S. Hatano, Experience from a multicentre stroke register: A preliminary report, Bull World Health Organ, vol.54, pp.541-553, 1976.

V. Roger, A. Go, D. Lloyd-jones, R. Adams, J. Berry et al., Heart Disease and Stroke Statistics--2011 Update: A Report From the American Heart Association, -Rosett J. Heart disease and stroke statistics--2011 update: A report from the american heart association, pp.18-209
DOI : 10.1161/CIR.0b013e3182009701

S. Pendlebury and P. Rothwell, Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis, The Lancet Neurology, vol.8, issue.11, pp.1006-1018, 2009.
DOI : 10.1016/S1474-4422(09)70236-4

K. Strong, C. Mathers, and R. Bonita, Preventing stroke: saving lives around the world, The Lancet Neurology, vol.6, issue.2, pp.182-187, 2007.
DOI : 10.1016/S1474-4422(07)70031-5

C. Murray and A. Lopez, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study, The Lancet, vol.349, issue.9063, pp.1436-1442, 1997.
DOI : 10.1016/S0140-6736(96)07495-8

S. Johnston, S. Mendis, and C. Mathers, Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling, The Lancet Neurology, vol.8, issue.4, pp.345-354, 2009.
DOI : 10.1016/S1474-4422(09)70023-7

P. Heidenreich, J. Trogdon, O. Khavjou, J. Butler, K. Dracup et al., Forecasting the Future of Cardiovascular Disease in the United States: A Policy Statement From the American Heart Association, Circulation, vol.123, issue.8, pp.933-944
DOI : 10.1161/CIR.0b013e31820a55f5

W. Powers, R. Grubb, J. Raichle, and M. , Physiological responses to focal cerebral ischemia in humans, Annals of Neurology, vol.16, issue.5, pp.546-552, 1984.
DOI : 10.1002/ana.410160504

J. Astrup, B. Siesjo, and L. Symon, Thresholds in cerebral ischemia - the ischemic penumbra, Stroke, vol.12, issue.6, pp.723-725, 1981.
DOI : 10.1161/01.STR.12.6.723

J. Baron, Perfusion Thresholds in Human Cerebral Ischemia: Historical Perspective and Therapeutic Implications, Cerebrovascular Diseases, vol.11, issue.1, pp.2-8, 2001.
DOI : 10.1159/000049119

M. Fisher, The Ischemic Penumbra: Identification, Evolution and Treatment Concepts, Cerebrovascular Diseases, vol.17, issue.1, pp.1-6, 2004.
DOI : 10.1159/000074790

W. Heiss, Ischemic Penumbra: Evidence From Functional Imaging in Man, Journal of Cerebral Blood Flow & Metabolism, vol.12, issue.9, pp.1276-1293, 2000.
DOI : 10.1002/1531-8249(199906)45:6<794::AID-ANA15>3.0.CO;2-0

N. Nighoghossian, Imagerie de la pénombre au cours de l'ischémie cérébrale : Évolution des concepts. Correspondances en neurologie vasculaire, pp.24-28, 2005.

J. Guadagno, C. Calautti, and J. Baron, Progress in imaging stroke: emerging clinical applications, British Medical Bulletin, vol.65, issue.1, pp.145-157, 2003.
DOI : 10.1093/bmb/65.1.145

M. Furlan, G. Marchal, F. Viader, J. Derlon, and J. Baron, Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra, Annals of Neurology, vol.26, issue.2, pp.216-226, 1996.
DOI : 10.1002/ana.410400213

W. Heiss, J. Sobesky, and V. Hesselmann, Identifying Thresholds for Penumbra and Irreversible Tissue Damage, Stroke, vol.35, issue.11_suppl_1, pp.2671-2674, 2004.
DOI : 10.1161/01.STR.0000143329.81997.8a

A. Baird and S. Warach, Magnetic Resonance Imaging of Acute Stroke, Journal of Cerebral Blood Flow & Metabolism, vol.150, pp.583-609, 1998.
DOI : 10.1097/00004647-199806000-00001

D. Darby, P. Barber, R. Gerraty, P. Desmond, Q. Yang et al., Pathophysiological Topography of Acute Ischemia by Combined Diffusion-Weighted and Perfusion MRI, Stroke, vol.30, issue.10, pp.2043-2052, 1999.
DOI : 10.1161/01.STR.30.10.2043

A. Baird, A. Benfield, G. Schlaug, B. Siewert, K. Lovblad et al., Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging, Annals of Neurology, vol.26, issue.1, pp.581-589, 1997.
DOI : 10.1002/ana.410410506

O. Jansen, P. Schellinger, J. Fiebach, W. Hacke, and K. Sartor, Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI, The Lancet, vol.353, issue.9169, pp.2036-2037, 1999.
DOI : 10.1016/S0140-6736(99)01146-0

C. Kidwell, J. Saver, S. Starkman, G. Duckwiler, R. Jahan et al., Late secondary ischemic injury in patients receiving intraarterial thrombolysis, Annals of Neurology, vol.12, issue.6, pp.698-703, 2002.
DOI : 10.1002/ana.10380

G. Schlaug, A. Benfield, A. Baird, B. Siewert, K. Lovblad et al., The ischemic penumbra: Operationally defined by diffusion and perfusion MRI, Neurology, vol.53, issue.7, pp.1528-1537, 1999.
DOI : 10.1212/WNL.53.7.1528

E. Stejskal and J. , Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.
DOI : 10.1063/1.1695690

N. Hjort, S. Christensen, C. Solling, M. Ashkanian, O. Wu et al., Ischemic injury detected by diffusion imaging 11 minutes after stroke, Annals of Neurology, vol.57, issue.3, pp.462-465, 2005.
DOI : 10.1002/ana.20595

M. Moseley, M. Wendland, and J. Kucharczyk, Magnetic resonance imaging of diffusion and perfusion, Top Magn Reson Imaging, vol.3, pp.50-67, 1991.

C. Kidwell, J. Alger, and J. Saver, Beyond Mismatch: Evolving Paradigms in Imaging the Ischemic Penumbra With Multimodal Magnetic Resonance Imaging, Stroke, vol.34, issue.11, pp.2729-2735, 2003.
DOI : 10.1161/01.STR.0000097608.38779.CC

M. Fisher, Is penumbral imaging useful for extending the treatment window for intravenous tissue plasminogen activator?, Annals of Neurology, vol.37, issue.5, pp.499-501, 2006.
DOI : 10.1002/ana.21043

R. Friedlander, Apoptosis and Caspases in Neurodegenerative Diseases, New England Journal of Medicine, vol.348, issue.14, pp.1365-1375, 2003.
DOI : 10.1056/NEJMra022366

H. Okada and T. Mak, Pathways of apoptotic and non-apoptotic death in tumour cells, Nature Reviews Cancer, vol.21, issue.8, pp.592-603, 2004.
DOI : 10.1038/nrc1412

G. Smale, N. Nichols, D. Brady, C. Finch, W. Horton et al., Evidence for Apoptotic Cell Death in Alzheimer's Disease, Experimental Neurology, vol.133, issue.2, pp.225-230, 1995.
DOI : 10.1006/exnr.1995.1025

D. Troost, J. Aten, F. Morsink, and J. De-jong, Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post-central gyrus, Neuropathology and Applied Neurobiology, vol.146, issue.6, pp.498-504, 1995.
DOI : 10.1038/362059a0

I. Ferrer, Apoptosis: Future Targets for Neuroprotective Strategies, Cerebrovascular Diseases, vol.21, issue.2, pp.9-20, 2006.
DOI : 10.1159/000091699

