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ELECTROMECHANICAL COUPLING OF DISTRIBUTED PIEZOELECTRIC 

TRANSDUCERS FOR PASSIVE DAMPING OF STRUCTURAL 

VIBRATIONS: COMPARISON OF NETWORK CONFIGURATIONS 

BY 
 

CORRADO MAURINI 
 
 

(ABSTRACT) 
 
 

In this work passive piezoelectric devices for vibration damping are studied. It is developed 

the basic idea of synthesizing electrical wave guides to obtain an optimal electro-mechanical 

energy exchange and therefore to dissipate the mechanical vibrational energy in the electric 

form. Modular PiezoElectroMechanical (PEM) structures are constituted by continuous 

elastic beams (or bars) coupled, by means of an array of PZT transducers, to lumped 

dissipative electric networks. Both refined and homogenized models of those periodic 

systems are derived by an energetic approach based on the principle of virtual powers. 

Weak and strong formulation of the dynamical problem are presented having in mind 

future studies involving the determination of  numerical solutions.  

In this framework the effectiveness of the proposed devices for the suppression of 

mechanical vibrations is investigated by a wave approach, considering both the extensional 

and flexural oscillations. The optimal values of the electric parameters for a fixed network 

topology are derived analytically by a pole placement technique. Their sensitivities on the 

dimensions of the basic cell of the periodic system and on the design frequency are studied. 

Moreover the dependence of damping performances on the frequency is analyzed. 

Comparing the performances of different network topological configurations, the advantages 

of controlling a mechanical structure with an electric analog are shown. As a consequence of 

those results, new interconnections of PZT transducers are proposed.  

An experimental setup for the validation of the analytical and numerical results is proposed 

and tested. A classical experience on resonant shunted PZT is reproduced. Future 

experimental work is programmed. 
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Chapter 1

Introduction

1.1 Background and Motivations

The control of structural vibrations is one of the foremost issues of mechanical engineering. Vi-

brations are undesirable for reliability, comfort and functionality of mechanical devices. Indeed,

they are a cause of material failure by fatigue, they generate noise that is disturbing for humans,

they impose a limit to the achievable precision in machinery, their oscillations cause instability in

aerodynamical systems, as happens for the wings of an airplane.

Traditional solutions to the problem are to utilize viscoelastic material to add damping to

the structure or to design the mass and sti¤ness distribution to control its dynamical behavior.

An alternative device for narrow band vibration damping is the Dynamical Vibration Absorber

(DVA): It consists of a spring-mass-damper to be coupled to the system to obtain a resonant

energy exchange and dissipation.

In the last decade many research e¤orts were devoted to study the applications to this …eld of

the signi…cant electromechanical coupling o¤ered by the new generation of piezoelectric ceramics

such as lead zirconate titanium (PZT ). In this context active and passive techniques have been

developed. Active controls use PZT materials as sensor and actuators to apply feedback control

to the structure. These achieve good performances, but they present the disadvantages of an high

power requirement, stability problems, and the need of a complex central unity for the implemen-

tation of the control law. Passive solutions suggest to utilize the two way piezoelectromechanical

coupling to transfer mechanical energy in electrical form and dissipate it in resistances by the Joule

e¤ect. It has been show that resonant systems are more e¤ective to this aim. In analogy to DVAs;

piezoelectric transducers shunted on an inductance and a resistance can be bonded to a structure

1



to form a coupled highly dissipative system. Adjusting the electrical parameters, the RLC circuit1

can be tuned on a given mechanical mode with replacing it with a pair of strongly damped elec-

tromechanical modes. The advantages of this solution are its constructive simplicity, its intrinsic

stability and the total independence from the environment. Indeed, in principle passive devices

not only do not require power to work, but they can even be used to produce small amounts of

energy2 . In practice the high inductor required to tune the mechanical system to the electric one

are frequently synthesized with electronic circuit that require a small amount of power to work3 .

Resonant Shunted Piezoelectrics (RSP) are strongly preferable to the mechanical analog DVAs

because of their low cost, low weight, low space requirements and for their ‡exibility. Indeed, the

electrical parameters can be easily adjusted to match the characteristics of the structural mode to

be damped. Exploiting this aspect, semi-active systems in which the values of the electrical param-

eters are chosen by a real-time control unit have been proposed. Industrial applications of RSPs

are now available (see for example www:acx:com where smart skis and smart bikes are illustrated).

The greatest disadvantage of these devices are that they are e¤ective only in a narrow band of

frequencies because of their one-degree-of-freedom resonant nature. To bypass this problem piezo-

electric patches with multiple shunts, each one of which can be matched on a mechanical mode,

have been proposed with good results.

An innovative idea presented by dell’Isola and Vidoli consists in establishing a distributed

piezoelectric coupling between continuous mechanical and electric media to form a ”smart struc-

ture”4 capable to be adjusted for an optimal broadband damping. They proposed to think about

controlling a continuous mechanical structure with its electrical analog to enhance a complete com-

munication between the two systems. In the present work this idea is studied and implemented.

1.2 Literature Review

Hagood and Von Flotow [30] in 1991 presented the …rst complete analytical and experimental

study on resonant and resistive shunted PZTs; proposing an optimization procedure analog to those

adopted for Dynamic Vibrations Absorbers in classical texts on vibrations such as Timoshenko [10].

The subject has been developed also by Del Vescovo in [28], [29] presenting comparisons between

1 The capacitance is given by the physical nature of PZT materials, that are dielectrics.
2 Energy harvesting by PZT transducers is one of the most recent reaserch topics.
3 Let us underline that this power consumption is related only to the particular actual realization of a passive

device.
4 Let us recall one of the most pertinent de…nitions of ”smart structure”:

A smart structure is a material systems with intelligence and life features integrated in the microstructure of the
material system to reduce mass and energy and produce adaptive functionality.
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experimental results and numerical prediction. Details about the optimal design are given in [32]

and in [33] by Ste¤en and Inman, both for active and passive control techniques. They propose

also the simultaneous use of DVAs and RSPs. Multiple shunts are implemented by Hollkamp [39].

Lesieutre [31] presented an useful review on shunting circuits (inductive capacitive, resonant and

switched) giving design indications for applications. Active controls using piezoelectric materials

as sensors and actuators are proposed in [40] and [41], semi-active techniques in [42] and [43].

Models of piezoelectric materials as actuators in unidimensional structures have been developed

by Crawley in [35] and [36]. On the other hand their behavior as sensor has been investigated by

Shiroy and Chopra in [37]. A coupled PiezoElectroMechanical model is discussed in [34], where

also a Finite Element implementation is presented. Emphasis on experimental testing is given in

[38].

Dell’Isola and Vidoli proposed a distributed coupling between mechanical and electrical continua

to dissipate mechanical energy in the electrical form. In [20] they present a continuum model

of a piezoelectromechanical truss beam coupled with an electrical transmission line studying its

application for the suppression of longitudinal and torsional vibrations while in [21] they look for

solutions for the bending modes. The idea of the distributed passive control is then applied in [22]

to study, by means of an homogenized model, the modal coupling between a beam and a second

order electric transmission line.

1.3 Ideas and Research Objectives

The goal of the research project of which this work is an integrated part is to study and realize

electromechanical systems for distributed passive control of vibrations in mechanical structures by

piezoelectric transducers and electric networks, following and improving what has been done in

[20], [21], [22]. In this context theoretical, numerical and experimental work is required.

The physical idea to be developed is to couple by means of PZT transducers a given mechanical

continuum with an electric continuous medium possessing analogous characteristics, in order to

realize an electromechanical energetic exchange for a wide range of frequencies. Indeed, if waves

propagate in the same fashion in two media and if they have been tuned for a given wavelength,

hence they are tuned for all. In this way one of the crucial issues of collocated passive control, the

narrow band behavior, can be solved.

To implement this idea in engineering applications it is necessary to

1. …nd electrical analogs of mechanical systems
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2. realize the coupling between the analogous electrical and mechanical systems

In …nding the analog electrical continuum two di¢culties are encountered:

1. the speed of propagation of energy in electrical continua is enormously di¤erent to that in

mechanical media

2. the physics of electromagnetism and mechanics are not the same. There can be physical

mechanical phenomena that have not an electric equivalent and vice-versa.

For these reasons it is required to synthesize in an approximative fashion the electric media by

a lumped model. Then the coupling between the mechanical continuum and the electric lumped

periodic system can be achieved by means of an array of piezoelectric transducers. With this idea

we will focus our attention on periodic electromechanical systems similar to that whose basic cell

is sketched in …gure 1-1.

gRgL
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lL

gRgL

lR

lL

gRgL

lR

lL

gRgL

lR

lL

gRgL

lR

lL

gRgL

lR

lL

gRgL

lR

lL

Figure 1-1: Periodic piezoelectromechancial beam

While a parallel study on electrical analogs of mechanical systems is carried on, the present

work has the following main objectives:

1. to establish both re…ned and homogenized models of the periodic electromechanical systems

with distributed piezoelectric coupling. Modular dissipative piezoelectromechanical systems

composed by a mechanical continuum connected to a lumped electric network by means of

an array of PZT transducers will be considered. It will be necessary to develop

(a) a detailed model of the interaction between piezoelectric transducers and structures that

underlines the two way electromechanical coupling, understanding how and by which

hypotheses it can be simpli…ed,
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(b) develop a re…ned model of the modular piezoelectromechanical system,

(c) develop following [20], [22] homogenized models, identifying the constitutive relations by

those found for the re…ned ones.

2. to study and compare the qualitative features of di¤erent types of electric networks for the

suppressions of mechanical extensional and ‡exural vibrations. In particular, considering

modular piezoelectromechanical media, we want to

(a) optimize the value of the electric parameters in the networks for a series of di¤erent

topologies to maximize the vibration damping,

(b) perform a scale analysis, understanding the in‡uence of the ratio between the length of

the basic module and the characteristic wave lengths on the value of the optimal electric

parameters and in the performances of the system for the vibration damping,

(c) understand why and how optimized electrical systems with di¤erent topologies have

di¤erent performances to damp mechanical vibrations.

3. to realize and study experimentally the proposed piezoelectromechanical systems. It will be

necessary to

(a) realize prototypes, facing the related technological problems

(b) design and test an experimental set up and measurement procedure for their testing

(c) verify experimentally the analytical and numerical results.

Constructive critical feedback between the experimental and modelling aspects will be crucial

in this work. Indeed, in the research project the present is the …rst step toward an experimental

realization of the proposed devices.

1.4 Outline

The present paper can be structured in three main parts. In each of them one of the three main

objectives that have been outlined in the previous section will be treated.

In the …rst part composed by chapter 3,4,5 models of piezoelectromechanical systems will be

developed. In particular, in chapter 3 the attention will be focused on electric systems presenting

and modelling the electric networks that will be utilized for vibration damping. Some words on

electromechanical analogies will be spent. In chapter 4 a re…ned unidimensional model of an elastic
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beam on which PZT patches are bonded will be given. The system will be considered as a multi-

layer beam and its model will be deduced by the three-dimensional one imposing a given mechanical

and electrical kinematics. The equations of motion will be furnished both in the strong and weak

form, having mind future studies involving the determination of numerical solutions also for the

re…ned model of the proposed smart structures. The hypotheses and the con…gurations for which

the interactions between elastic and piezoelectric layers can be reduced to a simple model will be

underlined. In chapter 5 the results achieved in chapter 3 and 4 will be applied to assemble the

re…ned model of a periodic unidimensional piezoelectromechanical medium composed by an elastic

beam coupled by means of a distributed array of PZT transducers to a lumped electric network. A

continuous model of the periodic system will be derived by means of an homogenization procedure.

Both the cases in which the electrical variables are coupled to the mechanical extensional and

‡exural behavior will be studied.

In the second part (chapter 6), the homogenized model previously deduced will be utilized to

optimize the electrical networks for the vibration suppression and to infer important thumbnail

informations about the characteristics of the system. A wave approach will be followed to perform

a comparative analysis between di¤erent network connections. We will study the dependence of

the optimal electric parameters on the dimensions of the basic cell of the periodic system, their

sensitivity with respect to a change in the considered wavelength and the performance of the optimal

systems for vibration damping.

In the third part (chapter 7) the problem of the experimental realization and testing of the pro-

posed piezoelectromechanical system for the suppression of mechanical vibration will be addressed.

The realized experimental apparatus and a tested measurement procedures will be described. The

results of a classical experience on shunted PZTs; that has been reproduced to validate the exper-

imental setup, will be presented. Finally future experiments will be designed.

In the following chapter the basic concept of continuum mechanics and piezoelectricity will

be recalled. Moreover, referring to [3], the notation and the basic features of the Virtual Power

Principle, whose modelling approach is adopted, will be presented.
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Chapter 2

Preliminaries

In this chapter the basic concept of the kinematics of a continuum body will be recalled. Some words

will be spent on the meaning and the formalism of the Virtual Power Principle that will be largely

used in this work to derive the balance equations of dissipative electromechanical discrete and

continuous systems. Finally the constitutive behavior of a piezoelectric material will be discussed

furnishing applicative examples.

2.1 Continuum Kinematics

2.1.1 Body, References, Coordinates

A body can be identi…ed with the closed region of the Euclidean space E that it occupies at a given

instant in time. We will call this region the reference con…guration B and the points p 2B material

points. Once a …xed Cartesian reference frame C = fo; e1;e2; e3g is selected each point p can be

associated with the oriented arrow ¡!op: Thus the space of points p can be structured as vector space

V and each point can be represented also by the coordinate representation of ¡!op in C:

1e

2e

3e

O

E

1p

3p

2p

p

Reference frame
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We will denote by

e = fe1; e2;e3g (2.1)

the …xed basis for V and by

p =¡!op = p1e1 + p2e2 + p3e3 = epe = e

2

6664

p1

p2

p2

3

7775
(2.2)

the vector p=¡!op with coordinates pe in the e basis.

We will introduce in V a scalar product " ¢ " that is a bilinear, symmetric, positive de…nite

application between pairs of elements of V. If not otherwise speci…ed, the scalar product is de…ned

such that

e ¢ e :=

2

666
4

e1 ¢ e1 e1 ¢ e2 e1 ¢ e3
e2 ¢ e1 e2 ¢ e2 e2 ¢ e3
e3 ¢ e1 e3 ¢ e2 e3 ¢ e3

3

777
5

= I (2.3)

where I is the third order identity matrix.

2.1.2 Deformations of Continuum Bodies

De…nition 1 A deformation of a body B is a mapping

f : B 7! E

f : p 7! x := f(p)

For the physical requirement of the impenetrability of the bodies and its continuity, f(p) must

be a smooth 1-1 mapping from B to a bounded region of E: An important role in the description

of a deformation of a continuum body is played by the deformation gradient with respect to p

F : p !F(p) := rf(p) (2.4)
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whose determinant represents the local change in volume under f: We must require det(rf(p)) 6=0

for each p 2 B: We will assume

det(rf(p)) >0; for each p 2 B: (2.5)

De…nition 2 Let V be the three dimensional vector space of translations of B. The displacement
…eld associated to the deformation f is a function

û : B 7! V

û : p 7! u= û(p) := f(p) ¡ p

Remark 1 The displacement gradient respect to p is

ru=r(f(p)¡ p) = F¡ I

F;ru are linear applications from V to V we say F;ru 2 Lin(V ). In particular F 2Lin+(V)

De…nition 3 A deformation f is called an homogeneous deformation if F(p) is constant for each

p 2 B

Let us introduce in the vector space of oriented arrows the norm k¢k induced by the ordinary

scalar product. Thus it is possible to de…ne the distance between two points p;q by means of

k¡!pqk = kp¡ qk :

De…nition 4 A deformation f is a rigid deformation if it preserves distances between any pair of

points of the body B.

It is possible to show that the deformation gradient of a rigid deformation is skew-symmetric.

Expanding a generic deformation in the neighborhood of a point q 2 B we can approximate its

behavior as the superposition of a translation and an homogenous deformation

f(p) = f(q) + F(q)(p¡q)+o(p¡ q) (2.6)

The deformation gradient F can be decomposed in its symmetric part E and skew symmetric

part W as following

F= D+W (2.7)
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where

D =
1

2

¡
F+FT

¢
(2.8)

W =
1

2

¡
F¡FT

¢
(2.9)

In the same way the displacement gradient ru can be decomposed as

ru = S+W (2.10)

where

S =
1

2

¡
ru+ruT

¢
(2.11)

W =
1

2

¡
ru¡ruT

¢
(2.12)

and S is called the in…nitesimal strain

Thus each deformation can be locally decomposed in a rigid deformation and in a pure defor-

mation as

f(p) = f(q) +D(q)(p¡ q) +W(q)(p¡ q)+o(p¡q) (2.13)

where

f(q) +W(q)(p¡q) (2.14)

is the rigid component of f and

D(q)(p¡q) (2.15)

is the pure deformation. We denoted by o(p¡q) higher order terms in the Taylor expansion of

f(p) in a neighborhood of the point q

If dynamical processes are considered, an appropriate terminology must be introduced.

De…nition 5 A motion of B is a smooth one parameter family of deformations ft(¢) de…ned on B
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for t in a given real interval I. It can be represented by the function

x : B £ I ! E

: (p;t) ! x=x(p;t) := ft(p)

De…nition 6 The velocity …eld v(p;t) for a given motion x(p;t) is de…ned as

v(p;t) :=
@

@t
x(p;t) =:_x(p;t)

Obviously the time derivatives of all the …elds previously introduced can be de…ned.

De…nition 7 Let p and q be points of the euclidean space E. A velocity …eld v(p;t) is a distributor

if

v(p;t) = v(q)+ - (t)(p¡ q)

where - (t) is a skew-symmetric linear transformation.

The velocity …eld v(x;t) is one of a motion described by

x =Q(t)(p¡ o) + c(t) (2.16)

with

Q(t)QT (t) = I (2.17)

and

- (t) = _Q(t)QT (t) (2.18)

De…nition 8 A tensor valued …eld in R3 is said to be objective if and only if its components

transform tensorially with respect to (2.16).

Let C be the linear space of the distributors C .

Remark 2 Since each C 2 C is the superposition of a translation and a rotation in the euclidean
space E, the dimension of C is 6:
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De…nition 9 A motion belonging to C is said to be rigidifying motion if B is a deformable contin-
uum.

2.1.3 Beam Kinematics

Let us consider in the Euclidean space E a straight line A; called axis, a point O on it, called origin

and a one parameter family of bounded plane regions Sx; x 2 I ½ R, called sections. It is now

possible to …x a Cartesian reference frame C = fO; e1; e2;e3g, with origin O and the e1 ¡ axis
parallel to A.

A straight axis beam B can be geometrically described as the union of sections Sx for x in some

closed interval I of R. Formally

B :=
[

x2I

Sx (2.19)

The oriented arrow
¡!
OP that is an element of the vector space V of translations in E, can be

associated at each point p 2 B. In the reference C

¡!
OP = p1e1+p2e2+p3e3 (2.20)

and the set of three real numbers fp1; p2; p3g is the coordinate representation of
¡!
OP in C.

¡!
OP can

be partitioned in its orthogonal projection on the axis A

¡¡!
OPa = p1e1 (2.21)

and its orthogonal projection on the section Sx

s :=
¡¡!
PaP = p2e2+p3e3 (2.22)

such that

¡!
OP =

¡¡!
OPa +

¡¡!
PaP (2.23)

where
¡¡!
OPa is an element of the three dimensional vector space V and s :=

¡¡!
PaP lies in the two

dimensional vectorial space W of the translations in the plane.

Considering B the reference con…guration of the beam, a motion can be mathematically de-
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scribed by the smooth one parameter family of smooth maps

x( ¢ ;t) : B 7! Bt (2.24)

such that each point p in the reference con…guration B is mapped into its position q in the actual

con…guration Bt at time t by

¹x = x(p;t) (2.25)

The displacement vector …eld is naturally de…ned as follows

u(p;t) = ¹x¡p= x(p;t) ¡p (2.26)

Remark 3 In the basis e = fe1; e2;e3g u(pa; t) can be written as

u(p;t) =u1(p1; p2; p3; t)e1 +u2(p1; p2; p3; t)e2 + u3(p1; p2; p3; t)e3

We will use the following notation

u(p;t) =e (u(p;t))e = e

2

6664

u1(p1; p2; p3; t)

u2(p1; p2; p3; t)

u3(p1; p2; p3; t)

3

7775

where e is the row vector fe1; e2;e3g and the column vector (u(p;t))e is the coordinate representation

of u(p;t) in the basis e: In the same fashion

x(p;t) =e (x(p;t))e = e

2

666
4

f1(p1; p2; p3; t)

f2(p1; p2; p3; t)

f3(p1; p2; p3; t)

3

777
5

Moreover, given a function g(p1; p2; p3; t); we will de…ne

g(p1; t) := g(p1;0; 0; t)

The partition of
¡!
OP induces the de…nition of the one parameter family of applications

Gt(s) := x(p;t) ¡ x(pa; t) (2.27)
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such that

x(p;t) = x(pa; t) +Gt(s): (2.28)

where

pa =
¡¡!
OPa = e

2

6664

p1

0

0

3

7775
; s= p¡ pa (2.29)

The constraints imposed on Gt play a fundamental role in beam modelling. We will assume

that the axis can move only in the e2;e3 ¡ plane and that Gt is the composition of a in plane

uniform deformation Ut and a rotation Rt around the e2 ¡ axis: Thus

Gt(v) =Rt (Ut(v)) (2.30)

where U : W 7! W is linear and Rt: W 7! V has the following coordinate representation in the

basis e= fe1;e2; e3g for V and e0 = fe2;e3g for W

(Rt)
e0

e =

2

6664

0 sin(µ)

1 0

0 cos(µ)

3

7775
(2.31)

De…nition 10 A beam has no shear deformation if the rotation Rt of the section Sx is such that
in the actual con…guration the angles between the sections and the axis remain the same those in

the reference con…guration.

We will linearize the kinematics about the reference con…guration and we will assume that the

beam has no shear deformability.

Claim 1 In the linearized kinematics the rotation Rt has the following coordinate representation

in the e¡ e0¡bases

(Rt)
e0

e =

2

666
4

0 µ

1 0

0 1

3

777
5

Claim 2 In the linearized kinematics of a beam with no shear deformation the rotation angle of
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Rt is

µ = ¡@x3(p1; t)

@p1
= ¡@u3(p1; t)

@p1

Finally we can write the coordinate representation of the motion beam without shear deforma-

tion in the linear approximation

(x(p;t))e =

2

6664

x1(p1; t)

0

x3(p1; t)

3

7775
+

2

6664

0 ¡@x3(p1;t)
@p1

1 0

0 1

3

7775

2

4 U11 U12

U21 U22

3

5

2

4 p2

p3

3

5

=

2

666
4

x1(p1; t) ¡ @x3(p1 ;t)
@p1

(p2U21 + p3U22)

p2U11 + p3U12

x3(p1; t) + p2U21 + p3U22

3

777
5

Remark 4 In the hypotheses of rigid sections U= I and

x(p;t) = e

2

6664

x1(p1; t)¡ @x3(p1 ;t)
@p1

p3

p2

x3(p1; t) + p3

3

7775
(2.32)

u(p;t) = e

2

6664

u1(p1; t)¡ @u3(p1 ;t)
@p1

p3

0

u3(p1; t)

3

7775
(2.33)

2.2 Virtual Power Principle

2.2.1 Introduction

Our goal is to deduce homogenized and re…ned models of electromechanical dissipative systems.

The variational principle of virtual power, that is an evolution of D’Alembert principle, leads us to a

weak formulation of the problem that is general enough to consider the electromechanical coupling

in dissipative processes. In this context the equilibrium is expressed by a balance of powers. The

basic idea of this formulation is to describe forces not by their vectorial representation but by means

of the power they exert for a given velocity …eld1 . In other words once given the normed vector

space V of virtual velocity …elds v; the forces f acting on them are determined by the scalar values

1 The terms velocity, kinematics and force are intented in a generalized meaning.

15



assumed by the linear functional

P : V ! R

: v ! P(v) = hf; vi

In this way the duality via a bilinear form h¢; ¢i between the linear vector space of forces and virtual

velocities is the way in which the forces are de…ned.

2.2.2 De…nitions

State variables

Discrete and continuous systems are distinguished by the fact that at a given instant in time the

con…guration of a discrete system is given by a set of k constants

X=fx1; :::;xkg (2.34)

while the con…guration of a continuum body2 B is given by a set of h …elds de…ned on B

U0=fu1(p); :::;uh(p)g (2.35)

and eventually by their spatial gradients

U1; :::; Un

where

Ui = friu1(p); :::;rium(p)g;m · h; i = 1:::n (2.36)

The local state of a continuum body in the neighborhood of each point must be speci…ed explicitly

and its description will be as good as the greatest gradient order n considered (the concept of a

Taylor expansion of each …eld ui(p) should be kept in mind). The choice about which and how

many spatial gradients to consider is a constitutive assumption. A theory which considers n spatial

gradients is called n¡ th gradient order theory.

On a continuum body a set of boundary conditions must be prescribed. In the approach we

2 Here as before a continuum body is identi…ed with the region B of the Euclidean space that it occupies at a …xed
time instant t0
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are following only the boundary conditions prescribed directly on the elements of U = U0; :::;Un

(essential boundary conditions) must be explicitly considered. They will be in the form of nbc

equations (BC), in general non-homogeneous, that must be satis…ed on a part of @B and they

appear in the de…nition of the functional space in which the virtual velocities must lie.

We will focus our attention on a system S constituted by a continuum body B with a set of

essential boundary conditions BC: The state of S at a …xed instant in time is given by the set

S = fU0; :::;Ung: (2.37)

We will call S the set of the state variables of S:

Example 1 In a …rst order gradient theory the state of an electromechanical continuum in the

quasi-electrostatic approximation can be described by

S = fu(p; t);Á(p; t);ru(p; t);rÁ(p; t)g;p 2B (2.38)

where u(p; t) is the vectorial valued …eld describing the mechanical displacement from the reference

con…guration and Á(p; t) is the scalar valued …eld of the time primitive of the electric potential.

Actual and Virtual velocities

The elements of S are all functions of time and the set of their time derivatives

V = fV0; :::;Vng (2.39)

where

Vi = fri _u1(p); :::;ri _um(p)g;m · h; i = 1:::n (2.40)

are a velocity description of S: Here we will distinguish between the velocity actually experienced

during a motion (actual velocities) and the virtual velocities that will be denoted by a superscript

"¤". The virtual velocities do not need to satisfy the equation of motions, they are required only to

be enough smooth and to satisfy the homogeneous version of the prescribed boundary conditions,

otherwise they are arbitrary. We will denote by V the vector space of the virtual velocities.

On the actual and virtual velocities the same smoothness is required, but in general the func-

tional spaces in which they lie are di¤erent because of the boundary conditions. In fact the actual

velocities _ui(p) must satisfy the prescribed essential boundary conditions while the virtual veloci-
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ties are required to satisfy their homogeneous version. For numerical application it is useful to have

the actual and virtual velocities in the same space. Thus if non-homogenous boundary conditions

are present it is convenient to restate the problem converting them to an homogeneous form3 .

