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Preamble

In the automotive industry, safety is an aspect of paramount importance that has
considerably evolved in recent decades. Beginning with passive safety systems, such
as air bags, seat belt pretensioners or head restraints, the automobile safety increased
considerably with the introduction of active safety systems, such as the Anti-lock
Braking System (ABS), the Traction Control System (TCS), the Electronic Brake-
force Distribution (EBD) and the Electronic Stability Program (ESP). Compared to
passive safety systems, active safety systems are more effective since they not only
help the driver to better control the vehicle, in order to avoid collisions, but also
enhance the driving experience under various road conditions.

In the area of active safety systems, the ABS is perhaps the most important
system since it is used by many other active safety systems. The purpose of the
ABS is twofold. On the one hand, its objective is to avoid wheel lock-up in order to
preserve the ability of the tyre to produce a lateral force, and thus to ensure vehicle
maneuverability. On the other hand, the ABS aims at keeping the braking force in
a neighborhood of its maximum to, as a result, minimize the braking distance.

Many control algorithms for ABS systems have been proposed in the literature
since the introduction of the first ABS system by Bosch in 1978. In general, one
can divide these control algorithms into two different types: those based on a reg-
ulation logic with wheel acceleration thresholds that are used by most commercial
ABS systems; and those based on wheel slip control that are preferred in the large
majority of academic algorithms. Each approach has its pros and cons [Shida 2010).
Oversimplifying, one can say that the strength of the first ones is their robustness;
while that of the latter ones their short braking distances (on dry grounds) and their
absence of limit cycles. At the midpoint of this industry/academy dichotomy, based
on the concept of extended braking stiffness (XBS), a quite different class of ABS
control strategies has been proposed by several researchers (see, e.g., [Sugai 1999]
and [Ono 2003]). This concept combines the advantages from both the industrial
and academic approaches. Nevertheless, since the slope of the tyre characteristic is
not directly measurable, it introduces the question of real-time XBS estimation. The
first part of this thesis is devoted to the study of this estimation problem and to a
generalization of the proposed technique to a larger class of systems.

From the technological point of view, the design of ABS control systems is highly
dependent on the ABS system characteristics and actuator performance. Current
ABS control algorithms on passenger cars, for instance the Bosch ABS algorithm,
are based on heuristics that are deeply associated to the hydraulic nature of the
actuator. An interesting observation is that they seem to work properly only in the
presence of a specific delay coming from the hydraulic actuation [Gerard 2012]. For
brake systems that have different delays compared to those of hydraulic actuators,
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like electric in-wheel motors (with a smaller delay) or pneumatic trailer brakes (with
a bigger delay), they might be no longer suitable [Miller 2013]. Therefore, adapting
standard ABS algorithms to other advanced actuators becomes an imperative goal
in the automobile industry. This goal can be reached by the compensation of the
delays induced by actuators. The second part of this thesis is focused on this issue,
and to the generalization of the proposed technique to a particular class of nonlinear
systems.

Throughout this thesis, we employ two different linearization techniques: the
linearization of the error dynamics in the construction of model-based observers
[Krener 1983] and the linearization based on restricted state feedback [Brockett 1979].
The former is one of the simplest ways to build an observer for dynamical systems
with output and to analyze its convergence. The main idea is to transform the
original nonlinear system via a coordinate change to a special form that admits an
observer with a linear error dynamics and thus the observer gains can be easily com-
puted to ensure the observer convergence. The latter is a classical method to control
nonlinear systems by converting them into a controllable linear state equation via
the cancellation of their nonlinearities.

It is worth mentioning that existing results for observer design by error lineariza-
tion in the literature are only applied to the case of regular time scalings ([Guay 2002]
and [Respondek 2004]). The thesis shows how to extend them to the case of singular
time scalings. Besides, the thesis combines the classical state feedback linearization
with a new method for the input delay compensation to resolve the output tracking
problem for restricted feedback linearizable systems with input delays.

The thesis has been divided into three parts in order to make it more accessible
for readers. The purpose of the introductive part, which is composed of the first
three chapters (Chapters 1, 2, and 3), is to introduce the most important concepts
and summarize the main contribution of the thesis. Chapter 1 provides some basic
knowledge of ABS systems, such as its history, structure, operation and some research
publications on ABS systems. At the end of Chapter 1, the single-wheel dynamics is
briefly presented for the aim of facilitating the reading of Chapters 2 and 3. While in
Chapter 2 the observation problem for a class of singular nonlinear systems is intro-
duced, in Chapter 3 the input delay compensation of restricted feedback linearizable
systems is discussed. These two chapters have the same structure with four subsec-
tions: a motivating example coming from ABS systems, a more complex and general
problem that generalizes this example, a state of the art, and the main contributions
of the chapter.

Part I of the thesis is devoted to showing our first main results in the observation
of singular systems. Chapter 4 discusses the design and stability analysis of switching
observers for a class of singular nonlinear systems [5]. Chapter 5 presents a concrete
example of singular systems observation: the XBS estimation in the case of ABS
systems [4].
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Part IT of the thesis is composed of Chapters 6, 7, and 8. Chapter 6 presents
our second main results about the input delay compensation problem for restricted
feedback linearizable systems [3], whereas Chapter 7 shows the compensation of the
delays induced by actuators in ABS systems, in the context of wheel acceleration
control. Although no theoretical results are given, numerical simulations show the
effectiveness of the proposed method. Finally, Chapter 8 introduces a new method
to reduce the impact of wheel-frequency oscillations for ABS systems in order to
improve its robustness [1].

This thesis is the result of the collaboration between three different research
laboratories: Laboratoire des signaux et systemes (L2S), Supélec - CNRS - Université
Paris-Sud; Laboratoire des technologies nouvelles (LTN), IFSTTAR; and Laboratoire
sur les interactions véhicules-infrastructure-conducteurs (LIVIC), IFSTTAR. It has
been supported by the Region Ile-de-France through the REGENEO project (RTRA
Digiteo and DIM LSC). It has also received funding from the European Union Seventh
Framework Programme [FP7/2007-2013] under grant agreement no 257462 HY CON2
Network of excellence.
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CHAPTER 1

The Anti-lock Brake System

1.1 History of ABS

The history of ABS systems began in 1908 when the first hydraulic anti-skid
braking controller was conceived for trains [Schinkel 2002]. During and after the Sec-
ond World War, ABS systems gained new prominence with their implementation on
aircraft brakes [Savaresi 2010]. In 1946, the Crane company pioneered the anti-skid
braking industry with the development of the Hydro-Aire Hytrol Mark I for the Boe-
ing/USAF B47 to avoid tyre blowout on dry concrete and spin-outs on icy runways.
Soon after, in the 1950s, mechanical skid prevention devices were commonly installed
on both military and commercial planes ([Madison 1969] and [Wellstead 1997]).

It wasn’t until 1954 that the first ABS system was used in the automobile industry
by Ford. This vehicle manufacturer offered an anti-skid system from a French aircraft
as an option on the Lincoln Continental MK II [Savaresi 2010]. Nevertheless, it is
worth mentioning that the first patents for skid preventing devices on cars have been
introduced in the early 1930s [Johnson 2001]. In Europe, the patent [Mom 1932] was
issued in 1932, while in the US a similar patent [Thomas 1936] was filed in 1936.
By the late 1950s, the British Road Research Laboratory (RRL) tried to adapt a
Dunlop aircraft anti-skidding device called Maxaret on a 1950 Morris 6 car. Then,
the Maxaret was officially installed on Jensen FF sport car [Johnson 2009]. In the late
1960’s and early 1970’s, several vehicle manufacturers like Ford, Chrysler and General
Motors offered different ABS brakes for their cars [Limpert 1992]. Since these early
automotive ABS systems are based on analogue electronics and vacuum-actuated
hydraulic modulators, they couldn’t react quickly enough to prevent effectively wheel
locking. As a result, they weren’t able to provide greater vehicle control in a panic
situation [Savaresi 2010].

In Europe, during the mid and late 1970’s, digital electronics with integrated cir-
cuits and microprocessors have been adapted to ABS [Limpert 1992]. The first elec-
tronically controlled ABS, named Tekline was put on the market by Teldix (affiliate
of Telefunken and Bendix Corporation) [Ohyay 2011]. In 1975, Bosch acquired Teldix
and then in 1978 introduced the first completely electronic four-wheel multi-channel
ABS system in the Mercedes-Benz S-Class [Bosch Automotive Technology 2013],
starting the spread of the ABS technology in the automotive field. The modern
age of ABS had begun.
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Figure 1.1: Hydraulic braking system [Daytona Tin Tec 2013]

Since the mid 1980s, vehicle manufacturers have introduced dozens of different
anti-lock braking systems [Savaresi 2010]. These systems differ in their hardware
configurations as well as in their control strategies. Today, 50 years after their first
appearance on a commercial car, ABS is a standard equipment for passenger cars in
the EU, the U.S., and Japan [Robert Bosch GmbH Press Release 2013]. Neverthe-
less, the research and development of ABS is far from complete. Each technological
innovation on braking actuators or in the available sensors asks for a significant re-
design of ABS systems. In particular, the advent of electric vehicles, for instance the
in-wheel motor based electric vehicle, is likely to trigger a complete redesign of ABS
strategies.

1.2 Structure of ABS

Depending on the hardware configurations, one can distinguish three different
types of ABS architectures: hydraulic actuated brakes (HAB), electro-hydraulic
brakes (EHB) and electro-mechanical brakes (EMB). The most used ABS system
on commercial cars is the hydraulic actuated brake [Savaresi 2010]. The structure
of a HAB system is shown in Figure 1.1. The master cylinder and the brake cylin-
der are connected by a pressure modulator that is composed of an apply valve, a
release valve, a pump and a low pressure accumulator. The HAB has three different
control actions: increase, hold and decrease of the brake pressure ([Savaresi 2010]
and [Rajamani 2012]). These control actions are actuated by an electronic control
unit (ECU) that uses information provided by wheel speed sensors. In the pressure
increasing phase, the brake pressure exerted by the driver on the pedal is directly
transmitted to the brake cylinder via the apply valve. The release valve is closed in
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this phase. To decrease the brake pressure on the brake cylinder, the apply valve is
closed and the release valve is open. The brake pressure is discharged via the release
valve to the low pressure accumulator. The brake pressure is hold when the two
valves are closed. The hydraulic fluid is pumped up from the accumulator to the
master cylinder that is connected to the pedal. It is worth mentioning that modern
ABS brakes use the so-called Pulse Width Modulation (PWM) to control the release
and apply valves and therefore can obtain any increasing and decreasing slope of
brake pressure. This leads to the introduction of some continuous controls for ABS
brakes. Besides, the use of PWM allows the switchings between the three control
actions to be faster and more accurate.

The other two brake system architectures: EHB and EMB have been introduced
recently. EHB simplifies the design of the conventional HAB with the use of an
electronic brake pedal. Unlike HAB, in which the driver directly activates the master
cylinder by pressing on the brake pedal, the master cylinder in EHB is activated by
an electric motor or pump that is regulated by a control unit [Bosch 2004]. The ECU
uses information from a number of sensors to determine how much braking force on
each wheel is needed. The system can then apply the necessary amount of hydraulic
pressure to each caliper. The EMB system is fully electronic. The brake calipers
are controlled by electronic actuators instead of hydraulic brake cylinders and the
whole system is governed directly by a control unit instead of a high pressure master
cylinder.

Even though EHB and EMB improve clearly the performance of automotive
brakes in terms of the driver’s comfort (no vibrations) or environment issues (no
toxic oil), HAB is still the most used brake system in the automotive industry due
to its long life-cycle and its high reliability [Savaresi 2010].

1.3 Functional description of ABS

Most ABS systems operate using the same general principles. When the driver
brakes, the ECU uses the sensors to detect any wheel lock-up and rapidly provides
the appropriate brake forces to prevent it from locking. Roughly speaking, if the
ECU detects a deceleration in a certain wheel, indicating that a wheel lock-up may
occur, it will reduce the brake force. As a consequence, the wheel will reaccelerate.
Conversely, if the ECU detects a wheel turning significantly faster than the others,
it will increase the brake force to the wheel to slow it down. This process is repeated
continuously up to fifteen times per second to help the tyre maintain grip, so that
the vehicle can turn around or stop with a shorter distance.

One of the most famous ABS algorithms is the Bosch algorithm whose func-
tionality is based on the wheel acceleration thresholds (see, e.g., [Kiencke 2000],
[Bosch 2004] and [Rajamani 2012]). Depending on the value of the wheel acceler-
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Figure 1.2: Cycle working of the ABS system with hydraulic brakes [Kiencke 2000]

ation, the ECU decides which control will be applied to the brake calipers. Dur-
ing the initial phase of braking, when the driver presses on the pedal, the driver’s
braking action is directly passed through to the brakes and the wheel deceleration
increases (more negative). When the wheel deceleration vi passes a threshold —a,
(i.e. or < —a; < 0), the ABS algorithm activates. The brake pressure is hold con-
stant at the pressure value achieved when the wheel deceleration first exceeded —aj.
The reason comes from the fact that the threshold —a; might be exceeded within
the stable zone of the tyre, then a reduction of brake pressure might lead to a waste
in brake distance. If the wheel deceleration continues to increase and drops below
a threshold —as (i.e. ' < —ag < —ay) then, at that point, the brake pressure
is decreased. This will prevent the wheel from decelerating any further and could
eventually result in the wheel gaining speed or accelerating. At the point where the
wheel acceleration passes again —ay, the brake pressure drop is stopped and held
at a constant level. If the wheel actually starts accelerating and the wheel accelera-
tion exceeds a relatively high threshold a4 (i.e. Or > a4 > 0), the brake pressure is
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increased in order to prevent the wheel from over-accelerating. If the wheel acceler-
ation drops smaller than a4, but still bigger than a threshold (i.e. 0 < a3 < vr < ayq),
the brake pressure is hold constant. When the wheel deceleration drops below ag,
the driver’s braking action is again passed through to the brakes. If again the wheel
deceleration passes —aq, the brake pressure will be reduced immediately (the brake
pressure holding phase no longer exists), the second cycle starts. Running through
such cycles, the wheel will be prevented from locking, leading to an improved steering
ability. Also, the brake force will be held close to its maximum, thus the braking
distance is reduced.

1.4 Academic research on ABS

Since the introduction of the Bosch algorithm, in 1978, several scientific research
publications have been devoted to the development of ABS algorithms. Among the
proposed results, one can mainly distinguish between two completely different kinds
of ABS designs: those based on logic switchings triggered by wheel acceleration
thresholds and those based on wheel slip regulation. The wheel slip is generally
defined as a percentage of the difference between the longitudinal wheel speed and
the vehicle speed compared to the vehicle speed (see Section 1.5).

Approaches based on logic switchings triggered by wheel deceleration thresh-
olds (see, e.g., [Leiber 1979], [Kuo 1992], [Kiencke 2000], [Bosch 2004] and the refer-
ences therein) have quite interesting properties: they are very robust with respect
to changes in the road conditions and are able to keep the wheel slip in a neighbor-
hood of the optimal point, without using explicitly the value of the optimal setpoint.
Most commercial ABS systems implemented on real cars use this control technique,
for example the Bosch algorithm [Bosch 2004], presented in Section 1.3. However,
a particularly unpleasant characteristic of these approaches is that they are often
based on heuristic arguments, and thus tuning the thresholds involved in this kind
of algorithms might be a difficult task. Besides, if the vehicle cannot detect the op-
timal value of the wheel slip, this approach fails to work. The reason is that these
approaches cannot stabilize the system around an arbitrary reference that is not the
optimal wheel slip.

Most ABS algorithms proposed in the scientific literature are based on wheel
slip regulation (see, e.g., [Unsal 1999], [Johansen 2003], [Savaresi 2007], [Choi 2008],
[Pasillas-Lépine 2012], and the references therein). They are often based on a clear
mathematical background and they work even if there is no well-defined maximum
point of the wheel slip for which the braking force is maximal. Nevertheless, these
approaches are confronted with some drawbacks. Firstly, it is not always clear how
one can estimate the wheel slip precisely. Secondly, the value of the optimal wheel
slip is in general unknown and not easy to estimate in real-time.
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More recently, a quite different class of ABS control systems has been proposed by
using the concept of extended braking stiffness (XBS) (see, e.g., [Gustafsson 1998],
[Sugai 1999] and [Ono 2003]). In order to achieve the ABS control goal, these ap-
proaches aim to regulate the XBS in the neighborhood of its optimal value, which is
always the same (zero). Their main difficulty comes from the fact that XBS must be
estimated in real-time.

One can say that the XBS based-approaches take advantages of both the hybrid
and continuous ABS since they doesn’t use neither heuristic arguments nor the wheel
slip or its optimal value. To our knowledge, the real-time XBS estimation methods
that have been proposed in the literature are still quite complex or based on simplified
hypothesis. Therefore, we present in Part I a simpler method to estimate XBS. Al-
though these ABS algorithms have been validated in numerical simulations and (or)
in test-rig experiments, their implementation in the context of new advanced actua-
tors, like electric in-wheel motors, is still questionable. The analysis of [Gerard 2012]
identifies that the main cause of failure of the five-phase hybrid control strategy pro-
posed in [Pasillas-Lépine 2006] is the delays induced by the actuator. Motivated by
this fact, Part II aims to provide a stable compensation of the actuator delay for
ABS systems.

1.5 Single-wheel dynamics

In most research publications on the ABS, the single-wheel model is used for
the preliminary design and testing. Despite its simplicity, all the basic phenomena
related to ABS control appear in it [Gerard 2012]. In this section, we give a short
description of a second order wheel dynamics that will be used in the two motivating
examples of Chapters 2 et 3. We believe that this section can help the readers to
better follow this thesis. More detailed descriptions of the system modelling for ABS
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control or the tyre characteristics models will be presented later in Section 5.2.

A graphical representation of the torque balance for the single-wheel model is pre-
sented in Figure 1.3. The braking control torque applied to the wheel is denoted T,
the angular velocity w, and the tyre longitudinal force F,. It is well known that the
angular velocity of the wheel has the following dynamics

Iy = —RF, +T,, (1.1)

where I denotes the moment of inertia of the wheel and R is the wheel’s radius.

The tyre longitudinal force F), depends on the road, tyre, and suspensions param-
eters. Most often, researchers consider that F} is modelled by the relation

F, = u(\E,, (1.2)

where F, denotes the vertical load and p(.) is called the tyre characteristic. In quasi-
static condition, it can be simply assumed that F, is constant. The friction between
the wheel and the road is identified via the tyre characteristic p(.). In the literature,
the mathematical formulas of p(.) are described as functions of the wheel slip whose
coefficients depend on the road conditions. The wheel slip A is defined as
Rw —v
A= —2, 1.3

— (13)
that is the difference between the wheel longitudinal velocity Rw and the vehicle
speed v,, normalized by the vehicle speed v,. Figure 1.4 shows us the tyre charac-
teristic p(A) for different road conditions.

In ABS control systems, two output variables are usually considered for regulation
purposes: the wheel acceleration and the wheel slip. Thus, we define two state
variables: z; is the wheel slip and z, = R‘fi—‘f — a,(t) is the wheel acceleration offset
(that is the difference between the acceleration of the wheel and that of the vehicle).
Differentiating these state variable and using (1.1) as well as the definition of the
wheel slip, we obtain the following dynamics

dl’l 1

i S _ 1.4
- Culn ) (L)
dry  ap/(x) RdT,  da.(t)
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where a = RTQFZ, v, is the vehicle speed, a,(t) = dv,/dt is the vehicle’s longitudinal
acceleration. The term p/(.) is the derivative of the tyre characteristic u(.) with
respect to A, and is called the extended braking stiffness or XBS [Ono 2003].

It is worth noting that in the context of an ABS-controlled braking manoeuvre, the
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Tyre characteristic p(A) [-]

0 L L ! | ul
0 0.2 0.4 0.6 0.8 1
Wheel slip A [-]
Figure 1.4: The tyre characteristic —u(\) given by  Burckhardt’s

model [Burckhardt 1993]

vehicle’s acceleration a,(t) stays almost constant and close to the maximum value a
allowed by the road’s conditions [Pasillas-Lépine 2012]. Besides, the wheel slip A
remains relatively small. In such conditions, we can consider that (—a,z1 + x2) >~ xs.
This approximation is exact if the vehicle’s speed v,(t) is constant, but it remains
reasonable in the case of ABS manoeuvres [Gerard 2012]. We will return to discuss
this assumption with more details in Section 5.2.2. Now, thanks to the previous
approximation, a simpler dynamics is obtained

do 1
dt (b))’ (L5)
dzo RdT, .

_ a /
o —mﬂ (@1)2 + T 4

The dynamics (1.5) plays a fundamental role in this thesis. It is used in the
two illustrative examples of the general introduction, which motivated our research.
Observing (1.5), it can be seen that the value of XBS is needed for the control design.
Nevertheless, it cannot be computed due to the fact that the wheel slip A cannot be
measured and the parameters of the tyre characteristics p(A) are unknown. Therefore,
in the motivating example of Chapter 2, the problem of observing XBS, i.e. u/()),
will be discussed. Moreover, the braking dynamics is often impacted by the delays
coming from measurement filtering, tyre dynamics, and actuator limitations. It has
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been shown that the delay is the main reason of the failure in implementing some
theoretical ABS algorithms in test benches (see, e.g., [Solyom 2004], [Solyom 2003],
[Kienhofer 2008], and [Gerard 2012]). Thus, in the motivating example of Chapter 3,
we will consider the problem of compensating the delays in the control input of (1.5).






CHAPTER 2
Switching observation of singular
systems

The objective of this chapter is to introduce the observation problem for a class
of singular systems. To that aim, we start by providing a simple example of singular
switched observer design, associated to XBS observation, in the context of ABS. By
choosing the control inputs that ensure the observability of the considered system,
we can build a model-based observer and show that our observer is still valid in the
singular case. The stability analysis of our observer is proved using tools for switched
linear systems. This has motivated us to generalize this observer to a special class of
singular nonlinear systems with a scalar output, which constitutes the main objective
of Part 1. Finally, we provide a review of existing related works and summarize our
contributions.

2.1 A motivating example coming from ABS

2.1.1 Problem statement

As mentioned in the previous chapter, a certain knowledge on the tyre-road fric-
tion interface, such as the tyre characteristic or the XBS, is needed in the control
design of ABS systems. Many different approaches for the identification of this in-
terface have been proposed in the literature. Among them, an estimation of the
XBS based on online least square methods for a wheel deceleration model has been
presented in [Ono 2003]. In that work, two delicate assumptions are made when
considering the model of the wheel acceleration. First, the XBS is considered as
a constant. Second, it is assumed that the vehicle dynamics evolves considerably
more slowly than the wheel dynamics. In other words, the wheel speed v, is consid-
ered constant. We can write the wheel acceleration model used in [Ono 2003] in the
following form

d
% = —izlzg + bu,

b (2.1)
d22

=20
dt
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where b = R/I and u = dT,,/dt denotes the derivative of the control torque applied
to the wheel. The state variables are defined as z; = Rdw/dt and zo = p/(\). The
reason for which we are interested in (2.1) is that it can be obtained directly from
(1.5) shown in the previous section. If we replace z; and z, into the second equation
of (1.5), we obtain the dynamics (2.1).

Now we consider the problem of estimating the unmeasured XBS in (2.1) provided
that the wheel acceleration z; is measurable. In control theory, when the model of
a physical system is well known and the measurements are not corrupted by a high
level of noise, one can build a state observer to estimate the system’s states by using
measurements of the input and output of the real system. The model of the state
observer is in fact obtained by copying the model of the real system. Besides, a
correcting term should be added to the observer dynamics in order to stabilize it.
The XBS is one of the state variables of (2.1), this raises the possibility of building
a state observer to estimate the XBS.

2.1.2 The proposed method

A classical method for observing a nonlinear system is to build a high gain ob-
server [Bornard 1991], [Gauthier 1992] and [Gauthier 1994]. If the nonlinear system
is uniformly observable, which means that the observability does not depend on the
control input, then it can be transformed into a special form called the uniformly
observable form [Gauthier 1981]. A high-gain observer can be derived from this nor-
mal form and changed back to the original coordinates of the nonlinear system. Note
that the uniform observability is the key point for the application of this method
and, in fact, many other methods [Hammouri 2003]. A more detailed description of
this last point will be presented later in Section 2.2.3.

Since (2.1) is not uniformly observable at z; = 0 (see Section 2.2.3), we cannot
apply classical methods to observe it. Therefore, we propose to build directly the
following model-based observer for (2.1)

dz ~ ~

S st but kl(zl)é(zl —71)

dt Uy Uy (2.2)
e k(1) = (21 — 31) |
— =ko(z1)—(z1 — 2

7 2021 (e = =),

where Z = (Z1,%2)7 is the observer state and K = (ki,k2)T is the observer gain.
We define the error e = z — 2, and subtract (2.2) from (2.1) to obtain the following
observer error dynamics

e ) (2.3
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There are two important remarks in the observer dynamics (2.2). The first remark
is that (2.2) is multiplied by the term z;/v,, except for the control input. The
main reason is that with such an observer, the right hand side of the observer error
dynamics (2.3) is also multiplied by z; /v,. It is important to highlight that if the right
hand side of (2.3) is divided by z; /v, then (2.3) becomes linear. We will see later that
the linearization of (2.3) can be done via a change of the time scale, which simplifies
considerably the computation of the observer gains for which (2.3) is asymptotically
stable. The second remark is that the observer gain K must be chosen depending on
the sign of z;. A possible choice is

bz) kfoif 2 > 0 2.4
i\21) = .
! k- if 2 < 0.

]

To understand the motivation behind the switching gain above, when the wheel ac-
celeration z; is positive, let us suppose that there is a certain observer gain matrix K
ensuring the asymptotically convergence of the observer (2.2). When z; changes its
sign, the dynamics of (2.2) also changes. If the same gain matrix K is used, the
observer (2.2) might be unstable. Therefore, the fact of choosing K depending on
the sign of z; helps us to avoid this problem and the observer is thus convergent,
independently on the sign of z;.

We introduce the time scale
t
7(t) == / Mda. (2.5)
0 Vg

In this new time scale, the system (2.3) can be written in the form of a linear switched

system as follows
( +
—ki —a
Ae= ! e ifz1 >0
o () s

=
Ae=["1 “ e if z; < 0.
\ ky 0

Note that dt/dr = |z1|/v, > 0, independently of the value of z;. This property
ensures the conservation of the observer convergence, meaning that if the observer
is asymptotically stable in the time scale 7, it is also asymptotically stable in the
original time scale ¢. Such a time scale 7 is called regular if the scalar function z1 /v,
is never zero. It is called singular if it may vanish.

de
dr

When the time scale is singular, the observer error dynamics (2.3) is still valid
in the original time scale ¢ and equal to zero in this case. At that instant, we must
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ensure that the control input u is different from zero in order to make the dynamics
of the observer transversal to the subspace characterized by z; = 0. And the sign
of the control input will decide the direction of the switch from A, and A_ or vice
versa. Thanks to the fact that the control torque u in ABS systems is not equal
to zero when the wheel acceleration z; is zero, the observer (2.2) is always valid to
estimate the states of (2.1).

2.1.3 The key point

The remaining problem is to find the observer gain K (z;) that makes the system
asymptotically stable. Usually, the stability analysis of an observer is done through
that of the observer error. It can be seen that (2.6) belongs to the class of autonomous
switched linear systems. In the literature, the stability analysis problems for switched
systems are mostly solved by Lyapunov-like theorems [Lin 2009]. However, these
Lyapunov-like theorems cannot be used to prove the asymptotic stability of our
switching system (2.6) and only the uniform stability can be obtained [Balde 2009].
Indeed, one can easily find the conditions on the observer gain K (z;) such that each
subsystem is asymptotically stable (i.e. the two matrices A, and A_ are 2 x 2 real
Hurwitz matrices). Then, following [Balde 2009], define v(.) := [0, 00[— {+,—} as a
measurable switching function and describe (2.6) using v(.) in the following form

% =v(s)Aye(r)+ (1 —v(r))A_e(7). (2.7)

Next, define the function I'(A,, A_) := 1/2(tr(A )tr(A_) —tr(A, A_)) where tr(X)
denotes the trace of a matrix X. In Theorem 1 of [Balde 2009], the authors analyze
the stability of (2.7) through I'(A,, A_). It is easy to check that for our switched
system (2.7), we have (A, A_) < —y/det(A;)det(A_) where det(X) denotes the
determinant of a matrix X. Therefore, the switched system (2.7) is either unbounded
or uniformly stable, but never uniformly asymptotically stable (see [Balde 2009, The-
orem 1]).

