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Abstract

Since the growing success of mobile systems in the 1990s, new wireless technologies

have been developed in order to support a growing demand for high-quality multi-

media services while still being flexible to accommodate new services with low error

rates. An interesting way to improve the error performance and to achieve better

transmission rates is to combine the use of various diversities and multiplexing ac-

cess techniques in the MIMO system context. The incorporation of oversampling,

spreading and multiplexing operations and additional diversities on wireless systems

lead to multidimensional received signals which naturally satisfy tensor models. This

thesis proposes a new tensorial approach based on a tensor space-time (TST) cod-

ing for MIMO wireless communication systems. The signals received by multiple

antennas form a fourth-order tensor that satisfies a new tensor model, referred to as

PARATUCK-(2,4) model. A performance analysis is carried out for the proposed

TST system and a recent space-time-frequency (STF) system, which allows to derive

expressions for the maximum diversity gain over a flat fading channel. An uplink

processing based on the TST coding with allocation resources is proposed. A new

tensor decomposition is introduced, the so-called PARATUCK-(N1, N), which gen-

eralizes the standard PARATUCK-2 and our PARATUCK-(2,4) model. This thesis

establishes uniqueness conditions for the PARATUCK-(N1, N) model. From these

results, joint symbol and channel estimation is ensured for the TST and STF sys-

tems. Semi-blind receivers are proposed based on the well-known Alternating Least

Squares (ALS) algorithm and the Levenberg-Marquardt (LM) method. A semi-blind

receiver based on the Kronecker Least Squares (KLS) is also proposed for both sys-

tems. Simulation results are presented to illustrate the efficiency of the proposed

receivers in terms of symbol recovery and convergence speed when compared to other

methods from the literature.

Keywords: MIMO wireless communication systems, symbol estimation, space-time

code, PARATUCKmodel, CANDECOMP/PARAFACmodel, tensor modeling, CDMA,

OFDM.
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Resumo

Desde o crescente sucesso de sistemas móveis na década de 90, novas tecnologias

sem fio têm sido desenvolvidas a fim de suportar a crescente demanda de serviços

de multimı́dia de alta qualidade e ainda flex́ıvel para implantar novos serviços com

baixas taxas de erro. Uma forma interessante de melhorar o desempenho de erro e

de obter melhores taxas de transmissão consiste em combinar o emprego de várias

diversidades com técnicas de múltiplo acesso no contexto de sistemas MIMO. A

incorporação de operações de sobreamostragem, espalhamento e multiplexação, e di-

versidades adicionais em sistemas sem fio levam a sinais recebidos multidimension-

ais que, naturalmente, satisfazem modelos tensoriais. Esta tese propõe uma nova

abordagem tensorial baseada em uma codificação tensorial espaço-temporal (TST)

para sistemas de comunicação sem fio MIMO. Os sinais recebidos por múltiplas

antenas formam um tensor de quarta ordem que satisfaz um novo modelo tenso-

rial, referido como PARATUCK-(2,4). A análise de desempenho é realizada para

o sistema proposto TST e um recente sistema espaço-tempo-frequencial (STF), a

qual permite derivar expressões para o ganho máximo de diversidade através de um

canal com desvanecimento plano. Propõe-se um sistema de transmissão baseado

em codificação TST com recursos de alocação de antenas para sistemas MIMO com

múltiplos usuários. Uma nova decomposição tensorial é introduzida, denominada

PARATUCK-(N1, N), e esta generaliza o modelo padrão PARATUCK-2 e nosso

modelo PARATUCK-(2,4). A presente tese estabelece as condições de unicidade

para o modelo PARATUCK-(N1, N). A partir desses resultados, a estimativa con-

junta do śımbolo e canal é assegurada para os sistemas TST e STF. Os receptores

semi-cegos propostos para os dois sistemas baseiam-se no algoritmo do tipo mı́nimos

quadrados alternados (”Alternanting Least Squares”, ALS) e no método de otimiza-

ção Levenberg-Marquardt (LM). Um receptor baseado na estrutura do produto de

Kronecker, denominado ”Kronecker Least Squares” (KLS), também é proposto para

ambos os sistemas. Resultados de simulações são apresentados para ilustrar a efi-

ciência dos receptores propostos em termos de recuperação de śımbolo e a velocidade

de convergência quando comparados com outros métodos da literatura.

Palavras-chave: sistemas de comunicação sem fio MIMO, estimação de śımbolo, codi-

ficação espaço-temporal, modelo PARATUCK, modelo CANDECOMP/PARAFAC,

modelagem tensorial, CDMA, OFDM.
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Résumé

Depuis le succès croissant des systèmes mobiles au cours des années 1990, les nou-

velles technologies sans fil ont été développées afin de répondre à la demande crois-

sante de services multimédias de haute qualité et une plus grande flexibilité pour

déployer de nouveaux services avec des taux d’erreur les plus faibles possibles. Un

moyen intéressant pour améliorer les performances et obtenir de meilleurs taux de

transmission consiste à combiner l’utilisation de plusieurs diversités avec un ac-

cès de multiplexage dans le cadre des systèmes MIMO. L’utilisation de techniques

de sur-échantillonnage, d’étalement et de multiplexage, et de diversités suppléman-

taires conduit à des signaux multidimensionnels, au niveau de la réception, qui sat-

isfont des modèles tensoriels. Cette thèse propose une nouvelle approche tensorielle

basée sur un codage spatio-temporal tensoriel (TST) pour les systèmes de com-

munication sans fil MIMO. Les signaux reçus par plusieurs antennes forment un

tenseur d’ordre quatre qui satisfait un nouveau modèle tensoriel, dénommé modèle

PARATUCK-(2,4). Une analyse de performance est réalisée pour le système TST

ainsi que pour un système spatio-temporel-fréquentiel (STF) récemment proposé

dans la littérature, avec l’obtention du gain maximum de diversité dans le cas d’un

canal à évanouissement plat. Un système de transmission basé sur le codage TST

est proposé pour les systèmes MIMO avec plusieurs utilisateurs. Une nouvelle dé-

composition tensorielle est introduite, appelée PARATUCK-(N1, N), qui généralise

le modèle standard PARATUCK-2 et notre modèle PARATUCK-(2,4). Cette thèse

établit les conditions d’unicité du modèle PARATUCK-(N1, N). À partir de ces

résultats, différents récepteurs semi-aveugles sont proposés pour une estimation con-

jointe des symboles transmis et du canal, pour les systèmes TST et STF. Cette

approche tensorielle ne nécessite pas de supposer l’indépendance statistique des sym-

boles transmis. Les récepteurs proposés pour les deux systèmes font appel soit à un

algorithme du type moindres carrés alternés ”Alternating Least Squares”: (ALS), soit

à la méthode d’optimisation de Levenberg -Marquardt (LM). Un récepteur basé sur

la structure du produit de Kronecker, appelé méthode ”Kronecker Least Squares”

(KLS), est aussi proposé. Des résultats de simulations sont présentés pour illus-

trer l’efficacité des récepteurs proposés en termes de récupération de symboles et de

vitesse de convergence par rapport à d’autres méthodes de la littérature.

Mots-clés: systèmes de communication sans fil MIMO, estimation de symbole, codage

spatio-temporel, modèle PARATUCK, modèle CANDECOMP/PARAFAC, codage

tensoriel, CDMA, OFDM.
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Chapter 1
Introduction

1.1 General overview of wireless communications

Radio broadcasting, television broadcasting, satellite communications, and mobile systems

are applications of wireless communication systems. A recent interest in wireless communica-

tion come from the growing success of cellular systems, mainly since the 1990s with the second

generation (known as 2G) technology replacing analogy technology by digital communication.

In the past few decades, mobile wireless technologies have been classified according to their

generations. Such classifications are distinguished by the type of service (expansion of commu-

nication to other sources like images, video, and data), improved privacy, data transfer speeds,

improved spectral efficiency, volume data broadcast, and quality of service.

In every new generation of mobile wireless communication, such as the current 3G and

4G technologies, the systems must be designed to support a growing demand for high-quality

multimedia services while still being flexible to accommodate new services. These systems must

take into account the best tradeoffs between error performance (in terms of symbol or bit error

rates, abbreviated as SER and BER, respectively), transmission rate (in symbols or bits per

channel use), power and spectral efficiency, and receiver complexity for symbol recovery.

A characteristic of the wireless channels is the existence of many different paths between

transmitter and receiver, which leads to different versions of the transmitted signal at the

receiver. These resulting signals can widely vary in amplitude and phase. The recovery of the

information data may be impaired by the interference from other sources of electromagnetic

waves, or even between two or more versions of each transmitted signal (from propagation

effects). Moreover, another major limitation of wireless system performance comes from the

fading in wireless link.

A key idea for improving the error performance is to exploit the propagation of several

paths jointly, which means incurring redundancy into the information-bearing signals available

at the receiver. The principle of diversity techniques is to provide different versions of the same

signal at receiver, in which each version is ideally affected by independent fading channel. As a

consequence, the probability of all signals fading in at the same time is drastically reduced [1, 2].

This enables the mitigation of fading in wireless link and hence, an increase of the reception

reliability, which leads to a reduction of error rate.

1



2 Chapter 1. Introduction

This redundancy can be provided by channels as it is the case of frequency-selective and

time-selective channels, leading to what are called frequency diversity and Doppler diversity,

respectively. Redundant information can also be obtained by spreading operations at the trans-

mitter, in space, time and/or frequency domains [3]. It is important to notice that redundancy

does not always reflect on the information diversity. In general, the diversity is only achieved

when the different versions of the same signal are independently affected by different fading

channels.

There are many forms to achieve diversity. They can be classified in four classes, as follows:

space, time, frequency, and polarization [4, 5]. Generally speaking, space diversity results from

the use of multiple antennas at both transmitter and/or receiver ends, which leads to multiple-

antenna communication systems with multiple-input multiple-output (MIMO) channels. It is

well-known that the deployment of multiple antennas in wireless systems allows improving the

transmission rate and reliability over single-transmit antenna systems, while keeping the same

transmission bandwidth and power [6, 7, 8]. The works [9, 10, 11] have independently studied

and derived expressions for the capacity of MIMO fading channels, concluding that the use of

more antennas drastically improves the channel capacity.

An important aspect of the space diversity is that it can be achieved in two cases. The

first case is when the transmit and/or receive antennas are properly separated, i.e. with more

than half wavelength (exactly 0.38λ according to [4]), which consequently imposes a minimal

physical separation preventing its use on small devices. The second case, also known as angular

diversity, is obtained from the use of directional antennas, which enables its application in small

devices.

When the space diversity is obtained from the use of multiple transmit antennas, denoted

by transmitter space diversity, the transmit power must be divided along all transmit antennas.

Contrarily, the space diversity generated from several receive antennas, known as receiver space

diversity, does not require additional transmit power.

Temporal diversity is derived from the transmission of multiple coded versions of the same

signal at different time instants. This diversity takes advantage of variations in the channel in

the sense that the coherence time of the channel is small in fast fading channels. The interleaving

of the coded symbols before the transmission ensures independent fading channels even in the

case of slow channels. Thus, robustness of the communication to a temporary deep fade is

increased. Nevertheless, the transmission rate is reduced in the sense that an entire block must

be received before the initialization of the decoding process.

Frequency diversity employs different carrier frequencies which must be separated by more

than the coherence bandwidth of the channel in order to induce different multipath. Another

frequency diversity is achieved by frequency-selective channels [2], since the signal bandwidth

suffers spreading and the channel gain varies across it. Both time and frequency diversities are

not bandwidth efficiency and just the second one requires additional transmit power.

The last diversity refers to the transmission and the reception of signals employing antennas

with different polarization, in which the main types are linear, circular and elliptical polariza-

tions. The main disadvantages of this type of diversity are its limitations with respect to the

number of polarization types and that it incurs power loss at the transmitter and/or receiver
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whereas the power is divided between the polarized antennas. Yet this thesis is focused on the

first three types of diversity.

Multiple versions of the transmitted signal obtained from different diversity techniques can

be combined with the purpose of improving the system performance [1, 5]. Note that a diversity

can not always be available inasmuch as depends on the system feature. Antenna diversity is

harder to implement in small devices, such as cellular phones, than in base-stations, because the

diversity is impaired as much the channels corresponding to different antennas are correlated.

Temporal diversity in fast fading channels is not recommended for delay-sensitive and sta-

tionary applications [6]. In the first application, real-time information is required to be received

within a certain time deadline. In stationary applications, the coherence time of channels is

infinite which leads to correlated signal versions. Frequency diversity can not be achieved when

the delay spread is small, because the frequency components will correspond to correlated fading

channels.

In general, the use of several transmit antennas for transmitting the same data signal, known

as space spreading, can improve the system reliability as well as the transmission of the same

symbol during several time periods, known as time spreading. On the other hand, the signals

can be independently transmitted in parallel by several antennas, denoted by space multiplexing,

leading to an increase of the transmission rate.

As discussed previously, when multiple antennas are employed in the transmission and/or

reception of the same information, the average error probability drastically decreases which

leads to an increase of diversity gain. At the same time, multiple antennas can be used to

transmit in parallel different information data which results in an increase of transmission data

rate and thus a multiplexing gain. Note that both gains can be simultaneously obtained, but

generally the maximal diversity and the maximal multiplexing gains can not be simultaneously

achievable [12]. A tradeoff between spatial-multiplexing and diversity gain was proposed in [7].

Another gain similar to diversity gain, the array gain results from average power of combining

of multiple received signals, which leads to an increase in average received SNR relative to the

single-branch average SNR [4, 1].

Alamouti proposed in [13] a transmit diversity scheme using two transmit antennas and

one receive antenna with the purpose of fading channel mitigation. Although the first space-

time (ST) coding was developed by Tarok et al. [6], proposing the construction criteria for

ST codes. Since then many works have proposed a variety of ST transmission schemes in

order to attain a good compromise between error performance and transmission rate in different

system contexts [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. In order to exploit the spatial and

frequency diversities over frequency-selective MIMO channels, the space-frequency (SF) coding

was proposed in [25]. Initially, ST codes were used directly as SF codes, just replacing the time

domain by the frequency domain [25, 26, 27]. However, they showed in [28] that the frequency

diversity available in frequency-selective MIMO channels, in general, can not be exploited by

using directly ST schemes, requiring a mapping from ST codes to SF codes proposed later in

[29, 30]. The proposed mapping in [30] allows that existing ST schemes can be employed to

attain full diversity in MIMO-OFDM systems. They have also proposed a tradeoff between

error performance and transmission rate for MIMO-OFDM systems. The space-time-frequency
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(STF) coding was introduced with the purpose of exploiting jointly the space, time and frequency

diversities over frequency-selective channels [31, 32, 33].

In wireless communication, multiple-access (MA) techniques permit that the communication

resources of the channel to be shared properly by multiple users or local stations. These methods

are based on frequency-division (FD), code-division (CD), time-division (TD), space-division

(SD) or also combinations of these techniques. The choice of the multiple-access method to

be employed depends on the application characteristics and performance requirements of the

system.

The combination of ST, SF or STF codes and multiplexing access techniques in the MIMO

systems has received much attention in the last years. In the MIMO-OFDM system, SF and STF

codings have been employed for providing high data rates and/or reliability through the system

diversities available [25, 28, 32, 34, 35, 36, 37, 38, 39]. For the same purpose, the MIMO-CDMA

and MIMO-SDMA systems have exploited the ST diversities [40, 41, 42, 17, 43, 12, 44].

Many technical challenges required in the data transmission have driven additional signal

processing complexity at the receiver. Channel identification and equalization traditionally use

a training period to estimate the propagation channel for a transmitted symbols recovery. As

the sources transmit periodically a training sequence known at the receiver, the transmission

rate is inevitably affected and for some applications with fast fading channels for example, the

training becomes even not effective. For those, and other reasons, blind methods are more

appropriate, mainly when the communication requires higher transmission rate.

Blind techniques exploit temporal properties of the signals, channel features or spatial prop-

erties of the receiver, such as finite alphabet, orthogonality of the sources, stationarity channel,

constant-modulus of the signal constellation, cyclostationarity or statistical independence of

the sources [45, 46, 47, 48, 49], for performing channel identification, equalization and source

separation.

The use of tensor tools has aroused interest in signal processing applications for wireless

communication systems since the pioneer work [50] in 2000. They proposed a blind multiuser

separation-equalization-detection for direct-sequence code-division multiple access (or simply,

DS-CDMA) systems from the modeling of received signals by the parallel factors (CANDE-

COMP/PARAFAC or shortly, CP) [51, 52]. An interesting advantage is that the CP DS-CDMA

receiver does not require knowledge of spreading codes and of channel coefficients, finite alpha-

bet/constant modulus or statistic independence to recover the transmitted signals.

One common feature of all tensor approaches is to perform a jointly blind symbol and channel

estimation without a priori channel state information (CSI) at the receiver under identifiability

conditions more relaxed than those based on conventional matrix models and without requiring

statistical independence between the signals transmitted. Furthermore, the signal processing

can be approached in a deterministic way and can directly exploit special features of the system.

Signal processing usually considers space and time dimensions which leads to matrix mod-

els. The incorporation of oversampling, spreading and multiplexing operations, and additional

diversity on wireless communication systems can be represented as new dimensions that sug-

gests naturally the use of tensors to represent the system model. Another advantage is that

tensor structure exploits jointly all available information into signals at the receiver for a signal



1.1. General overview of wireless communications 5

recovery purpose.

The tensor decompositions are very useful in modeling signal received, a direct association is

established between the parameters of tensor decomposition and the physical parameters of the

link communications such as transmitted symbols, channel attenuation coefficients and coding

coefficients. As any tensor decomposition, the estimation of certain parameters is desired and

its unique determination is ensured by uniqueness conditions for this particular model. The

advantages of tensor approach are direct consequence of the essential uniqueness property.

During the last decade, tensorial approaches have been employed to exploit diversities of

MIMO wireless systems providing a more reliability to recover the transmitted symbols with

blind detection [50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62]. Sidiropoulos and Budampati in [53]

proposed a ST coding based on the Khatri-Rao matrix product, named Khatri-Rao Space-Time

(KRST) code, which combines a spatial precoding with a temporal spreading. This code allows

to attain a desired performance and provides since full transmission rate to full diversity gain

by varying the length of temporal spreading code.

A block tensor model for multiple-access MIMO systems with multiple transmit antennas per

user was proposed in [54]. They combined direct sequence code division multiple access technique

with spatial multiplexing. The received signal is decomposed in a generalized CP, which can

be rewritten as a sum of rank-(L,L, 1) terms with tensor rank denoting the number of users

[63]. In [60], they presented a bound on the number of users under which blind separation and

deconvolution is guaranteed. This system was extended in [61] for multiple users at reception

resulting in a generalization of the model, the so-called block component model (BCM).

A three-dimensional tensor coding is constructed from the spatial and temporal spreading

and spatial multiplexing in [55]. The blind receiver is based on a constrained CP model with

fixed constrained structure. The extension for multiuser can be found in [56]. Differently from

[53], the approach of [55] introduces some flexibility at the transceiver by allowing choosing a

number of data streams different from the number of transmit antennas.

The works [57], [58] and [59] have introduced the ST coding with allocation structures

represented by two or three matrices in order to control the design transmit schemes. In [57],

two allocation matrices define the allocation of users’ data streams and spreading codes to their

transmit antennas. De Almeida et al. in [58] generalize [57] by including a third matrix which

defines the mapping of the precoded signals to the transmit antennas. The received signals in

[57, 58] satisfy a third-order constrained CP model, named as CONFAC model. Differently to

[57, 58], two allocation matrices in [59] jointly control the spatial and temporal allocations, i.e.

the allocations of data streams to transmit antennas and time-slots. The received signals in [59]

satisfy a PARATUCK-2 (or shortly, PT-2) model [64].

Observe that all these last works are restricted to single-carrier transmissions. In the context

of multicarrier systems, [62] considers a MIMO system with STF spreading-multiplexing. It is

employed two third-order interaction tensors that define a joint temporal and frequency allo-

cation of the data streams to the transmit antennas, thus allowing to adjust the multiplexing

degree and spreading redundancy in space (transmit antennas), time (blocks) and frequency

(subcarriers). Besides the difference in relation to third-order allocation structures and alloca-

tion matrices in [56, 57, 58, 59], the MIMO channel for the STF system links each transmit
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antenna with each receive antenna for each subcarrier, which leads to a MIMO channel tensor

instead of a matrix.

This work is based on the improvement of system performance given in [59] by the intro-

duction of temporal and frequency diversities. The increment of diversities in the PT-2 model

allows to reach a new tensor decomposition, named as PARATUCK-(N1, N) (or PT-(N1, N))

[65, 66] which is an extension of PT-2 model. We have investigated the uniqueness conditions of

this new model employing CP and PT-2 uniqueness results. We also analyze the performance

of our proposed system and the STF system [62] in terms of diversity gain and derive the maxi-

mum diversity gain over a at fading channel (per each subcarrier). Conditions for identifiability

and uniqueness for both systems are also established.

1.2 Chapter contents and contributions

In addition to this introduction and the concluding remarks, the thesis is organized into

three main chapters, as follows:

Chapter 2. We give an overview of matrix operations involving Kronecker and Khatri-

Rao products and the concept of k-rank that will be necessary along of this work. Two lemmas

concerning the Khatri-Rao product between N matrices are deduced, resulting in generalizations

of the lemmas presented respectively in [67, 68]. Both lemmas are important to analyze the

uniqueness and identifiability conditions developed in the next chapters of this thesis. Some

basic operations and matrix representations of higher-order tensors are introduced.

We present a historical overview of the well-known CP decomposition [52, 51] containing

main uniqueness results with a discussion and comparison of these conditions. We also propose

a sufficient condition and two extensions for some results in the literature. In the sequence,

our proposed decomposition, PT-(N1, N), is introduced. We show that this model generalizes

the PT-2 model [64] and takes advantages of its properties. The uniqueness conditions for

PT-2 model have been analyzed and extended. Finally, we deduce the uniqueness results for

PT-(N1, N) decomposition.

Chapter 3. We introduce our proposed space-time coding , named as Tensor Space-Time

(TST), and derive the expressions of transmit and receive signals [65, 66]. A performance

analysis of the TST coding is deduced with the purpose of evaluating the diversity of information

transmitted, which allows us to express a maximum diversity gain in terms of some system

parameters and taking into account the structures of antenna and stream allocations per time-

block. We propose an uplink processing based on the TST coding with allocation resources for

multiple users at the transmission.

The Space-Time-Frequency (STF) system in [62] is described and we derive a performance

analysis based upon the one done previously for TST system. The uniqueness conditions for

both systems are investigated in an unified way using the results presented in the previous

chapter and taking into consideration the structure of each system.

Chapter 4. In this chapter, we present some semi-blind receivers for joint channel estima-

tion and symbol recovery. We apply in both systems the well-known Alternating Least Squares

(ALS) and the Levenberg-Marquardt (LM) algorithms, and propose two new algorithms: the
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Alternating Levenberg-Marquardt (ALM) and the Kronecker based Least Square (KLS). The

ALM is a simplified version of the LM algorithm and the KLS is a non-iterative algorithm based

on the structure of the Kronecker product. All algorithms are compared in terms of identifiabil-

ity conditions, complexity and convergence speed. Finally, some simulation results are provided

to evaluate the performance of these receivers for both systems and to compare the TST coding

with other ST codings based on tensor approaches.

Main contributions

We highlight clearly all contributions developed in this thesis per chapter as follows.

Chapter 2.

❼ Development of two lemmas regarding the k-rank of Khatri-Rao product between several

matrices, which generalize two lemmas presented respectively in [67, 68] (Section 2.1).

❼ Proposition of a sufficient uniqueness condition for the N -th order CP model based on

the results in [69] and generalization of two theorems proposed in [70] concerning partial

uniqueness conditions for third-order CP model extended to an N -th order CP model

(Subsection 2.3.1).

❼ Proposition of the PT-(N1, N) model, which generalizes the PT-2 model [64] (Subsection

2.3.2).

❼ Development of the uniqueness conditions for our proposed model based on the uniqueness

results in [59], [69] and [70] (Subsection 2.3.2).

Chapter 3.

❼ Proposition of the TST coding for MIMO wireless communication systems modeled by

the PT-(2,4) and a constrained CP models (Section 3.1).

❼ Proposition of an uplink processing based on the TST coding with allocation resources.

❼ Development of a performance analysis based on the diversity of transmitted information

and derivation of the maximum diversity gain for TST [66] and STF [62] systems (Section

3.3).

❼ Proposition of the uniqueness conditions based on the results in Chapter 2 for both systems

in an unified way (Section 3.4).

Chapter 4.

❼ Development of semi-blind receivers for joint channel estimation and symbol recovery

applying the ALS and LM algorithms (Sections 4.1 and 4.2).

❼ Proposition of new algorithms: the ALM, a simplified version of the LM algorithm, and the

KLS, a non-iterative algorithm based on the structure of the Kronecker product (Sections

4.3 and 4.2).
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❼ A complete comparison between all algorithms in terms of identifiability conditions, com-

plexity per iteration, convergence speed for both systems.

1.3 Publications

❼ G. Favier, M. N. da Costa, A. L. F. de Almeida, J. M. T. Romano. ”Tensor coding

for CDMA-MIMO wireless communication systems”, 19th European Signal Processing

Conference (EUSIPCO), 2011, Barcelone.

❼ G. Favier, M. N. da Costa, A. L. F. de Almeida, J. M. T. Romano. ”Tensor Space-time

(TST) coding for MIMO wireless communication systems”, Signal Processing 92 (4) 2012,

1079-1092.

❼ M. N. da Costa, G. Favier, A. L. F. de Almeida, J. M. T. Romano. ”A comparative study

of TST and STF codings for tensor based MIMO communication systems with semi-blind

receivers”, submitted.

❼ M. N. da Costa, G. Favier, A. L. F. de Almeida, J. M. T. Romano. ”Semi-blind receivers

for TST-MIMO multiuser systems”, in preparation.



Chapter 2
Tensor decompositions: background and new

contributions

In this chapter, we introduce the basic definitions and operations of multilinear algebra which

are used in this thesis. Firstly, let us show some matrix operations and in the sequence, two

lemmas derived from works of Sidiropoulos et al. [67, 71] which correspond to contributions

of this thesis and are important to study the uniqueness and identifiability conditions. In the

second part, we bring up some basic tensor operations. Finally, in the third part, we present

a historical overview of the CANDECOMP/PARAFAC (or in abbreviation, CP) model and

introduce the proposed PARATUCK-(N1,N) (or in abbreviation, PT-(N1,N)) model giving the

main results concerning the uniqueness of both decompositions. Another contribution of this

chapter concerns the proposition of a sufficient uniqueness condition based on the results in

[69] for the N -th order CP model, the extension of the uniqueness conditions proposed in [70]

for any N -th order CP model, and the proposition of uniqueness conditions for our proposed

PT-(N1, N) model, based on the CP and PT-2 results.

2.1 Matrix operations

There are two principal products widely employed in the tensor approaches, known as Kro-

necker and Khatri-Rao products. We will see in the next section that higher-order tensors can

be represented by unfolded matrices and these products are frequently used in the context of

tensor decompositions to simplify expressions and to explore their properties [72, 73].

The Khatri-Rao product, which is equivalent to a column-wise Kronecker product of two

matrices, was introduced by Khatri and Rao [74]. Before to transcribe the definition of the

Khatri-Rao product, recall that the Kronecker product between two matrices A ∈ C
I×J and

B ∈ C
M×N results in

A⊗B =








a1,1B a1,2B . . . a1,JB
a2,1B a2,2B . . . a2,JB
...

... ¨
...

aI,1B aI,2B . . . aI,JB







∈ C

IM×JN . (2.1)

9
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Definition 2.1. (Khatri-Rao product).[74] The Khatri-Rao product, denoted by ⋄, of two

matrices A ∈ C
I×R and B ∈ C

J×R results in a (IJ ×R)-matrix given by

A ⋄B =
[
A·1 ⊗B·1 . . . A·R ⊗B·R

]
∈ C

IJ×R. (2.2)

Let us also define the partition-wise Kronecker product of two matrices as follows

Definition 2.2. (partition-wise Kronecker product).[75] Let A =
[
A(1) · · · A(R)

]
∈ C

I×RJ

and B =
[
B(1) · · · B(R)

]
∈ C

M×RN be two partitioned matrices. The partition-wise Kronecker

product, denoted by |⊗|, of two matrices A ∈ C
I×RJ and B ∈ C

M×RN results in a (IM×RJN)-

matrix given by

A|⊗|B =
[
A(1) ⊗B(1) . . . A(R) ⊗B(R)

]
∈ C

IM×RJN . (2.3)

In order to deduce two new lemmas proposed in this thesis that will be useful for the

uniqueness and identifiability analysis, we need to give a brief overview of the definition of the

Kruskal rank of a matrix. The concept of k-rank was introduced by Kruskal in 1977 [76] which

cames from his studies of the uniqueness for the CP decomposition but the term k-rank for

Kruskal rank was just later named by Harshman and Lundy [77]. This concept is important

because the most general results on uniqueness involve or depend on the k-rank of a matrix.

Definition 2.3. (Kruskal rank or k-rank).[76] The Kruskal rank or k-rank of a matrix A,

denoted by k(A) or kA, is the maximal number kA such that any set of kA columns of A is

linearly independent.

The distinction between k-rank and rank is important. Verify that k(A) = x implies that

every x columns of A are linearly independent, whereas rank(A) = x requires that at least

x columns are linearly independent. Thus, the k-rank is more constrained than the rank of a

matrix A implying k(A) ≤ rank(A).

Now, let us introduce a lemma that gives a lower-bound on the k-rank of Khatri-Rao product

between N matrices, this lemma is an extension of the lemma for a Khatri-Rao product (i.e.

N = 2) proved in [67, 68] and posteriorly proved in a different way in [78, 79].

Lemma 2.1. (k-rank of Khatri-Rao products). Consider the Khatri-Rao product of N matrices

A(1) ⋄ · · · ⋄A(N) =
N⋄

n=1
A(n) =

[
N
⊗
n=1

A
(n)
·1 · · ·

N
⊗
n=1

A
(n)
·R

]

∈ C
I1···IN×R (2.4)

and define kA(n)
∆
= k

(
A(n)

)
as the k-rank of A(n) ∈ C

In×R for n ∈ {1, ..., N}.

(i) If kA(n) = 0 for a given n, then kA(1)⋄···⋄A(N) = 0.

(ii) If kA(n) ≥ 1 for all n, then kA(1)⋄···⋄A(N) ≥ min (kA(1) + · · ·+ kA(N) − (N − 1), R).

Proof: First, let us prove (i). When kA(n) = 0 for a given n, A(n) has at least one zero column.

Thereby, supposing A
(n∗)
·r∗ = 0In∗

for a given r∗ and n∗, it gets from (2.4):
N
⊗
n=1

A
(n)
·r∗ = 0I1...IN , i.e.

A(1) ⋄ · · · ⋄A(N) has one zero column which implies kA(1)⋄···⋄A(N) = 0. We can prove (ii) applying
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the Lemma 1 in [67, 68] to the Khatri-Rao product between two matrices. Suppose kA(n) ≥ 1

for all n, we obtain

kA(1)⋄A(2) ≥ min (kA(1) + kA(2) − 1, R) , (2.5)

kA(1)⋄A(2)⋄A(3) ≥ min (kA(1)⋄A(2) + kA(3) − 1, R)

≥ min (kA(1) + kA(2) + kA(3) − 2, R) . (2.6)

Both expressions can be easily extended to the general case of Khatri-Rao product between N

matrices, i.e. N − 1 Khatri-Rao products, by:

kA(1)⋄···⋄A(N) ≥ min (kA(1) + · · ·+ kA(N) − (N − 1), R) . (2.7)

This contribution allows us to derive the next lemma that leads to an extension of the lemma

for full rank of one Khatri-Rao product proposed in [71].

Lemma 2.2. (Full rank of Khatri-Rao products). Consider A(1)⋄· · ·⋄A(N) with A(n) ∈ C
In×R,

n ∈ {1, ..., N}. If kA(n) ≥ 1 for all n and
∑N

n=1 kA(n) ≥ R+N − 1, then A(1) ⋄ · · · ⋄A(N) is full

column-rank, implying I1 · · · IN ≥ R.

Proof: According to Lemma 2.1 for kA(n) ≥ 1, n ∈ {1, . . . , N}, we have

kA(1)⋄···⋄A(N) ≥ min (kA(1) + · · ·+ kA(N) − (N − 1), R) . (2.8)

If
∑N

n=1 kA(n) ≥ R + N − 1, then min (kA(1) + · · ·+ kA(N) − (N − 1), R) = R. By the k-rank

definition kA(1)⋄···⋄A(N) ≤ min (I1 . . . IN , R), it leads to kA(1)⋄···⋄A(N) = R implying that A(1) ⋄ · · · ⋄
A(N) is full column-rank.

2.2 Basic tensor operations

A tensor is a multi-dimensional array of numerical values. The order of a tensor is the

dimensionality of array, or equivalently, the number of indices. Thereby, a matrix and a vector

can be respectively represented by a 2-dimensional and a 1-dimensional array and therefore,

are respectively a second-order and a first-order tensor. A scalar is a single number and thus,

zero-order tensor.