Focusing our attention on a …rst gradient order theory, let us denote the vector space of virtual

velocities by

V = fv¤i ;rv¤i gi=1:::n = f _si;r _sigi=1:::n (2.41)

The virtual velocities that are objective are called objective virtual velocities. Let’s denote by Vobj
the space spanned by them:

Example 2 In an electromechanical continuum in the quasi-electrostatic approximation and for a

…rst order-gradient theory the following set of virtual velocities can be chosen

V = f _u¤(p;t);Á¤(p;t);r _u¤(p;t);r _Á
¤
(p;t)g (2.42)

Virtual Powers

The virtual powers are de…ned as a linear functional de…ned on the space V of the virtual velocities.

P : V ! R (2.43)

Thus the virtual powers are in the dual space of V: The virtual velocities are test functions for the

forces de…ned in the distributional sense by means of the corresponding powers.

Virtual Power of Internal Forces The virtual power of internal forces is characterized by the

following

Axiom 1 The virtual power of forces internal to a system B vanishes for all rigidifying motions
of B considered at any time t.

Proposition 1 The virtual power Pint of the internal forces © exerted within a continuous medium

that occupies, in the reference con…guration, the region B of the euclidean space is expressed by a

3 A simple change of variables is required.
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continuous linear functional on the normed4 linear space Vobj : That is

Pint(B;V) = h©; v¤iB ; v¤ 2 Vobj :

Thus to formulate an a-priori theory of a continuum it is necessary, after having chosen the

space V; to …nd Vobj : In the present work we will specialize already existence theories in technical

cases and we will write directly the expression of the internal power without facing the problem of

…nding Vobj .

Example 3 In an electromechanical continuum in the quasi-electrostatic approximation and for a

…rst order-gradient theory the virtual velocity are (2.42) and

Vobj = f _S¤(p;t);r _Á
¤
(p;t)g (2.44)

where

_S¤(p;t) = sym(r _u¤(p;t)) =
1

2
(r _u¤(p;t)+r _u¤(p;t)) (2.45)

Hence the virtual power of the internal forces is

Pint(B; V) = Pint;m(B;V )+ Pint;e(B;V) (2.46)

=
D
T; _S¤(p;t)

E

B
+
D
J;r _Á

¤
(p;t)

E

B
(2.47)

where the tensorial …eld T and the vectorial …eld J are de…ned as the quantities on which _S¤;r _Á
¤

expend power. Physically T is the tensor that describes the tensional state of a continuum, while J

can be interpreted as the time derivative of the electric displacement vectorD, that is a displacement

current inside the dielectric body.

Virtual Power of External Forces As the external forces are classi…ed as at-distance, or

volume, forces and contact forces, so are the respective powers.

Proposition 2 The virtual power of distance, or volume, forcesBd exerted in a continuousmedium

occupying, in the reference con…guration, the region B of the euclidean space E, is a continuous

4The norm induced by the scalar product h¢; ¢i
B
is considered.
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linear functional on V.

Pd(B; V) = h©; v¤iB :=

Z

B

Bd ¢ v¤

Proposition 3 The virtual power of contact forces Bc exerted in a continuous medium occupying,

in the reference con…guration, the region B of the euclidean space E, is a continuous linear functional
on V.

Pc(@B;V ) = h©; v¤i@B :=

Z

@B

Bc ¢ v¤

The external forces can expend power in every type of virtual velocities, included the non

objective ones. Often in applications only a few types of them are present.

Here we will considered the inertial forces as external forces despite that they are prescribed

by something similar to a constitutive relation, while contact and volume forces are given by the

environment in which the body is embedded.

Proposition 4 The virtual power of inertial forces Pa experienced by a continuous medium occu-

pying the domain B of the euclidean space E in the reference con…guration is a continuous linear
functional on the virtual velocities containing only time derivatives of the state …elds and not their

gradients.

For example, in the purely mechanical case we will impose

Pa(B; v¤) =

Z

B

¡½ _v ¢ v¤ (2.48)

where ½ is the mass density for unit volume in the medium. We underline that it is necessary to

di¤erentiate the notation between the actual velocities v and the virtual velocities v¤: The minus

sign in the de…nition is due to the fact that they are considered as external forces.

The virtual power of all the external forces is given by the sum of the three contributions

Pext(B; v¤) = Pd(B; v¤) + Pc(@B; v¤) +Pa(B; v¤) (2.49)

Example 4 Let B be an electromechanical dielectric in the quasi-electrostatic approximation. The
virtual velocities are (2.42) and the virtual power of the external forces can be written as
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Power of distance forces

Pd(B; v¤) = Pd;m(B; _u¤(p;t)) (2.50)

= hb; _u¤(p;t)iB (2.51)

Power of contact forces

Pc(@B; v¤) = Pc;m(@B; _u¤(p;t)) +Pc;e(@B; _Á
¤
(p;t)) (2.52)

= hf; _u¤(p;t)i@B +
D
¾; _Á

¤
(p;t)

E

@B
(2.53)

Power of inertial forces

Pa(@B; v¤) = Pa;m(@B; _u¤(p;t)) (2.54)

= h¡½Äu(p;t); _u¤(p;t)iB (2.55)

Hence the total power of the external forces is

Pext(B; v¤) = Pd(B; v¤) +Pc(@B; v¤) + Pa(B; v¤) (2.56)

=

0

@ Pd;m(B; _u¤(p;t))+ Pc;m(@B; _u¤(p;t))+
+Pc;e(@B; _Á¤(p;t)) + Pa;m(@B; _u¤(p;t))

1

A

=

0

@
R
B
b ¢ _u¤(p;t) +

R
@B
f ¢ _u¤(p;t)+

+
R
@B ¾

_Á
¤
(p;t) +

R
B

¡½Äu(p;t) ¢ _u¤(p;t)

1

A

2.2.3 Statement

It’s …nally possible to enunciate the principle of virtual power.

Proposition 5 Principle of Virtual Power. In a Galilean reference frame, and for an absolute

Newtonian chronology, the virtual power of the internal forces of a system B balance the virtual

power of external forces impressed on the system, for any smooth virtual velocity …eld satisfying the

homogeneous version of the prescribed boundary conditions. Thus the following equality must hold

for each smooth v¤ satisfying the homogeneous version of the prescribed boundary conditions

Pint(B; v¤) = Pext(B; v¤) (2.57)

Example 5 Let B be an electromechanical dielectric in the quasi-electrostatic approximation. In a
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…rst order gradient theory the virtual velocities are (2.42), the virtual power of the internal forces

is (2.46), the virtual power of the external forces is (2.56). Hence the power balance is expressed by

Pint;m + Pint;e = Pd;m+ Pc;m + Pc;e +Pa;m (2.58)
0

@
R
B
T ¢ _S¤(p;t)+

+
R
B
J ¢ r _Á

¤
(p;t)

1

A =

0

@
R
B
b ¢ _u¤(p;t) +

R
@B
¾ _Á

¤
(p;t)+

+
R
@B f ¢ _u¤(p;t) +

R
B

¡½Äu(p;t) ¢ _u¤(p;t)

1

A

2.2.4 Considerations

From a kinematical description of the physical system by means of the principle of the virtual

power, once considered the constitutive equations, a mathematical formulation of a boundary value

problem can be obtained.

The formulation of a physical problem by means of the principle of the virtual power allows us

to

1. Obtain a weak formulation of the problem. It is given by the statement of the principle power

itself when the constitutive relations are considered.

2. Derive a Galerkin Formulation of the problem restating the principle of the virtual power

performing a change of variables in order to have only essentially homogeneous boundary

conditions.

3. Obtain numerical approximate solutions for the problem by means of a Galerkin Approxima-

tion. For example the Finite Element Method can be applied.

4. Derive the strong form of the balance equations rewriting the power balance with some inte-

gration by parts and considering that the virtual velocities are arbitrary: It must be underlined

that, dealing with non-regular physical systems, a strong formulation of the equilibrium equa-

tions is not convenient because, while an analytical solution cannot be achieved, a numerical

solution of the problem can be obtained directly as in 3.

5. Write the actual power balance for the system once the virtual velocities in (2.57) are substi-

tuted by the actual velocities:

6. Find a correspondence between the forces appparing in two di¤erent models of the same phys-

ical system once a kinematical map between them is given. It can be obtained imposing that

corresponding forces expend the same power in corresponding virtual velocities. With this

procedure constitutive equations of homogenized models of periodic systems can be evaluated

from re…ned models. The latter possibility is central in this work.
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2.3 Piezoelectric Materials

In a piezoelectric material mechanical phenomena are coupled with electrical ones by means of

constitutive relations. Here we will recall the constitutive equations of Linear Piezoelectricity.

2.3.1 Linear Constitutive Relations

The state of a piezoelectric material is no longer determined only by the mechanical state variable.

Electromechanical interactions are not negligible and it is necessary to introduce new …elds to

describe the electric state. We will consider the quasi-electrostatic case in which coupling between

electrostatic and magnetic …elds can be ignored and only the electrostatic state is included in the

model. Di¤erent choices of the electrical state variable are possible (electric displacement vector

D, electric …eld vector E, electric potential Á, ...).

The coupling between the electrical and mechanics …elds is realized by means of the constitutive

relations. The constitutive laws can bederived from a postulated expression of the Gibbs free energy

and their explicit formulation depends upon the chosen mechanical and electrical state variables

(see [7]). In the following we express the vectorial and tensorial quantities in a …xed orthonormal

reference C =f0;eg with the indicial notation (repeated indices are intended to be summed).

Claim 3 The Gibbs free energy for a piezoelastic body is the scalar function

G= ¡TijSij ¡DhEh

where the electric …eld vector Eh and the mechanical strain tensor Sij are intensive state variables

and the electric displacement vector and the mechanical stress tensor are extensive state variables.

Depending upon which state variables are chosen as independent the following four equivalent

expressions of the constitutive relations can be derived5:

² (S;D)-type (extensive type)

Tij = cDijklSkl¡hijnDn

Em= ¡hmijSij+¯
S
mnDn

(2.59)

5 One can easily derived by the the other by simply rearranging the system
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where

cDijkl =
h

@G
@Sij@Skl

i

D
hijn =

h
@G

@Skl@Dn

i

¯Smn =
h

@G
@Dm@Dn

i

S

(2.60)

² (T;E)-type (intensive type)

Sij = sEijklTkl +dijnEn

Dm = dmijTij + ²TmnEn

(2.61)

where

sEijkl =
h

@G
@Tij@Tkl

i

E
dijn =

h
@G

@Tkl@En

i

²Smn =
h

@G
@Em@En

i

S

(2.62)

² (T;D)-type (mixed type)

Sij = sDijklTkl + gijmDm

Em = ¡gijmTij +¯TmnDn

(2.63)

where

sDijkl =
h

@G
@Tij@Tkl

i

D
gijn =

h
@G

@Tkl@Dn

i

¯Tmn =
h

@G
@Dm@Dn

i

S

(2.64)

² (S;E)-type (mixed type)

Tij = cEijklSkl¡eijmEm

Dm=eijmSij+²SmnEn
(2.65)

where

cEijkl =
h

@G
@Sij@Skl

i

E
eijn =

h
@G

@Skl@En

i

²Smn =
h

@G
@Em@En

i

S

(2.66)

Remark 5 The state variables S;T;D;E can be replaced by other physical quantities. In these the

constitutive relations can be rewritten considering the expressions of the new variable in term of

the old ones.
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Example 6 If the time primitive Á of the electric potential is chosen as state variable, the consti-

tutive equations should be expressed in term of the pair of electric variables (Á;J). Since

Em =
@ _Á

@xm
;Jm= _Dm (2.67)

the (S;E)-type relations becomes

Tij = cEijklSkl¡eijm @
@xm

_Á

Jm=eijm _Sij+²
S
mn

@
@xn

ÄÁ
(2.68)

2.3.2 Voigt Notation

Piezoelectric materials present a particular symmetry: they are transversely isotropic with respect

to an axis, called the polarization axis P. If a reference system is oriented according to that sym-

metry, the parameters required to de…ne the coordinate representation of the constitutive relations

are drastically reduced6. Moreover adopting a particular notation, valid only in the …xed reference,

the material characteristics can be given in a matrix form.

Let us orient a reference C = fO; eg such that the e3 ¡axis will be parallel to the polarization

direction P and let us denote with 1;2;3 the directions associated to e1; e2;e3. If the following

correspondence between each pair of indices ij of the tensorial notation and a index r of the so

de…ned Voigt-Kelvin notation is introduced

11 ! 1 22 ! 2 33 ! 3

23 = 32 ! 4 13 = 31 ! 5 12 = 21 ! 6
(2.69)

the constitutive equations assume a simpler form and a matrix representation of them will be

possible.

Remark 6 The experimental data for the constitutive behavior of the piezoelectric material are

given in the Voigt notation and in particular in the intrinsic (S;D)-type or alternatively in the

mixed (S; E)-type.

Example 7 The constitutive equations of the (S; E) ¡ type for a linear piezoelastic material, ex-

6 Because of the transverse isotropy the piezoelectric constitutive equation must be invariant under the group of
rotations around the polarization axis.
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pressed in the tensorial notation by (2.65), in the Voigt notation becomes

S = sET +dE

D = dT + ²TE
(2.70)

where now S;T are 6x1 matrices, E;D 3x1 matrices and sE; d; ²T are 6x6; 6x3;3x3 matrices ex-

pressed by

SE =

2

6666666666664

sE11 sE12 sE13 0 0 0

sE21 sE22 sE23 0 0 0

sE31 sE32 sE33 0 0 0

0 0 0 sE44 0 0

0 0 0 0 sE44 0

0 0 0 0 0 2(sE11 ¡ sE12)

3

7777777777775

d =

2

666666666666
4

0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0

3

777777777777
5

; ²T =

2

666
4

²T11 0 0

0 ²T22 0

0 0 ²T33

3

777
5

The zeros entries in the matrices are due only to the symmetries.

2.3.3 Uniaxial States

Frequently particular physical situations allow to neglect the in‡uence of some secondary phenom-

ena on the main aspects that one wants to model, consequently the number of variables needed to

describe the state of the system can be reduced. Here we will give the de…nition of some of those

situations and we will derive the corresponding constitutive equations, in order to use them in the

following sections.

De…nition 11 A tensional state is called uniaxial along the i¡ axis if all the stress components
vanish except the one along the i¡axis: Using the Voigt notation, a uniaxial tensional state in the
1 ¡ direction is characterized by

T2 = T3 = T4 = T5 = T6 = 0
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De…nition 12 The electrostatic state is called uniaxial along the i ¡ axis if all …eld components
not parallel to the i¡ direction are zero. Using the Voigt notation,a uniaxial electrostatic state in
the 3 ¡ direction is characterized by

E1 = E2 = 0; D1 =D2 = 0

In the following we will focus our attention on the piezoelectric material with a uniaxial ten-

sional state along the 1 ¡direction and a uniaxial electrostatic state along the 3 ¡ direction: We

characterize this situation as follows:

Claim 4 In a uniaxial stress state along the 1 ¡ direction and a uniaxial electrostatic state along
the 3 ¡ direction, equation (2.70) in the Voigt notation becomes

2

4 S1

D3

3

5 =

2

4 sE11 d31

d31 ²T33

3

5

2

4 T1

E3

3

5 (2.71)

Claim 5 In a uniaxial stress state along the 1 ¡ direction and a uniaxial electrostatic state along
the 3 ¡ direction, equation (2.63) becomes

2

4 S1

E3

3

5 =

2

4 sD11 g31

¡g31 ¯T33

3

5

2

4 T1

D3

3

5 (2.72)

In following sections we will often use the inverse of the (2.72) that is

2

4 T1

D3

3

5 =

2

4 cE11 ¡e31
e31 ²S33

3

5

2

4 S1

E3

3

5 (2.73)

where

cE11 = 1
sE11

²S33 

=  

¡d2
31 

+²T33s 

E
11

sE11

e31  

=  

d31

sE11

(2.74)

2.3.4 PZT Transducers

In this work we will refer to a piezoelectric transducer as a specimen of polarized PZT material

whose surfaces are plated in order to generate a electric …eld inside the body once a potential

di¤erence is applied between them. These conductive surfaces are called the electrodes. Depending

upon the geometrical shape, the direction of polarization, and the direction along which the electric
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…eld is applied, there are a great variety of PZT transducers able to couple the applied electric …eld

with the mechanical shear or normal modes.

For applications to vibration control the most common con…guration is the one in …gure 2-1

where the transducer is constituted by a thin sheet of PZT material polarized along its thickness.

Since the thickness tp is usually 10 ¡ 20 times smaller than the transversal dimensions this type of

transducer can be treated as an essentially two dimensional object. When a voltage di¤erence is

applied between the two electrodes an electric …eld is induced along the 3 ¡ direction and by the

relations (2.65) a constant mechanical pre-stress along the 1 and 2 directions is generated. If no

forces are applied on the lateral surfaces the result of the applied …eld is a uniform contraction or

elongation in the 1 ¡ 2 plane.

pl

pw

pt

Plated Surface

Direction of Polarization

V∆
+

-

1

2
3

Figure 2-1: PZT sheet working by 3 ¡ 1 e¤ect

When uniaxial stress states are considered the behavior of the PZT sheet is completely described

by relations like (2.73). The manufacturers usually provide the performances of the PZT sheets

giving the blocked force and the free elongation. These two quantities refer to a unidimensional

model of the transducer. The blocked force is de…ned as the force exerted when the ends of

the actuator are …xed and a given voltage is applied between the electrodes; the free elongation

is the elongation experienced in the relevant direction for a given potential when no forces are

applied. These characteristics can be derived also integrating equation (2.73) in order to get global

constitutive relations of the type

2

4 F

Q

3

5 =

2

4 kmm kme

kem kee

3

5

2

4 ¢L

V

3

5 (2.75)

where ¢L is the total elongation, V; the applied voltage, F; the resultant force applied on the lateral

surfaces and Q; the charge accumulated on the electrodes (see …gure 2-2). Typical numerical values

of the characteristics of a PZT transducer working by 3 ¡ 1 e¤ect are given in …gure 2-3.
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Figure 2-2: PZT sheet working by 3 ¡ 1 e¤ect.

10-100VVoltage

10.000HzResonance frequency

1-10 mmDisplacement

50-100 NForce

0.1 mmThickness

5 – 10 cmTransversal Dimensions

10-100VVoltage

10.000HzResonance frequency

1-10 mmDisplacement

50-100 NForce

0.1 mmThickness

5 – 10 cmTransversal Dimensions

Figure 2-3: Typical numerical values for the characteristics of a PZT transducer.
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Chapter 3

Electrical Systems

The passive control of mechanical vibrations by means of PZT transducers is based on the piezo-

electric coupling between a mechanical structure and an electric network. In this chapter the basic

notions about electrical systems will be introduced focusing our attention on those aspects that will

be useful in the following developments. After spending some words on electromechanical analogies,

both a re…ned and homogenized model of a lumped electric transmission line will be developed by

means of the Virtual Power Principle. In this fashion an example of the homogenization procedure

that will be applied on more complex systems will be furnished.

3.1 Discrete Systems

We will consider a discrete electric system, or circuit, as a set of two-port networks, or components,

with a speci…c interconnection.

A two-ports network is a physical device with two terminals that can be mathematically mod-

elled as a binary relation between an intensive scalar variable through the terminals and an extensive

scalar variable across the terminals. In the following the pairs of conjugate variables (Á; ¶) and (v;Â)

will be considered, where v = _Á is the electric potential di¤erence across the network terminals and

¶ = _Â is the electric current through the terminals. We will focus our attention to electric two-ports

networks.

Remark 7 Á;v are extensive state variables while ¶;Â are intensive state variables and the products

Á ¤ ¶; v ¤ Â have the physical dimensions of a power.

Axiom 2 The virtual power for a two-ports network is given by

P = ¶ ¤ _Á
¤
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if _Á
¤
is chosen as virtual velocity,

P = v ¤ _Â¤

if _Â¤ is chosen as virtual velocity.

We will consider the following basic passive linear components

Name Resistor Capacitor Inductor

Diagram

Characteristic constant R²R+; (- ) C²R+; (F) L²R+; (H)

Binary relation v =R _Â v = 1
CÂ v = LÄÂ

Inverse binary relation ¶ = 1
R

_Á ¶ = CÄÁ ¶ = 1
LÁ

and the following basic active components

Name Current generator Voltage generator

Diagram

Binary relation ¶ = I; for each Á v = V; for each Â

(3.1)

The de…nitions of the elementary interconnections between elements are

De…nition 13 Parallel connection. Two networks are connected in parallel if the same potential

between their terminals is imposed.

De…nition 14 Series connections. Two networks are e connected is series if the same current is

imposed through their terminals.

Remark 8 The binary relation characterizing a component can be regarded as a constitutive

relation.

Remark 9 Constitutive relations for a two-port network that is the composition of elementary

components can be deduced by a power balance once a kinematic (connections between elements) is

given.
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Proposition 6 If Á is chosen as state variable the constitutive relation (or binary relation) for a

parallel connection of an inductor L, a capacitor C and a resistor R is given by ¶ = CÄÁ+ 1
LÁ+ 1

R
_Á.

Proof. Denoting with the subscript the quantities relative to each component, the power

Figure 3-1: RLC parallel

balance can be written as

¶ _Á
¤

= ¶C _Á
¤

C + ¶R _Á
¤

R + ¶L _Á
¤

L (3.2)

The parallel connection imposes that

_Á
¤

= _Á
¤

R = _Á
¤

C = _Á
¤

L

thus (3.2) becomes

¶ _Á
¤

= (¶C + ¶R + ¶L) _Á
¤

and for the arbitrariness of _Á
¤
;

¶ = ¶C + ¶R + ¶L = CÄÁ+
1

R
_Á+

1

L
Á

Proposition 7 If Â is chosen as the state variable, the constitutive relation for a series connection

of an inductor L, a capacitor C and a resistor R is given by

v = LÄÂ+R _Â+
1

C
Â

Proof. The power balance is written as

v _Â¤ = vL _Â¤L + vR _Â¤R + vC _Â¤C (3.3)
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The series connection imposes that

_Â¤ = _Â¤R = _Â¤C = _Â¤L

thus (3.3) becomes

v _Â¤ = (vL + vR + vC) _Â¤

and for the arbitrariness of _Â¤;

v = vL + vR + vC = LÄÂ +R _Â+
1

C
Â

3.2 Electromechanical Analogies

Electric and mechanical discrete systems with n degrees of freedom have the same mathematical

model: a system of n second order ordinary di¤erential equations. So that, once a mathematical

model for a mechanical and for an electric system with the same number of degrees of freedom is

given, it is possible to associate at each physical mechanical quantity the electrical one that plays

the same role in the model. In this fashion electromechanical analogies for discrete systems are

developed. The same procedure can be applied to continuous systems, as studied in ([23], [26]).

Example 8 Let us consider the one degree of freedommechanical system in …gure 3-2. If we choose

as the state variable the displacement u of the mass m; the following power balance must hold for

each virtual velocity _u¤

Pint = Pext +Pa

Fint _u
¤ = f _u _u¤+mÄu _u¤

(¡ku¡ c _u) _u¤ = f _u¤ +mÄu _u¤

By the arbitrariness of _u¤ the following equation must be satis…ed

mÄu+ c _u+ku = f (3.4)

Example 9 Let us consider the RLC series circuit in …gure 3-3. If the electrical charge Â is chosen
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Figure 3-2: Spring-mass-damper system

Figure 3-3: RLC series circuit

as the state variable, the following balance of power must hold for each virtual generalized velocity

_Â¤

Pint = Pext

v _Â¤ = V _Â¤

(R _Â +
1

C
Â+ LÄÂ) _Â¤ = V _Â¤

By the arbitrariness of _Â¤ the following second order linear ordinary di¤erential equation must be

satis…ed

LÄÂ +R _Â +LÄÂ = V (3.5)

Example 10 Let us consider the RLC parallel circuit in …gure 3-4 If the time primitive of the

Figure 3-4: RLC parallel circuit
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electrical potential Á is chosen as the state variable, the following balance of power must hold for

each virtual generalized velocity _Á
¤

Pint = Pext

¶ _Á
¤

= I _Á
¤

(CÄÁ+
1

R
_Á+

1

L
Á) _Á

¤
= I _Á

¤

By the arbitrariness of _Á
¤
the following second order linear ordinary di¤erential equation must hold

CÄÁ+
1

R
_Á+

1

L
Á= V (3.6)

Comparing the equation (3.4) with the equation (3.5) the charge-displacement electromechanical

analogy can be deduced with the following identi…cations

u! Â f ! v

m! L k ! C

c! R

(3.7)

Comparing the equation (3.4) with the equation (3.6) the voltage-velocity electromechanical

analogies can be deduced, with the following identi…cations

u! Á f ! ¶

m!C k ! 1
L

c! 1
R

(3.8)

3.3 Periodic Systems and Homogenized Models

3.3.1 Lumped Transmission Line

System Description

Let us consider a periodic one-dimensional electric lattice whose basic cell is composed by a parallel

RLC element to ground G and a line element L as represented in …gure 3-5.

Let be d the constant space interval between two cells, such that the n¡ th cell is the position

x= nd and the (n+1) ¡ th cell is the position x = (n+1)d:

The resultant system is represented in …gure 3-6 and it is a generalized lumped electric trans-

mission line.
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Figure 3-5: Transmission line: basic cell
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Figure 3-6: Generalized lumped trasmission line

Let us denote by Án the time primitive of the potential of the n¡ th node, by ¶n the current to

ground from the n¡ th node, ´n the line current between the n¡ th and the (n+ 1) ¡ th nodes.

Since the basic cell is composed of a parallel RLC element to ground G and a parallel line RLC

element N; the virtual powers spent in the virtual velocities _Á
¤

n; _»
¤

n =
¡
Á¤n+1 ¡ Á¤n

¢
are

² internal

P (n)
int = ¶n _Á

¤

n + ´n _»
¤

n (3.9)
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² external

P (n)
ext = In _Á

¤

n +Yn _»
¤

n (3.10)

where In and Yn denote the current exerted by the ground and line current generators,

respectively.

The constitutive equations are

¶n = GÁn (3.11)

´n = N»n

where the linear di¤erential operators

G =

µ
Cg
d2

dt2
+

1

Rg

d

dt
+

1

Lg

¶
(3.12)

N =

µ
Cl
d2

dt2
+

1

Rl

d

dt
+

1

Ll

¶
(3.13)

are de…ned1 .