B. Han, D. Xu, J. Choi, Y. Han, S. Xanthoudakis et al., Selective, Reversible Caspase-3 Inhibitor Is Neuroprotective and Reveals Distinct Pathways of Cell Death after Neonatal Hypoxic-ischemic Brain Injury, Journal of Biological Chemistry, vol.277, issue.33, pp.30128-30136, 2002.
DOI : 10.1074/jbc.M202931200

B. Sussman and T. Fitch, THROMBOLYSIS WITH FIBRINOLYSIN IN CEREBRAL ARTERIAL OCCLUSION, Journal of the American Medical Association, vol.167, issue.14, pp.1705-1709, 1958.
DOI : 10.1001/jama.1958.02990310011002

A. Meretoja and T. Tatlisumak, Thrombolytic Therapy in Acute Ischemic Stroke - Basic Concepts, Current Vascular Pharmacology, vol.4, issue.1, pp.31-44, 2006.
DOI : 10.2174/157016106775203108

W. Hacke, M. Kaste, E. Bluhmki, M. Brozman, A. Davalos et al., Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke, New England Journal of Medicine, vol.359, issue.13, pp.1317-1329, 2008.
DOI : 10.1056/NEJMoa0804656

J. Wardlaw, V. Murray, E. Berge, D. Zoppo, and G. , Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev Tissue plasminogen activator for acute ischemic stroke. The national institute of neurological disorders and stroke rt-pa stroke study group, N Engl J Med, vol.333, pp.213-381581, 1995.

J. Kaur, Z. Zhao, G. Klein, E. Lo, and A. Buchan, The Neurotoxicity of Tissue Plasminogen Activator?, Journal of Cerebral Blood Flow & Metabolism, vol.24, pp.945-963, 2004.
DOI : 10.1097/01.WCB.0000137868.50767.E8

M. Hill and A. Buchan, Conclusion:, The Canadian Journal of Neurological Sciences, vol.161, issue.03, pp.232-238, 2001.
DOI : 10.1212/WNL.54.3.679

G. Albers, R. Atkinson, R. Kelley, and D. Rosenbaum, Safety, Tolerability, and Pharmacokinetics of the N-Methyl-D-Aspartate Antagonist Dextrorphan in Patients With Acute Stroke, Stroke, vol.26, issue.2, pp.254-258, 1995.
DOI : 10.1161/01.STR.26.2.254

H. Emsley, C. Smith, P. Tyrrell, and S. Hopkins, Inflammation in Acute Ischemic Stroke and its Relevance to Stroke Critical Care, Neurocritical Care, vol.2, issue.11, pp.125-138, 2008.
DOI : 10.1007/s12028-007-9035-x

W. Clark, N. Lessov, J. Lauten, and K. Hazel, Doxycycline treatment reduces ischemic brain damage in transient middle cerebral artery occlusion in the rat, Journal of Molecular Neuroscience, vol.44, issue.2, pp.103-108, 1997.
DOI : 10.1007/BF02736854

D. Andes and W. Craig, Animal model pharmacokinetics and pharmacodynamics: a critical review, International Journal of Antimicrobial Agents, vol.19, issue.4, pp.261-268, 2002.
DOI : 10.1016/S0924-8579(02)00022-5

A. Planas and R. Traystman, Advances in Translational Medicine 2010, Stroke, vol.42, issue.2, pp.283-284
DOI : 10.1161/STROKEAHA.110.605055

J. Yrjanheikki, T. Tikka, R. Keinanen, G. Goldsteins, P. Chan et al., A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window, Proceedings of the National Academy of Sciences, vol.96, issue.23, pp.13496-13500, 1999.
DOI : 10.1073/pnas.96.23.13496

C. Wang, T. Yang, and A. Shuaib, Effects of minocycline alone and in combination with mild hypothermia in embolic stroke, Brain Research, vol.963, issue.1-2, pp.327-329, 2003.
DOI : 10.1016/S0006-8993(02)04045-3

L. Xu, S. Fagan, J. Waller, D. Edwards, C. Borlongan et al., Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats, BMC Neurology, vol.32, issue.1, p.7, 2004.
DOI : 10.1161/01.STR.32.6.1349

N. Morimoto, M. Shimazawa, T. Yamashima, H. Nagai, and H. Hara, Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage, Brain Research, vol.1044, issue.1, pp.8-15, 2005.
DOI : 10.1016/j.brainres.2005.02.062

M. Koistinaho, T. Malm, M. Kettunen, G. Goldsteins, S. Starckx et al., Minocycline Protects against Permanent Cerebral Ischemia in Wild Type but Not in Matrix Metalloprotease-9-Deficient Mice, Journal of Cerebral Blood Flow & Metabolism, vol.417, issue.4, pp.460-467, 2005.
DOI : 10.1080/10409230290771546

X. Tang, Q. Wang, M. Koike, D. Cheng, M. Goris et al., Monitoring the Protective Effects of Minocycline Treatment with Radiolabeled Annexin V in an Experimental Model of Focal Cerebral Ischemia, Journal of Nuclear Medicine, vol.48, issue.11, pp.1822-1828, 2007.
DOI : 10.2967/jnumed.107.041335

Y. Murata, A. Rosell, R. Scannevin, K. Rhodes, X. Wang et al., Extension of the Thrombolytic Time Window With Minocycline in Experimental Stroke, Stroke, vol.39, issue.12, pp.3372-3377, 2008.
DOI : 10.1161/STROKEAHA.108.514026

L. Machado, I. Sazonova, A. Kozak, D. Wiley, A. El-remessy et al., Minocycline and Tissue-Type Plasminogen Activator for Stroke: Assessment of Interaction Potential, Stroke, vol.40, issue.9, pp.3028-3033, 2009.
DOI : 10.1161/STROKEAHA.109.556852

B. Kim, M. Kim, J. Park, S. Lee, Y. Kim et al., Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat, Journal of the Neurological Sciences, vol.279, issue.1-2, pp.70-75, 2009.
DOI : 10.1016/j.jns.2008.12.025

N. Matsukawa, T. Yasuhara, K. Hara, L. Xu, M. Maki et al., Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke, BMC Neuroscience, vol.10, issue.1, p.126, 2009.
DOI : 10.1186/1471-2202-10-126

A. Martin, R. Boisgard, M. Kassiou, F. Dolle, and B. Tavitian, Reduced PBR/TSPO Expression After Minocycline Treatment in a Rat Model of Focal Cerebral Ischemia: A PET Study Using [18F]DPA-714, Molecular Imaging and Biology, vol.3, issue.1, 2010.
DOI : 10.1007/s11307-010-0324-y

L. Chu, S. Fang, Y. Zhou, Y. Yin, W. Chen et al., Minocycline inhibits 5-lipoxygenase expression and accelerates functional recovery in chronic phase of focal cerebral ischemia in rats, Life Sciences, vol.86, issue.5-6, pp.170-177, 2010.
DOI : 10.1016/j.lfs.2009.12.001

S. Gordon and P. Taylor, Monocyte and macrophage heterogeneity, Nature Reviews Immunology, vol.33, issue.12, pp.953-964, 2005.
DOI : 10.1038/nri1733

J. Gehrmann, Y. Matsumoto, and G. Kreutzberg, Microglia: Intrinsic immuneffector cell of the brain, Brain Research Reviews, vol.20, issue.3, pp.269-287, 1995.
DOI : 10.1016/0165-0173(94)00015-H

