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Abstract

Since the growing success of mobile systems in the 1990s, new wireless technologies
have been developed in order to support a growing demand for high-quality multi-
media services while still being flexible to accommodate new services with low error
rates. An interesting way to improve the error performance and to achieve better
transmission rates is to combine the use of various diversities and multiplexing ac-
cess techniques in the MIMO system context. The incorporation of oversampling,
spreading and multiplexing operations and additional diversities on wireless systems
lead to multidimensional received signals which naturally satisfy tensor models. This
thesis proposes a new tensorial approach based on a tensor space-time (TST) cod-
ing for MIMO wireless communication systems. The signals received by multiple
antennas form a fourth-order tensor that satisfies a new tensor model, referred to as
PARATUCK-(2,4) model. A performance analysis is carried out for the proposed
TST system and a recent space-time-frequency (STF) system, which allows to derive
expressions for the maximum diversity gain over a flat fading channel. An uplink
processing based on the TST coding with allocation resources is proposed. A new
tensor decomposition is introduced, the so-called PARATUCK-(Ny, N), which gen-
eralizes the standard PARATUCK-2 and our PARATUCK-(2,4) model. This thesis
establishes uniqueness conditions for the PARATUCK-(Ny, N) model. From these
results, joint symbol and channel estimation is ensured for the TST and STF sys-
tems. Semi-blind receivers are proposed based on the well-known Alternating Least
Squares (ALS) algorithm and the Levenberg-Marquardt (LM) method. A semi-blind
receiver based on the Kronecker Least Squares (KLS) is also proposed for both sys-
tems. Simulation results are presented to illustrate the efficiency of the proposed
receivers in terms of symbol recovery and convergence speed when compared to other
methods from the literature.

Keywords: MIMO wireless communication systems, symbol estimation, space-time
code, PARATUCK model, CANDECOMP /PARAFAC model, tensor modeling, CDMA,
OFDM.
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Resumo

Desde o crescente sucesso de sistemas moéveis na década de 90, novas tecnologias
sem fio tém sido desenvolvidas a fim de suportar a crescente demanda de servigos
de multimidia de alta qualidade e ainda flexivel para implantar novos servicos com
baixas taxas de erro. Uma forma interessante de melhorar o desempenho de erro e
de obter melhores taxas de transmissao consiste em combinar o emprego de varias
diversidades com técnicas de multiplo acesso no contexto de sistemas MIMO. A
incorporacao de operacoes de sobreamostragem, espalhamento e multiplexacado, e di-
versidades adicionais em sistemas sem fio levam a sinais recebidos multidimension-
ais que, naturalmente, satisfazem modelos tensoriais. Esta tese propoe uma nova
abordagem tensorial baseada em uma codificagdo tensorial espago-temporal (TST)
para sistemas de comunicacao sem fio MIMO. Os sinais recebidos por miltiplas
antenas formam um tensor de quarta ordem que satisfaz um novo modelo tenso-
rial, referido como PARATUCK-(2,4). A andlise de desempenho ¢ realizada para
o sistema proposto TST e um recente sistema espaco-tempo-frequencial (STF), a
qual permite derivar expressoes para o ganho maximo de diversidade através de um
canal com desvanecimento plano. Propoe-se um sistema de transmissao baseado
em codificagao TST com recursos de alocacao de antenas para sistemas MIMO com
multiplos usuarios. Uma nova decomposicao tensorial é introduzida, denominada
PARATUCK-(Ny, N), e esta generaliza o modelo padrao PARATUCK-2 e nosso
modelo PARATUCK-(2,4). A presente tese estabelece as condigoes de unicidade
para o modelo PARATUCK-(Ny, N). A partir desses resultados, a estimativa con-
junta do simbolo e canal é assegurada para os sistemas TST e STF. Os receptores
semi-cegos propostos para os dois sistemas baseiam-se no algoritmo do tipo minimos
quadrados alternados ("Alternanting Least Squares”, ALS) e no método de otimiza-
¢ao Levenberg-Marquardt (LM). Um receptor baseado na estrutura do produto de
Kronecker, denominado "Kronecker Least Squares” (KLS), também é proposto para
ambos os sistemas. Resultados de simulagoes sao apresentados para ilustrar a efi-
ciéncia dos receptores propostos em termos de recuperacao de simbolo e a velocidade
de convergéncia quando comparados com outros métodos da literatura.

Palavras-chave: sistemas de comunicagao sem fio MIMO, estimacao de simbolo, codi-
ficagao espago-temporal, modelo PARATUCK, modelo CANDECOMP/PARAFAC,
modelagem tensorial, CDMA, OFDM.
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Résumé

Depuis le succes croissant des systemes mobiles au cours des années 1990, les nou-
velles technologies sans fil ont été développées afin de répondre a la demande crois-
sante de services multimédias de haute qualité et une plus grande flexibilité pour
déployer de nouveaux services avec des taux d’erreur les plus faibles possibles. Un
moyen intéressant pour améliorer les performances et obtenir de meilleurs taux de
transmission consiste a combiner 'utilisation de plusieurs diversités avec un ac-
ces de multiplexage dans le cadre des systemes MIMO. L’utilisation de techniques
de sur-échantillonnage, d’étalement et de multiplezage, et de diversités suppléman-
taires conduit a des signaux multidimensionnels, au niveau de la réception, qui sat-
isfont des modeles tensoriels. Cette these propose une nouvelle approche tensorielle
basée sur un codage spatio-temporal tensoriel (TST) pour les systémes de com-
munication sans fil MIMO. Les signaux regus par plusieurs antennes forment un
tenseur d’ordre quatre qui satisfait un nouveau modele tensoriel, dénommé modele
PARATUCK-(2,4). Une analyse de performance est réalisée pour le systeme TST
ainsi que pour un systéme spatio-temporel-fréquentiel (STF) récemment proposé
dans la littérature, avec I'obtention du gain maximum de diversité dans le cas d'un
canal a évanouissement plat. Un systéeme de transmission basé sur le codage TST
est proposé pour les systemes MIMO avec plusieurs utilisateurs. Une nouvelle dé-
composition tensorielle est introduite, appelée PARATUCK-(Ny, N), qui généralise
le modele standard PARATUCK-2 et notre modele PARATUCK-(2,4). Cette these
établit les conditions d'unicité du modele PARATUCK-(Ny, N). A partir de ces
résultats, différents récepteurs semi-aveugles sont proposés pour une estimation con-
jointe des symboles transmis et du canal, pour les systemes TST et STF. Cette
approche tensorielle ne nécessite pas de supposer I'indépendance statistique des sym-
boles transmis. Les récepteurs proposés pour les deux systemes font appel soit a un
algorithme du type moindres carrés alternés "Alternating Least Squares™ (ALS), soit
a la méthode d’optimisation de Levenberg -Marquardt (LM). Un récepteur basé sur
la structure du produit de Kronecker, appelé méthode "Kronecker Least Squares”
(KLS), est aussi proposé. Des résultats de simulations sont présentés pour illus-
trer l'efficacité des récepteurs proposés en termes de récupération de symboles et de
vitesse de convergence par rapport a d’autres méthodes de la littérature.

Mots-clés: systemes de communication sans fil MIMO, estimation de symbole, codage
spatio-temporel, modele PARATUCK, modele CANDECOMP/PARAFAC, codage
tensoriel, CDMA, OFDM.
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Chapter

Introduction

1.1 General overview of wireless communications

Radio broadcasting, television broadcasting, satellite communications, and mobile systems
are applications of wireless communication systems. A recent interest in wireless communica-
tion come from the growing success of cellular systems, mainly since the 1990s with the second
generation (known as 2G) technology replacing analogy technology by digital communication.
In the past few decades, mobile wireless technologies have been classified according to their
generations. Such classifications are distinguished by the type of service (expansion of commu-
nication to other sources like images, video, and data), improved privacy, data transfer speeds,
improved spectral efficiency, volume data broadcast, and quality of service.

In every new generation of mobile wireless communication, such as the current 3G and
4G technologies, the systems must be designed to support a growing demand for high-quality
multimedia services while still being flexible to accommodate new services. These systems must
take into account the best tradeoffs between error performance (in terms of symbol or bit error
rates, abbreviated as SER and BER, respectively), transmission rate (in symbols or bits per
channel use), power and spectral efficiency, and receiver complexity for symbol recovery.

A characteristic of the wireless channels is the existence of many different paths between
transmitter and receiver, which leads to different versions of the transmitted signal at the
receiver. These resulting signals can widely vary in amplitude and phase. The recovery of the
information data may be impaired by the interference from other sources of electromagnetic
waves, or even between two or more versions of each transmitted signal (from propagation
effects). Moreover, another major limitation of wireless system performance comes from the
fading in wireless link.

A key idea for improving the error performance is to exploit the propagation of several
paths jointly, which means incurring redundancy into the information-bearing signals available
at the receiver. The principle of diversity techniques is to provide different versions of the same
signal at receiver, in which each version is ideally affected by independent fading channel. As a
consequence, the probability of all signals fading in at the same time is drastically reduced [1, 2].
This enables the mitigation of fading in wireless link and hence, an increase of the reception
reliability, which leads to a reduction of error rate.
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This redundancy can be provided by channels as it is the case of frequency-selective and
time-selective channels, leading to what are called frequency diversity and Doppler diversity,
respectively. Redundant information can also be obtained by spreading operations at the trans-
mitter, in space, time and/or frequency domains [3]. It is important to notice that redundancy
does not always reflect on the information diversity. In general, the diversity is only achieved
when the different versions of the same signal are independently affected by different fading
channels.

There are many forms to achieve diversity. They can be classified in four classes, as follows:
space, time, frequency, and polarization [4, 5]. Generally speaking, space diversity results from
the use of multiple antennas at both transmitter and/or receiver ends, which leads to multiple-
antenna communication systems with multiple-input multiple-output (MIMO) channels. It is
well-known that the deployment of multiple antennas in wireless systems allows improving the
transmission rate and reliability over single-transmit antenna systems, while keeping the same
transmission bandwidth and power [6, 7, 8]. The works [9, 10, 11] have independently studied
and derived expressions for the capacity of MIMO fading channels, concluding that the use of
more antennas drastically improves the channel capacity.

An important aspect of the space diversity is that it can be achieved in two cases. The
first case is when the transmit and/or receive antennas are properly separated, i.e. with more
than half wavelength (exactly 0.38\ according to [4]), which consequently imposes a minimal
physical separation preventing its use on small devices. The second case, also known as angular
diversity, is obtained from the use of directional antennas, which enables its application in small
devices.

When the space diversity is obtained from the use of multiple transmit antennas, denoted
by transmitter space diversity, the transmit power must be divided along all transmit antennas.
Contrarily, the space diversity generated from several receive antennas, known as receiver space
diversity, does not require additional transmit power.

Temporal diversity is derived from the transmission of multiple coded versions of the same
signal at different time instants. This diversity takes advantage of variations in the channel in
the sense that the coherence time of the channel is small in fast fading channels. The interleaving
of the coded symbols before the transmission ensures independent fading channels even in the
case of slow channels. Thus, robustness of the communication to a temporary deep fade is
increased. Nevertheless, the transmission rate is reduced in the sense that an entire block must
be received before the initialization of the decoding process.

Frequency diversity employs different carrier frequencies which must be separated by more
than the coherence bandwidth of the channel in order to induce different multipath. Another
frequency diversity is achieved by frequency-selective channels [2], since the signal bandwidth
suffers spreading and the channel gain varies across it. Both time and frequency diversities are
not bandwidth efficiency and just the second one requires additional transmit power.

The last diversity refers to the transmission and the reception of signals employing antennas
with different polarization, in which the main types are linear, circular and elliptical polariza-
tions. The main disadvantages of this type of diversity are its limitations with respect to the
number of polarization types and that it incurs power loss at the transmitter and/or receiver
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whereas the power is divided between the polarized antennas. Yet this thesis is focused on the
first three types of diversity.

Multiple versions of the transmitted signal obtained from different diversity techniques can
be combined with the purpose of improving the system performance [1, 5]. Note that a diversity
can not always be available inasmuch as depends on the system feature. Antenna diversity is
harder to implement in small devices, such as cellular phones, than in base-stations, because the
diversity is impaired as much the channels corresponding to different antennas are correlated.

Temporal diversity in fast fading channels is not recommended for delay-sensitive and sta-
tionary applications [6]. In the first application, real-time information is required to be received
within a certain time deadline. In stationary applications, the coherence time of channels is
infinite which leads to correlated signal versions. Frequency diversity can not be achieved when
the delay spread is small, because the frequency components will correspond to correlated fading
channels.

In general, the use of several transmit antennas for transmitting the same data signal, known
as space spreading, can improve the system reliability as well as the transmission of the same
symbol during several time periods, known as time spreading. On the other hand, the signals
can be independently transmitted in parallel by several antennas, denoted by space multiplezing,
leading to an increase of the transmission rate.

As discussed previously, when multiple antennas are employed in the transmission and/or
reception of the same information, the average error probability drastically decreases which
leads to an increase of diversity gain. At the same time, multiple antennas can be used to
transmit in parallel different information data which results in an increase of transmission data
rate and thus a multiplering gain. Note that both gains can be simultaneously obtained, but
generally the maximal diversity and the maximal multiplexing gains can not be simultaneously
achievable [12]. A tradeoff between spatial-multiplexing and diversity gain was proposed in [7].
Another gain similar to diversity gain, the array gain results from average power of combining
of multiple received signals, which leads to an increase in average received SNR relative to the
single-branch average SNR [4, 1].

Alamouti proposed in [13] a transmit diversity scheme using two transmit antennas and
one receive antenna with the purpose of fading channel mitigation. Although the first space-
time (ST) coding was developed by Tarok et al. [6], proposing the construction criteria for
ST codes. Since then many works have proposed a variety of ST transmission schemes in
order to attain a good compromise between error performance and transmission rate in different
system contexts [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. In order to exploit the spatial and
frequency diversities over frequency-selective MIMO channels, the space-frequency (SF) coding
was proposed in [25]. Initially, ST codes were used directly as SF codes, just replacing the time
domain by the frequency domain [25, 26, 27]. However, they showed in [28] that the frequency
diversity available in frequency-selective MIMO channels, in general, can not be exploited by
using directly ST schemes, requiring a mapping from ST codes to SF codes proposed later in
[29, 30]. The proposed mapping in [30] allows that existing ST schemes can be employed to
attain full diversity in MIMO-OFDM systems. They have also proposed a tradeoff between
error performance and transmission rate for MIMO-OFDM systems. The space-time-frequency
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(STF) coding was introduced with the purpose of exploiting jointly the space, time and frequency
diversities over frequency-selective channels [31, 32, 33].

In wireless communication, multiple-access (MA) techniques permit that the communication
resources of the channel to be shared properly by multiple users or local stations. These methods
are based on frequency-division (FD), code-division (CD), time-division (TD), space-division
(SD) or also combinations of these techniques. The choice of the multiple-access method to
be employed depends on the application characteristics and performance requirements of the
system.

The combination of ST, SF or STF codes and multiplexing access techniques in the MIMO
systems has received much attention in the last years. In the MIMO-OFDM system, SF and STF
codings have been employed for providing high data rates and/or reliability through the system
diversities available [25, 28, 32, 34, 35, 36, 37, 38, 39]. For the same purpose, the MIMO-CDMA
and MIMO-SDMA systems have exploited the ST diversities [40, 41, 42, 17, 43, 12, 44].

Many technical challenges required in the data transmission have driven additional signal
processing complexity at the receiver. Channel identification and equalization traditionally use
a training period to estimate the propagation channel for a transmitted symbols recovery. As
the sources transmit periodically a training sequence known at the receiver, the transmission
rate is inevitably affected and for some applications with fast fading channels for example, the
training becomes even not effective. For those, and other reasons, blind methods are more
appropriate, mainly when the communication requires higher transmission rate.

Blind techniques exploit temporal properties of the signals, channel features or spatial prop-
erties of the receiver, such as finite alphabet, orthogonality of the sources, stationarity channel,
constant-modulus of the signal constellation, cyclostationarity or statistical independence of
the sources [45, 46, 47, 48, 49], for performing channel identification, equalization and source
separation.

The use of tensor tools has aroused interest in signal processing applications for wireless
communication systems since the pioneer work [50] in 2000. They proposed a blind multiuser
separation-equalization-detection for direct-sequence code-division multiple access (or simply,
DS-CDMA) systems from the modeling of received signals by the parallel factors (CANDE-
COMP/PARAFAC or shortly, CP) [51, 52]. An interesting advantage is that the CP DS-CDMA
receiver does not require knowledge of spreading codes and of channel coefficients, finite alpha-
bet/constant modulus or statistic independence to recover the transmitted signals.

One common feature of all tensor approaches is to perform a jointly blind symbol and channel
estimation without a priori channel state information (CSI) at the receiver under identifiability
conditions more relaxed than those based on conventional matrix models and without requiring
statistical independence between the signals transmitted. Furthermore, the signal processing
can be approached in a deterministic way and can directly exploit special features of the system.

Signal processing usually considers space and time dimensions which leads to matrix mod-
els. The incorporation of oversampling, spreading and multiplering operations, and additional
diversity on wireless communication systems can be represented as new dimensions that sug-
gests naturally the use of tensors to represent the system model. Another advantage is that
tensor structure exploits jointly all available information into signals at the receiver for a signal
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recovery purpose.

The tensor decompositions are very useful in modeling signal received, a direct association is
established between the parameters of tensor decomposition and the physical parameters of the
link communications such as transmitted symbols, channel attenuation coefficients and coding
coefficients. As any tensor decomposition, the estimation of certain parameters is desired and
its unique determination is ensured by uniqueness conditions for this particular model. The
advantages of tensor approach are direct consequence of the essential uniqueness property.

During the last decade, tensorial approaches have been employed to exploit diversities of
MIMO wireless systems providing a more reliability to recover the transmitted symbols with
blind detection [50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. Sidiropoulos and Budampati in [53]
proposed a ST coding based on the Khatri-Rao matrix product, named Khatri-Rao Space-Time
(KRST) code, which combines a spatial precoding with a temporal spreading. This code allows
to attain a desired performance and provides since full transmission rate to full diversity gain
by varying the length of temporal spreading code.

A block tensor model for multiple-access MIMO systems with multiple transmit antennas per
user was proposed in [54]. They combined direct sequence code division multiple access technique
with spatial multiplexing. The received signal is decomposed in a generalized CP, which can
be rewritten as a sum of rank-(L, L, 1) terms with tensor rank denoting the number of users
[63]. In [60], they presented a bound on the number of users under which blind separation and
deconvolution is guaranteed. This system was extended in [61] for multiple users at reception
resulting in a generalization of the model, the so-called block component model (BCM).

A three-dimensional tensor coding is constructed from the spatial and temporal spreading
and spatial multiplexing in [55]. The blind receiver is based on a constrained CP model with
fixed constrained structure. The extension for multiuser can be found in [56]. Differently from
[53], the approach of [55] introduces some flexibility at the transceiver by allowing choosing a
number of data streams different from the number of transmit antennas.

The works [57], [58] and [59] have introduced the ST coding with allocation structures
represented by two or three matrices in order to control the design transmit schemes. In [57],
two allocation matrices define the allocation of users’ data streams and spreading codes to their
transmit antennas. De Almeida et al. in [58] generalize [57] by including a third matrix which
defines the mapping of the precoded signals to the transmit antennas. The received signals in
[57, 58] satisfy a third-order constrained CP model, named as CONFAC model. Differently to
[57, 58], two allocation matrices in [59] jointly control the spatial and temporal allocations, i.e.

the allocations of data streams to transmit antennas and time-slots. The received signals in [59]
satisfy a PARATUCK-2 (or shortly, PT-2) model [64].

Observe that all these last works are restricted to single-carrier transmissions. In the context
of multicarrier systems, [62] considers a MIMO system with STF spreading-multiplexing. It is
employed two third-order interaction tensors that define a joint temporal and frequency allo-
cation of the data streams to the transmit antennas, thus allowing to adjust the multiplexing
degree and spreading redundancy in space (transmit antennas), time (blocks) and frequency
(subcarriers). Besides the difference in relation to third-order allocation structures and alloca-
tion matrices in [56, 57, 58, 59], the MIMO channel for the STF system links each transmit
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antenna with each receive antenna for each subcarrier, which leads to a MIMO channel tensor
instead of a matrix.

This work is based on the improvement of system performance given in [59] by the intro-
duction of temporal and frequency diversities. The increment of diversities in the PT-2 model
allows to reach a new tensor decomposition, named as PARATUCK-(Ny, N) (or PT-(Ny, N))
[65, 66] which is an extension of PT-2 model. We have investigated the uniqueness conditions of
this new model employing CP and PT-2 uniqueness results. We also analyze the performance
of our proposed system and the STF system [62] in terms of diversity gain and derive the maxi-
mum diversity gain over a at fading channel (per each subcarrier). Conditions for identifiability
and uniqueness for both systems are also established.

1.2 Chapter contents and contributions

In addition to this introduction and the concluding remarks, the thesis is organized into
three main chapters, as follows:

Chapter 2. We give an overview of matrix operations involving Kronecker and Khatri-
Rao products and the concept of k-rank that will be necessary along of this work. Two lemmas
concerning the Khatri-Rao product between N matrices are deduced, resulting in generalizations
of the lemmas presented respectively in [67, 68]. Both lemmas are important to analyze the
uniqueness and identifiability conditions developed in the next chapters of this thesis. Some
basic operations and matrix representations of higher-order tensors are introduced.

We present a historical overview of the well-known CP decomposition [52, 51] containing
main uniqueness results with a discussion and comparison of these conditions. We also propose
a sufficient condition and two extensions for some results in the literature. In the sequence,
our proposed decomposition, PT-(Ny, N), is introduced. We show that this model generalizes
the PT-2 model [64] and takes advantages of its properties. The uniqueness conditions for
PT-2 model have been analyzed and extended. Finally, we deduce the uniqueness results for
PT-(Ny, N) decomposition.

Chapter 3. We introduce our proposed space-time coding , named as Tensor Space-Time
(TST), and derive the expressions of transmit and receive signals [65, 66]. A performance
analysis of the T'ST coding is deduced with the purpose of evaluating the diversity of information
transmitted, which allows us to express a maximum diversity gain in terms of some system
parameters and taking into account the structures of antenna and stream allocations per time-
block. We propose an uplink processing based on the TST coding with allocation resources for
multiple users at the transmission.

The Space-Time-Frequency (STF) system in [62] is described and we derive a performance
analysis based upon the one done previously for TST system. The uniqueness conditions for
both systems are investigated in an unified way using the results presented in the previous
chapter and taking into consideration the structure of each system.

Chapter 4. In this chapter, we present some semi-blind receivers for joint channel estima-
tion and symbol recovery. We apply in both systems the well-known Alternating Least Squares
(ALS) and the Levenberg-Marquardt (LM) algorithms, and propose two new algorithms: the
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Alternating Levenberg-Marquardt (ALM) and the Kronecker based Least Square (KLS). The
ALM is a simplified version of the LM algorithm and the KLS is a non-iterative algorithm based
on the structure of the Kronecker product. All algorithms are compared in terms of identifiabil-

ity conditions, complexity and convergence speed. Finally, some simulation results are provided

to evaluate the performance of these receivers for both systems and to compare the TST coding

with other ST codings based on tensor approaches.

Main contributions

We highlight clearly all contributions developed in this thesis per chapter as follows.

Chapter 2.

Development of two lemmas regarding the k-rank of Khatri-Rao product between several
matrices, which generalize two lemmas presented respectively in [67, 68] (Section 2.1).

Proposition of a sufficient uniqueness condition for the N-th order CP model based on
the results in [69] and generalization of two theorems proposed in [70] concerning partial
uniqueness conditions for third-order CP model extended to an N-th order CP model
(Subsection 2.3.1).

Proposition of the PT-(Ny, N) model, which generalizes the PT-2 model [64] (Subsection
2.3.2).

Development of the uniqueness conditions for our proposed model based on the uniqueness
results in [59], [69] and [70] (Subsection 2.3.2).

Chapter 3.

Proposition of the TST coding for MIMO wireless communication systems modeled by
the PT-(2,4) and a constrained CP models (Section 3.1).

Proposition of an uplink processing based on the TST coding with allocation resources.

Development of a performance analysis based on the diversity of transmitted information
and derivation of the maximum diversity gain for TST [66] and STF [62] systems (Section
3.3).

Proposition of the uniqueness conditions based on the results in Chapter 2 for both systems
in an unified way (Section 3.4).

Chapter 4.

Development of semi-blind receivers for joint channel estimation and symbol recovery
applying the ALS and LM algorithms (Sections 4.1 and 4.2).

Proposition of new algorithms: the ALM, a simplified version of the LM algorithm, and the
KLS, a non-iterative algorithm based on the structure of the Kronecker product (Sections
4.3 and 4.2).
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e A complete comparison between all algorithms in terms of identifiability conditions, com-
plexity per iteration, convergence speed for both systems.
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Chapter

Tensor decompositions: background and new
contributions

In this chapter, we introduce the basic definitions and operations of multilinear algebra which
are used in this thesis. Firstly, let us show some matrix operations and in the sequence, two
lemmas derived from works of Sidiropoulos et al. [67, 71] which correspond to contributions
of this thesis and are important to study the uniqueness and identifiability conditions. In the
second part, we bring up some basic tensor operations. Finally, in the third part, we present
a historical overview of the CANDECOMP/PARAFAC (or in abbreviation, CP) model and
introduce the proposed PARATUCK-(Ny,N) (or in abbreviation, PT-(/N7,/V)) model giving the
main results concerning the uniqueness of both decompositions. Another contribution of this
chapter concerns the proposition of a sufficient uniqueness condition based on the results in
[69] for the N-th order CP model, the extension of the uniqueness conditions proposed in [70]
for any N-th order CP model, and the proposition of uniqueness conditions for our proposed
PT-(Ny, N) model, based on the CP and PT-2 results.

2.1 Matrix operations

There are two principal products widely employed in the tensor approaches, known as Kro-
necker and Khatri-Rao products. We will see in the next section that higher-order tensors can
be represented by unfolded matrices and these products are frequently used in the context of
tensor decompositions to simplify expressions and to explore their properties [72, 73].

The Khatri-Rao product, which is equivalent to a column-wise Kronecker product of two
matrices, was introduced by Khatri and Rao [74]. Before to transcribe the definition of the
Khatri-Rao product, recall that the Kronecker product between two matrices A € C'*/ and
B € CM*¥ results in

al,lB (1172B ce (ZLJB
A ® B_ a27.1B CLQ"QB Ce GQJB c CIMXJN. (21)
CL[’lB a[’QB Ce CL],JB
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Definition 2.1. (Khatri-Rao product).[74] The Khatri-Rao product, denoted by <, of two
matrices A € C'*® and B € C7*! results in a (IJ X R)-matriz given by

AoB=[A;®B; ... Ap®By|eC’" (2.2)

Let us also define the partition-wise Kronecker product of two matrices as follows

Definition 2.2. (partition-wise Kronecker product).[75] Let A = [AM) ... AP ¢ CI*R/
and B = [B(l) B(R)] € CM*EN pe two partitioned matrices. The partition-wise Kronecker
product, denoted by |®)|, of two matrices A € CP*B and B € CM*EN yesylts in a (IM x RIN )-
matrix given by

Al B=[ ADVgBW ... AW gBW | e CMHARN, (2.3)

In order to deduce two new lemmas proposed in this thesis that will be useful for the
uniqueness and identifiability analysis, we need to give a brief overview of the definition of the
Kruskal rank of a matrix. The concept of k-rank was introduced by Kruskal in 1977 [76] which
cames from his studies of the uniqueness for the CP decomposition but the term k-rank for
Kruskal rank was just later named by Harshman and Lundy [77]. This concept is important
because the most general results on uniqueness involve or depend on the k-rank of a matrix.

Definition 2.3. (Kruskal rank or k-rank).[76] The Kruskal rank or k-rank of a matriz A,
denoted by k(A) or ka, is the mazimal number ka such that any set of ka columns of A is
linearly independent.

The distinction between k-rank and rank is important. Verify that k(A) = x implies that
every = columns of A are linearly independent, whereas rank(A) = x requires that at least
x columns are linearly independent. Thus, the k-rank is more constrained than the rank of a
matrix A implying k(A) < rank(A).

Now, let us introduce a lemma that gives a lower-bound on the k-rank of Khatri-Rao product
between N matrices, this lemma is an extension of the lemma for a Khatri-Rao product (i.e.
N = 2) proved in [67, 68] and posteriorly proved in a different way in [78, 79].

Lemma 2.1. (k-rank of Khatri-Rao products). Consider the Khatri-Rao product of N matrices

N N
n=1

n=1

and define k) 2 k(A(”)) as the k-rank of A™ € CI"*® forn € {1,...,N}.
(i) If kawy = 0 for a given n, then kpaq..oav) = 0.
(i) If ko) > 1 for all n, then kaayg..opnvy > min (kaa) + -+ + kay — (N — 1), R).