Definition 2.4. (Scalar notation). Each element of an N-th order tensor, A ∈ C
I1×I2×···×IN ,

can be denoted by

ai1,i2,...,iN
∆
= [A]i1,i2,...,iN , (2.9)

in ∈ {1, . . . , In} with n ∈ {1, . . . , N} is an n-th dimension or also called as an n-th mode of A.
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Definition 2.5. The outer product between a tensor A ∈ C
I1×I2×···×IM of M-th order and

B ∈ C
J1×J2×···×JN of N-th order results in a tensor of (M +N)-th order defined as

[A ◦ B]i1,i2,...,iM ,j1,j2,...,jN

∆
= ai1,i2,...,iM bj1,j2,...,jN , (2.10)

for all index values.

The outer product of two tensors results in another tensor and the order of this new tensor

is given by the sum of the order of both tensors. Observe that (2.10) is a generalization of the

outer product of two vectors, which results in a matrix.

Definition 2.6. (Rank-one tensor). An N-th order tensor A ∈ C
I1×I2×···×IN has rank one if it

can be written as the outer product of N vectors u(n) ∈ C
In, n ∈ {1, . . . , N}:

A = u(1) ◦ u(2) ◦ · · · ◦ u(N) ⇐⇒ ai1,...,iN = u
(1)
i1
u
(2)
i2

. . . u
(N)
iN

, (2.11)

for all index values.

This definition is a generalization of a rank-one matrix: a matrix A ∈ C
M×N has rank-one

if and only if it can be written as the outer product of two vectors u ∈ C
M and v ∈ C

N , i.e.

A = u ◦ v = uvT ⇐⇒ am,n = umvn for all index values.

Definition 2.7. The Frobenius norm of a tensor A ∈ C
I1×I2×···×IN is defined as

‖A‖F
∆
=

√
√
√
√

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

|ai1,i2,...,iN |2. (2.12)

This is analogous to the matrix Frobenius norm.

Definition 2.8. The n-mode product of a tensor A ∈ C
I1×···×In×···×IN and a matrix U ∈ C

Jn×In

is a (I1 × · · · × In−1 × Jn × In+1 × · · · × IN)-tensor given by

[A×n U]i1,...,in−1,jn,in+1,...,iN

∆
=

In∑

in=1

ai1,...,in,...,iNujn,in , (2.13)

for all index values.

The n-mode product is a compact form to represent linear transformations involving tensors.

Rewriting (2.13) as B = A×n U, it gets






bi1,...,in−1,1,in+1,...,iN
...

bi1,...,in−1,Jn,in+1,...,iN




 = U






ai1,...,in−1,1,in+1,...,iN
...

ai1,...,in−1,In,in+1,...,iN




 , (2.14)

which represents a linear transformation mapping C
In to C

Jn on the n-th dimension of A.
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Corollary 2.1. Given a tensor A ∈ C
I1×I2×···×IN and two matrices F ∈ C

Jn×In and G ∈
C

Jm×Im with m 6= n, one has:

(A×n F)×m G = (A×m G)×n F = A×n F×m G. (2.15)

And two n-mode products satisfy the identity

(A×n F)×n G = A×n (GF) (2.16)

with F ∈ C
Ln×In and G ∈ C

Jn×Ln.

From this notation, the matrix product UAVH, with A ∈ C
I1×I2 , U ∈ C

J1×I1 and V ∈
C

J2×I2 , can be equivalently rewritten as A×1 U×2 V
∗.

Matrix representation of a higher-order tensor

The process of reordering the elements of an N -th order tensor into a matrix is known as

unfolding or matricization. In our notation, we explicit the size of the unfolded matrix in terms

of the sizes of the tensor dimensions in order to convert the matrix back to the original tensor.

Definition 2.9. (Matrix unfolding). Assume an N-th order tensor X ∈ C
I1×I2×···×IN and

let the ordered sets A = {a1, . . . , aK} and B = {b1, . . . , bL} be a partitioning of its modes

D = {1, . . . , N}. The unfolded matrix XP×Q ∈ C
P×Q of this tensor can be denoted by

[XP×Q]p,q = xi1,i2,...,iN , with P =
∏

p∈A

Ip and Q =
∏

q∈B

Iq, (2.17)

both indices p and q are associated with several modes.

Let us illustrate the above definition by the following example: For A = {1, 2} and B =

{3, . . . , N}, then we can write XI1I2×I3...IN . The name matricization comes from the analogy to

the more common term vectorization, the vectorization of a matrix is just a special case of the

matricization of a tensor, which all modes become row modes, i.e. vec(X) =
[
XT

·1 . . . XT
·I2

]T ∈
C

I2I1 for X ∈ C
I1×I2 . The vectorization of a higher-order tensor can be derived from the

vectorization of a matrix unfolding of this tensor. Observe that the order of the dimensions is

relevant because denotes the speed at each mode changes, it will be clear along this work.

Any higher-order tensor can be represented by matrix unfoldings. Verify that there are many

different ways to write an unfolded matrix of a higher-order tensor by rearranging its modes

into a matrix and by permutation of its indices. Consider for example a tensor with three

dimensions A ∈ C
I1×I2×I3 , we can define three different matrices: AI1×I2I3

∆
=
[
A·1· . . . A·I2·

]
,

AI2×I3I1
∆
=
[
AT

··1 . . . AT
··I3

]
and AI3×I1I2

∆
=
[
AT

1·· . . . AT
I1··

]
to represent the same tensor with

ai1,i2,i3 = [AI1×I2I3 ]i1,(i2−1)I3+i3
= [AI2×I3I1 ]i2,(i3−1)I1+i1

= [AI3×I1I2 ]i3,(i1−1)I2+i2
, (2.18)

for all index values and Ai1·· ∈ C
I2×I3 , A·i2· ∈ C

I1×I3 and A··i3 ∈ C
I1×I2 denoting the slice of A,

constructed by fixing the modes 1, 2 and 3, respectively. Remark from (2.18) that the order of

the indices is important to construct the unfolded matrices from the matrix slicings, the indices

placed more to the left vary slower and the ones placed more to the right vary faster.
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2.3 Background on tensor decompositions and new con-

tributions

This section gives an overview of the most known tensor model, called CANDECOMP/

PARAFAC [52, 51] and presents the main results concerning the uniqueness conditions of this

model. In the sequence, we introduce our proposed model named as PARATUCK-(N1, N), or

simply PT-(N1, N), which generalizes the standard PARATUCK-2 (or in abbreviation, PT-2)

model [64]. We recall the uniqueness results for the PT-2 model and analyze the uniqueness

conditions for a special structure of the PT-(N1, N), for N1 = 2 and N = 4, which will be useful

to our specific problem. Finally, we extend the uniqueness conditions to the PT-(N1, N) model

from the results deduced from PT-(2,4) and CP decompositions.

2.3.1 CANDECOMP/PARAFAC decomposition

The idea of expressing a tensor as a sum of rank-one tensors was originally introduced by

Hitchcock in 1927 [80]. The decomposition of three-way arrays has been developed in an inde-

pendent way by Carrol and Chang [52] in psychometrics, named as CANDECOMP (canonical

decomposition), and by Harshman [51] in phonetics, named as PARAFAC (parallel factors).

Both names report to different features of this model, in this thesis we use the abbreviation CP

to refer to the CANDECOMP/PARAFAC decomposition.

The CP model decomposes an N -th order tensor X ∈ C
I1×···×IN into a sum of rank-one

tensors so it can be expressed using the outer product notation (2.11) and also in a concise form

as

X =
[[
A(1),A(2), . . . ,A(N)

]]

=
R∑

r=1

A(1)
·r ◦A(2)

·r ◦ · · · ◦A(N)
·r , (2.19)

where its elements are given by

xi1,...,iN =
R∑

r=1

a
(1)
i1,r

a
(2)
i2,r

. . . a
(N)
iN ,r =

R∑

r=1

N∏

n=1

a
(n)
in,r

, (2.20)

A(n) ∈ C
In×R for n ∈ {1, . . . , N} and R > 0 denote, respectively, the matrix factors and the

rank of X .
The usual definition of tensor rank, proposed in [80] and independently later in [76], comes

from the minimum number R of rank-one tensors sufficient to decompose a tensor. Therefore,

the decomposition in (2.19) is irreducible in the sense that it can not be represented using less

than R components of rank-one.

Remark that any higher-order tensor can be decomposed in the form of (2.19), it leads

to the rank definition: Any matrix can be decomposed in a sum of rank-one matrices, i.e.

X =
∑R

r=1 arb
T
r ∈ C

M×N for ar ∈ C
M and br ∈ C

N , where the minimum number of R defines

the matrix rank. Contrary to matrices, the rank of higher-order tensors is not bounded by the
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tensor dimensions. The determination of tensor rank is not easy and can be found in some

special cases [81, 82, 83].

As we have presented in Section 2.2, any higher-order tensor can be represented in terms

of matrix unfoldings. Thus, we can express the CP model in a matricized form using the

Khatri-Rao product by

XIn×I1...In−1In+1...IN = A(n)
(
A(1) ⋄ · · · ⋄A(n−1) ⋄A(n+1) ⋄ · · · ⋄A(N)

)T
(2.21)

for a given n ∈ {1, . . . , N}. Remark that XIn×I1...In−1In+1...IN is just one way to represent the

tensor X ∈ C
I1×...IN isolating an n-th matrix factor A(n) on the left side of the expression (2.21).

The CP decomposition of an N -th order tensor, defined in (2.19), consists in determining

N matrix factors A(1), . . . ,A(N) from which the original tensor was constructed. It is impor-

tant to investigate the conditions that can guarantee the uniqueness. The uniqueness of the

CP decomposition has been explored since early in the 70’s and the main advantage of this

decomposition is due to the well-known essential uniqueness of this model, which is crucial in

many applications.

Uniqueness results

The first published uniqueness result is due to Harshman [51], giving credit to Robert Jen-

nrich of the UCLA Department of Mathematics for the uniqueness proof in this work. Several

results regarding uniqueness of the CP model have been developed ever since [84, 76, 85, 86, 50,

67, 87, 88, 89, 90, 91, 78, 92, 69, 70], but the most general sufficient condition and well-known

result on uniqueness is attributed to Kruskal [76].

Kruskal has proposed a sufficient condition in [76] for the essential uniqueness of real third-

order CP decomposition that was better discussed in [85] and alternative proofs were presented

in [78] and [93]. This uniqueness condition was extended for complex case by Sidiropoulos, Gi-

annakis and Bro in [50] and generalized for an N -th order tensor, i.e. for N > 3, by Sidiropoulos

and Bro in [67]. This result is reproduced as follows:

Theorem 2.1. [67] Consider the N-th order tensor X =
[[
A(1),A(2), . . . ,A(N)

]]
with A(n) ∈

C
In×R, n ∈ {1, . . . , N} and suppose R is its rank. Thus, A(n) ∈ C

In×R, n ∈ {1, . . . , N} are

unique up to permutation and scaling of columns provided that

N∑

n=1

kA(n) ≥ 2R + (N − 1). (2.22)

The proof of this theorem exploits Lemma 1 in [67] which gives a lower-bound on the k-rank

of Khatri-Rao product and is based on rewriting of a N -th order CP model as another CP model

of third order, implying the concatenation of N − 2 loading matrices in only one matrix. Thus,

the principle of lemma 2.1 proposed and formulated in this thesis is implicitly suggested in this

Lemma proof.

Remark from (2.22) that each dimension of the tensor increments just one in the minimum

value of the total sum of k-rank, then the increase of tensor dimensions N decreases the k-rank

required per dimension. The minimum k-rank required per each matrix factor is two for three
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dimensions (N = 3), i.e. kA(n) ≥ 2 for n ∈ {1, 2, 3}, and for more than 3 dimensions (N > 3),

it is possible to guarantee uniqueness with one matrix of k-rank equals to one. Therefore, the

uniqueness condition (2.22) becomes less restrictive with rising of the tensor order N .

When the loading matrices A(n) ∈ C
In×R for n = 1, . . . , N are drawn independently from

absolutely continuous distributions, these matrices are full k-rank, i.e. kA(n) = min(In, R),

n = 1, . . . , N and the condition (2.22) becomes [67]

N∑

n=1

min(In, R) ≥ 2R + (N − 1). (2.23)

Jiang and Sidiropoulos in [89] and De Lathauwer in [90] have independently derived an

alternative uniqueness condition for third-order CP decomposition where one of the factor matrix

is full column-rank. For the third-order CP model X =
[[
A(1),A(2),A(3)

]]
with A(3) being full

column-rank (kA(3) = R ≤ I3), these conditions lead to kA(1) + kA(2) ≥ R+ 2, which is a special

case of Kruskal’s condition [76] and according to Lemma 2.2, kA(1) + kA(2) ≥ R+ 2 implies that

A(1) ⋄A(2) is full column-rank (I1I2 ≥ R). Differently to Jiang and Sidiropoulos, De Lathauwer

proposed a deterministic condition for the same case, considering a third-order tensor with two

generic component matrices which are randomly sampled from a continuous distribution. This

condition was derived in the form of a dimensionality constraint for third and also fourth-order

tensors.

In [91], a link is established between the uniqueness conditions of Jiang and Sidiropou-

los and of De Lathauwer, and it is proved that both conditions are more relaxed than the

classical Kruskal’s condition for the special case in which one factor matrix is full column-

rank. These results were posteriorly extended to arbitrary order N > 3 tensors by Stegeman

in [69]. Although both conditions are equivalent, the condition deduced by De Lathauwer is

easer to be checked. Let us enunciated it as follows for N ≥ 3. Consider an N -th order

CP model X =
[[
A(1), . . . ,A(N)

]]
, with generic

(
A(1), . . . ,A(N−1)

)
, A(N) full column-rank and

A(n) ∈ C
In×R, n ∈ {1, . . . , N}. This decomposition is unique if

R(R− 1)

2
≤

N−1∑

n=2

(
2n−1 − 1

)
Q(n,N), (2.24)

with

Q(n,N) =
∑

Sn

∏

j∈Sn

Ij(Ij − 1)

2

∏

j /∈Sn

Ij (2.25)

where the summation is over all subsets Sn of n ∈ {1, . . . , N−1} containing n distinct elements.

If n = N − 1, then we set
∏

j /∈Sn

Ij = 1.

Although these conditions are more relaxed than Kruskal’s condition, they are still sufficient

conditions and furthermore, for a restricted CP model. The condition based on Jiang and

Sidiropoulos approach is not practical and the one based on De Lathauwer is not guaranteed

for matrices no randomly constructed.

Since the proposed condition for uniqueness by Kruskal [76], attempts to prove that it is also

necessary have been investigated. In [88], Ten Berge and Sidiropoulos proved that Kruskal’s



2.3. Background on tensor decompositions and new contributions 17

condition is not only sufficient but also necessary for tensors of rank R = 2 and R = 3, but not

necessary when R > 3.

More general necessary uniqueness condition of a third-order CP model X =
[[
A(1),A(2),A(3)

]]

was proposed by Liu and Sidiropoulos in [87] and checked in [78], this condition is given by

min
(
rank

(
A(1) ⋄A(2)

)
, rank

(
A(1) ⋄A(3)

)
, rank

(
A(2) ⋄A(3)

))
= R. (2.26)

In another way, the Khatri-Rao product of any two matrix factors must be full column-rank

in order to guarantee the CP decomposition uniqueness. This work gave also an idea for its

extension to arbitrary dimension N that was appropriately proved by Stegeman in [69]. For

higher-order CP model, the Khatri-Rao product between any N − 1 matrices, i.e. any leave-

one-out selection of matrices A(n) with n ∈ {1, ..., N}, must be full column-rank, i.e.

min
n=1,...,N

(
rank

(
A(1) ⋄ . . . ⋄A(n−1) ⋄A(n+1) ⋄ . . . ⋄A(N)

))
= R (2.27)

for the model to be unique. Note that the rank of Khatri-Rao products is not affected by order

in which the multiplications are carried out.

The generalized Kruskal condition (2.22) is a sufficient condition for uniqueness, whereas

(2.27) is necessary for any value of R. Hence, the sufficient condition (2.22) implies the necessary

condition (2.27) and the reverse is not true. Another advantage is due to the facility of testing

the condition (2.27) in terms of computational complexity [87].

The condition (2.27) can be rewritten in an equivalent way as

rank

(

N⋄
n=1
n 6=x

A(n)

)

= R, for all x ∈ {1, . . . , N} (2.28)

and it is implicit
∏N

n=1,n 6=x In ≥ R for all x ∈ {1, . . . , N}. Since rank(A ⋄B) ≤ rank(A⊗B) =

rank(A) rank(B), it can be generalized for several Khatri-Rao products which results in:

rank
(
A(1) ⋄ . . . ⋄A(N)

)
≤ rank

(
A(1)

)
. . . rank

(
A(N)

)
. Thus, (2.28) leads to

N∏

n=1
n 6=x

rank
(
A(n)

)
≥ R, for all x ∈ {1, . . . , N}. (2.29)

Note that (2.28) implies (2.29) and the reverse statement is not true.

From (2.27)-(2.29), it is clear that an all-zero column in one of the matrix factors implies

nonuniqueness of the decomposition and in this sense, kA(n) ≥ 1 for all n ∈ {1, . . . , N} is

essential for the CP uniqueness [78]. As the condition in (2.27) corresponds to Khatri-Rao

products between N − 1 matrices be full column-rank, implying R ≤ I1 . . . In−1In+1 . . . IN , and

by the k-rank definition, we have that k
(
A(1) ⋄ . . . ⋄A(n−1) ⋄A(n+1) ⋄ . . . ⋄A(N)

)
= R for any n.

From Lemmas 2.1 and 2.2, we propose the theorem below which leads to satisfy both conditions

(2.27) and (2.28).

Theorem 2.2. Recall the CP model of an N-th order array X =
[
[A(1), . . . ,A(N)

]
] ∈ C

I1×...×IN ,

with A(n) ∈ CIn×R for n = {1, . . . , N}. If A(n) has no zero columns for n ∈ {1, . . . , N} and the
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condition

N∑

n=1
n 6=x

kA(n) ≥ R + (N − 2), for all x ∈ {1, . . . , N}. (2.30)

holds, the loading matrices A(n) for n ∈ {1, . . . , N} are unique up to permutation and scaling.

All uniqueness results discussed until now were based on the essential uniqueness of the

CP model, which means that all matrix factors of the model are uniquely determined up to

permutation and scaling of columns. According to (2.30), when a third-order CP model has

at least two collinear loading matrices, i.e. k-rank of each matrix equals to 1, the (essential)

uniqueness model is no longer guaranteed. Generalizing to an N -th order tensor, when the N -th

order CP model has N −1 component matrices with collinear columns, the essential uniqueness

of this model is not achieved. However, the uniqueness for some loading matrices can be still

ensured, which is known as partial uniqueness.

The partial uniqueness has been discussed since the standard CP decomposition by Harsh-

man in [51, 84] and has received more attention for CP with a fixed pattern of linear dependencies

in the loading vectors [94, 95, 58, 96, 97, 98, 70]. In some practical applications, we are inter-

ested in the uniqueness of one particular component matrix [94, 58, 70] which is called uni-mode

uniqueness [70].

Now, let us present two following theorems concerning the uni-mode uniqueness of the third-

order CP model derived in [70]. Guo et al. have proposed sufficient conditions to ensure the

essential uniqueness of one loading matrix, i.e. one matrix factor can be uniquely identified.

Theorem 2.3. [70] Recall the CP model of a three-way array X =
[
[A(1),A(2),A(3)

]
] ∈

C
I1×I2×I3, with A(n) ∈ CIn×R for n = {1, 2, 3}. If A(1) has no zero columns and the condition

rank
(
A(1)

)
+ kA(2) + kA(3) ≥ 2R + 2 (2.31)

holds, the first mode loading A(1) is unique up to permutation and scaling of the columns.

If A(1) is full column-rank implying kA(1) = rank
(
A(1)

)
, the condition in (2.31) becomes

identical to Kruskal’s condition which leads to the essential uniqueness of all the loading matrices

A(1),A(2) andA(3) and not only forA(1) when kA(1) < rank
(
A(1)

)
. Remark that the rank instead

of the k-rank of A(1) makes the condition (2.31) less restrictive than Kruskal’s condition in the

sense that even when A(1) has collinear columns implying kA(1) = 1, rank
(
A(1)

)
can be greater

than 1.

It is noticed in [70] that the condition (2.31) becomes more relaxed when A(2) and A(3) are

not full rank, i.e. when kA(2) < rank
(
A(2)

)
and kA(3) < rank

(
A(3)

)
respectively. It is presented

in the next theorem as follows.

Theorem 2.4. [70] Recall the CP model of a three-way array X =
[
[A(1),A(2),A(3)

]
] ∈

C
I1×I2×I3, with A(n) ∈ CIn×R for n = {1, 2, 3}. If A(1) has no zero columns, A(2) and A(3) are

not full rank and the condition

rank
(
A(1)

)
+ kA(2) + kA(3) ≥ 2R + 1 (2.32)
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is satisfied, then the first mode loading A(1) is unique up to permutation and scaling of the

columns.

Note that both conditions (2.31) and (2.32) lead to kA(n) ≥ 2 for n = {1, 2, 3} since

min(In, R) ≥ rank
(
A(n)

)
≥ kA(n) . It implies that all loading matrices do not have collinear

columns. From the same idea employed in [67] which has been previously discussed, we can

generalize the last two theorems proposed in [70] for an N -th order CP decomposition by the

concatenation of N − 2 component matrices in one matrix and using Lemma 2.1. We obtain

rank
(
A(1)

)
+

N∑

n=2

kA(n) ≥ 2R + (N − 1) (2.33)

and when A(n) for n = {2, . . . , N} are not full column-rank

rank
(
A(1)

)
+

N∑

n=2

kA(n) ≥ 2R + (N − 2). (2.34)

Observe that these extensions of uniqueness condition imply only the essential uniqueness of

the first mode A(1).

2.3.2 PARATUCK-(N1, N) decomposition

First, let us give an overview about the standard PARATUCK-2 model and present our

proposed model in the sequence. The PT-2 model was introduced by Harshman and Lundy in

psychometrics [64], this model can be viewed as a general version of the well-known CP model

which incorporates interacting dimensions. This model combines some properties of both CP

and TUCKER-2 [99] models, hence the name PARATUCK-2.

Recalling the TUCKER-2 and PT-2 models respectively by

xi1,i2,i3 =

R1∑

r1=1

R2∑

r2=1

gr1,r2,i3 a
(1)
i1,r1

a
(2)
i2,r2

, (2.35)

xi1,i2,i3 =

R1∑

r1=1

R2∑

r2=1

cr1,r2 a
(1)
i1,r1

a
(2)
i2,r2

φ
(1)
r1,i3

φ
(2)
r2,i3

, (2.36)

note that the PT-2 model can be rewritten as a constrained TUCKER-2 model with the core

tensor given by: gr1,r2,i3 = cr1,r2φ
(1)
r1,i3

φ
(2)
r2,i3

. The restricted structure of the core compared to

TUCKER-2 retains uniqueness properties [64, 100]. The Tucker likeness due to the insertion of

cr1r2 , the second mode of both factor matrices A(1) ∈ C
I1×R1 and A(2) ∈ C

I2×R2 does not require

to have the same size [64, 100].

Taking into account theses advantages of the PT-2 model, we proposed a new constrained

tensor model that generalizes the PT-2 model, named as PT-(N1, N). Given an N -th order

tensor X ∈ C
I1×...×IN , the PT-(N1, N) model of X , with N > N1, is defined in scalar form by

the following expression [66]:

xi1,...,iN1
,...,iN =

R1∑

r1=1

. . .

RN1∑

rN1
=1

cr1,...,rN1
,iN1+2,...,iN

N1∏

n=1

a
(n)
in,rn

φ
(n)
rn,iN1+1

, (2.37)
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where a
(n)
in,rn

and φ
(n)
rn,iN1+1

are, respectively, the entries of the factor matrix A(n) ∈ C
In×Rn and

the weighting matrix Φ(n) ∈ C
Rn×IN1+1 for n = 1, . . . , N1.

This model can be interpreted as a transformation of the input tensor C ∈ C
R1×···×RN1

×IN1+2×···×IN

via its multiplication by the factor matrices A(n), n = 1, . . . , N1, along its first N1 modes, com-

bined with an n-th weighting matrix Φ(n) (n = 1, . . . , N1) relatively to the mode-(N1+1) of the

transformed tensor X .
From the notation of Kronecker and Khatri-Rao products, we can also represent the PT-

(N1, N) model by the following matrix unfoldings

XI1...IN1
×IN1+1...IN =

(
A(1) ⊗ . . .⊗A(N1)

) ((
Φ(1) ⋄ . . . ⋄Φ(N1)

)T ⋄CIN1+2...IN×R1...RN1

)T

XIN1+1×I1...IN1
IN1+2...IN =

(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T ((
A(1) ⊗ . . .⊗A(N1)

)
⋄CIN1+2...IN×R1...RN1

)T

XIN1+2...IN×I1...IN1+1
= CIN1+2...IN×R1...RN1

((
A(1) ⊗ . . .⊗A(N1)

)
⋄
(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T
)T

,

(2.38)

where CIN1+2...IN×R1...RN1
denotes a (IN1+2 . . . IN × R1 . . . RN1)- matrix unfolding of the tensor

C. Remark that there are many forms to write the matrix unfoldings and each expression above

isolates as the left factor, respectively, the factor matrices A(n) (n = 1, . . . , N1), the weighting

matrices Φ(n) (n = 1, . . . , N1) and the core tensor C represented by a matrix unfolding.

Special cases:

We can list two cases of interest derived from the PT-(N1, N) model: the standard PT-2

and the PT-(2,4) models, the last one will be useful to represent a particular application. From

(2.37) then we obtain:

❼ The standard PT-2 model for N1 = 2 and N = 3:

xi1,i2,i3 =

R1∑

r1=1

R2∑

r2=1

cr1,r2a
(1)
i1,r1

a
(2)
i2,r2

φ
(1)
r1,i3

φ
(2)
r2,i3

, (2.39)

❼ The following PT-(2,4) model for N1 = 2 and N = 4:

xi1,i2,i3,i4 =

R1∑

r1=1

R2∑

r2=1

cr1,r2,i4a
(1)
i1,r1

a
(2)
i2,r2

φ
(1)
r1,i3

φ
(2)
r2,i3

. (2.40)

The uniqueness results for the PT-2 model have not been widely investigated because the

PT-2 model has a more complex structure and has been less employed in applications. Now, we

show the uniqueness results for the PT-2 model, analyze the conditions for the PT-(2,4) model

and its generalization for the PT-(N1, N) model.

Uniqueness results of PARATUCK-2 model

In 1996, Harshman and Lundy have provided uniqueness analysis for the PT-2 model subject

to R1 = R2 and cr1,r2 6= 0 for all r1 ∈ {1, . . . , R1}, r2 ∈ {1, . . . , R2} considering the two following

cases: the general PT-2 model and the symmetrically weighted version (i.e., when Φ(1) = Φ(2))

[64]. The purpose of these restrictions is explained by the simplification of the proof in this work.
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Despite having considered R1 = R2 in this proof, they have presented as well an experimental

evidence of uniqueness being obtainable even when R1 6= R2. Let us formulate appropriately

the sufficient uniqueness condition proved in [64] as follows.

Theorem 2.5. [64] Consider the PT-2 model of a three-way array given by (2.39) with R1 = R2

and cr1,r2 6= 0 for all index values. If A(1) ∈ C
I1×R1, A(2) ∈ C

I2×R2 and C ∈ C
R1×R2 are full

column-rank, implying I1, I2 ≥ R1 = R2, and there is an ”adequate” I3, then A(1) and A(2) are

unique up to permutation and/or scaling of the columns.

The term adequate was employed in [64] and its definition is not simple, they did not specify

any rule to set I3 needed for uniqueness of this model. They have proved the uniqueness for a

minimum value of I3 and have given examples for some values of R1 = R2. When R1 = R2 = 2

and R1 = R2 = 3 for a general PT-2 model, it is respectively required at least I3 = 9 and

I3 = 36. When R1 = R2 = 2, R1 = R2 = 3 and R1 = R2 = 4 for the special case of PT-2 with

Φ(1) = Φ(2), at least I3 = 5, I3 = 15 and I3 = 35, respectively.

Posteriorly, the PT-2 model has been exploited in chemometrics: by Bro [100] and in signal

processing: by Kibangou and Favier [101], and by De Almeida et al. [59]. But new contri-

butions on uniqueness of the PT-2 model were only derived in the last two works, both have

investigated uniqueness in the context of their applications considering particular structures for

the parameters of this decomposition.

In [101], they have written the output signal tensor as a constrained PT-2 model and thus,

the uniqueness condition was analyzed by considering structural constraints such as Toeplitz

and Vandermonde forms for some of its matrix factors. Thanks to several assumptions in the

structure of the parameters was possible to ensure the uniqueness of a constrained version of

PT-2 model. However, as theses assumptions are not easily exploited for a more general case,

we restrict to present just the results proposed in [59].

Theorem 2.6. [59] Consider the PT-2 model of a three-way array given by (2.39) and assume

the perfect knowledge of Φ(1), Φ(2) and C. If A(1), A(2) and
(
Φ(1) ⋄Φ(2)

)T
are full column-rank,

implying respectively I1 ≥ R1, I2 ≥ R2 and I3 ≥ R1R2, then both factor matrices A(1) and A(2)

are unique up to a scalar factor.

Observe that Theorem 2.6 provides a sufficient condition to ensure the uniqueness of both

matrix factors A(1) and A(2) imposing a building restriction over the weighting matrices Φ(1)

and Φ(2) (I3 ≥ R1R2). Contrarily, the sufficient condition proposed by Theorem 2.5 imposes

mainly that C is full column-rank (R1 ≥ R2) and also requires an enough value of I3 not defined.

In this sense, Theorem 2.6 becomes more advantageous. The assumption of knowledge of some

parameters in both theorems is explained by the practical applications.



22 Chapter 2. Tensor decompositions: background and new contributions

Uniqueness results of PARATUCK-(2,4) model

From (2.38), let us write the matrix unfoldings of PT-(2,4) model with N1 = 2 and N = 4

as follows.

XI1I2×I3I4 =
(
A(1) ⊗A(2)

) ((
Φ(1) ⋄Φ(2)

)T ⋄CI4×R1R2

)T

XI3×I1I2I4 =
(
Φ(1) ⋄Φ(2)

)T ((
A(1) ⊗A(2)

)
⋄CI4×R1R2

)T

XI4×I1I2I3 = CI4×R1R2

((
A(1) ⊗A(2)

)
⋄
(
Φ(1) ⋄Φ(2)

)T
)T

. (2.41)

One way to analyze the uniqueness conditions for this model is by means its matrix unfoldings.

In our analysis, we assume the knowledge of both weighting matrices Φ(1) ∈ C
R1×I3 and Φ(2) ∈

C
R2×I3 , and also of the core tensor C ∈ C

R1×R2×I4 . In our practical context, we are interested

to guarantee the model uniqueness for the estimation of the factor matrices. As we want to

determine only both matrices A(1) and A(2), let us consider the first matrix unfolding of (2.41).

The study of uniqueness for the PT-(2,4) model proposed in this thesis is based on the one

for the PT-2 model in [59]. Considering Â(1) and Â(2) as alternative solutions that satisfy (2.41),

we can write Â(n) = A(n) U(n) with U(n) ∈ C
Rn×Rn , n = 1, 2, non-singular matrices. Thus, the

unfolded matrix XI1I2×I3I4 can be rewritten using the Kronecker property (A.4) as

(

Â(1) ⊗ Â(2)
)((

Φ(1) ⋄Φ(2)
)T ⋄CI4×R1R2

)T

=
(
A(1) ⊗A(2)

) (
U(1) ⊗U(2)

)

((
Φ(1) ⋄Φ(2)

)T ⋄CI4×R1R2

)T

. (2.42)

From (2.42) the uniqueness of the PT-(2,4) model can be proved. It is necessary to remove

any ambiguity caused by the nonsingular transformation matrices U(1) and U(2) to recover

both matrices A(1) and A(2). The next theorem shows a sufficient condition which ensures the

uniqueness of A(1) and A(2).

Theorem 2.7. Consider the PT-(2,4) model of a four-way array given by (2.40), suppose

the perfect knowledge of Φ(1), Φ(2) and C, and that Φ(1)T, Φ(2)T and CI4×R1R2 have no zero-

columns. If A(1) and A(2) are full column-rank implying I1 ≥ R1, I2 ≥ R2, and Φ(1), Φ(2) and

C are chosen such that

k
((

Φ(1) ⋄Φ(2)
)T
)

+ k(CI4×R1R2) ≥ R1R2 + 1, (2.43)

then both factor matrices A(1) and A(2) are unique up to a factor scaling.