F. Aloisi, Immune function of microglia, Glia, vol.12, issue.2, pp.165-179, 2001.
DOI : 10.1002/glia.1106

G. Raivich, M. Bohatschek, C. Kloss, A. Werner, L. Jones et al., Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function, Brain Research Reviews, vol.30, issue.1, pp.77-105, 1999.
DOI : 10.1016/S0165-0173(99)00007-7

V. Papadopoulos, M. Baraldi, T. Guilarte, T. Knudsen, J. Lacapere et al., Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function, Trends in Pharmacological Sciences, vol.27, issue.8, pp.402-409, 2006.
DOI : 10.1016/j.tips.2006.06.005

C. Iadecola and A. M. , Cerebral ischemia and inflammation, Current Opinion in Neurology, vol.14, issue.1, pp.89-94, 2001.
DOI : 10.1097/00019052-200102000-00014

C. Ekdahl, Z. Kokaia, and O. Lindvall, Brain inflammation and adult neurogenesis: The dual role of microglia, Neuroscience, vol.158, issue.3, pp.1021-1029, 2009.
DOI : 10.1016/j.neuroscience.2008.06.052

M. Petty and J. Wettstein, Elements of cerebral microvascular ischaemia, Brain Research Reviews, vol.36, issue.1, pp.23-34, 2001.
DOI : 10.1016/S0165-0173(01)00062-5

Q. Wang, X. Tang, and M. Yenari, The inflammatory response in stroke, Journal of Neuroimmunology, vol.184, issue.1-2, pp.53-68, 2007.
DOI : 10.1016/j.jneuroim.2006.11.014

M. Gelderblom, F. Leypoldt, K. Steinbach, D. Behrens, C. Choe et al., Temporal and Spatial Dynamics of Cerebral Immune Cell Accumulation in Stroke, Stroke, vol.40, issue.5, pp.1849-1857, 2009.
DOI : 10.1161/STROKEAHA.108.534503

C. Iadecola and M. Ross, Molecular Pathology of Cerebral Ischemia: Delayed Gene Expression and Strategies for Neuroprotection, Annals of the New York Academy of Sciences, vol.25, issue.1 Frontiers of, pp.203-217, 1997.
DOI : 10.1073/pnas.91.8.3228

G. Danton and W. Dietrich, Inflammatory Mechanisms after Ischemia and Stroke, Journal of Neuropathology & Experimental Neurology, vol.62, issue.2, pp.127-136, 2003.
DOI : 10.1093/jnen/62.2.127

C. Price, E. Warburton, and D. Menon, Human cellular inflammation in the pathology of acute cerebral ischaemia, Journal of Neurology, Neurosurgery & Psychiatry, vol.74, issue.11, pp.1476-1484, 2003.
DOI : 10.1136/jnnp.74.11.1476

C. Gong, Z. Qin, A. Betz, X. Liu, and G. Yang, Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice, Brain Research, vol.801, issue.1-2, pp.1-8, 1998.
DOI : 10.1016/S0006-8993(98)00489-2

J. Huang, U. Upadhyay, and R. Tamargo, Inflammation in stroke and focal cerebral ischemia, Surgical Neurology, vol.66, issue.3, pp.232-245, 2006.
DOI : 10.1016/j.surneu.2005.12.028

S. Allan and N. Rothwell, Cytokines and acute neurodegeneration, Nature Reviews Neuroscience, vol.5, issue.10, pp.734-744, 2001.
DOI : 10.1038/35094583

J. Um, K. Moon, K. Lee, J. Yun, K. Cho et al., Association of interleukin-1 alpha gene polymorphism with cerebral infarction, Molecular Brain Research, vol.115, issue.1, pp.50-54, 2003.
DOI : 10.1016/S0169-328X(03)00179-7

T. Yoshimoto, K. Houkin, M. Tada, and H. Abe, Induction of cytokines, chemokines and adhesion molecule mRNA in a rat forebrain reperfusion model, Acta Neuropathologica, vol.93, issue.2, pp.154-158, 1997.
DOI : 10.1007/s004010050596

T. Liu, R. Clark, P. Mcdonnell, P. Young, R. White et al., Tumor necrosis factor-alpha expression in ischemic neurons, Stroke, vol.25, issue.7, pp.1481-1488, 1994.
DOI : 10.1161/01.STR.25.7.1481

H. Offner, A. Vandenbark, and P. Hurn, Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression, Neuroscience, vol.158, issue.3, pp.1098-1111, 2009.
DOI : 10.1016/j.neuroscience.2008.05.033

F. Barone, B. Arvin, R. White, A. Miller, C. Webb et al., Tumor Necrosis Factor-?? : A Mediator of Focal Ischemic Brain Injury, Stroke, vol.28, issue.6, pp.1233-1244, 1997.
DOI : 10.1161/01.STR.28.6.1233

X. Wang, T. Yue, P. Young, F. Barone, and G. Feuerstein, , and zif268 mRNAs in Rat Ischemic Cortex, Journal of Cerebral Blood Flow & Metabolism, vol.22, issue.1, pp.166-171, 1995.
DOI : 10.1038/jcbfm.1995.18

K. Strle, J. Zhou, W. Shen, S. Broussard, R. Johnson et al., Interleukin-10 in the brain, Crit Rev Immunol, vol.21, pp.427-449, 2001.

A. Liesz, E. Suri-payer, C. Veltkamp, H. Doerr, C. Sommer et al., Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke, Nature Medicine, vol.20, issue.2, pp.192-199, 2009.
DOI : 10.1016/S0022-1759(99)00240-9

C. Wiessner, J. Gehrmann, D. Lindholm, R. Topper, G. Kreutzberg et al., Expression of transforming growth factor-beta 1 and interleukin-1 beta mrna in rat brain following transient forebrain ischemia, Acta Neuropathol, vol.86, pp.439-446, 1993.

E. Lehrmann, R. Kiefer, B. Finsen, N. Diemer, J. Zimmer et al., Cytokines in cerebral ischemia: Expression of transforming growth factor beta-1 (TGF-??1) mRNA in the postischemic adult rat hippocampus, Experimental Neurology, vol.131, issue.1, pp.114-123, 1995.
DOI : 10.1016/0014-4886(95)90013-6

L. Pang, W. Ye, X. Che, B. Roessler, A. Betz et al., Reduction of Inflammatory Response in the Mouse Brain With Adenoviral-Mediated Transforming Growth Factor-??1 Expression, Stroke, vol.32, issue.2, pp.544-552, 2001.
DOI : 10.1161/01.STR.32.2.544

N. Gourmala, M. Buttini, S. Limonta, A. Sauter, and H. Boddeke, Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain: effects of ischemia and peripheral lipopolysaccharide administration, Journal of Neuroimmunology, vol.74, issue.1-2, pp.35-44, 1997.
DOI : 10.1016/S0165-5728(96)00203-2

M. Minami and M. Satoh, Chemokines and their receptors in the brain: Pathophysiological roles in ischemic brain injury, Life Sciences, vol.74, issue.2-3, pp.321-327, 2003.
DOI : 10.1016/j.lfs.2003.09.019

M. Schilling, J. Strecker, W. Schabitz, E. Ringelstein, and R. Kiefer, Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice, Neuroscience, vol.161, issue.3, pp.806-812, 2009.
DOI : 10.1016/j.neuroscience.2009.04.025

R. Zhang, M. Chopp, Z. Zhang, N. Jiang, and C. Powers, The expression of P- and E-selectins in three models of middle cerebral artery occlusion, Brain Research, vol.785, issue.2, pp.207-214, 1998.
DOI : 10.1016/S0006-8993(97)01343-7

