cell membrane). All cells are able to respond to the auto-inducer by expressing antibiotic
resistance (CmR). B: Experimental setup. R+ and R− strains are competed. The
metapopulation consists initially in two populations differing in R+ vs R− ratio, with the
same proportion of D+p cells (t0). After growth and transfer (t1), cells are confronted to
chloramphenicol (Cm), and subsequent growth is dependant on auto-inducer concentra-
tion. Populations are then pooled and measured at t2.

ure 3.7-B). Cells are mixed (t0), then growth and transfer take place within populations.

After growth to saturation (t1), populations are diluted in the presence of Cm and further

grown until t2, similarly to the setup in section 3.3.2.

Results

We tested experimentally the case in which 20% of cells are initially D+
p cells. Differences

in recipient ability effectively lead to a strong difference in the proportion of cells that

receive the plasmid: in the presence of 20% donor cells, at t1, almost no (< 2% of the total

population) R− cells receive the plasmids, whereas 36% of R+ cells receive it (data not

shown). Faster growth is observed in the presence of Cm for populations enriched in R+

cells when the transferred plasmid carries public-good genes (P+ plasmid) but not when

it lacks them (P− plasmid) (Figure 3.8). The difference suggests that selection can act

among populations when public good genes are transferred: transfer would yield benefits

at the group level.

We next analyze the dynamics of the frequency of R+ compared to R− cells in exper-

iments and simulations when D+
p cells are initially 20%. Simulations (Figure 3.9 inset)
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Figure 3.8: Effect of transfer to R+ cells on population growth. The optical density
at 600nm (OD600) was measured after 14h of growth in the presence of Cm (t2), in two
populations differing in the initial R+ strain proportion, with a donor strain transferring
either a public-good production plasmid (P+) or a control plasmid (P−). OD600 is shown
as a function of R+ proportion at t1. Results shown are three replicate experiments done
the same day.

predict that R+ cells outcompete R− cells when the production of public goods from the

plasmid increases. In the absence of public good production, R+ and R− cells do equally

well (as we assumed no direct cost for recipient ability, and no cost of the plasmid except

the cost of public good production). In experiments, plasmid recipients strongly outcom-

pete non-recipient cells at the metapopulation scale (among populations, Figure 3.7 left)

when the P+ plasmid is transferred (16% increase in the frequency of R+ from t1 to t2,

p=2.9.10−4). Here, recipients also outcompete non-recipients when a non-producing (P−)

plasmid is transferred (3% increase in the frequency of R+ from t1 to t2, p=0.029). Still,

the difference between P+ and P− transfer is highly significant (p=2.10−4).

The frequency of R+ decreases with public good production in simulations within

each population: recipient ability for a public good producing plasmid is costly (as we

assumed a cost proportional to public good production). This confirms that the selection

of recipient ability is not a direct benefit of transfer to the recipients within populations,

but is due to among-population selection. In our experiments, there is no decline but

a slight increase in R+ frequency within populations: the cost of public good produc-

tion added on recipients that received the plasmid seems be negligible on this timescale.

Moreover, R+ and R− cells differ in both the FH plasmid and fluorescence markers they

express: the net cost on fitness may actually be higher for R− cells. Still, we can conclude

that the main part of the increase in R+ frequency happens because of among popula-

tion variations when the transferred plasmid bears public-good production genes: among-
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Figure 3.9: Selection of chromosomal recipient ability for public good genes.
The metapopulation consists of 2 populations, with initial R+/R− ratio of 7/1 and 1/7,
and 20% D+p cells. The change in frequency of R+ compared to R−, R+/(R+ + R−)
from t1 to t2 is computed for strains carrying a plasmid with (open columns) or without
(filled columns) public good production, and shown as means ± s.e.m. (N=6). The inset
shows the simulated change in R+ frequency as a function of public good production rate
of the plasmid transferred by donor cells, among (solid line) and within (dashed line)
populations.

and within populations changes are significantly different when P+ plasmid is transferred

(p=3.10−4), not when P− plasmid is transferred (p=0.12). Host genes promoting the cell

recipient ability can thus be selected for when the transferred plasmid carries public-good

production genes, because of faster growth of populations enriched in plasmid recipients.

Here again, some structure in the metapopulation is necessary to observe selection

of transfer: within well-mixed populations, recipient ability is not selected. This is in

accordance with the role of relatedness among recipients in Equation 3.7.

3.4 Influence of the availability of plasmid-free cells

Both experiments and simulations show that selection of transfer ability is possible. We

next analyze in simulations the influence on the selection of transfer of the availability of

plasmid-free cells, which is a key parameter governing the effect of transfer efficiency.

132



Chapter 3. Indirect selection on chromosomal genes for horizontal transfer

3.4.1 Transfer of private good genes

We measure the change in D+ frequency at the metapopulation scale while varying both

D+ donor ability q and the proportion of plasmid-free cells in D+ and D− strains (Figure

3.10). D+ frequency increases when both donor ability is high and plasmid-free cells are
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Figure 3.10: Selection of donor ability for private good genes: effect of the
abundance of plasmid-free cells. Population structure is the same as in Figure 3.2,
but now with varying initial frequency of plasmid-free cells. The color scale represents the
change in frequency of D+, D+/(D++D−), computed between t0 and t2 (after antibiotic
selection) as a function of D+ donor ability q and plasmid-free cell frequency at t0.

abundant (Figure 3.10).

When less then 10% plasmid-free cells are available, D+ strain actually decreases in

frequency: among-population selection does not compensate for the cost of donor ability.

Effective changes in numbers of cells bearingK are low, and transferred plasmids represent

only a small proportion of cells that survived antibiotic selection (for instance, maximally

10% if initially 10% cells are plasmid-free). Moreover, the selection of D+ is not maximal

for an equal frequency of plasmid-bearing and plasmid-free cells, as was suggested from

Equation 3.6, but for higher frequencies of plasmid-free cells. The difference between

theoretical predictions and simulations results can be explained in two ways. First, D+

cells that received the plasmid may transfer it again, amplifying transfer until t1, which

was not modelled in Equation 3.6. Secondary transfer shifts maximal transfer towards

lower initial frequencies of plasmid-bearing cells, resulting in maximal change in numbers

of cells bearing K plasmids not around 50% but 60% of plasmid-free cells for low donor

ability, and up to 85% of plasmid-free cells for higher donor ability (Figure 3.11-A).

Secondly, varying the initial proportion of plasmid-bearing cells modifies not only the
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efficiency of transfer, but also the initial proportion of cells that can survive antibiotic

selection even in the absence of transfer. Indeed, when only a few plasmids are present

initially, the majority of plasmid-bearing cells after transfer actually arises from transfer.

However, when more plasmids are present initially, the proportion of plasmid-bearing cells

arising from transfer decreases (the proportion of plasmids that arise because of transfer

increases with the frequency of plasmid-free cells, Figure 3.11-B). This affects the global

importance of transfer in explaining ratios of D+
p vs D−

p at t1, which are then selected in

presence of the antibiotic. Donor ability is thus under stronger selection when few cells

initially bear the gene upon which selection acts than when such cells are abundant.
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Figure 3.11: Effect of plasmid initial proportion on the efficiency of transfer.
Results reported here are from the same simulations as in Figure 3.10, with the same axis.
In A, the colorscale represents the change in total plasmid abundance from t0 to t1, pt1−pt0
(plasmid spread, that approximates plasmid transfer). In B, the colorscale represents the
proportion of plasmids present at t1 that were not present at t0 (pt1 − pt0)/pt0) (relative
plasmid spread).

3.4.2 Transfer of public good genes

We now turn to the transfer of public good genes, and first analyze what happens when

recipients are a strain distinct from D+ and D− strains, similar to the experimental setup

and previous simulations (Figure 3.12-A). Transfer is counter-selected for low proportions

of recipients: donor ability is costly and in the absence of efficient transfer, it brings no

sufficient benefits to plasmid donors. For higher proportions of recipients, donor ability

is selected. Again, this is entirely due to among-population selection, as D+ frequency

always decreases within populations (data not shown). The maximal selection of D+

depends on both donor ability and initial R proportion: intermediate transfer rates are
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Figure 3.12: Selection of donor ability for public good genes: effect of the
abundance of plasmid-free cells. Population structure is the same as in Figure 3.6, but
now with varying proportion of plasmid-free cells and public good production α = 1. The
colorscale represents the change in frequency of D+ compared to D−, D+/(D++D−) from
t1 to t2 (when public good production leads to benefits) for strains carrying a plasmid with
public good production of 1, as a function of D+ donor ability and the initial frequency
of plasmid-free cells. In A, R are modelled as a distinct strain (transfer to non-kin). In
B, D− and D+ are able to receive plasmids (transfer to kin), and R proportion indicates
the proportion of both D+ and D− cells that are initially plasmid-free.

maximally selected for intermediate proportions of recipients, and higher transfer rates

for a higher proportion of recipients. However, for a very high proportion of recipients (>

90%), donor ability is counter-selected again.

This result is qualitatively in agreement with Equation 3.5: selection of donor ability is

higher with high effective transfer. However, maximal selection of donor ability is biased

towards proportions of recipients higher than 50%. Here, this is not due to a bias in

transfer itself: effective total transfer is maximal around 50% of recipients (Figure 3.13-

A) (there is no amplification of transfer, as R do not act as secondary donors). However,

what is also needed to select for donor ability is that populations enriched in D+ cells

actually get significantly more feedback from transfer that other populations: the part of

public good production that arises from transfer (and not from initial plasmid-bearers,

present in equal proportions in both populations) has to be maximized. This part is higher

when initial recipients are present in higher proportion (Figure 3.13-C), as initial plasmid-

bearers make then a lower proportion of total producers. Feedback to donors (the relative

benefit of transferring the public good) are thus maximized at recipient proportions that

are higher than 50%.

Additionally, we analyze in simulations what happens when transfer takes place be-
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Figure 3.13: Effect of recipient abundance on total transfer efficiency. Results of
the simulations shown in Figure 3.12, shown as a function of D+ donor ability q and the
initial frequency of plasmid-free cells. In A and B, the colorscale represents the change
in total plasmid abundance from t0 to t1 pt1 − pt0 (plasmid spread, that approximates
plasmid transfer). In C and D, the colorscale shows the proportion of plasmids present
at t1 that were not present at t0, (pt1 − pt0)/pt0 (relative plasmid spread). In A and C,
R is modelled as a distinct strain (transfer to non-kin). In B and D, D− and D+ can
receive plasmids (transfer to kin).

tween D strains, allowing transfer to kin (without a distinct recipient strain). Two strains,

D+ and D−, are competed, but both of them now have a varying initial proportion of

plasmid-bearing cells. D+
p can transfer the plasmid to both D+ and D− plasmid-free cells.

Adopting the same population structure as in Figure 3.12-A, we observe a slightly differ-

ent pattern of selection (Figure 3.12-B vs 3.12-A): the amplitude of D+ frequency change

is higher, and maximal selection happens for a higher initial proportion of plasmid-free

cells. The difference is due to an increase in the actual transfer efficiency for populations

enriched in D+ cells: plasmids can be transferred again from newly created D+
p cells,

yielding more final plasmid-bearers and public-good production (Figure 3.13-B vs 3.13-

A), as we saw concerning the transfer of private good plasmids. Secondary transfer also

increases the proportion of producers explained by transfer (Figure 3.13-D vs 3.13-C).

Still, we observe the same general pattern, and even stronger selection for donor ability
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when donors (D+ cells) transfer to kin, the opposite from the predictions of Equation 3.5.

Indeed, amplification due to secondary transfer was not modelled, but it compensates

here for the additional costs of public good production in cells related to the initial donor

cells.

Selection of donor ability thus depends on population structure and transfer dynamics,

with stronger selection when transfer is more effective but also when the feedback from

public goods to donor cells is maximized.

3.4.3 Recipient ability for public good genes

Again, we first analyze what happens when plasmid donors are a strain distinct from

R+ and R− strains, similar to the experimental setup and previous simulations (Figure

3.14-A). Transfer is counter-selected for low proportions of recipients: recipient ability is

costly (indirectly, because of public good production by cells that received the plasmid),

and a low proportion of recipients does not strongly affect the total number of produc-

ers and the subsequent among-population selection. For higher proportions of recipients,

recipient ability is selected, which is entirely due to among-population selection, as R+

frequency always decreases within populations (data not shown). The maximal increase in
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Figure 3.14: Effect of recipient proportion on the selection of recipient ability.
Population structure is the same as in Figure 3.9, but now with varying initial proportion
of plasmid-free cells (R+ +R−), and public good production α = 1. The colorscale shows
the change in frequency of R+ compared to R−, R+/(R++R−) from t1 to t2 (when public
good production leads to benefits) in the presence of cells carrying a plasmid with public
good production of 1, as a function of R+ recipient ability and the proportion of plasmid-
free cells at t0. In A, R are modelled as a distinct strain (transfer to non-kin). In B, R−

and R+ are able to donate plasmids (transfer to kin).

R+ frequency happens for intermediate proportions of plasmid-free cells. When transfer
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happens among R cells themselves (with no distinct D+
p strain) (Figure 3.14-B), transfer

is again counter-selected for low proportions of recipients. However, the maximal increase

in R+ frequency happens here for almost 100% initially plasmid-free cells. The observed

patterns can be explained in a similar way as in the case of the selection of donor ability

for public good genes (section 3.4.2). In the case of transfer from a distinct D+
p cell, effec-

tive transfer is maximized at intermediate plasmid-free cells frequencies (data not shown).

However, the final proportion of producers that actually arise from transfer is higher for

higher initial proportions of plasmid-free cells, which enhances the benefit in populations

enriched in R+ cells. When transfer happens among R cells, secondary transfer occurs

from R+ cells that receive the plasmid, ampliying the efficiency of transfer when plasmid-

free cells are initially abundant, and promoting stronger selection of R+ cells.

In conclusion, selection for transfer abilities depends on population structure and

transfer dynamics, with selection being stronger when (1) transfer is more effective and

(2) feedbacks from public goods or (3) the proportion of cells that benefit privately from

transfer are maximized. We next focus on the possibility of realistic population structures

where both relatedness and transfer are sufficient to select for transfer abilities.

3.5 Population structure requirements

To mimic a more natural population structure, we model strong dilution of cells: with

enough strong dilution, variations in the frequencies of genotypes at the metapopula-

tion level arise simply from stochastic fluctuations in founder frequencies in populations

(following Poisson distributions). We model a mix of all cell types present in previous

simulations, now strongly diluted in multiple populations. We vary both the dilution

factor applied to founding populations and transfer abilities.

We additionally assume here that donor ability is not costly, in order to avoid a

strong decrease in donor cell frequency during the high number of generations needed

to recover sufficient cell density from strong dilution. This assumption corresponds well

with situations in natural systems, where transfer is often regulated, with no expression

of transfer genes at low cell densities (where transfer is not efficient).

3.5.1 Transfer of private good genes

We follow the change in frequency of D+ strain from t0 to t2 in a metapopulation of 200

populations, initiated from a strongly diluted mix of equal proportions of D+ and D−
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cells, each with initially 20% K-bearing cells. We vary the strength of dilution and D+

donor ability (Figure 3.15). Within populations, D+ frequency does not decline strongly

Figure 3.15: Selection of donor ability for private good genes after strong initial
dilution. The simulated metapopulation consists of 200 populations initiated from a
strongly diluted mix of equal proportions of D+ and D− cells, each with initially 20% K-
bearing cells, giving rise to a Poisson distribution with parameter λ for each D+

p and D−

p

cells. The colorscale represents the change in D+ frequency from t0 to t2 (after antibiotic
selection), shown as a function of D+ donor ability and mean founding cell number (5×λ,
that depends on the strength of dilution), averaged over 50 simulations.

(as there is no cost of transfer in these simulations), but does not increase significantly

either (data not shown), so all D+ selection is due to among-population selection. D+

strains are selected for with strong initial dilution and intermediate to high donor ability.

This is due to the combination of two factors:

First, dilution up to low founding cell numbers provides sufficient variation in D+

frequencies among populations for among-population selection to act. The variation can

be quantified by measuring the relatedness for D+ strain (rD, measured as the regression

coefficient between individual donor ability and donor ability of neighbouring cells, see

Methods): rD at t0 increases with increasing dilution (Figure 3.16-A). Sufficient dilution

is thus needed to select for D+ cells.

Then, plasmid transfer should be sufficient to provide benefits to populations enriched

in D+ cells. Plasmid invasion from t0 to t1 (Figure 3.16-B) depends mainly on donor

ability q. However, it also depends on the strength of dilution: it declines with decreasing

initial mean number of cells. The decrease in plasmid invasion is the effect of strong

spatial structuring in populations caused by dilution: only a few cells are present initially
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A! B!Relatedness)among)donors) Plasmid)spread)

Figure 3.16: Change in population characteristics after strong initial dilution.
Results reported here are from the same simulations as results shown in Figure 3.15. The
colorscales represent relatedness among D+ cells rD at t0 (A) and the total change in
proportion of plasmid-bearing cells from t0 to t1 (plasmid spread, B), shown as functions
of D+ donor ability q and mean founding cell number.

in each population, and often not cells of all cell types, which decreases the number

of possible encounters between plasmid-bearing and plasmid-free cells in an increasing

percentage of the populations. Still, even with the segregation of cell types arising from

dilution, transfer is quite abundant, with up to a 35% increase in plasmid frequency at

the metapopulation scale.

Both the transfer and the relatedness among donors are thus high enough to promote

the selection of donor ability with the combination of low founding cell number (high

dilution) and high donor ability.

3.5.2 Transfer of public good genes

We now focus on the transfer of public good genes and follow the change in frequency of

D+ strain from t1 to t2 in a metapopulation of 200 populations initiated from a strongly

diluted mix of equal proportions of D+ and D− cells, each with initially 20% P+-bearing

cells. We vary the strength of dilution and D+ donor ability (Figure 3.17).