Proof: If A(1) and A(2) are full column-rank, then the left-inverse of A(1) ⊗A(2) exits and is

unique. Assuming that Φ(1)T, Φ(2)T and CI4×R1R2 have no zero-columns imply that the k-rank

of these matrices is greater than or equal to 1. According to Lemma 2.2, if Φ(1), Φ(2) and C
satisfy the inequality in (2.43), then

(
Φ(1) ⋄Φ(2)

)T ⋄CI4×R1R2 is full column-rank, which leads

to the existence of the right-inverse of
((

Φ(1) ⋄Φ(2)
)T ⋄CI4×R1R2

)T

. Finally, (2.42) gives

U(1) ⊗U(2) = IR1R2 . (2.44)
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From (2.44), the only solution happens when both matrices U(1) and U(2) are identity

matrices up to scalar factors that compensate each other, i.e. U(1) = α IR1 and U(2) = 1/α IR2 ,

which leads to

Â(1) = αA(1), Â(2) = 1/αA(2) (2.45)

and concludes the proof.

Remark 2.1. The uniqueness of PT-(2,4) model can be achieved even when
(
Φ(1) ⋄Φ(2)

)T
is

not full column-rank, if C is appropriately chosen satisfying CI4×R1R2 full column-rank. Thus,

the extension of PT-2 model to PT-(2,4) model provides a flexibility of the uniqueness condition

given by Theorem (2.6).

The last result is further generalized for any N1 and N with N1 < N , which leads to

a sufficient uniqueness condition for the PT-(N1, N) model. The uniqueness analyze of this

model can be deduced, analogously to the previous theorems, from the first matrix unfolding

XI1...IN1
×IN1+1...IN in (2.38).

Theorem 2.8. Consider the PT-(N1, N) model of a N-way array given by (2.37) with N1 < N ,

suppose the perfect knowledge of all weighting matrices Φ(n) (n = 1, . . . , N1) and core tensor C,
and Φ(n)T (n = 1, . . . , N1) and CIN1+2...IN×R1...RN1

have no zero-columns. If all factor matrices

A(n) (n = 1, . . . , N1) are full column-rank implying In ≥ Rn for n = 1, . . . , N1, and Φ(n)

(n = 1, . . . , N1) and C are chosen such that

k
((

Φ(1) ⋄ . . . ⋄Φ(N1)
)T
)

+ k
(
CIN1+2...IN×R1...RN1

)
≥

N1∏

n=1

Rn + 1, (2.46)

then all factor matrices A(n) (n = 1, . . . , N1) are unique up to a scaling factor.

Uniqueness results derived for the PT-(N1, N) model correspond to sufficient conditions and

consider the knowledge of all weighting matrices and of the core tensor. In order to exploit

the uniqueness results concerning the CP model, let us rewrite the PT-(N1, N) model as a

constrained CP as follows.

Let us consider a third order CP decomposition X =
[
[B(1),B(2),B(3)

]
] ∈ C

J1×J2×J3 , where

each loading matrices are given by

B(1) = A(1) ⊗ . . .⊗A(N1) ∈ C
J1×R

B(2) =
(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T ∈ C
J2×R,

B(3) = CIN1+2...IN×R1...RN1
∈ C

J3×R (2.47)

and the following correspondences J1 = I1 . . . IN1 , J2 = IN1+1, J3 = IN1+2 . . . IN and R =

R1 . . . RN1 . According to the Kronecker product, note that rank
(
A(1) ⊗ . . .⊗A(N1)

)
=
∏N1

n=1 rank
(
A(n)

)
.

If we only consider the uniqueness of all matrix factors for practical reasons, we can directly

apply Theorem 2.3 and deduce a wider condition by the next theorem.
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Theorem 2.9. Consider the PT-(N1, N) model given by (2.37) and assume that all matrix
factors A(n) for n = 1, . . . , N1 have no zero-columns. If the following condition

N1∏

n=1

rank
(

A(n)
)

+ k

((

Φ(1) ⋄ . . . ⋄Φ(N1)
)T
)

+ k
(

CIN1+2...IN×R1...RN1

)

≥ 2

(
N1∏

n=1

Rn

)

+ 2 (2.48)

holds, A(1) ⊗ . . .⊗A(N1) is unique up to permutation and scaling of the columns.

Remark 2.2.

❼ As discussed above for the CP results, the condition (2.48) leads to k
(
CIN1+2...IN×R1...RN1

)
≥

2, rank
(
A(n)

)
≥ k

(
A(n)

)
≥ 2 for a given n ∈ {1, . . . , N1} and k

((
Φ(1) ⋄ . . . ⋄Φ(N1)

)T
)

≥ 2.

Therefore, A(n) for a given n ∈ {1, . . . , N1},
(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T
and CIN1+2...IN×R1...RN1

do not have collinear columns.

❼ The sufficient condition (2.48) is more restrictive than the one given in Theorem 2.8 when

all matrix factors A(n), n = 1, . . . , N1, are full column-rank.

If we apply Theorem 2.9 to the PT-(2,4) model (N1 = 2 and N = 4), the condition (2.48)

becomes

rank
(
A(1)

)
rank

(
A(2)

)
+ k
((

Φ(1) ⋄Φ(2)
)T
)

+ k(CI4×R1R2) ≥ 2R1R2 + 2, (2.49)

which represents an alternative condition when the matrix factors A(1) and A(2) are not full

column-rank.

We can also propose an uniqueness condition for the PT-(N1, N) model applying the con-

dition (2.26) to the constrained 3-CP model with factor matrices defined in (2.47). If the

Khatri-Rao product of any two matrix factors is full column-rank, i.e. the following matrices
(
A(1) ⊗ . . .⊗A(N1)

)
⋄
(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T ∈ C
I1...IN1+1×R1...RN1

(
A(1) ⊗ . . .⊗A(N1)

)
⋄CIN1+2...IN×R1...RN1

∈ C
I1...IN1

IN1+2...IN×R1...RN1

(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T ⋄CIN1+2...IN×R1...RN1
∈ C

IN1+1...IN×R1...RN1 (2.50)

are full column-rank, then the essential uniqueness of the third-order CP model with the matrix

factors given in (2.47) is ensured. Now, let us enunciate the next theorem applying the equivalent

condition (2.30).

Theorem 2.10. Consider the PT-(N1, N) model given by (2.37). If all following conditions

k
(
A(1) ⊗ . . .⊗A(N1)

)
+ k
((

Φ(1) ⋄ . . . ⋄Φ(N1)
)T
)

≥
N1∏

n=1

Rn + 1

k
(
A(1) ⊗ . . .⊗A(N1)

)
+ k
(
CIN1+2...IN×R1...RN1

)
≥

N1∏

n=1

Rn + 1

k
((

Φ(1) ⋄ . . . ⋄Φ(N1)
)T
)

+ k
(
CIN1+2...IN×R1...RN1

)
≥

N1∏

n=1

Rn + 1 (2.51)

hold, then A(1) ⊗ . . . ⊗ A(N1),
(
Φ(1) ⋄ . . . ⋄Φ(N1)

)T
and CIN1+2...IN×R1...RN1

are unique up to

permutation and scaling of the columns.



2.3. Background on tensor decompositions and new contributions 25

Remark 2.3.

❼ The conditions (2.51) imply that CIN1+2...IN×R1...RN1
, all matrix factors A(n) and

(
Φ(1) ⋄ . . .

⋄Φ(N1)
)T

have no zero-columns.

❼ If any two matrices of (2.47) are full column-rank, the condition (2.51) given in Theorem

2.10 is more relaxed than the one (2.48) given in Theorem 2.9.

Now, let us resume the uniqueness results obtained from Theorems 2.8, 2.9 and 2.10 for

N1 = 2 and N = 4 in Table 3.1. According to Table 3.1, assuming that A(1) and A(2) are

full column-rank, the second condition becomes more restrictive than the first condition and

the third condition becomes equal to the first condition. If both matrices A(1) and A(2) are

not full column-rank, the first condition is not achieved. By the k-rank definition, we obtain

rank
(
A(1)

)
rank

(
A(2)

)
= rank

(
A(1) ⊗A(2)

)
≥ k

(
A(1) ⊗A(2)

)
thus the third condition is more

flexible than the second condition.

Observe that the condition of Theorem 2.8 is derived taking into account one unfolded matrix

XI1I2×I3I4 . If we analyze the uniqueness of this model using the same reasoning for the other

unfolded matrices given in (2.41), i.e. XI3×I1I2I4 and XI4×I1I2I3 , then the two inequalities of the

third condition will be also achieved.
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Table 2.1: Summary of the uniqueness results for PT-(2,4) model.

Theorem Uniqueness condition Tensor model Base reference

2.8 k
((

Φ(1) ⋄Φ(2)
)T
)

+ k(CI4×R1R2) ≥ R1R2 + 1 PT-2 model [59]

A(1), A(2) full column-rank

2.9 rank
(
A(1)

)
rank

(
A(2)

)
+ k
((

Φ(1) ⋄Φ(2)
)T
)

+ k(CI4×R1R2) ≥ 2R1R2 + 2 CP model [70]

2.10 k
(
A(1) ⊗A(2)

)
+ k
((

Φ(1) ⋄Φ(2)
)T
)

≥ R1R2 + 1 CP model [69]

k
(
A(1) ⊗A(2)

)
+ k(CI4×R1R2) ≥ R1R2 + 1

k
((

Φ(1) ⋄Φ(2)
)T
)

+ k(CI4×R1R2
) ≥ R1R2 + 1



Chapter 3
MIMO systems with joint multiplexing and

spreading operations

A tensor space-time (TST) coding for MIMO wireless communication systems [65, 66] is

introduced in this chapter. In the context of multicarrier systems, we present a MIMO wireless

communication system with space-time-frequency (STF) spreading-multiplexing proposed in

[62]. The expressions of the transmit and receive signals are established. We analyze the

performance of both systems regarding the diversity of transmitted information, allowing to

deduce the maximum gain for each system. From the results derived in Chapter 2, we also

propose uniqueness conditions for both systems.

3.1 Tensor Space-Time (TST) system

Consider a MIMO wireless communication system with M transmit antennas and K receive

antennas, and we denote by sn,r the n-th symbol of the r-th data stream, each data stream

(r = 1, ..., R) being composed of N information symbols.

The TST coding allows spreading and multiplexing the transmitted symbols, belonging to R

data streams, in both space (by employing multiple antennas) and time (by transmission over

time blocks and time spreading during several chip periods) domains, through the employment

of a third-order code tensor admitting transmit antenna, data stream and chip as modes, W ∈
C

M×R×J , and two allocation matrices that allocate transmit antennas and data streams to each

block, C(H) ∈ R
P×M and C(S) ∈ R

P×R respectively.

The transmission is assumed to be decomposed into P data blocks, each block being formed

of N symbol periods. At each symbol period n of the p-th block, the transceiver transmits a

linear combination of the n-th symbols of the data streams determined by the stream-to-block

allocation matrix C(S), across a set of transmit antennas fixed by the antenna-to-block allocation

matrix C(H), both matrices are composed uniquely of 1’s and 0’s. It is important to notice that,

during each block p, a different set of data streams can be sent using a different set of transmit

antennas, these two sets depending on the row vectors C
(S)
p· and C

(H)
p· of the two allocation

matrices, respectively.

Each symbol sn,r is replicated several times after multiplication by a three-dimensional

27
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spreading code wm,r,j, in such a way that the signal transmitted from the m-th antenna during

the n-th symbol period of the p-th block, and associated with the j-th chip, is given by

um,n,p,j =
R∑

r=1

wm,r,j sn,r c
(H)
p,m c(S)p,r =

R∑

r=1

gm,r,p,j sn,r (3.1)

with

gm,r,p,j
∆
= wm,r,j c

(H)
p,m c(S)p,r . (3.2)

Equation (3.1) defines the transmit processing composed of three blocks carrying the following

operations: data stream allocation, code tensor and transmit antenna allocation.

sn,1

data stream
allocation

sn,2

sn,R

u1,n,p,j

u2,n,p,j

uM,n,p,j

transmit antenna
allocation

diag
(

c
(S)
p·

)

diag
(

c
(H)
p·

)

W··j

precoding

Figure 3.1: Transmit processing based on the TST coding with resource allocations.

In Figure 3.1, the functioning of this transceiver is illustrated for the p-th block and the j-th

chip. The first and third black boxes
(

diag
(

c
(H)
p·

)

and diag
(

c
(S)
p·

))

select the data streams to be

sent and the transmit antennas to be used for transmission during the p-th block, respectively,

whereas the second black box (W··j) spreads the selected data streams on the selected antennas

to deliver the following matrix of coded signals:

U··p,j = G··p,j S
T ∈ C

M×N , (3.3)

where S ∈ C
N×R and G··p,j ∈ C

M×R can be deduced from (3.2)

G··p,j = diag
(
c(H)
p·

)
W··j diag

(
c(S)p·

)
. (3.4)

In the noiseless case of flat Rayleigh fading channel, the signal received at the k-th antenna

during the j-th chip period of the n-th symbol period of the p-th block, is given by

xk,n,p,j =
M∑

m=1

hk,m um,n,p,j =
M∑

m=1

R∑

r=1

gm,r,p,j hk,m sn,r. (3.5)

The fading coefficients hk,m between transmit antenna (m) and receive antenna (k) are assumed

to be independent and identically distributed (i.i.d.) zero-mean complex Gaussian random

variables. They are also assumed to be constant during at least P blocks.
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Comparing (3.2) and (3.5) with (2.40), we have the following correspondences

(I1, I2, I3, I4, R1, R2)←→ (K,N, P, J,M,R) ,
(
C,A(1),A(2),Φ(1),Φ(2)

)
←→

(

W ,H,S,C(H)T,C(S)T
)

. (3.6)

Therefore, the received signal xk,n,p,j satisfies the PT-(2,4) model given by (2.40).

From the n-mode product definition (2.13), (3.1) and (3.5), we can write the following

fourth-order tensor X ∈ C
K×N×P×J as

X = U ×1 H = (G ×2 S)×1 H = G ×1 H×2 S, (3.7)

where U = G ×2 S ∈ C
M×N×P×J denotes the tensor of transmitted signals and G ∈ C

M×R×P×J

represent the tensor deduced from the combination between allocation matrices, C(H) and C(H),

and code tensor W . Analogously, the tensorial slice X··p· ∈ C
K×N×J of X , containing all the

signals received during the p-th block, can be written from (2.13), (2.16), (3.3) and (3.4) as

X··p· =W ×1

(
H diag

(
c(H)
p·

))
×2

(
S diag

(
c(S)p·

))

= G··p· ×1 H×2 S (3.8)

with

G··p· =W ×1 diag
(
c(H)
p·

)
×2 diag

(
c(S)p·

)
(3.9)

and also visualized in Fig. 3.2.

X··p·

J

K

N

Received signal
(p-th block)

= H
K

M
M

M M

J

R
R

R

R
STW

TST coding with allocations

diag
(

c
(H)
p·

)
diag

(

c
(S)
p·

)

N

Figure 3.2: Visualization of the tensor slice X··p· of the PARATUCK-(2,4) model.

Let us define X··p,j ∈ C
K×N as a matrix slice of the received signal tensor X . Using (3.5), it

leads to the following factorization

X··p,j = HU··p,j = HG··p,j S
T, (3.10)

with G··p,j ∈ C
M×R given by (3.4). By stacking column-wise the set of matrix slices {X··1,1, . . . ,

X··P,J} and {XT
··1,1, . . . ,X

T
··P,J}, and using (3.10), we can deduce, respectively, the following two
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matrix unfoldings of X as

XPJK×N
∆
=















X··1,1
...

X··1,J
...

X··P,1
...

X··P,J















∈ C
PJK×N XPJN×K

∆
=















XT
··1,1
...

XT
··1,J
...

XT
··P,1
...

XT
··P,J















∈ C
PJN×K

= (IPJ ⊗H)GPJM×RS
T, = (IPJ ⊗ S)GPJR×MHT, (3.11)

where

GPJM×R
∆
=















G··1,1
...

G··1,J
...

G··P,1
...

G··P,J















∈ C
PJM×R, GPJR×M

∆
=















GT
··1,1
...

GT
··1,J
...

GT
··P,1
...

GT
··P,J















∈ C
PJR×M (3.12)

represent two matrix unfoldings of G ∈ C
M×R×P×J .

Applying property (A.3) to (3.10) and (3.4), denoting vec(·) as the vectorization operator,

we have

vec(X··p,j) = (S⊗H) vec(G··p,j) ∈ C
NK×1 (3.13)

and

vec(G··p,j) =
(
diag

(
c(S)p·

)
⊗ diag

(
c(H)
p·

))
vec(W··j) ∈ C

RM×1

= diag(vec(W··j))
(

c(S)p·

T ⊗ c(H)
p·

T
)

, (3.14)

which gives

vec(X··p,j) = (S⊗H) diag(vec(W··j))
(

c(S)p·

T ⊗ c(H)
p·

T
)

. (3.15)

Using (3.13) and (3.14), we can deduce a third matrix unfolding of X as

XKN×JP
∆
=
[
vec
(
XT

··1,1

)
· · · vec

(
XT

··P,1

)
· · · vec

(
XT

··1,J

)
· · · vec

(
XT

··P,J

)]

= (H⊗ S)GMR×JP ∈ C
KN×JP (3.16)

with a matrix unfoldings of G given by

GMR×JP
∆
=
[

vec
(
GT

··1,1

)
· · · vec

(

GT
··P,1

)

· · · vec
(

GT
··1,J

)

· · · vec
(

GT
··P,J

)]

∈ C
MR×JP

=
[

diag
(
vec
(
WT

··1

)) (

C(H)T⋄C(S)T
)

· · · diag
(
vec
(
WT

··J

)) (

C(H)T⋄C(S)T
)]

. (3.17)
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The tensor GMR×JP can be also expressed applying property (A.1) to (3.17) in the form

GMR×JP =

(

WJ×MR ⋄
(

C(H)T⋄C(S)T
)T
)T

(3.18)

where

WJ×MR
∆
=
[
vec
(
WT

··1

)
· · · vec

(
WT

··J

)]T ∈ C
J×MR. (3.19)

The received signal given by (3.5) can be also rewritten as a constrained CP model of third-

order instead of the PT-(2,4) model which will allow us to exploit the CP results. Firstly, we

rewrite the PT-(2,4) as a constrained CP-3 model aiming to relate both models and then restrict

them to our problem.

TST system modeled by a constrained CP model

Now, let us rewrite the PT-(2,4) model as the following third-order constrained CP model

X ∈ C
I1I2×I3×I4

xj1,i3,i4 =

R1R2∑

r=1

aj1,r bi3,r ci4,r, j1 ∈ {1, ..., I1I2}, (3.20)

whose matrix factors A ∈ C
I1I2×R1R2 , B ∈ C

I3×R1R2 , C ∈ C
I4×R1R2 are given by

A = A(1) ⊗A(2),

B =
(
Φ(1) ⋄Φ(2)

)T
,

C = CI4×R1R2 . (3.21)

From (3.21) and the correspondences in (3.6), the received signal can be expressed by a

constrained CP-3 model X ∈ C
KN×P×J , where

A = H⊗ S ∈ C
KN×MR,

B =
(

C(H)T⋄C(S)T
)T

∈ C
P×MR,

C = WJ×MR ∈ C
J×MR, (3.22)

are its loading matrices.

From (2.21) and (3.22), let us write the following unfolded matrix

XKN×JP = (H⊗ S)

(

WJ×MR ⋄
(

C(H)T⋄C(S)T
)T
)T

. (3.23)

Verify that this unfolded matrix constructed by the factors A, B and C given in (3.22) results

exactly in the same expression for the unfolded matrix XKN×JP given in (3.16) with (3.18).
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Special case: TST system without allocation structures

In order to simplify the system, we can consider the fourth-order code tensor denoted by

W ∈ C
M×R×P×J instead of the combination of allocation structures with precoding. Thus, the

received signal can be rewritten as

xk,n,p,j =
M∑

m=1

R∑

r=1

wm,r,p,j hk,m sn,r. (3.24)

The employment of a fourth-order code tensor simplifies the analyze of identifiability and

uniqueness conditions, and also allows an increase of information diversity because the model

becomes more flexible in terms of structure, we can fix an optimal code which will satisfy

appropriately both conditions and can provide better performance. It will be clear later.

3.2 Space-Time-Frequency (STF) system

Consider a multicarrier MIMO wireless communication system using M transmit antennas,

K receive antennas and F subcarriers. We assume a transmission consisting of P data blocks,

each one composed of N symbol periods. For a fixed symbol period and subcarrier, the (m, p, f)-

th space-time-frequency (STF) coded signal, associated with the m-th transmit antenna, p-th

block and f -th subcarrier is generated by a tensor coding operating on R data streams of N

information symbols each one.

The STF coding structure employs two allocation tensors: the stream allocation tensor

C(S) ∈ R
F×P×R and the antenna allocation tensor C(H) ∈ R

F×P×M , which are composed uniquely

of 1’s and 0’s. The first tensor determines the time-frequency mapping of the R data streams

across P blocks and F subcarriers, and the second one determines the time-frequency mapping

of the M transmit antennas.

The (f,m, n, p)-th element of the coded signal tensor U ∈ C
F×M×N×P associated with the

f -th subcarrier, m-th transmit antenna, n-th symbol period and p-th data block, is given by

[62]

uf,m,n,p =
R∑

r=1

wm,r sn,r c
(H)
f,p,m c

(S)
f,p,r =

R∑

r=1

tf,m,r,p sn,r (3.25)

with

tf,m,r,p
∆
= wm,r c

(H)
f,p,m c

(S)
f,p,r, (3.26)

where wm,r is (m, r)-th entry of the code matrixW and sn,r denotes the n-th transmitted symbol

associated with the r-th data stream.

Let us define the MIMO-OFDM channel given by the tensor H ∈ C
F×K×M , where hf,k,m is

a complex coefficient of the channel linking the m-th transmit antenna with the k-th receive

antenna for the f -th subcarrier. The fading coefficients are assumed to be constant during at

least P blocks.

In the noiseless case of scattering-rich multipath fading channel, the received signal tensor

X ∈ C
F×K×N×P associated with the f -th subcarrier and received at the k-th antenna during
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the n-th symbol period of the p-th data block, is given by [62]

xf,k,n,p =
M∑

m=1

hf,k,m uf,m,n,p =
M∑

m=1

R∑

r=1

tf,m,r,p hf,k,m sn,r. (3.27)

According to [62], (3.27) follows a generalized PT-2 model. Using the n-mode product

definition (2.13) and (3.27), we can write the f -th tensorial slice of X ∈ C
F×K×N×P , containing

all received signals associated with the f -th subcarrier, as

X (f) = T (f) ×1 H
(f) ×2 S (3.28)

where X (f) ∆
= Xf ··· ∈ C

K×N×P , T (f) ∆
= Tf ··· ∈ C

M×R×P and H(f) ∆
= Hf ·· ∈ C

K×M .

Let us define Xf ··p ∈ C
K×N as the matrix slice obtained by fixing f and p indices of X ∈

C
F×K×N×P .

Xf ··p = Hf ·· Tf ··p S
T = Hf ·· Uf ··p, (3.29)

with

Tf ··p = diag
(

c
(H)
f,p·

)

W diag
(

c
(S)
f,p·

)

∈ C
M×R (3.30)

and

Uf ··p = Tf ··p S
T ∈ C

M×N . (3.31)

Analogously to (3.11) and using (3.29), we can build two matrix unfoldings of X as

XPFK×N
∆
=















X1··1
...

XF ··1
...

X1··P
...

XF ··P















∈ C
PFK×N XPFN×K

∆
=















XT
1··1
...

XT
F ··1
...

XT
1··P
...

XT
F ··P















∈ C
PFN×K

= (IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R ST, = (IPF ⊗ S)TPFR×FM HFM×K ,
(3.32)

where

TPFM×R
∆
=















T1··1
...

TF ··1
...

T1··P
...

TF ··P















∈ C
PFM×R, TPFR×FM

∆
=















TT
1··1 0

. . .

0 TT
F ··1

...
TT

1··P 0
. . .

0 TT
F ··P















∈ C
PFR×FM , (3.33)
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with HFM×K denotes an unfolded matrix of H ∈ C
F×K×M which can be expressed in terms of

its matrix slices Hf ·· by

HFM×K
∆
=
[
H1·· · · · HF ··

]T ∈ C
FM×K . (3.34)

Applying property (A.3) to (3.29) and (3.30), we have

vec
(
XT

f ··p

)
= (Hf ·· ⊗ S) vec

(
TT

f ··p

)
∈ C

KN×1 (3.35)

and

vec
(
TT

f ··p

)
=
(

diag
(

c
(H)
f,p·

)

⊗ diag
(

c
(S)
f,p·

))

vec
(
WT

)

= diag
(

c
(H)
f,p· ⊗ c

(S)
f,p·

)

vec
(
WT

)
∈ C

MR×1, (3.36)

which gives

vec
(
XT

f ··p

)
= (Hf ·· ⊗ S) diag

(

c
(H)
f,p· ⊗ c

(S)
f,p·

)

vec
(
WT

)
. (3.37)

For convenience, let us define a third unfolded matrix analogously to (3.16) as follows

XKN×FP
∆
=
[
vec
(
XT

1··1

)
· · · vec

(
XT

1··P

)
· · · vec

(
XT

F ··1

)
· · · vec

(
XT

F ··P

)]

= (HK×FM ⊗ S) TFMR×FP ∈ C
KN×FP , (3.38)

where

TFMR×FP
∆
=






[
vec
(
TT

1··1

)
· · · vec

(
TT

1··P

)]
0

. . .

0
[
vec
(
TT

F ··1

)
· · · vec

(
TT

F ··P

)]






∈ C
FMR×FP (3.39)

and from (3.36) and the Khatri-Rao definition (A.1), we can write

[
vec
(
TT

f ··1

)
· · · vec

(
TT

f ··P

)]T
=








vec
(
WT

)T
diag

(

c
(H)
f,1· ⊗ c

(S)
f,1·

)

...

vec
(
WT

)T
diag

(

c
(H)
f,P · ⊗ c

(S)
f,P ·

)








= vec
(
WT

)T ⋄
(

C
(H)
f ··

T⋄C(S)
f ··

T
)T

∈ C
P×MR. (3.40)

3.3 Performance analysis

In this section, we analyze the performance of the TST coding focusing on the diversity of

information transmitted and derive the maximum diversity gain over a flat fading channel, and

in the sequence, extend this analysis for the STF system.
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3.3.1 TST system

Consider that the channel matrix H has independent entries following a circular symmetric

complex Gaussian random distribution, i.e. hk,m ∼ CN (0, 1), or equivalently its real and imag-

inary components are i.i.d. and distributed as N (0, 1/2), which corresponds to the assumption

of flat Rayleigh fading. We also assume that the receiver has perfect knowledge of H and of the

TST coding parameter set {W ,C(S),C(H)}.
For matrix ST coding, the transmitted ST code matrix, also called ST codeword, is defined

as the matrix associated with the coding mapping:

sn ∈ C
M×1 −→ Cn ∈ C

M×T (3.41)

where M and T denote the space and time spreading lengths. In the case of the proposed tensor

ST coding, the ST codeword is the fourth-order tensor associated with the coding mapping:

ST ∈ C
R×N −→ U ∈ C

M×N×P×J (3.42)

whose dimensions are the lengths of space, time, block and chip spreadings.

As already mentioned, matrix ST coding approaches are based on codeword estimation,

followed by a decoding step for estimating the transmitted symbols. So, the performance analysis

is generally based on the pairwise error probability (PEP) of the maximum likelihood (ML)

estimator of the codeword matrix, defined as the probability that the ML estimator estimates

Ĉn when Cn is actually sent. In the case of TST coding, it is possible to directly estimate the

symbol matrix instead of the codeword tensor, which explains why our performance analysis is

based on the PEP of the ML estimator of S instead of U .
The diversity gain d is defined as the negative of the asymptotic slope of the plot PEP(ρ) on

a log-log scale, where ρ denotes the received signal-to-noise ratio (SNR), and PEP is hereafter

the probability that the ML estimator estimates Ŝ when S is actually transmitted.

In the sequel, we first determine the function PEP(ρ), and then we deduce the diversity gain

for TST coding.

The conditional PEP between S and Ŝ can be approximated by [6],[102]:

P
(

S→ Ŝ|H
)

= Q

(√
1

2N0

‖X − X̂‖2F
)

, (3.43)

whereN0 is the noise variance per (real and imaginary) dimension andQ(·) is the complementary

cumulative distribution function of a Gaussian variable defined as

Q(x)
∆
= P (x ≥ y) =

1√
2π

∫ ∞

y

exp

(

−y2

2

)

dy. (3.44)

The Q-function can be rewritten in an alternative form referred to as Craig’s formula [1]

Q(x) =
1

π

∫ π
2

0

exp

(

− x2

2 sin2(β)

)

dβ, (3.45)



36 Chapter 3. MIMO systems with joint multiplexing and spreading operations

applying this definition to (3.43), one gets

P
(

S→ Ŝ|H
)

=
1

π

∫ π
2

0

exp

(

− ‖X − X̂‖
2
F

4N0 sin
2(β)

)

dβ. (3.46)

Defining the difference between the matrix slices (p, j) of the codeword tensors U and Û as

E(p,j) = U··p,j − Û··p,j ∈ C
M×N (3.47)

and using (3.5) and (3.10), we have

‖X − X̂‖2F =
K∑

k=1

N∑

n=1

P∑

p=1

J∑

j=1

|xk,n,p,j − x̂k,n,p,j|2

=
P∑

p=1

J∑

j=1

‖HE(p,j)‖2F =
P∑

p=1

J∑

j=1

tr
(
HA(p,j)HH

)
(3.48)

where A(p,j) ∆
= E(p,j)

(
E(p,j)

)H
is Hermitian and nonnegative definite. Observe that the trace of

a product can also be written in the following form:

y(p,j)
∆
= tr

(
HA(p,j)HH

)
= vec

(
HT
)T (

IK ⊗A(p,j)
)
vec
(
HT
)∗

. (3.49)

From (3.46) and (3.49), we can derive the average PEP as follows

P
(

S→ Ŝ
)

=

∫ ∞

0

(

1

π

∫ π
2

0

P∏

p=1

J∏

j=1

exp

(

− y(p,j)

4N0 sin
2(β)

)

dβ

)

py(p,j)
(
y(p,j)

)
dy(p,j)

=
1

π

∫ π
2

0

P∏

p=1

J∏

j=1

(∫ ∞

0

exp

(

− y(p,j)

4N0 sin
2(β)

)

py(p,j)
(
y(p,j)

)
dy(p,j)

)

dβ

=
1

π

∫ π
2

0

P∏

p=1

J∏

j=1

My(p,j)

(

− 1

4N0 sin
2(β)

)

dβ, (3.50)

where

My(γ) =

∫ ∞

0

exp(γ y) py(y)dy (3.51)

denotes the moment generating function of y. It is important to attend that the probability

density function of y(p,j) denoted by py(p,j)(·) does not depend on the variables p and j (i.e.

A(p,j)).

Knowing that the channel coefficients hk,m are i.i.d and have a circular symmetric complex

Gaussian random distribution with zero-mean and unit variance, let us introduce an interesting

theorem [103].

Theorem 3.1. [103] The moment generating function of a Hermitian quadratic form in a com-

plex Gaussian random variable y = zHFz, where z is a circularly symmetric complex Gaussian

vector with mean z̄ and covariance matrix Rz and F is a Hermitian matrix, is given by

My(s)
∆
=

∫ ∞

0

exp(sy) py (y) dy =
exp

(
sz̄HF (I− sRzF)

−1 z̄
)

det (I− sRzF)
. (3.52)
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Considering the correspondences F = IK ⊗A(p,j), Rz = IKM , z = vec
(
HT
)
, z̄ = 0KM and

y(p,j) defined in (3.49), we can apply (3.52) to (3.50) getting

P
(

S→ Ŝ
)

=
1

π

∫ π
2

0

P∏

p=1

J∏

j=1

det

(

IKM +
1

4N0 sin
2(β)

(
IK ⊗A(p,j)

)
)−1

dβ

=
1

π

∫ π
2

0

P∏

p=1

J∏

j=1

det

(

IM +
1

4N0 sin
2(β)

A(p,j)

)−K

dβ. (3.53)

To solve the integration over β in the expression (3.53) is not simple, hence we can employ

the Chernoff bound [102, 1] in order to eliminate the integral and to give an upper bound of

PEP

P
(

S→ Ŝ
)

≤
P∏

p=1

J∏

j=1

det

(

IM +
1

4N0

A(p,j)

)−K

. (3.54)

By definition, the Chernoff bound is obtained by taking sin2(β) = 1 in (3.45), and so rewriting

(3.53) with sin2(β) = 1.

Since det(I+ αA) =
∏rank(A)

i=1 (1 + αλi(A)) with λi(A) eigenvalue ofA, we can rewrite (3.54)

as

P
(

S→ Ŝ
)

≤
P∏

p=1

J∏

j=1

r(p,j)∏

i=1

(

1 +
1

4N0

λ
(p,j)
i

)−K

, (3.55)

where λ
(p,j)
i and r(p,j)

∆
= rank

(
A(p,j)

)
denote the non-zero eigenvalues and the rank of A(p,j),

respectively.