Proof: First, let us prove (i). When k) = 0 for a given n, A has at least one zero column.
. N

Thereby, supposing A.(:i) = 0;,. for a given r* and n*, it gets from (2.4): ® A_(;i) = 0p,..1y, L€
n=1

AW o ..o AW has one zero column which implies & 1),..,av) = 0. We can prove (ii) applying
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the Lemma 1 in [67, 68] to the Khatri-Rao product between two matrices. Suppose kpm > 1
for all n, we obtain

kA(l)OA(Q) > min (kAu) + k}A(z) —1, R) , (25)

Eawoa@oa® = min (kawoae + koo — 1, R)
> min (kAu) + kae) + kas — 2, R) . (2.6)

Both expressions can be easily extended to the general case of Khatri-Rao product between N
matrices, i.e. N — 1 Khatri-Rao products, by:

kA(l)O__OA(N) > min (/CA(1) + -+ /{JA(N) — (N — 1), R) . (2.7)

[ |
This contribution allows us to derive the next lemma that leads to an extension of the lemma
for full rank of one Khatri-Rao product proposed in [71].

Lemma 2.2. (Full rank of Khatri-Rao products). Consider AN o-- .0 AN) with A ¢ Cln¥E,
ne{l,..,N}. If kaoy > 1 for all n and ij:l kawy > R+N—1, then AD o ..o AN s full
column-rank, implying I --- Iy > R.

Proof: According to Lemma 2.1 for kym > 1, n € {1,..., N}, we have
k}Au)Q,,,QA(N) > min (k?Au) —+ -4 kJA(N) — (N — 1), R) . (28)

If SN kaey > R+ N — 1, then min (ko) + -+ 4+ kaovy — (N — 1), R) = R. By the k-rank
definition kp @y, oa < min (17 ... Iy, R), it leads to k), oo = R implying that AN oo
A®) s full column-rank. u

2.2 Basic tensor operations

A tensor is a multi-dimensional array of numerical values. The order of a tensor is the
dimensionality of array, or equivalently, the number of indices. Thereby, a matrix and a vector
can be respectively represented by a 2-dimensional and a 1-dimensional array and therefore,
are respectively a second-order and a first-order tensor. A scalar is a single number and thus,
zero-order tensor.

Definition 2.4. (Scalar notation). Each element of an N-th order tensor, A € Cl>*f2xxIn

can be denoted by

1>

Wi inine = ALy igin s (2.9)

in€{1,.... L} withn € {1,..., N} is an n-th dimension or also called as an n-th mode of A.
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Definition 2.5. The outer product between a tensor A € Ch*x-xIm of M _th order and
B € Clix2x=xIn of N-th order results in a tensor of (M + N )-th order defined as

é a
11,8250y 00 J 15025 JN 218250 0M

[Ao B] b

159250 N >

(2.10)

for all index values.

The outer product of two tensors results in another tensor and the order of this new tensor
is given by the sum of the order of both tensors. Observe that (2.10) is a generalization of the
outer product of two vectors, which results in a matrix.

Definition 2.6. (Rank-one tensor). An N-th order tensor A € Ch>I2XXIN has rank one if it

can be written as the outer product of N vectors u™ € C'» n € {1,...,N}:

N = Uiy ooy = ufll)ug) .. .ug), (2.11)

A=uVou@o...0u
for all index values.

This definition is a generalization of a rank-one matrix: a matrix A € CM*" has rank-one
if and only if it can be written as the outer product of two vectors u € CM and v € CV, i.e.
A =uov=uvl < a,, = U,v, for all index values.

Definition 2.7. The Frobenius norm of a tensor A € Cl*12xXIN s defined as

A I I In
HAHF = Z Z s Z |ai17i27--~,i1\r|2' (2'12>
i1=112=1 in=1

This is analogous to the matrix Frobenius norm.

Definition 2.8. The n-mode product of a tensor A € Ch>>xInx=xIN gnd q matriz U € C/n*In

isa (Iy X« X I X Jy X Lypq X -+ X Iy )-tensor given by

In
A
(A X0 Ul i dmingtin = Z Qitsesimseessiy Wnsim> (2.13)

in=1
for all index values.

The n-mode product is a compact form to represent linear transformations involving tensors.
Rewriting (2.13) as B = A x,, U, it gets

b

115 yin—1,1,n4 1, N iy, yin—1,1int1, 00N
=U : , (2.14)
bil ail

----- infly(]nvin+17---7iN 7---1in717]n7in+17---7iN

which represents a linear transformation mapping C’» to C’» on the n-th dimension of A.
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Corollary 2.1. Given a tensor A € Ch>*2x-*IN gnd two matrices F € C'»*I» and G €
C/mxIm with m # n, one has:

Ax, F)x, G=(Ax%,G)x, F=AUX,Fx,G. (2.15)
And two n-mode products satisfy the identity
(A x, F)x,G=A4x, (GF) (2.16)
with F € CL»*In gnd G € C/nxLn,

From this notation, the matrix product UAVH, with A € Ci'*2. U € C/**lt and V €
C’2*I2_can be equivalently rewritten as A x; U x4 V*.

Matrix representation of a higher-order tensor

The process of reordering the elements of an N-th order tensor into a matrix is known as
unfolding or matricization. In our notation, we explicit the size of the unfolded matrix in terms
of the sizes of the tensor dimensions in order to convert the matrix back to the original tensor.

Definition 2.9. (Matrix unfolding). Assume an N-th order tensor X € Ch*I2x-xIn gnq
let the ordered sets A = {ay,...,ax} and B = {by,..., by} be a partitioning of its modes
D ={1,...,N}. The unfolded matriz Xpyqg € C"*? of this tensor can be denoted by

(Xpxqlyy = Tivisin: with P =[] 1, and Q =] 1, (2.17)

pEA q€B

both indices p and q are associated with several modes.

Let us illustrate the above definition by the following example: For A = {1,2} and B =
{3,..., N}, then we can write Xy, ,xr,..1y. The name matricization comes from the analogy to
the more common term wvectorization, the vectorization of a matrix is just a special case of the
matricization of a tensor, which all modes become row modes, i.e. vec(X) = [XTl o X%}T €
C2Iv for X € Cl*2. The vectorization of a higher-order tensor can be derived from the
vectorization of a matrix unfolding of this tensor. Observe that the order of the dimensions is
relevant because denotes the speed at each mode changes, it will be clear along this work.

Any higher-order tensor can be represented by matrix unfoldings. Verify that there are many
different ways to write an unfolded matrix of a higher-order tensor by rearranging its modes
into a matrix and by permutation of its indices. Consider for example a tensor with three

dimensions A € CI*2%3 we can define three different matrices: Ay, 1,1, 2 (AL ... Apl,
A = [AT1 e ATLJ and Az xr 1, = [AlT o A%} to represent the same tensor with
iy inis = [A11><IQI3]i17(i2—1)I3+i3 = [AIQXISIl]iZ,(ig—l)Il—i—il = [A13x1112]¢3,(i1—1)12+i2 ) (2-18)

for all index values and A;,.. € C2*5 A, € C"*s and A ,;, € C"*2 denoting the slice of A,
constructed by fixing the modes 1, 2 and 3, respectively. Remark from (2.18) that the order of
the indices is important to construct the unfolded matrices from the matrix slicings, the indices
placed more to the left vary slower and the ones placed more to the right vary faster.
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2.3 Background on tensor decompositions and new con-
tributions

This section gives an overview of the most known tensor model, called CANDECOMP/
PARAFAC [52, 51] and presents the main results concerning the uniqueness conditions of this
model. In the sequence, we introduce our proposed model named as PARATUCK-(N;, N), or
simply PT-(Ny, N), which generalizes the standard PARATUCK-2 (or in abbreviation, PT-2)
model [64]. We recall the uniqueness results for the PT-2 model and analyze the uniqueness
conditions for a special structure of the PT-(Ny, N), for Ny = 2 and N = 4, which will be useful
to our specific problem. Finally, we extend the uniqueness conditions to the PT-(Ny, N) model
from the results deduced from PT-(2,4) and CP decompositions.

2.3.1 CANDECOMP/PARAFAC decomposition

The idea of expressing a tensor as a sum of rank-one tensors was originally introduced by
Hitchcock in 1927 [80]. The decomposition of three-way arrays has been developed in an inde-
pendent way by Carrol and Chang [52] in psychometrics, named as CANDECOMP (canonical
decomposition), and by Harshman [51] in phonetics, named as PARAFAC (parallel factors).
Both names report to different features of this model, in this thesis we use the abbreviation CP
to refer to the CANDECOMP /PARAFAC decomposition.

The CP model decomposes an N-th order tensor X € Cl**I~¥ into a sum of rank-one
tensors so it can be expressed using the outer product notation (2.11) and also in a concise form
as

X =[[AD,A® AWM

(2.19)

R R N
1 2 N n
Liyyin = Z agl,)r a”EQ,)T' s a'EN,)r = Z H agn,)r’ (220)

A ¢ C*E for n € {1,..., N} and R > 0 denote, respectively, the matrix factors and the
rank of X.

The usual definition of tensor rank, proposed in [80] and independently later in [76], comes
from the minimum number R of rank-one tensors sufficient to decompose a tensor. Therefore,
the decomposition in (2.19) is irreducible in the sense that it can not be represented using less
than R components of rank-one.

Remark that any higher-order tensor can be decomposed in the form of (2.19), it leads
to the rank definition: Any matrix can be decomposed in a sum of rank-one matrices, i.e.
X = Zle a,bl € CM*N for a, € CM and b, € CV, where the minimum number of R defines

the matrix rank. Contrary to matrices, the rank of higher-order tensors is not bounded by the
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tensor dimensions. The determination of tensor rank is not easy and can be found in some
special cases [81, 82, 83].

As we have presented in Section 2.2, any higher-order tensor can be represented in terms
of matrix unfoldings. Thus, we can express the CP model in a matricized form using the
Khatri-Rao product by

Xpstsdnstsoin = A (AW 6.0 AN 6 AHD OAuv))T (2.21)

for a given n € {1,..., N}. Remark that X; «s, .1, 1,,,..1y 1S just one way to represent the
tensor X € C1*-Iv jsolating an n-th matrix factor A™ on the left side of the expression (2.21).

The CP decomposition of an N-th order tensor, defined in (2.19), consists in determining
N matrix factors AM ... A®) from which the original tensor was constructed. It is impor-
tant to investigate the conditions that can guarantee the uniqueness. The uniqueness of the
CP decomposition has been explored since early in the 70’s and the main advantage of this
decomposition is due to the well-known essential uniqueness of this model, which is crucial in

many applications.

Uniqueness results

The first published uniqueness result is due to Harshman [51], giving credit to Robert Jen-
nrich of the UCLA Department of Mathematics for the uniqueness proof in this work. Several
results regarding uniqueness of the CP model have been developed ever since [84, 76, 85, 86, 50,
67, 87, 88, 89, 90, 91, 78, 92, 69, 70], but the most general sufficient condition and well-known
result on uniqueness is attributed to Kruskal [76].

Kruskal has proposed a sufficient condition in [76] for the essential uniqueness of real third-
order CP decomposition that was better discussed in [85] and alternative proofs were presented
in [78] and [93]. This uniqueness condition was extended for complex case by Sidiropoulos, Gi-
annakis and Bro in [50] and generalized for an N-th order tensor, i.e. for N > 3, by Sidiropoulos
and Bro in [67]. This result is reproduced as follows:

Theorem 2.1. [67] Consider the N-th order tensor X = [[AW A® . AN with A™ €
Cln*E n ¢ {1,...,N} and suppose R is its rank. Thus, A™ € C*E n c {1,... N} are
unique up to permutation and scaling of columns provided that

N
> kaw = 2R+ (N —1). (2.22)

n=1

The proof of this theorem exploits Lemma 1 in [67] which gives a lower-bound on the k-rank
of Khatri-Rao product and is based on rewriting of a N-th order CP model as another CP model
of third order, implying the concatenation of N — 2 loading matrices in only one matrix. Thus,
the principle of lemma 2.1 proposed and formulated in this thesis is implicitly suggested in this
Lemma proof.

Remark from (2.22) that each dimension of the tensor increments just one in the minimum
value of the total sum of k-rank, then the increase of tensor dimensions N decreases the k-rank
required per dimension. The minimum k-rank required per each matrix factor is two for three
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dimensions (N = 3), i.e. kam > 2 for n € {1,2,3}, and for more than 3 dimensions (N > 3),
it is possible to guarantee uniqueness with one matrix of k-rank equals to one. Therefore, the
uniqueness condition (2.22) becomes less restrictive with rising of the tensor order N.

When the loading matrices A™ € C»*E for n = 1,..., N are drawn independently from

absolutely continuous distributions, these matrices are full k-rank, i.e. kpm = min(I,, R),
n=1,...,N and the condition (2.22) becomes [67]
N
> min(I,,R) > 2R+ (N —1). (2.23)
n=1

Jiang and Sidiropoulos in [89] and De Lathauwer in [90] have independently derived an
alternative uniqueness condition for third-order CP decomposition where one of the factor matrix
is full column-rank. For the third-order CP model X = [[A(l), A®), A(3)ﬂ with A® being full
column-rank (kas = R < I3), these conditions lead to kxa) + ka2 > R+ 2, which is a special
case of Kruskal’s condition [76] and according to Lemma 2.2, k) + ka2 > R+ 2 implies that
AWM o A@ s full column-rank (I; I > R). Differently to Jiang and Sidiropoulos, De Lathauwer
proposed a deterministic condition for the same case, considering a third-order tensor with two
generic component matrices which are randomly sampled from a continuous distribution. This
condition was derived in the form of a dimensionality constraint for third and also fourth-order
tensors.

In [91], a link is established between the uniqueness conditions of Jiang and Sidiropou-
los and of De Lathauwer, and it is proved that both conditions are more relaxed than the
classical Kruskal’s condition for the special case in which one factor matrix is full column-
rank. These results were posteriorly extended to arbitrary order N > 3 tensors by Stegeman
n [69]. Although both conditions are equivalent, the condition deduced by De Lathauwer is
easer to be checked. Let us enunciated it as follows for N > 3. Consider an N-th order
CP model X = [[A(l), e ,A(N)ﬂ, with generic (A(l), e ,A(Nfl)), AWM full column-rank and
A™ ¢ Cl"*B n e {1,... N}. This decomposition is unique if

N-1
R(R—1 _
BEZD 3 @ 1) Quu, (2.24)
n=2
with
Q) = Y H H I (2.25)
Sy jESn 3¢S
where the summation is over all subsets S,, of n € {1,..., N —1} containing n distinct elements.
If n =N —1, then we set [[ [; = 1.

J¥Sn
Although these conditions are more relaxed than Kruskal’s condition, they are still sufficient

conditions and furthermore, for a restricted CP model. The condition based on Jiang and
Sidiropoulos approach is not practical and the one based on De Lathauwer is not guaranteed
for matrices no randomly constructed.

Since the proposed condition for uniqueness by Kruskal [76], attempts to prove that it is also
necessary have been investigated. In [88], Ten Berge and Sidiropoulos proved that Kruskal’s
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condition is not only sufficient but also necessary for tensors of rank R = 2 and R = 3, but not
necessary when R > 3.

More general necessary uniqueness condition of a third-order CP model X = [[A(l), A®) A(?’)ﬂ
was proposed by Liu and Sidiropoulos in [87] and checked in [78], this condition is given by

min (rank(A" o A®) rank(AM o A®)) rank(A® 6 A®)) = R. (2.26)

In another way, the Khatri-Rao product of any two matrix factors must be full column-rank
in order to guarantee the CP decomposition uniqueness. This work gave also an idea for its
extension to arbitrary dimension N that was appropriately proved by Stegeman in [69]. For
higher-order CP model, the Khatri-Rao product between any N — 1 matrices, i.e. any leave-
one-out selection of matrices A™ with n € {1,..., N}, must be full column-rank, i.e.

min _(rank(A® o ..o Ao Ao 0 AM)) = R (2.27)

for the model to be unique. Note that the rank of Khatri-Rao products is not affected by order
in which the multiplications are carried out.

The generalized Kruskal condition (2.22) is a sufficient condition for uniqueness, whereas
(2.27) is necessary for any value of R. Hence, the sufficient condition (2.22) implies the necessary
condition (2.27) and the reverse is not true. Another advantage is due to the facility of testing
the condition (2.27) in terms of computational complexity [87].

The condition (2.27) can be rewritten in an equivalent way as

rank( ° A(”)> =R, for all € {1,..., N} (2.28)
nt
and it is implicit Hfm\[:m;éx I, > R for all z € {1,..., N}. Since rank(A ¢ B) < rank(A ® B) =

rank(A) rank(B), it can be generalized for several Khatri-Rao products which results in:
rank (AW o ... 0 AM)) < rank(A®™) .. .rank(A™). Thus, (2.28) leads to

N
[ rank(A™) > R, for all v € {1,...,N}. (2.29)
nEs

Note that (2.28) implies (2.29) and the reverse statement is not true.

From (2.27)-(2.29), it is clear that an all-zero column in one of the matrix factors implies
nonuniqueness of the decomposition and in this sense, kym > 1 for all n € {1,..., N} is
essential for the CP uniqueness [78]. As the condition in (2.27) corresponds to Khatri-Rao
products between N — 1 matrices be full column-rank, implying R < Iy ...1, 1I,+1... Iy, and
by the k-rank definition, we have that k(A(l) oo AN At o o A(N)) = R for any n.

From Lemmas 2.1 and 2.2, we propose the theorem below which leads to satisfy both conditions
(2.27) and (2.28).

Theorem 2.2. Recall the CP model of an N -th order array X = [[A(l), e ,A(N)]] € ChxxIn,
with A™ € B forn = {1,...,N}. If A™ has no zero columns forn € {1,...,N} and the
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condition
N
ZkA(n) > R+ (N —2), forallz e {1,...,N}. (2.30)
iz

holds, the loading matrices A™ forn € {1,..., N} are unique up to permutation and scaling.

All uniqueness results discussed until now were based on the essential uniqueness of the
CP model, which means that all matrix factors of the model are uniquely determined up to
permutation and scaling of columns. According to (2.30), when a third-order CP model has
at least two collinear loading matrices, i.e. k-rank of each matrix equals to 1, the (essential)
uniqueness model is no longer guaranteed. Generalizing to an N-th order tensor, when the N-th
order CP model has N — 1 component matrices with collinear columns, the essential uniqueness
of this model is not achieved. However, the uniqueness for some loading matrices can be still
ensured, which is known as partial uniqueness.

The partial uniqueness has been discussed since the standard CP decomposition by Harsh-
man in [51, 84] and has received more attention for CP with a fixed pattern of linear dependencies
in the loading vectors [94, 95, 58, 96, 97, 98, 70]. In some practical applications, we are inter-
ested in the uniqueness of one particular component matrix [94, 58, 70] which is called uni-mode
uniqueness [70].

Now, let us present two following theorems concerning the uni-mode uniqueness of the third-
order CP model derived in [70]. Guo et al. have proposed sufficient conditions to ensure the
essential uniqueness of one loading matrix, i.e. one matrix factor can be uniquely identified.

Theorem 2.3. [70] Recall the CP model of a three-way array X = [[AM, A@ A®]] €
Clhxl2xIs - qpith A € CTn*E for n = {1,2,3}. If A has no zero columns and the condition

rank(A(l)) + koo +kas > 2R+ 2 (2.31)
holds, the first mode loading AM) is unique up to permutation and scaling of the columns.

If AW is full column-rank implying kyq) = rank(A®), the condition in (2.31) becomes
identical to Kruskal’s condition which leads to the essential uniqueness of all the loading matrices
AW A® and A®) and not only for A when ko) < rank(A®). Remark that the rank instead
of the k-rank of A®) makes the condition (2.31) less restrictive than Kruskal’s condition in the
sense that even when A™) has collinear columns implying k@ = 1, rank(A(l)) can be greater
than 1.

It is noticed in [70] that the condition (2.31) becomes more relaxed when A® and A®) are
not full rank, i.e. when kpe < rank(A®) and ky@e < rank(A®) respectively. It is presented
in the next theorem as follows.

Theorem 2.4. [70] Recall the CP model of a three-way array X = [[AD A® A®]] €
Clhxlxts yith A € C*F forn = {1,2,3}. If AY) has no zero columns, A® and A®) are
not full rank and the condition

rank (AW) + kae + kao > 2R+ 1 (2.32)
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is satisfied, then the first mode loading AWM is unique up to permutation and scaling of the
columns.

Note that both conditions (2.31) and (2.32) lead to kam > 2 for n = {1,2,3} since
min(/,, R) > rank(A(”)) > kawm. It implies that all loading matrices do not have collinear
columns. From the same idea employed in [67] which has been previously discussed, we can
generalize the last two theorems proposed in [70] for an N-th order CP decomposition by the
concatenation of N — 2 component matrices in one matrix and using Lemma 2.1. We obtain

rank (AM) + Z kaw > 2R+ (N —1) (2.33)
n=2
and when A™ for n = {2,..., N} are not full column-rank
rank(AW) + Z kao > 2R+ (N —2). (2.34)
n=2

Observe that these extensions of uniqueness condition imply only the essential uniqueness of
the first mode A,

2.3.2 PARATUCK-(Ny, N) decomposition

First, let us give an overview about the standard PARATUCK-2 model and present our
proposed model in the sequence. The PT-2 model was introduced by Harshman and Lundy in
psychometrics [64], this model can be viewed as a general version of the well-known CP model
which incorporates interacting dimensions. This model combines some properties of both CP
and TUCKER-2 [99] models, hence the name PARATUCK-2.

Recalling the TUCKER-2 and PT-2 models respectively by

R1 Ra
_ E § (R E))
$i17i27i3 - g?”177’277;3 ai1,7“1 a’i2,7'2’ (235)
ri=1ro=1
1 2
z : z : 1 1 (2)
a?ZI 12,83 CTl T2 21 r1 ’LQ 7‘2 ¢7"1 13 ¢T2 i3 (236>
ri=1ro=1

note that the PT-2 model can be rewritten as a constrained TUCKER-2 model with the core
tensor given by: ¢p s = Cn mgzﬁrl lggzﬁg%. The restricted structure of the core compared to
TUCKER-2 retains uniqueness properties [64, 100]. The Tucker likeness due to the insertion of
Criry» the second mode of both factor matrices A® € C''*f and A?) € C2*f2 does not require
to have the same size [64, 100].

Taking into account theses advantages of the PT-2 model, we proposed a new constrained
tensor model that generalizes the PT-2 model, named as PT-(Ny, N). Given an N-th order
tensor X € Ch>*In the PT-(Ny, N) model of X, with N > Ny, is defined in scalar form by
the following expression [66]:

RN1 Ny

} : } : (n) . (n)
l‘ ---------- Crl ----- TNy ZN1+2 ----- iN ain,rn gbrn,iNlH’ (237)

ri=1 n=1
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where o™ and gb

H. ring 41 1€ respectively, the entries of the factor matrix A € C*F» and

the weighting matrix ‘I>(” € CBIni+1 forp =1,..., Ny.

This model can be interpreted as a transformation of the input tensor C € CFr>**Fny X Iny42x--xIn
via its multiplication by the factor matrices A™ n =1,..., Ny, along its first N; modes, com-
bined with an n-th weighting matrix ®™ (n = 1,..., N;) relatively to the mode-(N; + 1) of the
transformed tensor X.

From the notation of Kronecker and Khatri-Rao products, we can also represent the PT-
(N1, N) model by the following matrix unfoldings

0 (V1) () (N)\ T T
XIyodyy x Iy 11 Iy = (A ®...0 A ) ((‘I) o...oP ) o CIN1+2...INXR1...RN1>

T T
Xiny 1% Ty Ing oIy = (‘I’(l) CL.. 0 ‘I)(Nl)) ((A(l) R...Q A(Nl)) O Cly o InxRi. Ry,
T

N-
T
Xy podyxlidn, 41 = Cly oo InxRi. Ry, ((A(l) ®...0 A(Nl)) o (‘19(1) ©...0 ‘I>(N1)) ;
(2.38)

where Cry ., 1yxR. Ry, denotes a (Iny42.--In X Ry ... Ry, )- matrix unfolding of the tensor
C. Remark that there are many forms to write the matrix unfoldings and each expression above
isolates as the left factor, respectively, the factor matrices A™ (n = 1,...,N;), the weighting
matrices @™ (n =1,...,N;) and the core tensor C represented by a matrix unfolding.

Special cases:

We can list two cases of interest derived from the PT-(Ny, N) model: the standard PT-2
and the PT-(2,4) models, the last one will be useful to represent a particular application. From
(2.37) then we obtain:

e The standard PT-2 model for Ny =2 and N = 3:

R1 Ro

_ E E ’ (CIe)
xil:iQ:iS - CT17T2 ’Ll 7'1 12,T2¢7‘1,Z3¢T2,137 (239)

ri=1ro=1

e The following PT-(2,4) model for N; =2 and N = 4:

Ri Ro

§ :E : ® @
xi17i27i377/4 CT17T27714 11,71 12,T2¢T1,’L3¢T2,7,3 <24O>

ri=1ro=1

The uniqueness results for the PT-2 model have not been widely investigated because the
PT-2 model has a more complex structure and has been less employed in applications. Now, we
show the uniqueness results for the PT-2 model, analyze the conditions for the PT-(2,4) model
and its generalization for the PT-(Ny, N) model.

Uniqueness results of PARATUCK-2 model

In 1996, Harshman and Lundy have provided uniqueness analysis for the PT-2 model subject
to Ry = Ryand ¢, ., #0forallry € {1,..., R}, 7 € {1,..., Ry} considering the two following
cases: the general PT-2 model and the symmetrically weighted version (i.e., when &) = &)
[64]. The purpose of these restrictions is explained by the simplification of the proof in this work.
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Despite having considered R; = Ry in this proof, they have presented as well an experimental
evidence of uniqueness being obtainable even when R; # R,. Let us formulate appropriately
the sufficient uniqueness condition proved in [64] as follows.

Theorem 2.5. [64] Consider the PT-2 model of a three-way array given by (2.39) with Ry = Ry
and ¢, ., # 0 for all index values. If AW € Ch>*Fi A® ¢ ClxB2 gnd C € CB ¥R are full
column-rank, implying I, I, > Ry = R,, and there is an “adequate” I5, then AY and A® are
unique up to permutation and/or scaling of the columns.

The term adequate was employed in [64] and its definition is not simple, they did not specify
any rule to set I3 needed for uniqueness of this model. They have proved the uniqueness for a
minimum value of I3 and have given examples for some values of Ry = Ry. When R; = Ry = 2
and Ry = Ry, = 3 for a general PT-2 model, it is respectively required at least I3 = 9 and
I3 = 36. When R = Ry =2, Ry = Ry = 3 and R; = Ry = 4 for the special case of PT-2 with
&) = & at least I; =5, I3 = 15 and I3 = 35, respectively.

Posteriorly, the PT-2 model has been exploited in chemometrics: by Bro [100] and in signal
processing: by Kibangou and Favier [101], and by De Almeida et al. [59]. But new contri-
butions on uniqueness of the PT-2 model were only derived in the last two works, both have
investigated uniqueness in the context of their applications considering particular structures for
the parameters of this decomposition.

In [101], they have written the output signal tensor as a constrained PT-2 model and thus,
the uniqueness condition was analyzed by considering structural constraints such as Toeplitz
and Vandermonde forms for some of its matrix factors. Thanks to several assumptions in the
structure of the parameters was possible to ensure the uniqueness of a constrained version of
PT-2 model. However, as theses assumptions are not easily exploited for a more general case,
we restrict to present just the results proposed in [59].

Theorem 2.6. [59] Consider the PT-2 model of a three-way array given by (2.39) and assume
the perfect knowledge of @1, ®® and C. If AW, A® and (W o <I>(2))T are full column-rank,
implying respectively I, > Ry, Io > Ry and I3 > Ry R,, then both factor matrices AY and A®
are unique up to a scalar factor.

Observe that Theorem 2.6 provides a sufficient condition to ensure the uniqueness of both
matrix factors A and A® imposing a building restriction over the weighting matrices &
and @ (I3 > R R,). Contrarily, the sufficient condition proposed by Theorem 2.5 imposes
mainly that C is full column-rank (R; > R») and also requires an enough value of I3 not defined.
In this sense, Theorem 2.6 becomes more advantageous. The assumption of knowledge of some
parameters in both theorems is explained by the practical applications.
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Uniqueness results of PARATUCK-(2,4) model

From (2.38), let us write the matrix unfoldings of PT-(2,4) model with N; =2 and N =4
as follows.