Recently, some LaSalle-like results on the stability of switched linear systems
have been proposed ([Hespanha 1999] and [Hespanha 2004]). The stability properties
are proved via regularity assumptions on the set of switching signals. The authors
show that if the switchings are not arbitrarily fast, i.e. slow switchings, it is then
possible to maintain the asymptotic stability of linear switched systems. Under
slow switchings, applying Theorem 4 of [Hespanha 2004], one can prove that (2.6) is
uniformly globally exponentially stable if there exists a positive definite symmetric
matrix P that satisfies, simultaneously, the two non-strict Lyapunov equations

ATP+PA  =—-Q and A'P+PA =-Q, (2.8)
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where A, and A_ are defined in (2.6) and Q = —CTC. Since the output of (2.2) is

z then C' = (1 0).
p— (5 0) , (2.9)

One example of P is
with k" = a/2, ky =1/2 and ky =k, = —1.

Due to the fact that (2.1) cannot be transformed in the uniformly observable form
when z; = 0, the well-known method to construct a high gain observer cannot be
applied. Nevertheless, we can design an observer like (2.2) to estimate the state vari-
ables of (2.1). The asymptotic stability of the observer is ensured by two conditions:
the control input is different to zero when (2.1) is singular and the switchings between
two subsystems of (2.6) are slow. Motivated by the construction of (2.2), in the next
section, we devote our attention to the observer design for a more general class of
singular nonlinear systems (that cannot be written in the uniformly observable form).

2.2 Observing a class of singular systems

2.2.1 Problem statement

Consider a class of nonlinear systems with scalar output of the form

dz

& sy Az + B

g~ SWwAz+ Bu (2.10)
y=Cxz,

where z(t) € R" and y(t) € R is the measurement. We assume that s is a strictly
increasing real-valued function depending on the scalar output y and that s(0) = 0.
We assume additionally that the pair (A, C') is observable, which means that the
rank of the matrix (C,CA,...,CA" )T is equal to n.

It is obvious to see that the dynamics (2.1) is a particular case of (2.10), since it

can be written as follows
% _ = 0 —a z+ b U
dt v, \0 0 0 (2.11)

y:(l O)Z,

0 0 0
21/v; = y/v, and it is clear that s(0) = 0. Besides, the pair (A, C) is observable
since the rank of (C, C'A)T is equal to 2.
In a more complicated case where XBS isn’t constant, the single-wheel model is

where z = (21, 2)T, A = (O —a)’ B = (b), and C'= (1 0). The function s(y) =
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described by a third-order dynamics (see Section 5.3.2) as follows

ds , 0 —a O b
a =22l0o ¢ 1]z + 10w
y=(1 0 0)z,

where z = (21, 22, 23)7. Tt is not difficult to check that this dynamics also belongs
to (2.10). Motivated by the fact that the problem of observing (2.1) is solved in the
previous section, we wonder whether a singular switched observer can still be built
to observe (2.10).

2.2.2 The proposed method

We will follow the same procedure as in Section 2.1.2 to construct the observer
for (2.10). First, we build the following model-based observer

dz . .

= = sW)(AZ+ K(s(y))(y — C2)) + Bu, (2.13)

that yields an error e = z — Z that satisfies

de

o = sWA = K(s(y)C)e. (2.14)
Since the real-valued function s(y) might be positive or negative, we define the

new time scale 7 as follows

7(t) ::/0 |s(y(o))|do, (2.15)

to ensure that dt/dr > 0, independently of the sign of s(y). We recall that the time
re-scaling 7 is called regular if the scalar-valued function s is never zero and singular
if it may vanish. When the time re-scaling is singular, the observer error dynamics

becomes
de  JAre=(A- K*tC)e if: s(y) >0 (2.16)
dr | A_e=(—A+K-C)e if: s(y) <0, '
where
K+ if: s(y) >0
Kist) =4 & s 217
K= if: s(y) <0.
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Despite of the fact that the time re-scaling is singular, the observer can still be
constructed in the original time scale, its dynamics depends on the control input w(t).
If the control at that time instant is equal to zero, the observer will stay forever in the
invariant subspace that is characterized by y(t) = 0. In order to avoid this problem,
we assume that u(t) # 0 when y(t) = 0. Independently of the sign of the control
input, the observer dynamics is thus always transversal to the subspace characterized
by y(t) = 0.

In a nutshell, the general problem of observers synthesis for singular nonlinear
systems studied in Part I can be summarized follows:

Objective of Part I: Given a singular nonlinear observer dynamics with scalar
output as (2.10), show that it is always possible to find a set of observer gains for
which the switching observer error (2.16) is uniformly exponentially stable.

2.2.3 Uniform observability

In this section, we will explain the reason for which (2.10) cannot be transformed
into the uniformly observable form. But before doing that let’s recall here some
classical concepts. Consider a single-input single-output control-affine system of the
form [Gauthier 1981]

dz
o = 1)+ () 21
y = h(2),

where z € R", u € R and y € R. It is assumed that f and g are complete C'**°-smooth
vector fields on R", and that h is a C'* real-valued function. If the system (2.18) is
uniformly observable, by an appropriate (local) change of coordinates £ = ¢(z), it
can be transformed into the uniformly observable form [Gauthier 1981]

d
% =&+ g1(6)u
di;t_l - gﬂ + gk—l(gla s 767171)“ (219)
dé, - .
% :fn(£177€H)+gn(€177£n)u
y==:&.

Here, the uniform adjective refers to the independence of the observability of (2.18)
with respect to the control input u. Indeed, from the knowledge of u and y = & we
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can determine &, from the knowledge of u, y and & we can determine &3, and so on.

Following  [Gauthier 1981]  (see also, e.g.,,  [Respondek 2002] and
[Hammouri 2003]), the necessary and sufficient conditions for (2.18) to admit locally
at any z the uniformly observable form (2.19) is that (a) dim span {dh, ..., dL;ﬁ_lh} =
n and that (b) in the neighborhood of z

[Dj,g] - Dj, (220)

for any 1 < j < n, where D; = ker{dh, ... ,dL?’lh}. The term L;h stands for the
Lie derivative of the smooth function h with respect to the smooth vector field f,
which is defined as

Lyh(z) = dh(2) - f(2) = 3 5= f(2), (2.21)
and
Lih = Ly(L~'h). (2.22)

For the problem of observing a system of the form (2.18) that can be converted into
the form (2.19), instead of building directly an observer based on (2.18), one builds
the observer based on the uniformly observable form (2.19) and then transform back
to the original coordinates by applying z = ¢~ 1(£). The interest of this approach is
that the asymptotic convergence of the observer can be guaranteed if the observer
gain is chosen sufficiently large. This method, however, is mainly applied when there
is no noise in the dynamics nor on the observations. For more details of this method,
we refer the reader to [Bornard 1991], [Gauthier 1992] and [Gauthier 1994].

It can be seen that the class of systems (2.10) is a special class of (2.18) with
f(z) =s(y)Az, g(z) =B and h(z)=Cxz. (2.23)

Besides, it is not difficult to see that the condition (a) is not satisfied when y = 0.
Indeed, the fact that y = 0 implies s(y) = 0, then

dim span{dh, ...,dL} 'h} = dim span{C,CAs(y),...,CA" 's(y)} =1 < n.
(2.24)
Thus, (2.10) is not uniformly locally observable at y = 0. We say that (2.10) is
singular when y = 0. Due to this singularity, it is not possible to design the observer
for (2.10) using the mentioned-above approach. This clarifies the motivation for our
research: construct an observer for (2.10) that works even in the singular case.
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2.3 State of the art: Nonlinear observers and XBS
estimation

2.3.1 Linear observers

The knowledge of the system’s state is necessary to solve several control problems
such as stabilization, optimization, or decoupling problems. In many practical cases,
however, not all the states of the system are accessible from direct measurements.
In such situations, a reasonable approximation of the unmeasurable states is needed.
A device that reconstructs an approximation of the system’s state based on the
measured input and output signals is called a state observer. The model of an
observer is typically derived from that of the system. Besides, a correcting term is
usually added into the observer dynamics in order to improve its convergence rate.
As a consequence, the observer is able to reconstruct the system’s state variables
more rapidly than the dynamics of the system.

The problem of observing linear systems was firstly solved by [Luenberger 1964].
In Luenberger’s observer, the correcting term is the product of a matrix gain and
of the discrepancy between the true measured outputs and the value of the output
computed from the observer. The convergence rate of the observer is tuned through
this matrix gain. We would like to choose the observer gain as big as possible in order
to make the observer error converge rapidly to zero. The observer, however, becomes
sensitive to perturbations (measurement noise for example) in this case. Therefore,
a good compromise between stability and precision should be taken into account in
choosing the observer gain. The Kalman filter is a way to manage this compromise.
The Kalman filter can be regarded as the Luenberger observer with a time-varying
gain that is chosen with the aim of minimizing the observer error [Bernard 2002].

In a local context, linear observer theory can be used to construct a locally con-
vergent observer for nonlinear systems. If the nonlinear system is known to operate
in the neighborhood of some fixed state, one may linearize it around this operating
condition and then design a Luenberger observer to estimate locally the system’s
state. In the case where the nonlinear system doesn’t operate in the neighborhood
of some fixed state, the system’s state can still be estimated by a linear method
that is the extended Kalman filter (EKF). The EKF is well known by its simplicity
and its reasonable performance. The nonlinear system is linearized at the current
operating point and the EKF is then built for this linearized system [Eykhoff 1974].
Unfortunately, due to the linearization, the EKF' is convergent only when the initial
estimate error is small enough and the process is correctly modeled. In the same
spirit as the EKF', Zeitz proposed an extended Luengerber observer basing on a local
linearization technique around the reconstructed state [Zeitz 1987].
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2.3.2 Lyapunov-based observers and high-gain observers

The nonlinear observer design problem has received a considerable amount of
attention in the literature. Nevertheless, there exists no solution to the nonlinear
observer design problem in its full generality [Respondek 2004]. Depending on the
properties of a particular nonlinear system, one can choose an appropriate way to
design its observer.

Early results in the design of nonlinear observers are based on Lyapunov-based
theorems ([Thau 1973] and [Kou 1975]). As in the linear case, the authors still con-
struct the nonlinear observer by copying the nonlinear system and add a linear cor-
recting term. Then, Lyapunov stability theory is used to prove the stability of the
observer error dynamics. A more advanced framework was introduced by Tsinias,
who pursues an observer analog of control Lyapunov functions and uses them for
output feedback design ([Tsinias 1989] and [Tsinias 1993]). Although some sufficient
conditions for the existence of an asymptotically stable observer have been provided,
these approaches aren’t constructive since they don’t show a systematic technique
for the construction of the observer. A solution for this un-constructive problem is
Raghavan’s observer that actually has the same observer structure as Thau’s method,
but provides a constructive iteration to get the observer gain [Raghavan 1994].

If a nonlinear system is observable independently of the control input (i.e. uni-
form observability), then one can use a change of coordinates to transform it into the
uniformly observable form [Gauthier 1981]. An example of the uniformly observable
form for a single-input single-output control-affine system is the form (2.19), pre-
sented in Section 2.2.3. This class of systems can be found in many practical cases.
The observer design for these nonlinear uniformly observable systems is proposed by
[Bornard 1991], [Gauthier 1992], and [Gauthier 1994] (see [Farza 2004] for a possible
extension and a more recent account). The basic idea is to construct a high-gain
observer for the uniformly observable form and then express it in the initial coordi-
nates. The term high-gain means that the observer error can be made to decay at
an arbitrary exponential rate. Of course, the high gain observer can only be used in
the case where the output is not corrupted with a high level of noise, and when the
model has been correctly identified.

2.3.3 Error linearization based observer

Another classical approach for observing nonlinear systems has been proposed in
[Krener 1983] and [Bestle 1983]. Based on the fact that the observer design problem
for linear systems is much easier than that for nonlinear systems, a natural question
to ask is when a nonlinear system can be transformed into a linear system. Sufficient
and necessary conditions for the existence of such a transformation are provided in
[Krener 1983] in order to linearize uncontrolled nonlinear systems with a single out-
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put. Then, the observer is easily constructed using the linear theory. Finally, the
observer constructed in the new coordinates is transformed back to the original coor-
dinates. It is important to note that the uniform observability of nonlinear systems
isn’t sufficient for the application of this approach. Indeed, some additional condi-
tions are required for the existence of the linearization transformation. Therefore,
this approach is less general than the method of high-gain observers for which the
uniform observability is enough to build the observer. Some results of [Marino 1990]
and [Krener 1985] have enlarged the applicative range of this observer design tech-
nique. In the former, the author provides necessary and sufficient conditions for
transforming a single output nonlinear system with control inputs into a special
adaptive observer form. While in the latter, a more general class of nonlinear system
with multi-input and multi-output is considered.

More recently, the design of observers using this method has achieved a new
progress. The transformation from nonlinear observed systems into a linear observed
form is done not only via a change of state and output coordinates but using also an
output dependent time re-scaling. Two independent researches of [Respondek 2001]
and [Guay 2002] have provided different necessary and sufficient conditions that en-
sure the existence of an appropriate coordinate change and an output dependent time
re-scaling. Note that the function of the output defining the time-scaling considered
in these works is positive, the time re-scaling is then never zero (i.e regular time
re-scaling). Inspired of this fact, in the first part of this thesis (see Chapters 2, 4
and 5), we extend the results obtained by [Respondek 2004] to the case of singular
time re-scalings.

2.3.4 Recent techniques

In [Kazantzis 1998, the authors rely on the linear Luenberger observer theory to
propose a nonlinear analogue to autonomous nonlinear systems with single output.
The construction of the nonlinear observer is realized via the resolution of a system
of singular first-order linear partial differential equations (PDEs). Using Lyapunov’s
auxiliary theorem [Lyapunov 1992], necessary and sufficient conditions for solvability
are derived. The local analytic properties of the solution enable the development of
methods based on series expansions.

Recently, several extensions of the Kazantzis-Kravaris observer have been pro-
posed. In [Krener 2002a], the authors extend this method to any real analytic ob-
servable nonlinear system. The construction of the observer is based on the solution
of a singular first-order nonlinear PDE. Besides, in [Krener 2002b] the authors pro-
vide a local observer for some nonlinear systems around a critical point where the
linearization isn’t observable or not detectable. Another interesting extension of the
method of Kazantzis and Kravaris is given in [Andrieu 2006]. The authors state that
sufficient conditions for the existence of the observer involve a partial differential
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equation whose solution should be injective. The injectivity property of the solution
can be obtained by choosing the dimension of the dynamical system defining the
observer to be less than or equal to 2 4+ 2n, where n is the dimension of the system.
The authors show that an approximation of the solution of the PDE is sufficient for
the implementation of the observer.

An attempt to remove the usual global Lipschitz restriction or high-gain feed-
back in the nonlinear observer design problem is introduced in [Arcak 2001]. In
this approach, the observer error system is presented as the feedback interconnec-
tion of a linear system and a time-varying multivariable sector nonlinearity. The
global convergence of the observer is achieved thanks to the satisfaction by the ob-
server gain matrices of the circle criterion. In output-feedback design, the observer
is combined with control laws that ensure input-to-state stability (ISS) with respect
to the observer error. The robustness analysis of the observer with respect to un-
modeled dynamics is achieved via a small-gain assignment in a jet engine compressor
example. This method is then generalized to systems with multi-variable monotone
nonlinearities that satisfy an analog of the scalar nondecreasing property [Fan 2003].

In [Besancon 1996], the authors notice that for some particular classes of non-
uniformly observable systems (i.e. systems admiting singular inputs, for which
some pairs of states cannot be distinguished), observers have been proposed irre-
spective of the inputs (see, e.g., [Hara 1976], [Funahashi 1979], [Walcott 1987], and
[Raghavan 1994]). This phenomenon is related to a common property of these sys-
tems: for any pair of indistinguishable states for some input u, the error between the
trajectories obtained from these states with input u tends to zero, and then a reduced
observer can be constructed. Based on this observation, the authors present a more
general class of nonlinear systems for which such an observer can be designed. The
main idea of [Besangon 2007] is to transform a nonlinear system, by immersion under
quite mild conditions, into a triangular structure that allows an observer design. The
procedure for immersion into this form is constructive and the observer convergence
is ensured by an appropriate excitation condition. Besides, in some observation ap-
plications, such as fault detection, or parameter estimation, the observer design of
non-uniform observable systems can be achieved thanks to the selection of appropri-
ate inputs [Besangon 2013]. The authors state that the input selection amounts to
a control problem and propose a systematic way to resolve it by some appropriate
optimization approaches.

When some parameters of the system are unknown, the problem of state observa-
tion is resolved by an adaptive observer. In [Besancon 2000], the author shows that
most of all available adaptive observer designs for nonlinear systems are based on
the same property, namely the possible representation of the system under a special
form, called by the author the nonlinear adaptive observer form. This normal form
(see also [Farza 2009]) indeed highlights the underlying properties for an adaptive
observer to be designable, as well as additional properties that allow parameter es-
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timation. As an example, the adaptive observer design for a class of state affine
systems is shown. In the case of multiple-input multiple-output (MIMO) linear time-
varying systems, one can use [Zhang 2002] to construct a global exponential adaptive
observer. The proposed method is conceptually simple and computationally efficient.
The author also provides a robustness analysis of the proposed adaptive observer in
the presence of modeling and measurement noises.

2.3.5 Extended braking stiffness observation

In [Gustafsson 1997], the author proposes a scheme to identify different road
surfaces thanks to the value of the so-called slip slope, which is the initial slope
of the tyre characteristic curve p(\) at the wheel slip A = 0. It is important to
highlight that, in this approach, the slip slope is considered as constant. Its value is
recursively computed by a Kalman filter. Besides, the author uses a change detection
algorithm running in parallel with the Kalman filter in order to get reliable and
accurate estimates of the slip slope and, at the same time, to be able to follow
abrupt changes quickly in the road surface. An example of estimating the slip slope
for different road surfaces has been shown. This approach, however, is confronted to
two delicate points: first, it uses the wheel slip A that is unmeasured; and second, it
is designed to work only during normal driving and is kept inactive during braking.

The main idea in the estimation approach in [Umeno 2002] is the relationship
between the tyre-road friction and the frequency characteristics of wheel speed vi-
bration. That is, the strength of the resonance and its frequency band. The author
states that the resonance characteristic of the wheel angular velocity depends on tyre-
road friction: on an asphalt road, the torsional resonance of the tyre exhibits a large
peak; while the presence of the peak is not clear on a low friction surface. Based on
the tyre vibration model during normal driving and a mathematical formula of the
road disturbance, a second order transfer function from the road disturbance to the
angular wheel speed is obtained. The XBS and the resonance frequency are deduced
from this transfer function, depending on its parameters. In order to estimate these
parameters, the authors firstly change the second order transfer function back into
a continuous time equation, then obtain a linear regression by applying the bilin-
ear transformation and finally use the recursive least squares method. Experimental
tests have been done on a test vehicle with ABS. Afterwards [Ono 2003], the authors
consider the XBS as constant, like [Gustafsson 1997], but with the XBS defined for
any wheel slip A. Starting form the wheel deceleration model, the authors assume
that the vehicle dynamics evolves more slowly than the wheel dynamics to achieve
a differential equation of the wheel velocity in which the XBS is proportional to the
break point frequency of this equation. Therefore, the problem of estimating the
XBS can be solved by identifying this break point frequency. The authors apply the
online least squares method [Ljung 1987] to the differential equation of the wheel ve-
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locity to estimate the XBS. The performance of the estimated XBS is experimentally
evaluated in the ABS braking control.

In [M’sirdi 2006], a sliding observer is proposed. The use of the sliding mode
approach to construct the observer is motivated by its robustness with respect to the
parameters and modeling errors. The observation scheme is composed of two steps.
In the first step, the authors consider the nominal modeling of the vehicle with the
wheel and vehicle dynamics. This model is then linearized in a small region near zero
wheel slip, in which the XBS is constant. Next, the authors construct a second order
sliding mode observer to estimate the wheel angular velocity, using only the wheel
angular position measurements. In the second step, after proving that the observer
is convergent in finite time by means of perturbation rejection, the authors use the
recursive least square method to estimate XBS as well as the wheel effective radius.
The effectiveness and robustness of this approach are verified on a real experimental
vehicle. It is well known that the XBS is the derivative of the tyre characteristic p(\)
with respect to the wheel slip A at the operational point, so that one can estimate
separately p(\) and A, and then derive these estimate values with respect to the time
and finally take the ratio of these derivatives in order to get the estimate XBS. The
application of this approach is not easy due to the fact that the derivative of estimate
signals normally amplifies noises. Recently, a new idea for estimating derivative noisy
signals has been provided in [Villagra 2011] using algebraic algorithms [Mboup 2009].
This approach is tested in noisy simulations and in real experimentations, some very
promising results have been obtained.

Fitting the static tyre characteristic (for example, the Burckhardt model) under
the assumption that the wheel slip measurements are known, is the basic idea of
the approaches proposed in [Tanelli 2009] and [de Castro 2010]. Two different linear
parametrizations for the static model of the tyre characteristic are presented. From
these linear paramaterizations, the XBS can be computed easily. The former is
approximated using a linear combination of fixed exponentials. The fitting curve is
analyzed and tested both in simulations and on data collected on an instrumented
test vehicle. The latter is based on a neural network, the authors show on simulations
a good performance, similar to the former method.

2.4 Main contributions of Part 1

2.4.1 Switching observers for singular systems

As introduced in Section 2.2, our objective is to observe a class of singular systems
with a scalar output. Such singular systems cannot be observed using the methods
proposed in the literature. Therefore, we proposed a systematic technique to con-
struct a time re-scaling based switching observer that can estimate the system’s state
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even in the singular case (see Sections 2.1.2 and 2.2.2). The switching nature of the
observer comes from the fact that there are two different dynamics, for positive and
negative values of the output-dependent function s(y). In Chapter 4, a first positive
result supporting the stability analysis of the observer error dynamics in the new
time scale is obtained through the following theorem

Theorem. Consider an observable pair (A,C). Define Q = CTC. For any given
pair of gains Kt and K~, define

A, =A—K'C and A.=—-A+K C. (2.25)

If KT is such that A, is Hurwitz, then there exists a unique K~ such that the two
following Lyapunov equations

ATP+PA, =-Q and ATP+PA_ =-Q (2.26)

admit a common solution P that is symmetric and positive definite.
Moreover, if (A,C) is in the observer normal form, then the components k; of
K~ are expressed in terms of the components ki of K™ by

ki = (1'% + (1= (-1)")a,
where the constants a; are the coefficients of the characteristic polynomial of A.

This theorem has two important consequences. First, it states that for the
observer error dynamics that is an autonomous switched linear system of the
form (2.16), it is always possible to find a pair of the observer gains such that there
exists a positive definite symmetric matrix satisfying simultaneously the two non-
strict Lyapunov equations, introduced in [Hespanha 2004]. Second, if the pair (A, C)
is in observer normal form, then we can obtain explicit expressions that show the
relationship between the components of the two observer gains.

The proof of this theorem relies on two points, presented as Claim 4.1 and
Lemma 4.2, in Chapter 4. In Claim 4.1, we show that the equality of the spectra
of two observable uncontrolled linear systems is equivalent to that of their outputs,
provided that the two initial conditions are related via some special matrix. More-
over, if this matrix exists then it is unique. The proof of Claim 4.1 relies mainly
on the Cayley-Hamilton theorem and the analytic properties of the system output.
Lemma 4.2 is a consequence of Claim 4.1. It states that if the pair (A, C) is in the
observable form, then the components of the observer gain K~ can be expressed in
terms of the components of K.

Under the assumption that the time between any two consecutive switchings is
no smaller than a dwell-time (or, in other words, slows switchings), it is easy to
see that the result of the theorem allows all conditions of the LaSalle-like theorem
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proposed by [Hespanha 2004] to be satisfied, the observer error dynamics is globally
exponentially stable in the new time scale. Furthermore, we prove that the relation
between the original time and the time re-scaling is bijective, then the asymptotic
convergence of the observer is equivalent in the two time scales.

Corollary. Consider the system (2.16) and assume that, in the new time-scale, there
exists a dwell-time Tp. If the gain matrices K™ and K~ ensure the common solvability
of the two coupled Lyapunov equations (2.26), then the origin of (2.16) is uniformly
globally exponentially stable (in the new time-scale).

2.4.2 XBS estimation based on a switching observer

In Chapter 5, we deal with the XBS estimation problem, for ABS systems. The
knowledge of XBS is important for ABS control systems and in our research, because
it can be used in order to increase the robustness of five-phase ABS hybrid algorithms.
We would like to highlight that the solution of this problem has been our main source
of motivation for considering the more general problem considered in Chapter 4. The
design of the switching observer to estimate the XBS in this chapter is thus presented
independently compared to the theoretical results obtained in Chapter 4.

The estimation of XBS is firstly considered in the case of constant road conditions
in Section 5.3. The adjective constant should be understood in the sense that some
of the coefficients of the tyre characteristic are known since their values depend
on road conditions. We describe the tyre characteristic using the model proposed
by [Burckhardt 1993] and assume that the value of ¢y of Burckhardt’s model is known.
A nice property of this formula is that one can establish a relation between its first
two order derivatives. It is important to stress that the first order derivative of
the tyre characteristic is the XBS. We take advantage of this property to form a
three-dimensional XBS dynamics

dz; —a

et b
a o) T

d22 1

@z _ 2.27
dt (c22 + 25) V(1) (227)
ng

5

dt ’

where the wheel acceleration offset and the XBS are the two state variables and the
third state variable is an unknown constant, whose value depends on road conditions.
The parameters a, b, and ¢ are positive constants and w is the control input. For this
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dynamics, we propose the following observer

dz; —a k1 (z ~

d_tl = v—x212’2+bu+ 11(1;)21(21 —Z1)

dz: -z ko(z ~

al_t2 = (2 + z3)i N 21€II>Z1(21 — 1) (2.28)
dz: ks(z R

where Z; are the observer states and k;, for 1 < i < 3, are the observer gains.

Our main achievement is presented in the following theorem that gives conditions
on the observer gains in order to ensure the global asymptotic stability of the switch-
ing observer error dynamics provided that the switchings are slow. The proof of the
theorem is obtained with the help of Theorem 4 of [Hespanha 2004].

Corollary. Assume that the three following conditions are satisfied
(i) The gain K+ = (ki ki ki) satisfies

cki + aky)(c — ki)
a

K> e, ki < —C—ikf, and — <kf<0. (229

(it) The gain K~ = (ki ki ky) satisfies

(cky + aky )(c— kl_)'

a

ko <ec ky < —SkT, and 0 < ky < — (2.30)
a

(i11) The gains K, K~ satisfy

(c—ky) _(c—k)

=T 0 and (cki{ + aky) = (cky + aky) < 0. (2.31)
ars ars

Then, the origin of the error dynamics associated to systems (2.27) and (2.28) is
uniformly globally exponentially stable, provided that the switching signal admits a
strictly positive dwell-time.

We continue with the validation of the three-dimensional observer, which is
constructed following the previous theorem, on data coming from the-tyre-in-the-
loop experimental facility of TU Deflt, acquired in the context of ABS research
[Gerard 2012]. We show in Figure 5.2 the comparison between the XBS estimated
by the three-dimensional observer and the theoretical value obtained from the wheel
slip and the derivative of the tyre characteristic.

Since the road conditions are generally unknown for practical ABS systems, we
thus present in Section 5.4 a four-dimensional XBS dynamics. The main idea behind
this modelling is the parametrization of Burckhardt’s model by fixed exponentials,
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which has been proposed in [Tanelli 2009] and [de Castro 2012]. In our work, we
approximate Burckhardt’s model by two fixed exponentials and a wheel slip linearly
dependent term. The coefficients of the approximate model could be identified using
least squares estimation, but their values depend on road conditions. Just like for
the Burckhardt model, we can also formulate a relation between the first three order
derivatives of the approximate tyre characteristic. Thanks to this relation and defin-
ing new state variables, we can formulate a four-dimensional XBS dynamics. This
dynamics can be seen as a generalization of the previous three-dimensional one and
it has a very important property: all its parameters are known and not dependent
on road conditions. This explains the fact that the model-based observer of this
dynamics will give the estimated values of XBS, independently on road conditions.
The stability of the four-dimensional observer can be obtained following the same ap-
proach as for the mentioned above theorem. Numerical simulations are taken to test
the effectiveness of the observer in a scenario of unknown changes of road conditions.



CHAPTER 3
Input-delay compensation for
linearizable systems

As in Chapter 2, we start with a simple problem in ABS systems: the compen-
sation of actuator delays, in the context of wheel acceleration control. We solve this
problem by providing a control law that is based on the prediction of the system’s
state, which is safely implemented by an explicit integration via quadratures, of a sta-
ble delayed differential equation. Expanding our idea, the main objective of Part II
is to solve the input delay compensation problem for a particular class of nonlinear
systems in triangular form. A review of some recent results for time delay systems
in the literature is then presented. Finally, we highlight our main contributions.