At high SNR, i.e. for small values of N0, the above upper bound on the PEP becomes

P
(

S→ Ŝ
)

≤
P∏

p=1

J∏

j=1

r(p,j)∏

i=1

(

λ
(p,j)
i

)−K
(

1

4N0

)−K
∑

j,p

r(p,j)

(3.56)

which gives the following diversity gain

dTST = K

J∑

j=1

P∑

p=1

r(p,j). (3.57)

Recalling that A(p,j) = E(p,j)
(
E(p,j)

)H
, we have

r(p,j) = rank
(
A(p,j)

)
= rank

(
E(p,j)

)
. (3.58)

Using (3.3), the difference (3.47) of the codeword matrix slices can be rewritten as

E(p,j) = G··p,j

(

S− Ŝ
)T

. (3.59)
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As the symbol matrix S has independent entries following a random distribution, generically, we

have rank(S) = min(N,R). Applying the well-known property rank(AB) ≤ min(rank(A) , rank(B))

for arbitrary matrices A and B, and assuming N ≥ R, we deduce that

r(p,j) = rank
(
E(p,j)

)
≤ min

(

rank(G··p,j) , rank
(

S− Ŝ
))

≤ min(min(M,R) ,min(N,R))

≤ min(M,R) , ∀ p, j. (3.60)

It is interesting to observe that the maximum rank of E(p,j) and consequently, of G··p,j is

depending on the structure of the allocation matrices C(S) and C(H). Let us assume that β
(S)
p

and β
(H)
p denote the number of zero elements of c

(S)
p· and c

(H)
p· , respectively. From (3.4), G··p,j

has β
(S)
p zero columns and β

(H)
p zero rows, then rank(G··p,j) ≤ min

(

M − β
(H)
p , R− β

(S)
p

)

. Thus,

the maximum diversity gain is deduced from (3.57) in replacing r(p,j) by its upper bound given

in (3.60) for all the values of p and j.

Theorem 3.2. (Maximum diversity gain for the TST system). Assuming that N ≥ R, then

the TST system characterized by the design parameter set {P, J,M,R,K} provides a maximum

diversity gain equal to

dTST
max = KJ

P∑

p=1

min
(
M − β(H)

p , R− β(S)
p

)
, (3.61)

with β
(S)
p and β

(H)
p denoting the number of zero elements of c

(S)
p· and c

(H)
p· , respectively.

So, we can conclude from (3.61) that the maximum diversity gain depends on the alloca-

tion matrices and therefore, we may have different performances for each particular allocation

structure.

From (3.61), we can observe in the best case dTST
max = KJP min(M,R) and therefore, the

TST coding provides a better diversity than standard matrix ST coding schemes that ensure

a maximum diversity gain of KM . Moreover, for fixed numbers (K and M) of receive and

transmit antennas, the maximum diversity gain can be increased by independently increasing

the design parameters P , J and R (up to R = M).

However, we have to recall that an increase of P decreases the transmission rate∗, while

an increase of R increases the transmission rate. Moreover, for a fixed R, i.e. a fixed number

of data streams to be estimated, an increase of P or J implies an increase of the number of

received signals to be used for channel and symbol estimation, and thus an improvement of the

estimation quality, while for fixed P and J , an increase of R implies an increase of the number

of parameters (symbols) to be estimated, which degrades the quality of estimation. From these

considerations, we see that the design parameters (P, J,M,R) must be chosen in such a way

that the best tradeoff between transmission rate and BER performance be satisfied.

∗The transmission rate (in bits per channel use) is given by R
P
log2(µ), where µ is the cardinality of the

information symbol constellation.
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3.3.2 STF system

Let us derive the average PEP and the maximum diversity gain over a flat fading channel

for the STF system. Analogously to (3.47), we can define the difference between the matrix

slices (p, f) of the codeword tensors U and Û as

E(p,f) = Uf ··p − Ûf ··p ∈ C
M×N (3.62)

and using (3.27) and (3.29), we have

‖X − X̂‖2F =
K∑

k=1

N∑

n=1

P∑

p=1

F∑

f=1

|xf,k,n,p − x̂f,k,n,p|2

=
P∑

p=1

F∑

f=1

‖Hf ·· E
(p,f)‖2F =

P∑

p=1

F∑

f=1

tr
(
Hf ··A

(p,f)HH
f ··

)
, (3.63)

where A(p,f) ∆
= E(p,f)

(
E(p,f)

)H
is Hermitian and nonnegative definite.

Observe that both systems, TST and STF, show close expressions and we can employ the

same reasoning to develop each step for the STF. For simplicity and in order to avoid repetitions,

let us restrict to the main expressions.

We assume that the channel tensor H has independent entries following a circular symmetric

complex Gaussian random distribution, i.e. hf,k,m ∼ CN (0, 1). The receiver has also perfect

knowledge of H and of the STF parameter set {W, C(S), C(H)}.
Comparing (3.63) with (3.48), we can easily obtain the above upper bound on the PEP at

high SNR for the STF, analogously to (3.56),

P
(

S→ Ŝ
)

≤
P∏

p=1

F∏

f=1

r(p,f)∏

i=1

(

λ
(p,f)
i

)−K
(

1

4N0

)−K
∑

f,p

r(p,f)

, (3.64)

where λ
(p,f)
i and r(p,f)

∆
= rank

(
A(p,f)

)
denote, respectively, the non-zero eigenvalues and the rank

of A(p,f), the diversity gain is given by

dSTF = K

F∑

f=1

P∑

p=1

r(p,f). (3.65)

From (3.57) and (3.65), we note that both systems achieve the same diversity gain when

N ≥ R and, G··p,j and Tf ··p for all p, j, f are chosen such that

J∑

j=1

P∑

p=1

rank(G··p,j) =
F∑

f=1

P∑

p=1

rank(Tf ··p) .

Analogously to (3.61) in Theorem 3.2 and from (3.65), we proposed a maximum diversity gain

for the STF system given in the following theorem.
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Theorem 3.3. (Maximum diversity gain for the STF system). Assuming that N ≥ R, then

the STF system characterized by the design parameter set {P, F,M,R,K} provides a maximum

diversity gain equal to

dSTF
max = K

F∑

f=1

P∑

p=1

min
(

M − β
(H)
p,f , R− β

(S)
p,f

)

, (3.66)

where β
(S)
p,f and β

(H)
p,f denote the number of zero elements of c

(S)
f,p· and c

(H)
f,p·, respectively.

According to (3.61) and (3.66), we can verify that the allocation structures limit the max-

imum diversity gain for both systems. Thus, systems with different allocation structures may

provide different performances.

Remark also that the allocation tensors for the STF system arrange the data transmis-

sion across the subcarriers and therefore, setting the same design parameters for both systems

{K,P,M,R} including J = F , we have dSTF
max ≤ dTST

max from (3.61) and (3.66). It indicates that

the extra time diversity J presented in the TST system can improve more the reliability of

symbol recovery compared to the frequency diversity F in the STF system. In this sense, we

can conclude that both diversities are not equivalent.

3.4 Uniqueness analysis

In this section, we employ the uniqueness results developed in Chapter 2 to derive practical

conditions with the purpose of ensuring the estimation of symbol and channel for the TST and

STF systems. We provide a more practical uniqueness condition to be satisfied than the one

proposed in [62] for the STF system.

3.4.1 TST system

Analogously the uniqueness analysis for PT-(2,4) model in last chapter, let us consider the

unfolded matrix defined in (3.23) to analyze the uniqueness conditions of this model in the TST

context. Due to the special structure of this unfolded matrix, we can isolate the matrices to be

estimated, i.e. the channel and symbol matrices. This analysis takes into account the knowledge

of the allocation matrices and the code tensor at both transceiver and receiver sides.

We have to ensure the uniqueness of the PT-(2,4) model in order to guarantee the unique

estimation of the symbol S and channel H matrices, hence both estimates of S and H have

to satisfy the unfolded matrices in (3.11) and (3.16). Let Ŝ and Ĥ be alternative solutions

which can write as Ŝ = SU and Ĥ = HV, with U ∈ C
R×R and V ∈ C

M×M non-singular

matrices. Choosing for simplicity (3.16), the unfolded matrix XKN×JP can be rewritten using

the Kronecker property (A.4) as

(H⊗ S)GMR×JP =
(

Ĥ⊗ Ŝ
)

GMR×JP

= (H⊗ S) (V ⊗U)GMR×JP , (3.67)

with GMR×JP given by (3.18).
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Thus, we can directly apply Theorem 2.7 to derive a sufficient condition for TST system

taking account the system structures as it is enunciated in the next theorem.

Theorem 3.4. Suppose that S and H are full column-rank, and the perfect knowledge of the

code tensor W and the allocation matrices C(H) and C(S). If the code tensor is chosen such that

WJ×MR is full column-rank and C(H)T⋄C(S)T has no zero-rows, then the estimates of S and H

are unique up to a scaling factor α, i.e.

S = α Ŝ, H =
1

α
Ĥ. (3.68)

Proof: As S and H are full column-rank, the left-inverse of H ⊗ S exists and is unique. By

k-rank definition, if C(H)T⋄C(S)T has no zero-rows then k

((

C(H)T⋄C(S)T
)T
)

≥ 1. According to

Theorem 2.7, if WJ×MR is full column-rank, implying that GMR×JP is full row-rank, then both

symbol and channel matrices are unique up to a scaling factor, i.e. (3.68), which concludes the

proof.

Remark 3.1.

❼ As the elements of H are drawn from continuous probability density function, H is almost

surely full column-rank when K ≥M .

❼ It is important to emphasize that the model does not present the permutation ambiguity

and only the scalar ambiguity which can be removed by the knowledge of only one symbol

at the receiver.

❼ According to Theorem 2.7, even when WJ×MR is not full column-rank it is possible to

achieve the uniqueness condition satisfying k(WJ×MR) + k

((

C(H)T ⋄C(S)T
)T
)

≥ 1.

According to the theorem above, the allocation structures have to satisfy k

((

C(H)T ⋄C(S)T
)T
)

≥ 1, which is equivalent to the next equality:
{
∀m, r, ∃p

∣
∣ c(H)

p,m c(S)p,r = 1
}
. (3.69)

Verify that (3.69) means that each r-th data stream has to be transmitted by each m-th antenna

during at least one time block p. Consequently, (3.69) has a physical interpretation which allows

to construct the allocation matrices.

It is important to emphasize that the characteristics of wireless communication system in-

terfere or can even restrict the choice of allocation matrices. As for example, the amount of

available antennas per each time block, restriction of the transmission rate and required relia-

bility of communication directly affect the dimensions and structure of allocation matrices. For

this reason, it is convenient to relax the construction rule of allocation matrices by appropriately

fixing the code tensor.

We can exploit the uniqueness results for CP model in order to deduce another conditions

to ensure channel and symbol estimation for the TST coding. Thus, let us consider the received

signal tensor decomposed as a constrained CP model which was developed in Section 3.1 and

recalled by convenience hereafter

X =
[[

A
(1)
,A

(2)
,A

(3)
]]

, (3.70)



42 Chapter 3. MIMO systems with joint multiplexing and spreading operations

with

A = H⊗ S ∈ C
KN×MR,

B =
(

C(H)T⋄C(S)T
)T

∈ C
P×MR,

C = WJ×MR ∈ C
J×MR. (3.71)

Theorems 2.9 and 2.10 proposed in Chapter 2 can be applied to extend the uniqueness

conditions through the constrained CP model given in (3.70) and (3.71). Let us firstly employ

Theorem 2.9 to derive the next theorem for the TST system.

Theorem 3.5. Suppose the perfect knowledge of the code tensor W and the allocation matrices

C(H) and C(S). Assuming that the code tensor is chosen such that WJ×MR is full column-rank,

if the following condition is satisfied

rank(H) rank(S) + k

((

C(H)T⋄C(S)T
)T
)

≥MR + 2, (3.72)

we can guarantee the uniqueness of S and H assuming the knowledge of one symbol.

Proof: Observe that rank(H⊗ S) = rank(H) rank(S). Applying directly (2.48), we have that

if the condition (3.72) holds then H⊗S is unique up to permutation and scaling of the columns.

The knowledge of W , C(H) and C(S) allow to eliminate ambiguities of the estimation of H⊗ S

and it is possible to separate S and H using the knowledge of just one symbol, thanks to the

special structure of the Kronecker product.

Remark 3.2.

❼ It is implicity in (3.72) the following restriction k

((

C(H)T⋄C(S)T
)T
)

≥ 2, which means that

C(H)T⋄ C(S)T does not have collinear rows. Theorem 3.5 does not impose that S and H

are full column-rank, but the condition on the allocation matrices is stronger than the one

given in Theorem 3.4.

❼ The sufficient condition (3.72) is more restrictive than the one given in Theorem 3.4

when both S and H are full column-rank, implying N ≥ R and K ≥ M . Thus, the most

important aspect of the Theorem 3.5 lies in the fact that it allows the use of more transmit

antennas (M) than receiver antennas (K), i.e. M > K.

We can obtain another uniqueness condition for the TST system applying Theorem 2.10.

Let us enunciate the following theorem.

Theorem 3.6. Suppose the perfect knowledge of the code tensor W and the allocation matrices

C(H) and C(S). Assuming that the code tensor is chosen such that WJ×MR is full column-rank,

if the following condition is satisfied

k(H⊗ S) + k

((

C(H)T⋄C(S)T
)T
)

≥MR + 1, (3.73)

we can guarantee the uniqueness of S and H assuming the knowledge of one symbol.
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Proof: According to Theorem 2.10 for WJ×MR is full column-rank, we directly obtain the

inequality (3.73). Finally, S and H are correctly recover thanks to the structure of Kronecker

product and the knowledge of W , C(H), C(S) and at least one symbol.

Remark 3.3.

❼ When S and H are full column-rank implying N ≥ R and K ≥ M , Theorem 3.6 leads to

Theorem 3.4.

❼ As k(H⊗ S) ≤ rank(H⊗ S) = rank(H) rank(S) ≤ min(N,R)min(K,M), hence the

condition (3.73) of Theorem 3.6 is less constrained than the condition (3.72) of Theorem

3.5.

❼ If S has collinear columns, then k(H⊗ S) = 1 and as consequence, C(H)T⋄C(S)T has to

be full row-rank in order to satisfy (3.73).

According to the last remark, Theorem 3.5 is unnecessary and Theorem 3.4 is a particular

case of Theorem 3.6. The interesting advantage of Theorem 3.6 is that S and H do not need to

be full column-rank, which allows the use of more transmit antennas (M) than receiver antennas

(K), i.e. M > K.

3.4.2 STF system

Analogously to the uniqueness analysis for the TST coding, we study the uniqueness condi-

tion from the convenient structure of the unfolded matrix XKN×FP given in (3.38).

Let us consider Ŝ and ĤK×FM as alternative solutions that satisfy (3.38) and assume Ŝ = SU

and ĤK×FM = HK×FMV with U ∈ C
R×R and V ∈ C

FM×FM nonsingular matrices. Thus, we

can rewrite (3.38) as

XKN×FP =
(

ĤK×FM ⊗ Ŝ
)

TFMR×FP = (HK×FM ⊗ S) (V ⊗U) TFMR×FP . (3.74)

We can prove the uniqueness model of (3.27) from (3.74) and the next theorem shows a

sufficient condition that ensure the uniqueness of this model.

Theorem 3.7. Suppose that S and HK×FM are full column-rank, and the perfect knowledge of

the code matrix W and the allocation tensors C(S) and C(H). If we choose W and C(S) and C(H)

such that wm,r 6= 0 for all m ∈ {1, ...,M} and r ∈ {1, ..., R}, and C
(H)
f ··

T ⋄ C(S)
f ··

T
full row-rank

for all f ∈ {1, ..., F} implying MR ≤ P , then we can uniquely estimate S and HK×FM up to a

scalar factor α, i.e.

S = α Ŝ, HK×FM =
1

α
ĤK×FM . (3.75)

Proof: If S, HK×FM and TT
FMR×FP are full column-rank, then (3.74) can be rewritten as

V ⊗U = IFMR. (3.76)

The only solution for (3.76) happens when both matrices U and V are identity matrices up

to scalar factors that compensate each other, which leads to (3.75). From (3.39) and (3.40), if

the elements of the code matrix are nonzero and C
(H)
f ··

T ⋄C(S)
f ··

T
is full row-rank for all f , then

TFMR×FP will be full row-rank as well. It concludes the proof.
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Remark 3.4.

❼ Analogously to the TST system, assuming that the channel coefficients have entries i.i.d.

and a continuous distribution, HK×FM is almost surely full column-rank if K ≥ FM .

Thus, K ≥ FM is a restrictive condition because we have always to use F times more

receive antennas than transmit antennas.

❼ Theorem 3.7 provides a more practical uniqueness condition for a generalized PT-2 model

than the conditions in [62].

❼ Differently to Theorem 3.7 for the STF systems, the uniqueness results for the TST systems

permit a more relaxed condition over the allocation structures by appropriately choosing

the code and it is not required a large amount of data blocks P as for the STF uniqueness

(MR ≤ P ).

3.5 Generalization of TST systems to multiuser case

Let us generalize the TST coding for Q users as illustrated in Figure 3.3. Each user transmits

R input data streams using M different antennas and each data stream is composed of N

information symbols. We consider two allocation matrices C(H,q) ∈ R
P×M and C(S,q) ∈ R

P×R

for each user q, which allocate transmit antennas and data streams to each block p.

u
(1)
1,n,p,j

u
(1)
M,n,p,j

TX 1

x1,n,p,j

xK,n,p,j

RX

u
(Q)
1,n,p,j

u
(Q)
M,n,p,j

TX Q

s
(1)
n,1

s
(1)
n,R

s
(Q)
n,1

s
(Q)
n,R

user 1

user Q

Base
Station

Figure 3.3: Uplink processing based on the TST coding with resource allocations.

From (3.1), the signal associated with the q-th user and the j-th chip transmitted from the

m-th antenna during the n-th symbol period of the p-th block is given by

u
(q)
m,n,p,j =

R∑

r=1

g
(q)
m,r,p,j s

(q)
n,r (3.77)

with

g
(q)
m,r,p,j

∆
= w

(q)
m,r,j c

(H,q)
p,m c(S,q)p,r . (3.78)
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In the absence of noise, the received signal associated with the q-th user can be written using

(3.5) as

x
(q)
k,n,p,j =

M∑

m=1

h
(q)
k,m u

(q)
m,n,p,j =

M∑

m=1

R∑

r=1

g
(q)
m,r,p,j h

(q)
k,m s(q)n,r. (3.79)

We obtain the tensor of the overall received signal X ∈ C
K×N×P×J by summing the Q

contributions and using the n-mode product definition (2.13)

X ∆
=

Q
∑

q=1

X (q) =

Q
∑

q=1

G(q) ×1 H
(q) ×2 S

(q). (3.80)

Remark that each received signal tensor X (q) ∈ C
K×N×P×J satisfies the PARATUCK-(2,4)

model.

From (3.11) and (3.16), we can express three matrix unfoldings of X as follows

XPJK×N
∆
=

Q
∑

q=1

X
(q)
PJK×N =

[
IPJ ⊗H(1) · · · IPJ ⊗H(Q)

]
GQPJM×QR ST

= (Ω |⊗|HK×QM)GQPJM×QR SQR×N ∈ C
PJK×N , (3.81)

XPJN×K
∆
=

Q
∑

q=1

X
(q)
PJN×K =

[
IPJ ⊗ S(1) · · · IPJ ⊗ S(Q)

]
GQPJR×QM HT

= (Ω |⊗|SN×QR)GQPJR×QM HQM×K ∈ C
PJN×K , (3.82)

XKN×JP
∆
=

Q
∑

q=1

X
(q)
KN×JP =

[
H(1) ⊗ S(1) · · · H(Q) ⊗ S(Q)

]
GQMR×JP

= (HK×QM |⊗|SN×QR)GQMR×JP ∈ C
KN×JP , (3.83)

with SN×QR
∆
=
[
S(1) · · · S(Q)

]
∈ C

N×QR, HK×QM
∆
=
[
H(1) · · · H(Q)

]
∈ C

K×QM , Ω
∆
=

1T
Q ⊗ IPJ ∈ C

PJ×QPJ ,

GQPJM×QR
∆
=






G
(1)
PJM×R 0

. . .

0 G
(Q)
PJM×R




 , GQPJR×QM

∆
=






G
(1)
PJR×M 0

. . .

0 G
(Q)
PJR×M




 ,

∈ C
QPJM×QR ∈ C

QPJR×QM (3.84)

GQMR×JP
∆
=
[

G
(1)
MR×JP

T · · · G
(Q)
MR×JP

T
]T

∈ C
QMR×JP . (3.85)

Each matrix G
(q)
MR×JP can be written using (3.18) and (3.19) as

G
(q)
MR×JP =

(

W
(q)
J×MR ⋄

(

C(H,q)T⋄C(S,q)T
)T
)T

(3.86)
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with

W
(q)
J×MR

∆
=
[

vec
(

W
(q)
··1

T
)

· · · vec
(

W
(q)
··J

T
)]T

∈ C
J×MR. (3.87)

Applying (3.86) to (3.85) and using the definition of the Khatri-Rao product (A.1), we have

GQMR×JP =
[

W
(1)
J×MR ⋄

(

C(H,1)T⋄C(S,1)T
)T

· · · W(Q)
J×MR ⋄

(

C(H,Q)T⋄C(S,Q)T
)T]T

=
(

WJ×QMR ⋄
[(

C(H,1)T⋄C(S,1)T
)T

· · ·
(

C(H,Q)T⋄C(S,Q)T
)T])T

, (3.88)

where

WJ×QMR
∆
=
[

W
(1)
J×MR · · · W

(Q)
J×MR

]

∈ C
J×QMR. (3.89)

Let us define the selection matrix

Φ̃QMR
∆
=
[
Φ1 Φ2 · · · ΦQ

]
∈ C

QMQR×QMR, (3.90)

where

Φq
∆
=
[
E(q−1)MQ+q E(q−1)MQ+Q+q · · · E(q−1)MQ+(M−1)Q+q

]
∈ C

QMQR×MR (3.91)

and El is a matrix QMQR×R with a identity matrix in the l-th block R×R and zeros elsewhere,

i.e.

El
∆
=

[0R · · · 0R
︸ ︷︷ ︸

R×(l−1)R

IR 0R · · · 0R
︸ ︷︷ ︸

R×(QMQ−l)R

]
T

. (3.92)

From the selection matrix Φ̃QMR defined in (3.90), we can express the following equality

[(

C(H,1)T⋄C(S,1)T
)T

· · ·
(

C(H,Q)T⋄C(H,Q)T
)T]

=
(

C(H)T⋄C(S)T
)T

Φ̃QMR

∈ C
P×QMR (3.93)

where

C(H) ∆
=
[
C(H,1) · · · C(H,Q)

]
∈ C

P×QM , (3.94)

C(S) ∆
=
[
C(S,1) · · · C(S,Q)

]
∈ C

P×QR (3.95)

represent the global allocation matrices which concatenate the antenna and stream allocation

matrices for all users. Observe that Φ̃QMR selects only QMR columns of
(

C(H)T⋄C(S)T
)T

∈
C

P×QMQR.

Applying (3.93) to (3.88), we can rewrite (3.88) as

GQMR×JP =

(

WJ×QMR ⋄
((

C(H)T⋄C(S)T
)T

Φ̃QMR

))T

. (3.96)

Observe that the overall received signal tensor (3.80) can be rewritten as a constrained CP

decomposition with the purpose of applying the uniqueness results of the CP model.
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TST coding with multiple users modeled by a constrained CP model

Consider a third-order CP model X ∈ C
KN×P×J whose the loading matrices are given by

A = HK×QM |⊗|SN×QR ∈ C
KN×QMR,

B =
[(

C(H,1)T⋄C(S,1)T
)T

· · ·
(

C(H,Q)T⋄C(H,Q)T
)T]

=
(

C(H)T⋄C(S)T
)T

Φ̃QMR ∈ C
P×QMR,

C =
[

W
(1)
J×MR · · · W

(Q)
J×MR

]

= WJ×QMR ∈ C
J×MR, (3.97)

From (2.21) and (3.97), we obtain the same unfolded matrix given in (3.83) by the matrix

factors A, B and C.

Uniqueness analysis

We study the uniqueness conditions for the TST system considering Q users analogously

to the development of Theorem 3.4. The unfolded matrix XKN×JP given in (3.83) is used to

analyze the uniqueness condition of this new model.

From the selection matrix defined in (3.90), we can rewrite the unfolded matrix XKN×JP us-

ing the following expression which relates the Kronecker and partition-wise Kronecker products

HK×QM |⊗|SN×QR = (HK×QM ⊗ SN×QR) Φ̃QMR. (3.98)

Note that Φ̃QMR selects onlyQMR columns ofHK×QM⊗SN×QR ∈ C
KN×QMQR and the resultant

matrix is represented by HK×QM |⊗|SN×QR ∈ C
KN×QMR. Applying (3.98) to (3.83) gives

XKN×JP = (HK×QM |⊗|SN×QR)GQMR×JP = (HK×QM ⊗ SN×QR) Φ̃QMR GQMR×JP . (3.99)

Considering ŜN×QR =
[

Ŝ(1) · · · Ŝ(Q)
]
and ĤK×QM =

[

Ĥ(1) · · · Ĥ(Q)
]
as alternative solu-

tions that satisfy (3.83), we can write ŜN×QR = SN×QR U and ĤK×QM = HK×QM V, with

U =






U(1,1) · · · U(1,Q)

...
. . .

...
U(Q,1) · · · U(Q,Q)




 ∈ C

QR×QR, V =






V(1,1) · · · V(1,Q)

...
. . .

...
V(Q,1) · · · V(Q,Q)




 ∈ C

QM×QM (3.100)

non-singular. Thus, the unfolded matrixXKN×JP can be rewritten using the Kronecker property

(A.5) as

(HK×QM ⊗ SN×QR) (V |⊗|U)GQMR×JP = (HK×QM ⊗ SN×QR) Φ̃QMR GQMR×JP . (3.101)

Theorem 3.8. Suppose that SN×QR and HK×QM are full column-rank and the perfect knowledge

of the code tensor W (q) and the allocation matrices C(H,q) and C(S,q) for all user. If the code

tensor for each user is chosen such that WJ×QMR is full column-rank, implying J ≥ QRM , and
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C(H,q)T ⋄C(S,q)T has no zero-rows for all q, then the estimates of S(q) and H(q), for q = 1, ..., Q,

are unique up to a scalar factor, i.e.

S(q) = αq Ŝ
(q), H(q) =

1

αq

Ĥ(q). (3.102)

Proof: If SN×QR and HK×QM are full column-rank and GQMR×JP is full row-rank, then (3.101)

can be rewritten as

V |⊗|U = Φ̃QMR =⇒





V(1,q)

...
V(Q,q)




⊗






U(1,q)

...
U(Q,q)




 = Φq ∈ C

QMQR×MR

=
[
E(q−1)MQ+q E(q−1)MQ+Q+q · · · E(q−1)MQ+(M−1)Q+q

]
, (3.103)

which, from the definition given in (3.92), results in

v(q,q)m,m U(q,q) = IR, ∀m = 1, ...,M, ∀q = 1, ..., Q,

=⇒ V(q,q) ⊗U(q,q) = IMR, ∀q = 1, ..., Q, (3.104)

V =






V(1,1) 0
. . .

0 V(Q,Q)




 , U =






U(1,1) 0
. . .

0 U(Q,Q)




 (3.105)

and consequently, it gets

S(q) = Ŝ(q) U(q,q), H(q) = Ĥ(q) V(q,q). (3.106)

The only solution for V(q,q) ⊗ U(q,q) = IMR, for q = 1, ..., Q, happens when both matrices

U(q,q) and V(q,q) are identity matrices up to scalar factors that compensate each other, i.e.

U(q,q) = αq IR and V(q,q) = 1/αq IM , which leads to (3.102).

In order to guaranty the full row-rank property of GQMR×JP , let us consider the matrix

unfolding given in (3.96).

According to Lemma 2.2 and from (3.96), the matrix GJP×QMR = GT
QMR×JP is full column-

rank if WJ×QMR, C
(S) ∈ C

P×QR and C(H) ∈ C
P×QM satisfy the following condition

k(WJ×QMR) + k

((

C(H)T⋄C(S)T
)T

Φ̃QMR

)

≥ QMR + 1. (3.107)

Assuming that C(H,q)T ⋄ C(S,q)T has non zero-rows for all q and from (3.93), we obtain

k

((

C(H)T⋄C(S)T
)T

Φ̃QMR

)

≥ 1. Finally, if the code tensors for each users are chosen such that

WJ×QMR defined in (3.89) is full column-rank, then (3.107) is satisfied and GJP×QMR is full

column-rank.
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Remark 3.5.

❼ According to Theorem 3.8, the channel and symbol estimates do not present permutation

ambiguity and only scalar ambiguity which can be eliminated by the knowledge of one

symbol for each user q.

❼ As the channel coefficients h
(q)
k,m are i.i.d and have a continuous distribution, HK×QM is

full column-rank with probability 1 when K ≥ QM .

❼ Choosing the code tensor for each user such that WJ×QMR is full column-rank, we obtain

the same condition on the allocation matrices given by Theorem 3.4 for each user.

When all users employ the same code tensor, i.e. W (1) = . . . = W (Q), with non-zero

entries, WJ×QMR has collinear columns implying k(WJ×QMR) = 1. Consequently, the allocation

matrices for all users have to be chosen such that
(

C(H)T⋄C(S)T
)T

Φ̃QMR is full column-rank with

the purpose of still ensuring the uniqueness condition by Theorem 3.8.

If we set the same allocation matrices for all users, i.e. C(H,1) = . . . = C(H,Q) and C(S,1) =

. . . = C(S,Q), then
(

C(H)T⋄C(S)T
)T

Φ̃QMR has collinear columns implying k

((

C(H)T⋄C(S)T
)T

Φ̃QMR

)

= 1. In order to still guarantee the uniqueness in accordance with Theorem 3.8, the code tensor

are chosen such that WJ×QMR is full column-rank.

Rewriting the multiuser TST system as a constrained CP model whose the loading matrices

are given in (3.97), we can exploit the uniqueness results analogously to the case with one user.

Both theorems 3.5 and 3.6 are directly applied to deduce the following theorems.

Theorem 3.9. Suppose the perfect knowledge of the code tensor W (q) and the allocation matri-

ces C(H,q) and C(S,q) for all users. Assuming that the code tensor is chosen such that WJ×QMR

is full column-rank, if the following condition is satisfied

rank(HK×QM) rank(SN×QR) + k

((

C(H)T⋄C(S)T
)T

Φ̃QMR

)

≥MR + 2, (3.108)

we can guarantee the uniqueness of SN×QR and HK×QM assuming the knowledge of one symbol

per user.

Theorem 3.10. Suppose the perfect knowledge of the code tensor W (q) and the allocation

matrices C(H,q) and C(S,q) for all users. Assuming that the code tensor is chosen such that

WJ×QMR is full column-rank, if the following condition is satisfied

k(HK×QM ⊗ SN×QR) + k

((

C(H)T⋄C(S)T
)T

Φ̃QMR

)

≥MR + 1, (3.109)

we can guarantee the uniqueness of SN×QR and HK×QM assuming the knowledge of one symbol

per user.

Both theorems 3.9 and 3.10 allow to ensure the uniqueness of all transmitted symbols and

channel coefficients even when SN×QR and HK×QM are not full column-rank. Hence, it is not

required to impose N ≥ QR and K ≥ QM as happens for Theorem 3.8.

Analogously to the single user case, the condition (3.109) of Theorem 3.10 is less constrained

than the condition (3.108) of Theorem 3.9. When the matrices SN×QR and HK×QM are full

column-rank, Theorem 3.10 leads to Theorem 3.8.
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It is important to emphasize that we have considered the same number of transmit antennas

M for each user. However, we can appropriately set the antenna allocation matrix C(H,q) for

each user q in order to obtain different numbers of received antennas per user (lower than M).

Remark that we can also extend the STF system for multiple users in the transmission

analogously to the generalization proposed for the TST system, as shown in Appendix B.

3.6 Resume of uniqueness results

A global synthesis of the uniqueness conditions for both systems are presented in Table

3.1. As discussed previously, the uniqueness conditions for the TST system are satisfied by

restrictions on the code tensor and the allocation matrices. Two options to satisfy the uniqueness

condition for the TST system are proposed in Table 3.1: by imposing a stronger condition over

the allocations matrices (C(H)T ⋄C(S)T or Φ̃T
QMR

(

C(H)T ⋄C(S)T
)

must be full row-rank implying

P ≥ MR and P ≥ QMR, respectively) and over the code tensor (WJ×MR or WJ×QMR must

be full column-rank implying J ≥ MR and J ≥ QMR, respectively). Remark that it is still

possible to satisfy the uniqueness condition by employing other structures for the code and

allocation matrices.

Table 3.1: Summary of the uniqueness results for the TST and STF systems.

TST system STF system

multiple users one user

N ≥ R, K ≥ FM
P ≥ QMR P ≥MR P ≥MR

Φ̃T
QMR

(

C(H)T ⋄C(S)T
)

full row-rank C(H)T ⋄C(S)T full row-rank C
(H)
f ··

T
⋄C(S)

f ··

T
full row-rank, ∀f

w
(q)
m,r 6= 0, ∀q,m, r wm,r 6= 0, ∀m, r wm,r 6= 0, ∀m, r

N ≥ QR, K ≥ QM N ≥ R, K ≥M
J ≥ QMR J ≥MR

P∑

p=1
c
(S,q)
p,r c

(H,q)
p,m ≥ 1, ∀q,m, r

P∑

p=1
c
(S)
p,r c

(H)
p,m ≥ 1, ∀m, r

WJ×QMR full column-rank WJ×MR full column-rank

Contrary to the TST system, the uniqueness condition for the STF system is only satisfied

by restriction on the allocation tensors with C
(H)
f ··

T ⋄C(S)
f ··

T
full row-rank for all f ∈ {1, . . . , F}

(implying P ≥MR). The structure of the STF system does not allow the same flexibility than

the one of the TST system by means of the third-order code tensor W ∈ C
M×R×J .

