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L’Habilitation à Diriger des Recherches

de

L’UNIVERSITE JOSEPH FOURIER

GRENOBLE
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Introduction

L’ensemble des thématiques abordées s’inscrivent dans le contexte de la modélisation et
du calcul géométrique. La géométrie duale basée sur la théorie des enveloppes a été
au coeur de la thèse de R. Ait-Haddou (1996). Les résultats obtenus sont aussi bien
de nature théorique (dualité en géométrie de Minkowski) qu’algorithmique (interpola-
tion et approximation G2 sous contraintes, construction d’ovales à largeur constante).
L’expertise faite de ces méthodes nous a permis par la suite de ré-investir ces outils au
travers d’activités contractuelles (ELF, Total Fina ELF) pour la propagation de fronts
d’ondes en optique géométrique. Le calcul effectif de chemins géodésiques avec la thèse de
V. Pham-Trong (2001), s’inscrit encore résolument dans un cadre géométrique puisque les
surfaces considérées sont les surfaces du monde de “l’image” (surfaces de subdivision). Les
résultats obtenus ont là encore pu être exploités avec N. Szafran au travers d’un projet de
détermination de géodésiques périodiques sur le myocarde. Nous travaillons maintenant
depuis quelques années en collaboration avec le LETI sur la reconstruction de courbes
et surfaces à partir de capteurs. Les méthodes développées au travers de la thèse de
N. Sprynski (2007) sont prospectives dans le sens où les données à traiter sont d’un type
nouveau, et de nature très applicative et numérique. A contrario, les outils développés sur
cette même thématique en collaboration avec le professeur R. Farouki (suite à mon séjour
à l’université de Davis) et N. Szafran sont de nature plus théorique et s’appuient sur les
propriétés différentielles des surfaces et des géodésiques. Enfin, l’étude des courbes Bézier
et de leurs propriétés par le biais des floraisons en collaboration avec R. Ait-Haddou est
là encore un “classique” de la modélisation géométrique.

Chapitre 1 : Courbes à Hodographe Pythagorien et modélisation géométrique.

Les courbes à hodographe pythagorien (PH) sont caractérisées par la propriété que
leur vitesse paramétrique est une fonction polynomiale ou rationnelle du paramètre de la
courbe. De par leurs propriétés algébriques, les courbes PH jouent un rôle essentiel dans
certaines applications de la CAO, en modélisation géométrique, en animation et dans
le contrôle de la cinématique en robotique. En particulier, les courbes PH permettent
de générer des courbes parallèles rationnelles utiles par exemple pour la modélisation
des trajectoires d’outils pour les machines à commande numérique. Ces courbes ont été
introduites au début des années 1990, en particulier par R. Farouki et T. Sakallis, et
depuis ce sujet de recherche n’a cessé de se développer en s’appuyant notamment sur les
outils de la géométrie tradionnelle.

Deux grandes stratégies ont vu le jour pour l’étude de ces courbes. Une approche
algébrique, initiée par R. Farouki, permettant de caractériser les courbes planes PH à
l’aide du théorème de Kubota/Pythagore. Précisément, une courbe plane polynomi-
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ale est PH si son hodographe satisfait la relation de Pythagore x′(t)2 + y′(t)2 = σ(t)2

où σ(t) est un polynôme. Une deuxième approche, initiée par H. Pottmann, s’appuie
sur la représentation duale des courbes consistant à les définir comme l’enveloppe de
leur droites tangentes. Cette approche se généralise aux surfaces mais difficilement aux
courbes gauches de l’espace. A contrario, l’approche algébrique a été généralisée depuis
aux courbes gauches en s’appuyant notamment sur l’utilisation des quaternions et sur
la représentation de Hopf. Ces nouveaux outils ont permis de caractériser les courbes
à “rotation minimizing frame” (RMF) et les courbes polynomiales à “rational rotation
minimizing frame” (RRMF) qui forment une sous-famille des courbes PH. Ces courbes
sont très largement étudiées actuellement et sont utilisées pour la modélisation de sur-
faces tubulaires, le contrôle de déplacement... En pratique, l’utilisation de ces nouveaux
”objets” géométriques nécessitent des algorithmes d’interpolation et d’approximation afin
de les rendre accessibles pour des applications en modélisation géométrique.