3.1 Brake actuator delay compensation

The concrete implementation of several theoretical ABS strategies has been
confronted to some difficulties generated by several experimental phenomena, in
particular the delays (see, e.g., [Solyom 2004], [Solyom 2003], [Kienhdofer 2008],
[Gerard 2012], and [Miller 2013]). Measurement filtering, tyre dynamics, and ac-
tuator limitations have been identified to be the main sources of these delays
[Gerard 2012]. Besides, since current ABS algorithms are deeply associated to the
hydraulic nature of today’s actuators [Bosch 2004], then adapting these algorithms
to other actuators, like those of in-wheel motor based electric vehicles (with a quicker
response time) or heavy-duty trucks (with a slower response) has focused some atten-
tion in recent years. In this section, we will consider the compensation of the delays
induced by actuator limitations in ABS systems.

We recall here the wheel acceleration model (2.1) already shown in Section 2.1.1,
but we take into account a constant time delay A > 0 in the braking torque wu(t).
That is

% = 2 (D)2(t) + bu(t — h)

Ve (3.1)
d=
dt

As in [Gerard 2012], we define the control objective to be the tracking of the wheel
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acceleration z;(t) towards a given reference z;. And we suppose that in (3.1) the
value zo of XBS is known. If we assume 2z to be both known and constant, for a
given speed, this system can be written

&(t) = cx(t) + bu(t — h), (3.2)

where ¢ = (—ap/(N\))/v, and p/(A) is the XBS. Observe that (3.2) might be either
stable or unstable, depending on whether the tyre is in its stable or unstable domain.

Without the delay h, the tracking problem for (3.2) is a trivial task. One can
easily define the control input as follows

1 :
u(t) = E( —cx(t) — afz(t) — 2*(t)) + (1)), (3.3)
where the control gain « is a positive constant.

In the presence of h, the control problem becomes more delicate since the control
input « must compensate the delay h in order to ensure the tracking of z(¢). To
compensate the effects of the delay, the control v must use the future values of the
state x as well as the reference z* at the time instant ¢ + A, which is not always
available. For example, the reference trajectory might be unknown in advance since
it might be computed in real time. Therefore, instead of making the wheel acceler-
ation x(t) track the reference x*(t), we should make it converge towards x*(t — h).
Moreover, for the future values of x, we have no other choice than to estimate them.
We introduce xf (¢, h), called the state prediction, as the estimate state of x(t + h)
computed at the time instant t. We apply to (3.2) the following control law

(—cz”(t,h) — ae(t) + i*(1)), (3.4)

e(t) :=xz(t) —x*(t — h), (3.5)
thus we obtain the closed-loop system
é(t) = —ae(t — h) + c(z(t) — 27 (t — b, h)). (3.6)

If the state prediction 2% is estimated perfectly, which means z¥' (¢, h) = z(t+h) and
as a consequence =7 (t — h, h) = z(t), we obtain an ideal error dynamics

é(t) = —ae(t — h), (3.7)

which is exponentially stable if the control gain « satisfies the condition 0 <
a < 7/2h.
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Until now, we haven’t discussed yet how we can estimate z¥'(t, h). Fortunately,
we know that if 2 (¢, h) is perfectly estimated, we might obtain an exponentially
stable error dynamics (3.7) that we call the target error dynamic. Since (3.7) is
stable, then if we integrate it we can get the future values of the tracking error at the
time instant ¢. So, we come up with the following idea: the state prediction z” (¢, h)
is computed indirectly via the future values of the tracking error that are computed
before. Nevertheless, the actual error dynamics (3.6) is usually different from the
target error dynamics (3.7). Therefore, an integral term should be added to the
prediction of the tracking error in order to compensate the mismatch between the
target and the actual error dynamics. At every time instant ¢, we define the error
prediction as

t+s t+s
eP(t,s) :==e(t) — a/t e(t — h)dr — B/ p(T — h)dr, (3.8)

for s € [0,h]. We denote p(t) as the prediction bias that is the difference between
the error prediction e (¢ — h, h) at the time instant ¢ — h and the real error e(t)

p(t) =" (t — h,h) — e(t). (3.9)

Now, with the definition of the tracking error (3.5), we can easily estimate the pre-
diction state 2’ (¢, s) at every time instant ¢ via the error prediction e” (¢, s) by taking

ol (t,s) =a*(t+s—h)+el(t,s), Vsecl0,h] (3.10)
From (3.5), (3.9) and (3.10), we obtain

2P (t — h,h) = 2*(t — h) + e (t,h) + 2(t) — x(t)
= —e(t) + el (t,s) + z(t) (3.11)
= p(t) +x(?).
We replace (3.11) into (3.6), the error dynamics then becomes

é(t) = —ae(t — h) — cp(t). (3.12)

By differentiating (3.9) and using (3.8) and (3.12), we obtain the dynamics of the
prediction bias

pt) = e"(t = h.h) — é(t)
= —0p(t —h) +é(t — h) —é(t) — ae(t — h) + ae(t — 2h) (3.13)
= —Bp(t = h) +c(p(t) = p(t = 1))
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It can be proved via a Lyapunov-Krasovkii approach that the dynamics (3.13) is
globally exponentially stable for appropriate values of the gain . Besides, the two
equations (3.12) and (3.13) are cascaded, then it may also be shown that (3.12) is
input-state-stable from the input p(¢).

3.2 Input delay compensation for nonlinear sys-
tems

As a first step towards the generalization of the ideas presented in the previous
section, we consider now the case of a second order system

i(t) = fi(zi(t)) + 2o(t)
io(t) = fa(z(t) +ult —h),

where z(t) := [1(t) 2o(t)]T € R? and y(t) = z;(t) is the output. The control objective
is again the output tracking problem, that is y(t) = x1(t) = y*(t — h) = x5(t — h)
as t — oo. We apply the same approach to compensate the input delay. Following
the classical backstepping procedure, one can consider that x(t) is a virtual control
input to the #i-equation. Therefore, in order to achieve the control objective, this

(3.14)

virtual control input must converge towards the following term
r3(t) = —fi(xf(t,h) — ages(t) + 35 (1), (3.15)

where 21’ (¢, h) denotes the prediction of z1 (¢ + h) computed at the time instant ¢ and
the error ey (t) is defined as

e1(t) == z1(t) — 7 (t — h). (3.16)

If we define

eo(t) := xo(t) — x5(t — h), (3.17)

the control u(t — h) must ensure that

lim e (t) = 0. (3.18)

t—o00

To that end, we define the control input as
u(t) = —falay (t,h), 25 (8, 1)) — azea(t) + @5(t), (3.19)

where @2 (t, h) denotes the prediction of z9(t + h) computed at the time instant ¢.
As before, it is obvious that if the prediction of x(t + h) is perfect, the reference
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error dynamics can be written in a cascaded form

él (t) = —oer (t — h) + €2<t)

6at) = —anealt — h), (3.20)

The computation of the state prediction z” (¢, h) is then based on (3.20). The re-
maining task is to find the control gains a; and «as such that the control objective
is fulfilled.

We have been able, in Chapter 6, to generalize these ideas for a class of nonlinear
systems with a constant input delay that can be transformed into a triangular form

#1(t) = fi(wa(t)) + a(t)
To(t) fa ($1(t)a 952(75)) + x3(t)

: (3.21)
in1(t) = facr(@1(t), ..., 2pe1(t)) + 20(2)
in(t) = fu(z(t)) +ult —h),

where z(t) = [x1(t) -+ x,(t)]" € R™ and y(t) = x,(t) is the system’s output, for
which we have a reference y*(t).

Objective of Part II: Given a class of nonlinear systems with a constant input
delay that can be linearized into a triangular form (3.21), find the control law to
compensate the input delay and to solve the output tracking problem.

3.3 Existing methods for input delay compensa-
tion

3.3.1 Linear systems

One of the first attempts to control processes affected by input delays goes back to
the work of Otto J. M. Smith [Smith 1959]. He stated that the response of a process
with delays should be the same as that for the same process without delay, but
delayed by a time equal to that of the delay. Based on this principle, he proposed
a time delay compensator, named the Smith predictor that consists of a classical
controller (for example a PID controller) and the nominal model of the process with
time delay, in the frequency domain. The nominal model is composed of a transfer
function of the process without time delay followed by a time delay term. There are
two feedback loops in the Smith predictor: a positive loop feeds the output of the
nominal model and a negative loop feeds the output of the transfer function of the
process without time delay. Besides, there is a third negative feedback loop through
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the process with time delay and its effect is canceled out by the positive feedback
loop of the Smith predictor. As a consequence, it can be seen that total feedback
is based on the output of the transfer function of the process without time delay.
In other words, the total feedback is based on a prediction of the output measured
from the process with time delay. Since its apparition, the Smith predictor has
become the most popular algorithm to compensate time delays used in the industry.
Nevertheless, due to the fact that the Smith predictor always retains the poles of the
process, it cannot be applied to unstable linear time-delay systems [Wang 1998|.

Another popular approach used to deal with the input delay for general (sta-
ble or unstable) linear systems is the Finite Spectrum Assignment (FSA) method,
sometimes called Artstein model reduction in the time domain (see [Manitius 1979
and [Artstein 1982]; or [Richard 2003] for a more recent account). The main idea
behind the FSA approach is to generate the prediction of the state variable over one
delay interval. Then, a feedback of the predicted state is applied, thereby compensat-
ing the effect of the time delay. This results in a closed-loop with a finite number of
eigenvalues, which can be assigned arbitrarily. This also explains why this approach
can be applied to unstable linear systems. Recently, in [Wang 1998], the authors ex-
tend the FSA for linear time delay systems in the frequency domain. From another
point of view - the Artstein model reduction, the prediction of the state variable over
one delay interval can be considered as a change of the state variable that reduces
linear systems with delayed control to systems without delays in the control input.

In practice, the application of the FSA approach might be a difficult task since
it involves the implementation of the integral term, which needs to be calculated
on-line. It is shown by [Engelborghs 2001] and [Van Assche 1999] that the numerical
implementation of the integral term might be unstable, at least when the original
system is unstable. To deal with this problem, some interesting results have been
provided. In [Mazenc 2011a], the authors present a different way to predict the
state variable over one delay interval. The stability of this operator is guaranteed
by replacing the state matrix (that might be unstable) by a stable matrix. Besides,
one can approximate the integral term by a sum of point-wise delays by using a
quadrature rule [Manitius 1979]. Such approximations, however, might be unstable
due to the high-frequency mechanisms [Watanabe 1981]. A safe way to implement
the integral term is explored in [Mondié 2003]. The authors consider the use of a low
pass filter, which is able to eliminate high-frequency mechanisms, and show using a
simple example how to verify the safe implementation of the FSA approach.

3.3.2 Nonlinear systems

In the literature, the compensation of input delays for nonlinear systems is fre-
quently attached to two control design tools, called backstepping and forwarding.
In the forwarding approach, feedforward nonlinear systems with input delays are
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considered. The word forward refers to the absence of feedback in the structure
of the system. If feedforward systems are described by equations having a specific
triangular structure, called the feedforward form, one can use the result presented
in [Mazenc 2004]. The key ingredients of this result are, on the one hand, several
modifications of the feedforward form by changes of coordinates, input and time scale
and, on the other hand, bounded feedbacks. In [Krstic 2009] and [Krstic 2010], the
authors propose a nonlinear version of the Smith Predictor and its various predictor-
based modifications for linear plants (for example the FSA approach) to compensate
input delays of arbitrary length in feedforward nonlinear systems. The authors show
that global stabilization is maintained but requires the online solution of a nonlinear
integral equation. In other words, the predictor state, which is used in the nominal
control law to compensate for the input delay, isn’t obtainable explicitly. Neverthe-
less, for a class of strict-feedforward systems, the author gives an explicit formula for
the predictor state.

For the backstepping approach, nonlinear systems in the feedback form are con-
sidered. In [Mazenc 2006], the authors carry out the design of globally uniformly
asymptotically stabilizing feedbacks for a family of nonlinear systems in feedback
form with a delay in the input that can be arbitrarily large. The main idea is the
construction of a Lyapunov-Krasovkii functional. A continuously differentiable con-
trol law, which depends on the value of the delay is constructed. Nevertheless, some
limitations in the considered family of nonlinear systems in feedback form and in the
mentioned above control law are stated in [Mazenc 2011b]. To overcome these limi-
tations, the authors consider a new family of systems with input delays and explore
an appropriate Lyapunov-Krasovkii functional. The control design is then illustrated
in a second order example of the pendulum. It is shown in [Karafyllis 2006] that
finite-time global stabilization for nonlinear triangular systems with delays can be
achieved by time-varying locally Lipschitz distributed delay feedback.

For a general nonlinear input-delayed systems, in [Georges 2007] the authors ex-
tend the finite spectrum assignment approach available for linear input-delayed sys-
tems to the prediction of the state variable. A nonlinear feedback control based on
the state prediction is then proposed to stabilize nonlinear systems with input time
delays. As in the linear case, the computation of the nonlinear feedback control is
difficult due to the integral term, which cannot be explicitly computed. To avoid
this difficulty, the authors approximate the control by using both a state prediction
approximation and the dynamic inversion of a fixed point problem. The effectiveness
of this approach has been demonstrated on illustrative examples.
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3.4 Main contributions of Part 11

To compensate input delays, most of the available methods use a prediction of the
future of the system’s state that is based on the integration of the delayed system.
The numerical implementation of such predictions is, however, difficult due to the
integral terms, which might not be explicitly computable or might lead to an unstable
system ([Engelborghs 2001] and [Mondié 2003]), at least when the dynamical system
is unstable. We thus look for a simple alternative way of estimating the future values
of the system’s state that can be implemented in practice and leads to a stable
behaviour of the feedback system.

Observing the available methods in the literature, one might come up with a
simple but probably abusive conclusion: a prediction of the future of the system’s
state based on the integration of a stable and linear system is likely to lead to a stable
numerical scheme; while the integration of an unstable and /or nonlinear system might
be confronted with a more delicate numerical implementation. Nevertheless, if the
control objective is to ensure the tracking of the system’s output towards a given
reference, we can consider the reference model for the error dynamics as a part of
the control design. In other words, to estimate the future values of the system’s
state, instead of directly integrating the system’s dynamics that might be unstable
and/or nonlinear, we follow a two-steps procedure. In the first step, we integrate
the reference error dynamics, which can be chosen to be linear and stable, in order
to obtain the error prediction. In the second step, we compute the state prediction
using the obtained error prediction. Such a prediction scheme is straightforward and
stable. We describe the details of our prediction scheme in Section 6.2. It is worth
mentioning that, at each instant ¢, we compute the error prediction for each instant
in the interval [¢,¢ + h], using the past values of all error in the interval [t — h,t].
Furthermore, in order to damp the perturbation coming from the mismatch between
the ideal and actual error dynamics, we add an integral of the prediction bias into the
error prediction. After obtaining the state prediction, one can build a simple control
law that compensates the input delays and achieves the tracking of the system’s
output.

In the spirit of our simple prediction scheme, we consider in Section 6.3 the out-
put tracking problem of a particular class of systems with input delays in triangular
form, or in other words the class of restricted-feedback linearizable systems as pre-
sented in (3.21). We are interested in this system class because conditions for the
existence of a global transformation into this triangular form are available (see, e.g.,
[Dayawansa 1985] and [Respondek 1986]; or [Respondek 2002] for a more recent ref-
erence). We follow an inversion procedure (a backstepping procedure) to find the
input that tracks the desired output. Of course, such an inversion scheme is real-
izable thanks to the future values of the system’s state that are estimated by our
simple prediction scheme. Our main result is the following theorem.
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Notation. For a square matrix § we use 3, and [j; to denote, respectively, its
smallest and biggest eigenvalues.

Theorem. Consider the restricted-feedback linearizable system (3.21) and assume
that, for each 1 <1 < mn, there exists ; such that

1fi(z) = fiy)| <7ilz—yl, Vz yeR. (3.22)

At each instant t, for s € [0, h], construct the error prediction starting with

el (t,s) = en(t) — ozn/ eZ(T — h)dr — ﬁn/ ]S?n(T — h)dr (3.23)

t —00

and, from i =mn —1 down to 1, with

t+s t+s t+s
el (t,s) = eit) — ai/t e;(t — h)dr — ﬁi/ pi(T — h)dT/t

s > (3.24)
+/‘§g7—mmm,
t
where
ei(t) = x;(t) — xi(t — h), Vie{l,...,n}. (3.25)
and
pit) = e (t = h,h) —e;(t). (3.26)
Construct the state prediction, starting with
2y (t) = y*(t) and x{(t,h) = 2i(t) + €] (t, ), (3.27)
and, from i =2 up to n, with
) (t,h) = ;i (t) + e (t, h), (3.28)
where
zi(t) = = fica(@{ (6, h), ... w4 (6 ) — qimre 1 (t) + &5 (t), (3.29)
and consider the controller
u(t) = —fn(:r:P(t, h)) — anen(t) + @) (t). (3.30)

Then, given any h* > 0, if the matrices associated to the control gains

a = diag{ay - a,} and = diag{p - Pn}
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satisfy

Oy 2
B > Ay + Bu(Bu + 27)h", (3.32)

the origin of the closed-loop system is uniformly globally exponentially stable for each
h € [0,h"].

It is worth mentioning that the closed-loop system dynamics is composed of two
closed-loop subsystems: that of the error prediction and that of the bias prediction.
Since the closed-loop system dynamics has a cascaded structure, the proof of the
previous theorem relies on the classical procedure to establish the stability of cas-
caded systems of ordinary differential equations. In Section 6.4, we illustrate the
effectiveness of the theorem using a pendulum equation that is nonlinear and might
be unstable.
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Switching observation of singular
systems






CHAPTER 4

Switching observer for systems
with linearizable error dynamics
via singular time-scaling

The content of this chapter is strongly based on :

T.-B. Hoang, W. Pasillas-Lépine, and W. Respondek. A switching ob-
server for systems with linearizable error dynamics via singular time-
scaling. Submitted to International Symposium on Mathematical Theory
of Networks and Systems, Groningen (The Netherlands), 2014.

The altenative proofs included in the Appendices are not rigorous; these drafts are
only included in order to show that several approaches are possible for proving
Theorem 4.1. The statements and the proofs of the results presented in Section 4.3
have been obtained by Witold Respondek. They are included in this thesis only for
the purpose of completeness.

Abstract: In this paper, we propose a new observer design for nonlinear systems that
can be linearized using a change of coordinates and a singular time re-scaling. Our
observer is a switched system and the observer error dynamics are described, after
time re-scaling, by a switched linear system that is uniformly exponentially stable.
We also give necessary and sufficient conditions for linearizability via a change of
coordinates and a singular time re-scaling. Our methods are illustrated on an example
coming from the ABS literature.

4.1 Introduction

The aim of an observer is to reconstruct, from the past values of the measured
outputs, the states of a system for which a measure is not available [Bernard 2002].
For linear systems, the classical works of Kalman [Kalman 1960] and Luen-
berger [Luenberger 1964] propose two well known approaches to solve the observation
problem. The Luenberger observer has been extended to the case of nonlinear sys-
tems that can be linearized using a change of coordinates (see, e.g., [Krener 1983],
[Krener 1985] and [Marino 1990]) and to the class of uniformly observable systems
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(see, e.g., [Bornard 1991], [Gauthier 1992] and [Gauthier 1994]). More recent tech-
niques (see, e.g., [Kazantzis 1998, [Krener 2002a], and [Andrieu 2006]) have pro-
posed still more flexibility in the observer design avoiding, for example, the necessity
of considering high gains to counter nonlinear terms. Nevertheless, for systems that
are not uniformly observable, the observation problem remains difficult because for
them the observability properties depend on the control inputs that are applied to
the system (see, e.g., [Besangon 2013] and [Dufour 2010]).

The aim of our paper is to propose an observer for a particular class of non-
uniformly observable systems that are affine, with respect to the unmeasured states,
up to a multiplication by a function of the output. Our work is strongly inspired by
the time-rescaling approach proposed in [Guay 2002] and [Respondek 2004], for the
construction of observers for systems that cannot be linearized using a coordinate
change only (see also [Moya 2002]). The change of time scale considered in those
works is regular and therefore the proposed observers can be constructed for uniformly
observable systems only. In our approach, we handle the case of singular time-
rescalings (and thus we deal with a class of of non-uniformly observable systems)
and we solve the observer problem by transforming the observer error dynamics into
a switched linear system, for which several stability analysis methods are available.
In particular, the Lasalle-like approach of [Hespanha 2004] can be used directly to
prove the stability of the constructed observer.

To summarize, the novelty of our approach is two-fold. Firstly, we construct an
observer for a class of non-uniformly observable systems (clearly, the convergence of
the observer is assured for a certain family of distinguishing inputs only). Secondly,
although the original system is continuous (smooth actually), we propose for it a
switching asymptotically convergent observer.

In the second section we present a new observer design for the class of systems
linearizable via a singular time-rescaling. We also state Theorem 4.1 that shows how
to tune the observer gains. Section 3 of the paper analyzes the conditions that a
nonlinear system must satisfy in order to be transformable into an affine system,
with respect to the unmeasured states, up to a multiplication by a function of the
output vanishing at the zero value of the output. Section 4 illustrates these ideas in
the case of a simple estimation problem associated to ABS systems. The Appendix
contains mathematical proofs.

4.2 Switchings and singular observer design

In this paper, we consider systems of the following form

&= f(x) +g(x)u, y=h(z), (4.1)
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where z(t) € R™ and y(t) € R is the measurement, and both f and g are C*°-vector
fields on R™. Among such systems, we have a particular interest for those that can
be transformed, using a C'*°-diffeomorphism z = ®(z), into the following affine (with
respect to the unmeasured states) form

2 =s5(y)(Az +d(y)) + b(y)u, y=Cxz, (4.2)

where the pair (A4, C) is observable and the vector fields b and d depend on the output
only. Conditions for the existence of such a transformation are given in Section 4.3.

Our interest for this class of systems comes from the possibility of building the
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Z . .

= = sW) (A2 +d(y) + K(s(y)(y — C2)) + b(y)u, (4.3)

using a gain K(-) that depends on the system’s output only. Defining the error
e = z — Z, we obtain the observer error dynamics

de

= = sW)(A = K(s(y)O)e. (4.4)
In the case of a non-vanishing function s (which we call the regular case), the analysis
of the asymptotic stability of (4.4) has already been considered in [Respondek 2004].
In fact, if s is strictly positive, the observer gain K (s(y)) can be taken as a constant
matrix K such that A — KC' is Hurwitz, which renders the error dynamics

de

asymptotically stable with respect to the new time-scale 7 given by fl—; = s(y(t)).

In this paper, our aim is to construct an observer that works even in the case
when the function s might vanish (which we call the singular case). But when the
function s(y(t)) changes its sign, we are confronted with three problems. Firstly, on
time-intervals when s(y(t)) is negative, we have to assure an (exponential) divergence
of the error with respect to 7 (and not its convergence). Secondly, we have to be
sure that the time instances t; at which s(y(t;)) = 0 do not accumulate. Thirdly,
system (4.2) is not uniformly observable. Indeed, it is easy to see that the control
u(t) = 0 renders indistinguishable any two states zo # Zy such that Czp = CZy = 0
(see Proposition 4.1 below).

The first problem will be solved by allowing the gain K to depend on s(y) (actually
on the sign of s(y)) whereas the second by ensuring the existence of a dwell time.
Finally, the third problem by avoiding controls that make the system unobservable.
In order to handle these three problems, the key step in our approach is to consider
as a new time-scale
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r(t) = / 5(y(w))|dv: (4.5)

This choice ensures that dr/dt > 0, independently of the values of s(y). Throughout
the function s(y) is supposed strictly increasing and such that s(y) = 0 if and only
if y = 0 and that s'(0) # 0.

We will assume that at any time instant ¢; such that y(¢;) = 0, the control wu(t)
law has been designed to achieve dy(t;)/dt # 0 (or equivalently that the limits u(t;)
and u(t;]) of u(t) at ¢; from the left and from the right, respectively, are nonzero).
This choice of u is to cross the observability singularity {Cz = 0} with a nonzero
velocity and thus to render the system observable even at that singular locus (compare
Proposition 4.1 below). A consequence of our assumptions is that the function w
such that 7(t) = w(t) is globally invertible. We denote w™! its inverse. Even if the
dynamics (4.2) might be indefinite in the new time-scale 7 when y(t) = 0, one can
still define its output by taking y(7) = y(w=*(7)).

In the new time-scale, if the observer gains are defined as

K+t if: s(y(r)) >0
K(s(y(r) =9 ._ . (4.6)
K= if: s(y(r)) <0,
then the observer error dynamics (4.4) become
de J(A—=K*"Cle if: s(y(r)) >0 (47)
dr (—A+ K- Ce if: s(y(r)) <O. .
This last system can be written in the form of a switched system
de
A 4.
dr 0'(7')67 ( 8)

by defining the switching signal p(t) = sign(y(t)) in the original time-scale, and
transforming it into the new time as o(7) = pow™(7).

Now, our aim is clear: we have to ensure the asymptotic stability of (4.7). In fact,
we have transformed the analysis of the asymptotic stability of the origin of (4.4)
into the stability analysis of (4.8), which is an autonomous switched linear system
and numerous stability results are available (see, e.g., [Liberzon 2003]) for that class
of systems. Most of them are based on a classical Lyapunov-functions-based ap-
proach but in addition to them, LaSalle-like results have been proposed more re-
cently [Hespanha 2004]. In the latter, the stability properties of a switched linear
system are proved via regularity assumptions on the set of switching signals.

Following [Hespanha 2004], inside the set of arbitrary pairs (e, o), denote by Snye
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the set of those that satisfy (4.8) and that are such that e is piecewise differentiable
and o piecewise constant. Define, moreover, the set S[rp] C Sy¢, with 7p > 0,
of pairs for which any two consecutive discontinuities of o are separated by no less
than 7p. The constant 7p is called the dwell-time. The origin of a switched system of
the form (4.8) is said to be uniformly exponentially stable if there exists constants ag
and ¢ such that, for each 7 > 0, we have ||e(7)| < agexp(—Ao7)|le(0)]]. In this
definition, the word uniform refers to the fact that ag and Ay do not depend on the
switching signal [Angeli 1999].

Under a dwell-time condition, as a particular case of Theorem 4
of [Hespanha 2004}, one can prove that the switched linear system is uniformly ex-
ponentially stable if there exists a symmetric positive definite matrix that satisfies
simultaneously the two non-strict Lyapunov equations below (4.10). The main result
of this section, Theorem 4.1, shows that for our system (4.7) it is always possible to
find a pair of gains K and K~ such that this LaSalle-like condition is satisfied. The
proof of Theorem 4.1 is detailed in the Appendix.

Recall that for any observable pair (A, C'), there exist linear coordinates in which

ag 1 0 ... 0
0 1
A= 0
0 0 1
a, 0

and
C=(10 ... 0).

In these coordinates, the system is in observer normal form.

Theorem 4.1. Consider an observable pair (A, C). Define Q = CTC. For any given
pair of gains Kt and K~, define

A =A-K'C and A_=-A+K C. (4.9)

If K" is such that A, is Hurwitz, then there exists a unique K~ such that the two
following Lyapunov equations

AP+ PA, =-Q and AP+ PA =-Q (4.10)

admit a common solution P that is symmetric and positive definite.

Moreover, if (A,C) is in observer normal form, then the components k; of K~
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are expressed in terms of the components ki of K+ by
ki = (-1)'kf + (1= (-1))a;,
where the constants a; are the coefficients of the characteristic polynomial of A.

The following Theorem 4.2, which is the second main result of the paper and
whose proof relies heavily on Theorem 4.1 and [Hespanha 2004, Theorem 4]), shows
that our observer converges under suitable conditions.

Firstly, in order to guarantee the system’s observability, it is assumed that the
pair (A, C) is observable and that the function Cb(y) does not vanish at y = 0 (the
relative degree of the system is 1). These assumptions are natural consequences of
the following result summarizing observability properties of system (4.2).

Proposition 4.1. (i) System (4.2) is observable if and only if the pair (A,C) is
observable and the system has relative degree one at any z such that C'z = 0.

(ii) System (4.2) is never uniformly observable. In fact, the control u(t) = 0
renders indistinguishable any two states zy # Zy such that Czg = CZy = 0.

(#ii) If the pair (A, C) is observable and the system has relative degree one at any
z such that Cz = 0, then any control u(t) for which there exists €, such that u is
continuous on [0,&,[ and u(t) # 0 for any t € [0,e,[ distinguishes all states z € R™.