It is important to remark that the decomposition of the received signal tensor for the TST

system as a constrained CP model allows to obtain a sufficient uniqueness condition more

flexible by employing the results for CP model. The same reasoning is not possible for the STF

system because the channel tensor H ∈ C
F×K×M and the allocation tensors C(H) ∈ C

F×P×M

C(S) ∈ C
F×P×R rely on the frequency diversity F .

According to Table 3.1, the proposed conditions can still ensure the model uniqueness when

less receive antennasK than transmit antennasM are employed for the TST system. Differently,

we have to use F times more receive antennas for the STF system.
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Semi-blind receivers

Several algorithms were proposed in the tensor decomposition context with the purpose of

computing the matrix factors from which the original tensor was constructed or in another

way, of recovering a CP model that best approximates this tensor. Brief overview of the main

algorithms fitting the CP model and a comparison between several algorithms are presented in

[104, 105]. In general terms, the convergence speed and the solution found for the parameter

estimates rely on conditions over loading matrices and its dimensions. Most of these algorithms

are developed to compute the CP decomposition. However, these algorithms may be exploited

to recover other decompositions of interest and also to derive blind receivers for MIMO systems

[50, 94, 106, 61, 58, 107, 62].

The proposed semi-blind receivers are based on the well-known Alternating Least Squares

(ALS) and Levenberg-Marquardt (LM) algorithms, which iteratively estimate the symbol and

channel matrices in the presence of additive noise. We also propose semi-blind receivers based

on the structure of the Kronecker product, which allow to jointly estimate both matrices in only

one iteration. The identifiability conditions for each method are established in order to ensure

the symbol recovery and channel detection. The computational complexity for all algorithms is

computed taking into account the most onerous operations per iteration.

In the simulation part, we present a performance analysis of the TST and STF systems by

employing the zero-forcing (ZF) receivers assuming a perfect knowledge of the channel coeffi-

cients. The influence of the uniqueness and identifiability conditions proposed in this thesis on

the performance of the ALS algorithm is analyzed. The performance of all proposed receivers

are compared in terms of symbol recovery and convergence speed. Finally, we provide a compar-

ison between the proposed TST coding with well-known tensor approaches, such as: Khatri-Rao

Space-Time (KRST) [53] and Space-time Multiplexing (STM) [55] codes.

All receivers are developed by assuming the perfect knowledge of the coding and allocation

structures at both transceiver and receiver. The received signal tensor X is corrupted by an

additive white Gaussian noise V , thereby X̃ = X + V represents the noisy version of X .

51
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4.1 Alternating Least Squares (ALS)

The Alternating Least Squares algorithm, or simply denoted by ALS, was originally intro-

duced in the tensor decomposition context by Harshman [51] and Carrol and Chang [52]. The

ALS approach estimates each matrix factor by fixing the other matrix factors, which allows to

convert a nonlinear optimization problem into several independent linear LS problems. The

ALS solution is derived from the minimization of a cost function with respect to each matrix

factor independently. The cost function is given by the squared errors between the received

signal tensor model and the noisy received signals.

Observe that this approach does not solve the global problem since the estimation of one

matrix is given by fixing the other matrix. For this, the ALS convergence to the global minimum

can not be guaranteed. However, the cost function is strictly monotonic decreasing. The overall

LS problem is reduced to alternating LS sub-problems, which permits that the ALS technique

is simple and easy to be implemented.

The ALS algorithm is extensively used for CP decompositions, nevertheless it can be eas-

ily adapted for other decompositions of interest taking into account appropriately the matrix

unfoldings. From matrix unfoldings of the received signal tensor deduced in Chapter 3, the

ALS method is employed to estimate two matrices in alternating way: symbol S ∈ C
N×R and

channel H ∈ C
K×M for the TST system or HK×FM ∈ C

K×FM for the STF system. In this

section, we derive semi-blind ALS and non-blind ZF receivers for the TST and STF systems.

The conditions to ensure the LS identifiability of channel and symbol estimates are analyzed.

4.1.1 TST system

Let us consider the TST system modeled by the PT-(2,4) and the fourth-order constrained

CP models to develop two TST receivers called, respectively, ALS-PT and ALS-CP. For each

receiver, we investigate the necessary conditions to ensure the LS identifiability of the estimates.

TST system modeled with the PARATUCK-(2,4) model

Rewriting the unfolding matrices of the received signal tensor X given in (3.11) as

XK×PJN = HGM×PJR

(
IPJ ⊗ ST

)
, (4.1)

XN×PJK = SGR×PJM

(
IPJ ⊗HT

)
, (4.2)

the problem of channel and symbol estimation according to the ALS approach can be formulated

as a set of two independent linear LS problems as follows






Ĥ = argmin
H

∥
∥
∥X̃K×PJN −HGM×PJR

(
IPJ ⊗ ST

)
∥
∥
∥

2

F

Ŝ = argmin
S

∥
∥
∥X̃N×PJK − SGR×PJM

(
IPJ ⊗HT

)
∥
∥
∥

2

F

. (4.3)

Both minimizations in (4.3) lead to channel Ĥ and symbol Ŝ estimates given by

Ĥ = X̃K×PJN((IPJ ⊗ S)GPJR×M)T
†
, (4.4)

Ŝ = X̃N×PJK((IPJ ⊗H)GPJM×R)
T†

(4.5)
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respectively. The unique existence of the right-inverse of GM×PJR

(
IPJ ⊗ ST

)
and GR×PJM

(
IPJ ⊗HT

)
is guaranteed by assuming that (IPJ ⊗ S)GPJR×M and (IPJ ⊗H)GPJM×R are full

column-rank, respectively.

We apply the ALS algorithm to alternately estimate the channel and symbol matrices using

(4.4) and (4.5) at each iteration. Remark that the estimation of one matrix at the i-th iteration

is conditioned to the knowledge of previously estimated value of the other matrix at the (i−1)-th
iteration.

Analysis of identifiability conditions:

In order to guarantee the uniqueness of the ALS solution, we have to ensure that the left-

inverses in (4.4) and (4.5) exist and are unique. Assuming that S and H are full column-rank,

identifiability of their LS estimates requires thatGPJR×M andGPJM×R be also full column-rank.

From this, we enunciate the following theorems.

Theorem 4.1. (Identifiability Condition). [66] Supposing that S and H are full column-rank,

a necessary condition for identifiability of H and S by, respectively, (4.4) and (4.5) is given by

PJ ≥ max

(⌈
R

M
,
M

R

⌉)

, (4.6)

where ⌈x⌉ denotes the smallest integer number greater than or equal to x.

Proof: Let us rewrite both equations (4.1) and (4.2) as XK×PJN = HZT
1 and XN×PJK = SZT

2 ,

where Z1
∆
= (IPJ ⊗ S)GPJR×M and Z2

∆
= (IPJ ⊗H)GPJM×R. Uniqueness of the LS solution for

H and S requires respectively that Z1 and Z2 are full column-rank. Assuming that S and H are

full column-rank implies that IPJ ⊗ S and IPJ ⊗H are full column-rank as well. Consequently,

rank(Z1) = rank(GPJR×M) and rank(Z2) = rank(GPJM×R), which means that GPJR×M and

GPJM×R must be full column-rank to ensure the identifiability of H and S, implying PJR ≥M

and PJM ≥ R, or equivalently (4.6).

This condition (4.6) defines a constraint that the design parameters (P, J, M,R) must satisfy.

It is interesting to notice that the supplementary diversity introduced by the time-spreading

mode (j) of the code tensor allows us to get a more relaxed condition on the number P of time

blocks than the one obtained in [59].

If we assume that S and H are full column-rank, then the identifiability conditions can be

ensured just setting appropriately the allocation matrices and the tensor code. The choice of

the code tensor will be explained later. Considering the Vandermonde structure to construct

each j-th matrix-slice W··j of the code tensor W , its elements can be given by

wm,r,j = ei2π j mr
MR . (4.7)

An important reason behind this choice for the code tensor is that this structure guarantees

the existence of a minimum value of the spreading length J ensuring the identifiability in the

LS sense of the channel H and symbol S matrices, as shown in the next theorem.
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Theorem 4.2. (Identifiability Condition). [66] Suppose the perfect knowledge of the code tensor

W and the allocation matrices C(H) and C(S). Assuming that S and H are full column-rank,

with the Vandermonde structure (4.7) for the code tensor, and (C
(S)
p· = 1T

R, C
(H)
p· = 1T

M) for a

given p ∈ {1, ..., P}, Table 4.1 gives the minimum value of the spreading length ensuring the LS

identifiability of H and S by (4.4) and (4.5), for M and R ∈ {1, ..., 8}.

Table 4.1: Minimum value of J for LS identifiability of S and H

❍
❍
❍

❍
❍
❍

M
R

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 2 3 3 4 5 5
3 3 2 1 2 2 3 4 4
4 4 3 2 1 2 2 3 3
5 5 3 2 2 1 2 2 2
6 6 4 3 2 2 1 2 2
7 7 5 4 3 2 2 1 2
8 8 5 4 3 2 2 2 1

Proof: For C
(S)
p· = 1T

R and C
(H)
p· = 1T

M , (3.4) gives G··p,j = W··j and then from (3.12) we can

extract the following two sub-matrices associated with the block p from GPJM×R and GPJR×M

respectively,

WJM×R
∆
=






W··1
...

W··J




 ∈ C

JM×R, WJR×M
∆
=






WT
··1
...

WT
··J




 ∈ C

JR×M . (4.8)

Remark that both matrices WJM×R and WJR×M represent two matrix unfolding of W . First,

we have to notice the symmetric role played by M and R, with the block W··j given by

W··j =








uj u2j · · · uRj

u2j u4j · · · u2Rj

...
...

. . .
...

uMj u2Mj · · · uRMj







, (4.9)

where u = e
i2π
MR .

When M = R, W··1 is non-singular, which implies that GPJM×R and GPJR×M are full

column-rank, and therefore the LS estimate of S and H is unique with Jmin = 1, which corre-

sponds to Theorem 3 in [59]. In the case where M > R, the block W··1 and therefore GPJM×R

are full column-rank, whereas WT
··1 is full row-rank equal to R. The number Jmin of blocks WT

··j

to be considered in WJR×M to guaranty its full column rank property is given in Table 4.1 for

M,R ∈ {1, ..., 8}. Note that setting J ≥ Jmin it is added M − R independent columns to WT
··1,

which leads to WJR×M full column-rank. When R > M , the same reasoning can be applied to

determine the minimum number Jmin of blocks W··j to be considered in WJM×R for guarantying

its full column rank property, which explains the symmetric form of Table 4.1.
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Remark 4.1.

❼ The constraints C
(S)
p· = 1T

R and C
(H)
p· = 1T

M mean that all data streams (R) are sent using

all transmit antennas (M), during the p-th time block.

❼ Introducing the time spreading mode in the Vandermonde code tensor allows us to derive

a minimum value of the spreading length J that ensures the identifiability of S and H in

the case M 6= R, which is not possible in [59] with J = 1.

❼ Note that Theorem 4.2 gives a sufficient condition over W, C(H) and C(S), while Theorem

4.1 establishes a necessary condition over (P, J,M,R) for LS identifiability of S and H.

Both theorems assume that S and H are full column-rank.

❼ According to the assumption for the channel coefficients discussed in Chapter 3, H is

almost surely full column-rank if K ≥M .

Observe that when Theorem 4.2 is satisfied, the inequality (4.6) of Theorem 4.1 is implicitly

achieved.

TST system modeled by a constrained CP-4 model

Let us recall the received signal tensor X ∈ C
K×N×P×J modeled by the PT-(2,4) model given

in (3.5)

xk,n,p,j =
M∑

m=1

R∑

r=1

wm,r,j hk,m sn,r c
(H)
p,m c(S)p,r , (4.10)

we can rewrite the received signal tensor by the following constrained CP-4 model

xk,n,p,j =
MR∑

r=1

ak,r bn,r cp,r dj,r, (4.11)

whose matrix factors A ∈ C
K×MR, B ∈ C

N×MR, C ∈ C
P×MR and D ∈ C

J×MR are given by

A = H⊗ 1T
R = HΩ(1),

B = 1T
M ⊗ S = SΩ(2),

C =
(

C(H)T ⋄C(S)T
)T

,

D = WJ×MR, (4.12)

where

Ω(1) ∆
= IM ⊗ 1T

R ∈ R
M×MR,

Ω(2) ∆
= 1T

M ⊗ IR ∈ R
R×MR. (4.13)

Thus, we can deduce the following matrices from the unfolding matrix for the CP model
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given in (2.21) as

XK×PJN = HΩ(1)

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄ SΩ(2)

)T

, (4.14)

XN×PJK = SΩ(2)

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄HΩ(1)

)T

, (4.15)

XP×JKN =
(

C(H)T ⋄C(S)T
)T (

WJ×MR ⋄HΩ(1) ⋄ SΩ(2)
)T

, (4.16)

XJ×KNP = WJ×MR

(

HΩ(1) ⋄ SΩ(2) ⋄
(

C(H)T ⋄C(S)T
)T
)T

. (4.17)

Applying property (A.6) to (4.16) and (4.17), and using (4.13), we obtain

XP×JKN =
(

C(H)T ⋄C(S)T
)T (

WJ×MR ⋄ (H⊗ S)
(
Ω(1) ⋄Ω(2)

))T

=
(

C(H)T ⋄C(S)T
)T

(WJ×MR ⋄ (H⊗ S))T , (4.18)

XJ×KNP = WJ×MR

(

(H⊗ S)
(
Ω(1) ⋄Ω(2)

)
⋄
(

C(H)T ⋄C(S)T
)T
)T

= WJ×MR

(

(H⊗ S) ⋄
(

C(H)T ⋄C(S)T
)T
)T

. (4.19)

where Ω(1) ⋄Ω(2) = IMR.

The minimization of LS cost functions for channel and symbol estimation can be also refor-

mulated from the matrix unfoldings XK×PJN and XN×PJK , respectively, in (4.14) and (4.15)

by






Ĥ = argmin
H

∥
∥
∥
∥
∥
X̃K×PJN −HΩ(1)

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄ SΩ(2)

)T
∥
∥
∥
∥
∥

2

F

Ŝ = argmin
S

∥
∥
∥
∥
∥
X̃N×PJK − SΩ(2)

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄HΩ(1)

)T
∥
∥
∥
∥
∥

2

F

. (4.20)

Resulting in both estimations

Ĥ = X̃K×PJN

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄ SΩ(2)

)T†

Ω(1)†, (4.21)

Ŝ = X̃N×PJK

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄HΩ(1)

)T†

Ω(2)†. (4.22)

From (4.13) and the right-inverse definition, we obtain that

Ω(1)† = 1/R (IM ⊗ 1R) = 1/R Ω(1)T ∈ C
MR×M ,

Ω(2)† = 1/M (1M ⊗ IR) = 1/M Ω(2)T ∈ C
MR×R. (4.23)

Analogously to (4.4) and (4.5), assuming that the right-inverses exist and are unique, we

can iteratively estimate the channel and symbol matrices by (4.21) and (4.22), respectively.
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Analysis of identifiability conditions:

Analogously to the analysis for the TST modeled by the PT-(2,4) model, we can study

the conditions to guarantee the identifiability of channel and symbol matrices from (4.21) and

(4.22).

Let us define the following matrices

P1
∆
=

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄ SΩ(2)

)T

∈ C
MR×PJN , (4.24)

P2
∆
=

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄HΩ(1)

)T

∈ C
MR×PJK , (4.25)

if we assume that P1 and P2 are full row-rank, implying PJN ≥ MR and PJK ≥ MR, then

we can rewrite (4.21) and (4.22) using (4.23) as

Ĥ = 1/R X̃K×PJN P†
1 Ω

(1)T, (4.26)

Ŝ = 1/M X̃N×PJK P†
2 Ω

(2)T, (4.27)

where P†
1 and P†

2 denote, respectively, the right-inverse of P1 and P2, implying P1P
†
1 = IMR

and P2P
†
2 = IMR.

Therefore, a necessary condition for LS identifiability of both matrices H and S by (4.26)

and (4.27) depends on the unique existence of the pseudo-inverse of P1 and P2 respectively,

which imposes a condition over the design parameters (N,K, P, J,M,R) given as follows.

Theorem 4.3. (Identifiability Condition). A necessary condition for identifiability of H and

S by, respectively, (4.26) and (4.27) is given by

PJ ≥ max

(⌈
MR

N
,
MR

K

⌉)

. (4.28)

Remark that the condition given by Theorem 4.3 does not require the assumption of S and

H being full column-rank, which leads to N ≥ R and K ≥M , as it is required in Theorem 4.1.

From Lemma 2.2, if S, H, C(S), C(H) and WJ×MR satisfy the next double condition:

k

((

C(H)T ⋄C(S)T
)T
)

+ k(WJ×MR) + k
(
SΩ(2)

)
≥MR + 2, (4.29)

k

((

C(H)T ⋄C(S)T
)T
)

+ k(WJ×MR) + k
(
HΩ(1)

)
≥MR + 2, (4.30)

then the right-inverse of P1 and P2 exists and we can write H and S as (4.26) and (4.27)

respectively. From two conditions (4.29) and (4.30), we can deduce the next theorem.

Theorem 4.4. (Identifiability Condition). Suppose the perfect knowledge of the code ten-

sor W and the allocation matrices C(H) and C(S). If the code tensor W is chosen such that

WJ×MR is full column-rank implying J ≥ MR, and C(H)T⋄ C(S)T has no zero-rows, then the

LS identifiability of H and S by, respectively, (4.26) and (4.27) is ensured.
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Proof: The identifiability of channel and symbol matrices in the LS sense requires that P1 and

P2 given by (4.24) and (4.25) are full row-rank which can be achieved by the conditions (4.29)

and (4.30) respectively. By system feature, both matrices H and S have no zero-columns and

using Ω(1) = IM ⊗ 1T
R and Ω(2) = 1T

M ⊗ IR, we obtain k
(
HΩ(1)

)
= 1 and k

(
SΩ(2)

)
= 1 because

the product by Ω(1) and Ω(2) results in column repetitions of H and S respectively, i.e.

HΩ(1) = H⊗ 1T
R ∈ C

K×MR,

SΩ(2) = 1T
M ⊗ S ∈ C

N×MR. (4.31)

If WJ×MR is full column-rank and C(H)T ⋄C(S)T has no zero-rows, then k(WJ×MR) = MR and

k

((

C(H)T ⋄C(S)T
)T
)

≥ 1, respectively. Therefore, we can simultaneously satisfy both conditions

(4.29) and (4.30), and finally ensure the identifiability of H and S by (4.26) and (4.27).

Remark 4.2.

❼ Both Theorems 4.2 and 4.4 guarantee the LS identifiability of channel and symbol matrices

by choosing appropriately W, C(S) and C(H). However, Theorem 4.2 imposes that S and

H are full column-rank unlike Theorem 4.4.

❼ Analogously to Theorems 4.1 and 4.2, while Theorem 4.3 provides a necessary condition

over (N,K, P, J,M,R), Theorem 4.4 affords a sufficient condition overW, C(S) and C(H)

for the LS identifiability of H and S by, respectively, (4.26) and (4.27).

❼ Remember that k

((

C(H)T ⋄C(S)T
)T
)

≥ 1 is equivalent to satisfy (3.69). Thus, as discussed

previously, it has a practical interpretation to construct the allocation structures.

Note that the TST system modeled by a constraint CP-4 permits to derive another identi-

fiability condition which does not require K ≥ M and N ≥ R, since we analyze the existence

of pseudo-inverse matrices by means of a joint condition under C(S), C(H), WJ×MR, S and H.

Analogously to Theorems 4.1 and 4.2, satisfying Theorem 4.4 leads to the inequality (4.28) of

Theorem 4.3.

Defining the elements of code tensor by

wm,r,j = ei2π j
r+(m−1)R

MR . (4.32)

for J ≥ MR, the matrix WJ×MR is full column-rank thanks to the Vandermonde structure,

implying k(WJ×MR) = MR.

Generalization to multiuser case

Consider the received signal tensor for the TST system with multiple users given by (3.80).

We obtain the following matrices by transposing two unfolding matrices given in (3.82) and

(3.81), respectively

XK×PJN = HK×QM GQM×QPJR

(
ΩT |⊗|SQR×N

)
, (4.33)

XN×PJK = SN×QR GQR×QPJM

(
ΩT |⊗|HQM×K

)
, (4.34)
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with Ω
∆
= 1T

Q ⊗ IPJ ∈ C
PJ×QPJ .

According to the ALS approach, the problem of channel and symbol estimation can be

formulated as a set of the following linear problems







ĤK×QM = argmin
HK×M

∥
∥
∥X̃K×PJN −HK×QM GQM×QPJR

(
ΩT |⊗|SQR×N

)
∥
∥
∥

2

F

ŜN×QR = argmin
SN×QR

∥
∥
∥X̃N×PJK − SN×QR GQR×QPJM

(
ΩT |⊗|HQM×K

)
∥
∥
∥

2

F

. (4.35)

Both minimizations (4.35) result in

ĤK×QM = X̃K×PJN((Ω |⊗|SN×QR) GQPJR×QM)T
†
, (4.36)

ŜN×QR = X̃N×PJK((Ω |⊗|HK×QM) GQPJM×QR)
T†
. (4.37)

Assuming that (Ω |⊗|SN×QR) GQPJR×QM and (Ω |⊗|HK×QM) GQPJM×QR are full column-rank,

we ensure the right-inverse uniqueness of both transposed matrices. Consequently, we can esti-

mate the channel and symbol matrices associated with each user by (4.36) and (4.37), respec-

tively.

Analysis of identifiability conditions:

Supposing that SN×QR and HK×QM are full column-rank, identifiability of their LS estimates

requires that G
(q)
PJR×M and G

(q)
PJM×R be also full column-rank for all q ∈ {1, · · · , Q}. From this,

we can enunciate the following theorems.

Theorem 4.5. (Identifiability Condition). Supposing that SN×QR and HK×QM are full column-

rank, a necessary condition for identifiability of HK×QM and SN×QR by, respectively, (4.36) and

(4.37) is given by

PJ ≥ max

(⌈
R

M
,
M

R

⌉)

. (4.38)

Proof: Rewriting both equations (4.33) and (4.34) as XK×PJN = HK×QM ZT
1 and XN×PJK =

SN×QR ZT
2 , where Z1

∆
= (Ω |⊗|SN×QR) GQPJR×QM and Z2

∆
= (Ω |⊗|HK×QM) GQPJM×QR, thus

the uniqueness of the LS solution for HK×QM and SN×QR requires that Z1 and Z2 are full

column-rank, respectively.

Both matrices Ω |⊗|SN×QR and Ω |⊗|HK×QM are full column-rank when SN×QR and HK×QM

are full column-rank, respectively. Consequently, it gets rank(Z1) = rank(GPJR×M) and rank(Z2) =

rank(GPJM×R), which means that GQPJR×QM and GQPJM×QR must be full column-rank to

ensure the identifiability of HK×QM and SN×QR, implying PJR ≥ M and PJM ≥ R, or

equivalently (4.38).

Remark 4.3.

❼ The condition (4.38) is equal to (4.6) obtained considering the transmission by only one

user, i.e. Q = 1.
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❼ As the channel coefficients are drawn from a continuous distribution, HK×QM is almost

surely full column-rank if K ≥ QM .

Both matrices GQPJR×QM and GQPJM×QR, defined in in (3.84), are full column-rank when

G
(q)
PJR×M and G

(q)
PJM×R are full column-rank for all q ∈ {1, · · · , Q}. Supposing the perfect

knowledge of the code tensor and the allocation matrices of all Q users, the channel and symbol

estimation by, respectively, (4.36) and (4.37) requires that GQPJR×QM and GQPJM×QR are full

column-rank. Hence, the identifiability condition on the allocation matrices and tensor code for

each user is directly derived from Theorem 4.1 deduced for Q = 1.

4.1.2 STF system

We regard the STF system given by (3.27) for the STF receiver. Transposing the unfolding

matrices of the received signal tensor X ∈ C
F×K×N×P given in (3.32) gives

XK×PFN = HK×FM TFM×PFR

(
IPF ⊗ ST

)
, (4.39)

XN×PFK = STR×PFM

(
IP ⊗ bdiag

(
HT

1··, . . . ,H
T
F ··

))
. (4.40)

The problem of channel and symbol estimation can be formulated in accordance with the ALS

approach as two independent LS problems given by







ĤK×FM = argmin
HK×FM

∥
∥
∥X̃K×PFN −HK×FM TFM×PFR

(
IPF ⊗ ST

)
∥
∥
∥

2

F

Ŝ = argmin
S

∥
∥
∥X̃N×PFK − STR×PFM

(
IP ⊗ bdiag

(
HT

1··, . . . ,H
T
F ··

))
∥
∥
∥

2

F

. (4.41)

The minimizations in (4.41) result in

ĤK×FM = X̃K×PFN((IPF ⊗ S)TPFR×FM)T
†
, (4.42)

Ŝ = X̃N×PFK((IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R)
T†
, (4.43)

where (IPF ⊗ S)TPFR×FM and (IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R are assumed to be full

column-rank in order to ensure the right-inverse uniqueness of both transposed matrices.

Analogously to the ALS algorithm for the TST system, we can estimate alternatelyHK×FM =
[
H1·· · · · HF ··

]
and S from (4.42) and (4.43) at each iteration respectively.

Analysis of identifiability conditions:

The identifiability of channel and symbol by (4.42) and (4.43) respectively depends on the

unique existence of the pseudo-inverses. Observe that a block diagonal matrix is full rank if and

only if each matrix on the diagonal is full rank as well. Assuming that Hf ·· for all f ∈ {1, ..., F}
and S are full column-rank, the identifiability of LS estimates of symbol and channel requires

that TPFM×R and TPFR×FM be full column-rank respectively. The design parameters have to

respect the following theorem.
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Theorem 4.6. (Identifiability Condition). Assuming that S and Hf ·· for all f ∈ {1, ..., F}
are full column-rank, a necessary condition for identifiability of H and S by, respectively, (4.42)

and (4.43) is given by

P ≥ max

(⌈
R

FM
,
M

R

⌉)

. (4.44)

Proof: Let us rewrite both equations (4.39) and (4.40) asXK×PFN = HK×FMZT
1 andXN×PFK =

SZT
2 , where Z1

∆
= (IPF ⊗ S)TPFR×FM and Z2

∆
= (IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R. Unique-

ness of the LS solution for H and S requires that Z1 and Z2 be full column-rank respec-

tively. The assumption of S and Hf ·· for all f ∈ {1, ..., F} being full column-rank implies that

IPF ⊗ S and IP ⊗ bdiag(H1··, . . . ,HF ··) are full column-rank as well. Consequently, rank(Z1) =

rank(TPFR×FM) and rank(Z2) = rank(TPFM×R), which means that TPFR×FM and TPFM×R

must be full column-rank to ensure the identifiability of H and S, implying PFR ≥ FM and

PFM ≥ R, or equivalently (4.44).

Remark 4.4.

❼ As expected, eliminating the time (J = 1) and frequency (F = 1) redundancies of the TST

and STF systems respectively, we have the same condition parameters on (P,M,R) for

the system proposed in [59].

❼ Observe that when the channel coefficients are drawn from a continuous distribution, Hf ··

for all f ∈ {1, ..., F} is almost surely full column-rank if K ≥M .

By convenience, let us recall Tf ··p, TPFM×R and TPFR×FM defined in (3.30) and (3.33),

Tf ··p = diag
(

c
(H)
f,p·

)

W diag
(

c
(S)
f,p·

)

∈ C
M×R (4.45)

and

TPFM×R =















T1··1
...

TF ··1
...

T1··P
...

TF ··P















∈ C
PFM×R, TPFR×FM =















TT
1··1 0

. . .

0 TT
F ··1

...
TT

1··P 0
. . .

0 TT
F ··P















∈ C
PFR×FM . (4.46)

Setting c
(S)
f,p· = 1R and c

(H)
f,p· = 1M for a given f ∈ {1, ..., F} and p ∈ {1, ..., P}, (4.45) gives

Tf ··p = W. Furthermore, if we suppose that W is full column-rank implying M ≥ R, then the

unfolded matrix TPFM×R is also full column-rank. Consequently, assuming K ≥ M and from

(4.43), the LS estimate of S is unique.

In the same way, setting C
(S)
·p· = 1F×R and C

(H)
·p· = 1F×M for a given p ∈ {1, ..., P}, we can

extract from TPFR×FM the following sub-matrix associated with the p-th block

PFR×FM
∆
=






WT 0
. . .

0 WT




 ∈ C

FR×FM . (4.47)
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Assume that W is full row-rank implying M ≤ R, PFR×FM is full column-rank which leads to

TPFR×FM full column-rank as well. Thus, assuming S full column-rank and from (4.42), the

LS estimate of H is unique.

From the last reasonings, we can directly enunciate a sufficient condition for ensuring the

LS identifiability of both channel tensor and symbol matrix by (4.42) and (4.43) when M = R

as follows.

Theorem 4.7. (Identifiability Condition when M = R). Suppose perfect knowledge of the code

matrix W and the allocation structures C(H) and C(S). Setting C
(S)
·p· = 1F×R and C

(H)
·p· = 1F×M

for a given p ∈ {1, ..., P}, and assuming that W, S and Hf ·· for all f ∈ {1, ..., F} are full

column-rank, thus we can ensure the LS identifiability of H and S by, respectively, (4.42) and

(4.43) when M = R.

The spreading code for the STF system is a (M×R)-matrix instead of a (M×R×J)-tensor

as for the TST system. The time diversity J allows to guarantee the LS estimate for both

symbol and channel when M 6= R. For the TST coding, it is possible to set a minimum value

of J according to Table 4.1 which can ensure that both matrices GPJM×R and GPJR×M will be

full column-rank.

As discussed previously, when S and Hf ·· for all f ∈ {1, ..., F} are full column-rank the LS

identifiability of channel and symbol by (4.42) and (4.43) requires that TPFR×FM and TPFM×R

are full column-rank respectively. Differently to TST coding, the allocation structures and a

minimum value of P are essential to guarantee that these matrices are full column-rank. The

next two theorems are proposed to ensure the LS identifiability in two cases: M < R and

M > R.

Theorem 4.8. (Identifiability Condition when M < R). Suppose perfect knowledge of the

code matrix W and the allocation structures C(H) and C(S). Set C(S)
·p∗· = 1F×R and C

(H)
·p∗· = 1F×M

for a given p∗ ∈ {1, ..., P}, and assume that WT, S and Hf ·· for all f ∈ {1, ..., F} are full

column-rank. If the slice matrices associated with a given f ∗ ∈ {1, ..., F} are fixed such that:

C
(H)
f∗·· = 1P×M and C

(S)
f∗·· is full column-rank implying P ≥ R, then we can ensure the LS

identifiability of H and S by, respectively, (4.42) and (4.43) when M < R.

Proof: As proved above, setting C
(S)
·p∗· = 1F×R and C

(H)
·p∗· = 1F×M for a given p∗ ∈ {1, ..., P},

and assuming that WT and S are full column-rank, thus the LS estimate of H is unique.

From (4.45), (4.46) and the definition of Khatri-Rao product, let us rewrite TPFM×R con-

sidering only the rows associated with f ∗ ∈ {1, ..., F} as follows






Tf∗··1
...

Tf∗··P




 =








diag
(

c
(H)
f∗,1·

)

0

. . .

0 diag
(

c
(H)
f∗,P ·

)















W diag
(

c
(S)
f∗,1·

)

...

W diag
(

c
(S)
f∗,P ·

)








= diag
(

vec
(

C
(H)
f∗··

T
))(

C
(S)
f∗·· ⋄W

)

∈ C
PM×R. (4.48)
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Rewriting (4.48) with C
(H)
f∗·· = 1P×M , we obtain






Tf∗··1
...

Tf∗··P




 = C

(S)
f∗·· ⋄W. (4.49)

According to the Lemma 2.2, if k
(

C
(S)
f∗··

)

+ k(W) ≥ R + 1, then C
(S)
f∗·· ⋄W is full column-

rank for a given f ∗ ∈ {1, ..., F}. Supposing that W is full row-rank, W has M independent

columns and rows. In accordance with the k-rank definition, it implies 1 ≤ k(W) ≤ M , hence

the maximum value of the k-rank of W will be equal to M < R which is not enough to obtain

C
(S)
f∗·· ⋄W full column-rank.

However, if C
(S)
f∗·· is full column-rank implying P ≥ R then C

(S)
f∗·· ⋄W is full column-rank,

which leads to TPFM×R full column-rank as well. Thus, from (4.43) and assuming Hf ·· for

all f ∈ {1, ..., F} is full column-rank, the LS estimate of S is unique. Finally, satisfying the

conditions enunciated in this theorem, the LS estimate of S and H is simultaneously ensured

unique for M < R.

