]. R. Maughan, J. Burmeister, R. Bragg, T. Kleeman, and . Haberer, Intensity modulated neutron therapy for the treatment of adenocarcinoma of the prostate Tumor therapy with heavy charged particles On the alpha particles of radium and their loss of range in passing through various atoms and molecules Treatment planning for heavy-ion radiotherapy:calculation and optimization of biologically effective dose Magnetic scanning system for heavy ion therapy A Case Study in Proton Pencil-Beam Scanning Delivery, Progress in Particle and Nuclear Physics Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.678-689, 1905.

D. Schardt, T. Elsässer, D. Schulz-ertner, C. Bert, and S. O. Grozlinger, Heavy-ion tumor therapy: Physical and radiobiological benefits, Reviews of Modern Physics, vol.82, issue.1, pp.383-425, 2008.
DOI : 10.1103/RevModPhys.82.383

E. Rietzel and C. Bert, Respiratory motion management in particle therapy, Medical Physics, vol.66, issue.2, p.449, 2010.
DOI : 10.1118/1.3250856.1

M. Durante and J. S. Loeffler, Charged particles in radiation oncology, Nature Reviews Clinical Oncology, vol.2, issue.1, 2009.
DOI : 10.1038/nrclinonc.2009.183

W. Enghardt, The spatial distribution of positron-emitting nuclei generated by relativistic light ion beams in organic matter, Physics in Medicine and Biology, vol.37, issue.11, pp.2127-2131, 1992.
DOI : 10.1088/0031-9155/37/11/009

P. Crespo, Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study, Physics in Medicine and Biology, vol.52, issue.23, pp.6795-6811, 2007.
DOI : 10.1088/0031-9155/52/23/002

F. A. Dilmanian, Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory, Physics in Medicine and Biology, vol.43, issue.2, pp.33-349, 1998.
DOI : 10.1088/0031-9155/43/2/009

M. Crittin, J. Kern, and J. L. Schenker, The new prompt gamma-ray activation facility at the Paul Scherrer Institute, Switzerland Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.221-236, 2000.

F. Fiedler, On the effectiveness of ion range determination from in-beam PET data, Physics in Medicine and Biology, vol.55, issue.7, 1989.
DOI : 10.1088/0031-9155/55/7/013

H. Tsuji, Hypofractionated radiotherapy with carbon ion beams for prostate cancer, International Journal of Radiation Oncology*Biology*Physics, vol.63, issue.4, pp.1153-1160, 2005.
DOI : 10.1016/j.ijrobp.2005.04.022

K. Parodi, Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.446-458, 2005.

C. H. Min, Prompt gamma measurements for locating the dose falloff region in the proton therapy, Applied Physics Letters, vol.89, issue.18, 2006.
DOI : 10.1063/1.2378561

E. Testa, M. Bajard, and M. Chevallier, Monitoring the Bragg peak location of 73 MeV/u carbon ions by means of prompt gamma-ray measurements, Applied Physics Letters, vol.93, issue.093506, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00315797

D. Dauvergne, New methods of real-time control imaging for ion therapy, NIRS-ETOILE Joint Symposium on Carbon Ion Therapy, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00363382

P. Bloser, Development of silicon strip detectors for a medium energy gamma-ray telescope., " Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.220-228, 2003.

D. Meier, Silicon detector for a Compton camera in nuclear medical imaging, IEEE Transactions on Nuclear Science, vol.49, issue.3, pp.812-816, 2002.
DOI : 10.1109/TNS.2002.1039568

M. Richard, Design guidelines for a double scattering Compton camera for prompt-gamma imaging during ion beam therapy: a Monte Carlo simulation study
URL : https://hal.archives-ouvertes.fr/in2p3-00527432

F. Roellinghoff, Design of a Compton camera for 3D prompt- imaging during ion beam therapy, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.648, issue.S20, 2011.
DOI : 10.1016/j.nima.2011.01.069

URL : https://hal.archives-ouvertes.fr/in2p3-00559943

P. Henriquet, Etude de l'emission de particules chargées secondaires dans l'optique d'une dosimetrie en ligne en hadronthérapie, 2010.