Equations of Motion

Since in the expression of the power balance of the n¡th element, also the (n+ 1) ¡ th variable is

involved, the variable Án is present only in the power expression of the n¡ th and the (n¡ 1)¡ th
cells. So that by the power balance

X
P (n)
int =

X
P(n)
ext (3.14)

and the arbitrariness of _Á
¤

n, collecting the term involving _Á
¤

n in the expression

P (n)
int + P(n¡1)

int = P(n)
ext + P(n¡1)

ext (3.15)
0

@ ¶n _Á
¤

n + ´n
¡
Á¤n+1 ¡ Á¤n

¢
+

¶n¡1
_Á
¤

n¡1 + ´n¡1

¡
Á¤n ¡ Á¤n¡1

¢

1

A =

0

@ In _Á
¤

n + Yn
¡
Á¤n+1 ¡ Á¤n

¢
+

In¡1
_Á
¤

n¡1 + Yn¡1

¡
Á¤n ¡Á¤n¡1

¢

1

A ;

1 The subscript ”l" indicates the line parameter, the subscript ”g" the parameters of the RLC element to ground
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the following balance of currents must hold

¡
¶n ¡ ´n + ´n¡1

¢
= (In ¡Yn +Yn¡1) (3.16)

Substituting the equations (3.11) into the previous expression we get

GÁn +N
¡
¡Án+1 + 2Án ¡ Án¡1

¢
= In ¡ Yn + Yn¡1 (3.17)

(G+2N )Án ¡NÁn+1 ¡NÁn¡1 = In ¡ (Yn ¡Yn¡1) (3.18)

that are the balance equations for the generic cell of the modular system. If the N; G are written

explicitly they become

0

@
(Cg +2Cl) ÄÁn +

³
2
Ll

+ 1
Lg

´
Án +

³
2
Rl

+ 1
Rg

´
_Án

¡Cl

³
ÄÁn+1 + ÄÁn¡1

´
¡ 1

Ll

¡
Án+1 +Án¡1

¢¡ 1
Rl

³
_Án+1 + _Án¡1

´

1

A = In ¡ (Yn ¡Yn¡1) (3.19)

If

Rg ! 1 Lg ! 1
~́n ! 0 Cl ! 0

then the equation of motion (3.19) reduces to

0

@
(Cg) ÄÁn ¡

³
1
Ll

´¡
Án+1 +Án¡1 ¡ 2Án

¢

¡
³

1
Rl

´³
_Án+1 + _Án¡1 ¡ 2_Án

´

1

A = In ¡ (Yn ¡Yn¡1) (3.20)

that is the equation of motion for the generic cell of a classic lumped electric line.

3.3.2 Homogenized Model

An homogenized model of the one-dimensional electric lattice presented in the previous section is a

continuous electric transmission line. Once the virtual velocity …elds for the continuous transmission

line are chosen, the balance equations can be found by the power balance. On the other hand, the

constitutive equations will be deduced giving a mapping between the kinematics of the homogenized

and the lumped models and prescribing that the virtual powers spent in corresponding virtual

velocities must be the same.
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Kinematics

If we think of the transmission line as a physical continuous system, it occupies a …xed unidimen-

sional region of the euclidean space. Let it be a straight line T and let us …x a curvilinear coordinate

s on it.

If the time primitive of the electric potential2 of a generic point of the line is chosen as the state

variable, in a …rst order gradient theory the space of the virtual velocities is

V =f _Á
¤
(s; t); _»

¤
(s; t)g (3.21)

where

_»
¤
(s; t) =

d _Á
¤
(s; t)

ds
(3.22)

Remark 10 The n¡th elementary cell of the lattice model corresponds to the region [nd; (n+1)d]

of the continuous model.

The continuous system can be identi…ed with the lattice model only in an approximate fashion.

In the lumped system the state of the n¡ th cell at a given instant in time is determined only by

two scalar quantities, Án and »n = Án+1 ¡Án; while in the continuous model it is given by smooth

…elds Ã(s); »(s) = dÃ(s)
ds de…ned on the real interval [nd; (n+ 1)d]:

Considering the …elds Ã(s); »(s) constant in each cell the following kinematic mapping is assumed

Ã(s; t) = Án(t) (3.23)

»(s; t) =
»n(t)

d
(3.24)

for each s 2 [nd; (n+1)d]:

Power Balance and Equilibrium Equations

The virtual powers for the continuous system can be written as

2 All the potentials are referred to ground.
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² internal virtual power

P(H )
int =

Z

T

¹¶ _Á
¤

+

Z

T

¹́ _»
¤

(3.25)

=

Z

T

¹¶ _Á
¤

+

Z

T

¹́
d _Á
¤

ds

=

Z

T

µ
¹¶ _Á
¤ ¡ d¹́

ds
_Á
¤

¶
+[¹́ _Á

¤
]@T

² external virtual power

P(H)
ext =

Z

T

³
¹I _Á
¤

+ ¹Y _»
¤
´

(3.26)

=

Z

T

µ
¹I _Á
¤ ¡ d¹Y

ds
_Á
¤

¶
+[ ¹Y _Á

¤
]@T

The power balance is expressed by

P (H)
int = P (H)

ext (3.27)

Using (3.25) and (3.26), this can be rewritten as

Z

T

µ
¹¶ _Á
¤¡ d¹́

ds
_Á
¤

¶
+ [¹́ _Á

¤
]@T =

Z

T

µ
¹I _Á
¤ ¡ d¹Y

ds
_Á
¤

¶
+[ ¹Y _Á

¤
]@T (3.28)

Since this must hold for each regular _Á
¤

the following balance equation

¹¶+
d¹́

ds
= ¹I +

d¹Y

ds
(3.29)

and constraints on the boundary conditions

[¹́ _Á
¤
]@T = [¹Y _Á

¤
]@T (3.30)

are derived

Constitutive Equations

The constitutive equations for the homogenized model of the lumped transmission line considered

in the previous section will be derived considering the kinematic mapping (3.23) and imposing

that in the elementary cell corresponding virtual velocities expend the same virtual power on

corresponding generalized forces. In the elementary cell the virtual power of each virtual velocity
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for the two models is

² homogenized model

Virtual velocity Pint Pext

_Á
¤ R (n+1)d

nd ¹¶ _Á
¤
ds

R (n+1)d
nd

¹I _Á
¤
ds

_»
¤ R (n+1)d

nd
¹́ _»
¤
ds

R (n+1)d
nd

¹Y _»
¤
ds

² lumped model

Virtual velocity Pint Pext

_Á
¤

n ¶n _Á
¤

n In _Á
¤

n

_»
¤

n ´n
_»
¤

n Yn _»
¤

n

For the prescribed equality of powers the following must hold

R (n+1)d
nd ¹¶ _Á

¤
ds = ¶n _Á

¤

n

R (n+1)d
nd

¹I _Á
¤
ds = In _Á

¤

n
R (n+1)d
nd

¹́ _»
¤
ds = ´n _»

¤

n

R (n+1)d
nd

¹Y _»
¤
ds = Yn _»

¤

n

(3.31)

Considering the kinematical map (3.23) and the constitutive equations (3.11) for the lumped model,

_Á
¤

n; _»
¤

n can be replaced by the constants _Á
¤
; d_»

¤
and the previous relations imply that

R (n+1)d
nd ¹¶ds= ¶n

R (n+1)d
nd

¹Ids = In
R (n+1)d
nd ¹́ds = ´nd

R (n+1)d
nd

¹Yds = Ynd
(3.32)

By the re…ned constitutive relations

¶n = GÁ =GÁ (3.33)

´n = N» =Nd» (3.34)

hence, the mean values of the generalized forces ¹¶; ¹́; ¹I; ¹Y are given by

¹¶ =
¡
G
d

¢
Á ¹I = In

d

¹́ = (Nd) » ¹Y = Ynd
(3.35)
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that are regarded as the constitutive relations for the continuous transmission line, homogenized

model of the electrical lattice described in the previous section. Introducing the new operators

¹G =
G

d
(3.36)

=

µ
Cg

d

d2

dt2
+

1

dRg

d

dt
+

1

dLg

¶
(3.37)

=

Ã
¹Cg
d2

dt2
+

1
¹Rg

d

dt
+

1
¹Lg _³g

!

(3.38)

and

¹N = dN (3.39)

=

µ
dCl

d2

dt2
+
d

Rl

d

dt
+
d

Ll

¶
(3.40)

=

µ
¹Cl
d2

dt2
+

1
¹Rl

d

dt
+

1
¹Ll

¶
(3.41)

the de…nitions of the distributed inductances, resistances and capacitances

¹Cg =
Cg
d

¹Rg = dRg
¹Lg = dLg

¹Cl = dCl
¹Rl = Rl

d
¹Ll = Ll

d

(3.42)

is induced. Moreover let us de…ne

¹I = In
d

¹Y = Ynd (3.43)

Equations of Motion

Substituting the constitutive equations (3.35) in the expression of the power balance (3.27) we get

Z

T

³
¹GÁ _Á

¤
+ ¹N» _»

¤
´

=

Z

T

³
¹I _Á
¤
+ ¹Y _»

¤
´

(3.44)

Considering that

_»
¤

=
d _Á
¤

ds
(3.45)

and integrating by parts it becomes

Z

T

µ
¹GÁ¡ ¹N

d2Á

ds2

¶
_Á
¤

=

Z

T

µ
¹I ¡ d¹Y

ds

¶
_Á
¤

(3.46)
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thus for the arbitrariness of _Á
¤

¹GÁ¡ ¹N
d2Á

ds2
= ¹I ¡ d¹Y

ds
(3.47)

The previous equations of motion for the continuous generalized transmission line can be rewritten

in a explicit form substituting the expression of the operator ¹G; ¹N

µ
¹Cg
d2Á

dt2
+

1
¹Rg

dÁ

dt
+

1
¹Lg
Á

¶
¡
µ

¹Cl
d4Á

dt2ds2
+

1
¹Rl

d3Á

dtds2
+

1
¹Ll

d2Á

ds2

¶
= ¹I¡ d¹Y

ds
(3.48)

Dimensionless Form The equations of motion can be rewritten in a dimensionless form intro-

ducing the dimensionless variables

Á = Á0Ã t = t0¿ s= x0x

¹I = ¹I0¹Ia ¹Y = ¹Y0
¹Y a

(3.49)

De…ning the following dimensionless parameters

¯l = t0
x0

1p
¹Cg ¹Ll

±l = 1
2 ¹Rlx0

q
¹Ll
¹Cg

·=
¹Cl

x2
0

¹Cg

¯g = t0
1p

¹Lg ¹Cg
±g = 1

2 ¹Rg

r
¹Lg
¹Cg

Â3 = t20
¹I0

¹CgÁ0
Â4 = t20

¹Y0
¹CgÁ0x0

(3.50)

the following equation is obtained

Ã+2±g¯g _Ã+¯2
gÃ¡ ·ÄÃ00 +2±l¯l _Ã

00
+ ¯2

lÃ
00 = Â3

¡
¹Ia
¢

¡Â4

¡
¹Y a
¢0

(3.51)

Example 11 If

¹Rg ! 1 ¹Lg ! 1
¹Rl ! 1 ¹Cl ! 0

then

2±g¯g ! 0 ¯2
g ! 0

2±l¯l ! 0 · ! 0
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and the (3.48) reduces to

d2Á

dt2
¡ ¯2

l

d2Á

ds2
= Â3

¡
¹Ia
¢

¡ Â4

¡
¹Y a
¢0

(3.52)

that is known as telegraphist equation.

Example 12 If

¹Ll; ¹Rl ! 1
¹Cl ! 0

then

¯2
l ! 0

2±l¯l ! 0 ·! 0

and (3.48) reduces to

µ
d2Á

dt2
+2±g¯g

dÁ

dt
+ ¯2

gÁ

¶
= Â3

¹Ia (3.53)

that is an ordinary linear second order di¤erential equation in time. Since Á is a …eld de…ned on

the real axis, the solution Á(s; t), recalling the dynamical system terminology, can be identi…ed with

the ‡ow associated to the equation

µ
d2y

dt2
+ 2±g¯g

dy

dt
+¯2

gy

¶
= Â3

¹Ia

where y depends on t only. That is

Á(s0; t) = Á(t; t0; s0)

where Á(t; t0; s0) is the unique solution of the initial value problem

µ
d2y

dt2
+ 2±g¯g

dy

dt
+ ¯2

gy

¶
= Â3

¹Ia

y(t0) = s0

So that in this case the solution at a given point s depends only on the initial state at the point s,

no matter what is the state of all other points of the continuum.
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Chapter 4

Layered Composite PEM Beam

Our goal is to use piezoelectric materials to couple the vibrations of a mechanical structure with

the dynamics of an electric network. In this chapter we will focus our attention on modelling the

electromechanical interaction between a beam and a PZT transducer1. A convenient con…guration

of PZT sheets is the one presented in …gure 4-1, known in literature as a bimorph con…guration.

Upper PZT

Lower PZT

o 1e

3e

Elastic material
2

bt p
b t

t +
2

2/l2/l

p

p

Upper PZT

Lower PZT

o 1e

3e

Elastic material
2

bt p
b t

t +
2

2/l2/l

p

p

Figure 4-1: Laminated PiezoElectroMechanical (PEM) beam: lateral view

In this symmetric arrangement two thin PZT layers polarized over the thickness are bonded on

a rectangular cross section elastic beam. The upper and lower surfaces of each layer are plated and

play the role of electrodes. By the mechanical and material symmetries the ‡exural and extensional

modes of the sandwiched beam are mechanically uncoupled. Depending upon the connections

between the electrodes it is possible to have di¤erent types of electromechanical coupling:

1 Here and in the following we will refer to a PZT transducer as a sheet of electroded PZT material as that
presented in …gure 2-1.

t b

t p

t p
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wb

P

P

k̂

ĵ

Figure 4-2: Laminated PiezoElectroMechanical (PEM) beam: cross section
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² extensional-electric for the in-phase electric connection of the PZT sheets as in …gure 4-3
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Figure 4-3: In-phase parallel connection of PZT layers for extensional coupling

² ‡exural-electric for the out-of-phase electric connection as in …gure 4-4
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Figure 4-4: Out-of-phase parallel connection of PZT layers for ‡exural coupling

In the …rst section of this chapter we will derive an unidimensional model of the axially homoge-

neous beam in …gure 4-1 treating it as a 3D piezoelastic continuum with an imposed kinematic. In

order to follow an uni…ed approach we will consider the general case without shortcuts between the

electrodes. In this framework the con…gurations in …gure 4-3, 4-4 will be understood as particular

situations.

In the second section the power balance, the equations of motion and the constitutive relations

for a simple elastic beam will be derived as a particular case. By dimensional analysis, the rotational

inertia will be shown to be negligible for the numerical values relevant for applications and for the

designed experimental setup.

Finally the possibility of deriving a weak formulation of the equations of motion for an axially

non-homogeneous PiezoElectroMechanical (PEM) beam o¤ered by the additivity of the virtual

powers will be exploited considering an elastic beam with a pair of PZT transducers not covering

all its axial length.

All the modelling procedure will be carried on keeping in mind the physical case of the piezo-

electromechanical beam that has been realized experimentally as described in Chapter 7.

46



4.1 Continuous Layered Composite PEM Beam

An axially homogeneous three layered beam with a material and geometrical symmetry with respect

to the beam central axis2 , such as that in …gure 4-1, will be considered. Assuming the kinematics,

the constitutive equations and the power balance of the system as a 3D piezoelastic continuum

and a kinematical mapping between the 3D and the 1D representations, the power balance and the

constitutive relations for the 1D model will be derived de…ning sectional sti¤ness, capacitance and

coupling coe¢cients.

By the power balance a weak formulation of the balance equations will be directly deduced. A

strong form of them will be obtained with the boundary conditions after integrations by parts. In

this framework it will be shown3 that for an axially homogeneous beam:

² the piezoelectric e¤ect on the mechanical system reduces to a pair of equal and opposite forces

applied on the ends of the PZT layers, with a module proportional to the applied voltage;

² the PZT transducer is electrically equivalent to a capacitance in parallel with a current

generator with an imposed current proportional to the time derivative of the change in length

of the PZT sheet.

The cases in which the upper and lower PZT layers are connected one to each other to couple

the applied potential di¤erence with the beam bending mode (out of phase connection, …gure 4-4)

and with the beam extensional mode (in phase connection, …gure 4-3) will be treated separately,

getting the respective coupling coe¢cients.

4.1.1 System Description

A composite 3-layer laminated piezoelectric beam with a geometrical and material symmetry with

respect to a straight axis A (beam axis) will be modelled. The central layer is assumed to be

an isotropic, linear elastic material with continuous boundaries. The upper and lower layers are

assumed to be linear homogeneous piezoelastic materials, with the polarization axis oriented as in

…gures 4-1,4-2. Moreover the upper and lower surfaces of the piezoelectric layers are supposed to

be plated and eventually subjected to a potential di¤erence, while the lateral surfaces are bared4 .

2 These symmetries are required to avoid a mechanical coupling between the beam extensional and ‡exural modes.
3 The following results are frequently assumed in literature. The correspondence of the interaction between the

structure and the PZT sheet is known as Pin Forces Model.
4 This con…guration is one of the PZT transducers that have been described in Chapter 1 and that have been

utilized for the experimental realizations of the PEM beam (see Chapter 7).
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The thickness of the central layer, tb; is assumed much greater than that of the piezoelectric ones,

tp:

A description of the geometric con…guration of the body is given specifying the regions of the

euclidean space occupied in the reference con…guration5. De…ne

² Bb = A £Sb the elastic central layer, where A is the beam central axis and Sb is the part of

the cross section occupied by the elastic material;

² Pu = A £Spu the upper PZT layer, where A is the beam central axis and Spu is the part of

the cross section occupied by the upper piezoelectric layer;

² Pl = A£Spl the lower PZT transducer, where A is the beam central axis and Spu is the part

of the cross section occupied by the lower piezoelectric layer;

² Bp = A £ Sp = Pu [ Pl the total region occupied by PZT material, where

Sp = Spu [ Spl (4.1)

² B = Bb [ Bp the whole body.

Remark 11 In the particular case of a beam with uniform and rectangular cross sections as rep-

resented in …gures (4-1), (4-2), the regions cited above are

A = [¡ l
2
;
l

2
]

Spu = [¡wp;wp] £ [
tb
2
;
tb
2

+ tp]

Spl = [¡wp;wp] £ [¡tb
2
;¡tb

2
¡ tp]

Sb = [¡wb; wb] £ [¡tb
2
;
tb
2

]

4.1.2 Kinematics

Hypotheses

In the application we will deal with6 the following facts are veri…ed:

5 Considering a carthesian reference frame C =f0; e1 ;e2 ;e3g the region of space

G = fp =p1e1 + p2e2 + p3e3 2 E : p1 2 [a1; b1 ]; p2 2 [a2 ; b2 ]; p3 2 [a3 ; b3]g

will be denoted by

G =[a1 ; b1]£ [a2; b2] £ [a3; b3 ]

6 We refer to the physical situation of the experimental set up that has been realized (see Chapter 7).

48



² the thickness of the PZT layer is 10-20 times smaller than that of the elastic beam

² The thickness of the PZT transducers is negligible with respect to its transversal dimensions

² the upper and lower surfaces of each transducer are plated, thus equipotential, while the

lateral surfaces are bare

² the piezoelectric material is polarized along its thickness

Hence, we will get the reduced kinematics of the beam in …gure 4-1 under the following hy-

potheses:

1. the beam sections remain rigid;

2. small deformations and linearized kinematics;

3. no shear deformation;

4. perfect bonding between elastic and PZT layers;

5. constant electric …eld in the transducers;

6. uniform displacements along the thickness of the transducers equal to that of the surface in

contact with the beam. This hypothesis is required for coherence once (5.) is assumed.

Remark 12 These hypotheses are satis…ed in physical situations if the beam thickness tb; the beam

length lb, the transducer thickness tp and the bonding layer thickness tbond are such that

tbond ¿ tp ¿ tb ¿ lb (4.2)

Kinematics of Composite Laminated Beam

Let us choose as state variables of the 3D model the mechanical displacement …eld u(p;t) and

the electric potential Á(p). Since no electromechanical coupling is present in the elastic layer, the

electric potential can be de…ned on the regions occupied by the piezoelectric layers whose upper and

lower surfaces are plated and thus equipotential. We will denote by Áuu,Ául the electric potential of

the upper and lower surfaces of the upper PZT layer, by Álu; Áll the ones of the lower PZT layer.

In general Áuu 6= Ául 6= Álu 6= Áll; but particular connections are often used to achieve speci…c goals.

We will consider the following
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1. In-phase parallel connection (see …gure 4-3) for which

Áuu = Álu = Á1 (4.3)

Ául = Áll = Á2 (4.4)

2. Out–of-phase parallel connection (see …gure 4-4) for which

Áuu = Áll = Á1 (4.5)

Ául = Álu = Á2 (4.6)

By the hypotheses 4,6 we can write (see also …gure 4-5)

uu(p1; t) = u(p1;0;
tb
2
; t); p1 2 [a;a+ la] (4.7)

ul(p1; t) = u(p1;0;¡
tb
2
; t); p1 2 [a; a+ la] (4.8)

where by uu(p1; t);ul(p1; t);u(p1; p2; p3; t) are denoted the displacement …elds of the upper layer,

the lower layer and of the central layer respectively.
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Figure 4-5: Assumed mechanical strain @u1
@p1

distribution along the thickness

Hence, considering the reduced kinematics for a beam with rigid sections and no shear defor-

mation by the hypotheses about the distribution of the electric potential (see …gure 4-6) we impose

the following kinematical mapping7

7 All the vectorial and tensorial quantitites are denoted with the Voigt notation once a reference C = {o; e1 ;e2; e3g
with e1 parallel to the central axis A and e3 parallel to the direction of polarization in the piezoelectric material
is …xed, as in …gure (4-1). The longitudinal and transverse components of the central axis displacement vector are
denoted by u1 and u3 respectively.
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Figure 4-6: Assumed electric potential distribution along the thickness for in-phase and out-of-phase
connections

² on Bb

_u¤(p;t) =
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_u¤1 ¡ @ _u3
¤

@p1
p3 0 _u¤3

iT
(4.9)

_S¤(p;t) =
h

@ _u¤1
@p1

¡ @2 _u¤3
@p2

1
p3 0 0 0 0 0

iT

² on Bp

– on the upper layer Pu

_u¤(p;t) =
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_u¤1 ¡ @ _u3
¤
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2 0 _u¤3

iT
(4.10)

_S¤(p;t) =
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¡ @2 _u¤3
@p2

1
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2 0 0 0 0 0

iT

_Á
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¤
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tp
(p3 ¡ tb

2
)
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– on the lower layer Pl

_u¤(p;t) =
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iT
(4.11)
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tp
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4.1.3 Constitutive Relations

The body B is a composite material where the part Bb is as a linear elastic homogeneous solid, the

part Bp a linear homogeneous piezoelastic continuum. Let us represent the constitutive laws by

means of the Voigt notation once the reference in …gure (4-1) is …xed. Since no forces are applied

on the beam lateral surfaces an uniaxial stress state along the 1 ¡ direction is assumed both on

the beam Bb and on the transducers Bp: Moreover by the electric kinematic (4.10,4.11) an uniaxial

electric state along the 3 ¡ direction is assumed. Thus the constitutive equations will be reduced

to the form (2.73)

Linear Elastic Material

In the layer Bb the linear homogeneous elastic constitutive law for a uniaxial tension state is assumed

in the form

T1 = c11S1 (4.12)

Example 13 If an aluminium beam is considered the c11 constant is

c11 = EY = 70GPa

Linear Piezoelastic Material

In the piezoelectric layers the linear piezoelastic constitutive equation for an uniaxial tension state

and an uniaxial electric state, once the mechanical strain and the time primitive of the electric

potential as state variables have been chosen, are assumed in the form

T1 = cE11S1 ¡ e31
@ _Á

@p3
(4.13)

J3 = e31
_S1 + ²S33

@ÄÁ

@p3
(4.14)

where the coe¢cients can be deduced by the material characteristics given in the technical data

sheets by

cE11 = 1
sE11

²S33 =
¡d2

31+²T33s
E
11

sE11

e31 = d31

sE11

(4.15)

Example 14 For the PZT material PSI-5H4E Ceramic used in the transducer of the company
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Piezo System8 the following material constants are given

EE
Y = 6:2 ¤ 1010 N

m2

d31 = ¡320 ¤ 10¡12m

V

²T33 = 3800²0 = 3:364 6 £ 10¡8 F
m

and the following numerical values are found

cE11 = EE
Y = 6:2 ¤ 1010 N

m2 ²S33 =
¡d2

31+²
T
33s

E
11

sE11
= 2:7297 £ 10¡8 F

m

e31 = d31

sE11
= ¡19:84 N

m V

4.1.4 Power Balance

Let us consider the beam with the piezoelectric transducer as a body B composed by the two parts

Bb and Bp as in 4.1.1, such that

B = Bb [ Bp (4.16)

where Bb is an homogenous linear elastic medium and Bp a linear piezoelastic medium. Moreover

let us denote by @Bu; @Bf the parts of @B =@Bu [ @Bf in which are imposed the displacements

and the forces respectively and by @BÁ; @B¾ the parts of @B =@BÁ[@B¾ on which are imposed the

potential and the charge.

Recalling the expressions derived in the example (2.58) the balance of power for the system

considered in …gure (4-1) is expressed by

Pint;m + Pint;e = Pd;m + Pc;m +Pc;e +Pa;m (4.17)
0

@
R
B
T ¢ _S¤(p;t)+

+
R
Bp
J ¢ r _Á

¤
(p;t)

1

A =

0

@
R
B
b ¢ _u¤(p;t) +

R
@Bf f ¢ _u¤(p;t)+

+
R
@BÁ

¶ _Á
¤
(p;t) +

R
B

¡½Äu(p;t) ¢ _u¤(p;t)

1

A

We will now rewrite each term of (4.17) taking into account the reduced kinematics derived in

(4.9,4.10,4.11).

8This is also the material that was utilized for the experimental set up described in Chapter 7.
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Mechanical Internal Power

The mechanical internal power Pint;m can be rewritten as

Pint;m =

Z

B

T ¢ _S¤(p;t) (4.18)

=

Z

Bb

T ¢ _S¤(p;t) +

Z

Pu

T ¢ _S¤(p;t) +

Z

Pl

T ¢ _S¤(p;t)

=

0

@
R
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³R
Sb
T1

´
@ _u1

¤

@p1
+
R
A

³R
Spu
T1 +

R
Spl
T1

´
@ _u1

¤

@p1
¡

¡
R
A

³R
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T1p3

´
@2 _u¤3
@p21

¡
R
A

³R
Spu
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2 T1 ¡

R
Spl

tb
2 T1

´
@2 _u¤3
@p2

1

1

A

=

Z

A

µ
F
@ _u1

¤

@p1
+M

@2 _u¤3
@p2

1

¶

with the following de…nitions

F = F(b) +F (p) M =M (b) +M(p)

where

F (b) =
R
Sb
T1 F (p) =

R
Spu
T1 +

R
Spl
T1

M (b) = ¡
R
Sb
T1p3 M (p) = ¡

R
Spu

tb
2 T1 +

R
Spl

tb
2 T1

Substituting into the previous expressions the constitutive laws

T1 = c11S1 on Bb
T1 = cE11S1 ¡ e31 @ _Á

@p3
on Bp

(4.19)

we get

F(b) =

µZ

Sb

c11

¶
@u1

@p1
¡
µZ

Sb

c11p3

¶
@2u3

@p21
(4.20)

F(b) = K(b)
l

@u1

@p1
(4.21)

and

F(p) =

0

BBBB@

³R
Spu[Spl

cE11

´
@u1
@p1

¡
¡
³R
Spu
cE11

tb
2 ¡

R
Spl
cE11

tb
2

´
@2u3
@p2

1
¡

¡
³R
Spu

e31
tp

´³
_Áuu ¡ _Ául

´
¡
³R
SpL

e31
tp

´³
_Álu ¡ _Áll

´

1

CCCCA
(4.22)

F(p) = K(p)
l

@u1

@p1
¡Gl

³
_Áuu ¡ _Ául +

_Álu ¡ _Áll

´
(4.23)
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where

K
(b)
l =

R
Sb
c11 K

(p)
l =

R
Spu
cE11 +

R
Spl
cE11

Gl = 1
tp

R
Spu
e31 = 1

tp

R
SpL
e31

(4.24)

Moreover

M (b) = ¡
µZ

Sb

c11p3

¶
@u1

@p1
+

µZ

Sb

c11p
2
3

¶
@2u3

@p21
(4.25)

M (b) = K(b)
f

@2u3

@p21
(4.26)

and

M (p) =
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+
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Spu
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¡tb
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+
R
Spl
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¢2´ @2u3
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1

+

+
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Spu

tbe31
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_Áuu ¡ _Ául

´
¡
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Spu

tbe31
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_Álu ¡ _Áll
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1

CCCCA
(4.27)

M (p) = K
(p)
f

@2u3

@p21
+Gf

³
_Áuu ¡ _Ául ¡ _Álu + _Áll

´
(4.28)

where

K
(b)
f =

Z

Sb

c11p
2
3 (4.29)

K
(p)
f =

µ
tb
2

¶2 Z

Spu

cE11 +

µ
tb
2

¶2Z

Spl

cE11 (4.30)

Gf =
tb
2tp

Z

Spu

e31 =
tb
2tp

Z

Spl

e31 (4.31)

In the previous calculations we considered that, for the geometrical and material symmetries respect

to the chosen reference

Z

Spu

tb
2
cE11 ¡

Z

Spl

tb
2
cE11 = 0 (4.32)

Z

Sb

c11p3 = 0 (4.33)
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Hence we can …nally rewrite the internal mechanical power in the unidimensional model as

Pint;m =

Z

A

µ
F
@ _u1

¤

@p1
+M

@2 _u¤3
@p21

¶
(4.34)

=

Z

A

µ
Kl
@u1

@p1
¡Gl

³
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´¶ @ _u1
¤

@p1
+ (4.35)

+

Z

A

Kf
@2u3

@p21
+Gf

³
_Áuu ¡ _Ául ¡ _Álu + _Áll

´ @2 _u¤3
@p21

where

Kf = K
(b)
f +K

(p)
f (4.36)

Kl = K
(b)
l +K

(p)
l

are the beam extensional and ‡exural sti¤ness, Gl and Gf are the homogenized extensional-electric

and ‡exural-electric coupling coe¢cients homogenized over a section.