La thèse de R. Ait-Haddou (1996) s’appuie essentiellement sur l’approche duale dans
le cadre des courbes planes et a consisté dans un premier temps à développer des algo-
rithmes d’interpolation G2 sous contraintes de courbure par des courbes PH (quartiques
de Tschirnhausen). Ensuite, l’approche duale de Pottmann a été généralisée dans cette
thèse au cas d’une géométrie non euclidienne. Ces méthodes ont permis de développer
deux méthodes de construction d’ovales et rosettes PH à largeur constante, utiles pour la
modélisation des cames.

References :
PHD Thesis, R. Ait-Haddou, 1996
[9], [13], [18], [22], [23]

Chapitre 2 : Détermination de géodésiques sur des surfaces de subdivision.

Un chemin géodésique entre deux points sur une surface de l’espace est un plus court
chemin local. Un plus court chemin est porté par un chemin géodésique. La plupart
des méthodes pour l’évaluation de ces chemins géodésiques s’appuient sur la résolution
d’équations différentielles. Nous avons souhaité développer une méthode permettant de
déterminer des géodésiques dans un cadre plus général, en nous appuyant sur les outils
de la modélisation géométrique. Il s’agit d’une méthode itérative qui s’applique aux
surfaces de subdivision, en particulier aux surfaces de Bézier et aux surface NURBS. A
chaque étape de la méthode, un chemin géodésique exact est déterminé sur une surface
polyédrique issue du réseau de contrôle subdivisé de la surface initiale. Cette géodésique
exacte (ou ce plus court chemin) est obtenue par projection et mise à jour de la géodésique
calculée à l’étape précédente. On détermine ainsi une suite de chemins géodésiques sur
la suite des surfaces polyédriques issues des réseaux de contrôle successifs et convergeant
vers la surface donnée.

Suite à ces travaux, une application spécifique a été développée avec N. Szafran dans
le cadre de la modélisation des fibres du myocarde pour l’imagerie médicale. Le but de
ce projet (commun aux laboratoires TIMC, LMC, L3S, Centre Hospitalo-Universitaire, à
Grenoble, et coordonné par le Prof. A. Raoult) était de vérifier une conjecture de Streeter
selon laquelle les fibres cardiaques sont organisées en courbes géodésiques sur des surfaces
embôıtées. Une bonne connaissance de l’organisation fibreuse du myocarde étant à terme
une aide essentielle au remodelage chirurgical après accident coronarien et à la détection
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de pathologies cardiaques au stade néonatal. Il s’agissait ici, pour nous de modéliser et
calculer des courbes géodésiques fermées, globalement G2, sur des surfaces fermées. Les
outils précédents consistant à laisser évoluer sur la surface une courbe fermée soumise
à sa propre contraction (principe de l’élastique) nous a permis d’obtenir des boucles
géodésiques lisses sur des surfaces toroidales.

References :
PHD Thesis, V. Pham-Trong, 2001
[12], [17]

Chapitre 3 : Reconstruction et Modèles géométriques dédiés aux technologies de
capteurs.

Cette activité a démarré au travers d’une collaboration avec le service des Micro-
systèmes et Objets Communicants du CEA/LETI à Grenoble. Il s’agit de reconstruire des
formes 2D et 3D à l’aide d’informations tangentielles estimées en des points de cette forme
et transmises par des magnétomètres et accéléromètres miniaturisés. Il est à noter qu’il
ne s’agit pas d’un problème d’interpolation ou d’approximation duale (type “Pottmann”)
puisque les informations tangentielles ne sont pas localisées dans l’espace, de sorte qu’à
notre connaissance, ce type de problème est nouveau. Dans le cas des courbes planes et
gauches (thèse de N. Sprynski) l’utilisation d’algorithmes géométriques spécifiques permet
la reconstruction en temps réel de ces courbes dans l’espace. Les résultats ont été validés
par un démonstrateur constitué de 32 capteurs répartis sur un ruban “Morphosense”.