Again, D+ cells are selected when both the dilution and D+ donor ability are high

(Figure 3.17). When dilution is weak (high λ), it does not provide sufficient variation in

D+ frequencies among populations (relatedness among donor cells is low: the presence of

a given D+ cell is not strongly associated to the presence of other D+ cells in the neigh-

bourhood, that would benefit from increased public good production). When dilution

is strong enough, relatedness among donors becomes higher, and variations in frequecies
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Figure 3.17: Selection for donor ability for public good genes after strong initial
dilution. The simulated metapopulation consists of 200 populations initiated from a
strongly diluted mix of equal proportions of D+ and D− cells, each with initially 20%
P+ plasmid-bearing cells, giving rise to Poisson distribution of parameter λ for each for
each D+

p and D−

p cells. P+ plasmid has public good production α = 1. The colorscale
shows the change in D+ frequency from t1 to t2 (when public goods lead to benefits), as
a function of D+ donor ability and the mean founding cell number (5× λ, that depends
on the strength of dilution), and averaged over 50 simulations.

are strong enough so that selection can take place among populations. Plasmid spread,

however, also depends on population structure: it declines with higher dilution. Similarly

to the case of the transfer of private good genes, transfer is still quite abundant, enough

for donor ability to be selected through feedbacks of public good production: donor abil-

ity can be selected for without choosing an arbitrary repartition of plasmids and strains

within populations.

3.5.3 Recipient ability for public good genes

In the final set of simulations, we model a mix of R+, R−, R+p and R−p cells and follow

the change in frequency of R+ strain from t1 to t2 in a metapopulation of 200 populations

initiated from a strongly diluted mix of equal proportions of R+ and R−, each with

initially 20% P+-bearing cells. P+ plasmid has public good production α = 1. We vary

the strength of dilution and R+ recipient ability (Figure 3.18).

Similarly to what we saw for the selection of donor ability, R+ cells are selected when

both the dilution and R+ recipient ability are high (Figure 3.18). The reasons for such

patten are also similar: when dilution is too weak, variation in R+ frequencies among

populations is low. Moreover, plasmid spread depends on both recipient ability and

population structure, and declines with higher dilution. Still, even with the segregation

between plasmid-bearing and plasmid-free cells arising from dilution, transfer is enough
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Figure 3.18: Selection for recipient ability after strong initial dilution. The
simulated metapopulation consists of 200 populations initiated from a strongly diluted
mix of equal proportions of R+ and R− cells, each with initially 20% P+ plasmid-bearing
cells, giving rise to Poisson distribution for each type of cell, of parameter λ for plasmid-
bearing cells D+

p . P+ plasmid has public good production α = 1. The colorscale shows
the change in R+ frequency from t1 to t2 (when public goods lead to benefits) as a function
of R+ recipient ability and the mean founding cell number (5 × λ, that depends on the
strength of dilution), and averaged over 50 simulations.

for recipient ability to be selected through feedbacks of public good production. As was

the case for donor ability, recipient ability can thus be selected for without constraining

the repartition of plasmids and strains within populations.

3.6 Discussion

Using experiments as well as simulations that follow them, coupled to a general, direct

fitness approach, here we show that transfer ability can be increased by selection on non-

mobile host genes. The results from the different approaches are generally in agreement,

and show that selection of transfer ability is generally favored - whatever the type of

good encoded on the plasmid - at two conditions: (1) there must be variability in the

composition of populations for the considered trait, that allows significant relatedness

among cells, and (2) transfer must be efficient.

3.6.1 Selection on transfer ability concerning private traits

Direct selection can act on recipient ability if the incoming mobile elements are beneficial

to host fitness. However, there is no similar direct selection on donor ability, as donor

ability does not directly modify the phenotype of the donor cell relatively to the transferred

genes: why bacteria would transfer beneficial genes to their apparent competitors is thus

an intriguing question. Previous analyses have focused on explaining the presence of
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host beneficial genes on plasmids through benefits to plasmids themselves, and shown

that carrying intermittently selected genes can benefit plasmids [Bergstrom et al., 2000].

We demonstrate here that plasmid mobility can also benefit the donor host, and genes

promoting plasmid mobility can furthermore be selected through this indirect benefit.

This finding can be related to general considerations where mobile elements are described

as a "communal pool" of genes [Norman et al., 2009], or "agents of open source evolution"

[Frost et al., 2005], leading to benefits at the population level [Heuer et al., 2008]. However,

population-wide benefits would not be sufficient to select for costly chromosomal alleles

promoting transfer: transfer can be considered as an altruistic trait as it is costly to the

host [Rankin et al., 2010]. We show here that donor ability for private traits is actually

selected for when it does not happen towards any competitor cell, but is biased towards

related cells (that share the allele for high donor ability): donor ability can be selected

through kin selection. As is often the case in the context of kin selection [Hamilton, 1964a,

West et al., 2007b], selection requires a population structure that ensures that benefits

of the behaviour feedback preferentially on cells sharing the same allele. We derive a

Hamilton’s rule-like condition for the selection of donor ability: benefits of the transferred

gene, weighted by the efficiency of transfer among related cells and the relatedness between

donor cells in the population, have to outweigh the cost of transfer (Equation 3.6). In

other words, chromosomal, non-mobile alleles benefit from sharing other beneficial genes

with kin, as this will increase their inclusive fitness.

These results can be compared to conclusions about the evolution of teaching in an-

imals (where teaching can be defined as a transfer of information that is costly for the

sender and beneficial for the receiver [Riboli-Sasco et al., 2008]). Indeed, it has been

shown that teaching of adaptive information can be selected when teachers and pupils are

related [Fogarty et al., 2011]. Interestingly, the same study also concluded that teaching

was favored only if the information could not be acquired easily without teaching. In the

case of genetic information transfer, a key difference from teaching is that genes can be

transmitted both vertically (from parent to offspring) and horizontally (from donor to

receiver). Here we demonstrate the selection of transfer in a case where initially only a

few cells bear the gene of interest and horizontal transfer allows more efficient spread to

related cells than vertical transfer.

A strong assumption in the scenario we implement is that transfer has to happen before

selection on transferred genes. It seems unrealistic that hosts randomly transfer genes that

may but may not be useful in the future. However, transfer is in reality regulated, and
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could occur in conditions that are correlated with a specific selective pressure. A striking

case that could fit with this idea is the one of tetracycline-resistance mobile elements,

whose transfer is induced by sub-inhibitory concentrations of tetracycline [Rashtchian

et al., 1982]: transfer happens in conditions where mobile elements are likely to increase

the fitness of hosts in the near future (the diffusion of antibiotics can create antibiotic

gradients, with antibiotics first present only in sub-inhibitory concentrations).

3.6.2 Selection on transfer ability concerning public good genes

Transfer ability concerning public good genes is selected through a quite different mecha-

nism: it does not require that transfer happens towards related cells. However, relatedness

must still be generally high in the population: cells sharing alleles that favor transfer have

to be associated more than randomly, in order for benefits of additional public goods pro-

duced following transfer (to related or unrelated cells) to feedback preferentially on them.

This is comparable to the conditions required for interspecies mutualism: cooperation

towards another species necessitates within-species relatedness [Frank, 1994, Foster and

Wenseleers, 2006], so that the response from individuals of the other species (equivalent

to public good production here) benefits preferentially cells related to the initial cooper-

ating cells. Once again, the second-order selection for transfer can be expressed in a form

analogous to Hamilton’s rule: benefits of public goods produced by neighbours, weighted

by the efficiency of transfer and relatedness, have to outweigh the cost of transfer. Here

selection acts in a similar way on recipient and donor abilities, as they both lead to an

increase in the concentration of public goods in the environment.

We here analyzed separately selective pressures acting on donor and recipient abilities,

but they will generally interact. If transfer happens within a strain (no separation between

plasmid donors and recipients), it simply increases the proportion of cells in the population

that act as cooperators. If recipient ability is very low, high donor ability will bring less

benefits as effective transfer will be low, and conversely: high recipient ability will be

less beneficial if donor ability is very low. If transfer happens between distinct strain or

species, transfer could actually be a form of manipulation of the recipient strain by the

donor strain. We have not modelled multi-species populations explicitely here: we did not

assume any differences between donors and recipients other than plasmid presence and

transfer, like differences in plasmid cost or gene expression which would be likely in the

case of manipulation. In natural systems, it is possible that only one of the interacting

strains or species benefits from transfer. The most striking example of this is T-DNA
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transfer from the Ti plasmid of Agrobacterium tumefasciens to host plant cells. T-DNA

integrated in the plant genome induces tumor formation and the production of specific

metabolites, opines, that are used by Agrobacterium cells only [Platt et al., 2012]. Here,

there is selection of T-DNA donor ability, but obviously not of recipient ability by the

parasitized plant. However, in other cases both donor and recipient strains or species

could possibly benefit from transfer. This possibility will probably be highly dependent

on the details of the exact interaction mechanisms and the coevolution of donor and

recipient strains.

3.6.3 Plasmid abundance requirements

A recurrent conclusion of this study is that plasmid-free cells need to be abundant for

transfer ability to be selected. In the long-term, this implies that plasmids must be re-

peatedly lost from some proportion of the population and not spread to fixation. This

is more generally required for the selection of plasmid transfer itself: horizontal transfer

benefits plasmids mainly when many recipient, plasmid-free cells are available. Still, re-

peated gene loss seems more paradoxical here, as we focus on genes that bring a benefit

to the host: why do these genes not stay associated with the cells they benefit? However,

the genes such as antibiotic resistance we considered here are either only transiently ben-

eficial or beneficial only at a group scale with individual costs: they could be repeateadly

lost when they are not selected for. In the case of antibiotic resistance genes, loss could

happen for instance when bacteria migrate from antibiotic-treated hosts or environments

to non-treated ones. In the case of public-goods, non-producing bacteria that do not pay

the cost of production could prevent the fixation of plasmids carrying public-good genes.

Another factor that will influence the selection of transfer is its cost to the cell. Re-

cipient ability is probably not costly, as defense mechanisms are typically active so cells

can receive plasmids by default. On the other hand, donor ability is typically costly, as

it involves accrued production of pili and sensitivity to male-specific phages [Haft et al.,

2009, Jalasvuori et al., 2011]. To overcome potential costs, transfer is generally strongly

regulated as a function of environmental conditions [Frost and Koraimann, 2010], and

could be induced specifically when it benefits indirectly the cell.

The variability of transfer rates observed across isolates [Dionisio et al., 2002] could

then be explained by the relative importance of all these factors in different environmental

conditions. A well-known example is the one of antibiotic resistance plasmids (which can

lead to either private or public traits), for which selective pressures are likely variable:
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they will be strongly beneficial to the host in the presence of antibiotics, but costly in the

absence of antibiotics. Transfer itself will be more costly when the density of male-specific

phages is high.

3.6.4 Population abundance and environmental requirements

The selection of transfer further requires a quite specific population structure, with suf-

ficient positive assortment among cells but no strong assortment among plasmids. Using

simulations, we analyze the possibility of occurrence of such populations. We show that

with strong dilution, the strength of selection for transfer is indeed reduced by the oppos-

ing effects of dilution on relatedness and on efficient transfer, but selection of transfer is

still possible in some range of parameters. Moreover, we made the simplifying assumption

that plasmids are initially present in equal proportions in every strain. This will often not

be true, as plasmid association to host genotypes will be influenced by plasmid-bacteria

coevolution history, which will in turn modify population structure. For instance, when

transferring a plasmid leads to increased fitness to both the donor cell and the transferred

plasmid, the association between plasmids and cells with high donor ability could be fa-

vored on longer timescales, modifying population structure and increasing the possibility

of plasmid transfer.

Relatedness among cells sharing high transfer ability has to be sufficient for transfer

to be selected. We also showed in Chapter 2 that plasmid transfer actually increases

relatedness at the transferred loci. This increase is due to the local properties of trans-

fer, and can be extremely high in epidemic dynamics, where recipients become secondary

donors and the whole population of cells is invaded. Some similar dynamics is observed

here with chromosomal loci involved in transfer: even if they are not transferred them-

selves (so there is no strict invasive dynamics), local amplification of transfer is favored

when populations are already structured, as cells with high transfer ability are clustered

together (provided that some of these cells initially do not bear plasmids). Finally, donor

ability could itself promote an increase in the spatial structuring of populations through

physical effects. Indeed, conjugation has been shown to promote biofilm formation, partly

because of the aggregation properties of conjugative pili [Ghigo, 2001]. Biofilms are very

structured environments, so their formation could favor physically the selection of transfer

by ensuring high relatedness.
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3.6.5 Conclusion

In conclusion, the selective pressures we describe here could contribute to the very large

variability of transfer rates observed among bacterial isolates [Gordon, 1992, Dionisio

et al., 2002]. They will favor the transfer of genes that benefit the host, either directly or

through the production of public goods. The same dynamics could in addition contribute

to the explanation of the pattern of genes found on mobile elements [Rankin et al., 2010],

as both plasmids and chromosomes could benefit from the location of those genes on

plasmids.

In our analysis, we did not consider selective pressures acting on plasmid genes them-

selves: plasmids gain direct fitness benefits from horizontal transfer, which are also influ-

enced by multiple parameters. However, we show that chromosomal genes do not only

suffer the cost of parasitic plasmid transfer, but can also benefit from it. The coevolution

of plasmid and chromosomal genes controlling transfer remains an open question, as their

interests may or may not converge, depending on ecological and evolutionary scenarios.

3.7 Materials and methods

3.7.1 Experiments

Plasmids and strains

The background strain is JC1191, an E. coli strain that can grow in low concentrations

of chloramphenicol (Cm) in the presence of C4-HSL, thanks to the addition of Pseu-

domonas quorum sensing machinery [Chuang et al., 2009]: JC1191 contains the att::rhl-

catLVA(SpR) segment with both an Rhl auto-inducer-responsive promoter (Prhl∗) driving

an unstable version of cat responsible for Cm resistance, and the rhlR gene under the weak

constitutive promoter Pq
lacI , integrated into the chromosome with the spectinomycin re-

sistance gene SpR.

Plasmids used in experiments are shown in Figure 3.19. They all carry the aph gene

providing kanamycin resistance (kanR). K-YFP and K-GFP plasmids both bear F-oriT,

and express respectively YFP and GFP under control of the strong promoter PR. P−T−

plasmid carries GFP under control of PR, P+T− plasmid additionally carries the rhlI gene

under control of the same promoter: RhlI enzyme produces the Rhl auto-inducer C4-HSL

[Chuang et al., 2009]. P−T+ plasmid carries YFP under control of PR and F-oriT, P+T+

plasmid additionally carries the rhlI gene under control of the same promoter PR (P−T+
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Figure 3.19: Plasmids used in experiments. p15A-origin and pSC101-origin bearing
plasmids all bear kanamycin resistance. Plasmids are colored according to the fluorescence
genes they bear. K plasmids bear F oriT in addition to kanamycin resistance (used as the
private good gene). pSC101-origin bearing plasmids are involved in transfer and private
and public good production phenotypes. P− and P+ indicate public good production
status: P+ plasmids bear rhlI synthase, P− plasmids do not. T− and T+ indicate transfer
status: T+ are transferable as they bear F oriT, T− plasmids are not. Recipients bear
a plasmid with p15A replication origin expressing RFP, compatible with pSC101-origin
bearing plasmids.

and K-YFP are actually the same plasmid).

For experiments concerning donor ability for public good genes (section 3.3.2), recip-

ients R bear pSB3K3-RFP plasmid, a middle-copy plasmid that carries mRFP1 under

control of the strong promoter PlacI . For other experiments (sections 3.3.1 and 3.3.3), one

of the competitor strains (respectively D+ and R+) is marked with the td−Cherry gene

under control of a pRNA1 promoter, inserted in the attTn7 site of the chromosome.

To modulate transfer ability, cells bear either FHR or FHE helper plasmid, or no F

plasmid. Both FHR and FHE are mutants of the F plasmid pOX38::Tc [Anthony et al.,

1994] with two point mutations in oriT sequence that lead to reduced self-mobilization

efficiency by the F relaxase (1000-fold reduction compared to F). FHE and FHR mobilize

other plasmids bearing oriT efficiently. FHE has the wild-type traS gene encoding F

plasmid entry exclusion (thus FHE, for helper with entry exclusion), leading to very low

recipient ability of cells bearing it. FHR additionally bears a deletion of the traS gene:

recipient cells bearing FHR are able to receive plasmids efficiently (100-fold more efficiently

than cells bearing FHE, see Figure 1.10) and behave as secondary donors of oriT -bearing

plasmids (thus FHR, for helper receiver plasmid).

Transfer and fluorescent markers for identification by flow cytometry are summarized

in Figure 3.20 for each competition experiment setup.
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Figure 3.20: Summary of the strains used
in competition experiments: control of
transfer and fluorescence markers. Colors
indicate fluorescence markers associated with
each strain (cell background color) or plas-
mid (plasmid background color). Pili indicate
the ability to mobilize plasmids bearing oriT ;
a thick black line indicates functional entry
exclusion inhibiting recipient ability. Arrows
indicate plasmid mobilization. Only relevant
plasmid genes are indicated (see Figure 3.19
for plasmid maps).

Growth and experiment conditions.

Cells were grown in Luria-Bertani (BD Difco) medium with 25 µg/mL spectinomycin

(Sp, Sigma-Aldrich) and with or without 50 µg/mL kanamycin (Kn, Sigma-Aldrich) and

6.25 µg/mL chloramphenicol (Cm; Sigma-Aldrich). Experiments were conducted under

well-mixed conditions with 5mL medium in 50 mL tubes (Sarstedt).

For competition experiments, strains were mixed at various ratios (vol/vol) and first

grown from a 10-fold dilution from stationary phase cultures (t0) at 35̊ C, up to an optical

density of 3. This temperature allows transfer to happen, as F transfer is strongly reduced

at 30̊ C. This step was repeated once with 5-fold dilution in order to increase plasmid

transfer. Cultures were then diluted 10-fold until stationary phase at 30̊ C (t1), which

allows pre-induction of Cm-resistance by C4-HSL in non-producer as well as producer

cells and enhances the fluorescence signal. Finally, cultures were diluted 100-fold at t1

and grown for 12 to 16 hours at 30̊ C until t2.

For competition experiments not involving public good production (section 3.3.1), the
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growth medium contained Sp from t0 to t1, and Sp + Kn from t1 to t2. Cultures with

various ratios were mixed at t1. For competition experiments between donors involving

public good production (section 3.3.2), the growth medium contained Sp + Kn from t0

to t1, and Sp + Kn + Cm from t1 to t2. For competition experiments between recipients

involving public good production (section 3.3.3), the growth medium contained Sp from

t0 to t1, and Sp + Cm from t1 to t2.