Secondly, in order to avoid control signals for which the observer does not con-
verge, we have to guarantee the system’s observability when crossing the singularity
{y = 0} = {C'z = 0}, see Proposition 4.1. We thus impose some restrictions on the
controllers that are used to govern the system. In order to describe these restric-
tions, some notations are necessary. Fix an open subset {2y that contains the origin
and fix a compact set €2 that contains €y. Fix € > 0. Denote by X the intersec-
tion of © with the closed set {z € R" : |Cz| < €}. By construction, the set 3 is
compact. Define ag, dy, and sy as the maxima of the functions |C'Az|, |Cd(y)|, and
|s(y)]|, respectively, on X. Define by as the minimum of Cb(y) on X. Introduce the
constant o = sg(ag + dy)/be. And, finally, fix 8 > «.

We say that a controller is admissible if it generates a control signal u(-) that
satisfies together with its state trajectory z(-) the following properties:

(i) The control signal w(t) is a piecewise continuous function of time such
that |u(t)| < 3, for t > 0;
(ii) On any given time interval [a,b] such that the output satisfies |y(t)| < e, for
t € [a, b], the sign of u(t) is constant and |u(t)| > a.
(iii) If 2(0) € Qg then z(t) € Q, for each ¢t > 0;
These assumptions, on the system’s observability and on the class of admissible
controllers, lead to the following result.
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Theorem 4.2. Assume that the function Cb(y) does not vanish at y = 0 and that
the controller used to govern the system is admissible. If xg € g, then the switching
signals p(t) and o(T) generated by the controller admit a strictly positive dwell-time
in the original and in the new time-scale, respectively.

If, additionally, the pair (A,C) is observable and the gain matrices K+ and K~
satisfy the conditions of Theorem 4.1 for the common solvability of the two coupled
Lyapunov equations (4.10), then the origin of the observer’s error dynamics (4.4) is
asymptotically stable in the original time-scale associated to t and uniformly expo-
nentially stable in the time-scale associated to T.

4.3 Conditions for singular linearizability

In this section we answer the question of when there exists a diffeomorphism
z = ®(x) bringing system (4.1) into (4.2) such that the pair (A, C) is observable and
s(0) = 0 but s'(0) # 0.

Denote by C*°(Xj) the ring of R-valued C'*-functions defined locally in a neigh-
borhood Xy of g € R™. For a function ¢ € C*°(X)), denote by Z(¢) the set of zeros
of v, that is,

Z(p) =4z € Xy : p(x)=0}.

We will need the following technical result.

Lemma 4.1. Consider ¢ € C*(Xy) and ¢ € C*(Xy) such that dip(xg) # 0. The
following conditions are equivalent:

(i) ¢ = a1, for some a € C*(Xy);

(i) Z(p) C Z(¥);

(iti) The function a = 5 € C*(Xo\ Z()) can be prolonged to a smooth function
& € C™(Xy), that is, there exists a function & € C*(Xy) such that &(x) = a(x), for
any x € Xo \ Z(¥);

(iv) If X{) is a compact containing xo in its interior, then there exists M € R such
that |£(z)| < M, for any x € Xy \ Z(¥).

Our characterization of systems of the form (4.1) equivalent to (4.2) will be given
in three steps. In the first step, using Proposition 4.1 below, we will construct a new
vector field f in which we get rid of the singularities of the vector field f (using a
singular time re-scaling). In the second step, we will construct a vector field § using
the observability of the pair (f,h) (notice that the latter is observable although the
original pair (f,h) is not, see Proposition 4.1(ii). In the third step, to the couple
of vector fields (f, §) we attach, via a regular time re-scaling, a couple (f,g). The
required time re-scaling is computable in terms of solutions of an ordinary differential
equation on the output space (see Remark 2 following Theorem 4.3). Our necessary
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and sufficient conditions are given in terms of the couple (f, §). Those conditions, as
well as the construction of (f,g) follow from the main result of [Respondek 2004].

We will work around a fixed initial condition xqg € R"™ and will assume that the
diffeomorphism & satisfies ®(xg) = 0.

Proposition 4.2. If there exists a local diffeomorphism ® transforming (4.1) into
(4.2), then any among the equivalent conditions of Lemma 4.1 holds for all pairs
(p, ) = (fi,h), with 1 < ¢ < n, where f; is the i-th component of f and h is the
output function.

If all pairs (f;, h) of (4.1) satisfy the equivalent conditions of Lemma 4.1, then,
due to condition (iii), each % = « can be extended to a C*°-function &, which we
will denote fl Define the C'*°-vector field

) o,
f—fla—xl+"'+fn%-

n

A necessary condition for (4.1) to be transformed via z = ®(x) into into (4.2) is
that the pair (f,h) satisfies the following local observability rank condition (see,
e.g., [Isidori 1995] and [Nijmeijer 1990])

dim span {dh, dLh, ... ,dL?’lh}(xo) =n.

In that case, following [Krener 1983] (see also [Krener 1985]) define a vector field ¢
(a "dummy" input) by

j 0 ifo<j<n-2
L;L7h = -0 4.11
g fh { 1 ifj=n-1. (4-11)
For j > 2 we put [; = JUT_I) + 1. In order to avoid the trivial case, we will assume

throughout n > 2. We have the following results.

Theorem 4.3. System (4.1) is, locally around xy, equivalent under a diffeomorphism
z = ®(x) to the system (4.2), where s(0) = 0 and s'(0) # 0, if and only if in a
neighborhood of xo all pairs (p,v) = (fi,h), where f; is the i-th component of f
and h is the output function, fulfill the equivalent conditions of Lemma 4.1 and the
vector fields f and g satisfy

(i) the pair (f,h) satisfies at zo the local observability rank condition;

(i1) dLgL;ih = lnAdL ;h mod span {dh}, for some smooth function A;

(iii) [ad}g, ad;;g] =0,for0<i<j<n-—1, where f = %f, g =35""1g, and

5 =expf, with 0 being a solution of

B 0 ifo<j<n-—2
Lo = { ()" I\ if j=n—1.
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(iv) [g,ad?—g} =0, for0<j<n-2.
Moreover, d(0) = 0 if and only if f(z) =0
Remark 4.1. The time re-scaling s(y) is actually a product of two transformations
s(y) = yS(y). Indeed, the dynamics to be linearized are obtained by, firstly dividing

f by h =y which gives f (a singular re-scaling) and then by dividing f by s =expb
(a regular re-scaling).

Remark 4.2. The reqular time re-scaling s = exp 6 is defined by the ordinary dif-
ferential equation
df(y)

o AMy)

on the output space R. Hence it follows that

s(y) = ys(y) = yexp(/oy A(v)dv).

4.4 Simulations on a simple example

In this section, we illustrate Theorems 4.1 and 4.2 with the design of an extended
braking stiffness (XBS) observer, a problem that has its origins in the anti-lock brake
systems literature (see, e.g., [Hoang 2013] and the references therein).

During a straight-line ABS braking manoeuvre, the dynamics of the wheel can
be described [Hoang 2013] using the model

dt v (t) 7

dz z

d_tQ = (CZQ + ZS)'Ux(lt) and Yy =z, (412)
ng

e B!

dt

where a, b, and ¢ are known constants ! The longitudinal speed of the vehicle (which
is strictly positive during braking manoeuvres) is denoted v, and the control u is the
time-derivative of the brake pressure. The state z; is the wheel acceleration offset
(the difference between the acceleration of the wheel and that of the vehicle), which
is the only measurable variable. The state z5 is the XBS, which is the derivative of
the tyre characteristics (described by Burckhardt’s model [Burckhardt 1993]). The

1. We consider here that the road conditions are known. The problem of unknown road con-
ditions has been considered recently in [Hoang 2014a], and leads to a four-dimensional model of
the form (4.2) for which Theorem 4.1 can be applied (like for the simpler three-dimensional model
considered here).
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state z3 is a constant that depends on the parameters of Burckhardt’s model. The
reader is referred to [Hoang 2013] for a more detailed description of this model.

In its initial form, system (4.12) does not belong to the class of autonomous

systems considered in the previous sections. Nevertheless, if we consider the regular
time re-scaling %4 = vzl(t) and the new control w(t) = u(t)v,(t), then system (4.12)

with respect to the new time ¢’ is of the form (4.2). In order to keep a coherent
notation with previous sections, in what follows, despite of the abuse of notation this

new time scale is again denoted by ¢ and the new control by w.

Our system is already in the form (4.2), so we can find new coordinates Z in which
(after a singular time re-scaling) the system is in the observer normal form: z; = 2y,
_ c _ 3 .

Zg = 29+ —z1, and Z3 = ——. In these coordinates, we have s(y) = —az; and the
a a

following observer error dynamics

(

—<—k 10
Aje = —ky 0 1]e ifs(y)>0
d —kf 00
ae _ 3 (4.13)
ds S+k -1 0
A e= ky 0 —1]e ifs(y) <O.
\ ks 0 O
If we want A, to be Hurwitz, the gain K must satisfy
c
ki > ——
! a
ks >0 (4.14)

0< ki< (2 RN

Since the coordinates are those of the observer normal form, Theorem 4.1 gives
directly the value of K~ that must be used in the observer

_ c
ki = —ki —2-

ky = ki (4.15)
ky = —kq.

If we want, for example, the characteristic polynomial of A, to have a triple pole r,
for the following numerical values

a =187.5 (N.kg™'), b= —4.4 (N.m.bar 'kg™),
c =24, v, =178 (m/s), and r = 0.1,
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Figure 4.1: Simulation of a five-phase hybrid ABS algorithm [Hoang 2013] with a
closed-loop wheel acceleration control based on our singular observer.

we obtain, for example solving the Lyapunov equations of Theorem 4.1 with Matlab,
the following matrices Py and P_:

1875 0 —625
p.=P = 0 625 0 |,
—625 0 18750

whose equality is guaranteed by Theorem 4.1.

In order to apply Theorem 4.2, one must consider a control law that sat-
isfies its conditions. A possible choice is the hybrid five-phase ABS described
in [Pasillas-Lépine 2006], which satisfies all the required conditions to be admissible.
With this control law, our switching observer (4.13) is thus uniformly exponentially
stable in the new time-scale and asymptotically stable in the original time. The aim
of our simulation is to verify this property. The simulation results are shown on Fig-
ures 4.1 and 4.2. At the time instants where the road conditions change (here ¢t = 0),
the observer errors are different from 0. Nevertheless, they converge asymptotically
to 0 in the original time scale once the perturbation is over.

4.5 Proofs of main results

In order to prove Theorem 4.1, we will introduce and prove two claims and
a lemma. We will need, moreover, an additional concept. Define y, (t,zd) and
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Figure 4.2: Phase-plane evolution of the previous simulation, obtained by a projection
of the three-dimensional error on the (eq, e3) plane.

y—(t,zy ), as the solutions of systems

dx dzx
{E = AT {% = A (4.16)
Yy = Cx Yy = Cl’,

respectively, that start with the initial condition 2%(0) = 27"

Claim 4.1. Assume that the pairs (A4, C) and (A—, C) are both observable. The two
following conditions are equivalent:

(i) There exists a matriz S such that, for any initial condition xq, the outputs of
the two systems satisfy y_(t, Sxo) = y+(t, zo).

(ii) The spectra of A, and A_ are equal.
Moreover, (i) if S exists then it is unique.

Démonstration. Step 1: (i) implies (ii1). The outputs of the system are analytic
because the exponential function is analytic

yi(t,ad) = Cettsa (4.17)
The two outputs are equal if its derivatives of order k, for k£ > 0, coincide
k k _
u(0.28) = (0, 75). (4.18)

If S exists, for any fixed z{ such that z; = Sz, we have

CAbxd = CAY Sz, for0<k<n-—1. (4.19)
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Since this is true for Va{ and z; = Sz, from the equation (4.19), we obtain
CAE =CAFS, for0<k<n-—1. (4.20)

Since (A, C') is observable, then (A, C) and (A_, C) are observable because they
are obtained from (A, C') by an output injection. Define

C C
CA, CA_
My=| and M_=| " |, (4.21)
C A" C A

where rank (M) = rank (M_) = n. Therefore, if the matrix S existes then it is
unique

M+ — Mfs
. (4.22)
:>S - M_ M+.
Step 2: (i) implies (ii). The characteristic polynomial of A, is defined as
p(A) =N+ N4+ pf A+ (4.23)

where p;, for 0 < k < n — 1, are its coefficients. Substituting the matrix A, for A,
the Cayley-Hamilton theorem states that p(A) = 0. Thus,

Al = —ph At — L —pT Ay —pf (4.24)
Multiplying this equation by C' in the left, we obtain
CAY = —p/ | CAT' — .. —pfCA, — piC. (4.25)
Similarly, the same computations are taken for A_ and we obtain
CA"S = —p,CS —p;CA_S — ... —p, ,CA"'S, (4.26)

where p,, with 0 < k& < n — 1, are the coefficients of the characteristic polynomial

of A_.
Since C’A’i = CAFS, for 0 < k < n — 1, therefore we obtain the following
condition

Pr =Py (4.27)
This implies that the spectra of A, and A_ are equal.
Step 3: (ii) implies (i). Suppose that there exists a matrix S such that zj = Sz .
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The two outputs are expressed as (4.17). Since they are analytic functions, in order
to prove that they are equal, we will show that their derivatives of order k coincide,
for any k£ > 0.

Indeed, it is trivial that the output derivatives of order k coincide, for any 0 <
k< n—1. We will check whether or not the outputs derivative of order £k = n
coincide. Since (A4, C) is observable, the vector C A’ can be expressed as a linear
combination of the vectors that compose the basis {C,CA,,...,CAT'}. In other
words,

CAY = —af JCAY'— ... —afCA; — o C. (4.28)
If we apply the Cayley-Hamilton theorem, we obtain the expression of C'A%} as

in (4.25). Compare these two equations, we obtain o, = p}, for 0 <k <n —1.

Repeating the same computations, we obtain (4.26) and «, = p,, for 0 < k <
n— 1.

Since the spectra of A, and A_ are equal, the characteristic polynomials of A,
and A_ coincide. Thus, p} = p,, for 0 < k < n — 1. Therefore,

CA? = CA"S. (4.29)

This implies that the output derivatives of order k coincide, for 0 < k < n.

Now, we suppose that the output derivatives of order k coincide, for 0 < k < n+1

and a fixed i > 0. We will show that C AT = CA™*1S. Indeed, the vector C A"
i+l

is expressed as in (4.25). Multiplying this equation by A% on the right, we obtain
CAVHH = —pt \CA™Y — . —pfCAT. (4.30)
Similarly, the vector C A" can be expressed as
CA™ = —pf [CA™' — ... —pfCA_ —pfC. (4.31)
Multiplying this equation by A”"'S on the right, we obtain
CA™ 1S = —pt CA"™'S — ... —pfCA™S. (4.32)
Since the output derivatives of order k coincide, for 0 < k < n + i, thus

CATHH = CAmHHLS,

Therefore, we know that the output derivatives of order k coincide, for any k& > 0,
which means that

y_(t,Sxg) = yo (L, x0). (4.33)
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Claim 4.2. Assume that the pair (A, C) is observable. Then, for any observer gain
vector K+, there exists a unique gain K~ such that the spectra of A, and A_ are
equal.

Lemma 4.2. Assume that the pair (A, C) is observable. We have:

(i) For any observer gain vector KT, there exists a unique gain K~ and a unique
matriz S such that y_(t, Szo) = y+(t, o).

(ii) If, moreover, the coordinates x are such that the pair (A,C) is in observer

form then
S = diag«_l)O? (_1)17 (_1)27 ) (_1)n727 (_1)7%1) (4'34)

and

7

ki = (1'% + (1= (-1)")a. (4.35)

Démonstration. Step 1: proof of (i). The point (i) is obtained directly, by applying
first Claim 4.2 (which is a standard fact of control theory), and then Claim 4.1.
Step 2: proof of (ii) Define the gain matrices

Kt=(kt ... kD) and K- = (k) ... k). (4.36)

n n

Since (A, C) is in observer normal form, the matrices AL have the following form

: 0 1
. 0 ... 0 1
a, — ki 0 . 0
(4.37)

—a;+k -1 0 0
: 0o -1 .
and A_ = : Lo D
: o ... 0 -1
—a,+k, 0 ... ... 0

The characteristic polynomial of the matrix A, is

det(Is — Ay) = (K} —an) + (kF y —an1)s  +...+(k —a))s" '+ (4.38)

n

and the characteristic polynomial of the matrix A_ is

det(Is—A_) = (=1)"(k, —an) +... +(=1)'(ky —ay)s" ' +s" (4.39)
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Since, by Claim 4.2, the spectra of A,y and A_ are equal (which means that the
characteristic polynomials of A, and A_ coincide), we obtain that (4.38) and (4.39)

coincide. Therefore,
k7 = (=1 + (1= (=1)Ya,. (4.40)

)

Now, it remains to compute the matrix S. Define

S11 S12 ... Sin
S=1: + = . (4.41)

Spnl Sn2 --. Snn

We cannot use directly the equation (4.22) to compute the matrix S, because the
computations of the matrices M+ and M~ are difficult. We know, however, that each
equation from (4.20) will help us to identify each line of the matrix S. We denote e;,
for 1 < 57 < n, as the lines of the identity matrix of order n.

— Indeed, from C' = C'S, we obtain
(511 Sln) =e;. (4.42)
— From CA, = CA_S, we obtain
— (kf —a1)C + ey = (k] —a1)CS — esS. (4.43)
Because of (4.40), for i = 1 and C' = C'S, thus
(321 szn) = —ey. (4.44)
— From C A2 = CA2S, we obtain

— (k‘;_ — (II)CA+ — (k?;_ — GQ)C + e3

4.45
= (ky —a1)CA_S — (ky —a)CS + e3S. (4.45)

Because of equation (4.40), for 1 < i < 2 and C’A’l_“F = CAFS, for 0 < k <1,
thus
(831 c. Sgn) = €3. (446)

— By continuing this computation with each equation of (4.20), up to the last
equation
CAY ' =CAM'S.
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We obtain

- (kf - CL1)CA$72 e (]{7:72 - CLn,2>CA+
—(kf = a,1)C +e, (4.47)
= (=1)°%k; —a1)CA"2S + ...+ '

)
(—=1)"2(k;,_y — apn1)CS + (=1)"""e,8S.

As a consequence of equation (4.40) and CAX = CAES, for 0 < k < n —2,
thus

(Sn1 --o San) = (=1)" e, (4.48)
At the end, the matrix S is obtained as

1 0 0 ... 0 0
-1 0 ... 0 0

0 0 1 ... 0 0

S=1. . . . : : )
0 0 0 (—1)™2 0
0 0 0 0 (—1)!
or
S = dlag((_l)oa (_1)17 Ty (_1)71,—2’ (_1)71—1) (449)

Démonstration. Step 1. Since (A, C') is observable, the pairs (A, C) and (A_, C) are
also observable. Moreover, by Claim 4.1, the matrices A, and A_ are Hurwitz. When
the matrices A, and A_ are Hurwitz, it is well known that each equation AL Py +
PiLA, = —(@Q always has a unique solution, which is symmetric positive definite
when (A, (') is observable, even if the matrix () is just positive semi-definite. One
possible way to describe P, is the following

P, = /0 (AT OT Gt gy, (4.50)
Thus,
v Pral = /OOO(CetAJ“:U(T)T(C’etAJ“xSF)dS
= | et e (451)

- / s (¢, )1t
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where the output y, (t,z7) = Cetd+ .
Similarly, we also have

P = / (eM)TCT Cet-dt. (4.52)
0
Then,
(Sa)" P-(Sai) = [ -ttt (459
0

where the output y_(t, Szl) = Ce!t-Saf.

By Lemma 4.2, we know that, for any observer gain vector K, there exist a
unique gain vector K~ and a unique matrix S such that y_(¢, Szd) = y. (t,zd). We

then obtain
(z)TSTP_Sxf = (xf) Praf, V. (4.54)

Therefore,
STP.S=P,. (4.55)

If (A, C) is in observer normal form, by Lemma 4.2, the matrix S is given by (4.49).
Thus,

STP.S=rP,

o e pi; if: ((1+j)mod 2 =0) (4.56)
7\ w0 (i f)mod 2 £0),

where p;-;, p;; are respectively the elements of the ¢-th line and j-th column of the
matrices P, P_.

Step 2. In the observer normal form, the matrix A, is described by (4.37). Observ-
ing A, we have the following relation

Aye; =€, for2<i<mn, (4.57)

where e;, with 1 <17 < n, are the columns of the identity matrix of order n.

Now, multiply the Lyapunov equation AYP, + P;A. = —Q by e! on the left
hand side, and e; on the right hand side, for 2 <14, j < n, we then obtain

el (ALP, + P Ay )ej = —el Qe;. (4.58)
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Using the relation (4.57), we obtain

e \Prej+ el Prej 1 = —€] Qe;
S Pl TP = 4y (4.59)

A p?g_l)J +p%_1) = O, for 2 < Z’j <n,

because ¢;; = 0, for 2 < ¢,7 < n. This condition implies that the sum of the two
adjacent elements on the antidiagonal and on the other parallel lines with the anti-
diagonal are always equal to 0. Therefore, all the elements on the anti-diagonal and
on the other parallel lines with the anti-diagonal are equal in absolute value. If the
number of elements on the anti-diagonal and on the other parallel lines with the
anti-diagonal is even, then we have p:; = —p;ri. However, since the matrix P, is
symmetric, then p;; = —pj; = 0. If the number of elements on the anti-diagonal and
on the other parallel lines with the anti-diagonal is odd, then p; = pJ;. Finally, we
obtain

(p;;:p; if : (( +j)mod 2 =0)
& (|i — jlmod 4 = 0),

p; = -y if: ((i+j)mod 2 = 0) (4.60)
& (|i — jlmod 4 = 2),

(—p; =0 if: ((i +j)mod 2 # 0).

by =

Similarly, the matrix A_ has a following property
A,ei = —€;_1, for 2 S 1 S n. (461)
With the similar computations and the arguments, we obtain
Pji = P if : ((: +7)mod 2 = 0)
& (|i — jlmod 4 = 0),
pi; = P; = —py if: ((i +j)mod 2 = 0) (4.62)
& (|i — jlmod 4 = 2),
(—p;; =0 if: ((i 4+ j)mod 2 # 0).
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Combine (4.56), (4.60) and (4.62), we obtain

f —

Py =pi i ((i+j)mod 2 = 0)
& (Ji — jlmod 4 = 0),

Pl = p;=—pi if: ((i+j)mod 2 = 0) (4.63)
& (|i — jlmod 4 = 2),

(p;; =0 if : ((i +7)mod 2 #0).

or,
pii 0 —pp O
0 pr O
Po=P =|-p2 0 " ... .| (4.64)
0 .

Prn

Appendix A - Alternative proof of Lemma 4.2

This section is devoted to providing an alternative proof of Lemma 4.2 that has
already been proved in Section 4.2. The main difference between this alternative
proof and the previous one is the way how the matrix S is computed. Instead of
using the analytic property of the outputs, we employ the Laplace transformation to
compute it.

The outputs of the systems are given by
ye(t, x3) = Cett o, (4.65)

Since the pair (A, C) is in observer form, then the matrix C' = (1 0 ... 0). This
leads to the fact that the matrices Ce'* are zero every where except for the first
row. Thus, we can obtain an explicit expression of the matrices Ce!4+ if we can

compute the first row of the matrices e?4=.

It is well known that the exponential matrix can be computed thanks to the
inverse Laplace transformation [Moler 2003]

ettt = L7 (s — AL) MY (4.66)
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69
Besides, the matrix (Is — A*)~! is computed as below
(Is— Ap) ™t =~ [com(Is — AL
det(Is — Ay)
¢
X Ch Ch ... Ci, (4.67)

Cdet(Is— Ay | Lo L ]
chL CL ... CZ
where C’f;, for 1 <14,j < n are the matrix of cofactors.

Let’s compute the exponential matrix e!4+. We recall below the matrix (Is— A, )

s+(kf—a) -1 0 0 ... 0
(kb — ap) s —1 0 ... 0
Is—A,) = 5 b 4.68
( +) (kf y—ans) 0 0 ... =1 0 (4.68)
(ki i —an1) 0 0 s -1
(kt —ay,) 0 0 0 s

The determinant of (I's — A;) was calculated in Section 4.2

det(Is — Ay) = (kF —an) + (K | —apn1)s+ ...+ (b —a1)s" ' +s"  (4.69)

As explained earlier, since we only care about the first row of ¢4+ then we don’t
need to compute every matrix of cofactors C*ij but the first column of [com(Is— A, )]

sl o\
e O O
[com(Is — AL)] : : : (4.70)
+ +
s Cong - Cunn
Lo, . O
Finally, the exponential matrix e*4+ has the form
( o O N O a
. e 0 N O
tAy _ p-l : ; : 4.71
‘ det(Is — Ay) n ' L ’ (471)
O(n—l)Q T C’(n—l)n
k 1 .. O
/

where det(Is — Ay) is described in (4.69). The validation of (4.71) is assured since
the matrix K is chosen such that A, is Hurwitz and then det(Is — A,) is different
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to 0.

The exponential matrix e!4- can be computed in the similar way

( g1 Cp ... Cn\')
s"3 Cyp ... Cy
oA — -1 1 : :32 : f’m (4.72)
det(Is — A_) - N ' _ '
(—1)" s C(n_l)2 . C(n—l)n
\ ()=t Cn . O )

where det(Is — A_) is also different to 0 since det(Is — A_) = det(Is — A;).

Replace (4.71) and (4.72) into (4.65), we get the following expression of the two
outputs

yt(t,zf) = C’e“”xar

— CL(sT — Ay) Y

(

sl L on )
. e O N O
= (1 -y - : : : : +
(10 0)L <det([s—A+) : K . g )
§ C(n71)2 e C(nfl)n
\ L Ch oo Ch)
(4.73)
and
y(tag) = Ceag
=O0L (s — A ) '}y
( sn1 Cn ... Cn \')
—sn2 Con ... (3
n—3 — —
1 s Cyp ... Cy,
= (1 e
(10 0) det(Is — A_) : : : : *o
(—1)"2s Coirz -+ Cain
\ (="t Cn ... Ch /]
(4.74)

Observing (4.73), (4.74) and knowing that det(Is — A_) = det(Is — A;), we

conclude that the two outputs are identical (or, in other words y™ (¢, z¢) =y~ (¢, 7))
if the initial conditions are given by

T, = Szd, (4.75)
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where
1 0 0 0 0
-1 0 0 0
0 0 1 ... 0 0
S=1. . . . . . , (4.76)
0 0 0 (—1)"2 0
0 0 0 0 (—1)!
or
S = diag((—=1)°, (=)', -+, (=" 2, (=) ). (4.77)

Appendix B - Alternative proof of Theorem 4.1

In this section, we continue to employ the Laplace transformation to give an
alternative proof of Theorem 4.1. The key point is to show that the Laplace trans-
formation of the matrices P, and P_, which are the unique solution of the two
Lyapunov equations

ALPy + PLAL = —Q, (4.78)

respectively, are equal.

As said in Section 4.2, the two matrices P, and P_ can be written as the following

P = / ()T OTCet A= dt. (4.79)
0

Since the inverse Laplace transformation is linear, then basing on (4.71) we have

Cett+ = LY (s — Ay)™1)

)

svtooof .. O
e O N O
1 n
=(1 0 ... 0L : : \
det(Is — Ay) ' '
S C(thm C(J’T_Lfl)n
L 1 C:Q C;n )



72 Chapter 4. Switching observer for a class of singular systems

Thus, the matrix P, can be represented

o0

P, = /(etA+)tC’tCetA+dt

, (4.81)
= t].lm ]+(t>,
where
Sn—l
t
(1) = / Jn G S R NC 1 S S O
* det(Is—Ay) | s det(Is — Ay) o '
0 1
(4.82)

Now we apply the Final Value Theorem property of the Laplace transformation

lim [, (t) = lir% sli(s), (4.83)
s—>

t—o00

where I, (s) is the Laplace transformation of I (t). Then, (4.81) becomes

Py =limsl(s). (4.84)

Since I (t) is an integral then we apply the Laplace transformation of an integral
and we obtain

Sn—l
LqL det(Isl—A+) 8 £ {det([sl—A+) (Sn_l e 8 1)}
1
I+(S) - s (7 )
4.85
or,
Sn—l
sly(s)=L{ L ! -t ! (snt s 1)
det(Is—Ay) | s det(Is — Ay)
1
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From (4.84) and (4.86), the matrix Py is now written as

Snfl

1 : 1
P =1 B e : R ——— = 1
* sli%[' £ det(Is — Ay) s £ {det([s —Ay) (s ° )}

Observing (4.87), we note that there is the Laplace transformation of a multipli-
cation of two function. For two given functions f(t) and g¢(t), the Laplace transfor-
mation of the product f(t)g(t) is

LU D90} = 5 / F(0)G(s — o)do, (4.88)

where v = Re(o) is chosen such that the integral is convergent. This implies that -
should lie entirely within the region of convergence of F'(o), or in other words, 7
should be bigger than the real part of any singularity of F'(¢). In our case, 7 > 0
because that all the zeros F(o) are equal to zero and all its poles has negative real
part since A, is Hurwitz.