Y. Okada, B. Copeland, E. Mori, M. Tung, W. Thomas et al., P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion, Stroke, vol.25, issue.1, pp.202-211, 1994.
DOI : 10.1161/01.STR.25.1.202

H. Suzuki, K. Abe, S. Tojo, K. Kimura, M. Mizugaki et al., A change of P-selectin immunoreactivity in rat brain after transient and permanent middle cerebral artery occlusion, Neurological Research, vol.20, issue.5, pp.463-469, 1998.
DOI : 10.1080/01616412.1998.11740549

G. Zoppo, Inflammation and the neurovascular unit in the setting of focal cerebral ischemia, Neuroscience, vol.158, issue.3, pp.972-982, 2009.
DOI : 10.1016/j.neuroscience.2008.08.028

H. Haring, B. Akamine, R. Habermann, J. Koziol, D. Zoppo et al., Distribution of Integrin-like Immunoreactivity on Primate Brain Microvasculature, Journal of Neuropathology and Experimental Neurology, vol.55, issue.2, pp.236-245, 1996.
DOI : 10.1097/00005072-199602000-00012

Z. Huang, P. Huang, N. Panahian, T. Dalkara, M. Fishman et al., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science, vol.265, issue.5180, pp.1883-1885, 1994.
DOI : 10.1126/science.7522345

C. Iadecola, Bright and dark sides of nitric oxide in ischemic brain injury, Trends in Neurosciences, vol.20, issue.3, pp.132-139, 1997.
DOI : 10.1016/S0166-2236(96)10074-6

R. Brouns, D. Deyn, and P. , The complexity of neurobiological processes in acute ischemic stroke, Clinical Neurology and Neurosurgery, vol.111, issue.6, pp.483-495, 2009.
DOI : 10.1016/j.clineuro.2009.04.001

G. Hamann, Y. Okada, R. Fitridge, and G. Del-zoppo, Microvascular Basal Lamina Antigens Disappear During Cerebral Ischemia and Reperfusion, Stroke, vol.26, issue.11, pp.2120-2126, 1995.
DOI : 10.1161/01.STR.26.11.2120

L. Belayev, R. Busto, W. Zhao, and M. Ginsberg, Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats, Brain Research, vol.739, issue.1-2, pp.88-96, 1996.
DOI : 10.1016/S0006-8993(96)00815-3

A. Kastrup, T. Engelhorn, C. Beaulieu, A. De-crespigny, and M. Moseley, Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat, Journal of the Neurological Sciences, vol.166, issue.2, pp.91-99, 1999.
DOI : 10.1016/S0022-510X(99)00121-5

Z. Zhang, M. Chopp, and C. Powers, Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion, Brain Research, vol.744, issue.2, pp.189-198, 1997.
DOI : 10.1016/S0006-8993(96)01085-2

M. Schroeter, S. Jander, I. Huitinga, O. Witte, and G. Stoll, Phagocytic Response in Photochemically Induced Infarction of Rat Cerebral Cortex: The Role of Resident Microglia, Stroke, vol.28, issue.2, pp.382-386, 1997.
DOI : 10.1161/01.STR.28.2.382

K. Rupalla, P. Allegrini, D. Sauer, and C. Wiessner, Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice, Acta Neuropathologica, vol.96, issue.2, pp.172-178, 1998.
DOI : 10.1007/s004010050878

D. Van-rossum, U. Hanisch, and . Microglia, Microglia, Metabolic Brain Disease, vol.19, issue.3/4, pp.393-411, 2004.
DOI : 10.1023/B:MEBR.0000043984.73063.d8

N. Vila, J. Reverter, J. Yague, and A. Chamorro, Interaction Between Interleukin-6 and the Natural Anticoagulant System in Acute Stroke, Journal of Interferon & Cytokine Research, vol.20, issue.3, pp.325-329, 2000.
DOI : 10.1089/107999000312478

J. Relton, D. Martin, R. Thompson, and D. Russell, Peripheral Administration of Interleukin-1 Receptor Antagonist Inhibits Brain Damage after Focal Cerebral Ischemia in the Rat, Experimental Neurology, vol.138, issue.2, pp.206-213, 1996.
DOI : 10.1006/exnr.1996.0059

A. Lai and K. Todd, Microglia in cerebral ischemia: molecular actions and interactionsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum., Canadian Journal of Physiology and Pharmacology, vol.84, issue.1, pp.49-59, 2006.
DOI : 10.1139/Y05-143

W. Clark, L. Rinker, N. Lessov, K. Hazel, J. Hill et al., Lack of Interleukin-6 Expression Is Not Protective Against Focal Central Nervous System Ischemia Editorial Comment, Stroke, vol.31, issue.7, pp.1715-1720, 2000.
DOI : 10.1161/01.STR.31.7.1715

D. Giulian, K. Vaca, and M. Corpuz, Brain glia release factors with opposing actions upon neuronal survival, J Neurosci, vol.13, pp.29-37, 1993.

M. Block, L. Zecca, and J. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nature Reviews Neuroscience, vol.13, issue.1, pp.57-69, 2007.
DOI : 10.1523/JNEUROSCI.4306-04.2005

V. Kaushal and L. Schlichter, Mechanisms of Microglia-Mediated Neurotoxicity in a New Model of the Stroke Penumbra, Journal of Neuroscience, vol.28, issue.9, pp.2221-2230, 2008.
DOI : 10.1523/JNEUROSCI.5643-07.2008

J. Yrjanheikki, R. Keinanen, M. Pellikka, T. Hokfelt, and J. Koistinaho, Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15769-15774, 1998.
DOI : 10.1073/pnas.95.26.15769

M. Yenari, L. Xu, X. Tang, Y. Qiao, and R. Giffard, Microglia Potentiate Damage to Blood-Brain Barrier Constituents: Improvement by Minocycline In Vivo and In Vitro, Stroke, vol.37, issue.4, pp.1087-1093, 2006.
DOI : 10.1161/01.STR.0000206281.77178.ac

U. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nature Neuroscience, vol.24, issue.11, pp.1387-1394, 2007.
DOI : 10.1038/nn1997

M. Lalancette-hebert, G. Gowing, A. Simard, Y. Weng, and J. Kriz, Selective Ablation of Proliferating Microglial Cells Exacerbates Ischemic Injury in the Brain, Journal of Neuroscience, vol.27, issue.10, pp.2596-2605, 2007.
DOI : 10.1523/JNEUROSCI.5360-06.2007

A. Denes, R. Vidyasagar, J. Feng, J. Narvainen, B. Mccoll et al., Proliferating Resident Microglia after Focal Cerebral Ischaemia in Mice, Journal of Cerebral Blood Flow & Metabolism, vol.81, issue.12, pp.1941-1953, 2007.
DOI : 10.4049/jimmunol.177.3.1864

R. Weston, N. Jones, B. Jarrott, and J. Callaway, Inflammatory Cell Infiltration after Endothelin-1-Induced Cerebral Ischemia: Histochemical and Myeloperoxidase Correlation with Temporal Changes in Brain Injury, Journal of Cerebral Blood Flow & Metabolism, vol.12, issue.1, pp.100-114, 2007.
DOI : 10.1126/science.1106830

H. Wake, A. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, Resting Microglia Directly Monitor the Functional State of Synapses In Vivo and Determine the Fate of Ischemic Terminals, Journal of Neuroscience, vol.29, issue.13, pp.3974-3980, 2009.
DOI : 10.1523/JNEUROSCI.4363-08.2009