Plusieurs stratégies basées sur la reconstruction de courbes tracées sur une surface
ont ensuite été développées pour la reconstruction de cette surface. Nous sommes en fait
confrontés à plusieurs difficultés. En particulier, les distances entre capteurs étant fixes il
est nécessaire de reconstruire un maillage curviligne de la surface respectant ces distances.
Néanmoins, nous avons pu démontrer que ce ruban permettait l’acquisition de certaines
courbes 3D caractéristiques sur une surface, à savoir des courbes géodésiques. Ce qui
nous a permis de développer des méthodes spécifiques d’interpolation.

Cette nouvelle approche pour la reconstruction de surface à partir de géodésiques s’est
poursuivi lors de mon séjour à UC Davis avec le professeur R. Farouki. Précisément, des
conditions nécessaires et suffisantes pour la reconstruction de surfaces lisses interpolant
des courbes géodésiques (par exemple, issues d’acquisitions par le ruban “Morphosense”)
ont été déterminées. Plusieurs méthodes de reconstruction ont ensuite été développées
aussi bien dans le cadre “produit tensoriel” que triangulaire.

References :
PHD Thesis, N. Sprynski, 2007
[7], [7], [8], [10], [15], [15], [21]
Faits marquants de la DRT du CEA en 2005,
Patent no WO/2006/095109, N. Sprynski et al (CEA/LETI), 2006

Chapitre 4 : Diminution de la variation des courbes de Bézier.

Cette activité en collaboration avec R. Ait-Haddou concerne l’étude des courbes de
Bézier en s’appuyant sur la notion de floraison d’un polynôme. Dans un contexte de
modélisation géométrique, l’outil floraison permet de relier des informations de type
géométrique à des résultats algébriques (nombre de racines) ou analytiques (extrémas) ou
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même algorithmique. En particulier, le lien entre la concavité du polygone de contrôle
d’un polynôme et le minimum de sa floraison sous contraintes symétriques linéaires a été
étudié. Récemment, un raffinement de la propriété de minimisation des variations d’une
courbe Bézier a été proposé.

References : [5], [11]

Chapitre 5 : Activités de recherche liées à des contrats industriels.

La nature des travaux réalisés au travers de ces contrats avec ELF EP puis TO-
TAL FINA ELF S.A. se découpe en 2 parties. D’une part la modélisation d’interfaces
géologiques (par utilisation de quadriques par morceaux) sous contraintes d’approximation
et de raccord G1 (B. Lacolle et N. Szafran). Pour ma part je me suis intéressé à
la modélisation des fronts d’onde et à leur propagation dans un contexte d’optique
géométrique. L’approche choisie s’appuie sur la géométrie duale qui permet naturelle-
ment de définir des courbes et des surfaces rationnelles dont les offsets (courbes et surfaces
parallèles) se déduisent aisément en fonction du paramètre temps par enveloppe.

Cette approche s’inscrivait naturellement dans la suite des travaux initiés lors de la
première thématique. Par ailleurs, ce formalisme permet une bonne approximation des
fronts d’onde réfléchi après interaction avec les différentes interfaces du milieu et assure
naturellement des raccords géométriques G1 (ce qui évite les discontinuités de suivi dans
les méthodes de lancer de rayons).