. Kuraray, Clear Fibers Technical Data

A. S. Brogna, S. Buzzetti, and W. Dabrowski, Development of a Selftriggered High Counting Rate ASIC for Readout of 2D Gas Microstrip Neutron Detectors

F. Kajino, Y. Kuroda, and M. Oda, Front-end Readout ASIC for the JEM-EUSO Focal Surface Detector

X. C. Fang, C. Hu-guo, and D. Brasse, Design and characterization of a multi-channel front-end readout ASIC with low noise and large dynamic input range for APD-based PET imaging, Analog Integrated Circ. and Signal Proc, 2010.
DOI : 10.1007/s10470-010-9495-3

N. Ollivier-henry, J. D. Berst, and C. Colledani, A front-end readout mixed chip for high-efficiency small anima PET imaging, Physics Research A, vol.571, pp.312-316, 2007.

S. Callier, F. Dulucq, and C. D. Taille, HARDROC1, readout chip of the Digital HAdronic CALorimeter of ILC, 2007 IEEE Nuclear Science Symposium Conference Record, pp.1851-1856
DOI : 10.1109/NSSMIC.2007.4436518

URL : https://hal.archives-ouvertes.fr/in2p3-00415894

H. Mathez, G. Lu, and P. Pittet, A charge-sensitive amplifier associated with APD or PMT for 511keV, photon-pair detection, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.613, issue.1, pp.134-140, 2010.
DOI : 10.1016/j.nima.2009.11.063

S. Deng, H. Mathez, and D. Dauvergne, Front-end multi-channel PMT-associated readout chip for hodoscope application, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.695, pp.390-393, 2012.
DOI : 10.1016/j.nima.2011.11.042

URL : https://hal.archives-ouvertes.fr/hal-00990855

P. R. Gray, P. J. Hurst, . Stephen, and . Lewis, Analysis and Design of Analog Integrated Circuits, pp.770-771

D. Bonnet, A. Brogna, and J. P. Coffin, The HAL25 Fornt-End Chip for the ALICE Silicon Strip Detectors

G. D. Geromino and P. O. Connor, A CMOS detector leakage current self-adaptable continous reset system: Theoretical analysis, pp.322-333, 1999.

W. Sansen and Z. Y. Chang, Feedforward compensation techniques for high-frequency CMOS amplifiers, IEEE Journal of Solid-State Circuits, vol.25, issue.6, pp.1590-1595, 1990.
DOI : 10.1109/4.62197

G. Palmisano and S. Pennisi, A CMOS transresistance current amplifier, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97, pp.1960-1963, 1997.
DOI : 10.1109/ISCAS.1997.621536

L. Chen, B. Shi, and C. Lu, A Robust High Speed and Low Power Current Comparator Circuit, IEEE APCCAS, pp.147-177, 2000.

L. Luh, J. Choma, and J. Draper, A high-speed high-resolution CMOS current comparator, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), pp.303-306, 1999.
DOI : 10.1109/ICECS.1999.812283

S. Deng, H. Mathez, and D. Dauvergne, 16-channel readout ASIC for a hodoscope, 2010 17th IEEE International Conference on Electronics, Circuits and Systems
DOI : 10.1109/ICECS.2010.5724447

F. Borghetti, L. Farina, and P. Malcovati, A high speed and low power CMOS current comparator for photon counting systems, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), 2004.
DOI : 10.1109/ISCAS.2004.1328229

L. Leterrier, Conception, réalisation et tests d'un marqueur de temps haute-résolution pour l'expérience SuperNEMO, MEMOIRE, 2010.

S. Henzler, Time-to-Digital Converters, 2010.
DOI : 10.1007/978-90-481-8628-0

A. Mäntyniemi, T. Rahkonen, and J. Kostamovaara, A nonlinearity-corrected CMOS time digitizer IC with 20 ps single-shot precision, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), pp.513-516, 2002.
DOI : 10.1109/ISCAS.2002.1009890

E. Raisanen-ruotsalainen, T. Rahkonen, and J. Kostamovarara, A lowpower cmos time-to-digital converter based on time-to-voltage interpolation, Solid-state Circuits Conference, ESSCIRC'97. Proceedings of the 23rd Enropean, pp.332-335, 1997.