Internal Electric Power

The internal electric power Pint;e becomes

Pint;e =

Z

Bp

J ¢ r _Á
¤
(p;t) (4.37)

=
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Z
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Ã
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!³
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³
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³
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´
+ I (l)

³
_Álu ¡ _Áll

´´

with the following de…nitions

I (u) =

Z

Ap

Z

Spu

J3

tp
(4.38)

I(l) =

Z

Ap

Z

Spl

J3

tp
(4.39)

Substituting into the previous expressions the constitutive law

J3 = e31
_S1 + ²S33

@ÄÁ

@p3
; on Bp (4.40)
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we get
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for the lower one, with the further de…nition of the capacitance per unit of length
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Z
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Hence the internal electric power can be expressed by
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Mechanical External Power of the Distance Forces

The mechanical external power Pd;m of the distance forces can be rewritten as

Pd;m =

Z
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with the de…nitions
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(b)
1 +B
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(4.43)

Mechanical External Power of Contact Forces

The mechanical power Pc;m of external contact forces becomes

Pc;m =

Z

@B

f ¢ _u¤(p;t) (4.44)

=
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P1 =
R
@S f1 Pµ =

R
@S f1p3

P3 =
R
@S f3

(4.45)

Electrical External Power

Let us denote by Fuu; Ful;Flu; Fll the upper and lower surfaces of the upper and lower transducers.

Since only the upper and lower surfaces of the transducers are plated, the electric external power

Pc;e becomes

Pc;e = ¶u
³

_Á
¤

uu ¡ _Á
¤

ul

´
+ ¶l

³
_Á
¤

lu ¡ _Á
¤

ll

´
(4.46)

where the ¶0s physically represent the currents ‡owing through the transducers.

Mechanical Power of Inertial Forces

The power Pa;m of the inertial forces acting on the structure can be rewritten as

Pa;m =

Z

B

¡½Äu(p;t) ¢ _u¤(p;t) (4.47)

=

µ
¡
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µ
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¶¶
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with the de…nitions

¸ = ¸(b) + ¸(p) (4.48)

® = ®(b) + ®(p) (4.49)
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and considering that for the assumed symmetry
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Statement

The balance (4.17) can be written explicitly as
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or equivalently as
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(4.53)

if the de…nitions

R1 = B1 + P1

R3 = B3 + P3

Rµ = Bµ + Pµ

(4.54)

are introduced.

59



4.1.5 Balance Equations

Generic Case

The following integrals by part hold

Z l
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thus the power balance (4.53) can be written as
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(4.56)

Since the virtual velocities can be chosen arbitrarily, providing that they are smooth enough

and that they satisfy the homogeneous version of the prescribed essential boundary conditions,

equation (4.56) is veri…ed if and only if
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= 0 (4.57)
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The …rst three equations are the balance equations for the beam (extensional, bending, electri-

cal), the latter three are the conditions that must be satis…ed at the boundaries. Here the axial

continuity is required but not also its homogeneity.

Considering the following constitutive relations for the unidimensional model that have been

derived by homogenizing over a section those of the 3D model with the imposed kinematics

F = Kl
@u1

@p1
¡Gl

³
_Áuu ¡ _Ául +

_Álu ¡ _Áll

´
(4.63)

M = Kf
@2u3

@p2
1

+Gf

³
_Áuu ¡ _Ául ¡ _Álu + _Áll

´
(4.64)
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Z

A

µ
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µ
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@2 _u3

@p21

¶
+
³

ÄÁuu ¡ ÄÁul

´Z

A

H (4.65)

I(l) =

Z

A

µ
Gl
@ _u1

@p1

¶
+

Z

A

µ
Gf
@2 _u3

@p21

¶
+
³

ÄÁlu ¡ ÄÁll

´Z

A

H (4.66)

the following equations are deduced

¡ @

@p1

µ
Kl
@u1

@p1

¶
+ ¸Äu1 = R1 (4.67)
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¶
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@p1

µ
®
@Äu3

@p1

¶
+ ¸Äu3 =

@Rµ

@p1
+R3 (4.68)

³
¶u ¡ I (u)

´³
_Á
¤

uu ¡ _Á
¤

ul

´
+
³
¶l ¡ I(l)

´³
_Á
¤

lu ¡ _Á
¤

ll

´
= 0 (4.69)

together with the boundary conditions

·µ
Kl
@u1

@p1
¡Gl

³
_Áuu ¡ _Ául + _Álu ¡ _Áll

´¶
u¤1

¸ l
2

¡ l
2

= 0 (4.70)

·µ
Kf
@2u3

@p21
+Gf

³
_Áuu ¡ _Ául ¡ _Álu + _Áll

´¶ @ _u¤3
@p1

¸ l
2

¡
l
2

= 0 (4.71)

·µ
@

@p1

µ
Kf
@2u3

@p2
1

¶
+Rµ + ®

@Äu3

@p1

¶
_u¤3

¸ l
2

¡ l
2

= 0 (4.72)

These are the equations of motion and the boundary conditions for the laminated piezoelec-

tromechanical, axially continuous, symmetric beam.

Remark 13 The in‡uence of the electrical quantity on the mechanical equations is exerted only by

the boundary conditions.

Remark 14 The extensional equation is uncoupled from the bending and electric ones if

_Áuu ¡ _Ául + _Álu ¡ _Áll = 0
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A particular case is the out-of-phase parallel connections between the two piezoelectric layers in

which

_Áuu = _Áll _Ául = _Álu

Remark 15 The bending equation is uncoupled from the extensional and electric ones if

_Áuu ¡ _Ául ¡ _Álu + _Áll = 0

A particular case is the in-phase parallel connections between the two piezoelectric layers in which

_Ául = _Áll _Áuu = _Álu

By the remarks above we can study separately the ‡exural-electric coupling for the out-of-phase

connection and the extensional-electric coupling for the in-phase connection.

In-Phase Connection: Extensional-Electric Coupling

In the case of an electric connection between the piezoelectric layers as in …gure 4-7 the equations

Extensional Stiffness

)()( p

l

b

ll KKK +=

Aluminum layer 

contribution

PZT layers 

contribution

φ&∆−= lGF 2

F
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2

l

l
Hdx

[ ]12 uGl &∆

Mechanical Side

Electrical Side
ϕ∆

p

p

F

φ∆

I

Mass density 
)()( pb λλλ +=

Figure 4-7: Mechanical and electrical equivalents of axially homogeneous PEM with in-phase con-
nected PZT sheets
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of motion become

¡ @

@p1

µ
Kl
@u1

@p1

¶
+¸Äu1 = R1 (4.73)
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¶
+¸Äu3 =

@Rµ
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+R3

2

Z
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µ
Gl
@ _u1
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¶
dp1 +2¢ÄÁ

Z

A

H = ¶

plus the boundary conditions

·µ
Kl
@u1

@p1
¡ 2Gl¢ _Á

¶
u¤1

¸ l
2

¡ l
2

= 0 (4.74)
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@2u3

@p2
1

¶
@ _u¤3
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¸ l
2

¡ l
2

= 0

·µ
@

@p1

µ
Kf

@2u3

@p21

¶
+Rµ +®

@Äu3

@p1

¶
_u¤3

¸ l
2

¡ l
2

= 0

where

¢Á = Áuu ¡Áll ¶ = ¶u + ¶l (4.75)

Remark 16 With this symmetric con…guration in which a in-phase voltage is applied to the two

PZTs, the piezoelectric e¤ect couples the extensional behavior of the beam with the applied electric

potential. As a consequence of the applied voltage a longitudinal deformation

@u1

@p1
=

2Gl

Kl
¢ _Á

is imposed on the boundary of the beam. Hence its e¤ect corresponds to two equal and opposite

forces

F = 2Gl¢ _Á

applied on the boundaries.

Remark 17 The piezoelectric e¤ect causes a current in the electric terminal given by

¶p = 2

Z

A

µ
Gl

@ _u1

@p1

¶
dp1
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proportional to the beam curvature. If the piezoelectric layers are materially and geometrically

homogeneous Gl is constant and the current generated by the mechanical deformation becomes

¶p = 2Gl

Z

A

µ
@ _u1

@p1

¶
dp1 = 2Gl [ _u1]

l
2

¡ l
2

Hence it is proportional to the time rate of the total elongation of the PZT layers.

Out-of-phase Connection: Flexural-Electric Coupling

If the PZT layers are connected in parallel and in opposition of phase as in …gure 4-8 the equations
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M M
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Figure 4-8: Mechanical and electrical equivalents of axially homogeneous PEM with out-of-phase
connected PZT sheets

of motion become

¡ @

@p1

µ
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@p1

¶
+ ¸Äu1 = R1 (4.76)
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µ
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@2u3
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1
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µ
®
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@p1

¶
+¸Äu =

@Rµ

@p1
+R3

2

Z l
2

¡
l
2

µ
Gf
@2 _u3

@p2
1

¶
dp1 +2

Z l
2

¡
l
2

H¢ÄÁ = ¶

plus the boundary conditions
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·µ
Kl
@u1

@p1

¶
u¤1

¸ l
2

¡ l
2

= 0 (4.77)

·µ
Kf

@2u3

@p21
+Gf

³
2¢_Á

´¶ @ _u¤3
@p1

¸ l
2

¡ l
2

= 0

·µ
@

@p1

µ
Kf
@2u3

@p21

¶
+Rµ +®

@Äu3

@p1

¶
_u¤3

¸ l
2

¡
l
2

= 0

where

¢Á = _Áuu ¡ _Ául ¶ = ¶u ¡ ¶l (4.78)

Remark 18 In this skew¡ symmetric con…guration in which the potential di¤erence between the
PZT layers is applied with a relative phase di¤erence of 180

±

, the beam bending mode is coupled

with the electrical variable by means of the boundary conditions. The piezoelectric e¤ect on the

laminated beam imposes a curvature on the boundary given by

@2u3

@p21
= ¡2Gf

Kf

¢_Á

Hence its e¤ect its equivalent to a two equal and opposite moments applied to the boundary, with a

modulus

M = ¡ (2Gf )¢_Á

Remark 19 The piezoelectric e¤ect causes a current in the electric terminals given by

¶p = 2

Z l
2

¡ l
2

µ
Gf
@2 _u3

@p21

¶
dp1

If the piezoelectric layers are homogeneous and with constant cross section, Gf is constant and the

current generated by the mechanical deformation becomes

¶p = 2Gf

Z l
2

¡
l
2

µ
@2 _u3

@p21

¶
dp1 = 2Gf

·
@ _u3

@p1

¸ l
2

¡ l
2

Hence it is proportional to the time rate of di¤erence of the central axis slope at the two ends, that

is the beam spatially averaged curvature time rate.
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4.1.6 Weak Formulation

The weak formulation for the dynamical problem of a continuous piezoelectromechanical layered

beam can be derived directly by the expression of the power balance (4.52) substituting in it the

constitutive equations.

Since we are treating continuous systems the virtual velocities must be elements of an opportune

functional space. In particular, as underlined in the statement of the virtual power principle, they

are required to

1. be smooth enough to evaluate the integrals involved in the virtual power principle.

2. satisfy the homogeneous version of the prescribed essential boundary conditions.

The spatial distribution of the electric variable Á in the continuous body was prescribed in

function of its value at the boundaries such that it satis…es the requirement 1., 2. for each value

of _Á
¤

uu;
_Á
¤

ul; _Á
¤

lu;
_Á
¤

ll: Thus no further speci…cation is necessary on it. For the mechanical virtual

velocities, a distinction must be made between the vertical and the horizontal components _u¤3; _u
¤
1

because in the problem statement the spatial derivative up to the second order for _u¤3 and up to

the …rst for _u¤1 are present. Let us denote by

² H1
0 the space of functions having square integrable9 derivatives up to the …rst order and

satisfying the homogeneous version of the boundary conditions prescribed directly on them

(essential boundary conditions for u1).

² H2
0 the space of functions having square integrable derivatives up to the second order and

satisfying the homogeneous version of the boundary conditions prescribed on them and on

their spatial derivatives up to …rst order (essential boundary conditions for u3)

Also the weak formulation will be given separately for the ‡exural-electric and extensional-

electric cases.

Extensional-Electric Coupling

If the electrical connections between the PZT layers are such that

Áuu = Álu Ául = Áll (4.79)

9 In the Lebesgue sense.
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the piezoelectric coupling is symmetric and the mechanical displacements due to bending are elec-

trically …ltered out since they are skew-symmetric.

De…ning

¢Á = Áuu ¡Áll ¶ = ¶u + ¶l (4.80)

the constitutive equations can be written in the form10

F = F (b) + F(p) = Kl
@u1

@p1
¡ 2Gl¢ _Á

M = M (b) +M (p) =Kf
@2u3

@p21
(4.81)

I = 2

Z l
2

¡ l
2

µ
Gl

@ _u1

@p1

¶
dp1 + 2¢ÄÁ

Z l
2

¡ l
2

H

Hence the power balance (4.52), mechanically limited to extensional behavior, becomes

0
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R l
2

¡ l
2
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+2¢_Á
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2
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2
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1

CA=

0

@
R l

2

¡
l
2

(R1 ¡ ¸Äu1) _u¤1dp1

+¶¢ _Á
¤

1

A (4.82)

The weak formulation is:

² The equation (4.82) must hold

for each _u¤1 2H1
0 ;¢

_Á
¤ 2 R

This is also a Galerkin formulation in the case in which the prescribed essential boundary

conditions are homogeneous, otherwise it will be easily obtained with a simple change of

variable.

Remark 20 If the layered beam is axially homogeneous, the quantities

Gl ;Kl ;¸

will be constant and the power balance (4.82) will assume the simpli…ed expression

0

B
@
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2

¡
l
2
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@ _u¤1
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dp1 ¡ 2Gl¢ _Á [ _u¤1]
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2

¡
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C
A =

0

B
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2

¡
l
2

R1 _u¤1dp1

¡¸
R l

2

¡ l
2

Äu1dp1 + ¶¢_Á
¤

1

C
A

10 The ‡exural behaviour is neglected since it is uncoupled from the extensional-electric modes
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Flexural-Electric Coupling

To obtain a coupling between the electric and ‡exural beam modes the following electric conditions

must be imposed

Áuu = Áll Ául = Álu (4.83)

Thus introducing the de…nitions

¢ _Á = _Áuu ¡ _Ául I = I (u) ¡ I(l) ¶ = ¶u ¡ ¶l (4.84)

the constitutive equations can be rewritten11 as

M = M (b) +M (p) =Kf
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1

+2Gf

³
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(4.85)
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So that the power balance for this speci…c case becomes
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CCCC
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(4.86)

The weak formulation of the problem is obtained imposing that equation (4.86) must hold

for each _u¤3 2 H2
0 ;¢ _Á

¤ 2 R (4.87)

If the boundary conditions that are prescribed on _u¤3;
@ _u¤3
@p1

are homogeneous this is also a Galerkin

formulation that can be directly used to obtain a numerical solution by means of a Galerkin ap-

proximation. Otherwise a simple change of variable is required to convert the problem to a new

one with homogeneous essential boundary conditions.

Remark 21 If the layered beam is axially homogeneous the quantities

Kf ;Gf ;®;¸

11 The extensional behaviour is neglected since it is uncoupled from the ‡exural-electric modes
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will be constant and the power balance (4.86) can be rewritten in the simpli…ed form
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4.2 Elastic Beam

The governing equations for a continuous, isotropic, linear elastic beam can be derived from the

case of the layered piezoelastic beam by simply letting vanish the thickness of the piezoelectric

layers. Here the equilibrium equations in the strong and weak form, following what has been done

in the previous section, are reported.

4.2.1 Equilibrium Equations

The equilibrium equations for a linear elastic isotropic beam are

¡ @
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µ
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+¸Äu1 = R1 (4.88)
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plus the boundary conditions
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4.2.2 Weak Formulation

For each

_u¤1 2 H1
0 ; _u

¤
3 2H2

0 (4.90)
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the following power balance must hold
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4.2.3 Dimensional Analysis and Approximations

Introducing the dimensionless variables

p01 = p1
l0

u03 = u3
l3

t0 = t
t0

®0 = ®
®0

K0f =
Kf
k0

R0µ = Rµ
m0

R03 = R3
f0

(4.92)

the equilibrium equations (4.88) become
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= º
@R0µ
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+ ¹R03 (4.94)

with

´ = l20®0

k0t20
° = ¸l40

k0t20

º =
m0l30
k0l3

¹ =
l40f0

k0l3

(4.95)

Let us choose t0 such that ° = 1; thus

t0 = l20

r
¸

k0
(4.96)

and

´ = ®0
¸l20

° = 1 (4.97)

In application is frequently veri…ed that

´ =
®0

ļ20
¿ 1 (4.98)

70



consequently the term

´
@

@p01

µ
®0

@u3

@p01@t
02

¶
(4.99)

in(4.94), physically representing the rotational inertia of the beam, can be neglected and (4.94)

becomes

@2

@p021

µ
K0f
@2u03
@p021

¶
+°

@u03
@t02

= º
@R0µ
@p01

+¹R03 (4.100)

which is the Euler equation for an elastic beam. A numerical example is discussed

Example 15 Let us consider a rectangular cross section aluminum beam with12

tb = 4 mm wb = 40mm

lb = 510 mm

Consequently

´ =
®0

¸l20
=

1

12

µ
tb
lb

¶2

= 5:126 2 £ 10¡6

and (4.98) is well satis…ed

In the following we will assume that (4.98) is veri…ed and the term (4.99) will be neglected.

4.3 Beam with PZT Transducers

Let us consider a beam with a PZT transducer, as represented in …gure 4-9, 4-10. The two PZT

3
e

1eo

pl

bl

3
e

1eo

pl

bl

Figure 4-9: Bimorph PZT transducer on a elastic beam: lateral view

layers are considered to be connected in parallel and out of phase to realize a coupling between the

12The numerical values refer to those of the experimental set up described in Chapter 7.
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Figure 4-10: Bimorph PZT transducer on a beam: cross section

electric variables and the ‡exural mode of the beam. All the kinematical hypotheses previously

used will be tacitly assumed.

The whole body B can be partitioned in

B = Br +Bc + Bl (4.101)

where

² Bl is the left part composed only by an homogeneous elastic beam

² Bc is the central part composed by a 3 ¡ layers piezoelastic beam

² Br is the right part composed only by an homogeneous elastic beam

By the additivity of the virtual powers

P(B) = P(Bl [ Bc [ Br) = P(Bl) +P(Bc) + P(Br) (4.102)

Hence the expressions of the external and internal virtual powers can be easily assembled since

those of each part are known from the previous sections. Since only the bending mode of the beam

will be considered, the following virtual velocities can be chosen

V = fVm; Veg (4.103)

Vm = f _u¤3;
@ _u¤3
@p1
;
@2 _u¤3
@p2

1
g Ve = f¢ _Á

¤g

where ¢_Á is the potential di¤erence across the two parallel connected PZT layers.

4.3.1 Internal Powers

We can write

Pint(B; V) = Pint;m(B; Vm) + Pint;e(B; Ve) (4.104)
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where with P(B;V) is denoted the power expended on the virtual velocity V in the part B. Con-

sidering the reference in …gure 4-9 the internal powers are given by

Pint(B;Ve) =
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(4.105)

Pint(B;Vm) = Pint(Br; Vm) + Pint(Bc; Vm) + Pint(Bd;Vm)

= K
(b)
f

Z ¡
lp
2

¡
lb
2

@2u3

@p21

@2 _u¤3
@p21

dp1 +

³
K

(b)
f +K

(p)
f

´Z +
lp
2

¡
lp
2

@2u3

@p21

@2 _u¤3
@p2

1

dp1 +2Gf¢ _Ái

·
@ _u¤3
@p1

¸ lp
2

¡
lp
2

+

K(b)
f

Z lp
2

lb
2

@2u3

@p21

@2 _u¤3
@p21

dp1

= K(b)
f

Z lb
2

¡
lb
2

@2u3

@p21

@2 _u¤3
@p2

1

dp1 +K(p)
f

Z +
lp
2

¡
lp
2

@2u3

@p21

@2 _u¤3
@p2

1

dp1

+2Gf¢_Ái

·
@ _u¤3
@p1

¸ lp
2

¡
lp
2

where Kf ; K
(b)
f ;Gf ; H are given in Appendix B.

4.3.2 External Powers

If the external actions are

1. a mechanical vertical force per unit length R3

2. a mechanical moment per unit length Rµ

3. a electric current generator ¹¶
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the external powers are

Pext(B; Ve) = ¹¶¢ _Á
¤

(4.106)

Pext(B; Vm) = Pext(Br;Vm) +Pext(Bc; Vm)+ Pext(Bd; Vm)
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where the explicit expressions of ® = ®(b) + ®(p);¸ = ¸(b) +¸(p); R3;Rµ are given in Appendix

B.

4.3.3 Power Balance

The balance of power

Pint(B;Vm) +Pint(B;Ve) = Pext(B;Vm) +Pext(B; Ve) (4.107)
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must hold for each ¢_Á
¤ 2 R and for each u3 2 H2

0

³
[¡ lb

2 ;
lb
2 ]
´
: This is also a weak formulation of

the problem. It can be fruitfully applied to obtain numerical solution of the dynamical problem by

means of a Galerkin Approximation.
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4.4 Results Review

In this chapter a model of a PEM layered beam has been derived imposing a prescribed kinematics

on a 3D Cauchy Continuum model. The following hypotheses have been assumed:

1. The beam sections remain rigid

2. Small deformations and linearized kinematics

3. No shear deformation

4. Perfect bonding between elastic and PZT layers

5. Constant electric …eld in the transducers

6. Uniform displacements along the thickness of the transducers equal to that of the surface in

contact with the beam.

The following kinematical descriptors of the state of unidimensional electromechanical beam

have been chosen

² the beam central axis transversal de‡ection u3(p1; t)

² the beam section attitude ° = @u3(p1;t)
@p1

² the beam central axis longitudinal displacement u1(p1; t)

² the time primitive of the potential di¤erence applied between the electrodes13 ¢Á(t)

By means of the virtual power principle we have found

1. the weak and strong formulation of the equations of motion for

(a) the three layered PEM beam in …gure 4-3 with in-phase connected PZT sheets. They

are given equations (4:82) and (4:73 ¡ 4:74) respectively;

(b) the three layered PEM beam in …gure 4-4 with out-of-phase connectedPZT sheets. They

are given equations (4:86) and (4:76 ¡ 4:77) respectively.

13 Let us underline that the ¢Á(t) does not depend on the spatial variable. This is beacause the surfaces of the PZT
sheets are electroded, thus equipotential. This fact allows us to describe, by means of an imposed kinematics, the
electric state of the transducer only by a scalar variable, de…ning as dual quantity the electric current I ‡owing throw
the electric terminals. In this way the pair of PZT transducers can be electrically regarded as a two port network.
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(c) an elastic beam. They are given by equations (4:91) and (4:88 ¡ 4:89) ; respectively.

The negligibility of the rotational inertia has been discussed by means of a dimensional

analysis

2. the constitutive relations for an unidimensional model of

(a) the three layered PEM beam in …gure 4-3 with in-phase connected PZT sheets. They

are given by

F =
³
K
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l +K

(b)
l
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¡ 2Gl¢ _Á
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³
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(4.108)
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(b) the three layered PEM beam in …gure 4-4 with out-of-phase connectedPZT sheets. They

are given by
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³
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(4.109)
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where F;M are the axial force and moment acting representing the contact actions in

the unidimensional model of the beam, and I is the current ‡owing through the electric

terminals of the PZT sheets. The expressions and the physical dimensions of all the

quantities introduced are reported in Appendix B

3. how and by which hypotheses the interaction between the structure and the PZT patches

can be reduced to the simple model that is represented in …gure 4-8 for the ‡exural coupling

and in …gure 4-7 for the extensional coupling.

Hence we have understood the physical behavior of a beam with bonded PZT transducers

studying the equations of motions and the boundary conditions derived for some meaningful sit-

uations. As outlined with an example in the last section of this chapter the power expressions

for the simple cases that have been considered explicitly will allow us to derive the model of a

complex system by means of the virtual power principle following an assembling procedure. The last
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point will be crucial in the following chapters and, in general, to obtain numerical solution for the

dynamical problem of complex PEM systems. .
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Chapter 5

Periodic PEM Structures and

Homogenized Models

The main idea of this work is to design and analyze electromechanical systems with distributed

piezoelectric coupling for the suppression of mechanical vibrations. An unidimensional periodic

PiezoElectroMechanical structure with distributed coupling can be physically realized interconnect-

ing an array of PZT transducers bonded on an elastic beam with a lumped electric transmission

line, as sketched in …gure 5-1. In the present chapter both a re…ned and an homogenized model of

that periodic system will be developed. The re…ned model will be deduced gathering the represen-

tations of its parts that have been derived in the previous chapters1 . In this context we will make

use of the additivity of the virtual powers. The constitutive equations of the homogenized model

will be derived by those of the re…ned one by means of a kinematical mapping.

The homogenized model provide a rough description of the system valid only to analyze per-

turbations with a characteristic wave length greater than the dimensions of the basic cell. However

it allows us to infer important qualitative thumbnail information (see the following chapter) about

the behavior of the PEM structure. Indeed its mathematical model will be reduced2 to two coupled

Partial Di¤erential Equations (PDE) whose dimensionless form will be provided.