References : [24], [25]

Perspectives

Concernant l’activité conjointe avec le LETI des discussions sont actuellement en
cours pour une collaboration autour d’une “Plateforme matérielle et logicielle”. Les ob-
jectifs étant la reconstruction dynamique d’animations et de mouvements 3D de surfaces
équipées de capteurs sur des topologies non régulières, ainsi que la validation des méthodes
développées. Par ailleurs, la visite du professeur R. Farouki à l’automne 2009 devrait per-
mettre de valider et développer plusieurs méthodes basées sur l’interpolation géodésique
et s’appuyant sur des courbes PH quintiques pour la reconstruction surfacique sous con-
traintes de longueurs.

Depuis mon séjour à UC Davis (2007-2008), nous travaillons également avec R. Farouki
sur un projet concernant les courbes RRMF et en particulier sur la reconstruction et
l’interpolation par des surfaces rationnelles de lignes de courbure définies par des courbes
RRMF. La construction de ces lignes de courbure s’appuie sur l’interpolation de Hermite
par des courbes RRMF. En particulier, un algorithme d’interpolation d’Hermite généralisé
dans l’espace par des courbes RRMF devra être développé.

Concernant notre activité “calcul” (collaboration avec N. Szafran), une nouvelle ap-
proche pour le calcul de géodésiques sur des polyèdres et des surfaces de subdivision est
actuellement en cours. Cette méthode s’appuie sur les propriétés locales de la surface.

Enfin, la collaboration avec l’université d’Osaka et R. Ait-Haddou se poursuit. L’un
des objectifs étant de développer un algorithme géométrique de localisation des racines
réelles d’un polynôme.
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Diminishing Property of Bézier Curves, on Revision, Comput. Aided Geom. Design,
May 2009

[6] Farouki R. T., N. Szafran, L. Biard, Construction and smoothing of triangular Coons
patches with geodesic boundary curves, on Revision, CAGD, June 2009

Publications in Revues

[7] Farouki R. T., N. Szafran, L. Biard, Construction of Bézier surface patches with Bézier
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Chapter 1

Pythagorean Hodograph curves
and geometric design

Construction of offset curves is fundamental to a variety of applications in geometric
modeling, such as generation of tool path for numerical control machines, or definition
of tolerance zone. Several methods have been proposed for approximating offset curves
by piecewise polynomial or rational forms so that they may be incorporated into current
CAD software (Farin [19]).

In 1990, R.T. Farouki and T. Sakkalis introduced a class of special polynomial curves
with rational offsets, namely the Pythagorean Hodograph curves (PH curves) [22], and
showed their capabilities in free-form design applications. However the degree of the
offsets present some disadvantage. For example, the low degree PH solution of the C1

Hermite interpolation problem involves a polynomial PH curve of degree 5 with rational
offsets of degree 9 [21]. In order to remedy this drawback, H. Pottmann [42] described
a full class of rational curves with rational offsets (rational PH curves) by use of the
dual geometry and established their practical use and their low degree solution. For
example, the rational PH solution of the G2 approximation problem can be achieved by
rational PH curves of algebraic class 4 (Pottmann [43]). In practice, for applications in
which offset computations are needed, the PH curves with offsets of low degree are most
appealing. Among these curves there are the Tschirnhausen cubics (T-cubic) which are,
with circles, the only rational curves with a rational cubic PH parametrization (Farouki
et al. [25]). The fact that these curves become one under a suitable scaling, rotation and
linear parametrization [22] makes it of limited practical use. Therefore, the Tschirnhausen
quartics (T-quartics) are particularly attractive since they are characterized by the lowest
degree and are sufficiently flexible for practical design schemes.

The Ph.D thesis of Rachid Ait-Haddou [3] is related to the study of parallel curves in
non-Euclidean geometry as well as the determination of algorithms of geometrical mod-
eling under G1 or G2 constraints. According to the works of H. Pottmann, he introduced
the concept of Pythagorean Hodograph curves in the Minkowski space and their geo-
metrical characterizations within the formalism of Bézier curves. He then developed the
differential geometry of Minkowski spaces, providing him with the theoretical framework
necessary for the development of practical algorithms.