Applying (4.88), the matrix P, is now computed as the following

O.nfl
1 Y+i00 ] .
P =1 — _— :
T 50 (27m' / det(lo —Ay) | o 8
y—1i00
1
! (s—0)y ... (s—0) 1)|do
det(I(s — o) — Ay) o '
(4.89)
Next, it can be noticed that we can put the limit inside the integral
' O.n—l
y+ic0
p,— L / ! (ot L (—o) 1) do
T om [det(Ioc — Ap)][det(—Ioc — A | o o
Y—100
1
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1 T 1
P = %VL [det(Io — Ay)][det(—To — A,)] %
o (=)t o (—o)"? o H—0o)"3 ... 0" —0) o"!
a”:i(—a)”j 0”:2(—0)”:2 a”:z(—a) U”j’
0" 3(—0) 0" 3 (—0) 0" 3(—0) o o
o(—o)" ! o(—o)" 2 o(—o)
—(o)" ! (—o)m? (—0) 1
Yy+i0co
1 1
" 2mi ) [det(To — A)][det(—To — A,)]
(=) lo?m=2 (=1)" 223 (1) Bt 0 (=1)o™  on!
Comires o o
(=1)" o (—1) | o (—1)'0 o i
(=) ~te™ (1) 20" (—1)o?
(=) tont  (=1)" 2" (=)o 1
(4.91)

Observing this matrix and noting that P, is symmetric, we conclude

pyi=npy if: ((i+7)mod 2 =0) & (|i — jlmod 4 = 0),

ph = ph=—pf if: (i +j)mod 2 = 0) & (|i — j|mod 4 = 2), (4.92)
—pj; =0 if: ((i+j)mod 2 #0),

where p;;, for 1 <14,j < n, are the elements of the :—th line and j—th column P,.

Repeat the same steps for the computation of P_, we have

O,n—l 7
~y+ico —0'”_2
P 1 L : X L X
_ =lim | — — :
s—0 \ 270 det(lo — A_) ' det(I(s—o)—A_)
y—100 (_1)n—20.
! (=" /]

((s —o)" bt —(s—o)"2% ... (=1)"%*s—o0) (—1)"*1) } da)
(4.93)
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Thus,
L 1 -
b= 2mi / [det(Io — A )][det(—To — A_)] (_1)'n_2 %
(-1
(o)t (o) (=) 2(=0) (=1)*")do
y+ioco
1 do
“2mi ) [det(Io — A )|[det(—To — A)] *
(1) lg?n=2 (=1)nlg2n=3 gnolgi—t 0 (=1)"lom (—1)vlent
(_1)n—20.2n—3 (_1>n—20.2n—4 (_1)n—20.2n—5 . (_1)n—20.n—1 (_1)n—20.n—2
(—1) 32— e e o (D)3 (—1)v 3
(—i)a" (—1)'0”*1 : : : : (—i)ch (—1)o
o1 o2 - - o 1

Observing this matrix and noting that P_ is symmetric, we conclude

pji =Dy if: ((1+j)mod 2 =0) & (]i — j|mod 4 = 0),
b5 = {pp=—pi i ((i+)mod2=0)&(i—jlmodd=2),  (4.95)
—p; =0 if: (( +j)mod 2 # 0),

where p;;, for 1 <4, < n, are the elements of the i—th line and j—th column of P-.

Comparing the elements p;; and p;; of (4.92) and (4.95), we notice that they are
equal

pi; = D = P (4.96)
Finally, from (4.92), (4.95), and (4.96), it can be seen clearly that the two

symmetric positive definite matrices P, P~ are equal

pii 0 —p O

0 pan O
Ptr=p =|-p2 0 . ... ] (4.97)

0
: Prn






CHAPTER 5

Application for ABS: Extended
braking stiffness estimation

The content of this chapter is strongly based on :

T.B. Hoang, W. Pasillas-Lépine, A. De Bernardinis, M. Netto. Extended
braking stiffness estimation based on a switched observer. Accepted for
publication in IEEFE Transactions on Control Systems Technology.

In the accepted version of the paper, Appendices A and B were deleted because of the
length restrictions imposed on Brief papers.

Abstract: In the context of hybrid anti-lock brake systems (ABS), a closed-loop
wheel-acceleration controller based on the observation of the extended braking stiff-
ness (XBS) is provided. Its objective is to improve the system’s robustness with
respect to changes in the environment (as changes in road conditions, brake proper-
ties, etc.). The observer design is based on Burckhardt’s tyre model, which provides a
wheel acceleration dynamics that is linear up to time-scaling. The XBS is one of the
state variables of this model. The paper’s main result is an observer that estimates
this unmeasured variable. When the road conditions are known, a three-dimensional
observer solves the problem. But, for unknown road conditions, a more complex four-
dimensional observer must be used instead. In both cases, the observer’s convergence
is analyzed using tools for switched linear systems that ensure uniform exponential
stability (provided that a dwell-time condition is satisfied). Both experiments and
simulations confirm the convergence properties predicted by the theoretical analysis.

5.1 Introduction

The anti-lock brake system (ABS) is now a standard equipment on most new
passenger cars, in order to prevent wheel lock-up and limit the risk of skidding.
With this system, the car maintains its steerability and reduces its braking distance,
even in the case of an emergency braking. Historically, the first commercial ABS
systems were designed using logic-based switching controllers [Morse 1995], in which
the mode changes were determined by the evolution of the wheel’s angular acceler-
ation (see, e.g., [Leiber 1979], [Kuo 1992], [Kiencke 2000], [Bosch 2004]). The main
force of these controllers is that they avoid the use of the (unmeasured) wheel slip
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and of its (unknown) optimal value. They are therefore quite robust with respect to
changes in tyre parameters and road conditions. Their main drawback is, however,
that they were derived from purely heuristic arguments and are, as a consequence,
difficult to tune. Despite of this, the ABS controllers present on today’s commer-
cial vehicles mainly belong to this category. More recently, mainly in an academic
context, several wheel slip controllers have been proposed in the literature (see, e.g.,
[Unsal 1999], [Johansen 2003], [Savaresi 2007], [Choi 2008], [Pasillas-Lépine 2012]).
The main interest of these controllers is that they apply a brake torque that con-
verges to a specific value, which avoids the typical limit cycles generated by logic-
switched algorithms. This leads to shorter braking distances, at least on standard
road conditions. Unfortunately, these approaches assume (implicitly) that the wheel
slip is measured (or estimated) and that its optimal value is known, two require-
ments that are often difficult to meet. Even if such algorithms might not be robust
enough to be implemented on commercial ABS, they are still useful for some specific
applications [Van Zanten 2002], like the electronic stability program (ESP).

In addition to hybrid and continuous approaches for ABS, which both have
their pros and cons [Shida 2010], one can find a different research line (see, e.g.,
[Gustafsson 1998], [Sugai 1999], and [Ono 2003]) based on the concept of extended
braking stiffness (XBS). The XBS is the slope /() of the tyre characteristic ().
For additional details, the reader is referred to Section 5.2. In standard conditions,
there exists an (unknown) value of the wheel slip A* for which the curve p reaches
its maximum. That is, such that p'(A*) = 0. The main theoretical interest of XBS
for braking strategies is hence clear: unlike wheel slip, that has an unknown optimal
target value A\*, the optimal value of XBS is always the same (zero). An intuitive
approach for ABS control is thus to regulate the value of XBS around zero. But,
actually, the XBS appears also in other contexts related to braking systems. A first
example is wheel acceleration control. In this context, the XBS can be seen as a
disturbance that must be compensated in order to increase either the controller’s
bandwidth or its delay margin (see, e.g., [Corno 2012, Gerard 2012, Hoang 2012]). A
second (related) example is wheel slip control. Indeed, since the wheel acceleration is
closely related to the derivative of the wheel slip (see Section 5.2.2), the XBS appears
also naturally in this domain [Pasillas-Lépine 2012]. One should stress, however, that
the XBS cannot be measured directly using standard sensors. In order to use it in
a control algorithm one must therefore address first its real-time estimation, which
is the main objective of this paper. Because of the diversity of control problems
in which the XBS appears, it would have been difficult to treat all of them here.
The choice of the authors was thus to emphasize the contributions associated to the
estimation problem, and to consider the control issues only for illustration purposes.

The simplest approach to estimate XBS is probably to consider this variable
as a constant parameter, which allows the use of online least squares methods
[Ono 2003]. Other approaches analyze the tyre/carcass resonance in the frequency
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domain [Sugai 1999] or use algebraic methods [Villagra 2011]. Solutions based on
wheel slip measurements are also available [Tanelli 2009]. Nevertheless, to the au-
thor’s knowledge, the idea of exploiting the nonlinear XBS dynamics in a model-
based observer has not been considered before in the literature, at least in the case
of the longitudinal stiffness. The proposed approach is based on a new model for
the wheel acceleration dynamics. In this model, the extended braking stiffness enters
as one of the state variables. When the road conditions are known, this model is
three-dimensional. Otherwise a fourth order dynamics is obtained. In both cases an
observer can be constructed using a copy of the system’s dynamics and adding a non-
linear correction term that is proportional to the observation error. After a suitable
time-rescaling, the observer error is reduced to a linear switched system that can be
analyzed using standard methods [Hespanha 2004]. When the observer switches ad-
mit a strictly positive dwell-time, the observer’s convergence is global, uniform, and
exponential. Compared to previous works, the authors believe that the main interest
of this method comes from its simplicity and from the fact that the parameters of
the tyre model are not needed by the proposed algorithm.

In order to illustrate on a concrete example the interest of this observer, the case
of a simple academic ABS strategy [Pasillas-Lépine 2006] is considered. In their stan-
dard form, this kind of algorithms might fail to cycle correctly [Ait-Hammouda 2008]
when there are significant changes in the environment (as changes in road condi-
tions, brake properties, etc.). In a recent work [Gerard 2012], it has been shown
that adding closed-loop wheel acceleration control during the phases for which the
brake pressure is modified can compensate this lack of robustness. But, in order to
reach the bandwidth required by this kind of controllers, an XBS estimate is nec-
essary. The combination of such control laws with the proposed XBS observer has
been tested both on simulations (with unknown and changing road conditions) and
experimentally (with known and constant road conditions, imposed by the test-rig
characteristics).

This paper is organized as follows. First, the system’s dynamics is described in
Section 5.2. Then, the main contributions of the paper (the design and the stabil-
ity analysis of two switched observers) are presented in Sections 5.3 and 5.4, with
the corresponding experimental and simulation results. An academic five-phase hy-
brid ABS and a closed-loop wheel-acceleration control law are briefly described in
Section 5.5, in order to exhibit a potential application for these observers. Finally,
concluding remarks and perspectives for future research are presented in Section 5.6.

5.2 System modelling

The basic dynamics of the wheel, which is central to this study, can be analyzed
using a single-wheel model (see, e.g., [Olson 2003] and [Ono 2003]). The main reason
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Figure 5.1: Comparison of the tyre characteristic p(A) given by Burckhardt’s
model (5.5) and its approximation (5.18), on different road conditions. For clar-
ity, only the positive wheel slip part of the curve is shown (instead of the negative
part, which corresponds to braking). The parameters of the tyre models are given in
Section 5.4.1.

for using this model is that, despite of its simplicity, all the basic phenomena related
to ABS control appear in it [Gerard 2012].

5.2.1 Wheel dynamics

The angular velocity w of the wheel has the following dynamics:

dw
IE =—RF, +T,, (5.1)
where I denotes the inertia of the wheel, R its radius, F, the longitudinal tyre force,
and T,, the torque applied to the wheel. The torque T,, = T, — T} is composed of the
engine torque T, and the brake torque Tp. It is assumed that during ABS braking
the clutch is open and thus the engine torque is neglected. In other words, T, = v, P,
where P, > 0 denotes the brake pressure and 7, > 0 the brake efficiency.
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The longitudinal tyre force F), is often modelled by the relation
F, = u(\F,, (5.2)

where F, denotes the vertical load and

Rw — v,

A= T (5.3)
denotes the wheel slip [Kiencke 2000]. The longitudinal speed of the vehicle v,, which
is considered as an external variable of the model, is assumed to be strictly positive.
In a braking manoeuvre, this implies A < 0 and F, < 0. The tyre characteristic p(-)
is a function that is both smooth and odd. It satisfies u(0) = 0 and p/(0) > 0
(see Figure 5.1), where p/(A) denotes the derivative of pu with respect to A. Several
mathematical descriptions are available in order to describe this curve. Two of them
are considered in Sections 5.3.1 and 5.4.1.

5.2.2 Wheel acceleration dynamics

The state variables of the model are

dw
r1 =X and o= RE — a,(t),
where a,(t) = dv,(t)/dt denotes the vehicle’s longitudinal acceleration. The state x;
is the wheel slip. The state x5 is the wheel acceleration offset, that is, the difference
between the acceleration of the wheel and that of the vehicle. These variables evolve
with the following dynamics

d.ﬁl?l 1

& —a,(t

dt o GeDu )

dry  ap/(x) RdT,  da(t)
BT o CWmEm) T -

where a = (R?/I)F, and the extended braking stiffness 1/ (.) is defined as the deriva-
tive of the tyre characteristic p(.) with respect to A.

During an ABS-controlled braking manoeuvre, the vehicle’s acceleration a,(t)
stays almost constant and close to the maximal value a) allowed by the road con-
ditions [Gerard 2012]. Moreover, the wheel slip A remains relatively small. In
such conditions, the control and observer designs can be simplified by considering
that (—a,x1 + x2) ~ x9. This approximation is exact only at constant speed, but
it remains reasonable in the case of ABS manoeuvres [Gerard 2012]. Its validity is
checked a posteriori in Sections 5.3 and 5.4, by simulating the proposed observers on
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the original (non-simplified) model. This approximation leads to a simpler dynamics

dl’l 1 "

T T T 42

dt  v.(t) (5.4)
doo @ "(z1)x2 + bu

dt Uz(t)’u 1)42 )

where the control variable uw = dP,(t)/dt is the derivative of the brake pressure
and b = —R~y,/I. Indeed, we have T, = —vB, (see Section 5.2.1), and thus
(R/1)dT,,/dt = bdP,/dt.

5.3 Observer design (known road conditions)

5.3.1 Tyre characteristic

In the literature, one can find several mathematical formulas that have
been used to describe the tyre characteristic p(A), such as trigonometric func-
tions in [Pacejka 2005], second order rational fractions in [Kiencke 2000] and
[Pasillas-Lépine 2006], and exponentials in [Burckhardt 1993]. This section is based
on Burckhardt’s model introduced in [Burckhardt 1993]

p(\) = c1(1 — e72) — 3\, (5.5)

where the coefficients ¢; are constants depending on the road conditions, the tyre
model, the tyre pressure, etc. Therefore, for the sake of robustness, the ABS algo-
rithms should be able to handle the uncertainty associated with these coefficients. A
typical tyre characteristic associated to this model is illustrated in Figure 5.1.

5.3.2 Extended braking stiffness dynamics

Burckhardt’s tyre model is particularly interesting when it comes to estimate the
value of the extended braking stiffness, which cannot be measured directly. Indeed, a
simple mathematical formula for p/(A) can be obtained by differentiating (5.5), with
respect to A. From this formula and from the second order derivative of (5.5), one
can establish a relation between these variables:

,u”()\) + CQ/,L/(A) + cocy = 0. (56)

Now, defining the wheel acceleration offset z; = x5, the extended braking stiff-
ness zo = p/(z1), the unknown product of parameters z3 = —cyc3 as new vari-
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ables, and combining equations (5.4) and (5.6) gives

dz; —a b
— = ——2Z U
dt v ()
d22 1
aC AN 5.7
at =T (51)
ng
B0
dt ’
where ¢ = —cy is a constant that depends on road conditions. This model can be

seen as a generalization of the model proposed in [Ono 2003] and as a particular case
of (5.4), associated to Burckhardt’s tyre model. Somehow, considering the unknown
constant z3 as a new state variable (and not as a parameter) is not optimal. Indeed,
the adaptive observer approach [Besangon 2000] could have been a more standard
way to handle this problem. Nevertheless, that approach has not been followed here
because (for the authors) it is not obvious how to combine it with the switchings
introduced in the next section. While, using a representation of the form (5.7), the
approach of [Hoang 2014b] is directly applicable.

On the one hand, an interesting quality of this model is that the wheel slip (which
cannot be measured) does not appear explicitly in it as a state variable. One might
argue that this is not that interesting, since the velocity (which cannot be measured
neither) appears instead in the system’s dynamics. Nevertheless, at least at high
speeds, it is much easier to estimate the vehicle’s velocity than to estimate wheel
slip [Daiss 1995]. On the other hand, the main drawback of our model (5.7) is that
it is assumed that the value of ¢ is known, which is true only for a fixed type of road
conditions (the more complex case of unknown road conditions is considered later,
in Section 5.4.

5.3.3 Observer Design

Since, unlike the wheel acceleration offset z1, the extended braking stiffness z; is
not directly measurable, it must be estimated using an observer. To that aim, one
can start with a copy of the original system and add some terms proportional to the
observation error, in order to ensure the convergence of the trajectories between both
systems. As it is shown later, multiplying these terms by z; simplifies considerably
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the analysis. At the end, one obtains

dz —a ky (2 ~
d_tl = v_x2122 + bu + 11(1;)21(21 —Z1)
dz: -z ko(z ~
d_; = (& + zg)—l + 2521),21(21 — %) (5.8)
dz: k
= 3(21)21(21 - /2\1)7

dt v,

where Z; are the observer states.

In (5.8), the observer gains k;(z;), for 1 <4 < 3, must depend on the value of z; in
order to ensure the observer’s stability independently of the sign of z;. The simplest
choice might be

k- if z1 < 0.

)

kT oif 0
kz(zl)—{l tas (5.9)

Even if the gains k;(z;) are discontinuous, it must be stressed that the observer
gains k;(z)z; are continuous, which ensures the existence and uniqueness of solutions
for (5.8) when 2 (t) is considered as an external input.

Let us consider the observer errors e; := z; — z;, for 1 < i < 3. Subtracting
equation (5.8) from equation (5.7) leads to

—]{31(21) —a 0

d

d_(;:ﬁ —ky(z1) ¢ 1]e (5.10)
Yr \—ks(z) 0 0

Notice that if the right hand side of (5.10) is divided by z; /v, then the observer error

dynamics is transformed into a linear system. This leads to the idea of changing the

time-scaling. Indeed, let

t

S(t) — |21(7—)|
o Vu(T)

which ensures that dt/ds > 0, independently of the values of z;. Since, for any
function ¢ : R — R", one has

dr, (5.11)

de depdt dy v,
—_— == 12
ds dtds dt|z(t)] (5.12)
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This implies

—k —a 0O
Are=|—-ky ¢ 1]e ifz >0
d ki 0 0
% _ 3 (5.13)
ds k a O
Ae=|ky —c —1|e ifz <0,
\ ks 0 0
which can be written using a more compact notation in the form
d
il(SS) = Aoeel(s), (5.14)

where o denotes a piecewise constant signal that selects, at each instant, a matrix

from the pair {A;, A_}.

5.3.4 Stability Conditions

It results from the previous section that the analysis of the asymptotic conver-
gence of the observer (5.8) can be derived from the stability analysis of the error
equation (5.14), which is an autonomous switched linear system. It appears that nu-
merous stability results are available for that class of systems [Liberzon 2003]. Most
of them are based on classical Lyapunov-functions. But some LaSalle-like results
are also available [Hespanha 2004], for which the stability properties of the switched
system are proved via regularity assumptions on the set of switching signals.

Define the switching signal o(t) = sign(z;(t)), and assume that the solutions
of (5.14) are such that e and o are piecewise differentiable and piecewise constant,
respectively. Following [Liberzon 1999], define moreover the set S[rp|, with 7p > 0,
of switchings for which any two consecutive discontinuities of o are separated by no
less than 7p. The constant 7p is called the dwell-time. The origin of a switched
system of the form (5.14) is said to be uniformly exponentially stable if there exists
constants ¢o and A\ such that, for each ¢ > 0, we have ||e(t)|| < coexp(—Aot)||e(0)]].
In this definition, the word uniform refers to the fact that ¢y and Ag do not depend
on the switching signal [Angeli 1999].

Under a dwell-time condition, as a particular case of Theorem 4
of [Hespanha 2004], one can prove that a switched linear system is uniformly ex-
ponentially stable if there exists a symmetric positive definite matrix that satisfies
simultaneously two non-strict Lyapunov equations (more details on this point are
given in Appendix A). The aim of Theorem 5.1 below is to show that, for the switched
system (5.14), it is always possible to find a pair of gains K+ and K~ such that this
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LaSalle-like condition is satisfied. To ensure the stability of (5.14), a first natural
condition is to impose the matrices A, and A_ to be Hurwitz. The corresponding
conditions on the observer gains can be derived using Routh’s criterion, which gives

(cki + aky)(c — k)

< ki <0 (5.15)
a

c
ki > ¢, k;<—akf, and —

and

(cki + aky )(c— kf).

a

ki <ec, ky <—Sk, and 0<ky < — (5.16)
a

From these conditions, with the help of Theorem 4 of [Hespanha 2004], one can obtain

the following result (proved in Appendix A, at the end of the paper).

Theorem 5.1. Assume that the three following conditions are satisfied
(i) The gain K+ = (ki ki ki) satisfies (5.15).
(it) The gain K~ = (ki ky ki) satisfies (5.16).
(iii) The gains K+ and K~ satisfy

k) (k)
aky aky

>0 and (cki +ak)) = (ck] +aky)<0. (5.17)

Then, the system (5.14) is uniformly exponentially stable, provided that the switching
signal o admits a strictly positive dwell-time.

This result gives at least a certain degree of freedom: we can chose any K that
stabilizes the system. Once this choice has been made, it imposes however an almost
unique choice for K~ (in order to assign the same spectrum to A, and A_). We
do not know, in general, if this constraint can be avoided, but this issue is discussed
in [Hoang 2014b].

5.3.5 Experimental results

The observer design proposed in this section has been validated on data coming
from the tyre-in-the-loop experimental facility of TU Delft, acquired in the context
of ABS research [Gerard 2012]. The test-rig consists in a large steel drum on the top
of which the tyre is rolling. The tyre is mounted on a wheel that is attached to a
rotating axle, which has a rigidly constrained height. The axle is supported by two
bearings on both sides of the wheel. The bearing housings are connected to a fixed
frame by means of piezo-electric force transducers. A hydraulic disk brake is mounted
on one side of the axle. The pressure in the calliper is locally controlled by an analog
electronic circuit connected to a servo-valve, in order to match the reference pressure.
An illustration of this test-rig can be seen on Section 9.4 of [Pacejka 2005]. The setup
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has been used for several years, at TU Delft, for tyre modelling and identification
(see [Pacejka 2005, Section 9.4] and [Zegelaar 1998, Appendix A], and the references
therein).

In order to satisfy the conditions imposed by Theorem 5.1, for positive z;’s, the
following observer gains are chosen

kT = c+ (b1 +26)
ki = — (85 +26182+ cki)/a
ki = —pifs/a.

And, for negative z;’s,

ki = c— (B +26)
ky = —(B3+28182+cky)/a
k?,_ = ﬁlﬁg/a’a

where (5, and [y are positive constants that assign the spectrum of the error dy-
namics. More precisely, the error dynamics (5.13) will always have two real eigen-
values —f; (with multiplicity 1) and —3, (with multiplicity 2), independently of the
sign of z;. The interest of assigning the same spectrum to A, and A_ is explained
in [Hoang 2014b].

The experimental results are shown in Figure 5.2, where it can be seen that the
states of the system and of the observer remain close to each other. In this figure,
the observer’s variable Z; is compared to the measure of z;, while the variable Z, is
compared to an estimation p'(z1) of the XBS obtained directly from the measure
of wheel slip. One can observe in this figure a surprising phenomenon: the noise of
the observed variable 2, is bigger when the wheel acceleration is positive. A possible
explanation for these oscillations might be that the norm of K is bigger than that
of K~, a constraint imposed by Theorem 5.1.

This phenomenon reduces the accuracy of the estimation, which is nevertheless
good enough to detect whether the tyre is in its stable or unstable region. The
proposed observer has however another weak point: it only works correctly when
the parameter ¢y of Burckhardt’s model is known, at least approximatively. The
knowledge of this parameter is closely related to the knowledge of road conditions, a
problem that is considered in the next section.

5.4 Observer design (unknown road conditions)

In contrast to the simpler approach of Section 5.3, it is now assumed that the
observer does not have any information on the road conditions (and thus on the
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Figure 5.2: Comparison between experimental measurements and the estimated
states given by the observer (5.8), during an ABS test [Pasillas-Lépine 2006]. The pa-
rameters of the test-rig tyre characteristics are: ¢; = —1.24, ¢o = —34, and ¢35 = 0.65.
The system parameters are: I = 1.2kg.m? R = 0.3m, F, = 2500N, and =, =
17.5N.m/bar. The speed of the drum is 65 km/h. The XBS estimated by the ob-
server is compared to the theoretical value obtained from the wheel slip and the
derivative of the tyre characteristic.
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Burckhardt’s model || Approximate model
C1 Co C3 00 01 02
Dry road || 1.28 | 24 0.52 -0.53 | 25.22 | 7.2
Wet road || 0.86 | 34 0.35 -0.36 | 8.86 24
Snow 0.28 | 50 0.05 -0.05 | 0.24 14

Table 5.1: Tyre model parameters

parameters of Burckhardt’s model). This new context imposes the use a more com-
plex four-dimensional observer, which can be considered as a generalization of the
previous three-dimensional observer (5.8).

5.4.1 Tyre characteristic

The main difficulty with Burckhardt’s model (5.5) is that its parametrization is
nonlinear. Recently, in [Tanelli 2009], an alternative parametrization of this model by
exponentials has been proposed (see also [de Castro 2012]). This kind of approxima-
tions can be traced back up to the work of Prony [Prony 1795] (see [Hildebrand 1974]
for a modern treatment). In this section, Burckhardt’s model is approximated with
a similar parametrization

ehAr — 1 e
0
o T

dg)\_l

defined for A < 0. The constants d; and dy must be chosen in such a way that —cy €
[dy, ds]. Since, for negative wheel slip, the parameter ¢, varies in the range [—50, —24],
one can take d; = 22 and dy = 52. The parameters of Burckhardt’s model are shown
in Table 5.1. For different road conditions, the coefficients #; can be identified using
the Least Squares method (see Table 5.1). In Figure 5.1, the tyre characteristics
given by Burckhardt’s model (5.5) is compared to its approximation (5.18).

5.4.2 Extended braking stiffness dynamics

Computing the first, second and third derivatives of the approximate model (5.18),
with respect to A\, one can see that these derivatives satisfy the following relation

©"(A) = a0 + arp'(A) + aap”(N), (5.19)

where ag = didably, oy = —dids, ag = (dy + dg). Therefore, following the ideas of
Section 5.3, we take as state variables z; = x9, 20 = p/(A), 23 = p’(N), and z4 = ay.
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Now, combining equations (5.4) and (5.19) gives

dz; —a

—_— = bu(t

a T ut)

dZQ 21

_ = —Z3

jt ve(t) (5.20)
2z z

d—: — Uz(lt) (a1z2 + Q23 + 24)

dZ4

a0

where a and b are defined in Section 5.2.

The most important property of this model is that the parameters «; and as
do not depend on the road conditions. This leads to the possibility of observing
the extended braking stiffness, using neither the wheel slip nor the parameters that
describe the tyre characteristic. It should be stressed, however, that this model is
only valid for constant road conditions. In the case of a change in the road conditions
(see, e.g., Figure 5.3), the validity of the model fails temporarily, which might induce
a brief divergence between the system and the observer states.

5.4.3 Observer design

For system (5.20), an observer with an error dynamics that is linearizable by a
time-scaling can be constructed following the same approach as in Section 5.3. This
leads to a switching error dynamics (5.13), with

—kf —a 0 0 ki a 0 0

=k 0 10 e o0 -1 0
A= ko a1 and A_ = ke —ar —ap -1 (5.21)

k0 0 0 ki 0 0 0

Conditions for the stability of (5.14), in the case of these new matrices A, and A_,
can be derived following the same approach as for Theorem 5.1 (see Appendix B).