G. S. Jovanovié and M. K. Stojcev, Vernier's Delay Line Time-to-Digital Converter, SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR A: APPL. MATH. INFORM. AND MECH, vol.1, 2009.

J. Yu, F. F. Dai, and R. C. Jaeger, A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 ?m CMOS Technology, IEEE J.Solide-State Circ, vol.45, 2010.

A. Liscidini, L. Vercesi, and R. Castello, Time to digital converter based on a 2-dimensions Vernier architecture, 2009 IEEE Custom Integrated Circuits Conference
DOI : 10.1109/CICC.2009.5280922

P. Chen, S. Liu, and J. Wu, A CMOS pulse-shrinking delay element for time interval measurement, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.47, issue.9, 2000.
DOI : 10.1109/82.868466

M. S. Kim and Y. Kim, All-digital phased-locked loop with local passive interpolation time-to-digital converter based on a tristate inverter, 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS)
DOI : 10.1109/MWSCAS.2012.6292023

B. Razavi, Design of Analog CMOS Integrated Circuits, 2001.

C. K. Yang, Delay-Locked Loops -An Overview

J. G. Maneatis, Low-jitter Process-Independent DLL and PLL Based on Self-Biased Techniques, IEEE JOURNAL OF SOLIDE-STATE CIRCUITS, vol.31, p.11, 1996.

. Cheng and . Jia, A Delay-locked loop for multiple Clock Phases/Delays Generation, 2005.

B. W. Garlepp, A portable digital DLL for high-speed CMOS interface circuits, IEEE Journal of Solid-State Circuits, vol.34, issue.5, pp.632-644, 1999.
DOI : 10.1109/4.760373

J. Christiansen, High Performance Time to Digital Converter Version 2, 2004.

J. Christiansen, An Integrated CMOS 0.15ns Digital Timing Generator for TDC's and Clock Distribution Systems, IEEE Trans.Nucl.Sci NS-42, pp.753-757, 1995.

G. Jovanovic and M. Stojcev, Voltage controlled delay line for digital signal, Facta universitatis - series: Electronics and Energetics, vol.16, issue.2, pp.215-232, 2003.
DOI : 10.2298/FUEE0302215J

D. Abramovitch, Phase-locked loops: a control centric tutorial, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)
DOI : 10.1109/ACC.2002.1024769

J. A. Crawford, Frequency Synthesizer Design Hand-book, 1994.

D. H. Wolaver, Phase-Locked Loop Circuit Design Advanced Reference Series & Biophysics and Bio-engineering Series, 1991.

R. E. Best, Phase-Locked Loops: Design, simulation, and Application, 1997.

J. Alexander, Clock recovery from random binary siganls, Electronics Letters, pp.541-542, 1975.
DOI : 10.1049/el:19750415

D. H. Wolaver, Phase-Locked Loop Circuit Design: PTR Prentice Hall, Engewood Cliffs, New Jersey 07632, 35?m CMOS Digital Standard Cell Databook

H. Lee, T. Ahn, and D. Jung, Scheme for No Dead Zone, Fast PFD Design, Journal of the Korean Physical Society, vol.40, issue.4, pp.543-545, 2002.

W. Rhee, Design of high-performance CMOS charge pumps in phase-locked loops, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), pp.545-548, 1999.
DOI : 10.1109/ISCAS.1999.780807

M. Mansuri, C. K. , and K. Yang, Jitter Optimization Based on Phase- Locked Loop Design Parameters, IEEE J.Solide-State Circ, vol.34, pp.632-644, 1999.

M. E. Lee, Jitter transfer characteristics of delay-locked loops - theories and design techniques, IEEE Journal of Solid-State Circuits, vol.38, issue.4, pp.614-621, 2003.
DOI : 10.1109/JSSC.2003.809519

E. Barajas, D. Mateo, and J. L. Gonzalez, Behavioural modelling of DLLs for fast simulation and optimisation of jitter and power consumptionLow Voltage Differential Signaling

S. Renaud, P. Marchegay, and B. Parmentier, Méthodes d'analyse des dispositifs de conversion A/N en regime dynamique p.^pp, pp.47-56, 1989.