Both the cases of longitudinal-electric coupling and ‡exural-electric coupling will be treated.

1 See Chapter 3 for the transmission line, and Chapter 4 for the beam with PZT transducers.
2 The re…ned model is mathematically represented by a system of a partial di¤erential equation coupled with N

ordinary di¤erential equations, where N is the number of cells composing the modular system.
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Figure 5-1: Basic cell of the periodic PEM structure

5.1 Bending Coupling

Let us derive both the re…ned and the homogenized model of a periodic piezoelectromechanical

system whose basic cell is represented in …gure 5-1.

5.1.1 Re…ned Model of the Basic Cell

The generic cell of the system is represented in …gure 5-1. Let us denote it by Si: It can be thought

as the union of

1. a piezoelastic beam Bi whose model has been derived as studied in Chapter 4;

2. a RLC parallel element to ground Gi whose model has been derived in Chapter 3;

3. a line RLC parallel element Li whose model has been derived in Chapter 3.

Thus

Si = Bi [ Gi [ Li (5.1)

where the parts Bi;Gi;Li have been studied in the previous chapters and an expression for their

powers has been already given. In the reference …xed in …gure 5-1 the beam central axis is the set

Ai ´ fp =p1e1:p1 2 [¡le
2
;
le
2

]g (5.2)

We will focus our attention on the ‡exural behavior of the beam and we will not describe the

extensional mode. Indeed because of the assumed electric connections and the symmetry the
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extensional mode is uncoupled from the ‡exural-electric mode. Assuming all the hypotheses (1¡6)

introduced in 4.1.2, the state of Si can be described by the set of virtual velocities

V = Vm [ Ve (5.3)

with

Vm = f _u¤r;
@ _u¤r
@p1
; @

2 _u¤r
@p2

1
g Ve = f _Á

¤

r; _»
¤

rg (5.4)

where

² ur = ûr(p1) is the vertical displacement of the beam central axis and is de…ned on Ai,

² Ár is the time primitive of the electric potential di¤erence across the PZT layers and the

RLC element to ground Gi,

² »r is the time primitive of the potential di¤erence across the line RLC element Li:

The power for the generic cell Si can be easily derived by assembling the expressions that have

been found in the previous chapters. Indeed for the additivity of the powers we can write

P(Si) = P(Bi) + P(Gi) +P(Li)

Notation 6 In the following we will denote by

P(B; v¤) (5.5)

the virtual power expended on the virtual velocity v¤ in the part B: When v¤ is omitted all the virtual
velocities are implicitly considered. Moreover we will indicate by a subscript int the virtual power

of the internal forces, and by ext the virtual power of the external forces.

Internal Power By the expressions of the previous chapters

Pint(Bi) = Pint(Bi;
@2 _u¤r
@p2

1

) + Pint(Bi;
_Á
¤

r) (5.6)

Pint(Gi) = Pint(Gi; _Á¤r)

Pint(Li) = Pint(Li; _»
¤

r)
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where
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External Power By the expressions deduced in the previous chapters
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Pext(Gi; _Á¤r) = Ir _Á
¤

r (5.13)

Pext(Li; _»
¤

r) = Yr _»
¤

r (5.14)

Power Balance The power balance for the basic cell of the periodic system can be easily written

imposing the equality between the internal and external powers. Moreover a weak formulation for

a modular system can be derived by writing its internal and external powers as a sum of those of

its cells and equating them.
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5.1.2 Homogenized Continuous Model

Let us de…ne an electromechanical straight axis beam as the unidimensional continuum whose

con…guration is described by the three scalar valued …elds

fu;°;Ág (5.15)

de…ned on the unidimensional domain

A = fp 2E:p = p1e1g (5.16)

where C =fo; e1;e2; e3g is an opportunely chosen Cartesian reference and u;°;Á represent respec-

tively the vertical displacement of the beam axis, the rotation of the beam sections and the electrical

potential referred to ground: Here it is assumed that the beam is constrained to move in the e1¡e3
plane. With a …rst order gradient theory in all the variables the following set of virtual velocities

can be chosen

V =f _u¤;
@ _u¤

@p1
; _°¤;

@ _°¤

@p1
; _Á
¤
;
@ _Á

¤

@p1
g (5.17)

We will assume a linear theory and that the beam is not shear deformable, thus

_°¤ =
@ _u¤

@p1
(5.18)

and the set of virtual velocities can be reduced to

V =f _u¤;
@ _u¤

@p1
;
@2 _u¤

@p21
; _Á
¤
;
@ _Á

¤

@p1
g (5.19)

Virtual Powers

The virtual powers are written as a linear functional on the virtual velocities. As usual we will

distinguish between internal and external virtual powers.

Internal Virtual Powers Let us split the internal power in the sum of the contributions relative

to each objective element of (5.19)

Pint(A) = Pint(A;
@2 _u¤

@p21
) +Pint(A; _Á

¤
) +Pint(A;
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¤
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) (5.20)
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Thus the following internal actions are identi…ed
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External Virtual Powers The external powers are
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and the following external actions are identi…ed
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Power Balance

By the principle of the Virtual Power the following power balance must hold for each regular virtual

velocity (Pint(A) = Pext(A))
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Equilibrium Equations

Integrating by parts the terms of (5.24) containing the spatial derivatives of _u¤ and of _Á
¤

we obtain
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Since the virtual velocities are arbitrary the following equilibrium equations are derived

@2M
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1

= F3 ¡ @Fµ
@p1

(5.26)
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(5.27)
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if the boundary conditions are such that
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Remark 22 Equation (5.28) is a constraint imposed on the boundary condition by the adopted

formulation with the virtual power principle. We say that boundary conditions that satisfy (5.28)

are ideal. In the following we will assume that (5.28) is veri…ed.

Constitutive Equations

Kinematical Map If dynamical phenomena with a wave length ¸w À le; where le is the dimen-

sion of the basic cell of the periodic system are considered, the continuous …elds can be approximated

on each cell by a constant.

With this idea we impose the following kinematical mapping between the descriptors of the

re…ned and homogenized models 3

ur ! u u0r ! u0 u00r ! u00

Ár ! Á »h
d ! Á0

(5.29)

Power Balance

Notation 7 The homogenized material constants will be denoted by the same letters of the re…ned

ones adding a "¡": In general they will not have the same physical dimensions.

Imposing the balance of the powers expended in corresponding (by 5.29) virtual velocities and

considering the mapping 5.29, by the arbitrariness of the virtual velocities, the following constitutive

equations for the homogenized model have been found4

M = ¹Kfu
00 + ¹Gf

_Á

´ = ¡ ¹Gf _u00 + 1
¹Lg
Á+ 1

¹Rg
_Á+ ¹CgÄÁ ¶ = 1

¹Ll
Á0 + 1

¹Rl
_Á
0
+ ¹ClÄÁ

0
(5.30)

3 The quantities relative to the re…ned model are denoted by a subscripted "r"
4 These have been obtained by means of a Mathematica code.
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The external actions in the homogenized model are given by
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Equations of motion Substituting the constitutive relations in the equilibrium equations (5.26)

we get the homogenized equations of motion for the coupled electromechanical continuum in a

strong form
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Since we consider systems that are constituted by an array of identical cells, the homogenized

material characteristics are constant in space. Thus we can rewrite the equation of motion as

¹Kfu
0000 + ¹Gf
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00

+ ¹̧Äu+ ¹®Äu00 = F3 ¡ F 0µ (5.37)
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¹Rl

_Á
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00 ¡ ¹Gf _u00 = ¹I ¡ ¹Y 0 (5.38)

The electrical (¹I;¡ ¹Y 0) and mechanical (F3;¡F 0µ) forcing terms can vanish and the homogeneous

system corresponding to (5.37) is easily obtained.
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Dimensionless From The equations can be conveniently rewritten in dimensionless form intro-

ducing new dimensionless variables such that

u= u0v t = t0¿ p1 = x0x Á = Á0Ã

F3 = F30P3 Fµ = Fµ0Pµ ¹I = ¹I0¹Ia ¹Y = ¹Y0
¹Y a

(5.39)
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@
@2v
@¿2 +

t20
¹Kf

¹̧x4
0

@4v
@x4 +

+
t20

¹Gf Á0
¹̧u0x2

0t0

@3Ã
@x2@¿

+ ¹®
¹̧x2

0

@4v
@x2@¿2

1

A =
t20F30

¹̧u0
P3 ¡ t20Fµ0

¹̧u0x0

@Pµ
@x

(5.42)

0

@
@2Ã
@¿2 +

t20
¹Cg ¹Lg

Ã+ t0
¹Cg ¹Rg

@Ã
@¿ ¡ t20

¹Cg ¹Llx
2
0

@2Ã
@x2

¡ t0
¹Cg ¹Rlx2

0

@3Ã
@x2@¿

¡ ¹Cl
¹Cgx2

0

@4Ã
@x2@¿ 2 ¡ ¹Gf t0u0

¹Cgx2
0Á0

@3v
@x2@¿

1

A =
t20¹I0
¹CgÁ0

¹Ia ¡ t20 ¹Y0

¹CgÁ0x0

@¹Y a

@x
(5.43)

De…ning the dimensionless coe¢cients

®=
t20

¹Kf
¹̧x4

0
°1 =

¹Gf t0Á0
¹̧u0x2

0
°2 =

¹Gft0u0
¹Cgx2

0Á0

¯2
l =

t20
¹Cg ¹Llx

2
0

2±l = t0
¹Cg ¹Rlx

2
0

½ = ¹®
¹̧x2

0

¯2
g =

t20
¹Cg ¹Lg

2±g = t0
¹Cg ¹Rg

· =
¹Cl

¹Cgx2
0

Â1 =
t20F30
¹̧u0

Â2 =
t20Fµ0
¹̧u0x0

Â3 =
t20

¹I0
¹CgÁ0

Â4 =
t20

¹Y0
¹CgÁ0x0

(5.44)

and choosing the dimensionless time t0 and the dimensionless electric variable Á0 such that

t0 =
q

¹̧
¹Kf
x2

0 Á0 =
q

¹̧
¹Cg
u0 (5.45)
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the dimensionless parameters

®= 1 °1 = ° °2 = ° ° =
¹Gfp
¹Cg ¹Kf

¯l =
q

¹̧
¹Kf

¹CgLl
x0 ±l = 1

2 ¹Cg ¹Rlx
2
0

q
¹̧
¹Kf
x2

0 ½= ¹®
¹̧x2

0

¯g =
q

¹̧
¹Kf

¹Cg ¹Lg
x2

0 ±g = 1
2 ¹Cg ¹Rg

q
¹̧
¹Kf
x2

0 ·=
¹Cl

¹Cgx2
0

Â1 =
x4

0F30

u0 ¹Kf
Â2 =

x3
0Fµ0
u0 ¹Kf

Â3 =
q

¹̧
¹Cg

x4
0
¹I0u0
¹Kf

Â4 =
q

¹̧
¹Cg

x3
0u0 ¹Y0
¹Kf

(5.46)

are found and the equations (5.42) can be rewritten as

v0000 + ½Äv00 + ° _Ã
00

+ Äv = Â1P3 ¡ Â2P
0
g (5.47)

¡·ÄÃ00 ¡ 2±l _Ã
00 ¡ ° _v00 ¡¯2

lÃ
00 + ÄÃ+ 2±g _Ã +¯2

gÃ = Â3
¹Ia ¡Â4

¹Y 0 (5.48)

where the symbols ¢ and 0 are rede…ned as the dimensionless temporal and spatial partial derivatives.

For sake of simplicity in the following we will consider particular cases in which some of the

electrical elements of the basic cell vanish or tend to in…nity. Since, as it has been shown in the

previous chapter, the dimensionless parameter ½ in the common applications is very small, we will

pose ½= 0

Vanishing Ground Element Let us consider the case in which

Lg ! 1 Rg ! 1
Cl ! 0 ½ ! 0

=)
¯g ! 0 ¯g±g ! 0

·! 0 ½ ! 0
(5.49)

Hence the equations (5.37) simplify to

v0000 +° _Ã
00

+ Äv = Â1P3 ¡ Â2P
0
g (5.50)

¡2±l _Ã
00 ¡ ° _v00¡ ¯2

lÃ
00 + ÄÃ = Â3

¹Ia ¡Â4

¡
¹Y a
¢0

(5.51)

If also the line resistance is absent (Rl ! 1; since parallel connected) then the system is

conservative5 and since ±l ! 0 the equations of motion reduce to

v0000 + ° _Ã
00

+ Äv = Â1P3 ¡Â2P
0
g (5.52)

¡° _v00 ¡ ¯2
lÃ
00 + ÄÃ = Â3

¹Ia ¡ Â4

¡
¹Y a
¢0

5 In this de…nition we have not considered the external forces.
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Vanishing Line Element If

8
<

:
Ll ! 1 Rl ! 1
Cl ! 0 ¹Y a ! 0 ½ ! 0

=)
8
<

:
¯l ! 0 ±l ! 0

·! 0
(5.53)

then the following equations are obtained

v0000 +° _Ã
00

+ Äv = Â1P3 ¡Â2P
0
g (5.54)

¡° _v00 + ÄÃ+ 2±g _Ã +¯2
gÃ = Â3

¹Ia (5.55)

The correspondent conservative case is obtained with Rg ! 1

v0000 + ° _Ã
00

+ Äv = Â1P3 ¡ Â2P
0
g (5.56)

¡° _v00 + ÄÃ+ ¯2
gÃ = Â3

¹Ia ¡Â4

¡
¹Y a¢0 (5.57)

5.2 Extensional Coupling

If the PZT layers of each module are electrically connected in phase as in …gure 4-4, then the

state variable in the electric network is coupled with the extensional mode of the mechanical beam.

As has been underlined before, the bending mode of the beam is uncoupled from the extensional

one because of the geometric and materials symmetries. Hence focusing our attention on the

electromechanical coupling, we will consider only the extensional-electric modes of the beam. The

model procedure followed in the previous section we will quickly repeat for the new case, to derive

equations analogous to (5.47) for the extensional coupling.

5.2.1 Re…ned Model of the Basic Cell

Kinematics

The following set of virtual velocities can be chosen

Vm = f _u¤r;
@ _u¤r
@p1

g Ve = f _Á
¤

r; _»
¤

rg (5.58)

V = Vm [ Ve (5.59)

where
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² ur = ûr(p1; t) is the axial displacement of the beam central axis and is de…ned on Ai,

² Ár is the time primitive of the electric potential di¤erence across the PZT layers and theRLC

element to ground Gi,

² »r is the time primitive of the potential di¤erence across the line RLC element Li:

Virtual Powers

With the same notation adopted for the bending coupling, the expressions of the virtual powers

will be split up in

P(Si) = P(Bi) + P(Gi) +P(Li) (5.60)

Internal Power By the expressions that have been derived in the previous chapters

Pint(Bi) = Pint(Bi;
@ _u¤r
@p1

) +P int(Bi;
_Á
¤

r) (5.61)

Pint(Gi) = Pint(Gi; _Á¤r) (5.62)

Pint(Li) = Pint(Li; _»
¤

r) (5.63)

where

Pint(Bi;
@ _u¤r
@p1

) =

Z lb
2

¡
lb
2

K
(b)
l

@ur
@p1

@ _u¤r
@p1

dp1 +

Z +
lp
2

¡
lp
2

K
(p)
l

@ur
@p1

@ _u¤r
@p1

dp1

+2_Ár

Z +
lp
2

¡
lp
2

Gl
@ _u¤r
@p1

dp1 (5.64)

Pint(Bi;
_Á
¤

r) = ¡2_Á
¤

r

Z +
lp
2

¡
lp
2

Gl
@ _u¤r
@p1

dp1 + 2

Z +
lp
2

¡
lp
2

HÄÁr _Á
¤

r (5.65)

Pint(Gr; _Á
¤

r) = ´r _Á
¤

r (5.66)

= Cg
d2Ár
dt2

_Á
¤

r +
1

Rg

dÁr
dt

_Á
¤

r +
1

Lg
Ár _Á

¤

r

Pint(Li; _»
¤

i ) = ¶r _»
¤

r (5.67)

= Cl
d2»r
dt2

_»
¤

r +
1

Rg

d»r
dt

_»
¤

r +
1

Lg
»r _»

¤

r
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External Power By the expressions that have been deduced in the previous chapters

Pext(Bi) = Pext(Bi; _u
¤
r) (5.68)

Pext(Gi) = Pext(Gi; _Á
¤

r) (5.69)

Pext(Li) = Pext(Li; _»
¤

r) (5.70)

where

Pext(Bi; _u
¤
r) =

Z lb
2

¡
lb
2

³
R1 ¡ ¸(b)Äur

´
_u¤rdp1 (5.71)

Pext(Gi; _Á¤r) = Ir _Á
¤

r (5.72)

Pext(Li; _»
¤

r) = Yr _»
¤

r (5.73)

5.2.2 Homogenized Continuous Model

Kinematics

To study the extensional behavior of an electromechanical beam we can describe its state by the

set of scalar valued …elds fu;Ág de…ned on the unidimensional domain

A = fp 2E:p= p1e1; p12I ½ Rg (5.74)

where C =fo;e1; e2;e3g is an opportunely chosen Cartesian reference and u; Á represent respectively

the axial displacement of the beam axis and the electrical potential referred to ground:With a …rst

order gradient theory in all the variables the following set of virtual velocities can be chosen

V =f _u¤;
@ _u¤

@p1
; _Á
¤
;
@ _Á

¤

@p1
g (5.75)

Virtual Powers

The internal and external powers are written as a linear functional on the corresponding virtual

velocities and the internal and external actions are consequently identi…ed.

Internal Virtual Powers We can divide the internal power in the electrical and mechanical

contributions

Pint(A) = Pint(A;
@ _u¤

@p1
)+ Pint(A; _Á

¤
) + Pint(A;

@ _Á
¤

@p1
) (5.76)
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where

Pint(A;
@ _u¤

@p1
) =

Z

A

N
@ _u¤

@p1
(5.77)

Pint(A; _Á¤) =

Z

A

´ _Á
¤

(5.78)

Pint(A;
@ _Á

¤

@p1
) =

Z

A

¶
@ _Á

¤

@p1
(5.79)

External Virtual Powers Also the external power can be divided into the mechanical and

external contributions. The mechanical and electrical external actions are consequently identi…ed.

We have

Pext(A) = Pext(A; _u¤) +Pext(A; _Á
¤
)+ Pext(A;

@ _Á
¤

@p1
) (5.80)

where

Pext(A; _u¤) =

Z

A

F1 _u¤ (5.81)

Pext(A; _Á¤) =

Z

A

¹I _Á
¤

(5.82)

Pext(A;
@ _Á

¤

@p1
) =

Z

A

¹Y
@ _Á

¤

@p1
(5.83)

Power Balance

The power balance prescribes that for each regular virtual velocity …eld, that satisfy the homo-

geneous version of the prescribed essential boundary conditions, the following equality must hold

(Pint(A) = Pext(A))

Z

A

N
@ _u¤

@p1
+

Z

A

´ _Á
¤
+

Z

A

¶
@ _Á

¤

@p1
=

Z

A

F1 _u¤ ++

Z

A

¹I _Á
¤
+

Z

A

¹Y
@ _Á

¤

@p1
(5.84a)

Equilibrium Equations

Integrating by parts the terms of (5.84a) involving the spatial derivatives of _u¤ and _Á
¤

we obtain

[N _u¤]@A ¡
Z

A

µ
@N

@p1
+ F1

¶
_u¤ =

Z

A

µ
¹I ¡ @ ¹Y

@p1
+
@¶

@p1
¡ ´

¶
_Á
¤
+
h¡

¹Y ¡ ¶
¢

_Á
¤
i

@A
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Since the previous expressions musthold for each virtual velocity the following equilibrium equations

must be satis…ed

¡@N
@p1

= F1 (5.85a)

´ ¡ @¶

@p1
= ¹I ¡ @¹Y

@p1
(5.85b)

Moreover the following conditions must be veri…ed on the boundary

[N _u¤]@A ¡
h¡

¹Y ¡ ¶
¢

_Á
¤
i

@A
= 0 (5.86)

Constitutive Equations

Assuming the same hypotheses and adopting the same procedure as with the bending coupling, the

following homogenized constitutive equations have been derived

N = ¹Klu
0 + ¹Gl

_Á (5.87)

´ = ¹Gl _u
0 +

1
¹Lg
Á+

1
¹Rg

_Á+ ¹CgÄÁ (5.88)

¶ =
1
¹Ll
Á0 +

1
¹Rl

_Á
0
+ ¹Cl

ÄÁ
0

(5.89)

where

¹Kl = 1
le

µR le
2

¡le
2

K
(b)
l dp1 +

R lp
2

¡
lp
2

K
(p)
l dp1

¶
¹Cl = Clle

¹Gl = 2
le

R lp
2

¡
lp
2

G
(p)
l dp1 ¹Cg =

Cg+2lpH
le

¹Ll = Ll
le

¹Rl = Rl
le

¹Lg = Lg le ¹Rg = Rgle

(5.90)

The external actions in the homogenized model are given by

F1 = R1 ¡ ¹̧Äu

¹I = Ir ¹Y = Yr
le

(5.91)
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where

¹̧ =
1

le

ÃZ le
2

¡le
2

¸(b)dp1 +

Z lp
2

¡
lp
2

¸(p)dp1

!

(5.92)

¹® =
1

le

ÃZ le
2

¡le
2

®(b)dp1 +

Z lp
2

¡
lp
2

®(p)dp1

!

(5.93)

Equations of Motion Substituting the constitutive relations in the equilibrium equations we

get the homogenized equations of motion for the coupled electromechanical continuum in a strong

form

¡
¡

¹Klu
0
¢0 ¡

³
¹Gl

_Á
0́

+ ¹̧Äu = F1 (5.94)

1
¹Lg
Á+

1
¹Rg

_Á+ ¹CgÄÁ¡
µ

1
¹Ll
Á0
¶0

¡
µ

1
¹Rl

_Á
0

¶0
¡
³

¹ClÄÁ
0 0́

+ ¹Gl _u
0 = ¹I ¡ ¹Y 0 (5.95)

If periodic PEM beams are considered, the homogenized material characteristics are constant and

the previous equations become

¡ ¹Kfu
00 ¡ ¹Gl

_Á
0
+ ¹̧Äu = F1 (5.96)

1
¹Lg
Á+

1
¹Rg

_Á+ ¹CgÄÁ¡ 1
¹Ll
Á00 ¡ 1

¹Rl

_Á
00 ¡ ¹ClÄÁ

00
+ ¹Gl _u

0 = ¹I ¡ ¹Y 0 (5.97)

Dimensionless Form Introducing the dimensionless variables

u= u0v t = t0¿ p1 = x0x Á = Á0Ã

F1 = F10P1
¹I = ¹I0¹Ia ¹Y = ¹Y0

¹Y a
(5.98)

the equations (5.96) become

¡
¹Klu0

x2
0

@2v

@x2
¡

¹GlÁ0

x0t0

@2Ã

@x@¿
+

¹̧u0

t20

@2v

@¿2
= F10P1 (5.99)

0

@
Á0
¹Lg
Ã+ Á0

¹Rgt0

@Ã
@¿ +

¹CgÁ0

t20

@2Ã
@¿2 ¡ Á0

¹Llx
2
0

@2Ã
@x2

¡ Á0
¹Rlx2

0t0

@3Ã
@x2@¿

¡ ¹ClÁ0
x2
0t

2
0

@4Ã
@x2@¿2 +

¹Glu0
x0t0

@2v
@x@¿

1

A = ¹I0 ¹Ia ¡
¹Y0

x0

@ ¹Y a

@x
(5.100)

Dividing each equation by the coe¢cient of the term with only two time derivatives, we obtain

@2v

@¿2
+
t20

¹Kl

¹̧x2
0

@2v

@x2
¡ t20

¹GlÁ0
¹̧u0x0t0

@2Ã

@x@¿
=

t20F10

¹̧u0
P1 (5.101)

0

@
@2Ã
@¿2 +

t20
¹Cg ¹Lg

Ã+ t0
¹Cg ¹Rg

@Ã
@¿ ¡ t20

¹Cg ¹Llx
2
0

@2Ã
@x2

¡ t0
¹Cg ¹Rlx2

0

@3Ã
@x2@¿

¡ ¹Cl
¹Cgx2

0

@4Ã
@x2@¿2 +

¹Glt0u0
¹Cgx0Á0

@2v
@x@¿

1

A =
t20

¹I0
¹CgÁ0

¹Ia ¡ t20
¹Y0

¹CgÁ0x0

@ ¹Y a

@x
(5.102)
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De…ning the dimensionless coe¢cients

® =
t20

¹Kl
¹̧x2

0
° =

¹Glt0Á0
¹̧u0x0

° =
¹Glt0u0
¹Cgx0Á0

¯2
l =

t20
¹Cg ¹Llx2

0
2±l = t0

¹Cg ¹Rlx2
0

¯2
g =

t20
¹Cg ¹Lg

2±g = t0
¹Cg ¹Rg

·=
¹Cl

¹Cgx2
0

Â1 =
t20F30
¹̧u0

Â3 =
t20

¹I0
¹CgÁ0

Â4 =
t20

¹Y0
¹CgÁ0x0

(5.103)

and choosing the dimensionless time t0 and the dimensionless electric variable Á0 such that

t0 =
q

¹̧
¹Kl
x0 Á0 =

q
¹̧
¹Cg
u0 (5.104)

the dimensionless parameters

®= 1 °1 = ° °2 = °

¯l =
q

¹̧
¹Cg ¹Ll ¹Kl

±l = 1
2 ¹Cg ¹Rlx2

0

q
¹̧
¹Kl
x0 ° =

¹Glp
¹Cg ¹Kl

¯g =
q

¹̧
¹Kl

¹Cg ¹Lg
x0 ±g = 1

2 ¹Cg ¹Rg

q
¹̧
¹Kl
x0 · =

¹Cl
¹Cgx2

0

Â1 = F10
u0 ¹Kl

x2
0 Â3 =

¹I0
u0 ¹Kl

q
¹̧
¹Cg
x2

0 Â4 =
¹Y0

u0 ¹Kl

q
¹̧
¹Cg
x0

(5.105)

are found and the equations (5.96) can be rewritten as

¡v00 ¡° _Ã
0
+ Äv = Â1P1 (5.106)

¡·ÄÃ
00 ¡ 2±l _Ã

00 ¡ ¯2
lÃ
00 + ° _v0 + ÄÃ+ 2±g _Ã+¯2

gÃ = Â3
¹Ia ¡Â4

¹Y a0

where the symbols ¢ and 0 have been rede…ned as the dimensionless temporal and spatial partial

derivatives respectively.

As for the bending vibrations, we will treat particular cases of (5.106).