Cultures were analyzed for strain and plasmid proportions by flow cytometry. Optical

density at 600nm was measured on a BioPhotometer plus (Eppendorf).

3.7.2 Data analysis

Estimations of selection

Selection acting on a given trait is globally estimated by measuring changes in strain

frequencies over time. Frequencies at the metapopulation level are measured by pooling

equal volumes of populations, effectively taking into account differential growth among

populations. Frequencies within populations were computed as the mean of each indi-

vidual frequency within populations, in order to exclude the effect of differential growth

among populations.

Computing relatedness

Relatedness is defined as the measure of how an individual’s social environment covaries

with the individual’s genotype, which can be calculated as the linear regression coefficient

connecting an individual’s genotype with the genotype of its interactants [Damore and

Gore, 2012]. Here, we consider that the social environment of an individual corresponds

to the population it belongs to.

With xi and ni being respectively the proportion of x allele and number of bacte-

ria within population i, and xtot and ntot being respectively the proportion of x allele

and number of bacteria in the whole metapopulation, the relatedness of x allele can be

calculated as followed (assuming populations are of the same size, which is true at t1):

rx =

∑
i
xi

ni
·

xi

xtot
− xtot

ntot

1− xtot

ntot

(3.8)

Statistical analysis

The significance of differences between conditions was tested with two-sample, two-sided

t-tests. The normality of distributions was confirmed with Shapiro-Wilkinson tests, re-
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jecting the null hypothesis when p<0.05.

3.7.3 Simulations

General model assumptions

Our models were constructed to mimic experimental conditions of strain growth and

plasmid transfer. We use notation similar to the one used in the direct fitness model

(section 3.2).

Growth follows a logistic function saturating at carrying capacityK, mimicking growth

to stationary phase. Plasmid transfer happens at a basal rate γ, following a mass-action

law [Levin et al., 1979], and saturates in the same way as growth rate at carrying capacity

K, as F transfer has been shown to strongly decrease when cells approach stationary phase

[Frost and Manchak, 1998]. Strains are characterized by donor ability q or recipient ability

r that modulate effective transfer γe (γe = q × γ when varying donor ability, γe = r × γ

when varying recipient ability). We assume a cost of transfer for the donor cell cq so

that the cost on growth is proportional to donor ability, but no cost of receiving plasmids

(cr=0). All costs act on growth rate.

The rate of transfer was divided by 10 from t1 to t2, to mimic experiments where

growth happens at 30̊ C and transfer is reduced. We did not attempt to measure γe ex-

perimentally, as the transfer rate is not constant during the duration of the experiments

(because of successive dilutions and shifts in temperature). However, we can estimate an

effective transfer rate leading to the same plasmid invasion than observed at t1 in experi-

ments. Effective transfer rates are around from 5.10−8 mL.cell−1L−1 in our experiments.

We explicitely follow the experimental set-up by modeling the two steps: first pre-

incubation, where pre-induction of Cm resistance (in the cases of public goods) and

transfer happen (from t0 to t1), then growth in conditions where the plasmid genes affect

growth (from t1 to t2): in the presence of Cm (for public good genes) or of Kn (for private

good genes). The pre-incubation time (from t0 to t1) was set to 12h after 100-fold initial

dilution from carrying capacity, and growth from t1 was allowed for 60h after a second

100-fold dilution.

To study the effect of strong cell dilution (section 3.5), cells were distributed in 200

populations each of 10 µL, following a Poisson distribution of varying parameter λ (λ ∈

[1 : 4] for D+
p cells). Because of the strong initial dilution, the pre-incubation time was set

at 24h and a second 10-fold dilution step was added before t1. Results were averaged over

50 replicate simulations, as strong variance arises from Poisson distribution. The cost of
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transfer cq was set to 0 to prevent excessive fitness loss for donor cells.

Plasmid effects on growth

We note the basal growth rate ψp for plasmid-bearing cells and ψ∅ for plasmid-free cells.

In the case of private goods, there is no growth for plasmid-free cells (ψ∅ = 0) after t1.

For cells bearing plasmids, the growth rate is the same as the growth rate before t1. t2 is

the end of growth. We do not vary the production rate for private goods.

The public effect of public goods on growth is modelled as proportional to the propor-

tion of public-good producing cells at a given time in the local population ( ptot

ntot
), and to

the good production rate α (ψ = ψ0(1+ bpα×
ptot

ntot
)), and is the same for plasmid-bearing

and plasmid-free cells. The public good production rate in experiments is fixed arbitrarily

at α = 1, as costs and benefits parameters were fitted experimentally for this value.

Parameters values shown were estimated from our experimental data.

Parameter Symbol Estimation

Carrying capacity K 4.109 cells mL−1

Basal rate of plasmid transfer γ 10−9 mL cell−1L−1

Basal growth rate from t0 to t1 ψ1 0.96 h−1

Basal growth rate from t1 to t2 ψ2 0.12 h−1

Cost of good production on growth rate cp 0.04

Benefit of public good production on growth rate bp 4

Cost of donor ability on growth rate cq 0.05

Plasmids effects on growth are summarized below:

Notation t0 to t1 t1 to t2(private goods) t1 to t2 (public goods)

ψ∅ ψ1 0 ψ2(1 + bpα×
ptot

ntot
)

ψp ψ1(1− cpα) ψ1(1− cpα) ψ2(1 + bpα×
ptot

ntot
)

When the public good acts on growth rate, the benefit of cooperation is only transient

[Chuang et al., 2009] and t2 has to be chosen before all populations reach stationary

phase. For each simulation, t2 was defined as the time point where the selection of P+

was maximal over all conditions tested.
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Selection of donor ability

In simulations described in sections 3.3.1 and 3.3.2, we follow the frequency of D+ strain

compared to D− strain. In the first scenario, D+p cells transfer the plasmid p only to a

distinct R strain, that is not capable of secondary transfer:

dD+
p

dt
= ψp(1− cqq)×D+

p × (1−
ntot

K
)

dD−

p

dt
= ψp ×D−

p × (1−
ntot

K
)

dR

dt
= [ψ∅ − γeD

+

p ]×R× (1−
ntot

K
)

dRp

dt
= [ψp ×Rp + γeD

+

p ×R]× (1−
ntot

K
)

ntot = D+

p +D−

p +R +Rp

ptot = D+

p +Rp

In the second scenario, D+p cells transfers the plasmid to both D+ et D− plasmid-free

cells:

dD+
p

dt
= [ψp(1− cqq) + γeD

+]×D+

p × (1−
ntot

K
)

dD−

p

dt
= [ψp ×D−

p + γeD
+

p ×D−]× (1−
ntot

K
)

dD+

dt
= [ψ∅(1− cqq)− γeD

+

p ]×D+
× (1−

ntot

K
)

dD−

dt
= [ψ∅ − γeD

+

p ]×D−
× (1−

ntot

K
)

ntot = D+

p +D−

p +D+ +D−

ptot = D+

p +D−

p

Selection of recipient ability

In simulations described in section 3.3.3, we follow the frequency of R+ strain compared

to R− strain. We assume that cr is zero, and cq also, as we are not concerned with the

selection of donor ability here. In the first scenario, a distinct D+
p strain transfers the
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plasmid to R+ cells, that are not capable of secondary transfer:

dD+
p

dt
= ψp ×D+

p × (1−
ntot

K
)

dR−

dt
= ψ∅ ×R−

× (1−
ntot

K
)

dR+

dt
= [ψ∅ − γeD

+

p ]×R+
× (1−

ntot

K
)

dR+
p

dt
= [ψp ×R+

p + γeD
+

p ×R+]× (1−
ntot

K
)

ntot = D+

p +R− +R+ +R+

p

ptot = D+

p +R+

p

In the second scenario, both R+
p and R−

p cells transfer the plasmid to R+ cells:

dR+
p

dt
= [ψp ×R+

p + γe(R
+

p +R−

p )×R+]× (1−
ntot

K
)

dR−

p

dt
= ψp ×R−

p × (1−
ntot

K
)

dR+

dt
= [ψ∅ − γe(R

+

p +R−

p )]×R+
× (1−

ntot

K
)

dR−

dt
= ψ∅ ×R−

× (1−
ntot

K
)

ntot = R+

p +R−

p +R+ +R−

ptot = R+

p +R−

p

Computer simulations were conducted using MATLAB.
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Chapter 4

Co-selection of transfer and public good genes

4.1 Introduction

In the previous chapters we have identified some of the interactions between public good

production and horizontal gene transfer. Namely, in structured populations, horizontal

transfer of public good genes promotes cooperation by increasing relatedness at transferred

loci (Chapter 2). Reversely, host genes promoting transfer can be selected for by the

feedbacks of public good production from newly converted recipients, also when some

structuring in the population is present (Chapter 3). However, when studying the effect

of transfer we did not consider the competition between genotypes with and without

transfer. Similarly, in the case of cooperation promoting transfer, we did not consider the

competition between public-good producing and non-producing genotypes.

Here we remedy these simplifications by addressing the remaining question of how the

selective pressures acting on both public good production and horizontal transfer interact.

Will horizontal transfer be selected as soon as public good production is beneficial? Can

the competition between public-good producers and non-producers affect the selection

of transfer and vice-versa? Moreover, both chromosomal and plasmid genes are able

to influence plasmid transfer [Frost and Koraimann, 2010]. Studies of the evolution of

transfer have generally focused on mobile elements themselves [Turner et al., 1998, Turner,

2004, Smith, 2011]: plasmids, like other mobile elements or parasites, gain a selfish, direct

advantage from transfer, which allows them to spread in host populations. This benefit

is modulated by the availability of recipients and by the cost of horizontal transfer to the

host that leads to a trade-off with vertical transfer [Turner et al., 1998, Haft et al., 2009].

On the contrary, so far we have not considered selective pressures acting on plasmids, but

focused on chromosomes, which gain no direct advantage from transfer.

Thus, now we ask how the indirect selection of transfer through public good benefits

interacts with the direct selection of transfer on the plasmid side, and with the selection

of public good production itself: when are transfer and cooperation co-selected? In other

words, in which conditions does the selection of one trait require the presence of the other

155



Chapter 4. Co-selection of transfer and public good genes

trait? We use a simulation approach and, as before, consider simple metapopulations

with subpopulations differing in the frequency of competing genotypes. We first analyze

the interaction between public good production and transfer from the plasmid side (with

plasmid genes controlling transfer, section 4.2), then the interaction between public good

production and host genes controlling transfer (section 4.3).

4.2 Co-selection of plasmid transfer and public good

production genes

4.2.1 Design of the study

We analyze here the interplay between plasmid transfer and public good production: rates

of transfer and production could be combined in numerous ways on competitor plasmids.

We limit the analysis to the case of two competing plasmids, and vary the rates of transfer

and production for one or two of the competitors. We focus mainly on the case where

both public good production and transfer genes vary on the same plasmid: we compete

a plasmid PαTγ with varying rate of transfer γ and rate of public good production α

with a control plasmid P0T0 that has neither transfer nor public good production ability,

and serves as a reference (Figure 4.1-A). We also briefly analyze the case where both

plasmids produce public goods at the same rate α but only one plasmid transfers at

rate γ (Figure 4.1-B), and the case where both plasmids transfer at the same rate γ but

only one plasmid produces public goods at rate α (Figure 4.1-C), in order to assess the

generality of our conclusions. We assume costs of production and transfer proportional

to α and γ respectively, and acting on the host’s growth rate. We do not consider here

within-cell plasmid competition, and assume that the presence of a plasmid within a cell

prevents superinfection by another plasmid.

We model a simple metapopulation that consists in two populations differing in the

ratio of PαTγ plasmid to the reference plasmid, with a constant proportion of plasmid-free

cells (R) (Figure 4.1-D): s1 population is impoverished in PαTγ cells, while s2 population

is enriched in PαTγ cells. We model the effects of public production in the same way

as in the previous chapters, following closely the experimental protocol that was used in

order to allow comparisons with previous results. Competitors are first mixed (t0) and

growth and transfer happen from t0 to t1, with no effect from public good production

except its cost. Populations are then diluted in a selective medium where growth until
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Figure 4.1: Co-selection of plasmid transfer and public good production: sim-
ulation design. Competing strains and plasmids (A, B, C): Two plasmids (red
and blue) are competed in the presence of plasmid-free recipient cells (gray) that can
acquire plasmids. Green dots represent the public good, blacks arrows indicate plasmid
transfer. A plasmid PαTγ (red) with rate of transfer γ and rate of public good production
α is competed against a reference plasmid (blue). The reference is different across panels:
a null plasmid P0T0 that neither transfers horizontally nor produces public goods (A), a
plasmid PαT0 that produces public goods at the same rate α but does not transfer (B)
or a plasmid P0Tγ that transfers at the same rate γ but does not produce public goods
(C). Experiment design (D): Cells bearing PαTγ plasmid (red) and cells bearing the
reference plasmid (blue) are mixed in a metapopulation consisting of two populations that
differ in their initial ratios of PαTγ to the reference plasmid (at t0), and present the same
promotion of plasmid-free cells: s1 is impoverished of PαTγ-bearing cells, s2 is enriched in
PαTγ-bearing cells. After growth and transfer (function of γ), populations are diluted in
the selective medium (Cm) at t1, where subsequent population growth (until t2) depends
on the proportion of Pα cells and α.

t2 is a function of the proportion of public-good producing cells, and of their production

rate α. As the benefits of public good production are transient, we arbitrarily define t2 as

the timepoint where PαTγ proportion at the metapopulation level is maximal across all

conditions tested.

4.2.2 Plasmid selection: transfer and cooperation interact

We focus first on the case where both transfer and public good genes are present only on

PαTγ plasmid (Figure 4.1-A). We measure the change in the frequency of PαTγ compared

to P0T0 from t0 to t2 as a function of γ and α in a case where initially 25% of cells

carry plasmids (Figure 4.2). In the absence of public good production (α = 0), increasing

γ increases strongly the frequency of PαTγ compared to P0T0, as the population gets
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Figure 4.2: Selection of PαTγ plasmid with varying transfer and public good
production rates. The metapopulation consists of 2 populations, with initial PαTγ vs
P0T0 ratios of 1/4 and 4/1, and 25% total plasmid-bearing cells. The colorscale represents
the change in the frequency of PαTγ compared to P0T0 from t0 to t2, shown as a function
of public good production rate α and transfer rate γ by PαTγ.

progressively invaded by mobile PαTγ plasmids. The effect of transfer rate γ on invasion

saturates around 10−9 mL cell−1h−1. In the absence of transfer (γ = 0), there is a very

slight increase in PαTγ frequency for intermediate production rates (α around 1).

When PαTγ plasmid both transfers and produces public goods (γ > 0 and α > 0),

we observe an interaction between transfer and public good production: the selection

of PαTγ plasmid is maximized for intermediates rates of both transfer and public good

production. The interaction is not only additive, but transfer and public good production

act in synergy: the increase in PαTγ frequency with given γ and α is greater than the sum

of independant effects of γ and α (data not shown). This synergistic effect happens only

for intermediate rates: for higher γ and α, the selection of PαTγ declines. Strikingly, for

production rates α > 0, the transfer rate maximizing plasmid fitness is not the maximal

transfer rate tested, contrary to what happens in the absence of public good production.

Reversely, high production rates are also counterselected for a given transfer rate γ.

The results presented here are dependant of the timepoint chosen for t2, as popula-

tions progressively reach saturation even in the absence of public good production. With

different timepoints, the optimal range of parameters that maximize fitness is modified.

Still, the two main conclusions from the analysis are conserved (data not shown): public

good production enhances plasmid fitness for a given transfer rate, and decreases optimal
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transfer rate. Two general conclusions can be drawn from this analysis: first, carrying

public good production genes can benefit a conjugative plasmid. Secondly, adding public

good production can decrease the optimal transfer rate for a given plasmid.

4.2.3 Transfer and cooperation interact via population structure

We next analyze the reasons for the observed interaction: we can distinguish within-

and among-population dynamics. Within populations, increasing public good production
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Figure 4.3: Effect of transfer and public good production on changes within-
and among populations. The metapopulation parameters are the same as in Figure
4.2. The colorscales show the mean change in the frequency of PαTγ compared to P0T0
within populations (A) and the part of the change in PαTγ frequency due to among-
populations differences (total change minus change within populations, B), as a function
of public good production rate α and transfer rate γ by PαTγ.

lowers the frequency of PαTγ plasmid (Figure 4.3-A), in the absence but also in the

presence of transfer. Maximal invasion happens for the highest transfer rate and no

public good production. Thus, the observed interaction at the metapopulation scale does

not arise through within-population dynamics: public-good production only brings a cost

to host cells, decreasing plasmid vertical transmission. Among populations however, we

again observe a strong interaction between transfer and public good production concerning

the selection of PαTγ plasmid (Figure 4.3-B), that explains the observed interaction at the

metapopulation level: among-population selection peaks for high public good production

and intermediate transfer rates.

Why is the among-population increase in PαTγ maximal for intermediate transfer

rates? The effect can be explained by the actual growth of populations (Figure 4.4-A):

the difference in total growth between the two populations is maximal for high public good

production (as the public good enhances growth rate for all cells in the population) and
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intermediate transfer rates. The effect of transfer rate can be understood by analyzing

plasmid spread at t1 with varying transfer rates (Figure 4.4-B): in both populations,

PαTγ frequency at t1 increases with transfer rate γ (shown here for α = 1). For the s2

population enriched in PαTγ plasmid (red line), plasmid spread saturates when it reaches

90% of the population. For the s1 population where PαTγ is initially unfrequent (blue

line), plasmid invasion still increases for higher transfer rates: the difference in producer

cells abundance among populations decreases with increasing transfer rate. Differences

among populations are thus maximized for intermediate transfer rates. The saturation
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Figure 4.4: Reasons for the effects of transfer rate on fitness. The metapopulation
parameters are the same as in Figure 4.2. A: The colorscale shows the ratio of s2 to
s1 populations growth at t2, as a function of public good production rate α and transfer
rate γ. B: PαTγ spread within populations s1 (blue) and s2 (red), and its difference
between s2 and s1 (dashed black line) are shown at t1 (after transfer but before public
goods benefit growth) as a function of PαTγ transfer rate γ.

of transfer is dependant on the assumption that PαTγ plasmid is initially present in all

populations: extremely high transfer rates lead to complete invasion of all populations,

irrespectively of the plasmid initial proportion. With a metapopulation where PαTγ and

P0T0 plasmids do not coexist at all in populations, the saturation disappears, and PαTγ

plasmid gets the highest fitness with highest transfer rate (data not shown).