XnLxIsl, = (A(l) ® A(Q)) (((I)(l) <>(I)(2))T<>C[4><RIRQ)T
X pyurr = (@0 O(I,(z))T (A @ A®) QCWRIRZ)T

™ T
XI4><I11213 = CI4><R1R2 ((A(l) ® A(Q)) < ((p(l) < (I)(Q)) ) : (241>

One way to analyze the uniqueness conditions for this model is by means its matrix unfoldings.
In our analysis, we assume the knowledge of both weighting matrices ®1) € CF1*%s and &) ¢
CH2>*Is and also of the core tensor C € Cf*f2xfa T our practical context, we are interested
to guarantee the model uniqueness for the estimation of the factor matrices. As we want to
determine only both matrices A and A®)| let us consider the first matrix unfolding of (2.41).

The study of uniqueness for the PT-(2,4) model proposed in this thesis is based on the one
for the PT-2 model in [59]. Considering A and A® as alternative solutions that satisfy (2.41),
we can write A = A UM with U™ e CR*Bn p = 1,2, non-singular matrices. Thus, the

unfolded matrix X7, 1,x7,7, can be rewritten using the Kronecker property (A.4) as

(A(l) ® A(2)> <(<I>(1) o (I)(Q))T o CI4XR1R2>T _ (A(l) Q A(Q)) (U(l) ® U(2))
T T
((Q(l) Oq)(2)) OC]4><R1R2) . (242)

From (2.42) the uniqueness of the PT-(2,4) model can be proved. It is necessary to remove
any ambiguity caused by the nonsingular transformation matrices UM and U® to recover
both matrices A and A®. The next theorem shows a sufficient condition which ensures the
uniqueness of A®) and A®.

Theorem 2.7. Consider the PT-(2,4) model of a four-way array given by (2.40), suppose
the perfect knowledge of ®1), ®? and C, and that <I’(1)T, " gnd C1,xRr R, have no zero-
columns. If AD and A® gre full column-rank implying Iy > Ry, Is > Ry, and &V ®? gnd
C are chosen such that

k((q)(l) o ¢<2>)T) - R(Cryxmm) > RiRs+ 1, (2.43)

then both factor matrices AY and A® are unique up to a factor scaling.

Proof: If AW and A® are full column-rank, then the left-inverse of A @ A® exits and is
unique. Assuming that <I>(1)T, 2" and C xR R, have no zero-columns imply that the k-rank
of these matrices is greater than or equal to 1. According to Lemma 2.2, if ®1), &® and C

satisfy the inequality in (2.43), then (&) o @(2))T o Cr, xR, R, 18 full column-rank, which leads
T
to the existence of the right-inverse of <(<I>(1) o <I>(2))T o CI4X3132> . Finally, (2.42) gives

UD @ U® =1y 5. (2.44)
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From (2.44), the only solution happens when both matrices U® and U® are identity
matrices up to scalar factors that compensate each other, i.e. UM = oIz, and U® = 1/a1p,,
which leads to

AV =g AW, A® =1/a A® (2.45)
and concludes the proof. "

Remark 2.1. The uniqueness of PT-(2,4) model can be achieved even when (q)(l) o <I>(2))T 18
not full column-rank, if C is appropriately chosen satisfying Cr,«xr,r, full column-rank. Thus,
the extension of PT-2 model to PT-(2,4) model provides a flexibility of the uniqueness condition
given by Theorem (2.6).

The last result is further generalized for any N; and N with N; < N, which leads to
a sufficient uniqueness condition for the PT-(N;, N) model. The uniqueness analyze of this
model can be deduced, analogously to the previous theorems, from the first matrix unfolding

X1 Iy, xIny Iy 0 (2.38).

Theorem 2.8. Consider the PT-(Ny1, N ) model of a N-way array given by (2.37) with Ny < N,
suppose the perfect knowledge of all weighting matrices ®™ (n=1,...,N1) and core tensor C,
and &' (m=1,...,Ny) and CIN1+2---]N><R1---RN1 have no zero-columns. If all factor matrices
AM™ (m = 1,...,N;) are full column-rank implying I, > R, forn = 1,...,N;, and &
(n=1,...,N1) and C are chosen such that

Ny
k<(q)(1> o0 @<N1>)T> + k(ClyysondyxRokn,) = H R, +1, (2.46)
n=1
then all factor matrices A™ (n=1,...,N1) are unique up to a scaling factor.

Uniqueness results derived for the PT-(Ny, N) model correspond to sufficient conditions and
consider the knowledge of all weighting matrices and of the core tensor. In order to exploit
the uniqueness results concerning the CP model, let us rewrite the PT-(/N;, N) model as a
constrained CP as follows.

Let us consider a third order CP decomposition X = [[BY, B® B®]] € C1*72x7 where
each loading matrices are given by

B® = AD ®...® AMN) ¢ xR
B® — (@6, . 0@ g C2R,
B(3) = CIN1+2---IN><R1---RN1 € CJ?’XR (247)

and the following correspondences J; = I1...In,, Jo = In,11, J3 = Inj4o... Iy and R =
Ry ... Ry,. According to the Kronecker product, note that rank(A® @ ... @ AND) = [T rank(A™).

If we only consider the uniqueness of all matrix factors for practical reasons, we can directly
apply Theorem 2.3 and deduce a wider condition by the next theorem.
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Theorem 2.9. Consider the PT-(Ny, N) model given by (2.37) and assume that all matriz

factors A™ forn=1,..., N; have no zero-columns. If the following condition
N1 T Nl
[T rank(A®™) + k((cb(l) o..oaM) ) +5(Cry ot ety ) 2 2 <H Rn> +2 (248
n=1 n=1

holds, AW @ ... ® AN is unique up to permutation and scaling of the columns.

Remark 2.2.
o As discussed above for the CP results, the condition (2.48) leads t0 k(Cry, .o..inyxRi..Ry,) >
2, rank(A™) > k(AM™) > 2 for a given n € {1,...,N1} and k((tb(l)o...o@Nl))T) > 2.
Therefore, A™ for a given n € {1,...,N,}, (<I>(1) O... 0 <I>(N1))T and Cry . IxxRy. Ry,
do not have collinear columns.
e The sufficient condition (2.48) is more restrictive than the one given in Theorem 2.8 when
all matriz factors A™, n=1,..., Ny, are full column-rank.

If we apply Theorem 2.9 to the PT-(2,4) model (N; = 2 and N = 4), the condition (2.48)
becomes

rank (A (") rank(A®) + k;((cI)(l) o c1><2>)T) 4 k(Crixrir,) > 2R1Ro + 2, (2.49)

which represents an alternative condition when the matrix factors A® and A® are not full
column-rank.

We can also propose an uniqueness condition for the PT-(N7, N) model applying the con-
dition (2.26) to the constrained 3-CP model with factor matrices defined in (2.47). If the
Khatri-Rao product of any two matrix factors is full column-rank, i.e. the following matrices

AV ®...@ AM) o (®No. . o @M g Cli-tmmxhihn

(AV @ .0 AM) 0 Cry y tyany. ny, € ClIN Iy xR,

(@ o...0®M) 0 Cry 1, ryxry iy, € CPFT IR AN, (2.50)

are full column-rank, then the essential uniqueness of the third-order CP model with the matrix

factors given in (2.47) is ensured. Now, let us enunciate the next theorem applying the equivalent
condition (2.30).

Theorem 2.10. Consider the PT-(Ny, N ) model given by (2.37). If all following conditions

Ny
k’(A(l) Q... ®A(N1)) + k((tﬁ(l) O <><I>(N1))T) > HRn +1
n=1

Ny
k(A(l) R...0 A(Nl)) + k(CIN1+2~~~IN><Rl~~-RN1) = H Fn 41

n=1
Ny

k(((IJ(l) O...0 <I>(N1))T) + E(Cly, oty xR Ry, ) = H R, +1 (2.51)

n=1

hold, then AW @ ... AN (W . <><I>(N1))T and Cry ,, IyxRi. Ry, 07€ unique up to
permutation and scaling of the columns.
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Remark 2.3.
e The conditions (2.51) imply that Cly, 12 InxRi..Ry, » Al matriz factors A™ and (<I>(1) O

<><I>(N1))T have no zero-columns.
e [f any two matrices of (2.47) are full column-rank, the condition (2.51) given in Theorem
2.10 is more relaxed than the one (2.48) given in Theorem 2.9.

Now, let us resume the uniqueness results obtained from Theorems 2.8, 2.9 and 2.10 for
N, = 2 and N = 4 in Table 3.1. According to Table 3.1, assuming that A® and A® are
full column-rank, the second condition becomes more restrictive than the first condition and
the third condition becomes equal to the first condition. If both matrices A® and A® are
not full column-rank, the first condition is not achieved. By the k-rank definition, we obtain
rank(AM) rank(A®) = rank(AM ® A®) > k(AW ® A®@) thus the third condition is more
flexible than the second condition.

Observe that the condition of Theorem 2.8 is derived taking into account one unfolded matrix
X1 xisn,- 1f we analyze the uniqueness of this model using the same reasoning for the other
unfolded matrices given in (2.41), i.e. Xpxr 10, and Xy« 515, then the two inequalities of the
third condition will be also achieved.



Table 2.1: Summary of the uniqueness results for PT-(2,4) model.

Theorem | Uniqueness condition | Tensor model | Base reference
28 | k((q>(1) o @<2>)T) + k(Crxripy) > RiRs + 1 | PT-2 model | [59]
AW AP full column-rank
2.9 rank (A1) rank (A?)) + k((@(l) o ¢<2>)T) + k(Cryxpiry) = 2R1 R +2 CP model [70]
2.10 FAD @ A®) + k(@00 @®) ) > RiR, +1 CP model [69]
k(AW @ A®) + k(Crxpir,) > RiR2 + 1
k((<1>(1) o <1’<2>)T) 4 E(Crxmm,) > RiRs + 1
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Chapter

MIMO systems with joint multiplexing and
spreading operations

A tensor space-time (TST) coding for MIMO wireless communication systems [65, 66] is
introduced in this chapter. In the context of multicarrier systems, we present a MIMO wireless
communication system with space-time-frequency (STF) spreading-multiplexing proposed in
[62]. The expressions of the transmit and receive signals are established. We analyze the
performance of both systems regarding the diversity of transmitted information, allowing to
deduce the maximum gain for each system. From the results derived in Chapter 2, we also
propose uniqueness conditions for both systems.

3.1 Tensor Space-Time (TST) system

Consider a MIMO wireless communication system with M transmit antennas and K receive
antennas, and we denote by s, , the n-th symbol of the r-th data stream, each data stream
(r =1, ..., R) being composed of N information symbols.

The TST coding allows spreading and multiplexing the transmitted symbols, belonging to R
data streams, in both space (by employing multiple antennas) and time (by transmission over
time blocks and time spreading during several chip periods) domains, through the employment
of a third-order code tensor admitting transmit antenna, data stream and chip as modes, W €

CMxRExJ “and two allocation matrices that allocate transmit antennas and data streams to each

block, CH) € RP*M and C®) € RP*E respectively.

The transmission is assumed to be decomposed into P data blocks, each block being formed
of N symbol periods. At each symbol period n of the p-th block, the transceiver transmits a
linear combination of the n-th symbols of the data streams determined by the stream-to-block
allocation matrix C®), across a set of transmit antennas fixed by the antenna-to-block allocation
matrix C™®) | both matrices are composed uniquely of 1’s and 0’s. It is important to notice that,
during each block p, a different set of data streams can be sent using a different set of transmit
antennas, these two sets depending on the row vectors CI(,.S) and C](D.H) of the two allocation
matrices, respectively.

Each symbol s, , is replicated several times after multiplication by a three-dimensional

27



28 Chapter 3. MIMO systems with joint multiplexing and spreading operations

spreading code wy,, ;, in such a way that the signal transmitted from the m-th antenna during
the n-th symbol period of the p-th block, and associated with the j-th chip, is given by

Umn,p,j = E :wm rj Sn,r Cp m p, E Im,rpj Sn,r (3-1>

with
A S
gﬂ’L,T,p,j wm T‘,] C](JI;IT)L C](QT) (3'2)

Equation (3.1) defines the transmit processing composed of three blocks carrying the following
operations: data stream allocation, code tensor and transmit antenna allocation.

Sn,1

s ul,n,p,j
— > Y
Sn,2 U2.n,p,j Y
Y2
: diag (cg,.s)> —» W > diag (c](f.{) > :

Sn,R uM’nJ;vj j
—P

data stream precoding transmit antenna
allocation allocation

Figure 3.1: Transmit processing based on the TST coding with resource allocations.

In Figure 3.1, the functioning of this transceiver is illustrated for the p-th block and the j-th
chip. The first and third black boxes (diag (cI(D.H)> and diag (c](g.s) )) select the data streams to be
sent and the transmit antennas to be used for transmission during the p-th block, respectively,
whereas the second black box (W..;) spreads the selected data streams on the selected antennas
to deliver the following matrix of coded signals:

U..pJ’ - G..pd' ST S (CMXN, (33)
where S € CV*# and G.,,; € CM*# can be deduced from (3.2)
G.,,;= dlag( ) W, dlag(c S) ) : (3.4)

In the noiseless case of flat Rayleigh fading channel, the signal received at the k-th antenna
during the j-th chip period of the n-th symbol period of the p-th block, is given by

M M R
xkznﬂp)j = : : hk7m umﬁnypmj - : : : :gm’Tup’j hk’m 8”77" (3‘5)
m=1

m=1 r=1

The fading coefficients hy,,,, between transmit antenna (m) and receive antenna (k) are assumed
to be independent and identically distributed (i.i.d.) zero-mean complex Gaussian random
variables. They are also assumed to be constant during at least P blocks.
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Comparing (3.2) and (3.5) with (2.40), we have the following correspondences

<[1>[27I37[47R17R2) A (Ka N7 Pa Ja M7 R) )
(C, AV A® M) &) s <W, HS CH" C<S>T) . (3.6)
Therefore, the received signal xy,,, ; satisfies the PT-(2,4) model given by (2.40).

From the n-mode product definition (2.13), (3.1) and (3.5), we can write the following
fourth-order tensor X € CKXNxFPxJ a4

X:L{XlH:(QXQS)XlegleXQS, (37)
where U = G x5 S € CMXNXPXJ denotes the tensor of transmitted signals and G € CM*fxPxJ

represent the tensor deduced from the combination between allocation matrices, C®) and CH),

and code tensor W. Analogously, the tensorial slice X.,, € CK*N*7 of X containing all the

signals received during the p-th block, can be written from (2.13), (2.16), (3.3) and (3.4) as

X.p =W xq (Hdiag(cV)) x5 (S diag(c¥))
= Qp X1 H X9 S (38)

with
G.p,. =W %, diag (cg_{)) X o diag (CI(D_S)) (3.9)

and also visualized in Fig. 3.2.

ST

N

Received signal
(p-th block)

TST coding with allocations

Figure 3.2: Visualization of the tensor slice X.,,. of the PARATUCK-(2,4) model.

Let us define X., ; € CE*V as a matrix slice of the received signal tensor X. Using (3.5), it
leads to the following factorization

X.,;=HU.,;=HG.,;ST, (3.10)

with G.,; € CM*® given by (3.4). By stacking column-wise the set of matrix slices {X.; 1, ...,
X.py} and {XTM, o ,XTP’ s}, and using (3.10), we can deduce, respectively, the following two
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matrix unfoldings of X" as

[ X117 | [ X?m 1
X..LJ Xiljl,J
A A .
XpirxN = : € CPIExN XpINxK = : € CPIN>K
X--P,l X?pJ
| XP”] _ | XTP7J _
= (Ip; @ H) GparxrS”, = (Ip; ®S) GpyrxnH', (3.11)
where ) _ ) .
G-~1,1 GTI,I
G..LJ G?LJ
Gpimxr = : € CPM>E " Gpirunr 2 : € cr/hRxM (3.12)
G-~P,1 G.TPJ
L G--PJ i | GTFP,J i

represent two matrix unfoldings of G € CM*FxPxJ,
Applying property (A.3) to (3.10) and (3.4), denoting vec(-) as the vectorization operator,

we have
vec(X.,;) = (S ® H) vec(G.., ;) € CNF? (3.13)
and
vee(G., ) = (diag(cf)) ® diag(cgl))) vec(W.;) € CRMx!
= diag(vec(W..;)) <c1<0$> ® cngT) , (3.14)
which gives
_ : ST o @7
vee(X..p;) = (S ® H) diag(vec(W..;)) (cp_ @ ! ) . (3.15)

Using (3.13) and (3.14), we can deduce a third matrix unfolding of X" as

XKNxJP = [VGC(XEJ) VeC(XED,l) VeC(XE,J) vec(X?P’J)]
= (H®S) Gurugp € CHVIT (3.16)

with a matrix unfoldings of G given by

GrMRxJPé [VGC(GTLl) Vec<G?P71> vec(G?LJ> Vec<G?P’J)] c CMExJP
— |diag(vec(WT))) (CHo C®T) .. diag(vee(WT))) (CH o c®T) | (3.17)
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The tensor G gy p can be also expressed applying property (A.1) to (3.17) in the form

T
Grprxip = (WJXMR © (C(H)TO C(S)T> T) (3.18)

where
Wran 2 [vec(WT) - Vec(WTJ)]T c CTME (3.19)

The received signal given by (3.5) can be also rewritten as a constrained CP model of third-
order instead of the PT-(2,4) model which will allow us to exploit the CP results. Firstly, we
rewrite the PT-(2,4) as a constrained CP-3 model aiming to relate both models and then restrict
them to our problem.

TST system modeled by a constrained CP model

Now, let us rewrite the PT-(2,4) model as the following third-order constrained CP model
X E (CI112><13><I4

R1R2
Tjyigyia = Z djw big,rau,?"a jl € {].7 ...711]2}, (320)

whose matrix factors A € Chizxfif: B ¢ Claxilz C ¢ Clxfil2 gre given by

A=AV RA®
B=(2"od®)"
C = Cy,xR/R,- (3.21)

From (3.21) and the correspondences in (3.6), the received signal can be expressed by a
constrained CP-3 model X € CENXPXJ where

A=H®Sc (CKNXMR
B— ( )T e CP*MR.
= W ur € CME, (3.22)

are its loading matrices.
From (2.21) and (3.22), let us write the following unfolded matrix

T T
Xgnxsp=(H®S) (WJXMR o (C(H)TO C(S)T) ) : (3.23)

Verify that this unfolded matrix constructed by the factors A, B and C given in (3.22) results
exactly in the same expression for the unfolded matrix Xy p given in (3.16) with (3.18).
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Special case: TST system without allocation structures

In order to simplify the system, we can consider the fourth-order code tensor denoted by
W € CM*ExPxJ ipgtead of the combination of allocation structures with precoding. Thus, the
received signal can be rewritten as

M R

Tknpj = Z Z W, r.p,j hk,m Sn,r- (324)

m=1 r=1

The employment of a fourth-order code tensor simplifies the analyze of identifiability and
uniqueness conditions, and also allows an increase of information diversity because the model
becomes more flexible in terms of structure, we can fix an optimal code which will satisfy
appropriately both conditions and can provide better performance. It will be clear later.

3.2 Space-Time-Frequency (STF) system

Consider a multicarrier MIMO wireless communication system using M transmit antennas,
K receive antennas and F' subcarriers. We assume a transmission consisting of P data blocks,
each one composed of N symbol periods. For a fixed symbol period and subcarrier, the (m, p, f)-
th space-time-frequency (STF) coded signal, associated with the m-th transmit antenna, p-th
block and f-th subcarrier is generated by a tensor coding operating on R data streams of N
information symbols each one.

The STF coding structure employs two allocation tensors: the stream allocation tensor
CS) € RFXPxE and the antenna allocation tensor C*) € RF*PXM wwhich are composed uniquely
of 1’s and 0’s. The first tensor determines the time-frequency mapping of the R data streams
across P blocks and F' subcarriers, and the second one determines the time-frequency mapping
of the M transmit antennas.

The (f,m,n,p)-th element of the coded signal tensor U € CI*M*NXP agq0ciated with the
f-th subcarrier, m-th transmit antenna, n-th symbol period and p-th data block, is given by
[62]

R R
H S
ufvmvnvp = Z wm,r S?’L,T‘ C;,p?m CS",;,T = Z tf,m,r,p Snvr (3'25>
r=1 r=1
with
A H S
tranip = Wi oy Co (3.26)

where w,, , is (m, r)-th entry of the code matrix W and s,, , denotes the n-th transmitted symbol
associated with the r-th data stream.

Let us define the MIMO-OFDM channel given by the tensor H € C**K*M where hy ., is
a complex coefficient of the channel linking the m-th transmit antenna with the k-th receive
antenna for the f-th subcarrier. The fading coefficients are assumed to be constant during at
least P blocks.

In the noiseless case of scattering-rich multipath fading channel, the received signal tensor

X € CPXEXNXP gs50ciated with the f-th subcarrier and received at the k-th antenna during
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the n-th symbol period of the p-th data block, is given by [62]

M M R
Tfknp = Z hf,k,m Ufmmnp = Z Z tf,m,r,p hf,k,m Snr- (327>
m=1

m=1 r=1

According to [62], (3.27) follows a generalized PT-2 model. Using the n-mode product
definition (2.13) and (3.27), we can write the f-th tensorial slice of X € CF*EXN*P " containing

all received signals associated with the f-th subcarrier, as

XN =70 %, HD) %, S (3.28)

where X £ X € CKN<P T & T, e CM*ExP and HI) 2 H,. € CK*M,

Let us define X;., € CF*Y as the matrix slice obtained by fixing f and p indices of X €
CFXKXNXP‘

X, =H; T, ST =H; Uy, (3.29)

with
T;., = diag (c??) W diag (cﬁ) e CMxR (3.30)

and
U;.,=T;,S" e CMN, (3.31)

Analogously to (3.11) and using (3.29), we can build two matrix unfoldings of X as

[ X ] [ X7,
Xp.1 X;l;l
XPFEXN 2 : € CPIrxN XprNxK 2 : € CPFNxK
Xi.p XT »
| Xp.p | L Xz?“..P J
= (Ip ® bdiag(H;..,...,Hp.)) TpruxrS’, = (Ipr ®8S) Tprrxrv Hrvxk,
(3.32)
where
[ Ty [ Trif_l 0
Tr.a 0 T} .
Tprumxr = € CPPMB T oo 2 : € CPFRxEM " (3.33)
Ty p T?, 0
| Tr.p | | 0 Tr.p
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(CF><K><M

with Hryr«x denotes an unfolded matrix of H € which can be expressed in terms of

its matrix slices Hy.. by
Hpnxx = [Hy. - Hp]' e CPVxK, (3.34)
Applying property (A.3) to (3.29) and (3.30), we have
vec(X}.,) = (Hy. ® S)vee(T}.,)) € CF¥! (3.35)
and

vec (T}F,_p) = (diag (c??) ® diag (c@,) ) vec (WT)

= diag (C?—;}) ® C;S;) vec(W™') e CMA! (3.36)
which gives
vee(X}.,) = (Hy. ® S) diag (c%) ® c@) vec(WT). (3.37)

For convenience, let us define a third unfolded matrix analogously to (3.16) as follows

Xgnxrp = [vec(XT,) -+ vee(XTp) -+ vee(XE,) -+ vee(XF.p)]
= Hgyry ©8S) Trypxrp € CHVT (3.38)
where
[vec(TT.,) - vec(TL p)] 0
Tryrxrp 2
0 [VeC(T;,,l) . -Vec(T},,P)}
c (CFMRXFP (339)
and from (3.36) and the Khatri-Rao definition (A.1), we can write
vec (WT)T diag <c§f? ® cgcsl)>
ec(TE,) -+ vee(T3 )] = s
vec (WT)T diag <c§3"2, ® cﬁl)
T
= Vec(WT)T o (C?_-.[)TO Cf)T) € CPxME, (3.40)

3.3 Performance analysis

In this section, we analyze the performance of the TST coding focusing on the diversity of
information transmitted and derive the maximum diversity gain over a flat fading channel, and
in the sequence, extend this analysis for the STF system.
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3.3.1 TST system

Consider that the channel matrix H has independent entries following a circular symmetric
complex Gaussian random distribution, i.e. hg,, ~ CN (0, 1), or equivalently its real and imag-
inary components are i.i.d. and distributed as N'(0,1/2), which corresponds to the assumption
of flat Rayleigh fading. We also assume that the receiver has perfect knowledge of H and of the
TST coding parameter set {¥V, CS) CH)},

For matrix ST coding, the transmitted ST code matrix, also called ST codeword, is defined
as the matrix associated with the coding mapping:

s, € CM*t _ ¢, e CMXT (3.41)

where M and T denote the space and time spreading lengths. In the case of the proposed tensor
ST coding, the ST codeword is the fourth-order tensor associated with the coding mapping:

ST c CRXN U c CMXNXPXJ (342>

whose dimensions are the lengths of space, time, block and chip spreadings.

As already mentioned, matrix ST coding approaches are based on codeword estimation,
followed by a decoding step for estimating the transmitted symbols. So, the performance analysis
is generally based on the pairwise error probability (PEP) of the maximum likelihood (ML)
estimator of the codeword matrix, defined as the probability that the ML estimator estimates
C, when C,, is actually sent. In the case of TST coding, it is possible to directly estimate the
symbol matrix instead of the codeword tensor, which explains why our performance analysis is
based on the PEP of the ML estimator of S instead of U.

The diversity gain d is defined as the negative of the asymptotic slope of the plot PEP(p) on
a log-log scale, where p denotes the received signal-to-noise ratio (SNR), and PEP is hereafter
the probability that the ML estimator estimates S when S is actually transmitted.

In the sequel, we first determine the function PEP(p), and then we deduce the diversity gain
for TST coding.

The conditional PEP between S and S can be approximated by [6],[102]:

P(s—>S|H) :Q(\/QLMHX—;EH%), (3.43)

where NN is the noise variance per (real and imaginary) dimension and () is the complementary

cumulative distribution function of a Gaussian variable defined as
Q(x) 2 P(z > vy) 1 / ( y2> d (3.44)
z) = Pl(x = — exp| —= ) .
ZY o ; p 9 Yy

The Q-function can be rewritten in an alternative form referred to as Craig’s formula [1]

Qz) = %/O exp (—ﬁj(ﬁ)) dg, (3.45)
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applying this definition to (3.43), one gets

A 1 (2 X — X|?
P(s = S|H) - —/ exp —w ds. (3.46)

T Jo 4Ny sin“(5)
Defining the difference between the matrix slices (p, j) of the codeword tensors U and U as
E®P) =U,,; - U,,; €C"N (3.47)

and using (3.5) and (3.10), we have

K N P

X — XHF = ZZZZ‘@C"W Thnpil?

k=1 n=1 p=1 j=1
P J P J

=Y S IHE®|5 =" " tr(HAPIHY) (3.48)
p=1 j=1 p=1 j=1

where A9 2 E(P) (E(p’j))H is Hermitian and nonnegative definite. Observe that the trace of

a product can also be written in the following form:
y(p’j) 2ty (HA(”J)HH) = vec (HT)T (IK ® A(p’j)) vec (HT)* . (3.49)

From (3.46) and (3.49), we can derive the average PEP as follows

(p:3) | |

P(S — S / ( / H Hexp< 4Nysni (5))(15) Py(ed) (y(pu)) dy(p,])
(p.J) ' |

/ H H (/ P (_m) py(zﬂ,j) (y(pﬂ)) dy(pd)) dﬂ

/ HHMy(p,j><—m) ds, (3.50)
where
M,y(7) :/0 exp(7y) py(y)dy (3.51)

denotes the moment generating function of y. It is important to attend that the probability
density function of y®7) denoted by Pywa (-) does not depend on the variables p and j (i.e.
A(pvj))'

Knowing that the channel coefficients hy ,, are i.i.d and have a circular symmetric complex
Gaussian random distribution with zero-mean and unit variance, let us introduce an interesting
theorem [103].

Theorem 3.1. [103] The moment generating function of a Hermitian quadratic form in a com-
plex Gaussian random variable y = z'Fz, where z is a circularly symmetric complex Gaussian
vector with mean z and covariance matrix R, and F is a Hermitian matriz, is given by

exp (sz"F (I — sR,F) ™" z)
det (I — sR,F)

M,(s) = /Ooo exp(sy) py (y) dy = (3.52)



3.3. Performance analysis 37

Considering the correspondences F = Ix ® AP) R, = Ik, z = vec (HT)7 z = O and
yP7) defined in (3.49), we can apply (3.52) to (3.50) getting

™

A 1 ~ P J 1 . -1
P(s+8) =1 [ TITTaot (e + gy (e @A) ) a9

p=1j=1

_ 1 o JdtI B SN OY) _Kd 3.53
;/0 HHG<M+4NOSin2(B) ) ’ 359

p=1j=1

To solve the integration over [ in the expression (3.53) is not simple, hence we can employ
the Chernoff bound [102, 1] in order to eliminate the integral and to give an upper bound of
PEP

X P oJ 1 N\ K
P(s—8) <] T]det (IM + 4—N0A(m)) | (3.54)

p=1j=1

By definition, the Chernoff bound is obtained by taking sin?(3) = 1 in (3.45), and so rewriting
(3.53) with sin?(8) = 1.