5.4.4 Simulation results

In test-rigs like those of TU Delft, changes of road conditions are not possible.
Nevertheless, numerical simulations can still be used to assess the performance of the
proposed observer. This has been done considering the (non-simplified) model of Sec-
tion 5.2 and using the observer’s output to implement the control law of Section 5.5.
In order to ensure the observer’s stability, for positive z;’s, the following observer
gains are chosen: ki = ay + 2(B1 + B2), ks = (—ay — ki as — (82 + B2 + 48152)) /a,
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ki = (=kioy + akfag — 261 82(B1 + B2))/a, and kf = —p353/a. And, for neg-
ative z1's, ki = az — 2(8 + B2), ky = (—an —kyas — (87 + B2 +46152))/a,
ky = (=kyay + aky as + 281 52(B1 + 2))/a, and k; = —f3?82/a, where 3; and Sy
are positive constants that assign the spectrum of the error dynamics, which has two
double real eigenvalues —f3; and —[f3s.

Figure 5.3 shows the obtained simulation results. The details of the braking sce-
nario are given in the figure’s caption. The observer estimates accurately the values
of the XBS, for different road conditions. During transitions, (which last 25ms), the
estimated XBS values change abruptly. The observer cannot give good estimations
during these transitions. Nevertheless, as soon as they are over, the observer error
decreases in a relatively short period of time that, of course, depends on the choice

of B and fs.

5.5 Control design

A five-phase hybrid ABS algorithm [Pasillas-Lépine 2006] is described in Fig-
ure 5.4. Each of the algorithm’s phases defines either a constant or quickly changed
brake pressure P,(t) that is applied to the brake. The switches between each phase
are triggered when the value of the wheel acceleration offset x5 crosses some prede-
fined threshold. The main interest of such hybrid approaches is that they do not
use any information on the unmeasured variable x;. Nevertheless, they are able
to keep the wheel slip in a small neighborhood of its optimal value \*, for which
the longitudinal tyre force is maximal (with the aim of minimizing the braking dis-
tance), without using explicitly the value of the optimal setpoint. The reader can find
in [Pasillas-Lépine 2006] more details about this five-phase hybrid ABS algorithm.

When the algorithm of Figure 5.4 is tested on an experimental
setup [Gerard 2012], it might fail to cycle correctly as soon as there are con-
siderable changes in the environment. The main reason behind this lack of
robustness is that, during the different phases, the wheel acceleration is controlled
in open-loop, with a brake pressure increase that is independent of the wheel’s
acceleration. This shortcoming can be overcome [Gerard 2012] by controlling the
wheel acceleration x5 in closed-loop (around a predefined trajectory z3), during the
phases for which the brake torque changes quickly.

In order to do this, define 7 := t — ty, where %, is the instant at which a given
phase begins. Consider the time 7" needed by the reference trajectory x3 to go from
the previous threshold €; to the next one ;. Ideally, the duration 7" should be as
small as possible but, due to the physical limitations of the brake actuator, there
exists a lower bound on the achievable T7s. If PV is defined as the maximum brake
pressure derivative that the actuator can deliver (in absolute value), then the choice
of the reference trajectory 3 must guarantee that |P| < PbM . Furthermore, in order
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Figure 5.3: Simulation of a braking ABS scenario with changes of the road conditions:
The car runs on dry asphalt during three seconds and on wet asphalt afterwards. In
this figure, it can be seen that the XBS observer is highly perturbed by the swift
road transition but that, once the transition is over, it converges again in a fraction
of a second towards the appropriate state.



5.5. Control design 93

o <0and z1 <0

5 o u1
T2 < —€5 \Pb_ Rw @ T2 > €1

b= )

T2 < —€y

Figure 5.4: The academic five-phase hybrid ABS strategy proposed
in [Pasillas-Lépine 2006]. The wheel acceleration thresholds €; and the brake pressure
increase and decrease rates u; must be tuned in order to obtain an asymptotically
stable limit cycle (see, e.g., [Ait-Hammouda 2008] and [Pasillas-Lépine 2006]).

to minimize the system’s sensitivity to actuator delays, it is natural to require a zero
derivative for x3 at the beginning and at the end of each phase [Gerard 2012]. A
possible choice for a reference trajectory x3 that goes from ¢; to €; is therefore

25(T) = ao + 17 + a7’ + ag7’, (5.22)

where ag = &;, a1 = 0, ag = —3(e; —¢;)/T?, and a3 = 2(g; — &;)/T?. By imposing,
additionally, the constraint T > (3/2b)|e;—¢;|/PM, one can ensure that the reference
trajectory respects the brake actuator’s limitations described above.

Now, define the tracking error £ = x5 — x5 and the control law

) = (i + S50 acr)). (5.29
where a > 0 is the control gain and /j/(t) is an estimation of the extended braking
stiffness p/(x1(f)). In the absence of estimation error, the tracking error converges
exponentially to zero, provided that the control gain « is taken big enough. Observe,
however, that the gain « is limited by the delay margin of the system [Hoang 2012].
In this approach, the choice of controlling only the variable x5 might be surprising.
But it appears that the stability of all other variables actually comes from the fact
that they are bounded functions of the wheel slip z1, which remains bounded both for
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Figure 5.5: The wheel acceleration tracking (during phases 1, 3, and 4) is achieved
using the observer of Section 5.4 and the control design of Section 5.5. The car runs
on dry asphalt during three seconds, then on wet asphalt for one second, and finally
on snow until the end of the simulation. When the road conditions change, the brake
pressure is reduced and follows the available tyre force potential.
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hybrid [Gerard 2012] and continuous [Pasillas-Lépine 2012] control designs, provided
that the wheel acceleration offset x5 follows its reference.

In the simulation of Figure 5.5, the control uses the XBS estimation given by the
observer. Thanks to the observer performance, the control law (5.23) ensures a good
tracking performance of the wheel acceleration x5 to its pre-defined reference. As a
consequence of the robustness added by the closed-loop wheel acceleration control,
the brake pressure is automatically increased or decreased to match road conditions.

5.6 Conclusion

In the context of anti-lock brake systems (ABS), we presented in this chapter a
new approach to estimate the extended braking stiffness. The first contribution of
this work is a new nonlinear wheel acceleration model in which the XBS enters as
one of the state variables. This model is obtained using either Burckhardt’s model
or its linearly parametrized approximation. The second contribution is the design of
two stable XBS observers. When the road conditions are known, a three-dimensional
observer solves the problem. But, for unknown road conditions, a more complex
four-dimensional observer should be used instead. In both cases, the stability of the
observers is proved via time-rescaling and LaSalle-like theorems for linear switched
systems.

The three-dimensional observer has been tested on experimental data coming
from TU-Delft’s test-rig [Gerard 2012]. In such tests, the parameters associated to
the mounted tyre are known. The experimental results show the effectiveness of this
observer. The four-dimensional observer has been tested in simulations in a scenario
that includes unkown changes of road conditions. The simulation results show a
precise estimation of the XBS even in the case of discontinuous jumps of the road
conditions.

The proposed method has nevertheless several limitations. First, it needs a
(rough) estimation of the vehicle’s speed (see, e.g., [Daiss 1995] and [Corno 2013]
for works that consider this problem). Second, the combined convergence of the ob-
server and of the control law has not been proved. One could expect, however, that
such a proof is obtainable via cascaded design arguments [Loria 2005]. Third, the
vertical load F, has been considered to be both known and constant. It is true that F,
can be "reconstructed” using the longitudinal and lateral accelerations as inputs. It
is also known that hybrid ABS strategies have a certain degree of robustness with
respect to vertical load uncertainties (see, e.g., the Appendix A.1 of [Gerard 2012]).
Nevertheless, the impact of a time-varying vertical load on the proposed design is
clearly a topic that deserves further investigations.
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Appendix A - Proof of Theorem 5.1

This section includes a sketch of the proof of Theorem 5.1. The interested reader
can find in [Hoang 2014b] an approach that generalizes this method to a more general
class of switched systems that contains, as particular cases, the proposed three and
four-dimensional observers.

The characteristic polynomial of the matrix A, is given by
n® + (ki — e)n? — (ckf + aki)n — ak$ = 0. (5.24)

Using the Routh criterion for (5.24) leads directly to condition (5.15). The same
argument, but applied to A_, gives condition (5.16).

Assume that that the observer gains K™ and K~ satisfy, respectively, the con-
ditions (5.15) and (5.16). For additional details concerning the following steps, the
reader is referred to [Hespanha 2004, Theorem 4]. The objective is to show that
there exists a pair {P,, P_}, of symmetric positive definite matrices satisfying all
the conditions required by that theorem, for an appropriately defined pair of matri-
ces {C},C_}.

Define C'y = (c{r 0 0) and C_ = (cl’ 0 0), where ¢f,c; # 0. It is easy to
check that the pairs (A;,C,) and (A_,C_) are observable. In order to satisfy the
conditions of [Hespanha 2004, Theorem 4], one must find a matrix P that satisfies
simultaneously the equations ALP + PA, = —CTC, and ATP + PA_ = —CTC_.
Observe that P defines a non-strict Lyapunov function only, because the symmetric
matrices C{'C; are not strictly positive definite. Denote by (p;;) the elements of P.
One can easily deduce from ATP + PA, = —C%C, that

A — (cki + aky)

c
P11 = P P22, P12 = 5?22,
] (c— k¥ (5.25)
P13 = —pa2, p23 =0, and p33=-—"7"pa,
a aks
where pys > 0. With the elements of P computed as in (5.25), one obtains
— k) (ki + aks ki
cf:i\/Q(c 1 )(c 1a‘2|‘a ;) ta 5 s # 0. (5.26)

The term in the square root is positive because of (5.15) and pay > 0.

Similarly, since P has to satisfy the condition ATP + PA_ = —CTC_, it follows
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that the elements of P are also of the form

2 — (cky +aky) c
pu = o2 P22, P12 = Epm,

1 c— ki
P13 = P22, P23 = 0, and ps3= u

(5.27)
ak:?)_ D22.

From (5.25) and (5.27), additional conditions on the observer gains K and K~ can
be obtained:
(c—k=) _ (c— kD)
aky aks

>0 and (ck{ +ak]) = (cki +aky) < 0. (5.28)

The element ¢; of C_ is also different from zero and, because of (5.16) and pgs > 0,
one obtains

- \/_Q(c — k) (chy +aky) + aky (5.29)

D22
a? ’

which ends the proof.

Appendix B - Stability conditions for the
four-dimensional observer

This section is devoted to finding the conditions on the observer gains for which
the four-dimensional observer is convergent. It has been shown in Section 5.4 that
the observer error dynamics is also an autonomous switched linear system. The
stability analysis of the four-dimensional observer is then proved thanks to Theorem 4
of [Hespanha 2004] provided that the dwell-time condition is satisfied. The similar
steps, as shown in Section 5.6, are taken in order to obtain the stability conditions
on the observer gains.

The characteristic polynomial of the matrix A, is given by

0+ (ki —ao)n® + (—on —kf ag —akd )n? + (= ki oy +aky ap —aky )n—akyf = 0. (5.30)
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n* 1 (—a1 — ki as — ak}) —ak}
n3 (kf’ — a2) (—kf'cn + ak;ag — ak;')
—F S o
n? (—a1 — k:1+042 — ak:;r) _ R a1+_fk2 ap—aky ) —ak4+
(k] —a2)
(k:j‘—ag)alcél+

n (—kfal + ak;rozg — ak;r) +

(—kF a1 +akd ap—akd)

(—al—k+a2—ak+)—
ro2oks T —ap)

1 fakj[

Table 5.2: The Routh criterion

Applying the Routh criterion (see Table 5.2), we must ensure that

(k‘f — 062) >0
(—kf oy + akyag — akd)
(k" — ao)

ak,z-(ki‘r _ 042) - (531)

>0

(—ay — kfag —aky) —

(—ki oy + aky oy — akd) +

+ + +
+ +) _ (ki aataky as—aky)
« ko ak
(—on —kiay —aky) (k7 —o2)

—akf > 0.

Then, the observer gain K+ = (ki k3 ki ki) satisfies

ki"_ > o
k;_ < -] — szag
a
B (—a1 — k:f'ag — ak;)(kf —ag) N —k:fal + ak;ag - k;’ - —k:i"al + ak;ag
a a a
B (=K a1 + akias — akd)(—ay — kfas —aky)  (—kf a1 + akf as — ak])? <kt <o
a(ky — as) a(ky” — ag)? !
(5.32)

The same argument, but applied to A_, gives the conditions on the observer
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gain K~ = (kl_ ky ks k:4_) as follows

kl_ < a9
k‘; < -] — k;OQ
a
—ky oq + aky ao < (—a1 — k] ag —aky ) (o — k7)) n —ky o1 + aky oo
a 3 a a
_ (kyan —aky o + ak:g)(—_al — kg — aky) N (ky o — akQ_a2_+ aky)? <k <0,
CL(OZQ — ki )2 a(ag — ky )2

(5.33)

Following [Hespanha 2004, Theorem 4], the objective is again to show that there
exists a pair {Py, P_}, of symmetric positive definite matrices satisfying all the
conditions required by that theorem, for an appropriately defined pair of matri-

ces {C,C_}. To that aim, let’s define C;. = (¢f 0 0 0)andC_=(¢; 0 0 0),
where ¢, c; # 0. Our first task is to check the observability of the pairs (A, C.)
and (A_,C_). The observability matrix O, ¢,) is shown as follows

cf 0 0 0
o o fkfcf facir 0 0
(Ap.Cp) = ((lc{r)2 + ak;)cir acILkIr —act 0
—ki"cf((kf’)Q + aK;') - ac?‘(kf’k; — k;‘) —acT((kf‘)Q +akf + a1) aci"'(kf' —ag) —ac('l" :
5.34

The determinant this matrix is equal to —a®(c")?* that is clearly different to 0, then
the pair (A, Cy) is observable. The observability proof of (A_, C_) is similar.

The second task is to find a matrix P that satisfies simultaneously the two equa-
tions ATP + PA, = —C1C} and ALP + PA_ = —CTC_. Observe that P defines
a non-strict Lyapunov function only, because the symmetric matrices CI C; are not
strictly positive definite. Denote by (p;;) the elements of P. One can easily deduce
from AYP + PA, = —CTC, the following equations

2(kipi1 + k3 p1a + k3 pis + ki pua) = (¢f)?

— ki pra — k3 paz — k3 pas — ki p2a — apry + aaprs =0
— kip1s — k3 pog — k3 pss — ki psa + 12 + coprs = 0
— ki pra — k3 paa — k3 pss — ki paa 4 p1s =0

—api2 + aipe3 =0

— ap13 + a1P33 + Paz2 + apaz = 0

— ap1a + a1pgs + pa3 =0

P23 + aapsz =0

P24 + Qopsa + p3z =0

p3a = 0.

(5.35)
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Then, we obtain

+ 2
o = (S 11 = akf — ko) + (o + 200)] + 2t 17 ) 22

o0 £+ ay %
P12 = — a P33, P13 = TP337 P14 = _ZPSSa P22 = (§+ + ag)p:a:a
(—ay — kfag —aky) — €T
P23 = —QP33, Poa = —P33, P3a =0, pu=— kT P33-
4
(5.36)

- +O{ a +OL —a T
where ps3 > 0 and £+ = &0 1(];?2 2)2 k5) 5 0 thanks to (5.32).
1 «

With the element of P computed as in (5.36), one obtain
(Cir)2 =2 (kfpu + k;pm + k§p13 + kipm)
1
=2 (ki_pll + ((£+ + al)k; - alagk;' — asz) ;p33>
2pss (1 (&F + g 2 of 4 + + + +
== k] 7[(7041 —aky — kT a2) + (a3 + 201)] + - +E )+ ((§ + a1)ky — arazk] — azk) )

2 ket a1 éH (KT — a
- % (15[(—&1 —ak} — kfag) + (@3 + 201)] — w +kF (K —ag) + ket ).

(5.37)
Thanks to the conditions of observer gain K, as shown in (5.32), expression (¢{)? >
0. Indeed, from the condition of k;, we have

- —Et(—ay — aky — ki ao) (K — ag) N (EF)2 (K — @2)'

ki (k7 — o) - "

This leads to
ki€t (—on — aky — K as) . kiet(al +2a1)  anét(kf —ag)

2p33
() > 23

a a a a
& (—ar —aky *akfraz)(kf —on) (5+)2(kj —oa) ket
26 pss ()0 2 + + (1t +
> = (K (a3 4 200) — o1 (k" — a2) + ag(—oq — aky — ki ag) + £ (ki — a2) + akd)
26+t
> §a2pgg (onki — aKF s + aky + (—aK3 + ak3i az — aqki"))

> 0.
(5.38)

Similarly, since P has to satisfy the condition ATP + PA_ = —CTC_, it follows
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that the elements of P are also of the form

—2(kypu + k3 pro + ks qus + kypua) = (¢7)?

ki pi2 + kg paz + k3 pas + ky pas + apn — aapiz3 =0
ki p13 + kg pa3 + k3 pa3 + ky pas — p1a — agpiz =0
ki pia + kypoa + kypsa + kypas —p13 =0

apia — agpaz =0

apis — q1p3z — Pz — Gapaz =0

apia — c1psg — p23 =0

— P2z — Qap3z = 0

— P24 — QaP3s — P33 =0

p3s = 0.

(5.39)

Thus,

(& _ _ 2 of _\ P33
pu = | 2ol(ma1 —aky —kyas) + (ag +2a0)] + — + k) ==

a1 4 a Q@ _

P12 = — la 2]933, P13 = 1p33, P1a = —;22733, D22 = (f + Oé%)P&‘s

_ _ _ (o= kg —aky) =&
D23 = —Qap33, Pas = —P33, Paa =0, pa=— - P33.-

ak,
(5.40)
where £~ = (kfal(_'zkgko?)ﬂk;) > 0 thanks to (5.33).
az—~r,

From (5.36) and (5.40), additional conditions on the observer gains K+ and K~
can be obtained

_(—kfon +akyos —aky)  (kToq —aky as + aky)

+ = = = £ =
¢ 6 — o) (02— F7) $ 8
3(—041 —aky — ko) +kf = g(—al —aky — kyao) + kg (5.41)
(—ay — ko —akd) — & _ (—ay — kg —aky ) — €&
aky aky

The proof is ended by showing that ¢; of C_ is also different from zero. From
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the first equation of (5.39), we have

(c7)? = -2 (kfpll + k3 p12 + kg p13 + k2p14>

_ _ _ _ N\ 1
= -2 (kl P11+ ((f + a1)ky — arank, — ok ) ;p33)
2p33 [, (&7 - _ 2 a? _ _ _ _ _
= k1 7[(70{17(1]{)2 — k] a2)+(a2+2a1)]+7+k4 + (({ + a1)k; — arask, fa2k4>

-2 ('ﬂf_[(—al ~aky —kaz) + (a3 + 200)] + LTI g o) k;s)

- <_ B (o —aky K 02) + (03 + 2a0)) - 2R o, gy - k35> '

a a

(5.42)
Using
- _ & (—aq —aky; — ki ow)(ag — k7)) + (67)* (g — Ky
k4(a2—k1)> g( 1 2 1 2)(a2 1) (f)(g 1)7
we obtain
(7 > B Ao maly —has) E(d 4ty ailes ki)
¢ (can —aky —akfa2)(a2 — k) <£—>2(o;2 —kD ey
2
> 5212733 (_kf(ag +2a1) —ay(ag — ki) — ag(—ay — aky — k] ag) + &a(az — ki) — ak‘g)

26—
> § P33 (—alk‘f + aky ap — aksy + (aky —aky o + alkf))

(5.43)
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CHAPTER 6

Output tracking for restricted
feedback linearizable systems with
input time-delay

The content of this chapter is strongly based on :

W. Pasillas-Lépine, A. Loria, and T.-B. Hoang. Output tracking for
restricted feedback linearizable systems with input delay. In Proceedings
of the IEEE Conference on Decision and Control, Florence (Italy), 2013.

The proof of Theorem 6.2 is due to Antonio Loria.

Abstract: We propose a new method for input delay compensation of nonlinear
systems that can be linearized using restricted feedback. Our approach is based on
an inversion procedure that finds the input that tracks asymptotically the desired
output. This kind of inversion schemes, typically, needs an estimate of the future
of the system’s state. In order to compute this estimate, instead of integrating the
original system (which might be nonlinear or unstable), we integrate the desired error
dynamics (which is both linear and stable, at least asymptotically). Our approach is
validated numerically on an academic nonlinear pendulum example.

6.1 Introduction

The list of available methods for input delay compensation is not
short [Krstic 2009]. The simplest is probably the Smith predictor [Smith 1959],
designed for stable linear systems. This method, based on frequency domain tech-
niques, is widely used in industrial applications. For more general (possibly unstable)
linear systems, other solutions based on a state-space representation are available
(see, e.g., [Manitius 1979] and [Artstein 1982]). But it is only recently that methods
have been proposed for several classes of nonlinear systems (see, e.g., [Mazenc 2006],
[Georges 2007], [Besangon 2007], [Krstic 2010], [Mazenc 2011b], [Koo 2012], and the
references therein). A more complete overview on time-delay control systems can
be found, for example, in the surveys [Richard 2003| and [Sipahi 2011}, and in the
books [Niculescu 2001] and [Krstic 2009].
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In order to compensate input delays, most methods use either the exact value or
an estimation of the future of the system’s state. Consider, for example, the linear
system

t(t) = Az(t) + Bu(t — h), x€R", (6.1)

for which we want the origin to be asymptotically stable. Since the dynamics of this
system can be integrated explicitly, a closed-form prediction is available. A classical
trick (see, e.g., [Manitius 1979] and [Artstein 1982], or [Richard 2003] for a more
recent account), based on this prediction, is to use the variable

2(t) = x(t) + /tjh A== By(s)ds, (6.2)

which satisfies the differential equation
i(t) = Az(t) + e " Bu(t). (6.3)

When the pair (A, B) is stabilizable, one can always find a gain K such that v =
—Kz(t) stabilizes (6.3). Unfortunately, the exponential stability of (6.3) does not
imply that of (6.1), because the operator associated to (6.2) is not necessarily stable.
We refer the reader to [Mazenc 2011a] for a discussion on this problem and for an
alternative choice of this operator. In the nonlinear case, several approaches have
been proposed in order to generalize this idea (see, e.g., [Krstic 2009]). Nevertheless,
even in the linear case, it is well known that the numerical implementation of such
predictor techniques might lead to an unstable behavior (see, e.g., [Engelborghs 2001]
and [Mondié 2003]), at least when the original system is unstable. At the opposite,
when the original system is both linear and stable, a very recent result [Mazenc 2012]
shows that such schemes admit a stable numerical implementation.

Oversimplifying the previous observations, one could deduce a simple but proba-
bly abusive conclusion: a prediction of the future of the system’s state based on the
integration of a stable and linear system is likely to lead to a stable numerical scheme;
while the integration of an unstable or nonlinear system might be confronted with a
more delicate numerical implementation. Nevertheless, if our aim is to find a control
law that tracks a given reference for the system’s output, the reference model for the
error dynamics can be considered as a part of the control design. Even in the case of
an unstable and/or nonlinear plant, one can always chose a tracking error dynamics
that is both stable and linear, at least asymptotically. Since the evolution of such a
system can be predicted more easily, it is tempting to use this prediction in order to
compensate input delays. The aim of this chapter is to explore this simple idea, to
propose a control law based on it, and to show its stability (in continuous time). In
order to follow this program, we consider a class of systems that is contained in the
class of feedback-linearizable systems (we assume, additionally, that the vector-field
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associated to the control input is rectified [Brockett 1979]). Our main objective is
the input-output inversion of the system, for the feedback linearizing output, with a
compensation of the input delays. Observe that more general classes of systems have
been considered before (see, e.g., [Mazenc 2006], [Krstic 2010}, and [Mazenc 2011b]),
but with different objectives that lead to different control laws.

Notation. For a square matrix § we use (3, and [); to denote, respectively, the
lower and the upper bounds on its spectral norm, which is induced by the Euclidean
norm on vectors. For t, € Rs¢ and any absolutely continuous ¢ : [0,h] — R", the
solutions of a functional differential equation

2(t) = f(t,2(t),z(t — h)) (6.4)

with f(¢,-) locally Lipschitz and f(-, z) locally integrable, are absolutely continuous
functions z that satisfy, additionally to (6.4) for ¢ > t,, the initial condition

2(to —s) = ¢(s) Vsel0,h].

We say that the trivial solution z(¢) = 0 is uniformly exponentially stable if there
exist k, A > 0 such that, for any absolutely continuous initial condition ¢,

2(t)] < kgl V>t
where

ol = (1600} + sup fo(s)P) "

s€[0,h]

6.2 Scalar systems

In the absence of input delays, the tracking problem for a scalar nonlinear system
i(t) = f(z(t)) + u(t), for z(t) € R, (6.5)

is a trivial task. Indeed, if we want z(t) to converge towards a continuously differen-
tiable reference 2*(t), one can define the tracking error

e(t) = z(t) — x*(t) (6.6)
and apply the linearizing control input

u(t) (6.7)

I
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which stabilizes the origin of the error dynamics
é(t) = —ae(t) (6.8)

globally and exponentially, for any control gain a > 0.

In the presence of input delays, that is for a system described by the functional
differential equation

i(t) = f(x(t)) + u(t — h), for z(t) € R, (6.9)

this task is more complex since the closed-loop system’s trajectories are generated
by
i(t) — &*(t — h) = —ae(t — h) + f(z(t)) — f(z(t — h)),

as opposed to the "ideal" error dynamics (6.8), in the absence of delay.

One way to compensate the delay is to use, if possible, the future values of x
and z*, at the instant ¢ + h. But, since the future state values are unknown, they
must be estimated or predicted. Moreover, the reference trajectory might be unknown
in advance as, for example, in the case when a human operator fixes it in real-time.
Therefore, when implementing (6.7), we shall set the control goal to

tlim e(t) =0, for e(t):=x(t)—a"(t—h), (6.10)
—00

and introduce a state prediction denoted by z¥. More precisely, we denote by z'(¢, h)
an estimate value of z(¢ + h), computed at the instant ¢. Then, with the control goal
(6.10) in mind, we define the control input as

u(t) = —f(z"(t,h)) — ae(t) + i*(t) (6.11)
so that, in closed loop with (6.9), we have

e(t) = —ae(t — h) + f(a(t)) — f(z"(t — h,h)). (6.12)

P

By construction, when the prediction z* is perfect, we recover the error dynamics

é(t) = —ae(t — h), (6.13)

whose origin is known (see, e.g., [Niculescu 2001, Proposition 3.15]) to be exponen-
tially stable if 0 < a < m/2h. For this reason, we consider (6.13) as the target error
dynamics.

When the error follows its reference dynamics (6.13), a prediction of the future
error evolution may be obtained by a direct integration of (6.13). Otherwise, if the
target error dynamics is not followed exactly, one can add an integral term to this
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prediction, in order to damp the perturbation coming from the mismatch between
the ideal and the actual error dynamics. We thus define the error prediction as

t+s t+s
el (t,s) == e(t) — a/ e(t — h)dr — B/ p(T — h)dr, (6.14)
t —00
for s € [0, h], where the prediction bias is defined by
p(t) :=ef(t — h,h) — e(t). (6.15)

The meaning of this bias is clarified if we observe that the error prediction e” (¢t —h, h)
corresponds to the estimate of e(t) computed at the instant ¢t —h. Another important
point is that, in our estimation, the past values of the error e(t — s), for s € [0, h],
are needed in order to estimate its future values ef’(t, s), for s € [0, h].

We emphasize that the real-time implementation of such prediction schemes is
straightforward. This implementation has however the drawback that at each instant
t the past values of all variables, for the instants s € [t — h,t], must be stored in a
memory buffer. We consider, nevertheless, that this drawback is compensated by the
numerical stability of the proposed approach.

Our interest in this error prediction comes from the fact that an estimate of the
future values of the system’s state can be deduced from it, by taking

aP(t,s) :==a*(t+s—h)+el(t,s), Vscl0,h] (6.16)

which completes the definition of the control law in (6.11). Observe that, as we
have already said, the estimation of z” (¢, s) is not obtained by an integration of the
system’s dynamics but by an integration of the target-error dynamics.

Next, for the purpose of analysis, it is convenient to rewrite the closed-loop equa-
tion (6.12) as

é(t) = —ae(t — h) + f(z(t)) — f(z(t) + p(t)) (6.17)

and to compute the dynamics of the prediction bias p(t). To that end, we differentiate

on both sides of (6.15), we use (6.12) and (6.14) and, to compact the notation, we
introduce

U(s) = f(a(s)) — f(a(s) +pls)),
which leads to

p(t) = =Bp(t = h) = (t) + P(t = h). (6.18)

Note that, if f is Lipschitz, we have |¢(s)| < 7 |p(s)|, where ~ is the Lipschitz constant
of the function f.