4.2.4 Co-selection of transfer and public good production with

other competition setups

We next analyze the competitions where either public good production or transfer rate

are the same in both plasmids. In one case, PαTγ plasmid competes with PαT0 plasmid

that produces public goods at the same rate but does not transfer (Figure 4.1-B). In the
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other case, PαTγ plasmid competes with P0Tγ plasmid that transfers at the same rate but

does not produce public goods (Figure 4.1-C).
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Figure 4.5: Fitness with different combinations of transfer and public good
production genes on plasmids. The metapopulation structure is the same as in
Figure 4.2, with a different reference plasmid as competitor. In A, PαTγ plasmid competes
against T0Pα plasmid. In B, PαTγ plasmid competes against TγP0 plasmid. The colorscale
shows the change in the frequency of PαTγ compared to the reference plasmid from t0 to
t2, as a function of public good production rate α and transfer rate γ.

When both plasmids produce the public good (Figure 4.5-A), transfer provides a direct

benefit to the mobile plasmid (PαTγ), which increases with public good production: public

good production and transfer still act synergistically on plasmid fitness. As previously,

this synergy brings a decrease in the optimal transfer rate (compared to its optimum in

the absence of public good production), due to the fact that among-population selection

is maximized for intermediate transfer rates which yield the highest variation in producer

proportion among populations (data not shown). The main difference from Figure 4.2 is

that here high production rates are not counter-selected. Indeed, plasmids do not suffer

from the cost of higher production here, as the competing plasmid in this scenario also

produces the public good. For a given production rate, a mutant plasmid with higher

or lower transfer rate can be selected depending on its effect on the strength of among-

population selection.

When both plasmids transfer (Figure 4.5-B), we again observe an interaction of transfer

and public good production: PαTγ plasmid is more strongly favored with higher transfer

rates. The competition is actually exactly the same as the one described in Chapter 2

(but focusing on plasmids and not on public good production itself). Increases in public

good production rate are more strongly selected when plasmids have high transfer rates.
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The synergy between plasmid transfer and plasmid public good genes is present for

various competition setups: intermediate transfer rates generally promote fitness in syn-

ergy with public good production. Still, we have not considered actual competition over

transfer between plasmids: indeed, either PαTγ was the only mobile plasmid or both plas-

mids transferred at the same rate. Can a decrease in optimal transfer still be observed

when the competing plasmid transfers at a high rate? We consider an additional case,

where PαTγ plasmid now competes against a non-producing but highly mobile plasmid,

P0Thigh (Figure 4.6).
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Figure 4.6: Selection of a public-good producing plasmid vs a non-producing,
highly mobile plasmid. The metapopulation structure is the same as in Figure
4.2, with PαTγ competing against P0Thigh plasmid that has γ = 10−9mL.cell−1h−1. The
colorscales show the total change in the frequency of PαTγ compared to P0Thigh from t0 to
t2 (A) and the part of the change due to among-population dynamics (B), as a function
of PαTγ public good production rate α and transfer rate γ.

At the metapopulation scale (Figure 4.6-A), PαTγ is generally outcompeted in the ab-

sence of public-good production when its transfer rate is lower than γ = 10−9mL cell−1h−1

(the rate of transfer of the competing plasmid P0Thigh) and outcompetes P0Thigh with

higher transfer rate. Public-good production modifies the issue of the competition: for

a given transfer rate, it increases PαTγ frequency. The increase is again due to among-

population dynamics (Figure 4.6-B): selection among populations is enhanced with high

PαTγ transfer rates, that amplify among-population variations in PαTγ frequency. How-

ever, the optimal transfer rate is strongly modified compared to what we observed in

Figure 4.2: a decrease in transfer with public good production is not favored when the

competing plasmid transfers at a high rate. The decrease in among-population selection

observed in Figure 4.3-B does not occur (Figure 4.6-B). Indeed, PαTγ transfer does not
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lead to the invasion of all populations at saturation, as the competing plasmid also trans-

fers and prevents total invasion by PαTγ plasmid. The presence of a competing plasmid

leads to higher among-population selection when both plasmids transfer.

Overall, public good production still benefits the mobile PαTγ plasmid in the presence

of a competing highly mobile plasmid, but PαTγ optimal transfer rate is modified because

the range of parameters where among-population selection is the strongest is altered.

4.2.5 Influence of plasmid abundance on the interaction

We next analyze the influence of the initial abundance of plasmid-bearing cells, as it

modulates plasmid infectious spread. We focus on a case where the conjugative plasmid

PαTγ has a production rate α = 1, and competes against P0T0 plasmid (Figure 4.7).
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Figure 4.7: Effect of initial plasmid abundance on the interaction between trans-
fer and public good production. The metapopulation consists of 2 populations, with
initial PαTγ vs P0T0 ratios of 1/4 and 4/1, and a varying initial ratio of plasmid-)bearing
to plasmid-free cells. PαTγ has a public-good production rate α = 1. The colorscale shows
the change in frequency of PαTγ compared to P0T0 from t0 to t2, as a function of PαTγ
transfer rate and initial plasmid proportion.

In the absence of transfer (γ = 0), the selection of PαTγ increases with increasing plas-

mid proportion: when there are more plasmids, relatedness among public good producers

is higher and populations enriched in public good producing plasmids get more feedbacks

from public good production. The effect of transfer then depends on the initial plasmid

proportion: in the absence of plasmid-free cells (initial plasmid proportion = 1), there

is no effective transfer, so PαTγ decreases in frequency with increased transfer ability, as

PαTγ cells still bear the cost of transfer. When many plasmid-free cells are present (initial

plasmid proportion close to 0), transfer strongly increases PαTγ, as there is opportunity
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for infectious spread. For intermediate proportions of plasmid-free cells, an intermediate

transfer rate is optimal.

Again, the effects of within- and among-population dynamics can be compared in

order to understand the global dynamics (Figure 4.8). Within populations, the change

in PαTγ frequency is maximal for high transfer rates and low initial plasmid proportion

(Figure 4.8-A), because these conditions allow a complete invasion of populations by PαTγ

infectious spread. As less plasmid-free cells are available, the opportunity for fitness gains

by infectious spread within populations declines and becomes compensated by the cost of

transfer: high transfer ability does not bring high benefits anymore within populations.
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Figure 4.8: Effect on recipient abundance: within- and among-population dy-
namics. Population structure and parameters are the same as in Figure 4.7. The
colorscales show the mean change in the frequency of PαTγ compared to P0T0 within
populations (A) and the change in PαTγ frequency compared to P0T0 due to among-
populations differences (B) from t0 to t2, as a function of transfer rate γ and initial
plasmid proportion.

The among-population differences in growth linked to public-good production, how-

ever, are highest when plasmids are more abundant, which maximizes feedbacks among

public-good producing cells. In the absence of transfer, the among-population component

of PαTγ change in frequency is thus stronger with higher initial plasmid frequency (Figure

4.8-B). The effect of transfer is maximized for intermediate proportions of plasmid-free

cells: in the absence of plasmid-free cells (initial plasmid proportion close to 1), among-

population selection is already strong in the absence of transfer, and does not increase a

lot with transfer, that is not efficient. When many plasmid-free cells are available, transfer

can actually increase among-population selection, as it is low without transfer and there

is more opportunity for efficient transfer. For low initial plasmid frequencies (close to
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zero), transfer first increases among-population selection. However, the among popula-

tion change in frequency then decreases for higher values of transfer rate. The dynamics

here is similar to the one in Figure 4.3-B: the difference in transfer efficiency in populations

differing in initial plasmid proportion actually decreases as populations get completely in-

vaded by PαTγ plasmid (see Figure 4.4-B). The within-population component of plasmid

success increases and the among-population component decreases.

The influence of public good production on plasmid fitness is thus globally dependant

on the opportunities for transfer. When plasmids are initially rare, the effect of infectious

transfer is predominant, and strongly increases plasmid frequency. When plasmids are

more abundant, the effect of transfer on among-population dynamics becomes a significant

part of plasmid selection. Synergy between plasmid transfer and production rates happens

mainly when benefits of public goods are strong enough to influence significantly plasmid

dynamics.

4.3 Co-selection of chromosomal transfer and plasmid

cooperation genes

We now analyze the interaction between the selection of host genes controlling transfer in

trans (located on the chromosome, unlike in section 4.2 when they were on the plasmid)

and public good production: we compete simultaneously two strains differing in donor

ability q, and two plasmids differing in their public good production rate p. We assume

that both plasmids can be transferred at the same rate by a given strain (the chromosome

has no ability to discriminate between plasmids). We analyze the selective pressures acting

simultaneously on public good production (competition between plasmids) and transfer

ability (competition between strains).

4.3.1 Design of the study

We compete the two strains Dq and D0 and the two plasmids Pα and P0: Dq transfers

both Pα and P0 plasmids to both Dq and D0 plasmid-free cells (Figure 4.9-A). We assume

a cost for both public-good production and donor ability, proportional to respectively

α and γ and acting on the host’s growth rate. To detect selection acting at the group

level, we need populations that differ in the initial frequency of competitors, here both

D strains and P plasmids. To manipulate strains and plasmids independantly, we model

a metapopulation that consists in 4 populations (Figure 4.9-B): the total frequency of
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Figure 4.9: Co-selection between donor ability and public good production:
simulations design. Competing strains and plasmids (A): Two strains are com-
peted: Dq with donor ability q (red) and D0 without donor ability (blue). Some cells of
each strain bear the non-producing plasmid Pα (yellow) while others carry the public-good
producing plasmid P0 (green). Plasmid-bearing Dq cells transfer plasmids to plasmid-free
cells of either Dq or Dα strain (black arrows). Experiment design (B): The metapop-
ulation consists in 4 populations: s1 and s2 are enriched in Pα-bearing cells, s3 and s4 in
P0-bearing cells. s1 and s3 are enriched in Dq strain, s2 and s4 are enriched in D0 strain.
Each population has the same total proportion of plasmids p. After founding of popula-
tions (t0), cells grow and transfer happens. At t1, populations are diluted in the presence
of the antibiotic (Cm). subsequent growth depends on the proportion of Pα-bearing cells
and Pα production rate α, until t2 where populations are pooled.

plasmids (p = Pα + P0) is the same for all populations. Pα vs P0 ratio is low for the two

populations s1 and s2, high for the two others, s3 and s4. Dq to D0 ratio is low for s1 and

s3, high for s2 and s4. Variations in plasmids and strains are independant, and allow us

to follow changes in frequencies within and among populations for each trait.

The experiment design is the same as in the previous section: competitors are first

mixed (t0) and growth and transfer happen from t0 to t1. Populations are then diluted

in medium containing the antibiotic chloramphenicol (Cm), where growth until t2 is a

function of the proportion of public-good producing cells and their production rate α.

4.3.2 Co-selection of chromosomal transfer genes and cooperation

We begin with a case where previous analyses have shown a benefit of transfer (Chapter 2)

or its selection (Chapter 3): an abundance of plasmid-free cells (we assume here p = 0.1)

and non-random population structure for both plasmids and strains. We vary the public-

good production rate α for Pα-bearing cells and the donor ability q for Dq cells, and

measure the change in frequency of competitors from t0 to t2 (Figure 4.10).
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Figure 4.10: Co-selection of donor ability and public good production. The
metapopulation consists in 4 populations (see Figure 4.9), each with initially 10% plasmid-
bearing cells (p = 0.1). The ratio of Pα to P0 plasmids is 1/9 in s1 and s2, 9/1 in s3 and
s4; the ratio of Dq to D0 strains is 1/9 in s1 and s3, 9/1 in s2 and s4. The colorscales
show the change in Pα to P0 frequency (A) and in Dq to D0 frequency (B) from t0 to t2,
as a function of Dq donor ability q and Pα public-good production α.

In the absence of donor ability (q = 0), Pα plasmids decline in frequency compared

to P0 plasmids (Figure 4.10-A). When Dq donor ability increases, higher values of Pα

production rate are selected. The maximal selection of Pα happens for high Dq donor

ability and intermediate Pα production rate. All the observed increase is due to among-

population dynamics: Pα decline in frequency within populations for all values tested

(data not shown). Why does among-population dynamics increase Pα frequency? At the

metapopulation scale, the relatedness at Pα locus increases with transfer at t1 (Figure

4.11-A): as plasmids spread within populations, the assortment between Pα plasmids

increases, equivalently to what we observed in Chapter 2. The effect of plasmid transfer

is the same as in Chapter 2, even if now only one part of the total population (Dq cells)

are transferring the plasmid.

In the absence of public good production (α = 0), Dq cells decline in frequency com-

pared to D0 cells (Figure 4.10-B). As Dq cells transfer a plasmid that does not bring

public good benefits, donor ability is not selected. When public good production in-

creases, donor ability is selected. The maximal selection of Dq happens for maximum

Pα production rate and intermediate Dq transfer rate. Again, all the increase is due to

among-population dynamics: Dq decline in frequency within populations for all values

tested (data not shown). Dq is selected at the metapopulation level, as populations en-

riched in Dq cells grow faster than populations with low frequencies of Dq cells: they have
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Figure 4.11: Parameters controlling the co-selection of donor ability and public
good production. The metapopulation is the same as shown in Figure 4.10. Colorscales
show the relatedness at the Pα locus (A) and the difference in Pα frequency in Dq-enriched
populations compared to D0-enriched populations (Pα(s2)+Pα(s4)−Pα(s1)−Pα(s3), B)
at t1, as a function of Dq donor ability q and Pα public-good production α.

a higher proportion of Pα-bearing cells (Figure 4.11-B). The selection of donor ability is

analogous to what we observed in Chapter 3, even if Dq cells now transfer both Pα and

P0 plasmids.

Chromosomal genes promoting transfer and plasmid genes for public good production

can thus be co-selected for some range of donor ability and public good production:

here, public good production is selected only in the presence of transfer, and vice-versa.

Interestingly, the optimum range of parameters (where selection is maximal) is not the

same for donor ability and public good production: Pα cells are maximally favored for

maximal transfer rates (that ensures maximal relatedness), but not for maximal public

good production, as Pα-bearing cells pay the cost of increasing production. Reversely, Dq

cells are maximally favored for maximal production rates (that ensure strong feedbacks

from transfer), but not for maximal donor ability, as Dq cells pay the cost of transfer.

4.3.3 Conditions for co-selection

We focused here on a case where we suspected that co-selection of donor ability and public

good production would be favored. We next analyze the effect of some key population

parameters on the co-selection of donor ability and public good production.

Plasmid abundance

We first analyze the effect of the initial proportion of plasmid-bearing cells p. We assume

that Pα public-good production α = 1, and follow the change in frequency of Pα and Dq
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from t0 to t2, while varying plasmid proportion p and Dq donor ability q (Figure 4.12).

B"A"

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

 initial plasmid frequency

d
o
n
o
r 

a
b
ili

ty
 q

 

 

c
h
a
n
g
e
 i
n
 P
α
 f
re

q
u
e
n
c
y

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

 initial plasmid frequency

d
o
n
o
r 

a
b
ili

ty
 q

 

 

c
h
a
n
g
e
 i
n
 D

q
 f
re

q
u
e
n
c
y

−0.05

0

0.05

0.1

0.15

0.2

Public'good'produc-on' Donor'ability'

Figure 4.12: Effect of plasmid abundance on the selection of donor ability and
public good production. The metapopulation consists in 4 populations (see Figure
4.9), each with initial proportion of p plasmid-bearing cells. The initial ratio of Pα to P0

plasmids is 1/9 in s1 and s2, 9/1 in s3 and s4; the initial ratio of Dq to D0 strains is 1/9
in s1 and s3, 9/1 in s2 and s4. Pα plasmid has the production rate α = 1. Colorscales
show the changes in Pα to P0 ratio (A) and Dq frequency (B) from t0 to t2, as a function
of Dq donor ability q and initial plasmid frequency p.

When plasmids are initially abundant, Pα plasmids are favored independently from

Dq donor ability (Figure 4.12-A): relatedness among Pα is already high in the absence

of transfer, and a high donor ability does not lead to many transfer events, as plasmid-

free cells are rare. When plasmids are initially rare, Pα plasmids are favored only with

high donor ability q: transfer is needed to select for cooperation, as relatedness among

Pα plasmids is too low without transfer. On the contrary, Dq cells are selected only

when plasmids are initially rare (Figure 4.12-B): when plasmids are initially abundant,

Dq decline in frequency when they have high donor ability. A higher donor ability is

selected with lower initial proportion of plasmids. Indeed, donor ability brings benefits on

population growth only when transfer is effective and provides strong benefits in terms of

public good production: Dq cells are selected in the same range of parameters for which

Pα cells cannot be selected in the absence of transfer, ie a low initial plasmid frequency.

Public good production and donor ability are thus co-selected when plasmid-free cells

are abundant: in these conditions, cooperation is counter-selected in the absence of trans-

fer, and transfer benefits growth, allowing for second-order selection of transfer. When

plasmid-free cells are scarce, public-good production is selected, but donor ability is not.
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Population structure requirements

We assumed until now a fixed population structure with given variation among popula-

tions for both D and P genotypes. We now modulate population structure by changing

the initial asymmetry among populations concerning either P or D genotypes: we vary

the difference in Pα vs P0 or Dq vs D0 proportions among populations from 0 to 1. (When

asymmetry is 0, there is no difference among populations; when asymmetry is 1, each pop-

ulation contains only one allele for the locus considered. So far we considered asymmetries

of 0.8 for both P and D genotypes.) We follow the change in Pα and Dq frequency at the

metapopulation scale from t0 to t2 (Figure 4.13).
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Figure 4.13: Effects of population structure on the selection of donor ability
and public good production. Pα plasmid has the production rate α = 1, Dq strain
has the donor ability q = 1. The metapopulation consists in 4 populations (see Figure
4.9), each with initial proportion of 20% plasmid-bearing cells, and varying distribution
of P and D genotypes: D asymmetry measures the initial difference in Dq frequency
between Dq-rich and Dq-poor populations; P asymmetry measures the initial difference
in Pα frequency between Pα-rich and Pα-poor populations. Colorscales show the changes
in Pα to P0 frequency (A) and Dq to D0 frequency (B) from t0 to t2, as a function of P
and D genotypes asymmetry.