Since det(I + aA) = [[™F™) (1 4+ a(A)) with A;(A) eigenvalue of A, we can rewrite (3.54)
as

P(S—>S> <

P J
p:

r(P:3) 1 K
(p.7)
14+ —X\ .
11 [[ ( Sy ) , (3.55)

1j=1

where A\P?) and r@d) 2 rank (A®)) denote the non-zero eigenvalues and the rank of A®7),
respectively.
At high SNR, i.e. for small values of Ny, the above upper bound on the PEP becomes

P J r®D) K 1 —K > rPd)
P(s s) < (A(p’”) I 3.56
—8§) < 1[[1]]:[1 l} ; A (3.56)

which gives the following diversity gain

J P
AT =K ") ), (3.57)

j=1 p=1
Recalling that A®3) = Eed) (E®))" we have
r®i) — rank(A(p’j)) = rank(E(p’j)) ) (3.58)

Using (3.3), the difference (3.47) of the codeword matrix slices can be rewritten as

X AN\T
Er) =G, (S—8) . (3.59)
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As the symbol matrix S has independent entries following a random distribution, generically, we
have rank(S) = min(N, R). Applying the well-known property rank(AB) < min(rank(A),rank(B))
for arbitrary matrices A and B, and assuming N > R, we deduce that

rPd) = rank(E(p’j)) < min (rank(G..p,j) , rank (S — S))
< min(min(M, R) , min(N, R))
<min(M,R), Vp,j. (3.60)

It is interesting to observe that the maximum rank of E®7) and consequently, of G.,,; is

depending on the structure of the allocation matrices C®) and C*). Let us assume that B,()S)

and A denote the number of zero elements of cz(,.s) and c;S,I.{), respectively. From (3.4), G.,,;

has ,6,()8) zero columns and ﬁéH) zero rows, then rank(G.., ;) < min (M — ﬁ,(,H) , R — 6,@). Thus,

the maximum diversity gain is deduced from (3.57) in replacing r7) by its upper bound given
in (3.60) for all the values of p and j.

Theorem 3.2. (Maximum diversity gain for the TST system). Assuming that N > R, then
the TST system characterized by the design parameter set { P, J, M, R, K} provides a mazximum
diversity gain equal to

max

P
Aot = KJY min(M - 8™, R ), (3.61)
p=1

)

with 6;,5) and ﬁj()H) denoting the number of zero elements of c,(,.s) and CI(,I.{ , respectively.

So, we can conclude from (3.61) that the maximum diversity gain depends on the alloca-
tion matrices and therefore, we may have different performances for each particular allocation
structure.

From (3.61), we can observe in the best case d15T = KJPmin(M, R) and therefore, the
TST coding provides a better diversity than standard matrix ST coding schemes that ensure
a maximum diversity gain of K'M. Moreover, for fixed numbers (K and M) of receive and
transmit antennas, the maximum diversity gain can be increased by independently increasing
the design parameters P, J and R (up to R = M).

However, we have to recall that an increase of P decreases the transmission rate*, while
an increase of R increases the transmission rate. Moreover, for a fixed R, i.e. a fixed number
of data streams to be estimated, an increase of P or J implies an increase of the number of
received signals to be used for channel and symbol estimation, and thus an improvement of the
estimation quality, while for fixed P and J, an increase of R implies an increase of the number
of parameters (symbols) to be estimated, which degrades the quality of estimation. From these
considerations, we see that the design parameters (P,.J, M, R) must be chosen in such a way
that the best tradeoff between transmission rate and BER performance be satisfied.

*The transmission rate (in bits per channel use) is given by %logz(u), where p is the cardinality of the
information symbol constellation.
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3.3.2 STF system

Let us derive the average PEP and the maximum diversity gain over a flat fading channel
for the STF system. Analogously to (3.47), we can define the difference between the matrix
slices (p, f) of the codeword tensors U and U as

E®) = U, , - U, e CPN (3.62)

and using (3.27) and (3.29), we have

K N P F

1€ =215 =YY 3 Nerknp — Epkmsl’

k=1 n=1 p=1 f=1

P F P F
=> D HLEPD =YY w(HLAPIHY), (3.63)

p=1l f=1 p=1 f=1

where A®/) 2 E®.f) (E(p’f ))H is Hermitian and nonnegative definite.

Observe that both systems, TST and STF, show close expressions and we can employ the
same reasoning to develop each step for the STF. For simplicity and in order to avoid repetitions,
let us restrict to the main expressions.

We assume that the channel tensor H has independent entries following a circular symmetric
complex Gaussian random distribution, i.e. hysgm,m ~ CAN(0,1). The receiver has also perfect
knowledge of H and of the STF parameter set {W,C®) C*)1,

Comparing (3.63) with (3.48), we can easily obtain the above upper bound on the PEP at
high SNR for the STF, analogously to (3.56),

K 1 —KZT(Pvf)
)\(Iﬁf)) fp 64
(¥ 1N, | (3.64)

where Aﬁp ) and r@ £ rank (A(p’f )) denote, respectively, the non-zero eigenvalues and the rank
of AP the diversity gain is given by

F P
=K rh), (3.65)
f=1p=1

From (3.57) and (3.65), we note that both systems achieve the same diversity gain when
N > R and, G.,,; and Ty., for all p, j, f are chosen such that

F P
Z Z rank(G.., ;) = Z Z rank(Ty..,)
j=1 p=1 f=1p=1

Analogously to (3.61) in Theorem 3.2 and from (3.65), we proposed a maximum diversity gain
for the STF system given in the following theorem.
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Theorem 3.3. (Maximum diversity gain for the STF system). Assuming that N > R, then
the STF system characterized by the design parameter set { P, F, M, R, K} provides a mazimum
diversity gain equal to

F P
= K0S min(M = 07 R 7). (3.60)

f:l p:l

where B;Sf) and 61(:;) denote the number of zero elements of C}’Szz, and c?’g, respectively.

According to (3.61) and (3.66), we can verify that the allocation structures limit the max-
imum diversity gain for both systems. Thus, systems with different allocation structures may
provide different performances.

Remark also that the allocation tensors for the STF system arrange the data transmis-
sion across the subcarriers and therefore, setting the same design parameters for both systems
{K, P, M, R} including J = F, we have d>LF < dI5T from (3.61) and (3.66). It indicates that
the extra time diversity J presented in the TST system can improve more the reliability of
symbol recovery compared to the frequency diversity F' in the STF system. In this sense, we

can conclude that both diversities are not equivalent.

3.4 Uniqueness analysis

In this section, we employ the uniqueness results developed in Chapter 2 to derive practical
conditions with the purpose of ensuring the estimation of symbol and channel for the TST and
STF systems. We provide a more practical uniqueness condition to be satisfied than the one
proposed in [62] for the STF system.

3.4.1 TST system

Analogously the uniqueness analysis for PT-(2,4) model in last chapter, let us consider the
unfolded matrix defined in (3.23) to analyze the uniqueness conditions of this model in the TST
context. Due to the special structure of this unfolded matrix, we can isolate the matrices to be
estimated, i.e. the channel and symbol matrices. This analysis takes into account the knowledge
of the allocation matrices and the code tensor at both transceiver and receiver sides.

We have to ensure the uniqueness of the PT-(2,4) model in order to guarantee the unique
estimation of the symbol S and channel H matrices, hence both estimates of S and H have
to satisfy the unfolded matrices in (3.11) and (3.16). Let S and H be alternative solutions
which can write as S = SU and H = HV, with U € CE*E and V € CM*M pon-singular
matrices. Choosing for simplicity (3.16), the unfolded matrix Xxyxsp can be rewritten using
the Kronecker property (A.4) as

A~ A

(H ® S) GMRXJP = <H ® S) GMRX]P
H®S)(VeU)Gurxsp, (3.67)

with GMRXJP given by (318)
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Thus, we can directly apply Theorem 2.7 to derive a sufficient condition for TST system
taking account the system structures as it is enunciated in the next theorem.

Theorem 3.4. Suppose that S and H are full column-rank, and the perfect knowledge of the
code tensor W and the allocation matrices C®) and CS). If the code tensor is chosen such that
W unmr s full column-rank and Cc®'% " has no zero-rows, then the estimates of S and H
are unique up to a scaling factor «, i.e.

S =asS, H- 1A (3.68)

o

Proof: As S and H are full column-rank, the left-inverse of H ® S exists and is unique. By
k-rank definition, if C®%o ¢®7T has no zero-rows then k((C(mTo C(S)T)T > 1. According to
Theorem 2.7, if W ;g is full column-rank, implying that G g« sp is full row-rank, then both

symbol and channel matrices are unique up to a scaling factor, i.e. (3.68), which concludes the
proof. "

Remark 3.1.

e As the elements of H are drawn from continuous probability density function, H is almost
surely full column-rank when K > M.

e [t is important to emphasize that the model does not present the permutation ambiguity
and only the scalar ambiguity which can be removed by the knowledge of only one symbol
at the receiver.

e According to Theorem 2.7, even when W jyyr s not full column-rank it is possible to

T
achieve the uniqueness condition satisfying k(W jxur) + k((C(H)T oC(S)T) ) > 1.

T
According to the theorem above, the allocation structures have to satisfy k;((C(H)T o C(S)T) )

> 1, which is equivalent to the next equality:

{Vm, r, dp } cH) ((8) — 1} ) (3.69)

p?m p’r

Verify that (3.69) means that each r-th data stream has to be transmitted by each m-th antenna
during at least one time block p. Consequently, (3.69) has a physical interpretation which allows
to construct the allocation matrices.

It is important to emphasize that the characteristics of wireless communication system in-
terfere or can even restrict the choice of allocation matrices. As for example, the amount of
available antennas per each time block, restriction of the transmission rate and required relia-
bility of communication directly affect the dimensions and structure of allocation matrices. For
this reason, it is convenient to relax the construction rule of allocation matrices by appropriately
fixing the code tensor.

We can exploit the uniqueness results for CP model in order to deduce another conditions
to ensure channel and symbol estimation for the TST coding. Thus, let us consider the received
signal tensor decomposed as a constrained CP model which was developed in Section 3.1 and
recalled by convenience hereafter

X = [[K(”,K@),K(g’)ﬂ : (3.70)



42 Chapter 3. MIMO systems with joint multiplexing and spreading operations

with

C = W, «mr € C/*MR (371)

Theorems 2.9 and 2.10 proposed in Chapter 2 can be applied to extend the uniqueness
conditions through the constrained CP model given in (3.70) and (3.71). Let us firstly employ
Theorem 2.9 to derive the next theorem for the TST system.

Theorem 3.5. Suppose the perfect knowledge of the code tensor VW and the allocation matrices
CH and CS). Assuming that the code tensor is chosen such that Wy g is full column-rank,
if the following condition is satisfied

T
rank(H) rank(S) + k((C(H)To C<S>T) ) > MR +2, (3.72)

we can guarantee the uniqueness of S and H assuming the knowledge of one symbol.

Proof: Observe that rank(H ® S) = rank(H) rank(S). Applying directly (2.48), we have that
if the condition (3.72) holds then H® S is unique up to permutation and scaling of the columns.
The knowledge of W, CH) and C®) allow to eliminate ambiguities of the estimation of H® S
and it is possible to separate S and H using the knowledge of just one symbol, thanks to the
special structure of the Kronecker product. .

Remark 3.2. .
o [t is implicity in (3.72) the following restriction k((C(mTo C(S)T) > > 2, which means that

CH® o C®" does not have collinear rows. Theorem 3.5 does not impose that S and H
are full column-rank, but the condition on the allocation matrices is stronger than the one
gien in Theorem 3.4.

e The sufficient condition (3.72) is more restrictive than the one given in Theorem 3.4
when both S and H are full column-rank, implying N > R and K > M. Thus, the most
important aspect of the Theorem 3.5 lies in the fact that it allows the use of more transmit
antennas (M ) than receiver antennas (K ), i.e. M > K.

We can obtain another uniqueness condition for the TST system applying Theorem 2.10.
Let us enunciate the following theorem.

Theorem 3.6. Suppose the perfect knowledge of the code tensor W and the allocation matrices
CH and COS). Assuming that the code tensor is chosen such that W g is full column-rank,
if the following condition is satisfied
T ™ T
KH®S) + k((C<H) o C® ) > > MR +1, (3.73)

we can gquarantee the uniqueness of S and H assuming the knowledge of one symbol.
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Proof: According to Theorem 2.10 for W, g is full column-rank, we directly obtain the
inequality (3.73). Finally, S and H are correctly recover thanks to the structure of Kronecker

product and the knowledge of W, CH) C®) and at least one symbol. "
Remark 3.3.
e When S and H are full column-rank implying N > R and K > M, Theorem 3.6 leads to
Theorem 3.4.

o As k((H®S) < rank(H® S) = rank(H)rank(S) < min(N, R) min(K, M), hence the
condition (3.73) of Theorem 3.6 is less constrained than the condition (3.72) of Theorem
3.5.

e IfS has collinear columns, then k(H® S) = 1 and as consequence, C®To T pas to
be full row-rank in order to satisfy (3.73).

According to the last remark, Theorem 3.5 is unnecessary and Theorem 3.4 is a particular
case of Theorem 3.6. The interesting advantage of Theorem 3.6 is that S and H do not need to
be full column-rank, which allows the use of more transmit antennas (M) than receiver antennas
(K),ie. M > K.

3.4.2 STF system

Analogously to the uniqueness analysis for the TST coding, we study the uniqueness condi-
tion from the convenient structure of the unfolded matrix Xgyxrp given in (3.38).

Let us consider S and H Kk xrF as alternative solutions that satisfy (3.38) and assume S=S8U
and Hyyry = Hiwpn'V with U € CEXR and V € CFMXFM pongingular matrices. Thus, we

can rewrite (3.38) as

XKNxFP = (I:IKXFM ® S) Tryupxrp = Hixry @ S) (VR U) Tryrxre. (3.74)

We can prove the uniqueness model of (3.27) from (3.74) and the next theorem shows a
sufficient condition that ensure the uniqueness of this model.

Theorem 3.7. Suppose that S and Hyyppr are full column-rank, and the perfect knowledge of
the code matric W and the allocation tensors CS and C). If we choose W and C'S) and C*)
such that wy,, # 0 for allm € {1,..,M} and r € {1,..., R}, and C;@T o CSCS.)T full row-rank
forall f € {1,..., F} implying MR < P, then we can uniquely estimate S and Hyxpar up to a

scalar factor «, 1i.e.

N 1 -
S = OéS, HK><FM == E HKXFM' (375)

Proof: If S, Hgwrar and Thy, gy pp are full column-rank, then (3.74) can be rewritten as
V&®U =1Iryg. (3.76)

The only solution for (3.76) happens when both matrices U and V are identity matrices up
to scalar factors that compensate each other, which leads to (3.75). From (3.39) and (3.40), if
the elements of the code matrix are nonzero and CS?_?)T o Cf_)T is full row-rank for all f, then
T ryrxrp Will be full row-rank as well. It concludes the proof. "
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Remark 3.4.

e Analogously to the TST system, assuming that the channel coefficients have entries i.i.d.
and a continuous distribution, Hwpprr 1S almost surely full column-rank if K > FM.
Thus, K > FM 1s a restrictive condition because we have always to use F times more
receive antennas than transmit antennas.

e Theorem 3.7 provides a more practical uniqueness condition for a generalized PT-2 model
than the conditions in [62].

e Differently to Theorem 3.7 for the STF systems, the uniqueness results for the TST systems
permit a more relaxed condition over the allocation structures by appropriately choosing
the code and it is not required a large amount of data blocks P as for the STF uniqueness
(MR < P).

3.5 Generalization of TST systems to multiuser case

Let us generalize the TST coding for () users as illustrated in Figure 3.3. Each user transmits
R input data streams using M different antennas and each data stream is composed of N
information symbols. We consider two allocation matrices CH:4) € RP*M and CS9) ¢ RPXE
for each user ¢, which allocate transmit antennas and data streams to each block p.

1) (1)
1

Sn, ul,n,p,jY
j TX 1 ( )j
1) 1

Sn,R uM,n,p,jY

Y -rl,n,p,j
user 1 ' RX
YxK,n,p,j
Q) u(Q) '

S, Lnpg Y Base
: TX Q ( ): Station
@ W@

Sn,R Mn,p.jY

user ()

Figure 3.3: Uplink processing based on the TST coding with resource allocations.

From (3.1), the signal associated with the g-th user and the j-th chip transmitted from the
m-th antenna during the n-th symbol period of the p-th block is given by

R
UJ?(?("ZL?MPJ = Z gﬁg,)r,p,j 57(1(1,2" (377)
r=1

with
(@ 4@  (Ha (S (3.78)

q fp— -
gm7T7p’J m/,",] p?m p7r :
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In the absence of noise, the received signal associated with the g-th user can be written using
(3.5) as

M R
mknp] thm mnpj Zzgmrpjhl(cqm nr (379>
m=1 r=1

We obtain the tensor of the overall received signal X € CKXN*P*J by summing the @
contributions and using the n-mode product definition (2.13)

Q Q
x 2 Z x@ — Z G, H@ x, 8@ (3.80)

q=1

Remark that each received signal tensor X9 € CK*XNxPxJ gatisfies the PARATUCK-(2,4)
model.
From (3.11) and (3.16), we can express three matrix unfoldings of X" as follows

Q
A
XpIKxN = ng}KxN = [IPJ @HY ... Ip; @ H@ } GopriMxQRr ST

= (18] Hrxom) Gorinxqr Sqrxn € CP7HN, (3.81)

XPINxK = Z XPJNXK = [Ip;®SW - Ip; ®S9] GoprxouH"

q=1
= (2] Snxqr) Gorirxou Houxx € CP/NE, (3.82)

Xpnwip = ZXKNXJP — [H(l) 28D ... HQ g S(Q)} Gonrrxir

q=1
= (Hg o |2 Svxor) Gonmrxsp € CHVIE (3.83)
with Syxon = [SH ... S@] e CV*@F Hy,qu EN [HD ... HQ] e cKxeM A
15 & IPJ € (CPJXQPJ,
1 1
A GED}MXR 0 A ngg)]RxM 0
GQPJMXQR = ) GQPJRXQM = )
Q Q
0 G(PJ)MXR 0 G(PJ)RXM
c CQPIMxQR c CQPIRxQM (3.84)
A T 7T
Garrxp = [GS\?RXJP Gg\%)'%XJP } € COMmeIt, (3.85)

Each matrix GS&)RXJP can be written using (3.18) and (3.19) as

™\ T
Gy = (W(iMRO (cma’s csa™) ) (3.86)



46 Chapter 3. MIMO systems with joint multiplexing and spreading operations

with
quiMR 2 [vec <W,(.ql)T> ---vec (W_(_?THT € C/ME, (3.87)
Applying (3.86) to (3.85) and using the definition of the Khatri-Rao product (A.1), we have
Gompxip = [W?X)MR o (C(H’I)TO C(SVI)T>T W (C(H,Q)T<> C(S,Q>T>T] '
= (Waquno | (€00 c<s71>T)T - (cmaTs c<S@>T)T])T, (3.88)

where

A
Wiour = [WF}X)MR wg@MR] € CIXQME, (3.89)

Let us define the selection matrix
Soun = [ @ @, - D | € COMRRXQMER (3.90)
where
, = [ Eqg-ymo+e Eg-nmorore - B-)me+i-1)0+q } € COMQRxMR (3.91)
and E; is a matrix QM @ R x R with a identity matrix in the [-th block R x R and zeros elsewhere,
le.

T
é OR"'OR IR OROR]

Rx(I-1)R Rx(QMQ-)R

E, (3.92)

From the selection matrix &)Q mr defined in (3.90), we can express the following equality

T -
[(C(HJ)TO C(S,UT)T <C(H7Q)T<> C(H,@T)T] - (C<H>T<> C<S>T> Boun

c CP*xQMR (393)
where
c® 2 [cHY ... CHQ] ¢ CPXeM, (3.94)
s 2 [CED ... CBQ)] e PR (3.95)

represent the global allocation matrices which concatenate the antenna and stream allocation

- T
matrices for all users. Observe that ®g g selects only QM R columns of (C(H)To C(S)T> €
CPXQMQR.

Applying (3.93) to (3.88), we can rewrite (3.88) as

T ™T =~ T
GomRxJp = (VVJxQMR<> ((C(H) o C®) > ‘PQMR>) . (3.96)

Observe that the overall received signal tensor (3.80) can be rewritten as a constrained CP
decomposition with the purpose of applying the uniqueness results of the CP model.
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TST coding with multiple users modeled by a constrained C'P model

Consider a third-order CP model X € CEN*FPXJ whose the loading matrices are given by

A = Hg.qu |8 Syxgr € CHNX@ME

B _<C(H,1)T<> C(S,l)T>T (C(H,Q)TO C(H,Q)T>T}
_ (C(H)T<> C(s)T>T Bonn € CPXQMR,

= r 1 Q

C= _WSX)MR WSX)MR]

= WJXQMR € (CJXMR, (397)

From (2.21) and (3.97), we obtain the same unfolded matrix given in (3.83) by the matrix
factors A, B and C.

Uniqueness analysis

We study the uniqueness conditions for the TST system considering () users analogously
to the development of Theorem 3.4. The unfolded matrix Xxnxsp given in (3.83) is used to
analyze the uniqueness condition of this new model.

From the selection matrix defined in (3.90), we can rewrite the unfolded matrix Xy p us-
ing the following expression which relates the Kronecker and partition-wise Kronecker products

Hywom |8 Snxor = (Hirxom ® Snxgr) i’QMR~ (3.98)

Note that @QMR selects only QM R columns of Hgxonr®@Snyxor € CEN*@MOR and the resultant
matrix is represented by Hpxgar [8] Syxgr € CEN*OME - Applying (3.98) to (3.83) gives

Xinxsp = Hrxom |8 Snxor) Gomrxir = Hrxom @ Svxor) ‘i)QMR Gomexsp-  (3.99)

Considering Syxor = [S(l) g(Q)} and Hy o = [ﬂ(l) ﬂ(Q)] as alternative solu-
tions that satisfy (3.83), we can write ngQR = Snxgr U and ﬂKXQM =Hgom V, with
Uty .. ygle) AVAC RO RN VAN @)
U=| : - 1 | eComenr Vo= .| eCOMXeM (3100)
Ul ... ye AVACCR O RN VA(OR0)

non-singular. Thus, the unfolded matrix X gy« sp can be rewritten using the Kronecker property
(A.5) as

(Hixom @ Snxor) (VI8 U) Gomexsr = (Hixom @ Snxor) ‘i’QMR Gomrxsp.  (3.101)

Theorem 3.8. Suppose that Syxgr and Hi g are full column-rank and the perfect knowledge
of the code tensor W9 and the allocation matrices CHD and CSD for all user. If the code

tensor for each user is chosen such that W jxgoumr 15 full column-rank, implying J > QRM , and
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CHOT o CEDT has no zero-rows for all q, then the estimates of SO and HY | forq=1,...,Q,
are unique up to a scalar factor, i.e.

~ 1 -
Sl — g S@  HO = a_q H@ (3.102)
Proof: If Snxgr and Hi«gu are full column-rank and Ggarrxsp is full row-rank, then (3.101)
can be rewritten as

Vv |®| U = (i)QMR —
VA U®ta)
: ® : — @q c (CQMQRXMR
V(@49) U@
= [ Eqg-nmo+e Eg-ymororq + BEg-1mo+i-1)0+4 } , (3.103)

which, from the definition given in (3.92), results in

009 Ules) — Ip, Vm=1....MV q=1,..Q,

— V(Q:Q) ® U(qvq) — IMR7 VQ = 1’ ey Q’ (3104)
VLD 0 Uy 0
V = , U= (3.105)
0 V(@Q) 0 U@Qe)

and consequently, it gets
S@ = §@) ylea) H@ — H@ v (3.106)

The only solution for V(@9 @ U@ = I, for ¢ = 1,...,Q, happens when both matrices
U@9) and V@9 are identity matrices up to scalar factors that compensate each other, i.e.
U@ = q,Ip and V@9 = 1/q, 1), which leads to (3.102).

In order to guaranty the full row-rank property of Ggurx.sp, let us consider the matrix
unfolding given in (3.96).

According to Lemma 2.2 and from (3.96), the matrix G pxomr = G;SMRXJP is full column-
rank if W.omr, C®) € CP*@E and CH) ¢ CP*@M gatisfy the following condition

T -

k(W xomr) + k((c(H)To c<S>T) QQMR) > QMR +1. (3.107)

Assuming that CHaT o CE9T has non zero-rows for all g and from (3.93), we obtain
T .
k((C(H)To C(S)T) Py R> > 1. Finally, if the code tensors for each users are chosen such that

W womr defined in (3.89) is full column-rank, then (3.107) is satisfied and G pxgmr is full
column-rank. "
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Remark 3.5.

e According to Theorem 3.8, the channel and symbol estimates do not present permutation
ambiguity and only scalar ambiguity which can be eliminated by the knowledge of one
symbol for each user q.

o As the channel coefficients h,(gzn are i.1.d and have a continuous distribution, Hy qnr s
full column-rank with probability 1 when K > QM.

e Choosing the code tensor for each user such that W j.omr s full column-rank, we obtain
the same condition on the allocation matrices given by Theorem 3.4 for each user.

When all users employ the same code tensor, ie. W = ... = W@ with non-zero
entries, W s o r has collinear columns implying k(W jxomr) = 1. Consequently, the allocation
matrices for all users have to be chosen such that ("¢ C(S>T)T s r s full column-rank with
the purpose of still ensuring the uniqueness condition by Theorem 3.8.

If we set the same allocation matrices for all users, i.e. CHD = = CH®) and CED =
... =CB9Q then (C(H)To C(S)T>T &1k has collinear columns implying k ((C(H)To C(S)T)T éQMR)
= 1. In order to still guarantee the uniqueness in accordance with Theorem 3.8, the code tensor
are chosen such that W j,gar is full column-rank.

Rewriting the multiuser TST system as a constrained CP model whose the loading matrices
are given in (3.97), we can exploit the uniqueness results analogously to the case with one user.
Both theorems 3.5 and 3.6 are directly applied to deduce the following theorems.

Theorem 3.9. Suppose the perfect knowledge of the code tensor W'D and the allocation matri-
ces CHD gnd CSD for all users. Assuming that the code tensor is chosen such that Wcomr
18 full column-rank, if the following condition is satisfied

T .
rank(Hg o) rank(Snxgr) + k‘((C(H)TO C(S)T> <I>QMR) > MR + 2, (3.108)

we can guarantee the uniqueness of Snxor and Hywon assuming the knowledge of one symbol
per user.

Theorem 3.10. Suppose the perfect knowledge of the code tensor W9 and the allocation
matrices CH9D and CSD for all users. Assuming that the code tensor is chosen such that
W omr s full column-rank, if the following condition is satisfied

T -
k(Hgxom @ Snxor) + k((C(H>T<> c<s>T> <1>QMR> > MR+1, (3.109)

we can guarantee the uniqueness of Syxgr and Hixgu assuming the knowledge of one symbol
per user.

Both theorems 3.9 and 3.10 allow to ensure the uniqueness of all transmitted symbols and
channel coefficients even when Syyor and Hg .o are not full column-rank. Hence, it is not
required to impose N > QR and K > QM as happens for Theorem 3.8.

Analogously to the single user case, the condition (3.109) of Theorem 3.10 is less constrained
than the condition (3.108) of Theorem 3.9. When the matrices Syxor and Hgxgn are full
column-rank, Theorem 3.10 leads to Theorem 3.8.
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It is important to emphasize that we have considered the same number of transmit antennas
M for each user. However, we can appropriately set the antenna allocation matrix CH® for
each user ¢ in order to obtain different numbers of received antennas per user (lower than M).

Remark that we can also extend the STF system for multiple users in the transmission
analogously to the generalization proposed for the TST system, as shown in Appendix B.

3.6 Resume of uniqueness results

A global synthesis of the uniqueness conditions for both systems are presented in Table
3.1. As discussed previously, the uniqueness conditions for the TST system are satisfied by
restrictions on the code tensor and the allocation matrices. Two options to satisfy the uniqueness
condition for the TST system are proposed in Table 3.1: by imposing a stronger condition over
the allocations matrices (CH" 6 c®" or L1 /n (C(H)T oC®™") must be full row-rank implying
P > MR and P > QMR, respectively) and over the code tensor (W jxar or W xgnr must
be full column-rank implying J > MR and J > QM R, respectively). Remark that it is still
possible to satisfy the uniqueness condition by employing other structures for the code and
allocation matrices.

Table 3.1: Summary of the uniqueness results for the TST and STF systems.