In a second part, R. Ait-Haddou [2] solved the G2 approximation problem under
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curvature constraints, with rational PH curves of dual degree 3, so that their offsets are of
degree 4. This approach is based onG2 Hermite interpolation of special curvature elements
by two segments of Tschirnhausen quartics. This requires an additional appropriate new
interpolation point. It turns out that the geometric characterization of Tschirnhausen
quartics as involutes of Tschirnhausen cubics provides a simple localization of the added
interpolation point.

Finally, two geometric constructions for rational ovals and rosettes of constant width
formed by piecewise rational PH curves (Ait-Haddou et al. [5]) have been developed. The
first construction models with rational PH curves of algebraic class 3 (T-quartics) and is
based on the fact that T-quartics are exactly the involutes of T-cubic curves. The second
construction models with rational PH curves of algebraic class m > 4 and is based on the
dual control structure of offsets of rational PH curves.

This chapter is organized as follows. After reviewing some basic concepts concerning
rational PH curves in Section 1.1, we present the main results obtained in (Ait-Haddou
[3]). Section 1.2 is devoted to the G2 approximation under curvature constraints by PH
curves of dual degree 3 (Ait-Haddou et al. [2]). We then present in Section 1.3 the
main ideas for the construction of ovals and rosettes of constant width formed by piece-
wise rational PH curves (Ait-Haddou et al. [5]). In Section 1.4 the main ideas about
Pythagorean Hodograph curves in the Minkowski space and their geometrical characteri-
zations within the formalism of Bézier curves (Ait-Haddou et al. [4]) are outlined. Finally,
as a conclusion, Section 1.5 presents some future work.

1.1 Rational planar PH Curves

• Dual Bézier curves.
The approach of dual Bézier representation of rational Bézier curves, introduced by J. Hoschek

[35], provides an elegant tool for studying rational PH curves from the view point of construction,
interpolation and approximation [1, 43]. The fundamental idea of this approach is that any rational
Bézier curve C(t) can be described as the envelope of its tangent lines L(t). The tangent lines
L(t) can be expressed as a linear homogeneous equation < U(t), X >= 0, with X = (x0, x1, x2)
the homogeneous Cartesian coordinates, and U(t) the vector of the homogeneous line coordinates.

For a rational curve C(t), the vector U(t) may be expressed in Bézier form

U(t) =
m∑

i=0

B∗
i B

m
i (t), (1.1)

where Bm
i (t) are the Bernstein polynomials of degree m. Such a representation is called the dual

Bézier representation of the curve C, and the curve C is said to be of class m. The vectors B∗
i

are the line coordinate vectors of the Bézier lines. The set of Bézier lines B∗
i form the Bézier

lateral and the points Ei = B∗
i ∩B∗

i+1 for i = 0, ...,m with m+ 1 ≡ 0 are the Bézier vertices. The
conversion expression from the dual form U to its standard representation as point set C, can be
obtained by the formula

C(t) ≡ U(t) ∧ U ′(t). (1.2)
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Fig. 1.1 - Dual Bézier curve.

The lines of the Bézier lateral do not determine a Bézier curve completely since the vectors B∗
i

and any multiple λB∗
i with λ �= 0, represent the same line. For a complete description J. Hoschek

[35] associates a weight wi with each normalized vector B∗
i . This increases the flexibility of dual

curves but makes the scheme dependent on the origin. To avoid this limitation, Pottmann [42]
introduced the Farin lines F ∗

i (the analogue to Farin’s auxiliary points of rational Bézier curves
(Farin [19])) which are concurrent with B∗

i and B∗
i+1 and are represented by the vectors

F ∗
i = B∗

i +B∗
i+1. (1.3)

Given the lines B∗
i for i = 0, ...,m and the lines F ∗

i for i = 0, ...,m − 1, we can actualize the
homogeneous coordinate vectors B∗

i such that (1.3) holds. Then (1.1) defines a unique dual curve
U (see Figure 1.1).