Pα plasmids are selected over P0 plasmids (Figure 4.13-A) only when there is some

initial asymmetry in Pα vs P0. Reversely, Dq strain is selected over D0 strain (Figure 4.13-

B) only when there is some initial asymmetry in Dq vs D0. Both donor ability and public

good production genes thus need some variation in their frequencies among populations,

or relatedness at their own locus, in order to be selected.

When Pα and P0 do not present initial asymmetry, the ratio of Pα to P0 plasmids

within populations does not change, even with transfer, as Dq transfers equally both

plasmids. There is thus no possibility for among-population selection of public-good
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producers. The total amount of Pα-bearing cells, however, still gets higher in populations

enriched in Dq cells when there is asymmetry concerning D genotype. The asymmetry

in Pα-bearing cells further provides increased feedbacks from public-good benefits to Dq

cells, and allows among-population selection of donor ability.

When there is no asymmetry in Dq vs D0 frequencies, Pα cells are still selected if some

asymmetry in Pα vs P0 frequencies preexists: this is exactly what we described in Chapter

2. Transfer by Dq cells promotes selection of Pα by increasing relatedness at the Pα locus.

However, since in this case there is no initial relatedness concerning donor ability, the

Dq cells do not get more feedbacks than D0 cells from public-good production and their

frequency does not increase.

Finally, when both D and P genotypes have non-random population distribution, we

observe that asymmetry promotes the selection of both Dq and Pα. Strong asymmetry in

D distribution increases the selection of Pα plasmids (Figure 4.13-A); strong asymmetry

in P distribution also increases the selection of Dq strain (Figure 4.13-B). Indeed, Dq

cells amplify the pre-existing variation in Pα proportion among populations, thanks to

within-population transfer, and themselves get feedbacks from Pα proportion.

Non-random assortment among Dq cells and among Pα plasmids is thus needed to

select respectively for donor ability and public-good production. Still, we assumed here

for simplification that the distributions of D and P genotypes across populations are

independant (so we can independently manipulate the population distribution of each

of them). Due to this independance, the assortment for one genotype does not lead to

assortment for the other one. However, the interaction between donor ability and public

good production can modify population distribution itself, which we address below.

4.3.4 Association between plasmids and host transfer genes

To follow changes in the association between P and D genotypes, we compute linkage

disequilibrium between the Pα and Dq alleles.

Linkage disequilibrium between transfer and plasmids

Linkage disequilibrium (LD) is a measure used in population genetics that quantifies the

deviation from random association between alleles at different loci. Measures analogous

to LD have been applied to quantify the linkage between host and symbiont [Sanchez

et al., 2000] or gene-culture disequilibrium [Feldman and Cavalli-Sforza, 1984]. We apply
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it here to the case of Pα and Dq alleles:

LDDqPα
= f(DqPα)− f(Dq)× f(Pα)

where f(DqPα) is the frequency of DqPα allele combination (Pα plasmid in Dq cells) in

the metapopulation, f(Dq) the total frequency of Dq strain and f(Pα) the total frequency

of Pα plasmid. Generally, positive linkage indicates that Dq and Pα are found together

associated with each other more than what would be expected from their individual

frequencies.

At t0, we have LDDqPα
= 0 by design, as we start with an independant distribution

of P and D genotypes across populations: there is no association between Dq and Pα.

We then compute LDDqPα
after growth and transfer (t1, Figure 4.14-A), and after further

growth in presence of the antibiotic (t2, Figure 4.14-B).
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Figure 4.14: Linkage disequilibrium between Dq and Pα alleles. LDDqPα
is com-

puted for the metapopulation described in Figure 4.10, and shown as a colorscale at t1
(A) and t2 (B) as a function of Dq donor ability q and Pα public-good production α.

At t1, LDDqPα
is strongly dependent on Dq donor ability q (Figure 4.14-A). In the

absence of transfer (q = 0), there is no association between Dq and Pα alleles. With

increasing donor ability, positive linkage arises between Dq and Pα alleles. Increasing Pα

production rate very slightly decreases linkage for a given donor ability. At t2 however, Pα

public good production has a strong impact on LDDqPα
(Figure 4.14-B). LDDqPα

is still low

for low donor ability, and close to its values at t1 in the absence of public-good production

(α = 0). For high donor ability, intermediate rates of Pα public good production strongly

increase LDDqPα
compared to both its t1 value and its value in the absence of public good

production. Further increase in production rates causes a decrease in LDDqPα
.
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At t1, the emergence of linkage is not related to cooperation: linkage actually also

appears between P0 and Dq alleles, following the same pattern (LDDqP0
> 0 for q>0, data

not shown). We can thus infer that the linkage at t1 is primarily due to plasmid transfer.

Indeed, the metapopulation structure ensures that more transfer takes place within s2

and s4 populations enriched in Dq cells: transfer happens mainly towards Dq cells at the

metapopulation scale, and both Pα and P0 become associated to Dq cells.

At t2 the situation is different: Pα public good production also plays a role in linkage,

which suggests that public goods modify linkage. As the public good acts through en-

hancing the growth rate in populations, we suspect that its effect on linkage may be due

to among-population selection. To test this idea we computed LDDqPα
while artificially

removing the effect of differential growth (assuming equal size for all populations). The

effect of public good production on LDDqPα
disappeared (data not shown): the increase in

LDDqPα
at t2 is due to differential growth. Growth is mainly promoted in the s4 popula-

tion (see Figure 4.9) initially enriched in both Dq cells and Pα plasmids, where transfer by

Dq cells increased the frequency of public-good producing cells. Since s4 (where Dq cells

and Pα are initially associated) is the most successful and s1 the less successful popula-

tion, LDDqPα
will increase at the metapopulation level. At t2, the association between Dq

strain and Pα plasmid is thus selected through among-population selection of populations

enriched in producer cells.

Parameters governing linkage disequilibrium

Linkage disequilibrium in previous simulations relies on initial differences in population

frequencies. How does population structure influence the emergence of linkage? We now

modulate population structure in the same way as in the section 4.3.3, by independently

varying the initial asymmetry in P and D genotypes.

At t1, positive linkage between Dq strain and Pα plasmids appears as soon as there

is some initial asymmetry in D genotype among populations (Figure 4.15-A). The asym-

metry in P genotype does not affect linkage. The linkage due to transfer thus needs

some initial variation in genotype frequencies for donor ability q across populations. This

observation can be related to what we observed in Chapter 3: a bias of transfer towards

kin (other Dq cells) relies on some assortment between Dq cells at the metapopulation

scale. Public good production does not play a role in the emergence of linkage at t1, so

population structure concerning P genotypes has no effect here.

At t2, D asymmetry still promotes positive linkage between Dq strain and Pα in the
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Figure 4.15: Linkage disequilibrium and population structure. The simulation
is the same as in Figure 4.13, with α = 1 and q = 1. LDDqPα

is computed at the
metapopulation scale, and shown as a colorscale at t1 (A) and t2 (B) as a function of P
and D genotypes asymmetry among populations.

same way as at t1 (Figure 4.15-B). However, the asymmetry in P genotypes now also

increases LDDqPα
, mainly when asymmetry for D is high: asymmetries in P and in D

genotypes have a synergistic effect on linkage. In the absence of asymmetry for P, among-

population selection cannot act on public good production: linkage due to Pα public-

good production thus arises through among-population selection, and is enhanced with

increasing asymmetry in P (see Figure 4.13).

Our analysis shows that without initially enforcing any association between D and

P genotypes, linkage between Dq strain and Pα plasmids arises as soon as there is some

asymmetry in Dq and Pα distributions among populations. Part of it is simply due to the

local nature of transfer and also happens for P0 plasmid (this requires only asymmetry

for D genotype); but additional linkage specifically caused by Pα arises through among-

population selection because populations enriched in both Dq and Pα are more successful.

4.4 Discussion

4.4.1 Conditions for the co-selection of transfer and cooperation

Our simulations have shown that transfer ability and public good production interact in

terms of selective pressures acting on both plasmid and chromosomal genes:

On the plasmid side, the optimal transfer rate is modulated by the presence of a

given public good production rate. By its indirect effects on among-population selection,

transfer ability can be more strongly selected when public good production genes are

present on mobile plasmids. However when it maximizes the variability in producer

174



Chapter 4. Co-selection of transfer and public good genes

frequencies among populations, a lower transfer rate can be selected. The evolution of

plasmid transfer rate will thus be influenced by the public good genes that the plasmid

may carry. The relative importance of selective pressures linked to public good production

will depend on the strengh of the direct benefit given by infectious spread (highest when

plasmid-free cells are abundant) and on population structure (assortment is needed for

indirect selection of public good production).

On the chromosomal side, selection for donor ability occurs in interaction with pub-

lic good production, when transfer is needed in order for public good production to be

selected; ie when plasmid-bearing cells are initially present in low frequencies. When

plasmid-bearing cells are already abundant in the absence of transfer, public good pro-

duction is selected alone, with no advantage brought by plasmid transfer ability. When

plasmid-bearing cells are scarce, donor ability and public good production are co-selected:

each trait necessitates the other trait in order to increase in frequency.

As all simulations share the same metapopulation setup and parameters for transfer

and public good production, the cases of plasmid and chromosomal control of transfer

can be roughly compared: co-selection between transfer and public good production gen-

erally occurs for effective transfer rates around 10−9mL cell h−1 and public production

around 1, with low frequencies of initial plasmid-bearing cells (5 to 25%). This range of

parameters corresponds to cases where transfer promotes the most the selection of public

good production by increasing production and assortment among producers. From the

plasmid side, this can have the effect of decreasing the optimal transfer rate compared to

a case without public goods (where the optimal transfer rate is greater than 10−9mL cell

h−1), but this depends on the competitor plasmid’s transfer. From the host side, adding

public good genes on plasmids promotes donor ability (as the optimum donor ability is

zero for plasmids not bearing public good genes).

In both cases, an abundance of plasmid-free cells favors the selection of transfer: partly

because of selfish spread from the plasmid side and purely because of among-population

selection for public-good production from the chromosomal side. In conditions where

transfer is likely to be efficient, both plasmid and chromosomal genes promoting plasmid

transfer and the presence of public-good producing genes on plasmids should be favored.

We analyzed here a specific example of public good, that acts on cell growth rate, and

for which we have experimentally measured the actual parameters. However, the general

conclusion of these simulations should hold in other cases: transfer and public good

production could be co-selected as soon as transfer enhances the population benefits
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provided by public goods. An interesting point we observed in some simulations modelling

a public good effect on growth yield (and not growth rate) is that co-selection of transfer

and public good production can occur also within populations: public good production

leads to higher cell densities, most favorable to plasmid spread.

4.4.2 Population structure effects

We modelled here a metapopulation divided in a small number of populations. Our

analysis confirmed that some structure in the distribution of genotypes among populations

is needed to provide indirect selection for both public good production and transfer ability,

which was shown in Chapters 2 and 3. First, in order for public good production to be

selected, producer plasmids have to present some initial structuring among populations,

that is further amplified by transfer when plasmid-free cells are present. Secondly, transfer

ability can be selected by indirect benefits provided by transferred genes, if there is initial

structure in populations concerning transfer ability itself. However, our novel finding

is that variation among populations for both transfer and production alleles leads to

synergistic effects on fitness, and on population structure itself. Populations where both

transfer and public good production are abundant get maximum benefits, which amplifies

among-population selection for production and transfer. Moreover, this synergy favors

populations where transfer and production alleles are associated within cells, leading to

linkage between these alleles at the metapopulation scale.

The linkage between horizontal transfer and transferred alleles may seem paradoxical,

since horizontal transfer has been shown to oppose associations between alleles [Brand-

vain et al., 2011]. However, linkage arises here because the association is selected at the

metapopulation scale. The appearance of linkage can be compared to models of mutual-

ism, that showed that genetic correlations among mutualists with horizontal transmission

can arise because the association is favored [Frank, 1994]. Moreover, in structured popu-

lations, transfer is actually biased towards kin, which also favors the association between

transferring strains and plasmids.

The appearance of linkage in these simple simulations, where we assumed initially

independence between transfer and production alleles, suggests that strains with donor

ability could become associated to public-good producing plasmids at larger timescales.

This association could favor mutualistic coevolution between the host and the plasmids,

even in the presence of horizontal transfer.
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4.4.3 Other selective pressures acting on plasmids

The suggested coevolution between transferring strains and plasmids also hints at the

issue of plasmid specialization towards a specific host background. We have not considered

here plasmids that could be more adapted to one of several hosts: we assumed that host

backgrounds differ only in plasmid transfer ability, not in plasmid effects on fitness. A

differential effect of plasmids would be outside the scope of this study, as it would involve

issues related to plasmid host range and specialization. For this reason, we also excluded

here the analysis of transfer of private good genes (described in Chapter 3): transfer ability

is selected on the chromosomal side only when transfer happens towards kin, which would

require us to consider plasmids with limited host range. Instead, we focused on the case of

transfer of public good genes, where transfer is beneficial through public goods produced

by every new producer cell, no matter if it is kin or non-kin.

We also deliberately excluded here other selective pressures that can influence the

evolution of plasmid transfer rates. First, the evolution of transfer rate is thought to

depend on the tradeoff between horizontal and vertical transmission: the cost of horizontal

transmission to the host decreases vertical transmission [Turner et al., 1998, Haft et al.,

2009]. However, this effect is quite low in the conditions we model, as we assume high

densities of plasmid-free hosts, that bring a strong benefit to horizontal transmission.

Secondly, we do not consider within-host plasmid competition. Within-host competition is

generally thought to be limited in nature, as conjugative plasmids present entry exclusion

mechanisms that block the entry of related plasmids [Garcillán-Barcia and de la Cruz,

2008], and bottlenecks through cell division and conjugation lead to reduced diversity in

plasmids within cells [Paulsson, 2002]. Still, superinfection between plasmids can evolve

under conditions such as intense competition when no plasmid-free cells are available

[Smith, 2011]. As superinfection is strongly deleterious to the host [Smith, 2012], it could

prevent the evolution of mutualism between host and plasmid. The interplay of the

benefits of transfer we describe in our work and selective pressures tending to decrease

horizontal transmission or make it deleterious to the host could be studied in future work.

More generally, we did not consider here the coevolution between plasmids and hosts

concerning plasmid transfer, but considered only the cases in which transfer is controlled

either just by chromosomal or just by plasmid genes. However, since our analysis shows

that horizontal transfer can benefit both plasmid and chromosomal genes separately when

plasmids bear public good genes, we expect that the interests of plasmid and chromosomal
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genes controlling transfer may often converge in the case of public good genes-bearing

plasmids.

4.5 Methods

4.5.1 Description of the model

General model assumptions

We model growth of strains and plasmid transfer mimicking experimental conditions de-

scribed in Chapters 2 and 3 for the case of plasmids carrying public good genes. Both

growth and transfer follow a logistic function, stopping at carrying capacity K. Plasmids

have a cost cp on cells carrying them and a public benefit bp. The plasmid affects cell

growth proportionally to public good production rate α (cp × α). We assume a cost of

transfer for the donor cell cq so that the cost affects cell growth and is proportional to

donor ability (cq × q).

We model two steps: first pre-incubation, where transfer happens (from t0 to t1),

then growth in a selective medium where the public good benefits growth (from t1 to

t2) and the transfer rate is divided by 10. The global effect of public good production

is modelled as being proportional to the frequency of public-good producing cells at a

given time in the local population. We thus assume that cp < 0 for the whole duration

of the experiment (cost of public good production), bp = 0 from t0 to t1 (no benefit of

the public-good in the absence of Cm) and bp > 0 from t1 to t2. The pre-incubation

time (from t0 to t1) was set to 12h after 100-fold initial dilution from carrying capacity,

and growth from t1 was allowed for 60h after a second 100-fold dilution. The benefit

of cooperation is only transient [Chuang et al., 2009] and t2 has to be chosen before all

populations reach stationary phase. For each simulation, t2 was defined as the time point

where the selection of public-good producers was maximal over all conditions tested.

Parameters values shown below were estimated from previous experimental data; the

basal growth rate ψ is ψ1 from t0 to t1 and ψ2 from t1 to t2.
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Parameter Symbol Estimation

Carrying capacity K 4.109 cells mL−1

Basal rate of plasmid transfer γ 10−9 mL cell−1L−1

Basal growth rate - from t0 to t1 ψ1 0.96 h−1

- from t1 to t2 ψ2 0.12 h−1

Cost of good production on growth rate cp 0.04

Benefit of public good production on growth rate bp 4

Cost of donor ability on growth rate cq 0.05

Co-selection of donor ability and plasmid production

Here we compete both the two strains Dq and D0, and the two plasmids Pα and P0.