TST system STF system
multiple users [ one user
N>R, K>FM
P>QMR P>MR P>MR
- T T
(I)EMR (C(H)T o C(S)T> full row-rank C(H)T o C(S)T full row-rank CSZ-_L) o Cf_) full row-rank, Vf
U}»Sg?r 7& 07Vq7mar Wm,r 7& 0,Vm,r Wm,r 7é O,Vm,r
N>QR, K>QM N>R, K>M
J>QMR J>MR
P P
3 eSSV e n? > 1, g, m,r 3 ¢S > 1 v, r
p=1 p=1
W r«omr full column-rank W s« mr full column-rank

Contrary to the TST system, the uniqueness condition for the STF system is only satisfied

by restriction on the allocation tensors with C?:[)T o th)T full row-rank for all f € {1,..., F}
(implying P > M R). The structure of the STF system does not allow the same flexibility than
the one of the TST system by means of the third-order code tensor YW € CM*£ExJ,

It is important to remark that the decomposition of the received signal tensor for the TST
system as a constrained CP model allows to obtain a sufficient uniqueness condition more
flexible by employing the results for CP model. The same reasoning is not possible for the STF
system because the channel tensor H € CF*5*M and the allocation tensors C*) e CFxFPxM
C®) ¢ C*P*R rely on the frequency diversity F.

According to Table 3.1, the proposed conditions can still ensure the model uniqueness when
less receive antennas K than transmit antennas M are employed for the TST system. Differently,

we have to use F' times more receive antennas for the STF system.
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Semi-blind receivers

Several algorithms were proposed in the tensor decomposition context with the purpose of
computing the matrix factors from which the original tensor was constructed or in another
way, of recovering a CP model that best approximates this tensor. Brief overview of the main
algorithms fitting the CP model and a comparison between several algorithms are presented in
[104, 105]. In general terms, the convergence speed and the solution found for the parameter
estimates rely on conditions over loading matrices and its dimensions. Most of these algorithms
are developed to compute the CP decomposition. However, these algorithms may be exploited
to recover other decompositions of interest and also to derive blind receivers for MIMO systems

50, 94, 106, 61, 58, 107, 62].

The proposed semi-blind receivers are based on the well-known Alternating Least Squares
(ALS) and Levenberg-Marquardt (LM) algorithms, which iteratively estimate the symbol and
channel matrices in the presence of additive noise. We also propose semi-blind receivers based
on the structure of the Kronecker product, which allow to jointly estimate both matrices in only
one iteration. The identifiability conditions for each method are established in order to ensure
the symbol recovery and channel detection. The computational complexity for all algorithms is
computed taking into account the most onerous operations per iteration.

In the simulation part, we present a performance analysis of the TST and STF systems by
employing the zero-forcing (ZF) receivers assuming a perfect knowledge of the channel coeffi-
cients. The influence of the uniqueness and identifiability conditions proposed in this thesis on
the performance of the ALS algorithm is analyzed. The performance of all proposed receivers
are compared in terms of symbol recovery and convergence speed. Finally, we provide a compar-
ison between the proposed TST coding with well-known tensor approaches, such as: Khatri-Rao
Space-Time (KRST) [53] and Space-time Multiplexing (STM) [55] codes.

All receivers are developed by assuming the perfect knowledge of the coding and allocation
structures at both transceiver and receiver. The received signal tensor & is corrupted by an
additive white Gaussian noise V, thereby X = X + V represents the noisy version of X.

ol



52 Chapter 4. Semi-blind receivers

4.1 Alternating Least Squares (ALS)

The Alternating Least Squares algorithm, or simply denoted by ALS, was originally intro-
duced in the tensor decomposition context by Harshman [51] and Carrol and Chang [52]. The
ALS approach estimates each matrix factor by fixing the other matrix factors, which allows to
convert a nonlinear optimization problem into several independent linear LS problems. The
ALS solution is derived from the minimization of a cost function with respect to each matrix
factor independently. The cost function is given by the squared errors between the received
signal tensor model and the noisy received signals.

Observe that this approach does not solve the global problem since the estimation of one
matrix is given by fixing the other matrix. For this, the ALS convergence to the global minimum
can not be guaranteed. However, the cost function is strictly monotonic decreasing. The overall
LS problem is reduced to alternating LS sub-problems, which permits that the ALS technique
is simple and easy to be implemented.

The ALS algorithm is extensively used for CP decompositions, nevertheless it can be eas-
ily adapted for other decompositions of interest taking into account appropriately the matrix
unfoldings. From matrix unfoldings of the received signal tensor deduced in Chapter 3, the
ALS method is employed to estimate two matrices in alternating way: symbol S € CV*® and
channel H € CK*M for the TST system or Hyypar € CEXFM for the STF system. In this
section, we derive semi-blind ALS and non-blind ZF receivers for the TST and STF systems.
The conditions to ensure the LS identifiability of channel and symbol estimates are analyzed.

4.1.1 TST system

Let us consider the TST system modeled by the PT-(2,4) and the fourth-order constrained
CP models to develop two TST receivers called, respectively, ALS-PT and ALS-CP. For each
receiver, we investigate the necessary conditions to ensure the LS identifiability of the estimates.

TST system modeled with the PARATUCK-(2,4) model

Rewriting the unfolding matrices of the received signal tensor X' given in (3.11) as

Xgxpin = HGuyxpsr (Ips ®ST), (4.1)
Xnxpix =S Gprxpim (IPJ ® HT) ; (4.2)

the problem of channel and symbol estimation according to the ALS approach can be formulated
as a set of two independent linear LS problems as follows

- 2
‘XKXPJN —HGuyxpir (IPJ ® ST) HF

A~

H = argmin
H

- 9 (4.3)
’XNXPJK — S GRrxrim (IPJ ® HT) HF

S = argmin
S

Both minimizations in (4.3) lead to channel H and symbol S estimates given by

A~

< T
H = Xs,pin((Ips @) Gpypen) ' (4.4)
— f
S = Xpyxrsr((Ips @ H) GPJMxR)T (4.5)
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respectively. The unique existence of the right-inverse of G,/xpsr (I Py ® ST) and Ggrxpim
(IPJ & HT) is guaranteed by assuming that (IPJ & S) G’PJRXM and (IPJ X H) G’PJMXR are full
column-rank, respectively.

We apply the ALS algorithm to alternately estimate the channel and symbol matrices using
(4.4) and (4.5) at each iteration. Remark that the estimation of one matrix at the i-th iteration
is conditioned to the knowledge of previously estimated value of the other matrix at the (i—1)-th
iteration.

Analysis of identifiability conditions:

In order to guarantee the uniqueness of the ALS solution, we have to ensure that the left-
inverses in (4.4) and (4.5) exist and are unique. Assuming that S and H are full column-rank,
identifiability of their LS estimates requires that Gpjrxar and Gpyrxr be also full column-rank.
From this, we enunciate the following theorems.

Theorem 4.1. (Identifiability Condition). [66] Supposing that S and H are full column-rank,
a necessary condition for identifiability of H and S by, respectively, (4.4) and (4.5) is given by

o ma( [ £.4]), 4o

where [z] denotes the smallest integer number greater than or equal to x.

Proof: Let us rewrite both equations (4.1) and (4.2) as Xgxpsy = HZ] and Xy psx = SZ1,
where Z; 2 (Ip; ®S) Gpyrxa and Zy 2 (Ip; ® H) Gpsyxr. Uniqueness of the LS solution for
H and S requires respectively that Z; and Z, are full column-rank. Assuming that S and H are
full column-rank implies that Ip; ® S and Ip; ® H are full column-rank as well. Consequently,
rank(Z;) = rank(Gpyrxn) and rank(Zs) = rank(Gpyxr), which means that Gpygyy and
Gpymxr must be full column-rank to ensure the identifiability of H and S, implying PJR > M
and PJM > R, or equivalently (4.6). n

This condition (4.6) defines a constraint that the design parameters (P, J, M, R) must satisfy.
It is interesting to notice that the supplementary diversity introduced by the time-spreading
mode (j) of the code tensor allows us to get a more relaxed condition on the number P of time
blocks than the one obtained in [59].

If we assume that S and H are full column-rank, then the identifiability conditions can be
ensured just setting appropriately the allocation matrices and the tensor code. The choice of
the code tensor will be explained later. Considering the Vandermonde structure to construct
each j-th matrix-slice W..; of the code tensor WV, its elements can be given by

Wiy j = €T IR, (4.7)

An important reason behind this choice for the code tensor is that this structure guarantees
the existence of a minimum value of the spreading length J ensuring the identifiability in the
LS sense of the channel H and symbol S matrices, as shown in the next theorem.
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Theorem 4.2. (Identifiability Condition). [66] Suppose the perfect knowledge of the code tensor
W and the allocation matrices CH) and CS). Assuming that S and H are full column-rank,
with the Vandermonde structure (4.7) for the code tensor, and (C;,.S) = 1%, CI(,H) =1%,) for a
given p € {1, ..., P}, Table 4.1 gives the minimum value of the spreading length ensuring the LS

identifiability of H and S by (4.4) and (4.5), for M and R € {1, ...,8}.

Table 4.1: Minimum value of J for LS identifiability of S and H

R
M 112]3[4]5]6|7/|8
1 11213145678
2 2111213(3[4|5]|5
3 31211212344
4 4131211121233
) 5131212 (112]2]2
6 614 (322122
7 7191413121212
8 81514 131212]2]1

Proof: For C) = 1% and CY = 1T, (3.4) gives G.,,; = W.; and then from (3.12) we can
extract the following two sub-matrices associated with the block p from Gprxr and Gpyrxp
respectively,

W nrxn 2 : € CM*R W pam 2 : € C/RxM, (4.8)

Remark that both matrices W jj;« g and W jry s represent two matrix unfolding of W. First,
we have to notice the symmetric role played by M and R, with the block W given by

uj u2j uRj
W ud . 2R
W, = : (4.9)
uMi y2Mi uMi

where u = ex.

When M = R, W_; is non-singular, which implies that Gp yxr and Gpyrxy are full
column-rank, and therefore the LS estimate of S and H is unique with J,;, = 1, which corre-
sponds to Theorem 3 in [59]. In the case where M > R, the block W.; and therefore Gpjy«r
are full column-rank, whereas W1 is full row-rank equal to R. The number Jiy of blocks W,
to be considered in W ;g to guaranty its full column rank property is given in Table 4.1 for
M, R € {1,...,8}. Note that setting J > Jy, it is added M — R independent columns to W1,
which leads to W jrx s full column-rank. When R > M, the same reasoning can be applied to
determine the minimum number Jy,;, of blocks W..; to be considered in W /. g for guarantying
its full column rank property, which explains the symmetric form of Table 4.1. n
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Remark 4.1.

o The constraints C,g.s) =1} and Cz(g.H) = 11, mean that all data streams (R) are sent using
all transmit antennas (M ), during the p-th time block.

e [ntroducing the time spreading mode in the Vandermonde code tensor allows us to derive
a minimum value of the spreading length J that ensures the identifiability of S and H in
the case M # R, which is not possible in [59] with J = 1.

e Note that Theorem 4.2 gives a sufficient condition over W, CH) and CS) | while Theorem
4.1 establishes a necessary condition over (P, J, M, R) for LS identifiability of S and H.
Both theorems assume that S and H are full column-rank.

e According to the assumption for the channel coefficients discussed in Chapter 3, H is
almost surely full column-rank if K > M.

Observe that when Theorem 4.2 is satisfied, the inequality (4.6) of Theorem 4.1 is implicitly
achieved.

TST system modeled by a constrained CP-4 model

Let us recall the received signal tensor X € CE*N*FP*J modeled by the PT-(2,4) model given
in (3.5)
M

R
E E H) (S
$k7n7p7j = wm,r,j hkvm STI,,T’ Cé7772/ Cl(7,r ) (410)

m=1 r=1
we can rewrite the received signal tensor by the following constrained CP-4 model
MR

Tkn,p,j = Z Qg r Bn,r Ep,r dj,ra (411>

r=1

whose matrix factors A € CK*ME B ¢ CN*ME C e CP*ME and D € C/*ME are given by

A=H®1}=HQW,

B=1],®S=50?,

C— <C<H>T o C<s>T>T 7

D =W, un, (4.12)

where

Qo 2 Iy ® 1TR € RM*MR

0@ 21T @1, € REXME, (4.13)

Thus, we can deduce the following matrices from the unfolding matrix for the CP model



56 Chapter 4. Semi-blind receivers

given in (2.21) as

T T
X psy = HQW ((C<H>T o C<S>T) o W yxarr SQ(2>) , (4.14)

T ™ T T
Xnwpix = SQ@ ((C<H> o C®) ) o W s HQ<1)) , (4.15)

T

X py kN = (C<H>T o C<S>T) (Wan o HOW 0 SQ) T (4.16)

T T
Xyxxnp = Wixar <Hﬂ<” oSQ® o (c<H>T o c<S>T) ) : (4.17)

Applying property (A.6) to (4.16) and (4.17), and using (4.13), we obtain
T
XPxJKN = (C(H)T o C(S)T) (Wixuro (H®S) (2o 9(2)))T
T
_ <c<H>T o c<S>T) (Wyano (HeS)", (4.18)
T T
Xiwine = Wismn ((H ® S) (Q(l) o Q(Z)) o <C(H)T o C(S)T> )
T ™ T\ "

= Wunr ((H ®8)o (C<H> 6 C® ) ) . (4.19)

where QM) ¢ Q@) = T,,5.
The minimization of LS cost functions for channel and symbol estimation can be also refor-

mulated from the matrix unfoldings X xpsn and Xy« pyk, respectively, in (4.14) and (4.15)
by

( 2
. - T T
I = argmin |XKXpJN —HOW (<C<H>T o C<S>T> oW ain © SQ<2>)
B . o (4.20)
N ~ T
S = argmin XNXPJK — SQ(Q) ((C(H)T < C(S)T> < WJXMR < HQ(I))
S
\ F
Resulting in both estimations
a 3 H)T $T\* 2 B nt
H:XKXPJN <C( ) OC() > OWJXMROSQ() Q(), (421)
& H)T s T\ " 1 B 2)f
§ = Xyupsi (c< T oc® ) oW uno HOW ) Q@ (4.22)
From (4.13) and the right-inverse definition, we obtain that
oWT — Ur (I © 1) = Yr Q7 ¢ CMBXM.
Q2" 1 (1, @ 1) = /M QO € CMBEXR, (4.23)

Analogously to (4.4) and (4.5), assuming that the right-inverses exist and are unique, we
can iteratively estimate the channel and symbol matrices by (4.21) and (4.22), respectively.
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Analysis of identifiability conditions:

Analogously to the analysis for the TST modeled by the PT-(2,4) model, we can study
the conditions to guarantee the identifiability of channel and symbol matrices from (4.21) and
(4.22).

Let us define the following matrices

T T
p, 2 (<c<H>T o C<S>T> oW iR © SQ<2>) € CMRXPIN, (4.24)

T T
P, A ((C(H)TOC(S)T> OWJXMROHQ(D) c CMRXPJK’ (4.25>

if we assume that P; and Py are full row-rank, implying PJN > MR and PJK > MR, then
we can rewrite (4.21) and (4.22) using (4.23) as

ﬂ = 1/R XKXPJN PJ{ Q(l)T, (426)
g = I/MXNXPJK P; Q(Q)T, (427)

where PI and P; denote, respectively, the right-inverse of Py and P,, implying PlPi = Iyr
and PoP) =I5

Therefore, a necessary condition for LS identifiability of both matrices H and S by (4.26)
and (4.27) depends on the unique existence of the pseudo-inverse of P; and P, respectively,
which imposes a condition over the design parameters (N, K, P, J, M, R) given as follows.

Theorem 4.3. (Identifiability Condition). A necessary condition for identifiability of H and
S by, respectively, (4.26) and (4.27) is given by

(4.28)

MR MR
PJ> )

Remark that the condition given by Theorem 4.3 does not require the assumption of S and
H being full column-rank, which leads to N > R and K > M, as it is required in Theorem 4.1.
From Lemma 2.2, if S, H, C®), C®) and W,/ satisfy the next double condition:

T
k((C(H)T o C<S>T> > + k(W ynr) + k(SQP) > MR + 2, (4.29)
T
k((dH)T o C<S>T) ) + k(W rr) + k(HQM) > MR+ 2, (4.30)
then the right-inverse of Py and P, exists and we can write H and S as (4.26) and (4.27)

respectively. From two conditions (4.29) and (4.30), we can deduce the next theorem.

Theorem 4.4. (Identifiability Condition). Suppose the perfect knowledge of the code ten-
sor W and the allocation matrices CH) and C®S). If the code tensor W is chosen such that
W wmr s full column-rank implying J > MR, and C®'6 ™" has no zero-rows, then the
LS identifiability of H and S by, respectively, (4.26) and (4.27) is ensured.
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Proof: The identifiability of channel and symbol matrices in the LS sense requires that P; and
P, given by (4.24) and (4.25) are full row-rank which can be achieved by the conditions (4.29)
and (4.30) respectively. By system feature, both matrices H and S have no zero-columns and
using Q) = Iy ® 1} and Q@ = 17, @ I, we obtain k(HQY) = 1 and k(SQ®) = 1 because
the product by QM) and Q® results in column repetitions of H and S respectively, i.e.

HQ(l) —H ® 1’]2 c (:I(XMR7
SQ® =17 @8 e CVME, (4.31)

If W ;g is full column-rank and Cc®" 5™ has no zero-rows, then k(W ;4 r) = MR and
k (C(H)T o C(S)T)T> > 1, respectively. Therefore, we can simultaneously satisfy both conditions
(4.29) and (4.30), and finally ensure the identifiability of H and S by (4.26) and (4.27). .

Remark 4.2.

e Both Theorems 4.2 and 4.4 guarantee the LS identifiability of channel and symbol matrices
by choosing appropriately W, CS) and C®) . However, Theorem 4.2 imposes that S and
H are full column-rank unlike Theorem 4.4.

e Analogously to Theorems 4.1 and 4.2, while Theorem 4.3 provides a mecessary condition
over (N, K, P, J,M,R), Theorem 4.4 affords a sufficient condition over W, CS) and CH)
for the LS identifiability of H and S by, respectively, (4.26) and (4.27).

e Remember that k((C(H)ToC<S)T)T> > 1 is equivalent to satisfy (3.69). Thus, as discussed

previously, it has a practical interpretation to construct the allocation structures.

Note that the TST system modeled by a constraint CP-4 permits to derive another identi-
fiability condition which does not require K > M and N > R, since we analyze the existence
of pseudo-inverse matrices by means of a joint condition under CS), C™ W, y/r, S and H.
Analogously to Theorems 4.1 and 4.2, satisfying Theorem 4.4 leads to the inequality (4.28) of
Theorem 4.3.

Defining the elements of code tensor by

. .r+(m—1)R
Wirj = €70 MR (4.32)

for J > MR, the matrix W ;g is full column-rank thanks to the Vandermonde structure,
implying k(W jxnmr) = MR.
Generalization to multiuser case

Consider the received signal tensor for the TST system with multiple users given by (3.80).
We obtain the following matrices by transposing two unfolding matrices given in (3.82) and
(3.81), respectively

Xgxpin = Higxon Gorxqrir (QT (] SQRxN) ) (4.33)

Xnxprix = Svxor Gorxgrn (27 2| Houmrxx) (4.34)
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with @ £ 15 © 1, € CP/*@P/,
According to the ALS approach, the problem of channel and symbol estimation can be
formulated as a set of the following linear problems

N ~ 2
HKXQM = aglgmin ’XKXPJN - HKXQM GQMXQPJR (QT \®’ SQRXN) ‘F
) KxM i ) (435>
SNXQR = argmin || Xyxpjx — SNXQR GQRxQPJM (QT |®| HQMXK) H
SNxQR F
Both minimizations (4.35) result in
5 S T
Hrcxom = Xixrin (12 Svxor) Gorrrxonm) (4.36)
& S f
SNXQR = XNxPJK((Q |®| HKXQM) GQPJMXQR)T . (437)

Assuming that (Q |®’ SNXQR) GQPJRXQM and (Q |®| HKXQM) G’QPJMXQR are full column—rank,
we ensure the right-inverse uniqueness of both transposed matrices. Consequently, we can esti-
mate the channel and symbol matrices associated with each user by (4.36) and (4.37), respec-
tively.

Analysis of identifiability conditions:

Supposing that Syxor and Hg xgar are full column-rank, identifiability of their LS estimates
requires that G%}RxM and ng}MxR be also full column-rank for all ¢ € {1,--- ,@Q}. From this,
we can enunciate the following theorems.

Theorem 4.5. (Identifiability Condition). Supposing that Syxgr and Hxgnr are full column-
rank, a necessary condition for identifiability of Hiwonm and Syxgr by, respectively, (4.36) and

(4.37) is given by
R M
PJ > —,— - 4.
J_max([M,R—D (4.38)

Proof: Rewriting both equations (4.33) and (4.34) as Xxwpsnv = Hrxom Z7 and Xyxpix =
Snxqr Z3, where Z; = (Q 2] Snxor) Gorirxom and Zs = (Q® Hixom) Gopimxgr, thus
the uniqueness of the LS solution for Hx.oam and Syxor requires that Z; and Z, are full
column-rank, respectively.

Both matrices Q |8 Syxgr and Q [g] Hx «gar are full column-rank when Syyor and Hx xom
are full column-rank, respectively. Consequently, it gets rank(Z;) = rank(Gp rxa) and rank(Zsy) =
rank(Gpyxr), which means that Ggopirxonm and Gopsyxgr must be full column-rank to
ensure the identifiability of Hyxgn and Syxggr, implying PJR > M and PJM > R, or
equivalently (4.38). .

Remark 4.3.
e The condition (4.38) is equal to (4.6) obtained considering the transmission by only one
user, i.e. Q = 1.
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o As the channel coefficients are drawn from a continuous distribution, Hyxqum @s almost
surely full column-rank if K > QM.

Both matrices Ggpirxom and Gopimxgr, defined in in (3.84), are full column-rank when
G%}RxM and Gg;]}MxR are full column-rank for all ¢ € {1,---,Q}. Supposing the perfect
knowledge of the code tensor and the allocation matrices of all ) users, the channel and symbol
estimation by, respectively, (4.36) and (4.37) requires that Ggpsrxom and Ggpyvxgr are full
column-rank. Hence, the identifiability condition on the allocation matrices and tensor code for
each user is directly derived from Theorem 4.1 deduced for Q) = 1.

4.1.2 STF system

We regard the STF system given by (3.27) for the STF receiver. Transposing the unfolding

matrices of the received signal tensor X € CI>*EXNXE oiven in (3.32) gives
Xgxprn = Hgwrn Truxprr (Ipr @ ST, (4.39)
XNXPFK =S TRXPFM (Ip & bdlag(Hrlf, PN ,HE)) . (440)

The problem of channel and symbol estimation can be formulated in accordance with the ALS
approach as two independent LS problems given by

Hyxrar = argmin || Xy pry — Hiwra Tryvxprr (Ipr®S™h) H

Hrxrum F

. 4.41
§ = argmin | X = S Treppa (I @ biiag (HY.,... HE.)) Hi i
The minimizations in (4.41) result in
Hyxrvr = Xixprn((Ipr ® S) TPFRXFM)TTy (4.42)
S = Xwprr((Ip ® bdiag(Hy.., ..., Hp)) Tpraxr) " (4.43)
where (Ipr ® S) Tprrxry and (Ip @ bdiag(Hy..,...,Hr.)) Tpryxpr are assumed to be full

column-rank in order to ensure the right-inverse uniqueness of both transposed matrices.
Analogously to the ALS algorithm for the TST system, we can estimate alternately Hy y ppr =
[H,.. --- Hp.] and S from (4.42) and (4.43) at each iteration respectively.

Analysis of identifiability conditions:

The identifiability of channel and symbol by (4.42) and (4.43) respectively depends on the
unique existence of the pseudo-inverses. Observe that a block diagonal matrix is full rank if and
only if each matrix on the diagonal is full rank as well. Assuming that Hy.. for all f € {1,..., F'}
and S are full column-rank, the identifiability of LS estimates of symbol and channel requires
that Tpryrxr and T prrxryr be full column-rank respectively. The design parameters have to
respect the following theorem.
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Theorem 4.6. (Identifiability Condition). Assuming that S and Hy.. for all f € {1,...,F}
are full column-rank, a necessary condition for identifiability of H and S by, respectively, (4.42)

and (4.43) is given by
R M
> —_—, — . .
P_max({FM,R—D (4.44)

Proof: Let us rewrite both equations (4.39) and (4.40) as X« prn = HrxrmZi and Xyxprx =
SZT, where Z; 2 (Ipr ® S) Tppaxru and Zs 2 (Ip @ bdiag(H;.., . .., Hp.)) Tprasxs. Unique-
ness of the LS solution for H and S requires that Z; and Zs; be full column-rank respec-
tively. The assumption of S and Hy.. for all f € {1,..., F'} being full column-rank implies that
Ipr®S and Ip ® bdiag(H; .., ..., Hp.) are full column-rank as well. Consequently, rank(Z;) =
rank(T prrxrar) and rank(Zs) = rank(Tpry«r), which means that Tprrxry and Tpryxr
must be full column-rank to ensure the identifiability of H and S, implying PFR > FM and
PFM > R, or equivalently (4.44). .

Remark 4.4.
o As expected, eliminating the time (J = 1) and frequency (F = 1) redundancies of the TST
and STF systems respectively, we have the same condition parameters on (P, M, R) for
the system proposed in [59].
e Observe that when the channel coefficients are drawn from a continuous distribution, Hy..
for all f € {1,..., F'} is almost surely full column-rank if K > M.

By convenience, let us recall Ty.,,, Tprayxr and Tpprypy defined in (3.30) and (3.33),

. . S
T;., = diag (c??) W diag (cgcg) e CMx~ (4.45)
and
[ Ty 1 [ TlT_1 0
Tr.q 0 T},,l
TPFMXR — c (CPFMXR, TPFRXFM — c (CPFRXFM' (446)
| Tr.p | | 0 T};nP i

Setting cfg, = 1 and cg;), =1, for a given f € {1,...,F} and p € {1, ..., P}, (4.45) gives
Ty., = W. Furthermore, if we suppose that W is full column-rank implying M > R, then the
unfolded matrix Tpry«r is also full column-rank. Consequently, assuming K > M and from
(4.43), the LS estimate of S is unique.

In the same way, setting C.(E.) = 1p.p and C.(;?) = 1py for a given p € {1, ..., P}, we can
extract from T prryras the following sub-matrix associated with the p-th block

wT 0
| € CPRxFM, (4.47)
0 wt
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Assume that W is full row-rank implying M < R, Prgrxras is full column-rank which leads to
Tprrxry full column-rank as well. Thus, assuming S full column-rank and from (4.42), the
LS estimate of H is unique.

From the last reasonings, we can directly enunciate a sufficient condition for ensuring the
LS identifiability of both channel tensor and symbol matrix by (4.42) and (4.43) when M = R
as follows.

Theorem 4.7. (Identifiability Condition when M = R). Suppose perfect knowledge of the code
matriz W and the allocation structures C% and CS). Setting C.(g’.) = 1pyp and C.(;'.[) =1pxums
for a given p € {1,..., P}, and assuming that W, S and Hy.. for all f € {1,...,F} are full
column-rank, thus we can ensure the LS identifiability of H and S by, respectively, (4.42) and
(4.43) when M = R.

The spreading code for the STF system is a (M x R)-matrix instead of a (M x R x J)-tensor
as for the TST system. The time diversity J allows to guarantee the LS estimate for both
symbol and channel when M # R. For the TST coding, it is possible to set a minimum value
of J according to Table 4.1 which can ensure that both matrices Gpyxr and Gp gy will be
full column-rank.

As discussed previously, when S and Hy.. for all f € {1,..., F'} are full column-rank the LS
identifiability of channel and symbol by (4.42) and (4.43) requires that Tprrxry and Tpryxr
are full column-rank respectively. Differently to TST coding, the allocation structures and a
minimum value of P are essential to guarantee that these matrices are full column-rank. The
next two theorems are proposed to ensure the LS identifiability in two cases: M < R and
M > R.

Theorem 4.8. (Identifiability Condition when M < R). Suppose perfect knowledge of the
code matriz W and the allocation structures C") and C®). Set C_(ps*), = 1pxgr and C(;{) =1lpyn
for a given p* € {1,..., P}, and assume that W, S and Hy.. for all f € {1,....,F} are full
column-rank. If the slice matrices associated with a given f* € {1,...,F'} are fized such that:

CSZ:[) = 1pyy and Cgcs*) s full column-rank implying P > R, then we can ensure the LS

identifiability of H and S by, respectively, (4.42) and (4.43) when M < R.

Proof: As proved above, setting C,(ps*), = lpxgr and C(;'[) = 1pyy for a given p* € {1,..., P},
and assuming that WT and S are full column-rank, thus the LS estimate of H is unique.