M. Ishibashi, Y. Tanabe, H. Miyoshi, E. Matusue, T. Kaminou et al., Intrathoracic splenosis: evaluation by superparamagnetic iron oxide-enhanced magnetic resonance imaging and radionuclide scintigraphy, Japanese Journal of Radiology, vol.120, issue.9, pp.371-374, 2009.
DOI : 10.1007/s11604-009-0350-3

H. Daldrup-link, A. Mohanty, C. Cuenod, B. Pichler, and T. Link, New Perspectives on Bone Marrow Contrast Agents and Molecular Imaging, Seminars in Musculoskeletal Radiology, vol.13, issue.02, pp.145-156, 2009.
DOI : 10.1055/s-0029-1220885

G. Nakai, M. Matsuki, T. Harada, N. Tanigawa, T. Yamada et al., Evaluation of axillary lymph nodes by diffusion-weighted MRI using ultrasmall superparamagnetic iron oxide in patients with breast cancer: Initial clinical experience, Journal of Magnetic Resonance Imaging, vol.348, issue.3
DOI : 10.1002/jmri.22651

S. Howarth, T. Tang, R. Trivedi, R. Weerakkody, J. Uk-i et al., Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: A comparison of symptomatic and asymptomatic individuals, European Journal of Radiology, vol.70, issue.3, pp.555-560, 2009.
DOI : 10.1016/j.ejrad.2008.01.047

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering, vol.100, issue.1, pp.1-11, 2005.
DOI : 10.1263/jbb.100.1

C. Corot, K. Petry, R. Trivedi, A. Saleh, C. Jonkmanns et al., Macrophage Imaging in Central Nervous System and in Carotid Atherosclerotic Plaque Using Ultrasmall Superparamagnetic Iron Oxide in Magnetic Resonance Imaging, Investigative Radiology, vol.39, issue.10, pp.619-625, 2004.
DOI : 10.1097/01.rli.0000135980.08491.33

C. Corot, P. Robert, J. Idee, and M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging???, Advanced Drug Delivery Reviews, vol.58, issue.14, pp.1471-1504, 2006.
DOI : 10.1016/j.addr.2006.09.013

D. Marco, M. Sadun, C. Port, M. Guilbert, I. Couvreur et al., Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (uspio) for biomedical application as mri contrast agents, Int J Nanomedicine, vol.2, pp.609-622, 2007.

S. Laurent, J. Bridot, L. Elst, and R. Muller, Magnetic iron oxide nanoparticles for biomedical applications, Future Medicinal Chemistry, vol.2, issue.3, pp.427-449
DOI : 10.4155/fmc.09.164

D. Thorek, C. Weisshaar, J. Czupryna, B. Winkelstein, and A. Tsourkas, Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain, Mol Imaging, vol.10, pp.206-214

M. Taupitz, J. Schnorr, C. Abramjuk, S. Wagner, H. Pilgrimm et al., New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: Preclinical results in rats and rabbits, Journal of Magnetic Resonance Imaging, vol.30, issue.6, pp.905-911, 2000.
DOI : 10.1002/1522-2586(200012)12:6<905::AID-JMRI14>3.0.CO;2-5

R. Sun, J. Dittrich, M. Le-huu, M. Mueller, J. Bedke et al., Physical and Biological Characterization of Superparamagnetic Iron Oxide- and Ultrasmall Superparamagnetic Iron Oxide-Labeled Cells, Investigative Radiology, vol.40, issue.8, pp.504-513, 2005.
DOI : 10.1097/01.rli.0000162925.26703.3a

I. Raynal, P. Prigent, S. Peyramaure, A. Najid, C. Rebuzzi et al., Macrophage Endocytosis of Superparamagnetic Iron Oxide Nanoparticles, Investigative Radiology, vol.39, issue.1, pp.56-63, 2004.
DOI : 10.1097/01.rli.0000101027.57021.28

S. Metz, G. Bonaterra, M. Rudelius, M. Settles, and E. Rummeny, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide mr contrast agents in vitro, Eur Radiol, vol.14, pp.1851-1858, 2004.

M. Taupitz, S. Wagner, J. Schnorr, I. Kravec, H. Pilgrimm et al., Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging, Investigative Radiology, vol.39, issue.7, pp.394-405, 2004.
DOI : 10.1097/01.rli.0000129472.45832.b0

S. Wagner, J. Schnorr, H. Pilgrimm, B. Hamm, and M. Taupitz, Monomer-Coated Very Small Superparamagnetic Iron Oxide Particles as Contrast Medium for Magnetic Resonance Imaging, Investigative Radiology, vol.37, issue.4, pp.167-177, 2002.
DOI : 10.1097/00004424-200204000-00002

E. Shapiro, K. Sharer, S. Skrtic, and A. Koretsky, In vivo detection of single cells by MRI, Magnetic Resonance in Medicine, vol.32, issue.2, pp.242-249, 2006.
DOI : 10.1002/mrm.20718

E. Shapiro, S. Skrtic, and A. Koretsky, Sizing it up: Cellular MRI using micron-sized iron oxide particles, Magnetic Resonance in Medicine, vol.907, issue.2, pp.329-338, 2005.
DOI : 10.1002/mrm.20342

E. Shapiro, S. Skrtic, K. Sharer, J. Hill, C. Dunbar et al., MRI detection of single particles for cellular imaging, Proceedings of the National Academy of Sciences, vol.101, issue.30, pp.10901-10906, 2004.
DOI : 10.1073/pnas.0403918101

R. Weissleder, G. Elizondo, J. Wittenberg, A. Lee, L. Josephson et al., Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging., Radiology, vol.175, issue.2, pp.494-498, 1990.
DOI : 10.1148/radiology.175.2.2326475

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-2110, 2008.
DOI : 10.1021/cr068445e

M. Modo and J. B. , Molecular and cellular mr imaging, 2007.
DOI : 10.2967/jnumed.107.045369

C. Jung and P. Jacobs, Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil, Magnetic Resonance Imaging, vol.13, issue.5, pp.661-674, 1995.
DOI : 10.1016/0730-725X(95)00024-B

P. Bourrinet, H. Bengele, B. Bonnemain, A. Dencausse, J. Idee et al., Preclinical Safety and Pharmacokinetic Profile of Ferumoxtran-10, an Ultrasmall Superparamagnetic Iron Oxide Magnetic Resonance Contrast Agent, Investigative Radiology, vol.41, issue.3, pp.313-324, 2006.
DOI : 10.1097/01.rli.0000197669.80475.dd

H. Kalish, A. Arbab, B. Miller, B. Lewis, H. Zywicke et al., Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: Relationship between relaxivities, electrostatic forces, and chemical composition, Magnetic Resonance in Medicine, vol.35, issue.2, pp.275-282, 2003.
DOI : 10.1002/mrm.10556

K. Muller, J. Skepper, M. Posfai, R. Trivedi, S. Howarth et al., Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro, Biomaterials, vol.28, issue.9, pp.1629-1642, 2007.
DOI : 10.1016/j.biomaterials.2006.12.003

C. Billotey, C. Wilhelm, M. Devaud, J. Bacri, J. Bittoun et al., Cell internalization of anionic maghemite nanoparticles: Quantitative effect on magnetic resonance imaging, Magnetic Resonance in Medicine, vol.36, issue.4, pp.646-654, 2003.
DOI : 10.1002/mrm.10418

C. Wilhelm and F. Gazeau, Universal cell labelling with anionic magnetic nanoparticles, Biomaterials, vol.29, issue.22, pp.3161-3174, 2008.
DOI : 10.1016/j.biomaterials.2008.04.016