Dq cells transfers plasmids to both Dq and D0 cells: transfer happens at a basal rate

γ = 10−9mL cell−1h−1, following a mass-action law. Dq strain donor ability q modulates

effective transfer γe (γe = q × γ).

dDqPα

dt
= [ψ(1− cpα)(1− cqq)(1 + bpα

ptot
ntot

) + γeDq]×DqPα × (1−
ntot

K
)

dDqP0

dt
= [ψ(1− cqq)(1 + bpα

ptot
ntot

) + γeDq]×DqP0 × (1−
ntot

K
)

dD0Pα

dt
= [ψ(1− cpα)(1 + bpα

ptot
ntot

)×D0Pα + γeDqPα ×D0]× (1−
ntot

K
)

dD0P0

dt
= [ψ(1 + bpα

ptot
ntot

)×D0P0 + γeDqP0 ×D0]× (1−
ntot

K
)

dDq

dt
= [ψ(1− cqq)(1 + bpα

ptot
ntot

)− γe(DqPα +DqP0)]×Dq × (1−
ntot

K
)

dD0

dt
= [ψ(1 + bpα

ptot
ntot

)− γe(DqPα +DqP0)]×D0 × (1−
ntot

K
)

ntot = DqPα +D0Pα +DqP0 +D0P0 +Dq +D0

ptot = DqPα +D0Pα

Selection of production and transfer in plasmids

Here, two plasmids TγPα and TrefPref are competed, in the presence of plasmid-free

recipients R. TγPα has transfer rate γe = qe × γ and public good production α. TrefPref

can be either T0P0, T0Pα or TγP0 : it has transfer rate γr = qref × γ and public good

production αr. Transfer happens only to plasmid-free cells. Equations for growth and

transfer are as follows (cells bearing TγPα are abreviated as TγPα and cells bearing TrefPref
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as TrefPref , as there can be only one plasmid per cell):

dTγPα

dt
= [ψ(1− cpα)(1− cqqe)(1 + btot) + γeR]× TγPα × (1−

ntot

K
)

dTrefPref

dt
= [ψ(1− cpαr)(1− cqqref )(1 + btot) + γrR]× TrefPref × (1−

ntot

K
)

dR

dt
= [ψ(1 + btot)− γeTγPα − γrTrefPref ]×R× (1−

ntot

K
)

ntot = TγPα + TrefPref +R

btot = bp(αTγPα + αrefTrefPref )

4.5.2 Data analysis

Estimations of selection

Selection acting on a given trait is globally estimated by measuring changes in allele

frequencies over time. Global frequencies at the metapopulation level are measured by

pooling equal volumes of populations, effectively taking into account differential growth

among populations. Mean within populations frequencies are computed as the mean of

each individual frequency within populations, excluding the effect of differential growth

among populations.

Computing relatedness

Relatedness is defined as the measure of how an individual’s social environment covaries

with the individual’s genotype, which can be calculated as the linear regression coefficient

connecting an individual’s genotype with the genotype of its interactants [Damore and

Gore, 2012]. Here, we focus on the relatedness of Pα, considering that the social environ-

ment of an individual corresponds to the population it belongs to. With pi and ni being

respectively the proportion of producers and number of bacteria within population i , and

ptot and ntot being respectively the proportion of producers and number of bacteria in the

whole metapopulation, the relatedness of producers rP at the level of the metapopulation

can be calculated as followed (assuming populations are of the same size, which is the

case at t1):

rP =

∑
i
pi
ni

·
pi
ptot

−
ptot
ntot

1− ptot
ntot
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General discussion

5.1 Conclusions from models and experiments

5.1.1 An interplay between transfer and public good production

My work highlights different aspects of the complex interplay between the selective pres-

sures acting on plasmid transfer and public good production. First, horizontal transfer

generally promotes the maintenance of public good production, even when both produc-

tion and non-production alleles can be transferred (Chapter 2). Secondly, the transfer

of public good production alleles can promote the selection of chromosomal genes that

enhance transfer (Chapter 3). Finally, selective pressures acting on both transfer and

public good production can act in synergy, leading to a change in the optimal transfer

rate for plasmids when they carry public good genes, and to co-selection of chromosomal

genes enhancing transfer and of plasmids carrying public good genes (Chapter 4).

Altruistic behaviours (ones with only an indirect fitness benefit) are well-known to

require positive relatedness or assortment in order to be selected in bacterial populations

[Griffin et al., 2004, Diggle et al., 2007b, Ackermann et al., 2008, Chuang et al., 2009]. In

this work, we first experimentally demonstrate that in a metapopulation context horizon-

tal transfer enhances relatedness at transferred loci because it amplifies allele frequencies

at a local scale, and thus promotes the selection of public good production alleles. This

effect is maximized when plasmid epidemic spread takes place, because such spread low-

ers the amount of initial variation needed in order to provide sufficient assortment. We

next show that the same social framework can be applied to transfer: transfer ability

can be understood as a social, altruistic behaviour influenced by chromosomal genes, and

promoted in structured populations. Moreover, when variation in genotype frequencies

is present for both public good production and transfer alleles, both act in synergy on

among-population selection, as the most successful populations are those where transfer

and public good production are associated. As a result, conjugative plasmids with public-

good production alleles can then be favored and alleles favoring transfer residing on the

chromosome are co-selected with public good production alleles.
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5.1.2 Second-order selection for transfer ability

Our analysis has revealed that transfer ability can be promoted by different kinds of

second-order selection [Arber, 2000, Tenaillon et al., 2001]. For example, selection on

donor ability acts through the effect of transferred genes on recipient cells, and not through

a direct effect of transfer on the cell performing transfer. In this case, we exclude direct

benefits of transfer, obvious for plasmids themselves and potentially also present for the

host, such as the induction of biofilm formation by conjugative pili (see section III.1.2).

Because selection acts through neighbouring cells, it can be seen as both second-order

selection and social selection, and thus needs to be understood in a social context.
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Figure 5.1: Indirect selective pressures favoring chromosomal transfer ability.
Transfer is indicated as black arrows from the donor to the recipient cell, and can occur
between related or unrelated cells. In the case of plasmids with public good production
genes (A and B), transfer brings about public good production (dashed black arrows).
Public goods (green dots) then benefit the focal cell but also its related cells (green
arrows). In the case of plasmids with private good genes (C and D), transfer to kin leads
to a direct increase in fitness for related cells (orange arrows). Effects with consequences
on donor ability (A and C) and recipient ability (B and D) are shown.

The main and initial focus of this work has been on public-good production genes. In

the case of public-good gene transfer, the transfer acts indirectly through a change in the

environment shared by both donor ans recipient cells, as well as their relatives (Figure
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5.1-A and B). Increasing public good production can be selected when populations are

structured, and related cells generally interact together. However, an unexpected result

from the direct fitness analysis (Chapter 3) was that selection can also promote the transfer

of private traits, that increase the direct fitness of recipients (Figure 5.1-C and D). This is

still second-order selection for donor ability because the fitness of the donor cell does not

directly increase through transfer. However, selection does not happen through changes

in the common environment of donors and recipients, but through increases in the direct

fitness of related cells. Recipient ability can be directly selected, when acquired genes

directly benefit fitness.

5.1.3 Co-selection of altruistic alleles

A final insight of this work (Chapter 4) is that not only do transfer and public good

production increase fitness in synergy, but this synergy also promotes the linkage between

both traits. In conditions where the association benefits fitness (when plasmid transfer

promotes the selection of public good production), the association of transfer and public

good alleles is selected indirectly via the success of populations where both traits coexist.

Plasmids that bear both public good production and transfer genes can outcompete

others (such as null plasmids, plasmids with only public good production or plasmids with

only transfer ability), because and when transfer amplifies the benefits from public good

production. Co-selection can easily happen between plasmid genes controlling transfer and

public good production genes, as the two genes are present on the same genetic unit, and

are transferred together. On the other hand, chromosomal alleles promoting public-good

production could be separated from public-good alleles precisely because of horizontal

transfer. However, we show here that linkage can arise between plasmid public good

production alleles and chromosomal alleles promoting transfer, because of the benefits

of the association. More generally, altruistic alleles coding for transfer and public good

production are co-selected on both plasmids and chromosomes.

5.2 Benefits and drawbacks of the approaches used

5.2.1 A simplified synthetic and model system

Our experimental results are all based on a synthetic system integrating public good

production and plasmid transfer. Simulations themselves are tighly coupled to the exper-

imental work, use the same design, incorporate experimentally measured parameters, and
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generally mimic the experimental system. The synthetic approach leads to both benefits

and drawbacks that can be generally associated with synthetic systems. In addition to

this, I used in Chapter 3 a general fitness approach in order to get insight about the

selective pressures acting on chromosomal genes and generate predictions.

Benefits of the synthetic approach

The main benefit of the synthetic system is that it allows us to test precise hypotheses:

that horizontal transfer can promote alleles coding for public good production and re-

versely, transferring those alleles can promote the selection of transfer. We manipulate

independently transfer and public good production, and are thus able to prove that ob-

served fitness measurements are linked to the transfer of specific alleles. For instance,

selection of donor ability can be attributed in our experiments to the transfer of a public

good gene in a structured population, and not to direct benefits of expressing conjugative

pili. Results obtained with the synthetic system have allowed us to confirm the main

predictions generated by our models, showing that we have not neglected to model some

crucial aspect of real biological systems.

Moreover, we can reduce interactions between transfer, public goods and other cell

traits that would be difficult to avoid otherwise. As mentioned in the introduction, many

such unwanted interactions could take place in natural systems. Natural cooperative or

transfer abilities are strongly regulated, in ways that could interfere with each others,

or mask an actual interaction in laboratory conditions. Moreover, they could interact

in complex ways precisely because of previous coevolution, including the co-selection

described in our models. Such history could hide initial selective pressures that would

have led to co-selection itself. These interactions would then be highly interesting to study

as such in natural systems, but represent a further step in the analysis.

Finally, fluorescent markers have enabled us to obtain high precision fitness and trans-

fer measurements, without resorting to plating that usually leads to huge variation be-

tween replicates. The combination of strain and plasmid markers also allows us to separate

the effects of transfer and selection on fitness.

Generality of experimental findings

The major limitation of a synthetic system is linked to its very goal: it can lead to

a proof of concept, but cannot prove that the described phenomena are prevalent, or

even take place, in actual organisms and real ecosystems. The key insight compared

to modelling studies is that these phenomena can take place within real organisms and
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environments, and with at least realistic parameters concerning transfer, benefits and

costs, and population structure. Synthetic systems can generally be seen as intermediates

between models and natural biological systems [Momeni et al., 2011, Tanouchi et al.,

2012].

The full range of parameters values in nature remains unknown. As we were looking for

a "proof of principle", we chose experimental conditions for which we expected to observe

selection. For instance, one conclusion of experiments is that described effects can happen

with "realistic" transfer rates. The F plasmid, that mobilizes plasmids at such efficient

rates in our experiments, is actually a derepressed mutant selected in the laboratory

[Cheah and Skurray, 1986], and was not found as a natural isolate. Still, natural isolates

with such high plasmid transfer rates exist [Dionisio et al., 2002], so our synthetic system

could correspond quite well to some natural ecosystems and help explain the existence of

such strains. Some of the features of this system are actually likely to be less favorable to

both transfer and public good production than the natural ones. For example, the costs of

transfer and secretion are probably stronger than in nature, due to the absence of natural

regulations decreasing the costs of public good production [Kümmerli and Brown, 2010].

Finally, our experiments can only detect changes in frequencies that are greater than a

few percent, but natural selection could act on much weaker effects.

The public good response system used in this system is also quite peculiar, as it

acts on growth rate and not on growth yield: in the absence of public goods, cells still

reach maximal density after some time. This mechanism leads to constraints in terms

of experimental setup, and to unstable benefits of cooperation. When we modelled the

growth yield instead of growth rate effect, we saw that the maintenance of cooperation was

more robust (data not shown). This is also supported by the work in another synthetic

system, based on swarming in Pseudomonas aeruginosa [de Vargas Roditi et al., 2013].

Swarming was shown to expand the population carrying capacity, leading to more robust

cooperation than in the case of transient benefits. Many cooperative behaviours, providing

the ability to grow on new substrates, should lead to increased carrying capacity by

opening a new niche for bacteria (see section I.2.3). Overall, although our setup may not

cover all potential natural scenarios, it provides a convincing example, and one under less

favorable conditions.
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Experimental limitations of the synthetic approach

Another drawback of synthetic approaches is that constructed systems are rarely stable,

as their parts have not coevolved in interaction. In our case, the system required numerous

ajustments in order to behave as expected. For instance, we found that different parts

of the system were not all functional in the same range of temperatures. This is hardly

surprising, as fluorescence proteins arise from either jellyfish or corals living in oceans

[Ormö et al., 1996, Matz et al., 1999], and F plasmid is an Escherichia coli plasmid [Tatum

and Lederberg, 1947], adapted to the gut environment of mammals. We also observed

"sick" phenotypes (described in Chapter 1) we suspect are linked to perturbations of the

initiation of transfer, that inadvertently happened when we mutated F plasmid in order

to get mobilization of small plasmids, but not self-transfer.

Some of the results presented with simulations have not been reproduced experimen-

tally, especially in Chapter 4. In some cases, it is a matter of time and interest: the

effect of plasmid initial frequency for instance could be tested but would be labor inten-

sive without providing groundbreaking results. In other cases however, the experimental

system is not robust enough to test the modelling predictions. For instance, I did try to

test the conclusions of Chapter 4 concerning plasmid gene combinations that maximize

fitness. However, we observed a strong non-additivity on costs and benefits of public

good production and transfer. Recipients were also poorly induced in the presence of

chloramphenicol, which modifies the fitness of both strains and plasmids. The analysis of

frequency changes allowed us to understand which factors were acting against the simpli-

fying assumptions of models. With a synthetic system, this insight is however not very

interesting: the poor induction of recipients, that we suspect arises from the cost of fluo-

rescent markers on a middle-copy plasmid, is likely not related to any general constraint

acting on transfer or public goods in real systems.

Still, these drawbacks did not prevent us from testing our main hypotheses. The

experimental design moreover gives us internal controls to check if strains are behaving as

expected. For instance, we can verify that benefits are due to among-population dynamics,

and are not a direct benefit from some unsuspected modification of cells, confirming the

validity of the synthetic approach.

Generality of the modelling approaches

I have used in this work two kinds of models: simulations of cell growth and transfer

mimicking the experimental setup (Chapters 2, 3 and 4) and a more general approach to
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model fitness (Chapter 3).

Simulations have been designed in order to mimic as much as possible the experiments,

and use experimentally measured parameters. Their conclusions are validated by their

convergence with experiments when both were done in parallel. Their major contribu-

tion was to allow more flexibility and power in the number and kinds of hypotheses we

wanted to explore. I could expand the parameter range (mainly concerning transfer and

public good production, that are constitutive in experiments), and investigate population

structures not tested in experiments.

I also used in Chapter 3 a general fitness approach, modelling more generally the

indirect changes in host fitness brought by gene transfer in a structured population. The

equations and predictions derived with this approach are based on numerous simplifying

assumptions, like the linearity of public good fitness effects, the independance between the

different traits modelled, and small effect mutations. Still, the key role of this approach

was to provide general insights about the selective pressures acting on chromosomal genes

concerning plasmid transfer, clarifying the distinction between different kinds of indirect

effects. These insights have then been further confirmed or modified with simulations and

experiments.

5.2.2 Extreme population structures

Except for the direct fitness approach that does not explicitely describe the structure of

populations, I mostly analyzed two kinds of population structure: (1) a simple metapopu-

lation with two populations, and (2) populations subject to strong dilution. The first ap-

proach is sufficient to separate within- and among-population dynamics, and is amenable

to experimental tests. The second has the advantage of not enforcing arbitrarily the pop-

ulation structure, particularly when a quite specific structure seems to be required for

selection to occur.

Both setups are similar to the one presented in [Chuang et al., 2009], and capture

the process of bacteria growing in well-mixed populations, that are completely separated

from each other. Encounters between individuals in different populations occur when

all populations are pooled, mimicking global competition. This setup ensures that both

public-good production and plasmid transfer happen at a local scale, but competition

happens at a global scale. If cooperation and competition occur at the same scale, benefits

of cooperation would be compensated by increased competition between relatives [West

et al., 2002]. Competition happens at a larger scale than cooperation when populations
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can increase in size because of the benefits of cooperation (elastic populations). Mixing

takes place at a time when cells benefiting from cooperation or transfer outnumber others:

this should therefore be likely to occur by chance when cooperation stably increases growth

yield of natural populations.

Horizontal transfer by conjugation is assumed to take place within populations, which

will hold also in natural environments: conjugation happens between neighbouring cells.

Its effect on public good cooperation will again depend on the scale of competition [Gi-

raud and Shykoff, 2011], but no more than any public good cooperation in general. The

scale of competition will generally depend on the life cycle, and is not specific to the effect

of transfer [Rankin et al., 2011]. Finally, we have not considered any migration between

populations. Still, the effect of transfer on relatedness was shown to hold even in the

presence of migration in the population genetics model developped in [Nogueira et al.,

2009]: some amount of migration decreases relatedness, but for a wide range of param-

eters, transfer still increases relatedness. Migration thus should not affect strongly our

conclusions, if not present at rates so high that the effect of transfer would be completely

suppressed.

The experimental and simulation setup we use to model population structure may

thus be specific or even extreme but they allow us to understand the effect and selection

of transfer, and are supported by previous work.

5.3 Possible selection of horizontal transfer in nature

The major conclusion of modelling work is that interactions between transfer and public

good production (both the effect of transfer on cooperation and the subsequent selection

of transfer) are most likely to take place when (1) horizontal transfer is efficient at short

spatial scales and (2) there is an abundance of plasmid-free cells. Here I consider both

conditions in the context of natural systems. In this section I also discuss a case not

adressed in my work: that transfer could be selected in the context of antagonistic, and

not only cooperative, interactions.

5.3.1 Infectious transmission at short spatial scales

The effect of horizontal transfer on the maintenance of cooperative behaviours funda-

mentally relies on infectious transmission at short spatial scales: infectious transmission

spreads alleles at a local scale, and the assortment in turn increases at a higher scale.

Maintenance of cooperative behaviours through horizontal transfer will thus be maxi-
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mized when infectious transmission is strong and efficient, leading to rapid invasion of

local patches by transferred alleles.

Here we focused on the case of bacterial conjugation, that naturally happens at a

local scale, between neighbouring cells. Moreover conjugative plasmids often have the

ability to undergo epidemic spread with secondary transfer from recipients, leading to

efficient colonization within patches. Other mobile elements that transfer horizontally by

conjugation, such as integrative conjugative elements, should behave in the same way as

plasmids in this respect. Bacteriophages also move horizontally in a very efficient way.

Their transmission is not so strongly constrained spatially as plasmid transmission, since

phages can exist extracellularly. Still, they are likely to re-infect cells close to the ones that

they originated from. The spread of phages by lysis makes them into virulent parasites,

likely to modify the selective pressures acting on hosts for horizontal transfer. But some

bacteriophages, such as the filamentous phages involved in Vibrio cholerae virulence,

spread by secretion from the cell without lysis [Waldor and Mekalanos, 1986], and are

thus likeky to confer similar costs to the host as the plasmids.