From (4.45), (4.46) and the definition of Khatri-Rao product, let us rewrite Tpparxp con-
sidering only the rows associated with f* € {1,..., F'} as follows

: . s
T e diag (C}t{,)l-> 0 W diag (c;*)1)

T-.p 0 diag (c?j’)P.) W diag (C;S*?P,)

= diag (vec (C;H)T» (Cgcs) o W> € CPM*E, (4.48)
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Rewriting (4.48) with C;H) = 1py. s, we obtain

Tf*..l
. S
: | =P ow. (4.49)
Tf*“p

According to the Lemma 2.2, if k(CSE)) + k(W) > R+ 1, then C(fs) o W is full column-
rank for a given f* € {1,..., F'}. Supposing that W is full row-rank, W has M independent
columns and rows. In accordance with the k-rank definition, it implies 1 < k(W) < M, hence

the maximum value of the k-rank of W will be equal to M < R which is not enough to obtain
CSE) o W full column-rank.

However, if C;S) is full column-rank implying P > R then CSCS) o W is full column-rank,
which leads to Tppaxp full column-rank as well. Thus, from (4.43) and assuming Hy.. for
all f € {1,...,F} is full column-rank, the LS estimate of S is unique. Finally, satisfying the
conditions enunciated in this theorem, the LS estimate of S and H is simultaneously ensured
unique for M < R. "

Remark 4.5. When CSCH) = 1pxn for a given f* and K(W) = M < R, Tpruxr is full
column-rank sz:(Cch)) > R— M +1. Thus, the theorem condition over C}S) 1s relaxed because

it is not required to be full column-rank, i.e. k:(C;S)> = R.

Theorem 4.9. (Identifiability Condition when M > R). Suppose perfect knowledge of the
code matriv W and of the allocation structures C* and C'S). Assume that W, S and H;..
for all f € {1,...,F} are full column-rank, and set C® = 1p.pyr and CSCHL = 1y for a
given p* € {1,..., P} and f* € {1,...,F}. If the matriz-slice C?ﬂl) is full column-rank for all
f e A{1,..., F} implying P > M, then we can ensure the LS identifiability of H and S by,
respectively, (4.42) and (4.43) when M > R.

Proof: Analogously to (4.48), we can write a sub-matrix associated with f € {1,..., F'} as

T, diag <c§cs)> 0 WT diag (c??)
T} p 0 diag (cﬁl) WT diag (c?fj))
T
= diag (VGC (Cf) )) (Cgf.l) o WT> e CPRxM (4.50)

We can rewrite Tpprryxpryr given in (4.46) permuting in a convenient way its rows, applying
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(4.50) and also setting CS) = 1p, px g as follows

T1,
T\ p
Trprxrv = g CHPRxrM (4.51)
L
0 .
[ ¢ owT 0
— . ' 0 o W . (4.52)

Observe (4.52) that each f-th matrix on diagonal, CEZ{,) oW have to be full column-rank in
order to T prryra be full column-rank as well. From Lemma 2.2, if k (CSPH)> + k(WT) > M+1

for all f € {1,..., F'}, then Cg?_{_) oW is full column-rank for all f € {1,..., '} and consequently,
T prrxry is full column-rank.

Analogously to the previous theorem, considering that W is full column-rank and by the
k-rank definition, we have 1 < k (WT) < R. Choosing CS:',L.[) full column-rank for all f, we can
guarantee that T prryxpys is full column-rank. Consequently, from (4.42) and assuming that S
is full column-rank, the LS estimate of H is unique.

As proved previously for Theorem 4.7, additionally setting CSCHL = 1), for a given p* €
{1,.., P} and f* € {1,...,F}, and assuming that W and Hy.. for all f € {1,..., F'} are full
column-rank, we obtain that the LS estimate of S is unique. Taking into account both conditions,

the LS estimate of S and H is simultaneously unique for M > R. n

Remark 4.6. Analogously to the last remark for Theorem 4.8, the condition that CSZ{.) is full
column-rank for all f € {1, ..., F'} becomes more flexible when k(WT) =R < M. It is enough

to satisfy k(C;H)> >M—-R+1 forall f.

4.1.3 ALS receivers

Semi-blind receivers using a two-step ALS algorithm are derived to jointly estimate channel
and symbols for the TST and STF systems. Table 4.2 summarizes the ALS algorithm for
both systems. Notice that the estimation of symbol matrix at i¢t-th iteration is conditioned to
the knowledge of channel matrix (or matrix unfolding for the STF system) estimated at the
(it — 1)-th iteration.

4.1.4 Zero-Forcing (ZF) receivers

Considering the perfect knowledge of channel for both TST and STF systems, we can deduce
the Zero-Forcing (ZF) receivers for estimating the symbol matrix directly from (4.5), (4.27) and
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Table 4.2: ALS algorithm for semi-blind joint symbol and channel estimation.

TST system: ALS-TST | STF system: ALS-STF

T

1. Initialization (it = 0): randomly initialize H¢y and H o)

2. it =1t +1

3. Compute an LS estimate of S from fl(it_l) and 7:[(#_1), using:

(4.5) or (4.27) ‘ (4.43)

4. Compute an LS estimate of H and H from S(it), using:

(4.4) or (4.26) (4.42)

5. Repeat steps (2)-(4) until convergence.

6. Eliminate the scaling ambiguity with oo = s1,1/511:
S=a8

H=1/aH ‘ Hrxrnv = 1/aHykypy

7. Project the estimated symbols onto the symbol alphabet.

(4.43).
e ZF-TST receiver: For TST system modeled by the PT-(2,4) and a constrained CP-4 model
respectively
~ ~ T
S = Xnwpsx (Ipy @ H) Gpinxr)' (4.53)
. _ T Tt
§ = Y Xnwpyic ((C<H>T o C<S>T) oW jxain © HQ<1>> Q@ (4.54)

where Gprxp is given by (3.4) and (3.12), Q) =1, ® 1} and Q@ =1}, @ I.
e ZF-STF receiver: For STF system.

T

S = XNXPFK ((Ip X bdlag(Hl, e ,HF)) ']:‘pF]MXR)]L s (455)

where Tpparxr is given by (4.45) and (4.46).

4.2 Levenberg-Marquardt (LM)

The Levenberg-Marquardt method [108], denoted by LM, is a well-known alternative to the
Gauss-Newton (GN) method of solving nonlinear LS problems. The main idea of this method
is to combine the advantages of two minimization methods, the Steepest Descent (SD) and the
GN methods, by switching between both techniques through a damping parameter. The LM
method was employed to estimate the parameters of CP model in [105] and of other tensor
models in [106, 61, 62].

The minimization of the sum of the squared errors between the received signal model and
the noisy received signals is a nonlinear LS problem. Hence, the LM approach is an estima-
tion method which, differently to the ALS approach, provides an update for all parameters by
successive approximations.

In this section, we introduce two receivers based on the LM algorithm for both TST and
STF systems. Firstly, we present the Gradient and Jacobian expressions for both systems and
in the sequence, derive the proposed receivers.
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4.2.1 Gradient and Jacobian expressions

Let us assume that x(p) € CL*! is a vector of the model output of received signals, which
depends on a vector of parameters to estimate p € C?®*! with  and L denoting the number of
model parameters and received signal samples respectively. Thus, the estimation error vector is
denoted by r(p) = x(p) — X, where X represents the noisy version of the received signal vector.
The cost function to be minimized can be formulated as follows

5(p) = 5 Ix(p) — 2
1 s 1 4
=5 @) = 5xp) r(p). (1.50)

We may define the complex gradient vector g(p) = Vg € C?*! of ¢ (p) with respect to p by

A 00 .00 H
¢® 9. o0, g(p) =J"(p)r(p), (4.57)
where p, = a, +1ib, is the g-th element of p and J(p) € C*? is the Jacobian matrix containing
the first partial derivatives of r(p),

a On(p)

_ or(p) _ 9x(p)
Ip, '

J(p) op b

RIS (4.58)

TST system

Let us consider the T'ST system given by (3.5). From (3.11), we define the following vectors
by

>

vec(Xpsxxn(P)) = (In ® Ip; ® H) Gpyarxr) ps € CVI/EXL (4.59)
vec(Xpnxi(P)) = (Ix @ (Ip; ® S) Gpypxy) pu € CHP7NXL (4.60)

XNPJK(D)

>

XrpsN(P)
with
Ps 2 Vec(ST) e CNRx1
ph 2 vec(H") e KM (4.61)

and the vector of all parameters to estimate is represented by

p é |:pS:| c (C(NR-FKM)XI' (462)
Pu

Applying the property of the Kronecker product given in (A.4), we can rewrite (4.59) and
(4.60), respectively, as

xnpik(P) = (In ® (Ip; ® H)) (In ® Gpyuxr) Ps
(Inps @ H) (In ® Gpiymxr) Pss (4.63)

xgpiN(P) = Ik ® Ip; ® S)) (Ix ® Gpsrxm) PH
(Ixps®8) (Ix @ Gpsrxm) PH. (4.64)
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Note that the expressions in (4.63) and (4.64) represent two different vectorial forms of the
received signal tensor model which its elements can be related by

Lknpj = [XNPJK(p)](n—l)PJK+(pfl)JKJr(jfl)KJrk
= [XKPJN(p)}(k—l)PJN—i—(p—1)JN+(j—1)N+n : (4-65)

Then, we can relate both vectors through a permutation matrix as follows

xnpsk(P) = Dxgpin(P), (4.66)

where IT € RVNPJEXKPIN i defined as

N K
T
2y Y eVel @ln el eV’ (4.67)

n=1 k=1

and eZ(I) denotes a column vector of length I with 1 in the i-th position and 0 in every other
position.
Using (4.63) and (4.64) in (4.56), we have two equivalent expressions for the cost function

1 ~

d(p) = 3 |(Inps @ H) Iy ® Gpimxr) Ps — XNPJKH2 (4.68)
1 o~

=3 |(Ixps @ S) (Ix ® Gpirxy) Pr — Xxpan|. (4.69)

We calculate the Jacobian matrix with respect to ps and pg using the definition in (4.58) by

0

Jg 2 ar;()z) = (Inps @ H) (Iy ® Gpyasxp) € CNPIEXNE (4.70)
or

Ju 2 algz) =TI (Ixp; ®S) (Ix @ Gprrxar) € CVPIEXEM (4.71)

with IT € RNPJEXKEPIN defined in (4.67).
Note that the permutation matrix is employed with the purpose of imposing a specific order

of indices and in this case, equal to n, j, p, k instead of k, p, 7, n. Finally, we can construct the
overall Jacobian matrix J(p) € CNP/EX(NEHKM) denoted by

J(p) £ [Is Ju]. (4.72)

From the definition (4.57), we can calculate the gradient of ¢(p) with respect to ps and pg,

0 -
gs 2 a¢(p) =J§ (Jsps — XnriK)
Ps
= (JISJ‘I JS) Ps — JISJI XNPIK € CNRXI, (473)
0 -
gH = 8925(13) =Jg (Jupu — Xnpik)
PH

= (JEI JH) PH — J% XNpPJK € CKMXl. (474)
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And analogously to (4.72), we can define the overall gradient vector g(p) € CWEFKM)x1 py

g(p) = {SIS{] - (4.75)

Generalization to multiuser case

From (3.81) and (3.82), we define the following vectors by

i (P) = vee(Xpicxn(p)) = (In ® (212 Hicwonr) Goranronr) ps € CVP7F - (4.76)
xxpan(p) = vee(Xpinxx(p)) = (Ix @ (18] Swxor) Gopsrsou) pr € CEPNXL (4.77)
with
Ps 2 vec(Sorxn) € CNeRx1
P = vec(Hgux i) € CHOM*! (4.78)

and the vector of all parameters to estimate is defined in (4.62) with p € CIV@E+KQM)x1,

From the permutation matrix and the cost function given, respectively, in (4.67) and (4.56),
we write two equivalent expressions for the cost function using (4.76) and (4.77)

1 -

o(p) = 5 Iy ® (2| Hgxom) Goririxor) Ps — Xnpuk| (4.79)
1 -

=3 |(Ix ® (2] Svxor) Gorrrxom) Pu — Xxpin|’, (4.80)

with TI € RNPJKXKPJIN
According to the definition given by (4.57) and (4.58), we can write the Jacobian matrix
and the gradient vector with respect to pg and pyg as

Js = Iy ® (2| Hixqum) Gopimxgr € CNPTEXNQR, (4.81)
Ju =T (Ix ® (2] Snxqr) Gorirxqu) € CVP/HERM, (4.82)
gs = (Jls{ JS) Ps — JIs{ Xypyr € CNORxL ( )
gu = (JgJu) pa — I Xvpsx € CHOML (

The overall Jacobian matrix J(p) € CNP/EX(NQE+KQM) and gradient vector g(p) € CIV@R+HKQM)x1
are defined respectively in (4.72) and (4.75).

STF system

Now, we consider the STF system [62] given by (3.27) to develop analogously the equivalent
expressions for the STF context. From the vectorization of both unfolded matrices given in
(3.32), we obtain the following vectors

11>

vee (Xprrxn(P)) = (In @ Q1 Tpraxr) Ps € CNPFKXl, (4.85)
vee (Xprnxk(P)) = (Ixk @ Q2T prrxrym) Pa € CHRPENXL (4.86)

XNPFK (p)

>

XKPFN (P)
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where ©; 2 Ip ® bdiag(H;.,...,Hr.), @ 2 Ipr ® S, ps € CVE¥! and py 2 vec(Hpyxx) €
CKFM>1"and the overall estimate vector p € CWEHEFM)XI given by (4.62).

Analogously to (4.65)-(4.67), we can relate each element of two vectors in (4.85) and (4.86)
by

Tipmke = XNPFK(P)|(n1)PFR+ (- 1) PR+ (F—1) Kk

= [XKPFN(p)](k—l)PFN+(p71)FN+(f71)N+n (4.87)
and also by
xypri(P) = I Xkpry(P) (4.88)
with IT € RNPFEXKPEN oiven ag
N K
m Z Z enN)e,gK)T ®Ipr ® e,(fK)egN)T. (4.89)
n=1 k=1

We can write two equivalent expressions for the cost function defined in (4.56) using (4.85)
and (4.86) as

1 -
P(p) = 3 Iy ® 2T rruxr) Ps — Xnprxl’ (4.90)

1 -
=3 (I @ QT prrxrm) Pr — Xxpen|. (4.91)

According to the definition given by (4.57) and (4.58), we can write the Jacobian matrix
and the gradient vector with respect to pg and py as

Js=In Q@ Tpryxn € (CNPFKXNR, (492)
Ju=11I (IK & QQTPFRXFM> c CNPFKXKFM, (493)
gs = (JISJI Js) Ps — JIS{ iNPFK < (CNRXI, (494)
gH = (J% JH) PH — Jg XNPFK € (CKFMXl. (495)

with TT € RNPFEXEPEN oiven in (4.89). Remark that the index order is fixed as n, p, f, k.
In analogy to the TST case, the overall Jacobian matrix J(p) € CNPFEX(NR+KEM) apq

c C(NR+KFM)x1

gradient vector g(p) are respectively represented by (4.72) and (4.75) as well.

4.2.2 LM and ALM receivers

As previously mentioned, the LM method combines the SD and GN methods. According to
the SD, the sum of the squared errors is reduced by updating the parameters in the negative
direction of the gradient descent. For the GN method, the sum of the squared errors is reduced
by considering a linear approximation of the estimation error at each iteration, which leads to
a locally quadratic approximation of the cost function.

Let us assume that p(y) is an estimation of p calculated at the 7t-th iteration, and p(41) is
obtained by

Pt+1) = Pgr) + Ap, (4.96)
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where Ap enforces the descending condition, i.e. qb(p(z-t) + Ap) < (b(p(it)). For small || Ap||, we
can write r(p(itﬂ)) in Taylor series truncated at the order term 1 as

r(peit+1)) = r(Puy) + I (Par) Ap, (4.97)

where r(p(it)) = x(p(it)) — X represents the estimation error at the it-th iteration.
From (4.56) and using this approximation of r(pg+1)) in (4.97), we can write the cost
function by

6P + AP) = 5 (Pian) F(Pcrn) (1.99)
~ 6(pn) + ; Ap" I r (Pm)) +
+ %PH(P@) I(pn) Ap + 5 17 (pu) Apl[
£ 6 (pery + Ap) - (4.99)

The GN method is based on the linear approximation (4.97) in the neighborhood of p(),
then Apgy is given by

Apgn = HiipHé(P(it) + Ap), (4.100)
the gradient and the Hessian matrix of ¢ (p(it) + Ap) are

96 (per) + Ap)

gap 7 () (Pa) + I pun) I (pan) Ap. (4.101)
9?9 (p) + Ap
a(AI()gApH ) = I (paur) I(Pan)) - (4.102)

respectively.

Note that if J ( ) is full column-rank, implying L > (@), then the Hessian matrix is positive-
definitive and it means that the function ¢( Peit) + Ap) has only one minimum. This minimum
can be calculated by solving

96 (pury + Ap)

snp =0 = T(pw) I(pw) Apey = ~T"(Pay) x(Pw)

= —&(pw) (1103)

where g (p(zt ) is the gradient of ¢ in p(;y), which is given by (4.57).

We emphasize that J (p(zt)) J (p(zt)) must be positive-definite at all iterations to guarantee
gzﬁ(p(itﬂ)) < qﬁ(p(it)) for any iteration it. Nevertheless, this matrix can have null-eigenvalues in
practice. According to the Levenberg-Marquardt method, Appm can be calculated by

(I(par) I(Pan) + Ain Io) Apim = —g(Par)) (4.104)
= Apwa = — (I(pan) I (Pan) + AinTo)  &(Pay) - (4.105)
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where Ay > 0 is the damping parameter at the ¢t-th iteration.

Observe that for large values of A¢y), we have

1 96(pan) (4.106)

Aty OPar)

1
Aprv ~ —W g<p(it)) = —

i.e. a short step in the steepest descent direction which is interesting when p;, is far from the
solution in order to obtain fast initial progress.. If A is very small, then Apry ~ Apgy,
which is a good step in the final stages of the iteration.

Therefore, in the same way that the damping parameter Ay can avoid the matrix singularity
through increasing of the value of eigenvalues of JH(p(it)) J (p(it)), it can control the system
behavior through its influence on both direction and size of the step. A form of choosing the
initial damping parameter A is from the maximum value of the diagonal of JH(p(O)) J (p(o)),
ie.

A = T max [JH(p(o)) J(D(O))]u ; (4.107)

where 7 is empirically chosen by the user, the choice of A\ can affect the convergence of
algorithm.

The damping parameter must be adapted at each iteration according to an appropriate
rule, because an inappropriate choice of this parameter may result in a divergence or a slowly
convergence. A well-known method to control the factor ;) is by the following gain ratio [109]

¢(P(z‘t)) - ?(p(it) + APLM)
Cb(P(it)) - Gb(P(it) + APLM) 7

(4.108)

where the numerator denotes the effective variation of the cost function and the denominator
denotes the predicted variation by the approximation of the cost function given in (4.99) from
the linear model (4.97). Thus, A can be updated at each iteration it according to an usual
procedure [109]:

(a) If piryy > 0 : gy is accepted,

3
)\(it) = )\(it—l) max (%, 1— (2,0(it) — 1) > and v = 2

(4.109)
(b) Otherwise: p;) is rejected,

Aiit) = V At—1) and v < 2V
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Rewriting the denominator of (4.108) using (4.57), (4.99) and (4.104) gives
~ 1 1
o (Pry) — ¢ (Peary + Aprm) = —3 Apiy <JHI‘ + §JHJ AI)LM)

1 1
- = (I‘HJ + éApEM JHJ) ApLM

2
1 1
= —5 Apiy (THF +5 (P + Aanle - )‘(it)IQ)ApLM)
1 1
-3 QHJ + 3P0 (I + Aanlo — A(z’tﬂcz)) Apru

1 1 1
= ——Appy <§g - 5)\(it)ApLM>

2
1/1 1
3 (§gH — 5)\(it)ApEM) Aprm
1 1
= 5 A APvAPLY — 7 (APLnE + 8" Api) (4.110)

for simplicity, we assumed that J 2 J(p(it)), r 2 r(p(it)) and g 2 g(p(it)) = JHr. Note
that —Apfyg = Aply (J9T + AinIg) Apuv > 0 and —g"Appy > 0, which imply ¢(pr) —
gz;(p(it) + ApLM) always positive, independent of ().

A large value of p(;; indicates that gzg(p(it) + ApLM) is close to gb(p(it)) and also that p() is
close to a local minimum point. Hence, it is possible to reduce A(;), which means that the LM
method gets closer to the GN method. On the other hand, a small value of p(;) (even negative)
indicates that gg(p(it) + ApLM) is not close to qb(p(it)) and also that p(; is far from the solution.
It is thus necessary to increase A(;), or equivalently to get closer to the SD method.

The LM algorithm is summarized in Table 4.3 for both the TST and STF systems. Observe
that the signal (S) and channel (H or H) are simultaneously estimated by p(i;y = Pgit—1) +APLum
and using (4.62). Both vectors Xy psx and Xy prg represent vectorizations of the noisy received
signal tensors X € CEKXN*xPxJ and ¥ e CF*PXN*K regpectively.

In order to estimate separately the symbol matrix and the channel matrix (or channel tensor
for the STF system), and also to simplify the complexity of LM algorithm, we deduce the
Alternating LM (ALM) algorithm which considers an approximation of the Hessian matrix of
b (p(it) + Ap) at each iteration it (4.102), i.e. JH(p(it)) J(p(it)).

From the overall Jacobian matrix and gradient vector defined in (4.72) and (4.75) respec-
tively, we can write the Hessian matrix corresponding to parameter estimates at the it-th iter-
ation as

Jg (pr) Js(pu., | Js (pH(Z—t) Ju(ps,

i . (4.111)
JH<pS(“) Js PH Jﬁ(DS(“) Ju Ps

I (pan) I (Pan) =

Let us consider an approximation of the partitioned structure of the Jacobian matrix given
by

Jg <pH(¢t)> Js (pH(it)) 0

. (4.112)

I pan) I(Pan) =
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Table 4.3: LM algorithm for semi-blind joint symbol and channel estimation.

TST system: LM-TST | STF system: LM-STF
1. Initialization (it = 0): randomly initialize Sy and Hg) or Hy with

v=2,po = [g;((o))] and () = max; [J¥(p)) J(p(o))}u.
0

2. it =1t + 1.
3. Compute Appy, using (4.105).
4. Compute Sy and Hyy or Hyy from pry = Pra—1) + APLM(it) where

A A .
ApLM(m _ |: pLM,S(Zt)} and Pty = {ps(zt) 1

APLM7H(M Pu,,
gs(P@ N
5. Compute J(p(it)) = [JS <pH(it)> Ju (ps(m)} and g(p(it)) — g;((p((:)))] using:
(4.70), (4.71), (4.73), (4.74) ‘ (4.92), (4.93), (4.94), (4.95)

6. Compute (b(p(it)) using;:
(4.68) or (4.69) g
7. Compute p(;y) using (4.108) and (4.110).
8. Update A1) according to (4.109).
9. Repeat steps (2) to (8) until convergence.
10. Eliminate the scaling ambiguity with oo = s11/811:
S=a5,

H=1/aH ‘ Hywrn =1/aHgpr.

11. Project the estimated symbols onto the symbol alphabet.

(4.90) or (4.91)

Note that it is equivalent to consider Jg (pHm)) Ju <ps<m> = Oyprxxy for the TST system and
Jg (pHm)) Ju (ps(iw) = Oypxxrym for the STFE system.
Applying (4.112) to (4.104) gives

<JIS{ <PH(”>> Js (PHW) + As iy I> Apras = —8s(Pa)) (4.113)
—  Appus = — <JI§ (pHut)) Is (pH@t)) + A I) h gs (Pan)) (4.114)
(J% (ps(i”) Ju (psw)> + Amg,, I) Apivna = —gu(Pen) (4.115)
—  Aprvm = — (Jg (PS(“)> Ju <Ps<m> + Ang,, I) - gu(Pay) - (4.116)

From (4.114) and (4.116), we can separately estimate Appys and Aprym, and also we can
employ different damping parameters A for each estimate parameter S and H (or ). In this
sense, it is possible to control independently each factor Ag ;) and Ag i), and this flexibility
may allow to reach faster convergence speed.

In order to derive a gain ratio pg) for each parameter, we rewrite (4.110) as a function of
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Aprms, APivH, 8s and gy using

A APLM,S
ApLum = [APLM,H} ; (4.117)
g2 {gs} . (4.118)
gH

From (4.110), we obtain

~ 1 1
o (Pry) — ¢ (Pry + Aprm) = 5 Aty APLMAPLM — 1 (Apryg + 8" Apru)

1
~ 9 AGit) (ApEM,SApLM,S + APEM,HAPLM,H) -
1

1 (APEM,SgS + g5 ApLus + APEM,HgH + ggAPLM,H) . (4.119)

Considering the influence of each parameter separately and employing different damping
parameters, we have

Qb(P(it)) — ¢(P(it) + ApLM)

ps,. — (4.120)
@ %)‘S(m (APEM,SAPLM,S) -1 (APEM,SgS + g8 AprLus)
and
- — o(Pan) — o(Pary + ApLu) . (4.121)
0 %)\H(it) (APEM,HAPLNLH) - % (AngngH - ggAPLM’H)

Let us now describe the proposed ALM algorithm in Table 4.4 for the TST and STF systems
employing the expressions deduced above. Observe that the initial damping parameter for each
estimate parameter (s, and Am ) is calculated from (4.107) taking into account the Jacobian
matrix with respect to ps, and pn, respectively.

4.3 Kronecker based Least Squares (KLS)

Let us introduce a direct (non-iterative) procedure, denoted by the Kronecker Least Squares,
which is based on the structure of the Kronecker product between two matrices. From an
appropriate unfolded matrix and using the Kronecker structure, it is possible to jointly estimate
both symbol and channel matrices.

We derive the semi-blind KLS approach for the TST and STF systems from the unfolded
matrix Xgnwsp and Xgyxpp given by (3.16) and (3.83), and (3.38) respectively. Observe that
this approach can be extend to other systems depending on a convenient choice of the unfolded
matrix.

4.3.1 TST system

Let us rewrite (3.16) assuming that Ggasxsp is full row-rank as

Xnixsp Gl p=S@HZEY € CNEXEM, (4.122)
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Table 4.4: ALM algorithm for semi-blind joint symbol and channel estima-
tion.

TST system: ALM-TST | STF system: ALM-STF

T

1. Initialization (it = 0): randomly initialize S(O) and I:I(o) or Hy, v =2,
As ) = max; [Jg (pH(m) Js (pH(m)]u’ AH () = Mmax; [J% (ps(o)) Ju (ps(o))]u-

2. it =it + 1.
3. Compute Jg (pH(ml)) and gg (p(it_l)) using:
(4.70), (4.73) ‘ (4.92), (4.94)

4. Compute ApLM,S(m using (4.114).
5. Compute S from Ps.,, = Psq_y + APLM,SW)-
6. Update pgy = [ PS)
He 1)
7. Compute gb(p(it)) using;:
(4.68) ‘ (4.90)
8. Compute ps,, using (4.120).
9. Update Mg, according to (4.109).
10. Compute Jg <ps<m> and gy (p(it)) using:
(4.71), (4.74) ‘ (4.93), (4.95)
11. Compute Apryv,, using (4.116).
12. Compute H; from PH, = PH,_, T ApLM,H(“).

Ps
13. Update p = S
b P(t) [pH(m
14. Compute qzﬁ(p(it)) using:
(4.69) ‘ (4.91)

15. Compute pg,,, using (4.121).
16. Update Am,,,, according to (4.109).
17. Repeat steps (2) to (16) until convergence.
18. Eliminate the scaling ambiguity with oo = s11/811:
S=aS,
H=1/aH ‘ Hywry =1/aHgxru
19. Project the estimated symbols onto the symbol alphabet.

with
T ™T\ "
Gryxap = <WJX3M<> (C(S) o CH) ) ) , (4.123)

W iwrMm é [VGC(W..l) s VeC<W-~J)}T

(4.124)
Note that Grarxsp and Wy gy denote a matrix unfolding of G € CM*EXPXJ and of W €
CM*ExJ " which is slightly modified from (3.18) and (3.19) by convenience. Note that it is
possible to simultaneously estimate S and H from the Kronecker product between both matrices
using (4.122).
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We can use some information a priori about symbol matrix S and the special structure of
the Kronecker product to separate the mixture given by channel coefficients and transmitted
symbols, which leads to semi-blind estimation of both matrices.

Suppose that the (n,r)-th element of the symbol matrix is known at the receiver and given
by s, = 1 for simplicity. From the structure of the Kronecker product, we can directly estimate
H. In the same way, assuming that the n-th row of the symbol matrix is given by S,. = 1%, we
obtain R estimations of H and from the mean square of all estimations, we can better estimate
H.

From the structure of the Kronecker product

Y& L. y(@LER)
Y| . i | eCNExRM (4.125)
YWD . yW,R)

we can write Y1) 2 (S®H)™ = s, H by fixing n and r, for all n € {1,--- ,N} and

r € {1,---,R}. Applying the least squares method and considering the channel estimate and
the received signal tensor, we can write
H
vec(H)" vec(Y™7)
n,r — ( ) ( 2 ), (4126)
[vec(H)|

where Y7 e CK*M is constructed from Y = Xyxxsp Ghysp € CVEXEM | The expression
(4.126) allows to directly compute an estimate of each symbol s, ,. Table 4.5 illustrates the
KLS algorithm based on this idea by assuming one symbol known at the receiver.