URL : https://hal.archives-ouvertes.fr/hal-00315466

E. Schulze, J. Ferrucci, J. Poss, K. Lapointe, L. Bogdanova et al., Cellular Uptake and Trafficking of a Prototypical Magnetic Iron Oxide Label In Vitro, Investigative Radiology, vol.30, issue.10, pp.604-610, 1995.
DOI : 10.1097/00004424-199510000-00006

J. Gaasch, P. Lockman, W. Geldenhuys, D. Allen, and C. Van-der-schyf, Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells, Neurochemical Research, vol.99, issue.Suppl, pp.1196-1208, 2007.
DOI : 10.1007/s11064-007-9290-4

R. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chemical Reviews, vol.87, issue.5, pp.901-927, 1987.
DOI : 10.1021/cr00081a003

A. Bjornerud and L. Johansson, The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system, NMR in Biomedicine, vol.107, issue.Suppl 1, pp.465-477, 2004.
DOI : 10.1002/nbm.904

G. Simon, J. Bauer, O. Saborovski, Y. Fu, C. Corot et al., T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning, European Radiology, vol.10, issue.suppl 1, pp.738-745, 2006.
DOI : 10.1007/s00330-005-0031-2

R. Gref, Y. Minamitake, M. Peracchia, V. Trubetskoy, V. Torchilin et al., Biodegradable long-circulating polymeric nanospheres, Science, vol.263, issue.5153, pp.1600-1603, 1994.
DOI : 10.1126/science.8128245

S. Moghimi and A. Hunter, Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups, Pharmaceutical Research, vol.18, issue.1, pp.1-8, 2001.
DOI : 10.1023/A:1011054123304

U. Gaur, S. Sahoo, T. De, P. Ghosh, A. Maitra et al., Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system, International Journal of Pharmaceutics, vol.202, issue.1-2, pp.1-10, 2000.
DOI : 10.1016/S0378-5173(99)00447-0

L. Lacava, Z. Lacava, D. Silva, M. Silva, O. Chaves et al., Magnetic Resonance of a Dextran-Coated Magnetic Fluid Intravenously Administered in Mice, Biophysical Journal, vol.80, issue.5, pp.2483-2486, 2001.
DOI : 10.1016/S0006-3495(01)76217-0

W. Liu and J. Frank, Detection and quantification of magnetically labeled cells by cellular MRI, European Journal of Radiology, vol.70, issue.2, pp.258-264, 2009.
DOI : 10.1016/j.ejrad.2008.09.021

C. Bowen, X. Zhang, G. Saab, P. Gareau, and B. Rutt, Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells, Magnetic Resonance in Medicine, vol.214, issue.1, pp.52-61, 2002.
DOI : 10.1002/mrm.10192

A. Doerfler, T. Engelhorn, S. Heiland, M. Knauth, I. Wanke et al., MR contrast agents in acute experimental cerebral ischemia: Potential adverse impacts on neurologic outcome and infarction size, Journal of Magnetic Resonance Imaging, vol.24, issue.4, pp.418-424, 2000.
DOI : 10.1002/(SICI)1522-2586(200004)11:4<418::AID-JMRI10>3.0.CO;2-W

M. Rausch, A. Sauter, J. Frohlich, U. Neubacher, E. Radu et al., Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage, Magnetic Resonance in Medicine, vol.28, issue.5, pp.1018-1022, 2001.
DOI : 10.1002/mrm.1290

C. Kleinschnitz, M. Bendszus, M. Frank, L. Solymosi, K. Toyka et al., In Vivo Monitoring of Macrophage Infiltration in Experimental Ischemic Brain Lesions by Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.17, pp.1356-1361, 2003.
DOI : 10.1097/01.WCB.0000090505.76664.DB

M. Schroeter, A. Saleh, D. Wiedermann, M. Hoehn, and S. Jander, Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia, Magnetic Resonance in Medicine, vol.99, issue.2, pp.403-406, 2004.
DOI : 10.1002/mrm.20142

A. Saleh, M. Schroeter, C. Jonkmanns, H. Hartung, U. Modder et al., In vivo MRI of brain inflammation in human ischaemic stroke, Brain, vol.127, issue.7, pp.1670-1677, 2004.
DOI : 10.1093/brain/awh191

C. Kleinschnitz, A. Schutz, I. Nolte, T. Horn, M. Frank et al., Detection of Developing Vessel Occlusion in Photothrombotic Ischemic Brain Lesions in the Rat by Iron Particle Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.37, issue.11, pp.1548-1555, 2005.
DOI : 10.1002/ana.410170513

R. Engberink, E. Blezer, E. Hoff, S. Van-der-pol, A. Van-der-toorn et al., MRI of Monocyte Infiltration in an Animal Model of Neuroinflammation Using SPIO-Labeled Monocytes or Free USPIO, Journal of Cerebral Blood Flow & Metabolism, vol.30, issue.4, pp.841-851, 2008.
DOI : 10.1161/01.STR.0000252159.05702.00

M. Wiart, N. Davoust, J. Pialat, V. Desestret, S. Moucharaffie et al., MRI Monitoring of Neuroinflammation in Mouse Focal Ischemia, Stroke, vol.38, issue.1, pp.131-137, 2007.
DOI : 10.1161/01.STR.0000252159.05702.00

URL : https://hal.archives-ouvertes.fr/hal-00443499

V. Desestret, J. Brisset, S. Moucharrafie, E. Devillard, S. Nataf et al., Early-Stage Investigations of Ultrasmall Superparamagnetic Iron Oxide-Induced Signal Change After Permanent Middle Cerebral Artery Occlusion in Mice, Stroke, vol.40, issue.5, pp.1834-1841, 2009.
DOI : 10.1161/STROKEAHA.108.531269

M. Rausch, D. Baumann, U. Neubacher, and M. Rudin, In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO, NMR in Biomedicine, vol.871, issue.4, pp.278-283, 2002.
DOI : 10.1002/nbm.770

M. Wiart, N. Davoust, J. Pialat, V. Desestret, S. Moucharrafie et al., MRI Monitoring of Neuroinflammation in Mouse Focal Ischemia, Stroke, vol.38, issue.1, pp.131-137, 2007.
DOI : 10.1161/01.STR.0000252159.05702.00

URL : https://hal.archives-ouvertes.fr/hal-00443499

J. Kim, D. Kim, S. Lee, D. Kim, J. Lee et al., Imaging of the Inflammatory Response in Reperfusion Injury after Transient Cerebral Ischemia in Rats: Correlation of Superparamagnetic Iron Oxide-Enhanced Magnetic Resonance Imaging with Histopathology, Acta Radiologica, vol.49, issue.5, pp.580-588, 2008.
DOI : 10.1080/02841850802020484

E. Henning, C. Ruetzler, M. Gaudinski, T. Hu, L. Latour et al., Feridex Preloading Permits Tracking of CNS-Resident Macrophages after Transient Middle Cerebral Artery Occlusion, Journal of Cerebral Blood Flow & Metabolism, vol.28, issue.7, pp.1229-1239, 2009.
DOI : 10.1161/01.STR.0000252159.05702.00

T. Farr, J. Seehafer, M. Nelles, and M. Hoehn, Challenges towards MR imaging of the peripheral inflammatory response in the subacute and chronic stages of transient focal ischemia, NMR in Biomedicine, vol.29, issue.Pt 7
DOI : 10.1002/nbm.1553