Remark 4.5. When C
(H)
f∗·· = 1P×M for a given f ∗ and k(W) = M < R, TPFM×R is full

column-rank if k
(

C
(S)
f∗··

)

≥ R−M+1. Thus, the theorem condition over C
(S)
f∗·· is relaxed because

it is not required to be full column-rank, i.e. k
(

C
(S)
f∗··

)

= R.

Theorem 4.9. (Identifiability Condition when M > R). Suppose perfect knowledge of the

code matrix W and of the allocation structures C(H) and C(S). Assume that W, S and Hf ··

for all f ∈ {1, ..., F} are full column-rank, and set C(S) = 1F×P×R and c
(H)
f∗,p∗· = 1M for a

given p∗ ∈ {1, ..., P} and f ∗ ∈ {1, ..., F}. If the matrix-slice C
(H)
f ·· is full column-rank for all

f ∈ {1, ..., F} implying P ≥ M , then we can ensure the LS identifiability of H and S by,

respectively, (4.42) and (4.43) when M > R.

Proof: Analogously to (4.48), we can write a sub-matrix associated with f ∈ {1, ..., F} as






TT
f ··1
...

TT
f ··P




 =








diag
(

c
(S)
f,1·

)

0

. . .

0 diag
(

c
(S)
f,P ·

)















WT diag
(

c
(H)
f,1·

)

...

WT diag
(

c
(H)
f,P ·

)








= diag
(

vec
(

C
(S)
f ··

T
))(

C
(H)
f ·· ⋄WT

)

∈ C
PR×M . (4.50)

We can rewrite TPFR×FM given in (4.46) permuting in a convenient way its rows, applying
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(4.50) and also setting C(S) = 1F×P×R as follows

TFPR×FM =





















TT
1··1
. . .

TT
1··P




 0

. . .

0






TT
F ··1
. . .

TT
F ··P





















∈ C
FPR×FM (4.51)

=








C
(H)
1·· ⋄WT 0

. . .

0 C
(H)
F ·· ⋄WT







. (4.52)

Observe (4.52) that each f -th matrix on diagonal, C
(H)
f ·· ⋄WT, have to be full column-rank in

order to TPFR×FM be full column-rank as well. From Lemma 2.2, if k
(

C
(H)
f ··

)

+k
(
WT

)
≥M+1

for all f ∈ {1, ..., F}, then C
(H)
f ·· ⋄WT is full column-rank for all f ∈ {1, ..., F} and consequently,

TPFR×FM is full column-rank.

Analogously to the previous theorem, considering that W is full column-rank and by the

k-rank definition, we have 1 ≤ k
(
WT

)
≤ R. Choosing C

(H)
f ·· full column-rank for all f , we can

guarantee that TPFR×FM is full column-rank. Consequently, from (4.42) and assuming that S

is full column-rank, the LS estimate of H is unique.

As proved previously for Theorem 4.7, additionally setting c
(H)
f∗,p∗· = 1M for a given p∗ ∈

{1, ..., P} and f ∗ ∈ {1, ..., F}, and assuming that W and Hf ·· for all f ∈ {1, ..., F} are full

column-rank, we obtain that the LS estimate of S is unique. Taking into account both conditions,

the LS estimate of S and H is simultaneously unique for M > R.

Remark 4.6. Analogously to the last remark for Theorem 4.8, the condition that C
(H)
f ·· is full

column-rank for all f ∈ {1, ..., F} becomes more flexible when k
(
WT

)
= R < M . It is enough

to satisfy k
(

C
(H)
f ··

)

≥M −R + 1 for all f .

4.1.3 ALS receivers

Semi-blind receivers using a two-step ALS algorithm are derived to jointly estimate channel

and symbols for the TST and STF systems. Table 4.2 summarizes the ALS algorithm for

both systems. Notice that the estimation of symbol matrix at it-th iteration is conditioned to

the knowledge of channel matrix (or matrix unfolding for the STF system) estimated at the

(it− 1)-th iteration.

4.1.4 Zero-Forcing (ZF) receivers

Considering the perfect knowledge of channel for both TST and STF systems, we can deduce

the Zero-Forcing (ZF) receivers for estimating the symbol matrix directly from (4.5), (4.27) and
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Table 4.2: ALS algorithm for semi-blind joint symbol and channel estimation.

TST system: ALS-TST STF system: ALS-STF

1. Initialization (it = 0): randomly initialize Ĥ(0) and Ĥ(0)

2. it = it+ 1

3. Compute an LS estimate of S from Ĥ(it−1) and Ĥ(it−1), using:
(4.5) or (4.27) (4.43)

4. Compute an LS estimate of H and H from Ŝ(it), using:
(4.4) or (4.26) (4.42)
5. Repeat steps (2)-(4) until convergence.
6. Eliminate the scaling ambiguity with α = s1,1/ŝ1,1:

Ŝ = α Ŝ

Ĥ = 1/α Ĥ ĤK×FM = 1/α ĤK×FM

7. Project the estimated symbols onto the symbol alphabet.

(4.43).

❼ ZF-TST receiver: For TST system modeled by the PT-(2,4) and a constrained CP-4 model

respectively

Ŝ = X̃N×PJK ((IPJ ⊗H)GPJM×R)
†T , (4.53)

Ŝ = 1/M X̃N×PJK

((

C(H)T ⋄C(S)T
)T

⋄WJ×MR ⋄HΩ(1)

)T†

Ω(2)T, (4.54)

where GPJM×R is given by (3.4) and (3.12), Ω(1) = IM ⊗ 1T
R and Ω(2) = 1T

M ⊗ IR.

❼ ZF-STF receiver: For STF system.

Ŝ = X̃N×PFK ((IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R)
†T , (4.55)

where TPFM×R is given by (4.45) and (4.46).

4.2 Levenberg-Marquardt (LM)

The Levenberg-Marquardt method [108], denoted by LM, is a well-known alternative to the

Gauss-Newton (GN) method of solving nonlinear LS problems. The main idea of this method

is to combine the advantages of two minimization methods, the Steepest Descent (SD) and the

GN methods, by switching between both techniques through a damping parameter. The LM

method was employed to estimate the parameters of CP model in [105] and of other tensor

models in [106, 61, 62].

The minimization of the sum of the squared errors between the received signal model and

the noisy received signals is a nonlinear LS problem. Hence, the LM approach is an estima-

tion method which, differently to the ALS approach, provides an update for all parameters by

successive approximations.

In this section, we introduce two receivers based on the LM algorithm for both TST and

STF systems. Firstly, we present the Gradient and Jacobian expressions for both systems and

in the sequence, derive the proposed receivers.
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4.2.1 Gradient and Jacobian expressions

Let us assume that x(p) ∈ C
L×1 is a vector of the model output of received signals, which

depends on a vector of parameters to estimate p ∈ C
Q×1 with Q and L denoting the number of

model parameters and received signal samples respectively. Thus, the estimation error vector is

denoted by r(p) = x(p)− x̃, where x̃ represents the noisy version of the received signal vector.

The cost function to be minimized can be formulated as follows

φ(p) =
1

2
‖x(p)− x̃‖22

=
1

2
‖r(p)‖22 =

1

2
rH(p) r(p) . (4.56)

We may define the complex gradient vector g(p) = ∇φ ∈ C
Q×1 of φ (p) with respect to p by

∇qφ
∆
=

∂φ

∂aq
+ i

∂φ

∂bq
=⇒ g(p) = JH(p) r(p) , (4.57)

where pq = aq + ibq is the q-th element of p and J(p) ∈ C
L×Q is the Jacobian matrix containing

the first partial derivatives of r(p),

[J(p)]l,q
∆
=

∂rl(p)

∂pq
⇐⇒ J(p) =

∂r(p)

∂p
=

∂x(p)

∂p
. (4.58)

TST system

Let us consider the TST system given by (3.5). From (3.11), we define the following vectors

by

xNPJK(p)
∆
= vec(XPJK×N(p)) = (IN ⊗ (IPJ ⊗H)GPJM×R) pS ∈ C

NPJK×1, (4.59)

xKPJN(p)
∆
= vec(XPJN×K(p)) = (IK ⊗ (IPJ ⊗ S)GPJR×M) pH ∈ C

KPJN×1, (4.60)

with

pS
∆
= vec

(
ST
)
∈ C

NR×1,

pH
∆
= vec

(
HT
)
∈ C

KM×1 (4.61)

and the vector of all parameters to estimate is represented by

p
∆
=

[
pS

pH

]

∈ C
(NR+KM)×1. (4.62)

Applying the property of the Kronecker product given in (A.4), we can rewrite (4.59) and

(4.60), respectively, as

xNPJK(p) = (IN ⊗ (IPJ ⊗H)) (IN ⊗GPJM×R) pS

= (INPJ ⊗H) (IN ⊗GPJM×R) pS, (4.63)

xKPJN(p) = (IK ⊗ (IPJ ⊗ S)) (IK ⊗GPJR×M) pH

= (IKPJ ⊗ S) (IK ⊗GPJR×M) pH. (4.64)
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Note that the expressions in (4.63) and (4.64) represent two different vectorial forms of the

received signal tensor model which its elements can be related by

xk,n,p,j = [xNPJK(p)](n−1)PJK+(p−1)JK+(j−1)K+k

= [xKPJN(p)](k−1)PJN+(p−1)JN+(j−1)N+n . (4.65)

Then, we can relate both vectors through a permutation matrix as follows

xNPJK(p) = ΠxKPJN(p) , (4.66)

where Π ∈ R
NPJK×KPJN is defined as

Π
∆
=

N∑

n=1

K∑

k=1

e(N)
n e

(K)
k

T ⊗ IPJ ⊗ e
(K)
k e(N)

n

T
(4.67)

and e
(I)
i denotes a column vector of length I with 1 in the i-th position and 0 in every other

position.

Using (4.63) and (4.64) in (4.56), we have two equivalent expressions for the cost function

φ(p) =
1

2
‖(INPJ ⊗H) (IN ⊗GPJM×R) pS − x̃NPJK‖2 (4.68)

=
1

2
‖(IKPJ ⊗ S) (IK ⊗GPJR×M) pH − x̃KPJN‖2 . (4.69)

We calculate the Jacobian matrix with respect to pS and pH using the definition in (4.58) by

JS
∆
=

∂ r(p)

∂ pS

= (INPJ ⊗H) (IN ⊗GPJM×R) ∈ C
NPJK×NR, (4.70)

JH
∆
=

∂ r(p)

∂ pH

= Π (IKPJ ⊗ S) (IK ⊗GPJR×M) ∈ C
NPJK×KM , (4.71)

with Π ∈ R
NPJK×KPJN defined in (4.67).

Note that the permutation matrix is employed with the purpose of imposing a specific order

of indices and in this case, equal to n, j, p, k instead of k, p, j, n. Finally, we can construct the

overall Jacobian matrix J(p) ∈ C
NPJK×(NR+KM) denoted by

J(p)
∆
=
[
JS JH

]
. (4.72)

From the definition (4.57), we can calculate the gradient of φ(p) with respect to pS and pH,

gS
∆
=

∂ φ(p)

∂ pS

= JH
S (JS pS − x̃NPJK)

=
(
JH
S JS

)
pS − JH

S x̃NPJK ∈ C
NR×1, (4.73)

gH
∆
=

∂ φ(p)

∂ pH

= JH
H (JH pH − x̃NPJK)

=
(
JH
H JH

)
pH − JH

H x̃NPJK ∈ C
KM×1. (4.74)



68 Chapter 4. Semi-blind receivers

And analogously to (4.72), we can define the overall gradient vector g(p) ∈ C
(NR+KM)×1 by

g(p)
∆
=

[
gS

gH

]

. (4.75)

Generalization to multiuser case

From (3.81) and (3.82), we define the following vectors by

xNPJK(p)
∆
= vec(XPJK×N(p)) = (IN ⊗ (Ω |⊗|HK×QM)GQPJM×QR) pS ∈ C

NPJK×1, (4.76)

xKPJN(p)
∆
= vec(XPJN×K(p)) = (IK ⊗ (Ω |⊗|SN×QR)GQPJR×QM) pH ∈ C

KPJN×1, (4.77)

with

pS
∆
= vec(SQR×N) ∈ C

NQR×1,

pH
∆
= vec(HQM×K) ∈ C

KQM×1 (4.78)

and the vector of all parameters to estimate is defined in (4.62) with p ∈ C
(NQR+KQM)×1.

From the permutation matrix and the cost function given, respectively, in (4.67) and (4.56),

we write two equivalent expressions for the cost function using (4.76) and (4.77)

φ(p) =
1

2
‖(IN ⊗ (Ω |⊗|HK×QM)GQPJM×QR) pS − x̃NPJK‖2 (4.79)

=
1

2
‖(IK ⊗ (Ω |⊗|SN×QR)GQPJR×QM) pH − x̃KPJN‖2 , (4.80)

with Π ∈ R
NPJK×KPJN .

According to the definition given by (4.57) and (4.58), we can write the Jacobian matrix

and the gradient vector with respect to pS and pH as

JS = IN ⊗ (Ω |⊗|HK×QM)GQPJM×QR ∈ C
NPJK×NQR, (4.81)

JH = Π (IK ⊗ (Ω |⊗|SN×QR)GQPJR×QM) ∈ C
NPJK×KQM , (4.82)

gS =
(
JH
S JS

)
pS − JH

S x̃NPJK ∈ C
NQR×1, (4.83)

gH =
(
JH
H JH

)
pH − JH

H x̃NPJK ∈ C
KQM×1. (4.84)

The overall Jacobian matrix J(p) ∈ C
NPJK×(NQR+KQM) and gradient vector g(p) ∈ C

(NQR+KQM)×1

are defined respectively in (4.72) and (4.75).

STF system

Now, we consider the STF system [62] given by (3.27) to develop analogously the equivalent

expressions for the STF context. From the vectorization of both unfolded matrices given in

(3.32), we obtain the following vectors

xNPFK(p)
∆
= vec (XPFK×N(p)) = (IN ⊗Ω1TPFM×R) pS ∈ C

NPFK×1, (4.85)

xKPFN(p)
∆
= vec (XPFN×K(p)) = (IK ⊗Ω2TPFR×FM) pH ∈ C

KPFN×1, (4.86)
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where Ω1
∆
= IP ⊗ bdiag(H1··, . . . ,HF ··), Ω2

∆
= IPF ⊗ S, pS ∈ C

NR×1 and pH
∆
= vec(HFM×K) ∈

C
KFM×1, and the overall estimate vector p ∈ C

(NR+KFM)×1 given by (4.62).

Analogously to (4.65)-(4.67), we can relate each element of two vectors in (4.85) and (4.86)

by

xf,p,n,k = [xNPFK(p)](n−1)PFK+(p−1)FK+(f−1)K+k

= [xKPFN(p)](k−1)PFN+(p−1)FN+(f−1)N+n (4.87)

and also by

xNPFK(p) = ΠxKPFN(p) (4.88)

with Π ∈ R
NPFK×KPFN given as

Π
∆
=

N∑

n=1

K∑

k=1

e(N)
n e

(K)
k

T ⊗ IPF ⊗ e
(K)
k e(N)

n

T
. (4.89)

We can write two equivalent expressions for the cost function defined in (4.56) using (4.85)

and (4.86) as

φ(p) =
1

2
‖(IN ⊗Ω1TPFM×R) pS − x̃NPFK‖2 (4.90)

=
1

2
‖(IK ⊗Ω2TPFR×FM) pH − x̃KPFN‖2 . (4.91)

According to the definition given by (4.57) and (4.58), we can write the Jacobian matrix

and the gradient vector with respect to pS and pH as

JS = IN ⊗Ω1TPFM×R ∈ C
NPFK×NR, (4.92)

JH = Π (IK ⊗Ω2TPFR×FM) ∈ C
NPFK×KFM , (4.93)

gS =
(
JH
S JS

)
pS − JH

S x̃NPFK ∈ C
NR×1, (4.94)

gH =
(
JH
H JH

)
pH − JH

H x̃NPFK ∈ C
KFM×1. (4.95)

with Π ∈ R
NPFK×KPFN given in (4.89). Remark that the index order is fixed as n, p, f, k.

In analogy to the TST case, the overall Jacobian matrix J(p) ∈ C
NPFK×(NR+KFM) and

gradient vector g(p) ∈ C
(NR+KFM)×1 are respectively represented by (4.72) and (4.75) as well.

4.2.2 LM and ALM receivers

As previously mentioned, the LM method combines the SD and GN methods. According to

the SD, the sum of the squared errors is reduced by updating the parameters in the negative

direction of the gradient descent. For the GN method, the sum of the squared errors is reduced

by considering a linear approximation of the estimation error at each iteration, which leads to

a locally quadratic approximation of the cost function.

Let us assume that p(it) is an estimation of p calculated at the it-th iteration, and p(it+1) is

obtained by

p(it+1) = p(it) +∆p, (4.96)
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where ∆p enforces the descending condition, i.e. φ
(
p(it) +∆p

)
≤ φ

(
p(it)

)
. For small ‖∆p‖, we

can write r
(
p(it+1)

)
in Taylor series truncated at the order term 1 as

r
(
p(it+1)

)
≃ r
(
p(it)

)
+ J
(
p(it)

)
∆p, (4.97)

where r
(
p(it)

)
= x

(
p(it)

)
− x̃ represents the estimation error at the it-th iteration.

From (4.56) and using this approximation of r
(
p(it+1)

)
in (4.97), we can write the cost

function by

φ
(
p(it) +∆p

)
=

1

2
rH
(
p(it+1)

)
r
(
p(it+1)

)
(4.98)

≃ φ
(
p(it)

)
+

1

2
∆pH JH

(
p(it)

)
r
(
p(it)

)
+

+
1

2
rH
(
p(it)

)
J
(
p(it)

)
∆p+

1

2

∥
∥J
(
p(it)

)
∆p
∥
∥
2

F

∆
= φ̃

(
p(it) +∆p

)
. (4.99)

The GN method is based on the linear approximation (4.97) in the neighborhood of p(it),

then ∆pGN is given by

∆pGN = min
∆p

φ̃
(
p(it) +∆p

)
, (4.100)

the gradient and the Hessian matrix of φ̃
(
p(it) +∆p

)
are

∂φ̃
(
p(it) +∆p

)

∂∆p∗
= JH

(
p(it)

)
r
(
p(it)

)
+ JH

(
p(it)

)
J
(
p(it)

)
∆p, (4.101)

∂2φ̃
(
p(it) +∆p

)

∂∆p ∂∆pH
= JH

(
p(it)

)
J
(
p(it)

)
, (4.102)

respectively.

Note that if J
(
p(it)

)
is full column-rank, implying L ≥ Q, then the Hessian matrix is positive-

definitive and it means that the function φ̃
(
p(it) +∆p

)
has only one minimum. This minimum

can be calculated by solving

∂φ̃
(
p(it) +∆p

)

∂∆p∗
= 0 ⇒ JH

(
p(it)

)
J
(
p(it)

)
∆pGN = −JH

(
p(it)

)
r
(
p(it)

)

= −g
(
p(it)

)
, (4.103)

where g
(
p(it)

)
is the gradient of φ in p(it), which is given by (4.57).

We emphasize that JH
(
p(it)

)
J
(
p(it)

)
must be positive-definite at all iterations to guarantee

φ
(
p(it+1)

)
≤ φ

(
p(it)

)
for any iteration it. Nevertheless, this matrix can have null-eigenvalues in

practice. According to the Levenberg-Marquardt method, ∆pLM can be calculated by

(
JH
(
p(it)

)
J
(
p(it)

)
+ λ(it) IQ

)
∆pLM = −g

(
p(it)

)
(4.104)

=⇒ ∆pLM = −
(
JH
(
p(it)

)
J
(
p(it)

)
+ λ(it) IQ

)−1
g
(
p(it)

)
, (4.105)
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where λ(it) ≥ 0 is the damping parameter at the it-th iteration.

Observe that for large values of λ(it), we have

∆pLM ≃ −
1

λ(it)
g
(
p(it)

)
= − 1

λ(it)

∂φ
(
p(it)

)

∂p(it)

, (4.106)

i.e. a short step in the steepest descent direction which is interesting when p(it) is far from the

solution in order to obtain fast initial progress.. If λ(it) is very small, then ∆pLM ≃ ∆pGN,

which is a good step in the final stages of the iteration.

Therefore, in the same way that the damping parameter λ(it) can avoid the matrix singularity

through increasing of the value of eigenvalues of JH
(
p(it)

)
J
(
p(it)

)
, it can control the system

behavior through its influence on both direction and size of the step. A form of choosing the

initial damping parameter λ(0) is from the maximum value of the diagonal of JH
(
p(0)

)
J
(
p(0)

)
,

i.e.

λ(0) = τ max
l

[
JH
(
p(0)

)
J
(
p(0)

)]

l,l
, (4.107)

where τ is empirically chosen by the user, the choice of λ(0) can affect the convergence of

algorithm.

The damping parameter must be adapted at each iteration according to an appropriate

rule, because an inappropriate choice of this parameter may result in a divergence or a slowly

convergence. A well-known method to control the factor λ(it) is by the following gain ratio [109]

ρ(it) =
φ
(
p(it)

)
− φ
(
p(it) +∆pLM

)

φ
(
p(it)

)
− φ̃
(
p(it) +∆pLM

) , (4.108)

where the numerator denotes the effective variation of the cost function and the denominator

denotes the predicted variation by the approximation of the cost function given in (4.99) from

the linear model (4.97). Thus, λ(it) can be updated at each iteration it according to an usual

procedure [109]:







(a) If ρ(it) ≥ 0 : p(it) is accepted,

λ(it) = λ(it−1) max
(

1
3
, 1−

(
2ρ(it) − 1

)3
)

and ν = 2

(b) Otherwise: p(it) is rejected,

λ(it) = ν λ(it−1) and ν ← 2 ν

. (4.109)
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Rewriting the denominator of (4.108) using (4.57), (4.99) and (4.104) gives

φ
(
p(it)

)
− φ̃
(
p(it) +∆pLM

)
= −1

2
∆pH

LM

(

JHr+
1

2
JHJ∆pLM

)

− 1

2

(

rHJ+
1

2
∆pH

LM JHJ

)

∆pLM

= −1

2
∆pH

LM

(

JHr+
1

2

(
JHJ+ λ(it)IQ − λ(it)IQ

)
∆pLM

)

− 1

2

(

rHJ+
1

2
∆pH

LM

(
JHJ+ λ(it)IQ − λ(it)IQ

)
)

∆pLM

= −1

2
∆pH

LM

(
1

2
g − 1

2
λ(it)∆pLM

)

− 1

2

(
1

2
gH − 1

2
λ(it)∆pH

LM

)

∆pLM

=
1

2
λ(it)∆pH

LM∆pLM −
1

4

(
∆pH

LMg + gH∆pLM

)
, (4.110)

for simplicity, we assumed that J
∆
= J

(
p(it)

)
, r

∆
= r

(
p(it)

)
and g

∆
= g

(
p(it)

)
= JHr. Note

that −∆pH
LMg = ∆pH

LM

(
JHJ+ λ(it)IQ

)
∆pLM > 0 and −gH∆pLM > 0, which imply φ

(
p(it)

)
−

φ̃
(
p(it) +∆pLM

)
always positive, independent of λ(it).

A large value of ρ(it) indicates that φ̃
(
p(it) +∆pLM

)
is close to φ

(
p(it)

)
and also that p(it) is

close to a local minimum point. Hence, it is possible to reduce λ(it), which means that the LM

method gets closer to the GN method. On the other hand, a small value of ρ(it) (even negative)

indicates that φ̃
(
p(it) +∆pLM

)
is not close to φ

(
p(it)

)
and also that p(it) is far from the solution.

It is thus necessary to increase λ(it), or equivalently to get closer to the SD method.

The LM algorithm is summarized in Table 4.3 for both the TST and STF systems. Observe

that the signal (S) and channel (H or H) are simultaneously estimated by p(it) = p(it−1)+∆pLM

and using (4.62). Both vectors x̃NPJK and x̃NPFK represent vectorizations of the noisy received

signal tensors X̃ ∈ C
K×N×P×J and X̃ ∈ C

F×P×N×K , respectively.

In order to estimate separately the symbol matrix and the channel matrix (or channel tensor

for the STF system), and also to simplify the complexity of LM algorithm, we deduce the

Alternating LM (ALM) algorithm which considers an approximation of the Hessian matrix of

φ̃
(
p(it) +∆p

)
at each iteration it (4.102), i.e. JH

(
p(it)

)
J
(
p(it)

)
.

From the overall Jacobian matrix and gradient vector defined in (4.72) and (4.75) respec-

tively, we can write the Hessian matrix corresponding to parameter estimates at the it-th iter-

ation as

JH
(
p(it)

)
J
(
p(it)

)
=




JH
S

(

pH(it)

)

JS

(

pH(it)

)

JH
S

(

pH(it)

)

JH

(

pS(it)

)

JH
H

(

pS(it)

)

JS

(

pH(it)

)

JH
H

(

pS(it)

)

JH

(

pS(it)

)



 . (4.111)

Let us consider an approximation of the partitioned structure of the Jacobian matrix given

by

JH
(
p(it)

)
J
(
p(it)

)
≃




JH
S

(

pH(it)

)

JS

(

pH(it)

)

0

0 JH
H

(

pS(it)

)

JH

(

pS(it)

)



 . (4.112)
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Table 4.3: LM algorithm for semi-blind joint symbol and channel estimation.

TST system: LM-TST STF system: LM-STF

1. Initialization (it = 0): randomly initialize Ŝ(0) and Ĥ(0) or Ĥ(0) with

ν = 2, p(0) =

[
pS(0)

pH(0)

]

and λ(0) = maxl
[
JH
(
p(0)

)
J
(
p(0)

)]

l,l
.

2. it = it+ 1.
3. Compute ∆pLM(it)

using (4.105).

4. Compute Ŝ(it) and Ĥ(it) or Ĥ(it) from p(it) = p(it−1) +∆pLM(it)
where

∆pLM(it)
=

[
∆pLM,S(it)

∆pLM,H(it)

]

and p(it) =

[
pS(it)

pH(it)

]

.

5. Compute J
(
p(it)

)
=
[

JS

(

pH(it)

)

JH

(

pS(it)

)]

and g
(
p(it)

)
=

[
gS

(
p(it)

)

gH

(
p(it)

)

]

using:

(4.70), (4.71), (4.73), (4.74) (4.92), (4.93), (4.94), (4.95)
6. Compute φ

(
p(it)

)
using:

(4.68) or (4.69) (4.90) or (4.91)
7. Compute ρ(it) using (4.108) and (4.110).
8. Update λ(it) according to (4.109).
9. Repeat steps (2) to (8) until convergence.
10. Eliminate the scaling ambiguity with α = s1,1/ŝ1,1:

Ŝ = α Ŝ,

Ĥ = 1/α Ĥ ĤK×FM = 1/α ĤK×FM .
11. Project the estimated symbols onto the symbol alphabet.

Note that it is equivalent to consider JH
S

(

pH(it)

)

JH

(

pS(it)

)

= 0NR×KM for the TST system and

JH
S

(

pH(it)

)

JH

(

pS(it)

)

= 0NR×KFM for the STF system.

Applying (4.112) to (4.104) gives

(

JH
S

(

pH(it)

)

JS

(

pH(it)

)

+ λS(it)
I
)

∆pLM,S = −gS

(
p(it)

)
(4.113)

=⇒ ∆pLM,S = −
(

JH
S

(

pH(it)

)

JS

(

pH(it)

)

+ λS(it)
I
)−1

gS

(
p(it)

)
, (4.114)

(

JH
H

(

pS(it)

)

JH

(

pS(it)

)

+ λH(it)
I
)

∆pLM,H = −gH

(
p(it)

)
(4.115)

=⇒ ∆pLM,H = −
(

JH
H

(

pS(it)

)

JH

(

pS(it)

)

+ λH(it)
I
)−1

gH

(
p(it)

)
. (4.116)

From (4.114) and (4.116), we can separately estimate ∆pLM,S and ∆pLM,H, and also we can

employ different damping parameters λ(it) for each estimate parameter S and H (or H). In this

sense, it is possible to control independently each factor λS,(it) and λH,(it), and this flexibility

may allow to reach faster convergence speed.

In order to derive a gain ratio ρ(it) for each parameter, we rewrite (4.110) as a function of
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∆pLM,S, ∆pLM,H, gS and gH using

∆pLM
∆
=

[
∆pLM,S

∆pLM,H

]

, (4.117)

g
∆
=

[
gS

gH

]

. (4.118)

From (4.110), we obtain

φ
(
p(it)

)
− φ̃
(
p(it) +∆pLM

)
=

1

2
λ(it)∆pH

LM∆pLM −
1

4

(
∆pH

LMg + gH∆pLM

)

=
1

2
λ(it)

(
∆pH

LM,S∆pLM,S +∆pH
LM,H∆pLM,H

)
−

1

4

(
∆pH

LM,SgS + gH
S∆pLM,S +∆pH

LM,HgH + gH
H∆pLM,H

)
. (4.119)

Considering the influence of each parameter separately and employing different damping

parameters, we have

ρS(it)
=

φ
(
p(it)

)
− φ
(
p(it) +∆pLM

)

1
2
λS(it)

(
∆pH

LM,S∆pLM,S

)
− 1

4

(
∆pH

LM,SgS + gH
S∆pLM,S

) (4.120)

and

ρH(it)
=

φ
(
p(it)

)
− φ
(
p(it) +∆pLM

)

1
2
λH(it)

(
∆pH

LM,H∆pLM,H

)
− 1

4

(
∆pH

LM,HgH + gH
H∆pLM,H

) . (4.121)

Let us now describe the proposed ALM algorithm in Table 4.4 for the TST and STF systems

employing the expressions deduced above. Observe that the initial damping parameter for each

estimate parameter (λS(0)
and λH(0)

) is calculated from (4.107) taking into account the Jacobian

matrix with respect to pS(0)
and pH(0)

respectively.

4.3 Kronecker based Least Squares (KLS)

Let us introduce a direct (non-iterative) procedure, denoted by the Kronecker Least Squares,

which is based on the structure of the Kronecker product between two matrices. From an

appropriate unfolded matrix and using the Kronecker structure, it is possible to jointly estimate

both symbol and channel matrices.

We derive the semi-blind KLS approach for the TST and STF systems from the unfolded

matrix XKN×JP and XKN×FP given by (3.16) and (3.83), and (3.38) respectively. Observe that

this approach can be extend to other systems depending on a convenient choice of the unfolded

matrix.

4.3.1 TST system

Let us rewrite (3.16) assuming that GRM×JP is full row-rank as

XNK×JP G†
RM×JP = S⊗H

∆
= Y ∈ C

NK×RM , (4.122)
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Table 4.4: ALM algorithm for semi-blind joint symbol and channel estima-
tion.

TST system: ALM-TST STF system: ALM-STF

1. Initialization (it = 0): randomly initialize Ŝ(0) and Ĥ(0) or Ĥ(0), ν = 2,
λS(0)

= maxl
[
JH
S

(
pH(0)

)
JS

(
pH(0)

)]

l,l
, λH(0)

= maxl
[
JH
H

(
pS(0)

)
JH

(
pS(0)

)]

l,l
.

2. it = it+ 1.

3. Compute JS

(

pH(it−1)

)

and gS

(
p(it−1)

)
using:

(4.70), (4.73) (4.92), (4.94)
4. Compute ∆pLM,S(it)

using (4.114).

5. Compute Ŝ(it) from pS(it)
= pS(it−1)

+∆pLM,S(it)
.

6. Update p(it) =

[
pS(it)

pH(it−1)

]

.

7. Compute φ
(
p(it)

)
using:

(4.68) (4.90)
8. Compute ρS(it)

using (4.120).

9. Update λS(it)
according to (4.109).

10. Compute JH

(

pS(it)

)

and gH

(
p(it)

)
using:

(4.71), (4.74) (4.93), (4.95)
11. Compute ∆pLM,H(it)

using (4.116).

12. Compute Ĥ(it) from pH(it)
= pH(it−1)

+∆pLM,H(it)
.

13. Update p(it) =

[
pS(it)

pH(it)

]

.

14. Compute φ
(
p(it)

)
using:

(4.69) (4.91)
15. Compute ρH(it)

using (4.121).

16. Update λH(it)
according to (4.109).

17. Repeat steps (2) to (16) until convergence.
18. Eliminate the scaling ambiguity with α = s1,1/ŝ1,1:

Ŝ = α Ŝ,

Ĥ = 1/α Ĥ ĤK×FM = 1/α ĤK×FM

19. Project the estimated symbols onto the symbol alphabet.

with

GRM×JP =

(

WJ×RM ⋄
(

C(S)T⋄C(H)T
)T
)T

, (4.123)

WJ×RM
∆
=
[
vec(W··1) · · · vec(W··J)

]T
. (4.124)

Note that GRM×JP and WJ×RM denote a matrix unfolding of G ∈ C
M×R×P×J and of W ∈

C
M×R×J , which is slightly modified from (3.18) and (3.19) by convenience. Note that it is

possible to simultaneously estimate S and H from the Kronecker product between both matrices

using (4.122).
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We can use some information a priori about symbol matrix S and the special structure of

the Kronecker product to separate the mixture given by channel coefficients and transmitted

symbols, which leads to semi-blind estimation of both matrices.