• Rational PH Curves.
Given a planar curve C with a rational parametrization C(t), its offset at a signed distance d

is the parametric curve
Cd(t) = C(t) + dN(t), (1.4)

where N(t) =
(
N1(t), N2(t)

)
is the unit normal vector along the curve C. The parametrization

C(t) is said to be a rational PH parametrization of the curve C if the unit normalN(t) is rational in
the parameter t. In this case, for each real number d, the parametrizationCd(t) of the offset curve is
rational in parameter t. Notice that not all rational curves possess a rational PH parametrization.

If C(t) is a rational PH parametrization, the curve C will be said to be a rational PH curve.
In particular, we speak of a polynomial PH curve if C(t) is a polynomial PH representation.

For a rational PH curve C(t), the components of N(t) must have the form (Pottmann [42]) :

N1(t) =
2 a(t) b(t)
a2(t) + b2(t)

, N2(t) =
a2(t)− b2(t)
a2(t) + b2(t)

, (1.5)

with polynomials a(t) and b(t).
Furthermore, the dual representation provides an elegant way to characterize rational PH

curves. More precisely, the tangent line L(t) at C(t) has the equation

N1(t)x+N2(t) y + h(t) = 0, (1.6)
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where h(t) is a rational function if C(t) is a rational PH parametrization. Then, by setting
h = −e/f , we obtain Pottmann’s [43] dual representation of rational PH curves, (i.e., rational
curves with rational offsets) in terms of line coordinates

U(t) =
(
− e (a2 + b2), 2 a b f, f (a2 − b2)

)
, (1.7)

where a, b, e and f are polynomials in t. Conversely, given polynomials a, b, e, f , the dual repre-
sentation (1.7) defines a rational PH curve.

We can observe that e ≡ −f in (1.7) leads to a dual representation u(t) of a segment c(t) of
the unit circle. The dual representation u(t) does not differ from (1.7) in the second and third
coordinate. Therefore the Bézier and Farin lines of the circle segment c(t) are parallel to the
corresponding Bézier and Farin lines of the rational PH curve C(t).

The same arguments show that the Bézier and Farin lines of the offset curve Cd(t) are obtained
by an appropriate translation of the corresponding Bézier and Farin lines of C(t). More precisely
the i-th Bézier and Farin line of Cd and C are parallel, and their oriented distance is d times the
oriented distance of the i-th Bézier or Farin line of the circle segment c from its midpoint [42].
Notice that, a nice geometric characterization of the set of rational PH curves is given in (Fiorot
et al. [30]).

• Tschirnhausen quartic curves (T-quartics).
Particularly interesting is the family of rational PH curves with algebraic class 3

obtained by setting

a(t) = t, b(t) = 1, e(t) = αt+ β, f(t) = γt+ δ,

in (1.7), which leads to the following dual representation

U(t) =
(
− (αt3 + βt2 + αt+ β), 2γt2 + 2δt, γt3 + δt2 − γt− δ

)
.

Each d-offset parametrization is obtained by substituting α by α + γ d and β by β + γ d
in the previous representations.

The curves U(t) ∧ U ′(t) yield a set of rational quartics of algebraic class 3 called
Tschirnhausen quartics (or T-quartics). These curves are closed under offsetting, have
five degrees of freedom included translations (same flexibility as conics) and are free of
inflections. Furthermore, they are characterized by the fact that they are exactly the
involutes of the polynomial Pythagorean hodograph cubics (Tschirnhausen cubics) [42].
Finally, notice that each regular segment of a T-quartic is of monotonous curvature.