Vanishing Ground Element Let us consider the case in which

8
<

:
Lg ! 1 Rg ! 1
Cl ! 0 ½ ! 0

=)

8
<

:
¯g ! 0 ±g ! 0

· ! 0
(5.107)

Hence the equations (5.106) simplify to

¡v00 ¡° _Ã
0
+ Äv = Â1P1 (5.108)

¡2±l _Ã
00 ¡¯2

l Ã
00 + ÄÃ+ ° _v0 = Â3

¹Ia ¡ Â4
¹Y a0 (5.109)
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If also the line resistance is absent (Rl ! 1; since parallel connected) then the system is conser-

vative6 and since ±l ! 0 the equations of motion reduce to

¡v00 ¡ ° _Ã
0
+ Äv = Â1P1 (5.110)

¡¯2
lÃ
00 + ÄÃ+° _v0 = Â3

¹Ia ¡Â4
¹Y a0 (5.111)

Vanishing Line Element If

8
<

:
Ll ! 1 Rl ! 1
Cl ! 0 ¹Y a ! 0

=)

8
<

:
¯l ! 0 ±l ! 0

·! 0 ½! 0
(5.112)

then the following equations are obtained

¡v00 ¡° _Ã
0
+ Äv = Â1P3 (5.113)

ÄÃ+ 2±g _Ã+ ¯2
gÃ +° _v0 = Â3

¹Ia (5.114)

The corresponding conservative case is obtained with Rg ! 1

¡v00 ¡ ° _Ã
0
+ Äv = Â1P3 ¡ Â2P

0
g (5.115)

ÄÃ+¯2
gÃ+ ° _v0 = Â3

¹Ia (5.116)

6 In this de…nition we have not considered the external forces.
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Chapter 6

Comparison of Optimal Network

Con…gurations

In the previous chapter periodic physical systems in which a distributed piezoelectromechanical

coupling between a beam (or bar) and an electric network is realized has been presented following

[22]. An homogenized model for it has been derived. Here we want to analyze the applications

of that concept to the control of the mechanical vibrations of a structure. To this end we will

study how the proprieties of a monochromatic wave propagating in the electromechanical in…nite

media depend on its wave number and on the electric circuit parameters. The optimal values of

the electrical parameters will be found (Minimizing the decay time of the propagative wave) for

three di¤erent network topological con…gurations with a single inductor and resistor per module. A

comparative analysis of the obtained results will be performed. We will discuss

1. the performances in the mechanical vibration damping;

2. the dependence of the optimal electric parameters on the number of modules of the periodic

system that are spanned by the chosen wavelength;

3. the sensitivities of the optimal parameters on the assumed wave number;

4. the behavior of PEM beams designed for a wave number k0 when wave numbers di¤erent

from k0 are considered.

Both the cases of the longitudinal-electric and transversal-electric coupling will be examined.

The wave analysis on an in…nite medium may be useful also when …nite structures must be

studied. Indeed, the vibration modes of a simply supported mechanical beam can be interpreted
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as stationary monochromatic waves with a wave length given in function of the beam length and

the mode number considered.

Numerical results for the PEM beams which has been experimentally realized, as it will de-

scribed in Chapter 7, will be furnished.

6.1 Wave Form Solutions

Let us consider a mono-dimensional in…nite media the state of which is determined by a n ¡ th
dimensional vector …eld v, de…ned on the cartesian product of a spatial and a temporal domain.

Let us assume that its dynamics is governed by a system of n PDEs in the form

d2v

dt2
+ D1

dv

dt
+ D0v = 0 (6.1)

where D1;D0 are space di¤erential operators. If a Fourier method on the spatial variable is applied

to (6.1), its general solution can be written as superposition of waves of the type

v = v̂k cos(kx) (6.2)

where k is a dimensionless wave number and v̂ is a vector function of time only. Hence by the study

of the properties of the solutions in the form (6.2) as function of the wave number it is possible to

get a deeper insight into the dynamical proprieties of the PEM we are dealing with.

The fact that the media is mono-dimensional simpli…es the discussion since k and x are scalars.

In the following we will consider k as a …xed real, positive parameter1. Substituting (6.2) into

(6.1) the generic spatial derivative can be easily evaluated and D1;D0 transform into two real alge-

braic operators D1;k;D0;k. Then (6.1) transforms in the following system of Ordinary Di¤erential

Equations for the temporal evolution of a solution of (6.1) in the form (6.2) for a given k

d2v̂k

dt2
+D1;k

dv̂k
dt

+D0;kv̂k = 0 (6.3)

This system can be rewritten in the normal form of a system of the …rst order in R2n

dŷ

dt
=Akŷ (6.4)

1 Physically it corresponds to study of the propagation of waves with a given, …xed wavelegth ¸ (Let’s recall that
¸= 2¼

k
)
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with

ŷ =

2

4 v̂k

dv̂k
dt

3

5 ;Ak =

2

4 0n In

¡D0;k ¡D1;k

3

5

wherewe denoted by 0n and In the null and identity operators on Rn: Hence the theory of linear …rst

order systems of autonomous homogeneous ODEs can be fruitfully applied to study the qualitative

properties of the temporal evolution of solutions in the form (6.2).

The di¤erential problem (6.4) is posed in the vector space V = R2n; and Ak, for each k; is a

linear operator mapping V into itself (Ak 2 L(V;V)). It is well known that its general solution

starting from the initial data ŷ0 at t = 0 is given by (see [15])

ŷ =eAktŷ0 (6.5)

However, in order to study the qualitative properties of this type of solutions, it is opportune to get

a deeper insight into (6.5). To this end it should be necessary to describe explicitly how to write

the exponential of a real operator Ak in the general case. Here we will only report in a convenient

form the fundamental results of the theory of the system of linear autonomous, homogeneousODE;

referring to [14-17] for a complete treatment.

First of all, let us note that since Ak is real, its eigenvalues must appear in complex conjugate

pairs. Without loss of generality, let us split the set § of the distinct eigenvalues of Ak into

² a set f i̧gi=1:::p of p distinct real eigenvalues, each one characterized by an algebraic multi-

plicity ai

² a set f!i;!¤igi=p+1:::p+q of q distinct conjugate pairs of complex (with non vanishing imaginary

part) eigenvalues, each one characterized by an algebraic Each ¸i will be associated with a

generalized eigenspace N¤
i ; with dim(N¤

i ) · ai; while to each pair f!i;!¤ig will correspond

the pair of generalized eigenspaces fN!
i ;N!¤

i g with dim(N!
i ) = dim(N!¤

i ) · ai: However,

since Ak is real, if fei1; :::; eiaig is a basis of N !
i ; it is convenient to not distinguish between the

complex N!
i and N!¤

i ; and to associate to each pair f!i;!¤ig the real generalized eigenspace

N -
i de…ned as

N -
i = R ¡SpanfRe(ei1);¡ Im(eiai); :::;Re(eiai);¡Im(eiai)g (6.6)
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Hence let us de…ne the set fNigi=1;:::;p+q; where

Ni =

8
<

:
N ¤
i for i = 1; :::; p

N -
i for i = p+ 1; :::; p+ q

(6.7)

It is possible to show that the vector space V can be decomposed into a direct sum of the Ni;

that is,

V = ©i=1:::p+qN i (6.8)

Moreover, each N i is invariant under Ak. As a consequence the operator Ak can be decom-

posed as the sum

Ak = ©i=1:::p+qA
(i)
k (6.9)

where each A
(i)
k is the restriction of Ak on N i. So that the di¤erential problem (6.4) can be

decomposed into p+ q sub-problems in the p+ q generalized eigenspaces fN igi=1;:::;p+q. Let

us denote by

ŷi = eAktŷi0 2 N i (6.10)

the solution of (6.4) starting from initial data ŷi0 2 N i: Hence it is meaningful to introduce

the following de…nition

De…nition 15 (Wave Mode) We de…ne as the i¡th wave mode the generalized eigenspace N i ½
V of the di¤erential operator Ak de…ned by (6.7). Each wave mode is invariant under the ‡ow of

(6.4).

At this point we can fruitfully consider the consequences of the following theorem (see [16] of

for a complete proof [17]).

Theorem 8 Each coordinate of the solution ŷi 2 N i of (6.4) with ŷ0 = ŷi0 2 N i is a linear

combination of functions of the form

tke¸
R
i t (6.11)
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for i = 1; :::; p and of

tke!
R
i
t cos(!Ii t) or tke!

R
i
t sin(!Ii t) (6.12)

for i = p+ 1; :::; p+ q; where !Ri = Re(!i);!
I
i = Im(!i) and k · ai: In particular, if the algebraic

multiplicity ai of an eigenvalue is the same of its geometrical multiplicity, then k = 0:

Thus it is possible to distinguish between p+ q di¤erent wave modes fy(i)gi=1;::;p+q, each one

characterized by a temporal evolution expressed by a linear combination of terms of the form (6.11)

or (6.12) and by the fact of lying in the generalized eigenspace N i:

Remark 23 (Dispersion Relations) The functions giving the real and imaginary part of the

eigenvalues as a function of the wavenumber can be interpreted as the dispersion relations of the

media. The imaginary part !Ii (k) of each complex eigenvalue furnishes the wave frequency corre-

sponding to a wave with a given wavenumber k; while its real part, if negative, will characterize

the damping properties of each wave mode. If real eigenvalues are concerned, the corresponding

contribution to the temporal evolution of (6.2) will not be oscillatory, but a simple exponential

decay.

In the following we will focus our attention only on systems having eigenvalues with a negative

real part (dissipative systems). In particular we are interested in estimating in a simple way the

damping proprieties of a given system in the form (6.4)

Lemma 1 Let k;a;r > 0 and let us consider the functions

f(t) = tke¡at; g(t) = tke¡at cos(rt) (6.13)

Then there exist two real, positive constants M > 0 and 0 < c < a such that, for each t > 0

f(t) <Me¡ct g(t) <Me¡ct (6.14)

Moreover if we denote by C the set of real positive numbers c such that 0 < c < a and (6.14) holds,

then

sup
c2C

(c) = a (6.15)

Proof. Let us show the result for g(t), since the same reasoning is valid also for f(t): The

function tk cos(rt)e¡(a¡c)t is bounded for t > 0 and c < a: Then there exists a constant M > 0 such
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that

tk cos(rt)e¡at <Me¡ct (6.16)

For each 0< c < a such that (6.14) holds, it is possible to de…ne ± 2 R+ such that

c = a¡ ± (6.17)

Hence

sup(c) = sup(a¡ ±) = a¡ inf(±) = a (6.18)

Remark 24 The temporal evolution of a solution of the type (6.2) in the generalized eigenspace

N i is a linear combination of ni · ai terms of the form (6.11) or (6.12). Let us denote by fh(t)

the generic one. Hence, by the previous lemma, there exist two constants ch;Mh > 0 such that

fh(t) <Mhe
¡cht for each t > 0: Denoting by M = max

h=1;:::ni
Mh and by c = min

h=1;:::ni
ch; we can write

fh(t) <Me¡ct (6.19)

for each h= 1; :::; ni and for each t > 0: Moreover sup
c2C

(c) = ¡!Ri

We can introduce the following de…nitions that will be useful to state an optimization problem

for the control of the vibrations of the PEM beams the dynamics of which we would like to study.

De…nition 16 (Modal Decay Rate) For each generalized eigenspace N i we can de…ne the char-

acteristic damping rate of the i ¡ th wave mode as the constant

®i = ¡ 2¼

!Ri
(6.20)

This characterizes the exponential decay rate of the contribution to the general solution of (6.1) due

to the i ¡ th wave mode.

De…nition 17 (Modal Decay Time) For each generalized eigenspaceN i we can de…ne the char-

acteristic damping time of the i ¡ th wave mode as the constant

µ(i) :=
2¼

¡!Ri
(6.21)

101



This furnishes the characteristic damping time of the contribution to the general solution of (6.1)

due to the i¡ th wave mode.

De…nition 18 (Modal Damping Ratio) De…ning the modal period as

T (i) =
2¼¯̄
!Ih
¯̄ (6.22)

and denoting by nip the number of modal periods after which the amplitude of e
!R
i
t is reduced to 1

e2¼

of its initial value, we de…ne the damping ratio of the i¡ th mode as

³i :=
1

nip
(6.23)

It is given by

³i =
T(i)

µ(i)
=

¯̄
¯̄!

R
i

!Ii

¯̄
¯̄ (6.24)

Obviously ³i depends on the wave number k since !i does.

We can now extend the previous de…nitions to the whole system, attributing to it the proprieties

of the worst (for the vibration damping) wave mode as follows.

De…nition 19 (System Decaying Rate) We de…ne the system decay rate as

- = min
i

¯̄
!Ri
¯̄

(6.25)

This characterizes the exponential decay rate of the general solution of (6.1).

De…nition 20 (System Decaying Time) We de…ne the system decay time £ as

£ := max
i

(µ(i)) =
1

-
(6.26)

Let us denote by m one of the indexes for which µ(m) = £: Both £ and m depend on the wave

number k since each µ(i) does.

De…nition 21 (System Damping Ratio) Let us de…ne the system damping ratio as

Z :=
T (m)

£
(6.27)
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where m is one of the indexes for which µ(m) = £: We have also

Z =
-

j!Imj =

¯̄
¯̄!

R
m

!Im

¯̄
¯̄

Let us underline that

Z 6= min
i

³
³(i)
´

(6.28)

Obviously Z and m depend on the wave number k since each µ(i) does.

The phase velocity of the i¡ th wave mode is given by

vpi = v̂pi (k) =
!Ii (k)

k
(6.29)

while the group velocity is de…ned as

vgi = v̂gi (k) :=
d!Ii (k)

dk
(6.30)

If the relation !i(k) is linear, then vp = vg otherwise vp 6= vg and the medium is said to be

dispersive.

Let us recall the relationships between the wave number k and the wave length ;̧

k =
2¼

¸
(6.31)

and the wave frequency º and pulsation !;

! = 2¼º (6.32)

The temporal period of the wave is given by T = 2¼
! = 1

º

Remark 25 (Dimensionless Wave Number) Let ¸w0 be the characteristic wave length of the

physical phenomena considered. Thus we can set the dimensionless length

x0 = ¸w0 (6.33)
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Consequently the dimensionless wave number relative to a wave length ¸w will be

k = 2¼
x0

¸w
=

2¼

¸w=¸w0

(6.34)

If ¸w = ¸w0 then k = 2¼:

6.2 Waves in PiezoElectroMechanical Beams

In the previous chapter we introduced PEM beams for the damping of the structural vibrations

by means of PZT transducers and electric networks. We derived an homogenized model for

1. a bar coupled with an electric transmission line by means of an array of PZT transducers in

bimorph con…guration with in-phase electric connections

2. a beam coupled with an electric transmission line by means of an array of PZT transducers

in bimorph con…guration with out-of-phase electric connections

Let us study the properties of solution of type (6.2) in those systems, the dimensionless equations

of which are given by (5.47),(5.106), assuming that

² the rotational inertia is negligible, thus ½! 0

² the line capacitance Cl is zero, thus ·! 0

² the capacitance to ground is given only by the PZT patch and Cg vanishes2.

These systems of PDE’s can be in general written in the form of

d2v

dt2
+ D1

dv

dt
+ D0v = 0 (6.35)

where

D1=

0

@ Dmm
1 Dme

1

¡Dme
1 Dee

1

1

A D0=

0

@ Dmm
0 Dme

0

¡Dme
0 Dee

0

1

A

are two by two matrices of di¤erential operators and

v = uem +Áee

2 As we will show an additional capacitance to ground Cg has a negative in‡uence on the performances in the
vibration suppresion.
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is the vector de…ning the con…guration of the electromechanical system. Here we denote by u the

mechanical variable, by Á the electrical variable, by fem; eeg the basis corresponding to a pure

mechanical and electrical vector respectively. Obviously this system is a particular case of the one

studied in a previous section for n= 2

Let us start studying the general case of a PEM beam with a network topological connection

as that in …gure 6-1. Then we will focalize our attention on particular cases.
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lR

lL
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lR

lL

gRgL

lR

lL

gRgL

lR

lL

Figure 6-1: Basic Cell: Electric Connections

We will consider the two cases of the coupling between transversal and electric waves realized

with out-of-phase connected PZT sheets and longitudinal-electric waves realized with in-phase

connected PZTs. In what follows we will write the equations in coordinates assuming the basis

fem; eeg

6.2.1 Transversal-Electric Coupling

The system of PDEs in this case is

v0000 +° _Ã
00

+ Äv = 0 (6.36)

ÄÃ+2±l _Ã
00

+2±g _Ã¡ ° _v00 ¡¯2
l Ã

00 +¯2
gÃ = 0

Assuming a wave form solution with a wave number k we can …nd

D1 =

0

@ 0 ¡°k2

°k2 ¡2±lk
2 +2±g

1

A D0 =

0

@ k4 0

0 ¯2
g +k2¯2

l

1

A
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Hence the coordinate representation of the corresponding operator Ak is

Ak =

2

666666
4

0 0 1 0

0 0 0 1

¡k4 0 0 °k2

0 ¡¯2
g ¡k2¯2

l ¡°k2 2±lk2 ¡ 2±g

3

777777
5

(6.37)

Ak =

2

6666664

0 0 1 0

0 0 0 1

¡k4 0 0 °k2

0 ¡¯2
g ¡k2¯2

l ¡°k2 2±lk
2 ¡ 2±g

3

7777775
(6.38)

Its eigenvalues can be found as roots of the following forth order characteristic polynomial

p(!) = !4 +
¡
¡2±lk

2 + 2±g
¢
!3 +

¡
¯2
g + k4 + k2¯2

l +°2k4
¢
!2 (6.39)

+
¡
2k4±g ¡ 2k6±l

¢
! + k4¯2

g +k6¯2
l

6.2.2 Longitudinal-Electric Coupling

The system of PDEs is

¡v00 + ° _Ã
0
+ Äv = 0 (6.40)

ÄÃ+ 2±l _Ã
00

+ 2±g _Ã¡° _v0 ¡ ¯2
lÃ

00

+ ¯2
gÃ = 0

Assuming a wave form solution with a wave number k we can …nd

D1 =

0

@ 0 i°k

¡i°k2 ¡2±lk2 +2±g

1

A D0 =

0

@ k2 0

0 ¯2
g + k2¯2

l

1

A
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Hence the coordinate representation of the corresponding operator Ak is

Ak =

2

666666
4

0 0 1 0

0 0 0 1

¡k2 0 0 ¡i°k
0 ¡¯2

g ¡k2¯2
l i°k 2±lk2 ¡ 2±g

3

777777
5

(6.41)

Its eigenvalues can be found as roots of the following forth order characteristics polynomial with

real coe¢cients

p(!) = !4 +
¡
¡2±lk

2 + 2±g
¢
!3 +

¡
¯2
g + k2(1 + ¯2

l ¡ °2)
¢
!2 (6.42)

+
¡
2k2±g ¡ 2k4±l

¢
! + k2¯2

g +k4¯2
l (6.43)

Notation 9 The parameters of the systems with the longitudinal and the transversal coupling are

denoted by the same letters, however in each case they must be de…ned by (5.46), (5.105) respectively.

Remark 26 (Parameters range) To maintain a physical meaning all the parameters are con-

strained to be real and positive. Moreover we will consider

0< ° < 1 (6.44)

6.3 Optimization for Vibrations Suppression

Our aim is to study the applications to the suppression of mechanical vibrations of the PiezoElec-

troMechanical system that have been introduced in the previous chapter. An optimal design of the

electric networks to maximize the energy dissipation is required. Thus we need to

1. de…ne a performance index to be maximized (or a cost function to be minimized) related to

the damping properties of the system

2. de…ne the electric parameters to be optimized specifying the functional dependence of the

performance index on them

3. maximize the performance index with respect to the electric parameters determining their

optimal values. In this phase it is necessary to choose an optimization method.

In the following sections we will focus our attention only on the optimization problem related

to the vibration control of the systems (6.36,6.40) in which only two electric parameters are left

free. They will be in the form of
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1. a dimensionless tuning parameter ¯ to be chosen between the ¯g ;¯l in equations (6.36,6.40),

that is associated to the value of an inductor

2. a dimensionless damping parameter ± to be chosen between the ±g ; ±l in equations (6.36,6.40)

that is associated with the value of a resistor

6.3.1 Performance Index

The performance index of a control technique can be chosen in di¤erent ways depending on the

application that is considered. The principal goals in the vibrations control are the reduction of

the forced and free response of the system. Here we consider the problem of the optimization of the

electrical parameters in the electromechanical systems (6.36,6.40) in order to let the free oscillations

characterized by a given wavelength decay as fast as possible. To this aim we will analyze the

damping properties of solutions of the type (6.2) in an in…nite media. In this framework, as it has

been pointed out in a previous section, the temporal evolution resulting from to arbitrarily given

initial data can be characterized by the decay time of each wave mode, thus by the real part of

the corresponding eigenvalue. Moreover the damping properties of the whole system for a …xed

wavenumber can be controlled by referring to the following performance index

P = - =
1

£
(6.45)

where £ and - have been de…ned by (6.26) and (6.25). The optimization problem related to the

maximization of P is completely equivalent to the minimization of the cost function C = 1
P = £

that has a direct physical interpretation since £ has been de…ned as the greatest modal decay time.

In order to formalize the optimization problem it is opportune to underline the functional

dependence of P on the relevant parameters. Let us recall that P is a function of the eigenvalues of

the system (6.4) governing the evolution of a wave with a …xed wavenumber. Since the characteristic

polynomials (6.39,6.42) depend on the tuning parameters ¯; on the damping parameter ± and on

the wave number k; for which the system is analyzed, it will be

P = P̂ (k; ¯;±) (6.46)

Hence, aiming to optimally damp the waves with a given wavenumber k0; we can state the following

optimization problem

Problem 10 (Optimization for a given wave number k0) Given a wave number k0; …nd the
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optimal tuning and damping electric parameters

¯opt = ^̄
opt(k0) ¸ 0 ±opt = ±̂opt(k0) ¸ 0

such that for each ¯ ¸ 0; ± ¸ 0

P̂(k0; ¯; ±) · P̂ (k0; ^̄opt(k0); ±̂opt(k0))

Once the relations ^̄
opt(k0); ±̂opt(k0); giving the optimal electric parameters in function of the

given wavenumber, are found, it is particularly meaningful to study the behavior of

~P(k;k0) = P̂(k; ^̄opt(k0); ±̂opt(k0)) (6.47)

as a function of k: Indeed it describes the damping properties for waves with wavenumber k in a

system optimized for a wavenumber k0; and it will furnish us a criterion to compare the properties

of systems characterized by di¤erent network topologies.

Remark 27 (Resonant Structures) The present approach, that is based on the analysis of in…-

nite PEM beams, is meaningful and convenient also for …nite structures. Indeed, considering for

example the free vibrations of a simply supported mechanical beam of length l, its n ¡ th vibration
mode can be interpreted as a stationary wave with a wave length ¸= 2l

n and a wave number k = n
4¼l :

Hence its temporal evolution is given by a solution of the form (6.2)

6.3.2 Optimization Method

The evaluation of the performance index (6.45) requires us to …nd the roots of a fourth order

polynomial as a function of the parameters ¯; ± and the wave number k. Although analytical

formulas for these are available, they have a complex expression and the analytical maximization of

the performance index is not trivial. We assume the following useful reasonable results frequently

used in pole placement optimization techniques3, that can be checked numerically in each case by

plotting the root loci of the characteristic polynomial as function of the electric parameters.

Claim 11 (Optimal Pole Placement) For the systems (6.36,6.40) the performance index (6.45)

is maximized when the roots of the characteristic polynomial appear in the form of two complex con-

jugate pairs of coincident roots. Hence the systems we are considering are optimized when their

3 See for example [30] or [28]
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characteristic polynomials can be factorized as

(! ¡ ¹!)2(! ¡ ¹!¤)2 = 0 (6.48)

This assumption can be checked numerically in each speci…c case.

With this assumption it is possible to …nd analytical expressions for the relations giving the

optimal electric tuning and damping electric parameters as a function of the wavenumber k0: Indeed,

imposing that the characteristic polynomial of the system, whose coe¢cients are functions of ¯; ±

can be factorized as (6.48), a nonlinear system of four equations in the four unknowns

¯;±;Re(!); Im(!) (6.49)

is found. The corresponding solution will furnish the values of ¯opt; ±opt and of the corresponding

performance index (that is trivially given by Re(!) ) as function of k0: In other words it is possible

to …nd the following functions

^̄
opt(k0); ±̂opt(k0); P̂(k0; ^̄opt(k0); ±̂opt(k0)) (6.50)

Once the relations (6.50) are known, it is possible to analyze also the sensitivity of the optimal

parameters with respect to the wave number for which the system has been optimized, that are

de…ned as follows:

De…nition 22 (Parameter Sensitivity) We de…ne the sensitivity of the optimal values of the

parameters with respect to a change of the wave number k the two quantities

¾̂¯(k) =
d^̄opt(k)

dk

^̄
opt(k)

¾̂±(k) =
d±̂opt(k)

dk

±̂opt(k)
(6.51)

If these are evaluated for k = 2¼; they will represent the sensitivity of the optimal parameters for a

change of the wave number about that one relative to the characteristic wave length x0.

In the following we will apply explicitly the outlined method to the cases on which we are

interested.
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6.4 Transversal-Electric Waves

In this case the linear operator that de…nes the system of ODEs governing the temporal evolution

of electromechanical waves with a wavenumber k0 is (6.37) and its characteristic polynomial is

(6.39). We will …nd the optimal parameters for the following network con…gurations, particular

cases of that in …gure 6-1:

1. Isolated Resonant Shunts (…gure 6-2). Only the ground inductance and resistance Lg ;Rg

are present. This case can be obtained from the general one by letting Ll; Rl ! 1 (Thus

¯l ! 0; ±l ! 0)
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Figure 6-2: Isolated Resonant Shunts (IRS): Basic Cell

2. Transmission Line with Line Resistance and Inductance (…gure 6-3).Only the line inductance

and resistance Ll; Rl are present. This case can be obtained from the general one by letting

Lg; Rg ! 1 (Thus ¯g ! 0; ±g ! 0)
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Figure 6-3: Trasmission Line with Line Resistance and Inductance (TL-Rl-Ll): Basic Cell

3. Transmission Line with Line Inductance and Ground Resistance (…gure 6-4). In this case the

line element reduces to an inductance Ll;while the element to ground reduces to a resistance

Rg . The correspondent equations can be derived by letting Ll;Rl ! 1.

In each case the PZT pairs of each element are electrically connected out-of-phase to realize a

bending coupling. Hence we reduced the problem in …nding the optimal resistance and inductance
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Figure 6-4: Trasmission Line with Line Inductance and Ground Resistance (TL-Rg-Ll): Basic Cell

for the three network con…gurations above in each case of which only two electrical parameters are

left free. Thus the optimal parameters can be found with the procedure outlined in the previous

section.