Suppose that the (n, r)-th element of the symbol matrix is known at the receiver and given

by sn,r = 1 for simplicity. From the structure of the Kronecker product, we can directly estimate

H. In the same way, assuming that the n-th row of the symbol matrix is given by Sn· = 1T
R, we

obtain R estimations of H and from the mean square of all estimations, we can better estimate

H.

From the structure of the Kronecker product

Y
∆
=






Y(1,1) · · · Y(1,R)

...
. . .

...
Y(N,1) · · · Y(N,R)




 ∈ C

NK×RM , (4.125)

we can write Y(n,r) ∆
= (S⊗H)(n,r) = sn,r H by fixing n and r, for all n ∈ {1, · · · , N} and

r ∈ {1, · · · , R}. Applying the least squares method and considering the channel estimate and

the received signal tensor, we can write

ŝn,r =
vec(H)H vec

(
Y(n,r)

)

‖vec(H)‖2
, (4.126)

where Y(n,r) ∈ C
K×M is constructed from Y = XNK×JP G†

RM×JP ∈ C
NK×RM . The expression

(4.126) allows to directly compute an estimate of each symbol sn,r. Table 4.5 illustrates the

KLS algorithm based on this idea by assuming one symbol known at the receiver.

Analysis of identifiability conditions:

The estimation of the Kronecker product between symbol and channel matrices by (4.122)

requires that the unfolded matrix GRM×JP is full row-rank, implying RM ≤ JP . From (4.123)

and Lemma 2.2, it is enough to satisfy the following inequality

k(WJ×RM) + k

((

C(S)T ⋄C(H)T
)T
)

≥ RM + 1. (4.127)

Remark that the condition (4.127) is also implicit in Theorem 3.4 concerning the uniqueness

condition. Contrarily to the ALS algorithm, satisfying the identifiability condition (4.127) leads

to ensure the uniqueness condition as well. Another advantage is that the symbol and channel

matrices can be estimated by just one iteration.

Generalization to multiuser case

Assuming that GQRM×JP is full row-rank, we can write the following matrix by transposing

the unfolded matrix of the received signal tensor given in (3.83) as

XNK×JP G†
QRM×JP = SN×QR |⊗|HK×QM

∆
= Y ∈ C

NK×QRM , (4.128)
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with

GQRM×JP =
(

WJ×QRM ⋄
[(

C(S,1)T⋄C(H,1)T
)T

· · ·
(

C(S,Q)T⋄C(H,Q)T
)T])T

=

(

WJ×QRM ⋄
((

C(S)T⋄C(H)T
)T

Φ̃QRM

))T

, (4.129)

WJ×QRM
∆
=
[

W
(1)
J×RM · · · W(Q)

J×RM

]

. (4.130)

Observe that GQRM×JP and WJ×QRM represent slightly modified version of (3.88) and (3.89),

respectively.

Considering Y
∆
=
[
Y(1) · · · Y(Q)

]
a partitioned matrix and applying the definition of a

partition-wise Kronecker product (2.3), we can rewrite (4.128) as
[
Y(1) · · · Y(Q)

]
= SN×QR |⊗|HK×QM

=
[
S(1) ⊗H(1) · · · S(Q) ⊗H(Q)

]
, (4.131)

where Y(q) ∆
= S(q) ⊗H(q) ∈ C

NK×RM .

From the Kronecker product associated with each user q, i.e.

Y(q) ∆
=






Y(q,1,1) · · · Y(q,1,R)

...
. . .

...
Y(q,N,1) · · · Y(q,N,R)




 = S(q) ⊗H(q) ∈ C

NK×RM , (4.132)

we obtain Y(q,n,r) ∆
=
(
S(q) ⊗H(q)

)(n,r)
= s

(q)
n,r H(q) by fixing q, n and r. According to the least

squares approach analogously to (4.126), the transmitted symbols associated with each user q,

s
(q)
n,r, can be estimated by

ŝ(q)n,r =
vec
(
H(q)

)H
vec
(
Y(q,n,r)

)

‖vec(H(q))‖2
, (4.133)

taking into account the channel estimation for each user and with Y(q,n,r) ∈ C
K×M constructed

from Y
∆
=
[
Y(1) · · · Y(Q)

]
= XNK×JP G†

QRM×JP ∈ C
NK×QRM .

Analysis of identifiability conditions:

The estimation of channel and symbol matrices from (4.128) requires that GQRM×JP is full

row-rank, implying QRM ≤ JP . Applying Lemma 2.2 into (4.129), the property of full rank

can be ensured from the following inequality

k(WJ×QRM) + k

((

C(H)T⋄C(S)T
)T

Φ̃QRM

)

≥ QRM + 1. (4.134)

Remark that the condition on the allocation and code structures given in Theorem 3.8, con-

cerning the uniqueness result, leads to (4.134).

If C(S,1)T⋄C(H,1)T has no zero-rows for all q ∈ {1, · · · , Q} and the code tensor for each user

W (q) is set such that WJ×QRM is full column-rank, then the condition (4.134) is satisfied and

GQRM×JP is full row-rank.
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4.3.2 STF system

Analogously to the TST coding, if we assume the unfolded matrix TFMR×FP is full row-rank,

we can rewrite (3.38) as

XKN×FP T†
FMR×FP = HK×FM ⊗ S

∆
= Y ∈ C

KN×FMR. (4.135)

Based on the same idea proposed previously, we can estimate the symbol matrix S and the

channel tensor H from (4.135) thanks to the structure of the Kronecker product between both

matrices HK×FM and S, and a prior information at the receiver.

DefiningY
∆
=
[

Y
(1)
KN×MR · · · Y

(F )
KN×MR

]

as a partitioned matrix, observe that we can rewrite

(4.135) as

[

Y
(1)
KN×MR · · · Y

(F )
KN×MR

]

= HK×FM ⊗ S

=
[
H1·· ⊗ S · · · HF ·· ⊗ S

]
, (4.136)

with Y
(f)
KN×MR

∆
= Hf ·· ⊗ S ∈ C

KN×MR.

From the Kronecker product associated with each subcarrier f , a permutation matrix of

rows Π(1) ∈ R
NK×KN and a permutation matrix of columns Π(2) ∈ R

MR×RM , we can write

Y
(f)
NK×RM

∆
=






Y(f,1,1) · · · Y(f,1,R)

...
. . .

...
Y(f,N,1) · · · Y(f,N,R)




 = Π(1) Y

(f)
KN×MR Π(2)

= S⊗Hf ·· ∈ C
NK×RM (4.137)

where Y(f,n,r) ∆
= sn,r Hf ·· ∈ C

K×M and, Π(1) ∈ R
NK×KN and Π(2) ∈ R

MR×RM are defined as

Π(1) ∆
=

N∑

n=1

K∑

k=1

e(N)
n e

(K)
k

T ⊗ e
(K)
k e(N)

n

T

Π(2) ∆
=

M∑

m=1

R∑

r=1

e(M)
m e(R)

r

T ⊗ e(R)
r e(M)

m

T
. (4.138)

Thus, we can estimate the channel matrix associated with each f , i.e. Hf ·· for f = 1, ..., F ,

by assuming the knowledge of at least one symbol. As consequence, we can better estimate the

channel tensor considering the knowledge of more than one symbol, as for example one row of

the symbol matrix. From the channel estimate and the received signal tensor, each transmitted

symbol sn,r can be estimated by

ŝn,r =
vec(HK×FM)H vec

(
Y(n,r)

)

‖vec(HK×FM)‖2
, (4.139)

where Y(n,r) ∆
=
[
Y(1,n,r) · · · Y(F,n,r)

]
∈ C

K×FM is obtained from Y
∆
= XKN×FP T†

FMR×FP ∈
C

KN×FMR. Table 4.5 presents the KLS algorithm for the STF system taking into account the

knowledge of one symbol.
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Table 4.5: KLS algorithm for semi-blind joint symbol and channel
estimation.

TST system: KLS-TST STF system: KLS-STF

1. Compute an LS estimate of S⊗H and HK×FM ⊗ S from:
Ŷ = X̃NK×JP G

†
RM×JP Ŷ = X̃KN×FP T

†
FMR×FP

2. Estimate H or H using the knowledge of one symbol s1,1 = 1:
Ĥ = Ŷ(1,1) Ĥf ·· = Ŷ(f,1,1) for f = 1, ..., F

3. Compute S from Ĥ or ĤK×FM :

ŝn,r =
vec(Ĥ)

H
vec(Ŷ(n,r))

‖vec(Ĥ)‖2 ŝn,r =
vec(ĤK×FM)

H
vec(Ŷ(n,r))

‖vec(ĤK×FM)‖2 with

ĤK×FM =
[

Ĥ1·· · · · ĤF ··

]

Ŷ(n,r) =
[

Ŷ(1,n,r) · · · Ŷ(F,n,r)
]

4. Project the estimated symbols onto the symbol alphabet.

Analysis of identifiability conditions:

Observe that the unique estimation of HK×FM ⊗ S by (4.135) requires that TFMR×FP is

full row-rank, implying MR ≤ P . Hence, it follows the same reasoning made in Theorem 3.7

for the uniqueness condition, leading to the same condition obtained for the code matrix and

allocation tensors.

From (3.39) and (3.40), if the code matrix W ∈ C
M×R is composed just by nonzero elements

and the allocation tensors are chosen such way that C
(H)
f ··

T ⋄ C(S)
f ··

T
is full row-rank for all

f ∈ {1, ..., F}, then the unfolded matrix TFMR×FP is full row-rank.

4.4 Complexity analysis of algorithms

In Table 4.6, we compare all algorithms in terms of its computational complexity for the

TST and STF systems, taking into account more onerous operations at each iteration such as

matrix inversions and complex multiplications.

Table 4.6: Computational complexity per iteration.

Computational complexity

Algorithms TST system STF system

ALS O((JP )2) + O(R3) + O(M3) O((FP )2) + O(R3) + O((FM)3)
LM O((JP )2) + O((NR+KM)3) O((FP )2) + O((NR+ FKM)3)
ALM O((JP )2) + O((NR)3) + O((KM)3) O((FP )2) + O((NR)3) + O((FKM)3)
KLS‡ O((RM)2) + O((RM)3) O((FRM)2) + O((FRM)3)

‡Remember that the KLS algorithm is a non-iterative procedure.

For the ALS algorithm, we compute two pseudo-inverses for each estimation of symbols

and channels at each iteration, which are implicit matrix inversions and complex multiplica-

tions corresponding approximately to O((JP )2) + O(R3) + O(M3) and O((FP )2) + O(R3)



80 Chapter 4. Semi-blind receivers

+ O((FM)3) for the TST and STF systems, respectively. The LM algorithm involves a

matrix inversion to estimate each new parameter variation corresponding approximately to

O((NR+KM)3) and O((NR+FKM)3) for the TST and STF systems, respectively. As sym-

bols and channels are alternately estimated in the ALM algorithm, there are two matrix inver-

sions which correspond respectively to O((NR)3) + O((KM)3) and O((NR)3) + O((FKM)3)

for the TST and STF systems. The LM and ALM algorithms approximately involve O((JP )2)

and O((FP )2) complex multiplications to compute the Jacobian matrix for the TST and STF

systems, respectively.

The KLS algorithm involves only one pseudo-inverse, which are implicit matrix inversion

and complex multiplications corresponding approximately to O((RM)2) + O((RM)3) and

O((FRM)2) + O((FRM)3) for the TST and STF systems, respectively. Differently from the

ALS, LM and ALM algorithms, the KLS algorithm is a non-iterative method and consequently,

involves one iteration. In general, the KLS is the least complex. According to Table 4.6, the

ALS is the least complex iterative algorithm and LM algorithm is the most complex. The

simplification done to achieve the ALM algorithm allows us to reduce the complexity of the

LM algorithm as desired. In order to illustrate the values in Table 4.6, we give some examples

of design parameters for four values of P , K, J = F , and R in Figures 4.1, 4.2, 4.3 and 4.4,

respectively.
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Figure 4.1: Computational complexity: Influence of the number P of data blocks.

The difference in the complexity between the LM and ALM are not significant when com-

pared to the ALS algorithm for both systems. The number of data blocks P has more influence

on the variation of complexity of the ALS algorithm than the LM and ALM. In the same way

that the variation of the number of receive antennas K affects more the complexity of the LM

and ALM algorithms than the ALS for both systems.

The variations of J do not significantly change the complexity of the LM and ALM for the

TST system as happens with variations of F for the STF system. From Figure 4.4, we can

observe that the increase of the number of data streams directly leads to an increase in the
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Figure 4.2: Computational complexity: Influence of the number K of receive antennas.
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Figure 4.3: Computational complexity: Influence of the spreading length J and of the number
F of subcarriers.

complexity of all algorithms. From the variations of P,K, J,R, observe that the KLS algorithm

is always the least complex for the TST system. However, for the STF system, the increase of

the number of data streams and of subcarriers may lead to greater complexity for the KLS than

the ALS algorithm, depending on the number of iterations required for the ALS convergence.

4.5 General discussion

Table 4.7 presents a resume of the identifiability conditions of the ALS algorithm for both

systems developed in Section 4.1. By construction, the LM and ALM algorithms do not require

to satisfy identifiability conditions and the KLS method requires that two matrix unfolding re-
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Figure 4.4: Computational complexity: Influence of the number R of data streams.

lated to the code and allocation structures are full rank, which lead to the uniqueness conditions

in Table 3.1.

Table 4.7: Summary of the identifiability conditions with N ≥ R and K ≥ M (or, N ≥ QR
and K ≥ QM).

ALS TST system STF system

multiple users one user

for M = R w
(q)
m,r,j = ei2πj

mr
MR wm,r,j = ei2πj

mr
MR wm,r = ei2π

mr
MR

c
(S,q)
p∗· = 1T

R, c
(H,q)
p∗· = 1T

M c
(S)
p∗· = 1T

R, c
(H)
p∗· = 1T

M C
(S)
·p∗· = 1F×R, C

(H)
·p∗· = 1F×M

for M < R J ≥ Jmin (see Tab. 4.1) J ≥ Jmin (see Tab. 4.1) P ≥ R

w
(q)
m,r,j = ei2πj

mr
MR wm,r,j = ei2πj

mr
MR wm,r = ei2π

mr
MR

c
(S,q)
p∗· = 1T

R, c
(H,q)
p∗· = 1T

M c
(S)
p∗· = 1T

R, c
(H)
p∗· = 1T

M C
(S)
·p∗· = 1F×R, C

(H)
·p∗· = 1F×M

C
(H)
f∗·· = 1P×M

∃f∗ |C(S)
f∗·· full column-rank

for M > R P ≥M
wm,r = ei2π

mr
MR

C(S) = 1F×P×R, c
(H)
f∗,p∗· = 1T

M

C
(H)
f ·· full column-rank, ∀f

The time spreading mode in the code tensor permits to derive a minimum value of the

spreading code length J that ensures the LS identifiability of channel and symbol matrices for

the TST system when M 6= R. As the spreading code for the STF system is a matrix, the

structure of the allocation tensors has to guarantee the identifiability of channel and symbol

estimates when M 6= R, which leads to a minimum value of P (P ≥ R or P ≥ M) and a

stronger restriction on allocation tensors as shown in Table 4.7.

The identifiability condition presented in this table for the TST system is based on the

received signal tensor modeled with the PT-(2,4) model. Rewriting as a constrained CP model,

it allows to provide another condition by relaxing the restriction on the allocation matrices and
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imposing WJ×MR full column-rank (J ≥MR).

From the analysis of identifiability conditions, we can conclude that the TST system is more

flexible to design the allocation structures than the STF system. For the TST system, it is also

possible to guarantee the solution uniqueness by imposing a stronger restriction on the code

tensor instead of the allocation structures. Remark that the identifiability conditions for the

TST system with one user can be directly derived from the conditions for the multiuser TST

system by Q = 1.

The transmission rate (in bits per channel use) is given by

Rb = τ log2(µ), (4.140)

where µ denotes the cardinality of the information symbol constellation and the ratio τ is equal

to τ = R/P and τ = R/PF for the TST and STF systems, respectively. Thereby, the transmission

rate for the STF system is limited by τ = 1/MF since P ≥MR in accordance with the uniqueness

results discussed in Chapter 3. Therefore, the transmission rate for the STF system depends

on the number of transmit antennas M , which does not happen for the TST system due to the

flexibility of uniqueness condition by an appropriate choice of the code tensor with J ≥ MR

(see Table 3.1).

In terms of spectral efficiency, the STF system in the FDMA context divides the available

bandwidth B into F disjoint frequency bands, i.e. B/F Hz for each subcarrier and the data

streams are repeated over these bands. Considering the symbol period T , the total bandwidth

used for the system is BSTF = F/T Hz. For the TST system in the CDMA context, all symbols

are transmitted using the same frequency band. For the available bandwidth B, the reciprocal

of B defines the duration of a pulse, i.e. the chip interval T/J, which gets BTST = J/T Hz. Thus,

each system can theoretically achieve the same spectral efficiency for the same total bandwidth

B and the same symbol period T . Nevertheless, the FDMA-MIMO system can achieve higher

spectral efficiency than CDMA in practice.

4.6 Simulation results

In this section, we present some simulation results considering the proposed receivers based

on four algorithms: ALS, LM, ALM, and KLS, which jointly estimate the symbol matrix S ∈
C

N×R and the channel matrix H ∈ C
K×M or tensorH ∈ C

F×K×M in the presence of the additive

noise assumed to be zero-mean complex-valued white Gaussian.

The total number of Monte Carlo runs (L) is fixed equal to 2000, which corresponds to 2000

random wireless channels, each one with different symbol sequences randomly drawn from a

PSK constellation, different random noise sequences and different random allocation structures

subject to the uniqueness and identifiability results. Assuming flat Rayleigh fading propagation

channels, a different random initialization Ĥl=0 is also used for each run. The code matrix

W ∈ C
M×R and the code tensor W ∈ C

M×R×J are constructed based on the Vandermonde

structure.

The performance associated to the proposed receivers is evaluated by means of Monte Carlo

simulations in terms of bit-error rate (BER) and normalized mean square error (NMSE) on



84 Chapter 4. Semi-blind receivers

channel estimation defined as

NMSEH
dB = 10 log10






1

L

L∑

l=1

∥
∥
∥Hl − Ĥl(∞)

∥
∥
∥

2

F

‖Hl‖2F




 , (4.141)

where Ĥl(∞) is the channel matrix (or an unfolded matrixHK×FM for the STF system) estimated

at convergence of the l-th run. The BER is calculated by averaging the results obtained for all

data streams and all Monte Carlo runs. The signal-to-noise ratio (SNR) is determined by

SNRdB = 10 log10
‖X‖2F
‖V‖2F

, (4.142)

where X and V are, respectively, the received signal tensor without noise and the additive noise

tensor. The SNR is set by adjusting an adequate noise variance.

The convergence of algorithms is decided when the errors between the noisy received signal

tensor and its values reconstructed using the channel and symbol matrices estimated at two

successive iterations are such as
∣
∣e(it) − e(it−1)

∣
∣

e(it−1)

≤ 10−6, (4.143)

with e(it) =
∥
∥
∥X̃ − X̂(it)

∥
∥
∥
F
, X̃ and X̂(it) denote, respectively, the noisy received signal tensor and

its estimate at it-th iteration. In another way, the convergence is considered when the error

between iterations it− 1 and it does not significantly change.

The convergence speed of algorithms is evaluated in terms of the NMSE of received signal

estimation, constructed by symbol and channel estimates at each iteration it, defined as

NMSEX
dB = 10 log10






1

L

L∑

l=1

∥
∥
∥X̃l − X̂l(it)

∥
∥
∥

2

F
∥
∥
∥X̃l

∥
∥
∥

2

F




 , (4.144)

where X̃l and X̂l(it) are, respectively, the noisy received signal tensor and its estimate at the

it-th iteration of the l-th run.

According to the uniqueness analysis investigated in Chapter 3, we assume the knowledge

of one symbol in order to eliminate the scaling ambiguity of the channel and symbol estimates

inherent to the models related to the TST and STF systems. The KLS procedure is an non-

iterative algorithm and does not present the ambiguity problem since it explores the structure

of the Kronecker product from a priori knowledge of some transmitted symbols.

In all simulations, the code (W ∈ C
M×R or W ∈ C

M×R×J) and the allocation structures

(C(S) ∈ C
P×R and C(H) ∈ C

P×M , or C(S) ∈ C
F×P×R and C(H) ∈ C

F×P×M) are assumed to be

known at both transceiver and receiver. By default, we consider the system configuration below:

For the TST system:






• Vandermonde structure for W··j : wm,r,j = ei2πj
mr
MR

• C(H)T ⋄C(S)T full row-rank

• c(S)1· = 1T
R, c

(H)
1· = 1T

M

. (4.145)
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For the STF system, when M = R:






• Vandermonde structure for WM×R : wm,r = ei2π
mr
MR

• C(H)
f ··

T ⋄C(S)
f ··

T
full row-rank for all f

• C(S)
·1· = 1F×R,C

(H)
·1· = 1F×M

(4.146)

and when M < R:






• Vandermonde structure for WM×R : wm,r = ei2π
mr
MR ,

• C(H)
f ··

T ⋄C(S)
f ··

T
full row-rank for all f

• C(S)
·1· = 1F×R,C

(S)
1·· full column-rank

• C(H)
·1· = 1F×M ,C

(H)
1·· = 1P×M

. (4.147)

Firstly, we study the influence of several system parameters for the TST and STF systems as:

the spreading code length (J), the number of phases of the PSK modulation for representing the

data symbols, the number of subcarriers (F ), of blocks (P ), of data streams (R), and of receive

antennas (K). In the sequence both systems are compared regarding the symbol recovery. For

this performance analysis, the ZF receivers, defined in (4.53) and (4.55), are employed assuming

a perfect knowledge of the channel coefficients. Let us recall the receivers for the TST and STF

systems denoted, respectively, by ZF-TST and ZF-STF.

Ŝ = X̃N×PJK ((IPJ ⊗H)GPJM×R)
†T , (4.148)

Ŝ = X̃N×PFK ((IP ⊗ bdiag(H1··, . . . ,HF ··))TPFM×R)
†T . (4.149)

Since the uniqueness and identifiability conditions are only sufficient conditions, we study

the influence of these restrictions on the performance of the ALS algorithm in terms of BER

and channel NMSE. The influence of a priori information on the performance of the KLS al-

gorithm is evaluated by employing the knowledge of one symbol and one row of the symbol

matrix. We establish a comparison between the performance of all proposed receivers in terms

of symbol recovery and convergence speed. The TST coding is compared with well-known ten-

sor approaches, such as KRST [53] and STM codes [55], using the ALS algorithm. The BER

performance of the TST system for multiple users in the transmission is computed.

4.6.1 Performance analysis of the TST system

Let us consider the ZF receiver to analyze the influence of the system parameters on the

performance of the TST system. Figure 4.5 shows the BER versus SNR for five values of

the spreading code length (J ∈ {1, 2, 4, 6, 10}). Note that the BER is canceled for a SNR =

{18; 12; 12; 10} dB for J = {2; 4; 6; 10}, respectively. From this figure, we can conclude that

an increase of J induces a significant performance improvement in terms of symbol recovery.

It is important to remark that the case J = 1 corresponds to the ZF receiver proposed in

[59], the improvement obtained is due to the extra time spreading introduced by the TST

coding. Evidently, an increase of J provides a better performance at the cost of a computation

complexity increase.
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Figure 4.5: ZF-TST receiver: Influence of the spreading code length.

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

TST system: N=10, P=4, M=2, R=2, K=2, J=2

B
E

R

SNR (dB)

 

 

BPSK
QPSK
8−PSK
16−PSK

R
b
=2R

b
=3/2

R
b
=1

R
b
=1/2

Figure 4.6: ZF-TST receiver: Influence of the number of phases of PSK modulation.

Figure 4.6 shows the BER performance for four PSK constellations: 2- (BPSK), 4- (QAM

or QPSK), 8- and 16-PSK. We verify that the symbol recovery is improved for low numbers of

phase. The greater the number of phases, the greater will be the number of bits to represent

each symbol. Higher-order PSK modulation leads to higher transmission rate but also higher

bit-error rates, since the total energy per symbol is divided per bit and hence the energy per

bit is reduced. In practice, the use of different PSK constellations depends on the transmission

rate required and the difficult to implement it.

In Figure 4.7 we have plotted the BER versus SNR for two different values of the number

of blocks (P ∈ {4, 10}) and of the spreading code length (J ∈ {1, 2}). Note that the BER

performance can be significantly improved by increasing either the number of data blocks or

the spreading code length, since both actions induce an increase of time diversity. However,

the increase of the number of data blocks leads to a decrease of the transmission rate given by

(4.140) (proportional to the ratio R/P). We obtain the same BER performance for J = 2 and

P = 4, and J = 1 and P = 10, but the first case provides a transmission rate twice higher
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Figure 4.7: ZF-TST receiver: Influence of the number of data blocks.
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Figure 4.8: ZF-TST receiver: Influence of the number of data streams.

(exactly, 2,5 times).

The transmission rate decreases from 2 to 4/5 bit per channel use when R is decreased

from 5 to 2. On the other hand, as expected and shown in Figure 4.8, the BER performance

is improved when R is reduced from 5 to 2, due to the fact that fewer symbols have to be

estimated using the same number of received signals. It illustrates the trade-off between error

performance and transmission rate that can be achieved with the proposed TST coding. It is

interesting to note that the error performance for J = 1 and R = 2 is close to the one obtained

with J = 3 and R = 5. Hence, the TST coding by adjusting J allows to obtain almost the same

performance but providing a higher transmission rate.

Figure 4.9 shows the BER versus SNR for two different values of the number of receive

antennas (K ∈ {2, 4}) and two spreading code lengths (J ∈ {1, 2}). As expected, the use of

more receive antennas leads to a better BER performances. It is interesting to notice that the

TST coding provides the same performance employing half of the number of receive antennas

(K = 2) than the receiver proposed in [59] with K = 4 antennas thanks to extra time diversity.



88 Chapter 4. Semi-blind receivers

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TST system: N=10, P=4, M=2, R=2, 16−PSK

B
E

R

SNR (dB)

 

 

PT−2: J=1, K=2
PT−2: J=1, K=4
PT−(2,4): J=2, K=2
PT−(2,4): J=2, K=4

Figure 4.9: ZF-TST receiver: Influence of the number of receive antennas.

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

STF system: N=10, P=4, M=2, R=2, K=2, 16−PSK

B
E

R

SNR (dB)

 

 

F=1
F=2
F=4
F=6
F=10

Figure 4.10: ZF-STF receiver: Influence of the number of subcarriers.

4.6.2 Performance analysis of the STF system

The ZF receiver is employed to analyze the performance of the STF system analogously

to the TST system. In Figure 4.10 we have plotted the BER versus SNR for five values of

the number of subcarriers (F ∈ {1, 2, 4, 6, 10}). It confirms the performance improvement by

increasing of the frequency diversity as well as the time diversity for the TST system. The

frequency diversity is eliminated when F = 1 and it also leads to the receiver of [59]. Observe

that the number of subcarriers must be supported by the total available bandwidth, since the

system bandwidth has to be divided into F disjoint frequency bands.

Figure 4.11 shows the BER versus SNR for four PSK modulations: BPSK, QPSK, 8-PSK,

and 16-PSK. Analogously to the TST system, low values of phase provide better BER perfor-

mances.

According to Figures 4.12 and 4.13, we obtain almost the same performance for (F = 1,

P = 10) and (F = 2, P = 4), and (F = 1, R = 2) and (F = 3, R = 5), respectively. A way

to reduce the error rate without changing the transmission rate Rb = 2 is by the use of more
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Figure 4.11: ZF-STF receiver: Influence of the number of phases of PSK modulation.
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Figure 4.12: ZF-STF receiver: Influence of the number of data blocks.
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Figure 4.13: ZF-STF receiver: Influence of the number of data streams.
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Figure 4.14: ZF-STF receiver: Influence of the number of receive antennas.

subcarriers (with F = 2 and F = 3). The transmission rate can be increased by appropriately

setting R and/or P , however the BER performance is impaired.

Figure 4.14 shows the BER versus SNR for two values of the number of subcarriers (F ∈
{1, 2}) and two values of the number of receive antennas (K ∈ {2, 4}). The use of two subcarriers
allows to obtain the same BER performance employing half of the receive antennas.

4.6.3 Comparison between TST and STF systems

In order to analyze the influence of J and F on diversity gain of the TST and STF systems,

we fix all parameters including J = F and employ the random allocation structures such that

C(H)T ⋄C(S)T and C
(H)
f ··

T ⋄C(S)
f ··

T
for all f ∈ {1, ..., F} are full row-rank, which lead to the same

diversity gain for both systems as viewed in Chapter 3.

The BER curves obtained with the ZF receiver for the TST and STF systems are plotted

in Figure 4.15 for five values of J = F ∈ {1, 2, 4, 6, 10}. For J = F = 1, verify the same



4.6. Simulation results 91

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N=10, P=4, M=2, R=2, K=2, 16−PSK

B
E

R

SNR (dB)

 

 

ZF−TST: J=1
ZF−TST: J=2
ZF−TST: J=4
ZF−TST: J=6
ZF−TST: J=10
ZF−STF: F=1
ZF−STF: F=2
ZF−STF: F=4
ZF−STF: F=6
ZF−STF: F=10

Figure 4.15: TST × STF systems: Influence of the diversity gain by J and F .
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Figure 4.16: Influence of the number of receive antennas: BER versus SNR.

performance for both systems as expected. When J = 1 and F = 1, the extra time and

frequency diversities are respectively eliminated resulting an equivalent system. Assuming a

perfect knowledge of the channel coefficients, we have the same number of system parameters to

estimate, i.e. NR. When J and F are increased from 2 to 10, we note that both systems tend

to provide almost the same curves of BER, which allows to confirm that the time and frequency

diversities can lead to an equivalent diversity gain.

In Figures 4.16 and 4.17 we have respectively plotted the BER and the channel NMSE versus

SNR for three values of the number of receive antennas (K ∈ {2, 4, 6}). The purpose is to study

the uniqueness conditions discussed in Chapter 3 and the LS-identifiability of the symbol and

channel estimates deduced in this chapter for the ALS algorithm. According to Tables 3.1 and

4.7, the uniqueness condition for the STF system imposes K ≥ FM and the identifiability

conditions for both systems are derived by assuming K ≥M .

From Figures 4.16 and 4.17, observe that even when K < M the ALS algorithm for both

systems can still estimate uniquely the symbols and channel coefficients. It is important to at-
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Figure 4.17: Influence of the number of receive antennas: Channel NMSE versus SNR.
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Figure 4.18: Influence of the number of data blocks: BER versus SNR.

tend that the proposed conditions of uniqueness and identifiability are only sufficient conditions.

In this sense, even if the conditions are not satisfied we may perfectly estimate the symbol and

channel. Note that the STF system has more channel coefficients to estimate and, therefore,

the ALS algorithm for the TST system provides a better performance in terms of symbol and

channel estimation.

Figures 4.18 and 4.19 show, respectively, the BER and channel NMSE versus SNR obtained

for P ∈ {2, 4}. The ALS algorithms are employed to analyze the influence of P on the uniqueness

conditions for both systems established in Chapter 3 (see Table 3.1). Both allocation structures

are randomly chosen such that C(H)T ⋄ C(S)T and C
(H)
f ··

T ⋄ C(S)
f ··

T
for all f ∈ {1, ..., F} are full

row-rank implying P ≥MR.

According to these figures, the channel and symbol of the STF system can not be properly

estimated when P = 2 < MR, despite the convergence of the ALS algorithm. As the unique-

ness condition for the TST system depends on both allocation matrices and code tensor, the

symbol and channel estimations can be achieved even when P < MR by appropriately adjust-
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Figure 4.19: Influence of the number of data blocks: Channel NMSE versus SNR.
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Figure 4.20: KLS-TST Receiver: Influence of a priori information in the symbol recovery.

ing the code tensor (J ≥ MR). Furthermore, observe that the TST system provides better

BER performance since the STF system has four times more channel parameters (F = 4) to

estimate. Hence, the TST system affords a better trade-off between transmission rate and error

performance than the STF system.

4.6.4 KLS algorithm: Influence of a priori information

In order to evaluate the influence of a priori information considered in the KLS algorithm,

we consider three different values of R ∈ {2, 4, 6} and assume the knowledge of only one symbol

and one row of symbols to estimate the channel coefficients. Figures 4.20 and 4.21, and 4.22 and

4.23 show the BER and channel NMSE versus SNR for the TST and STF systems, respectively.

As expected, the knowledge of more than one symbol improves the channel estimation and

consequently, the symbol recovery. The KLS algorithm for the TST system estimates better

the channel coefficients than the one for the STF system (mainly for R > 2). Because the STF
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Figure 4.21: KLS-TST Receiver: Influence of a priori information in the channel estimation.