A. Saleh, M. Schroeter, C. Jonkmanns, H. Hartung, U. Modder et al., In vivo MRI of brain inflammation in human ischaemic stroke, Brain, vol.127, issue.7, pp.1670-1677, 2004.
DOI : 10.1093/brain/awh191

N. Nighoghossian, M. Wiart, S. Cakmak, Y. Berthezene, L. Derex et al., Inflammatory Response After Ischemic Stroke: A USPIO-Enhanced MRI Study in Patients, Stroke, vol.38, issue.2, pp.303-307, 2007.
DOI : 10.1161/01.STR.0000254548.30258.f2

URL : https://hal.archives-ouvertes.fr/hal-00443378

A. Saleh, M. Schroeter, A. Ringelstein, H. Hartung, M. Siebler et al., Iron Oxide Particle-Enhanced MRI Suggests Variability of Brain Inflammation at Early Stages After Ischemic Stroke, Stroke, vol.38, issue.10, pp.2733-2737, 2007.
DOI : 10.1161/STROKEAHA.107.481788

T. Cho, N. Nighoghossian, M. Wiart, V. Desestret, S. Cakmak et al., USPIO-Enhanced MRI of Neuroinflammation at the Sub-Acute Stage of Ischemic Stroke: Preliminary Data, Cerebrovascular Diseases, vol.24, issue.6, pp.544-546, 2007.
DOI : 10.1159/000111222

URL : https://hal.archives-ouvertes.fr/hal-00443192

C. Villa, S. Erratico, P. Razini, F. Fiori, F. Rustichelli et al., Stem Cell Tracking by Nanotechnologies, International Journal of Molecular Sciences, vol.11, issue.3, pp.1070-1081, 2010.
DOI : 10.3390/ijms11031070

A. Giuliani, C. Frati, A. Rossini, V. Komlev, C. Lagrasta et al., High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts, Journal of Tissue Engineering and Regenerative Medicine, vol.364, issue.1, pp.168-178, 2011.
DOI : 10.1002/term.409

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen et al., Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure, Journal of Microscopy, vol.205, issue.3, pp.51-71, 2007.
DOI : 10.1002/(SICI)1097-0029(20000315)48:6<367::AID-JEMT7>3.0.CO;2-Y

C. P. Pateyron-salome, B. J. , P. G. Baruchel, and M. S. Peyrin-f, Observation of microstructure and damage in materials by phase sensitive radiography and tomography, Journal of Applied Physics, vol.81, pp.5878-5886, 1997.

L. M. , C. P. , and G. J. Peyrin-f, Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography, Med Phys, vol.35, pp.4556-4566, 2008.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van-dyck, J. Van-landuyt et al., Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays, Applied Physics Letters, vol.75, issue.19, pp.2912-2914, 1999.
DOI : 10.1063/1.125225

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens et al., X-ray phase radiography and tomography of soft tissue using grating interferometry, European Journal of Radiology, vol.68, issue.3, pp.13-17, 2008.
DOI : 10.1016/j.ejrad.2008.04.031

L. Gutierrez, C. Quintana, C. Patino, J. Bueno, H. Coppin et al., Iron speciation study in Hfe knockout mice tissues: Magnetic and ultrastructural characterisation, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.6, pp.541-547, 2009.
DOI : 10.1016/j.bbadis.2009.03.007

M. Levy, C. Wilhelm, N. Luciani, V. Deveaux, F. Gendron et al., Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism, Nanoscale, vol.31, issue.Suppl. 1, pp.4402-4410
DOI : 10.1039/c1nr10778j

URL : https://hal.archives-ouvertes.fr/hal-01236799

F. Krumeich, Properties of electrons, their interactions with matter and applications in electron microscopy

B. Voutou, Electron microscopy: The basics

U. Dirnagl, C. Iadecola, and M. Moskowitz, Pathobiology of ischaemic stroke: an integrated view, Trends in Neurosciences, vol.22, issue.9, pp.391-397, 1999.
DOI : 10.1016/S0166-2236(99)01401-0

A. Durukan and T. Tatlisumak, Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia, Pharmacology Biochemistry and Behavior, vol.87, issue.1, pp.179-197, 2007.
DOI : 10.1016/j.pbb.2007.04.015

F. Chauveau, T. Cho, Y. Berthezene, N. Nighoghossian, and M. Wiart, Imaging inflammation in stroke using magnetic resonance imaging, Int. Journal of Clinical Pharmacology and Therapeutics, vol.48, issue.11, pp.718-728, 2011.
DOI : 10.5414/CPP48718

H. Emsley and P. Tyrrell, Inflammation and Infection in Clinical Stroke, Journal of Cerebral Blood Flow & Metabolism, vol.22, issue.12, pp.1399-1419, 2002.
DOI : 10.1097/01.WCB.0000037880.62590.28

F. Chauveau, S. Moucharrafie, M. Wiart, J. Brisset, Y. Berthezene et al., In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure, Experimental & Translational Stroke Medicine, vol.2, issue.1, p.4, 2011.
DOI : 10.1186/2040-7378-2-4

URL : https://hal.archives-ouvertes.fr/inserm-00663532

J. Pialat, T. Cho, O. Beuf, J. E. Moucharaffie, S. Langlois et al., MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice, NMR in Biomedicine, vol.17, issue.3, pp.335-342, 2007.
DOI : 10.1002/nbm.1157

URL : https://hal.archives-ouvertes.fr/hal-00443396

S. Homsi, F. Federico, N. Croci, B. Palmier, M. Plotkine et al., Minocycline effects on cerebral edema: Relations with inflammatory and oxidative stress markers following traumatic brain injury in mice, Brain Research, vol.1291, pp.122-132, 2009.
DOI : 10.1016/j.brainres.2009.07.031

M. Rausch, A. Sauter, J. Frohlich, U. Neubacher, E. Radu et al., Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage, Magnetic Resonance in Medicine, vol.28, issue.5, pp.1018-1022, 2001.
DOI : 10.1002/mrm.1290

. Franklin, The mouse brain in stereotaxic coordinates, 1997.

J. Brisset, M. Sigovan, F. Chauveau, A. Riou, E. Devillard et al., Quantification of Iron-Labeled Cells with Positive Contrast in Mouse Brains, Molecular Imaging and Biology, vol.61, issue.4, pp.672-678, 2011.
DOI : 10.1007/s11307-010-0402-1

M. Fisher, G. Feuerstein, D. Howells, P. Hurn, T. Kent et al., Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations, Stroke, vol.40, issue.6, pp.2244-2250, 2009.
DOI : 10.1161/STROKEAHA.108.541128

S. Fagan, J. Waller, F. Nichols, D. Edwards, L. Pettigrew et al., Minocycline to Improve Neurologic Outcome in Stroke (MINOS): A Dose-Finding Study, Stroke, vol.41, issue.10, pp.2283-2287, 2010.
DOI : 10.1161/STROKEAHA.110.582601

M. Wiart, L. Curiel, A. Gelet, D. Lyonnet, J. Chapelon et al., Influence of perfusion on high-intensity focused ultrasound prostate ablation: A first-pass MRI study, Magnetic Resonance in Medicine, vol.17, issue.1, pp.119-127, 2007.
DOI : 10.1002/mrm.21271

URL : https://hal.archives-ouvertes.fr/hal-00399060

M. Rausch, D. Baumann, U. Neubacher, and M. Rudin, In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO, NMR in Biomedicine, vol.871, issue.4, pp.278-283, 2002.
DOI : 10.1002/nbm.770