For the following developments let us recall the expressions of the dimensionless parameters

¯l =
q

¹̧
¹Kf ¹Cg ¹Ll

x0 ±l = 1
2x0 ¹Rl ¹Cg

q
¹̧
¹Kf
x0 ° =

¹Gfp
¹Kf

¹Cg

¯g =
q

¹̧
¹Kf

¹Cg ¹Lg
x2

0 ±g = 1
2 ¹Rg ¹Cg

q
¹̧
¹Kf
x2

0

(6.52)

and the relations between the homogenized and actual electrical quantities

¹Ll = Ll
le

= Ll
ne
x0

¹Rl = Rl
le

=Rl
ne
x0

¹Cg = Cg
le

+2flH = Cg
ne
x0

+2flH

¹Lg = Lgle = Lg
x0
ne

¹Rg =Rgle =Rg
x0
ne

(6.53)

that have been rewritten in a convenient form by introducing the number ne of elements in the

characteristic length, such that

le =
x0

ne
(6.54)

and the ratio

fl =
lp
le

(6.55)

between the length of the PZT patch and that of the whole element.
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The numerical values relative to the example presented in Appendix C will be considered4. For

that case it has been found

¯l =
q

¹̧
¹Kf ¹Cg ¹Ll

x0 = 73:1
q

x3
0

Llne
±l = 1

2RlCg

q
¸
Kf

= 1:56 £ 104 x0
Rlne

¯g =
q

¹̧
¹Kf ¹Cg ¹Lg

x2
0 = 73:1

q
nex3

0
Lg

±g =
x2
0

2RgCg

q
¸
Kf

= 1:56 £ 104
p
n3
ex0

1
Rg

° =
¹Gfp
¹Kf

¹Cg
= 0:212 · =

¹Cl
¹Cgx2

0
= 1:82 £ 105 Cl

nex0

(6.56)

6.4.1 Isolated Resonant Shunts (IRS)

The characteristic polynomial can be derived from the general case by posing ¯l = 0; ±l = 0. It

becomes

!4 +2±g!
3 +

¡
¯2
g +k4 + °2k4¢!2 +2k4±g! + k4¯2

g = 0 (6.57)

The values of the dimensionless parameters ¯g; ±g for which the two pairs of complex conjugate

roots coalesce in a single pair are

¯opt = k4 ±opt = °k2

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!R = k2 °
2 !I = k2

q
1 ¡

¡°
2

¢2 (6.58)

Hence the optimal values of the inductor and the resistor in each module are5

Loptg =
¹̧x3

0

2 ¹Kf flH
ne
k4 Ropt

g = x0

2 ¹Gf

q
¹̧

2flH
ne
k2 (6.59)

The sensitivities ¾
(1)
L ;¾

(1)
R of the optimal parameters respect to the wave number k are given by

¾(1)
L =

·
d 1
k4

dk =
1
k4

¸

k=2¼

= ¡ 2
¼ h¡63:6% ¾(1)

R =

·
d 1
k2

dk =
1
k2

¸

k=2¼

= ¡1
¼ h¡31:8% (6.60)

4 They are relative to the geometrical and material characteristics of the PEM beam that was experimentally
realized, as it is described in Chapter 7.

5 It has been posed

Cg = 0

Indeed an additional capacitance to ground has a negative e¤ect on the damping ratio.
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In the numerical case considered in Appendix C

Loptg = 3:43nex
3
0

H
m3 Ropt

g = 1:87 £ 103:nex0
-
m

(6.61)

For a wave length corresponding to the …rst mode of a simply supported beam6 with a length

lb = 0:51m; we can set x0 = 2lb = 1:02 m, consequently

L
opt
g = 3:64ne H R

opt
g = 1:90 £ 103ne - (6.62)

For ne = 10;

L
opt
g = 36:4 H R

opt
g = 19:0 £ 103 - (6.63)

6.4.2 Transmission Line with Line Resistance and Inductance(TL-Rl-Ll)

The characteristic polynomial can be derived from the general case by posing ¯g = 0; ±g = 0: It is

!4 ¡ 2±lk
2!3 +

¡
k4 +k2¯2

l + °2k4
¢
!2 ¡ 2k6±l! + k6¯2

l = 0 (6.64)

The values of the dimensionless parameters ¯l; ±l for which the two pairs of complex conjugate

roots coalesce in a single pair are

¯opt = k2 ±opt = ° (6.65)

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!R = k2 °
2 !I = k2

q
1 ¡

¡
°
2

¢2 (6.66)

Hence the optimal line inductance and resistance in each module are (Cg = 0)

Loptl =
¹̧x3

0
¹Kf(2flH)

1
nek2 Ropt

l = x0
2 ¹Gf

q
¹̧

2flH
1
ne

(6.67)

and the corresponding sensitivities with respect to k are

¾
(2)
L =

·
d 1
k2

dk =
1
k2

¸

k=2¼

= ¡ 1
¼ h¡31:831% ¾

(2)
R = 0 (6.68)

6 Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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In the numerical case considered in Appendix C

Loptl = 1:35 £ 102 x
3
0
ne

H
m3 Ropt

l = 73:5 £ 103 x0
ne
: -
m

(6.69)

For a wave length corresponding to the …rst mode of a pinned-pinned beam with a length7 lb =

0:51 m; we can set x0 = 2lb = 1:02 m, consequently

L
opt
l = 1:44

ne
£ 102 H R

opt
l = 75:0

ne
£ 103 - (6.70)

For ne = 10;

L
opt
l = 14:4 H R

opt
l = 7:50 £ 103 - (6.71)

6.4.3 Transmission Line with Line Inductance and Ground Resistance(TL-Rg-

Ll)

This case can be obtained from the general one by letting Lg; Rl ! 1. Since with these positions

¯g ! 0; ±l ! 0; the characteristic polynomial becomes

!4 +2±g!
3 +

¡
k4 +k2¯2

l + °2k4
¢
!2 +2k4±g! + k6¯2

l = 0 (6.72)

The values of the electrical parameters for which the four roots of the characteristic polynomial

coalesce in a single pair are

¯optl = k2 ±optg = °k2 (6.73)

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!i = k2 °
2 !r = k2

q
1 ¡

¡
°
2

¢2 (6.74)

Hence the optimal inductor and resistor in each module are

Loptl =
¹̧x3

0
¹Kf(2flH)

1
nek2 Ropt

g = x0
2 ¹Gf

q
¹̧

2flH
ne
k2 (6.75)

7 Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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Table 6.1: Transverse-Electric waves: optimal values and sensitivities with respect to the wave
number of the electric parameters for di¤erent network con…gurations

NetworknParameter Lopt ¾L Ropt ¾R

IRS cL
ne
k4 ¡2

¼ cR
ne
k2 ¡1

¼

(TL-Rl-Ll) cL 1
nek2 ¡1

¼ cR 1
ne

0

(TL-Rg-Ll) cL
1

nek2 ¡1
¼ cR

ne
k2 ¡1

¼

The sensitivities with respect to k are

¾
(3)
L =

·
d 1
k2

dk =
1
k2

¸

k=2¼

= ¡ 1
¼ h¡31:8% ¾

(3)
R =

·
d 1
k2

dk =
1
k2

¸

k=2¼

= ¡ 1
¼ h¡31:8% (6.76)

In the numerical case considered in Appendix C

Loptl = 1:35 £ 102 x
3
0

ne
H
m3 Ropt

g = 1:87 £ 103x0ne: -m (6.77)

For a wave length corresponding to the …rst mode of a pinned-pinned beam with a length8 lb =

0:51 m; we can set x0 = 2lb = 1:02 m, consequently

Loptl = 1:44
ne

£ 102 H Ropt
l = 1:90ne £ 103 - (6.78)

For ne = 10

Loptl = 14:4 H Ropt
l = 19:0 £ 103 - (6.79)

6.4.4 Comparison of Network Con…gurations

Optimal Electric Parameters

The results that have been deduced for the optimal inductor and resistor for the three network

con…gurations proposed are summarized in table 6.1, where the constants

cL =
¹̧x3

0
2 ¹KfflH

cR = x0
2 ¹Gf

q
¹̧

2flH
(6.80)

are introduced. In table 6.2 the numerical values of those expressions are given for the numerical

case previously introduced, where ne is left as a parameter.

Let us underline the following important results:

8 Again, the geometrical dimensions and boundary conditions refer to the PEM that was experimentally realized
as described in Chapter 7.
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Table 6.2: Transverse-Electric waves: optimal values of the electric dimensionless parameters for
di¤erent network con…gurations

NetworknParameter Lopt (H) Ropt (k- )

IRS 3: 64ne 1:90ne
(TL-Rl-Ll) 143:6 1

ne
74:98 1:

ne

(TL-Rg-Ll) 143:6 1
ne

1:90ne

1. about the dependence of the optimal values on ne:

(a) The value of Lopt = cL
1

nek2 is the same for both the network con…gurations with a line

inductor (TL-Rg-Ll and TL-Rl-Ll)

(b) The value of Ropt = cR
ne
k2 is the same for both network con…gurations with a ground

resistor (IRS and TL-Rg-Ll)

(c) For di¤erent network con…gurations the optimal inductor in each element of the periodic

system has an opposite dependence on the number of elements ne in a wave length: Lopt

is proportional to ne for the IRS con…guration with a ground inductor, proportional to

1
ne

for the networks with a line inductor (TL-Rl-Ll;TL-Rg-Ll). Thus

Llineopt

Lgroundopt

=
1

n2
e

(d) The optimal resistor in each element as a function of ne has the same behavior as

the optimal inductor: Ropt is proportional to ne when it is connected to ground (IRS

and TL-Rg-Ll networks), it is proportional to 1
ne

when it is a line resistor (TL-Rl-Ll

con…guration)

2. about the sensitivity of the optimal parameters respect to k:

(a) In the networks with a line inductor (TL-Rl-Ll;TL-Rg-Ll) ¾L is half of that in the

con…guration with a ground inductor (IRS)

¾lineL

¾groundL

=
1

2

(b) In the network TL-R l-Ll with a line resistor, ¾R is zero.
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Decaying Time

Referring to the de…nitions (6.26),(6.27) it is interesting to compare the values of the decay time

and of the damping ratio for the optimal values of the electric parameters.

We can note that in an optimal system, the characteristic decay time is the same for all three

networks con…gurations examined. It is given by

£ =
1

!R
=

2

°k2
(6.81)

while the corresponding frequency is

!I = k2

r
1 ¡

³°
2

´2
(6.82)

Thus the optimal damping ratio becomes

Z =
!R

!I
=

°p
4 ¡°2

(6.83)

such that, considering the expressions of ° and of ¹Cg, can be rewritten as

Z =
1

r
8 ¹Kf

¹Cg
¹G2
f

¡ 1

=
1

s
4 ¹Kf

³
Cg
x0

ne+2flH
´

¹G2
f

¡ 1

(6.84)

Hence it is evident that an additional capacitance Cg , in parallel to the PZT one, has a negative

e¤ect. So that it is convenient to pose Cg = 0: In that case

Z =
1

r
8 ¹Kf flH

¹G2
f

¡ 1

(6.85)

With the numerical values that have been considered

Z = :106 = 10:6% (6.86)

We can also associate to the system the characteristic number of periods, nper

nper =
1

Z
= 9:40 (6.87)

We can conclude that once the electric parameters are set to the optimal values, the damping ratio
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and the decay time are independent of the network topology.

Waves in Optimal Systems: Damping by Varying the Wave Number

If waves with a …xed wave number k0 are considered, it is possible to …x the corresponding optimal

electric parameters to minimize the decay time of the propagating waves. However it is interesting

to study the behavior of the systems optimized for k0 when wave numbers k 6= k0 are considered.

To this end the solution of the characteristic equations for the optimal electric parameters as a

function of k give important information. In …gure 6-5 the real and the imaginary parts of the two

complex conjugate pairs,

!1;2(k=k0) = !R1 § i!I1 !3;4(k=k0) = !R2 § i!I2 (6.88)

representing the roots of the secular equation, are reported for the three network con…gurations.

The colors represent the mechanical (dark), electrical (bright) or coupled (mixed) characteristic of

the wave mode9.

9 The color is given as a function of the ratio between the mechanical and electrical amplitude of each wave mode.
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Figure 6-5: Real and imaginary parts of !(k); solution of the characteristic polynomial in the
optimal system for trasverse-electric waves: comparison of network con…gurations
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A direct comparison between the damping performances of the three network con…gurations

can be achieved by plotting the function

P̧(x) := P̂(xk0; ^̄opt(k0); ±̂opt(k0)) (6.89)

or equivalently the reciprocal Ç(x) = 1
P̧(x)

representing the characteristic damping time for waves

with wavenumber k = xk0 in a system optimized for waves with wavenumber k0: The function Ç(x)

for the three network con…gurations that have been analyzed is reported in …gure 6-6.
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Figure 6-6: Dimensionless damping time as function of k=k0

Looking at this plot , the fact that the green system (TL¡Rl¡Lg) is decaying faster for wave

numbers k greater than that one for which it has been optimized, can appear as a contradiction.

However, also the dependence of the optimal decay time on the wave number must be taken into

account (see relations(6.58,6.66,6.74)). Hence, to make the discussion clearer, we report in a plot

(…gure 6-7) the function

Çratio(x) =
Ç(x)

Çopt(x)
(6.90)
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where

Çopt(x) :=
1

P̧(x; ^̄opt(x); ±̂opt(x))
(6.91)

expressing, for each system, the ratio between the actual damping time Ç( k
k0
) and that one obtain-

able in a system optimized each time for the actual wave number k:
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Figure 6-7: Ratio between the actual damping time and that one achievable in optimal conditions
as a function of k=k0

Looking at the presented plots we can check numerically the previously assumed circumstances:

1. For all the network con…gurations considered the four complex roots of the secular equations

can be collected in two pairs of the form 6.88 (see …gure 6-5).

2. In the relevant parameter range the performance index P̧ (k) is maximized when the two pairs

of roots of the secular equation coalesce in a single one (see …gure 6-5 and 6-7).

These important facts were used to …nd analytical relations for the optimal values of the electric

parameters and the performance of the optimal systems.

We can also note that in correspondence of the value k0 of k for which the systems have been

optimized, there is an e¤ective coupling between the mechanical and electric components of the

propagating waves (see colors in …gure 6-5).
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The most important result can be deduced by …gure 6-7. As it has been previously noted, the

performances of the three network con…gurations are the same for the value of the wave length

k = k0 for which they have been designed. However the networks TL-Rl-Ll with a line inductance

realizing second order electric transmission lines present better performances for values of k greater

than k0: In particular the system TL-Rl-Ll realizes a damping time less than ten times greater than

the optimal one for 1 · k
k0

· 20: For applications this fact is very important since it shows that,

with an opportune network connection, it is possible to signi…cantly damp waves with a wide range

of wavenumbers. For instance, considering a simply supported PEM beam, if one optimizes the

system for the wavelength relative to the …rst bending mode, one can strongly damp also the second,

third and fourth mode.

In order to emphasize this fact, in …gure 6-8 the modal mechanical energies of the …rst six

bending modes of a PEM with di¤erent network connections optimized for the …rst mode are

presented.
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Figure 6-8: Modal mechanical energies as a fuction of time for a simply supported PEM beam
with di¤erent network topologies optimized for the …rst bending mode.
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6.5 Longitudinal-Electric Waves

For the longitudinal case we will follow the same procedure adopted for the transverse-electric

waves.

6.5.1 Isolated Resonant Shunts (IRS)

The characteristic polynomial can be derived from the general case by posing ¯l = 0; ±l = 0. It

becomes

!4 + 2±g!
3 +

¡
¯2
g +k2

¡
1 ¡ °2

¢¢
!2 + 2k2±g!+ k2¯2

g = 0 (6.92)

The values of the dimensionless parameters ¯g; ±g for which the two pairs of complex conjugate

roots coalesce in a single pair, are

¯opt = k ±opt = °k (6.93)

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!R = k °2 !I = k
q

1 ¡
¡
°
2

¢2 (6.94)

Hence the optimal values of the inductor and the resistor in each module are10

Loptg =
¹̧x3

0

2 ¹KlflH
ne
k2 Ropt

g = x0

2 ¹Gl

q
¹̧

2flH
ne
k

(6.95)

The sensitivities ¾(1)
L ; ¾

(1)
R of the optimal parameters with respect to the wave number k are given

by

¾
(1)
L =

·
d 1
k2

dk =
1
k2

¸

k=2¼

= ¡ 1
¼ h ¡31:8% ¾

(1)
R =

h
d 1
k

dk =
1
k

i

k=2¼
= ¡ 1

2¼ h ¡15:9% (6.96)

In the numerical case considered in Appendix C

Loptg = 207nex3
0 £ 10¡6 H

m3 Ropt
g = 23:44nex0

-
m

(6.97)

10 It has been posed

Cg = 0

Indeed an additional capacitance to ground has a negative e¤ect on the damping ratio.
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For a wave length corresponding to the …rst mode of a simply supported beam with a length11

lb = 0:51m; we can set x0 = 2lb = 1:02 m, consequently

L
opt
g = 219:7 £ 10¡6neH R

opt
g = 23: 9ne - (6.98)

For ne = 10

L
opt
g = 219:7 £ 10¡5 H R

opt
g = 239 - (6.99)

6.5.2 Transmission Line with Line Resistance and Inductance(TL-Rl-Ll)

The characteristic polynomial can be derived from the general case by posing ¯g = 0; ±g = 0: It is

!4 ¡ 2±lk
2!3 +k2

¡
1 + ¯2

l ¡ °2
¢
!2 ¡ 2k4±l! +k4¯2

l = 0 (6.100)

The values of the dimensionless parameters ¯l; ±l for which the two pairs of complex conjugate

roots coalesce in a single pair, are

¯opt = 1 ±opt = °=k (6.101)

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!R = k °2 !I = k
q

1 ¡
¡
°
2

¢2 (6.102)

Hence the optimal line inductance and resistance in each module are (Cg = 0)

Loptl =
¹̧x3

0
¹Kl(2flH)

1
ne

Ropt
l = x0

2 ¹Gl

q
¹̧

2flH
k
ne

(6.103)

and the corresponding sensitivities with respect to k are

¾
(2)
L = 0 ¾

(2)
R =

£
dk
dk=k

¤
k=2¼

= 1
2¼ h 15:9% (6.104)

In the numerical case considered in Appendix C

Loptl = 8:179 £ 10¡3 x
3
0

ne
H

m 3 Ropt
l = 925:2x0

ne
-
m

(6.105)

11 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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For a wave length corresponding to the …rst mode of a pinned-pinned beam with a length12 lb =

0:51 m we can set x0 = 2lb = 1:02 m, consequently

L
opt
l = 8:68 £ 10¡3 1

ne H R
opt
l = 943: 7

ne - (6.106)

For ne = 10

Loptl = 8: 68 £ 10¡4 H Ropt
l = 94:37- (6.107)

6.5.3 Transmission Line with Line Inductance and Ground Resistance(TL-Rg-

Ll)

This case can be obtained from the general one by letting Lg; Rl ! 1. Since with these conditions

¯g = 0; ±l = 0 the characteristic polynomial becomes

!4 + 2±g!
3 + k2

¡
1 +¯2

l ¡ °2
¢
!2 + 2k2±g! +k4¯2

l = 0 (6.108)

The values of the electrical parameters for which the roots of the characteristic polynomial

coalesce in a single pair are

¯optl = 1 ±optg = °k (6.109)

The real and imaginary parts of the roots corresponding to the optimal solution are given by

!R = k °2 !I = k
q

1 ¡
¡
°
2

¢2 (6.110)

Hence the optimal inductor and resistor in each module are

Loptl =
¹̧x3

0
¹Kl(2flH)

1
ne

Ropt
g = x0

2 ¹Gl

q
¹̧

2flH
ne
k

(6.111)

The sensitivities with respect to k are

¾(3)
L = 0 ¾(3)

R =
h
d 1
k

dk =
1
k

i

k=2¼
= ¡ 1

2¼ h ¡15:9% (6.112)

12 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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Table 6.3: Longitudinal-Electric waves: optimal values and sensitivities respect to the wave number
of the electric parameters for di¤erent network con…gurations

NetworknParameter Lopt ¾L Ropt ¾R

IRS cL
ne
k2 ¡1

¼ cR
ne
k ¡ 1

2¼

(TL-Rl-Ll) cL
1
ne

0 cR
k
ne

1
2¼

(TL-Rg-Ll) cL
1
ne

0 cR
ne
k ¡ 1

2¼

In the numerical case considered in Appendix C

Loptl = 8:179 £ 10¡3 x
3
0

ne
H

m3 Ropt
g = 23:44nex0

-
m

(6.113)

For a wave length corresponding to the …rst mode of a pinned-pinned beam with a length13 lb =

0:51 m we can set x0 = 2lb = 1:02 m, consequently

Loptl = 8:68 £ 10¡3 1
ne H Ropt

g = 23: 9ne - (6.114)

For ne = 10

Loptl = 8:68 £ 10¡4 H Ropt
g = 239 - (6.115)

6.5.4 Comparison of Network Con…gurations

Optimal Electric Parameters

The results obtained for the optimal inductor and resistor for the three network con…gurations

proposed are summarized in table 6.3, where the constants

cL =
¹̧x3

0

2 ¹KlflH
cR = x0

2 ¹Gl

q
¹̧

2flH

are introduced. In table 6.4 the numerical values of those expressions are given for the numerical

case previously introduced, where ne is left as a parameter.

The results obtained are qualitatively analogous to those for the transverse waves. In this case

we can note that for the network topologies with a line inductor (TL-Rl-Ll;TL-Rg-Ll) the optimal

inductor is independent of the wavenumber. So that, with those con…gurations it is possible to tune

the electrical and mechanical systems for all frequencies. This is a direct consequence of the fact

13 Again, the geometrical dimensions and boundary conditions refer to the PEM that has been experimentally
realized as described in Chapter 7.
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Table 6.4: Longitudinal-Electric waves: optimal values of the electric dimensionless parameters for
di¤erent network con…gurations

NetworknParameter Lopt (H) Ropt (k- )

IRS 219:7 £ 10¡6ne 23: 9ne
(TL-Rl-Ll) 8:68 £ 10¡3 1

ne
943: 7
ne

(TL-Rg-Ll) 8:68 £ 10¡3 1
ne

23: 9ne

that the di¤erential equations governing the evolutions of the mechanical and electrical systems

are, for this cases, of the same order. However for all the network con…gurations that have been

analyzed, the optimal resistor in each module depends on the wavenumber. Hence, despite of being

possible to realize an optimal energy exchange between the mechanical and electrical systems for

all the wavenumbers, it is not possible to realize also an optimal damping for all wavenumbers.

Decay Time

In the three cases that have been examined the characteristic number of periods to damp the waves

in optimal conditions is the same, given by

np =

p
4 ¡ °2

°
=

r
4

°2
¡ 1 =

s
8 ¹KlflH

¹G2
l

¡ 1

corresponding to a damping ratio

Z =
1

np
=

1r
8 ¹KlflH

¹G2
l

¡ 1

(6.116)

Hence once the electric parameters are set to the optimal values the damping ratio and the decay

time are independent of the network considered.

Waves in Optimal Systems: Damping Varying the Wave Number

For the coupling between the extensional and electrical waves in PEM beams let us report only

the fundamental results that are summarized in …gures 6-9, 6-10. In the …rst one the dimensionless

decay time Ç(k=k0) as a function of the ratio k=k0 in systems optimized for a wavenumber k0 is

plotted, while …gure 6-10 shows the behavior of the function Çratio(k=k0); de…ned by (6.90), for the

three network con…gurations that have been analyzed.

Looking at the previous plots we can deduce conclusions similar to those derived for the trans-

verse waves. In particular we can note that with the network topologies TL-Ll-Rl and TL-Ll-Rg
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Figure 6-9: Dimensionless damping time as a function of k=k0 in systems that have been optimized
for a wavenumber k0

it is possible to realize a better damping than with IRS: The …rst one is better for k

k0
< 1 while

the second for k

k0
> 1: However, since the optimal resistor depends on the wavenumber, despite the

fact that damping time is independent of the wavenumber for k

k0
> 1 (see blue line in …gure 6-9),

the systems cannot be optimized for all wavenumbers (see …gure 6-10)
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Chapter 7

Experiments

The problem of the experimental realization of a PEM beam to be used for the validation of the

analytical and numerical results has been addressed. An experimental setup for the modal analysis

of mechanical and electrical systems has been tested and an identi…cation procedure to extrapolate

their modal characteristics from the experimental frequency response has been developed. The

electronic devices1 needed to assemble the electrical networks presented in the previous chapters

have been realized and tested. Finally a classical experiment for resonant shunted PZTs has been

reproduced to check the whole experimental apparatus.

7.1 Goals

The main goal of the experimental project of which this work is the starting point is the validation

of the numerical and analytical results obtained about the e¤ectiveness of a distributed piezoelec-

tric coupling between a structure and an electric network for the broadband passive control of

mechanical vibrations. The …nal ambition is to realize prototypes to experimentally compare the

performances of the following systems:

1. a beam coupled with a resonant RLC circuit by means of a PZT transducer;

2. a beam coupled with n separated RLC circuits by means of a periodic array of PZT trans-

ducers (see …gure 6-2);

3. a beam coupled with the lumped version of a second order transmission line by means of a

periodic array of PZT transducers (see …gures 6-3 and 6-4).

1 In principle the proposed electrical networks are composed only of resistors and inductors. However the charac-
teristics required by the latter induce us to synthetize them by electronic devices.
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The present work is the …rst step of this program. Its objectives are

1. to test technological solutions for the experimental use of PZT materials;

2. to develop and test both an experimental setup and an identi…cation procedure for the ex-

traction of the modal parameters of electromechanical systems;

3. to realize and characterize a pinned-pinned beam with …ve pairs of PZT transducers in bi-

morph con…guration to be used in a series of future experiments;

4. to realize and characterize the electronic devices needed to assemble the electrical networks;

5. to test the objects at points 3 and 4 by reproducing a classical experiment for a resonant

shunted PZT.

7.2 System Design and Realization

The experimental apparatus has been designed to facilitate the measurements and to emphasize

the relevant physical aspects utilizing materials and geometrical parameters frequently faced in en-

gineering applications. The original idea carried on in this project is the realization of a distributed

piezoelectric coupling between a mechanical and an electrical continuum for vibration damping.

As a matter of fact only a lumped version of an electrical continuum e¤ectively coupled with a

mechanical structure can be actualized2. Hence a modular PEM beam has been set up.

Two critical technological problems that have been faced:

1. bonding the PZT transducers on the beam leaving an electrical access to the electrodes

2. realizing large value adjustable inductors with low parasite resistances.

7.2.1 Beam with PZT Transducers

The simply supported beam with …ve pairs of PZT transducers in bimorph con…guration in …gure

7-1 has been realized. The beam was made from aluminum (Young modulus EY = 70 £ 109 Pa;

mass density ½b = 2700 kg
m3 ).

The geometrical dimensions of the beam

lenght lb = 51 mm

width wb = 40mm

thickness tb = 4 mm

2 See the Introduction for more datails about the problem.
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Figure 7-1: Pinned-pinned beam with …ve bimorph PZT pairs

Figure 7-2: Realized beam with PZT transducers

have been chosen to maintain the …rst natural frequency above 30 Hz to avoid di¢culties for dy-

namical measurements.

The system can be interpreted as the assembly of …ve modules as evident in …gure 7-1. The

number of basic cells has been chosen to realize a modular system that, in the frequency range

of interest, can be approximated su¢ciently well by an homogenized continuous model. Here we

focused our attention on the …rst mechanical spatial mode of the simply supported beam.

Piezoelectric Transducers

The Piezo System T110-H4E-602 transducers were used. They are composed of a single sheet of

PZT PSI-5H4E Ceramic material with nickel electroded upper and lower surfaces. The charac-
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teristics of the PZT material are reported in …gure 7-4. Each item is sold as a parallelepiped of

dimensions 74:2 £ 74:2 £ 0:267 mm :

Figure 7-3: Single sheet piezoelectric transducer

The sheet was cut using a diamond edge into two equal parts with

lenght lp = 74:2 mm

width wp = 36:1mm

thickness tp = 0:267 mm

The transverse dimensions have been chosen in agreement with those of the beam. The transducers

Figure 7-4: Characteristics of used PZT material.

have been designed with two contrasting goals: to have a high electromechanical coupling and to

limit the voltage across the two electrodes. Indeed, realizing electronic devices for high voltage

applications is a technological problem, especially when operational ampli…ers are adopted (see
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7.2.2).