The spread of mobile genetic elements can be seen as a very specific bacterial way of

producing assortment. This mechanism relies only on active limited dispersal (without kin

discrimination). Moreover, dispersal is gene-specific, so the population-level assortment

increases specifically for the genes located on mobile elements. The gene-specific increase

in assortment seems to be specific to bacteria: mobile elements also occur in Eukaryotes,

but they spread through sexual reproduction [Burt and Trivers, 2006]. Sex also allows

them to invade host populations [Goddard et al., 2001], but without the same epidemic

dynamics that leads to faster spread than with vertical transmission.

A parallel with cultural evolution (in humans) can be made here: cultural transmis-

sion of a given behaviour (including altruistic behaviours) was indeed shown to increase

assortment, as it increases variation among groups when it happens within groups [Boyd

and Richerson, 1982]. Initial models of the effect of horizontal gene transfer on related-

ness were actually based on the cultural transmission formalism [Nogueira et al., 2009].

Horizontal gene transfer is analogous here to unbiased cultural transmission, happening

with a rate independant from the gene content and fitness effects of transferred elements.

Both processes share a speed of transmission that is higher than the speed of respectively

vertical and genetic transmission. Both processes also have a high specificity: only a

subset of genes or behaviours are transmitted horizontally.

The selection of chromosomal genes increasing transfer ability additionally requires
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assortment at the chromosomal scale, in order for the benefits of gene transmission to

feedback on the individuals transmitting genes. The assortment for chromosomal alleles

will not be increased through horizontal transfer, but can arise through classical mech-

anisms, like limited dispersal. When transferred genes code for private goods, selection

happens for transfer between kin, a process again favored by limited cell dispersal. Other

factors could also favor effective transfer to kin: related cells could share high recipient

ability if donor and recipient ability have co-evolved. For instance, they could express the

same restriction-modification systems that target foreign DNA, which would then be less

likely to be transmitted between unrelated cells. The transfer of a given gene could also

simply not bring fitness benefits to a phylogenetically distant competitor: for instance,

an antibiotic resistance gene was not expressed after interspecies transfer [Guiney et al.,

1984]. In this way, competitor species would not benefit from transfer, even in the absence

of discrimination in the range of transfer.

Overall, different mechanisms in nature could enable infectious transmission of the

type we modelled and analyzed experimentally in bacteria, ensuring both the generality

and relevance of our results.

5.3.2 Occurrence of plasmid-free cells

The availability of plasmid-free cells is key to the possibility of transfer itself, and so

will control both the selection for transfer and occasions where transfer could promote

cooperation. The occurrence of plasmid-free cells in nature is not well known. However,

despite the lack of quantitative data, the very existence of plasmid transfer mechanisms

demonstrates that plasmid-free cells occur frequently enough so that transfer can be

selected. Conjugative plasmids thus likely often experience conditions where plasmid

spread takes place: it is exactly in these conditions that they could also promote the

maintenance of cooperative behaviours. The co-selection of transfer and public-good

genes on mobile elements should thus generally be favored, as infectious transfer would

anyway favor both.

Explaining sustained selection for chromosomal transfer ability genes is more difficult:

it implies that gene movement benefits the host, but simple long-term gene maintenance

does not. If maintenance were sufficient, vertical transmission would suffice and there

would be no selection for transfer. Instead we expect that transfer will be selected via

recurrent loss of transferred genes. However the question remains: under which condi-

tions would horizontal transfer coupled to recurrent loss be more favorable than vertical
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transmission? One major possibility is that the genes of interest are uniformly costly but

rarely beneficial. If transfer is not too costly, the cost of gene maintenance could outweigh

the occasional cost of transfer. Interestingly, this possibility corresponds to genes that are

well-known to be located on plasmids (see section III.2.1): genes beneficial in transient

or local conditions, such as antibiotic resistance genes. The presence of these genes on

plasmids has previously been interpreted in two ways. First, localization on mobile ele-

ments would benefit accessory genes themselves, allowing them to persist in the absence of

sustained selection [Bergstrom et al., 2000]. Secondly, the presence of a "communal gene

pool" would allow prokaryotes to have access to a diversity of adaptive traits, without

the burden of maintaining them permanently [Norman et al., 2009]. Here we propose a

similar explanation, but without resorting to "for the good of the species"-like arguments.

Selection could act at the scale of one genotype, and promote mechanisms that lead to

repeated transfer and loss of accessory genes in structured populations where benefits of

transfer feedback on the transmitter genotypes.

Overall, repeated loss and horizontal transfer could explain the variability of plas-

mids and gene content across isolates or environments, and reversely transfer would be

promoted by the repeated occurrence of high amounts of plasmid-free cells.

5.3.3 Selection of interspecies horizontal transfer

Interspecies plasmid transfer is one particular case we did not adress in this work. We

have always assumed that the host backgrounds differ only in plasmid transfer ability,

but not in plasmid effects on fitness or public-good production or benefits.

Transfer between different species or ecotypes coud be selected in ways different from

those we described so far, depending on species properties and on their ecological in-

teractions. (I use here species in a very broad sense, meaning any bacterial strains or

ecotypes that differ more strongly than only in the trait of interest we concentrated on for

now, donor or recipient ability. This could involve other traits involved in plasmid-host

co-adaptation.)

Interspecies transfer and bacterial competition

The level of competition between two strains or species will depend on the degree of

overlap between their ecological niches. If they share the same niche, competition will be

strong: each species will benefit from a decrease in fitness from the other. Indeed, when

modelling interspecies transfer we observed that cooperation was favored in the absence
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of niche overlap: one species could benefit from transferring a public good plasmid to the

other, and the second simultaneously from receiving it, because of increased global public

good production. When donor and recipient species were sharing the same resources, the

benefit gained by one species affected negatively the fitness of the other (data not shown).

Cooperation between species mediated by plasmid transfer should thus be maximized

when species occupy different ecological niches. This would for instance be the case for

bacteria consuming different nutrients that are affected in the same way by an antibiotic,

and thus both benefit from antibiotic degradation.

If two species are competing for resources, plasmids could on the contrary be used as

biological weapons by the donor species: this would be a case of apparent competition

[Holt and Lawton, 1994, Dionisio, 2007]. This dynamics has been demonstrated in the case

of other mobile elements, bacteriophages [Bossi et al., 2003, Brown et al., 2006, Duerkop

et al., 2012, Gama et al., 2013], but not yet for plasmids. In the case of plasmids, the

interaction may not be as clearly competitive (lytic phages have a drastic effect on fitness

by rapidly killing cells), but could involve some intermediate scenario between interference

competition and active manipulation of recipients in order to produce a public good.

Interspecies transfer and manipulation

Plasmid transfer could be a way for donor cells to manipulate recipient’s behaviour. In

this case, recipients are themselves the resource that can be "exploited" by plasmids.

The most striking example of manipulation is Agrobacterium tumefasciens : bacteria

transfer the T-DNA (not a plasmid, but a part of one) to plant cells, where the T-DNA is

integrated into the chromosome and manipulates its gene expression in order to produce

metabolites used by bacteria [Otten et al., 1992]. In this extreme case, the recipient cells

are not competitors, but belong to the host of a parasitic bacterium. Other scenarios could

be more similar to competition, with recipients that are simultaneously competitors and

exploited in order to produce public goods. Such situation could evolve towards or from a

cooperative scenario. For instance, selection for transfer could first act within species, but

the mutations leading to increased public good production in unrelated recipients could

then be favored in a plasmid coevolving with a given donor strain.

In the two cases of interspecies or intraspecies transfer, a further challenge is to under-

stand why and how plasmids and host bacteria could evolve towards mutualism, despite

the very existence of horizontal plasmid transfer favoring competition.
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5.4 Coevolution between plasmids and chromosomes

In this work, I described the existence of mutualistic interactions between plasmids and

their hosts, that involve plasmid horizontal transfer. However, horizontal transfer is usu-

ally seen as a factor that acts against the establishment of mutualism, as it decouples

symbiont and host interests [Herre et al., 1999] (see section III.1.2). In this section, I

discuss how plasmids could evolve towards mutualism while being horizontally mobile

elements.

5.4.1 An alignment of interests robust to horizontal transfer

We observe mutualism between plasmids and their hosts despite horizontal transfer. As

chromosomal genes can benefit from transfer, an alignment of interests occurs between

chromosomal and transferred genes, because of the modifications caused by transferred

genes in recipients: both plasmids and chromosomal genes benefit from transfer. This

leads to linkage between chromosomal genes promoting transfer and transferred genes.

At a more global scale, horizontal transmission thus actually leads to a pattern similar to

vertical transmission: beneficial plasmids stay associated with their hosts. Paradoxically,

the benefits of symbiosis are here brought by horizontal transmission itself, and not by

the mere presence of plasmids within their hosts.

In the case of horizontal transfer among distant species, one reason for alignment of

interests could be different: plasmids adapted mainly to the donor host would not benefit

from adaptation to the recipient host in the absence of efficient transmission from this

second host (I discuss here the case described above in section 5.3.3, where plasmid transfer

would be a competitive trait of the donor species; not the case of "true" broad-host-range

plasmids, that do not seem to specialize towards one specific host). From the plasmid

side, transfer can then be seen purely as an extreme specialization to the primary host, as

the secondary host would be an evolutionary dead-end for the transferred plasmid. From

the chromosomal side, transfer would be adaptive only to the donor species, and not to

the recipient. This can be compared to the case of quorum sensing, where quorum sensing

between species will probably often not be true signalling, but coercion of one species by

another [Diggle et al., 2007a].

In both cases of intraspecies and interspecies transfer, both plasmids and chromosomes

benefit from plasmid localization of transferred genes. Public good genes localization on

plasmids can give rise to higher selection for public good production; private good genes
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localization on plasmids can benefit the host as well if transfer occurs within kin. Benefits

of transfer thus feedback on both plasmid and chromosomal partners of the symbiosis,

despite the occurrence of horizontal transfer.

5.4.2 Coadaptation of plasmids and chromosomes

We can infer from the described alignment of interests that coadaptation between plasmids

and chromosomes will be favored. Some known examples of regulations could then be

interpreted as coadaptation. Particularly, the complex regulation of plasmid transfer

involving both plasmid and chromosomal genes [Frost and Koraimann, 2010] (see section

II.3.1), may be a coregulated trait, and not just a product of antagonistic coevolution

(with the evolution of both chromosomal defenses against plasmid transfer, and plasmid

exploitation of chromosomal signalling pathways as cues for transfer).

This coregulation of transfer seems to be extreme in the case of Enterococcus pheromone

plasmids, where transfer is induced by chromosomally encoded pheromones expressed by

plasmid-free cells [Dunny, 2007] (see section II.3.2). Other mechanisms controlling plas-

mid transfer in this system are unknown, but could exist and induce transfer in conditions

where plasmid genes benefit the host. Moreover, sex pheromone plasmids are known only

in Enterococcus species: such coregulation seems to imply a strong specialization of plas-

mids towards a specific host, and would then concern mainly narrow-host-range plasmids.

Finally, coadaptation can be considered in relation to the enforcement hypothesis for

the horizontal transfer effect on cooperation [Smith, 2001]. Indeed, it was argued and

confirmed in our experiments that this scenario is not stable a priori against "cheater

plasmids" that transfer at the same rate as public-good plasmids. However, the possible

coadaptation and linkage between public-good plasmids and transferring strains suggests

that public-good plasmids would be favored in the long-term, therefore public-good alleles

would be actually more transferred that cheater alleles.

5.4.3 The effect of plasmid competition

We generally excluded the possibility of direct competition between plasmids in our anal-

yses, particularly the case of within-cell plasmid competition: we assumed in simulations

and ensured experimentally that only one plasmid type is present in a given cell. In na-

ture, repeated bottlenecks during cell division and conjugation [Paulsson, 2002], and entry

exclusion between related conjugative plasmids [Garcillán-Barcia and de la Cruz, 2008]

will limit within-cell competition. Still, competition between plasmids sharing replication
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mechanisms will occur, leading to incompatibility. Within-host competition is thought

to favor increased virulence of pathogens [Frank, 1996]. In the case of plasmids, multiple

infection can for instance select for post-segregational killing [Cooper and Heinemann,

2005], where cells that lose one plasmid at division are killed. Superinfection can also

evolve, leading to strong costs to the host [Smith, 2011].

We briefly studied in Chapter 4 what happens when a plasmid competes against

a plasmid with a different transfer rate. Transfer of the competitor plasmid modifies

the optimal transfer rate, as the first plasmid also needs to transfer at a high rate to

compensate for its competitor invasion. Moreover, transfer also affects among-populations

patterns of variation, influencing the selection of public-good production. Competition

between plasmids should be modelled more explicitely in order to study its consequences in

a more detailed way. We can only hypothetize that plasmid competition would generally

hinder the evolution of mutualism, as it is deleterious to the host. But mutualism could

also be favored by the mechanisms we describe in our work: for instance, the linkage that

arises between plasmids and strains favoring transfer could favor mutualist plasmids in

competition with deleterious ones.

5.4.4 Plasmids: symbionts integrated to the bacterial genome

A more general issue related to this study is the exact status of plasmids themselves.

Plasmids can be considered as symbionts, evolving on a parasitism-mutualism continuum

with a complex role of horizontal transmission in this evolution [Harrison and Brockhurst,

2012]. But they simultaneously are extremely strongly connected to their hosts: they are

part of the bacterial genome, share the cytoplasm with chromosomes, and at a longer

timescale exchange genes with and between bacterial chromosomes.

Plasmids are also considered as a tool for bacterial sex. The occurrence of chromosomal

recombination, linked to plasmid integration into the chromosome, speeds bacterial adap-

tation [Cooper, 2007]. In the scenarios we describe in this study, genetic exchange is not

merely a side-effect of plasmid random integration into the chromosome, but occurs with

every event of plasmid transfer, for genes with specific properties that are permanently

present on plasmids. Some definitions of sex insist on the fact that it should concern pro-

cesses "selected by the benefits of genetic exchange", and not every mechanism including

genetic exchange as a side-effect [Redfield, 2001]. Following this definition, the selection

of horizontal transfer we demonstrate in our work would precisely be a case of selection

for sex concerning specific genes: selective pressures on genes modulating transfer are a
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function of which degree of mobility for transferred genes most enhances host fitness.

Plasmids seem to be fundamentally at the limit between a symbiont and an integral

part of the genome, and potentially evolve to globally benefit the genome while (and even

thanks to) maintaining horizontal transmission. Because of the presence of horizontal

gene transfer and its influence on cooperation, we also reach the limit of the kin selec-

tion vocabulary. Indeed, kin selection has been initially defined as the process by which

traits are favoured "because of their effects on the survival and fertility of relatives"

[Maynard Smith, 1964]. It was then shown that what really matters for kin selection

is relatedness in the sense of genetic correlations among loci [Frank, 1998]. In micro-

organisms, genetic correlations can precisely arise because of horizontal gene transfer and

the concept of kin is blurred: kin has to be defined at the gene level, because of the

existence of mobile genetic elements that can be kin even if the rest of the genome is not.

Selection in general, but also kin selection, both act simultaneously on different genetic

units with diverging or converging interests.

5.5 Perspectives

5.5.1 Other approaches to the transfer-cooperation interplay

Insight on the prevalence of the transfer-cooperation interplay in nature

To extend the experimental and modelling proof of concept, a very interesting approach

would be to analyze real biological systems where public good production is known to be

coupled to horizontal transfer. Efficient transfer is known to occur for a few systems where

transferred genes are proven or likely to be public goods, like the cholera toxin [Waldor

and Mekalanos, 1986], the endotoxin in Bacillus thuringiensis [González et al., 1982], the

T-DNA in Agrobacterium tumefasciens [Platt et al., 2012] or plasmid β-lactamases [Bar-

low and Hall, 2002]. In some of these systems, the ecology has been studied and it would

be possible to simultaneously investigate both the real benefits and costs of public good

production, and the transfer rates and their consequences. For instance, the endotoxin

production in Bacillus thuringiensis has been shown to be a cooperative behaviour and

studied in natural conditions in the field: plasmid presence can be identified, and relat-

edness assessed in natural settings [Raymond et al., 2012], and could be an promising

model system [Raymond and Bonsall, 2013]. Other properties of natural systems, like the

multiple mechanisms regulating both transfer and public good production, could also be

taken into account. For instance, in Agrobacterium tumefasciens, both plasmid conjuga-
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tive transfer and T-DNA transfer to the plant (here the cooperative behaviour) are under

control of quorum-sensing systems [Platt et al., 2011, Cho et al., 2009].

Genomic and bioinformatics approaches can also bring information about the diversity

and prevalence of plasmids bearing public good production genes in nature. The main

result that motivated our research was the bioinformatic indication that secreted proteins

are often located on plasmids [Nogueira et al., 2009]. Further genomic studies could give

insight into the actual distribution of plasmids within host species: what proportion of

cells in a given species bears plasmids? How does plasmid prevalence vary over time?

These poorly known properties should have a significant impact on the importance of the

interplay between plasmid transfer and public good production.

Other aspects of the transfer-cooperation interplay

Another interesting approach would be to explicitely model real structured populations

that are abundant in natural environments, like biofilms [Kolter and Greenberg, 2006].

Biofilms can present high rates of horizontal transfer [Molin and Tolker-Nielsen, 2003],

but effective transfer will be modulated by many parameters of biofilm growth, like the

possibility of contact between donors and recipients [Krol et al., 2011] (see section III.1.2).

Moreover, plasmids themselves induce biofilm formation [Ghigo, 2001], and likely increase

the spatial structuring of populations. Conjugation could thus physically enhance related-

ness between neighbouring cells, in addition to the effect of gene transfer. Modelling these

effects was outside the scope of this study, but they likely play a complex but important

role in the interplay between plasmids and social behaviours.

In the same way, the coevolution between hosts and plasmids could be studied in a

more detailed and realistic way. First, I have neglected the competition between plasmids,

that is likely to move the plasmid-host interaction towards parasitism. Secondly, I have not

analyzed simultaneously the selective pressures acting on hosts and on plasmids concerning

transfer rates (as I have not modelled a dual control of transfer by plasmids and hosts,

but each case separately). Finally, analyzing the effect of the costs and benefits of plasmid

carried genes, as well as both transfer and plasmid maintenance properties, could help us

to understand when a host would benefit more from plasmid continued maintenance or

from repeated loss and transfer.
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5.5.2 Applications of plasmid transfer?