A. Stroh, C. Zimmer, N. Werner, K. Gertz, K. Weir et al., Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging, NeuroImage, vol.33, issue.3, pp.886-897, 2006.
DOI : 10.1016/j.neuroimage.2006.07.009

J. Brisset, V. Desestret, S. Marcellino, E. Devillard, F. Chauveau et al., Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7t and 7t, European Radiology, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00443170

M. Sigovan, L. Boussel, A. Sulaiman, D. Sappey-marinier, H. Alsaid et al., Rapid-Clearance Iron Nanoparticles for Inflammation Imaging of Atherosclerotic Plaque: Initial Experience in Animal Model, Radiology, vol.252, issue.2, pp.401-409, 2009.
DOI : 10.1148/radiol.2522081484

M. Fisher, A. Davalos, A. Rogalewski, A. Schneider, E. Ringelstein et al., Toward a Multimodal Neuroprotective Treatment of Stroke, Stroke, vol.37, issue.4, pp.1129-1136, 2006.
DOI : 10.1161/01.STR.0000209330.73175.34

J. Brisset, M. Sigovan, F. Chauveau, A. Riou, E. Devillard et al., Quantification of Iron-Labeled Cells with Positive Contrast in Mouse Brains, Molecular Imaging and Biology, vol.61, issue.4, pp.672-678
DOI : 10.1007/s11307-010-0402-1

J. Adam, C. Nemoz, A. Bravin, S. Fiedler, S. Bayat et al., High-Resolution Blood???Brain Barrier Permeability and Blood Volume Imaging Using Quantitative Synchrotron Radiation Computed Tomography: Study on an F98 Rat Brain Glioma, Journal of Cerebral Blood Flow & Metabolism, vol.10, issue.2, pp.145-153, 2005.
DOI : 10.1038/jcbfm.1983.1

URL : https://hal.archives-ouvertes.fr/inserm-00388911

M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. Jeantet et al., A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Medical Physics, vol.8, issue.2, pp.2194-2204, 1999.
DOI : 10.1118/1.598736

V. Bousson, F. Peyrin, C. Bergot, M. Hausard, A. Sautet et al., Cortical Bone in the Human Femoral Neck: Three-Dimensional Appearance and Porosity Using Synchrotron Radiation, Journal of Bone and Mineral Research, vol.24, issue.5, pp.794-801, 2004.
DOI : 10.1359/jbmr.040124

A. Larrue, A. Rattner, Z. Peter, C. Olivier, N. Laroche et al., Synchrotron Radiation Micro-CT at the Micrometer Scale for the Analysis of the Three-Dimensional Morphology of Microcracks in Human Trabecular Bone, PLoS ONE, vol.44, issue.846, p.21297
DOI : 10.1371/journal.pone.0021297.s001

M. Langer, Y. Liu, F. Tortelli, P. Cloetens, R. Cancedda et al., Regularized phase tomography enables study of mineralized and unmineralized tissue in porous bone scaffold, Journal of Microscopy, vol.384, issue.3, pp.230-239
DOI : 10.1111/j.1365-2818.2009.03345.x

URL : https://hal.archives-ouvertes.fr/hal-00443307

W. Lu, Z. Dong, Z. Liu, W. Fu, Y. Peng et al., Detection of Microvasculature in Rat Hind Limb Using Synchrotron Radiation, Journal of Surgical Research, vol.164, issue.1, pp.193-199
DOI : 10.1016/j.jss.2010.05.015

T. Jensen, M. Bech, O. Bunk, A. Menzel, A. Bouchet et al., Molecular X-ray computed tomography of myelin in a rat brain, NeuroImage, vol.57, issue.1, pp.124-129
DOI : 10.1016/j.neuroimage.2011.04.013

A. Giuliani, C. Frati, A. Rossini, V. Komlev, C. Lagrasta et al., High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts, Journal of Tissue Engineering and Regenerative Medicine, vol.364, issue.1, pp.168-178, 2011.
DOI : 10.1002/term.409

Y. Torrente, M. Gavina, M. Belicchi, F. Fiori, V. Komlev et al., High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing, FEBS Letters, vol.11, issue.24, pp.5759-5764, 2006.
DOI : 10.1016/j.febslet.2006.09.031

O. Brunke, S. Odenbach, C. Fritsche, I. Hilger, and W. Kaiser, Determination of magnetic particle distribution in biomedical applications by X-ray microtomography, Journal of Magnetism and Magnetic Materials, vol.289, pp.428-430, 2005.
DOI : 10.1016/j.jmmm.2004.11.120

J. Brisset, V. Desestret, S. Marcellino, E. Devillard, F. Chauveau et al., Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T, European Radiology, vol.244, issue.2, pp.275-285
DOI : 10.1007/s00330-009-1572-6

URL : https://hal.archives-ouvertes.fr/hal-00443170

C. Wilhelm, C. Billotey, J. Roger, J. Pons, J. Bacri et al., Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, Biomaterials, vol.24, issue.6, pp.1001-1011, 2003.
DOI : 10.1016/S0142-9612(02)00440-4

D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of Microscopy, vol.206, issue.1, pp.33-40, 2002.
DOI : 10.1046/j.1365-2818.2002.01010.x

R. Dejus, S. Del-rio, and M. , XOP: A graphical user interface for spectral calculations and x???ray optics utilities, Review of Scientific Instruments, vol.67, issue.9, p.3356, 1996.
DOI : 10.1063/1.1147376

C. Frindel, M. Robini, J. Schaerer, P. Croisille, and Y. Zhu, A graph-based approach for automatic cardiac tractography, Publications and Communications Articles in journals, pp.1215-1229, 2010.
DOI : 10.1002/mrm.22443

F. Riou, T. H. Chauveau, M. Cho, S. Marinescu, Y. Nataf et al., MRI monitoring of intra-arterial delivery of bone marrow-derived macrophages after transient ischemia A, World Molecular Imaging Congress, pp.8-10, 2010.

F. Riou, T. H. Chauveau, M. Cho, S. Marinescu, Y. Nataf et al., MRI study of intra-arterial bone marrow-derived macrophage administration after acute focal ischemic stroke in rats A, 5th European Molecular Imaging Meeting, 2008.

R. Education and . Phd, Multi-modal characterisation of superparamagnetic iron oxide nanoparticles used as contrast agents in MRI of an ischemic stroke mouse model Activities: MRI of ischemic stroke mouse model, histology on ex-vivo mouse brain tissue, MR and TEM characterization of contrast agents; X-Ray imaging using synchrotron radiation University Diploma Animal experiments, level 1: Training course on animal models for biological and medical research and technologies for animal care and housing Option: Microstructure Imaging Coursework focusing on different microscopy techniques (confocal microscopy, scanning and transmission electron microscopy) for imaging micro and nanostructures; biological tissue preparation techniques for TEM visualization Internship work on: characterization by TEM of mouse spleen samples obtained at different time points after the administration of an iron oxide based MR contrast agent. The purpose was to monitor iron particles agglomeration and biotransformation in the spleen, 2003.

?. Erasmus and . Socrates, France Work on characterization by TEM of mouse aortic arch samples obtained at different time points after the administration of an iron oxide based MR contrast agent. The purpose was 2-folded: 1) to determine the nature of the atherosclerosis plaque and 2) to characterize iron particles inside inflammatory cells present in atherosclerosis lesions. Supervisor: PhD. Marie Genevieve Blanchin Diploma degree Atherosclerosis plaque characterization by MRI and TEM " SKILLS MRI high field, small animal imaging, quantitative image analysis, contrast agents, biomarker Transmission and Scanning Electron Microscopy Immunohistochemical analysis, 2012.