The choice of this type of transducers was motivated by

1. the possibility of cutting a transducer in a desired shape

2. its constructive simplicity that allows a good understanding of its behavior

3. the good characteristic of the PZT material

4. the high price/quality ratio

Each bimorph pair of PZTs has been realized as reported in …gure 7-5. The two sheets were

connected in parallel and out-of-phase to obtain a ‡exural-electric coupling. The electric connec-

tions to the electrodes have been realized using a 60=40 solder alloy and a speci…c ‡ux for nickel

electrodes. The PZT sheets were bonded to the aluminum beam using an electrically conductive

silver-loaded epoxy resin: In this way the lower electrode of the PZT was electrically accessible by

means of the conductive beam that was grounded. The connections were optimized to reduce the

number of wires number and lengths to limit induced noise.

Poling Direction

Poling Direction

Conductive Epoxy 

wires

Soldering

V∆b
t

p
t

p
t

Aluminum beam

PZT

PZT

Figure 7-5: PZT pair in bimorph con…guration: detailed constructive scheme.

7.2.2 Electric Networks

In principle the needed electric networks are composed only of elementary components, as resistors,

capacitors and inductors. However, as has been found by theoretical analysis, vary large value

adjustable inductors with low parasite resistances are required. Completely passive components

with these characteristics are not convenient. Here synthetic inductors have been used.
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Synthetic Inductors

The synthetic inductors that have been used are electronic circuits composed of resistors, capacitors

and operational ampli…ers. The problem of synthesizing analog circuits presenting a desired input

impedance has been widely studied in electronics. These circuits are known as General Impedance

Converters (GIC). Here an alternative modi…cation of Antoniou’s GIC, presented in [27], has been

used. The circuit diagram is reported in …gure 7-6.

Vin

R3

Iin

A2

R2 R0 R4 C5

A1

R6

Vin

R3

Iin

A2

R2 R0 R4 C5

A1

R6

Figure 7-6: Synthetic inductor: an alternative modi…cation of Antoniou’s GIC

6

3

425 R
R

RRC
L =

0

3

2 R
R

R
R −=

Figure 7-7: Synthetic Inductor: ideal equivalent impedance

The ideal input impedance of this circuit (see …gure 7-7) is the same as a series connection

between an inductor and a negative resistor with values

L =
C5R2R4

R3
R6 (7.1)

R = ¡R2

R3
R0

In this way the desired equivalent inductance and resistance can be obtained by simply adjusting

the values of the two trimmers R6 and R0 respectively, on which they are linearly dependent. To

have good behavior in the desired range of the equivalent parameters the following values of the
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Figure 7-8: Synthetic Inductor

components were chosen

R2 = 3 k- R3 = 1 k-

R4 = 1 k- C5 = 10¹F

The opportunity of having a negative series resistance is useful because it allows the cancellation

of parasite resistances that can have a negative e¤ect on vibration damping.

The actual behavior of the synthetic inductor has been investigated experimentally by measur-

ing the frequency response of the RLC circuit composed when a series connection with a known

capacitance is realized, as in …gure 7-9. In …gure 7-18 the experimental values of the equivalent

C

sperL sperR

Antoniou’s GIC

Figure 7-9: RLC resonant circuit for experimental testing of the Antoniou’s GIC by frequency
response measurements.

resistance are reported as a function of R6 comparing them with those from (7.1). In …gure 7-19

the total actual parasite resistance of the GIC is plotted as a function of the values of R0: In both

the cases a linear interpolation of the experimental data is also added with the respective coe¢cient
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of correlation R2:

The circuit in …gure 7-6 must have one terminal connected to ground. However ‡oating synthetic

inductors can be obtained in a similar way. For more information see [23].

A negative aspect of this solution is that operational ampli…ers need a dual DC power supply to

work. Thus despite of the components of the electric networks are theoretically passive, its actual

realization requires an external power supply. However the power absorbed by the Op-Amp is

very low and it is not comparable with that required in active control techniques. The operational

ampli…ers TL¡ 081 have been used with DC voltage supply at §12V; furnished by two batteries

connected as in …gure 7-10.

+ +- -

0 V -12 V+12 V

Figure 7-10: Batteries for alimentation of Op-Amps

7.3 Experimental Modal Analysis

Mechanical and electrical dynamical measures were taken in a frequency range from 10 to 800Hz

following the standard modal analysis techniques. The modal characteristics of the mechanical and

the electrical systems were extrapolated from their frequency response by means of an identi…cation

procedure. Here the peculiarities of the experimental apparatus and of the measurement procedure

will be emphasized, referring to [13], [12] for generalities about the subject.

7.3.1 Instrumentation

Hardware

For the dynamical measurements the following instrumental hardware has been used

1. Piezoelectric accelerometer Bruel&Kier 4393 with charge ampli…er Bruel&Kier 2635

2. Force transducer Bruel&Kier 8200 with charge ampli…er Bruel&Kier 2635

3. Electromagnetic shaker Bruel&Kier 4809 with power ampli…er Bruel&Kier 2700

4. Scanning laser vibrometer Polytec OF055 with controller Polytec OFV 30001S
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5. Analogical two channels oscilloscope Hameg 203 ¡ 5

6. Personal Computer, processor AMD-K6 266 MHz; 64 Mb Ram memory, equipped with

(a) A=D converter National Instruments PCI ¡ 4452 (Basic technical data in …gure 7-11,

for more informations see www:ni:com)

(b) A=D and D=A converter National Instruments AT ¡MIO¡ 16E ¡ 10 (Basic technical

data in …gure 7-11, for more informations see www:ni:com)

PCI-4452 AT-MIO-16E-10

Figure 7-11: Acquisition and generation boards technical datasheets.

Software

A personal computer has been utilized for the management of the digital input and output and

signal processing. In an unique LabView code the following Virtual Instruments were gathered

1. sweep3 generator

2. anti-leakage windowing on the input and output signals

3. spectrum analyzer

4. frequency response analyzer

3 A sweep is a sinuosodal signal with a frequency linearly dependent on time. Its time representation is of the type

f(t) = f0 sin
³!2¡!1

T
t
2 + !1t

´

It spans linearly the frequencies from !1 to !2 for t between 0 and T: It is a transient excitation signal frequently
used in Experimental Modal Analysis to investigate the behavior of the system in an assigned frequency range.
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7.3.2 Experimental Setup for Mechanical and Electrical FRF Measures

The main measurements regarded the mechanical frequency response of the simply supported beam

in …gure 7-1 and the electrical frequency response of a RLC resonant circuit with the GIC in …gure

7-6. To obtain the frequency response of a physical system between an input and an output

terminal we followed the procedure represented in …gure 7-12. Three fundamental logical phases

can be distinguished

1. excitation (input)

2. measurements of the given input and the consequent output

3. signal processing

The third is identical for mechanical and electrical systems, the other two are di¤erent. Indeed,

if a mechanical system is considered the electrical quantities must be transduced to mechanical

ones for the excitation and vice-versa for the measurements4.

The signal generation and processing have been implemented by means of a personal computer

with a LabView code. A transient excitation method has been adopted generating a digital sweep

signal.The outputs of each measurement were the digital time signals, their FFTs, and the sys-

tem FRF. Only the FFTs have been stored to extract from them the modal parameters by an

identi…cation procedure.

Let us describe the details of the mechanical and electrical experimental setups separately.

Mechanical Experimental Set up

The chain of measurement in …gure 7-13 has been utilized to obtain the frequency response of a

mechanical or electromechanical beam5 relative to a force input and an acceleration output. The

structure has been excited by means of a shaker (1) (the numbers refer to those in …gure 7-13), that

is controlled through an ampli…er by a digital input given with the electronic calculator (7). For the

Digital/Analog conversions the board AT ¡MIO¡ 16E¡10 (8) has been utilized. The shaker has

been attached to the structure through a support to limit the rotational sti¤ening in correspondence

to the attachment point. The force e¤ectively transmitted to the structure has been measured with

a force transducer (2). The output was measured by means of a piezoelectric accelerometer (4)

4 The signals are intended to be electrical. All the physical quantities to be measured must be transduced to
electric signals (if they are not) in order to process them..

5 Indeed the same set up can be used when the beam is coupled or not to an electric network by means of PZTs
transducers.
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Figure 7-12: Logical scheme for Frequency Response measurements

attached with a thin layer of wax. The locations of the excitation and the response have been

optimized to

1. give the best results for the …rst mode of the simply supported beam, compatibly with the

presence of the PZT patches. Indeed, if one considers the spatial shape of the …rst mode, the

force transducer has been placed where the rotation is the smallest, the accelerometer where

the de‡ection is the greatest6.

2. avoid particular positions for which some fundamental modes are automatically …ltered out.

The two measured analog signals have been ampli…ed and conditioned by two charge ampli…ers

(3,5). Then they were sampled using the board PCI ¡ 4452 in which both analog and real-time

digital anti-aliasing …lters were incorporated.

6 Obeying those criteria, the central position should be chosen. Unfortunately it is occupied by the PZT layers.
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Figure 7-13: Experimental set up for mechanical FRF measurements

Electrical Experimental set up

The experimental set up for the electrical measurements di¤ers from the previous one only because

no transducers are needed since the physical quantities to be measured and to be imposed are

voltages. The frequency response of a RLC series circuit has been found as sketched in …gure 7-14.
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Figure 7-14: Experimental set up for electrical FRF measurements

7.3.3 Identi…cation Procedure

From the frequency response, given as a complex scalar function de…ned on the frequency domain,

the modal characteristics of the measured systems has been extracted. The averaged resonant

frequencies and damping ratios were deduced with the respective con…dence intervals from a series

of N measures taken in the same conditions and for the same values of the acquisition parameters.

The procedure followed is outlined in …gure 7-15. Three main phases can be distinguished

1. Synchronization and Statistical Analysis of the input and output frequency domain data as

result of a set of N experiments taken in the same conditions. These have been averaged cal-

culating the empirical variances and input-output covariances. A foregoing synchronization is

required to eliminate a residual phase shift between the measures. This is realized minimizing

the weighted phase di¤erences of the complex amplitudes in the frequency domain by intro-

ducing a delay. In …gure 7-17 an example of the statistical analysis on the FRF experimental

data for a simply supported beam is reported.
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2. Frequency Domain Identi…cation of each set of data and extraction of the resonant frequencies

and damping ratios. This step has been implemented utilizing a MatLab Toolbox. It requires

as input the frequency domain data with an estimation of the variances and input-output

covariances and the number of poles and zeros to be assumed for a Laplace domain form of

the model in which the system must be identi…ed. As outputs the estimated poles and zeros

are given. The real and imaginary parts of each complex conjugate pair of poles can be easily

converted to the corresponding natural frequency and damping ratio. This procedure has

been repeated for the N sets of measures. An example of the output of the MatLab code is

given in …gure 7-15.

3. Statistical Analysis of the Modal Parameters resulting from the N identi…cations. From the

N sets of the extracted resonant frequencies and damping ratios the mean values of the modal

parameters have been derived with the respective con…dence intervals.
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Figure 7-15: Identi…cation procedure
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7.4 Results

7.4.1 Beam Modal Parameters

The natural frequencies and damping ratios of the …rst three modes of the beam in …gure 7-1

without the PZT transducers have been found experimentally following the procedure outlined in

the previous sections. In particular the experimental setup in …gure 7-13 and the identi…cation

procedure in …gure 7-15 have been adopted. The following results have been found

Mode Natural Frequency (Hz) Damping Ratio

Mean Value 99% C.I. Mean Value 99% C.I.

1st 34:95 §2:2 £ 10¡2 0:10% §7:5 £ 10¡3%

2nd 137:2 §2:9 £ 10¡3 0:26% §1:3 £ 10¡3%

3rd 304:5 §3:2 £ 10¡3 0:24% §1:46 £ 10¡3%

We can note that the con…dence intervals are very narrow, thus the measurements are good. This is

a validation of the experimental setup and of the quality of the utilized instruments. However let us

underline that the statistical analysis has been performed on a set of measures taken with the same

experimental conditions. In particular small values of the damping ratio are strongly in‡uenced

by the environment and must be considered only as an indication of their order of magnitude. An

example of the identi…cation of experimental frequency response for one of the N measures in the

range from 10 to 400 Hz is presented is …gure 7-16 together with the extracted poles and zeros and

the phase error between the measured data and the identi…ed FRF:

7.4.2 Synthetic Inductors Characterization

The values of the equivalent resistance and inductance of the synthetic inductor in …gure 7-6 have

been extrapolated by frequency response measurements of the resonant circuit assembled once a

series connection with a known capacitance is realized (see …gure 7-9). The measures have been

taken as in …gure 7-14. The resonant frequency and damping ratio have been deduced with the

same procedure followed for the mechanical beam. The equivalent inductance and resistance as a

function of the variable resistors R6 and R0 are reported in …gures 7-18 and 7-19 respectively. A

linear interpolation of the experimental data is presented (see also 7.2.2).
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Figure 7-16: Results of the identi…cation of the …rst three modes of the simply supported aluminum
beam
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Figure 7-17: Statistical analysis on a set of 15 measures of the beam FRF: mean values and
uncertainties
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Figure 7-18: Synthetic inductor: experimental and theoretical equivalent inductance L vs resistance
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Figure 7-19: E¤ect of R0 on the parasite resistance for a …xed equivalent inductance L = 210 H :
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7.4.3 Beam with Resonant Shunted PZT

To validate the experimental apparatus set up for future investigations (see 7.5), a basic experiment

on shunted PZT has been replicated using the simply supported beam with the bonded piezoelectric

sheets and the tested synthetic inductor. The main idea of coupling the …rst mode of the beam with

the dynamics of a dissipative RLC circuit utilizing the piezoelectric transducer has been developed.

Only the central PZT pair has been used, shunting it with a series connection of a resistor and

a synthetic inductor. The other transducers have been short-circuited as in …gure 7-20. We will

Figure 7-20: Con…guration for the resonant shunted PZT experiment

present quickly only the obtained result skipping the details about the experiment since the case

has been widely studied in literature (see for example [30] or [29]). The values of the resistor and

of the inductor for an optimal damping of the …rst mode of the beam have been evaluated by

measurement of the …rst beam natural frequency for open-circuited and short-circuited PZT. The

FRF has been found with the experimental set up in …gure 7-13. Then the modal parameters have

been extracted with the identi…cation procedure in …gure 7-15. We found

Lopt = 36 H

Ropt = 2:1 k-

In …gure 7-21 the experimental frequency response of the beam for electric parameter values

close to the optimal ones are compared with those for open and short-circuit conditions. The

corresponding poles found by means of the frequency domain identi…cation are plotted in the

complex plane in …gure 7-22. As can be noted a relevant reduction of the forced response is

obtained and the damping ratio is signi…cantly increased. However the reduction of the frequency

response is achieved only for a narrow band centered on the resonance frequency. The issue of

developing a broadband damping should be solved by the distributed coupling, as we hope to verify

with future experiments.
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Figure 7-21: Frequency responce reduction for tuned resonant shunted PZT
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Figure 7-22: Poles of the coupled system varying the electric parameters
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7.5 Next Steps

To achieve the goals of the experimental project of which this work was the starting point the fol-

lowing systems7 must be assembled utilizing the simply supported beam and the synthetic inductors

that have been realized:

1. a beam coupled with 5 resonant RLC circuits

2. a  b eam coupled with the  lump ed version of  an electric  transm ission line  with line  resistances

and inductances

3. a  beam coupled with the  lump ed version of  an electric  transm ission line  with line  in ductances

and ground resistances

Their performances in the suppression of mechanical vibrations must be investigated as a func-

tion of the values of the electrical parameters to validate the theoretical and numerical results

obtained in the previous chapters. To this aim the mechanical forced response can be found with

the experimental setup in …gure 7-13.

Since it will be necessary to vary simultaneously all the inductances and resistances, it will be

auspicious to realize resistances8 whose value can be imposed by means of a potential di¤erence.

7 The electrical boundary conditions have been designed by analogy to the mechanical ones.
8 The values of the inductances are indirectly controlled by resistors since they will be realized by the GIC .
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Indeed, their value could be imposed directly by the personal computer through the digitalnanalog

converter, avoiding time-wasting and boring manual adjustments. A single analog output of the

board could control all the resistance, another all the inductances.

7.6 Conclusions

In this experimental work a preparatory activity to a complex and original experimental project

has been carried on. The components needed for the planned experiments have been assembled

and tested. A complete experimental procedure for the extraction of the modal parameters of

mechanical and electrical systems has been designed and tested with excellent results. Moreover

a classical experience on shunted PZT has been reproduced with success. These results will be

used as a benchmark for the validation of the analytical results obtained about the e¤ectiveness of

a distributed piezoelectric coupling of a structure with an electric network for broadband passive

control of mechanical vibrations. To this aim a set of experiments has been planned.
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Appendix A

Physical Dimensions

In the following table are resumed the physical dimensions of all the quantities introduced in

Chapter 2. In the notation the subscripts are omitted.

Table A.1: Piezoelastic variables and characteristics: physical dimensions

Name S.I. S.I. base Name S.I. S.I. base

T N
m2

kg
(m)s2 ² F

m A2 s4

(kg) m3

S 1 1 ¯ m
F

m3

A2 s4 kg

E V
m (kg) m

(A)s3 g mV
N

m2

As

D C
m2 (A) s

m2 d C
N

(A) s3

kg m

J C
m2 s

A
m2 h N

C
(kg) m

s3 A
_Á V (kg) m2

(A)s3 e C
m2 (A) s

m2

Á V s (kg) m2

(A)s2 c N
m2

kg
(m) s2

s m2

N
m
kg

s2
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Appendix B

Material Properties and External

Actions

In this Appendix the expressions of material properties appearing in the constitutive relations of

the unidimensional model of the PEM beam studied in Chapter 3 will be furnished explicitly.

They will be given for the beam in …gures 4-1, 4-2 as a function of its material characteristics as a

Cauchy Continuum and of its geometrical dimensions. Also the expressions of the external actions

will be speci…ed as a function of those de…ned for a Chauchy Continuum model.

B.1 Material Properties

² Mechanical properties

– Sti¤ness

Kf = K
(b)
f +K

(p)
f

Kl = K
(b)
l +K

(p)
l

K
(b)
f =

R
Sb
c11p23 K

(p)
f =

¡ tb
2

¢2 R
Spu
cE11 +

¡tb
2

¢2 R
Spl
cE11

K(b)
l =

R
Sb
c11 K(p)

l =
R
Spu
cE11 +

R
Spl
cE11

– Density per unit of length

¸= ¸(b) +¸(p)
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¸(b) =
³R
Sb
½
´
¸(p) =

³R
Sp
½
´

– Inertia per unit of length

® = ®(b) + ®(p)

®(b) =
³R
Sb
½p23

´
®(p) =

³
t2b
4

R
Spu
½+

t2b
4

R
Spl
½
´

² Electrical properties

– Capacitance per unit of length

H =
1

t2p

Z

Spu

²S33 =H(u) = H(l)

² Coupling properties

Gl =
1

tp

Z

Spu

e31 =
1

tp

Z

SpL

e31

Gf =
tb
2tp

Z

Spu

e31 =
tb
2tp

Z

Spl

e31

B.2 External Actions

² Horizontal force per unit of length

R1 =B1 +P1

where

P1 =

Z

@S

f1

B1 = B
(b)
1 +B

(p)
1 =

ÃZ

Sp

b1

!

+

ÃZ

Sp

b1

!

² Vertical force per unit of length

R3 =B3 +P3
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Table B.1: External actions: expressions and physical dimensions

Name Expression S.I. units,base

B1 =B
(b)
1 +B

(p)
1

³R
Sp
b1
´

+
³R
Sp
b1
´

N
m ;

kg
s2

P1 =
R
@S f1

R
@S f1

N
m ;

kg
s2

R1 B1 +P1
N
m ;

kg
s2

B3 =B(b)
3 +B(p)

3

³R
Sb
b3
´

+
³R
Sp
b3
´

N
m ;

kg
s2

P3

R
@S f3

N
m ;

kg
s2

R3 B3 +P3
N
m ;

kg
s2

Bµ =B
(b)
µ +B

(p)
µ

Ã R
Sb
p3b1+

+ tb
2

³R
Spu
b1 ¡ R

Spl
b1

´
!

N; (kg) m
s2

Pµ
R
@S f1p3 N; (kg) m

s2

Rµ Bµ +Pµ N; (kg) m
s2

where

P3 =

Z

@S

f3

B3 = B(b)
3 +B(p)

3 =

µZ

Sb

b3

¶
+

ÃZ

Sp

b3

!

² Moment per unit of length

Rµ =Bµ +Pµ

where

Pµ =

Z

@S

f1p3

Bµ = B
(b)
µ +B

(p)
µ =

Z

Sb

p3b1 +
tb
2

ÃZ

Spu

b1 ¡
Z

Spl

b1

!

B.3 Physical Dimensions

In the tables the de…nitions of all the quantities are resumed with the respective physical dimensions

in the SI units
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Table B.2: Material characteristics: expressions and physical dimensions

Name Expression S.I. units

®= ®(b) + ®(p)
³R
Sb
½p2

3

´
+2

t2
b
4

R
Spu
½ kg m

¸= ¸(b) +¸(p)
R
Sb
½+

R
Sp
½ kg

m

Kf =K
(b)
f +K

(p)
f

Ã R
Sb
c11p

2
3+

2
¡
tb
2

¢2 R
Spu
cE11

!

Nm2; (kg) m3

s2

Kl =K(b)
l +K(p)

l

R
Sb
c11 +2

R
Spu
cE11 N; (kg) m

s2

Gl
1
tp

R
Spu
e31

C
m ; (A) s

m

Gf
tb
2tp

R
Spu
e31 C;A s

H 1
t2p

R
Spu
²S33

F
m ;A

2 s4

(kg) m3

156



Appendix C

Numerical Values

Here the numerical values of all the relevant quantities de…ned throughout the present work will

be given explicitly for the material and geometrical characteristics of the simply supported PEM

that was experimentally realized as described in Chapter 7.

C.1 Geometric and Local Material Characteristics

The experimentally realized beam can be thought as composed of …ve modules such as that in

…gures C-1 and C-2

3e

1eo

p
l
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3e

1eo
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Figure C-1: Elementary cell of the electromechanical beam: lateral view.
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Figure C-2: Elementary cell of the electromechanical beam: cross section
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The central elastic layer is constituted of aluminum, while the two piezoelastic layers are com-

posed of the PZT material PSI-5H4E Ceramic. The material characteristics are 1

c11 = 70 ¤ 109 Pa ½a = 2700 kg
m3 ½p = 7800 kg

m3

cE11  

=  62  ¤  109  Pa  ²s
33 

=  2:797  ¤  10¡8  F
m e31  

=  ¡19:84  

N
m V

(C.1a)

The geometrical dimensions of the basic cell are

wb = 40 ¤ 10¡3 m wp = 36:2 ¤ 10¡3m

tb = 4 ¤ 10¡3 m tp = 0:267 ¤ 10¡3 m
(C.2)

The length of an element is left as a parameter, however the following ratio between the length of

the element le and the length of the PZT layers is assumed when necessary

fl =
lp
le

= 0: 743

All the values above refer to those of the experimental setup that was realized.

C.2 Sectional Material Characteristics

Assuming a rectangular cross section beam as described before the integrated material character-

istics presented in the Appendix B can be written explicitly. The results presented in table C.1

have been found2

C.3 Homogenized Material Characteristics

If the ratios

fl =
lp
le

fw =
wp
wb

are left as parameters the homogenized material characteristics can be rewritten explicitly by the

expressions given in Chapter 5.

1 The notation is referred to that given when the constitutive relations have been introduced
2 The coupling coe¢cients are relative to an out- of-phase parallel electric connection of the PZT layers for the

bending case, to an in-phase parallel electric connection for the longitudianl-electric case.
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Table C.1: Material characteristics:Expression and Numerical Values

Constant Expression Numerical Value

®(b) ½b
t3bwb
12 5:76 ¤ 10¡7 kgm

®(p) ½p
t2
b
tpwp
2 6:03 ¤ 10¡7 kgm

¸(b) ½btbwb 4:32 ¤ 10¡1 kg
m

¸(p) 2½ptbwb 1:51 ¤ 10¡1 kg
m

K
(b)
f c11

t3
b
wb

12 14:93 Nm2

K
(p)
f cE11

t2
b
tpwp
2 4:79 Nm2

K(b)
l c11tbwb 1:12 ¤ 107 N

K
(p)
l 2cE11tpwp 1:20 ¤ 106 N

Gl ²31wp 7:18 ¤ 10¡2 C
m

Gf
²31wptp

2 1:436 ¤ 10¡3 C
m

H ²S33wp
tp

3:70 ¤ 10¡6 F
m

Table C.2: Homogenized Material Characteristics:Expression and Numerical Values

Name Expression Numerical Value3

¹® ®(b) + fl®
(p) 1:02 ¤ 10¡6 kg m

¹̧ ¸(b) + fl¸
(p) 5:44 ¤ 10¡1kg

m
¹Kf K

(b)
f + flK

(p)
f 18:5 Nm2

¹Kl K
(b)
l + flK

(p)
l 1:21 ¤ 107 N

¹Gl 2flGl 1:07 C
m

¹Gf 2flGf 2:13 ¤ 10¡3C
¹Cg

Cg
le

+ 2Hfl 5:50 ¤ 10¡6 F
m
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C.4 Dimensionless Parameters

C.4.1 Bending Coupling

The dimensionless parameters for the numerical values assumed are

¯l =
q

¹̧
¹Kf ¹Cg ¹Ll

x0 = 73:1
q

x3
0

Llne
±l = 1

2RlCg

q
¸
Kf

= 1:56 £ 104 x0
Rlne

¯g =
q

¹̧
¹Kf ¹Cg ¹Lg

x2
0 = 73:1

q
nex3

0
Lg

±g =
x2
0

2RgCg

q
¸
Kf

= 1:56 £ 104
p
n3
ex0

1
Rg

° =
¹Gfp
¹Kf

¹Cg
= 0:212 · =

¹Cl
¹Cgx2

0
= 1:82 £ 105 Cl

nex0

where the numerical values of the quantities left free must be inserted in the SI units.

C.4.2 Longitudinal Coupling

The dimensionless parameters for the numerical values assumed are

¯l =
q

¹̧
¹Cg ¹Ll ¹Kl

= 9:04 £ 10¡2
q

x3
0

Llne
±l = 1

2x0 ¹Rl ¹Cg

q
¹̧
¹Kl

= 19:3 1
Rl

x0
ne

¯g =
q

¹̧
¹Kl

¹Cg ¹Lg
x0 = 9:04 £ 10¡2

q
nex3

0
Lg

±g = 1
2 ¹Rg ¹Cg

q
¹̧
¹Kl
x0 = 19:3

Rg
nex0

° =
¹Glp
¹Cg ¹Kl

= 0:131 ·=
¹Cl

¹Cgx2
0

= 1:82 £ 105 Cl
nex0

where the numerical values of the quantities left free must be inserted in the SI units.
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