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

STF system: N=10, P=12, M=2, K=2, F=4, 16−PSK

B
E

R

SNR (dB)

 

 

R=2, one row of symbols
R=4, one row of symbols
R=6, one row of symbols
R=2, one symbol
R=4, one symbol
R=6, one symbol

R
b
=2/3

R
b
=2

R
b
=4/3

Figure 4.22: KLS-STF Receiver: Influence of a priori information in the symbol recovery.

system has F times more channel coefficients to estimate by using the same priori information

about the transmitted symbols. Consequently, the poor channel estimation for the STF system

leads to a poor symbol recovery.

4.6.5 Comparison between different algorithms

In the sequel, the ALS, LM, ALM and KLS algorithms are compared in terms of the symbol

recovery and convergence speed for both TST and STF systems. The KLS algorithm is employed

assuming the knowledge of one symbol, i.e. the first transmitted symbol being s1,1 = 1, and

of one row of symbols, i.e. the first row of symbols being S1· = 1T
R, at both transceiver and

receiver.

In Figures 4.24, 4.25, 4.26 and 4.27 we have plotted the BER versus SNR for two different

values of the spreading code length J ∈ {2, 6}, of the number of subcarriers F ∈ {2, 8}, and of

the number of data streams R ∈ {2, 4}. From these figures, we observe that the ALS, LM and
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Figure 4.23: KLS-STF Receiver: Influence of a priori information in the channel estimation.
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Figure 4.24: TST system: Performance of all receivers for two values of J .

ALM algorithms present close performances at the convergence given by (4.143) for different

values of J , F and R.

According to Figure 4.24, the KLS-TST receiver employing the knowledge of one row of

symbols can considerably improve the symbol recovery by increasing of the number of spreading

code length from 2 to 6. From Figure 4.25, we can observe that the BER performance of the

KLS-STF receiver can not be improved by increasing F as happens for the KLS-TST with

J . For a BER equal to 10−3, the gap between KLS-STF (assuming the knowledge of one row

of symbols) and other receivers (ALS-STF, LM-STF and ALM-STF) is around 4 dB for both

values F = 2 and F = 8. It can be explained by the larger number of channel coefficients to

estimate for the STF system as mentioned above.

From Figures 4.26 and 4.27, we can note that the decrease of the number of data streams

from 4 to 2 reduces the difference between the BER curves obtained with the KLS algorithms

and other algorithms (ALS, LM and ALM) for both systems. For a BER equal to 10−3, the

gap between KLS-TST (assuming the knowledge of one row of symbols) and other receivers is
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Figure 4.25: STF system: Performance of all receivers for two values of F .
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Figure 4.26: TST system: Performance of all receivers for two values of R.
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Figure 4.27: STF system: Performance of all receivers for two values of R.
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Figure 4.28: TST system: Convergence speed of all algorithms.
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Figure 4.29: STF system: Convergence speed of all algorithms.

around 2 dB and 3 dB for R = 2 and R = 4, respectively. For a BER equal to 10−2, the gap

between KLS-STF and other receivers is approximately 4 dB and more than 9 dB for R = 2

and R = 4, respectively.

In order to compare the convergence speed of the ALS, LM and ALM algorithms, we have

fixed the same total number of iterations for all algorithms and have plotted the NMSE of

received signal at each iteration. Figures 4.28 and 4.29 show the NMSE of received signal versus

iteration for two values of R ∈ {2, 4} and of SNR (SNR=15dB and SNR=30dB). Observe that

all algorithms tend to converge to the same value of the NMSE of received signal estimation

constructed by the symbol and channel estimates.

Note also that the number of data streams drastically affects the behavior of the convergence

speed of all algorithms for both systems. For smaller values of R (R = 2), according to Figures

4.28 and 4.29, the LM and the ALS algorithms respectively have the slowest and the fastest

convergence. However, there is an inversion of the convergence behavior when the number of

data streams is increased to R = 4. The LM becomes faster than the ALS algorithm mainly for
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Figure 4.30: TST system: Convergence of all algorithms with initialization based on the KLS
method.

higher values of SNR. For SNR=30dB, the LM converges in around 50 and 60 iterations and

the ALS needs more than 100 and 600 iterations for the TST and STF systems, respectively.

An interesting point is that the ALM algorithm provides convergence curves between both ALS

and LM algorithms.

A disadvantage of the ALS algorithm is that it involves the pseudo-inverse calculus and the

identifiability of the estimates depends on the unique existence of the pseudo-inverse. The LM

is the most complex algorithm and can converge slower than the ALS and ALM for low values of

the number of data streams R. Therefore, the ALM is a good option providing a good trade-off

between computational complexity and convergence compared to the ALS and LM algorithms.

All previous simulations were obtained from a random initialization of the symbol and chan-

nel matrices (or channel tensor). An interesting option to improve the convergence speed of

the ALS, LM and ALM algorithms is to employ the KLS method as an initial stage with the

purpose of providing a better initialization of the estimates than random initialization.

In Figures 4.30 and 4.31 we have plotted the NMSE of received signal versus iterations in

order to evaluate the influence of the initialization based on the KLS method. These initializa-

tions take into account the knowledge of only one symbol, remember that this information is

already used to eliminate the scalar ambiguities. Thus, it is not required additional information

known a priori. According to both figures, we can verify the improvement obtained by the

initialization based on the KLS method for both systems.

The employment of the KLS method as initial step always allows to obtain faster convergence

and can provide a convergence to a global optimum. It is very important because the ALS, LM

and ALM algorithms are strongly dependent on the initialization, can converge very slowly to

a global minimum or even a local minimum.
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Figure 4.31: STF system: Convergence of all algorithms with initialization based on the KLS
method.

4.6.6 Comparison with KRST and STM

In order to evaluate the performance of our proposed ST coding, we compare with two other

tensor approaches: Khatri-Rao Space-Time (KRST) and Space-Time Multiplexing (STM) codes

proposed, respectively, in [53] and [55]. These approaches rely on tensor decompositions for mod-

eling of the received signals and achieve variable rate-diversity trade-offs for any transmit/receive

antenna configuration or signal constellation.

The KRST coding [53] combines a linear spatial precoding with a data spreading only over

the time dimension. In [55], a third order tensor coding performs jointly spatial multiplexing

and ST coding, leading to an additional spreading over all transmit antennas. Differently to the

KRST, the transceivers associated with the TST, STF and STM techniques transmit a linear

combination of R data streams composed of N symbols each. It introduces some flexibility at

the transceivers by choosing a number of data streams different from the number of transmit

antennas. Furthermore, the TST and STF systems provide different degrees of space and time

spreading and multiplexing, which depend on the choice of the allocation structures.

In both works [53] and [55], a joint semi-blind channel estimation and symbol detection is

afforded thanks to the ALS method. In this sense, the ALS receivers for the TST and STF

systems are considered in the next simulations. In order to have an adequate comparison with

the proposed system under the same conditions, we fix the same design parameters for all

systems and employ the Vandermonde structure for the codes. In [53], the transmitted symbols

are precoded by a constellation rotation (CR) matrix. According to the design rule in [53] and

by simplicity, this matrix is set equal to the identity matrix for achieving full diversity gain.

Figures 4.32 and 4.33 show the BER versus SNR for QPSK and 16-PSK, respectively. Ac-

cording to these figures, the ALS-TST based receiver outperforms the ALS-STF, ALS-STM and

ALS-KRST based receivers, due to its higher diversity gain. The ALS-KRST receiver provides

the worst performance of BER, mainly for QPSK constellation. Remark that both TST and

STF systems allow to improve even more the symbol recovery by increasing J and F . The

KRST and STM codes do not provide this flexibility introduced by extra diversities and the
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Figure 4.32: Comparison with KRST and STM for QPSK.
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Figure 4.33: Comparison with KRST and STM for 16-PSK.
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maximum achievable diversity gain of both codes is Kmin(P,M). For P > M and M = R, the

TST and STF systems can achieve maximum diversity gains JP and FP times more than the

ones for the STM and KRST.

Observe that the transmission rate of the KRST system is limited by the number of transmit

antennas M because the number of data streams R is forced to be equal to M . Another point

that deserves attention is that the uniqueness of symbol and channel estimates for both KRST

and STM systems are ensured from the knowledge of one row of symbols. Hence, for N = 10,

10% of the transmitted symbols are known at the transceiver and receiver, which leads to 10% of

reduction of the transmission rate. We have previously shown that both TST and STF systems

require only one symbol to eliminate the scaling ambiguities. In Figures 4.32 and 4.33 for R = 2,

5% of the transmitted symbols for the TST and STF are known at the transceiver and receiver,

and the transmission rate is reduced 5%. However, this reduction can even be smaller for higher

values of R.

4.6.7 Generalization of TST systems to multiuser case

Next, we evaluate the performance of the multiuser TST system with the proposed semi-

blind receivers and taking into account the knowledge of only one symbol per user. Let us

consider two design configurations as follows:

Case 1:







• Vandermonde structure for WJ×QRM : w
(q)
m,r,j = ei2πj

(q−1)RM+(r−1)M+m

QRM

• C(H,q)T ⋄C(S,q)T has no zero-rows for all q

• c(S,q)1· = 1T
R, c

(H,q)
1· = 1T

M , for all q

(4.150)

and

Case 2:







• Vandermonde structure for W
(q)
J×RM : w

(q)
m,r,j = ei2πj

mr
RM

•
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

full column-rank

• c(S,q)1· = 1T
R, c

(H,q)
1· = 1T

M , for all q

. (4.151)

Both configurations represent two different forms to satisfy the uniqueness condition inves-

tigated in Chapter 3, being resumed in Table 3.1. For Case 1, the code tensor for each user is

chosen such that WJ×QRM is full column-rank, implying J ≥ QRM . The allocation matrices for

each user are randomly chosen such that the k-rank of
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

is at least equal to 1.

For Case 2, the same code tensor is fixed for all users, i.e. W (1) = · · · =W (Q), which leads to

k (WJ×QRM) = 1. The allocation matrices are randomly chosen such that
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

is full column-rank, implying P ≥ QRM .

We show in Figures 4.34 and 4.35 the BER performance for all proposed receivers considering

two and four users in the transmission. In Figure 4.34 the BER is computed by averaging the

results obtained for all users. We present this average BER for all users in the red curves and

the BER results for each user in the blue curves in Figure 4.35.
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Figure 4.34: Multiuser TST system: Performance of all receivers for Case 1. For better vi-
sualization, the BER curves for each user are separately plotted for each algorithm in Fig.
4.35.
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Figure 4.35: Multiuser TST system: Performance of all receivers for Case 1, (–): averaged over
all users and (–): each user. The red curves are also plotted in Fig. 4.34 with the purpose of
comparing all algorithms.
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full rank: J=4
full rank: J=8
full rank: J=12
same code: J=4
same code: J=8
same code: J=12

Figure 4.36: ALS-TST receiver: Condition on the code tensor for Case 1.

From these figures, we can verify that the transmitted symbols for each user are correctly

and equally recovered through the knowledge of one symbol per user. As shown for the TST and

STF systems with one user, the performance of ALS, ALM and LM are closed. Interestingly,

the KLS algorithm provides the best symbol estimation, which can be justified by the large

value of the spreading code length (J = 16). In the sense that the channel estimate is computed

taking into account more versions of the received signal for a fixed number of parameters to be

estimated.

We show two plots in order to analyze the proposed uniqueness conditions for multiuser TST

systems. In Figure 4.36 we plot the BER and channel NMSE versus SNR for three values of

the spreading code length (J ∈ {4, 8, 12}), and in Figure 4.37 we have the same plot for three

values of the number of data blocks (P ∈ {4, 8, 12}) instead.
In Figure 4.36 the allocation matrices for all users are chosen according to Case 1. However,

the tensor code is set such that WJ×QRM is full rank for the red curves and W (1) = . . . =W (Q)

for the blue curves, i.e. we employ the same code tensor for each user. When all users employ

the same code tensor, it leads to k(WJ×QRM) = 1. Hence the proposed uniqueness conditions

are not satisfied if J < QRM or W (1) = . . . = W (Q). However, we can observe from Figure

4.36 that the channel coefficients and all transmitted symbols are correctly estimated even when

WJ×QRM is full rank with J < QRM .

We employ in Figure 4.37 the same code tensor for all users in accordance with Case 2. For

the red curves, the allocation matrices for all users are set according to Case 2 and contrarily for

the blue curves, we do not impose that
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

is full rank.

Figure 4.37 shows that we can correctly estimate the channel coefficients and all transmitted

symbols even when
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

is full rank with P < QRM .

However, random allocation structures can not ensure the uniqueness specially when P ≤ QRM .

From both figures 4.36 and 4.37, we can observe that whenWJ×QRM or
[(

C(H,1)T ⋄C(S,1)T
)T

· · ·
(

C(H,Q)T ⋄C(S,Q)T
)T
]

is full rank, the channel and symbols are appropriately recovered even

with J < QRM or P < QRM . We also note that when the code and allocation structures
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full rank: P=4
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full rank: P=12
random: P=4
random: P=8
random: P=12

Figure 4.37: ALS-TST receiver: Condition on the allocation matrices for Case 2.

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Multiuser TST system: N=10, Q=2, P=2, M=2, R=2, J=8, 16−PSK

B
E

R

SNR (dB)

 

 

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

C
ha

nn
el

 N
M

S
E

 

 

averaged over all users
user 1
user 2

K=4

K=2
K=4

K=2

K=8

K=8

Figure 4.38: ALS-TST receiver: Influence of the number of receive antennas for Case 1.

satisfy the uniqueness conditions investigated in Chapter 3, the channel and symbol estimations

present better performances.

According to the identifiability condition for the ALS algorithm, we have indicated to set

K ≥ QM which means that the number of receive antennas has to be at least equal to the total

number of transmit antennas for all users. Hence the number of available receive antennas can

restrict the total number of users. Nevertheless, we can verify from Figure 4.38 that this condi-

tion on the number of receive antennas is not necessary. The symbol and channel estimations

can be still achieved when K < QM .



Chapter 5
Conclusion and Perspectives

A new tensor decomposition, PARATUCK-(N1, N), is introduced in this thesis, which gen-

eralizes the well-known PARATUCK-2 model. The uniqueness condition have been derived

for our proposed model. The generalization of two lemmas [67, 68] concerning the Khatri-Rao

product has been derived and employed to deduce the uniqueness and identifiability results.

We have proposed a new tensor space-time coding for MIMO wireless communication sys-

tems. The associated transceiver is characterized by a third-order code tensor and two allo-

cation matrices that allow space-time spreading-multiplexing of the transmitted symbols. The

proposed transmission system can be viewed as an extension of the ST transmission system of

[107] that relies on the PARATUCK-2 tensor model for the received signals. This extension is

derived from the introduction of an extra time diversity.

A performance analysis of the TST system is deduced with the purpose of evaluating the

diversity of information transmitted, which allows us to express a maximum diversity gain in

terms of some system parameters and taking into account the structures of antenna and data

stream allocations per block. This performance analysis has been extended for a space-time-

frequency (STF) system [62] and the maximum diversity gain has also been achieved. The

uniqueness conditions of a generalized PARATUCK-2 model is also established for the STF

system. A comparison between the TST and STF systems has been presented in an unified way

in terms of diversity gain, identifiability and uniqueness conditions.

We have observed from the diversity gain analysis that systems with different allocation

structures can provide different performances and that the diversity gain for both systems de-

pends on the code and mainly on the allocation structures. We can obtain different performances

for the symbol estimation employing the same diversity gain provided by the extra time and

frequency diversities of the TST and STF systems due to the difference of the number of system

parameters to estimate.

Semi-blind receivers have been proposed based on the ALS, LM and ALM algorithms for

the TST and STF systems. The identifiability conditions for the ALS algorithm have been

derived for both systems. The ALS, ALM and LM algorithms for both systems provide the

same BER performance at the convergence. Thus, the difference between these algorithms is

basically concerning the complexity and convergence speed of the algorithms. We have shown

that the behavior of theses algorithms is affected by the variation of the number of data streams.
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Despite a higher computational complexity, the advantage of both LM and ALM algorithms is

that identifiability conditions are not required as happens with the ALS. We have observe that

the ALM algorithm provides curves of convergence and complexity between the curves for the

ALS and LM, leading to a good trade-off.

The uniqueness and identifiability conditions established in this work have been analyzed in

terms of the design parameters of both systems, taking into account the number of data blocks

and of receive antennas. The flexibility of the uniqueness condition for the TST system allows to

estimate the symbols even when P < MR by adjusting J ≥MR, differently to the STF system.

Furthermore, the transmission rate for the STF system is consequently limited by the number

of transmit antennas. Thus, the advantage of the TST system is that the symbol recovery can

be ensured without affecting the transmission rate. Another relevant conclusion corroborated

by our simulations is that both systems can perfectly estimate the transmitted symbols even

when there are more transmit antennas than the receive antennas, i.e. K < M .

According to our performance analysis, TST coding increases the maximum diversity gain.

The introduction of one extra time diversity J via the third mode of the code tensor induces a

significant performance improvement in terms of symbol recovery and channel detection compar-

atively to existing tensor-based solutions such as: KRST [53], STM [55] and ST-PARATUCK-2

[59], as illustrated by means of simulation results.

A direct non-iterative receiver, herein referred to as KLS, is proposed for the TST and STF

systems based on the structure of the Kronecker product and assuming a priori knowledge of

some transmitted symbols. As expected, the knowledge of more than one symbol improves the

channel estimation and consequently, the symbol recovery. The disadvantage of these algorithms

based on the Kronecker structure is that the channel estimation depends on a priori information

known at the receiver and a poor channel estimation leads to a poor symbol recovery.

The KLS receiver proposed for the TST system is interesting because can provide a BER

performance close to the performances obtained with the receivers based on the ALS, LM and

ALM algorithms or even a superior performance for high values of the spreading code length

J . An increase of the extra time diversity allows to improve the BER performance and for the

STF system, an increase of the extra frequency diversity leads to an increase of the channel

coefficients to estimate which impairs the channel and symbol estimation. The identifiability

conditions for the KLS algorithm are equivalents to the uniqueness conditions proposed in this

thesis. One of the main advantages of the KLS algorithm is that it provides low computational

complexity.

The performance of all algorithms based on the ALS and LM methods depends on the algo-

rithm initialization, the convergence speed can be strongly affected and further these algorithms

can not converge to a global optimum. The KLS method showed interesting results as an alter-

native procedure to initialize algorithms in order to accelerate the convergence speed ensuring

an initialization more closed to the optimal solution. Moreover, this method can be exploited

for different tensor approaches.

We have proposed an uplink processing based on the TST coding with allocation resources

and derived semi-blind receivers from the ALS, LM, ALM and KLS methods. The main advan-

tage is that it is possible to perfectly recovery the transmitted symbols for all users and channel
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coefficients by the knowledge of only one symbol per user without permutation ambiguity. The

uniqueness conditions for multiuser TST systems have been established analogously to the case

with one user. Even if the proposed conditions are only sufficient, we have verified that these

conditions always ensure the uniqueness of the estimates.

Some perspectives of this thesis can be highlighted as follows:

❼ In this thesis, the wireless communication channel is modeled by a random attenuation

of the transmitted signal, followed by additive noise, which relies on an instantaneous

MIMO channel. An interesting generalization would consist in considering a more com-

plex situation with multipath propagation and convolutive channel in order to render the

channel model more realistic analogously to [110, 61]. It would lead to a different tensor

decomposition implying the study of the uniqueness conditions for this new model.

❼ From some simulations and the performance analysis developed in Chapter 3, we observe

that the allocation structures can provide different performances in terms of channel esti-

mation and symbol recovery. It instigates to derive an optimal structure for the allocation

of transmit antennas and of data streams at each time block in order to achieve a per-

formance optimization. We also could evaluate the multiplexing gain for the TST coding

and derive a tradeoff between both multiplexing and diversity gains, in the sense that

diversity and multiplexing gains tend to provide low error rates and high transmission

rates, respectively.

❼ A natural extension of this work is to consider the problem of symbol recovery without

the knowledge of allocation and/or code structures at the receiver in military applications.

This extension would involve the study of new uniqueness conditions for ensuring the

identifiability of channel and symbol, properly eliminating the ambiguities.

❼ Use of the PT-(N1, N) decomposition for modeling other practical applications, which

would allow to exploit the uniqueness results derived in this thesis.

❼ The development of new receivers based on the KLS method is an interesting topic for

future research. This procedure can be employed as an initial stage of algorithms or can

be combine with other methods for estimating system parameters, which would allow to

accelerate the convergence speed and/or to ensure the convergence to an optimal solution.

The KLS receiver can be also improved by introducing of an orthogonal code tensor to

replace the precoding with the allocation structures.

❼ An interesting generalization would consist in deducing new coding structures based on

the TST and STF systems with the purpose of exploiting the angular diversity from the

employ of directional antennas. Directional antennas have been used in advanced systems

to optimize and maximize transmission/ reception in some directions.
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Appendix A
Basic properties

The Kronecker, column-wise Kronecker (called Khatri-Rao), partition-wise Kronecker and

Hadamard products are denoted by ⊗, ⋄, |⊗ | and ⊙, respectively. We have the following

definitions and properties:

A ⋄C ∆
=
[
A·1 ⊗C·1 . . . A·R ⊗C·R

]
=






CD1(A)
...

CDI(A)




 ∈ C

IS×R, (A.1)

Ã |⊗| B̃ ∆
=
[
A(1) ⊗B(1) . . . A(Q) ⊗B(Q)

]
∈ C

IJ×QRS, (A.2)

vec(BCAT) = (A⊗B) vec(C) ∈ C
IJ×1, (A.3)

(A⊗B)(E⊗ F) = (AE⊗BF) ∈ C
IJ×KL, (A.4)

(A⊗B)(Ẽ |⊗| F̃) = (AẼ |⊗|BF̃) ∈ C
IJ×QKL, (A.5)

(A⊗B)(H ⋄ F) = (AH ⋄BF) ∈ C
IJ×L, (A.6)

(A⊙G)i,r
∆
= ai,r gi,r, (A.7)

for A,G ∈ CI×R, B ∈ CJ×S and C ∈ CS×R, E ∈ CR×K , F ∈ CS×L, H ∈ CR×L, Ã =
[
A(1) · · · A(Q)

]
∈ CI×QR and B̃ =

[
B(1) · · · B(Q)

]
∈ CJ×QS, Ẽ =

[
E(1) · · · E(Q)

]
∈

CR×QK and F̃ =
[
F(1) · · · F(Q)

]
∈ CS×QL.
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Appendix B
Generalization of STF system to multiuser case

Analogously to the TST case, we can generalize the STF MIMO wireless communication

system for Q users in the transmission. Each user transmits R input data streams using M

different antennas. We consider a precoding matrix W(q) and two allocation tensors for each

user q: the stream allocation tensor C(S,q) ∈ R
F×P×R and the antenna allocation tensor C(H,q) ∈

R
F×P×M .

We can write the signal associated with the q-th user and the f -th subcarrier transmitted

from the m-th antenna using the n-th symbol period of the p-th block by

u
(q)
f,m,n,p =

R∑

r=1

w(q)
m,r s

(q)
n,r c

(H,q)
f,p,m c

(S,q)
f,p,r =

R∑

r=1

t
(q)
f,m,r,p s

(q)
n,r (B.1)

with

t
(q)
f,m,r,p

∆
= w(q)

m,r c
(H,q)
f,p,m c

((S,q)
f,p,r . (B.2)

In the noiseless case of scattering-rich multipath fading channel, the received signal associated

with the q-th user can be written using (B.1) as

x
(q)
f,k,n,p =

M∑

m=1

h
(q)
f,k,m u

(q)
f,m,n,p =

M∑

m=1

R∑

r=1

t
(q)
f,m,r,p h

(q)
f,k,m s(q)n,r. (B.3)

From (3.28), we can write the overall received signal tensor X (f) ∈ C
K×N×P associated with

the f -th subcarrier by summing all received signals as

X (f) =

Q
∑

q=1

X (f,q) =

Q
∑

q=1

T (f,q) ×1 H
(f,q) ×2 S

(q) (B.4)

where X (f,q) ∆
= X (q)

f ··· ∈ C
K×N×P , T (f,q) ∆

= T (q)
f ··· ∈ C

M×R×P and H(f,q) ∆
= H

(q)
f ·· ∈ C

K×M .

From (3.32) and (3.38), we can express three matrix unfoldings of X as follows

XPFK×N
∆
=

Q
∑

q=1

X
(q)
PFK×N =

(

ΩP |⊗| H̃FK×QFM

)

TQPFM×QR SQR×N ∈ C
PFK×N , (B.5)
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XPFN×K
∆
=

Q
∑

q=1

X
(q)
PFN×K = (ΩPF |⊗|SN×QR)TQPFR×QFM HQFM×K ∈ C

PFN×K , (B.6)

XKN×FP
∆
=

Q
∑

q=1

X
(q)
KN×FP = (HK×QFM |⊗|SN×QR)TQFMR×FP ∈ C

KN×FP , (B.7)

with SN×QR
∆
=
[
S(1) · · · S(Q)

]
∈ C

N×QR, HK×QFM
∆
=
[

H
(1)
K×FM · · · H

(Q)
K×FM

]

∈ C
K×QFM ,

ΩZ
∆
= 1T

Q ⊗ IZ ∈ C
Z×QZ ,

H̃FK×QFM =
[

bdiag
(

H
(1)
1·· , . . . ,H

(1)
F ··

)

· · · bdiag
(

H
(Q)
1·· , . . . ,H

(Q)
F ··

)]

∈ CFK×QFM , (B.8)

TQPFM×QR
∆
=






T
(1)
PFM×R 0

. . .

0 T
(Q)
PFM×R




 , TQPFR×QFM

∆
=






T
(1)
PFR×FM 0

. . .

0 T
(Q)
PFR×FM




 ,

∈ C
QPFM×QR ∈ C

QPFR×QFM (B.9)

TQFMR×FP
∆
=
[

T
(1)
FMR×FP

T · · · T
(Q)
FMR×FP

T
]T

∈ C
QFMR×FP . (B.10)

Each matrix T
(q)
FMR×FP can be written using (3.39) and (3.40) as

T
(q)
FMR×FP

∆
=








[

vec
(

T
(q)
1··1

T
)

· · · vec
(

T
(q)
1··P

T
)]

0

. . .

0
[

vec
(

T
(q)
F ··1

T
)

· · · vec
(

T
(q)
F ··P

T
)]








∈ C
FMR×FP (B.11)

with
[

vec
(

T
(q)
f ··1

T
)

· · · vec
(

T
(q)
f ··P

T
)]T

= vec
(

W(q)T
)T

⋄
(

C
(H,q)
f ··

T⋄C(S,q)
f ··

T
)T

∈ C
P×MR. (B.12)

Applying (B.11) and (B.12) to (B.10), we can rewrite TQFMR×FP as

TQFMR×FP =























(

vec
(

W(1)T
)T

⋄
(

C
(H,1)
1··

T⋄C(S,1)
1··

T
)T
)T

0

. . .

0

(

vec
(

W(1)T
)T

⋄
(

C
(H,1)
F ··

T⋄C(S,1)
F ··

T
)T
)T

...
(

vec
(

W(Q)T
)T

⋄
(

C
(H,Q)
1··

T⋄C(S,Q)
1··

T
)T
)T

0

. . .

0

(

vec
(

W(Q)T
)T

⋄
(

C
(H,Q)
F ··

T⋄C(S,Q)
F ··

T
)T
)T
























.

(B.13)
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Uniqueness analysis

The uniqueness conditions for the STF system with multiple users can be studied in accor-

dance with Theorem 3.8 for the TST system. Let us consider the unfolded matrix XKN×FP

defined in (B.7) to analyze the uniqueness of this model.

From the selection matrix Φ̃QFMR ∈ C
QFMQR×QFMR defined in (3.90), we can relate the

Kronecker and partition-wise Kronecker product by

HK×QFM |⊗|SN×QR = (HK×QFM ⊗ SN×QR) Φ̃QFMR, (B.14)

where Φ̃QFMR selects QFMR columns of HK×QFM ⊗ SN×QR ∈ C
KN×QFMQR.

Applying (B.14) to (B.7), it gets

XKN×FP = (HK×QFM |⊗|SN×QR)TQFMR×FP = (HK×QFM ⊗ SN×QR) Φ̃QFMRTQFMR×FP .
(B.15)

Considering ŜN×QR =
[

Ŝ(1) · · · Ŝ(Q)
]
and ĤK×QFM =

[

Ĥ
(1)
K×FM · · · Ĥ(Q)

K×FM

]

as alterna-

tive solutions that satisfy (B.7), we can write ŜN×QR = SN×QR U and ĤK×QFM = HK×QFM V,

with

U =






U(1,1) · · · U(1,Q)

...
. . .

...
U(Q,1) · · · U(Q,Q)




 ∈ C

QR×QR, V =






V(1,1) · · · V(1,Q)

...
. . .

...
V(Q,1) · · · V(Q,Q)




 ∈ C

QFM×QFM

(B.16)

non-singular. From the Kronecker property (A.5), XKN×FP can be rewritten using as

(HK×QFM ⊗ SN×QR) (V |⊗|U)TQFMR×FP = (HK×QFM ⊗ SN×QR) Φ̃QFMR TQFMR×FP .
(B.17)

Theorem B.1. Suppose that SN×QR and HK×QFM are full column-rank, and the perfect knowl-

edge of the code matrix W(q) and the allocation tensors C(S,q) and C(H,q) for all users. If we

choose W(q) and C(S,q) and C(H,q) such that w
(q)
m,r 6= 0 for all m ∈ {1, ...,M}, r ∈ {1, ..., R}

and q ∈ {1, ..., Q}, and
[(

C
(H,1)
f ··

T⋄C(S,1)
f ··

T
)T

· · ·
(

C
(H,Q)
f ··

T⋄C(S,Q)
f ··

T
)T
]

full column-rank for

all f ∈ {1, ..., F} implying P ≥ QMR, then we can uniquely estimate SN×QR and HK×QFM up

to a scalar factor α, i.e.

S(q) = α Ŝ(q), H
(q)
K×FM =

1

α
Ĥ

(q)
K×FM . (B.18)

Proof: If SN×QR, HK×QFM and TT
QFMR×FP are full column-rank, then (B.17) can be rewritten

as

V |⊗|U = Φ̃QFMR =⇒





V(1,q)

...
V(Q,q)




⊗






U(1,q)

...
U(Q,q)




 = Φq ∈ C

QFMQR×FMR

=
[
E(q−1)FMQ+q E(q−1)FMQ+Q+q · · · E(q−1)FMQ+(M−1)Q+q

]
, (B.19)
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and from the definition in (3.92), (B.19) leads to

v
(q,q)
l,l U(q,q) = IR, ∀l = 1, ..., FM, ∀q = 1, ..., Q,

=⇒ V(q,q) ⊗U(q,q) = IFMR, ∀q = 1, ..., Q, (B.20)

V =






V(1,1) 0
. . .

0 V(Q,Q)




 , U =






U(1,1) 0
. . .

0 U(Q,Q)




 . (B.21)

Thus, we obtain

S(q) = Ŝ(q) U(q,q), H(q) = Ĥ(q) V(q,q). (B.22)

The only solution for V(q,q) ⊗U(q,q) = IFMR, for q = 1, ..., Q, happens when both matrices

U(q,q) and V(q,q) are identity matrices up to scalar factors that compensate each other, i.e.

U(q,q) = αq IR and V(q,q) = 1/αq IFM , which leads to (B.18).

Observe that TQFMR×FP given in (B.13) is full row-rank if

[

vec
(

W(1)T
)T

⋄
(

C
(H,1)
f ··

T⋄C(S,1)
f ··

T
)T

· · · vec
(

W(Q)T
)T

⋄
(

C
(H,Q)
f ··

T⋄C(S,Q)
f ··

T
)T
]

∈ C
P×QMR (B.23)

is full column-rank for all f ∈ {1, . . . , F}, implying P ≥ QMR.

We can rewrite (B.23)

[

vec(WR×QM)T ⋄
[(

C
(H,1)
f ··

T⋄C(S,1)
f ··

T
)T

· · ·
(

C
(H,Q)
f ··

T⋄C(S,Q)
f ··

T
)T
]]

=

[

vec(WR×QM)T ⋄
(

C
(H)
f ··

T⋄C(S)
f ··

T
)T

Φ̃QMR

]

(B.24)

with

WR×QM
∆
=
[

W(1)T · · · W(Q)T
]

∈ C
R×QM , (B.25)

C
(H)
f ··

∆
=
[

C
(H,1)
f ·· · · · C(H,Q)

f ··

]

∈ C
P×QM , (B.26)

C
(S)
f ··

∆
=
[

C
(S,1)
f ·· · · · C(S,Q)

f ··

]

∈ C
P×QR, (B.27)

C
(H)
f ·· and C

(S)
f ·· represent the global allocation matrices associated with the f -th subcarrier which

concatenate the antenna and stream allocation matrices for all users, Φ̃QMR ∈ C
QMQR×QMR

denotes a selection matrix which selects QMR columns of
(

C
(H)
f ··

T⋄C(S)
f ··

T
)T

.

Applying Lemma 2.2 to (B.24), if the elements of the code matrix are nonzero and
[(

C
(H,1)
f ··

T⋄C(S,1)
f ··

T
)T

· · ·
(

C
(H,Q)
f ··

T⋄C(S,Q)
f ··

T
)T
]

is full column-rank for all f , then TQFMR×FP

will be full row-rank as well. It concludes the proof.
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