A first property of this equation is that, via the Lyapunov-Krasovskii method, one
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may establish exponential stability of {p = 0} for sufficiently large 3, and this result
is global if so is the Lipschitz property. A second property of the closed-loop system
dynamics, given by equations (6.17) and (6.18), is that it consists in the cascade of
two exponentially stable systems; as a matter of fact, it may also be shown that
(6.17) is input-to-state-stable from the input p(t).

The following proposition, whose proof is a direct consequence of our main result
(Theorem 6.1), formalizes the previous developments.

Proposition 6.1. Consider the scalar input-delay system (6.9). Assume that there
exists v such that the function f satisfies

f(x) = fy)| <~vlz—y|l, Vaz,yeR

For any given h* > 0, if the gains a and (8 satisfy the relations
a<1/h* and B> (9/4)y+ B(B+2y)h", (6.19)

the origin of the closed-loop system, given by (6.9) with the control u(t) defined
by (6.11) and (6.14)-(6.16), is globally exponentially stable for any constant de-
lay h € [0, h*].

Observe that the constraint on § imposed by condition (6.19) is sufficient for
the exponential stability of {p = 0}, for (6.18). Additionally, in the absence of the
nonlinearities, one may take v = 0 and, hence, for the system p(t) = —fp(t — h)
we obtain the condition 8 < 1/h* which is slightly more conservative than the well
known condition § < m/2h*.

The simple ideas followed in this section, in order to compensate input-delays for
scalar systems, are generalizable to a particular class of systems in triangular form,
to which we devote our attention in the next section.

6.3 Restricted-feedback linearizable systems

Following the streamlines laid in the previous section for the control of (6.9), let
us consider the class of systems that can be linearized using a change of coordinates
and a restricted-feedback transformation [Brockett 1979]. When an input-delay is
introduced, after a change of coordinates these systems can be written in the following

i(t) = fi(zi(t)) + 22(t)
ia(t) = fa(aa(t), 22(t)) + 3(t)

form:

(6.20)

j;n—l(t) = fn—l ((L’l (t), . ,In_l(t)) + flfn(t)
in(t) = fo(z(t)) +ult —h),
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where z(t) := [x1(t) --- z,(t)]" € R™ and y(t) = z1(¢) is the system’s output, for
which we have a reference y*(t).

One of the characteristics of this class of systems is that conditions for the ex-
istence of a global transformation into this triangular form are available (see, e.g.,
[Dayawansa 1985] and [Respondek 1986]). For a more recent reference, we refer the
reader to the lecture notes [Respondek 2002, Theorem 4.12]. Another property of
these systems is that they belong to the family of p-normal forms [Cheng 2003] (see
also [Respondek 2003)]).

Since the control input is subject to a constant delay h, as for the first-order
counterpart of (6.20), the control goal is reset to (6.10) where

ei(t) = z;(t) — xi(t — h), Vie{l,...,n}.

Following the classical backstepping procedure (see [Krstic 1995] and [Marino 1995]),
the variable z; is viewed as a virtual control input to the #;_;-equation. Analogously
to (6.11), we start with x7(¢) = y*(¢) and define

.T;k(t) = fi—l(xf(ta h’)> s ,Z’il(t, h))
— ai_lei_l(t) + 51'7;(_1 t),

for 2 <i < n. The terms z'(¢,h), for 1 < i < n, denote the prediction of z;(t + h)
computed at the instant . These terms are constructed below.
The reference error dynamics is naturally imposed to have a cascaded structure

61(75) = —Q1€1 (t — h) + eg(t)
eg(t) = —02€9 (t — h) + €3 (t)
: (6.21)
én_l(t) = —an_len_l(t — h) + en(t)
én(t) = —apey(t—h),

which corresponds to the ideal case in which zf(¢,h) = z;(t + k). Note that (6.21)
consists in a chain of input-to-state stable systems, driven by the n-th system, whose
origin is exponentially stable. This is the rationale which leads to our main statement.

Theorem 6.1. Consider the restricted-feedback linearizable system (6.20) and as-
sume that, for each 1 <1 < n, there exists v; such that

1fi(2) = fiy)| <7ilz—yl,  Vz yeR. (6.22)

At each instant t, for s € [0, h], construct the error prediction starting with

el (t,s) = en(t) — ozn/ eZ(T — h)dr — ﬁn/ ]S?n(T — h)dr (6.23)

t —00
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and, from i =mn —1 down to 1, with

eFt) = elt) ~au [ e =0y = s [ s~ e

s e (6.24)
- / +e§';1(7 — h, h)dr,
where
ei(t) = z;(t) — xi(t — h), Vie{l,...,n}. (6.25)
and
pi(t) = el (t — h,h) — e(t). (6.26)

Construct the state prediction, starting with x5 (t) = y*(t), and, from i =1 up to n,
with
zP(t,h) = zi(t) + el (t, 1), (6.27)

where

ZL‘:(t) = = fi—l(xf(tv h)v s 7x£1(t7 h))

— e () + a5 (1), (6.28)

and consider the controller
u(t) = — (2P (t, h)) — anen(t) + 3k (t). (6.29)
Then, given any h* > 0, if the norms of the control gains o« and [ satisfy

Ay + B (B + 27v)h", (6.31)

QAm

B

>
>

the origin of the closed-loop system is uniformly globally exponentially stable for all
constants h € [0, h*].

The proof of Theorem 6.1 relies on the following statement on stability of cas-
cades of functional differential equations which, to the best of our knowledge, is also
original. A sketch of proof is provided in the Appendix.

Theorem 6.2. Consider the system

Z(t) = —az(t—h)+ Bz(t) + ¥(t) (6.32a)

where z1(t), z2(t) € R™ and dy, dy € R. Assume that a and B are diagonal posi-
tive matrices of dimension n, that W : [—h,o00) — R™ and ® : [—h,00) — R" are
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Figure 6.1: Numerical simulation of our delay compensation scheme (6.38), on the
simple example given by an academic pendulum.

absolutely continuous, and that there exist vy, 2 > 0 such that
(W (s)| <mlza(s)]  and |d;®(s)| < y2l2(s)], (6.33)
for j € {1,2}. Then, given any h* > 0, the origin is uniformly globally exponentially
stable for all h € [0, h*] if (6.31) and
Oy > 4byr + OéM(OéM + 2bM>h* (634)

hold.

In order to invoke Theorem 6.2 we proceed to show that the closed-loop dynamics
of (6.20) with the controller (6.29) has the form (6.32) with z; = e, 20 = p, a :=
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diag{a; -~ ay}, B := diag{f - -- 8, } and

0o 1 0 .. 0]

B - 0
1

0 0

hence, by = 1. By differentiating on both sides of Equation (6.25) and using (6.20),
we obtain

fi(@1(t)) + zo(t) — 27(t — h)
fo(z1(t), 22(t)) + 23(t) — @5(t — h)

é1(t)
éo(t)

en1(t) = fa-1(21(0), - 2pa (b)) + 20 (t) — a5y (E = )
én(t) = fulx(t)) +ult — h) — a7 (t — h).

Then, using (6.28) and (6.29), we obtain

él (t) = —06161(t — ) + 62(t)
+[f1(21(t)) = fulaf (t = h, h))]
éa(t) = —anes(t —h)+es(t) + [f2(~”61(t) 2(t))

—falaf (t = h,h), 23 (t — h,h))]
6.35
bn1(t) = —ap_1e,_1(t —h) + en(t) (6:35)
+fn1(@1(t), . w0 1<t))
—fa1 (@ (t = hh) oy (t = hyh))]
én(t) = —apen(t—h)
Ffalz(t) = fu(z"(t — b, h))]

where, in view of (6.27), we have for each 1 <7 <mn,

al(t —h,h) = af(t — h) + el (t — h, h) £+ 2;(t)
= —e;(t) +ef(t — h, h) + x;(t)
= pi(t) + x;(¢).
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Now, to compact the notation, we introduce

bi(s) = ful@i(s)) = fi(zils) + pils)),

T o= [vyo-x)", T, =,
pi = [ppl’, Pu=0p
so, for each 1 < i <n,
Gz(t) = —Ozi6i(t — h) + €i+1(t) + ’%(t) (636)

which is of the form (6.32a) with

U(s) = [ (s) - enls)]

Next, we compute the prediction bias dynamics. For this, we differentiate on
both sides of (6.26) and use (6.24) and (6.36) to obtain, for 1 <i <n —1,

pi(t) = =Bipi(t — h) +i(t — h) — i(t)
+pit1(t) — pira(t —h)
pn<t) = _6npn<t - h) + ¢n(t - h) - %(t)

Thus, defining

-
(I)(S) = [_,(/)1<S) +p2<5)7 T ¢n—1(8) —I_pn(S)a —%(SH
we see that the closed-loop dynamics takes the cascaded form

é(t) = —ae(t—h)+ Be(t)+ V(t)
p(t) = —fp(t —h) +&(t) — Bt — h)

which corresponds to (6.32) with d; = 1 and dy = —1. Therefore, the result follows
invoking Theorem 6.2 with by, = 1, 3 = max{7;} — (see (6.22)) and 75 =71 + 1.

6.4 Simulations on a simple example
In this section, we illustrate Theorem 6.1. We consider the pendulum equation

LEQ(t) = —asin l‘l(t) — bx2<t) + U(t _ h), (637)

where a,b € R and h > 0. The control goal is to track a desired reference zi(t — h)
with the system’s output z(%).
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This restricted-feedback linearizable system is already, in its original coordinates,
in the form (6.20). The functions fo(x(t)) = —asinz(t) — bxs(t) and fi(z1(t)) =0
are, moreover, Lipschitz continuous. We can thus apply Theorem 6.1, in order to
construct a control law that solves the asymptotic output tracking problem.

In order to achieve our control goal lim; ., e(t) = 0, we computed the error
prediction ef’(t,s) and the state prediction z”(t,s), for s € [0,h], based on the
equations from (6.23) to (6.27) in Theorem 6.1, which gives the control input

u(t) = asinal (¢, h) + bxd (t, h) — azeq(t) + @3(t), (6.38)

where the gain matrices a and § satisfy conditions (6.30) and (6.31).

A simulation of the system’s dynamics, where the output tracks the desired ref-
erence zj is shown in Figure 6.1. In this simulation, the desired reference z7 is a
filtered square wave that oscillates between 0 (a stable equilibrium point) and 7 (an
unstable equilibrium point). For the system’s parameters, we take the following val-
uesa =1,b=1, h = 0.02. For the controller, we take a; = ap, = 5 and 5, = [ = 10.
When t < h, due to the input delay h, the control has no impact on the closed-loop
system. The system output changes freely. At the time instant ¢t = h, the control
kicks in. After that, the control compensates the input delay and leads the system’s
output exponentially towards its desired reference. The good tracking performance
confirms that the origin of the closed-loop system is asymptotically stable when the
conditions imposed on the gains o and [ are satisfied, as predicted by Theorem 6.1.

If we linearize the pendulum’s equations (6.37) in a neighborhood of either a stable
or an unstable equilibrium point, the finite spectrum assignment method presented
shortly in the introduction — (see equations (6.1) to (6.3)) — can be applied. Once
implemented numerically, this method only works for the stable equilibrium. For the
unstable equilibrium, it fails unless some extra tricks are used in order to filter the
unstable eigenvalues generated by the numerical implementation [Mondié 2003].

In comparison, our method works around both equilibria because our predictor
technique is based on the choice of a stable and linear reference model for the tracking
error. For the sake of brevity, the detailed computations of the system’s linearization,
of the application of the finite spectrum assignment method, as well as its simulation
results are omitted.

6.5 Conclusion

In this chapter, we proposed a new method for input delay compensation of re-
stricted feedback linearizable systems. Our approach inverts the system, computing
the input that tracks asymptotically the desired output. In order to compute an
estimate of the future of the system’s state, instead of integrating the original system
(which is nonlinear and might be unstable), we integrate the desired error dynam-
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ics (which is both linear and stable, at least asymptotically). The results of our
simulations show the effectiveness of this method for the pendulum equation.

Appendix: Proof of the main results

The rationale behind the proof of Theorem 6.2 follows the usual reasoning to
establish stability for cascaded systems of ordinary differential equations. First, we
show that the origin of (6.32a) with zo = 0 is exponentially stable, then we show
that zo = 0 is exponentially stable for (6.32b) and finally, we show that the solu-
tions of (6.32a) under the vanishing perturbation W(¢) are bounded and converge
exponentially to zero. For this purpose we first present some preliminary results for
perturbed functional differential equations.

Lemma 6.1 (Output injection). The trivial solution of
Z2=—Pz(t —h)+diP(t) + do®(t — h), di, ds € R, (6.39)

with to = 0 and B > 0 is diagonal, is globally exponentially stable if there exists v > 0
such that |d;®(s)| < v |z(s)], 7 € {1,2} and (6.31) holds.

Proof of Lemma 6.1 (Sketch) We denote by ¢ the initial condition of (6.39), defined
in the Notation paragraph of Section 6.1, let §; be the ith element of the main
diagonal of § and let 5y, be the largest of 3;s. The proof may be constructed (it
is removed here due to page constraints) using the Lyapunov-Krasovskii functional

V. RZO — RZO7

V() = VA +Val0) + Valt) + V() (6.40)
i by

Va(t) := _(/BMHV//M $)|? ds

V(t) = 20 {/_h|<t+e>|de]

Vo= [ )P s

l\')\»i

which satisfies

V() < max{l, ¢} o]’
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where
o (BR+00)R% + (32 +9)h
o = 5 :
and, under (6.31),
V(t) < —(Bn/2) |2 < 0. (6.41)

Lemma 6.2 (Vanishing perturbation). Consider the system
2(t) = —az(t — h) + Bz(t) + (t), =z € R", (6.42)

starting at t, = 0, where « satisfies (6.34). Let ¢. : [0,h] — R™ and e : [—h,00) — R"
be absolutely continuous functions satisfying e(—s) = ¢(s) for all s € [0, h]. Assume
that there exists c. > 0 such that

wax{sup 0], ([T 0F)" f <o (6.43)

t>—h

Then, there exist K, A > 0 such that
(0] < & llg:ll + lloell e, (6.44)
where ¢, is the initial condition of (6.42).
The proof of Lemma 6.2 follows similar lines as [Panteley 2001, Lemma 3].

Proof of Theorem 6.2 We denote by ¢; and ¢9 the initial condition of (6.32a)
and (6.32b), respectively, as defined in the Notation paragraph of Section 6.1. We
invoke Lemma 6.1 with 2z = 29 and ¢, = 0 to obtain that there exist k9 and Ay such
that

[22(t)] < 2 (|l €7

therefore, there exists ¢. > 0 such that (6.43) holds with ¢ = . By Lemma 6.2 with
z = z; and (6.33), there exist x; and A; such that

21 (O] < sl llgnll + llpall Je=".



CHAPTER 7

Actuator delay compensation for
ABS systems

The aim of this chapter is purely ILLUSTRATIVE. We show, using simulations,
that different results proposed in this thesis can be combined in order to design a
new ABS control law. It has not been submitted for publication to any journal or
conference.

Abstract: The objective of this chapter is to compensate the delay induced by ac-
tuators for ABS systems. The benefit of the actuator delay compensation is twofold.
On the one hand, it improves the robustness of theoretical ABS systems with respect
to the actuator delay, and thus ensures their good working when implemented on
the test bench, since the actuator delay has been identified as the main cause of fail-
ure [Gerard 2012]. On the other hand, standard ABS algorithms, which are designed
for today’s hydraulic actuators in brake systems, can be adapted to other actuators,
like those of in-wheel motor based electric vehicles (with a quicker response time)
or heavy-duty trucks (with a slower response). In the context of wheel acceleration
control, our goal is achieved by providing a control law that is based on the prediction
of the system’s state.

The chapter starts with a brief modelling of the extended braking stiffness dynam-
ics with the presence of a constant input delay h, which is based on the one without
the input delay that was shown in Chapter 5. Then, the two prediction states, which
are needed in the control law, are estimated. While the first one, denoted by 2 (¢, h),
can be computed using the results obtained in Chapter 6, the computation of the
second one, denoted by 2 (¢, h), is more difficult. The stability analysis of the control
law hasn’t been proved theoretically, but simulation results show that the proposed
control law compensates the effect of the actuator delay and fulfils the control goal.
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7.1 System modelling

We recall here the extended braking stiffness dynamics (5.7) that was derived in
Section 5.3.2

le a

U T o W) )

dZQ _ 21 (t)

—2 = (ca(t) + 23(15))% o (7.1)
ng

w

where the state variable z; is the wheel acceleration offset, z5 is the XBS, and z3 is the
unknown product of parameters of Burckhardt’s model. The control variable u =
dP,(t)/dt is the derivative of the brake pressure and the system parameters a, b,
and ¢ are known constants. For more details of this system modelling, we refer the
reader to Chapter 5.

In the presence of actuator delays, equation (7.1) becomes

dz a

B ) bl (7.22)
% = <622(t)+23(t))222 (7.2b)
ng

E — 0’ (72C)

where the input delay h is a positive constant. This model can be seen as a gen-
eralization of the model (2.1) described in Section 2.1 since the XBS is no longer
considered constant, but variable.

7.2 Control design

The control objective is to make the wheel acceleration offset z(t) converge to-
wards a continuously differentiable reference z;(t — h), provided that the brake pres-
sure is delayed by h seconds. We define the tracking error

e1(t) = z(t) — 25 (t — h)., (7.3)
and set the control goal such that

lim e, () = 0. (7.4)

t—o00
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In the absence of input delays, one can achieve the control goal by taking the
following control law (which is similar to 5.23 of Section 5.5)

) = 5 (Zaa+ T - aa)), (75)
where a > 0 is the control gain and 25(¢) is an estimation of the extended braking
stiffness 25(¢). The value of XBS can be estimated thanks to the observer (5.8)
that has been proposed in Section 5.3.3. In what follows, we assume that the XBS
estimation is perfect, or in other words, that there is no estimation error, the tracking
error then converges exponentially to zero, provided that the control gain « is taken
big enough.

One might be surprised that only the variable z; is chosen to be controlled. But,
as explained in Section 5.5, when the acceleration offset z; follows its reference, it
appears that the stability of all other variables actually comes from the fact that
they are bounded functions of the wheel slip x;, which remains bounded both for
hybrid [Gerard 2012] and continuous [Pasillas-Lépine 2012] control designs.

Now, in the presence of input delays, we define a similar control law that is,
however, based on the prediction of the system states 2 (¢, h) and 2 (¢, h) as follows

u(t) = % (%zf(t, =Lt h) + dzj;t(t) _ ael(t)) | (7.6)

Thus, we get the tracking error dynamics

. a

é1(t) = —aey(t —h) — - (z1(t)za(t) — 21 (t — h,h)z3 (t — h, h)) . (7.7)
If the two state predictions are estimated perfectly, then we obtain the ideal error
dynamics

é1(t) = —aey(t — h), (7.8)

which is exponentially stable if 0 < o < 7/2h. If this dynamics is the target error
dynamics, then the state prediction zf'(¢, h) can be computed by using the method
proposed in Section 6.2. Indeed, the error prediction is computed by integrating the
target error dynamics as follows

Pt s) = er(t) — a / e(r — h)dr — 3 /_ I — h)dr, (7.9)

t

for s € [0, h], where the prediction bias p;(t) = ef’(t — h, h) — e;(t) is used to damp
the mismatch between the actual and the target error dynamics, i.e. (7.7) and (7.8).



122 Chapter 7. Actuator delay compensation for ABS systems

The state prediction zI'(¢, s) is then computed thanks to the error prediction

2Pt s) =25 (t+5—h)+el(t,s),for s € [0,h)]. (7.10)

The computation of the state prediction zZ'(¢,h) is, however, different to that
of 2P(t, h) since the proposed method is no longer applicable. It is computed through
the resolution, at each time instant ¢ and for an interval [t,¢ + h], of the two equa-
tions (7.2b) and (7.2c¢). Let’s consider thus the following dynamics

% - (c@(r) + 23(7’))21”(T)
- x (7.11)
ar =Y

where 0 < r < h and the state variables z;, for 1 < i < 3, are defined as
Zi(r) == zi(t + 7). (7.12)

The dynamics (7.11) is in fact the dynamics (7.2b) and (7.2¢) in the time in-
terval [t,t + h]. From (7.12), it can be noticed that the initial states of (7.11)
are Z;(0) = z;(t), which are given by the observer (see Section 5.3.3), and the states
of (7.11) at the time instant h are Z;(h) = z;(t + h), which are the values of z; at the
time instant ¢ + A.

The resolution of (7.11) isn’t a trivial task due to the term z;(r)/v,. Nevertheless,
one can see that without 21 (r)/v,, the dynamics (7.11) is in the form of a linear system
for which the solutions are available in the literature. Our aim is thus to cancel this
nonlinear term. To that aim, let’s define a new time scale as

(r) == /0 Mdo, : (7.13)

Vg

which ensures that dr/dr > 0, independently of the value of Z;(r). In the new time
scale, (7.11) can be written as follows

([c 1 Z o
1f21>0
0 0 Z3

d%@i) = (7.14)
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The solution of (7.14) is
( (c l)T
AU (§2<0>>:<e“ ) <z2<0>) itz >0
0) Lo 1) \50
Z2(7)\ _
(=)~ 719

—c —1
6(0 O)T 20)) _ (77 =) (2O o
\ 73(0) 0o 1 %3(0) e

Since we need compute the state prediction of 2’ (¢, h), then only the variable Z,(7)
is considered

(7.16)

52(7) eTZ(0) + “175(0)  ifz >0
22\T) = —cr
’ =5 (0) + Co=Lz(0) if 7 < 0.

In the time scale 7, the value of Zy(r), for 0 < r < h, is equal to that of Zo(7(r))
in the time scale 7, or in other words

z2(/r.)irl7“ = 32<T(T))in7- (717)
And besides, by the definition (7.12), we have, for 0 <r < h
ZQ(t -+ T)int = EQ(T)inr. (718)

This leads to the following expression

e (t) + XY=L (8) if >0
zZ t—i-hin = Za(T(h inr — ,CCT 7.19
2( ) t 2( ( )) {BCT(h)ZQ(t) 1€ (Ch>_123<t> i 7, < 0. ( )
We compute 7(h) based on (7.13)
ho—
7(h) = / |Zl(0)‘da
0 Uz
h
_ / It +ao)l, (7.20)
0 Uz




124 Chapter 7. Actuator delay compensation for ABS systems

30

25

20

15

10

5

0

Observer error eg,, [-]

-5

-10

-15

=20
-100 -50 0 50 100

Observer error ej gy, [m/s?%]

Figure 7.1: Phase-plane evolution of the observer error, obtained by a projection of
the three-dimensional error dynamics on the (ej,, €2055) Plane.

Combining equations (7.3) and (7.10), one can obtain

Pt =R h) = 21 (t) + pi(b). (7.21)

We replace (7.21) into (7.20)

T(h) — /tt+h |Z{D(O- B h’ h) _p1(0)|do_

U.
. (7.22)
/t+h Z{’(Z . h, h)dl B /t+h pl(l)dl‘
t t

Vg Vg

We do not know the future values of p (o), with t < o < (¢t + h), but if all the state
predictions are estimated perfectly, then the prediction bias lim;_,o, p1(t) = 0. The
expression of p; in (7.22) is thus neglected

(h) = /t = nm] (7.23)

Vg

Furthermore, we define the prediction bias py(t) in order to damp the mismatch
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Figure 7.2: A cycle of the five-phase ABS algorithm with of the wheel acceleration
tracking, during phases 1, 3, and 4.

between 22 (t — h, h) and zy(t)

pa(t) = 28 (t — h,h) — 2z(t). (7.24)

And finally, the state prediction zI'(¢, h) is computed as follows

Ty (t) + O () — By [ g — e i 2 (65) > 0
2 (t.h) =
—cr(h) e—cm(h) _q t+h ¢ P
e Wy (t) + = 23(t) — Bo [ po(r — h)dr if 2{(t,s) <0,
(7.25)

C

where s € [0, h.

With the value of z{'(t,h) and 2 (¢, h), computed as in (7.10) and (7.25), the
control law (7.6) can be implemented. The stability analysis of the control law (7.6),
however, hasn’t been theoretically proved in the thesis due to its complexity. But, we
will show, in Section 7.3, through numerical simulations that the proposed control
law can compensate the input delay and stabilize the system around a given reference.



126 Chapter 7. Actuator delay compensation for ABS systems

7.3 Simulation results

In order to illustrate the effectiveness of the control law (7.6), the case of a simple
academic ABS is considered [Pasillas-Lépine 2006]. A brief description of this ABS
algorithm has been shown in Section 5.5. The control law (7.6) is used to regulate
the wheel acceleration offset to track a given reference on the phases for which the
brake pressure is modified. The reference trajectories during these phases have been
discussed in Section 5.5. We suppose that the ABS algorithm is affected by a constant
delay h = 10ms.

It is worth mentioning that to get the value of the variable z5 (the XBS), we use
the observer (5.8), as proposed in Section 5.3. We define the observer errors

Cios = 2i(t) — Z(1), (7.26)

for 1 <17 < 3, and Z; are the observer states. The delay has no effect on the observer
convergence, the observer gains are then chosen following Theorem 5.1, as shown in
Section 5.3. Figure 7.1 shows that the observer errors converge toward zero when the
time goes toward infinity.

The control gains are chosen as follows

o= %, pr = %, and [y = 170T—h (7.27)
Since equation (7.2a) can be considered as a scalar system, the values of « and /3
are chosen based on Proposition 6.1, presented in Section 6.2. The value of (35 is
then taken such that it is equal to that of ;. The simulation results are shown
from Figure 7.2 to Figure 7.4. It can be seen that the wheel acceleration tracks the
given reference and the input delay h is compensated by the control law (7.6). It
should be stressed that Figures 7.2 and 7.3 are in fact two different ways to represent
the tracking results. While the former shows us the wheel acceleration tracking in a
cycle of the five-phase ABS algorithm, the latter represents this tracking in the time
domain. The brake pressure during the tracking control associated to Figure 7.3 is
shown in Figure 7.4.
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CHAPTER 8

Dynamic notch filter

The content of this chapter is strongly based on :

T.-B. Hoang, W. Pasillas-Lépine, and A. De Bernardinis. Reducing
the impact of wheel-frequency oscillations in continuous and hybrid ABS
strategies. In Proceedings of the International Symposium on Advanced
Vehicle Control, Seoul (Korea), 2012.

In the published paper, Appendices A and B were not included because of the length
restrictions imposed on papers by this conference.

Abstract: In this chapter, a stable dynamic notch filter is presented. This filter is
able to eliminate the disturbance of the wheel acceleration, even when the vehicle
speed is variable. This new filter is used, in two applicative examples, to improve
ABS performance. Simulations results show that our notch filter might be helpful
for both continuous and hybrid ABS algorithms.

The subject of this chapter is, somehow, intermediate between Parts I and II of
the thesis. On the one hand, filtering wheel-frequency oscillations is a problem that
is directly connected to the XBS observation problem considered in Part 1. Indeed,
the most important measure in this context is the wheel acceleration, which must be
filtered using the appropriate techniques before being exploited by an observer. On
the other hand, the main subject of this conference paper is the impact of such filters
on the delay margin of a simple control loop, a theme that is clearly closer to Part II.
Actually, this small paper was the starting point of the thesis. Even if its results are
clearly not the most important, it gives an indication of the road that lead to the
two main parts of this dissertation.

8.1 Introduction

In the area of traction and brake control, several algorithms use wheel accel-
eration measurements in order to control the wheel slip (see, e.g., [Leiber 1979],
[Kiencke 2000], [Pasillas-Lépine 2010], and [Savaresi 2010, Chapter 6]). But these
measurements are often corrupted by noise. Typically, changes in the properties of
the rubber along the circumference of the tire (as the change in the wheel diameter,
stiffness of the belt, wear, etc.) are a source of disturbances for wheel acceleration
measurements. These disturbances, which are periodic with a period of one wheel
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rotation, can trigger the ABS control logic with an inappropriate timing. Thus, the
design of a filter to eliminate this disturbance is necessary.

In this chapter, we propose a stable dynamic notch filter that is able to eliminate
the disturbance of the wheel acceleration, even when the vehicle speed is variable
(Section 8.2). This new filter is used, in two applicative examples, to improve the
ABS performance. Simulation results show that our notch filter might be helpful for
both continuous and hybrid ABS algorithms (Section 8.3). Nevertheless, adding a
notch filter to the ABS braking control system may decrease the phase margin as
well as the delay margin. But a computation of the delay margin of these control
laws, when combined with the filter, shows that it does not destroy the robustness
of the closed-loop systems (Section 8.4).