Analysis of identifiability conditions:

The estimation of the Kronecker product between symbol and channel matrices by (4.122)
requires that the unfolded matrix Grarxp is full row-rank, implying RM < JP. From (4.123)
and Lemma 2.2, it is enough to satisfy the following inequality

T
k(WJxRM) + k((C(S)T S C(H)T> ) > RM + 1. (4.127)

Remark that the condition (4.127) is also implicit in Theorem 3.4 concerning the uniqueness
condition. Contrarily to the ALS algorithm, satisfying the identifiability condition (4.127) leads
to ensure the uniqueness condition as well. Another advantage is that the symbol and channel
matrices can be estimated by just one iteration.

Generalization to multiuser case

Assuming that Ggrarxsp is full row-rank, we can write the following matrix by transposing
the unfolded matrix of the received signal tensor given in (3.83) as

A
XNK><JP GTQRMXJP = SNXQR |®| HKXQM =Y ¢ CNKXQRM» (4'128)



4.3. Kronecker based Least Squares (KLS) 7

with

T
GQRMXJP == (WJXQRM o [(C(Svl)TQ C(H,l)T)T . (C(S’Q)TO C(H’Q)T>Ti|)

T _ T
_ (WJXQRMO((C@)TQ c<H>T> <1>QRM>) , (4.129)
W cqry = [WF}X)RM Wf,@RM] . (4.130)

Observe that Ggoruxsp and Wy ora represent slightly modified version of (3.88) and (3.89),
respectively.

Considering Y 2 [Y(l) Y(Q)] a partitioned matrix and applying the definition of a
partition-wise Kronecker product (2.3), we can rewrite (4.128) as

(YD) ... YO = Snvgr [® Hrxom
—= [SOgHD ... SQgH], (4.131)

where Y(Q) é S(Q) ® H(Q) c (CNKXRM.
From the Kronecker product associated with each user ¢, i.e.

Y@Ll ... Y(@LR)

A

Y@ =S8 g H@ ¢ CNEXEM (4.132)

V@ND .. y@NR)

we obtain Y(@nm) 2 (S@® H(q))(n’r) = S'Ezq} H@ by fixing ¢, n and r. According to the least

squares approach analogously to (4.126), the transmitted symbols associated with each user ¢,

s can be estimated by

vec (H(q)) T yec (Y(q’””'))
[vec(H®)

: (4.133)

sl —
Sn,'r -

taking into account the channel estimation for each user and with Y@ € CE*M constructed
A
from Y = [Y(l) Y(Q)} = X NKxIp GIQRMXJP € CNKxQRM

Analysis of identifiability conditions:

The estimation of channel and symbol matrices from (4.128) requires that Gorarxsp is full
row-rank, implying QRM < JP. Applying Lemma 2.2 into (4.129), the property of full rank
can be ensured from the following inequality

T .
k(W jxqrar) + k((c<H)T<> c<S>T) chRM) > QRM + 1. (4.134)

Remark that the condition on the allocation and code structures given in Theorem 3.8, con-
cerning the uniqueness result, leads to (4.134).

1If ¢SV CEDT has no zero-rows for all g €{1,---,Q} and the code tensor for each user
W is set such that W sxqry is full column-rank, then the condition (4.134) is satisfied and
Gormxsp is full row-rank.
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4.3.2 STF system

Analogously to the TST coding, if we assume the unfolded matrix T gprpx pp is full row-rank,
we can rewrite (3.38) as

A
XKNXFP TTFMRXFP == HKXFM ® S - Y € CKNXFMR. (4135)

Based on the same idea proposed previously, we can estimate the symbol matrix S and the
channel tensor H from (4.135) thanks to the structure of the Kronecker product between both
matrices Hygpps and S, and a prior information at the receiver.

Defining Y 2 [Yg}w MR ngz,x M R] as a partitioned matrix, observe that we can rewrite
(4.135) as
1 F
[Y§<3\7><MR o Yg{]&/xMR} =Hgxrn ®8
= [H..®S - Hp. ®8], (4.136)

with YY), 2 H, ® S € CKN*MR,
From the Kronecker product associated with each subcarrier f, a permutation matrix of
rows ITM € RVEXEN and a permutation matrix of columns IT?) € RMEXEM e can write

YLD Lo y(ALLR)
f A . . . f
Y§V}(><RM = : iR : =1 Yg(])VxMR n®
YHND Ly (ANR)

=S®H;. € CN*AM (4.137)

where Y & S Hy. € CEXM and, TIM € RVEXEN and T1) € RMEXEM are defined as

n]\[)e,(f()T (%9 e,(f()egv)T

e;%egR)T ® eﬁR)e(M)T. (4.138)

m

Thus, we can estimate the channel matrix associated with each f,ie. Hy. for f =1,..., F,
by assuming the knowledge of at least one symbol. As consequence, we can better estimate the
channel tensor considering the knowledge of more than one symbol, as for example one row of

the symbol matrix. From the channel estimate and the received signal tensor, each transmitted
symbol s, , can be estimated by

~

B VGC(HKXFM)H vec (Y(”’T))

S =
" [vee(Hxpar) ||

: (4.139)

where Y1) 2 [Y(l’””’) Y(F’"”")} € CKXFM g obtained from Y 2 XKNxFP T}MRxFP €
CHENXFME Table 4.5 presents the KLS algorithm for the STF system taking into account the
knowledge of one symbol.
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Table 4.5: KLS algorithm for semi-blind joint symbol and channel
estimation.

TST system: KLS-TST | STF system: KLS-STF
1. Compute an LS estimate of S ® H and Hiwpy ® S from:

Y:XNKXJPG;{MXJP ‘ ?:XKNXFPT}IWRXFP
2. Estimate H or ‘H using the knowledge of one symbol s;; = 1:

H=Y®D H; =YULD for f=1,..,F

3. Compute S from H or Hyy pas:

§n7r _ VeC(I:I)Hvehc(Y;"*T)) .§n7T _ ve((I:IKprf)Hve((Yi"W)) Wlth
[[ved(H) | [[ved( e rar ) |

Hiywrn = [ﬂy <+ Hp..
v () — [yu.,m) Y (Fnr)
4. Project the estimated symbols onto the symbol alphabet.

Analysis of identifiability conditions:

Observe that the unique estimation of Hyxpy ® S by (4.135) requires that Tpayrxpp iS
full row-rank, implying M R < P. Hence, it follows the same reasoning made in Theorem 3.7
for the uniqueness condition, leading to the same condition obtained for the code matrix and
allocation tensors.

From (3.39) and (3.40), if the code matrix W € CM*# is composed just by nonzero elements

T T
and the allocation tensors are chosen such way that C?:l) o Cf_) is full row-rank for all
f eA{1,..., F}, then the unfolded matrix Ty pxpp is full row-rank.

4.4 Complexity analysis of algorithms

In Table 4.6, we compare all algorithms in terms of its computational complexity for the
TST and STF systems, taking into account more onerous operations at each iteration such as
matrix inversions and complex multiplications.

Table 4.6: Computational complexity per iteration.

Computational complexity
Algorithms TST system | STF system
ALS O((JP)?) + O + OM®) | O(FP)?) + O + O(FMP)
LM O((JP)*) + O((NR+ KM)?) O((FP)?) + O(NR+ FKM)3)
ALM O((JP)?) + O((NR)®) + O((KM)3) | O((FP)?) + O((NR)?) + O((FKM)?)
KLST O((RM)?) + O((RM)?) O((FRM)?) + O((FRM)?)

fRemember that the KLS algorithm is a non-iterative procedure.

For the ALS algorithm, we compute two pseudo-inverses for each estimation of symbols
and channels at each iteration, which are implicit matrix inversions and complex multiplica-
tions corresponding approximately to O((JP)?) + O(R?) + O(M?) and O((FP)?) + O(R?)
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+ O((FM)3) for the TST and STF systems, respectively. The LM algorithm involves a
matrix inversion to estimate each new parameter variation corresponding approximately to
O(NR+KM)?) and O((NR+ FKM)?) for the TST and STF systems, respectively. As sym-
bols and channels are alternately estimated in the ALM algorithm, there are two matrix inver-
sions which correspond respectively to O((NR)?) + O((KM)?) and O((NR)?) + O((FKM)?)
for the TST and STF systems. The LM and ALM algorithms approximately involve O((.JP)?)
and O((F P)?) complex multiplications to compute the Jacobian matrix for the TST and STF
systems, respectively.

The KLS algorithm involves only one pseudo-inverse, which are implicit matrix inversion
and complex multiplications corresponding approximately to O((RM)?) + O((RM)?) and
O((FRM)?) + O((FRM)?) for the TST and STF systems, respectively. Differently from the
ALS, LM and ALM algorithms, the KLS algorithm is a non-iterative method and consequently,
involves one iteration. In general, the KLS is the least complex. According to Table 4.6, the
ALS is the least complex iterative algorithm and LM algorithm is the most complex. The
simplification done to achieve the ALM algorithm allows us to reduce the complexity of the
LM algorithm as desired. In order to illustrate the values in Table 4.6, we give some examples
of design parameters for four values of P, K, J = F, and R in Figures 4.1, 4.2, 4.3 and 4.4,
respectively.

N=10, P=4, M=2, R=2, K=2, J=F=2, P=4,6,8,10
9 TST system 1& STF system

10°

=
o

Computational complexity
e = = = = = =

(=

=
(@]
[EEY
(@]

200 400 600 800 1000 200 400 600 800 1000
Iterations

Figure 4.1: Computational complexity: Influence of the number P of data blocks.

The difference in the complexity between the LM and ALM are not significant when com-
pared to the ALS algorithm for both systems. The number of data blocks P has more influence
on the variation of complexity of the ALS algorithm than the LM and ALM. In the same way
that the variation of the number of receive antennas K affects more the complexity of the LM
and ALM algorithms than the ALS for both systems.

The variations of J do not significantly change the complexity of the LM and ALM for the
TST system as happens with variations of F' for the STF system. From Figure 4.4, we can
observe that the increase of the number of data streams directly leads to an increase in the
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N=10, P=4, M=2, R=2, J=F=2, K=2,4,6,8

TST system STF system
10’ \ i 10° ‘ ‘ System
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% 108’ 108,
210" 10
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Figure 4.2: Computational complexity: Influence of the number K of receive antennas.
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Figure 4.3: Computational complexity: Influence of the spreading length J and of the number
F of subcarriers.

complexity of all algorithms. From the variations of P, K, J, R, observe that the KLS algorithm
is always the least complex for the TST system. However, for the STF system, the increase of
the number of data streams and of subcarriers may lead to greater complexity for the KLLS than
the ALS algorithm, depending on the number of iterations required for the ALS convergence.

4.5 General discussion

Table 4.7 presents a resume of the identifiability conditions of the ALS algorithm for both
systems developed in Section 4.1. By construction, the LM and ALM algorithms do not require
to satisty identifiability conditions and the KLS method requires that two matrix unfolding re-
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N=10, P=4, M=2, K=2, J=F=2, R=2,4,6,8
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Figure 4.4: Computational complexity: Influence of the number R of data streams.

lated to the code and allocation structures are full rank, which lead to the uniqueness conditions
in Table 3.1.

Table 4.7: Summary of the identifiability conditions with N > R and K > M (or, N > QR
and K > QM).

ALS TST system STF system
multiple users [ one user
for M =R wfg)r = eIt Wyn,rj = eI iR Wy = €27 R
(S0 UTE B0 11 | 1T o 1T, | ) = 1pn O =1
for M < R | J > Jmin (see Tab. 4.1) | J > Jupn (see Tab. 4.1) P>R
w'sgl?h, — e27i R Wi, r,j = V273 iR Win,r = 27 iR
CI(ETQ) =1, Cl(f.’q) =1} Cg? =1%, C;I;I.) =13 C.(S*). = 1pxr, C.(;Q. =1lpxm
c =1
*. PxM
37| Cgcs*) full column-rank
for M > R P>M
Wy = eiZW%
C® =1pxpxr, C?j)p =1y
C'?* full column-rank, Vf

The time spreading mode in the code tensor permits to derive a minimum value of the
spreading code length J that ensures the LS identifiability of channel and symbol matrices for
the TST system when M # R. As the spreading code for the STF system is a matrix, the
structure of the allocation tensors has to guarantee the identifiability of channel and symbol
estimates when M # R, which leads to a minimum value of P (P > Ror P > M) and a
stronger restriction on allocation tensors as shown in Table 4.7.

The identifiability condition presented in this table for the TST system is based on the
received signal tensor modeled with the PT-(2,4) model. Rewriting as a constrained CP model,
it allows to provide another condition by relaxing the restriction on the allocation matrices and
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imposing W jy g full column-rank (J > MR).

From the analysis of identifiability conditions, we can conclude that the T'ST system is more
flexible to design the allocation structures than the STF system. For the TST system, it is also
possible to guarantee the solution uniqueness by imposing a stronger restriction on the code
tensor instead of the allocation structures. Remark that the identifiability conditions for the
TST system with one user can be directly derived from the conditions for the multiuser TST
system by @) = 1.

The transmission rate (in bits per channel use) is given by

Ry, = 1log,y(p), (4.140)

where 1 denotes the cardinality of the information symbol constellation and the ratio 7 is equal
to T = £/p and 7 = B/pr for the TST and STF systems, respectively. Thereby, the transmission
rate for the STF system is limited by 7 = 1/mF since P > M R in accordance with the uniqueness
results discussed in Chapter 3. Therefore, the transmission rate for the STF system depends
on the number of transmit antennas M, which does not happen for the TST system due to the
flexibility of uniqueness condition by an appropriate choice of the code tensor with J > MR
(see Table 3.1).

In terms of spectral efficiency, the STF system in the FDMA context divides the available
bandwidth B into F' disjoint frequency bands, i.e. B/F Hz for each subcarrier and the data
streams are repeated over these bands. Considering the symbol period T, the total bandwidth
used for the system is Bsrp = /1 Hz. For the TST system in the CDMA context, all symbols
are transmitted using the same frequency band. For the available bandwidth B, the reciprocal
of B defines the duration of a pulse, i.e. the chip interval /s, which gets Brst = 7/ Hz. Thus,
each system can theoretically achieve the same spectral efficiency for the same total bandwidth
B and the same symbol period T'. Nevertheless, the FDMA-MIMO system can achieve higher
spectral efficiency than CDMA in practice.

4.6 Simulation results

In this section, we present some simulation results considering the proposed receivers based
on four algorithms: ALS, LM, ALM, and KLS, which jointly estimate the symbol matrix S €
CN*® and the channel matrix H € CK*M or tensor H € CF*5*M in the presence of the additive
noise assumed to be zero-mean complex-valued white Gaussian.

The total number of Monte Carlo runs (L) is fixed equal to 2000, which corresponds to 2000
random wireless channels, each one with different symbol sequences randomly drawn from a
PSK constellation, different random noise sequences and different random allocation structures
subject to the uniqueness and identifiability results. Assuming flat Rayleigh fading propagation
channels, a different random initialization ﬂl:0 is also used for each run. The code matrix
W € CM*E and the code tensor W € CM*EXJ are constructed based on the Vandermonde
structure.

The performance associated to the proposed receivers is evaluated by means of Monte Carlo
simulations in terms of bit-error rate (BER) and normalized mean square error (NMSE) on
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channel estimation defined as
2

1 L HHl_HZ(oo)
L L

=1

NMSEL, = 101og,, £ (4.141)

where ﬂl(m) is the channel matrix (or an unfolded matrix H y pps for the STF system) estimated
at convergence of the [-th run. The BER is calculated by averaging the results obtained for all
data streams and all Monte Carlo runs. The signal-to-noise ratio (SNR) is determined by

2

where X and V are, respectively, the received signal tensor without noise and the additive noise
tensor. The SNR is set by adjusting an adequate noise variance.

The convergence of algorithms is decided when the errors between the noisy received signal
tensor and its values reconstructed using the channel and symbol matrices estimated at two
successive iterations are such as

<1079, (4.143)

with ey = H/f' — .)2(“)” , X and .f(l-t) denote, respectively, the noisy received signal tensor and
its estimate at it-th iteration. In another way, the convergence is considered when the error
between iterations it — 1 and ¢t does not significantly change.

The convergence speed of algorithms is evaluated in terms of the NMSE of received signal
estimation, constructed by symbol and channel estimates at each iteration ¢t, defined as

~ ~ 2
L |X — X
1 l 1(it)

=1

, , (4.144)

X

F

where /\?l and 221(“) are, respectively, the noisy received signal tensor and its estimate at the
it-th iteration of the /-th run.

According to the uniqueness analysis investigated in Chapter 3, we assume the knowledge
of one symbol in order to eliminate the scaling ambiguity of the channel and symbol estimates
inherent to the models related to the TST and STF systems. The KLS procedure is an non-
iterative algorithm and does not present the ambiguity problem since it explores the structure
of the Kronecker product from a priori knowledge of some transmitted symbols.

In all simulations, the code (W € CM*® or W € CM*F*/) and the allocation structures
(C® ¢ CP*F and CH) € CP*M  or ¢S ¢ CI*P*E and ¢M) € CF*P*M) are assumed to be
known at both transceiver and receiver. By default, we consider the system configuration below:

For the TST system:

mr

2T R

e Vandermonde structure for W.; : wy,,; = €

o CT 5 ™" full row-rank . (4.145)

o ¥ =1%, ™ =17,
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For the STF system, when M = R:
127 12

e Vandermonde structure for Wy x g : Wy, = €7 3R
T T
° C?f) o Cf_) full row-rank for all f (4.146)

° C.(E) = 1pxr, C.(Z.{) =1lpxm

and when M < R:

27

e Vandermonde structure for Wy xp : Wy, , = 2" iix,
(ORNFION

° Cf” o Cf,, full row-rank for all f

° C,(E) = 1pyrg, Cf) full column-rank

L C.(ﬁ) = 1F><M;C§7.-.[) =1pxm

(4.147)

Firstly, we study the influence of several system parameters for the TST and STF systems as:
the spreading code length (.J), the number of phases of the PSK modulation for representing the
data symbols, the number of subcarriers (F'), of blocks (P), of data streams (R), and of receive
antennas (K). In the sequence both systems are compared regarding the symbol recovery. For
this performance analysis, the ZF receivers, defined in (4.53) and (4.55), are employed assuming
a perfect knowledge of the channel coefficients. Let us recall the receivers for the TST and STF
systems denoted, respectively, by ZF-TST and ZF-STF.

A ~ T
S = Xywprsx (Ips ® H) Gpouxn) (4.148)

S = Xnxrri ((Ip ® bdiag(Hy., ..., Hp.)) Trrarcr) . (4.149)
Since the uniqueness and identifiability conditions are only sufficient conditions, we study
the influence of these restrictions on the performance of the ALS algorithm in terms of BER
and channel NMSE. The influence of a priori information on the performance of the KLS al-
gorithm is evaluated by employing the knowledge of one symbol and one row of the symbol
matrix. We establish a comparison between the performance of all proposed receivers in terms
of symbol recovery and convergence speed. The TST coding is compared with well-known ten-
sor approaches, such as KRST [53] and STM codes [55], using the ALS algorithm. The BER
performance of the TST system for multiple users in the transmission is computed.

4.6.1 Performance analysis of the TST system

Let us consider the ZF receiver to analyze the influence of the system parameters on the
performance of the TST system. Figure 4.5 shows the BER versus SNR for five values of
the spreading code length (J € {1,2,4,6,10}). Note that the BER is canceled for a SNR =
{18;12;12;10} dB for J = {2;4;6;10}, respectively. From this figure, we can conclude that
an increase of J induces a significant performance improvement in terms of symbol recovery.
It is important to remark that the case J = 1 corresponds to the ZF receiver proposed in
[59], the improvement obtained is due to the extra time spreading introduced by the TST
coding. Evidently, an increase of J provides a better performance at the cost of a computation
complexity increase.
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Figure 4.5: ZF-TST receiver: Influence of the spreading code length.
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Figure 4.6: ZF-TST receiver: Influence of the number of phases of PSK modulation.

Figure 4.6 shows the BER performance for four PSK constellations: 2- (BPSK), 4- (QAM
or QPSK), 8- and 16-PSK. We verify that the symbol recovery is improved for low numbers of
phase. The greater the number of phases, the greater will be the number of bits to represent
each symbol. Higher-order PSK modulation leads to higher transmission rate but also higher
bit-error rates, since the total energy per symbol is divided per bit and hence the energy per
bit is reduced. In practice, the use of different PSK constellations depends on the transmission
rate required and the difficult to implement it.

In Figure 4.7 we have plotted the BER versus SNR for two different values of the number
of blocks (P € {4,10}) and of the spreading code length (J € {1,2}). Note that the BER
performance can be significantly improved by increasing either the number of data blocks or
the spreading code length, since both actions induce an increase of time diversity. However,
the increase of the number of data blocks leads to a decrease of the transmission rate given by
(4.140) (proportional to the ratio £/p). We obtain the same BER performance for J = 2 and
P =4 and J =1 and P = 10, but the first case provides a transmission rate twice higher
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TST system: N=10, M=2, R=2, K=2, 16-PSK

Figure 4.7: ZF-TST receiver: Influence of the number of data blocks.
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Figure 4.8: ZF-TST receiver: Influence of the number of data streams.

(exactly, 2,5 times).

The transmission rate decreases from 2 to 4/5 bit per channel use when R is decreased
from 5 to 2. On the other hand, as expected and shown in Figure 4.8, the BER performance
is improved when R is reduced from 5 to 2, due to the fact that fewer symbols have to be
estimated using the same number of received signals. It illustrates the trade-off between error
performance and transmission rate that can be achieved with the proposed TST coding. It is
interesting to note that the error performance for J =1 and R = 2 is close to the one obtained
with J = 3 and R = 5. Hence, the TST coding by adjusting J allows to obtain almost the same
performance but providing a higher transmission rate.

Figure 4.9 shows the BER versus SNR for two different values of the number of receive
antennas (K € {2,4}) and two spreading code lengths (J € {1,2}). As expected, the use of
more receive antennas leads to a better BER performances. It is interesting to notice that the
TST coding provides the same performance employing half of the number of receive antennas
(K = 2) than the receiver proposed in [59] with K = 4 antennas thanks to extra time diversity.
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TST system: N=10, P=4, M=2, R=2, 16-PSK
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Figure 4.9: ZF-TST receiver: Influence of the number of receive antennas.
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Figure 4.10: ZF-STF receiver: Influence of the number of subcarriers.

4.6.2 Performance analysis of the STF system

The ZF receiver is employed to analyze the performance of the STF system analogously
to the TST system. In Figure 4.10 we have plotted the BER versus SNR for five values of
the number of subcarriers (F' € {1,2,4,6,10}). It confirms the performance improvement by
increasing of the frequency diversity as well as the time diversity for the TST system. The
frequency diversity is eliminated when F' = 1 and it also leads to the receiver of [59]. Observe
that the number of subcarriers must be supported by the total available bandwidth, since the
system bandwidth has to be divided into F' disjoint frequency bands.

Figure 4.11 shows the BER versus SNR for four PSK modulations: BPSK, QPSK, 8-PSK,
and 16-PSK. Analogously to the TST system, low values of phase provide better BER perfor-
mances.

According to Figures 4.12 and 4.13, we obtain almost the same performance for (F = 1,
P=10)and (F =2, P=4),and (F =1, R=2) and (F = 3, R = 5), respectively. A way
to reduce the error rate without changing the transmission rate R, = 2 is by the use of more
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Figure 4.12: ZF-STF receiver: Influence of the number of data blocks.
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STF system: N=10, P=10, M=2, K=2, 16-PSK
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Figure 4.13: ZF-STF receiver: Influence of the number of data streams.
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Figure 4.14: ZF-STF receiver: Influence of the number of receive antennas.

subcarriers (with F' = 2 and F' = 3). The transmission rate can be increased by appropriately
setting R and/or P, however the BER performance is impaired.

Figure 4.14 shows the BER versus SNR for two values of the number of subcarriers (F €
{1,2}) and two values of the number of receive antennas (K € {2,4}). The use of two subcarriers
allows to obtain the same BER performance employing half of the receive antennas.

4.6.3 Comparison between TST and STF systems

In order to analyze the influence of J and F' on diversity gain of the TST and STF systems,
we fix all parameters including J = F' and employ the random allocation structures such that
Cc®' o c®’ and CS?:UT o C;S.)T for all f € {1,..., F'} are full row-rank, which lead to the same
diversity gain for both systems as viewed in Chapter 3.

The BER curves obtained with the ZF receiver for the TST and STF systems are plotted
in Figure 4.15 for five values of J = F € {1,2,4,6,10}. For J = F = 1, verify the same
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Figure 4.15: TST x STF systems: Influence of the diversity gain by J and F.
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Figure 4.16: Influence of the number of receive antennas: BER versus SNR.

performance for both systems as expected. When J = 1 and F' = 1, the extra time and
frequency diversities are respectively eliminated resulting an equivalent system. Assuming a
perfect knowledge of the channel coefficients, we have the same number of system parameters to
estimate, i.e. NR. When J and I are increased from 2 to 10, we note that both systems tend
to provide almost the same curves of BER, which allows to confirm that the time and frequency
diversities can lead to an equivalent diversity gain.

In Figures 4.16 and 4.17 we have respectively plotted the BER and the channel NMSE versus
SNR for three values of the number of receive antennas (K € {2,4,6}). The purpose is to study
the uniqueness conditions discussed in Chapter 3 and the LS-identifiability of the symbol and
channel estimates deduced in this chapter for the ALS algorithm. According to Tables 3.1 and
4.7, the uniqueness condition for the STF system imposes K > FM and the identifiability
conditions for both systems are derived by assuming K > M.

From Figures 4.16 and 4.17, observe that even when K < M the ALS algorithm for both
systems can still estimate uniquely the symbols and channel coefficients. It is important to at-
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Figure 4.17: Influence of the number of receive antennas: Channel NMSE versus SNR.
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Figure 4.18: Influence of the number of data blocks: BER versus SNR.

tend that the proposed conditions of uniqueness and identifiability are only sufficient conditions.
In this sense, even if the conditions are not satisfied we may perfectly estimate the symbol and
channel. Note that the STF system has more channel coefficients to estimate and, therefore,
the ALS algorithm for the TST system provides a better performance in terms of symbol and
channel estimation.

Figures 4.18 and 4.19 show, respectively, the BER and channel NMSE versus SNR obtained
for P € {2,4}. The ALS algorithms are employed to analyze the influence of P on the uniqueness
conditions for both systems established in Chapter 3 (see Table 3.1). Both allocation structures
are randomly chosen such that C(H)T o C(S)T and C?{.)T o C;S.)T for all f € {1,..., F'} are full
row-rank implying P > MR.

According to these figures, the channel and symbol of the STF system can not be properly
estimated when P = 2 < MR, despite the convergence of the ALS algorithm. As the unique-
ness condition for the TST system depends on both allocation matrices and code tensor, the
symbol and channel estimations can be achieved even when P < M R by appropriately adjust-
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Figure 4.19: Influence of the number of data blocks: Channel NMSE versus SNR.
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Figure 4.20: KLS-TST Receiver: Influence of a priori information in the symbol recovery.

ing the code tensor (J > MR). Furthermore, observe that the TST system provides better
BER performance since the STF system has four times more channel parameters (F = 4) to
estimate. Hence, the TST system affords a better trade-off between transmission rate and error
performance than the STF system.

4.6.4 KLS algorithm: Influence of a priori information

In order to evaluate the influence of a priori information considered in the KLS algorithm,
we consider three different values of R € {2,4,6} and assume the knowledge of only one symbol
and one row of symbols to estimate the channel coefficients. Figures 4.20 and 4.21, and 4.22 and
4.23 show the BER and channel NMSE versus SNR for the TST and STF systems, respectively.

As expected, the knowledge of more than one symbol improves the channel estimation and
consequently, the symbol recovery. The KLS algorithm for the TST system estimates better
the channel coefficients than the one for the STF system (mainly for R > 2). Because the STF
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Figure 4.21: KLS-TST Receiver: Influence of a priori information in the channel estimation.
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Figure 4.22: KLS-STF Receiver: Influence of a priori information in the symbol recovery.

system has F' times more channel coefficients to estimate by using the same priori information
about the transmitted symbols. Consequently, the poor channel estimation for the STF system
leads to a poor symbol recovery.

4.6.5 Comparison between different algorithms

In the sequel, the ALS, LM, ALM and KLS algorithms are compared in terms of the symbol
recovery and convergence speed for both TST and STF systems. The KLS algorithm is employed
assuming the knowledge of one symbol, i.e. the first transmitted symbol being s;; = 1, and
of one row of symbols, i.e. the first row of symbols being S;. = 1%, at both transceiver and
receiver.