Finally, if the selection of transfer and its role in the maintenance of cooperation are

actually widespread in nature, it could be possible to interfere with it in conditions where

transfer favors the virulence of pathogenic bacteria.

Better understanding of the effects of transfer and their mechanisms could be used

to targed cooperative pathogens. In the cases where virulence is a cooperative behaviour

[Brown, 1999], it has been already suggested that targeting cooperation would decrease

the evolution of resistance. Indeed, as cooperation is a global property of infections and

beneficial only at the group level, it has been shown that evolution of resistance would be

slower for cooperative behaviours compared to classical antibiotics that target individual

cells [André and Godelle, 2005]. Further, introducing less virulent strains into natural

pathogen populations could be a strategy to treat bacterial diseases, as cheats would have

a competitive advantage and invade the population [Brown et al., 2009].

Similarly, when horizontal transfer is involved in the maintenance of public-good co-

operation, targeting transfer could prevent cooperative virulence. Molecules targeting

plasmid conjugation are known: for instance, inhibitors that target the relaxase of F plas-

mid have been shown to prevent conjugation [Lujan et al., 2007]. Since these inhibitors

were also shown to selectively kill F-bearing cells, they could maybe target bacterial

strains characterized by high transfer ability. Some of these molecules were already used

in clinical applications for other applications, so they could be repurposed.

As for other cooperative behaviours, mutations in chromosomal genes promoting trans-

fer could be counter-selected in the short-term. However, this is unlikely to be the case

for plasmid resistance mutations, as plasmids directly benefit from transfer. Still, male-

specific bacteriophages have been shown to select for the loss of antibiotic-resistance plas-

mids, and for the loss of conjugation in plasmids, even in the presence of antibiotic selective

pressure [Ojala et al., 2013]. It thus seems possible to design treatments that would ef-

ficiently select against conjugation. Finally, the consequences of targeting transfer will

likely depend on the dynamics of infection and the possibility of treatment before horizon-

tal transfer happens. Potential pitfalls include horizontal transfer not happening during

every infection, or occuring before an infection can be detected and targeted. Some of

these applications are very long-term goals, but they can motivate the basic research of

the type presented here.
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Appendix A

Strains and plasmids

A.0.3 The background strain

The background strain JC1191 [Chuang et al., 2009] has the genotype att::rhl-

catLVA(SpR) ∆sdiA::FRT rrnB3 ∆lacZ4787 hsdR514 ∆(araBAD)567 ∆(rhaBAD)568

rph-1. The att::rhl-catLVA(SpR) segment contains both an Rhl auto-inducer-responsive

promoter (Prhl∗) driving an unstable version of cat, and the rhlR gene under the weak

constitutive promoter Pq
lacI . This cassette is integrated into the chromosome with the

spectinomycin resistance gene SpR.

A.0.4 Low-copy plasmids: production, transfer and fluorescence

Description

Low-copy plasmids are modified versions from pZS*2R plasmids [Chuang et al., 2009]

with pSC101* replication origin, maintained with kanamycin resistance. They are con-

structed based on a combination of production/non-production, transfer/non-transfer,

and fluorescence alleles (Figure A.1).

Production and fluorescence genes are in an artificial operon, separated by a Shine-

Dalgarno translation signal, under control of the strong promoter PR. The production

allele expresses the enzyme RhlI, producing the Rhl auto-inducer C4-HSL [Chuang et al.,

2009]. The non-production allele is a linker sequence only. Fluorescence alleles are GFP

and YFP. The allele confering transfer ability is the wild-type sequence of F-oriT.

Plasmid construction

Plasmids are derived from pZS*2R-GFP,rhlI and pZS*2R plasmids [Chuang et al., 2009].

YFP coding sequence [Elowitz, 2002] was amplified by PCR and cloned in pZS*2R-

GFP,rhlI (production plasmid from [Chuang et al., 2009]) between XhoI and HindIII

sites, replacing GFP. RhlI sequence was removed from pZS*2R-GFP,rhlI by digestion

with HindIII and XbaI, and religation with the linker sequence AGCTTAATTAGCT-

GAGTCTAG.

The wild-type sequence of F-oriT between coordinates 66002 to 66494 from GenBank
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Figure A.1: Map of pZS plasmids used in experiments. All pZS plasmids bear the
aph gene coding for kanamycin resistance (kanR, gray) and pSC101* origin of replication
(SC101*ori, blue). T+ plasmids bear F-oriT (red), T− plasmids do not. They bear in
addition a fluorescence gene (GFP or YFP, yellow), and the rhlI gene in the same operon
in the case of P+ plasmids. P− plasmids do not bear rhlI. The table indicates the plasmid
names, as used in the main text and figures, and their fluorescence.

NC_002483 was amplified by PCR (using pOX38::Tc as template) and inserted in the

common SacI site of P+ and P− plasmids, in direct orientation.

A.0.5 Strain fluorescence markers

Description

Strains are identified with non-mobilizable red fluorescence markers. For experiments in

Chapter 2 and section 3.3.2 of Chapter 3, recipients are identified by the mRFP1 gene

located on pSB3K3-RFP. pSB3K3-RFP is a medium-copy plasmid with p15A replication

origin, carrying mRFP1 gene under control of the strong promoter PlacI , and maintained

with kanamycin resistance. For experiments in sections 3.3.1 and 3.3.3 of Chapter 3, one

of the competitor background strains is JC1191red identified by the tdCherry gene under

control of a pRNA1 promoter, inserted in the attTn7 site of the chromosome. The other

competitor has no red fluorescence.
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Construction

pSB3K3-RFP plasmid was obtained from the Registry of Standard Biologi-

cal Parts (www.partsregistry.org). JC1191red was constructed by integration of

the pRNA1-tdCherry gene construction on pNDL-32: pNDL-32 is an integra-

tion vector obtained from Nathan Lord (Paulsson laboratory), which carries a

Tn7 integration construct for a very bright colE1 RNA1 promoter-tdCherry vari-

ant (http://openwetware.org/wiki/Paulsson:Strains). It is a temperature-sensitive,

ampicillin-resistant vector, where pRNA1 promoter-tdCherry sequence is included be-

tween Tn7 insertion sites.

pNDL32 plasmid was transformed into JC1191 strain (containing FHR plasmid) with

selection on 100µg/mL ampicillin, then streaked twice at 30̊ C on LB-agar. Next, two

colonies were streaked overnight on LB-agar at 42̊ C. Finally, plasmid loss was confirmed

by checking that clones were ampicillin-resistant.

A.0.6 F helper plasmids

Description

FHE is a mutant of pOX38::Tc [Anthony et al., 1994], where oriT contains 2 substitutions

(A141T et C144G) that reduce binding and mobilization efficiency by the F relaxase

compared to the wild-type F sequence (substitutions are numbered according to [Stern

and Schildbach, 2001]). The other mutants that were tested are F-oriT::frt, F-oriT-R100

(C145A and C147T substitutions) and F-oriT-7 (A141T substitution). FHR is derived

from FHE and bears a further deletion of the traS gene.

Construction

oriT point mutations were made by allelic exchange of pOX38::Tc [Anthony et al.,

1994] with a modified oriT including point mutations made by PCR. Mutated oriTs

were first cloned into the SacI site of pDS132 plasmid [Philippe et al., 2004], then

integrated in pOX38::Tc by allelic exchange with the wild-type sequence [Philippe

et al., 2004]. F-oriT::frt was obtained from the Registry of Standard Biological Parts

(www.partsregistry.org).

FHR was obtained by deleting traS gene from FHE using λ/red homologous recom-

bination [Datsenko and Wanner, 2000]: the sequence between F coordinates 88274 and

88606 was replaced by the cat cassette from pKD3, which was then removed with pCP20

[Datsenko and Wanner, 2000].
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Helper F plasmids were transferred by conjugation to all strains in which they were

needed, as the plasmids retained a low conjugation ability.
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B.0.7 Measures of plasmid transfer rates

Instantaneous transfer rates were measured by measuring the transfer of antibiotic resis-

tance markers (kanamycin resistance for mobilizable pZS plasmids, tetracycline resistance

for F plasmids) to a standard recipient strain which is a spontaneous mutant resistant to

nalidixic acid and rifampicin (MG NalRRifR).

Donors and recipients were separately grown to OD600 = 0.6, then washed and mixed

at 1/10 dilution after resuspension in LB. Conjugation was allowed to happen for 30 min

at the temperature indicated, under well-mixed conditions. The mix was then diluted to

appropriate concentrations and plated on LB-agar containing nalidixic acid and rifampicin

(to select for recipients), spectinomycin (to select for donors) and nalidixic acid, rifampicin

and either kanamycin or tetracycline to select for transconjugants. The concentrations

used were 40µg/mL (nalidixic acid), 100µg/mL (rifampicin), 25µg/mL (spectinomycin),

100µg/mL (kanamycin) and 12.5µg/mL (tetracycline).

The conjugation rate γ was estimated as follows : γ = T
D×R

cell mL−1h−1 where T ,

D and R denote final densities of transconjugant, donor and recipient cells, respectively.

Neglecting secondary transfer that would happen within 30 min, this measure of transfer

follows the transfer rates defined and used in our simulations (where transfer follows a

mass-action law depending on both donor and recipient cell concentrations), where in a

short period of time, T = γ ×D ×R.

B.0.8 Flow cytometry analysis of cell fluorescence

Cultures were analyzed for strain and plasmid proportions by flow cytometry. Flow

cytometry technology measures optical parameters for thousands of individual particles

per second, as particles are hydrodynamically focused and pass in front of a series of

lasers and associated detectors. Each particle absorbs and scatters light, and may emit

fluorescence if it contains fluorescent molecules excited by the wavelength of light emitted

by lasers. Light is then splitted and filtered to detectors.
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For flow cytometry analysis of plasmid and strain proportions, cultures were fixed in

1% PFA (Thermo Scientific) for 10 minutes, then resuspended in PBS (Life Technologies)

and stored at 4̊ C. Data acquisition was performed on the Cochin Cytometry and Im-

munobiology Facility. For each sample, 50,000 or 100,000 cells (100,000 when competitors

were present in frequencies < 1%) were analyzed using a BD LSR Fortessa cell analyzer

(BD Biosciences) with 405 nm, 488 nm and 561 nm excitation lasers. Data analyses were

performed using FlowJo (TreeStar).

In our experiments, cells generally express a combination of GFP, YFP and RFP

proteins or do not fluoresce at all. The flow cytometry analysis is based on the differences

in fluorescence excitation and emission of fluorescent proteins (Figure B.1). RFP fluoresces

at high wavelengths, with minimal background fluorescence from the other fluorescent

proteins (Figure B.1-A); RFP-bearing cells are detected easily with excitation by the 561

nm laser and detection by the Pe-Cy5 filter around 670 nm. GFP and YFP have spectra

that are very similar. To distinguish between them, we exploit the small differences in

their spectra (Figure B.1, B and C): GFP excitation and emission peaks have slightly lower

wavelengths than the YFP ones. Excitation with the 488 nm laser leads to a relatively

stronger signal around 530 nm (FITC filter) for YFP; excitation with the 405 nm laser is

weak for both proteins, but stronger for GFP relatively to YFP.
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Figure B.1: Fluorescence spectra of fluorescent proteins. Fluorescence spectra were
measured with an Infinite M200 reader (Tecan), on overnight cultures of cells carrying
no fluorescence gene (neg), P+GFP plasmid (GFP), P−YFP plasmid (YFP) or tdCherry
inserted into the chromosome (RFP). Fluorescence is shown after LB background sub-
straction. In A, fluorescence excitation at 561nm is shown as a function of the emission
wavelength. In B, relative fluorescence for GFP and YFP is shown with 580 nm emission,
as a function of the excitation wavelength. In C, relative fluorescence for GFP and YFP
is shown with 440 nm excitation, as a function of the emission wavelength.

An example of flow cytometry analysis is given in Figure B.2. Gating is first performed

on forward and side scattering (FSC and SSC, Figure B.2-A), in order to exclude the ma-
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jority of doublets (agregates of cells that are counted as an unique event). Four quadrants
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Figure B.2: Example of flow cytometry analysis. In each graph, each point repre-
sents an individual event detected by the cytometer, superposed points being indicated
by the color scale (blue for low density to red for maximum density). The analysis is
based on successive gating steps (pink sectors), where events are selected based on their
light scattering or fluorescence properties. In A, gating is first performed based on FSC
and SSC: FSC (forward scatter) measures diffracted light at small angles and roughly in-
dicates cell size; SSC (side scatter) measures diffracted light at higher angles, and roughly
indicates cell internal complexity. Gating excludes events with high FSC and SSC, that
contain more than one cell. Events are next gated in B as a function of their fluorescence
detected from FITC and Pe-Cy5 filters: the FITC filter measures fluorescence emitted
around 530 nm after excitation by the 488 nm laser, which arises from GFP and YFP
fluorescence. The Pe-Cy5 filter measures fluorescence emitted around 670 nm after exci-
tation by the 561nm laser, and corresponds to RFP fluorescence. In C and D, events of
each FITC-positive quadrant are finally separated based on the fluorescence emitted in
the AmCyan filter around 525 nm, after excitation from the 405 nm laser. This indicates
if FITC-detected fluorescence arises from GFP or YFP.

are then separated based on 530/30nm (FITC) and 670/30nm (PE-Cy5) filters (Figure

B.2-B). PE-Cy5-positive quadrants contain cells expressing RFP. FITC-positive quadrants

contain cells expressing either GFP or YFP, that both emit fluorescence around 530nm.

In each of the FITC-positive quadrants, cells are finally separated based on 530/30nm

and 525/50 filters, distinguishing GFP and YFP (Figure B.2-C and D).
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Abstract

Bacteria are social organisms which participate in multiple cooperative and group behaviours. They

moreover have peculiar genetic systems, as they often bear mobile genetic elements like plasmids, molec-

ular symbionts that are the cause of widespread horizontal gene transfer and play a large role in bacterial

evolution. Both cooperation and horizontal transfer have consequences for human health: cooperative

behaviours are very often involved in the virulence of pathogens, and horizontal gene transfer leads to the

spread of antibiotic resistance. The evolution of plasmid transfer has mainly been analyzed in terms of

infectious benefits for selfish mobile elements, however chromosomal genes can also modulate horizontal

transfer. A huge diversity in transfer rates is observed among bacterial isolates, suggesting a complex

co-evolution between plasmids and hosts. Moreover, plasmids are enriched in genes involved in social

behaviours, and so could play a key role in bacterial cooperative behaviours.

We study here the coevolution of gene mobility and sociality in bacteria. To investigate the selective

pressures acting on plasmid transfer and public good production, we use both mathematical modelling

and a synthetic system that we constructed where we can independently control public good coopera-

tion and plasmid conjugation in Escherichia coli. We first show experimentally that horizontal transfer

allows the specific maintenance of public good alleles in a structured population by increasing related-

ness at the gene-level. We further demonstrate experimentally and theoretically that this in turn allows

for second-order selection of transfer ability: when cooperation is needed, alleles promoting donor and

recipient abilities for public good traits can be selected both on the plasmid and on the chromosome

in structured populations. Moreover, donor ability for private good traits can also be selected on the

chromosome, provided that transfer happens towards kin. The interactions between transfer and coop-

eration can finally lead to an association between transfer and public good production alleles, explaining

the high frequency of genes related to cooperation that are located on plasmids. Globally, these results

provide insight into the mechanisms maintaining cooperation in bacteria, and may suggest ways to target

cooperative virulence.

Keywords: horizontal gene transfer; plasmids; bacterial cooperation; mobile genetic elements

Résumé

Les bactéries sont des organismes extrêmement sociaux, qui présentent de multiples comportements

de coopération. De plus, les génomes bactériens sont caractérisés par la présence de nombreux éléments

génétiques mobiles, tels que les plasmides. Ces éléments mobiles sont la cause de transferts génétiques

horizontaux, et jouent un rôle important dans l’évolution bactérienne. La coopération et le transfert hor-

izontal ont tous deux des conséquences importantes sur la santé humaine: des comportements coopératifs

sont souvent à l’origine de propriétés de virulence chez les bactéries pathogènes, et le transfert horizontal

entraîne la dissémination de gènes de résistance aux antibiotiques. L’évolution du transfert horizontal

a jusqu’ici été analysée principalement en termes de bénéfices infectieux apportés à des éléments géné-

tiques égoïstes. Cependant, le taux de transfert des plasmides est extrêmement variable et partiellement

contrôlé par les gènes des bactéries hôtes, suggérant une co-évolution complexe entre hôtes et plasmides.

De plus, les plasmides sont particulièrement riches en gènes liés à des comportements coopératifs, et

semblent donc jouer un rôle-clé dans les phénomènes de socialité bactérienne.

Ce travail porte sur la coévolution entre mobilité génétique et socialité chez les bactéries. Nous

analysons ici les pressions de sélection agissant sur le transfert de plasmides et la production de biens

publics, à l’aide de modèles mathématiques et d’un système synthétique que nous avons construit chez

Escherichia coli, dans lequel nous pouvons contrôler indépendamment la coopération et la conjugaison.

Dans un premier temps, nous montrons expérimentalement que le transfert horizontal favorise le maintien

de la coopération dans une population structurée, en augmentant la sélection de parentèle agissant au

niveau des gènes transférés. Dans un second temps, nous montrons expérimentalement et théoriquement

que l’échange génétique lui-même peut être sélectionné: les bactéries transférant des plasmides codant

pour des biens publics sont favorisées dans une population structurée. Le transfert de gènes codant pour

des biens privés peut également être sélectionné, à condition que ce transfert s’effectue entre bactéries

apparentées. Finalement, ces interactions entre transfert horizontal et coopération peuvent mener à une

association entre allèles de coopération et de transfert, expliquant la fréquence élevée de gènes sociaux

situés sur des plasmides.Ces résultats permettent de mieux comprendre le maintien de comportements

coopératifs chez les bactéries, et suggèrent des moyens de cibler certains cas de virulence bactérienne.

Mots-clés: transfert horizontal; plasmides; coopération bactérienne; éléments génétiques mobiles
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