8.2 Modelling of the dynamic notch filter

The use of a notch filter to eliminate the effects of the periodic disturbances on
the wheel acceleration has two advantages: it removes a particular frequency, but
with a very low impact on other frequencies of the input signal.

If 2(t) and y(t) are the input and output signals of a notch filter, then its transfer
function can be written as

_Y(s) _ Gl
CX(s) ()4 Ze gy

N(s) (8.1)

where w,, denotes the notch frequency, ¢, and {; (with (, < (4 < 1) are the filter’s
quality factors. We consider as the notch frequency w, the frequency w, of the
disturbance that we want to eliminate. We define the ratio

CTL
R : G
The filter’s quality factors decide the attenuation level, which is equal to 20 log |R¢|
at w,. Furthermore, the bandwidth of the filter depends on its quality factors. For
an unchanged ratio R, the smaller (4 is, the smaller the bandwidth of the filter (at
-3dB) will be. Figure 8.1 shows the Bode plots of the notch filter with the same
ratio R = 0.01, for three different values of (4 (0.01, 0.1 and 1).

By observing Figure 8.1, we should clearly choose a small value of (; to have a good
and performing notch filter, which not only filters accurately the disturbance but also
has a small effect on the delay margin of the system (see Section 8.4). Nevertheless,
via numerical simulations, we notice that the response time of the filter depends also
on the value of (5. The smaller (; is, the longer the response time of the filter will
be. Therefore, if the time response is an important factor in filtering, we cannot take

(8.2)
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Figure 8.1: Bode plot of the notch filter.

a too small value of (y.

As a first step, let us assume that the speed of the vehicle is constant and equal
to vg. Then the disturbance frequency is: w, = f(vyg) = vo/R, where R is the radius
of the wheel. Transforming (8.1) into the time domain, we obtain the following notch
filter in the form of second order differential equation

1 d%y 2 dy 1 d’z  2¢, dx

Ployde " fuydt YT Pl de T flwydt (8.3)

We define two state variables

dy

y1 = f(vo)y and yp = ar’ (8.4)

and we obtain

d
=L = F(wo)ys
8.5)
dyQ 0 (
E = f(UO)[(_yl - Oéyz) + xref]’
where o = 2(y; and 8 = 2(,, are positive constants, and
dx 1 d*x
0 ._ hted -
x?‘ef T f(UO)‘/E—i_Bdt + f(v()) dt2 (86)
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is the input signal.

We apply a change of time-scale

s(t) = /0 %dr, (8.7)

where v,(t) = vy. For a constant velocity, this new time-scale s(t) is just the wheel
angle.

Consequently, for any state-space trajectory ¢ : R — R", we have

dp  Rdgo
s o dl (8.8)
Therefore, we obtain
dy —y
— =Y
as (8.9)
% = —y — ayy + 70
ds n Y2 ref-

In the new time scale, the eigenvalues of (8.9) are (—a + va? —4)/2. Since all
eigenvalues have negative real parts, the notch filter is stable (in the sense that any
bounded input z?, ;(t) will result in a bounded output).

Now, in a second step, we can take an arbitrary vehicle speed v,(t) > v. > 0,
which might be non-constant. Clearly, the new time-scale s(t) is always well-defined
since ds/dt > 0. The state space representation of the filter in the new time scale is
described by the following dynamics

dy _

ds Y2

dy2 1

s T ot Ty
where ; L

1 x x
denotes the filter’s input, the two state variables
d
y1 = f(ve)y and gy = d—ZtJ, (8.11)

and the perturbation frequency is w, = f(v,) = v,/R. The filter’s stability is pre-
served since neither the filter’s input nor the time-scaling (with ds/dt > 0) has an
impact on it.
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8.3 Application to ABS

In the literature, there exist two different kinds of anti-lock brake system designs:
those based on logic switching from wheel deceleration thresholds [Leiber 1979] and
those based on wheel slip regulation [Pasillas-Lépine 2010]. In this section, we present
the application of the notch filter for both anti-lock brake system approaches.

8.3.1 Wheel dynamics

We recall the evolution of wheel slip and wheel acceleration of the simple single-
wheel model that has been derived in Section 5.2.

The states x; and x5 are defined as

dw (8.12)

where A\ denotes the wheel slip, w its angular velocity, and a,(t) the vehicle’s accel-
eration.

We obtain the following dynamics

dl’l 1
D) (—ay(t)ry + x2)
, (8.13)
dry _ @) g o) +
dt (b R ()
where e RAT
a= TFZ and u= Um(t)TE (8.14)

The variable I denotes the wheel’s inertia, F, the vertical load, and T the torque
applied to the wheel.

8.3.2 Continuous wheel-slip control

Assume that the given time-dependent wheel-slip setpoint A\*(¢) and a,(t) are
piecewise constant functions. We define the dynamic reference for each of the system’s
states:

7 =N(t) and =z = —vyz + a1, (8.15)

and the corresponding error variables

2y =x1 — 2] and 2y = x9 — T3, (8.16)
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Figure 8.2: Filtering properties of the notch filter, for a manoeuvre at variable speed
during which the frequency of the perturbation is not constant.

where 7 is a positive constant. While 27 is equal to A*(¢), the setpoint 3 is dy-
namic. The steady state part is a,x;, while the other term is used to decrease the
error on zj, using feedback —vyz;. Thanks to this dynamic setpoint, the system will
converge to exactly the desired wheel slip, irrespectively from the tyre characteris-
tic [Pasillas-Lépine 2010].

We define the feedback control law as

u=—Kz, (8.17)

where K > 0 is a positive gain. The main result of [Pasillas-Lépine 2010] states that
the control law (8.17) gives global exponential stability towards the desired setpoint
for the system defined by equations (8.13), provided that the gain K is large enough
and that the setpoint reference A\*(t) is constant.

In simulations, the notch filter is used to filter the wheel acceleration offset x5.
The ABS braking system is active for 7 seconds. In the first and last seconds of
the braking manoeuvre, the speed is constant at 150 km/h and at 80 km/h. For 5
seconds in the middle, the vehicle velocity decreases from 150 km/h to 80 km/h. We
observe that the perturbation of the wheel acceleration is eliminated (Figure 8.2).
It can be noticed that the filtering of the perturbation when the vehicle speed is
constant is better than when speed is variable; and the smaller the vehicle’s speed,
the worse the filtering effect. Thanks to the filter applied to the disturbance, the
brake pressure is less noisy (Figure 8.3). The elimination of the noise on the control
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Figure 8.3: Continuous wheel-slip control, with and without notch filtering. The
brake pressure oscillations are reduced by the filter.

is desired because there’s less impact on the actuator.

8.3.3 Hybrid ABS control

A five-phase hybrid algorithm that uses the wheel acceleration logic-based switch-
ing is presented in [Pasillas-Lépine 2006]. Each of the five phases of the algorithm
defines the control action u = P, that should be applied to the brake. The value of P,
is either kept constant or changed very quickly. The switch between these phases will
be triggered by given thresholds based on the value of the wheel acceleration offset
2. The purpose of the algorithm is to keep the wheel slip in a small neighborhood
of the optimal value )y, where the longitudinal tyre force is maximal, with the aim
of minimizing the braking distances while keeping steerability at a reasonable level,
without using explicitly the value of the optimal setpoint.

The algorithm is applied when the wheel starts locking. The cycling between the
different phases will generate a repetitive trajectory. The cycle amplitude determines
the braking performance: The smaller the cycle amplitude, the smaller the vehicle’s
braking distance. If there is perturbation on the wheel acceleration, the control action
can be triggered at the inappropriate moments, which can cause the failure of the
hybrid algorithm or make the wheel slip far from the optimal value. Thus, filtering
the perturbation is unavoidable to make the algorithm more robust.

The aim of our simulations is to observe the performance of the notch filter in
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Figure 8.4: Hybrid ABS limit cycles, with and without notch filtering. When the
filter is not active, the system does not converge to the optimal cycle.

eliminating the perturbation during the activation of the ABS algorithm. As one
can see in Figure 8.4, when the notch filter is not used the algorithm still works but
the optimal cycle is not obtained. The wheel slip varies in a large interval, thus the
brake distance is large. If we add the notch filter to the system, we observe that it
improves the ABS algorithm performance. The wheel slip varies in a smaller interval,
thus the braking distance is smaller, and the system converges to the optimal cycle.

8.4 Delay margin analysis

When implementing the control laws of the previous section, one should take into
account that a discrete time delay (of around 10 ms) might be introduced in the
feedback loop (due to tyre dynamics, actuator limitations, etc.). The control law
should thus be robust with respect to discrete time delays. Introducing a notch filter
into the control law modifies the delay margin of the system. The aim of this section
is to observe the notch filter impact on the delay margin of the control law.

8.4.1 Computing the delay margin

Let us begin with equation (8.13). We have to find out the transfer function
between the acceleration offset x5 and the acceleration offset reference 3. In order to
obtain this transfer function, we consider some following assumptions. The first one is
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that we take a constant vehicle speed. This leads to the fact that (—a,zq + x2) = 29
since a, = 0. Besides, it is important to highlight that our aim is to establish a
relation between the delay margin and each vehicle speed varied from 0 to 180 (see
Section 8.4.2). The second one is that the derivative of the tyre characteristic p'(X) is
assumed to be constant. It is zero when A is equal to the maximal value of wheel slip
Ao; positive when the wheel slip A belongs to the stable region of the tyre (J\| < Ao);
and negative when A is on the unstable region (JA| > o).
With these assumptions, the second equation of (8.13) becomes

&2 Tt —, (8.18)
where 6 = ay/(z) is constant.

With the control law (8.17), the transfer function of the open loop system without
the notch filter is obtained by using the Laplace transform

K
G(s) = ——. 8.19
() (vgs +0) (8.19)
And the open loop transfer function with the notch filter is
K (L)Q + 2ns +1
L(s) = G(s)N(s) = = on . 8.20
)= GONG) = g i 1 (8:20)

In order to fully understand the impact of the notch filter on the delay margin of
our control law, we have to obtain the analytical expression of the delay margin.

To any transfer function H(s) one can associate its gain vy (w), at a given fre-
quency, which is defined by the relation

i (w) = 20log [H (jw)]. (8.21)

The gain crossover frequency w.(H) is defined as the solution of the equation
vu(w) = 0. This frequency can be used to define ¢.(H) as the argument of
H(jw.(H)), and the delay margin A(H) by the relation

T+ ¢ (H)
AH) = ——F——. 22
(1) =" T (522
If there are several gain crossover frequencies, the delay margin is
A(H) = min ——————. (8.23)
i we(H)i

When there is no gain crossover frequency we define A(H) = +o0.



138 Chapter 8. Dynamic notch filter

Without the notch filter, one can easily obtain the gain crossover frequency of

G(s)

we(G) = ﬁ (8.24)
and the delay margin: '

AG) =T :?G()G ). (8.25)

where ¢.(G) = arctan(%c(a)).

Nevertheless, it is much more difficult to find the delay margin expression of the
system with notch filter from L(s). Assume that the gain crossover frequencies of
L(s) and G(s) are close. Then, we can approximate L(s) in the neighborhood of
the crossover frequency w.(G) in order to get a simpler transfer function of L(s). In
the next paragraph, we will see that the delay margin given by the approximative
transfer function of L(s) is quite accurate.

Our first approximation is the Padé approximation, a very good approximation
of a function by a rational function of a given order. However, the calculation of the
necessary components for the Padé approximation is complex. Therefore, a second
approximation which is less accurate but simpler, is carried out. Based on the Taylor
series, we approximate separately the numerator

Ni(s) = K(8* 4 2(wns + w?) (8.26)
and the denominator
Dr(s) = (vys + 0)(s* + 2Cqwns + w?) (8.27)

of L(s) in the neighborhood of w.(G). The approximation of L(jw) is given by these
two approximations of the numerator and denominator

. Np(jwe(G)) + j(w — wo(G)) e (jw . (G))

L(jw) = (8.28)

or equivalently

(8.29)



8.4. Delay margin analysis 139

where a, b, ¢, d are complex coefficients

0 = Np(juwelG)) — juoe(@) DL

ds
AN,
b= (@)

(Jwe(G))

ID (8.30)
. . L.
¢ = Dy (ju()) — el G) =1l G)
dNy, , .
d=—(jw.(G)),
L (jue(G))
with
dN
- (Jwe(G)) = K (25 + 2u0n)
p 5 (8.31)
d—sL(jwc(G)) = 0, (8% + 2Cwns + W2) + (Ve + 0)(25 + 2(wy)-
Now we can describe the gain crossover frequency expression of L(jw):
¥ - ib'r - rbi - idr - rdi - A/
WC(L) — ((a a ) (C c )) (832)

(16 = 1d[?) ’

where a,., a;, b., b;, ¢, ¢;, d,, d; are respectively the real and imaginary parts of a, b, ¢, d;
and

A = ((aiby — abi) = (cidy = ¢,d;))* = (|b* = [d*)(|af* — |c[*). (8.33)
The phase of L is:
_ i

¢.(L) = arctan (z—l> : (8.34)

where )
L; = (a; + bw)(c, — diw) — (a, — biw)(¢; + dyw), (8.35)

and )
L, = (a, — bw)(c, — diw) + (a; + byw)(¢; + d,w). (8.36)

Therefore, at the end, the expression for the approximate delay margin of f)(jw) is
given by .
~ T+ ¢e(L)

A(L) = D) (8.37)

8.4.2 Robustness of the notch-filtered feedback

In order to ensure the stability of the closed loop system, the delay margin of the
control law has to be superior than the total delay in the loop (which, is typically,
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Figure 8.5: The Nyquist plot of G(jw), in the unstable region, where p'(x1) < 0.
The vehicle speed is 33 km /h and the control gain K = 800.

around 15 ms). And this constraint should be respected for every vehicle speed, from
0 to 180 km/h.

A natural idea to study the impact of using the notch filter in the control law is
thus to try to keep a constant delay margin A(G) = D for the system, independently
of the vehicle’s speed (in our study, we fix D = 25ms.). But this is possible only
when /(z1) < 0. Indeed, when p/(x1) > 0 the stability of the system produces an
infinite delay margin A(G) = +o00, when the speed of the vehicle is low. That is, the
stability of the system is maintained independently of the value of the loop delays.

When /(z;) = 0, taking a gain of the form

K =K,v,

gives a constant delay margin for G(s), independently of the speed. But when
W' (x1) # 0 the situation is more complicated. For p'(z1) > 0 one can still take
K = Kyv,, but the delay margin will increase (which is not a bad thing) when the
speed of the vehicle decreases. For p/(z1) < 0 one can obtain a constant delay mar-
gin if we compute numerically the value of K (v,) that gives the correct margin, for
each v,. But, this, only when the speed is big enough. Indeed, when the vehicle’s
speed v, is too small, it might be impossible to obtain the prescribed delay margin
of 25 ms.

Once the value of K fixed, for each speed v,, we compared the difference between
the delay margin of the original system G(s) to that of the system that uses our notch
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Figure 8.6: The Nyquist plot of G(jw), in the stable region, where p/(x1) > 0. The
vehicle speed is 70km/h and the control gain K = 1723.

filter L(s). The results are plotted in Figures 8.7 - 8.12. One can observe that there
are some speeds for which the corresponding delay margins are not represented. For
these speeds, either: (a) the system is stable independently of the delay magnitude
(the delay margin is infinite) or (b) it is impossible to obtain the prescribed delay
margin of 25 ms. The Nyquist plots corresponding to those two different situations
are shown of Figures 8.5 and 8.6.

8.5 Conclusion

In this chapter, we proposed a stable dynamic notch filter that is able to elimi-
nate periodic disturbances on the wheel acceleration, even when the vehicle speed is
variable. We showed, in two applicative examples, that this filter improves the ABS
performance. An inconvenient of using the notch filter is that the control law is less
robust with respect to delay. In the near future, we will test the notch filter effect
for both continuous and hybrid ABS algorithms on an experimental setup.
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Appendix A - Alternative modelling of the notch
filter

We present here an alternative modelling of the notch filter. The main difference
of this modelling is that it doesn’t use the second and the third derivatives of the
input signal z(¢), but only z(¢). This alternative modelling is also taken in two steps:
the constant vehicle speed in the first step and the variable vehicle speed in the
second one.

We develop (8.1)

()7 + 25 1] 2

Vo) = S X
Y ' (Cn Cd) Y (8.38)
= + “n
O+ X
= X(s)+ sZ(s),
where 2nta)
n d
Z(s) = = X(s). (8.39)

Gy e

n

In the first step when the vehicle speed is constant, we can transform (8.39) into
the time domain

Py " flog)ydt f@o) " (8.40)
with w, = f(vg) = vo/R. Then we obtain
2
O Pun) — 2af () %+ 2(C,— o) (8.41)

For two states defined as

dz

21 = f(vg)z and 2o = = (8.42)
we obtain the following state space representation
dz
d_tl = f(vo)22
dzy (8.43)

E — f(vo)(—zl — 2Cd22 + 2(Cn - Cd)x)
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In the new time scale s defined by (8.7), the dynamics (8.43) becomes
le

=,
o (8.44)
s = A an 26— G,

with oo = 2¢;. The eigenvalues of (8.43) in the new time scale are (—a++va? —4)/2.
Therefore, the dynamics (8.43) is stable.

From (8.38), we get
dz
e
We define then the output of (8.43) as zo = dz/dt to get the filtered signal y(t).

In the second step when the vehicle longitudinal speed v, is variable, the state
space representation becomes

y=1x+ (8.45)

le

- — 22
ds (8.46)

dz
d—; = —z1 —azo + 2(G — (o).

where the two states are

dz

— 8.47
= (547

21 = f(vy)z and 29 =
and the output signal is
y=x+ 2. (8.48)

Appendix B - Padé approximation

The Padé approximation is a very good approximation of a function by a rational
function of a given order. In this technique, the approximant’s power series agree
with the power series of the function it is approximating. We recall here the principle
of the Padé approximation [Baker 1996].

Given a formal series expansion

fz) =3 e (8.49)

the [L/M] Padé approximant to f(z) is a rational function of the form

ag + a1z + a222 + ...+ aLZL

bo + blZ + b222 + ...+ bMZM7

[L/M] = (8.50)
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that satisfies

. gt azt+ a2+ . +apzt Iy
- = O M+ 8.51
e ;;m %+mz+@%+nwwMM4+ (= ) (8.51)

By cross-multiplying, we find that

(1+brz+byz® + ...+ by2) (0 + iz +...) = ag + a1z + axz® + ... +agz”. (8.52)

L

Equaling the coefficients of 1, z, ..., 2%, we obtain immediately the L following equa-

tions where the unknown coefficients are aq, ao, ..., ar,

ap = Cp

a; = C + blc[)

(8.53)
min(L,M)

arp =cr + E bicr,—i,

=1

L+1 L+42
)

22 LM

while equating the coefficients of z , we get M equations where the

unknown coefficients are by, b, ..., bys.

Now, we try to get [1/1] Padé approximation of L(s) in the neighborhood of the
crossover frequency w.(G) of G(s). We define

£ = (w—w(Q)). (8.54)

Firstly, we need to have the Taylor series of L(s) in the neighborhood of w.(G), to
at least the second order

L(jw) = L(jwel@)) + 1oL (@) + YL 1)) + Oy

2! (8.55)
= f(je),

where
. . K (ij(G))2 + 2€anC(G)Wn + w?z
L) = @0 +0) (@) + Lo Cpon a2’ &0
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-K 1 "
(jwe(G)va + 0)? ((jwe(G))2 + 2€ajwe(G)n + w3)?
(5 (@))* + 20jee(G)) 2 + Auon(ene( G+ (8.57)

13 Cajore(G) + AGuCas2 (e G))? + ),

L'(jw(G)) =

and

2k 1 "
(Jwe(Gve + 0)* ((jwe(G))? + 2Cajwe(G)wn + w3i)?

((e(@)° + w8 + 126, Ca (e G)) + 8Gu ek (el G+
3(jwe(G))*w? + 3(jwe(G))2w? + 14(jwe(G)) 3wy + 6¢, (jwe(G))Pw,
— 26 (jee(G) ' + 120G (jwe(B))? + B3 Cajene(G) ).

L"(jwe(G)) =

(8.58)
The [1/1] Padé approximation of L(s) (or, in other words, of f(je)) is
. QAo + al(je)
L = _—— = 8.59
P9 = 1231059 (8.59)

The coefficients of the [1/1] Padé approximant of L are then computed as follows

ap = L(jw.(G))

—L"(jw.(G))

2L/ (jwe(G))

a1 = L'(jw.(Q)) + b1 L(jw.(Q)).

by = (8.60)

It is obvious that ag, ay, by could be complex numbers. We denote ag,, ay, and by,
the real parts of ag,a; and by, respectively; and ag;, aq;, and by; the imaginary parts
of ag, ay, and by, respectively.

The crossover frequency of Lp(je) is computed by the following equation

Qo + a1j€

=1 8.61
1+ b1j€ ’ ( )

or,

(aor — avie) + j(ag; + arre)

=1 8.62
(1 — blig) + jb1r€ ’ ( )
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and we obtain the second order equation
(la[* = [0r[*)e? + 2(aviar, — aorar; + bui)e + (Jag|* — 1) = 0. (8.63)

The solutions of this equation are

—(agiar, — agray; + by;) = \/(aOialr — agray; + b1:)? — (la1|? — |b1]?)(|ao|> — 1)
61,2 == 2 2 .
(Jar|* = [b1]?)

(8.64)
By using Matlab, we notice that the right root is

—(agiar, — agrar; + bii) — v/ (agiar, — agrar; + b1;)2 — (Jas|? — [b1]2)(lao|> — 1)

E9 = )
’ (laz]* = 161]?)
(8.65)
thus, the crossover frequency of Lp is
wc(Lp) = MC(G) + &o. (866)
We rewrite the [1/1] Padé approximation (8.59) as
. (aor — ayie) + j(ag; + aire)

L = 8.67

Based on this frequency formula, we can compute the argument of Lp(je)

(aoi + aipe2)(1 — biga) — (aor — a1i62)b1r52>

(Lp) = arctan . 8.68
ol Lr) ((a0r — ayi€2)(1 — biiga) + (ag; + a1,62)b1 €2 ( )

Therefore, the time delay margin of the [1/1] Padé approximation of L(s) is

expressed as
A(Lp) = %L(PL)” (). (8.69)
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Conclusion & Perspectives

Conclusion

In this thesis, several theoretical and practical issues associated to ABS systems
have been investigated, such as the estimation of unmeasured parameters, the com-
pensation of input delays induced by actuators, and the reduction of disturbances in
the wheel acceleration.

The objective of the thesis has been to improve the robustness of current ABS
systems with respect to actuator delays or changes in the environment (as changes
in the road conditions, brake properties, tyre properties, etc.), and adapt them (for
instance the Bosch ABS algorithm) to other advanced actuators like electric in-wheel
motors. To that aim, two general methods for the observation and delay compen-
sation of two particular classes of nonlinear systems have been provided. By using
these theoretical results, the issues of interest in the thesis, in the context of ABS
systems, have then been solved.

In Part I, a systematic technique to construct a time-rescaling based switching
observer that can estimate the state of a class of singular systems with scalar output
has been presented. Our first main contribution is devoted to analyzing the observer
stability, which is proved in Theorems 4.1 and 4.2 of Section 4.2. The proof of Theo-
rem 4.1 has been presented in Section 4.5 ; while Theorem 4.2 is a direct consequence
of Theorem 4.1 and Theorem 4 of [Hespanha 2004].

A concrete application of the observation of singular systems is the extended brak-
ing stiffness estimation in the case of ABS systems, which is our second main contribu-
tion. The observer has been validated on data coming from the tyre-in-the-loop exper-
imental facility of TU Delft, acquired in the context of ABS research [Gerard 2012].
We would like to stress that this result is original, since to our knowledge, the idea
of exploiting the nonlinear XBS in a model-based observer has not been considered
in the literature, at least in the case of the longitudinal stiffness.

The third main contribution of this thesis, which is related to the input delay
compensation for restricted feedback linearizable systems in the context of the output
tracking problem, has been shown in Chapter 6 of Part II. A control law that can
compensate the input delays and achieve the tracking control goal has been provided.
This control law uses the prediction of the future of the system’s state, which are
estimated based on a stable procedure, through the integration of a desired error
dynamics that can be chosen to be both stable and linear.

We will describe in the following some limitations of the present work. First, the
compensation of the input delay for ABS systems hasn’t been completely theoretically
handled. Applying the theoretical results obtained in Chapter 6, a simple scheme
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Figure 8.13: Synoptic of the modular test bench in IFSTTAR LTN.

for compensating the input delays has been shown in Chapter 7, but a theoretical
analysis of the control law stability was lacked due to its complexity. The proposed
method has been tested by numerical simulations to show it effectiveness, and real
experiments are part of the future work.

Second, the combined convergence of the observer and of the control law, which
are presented in the wheel acceleration control in Chapter 5, has not been proved.
The main reason is that this convergence proof is not our main interest in the thesis,
but rather the design of the observer and its stability analysis and its application in
the wheel acceleration control has been done only for illustration purposes.

Third, several experimental tests couldn’t be performed during the time span of
the thesis. The validation of the dynamic notch filter could not yet be done on the
LTN test bench within the thesis time. Nevertheless, the next step (at the beginning
2014) will be the validation of the notch filter on an assembly : electrical asyn-
chronous motor with its position encoder - converter - electromagnetic power brake
at LTN laboratory, and managed by FPGA-based Real-Time dSPACE prototyping
interface. A short description of the system is given in the perspective section. The
experiments of the input delay compensation and of the observation with changes
of road conditions were planned to be tested in the test-rig of TU Delft. While the
first one hasn’t been done due to the lack of theoretical proof of the stability analysis
of the proposed method, the second one hasn’t been realized since changes of road
conditions are not possible in the test-rigs of TU Delft.
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Several possible directions can be proposed for future research of this thesis. First,
the theoretical results obtained in the thesis should be tested in test-rigs. As said
above, a test bench is being developed in IFSTTAR-LTN for the validation of the
notch filter for both hybrid and continuous ABS algorithms. Nevertheless, the main
interest of the test bench is that it will permit to test drive functionalities of an electric
vehicle (EV) traction chain and linked with driving assistance concepts (ABS, TCS,
regenerative braking). The test bench will be basically composed of an electronic
converter supplying an electrical AC motor, a load (generator or electromagnetic
brake) and having a position encoder for the control strategy (position rotor tops).
The whole system is managed using a modular FPGA-based dSPACE Real-Time
prototyping interface which will permit to control the AC motor in the torque/speed
frame. The transmitted power of the test bench is envisaged between 4 — 10kW. The
test bench prototype is shown in Figure 8.13. The construction of this test bench
is expected to be finished at the end of 2014, but it needs only the AC motor, the
position encoder and the electronic converter in order to validate the effect of the
notch filter. Therefore, these experiments are expected to be realized at the beginning
of 2014.

The validation of the proposed observer, when there are changes in road condi-
tions, is impossible in test-rigs like those of TU Delft due to their configuration. One
possible direction is to carry out experiments on a test vehicle that can be found
either in LIVIC or at TU Delft.

Future research on delay compensation for ABS is required in order to obtain
a theoretical proof of the stability of the proposed method. Besides, since the dy-
namics (7.2) isn’t in the form of restricted feedback linearizable systems (6.20), an
alternative choice is therefore to extend our approach to a more general class of
systems.

Second, future research should prove the combined convergence between the ob-
server and the control in wheel acceleration control. Such a proof can be expected
to be obtained via cascaded design arguments [Loria 2005]. Indeed, the closed-loop
system is composed of the tracking error dynamics and the observer error dynamics.
Conditions for which the observer error dynamics is exponentially stable have been
shown in Theorem 5.1. Without the observer error, the tracking error dynamics is
stable if the control gain is taken big enough. Since both the real and estimated
XBS are bounded, the closed-loop system then can be proved to be exponentially
stable, with the help of cascade arguments. The main delicate point is, however,
the switching property of the observer since there exists no theoretical results in the
literature on cascade arguments associated to the switches.

Finally, it is worth mentioning that the achievement of the objective of Part I
is not equivalent to the fact that the problem of observing the class of singular
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systems (2.10) is totally solved. This problem is, in fact, much more complex, due to
the interaction between the controller and the observer. In order to completely solve
this problem, three different problems with an increasing order of complexity must
be considered. The first problem is the objective of Part I, which is the observation
of singular systems around a reference trajectory that is generated by an appropriate
(open-loop) control u(t). The second problem is the observation of singular systems
around a reference trajectory that is generated by a closed-loop control u(t). The
third problem involves the use of the observer to stabilize singular systems around
of an equilibrium point.
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