In Figures 4.24, 4.25, 4.26 and 4.27 we have plotted the BER versus SNR for two different
values of the spreading code length J € {2,6}, of the number of subcarriers F' € {2, 8}, and of
the number of data streams R € {2,4}. From these figures, we observe that the ALS, LM and
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Figure 4.23: KLS-STF Receiver: Influence of a priori information in the channel estimation.
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Figure 4.24: TST system: Performance of all receivers for two values of J.

ALM algorithms present close performances at the convergence given by (4.143) for different
values of J, F' and R.

According to Figure 4.24, the KLS-TST receiver employing the knowledge of one row of
symbols can considerably improve the symbol recovery by increasing of the number of spreading
code length from 2 to 6. From Figure 4.25, we can observe that the BER performance of the
KLS-STF receiver can not be improved by increasing F' as happens for the KLS-TST with
J. For a BER equal to 1073, the gap between KLS-STF (assuming the knowledge of one row
of symbols) and other receivers (ALS-STF, LM-STF and ALM-STF) is around 4 dB for both
values F' = 2 and F' = 8. It can be explained by the larger number of channel coefficients to
estimate for the STF system as mentioned above.

From Figures 4.26 and 4.27, we can note that the decrease of the number of data streams
from 4 to 2 reduces the difference between the BER curves obtained with the KLS algorithms
and other algorithms (ALS, LM and ALM) for both systems. For a BER equal to 1073, the
gap between KLS-TST (assuming the knowledge of one row of symbols) and other receivers is
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Figure 4.25: STF system: Performance of all receivers for two values of F'.
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Figure 4.26: TST system: Performance of all receivers for two values of R.
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Figure 4.27: STF system: Performance of all receivers for two values of R.
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Figure 4.28: TST system: Convergence speed of all algorithms.
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Figure 4.29: STF system: Convergence speed of all algorithms.

around 2 dB and 3 dB for R = 2 and R = 4, respectively. For a BER equal to 1072, the gap
between KLS-STF and other receivers is approximately 4 dB and more than 9 dB for R = 2
and R = 4, respectively.

In order to compare the convergence speed of the ALS, LM and ALM algorithms, we have
fixed the same total number of iterations for all algorithms and have plotted the NMSE of
received signal at each iteration. Figures 4.28 and 4.29 show the NMSE of received signal versus
iteration for two values of R € {2,4} and of SNR (SNR=15dB and SNR=30dB). Observe that
all algorithms tend to converge to the same value of the NMSE of received signal estimation
constructed by the symbol and channel estimates.

Note also that the number of data streams drastically affects the behavior of the convergence
speed of all algorithms for both systems. For smaller values of R (R = 2), according to Figures
4.28 and 4.29, the LM and the ALS algorithms respectively have the slowest and the fastest
convergence. However, there is an inversion of the convergence behavior when the number of
data streams is increased to R = 4. The LM becomes faster than the ALS algorithm mainly for
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Figure 4.30: TST system: Convergence of all algorithms with initialization based on the KLS
method.

higher values of SNR. For SNR=30dB, the LM converges in around 50 and 60 iterations and
the ALS needs more than 100 and 600 iterations for the TST and STF systems, respectively.
An interesting point is that the ALM algorithm provides convergence curves between both ALS
and LM algorithms.

A disadvantage of the ALS algorithm is that it involves the pseudo-inverse calculus and the
identifiability of the estimates depends on the unique existence of the pseudo-inverse. The LM
is the most complex algorithm and can converge slower than the ALS and ALM for low values of
the number of data streams R. Therefore, the ALM is a good option providing a good trade-off
between computational complexity and convergence compared to the ALS and LM algorithms.

All previous simulations were obtained from a random initialization of the symbol and chan-
nel matrices (or channel tensor). An interesting option to improve the convergence speed of
the ALS, LM and ALM algorithms is to employ the KLS method as an initial stage with the
purpose of providing a better initialization of the estimates than random initialization.

In Figures 4.30 and 4.31 we have plotted the NMSE of received signal versus iterations in
order to evaluate the influence of the initialization based on the KLS method. These initializa-
tions take into account the knowledge of only one symbol, remember that this information is
already used to eliminate the scalar ambiguities. Thus, it is not required additional information
known a priori. According to both figures, we can verify the improvement obtained by the
initialization based on the KLS method for both systems.

The employment of the KLS method as initial step always allows to obtain faster convergence
and can provide a convergence to a global optimum. It is very important because the ALS, LM
and ALM algorithms are strongly dependent on the initialization, can converge very slowly to
a global minimum or even a local minimum.
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Figure 4.31: STF system: Convergence of all algorithms with initialization based on the KLS
method.

4.6.6 Comparison with KRST and STM

In order to evaluate the performance of our proposed ST coding, we compare with two other
tensor approaches: Khatri-Rao Space-Time (KRST) and Space-Time Multiplexing (STM) codes
proposed, respectively, in [53] and [55]. These approaches rely on tensor decompositions for mod-
eling of the received signals and achieve variable rate-diversity trade-offs for any transmit /receive
antenna configuration or signal constellation.

The KRST coding [53] combines a linear spatial precoding with a data spreading only over
the time dimension. In [55], a third order tensor coding performs jointly spatial multiplexing
and ST coding, leading to an additional spreading over all transmit antennas. Differently to the
KRST, the transceivers associated with the TST, STF and STM techniques transmit a linear
combination of R data streams composed of N symbols each. It introduces some flexibility at
the transceivers by choosing a number of data streams different from the number of transmit
antennas. Furthermore, the TST and STF systems provide different degrees of space and time
spreading and multiplexing, which depend on the choice of the allocation structures.

In both works [53] and [55], a joint semi-blind channel estimation and symbol detection is
afforded thanks to the ALS method. In this sense, the ALS receivers for the TST and STF
systems are considered in the next simulations. In order to have an adequate comparison with
the proposed system under the same conditions, we fix the same design parameters for all
systems and employ the Vandermonde structure for the codes. In [53], the transmitted symbols
are precoded by a constellation rotation (CR) matrix. According to the design rule in [53] and
by simplicity, this matrix is set equal to the identity matrix for achieving full diversity gain.

Figures 4.32 and 4.33 show the BER versus SNR for QPSK and 16-PSK, respectively. Ac-
cording to these figures, the ALS-TST based receiver outperforms the ALS-STF, ALS-STM and
ALS-KRST based receivers, due to its higher diversity gain. The ALS-KRST receiver provides
the worst performance of BER, mainly for QPSK constellation. Remark that both TST and
STF systems allow to improve even more the symbol recovery by increasing J and F. The
KRST and STM codes do not provide this flexibility introduced by extra diversities and the



100 Chapter 4. Semi-blind receivers

N=10, P=4, M=2, R=2, K=2, QPSK

=1
‘ | | | AKRST
=STM
*TST: J=2
i ©STF: F=2
*TST: J=6
\ o STF: F=¢
.
10‘4 Q \&
: —
\\é T—a
-5 X \Q ! ! ! ! ! ! !
10 0 2 4 6 8 16 18 2C

10
SNR (dB)

Figure 4.32: Comparison with KRST and STM for QPSK.
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Figure 4.33: Comparison with KRST and STM for 16-PSK.
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maximum achievable diversity gain of both codes is K min(P, M). For P > M and M = R, the
TST and STF systems can achieve maximum diversity gains JP and F'P times more than the
ones for the STM and KRST.

Observe that the transmission rate of the KRST system is limited by the number of transmit
antennas M because the number of data streams R is forced to be equal to M. Another point
that deserves attention is that the uniqueness of symbol and channel estimates for both KRST
and STM systems are ensured from the knowledge of one row of symbols. Hence, for N = 10,
10% of the transmitted symbols are known at the transceiver and receiver, which leads to 10% of
reduction of the transmission rate. We have previously shown that both TST and STF systems
require only one symbol to eliminate the scaling ambiguities. In Figures 4.32 and 4.33 for R = 2,
5% of the transmitted symbols for the TST and STF are known at the transceiver and receiver,
and the transmission rate is reduced 5%. However, this reduction can even be smaller for higher
values of R.

4.6.7 Generalization of TST systems to multiuser case

Next, we evaluate the performance of the multiuser TST system with the proposed semi-
blind receivers and taking into account the knowledge of only one symbol per user. Let us
consider two design configurations as follows:

) (q) 27 (g—1)RM+(r—1)M+m

e Vandermonde structure for W s, oru : Wyy'p i =€ QRM

Case 1:{ o CHD" o ¢G0T 1135 no zero-rows for all q (4.150)
° cg D) = 1%, (_ ) = 17, for all ¢

and

e Vandermonde structure for W' . wfnq)r ;= ePmiRa

Case 2:< o {(C(H’l o CE1 ) <C( AT CcQ > } full column-rank . (4.151)
. CES#I) =17, cgg’q) =1},, for all ¢

Both configurations represent two different forms to satisfy the uniqueness condition inves-
tigated in Chapter 3, being resumed in Table 3.1. For Case 1, the code tensor for each user is
chosen such that W ;g is full column-rank, implying J > QRM. The allocation matrices for

T T
each user are randomly chosen such that the k-rank of [(C(Hvl)T o C(S’l)T) e (C(HvQ)T o C(S»Q)T) ]

is at least equal to 1.
For Case 2, the same code tensor is fixed for all users, i.e. W) = = W@ Wthh leads to

T
k (W xorm) = 1. The allocation matrices are randomly chosen such that [ C(Svl)T)

: (C(H,Q)T <>C(S7Q>T) } is full column-rank, implying P > QRM.

We show in Figures 4.34 and 4.35 the BER performance for all proposed receivers considering
two and four users in the transmission. In Figure 4.34 the BER is computed by averaging the
results obtained for all users. We present this average BER for all users in the red curves and
the BER results for each user in the blue curves in Figure 4.35.
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Figure 4.34: Multiuser TST system: Performance of all receivers for Case 1. For better vi-

sualization, the BER curves for each user are separately plotted for each algorithm in Fig.
4.35.
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Figure 4.35: Multiuser TST system: Performance of all receivers for Case 1, (-): averaged over
all users and (—): each user. The red curves are also plotted in Fig. 4.34 with the purpose of
comparing all algorithms.
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Figure 4.36: ALS-TST receiver: Condition on the code tensor for Case 1.

From these figures, we can verify that the transmitted symbols for each user are correctly
and equally recovered through the knowledge of one symbol per user. As shown for the TST and
STF systems with one user, the performance of ALS, ALM and LM are closed. Interestingly,
the KLS algorithm provides the best symbol estimation, which can be justified by the large
value of the spreading code length (J = 16). In the sense that the channel estimate is computed
taking into account more versions of the received signal for a fixed number of parameters to be
estimated.

We show two plots in order to analyze the proposed uniqueness conditions for multiuser TST
systems. In Figure 4.36 we plot the BER and channel NMSE versus SNR for three values of
the spreading code length (J € {4,8,12}), and in Figure 4.37 we have the same plot for three
values of the number of data blocks (P € {4, 8,12}) instead.

In Figure 4.36 the allocation matrices for all users are chosen according to Case 1. However,
the tensor code is set such that W ;. gras is full rank for the red curves and wh = =W
for the blue curves, i.e. we employ the same code tensor for each user. When all users employ
the same code tensor, it leads to k(W jxgrn) = 1. Hence the proposed uniqueness conditions
are not satisfied if J < QRM or W) = ... = W@ However, we can observe from Figure
4.36 that the channel coefficients and all transmitted symbols are correctly estimated even when
W orn is full rank with J < QRM.

We employ in Figure 4.37 the same code tensor for all users in accordance with Case 2. For
the red curves, the allocation matrices for all users are set according to Clase 2 and contrarily for

the blue curves, we do not impose that {(C(H*l)T o C(Svl)T)T o (C(H’Q)T o C(SvQ)T>T] is full rank.
Figure 4.37 shows that we can correctly estimate the channel coefficients and all transmitted
symbols even when {(C<H»1)T<>C(571)T)T (C(H*Q)TOC(SVQ)T)T] is full rank with P < QRM.
However, random allocation structures can not ensure the uniqueness specially when P < QRM .
From both figures 4.36 and 4.37, we can observe that when W gras or {(C(H’l)T o C(S’l)T)T

T
: (C<H7Q)T 3 C(SvQ)T) is full rank, the channel and symbols are appropriately recovered even
with J < QRM or P < QRM. We also note that when the code and allocation structures
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Figure 4.37: ALS-TST receiver: Condition on the allocation matrices for Case 2.
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Figure 4.38: ALS-TST receiver: Influence of the number of receive antennas for Case 1.

satisfy the uniqueness conditions investigated in Chapter 3, the channel and symbol estimations
present better performances.

According to the identifiability condition for the ALS algorithm, we have indicated to set
K > QQM which means that the number of receive antennas has to be at least equal to the total
number of transmit antennas for all users. Hence the number of available receive antennas can
restrict the total number of users. Nevertheless, we can verify from Figure 4.38 that this condi-
tion on the number of receive antennas is not necessary. The symbol and channel estimations
can be still achieved when K < QM.



Chapter

Conclusion and Perspectives

A new tensor decomposition, PARATUCK-(N;, N), is introduced in this thesis, which gen-
eralizes the well-known PARATUCK-2 model. The uniqueness condition have been derived
for our proposed model. The generalization of two lemmas [67, 68] concerning the Khatri-Rao
product has been derived and employed to deduce the uniqueness and identifiability results.

We have proposed a new tensor space-time coding for MIMO wireless communication sys-
tems. The associated transceiver is characterized by a third-order code tensor and two allo-
cation matrices that allow space-time spreading-multiplexing of the transmitted symbols. The
proposed transmission system can be viewed as an extension of the ST transmission system of
[107] that relies on the PARATUCK-2 tensor model for the received signals. This extension is
derived from the introduction of an extra time diversity.

A performance analysis of the TST system is deduced with the purpose of evaluating the
diversity of information transmitted, which allows us to express a maximum diversity gain in
terms of some system parameters and taking into account the structures of antenna and data
stream allocations per block. This performance analysis has been extended for a space-time-
frequency (STF) system [62] and the maximum diversity gain has also been achieved. The
uniqueness conditions of a generalized PARATUCK-2 model is also established for the STF
system. A comparison between the TST and STF systems has been presented in an unified way
in terms of diversity gain, identifiability and uniqueness conditions.

We have observed from the diversity gain analysis that systems with different allocation
structures can provide different performances and that the diversity gain for both systems de-
pends on the code and mainly on the allocation structures. We can obtain different performances
for the symbol estimation employing the same diversity gain provided by the extra time and
frequency diversities of the TST and STF systems due to the difference of the number of system
parameters to estimate.

Semi-blind receivers have been proposed based on the ALS, LM and ALM algorithms for
the TST and STF systems. The identifiability conditions for the ALS algorithm have been
derived for both systems. The ALS, ALM and LM algorithms for both systems provide the
same BER performance at the convergence. Thus, the difference between these algorithms is
basically concerning the complexity and convergence speed of the algorithms. We have shown
that the behavior of theses algorithms is affected by the variation of the number of data streams.
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Despite a higher computational complexity, the advantage of both LM and ALM algorithms is
that identifiability conditions are not required as happens with the ALS. We have observe that
the ALM algorithm provides curves of convergence and complexity between the curves for the
ALS and LM, leading to a good trade-off.

The uniqueness and identifiability conditions established in this work have been analyzed in
terms of the design parameters of both systems, taking into account the number of data blocks
and of receive antennas. The flexibility of the uniqueness condition for the T'ST system allows to
estimate the symbols even when P < M R by adjusting J > M R, differently to the STF system.
Furthermore, the transmission rate for the STF system is consequently limited by the number
of transmit antennas. Thus, the advantage of the TST system is that the symbol recovery can
be ensured without affecting the transmission rate. Another relevant conclusion corroborated
by our simulations is that both systems can perfectly estimate the transmitted symbols even
when there are more transmit antennas than the receive antennas, i.e. K < M.

According to our performance analysis, TST coding increases the maximum diversity gain.
The introduction of one extra time diversity .J via the third mode of the code tensor induces a
significant performance improvement in terms of symbol recovery and channel detection compar-
atively to existing tensor-based solutions such as: KRST [53], STM [55] and ST-PARATUCK-2
[59], as illustrated by means of simulation results.

A direct non-iterative receiver, herein referred to as KLS, is proposed for the TST and STF
systems based on the structure of the Kronecker product and assuming a priori knowledge of
some transmitted symbols. As expected, the knowledge of more than one symbol improves the
channel estimation and consequently, the symbol recovery. The disadvantage of these algorithms
based on the Kronecker structure is that the channel estimation depends on a priori information
known at the receiver and a poor channel estimation leads to a poor symbol recovery.

The KLS receiver proposed for the TST system is interesting because can provide a BER
performance close to the performances obtained with the receivers based on the ALS, LM and
ALM algorithms or even a superior performance for high values of the spreading code length
J. An increase of the extra time diversity allows to improve the BER performance and for the
STF system, an increase of the extra frequency diversity leads to an increase of the channel
coefficients to estimate which impairs the channel and symbol estimation. The identifiability
conditions for the KLS algorithm are equivalents to the uniqueness conditions proposed in this
thesis. One of the main advantages of the KLS algorithm is that it provides low computational
complexity.

The performance of all algorithms based on the ALS and LM methods depends on the algo-
rithm initialization, the convergence speed can be strongly affected and further these algorithms
can not converge to a global optimum. The KLS method showed interesting results as an alter-
native procedure to initialize algorithms in order to accelerate the convergence speed ensuring
an initialization more closed to the optimal solution. Moreover, this method can be exploited
for different tensor approaches.

We have proposed an uplink processing based on the TST coding with allocation resources
and derived semi-blind receivers from the ALS, LM, ALM and KLS methods. The main advan-
tage is that it is possible to perfectly recovery the transmitted symbols for all users and channel
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coefficients by the knowledge of only one symbol per user without permutation ambiguity. The
uniqueness conditions for multiuser T'ST systems have been established analogously to the case
with one user. Even if the proposed conditions are only sufficient, we have verified that these
conditions always ensure the uniqueness of the estimates.

Some perspectives of this thesis can be highlighted as follows:

e In this thesis, the wireless communication channel is modeled by a random attenuation
of the transmitted signal, followed by additive noise, which relies on an instantaneous
MIMO channel. An interesting generalization would consist in considering a more com-
plex situation with multipath propagation and convolutive channel in order to render the
channel model more realistic analogously to [110, 61]. It would lead to a different tensor
decomposition implying the study of the uniqueness conditions for this new model.

e From some simulations and the performance analysis developed in Chapter 3, we observe
that the allocation structures can provide different performances in terms of channel esti-
mation and symbol recovery. It instigates to derive an optimal structure for the allocation
of transmit antennas and of data streams at each time block in order to achieve a per-
formance optimization. We also could evaluate the multiplexing gain for the TST coding
and derive a tradeoff between both multiplexing and diversity gains, in the sense that
diversity and multiplexing gains tend to provide low error rates and high transmission
rates, respectively.

e A natural extension of this work is to consider the problem of symbol recovery without
the knowledge of allocation and/or code structures at the receiver in military applications.
This extension would involve the study of new uniqueness conditions for ensuring the
identifiability of channel and symbol, properly eliminating the ambiguities.

e Use of the PT-(Ny, N) decomposition for modeling other practical applications, which
would allow to exploit the uniqueness results derived in this thesis.

e The development of new receivers based on the KLS method is an interesting topic for
future research. This procedure can be employed as an initial stage of algorithms or can
be combine with other methods for estimating system parameters, which would allow to
accelerate the convergence speed and/or to ensure the convergence to an optimal solution.
The KLS receiver can be also improved by introducing of an orthogonal code tensor to
replace the precoding with the allocation structures.

e An interesting generalization would consist in deducing new coding structures based on
the TST and STF systems with the purpose of exploiting the angular diversity from the
employ of directional antennas. Directional antennas have been used in advanced systems
to optimize and maximize transmission/ reception in some directions.
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Appendix A

Basic properties

The Kronecker, column-wise Kronecker (called Khatri-Rao), partition-wise Kronecker and
Hadamard products are denoted by ®, ¢, |®| and ®, respectively. We have the following
definitions and properties:

CDi(A)
AoC2[A,®C, ... AreCy]= ; c CIS*R (A.1)
CDr(A)
ARBE[AD@BY .. AQgB@ ] ¢ /xRS, (A.2)
vec(BCAT) = (A ® B) vec(C) € C*1, (A.3)
(A®B)(E®F) = (AE ® BF) € C//*KL, (A.4)
(A @ B)(E 9| F) = (AE [g| BF) € C!/*OKL, (A.5)
(A®B)(HoF) = (AHoBF) € C'/*F, (A.6)
(AOG),, 2 i Girs (A.7)
for A,G € CI*R B € ¢/*S and C € C5*ER E € CR*K F ¢ 5L, H € CB*L, A =
[A(l) o A@ ] e CIxQR 4nd B = [B(l) ... B@ ] e C/*Q5 E = [E(l) ... @ ] e
CRXQK and F = [ FO) ... F@ ] ¢ ¢5%QL,
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Appendix B

Generalization of STF system to multiuser case

Analogously to the TST case, we can generalize the STF MIMO wireless communication
system for () users in the transmission. Each user transmits R input data streams using M
different antennas. We consider a precoding matrix W and two allocation tensors for each
user ¢: the stream allocation tensor C(S9 € R¥*P*R and the antenna allocation tensor C*9 ¢
RFXPXM )

We can write the signal associated with the ¢-th user and the f-th subcarrier transmitted
from the m-th antenna using the n-th symbol period of the p-th block by

R
H,a) (S.q) _ () (q)
f,m n,p Zme ”7’ fpm Cf»Pv - tf,m,r,p an,r (Bl)
r=1
with
A H, ,
iy = Wi ) 0. (B.2)

In the noiseless case of scattering-rich multipath fading channel, the received signal associated
with the ¢g-th user can be written using (B.1) as

M
() _ (Q) ( )
e = X Bty = Zth,mr,p Fkan S (B.3)
m=1

m=1 r=1

G CKXNXP

From (3.28), we can write the overall received signal tensor X'/ associated with

the f-th subcarrier by summing all received signals as

Q Q
x() — Z xfHa) — Z T6D) » g ., S@ (B.4)

g=1

where X0 & X;q) € CEXNxP g(f.9) 2 7}@ € CM*xRxP gnd H(H0) & H;q) € CExM,
From (3.32) and (3.38), we can express three matrix unfoldings of X" as follows

XPprKxN = ZXPFKxN = <QP ) ﬁFKXQFM) TorrvxQrSQRrRxN € CPFKXN, (B.5)
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Q
A
XprNxK = ZX%”FNX;( = (Qpr [® Snxqr) Toprrxqrym Horuxrx € CPFNE (B.6)
q=1
Q
A
XKNxFP = ZX?NX]:p = (Hixgrm @ Snxor) Tormrxrp € CHENXFP (B.7)
q=1
. A A
i Suqn &[S -0 SO € OO, Bqrn £ [y - ] € 00

21501, € C997,

Hprevor = [bdiag<H§P,...,H;}2) bdiag(Hg??),...,H;??ﬂ c CFKXQFM (B g)

1 1
N T harsn 0 TS s 0
Torrvxqr = . Toprrxorm = ,
Q Q
0 T%F)MxR 0 Tgﬂf«ZRxFM
c CQPFMXQR c (CQPFRXQFM (B9>
A 1 T Q Tt QFMRxFP
Torvrxrp = [T%])\/IRXFP e T%]\)JRXFP ] eC : (B.10)

Each matrix T;?])WRxFP can be written using (3.39) and (3.40) as

T T
[Vec (T(ﬂ)1 ) .- -vee (T@P )] 0

' T T
0 [Vec (T;?‘),l ) ... vec (T;?A),P )]

c (CFMRXFP (B.ll)

A
ng])\/IRXFP =

with
@ T @ ™" @™\ " #Ha)T 0T\ " PxMR
vee (T, ) - ovee(T, )| = vee(W@H) o (C0 0 €307) e CP i (B.12)

Applying (B.11) and (B.12) to (B.10), we can rewrite Topymrxrp as

Torvrxrp =
— T —
(vee(wW™) e (e o e ™)) 0
T T T T
0 (Vec<W(1) ) o (Cg{ b C(FS 2 ) )
,,,,,,,,,,,,,,,,,,,,,,,,,, e
(Vec (W(Q) )T > (Cgﬂ Q)TO Cgs Q)T> ) 0
T\ " #T oM"Y
0 vec(W(Q) ) o <CF,,’ o Cp” )
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Uniqueness analysis

The uniqueness conditions for the STF system with multiple users can be studied in accor-
dance with Theorem 3.8 for the TST system. Let us consider the unfolded matrix Xgyxrp
defined in (B.7) to analyze the uniqueness of this model.

From the selection matrix ®@gpyr € COFMREXQFME defined in (3.90), we can relate the

Kronecker and partition-wise Kronecker product by

Ho.or |2 Snxor = Hixorm @ Snxor) Porvn, (B.14)

where ®prp selects QF MR columns of Hycxgrar @ Syxor € CENXQFMQR,

Applying (B.14) to (B.7), it gets

Xxnxrr = (Hgxqrm |8 Snxor) Tormrxrr = (Hixorv © Snxor) &)QFMRTQFMRXFP-
(B.15)

Considering ngQR = [g(l) S(Q)} and I:IKXQFM = [ﬂﬁlm I:Ig?lFM

] as alterna-
tive solutions that satisfy (B.7), we can write Syxor = Syxor U and Hyoryv = Higxorm V,
with
uth .o ygle) AVACSIORENUI Ve Ne)

: c CQRXQR7 vV = : . e CRFMxQFM

U= : :
vl .. yvee)

U@ ... U
(B.16)

non-singular. From the Kronecker property (A.5), Xxnxrp can be rewritten using as

(Hixgrm @ Svxor) (V| U) Tormrxrr = (Hirxorm @ Svxor) ‘i’QFMR TorvmexFP-
(B.17)

Theorem B.1. Suppose that Syxgr and Hyworar are full column-rank, and the perfect knowl-
edge of the code matric W9 and the allocation tensors CS9 and C9 for all users. If we
choose W@ and CS9 and C"9 such that wig?T # 0 for allm € {1,...M}, r € {1,..., R}

T T
and g € {1,...,Q}, and {(C?f’l)To Cgﬁ’l)T> (C%’Q)TO Cf’Q)T> ] full column-rank for

all f € {1,..., F} implying P > QM R, then we can uniquely estimate Syxor and Hyxgra up
to a scalar factor a, 1.e.

N 1 -
SW=a8@, H =~ H (B.18)
Proof: If Sy.or, Hixqgryu and Ty g, pp arve full column-rank, then (B.17) can be rewritten
as
A\ ‘@’ U= &)QFMR —
AVASR) Ut
: 2 : _ COFMQRXFMR
: : = ¥y
V(@:9) U@

= [ Eq-yrmo+q B-nrmororq - B-nrmori-no+q | > (B.19)
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and from the definition in (3.92), (B.19) leads to

Ul(j,q) U@ — Ip, Vi=1,..FMVq=1,..0Q,

— V@) oUD =1y Voe=1,..0, (B.20)
AVACBY 0 U@y 0
0 V(@Q) 0 U@e)
Thus, we obtain
S@ — §@ ylea) H©® — A@ v (B.22)

The only solution for V@9 @ U@?) = I, for ¢ = 1,...,Q, happens when both matrices
U@9) and V@9 are identity matrices up to scalar factors that compensate each other, i.e.
U@ = q,Ip and V@9 = 1/a, Iy, which leads to (B.18).

Observe that Toryrxrp given in (B.13) is full row-rank if

|:V€C (W(I)T)T o <C§Z{,’1)T<> Cf’l)T>T cee vec (W(Q)T>T o (C?{,’Q)To Cf,Q)T>T1
€ CP=eME —(B.23)

is full column-rank for all f € {1,..., F'}, implying P > QMR.
We can rewrite (B.23)

T T
[vec(WRXQM)TO {(C%,l)TO Cf’l)T) (Cgfva)To Cf’Q)T) H _

T ™ T -
{VQC(WRXQM)T<><C§Z-O <>C§§.) ) @QMR:| (B.24)

with
Wion 2 Wl . W(c»T} € CRxQM (B.25)
c 2 [gien . cgjﬁt@)] e CPxQM, (B.26)
Cﬁf.) A _ij” CS@Q)] € CPXQR (B.27)

C?f() and Cf,) represent the global allocation matrices associated with the f-th subcarrier which
concatenate the antenna and stream allocation matrices for all users, ®gyp € COMRRXQMR

T ™ T
denotes a selection matrix which selects QM R columns of (CSZO o Cf_) ) .

Applying Lemma 2.2 to (B.24), if the elements of the code matrix are nonzero and
T ™ T T ™ T
(Cgt’l) o Cf’l) ) e <C§3{,’Q) o Cf’Q) > is full column-rank for all f, then Toryrxrp

will be full row-rank as well. It concludes the proof. u
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