• Tschirnhausen Cubic Curves (T-cubics).
Let r(t) = (x(t), y(t)) be a plane polynomial curve of degree n. Offset curves of r(t)

are rational if and only if the hodograph components of r(t) satisfy the Pythagorean
relation x′2(t) + y′2(t) = σ2(t) with σ(t) a polynomial of degree n− 1, which is equivalent
(Kubota [38]) to the following expression for the derivatives

x′(t) = w(t) [u2(t)− v2(t)] and y′(t) = 2w(t)u(t)v(t),

with polynomials u(t), v(t) and w(t).
A Tschirnhausen cubic curve (T-cubic) is a polynomial PH cubic curve. T-cubics are,

with circles, the only rational curves with a rational cubic PH parametrization. They
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possess rational offsets of degree 5, are free of inflections and can be obtained as caustics
of a parabola for parallel light rays (which are not parallel to the axis of the parabola).
Finally, notice that two Tschirnhausen cubic curves can be deduced, one from the other,
by using a suitable scaling, rotation and linear reparametrization (Farouki et al. [21, 22]).

Farouki’s expressions provide the following simple and elegant geometric characteri-
zation of polynomial PH cubic curves.

Theorem 1. [21] – The Bézier cubic curve BP [P0, P1, P2, P3] =
∑3

i=0 PiB
3
i (t) is a T-

cubic if, and only if
θ1 = θ2 and L2

1 = L0L2,

where L0 = |P0P1|, L1 = |P1P2|, L2 = |P2P3|, and where θ1, θ2 are the control polygon
oriented angles at the interior vertices P1 and P2 respectively (see Figure 1.2 - Left).

P0

P1
P2

P3

L0

L1

L2

1
2

C

1
2

A

B

F
E

Fig. 1.2 - Tschirnhausen cubic segment.

Furthermore, we give the two following results (Ait-Haddou et al. [2]) which will be
explicitly needed for the construction of section 1.2.

Proposition 1. [2] – With notations of Theorem 1, the total arc-length L of a T-cubic
curve BP [P0, P1, P2, P3] is given by the formula

L = L0 + L2 − L1 cos θ1.

Proposition 2. [2] – Given a non-degenerate triangle (ABC), there is a unique point E
on the segment [AB] and a unique point F on the segment [BC] (see Figure 1.2 - Right)
such that the Bézier curve BP [A,E,F,C] is a T-cubic curve denoted by T (ABC).

1.2 G2 approximation by Tschirnhausen quartics

Using the fact that rational PH curves of algebraic class 3 (Tschirnhausen quartics) can
be regarded as the involutes of Tschirnhausen cubics, a geometric algorithm for approxi-
mating a given curve by a G2 piecewise rational PH curve of class 3 has been developed.
The produced curve will also preserve the curvature variations of the initial curve. This
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algorithm is based on a hierarchical segmentation of the initial curve and G2 Hermite in-
terpolation of special curvature elements by two segments of Tschirnhausen quartics. This
requires an additional appropriate new interpolation point. It turns out that the geomet-
ric characterization of T-quartics as involutes of T-cubics provides a simple localization
of the added interpolation point.

• Segmentation.
A curvature element (P, T, k) is composed of a point P , a unit tangent vector T at

point P and a non zero curvature k. A G2 curve defines curvature elements composed of
a point on the curve, and of the tangent vector and the curvature at this point.

Two curvature elements (P0, T0, k0) and (P1, T1, k1) will be said to be T-connected if
there exists a T-quartic segment which interpolates these curvature elements. Because of
the degrees of freedom of T-quartics (five), two curvature elements are not T-connected
in general.

Two curvature elements (P0, T0, k0) and (P1, T1, k1) will be said to be admissible if
there exists a convex segment with continuous monotonous curvature and turning angle
less than π, interpolating these two curvature elements.

R

Q0

Q1

1P
P0

T1

T0

1/k1

01/k

a0

a1

Fig. 1.3 -
Geometry of admissible curvature ele-
ments.

Theorem 2. (Guggenheimer & Ostrowski [31]). Two curvature elements (P0, T0, k0) and
(P1, T1, k1) are admissible (with increasing curvature) if

i) −π
2
< a1 < 0 < a0 <

π

2
,

ii) 0 < |Q0Q1| < |P0Q0| − |P1Q1| < |Q0R|+ |RQ1|
iii) the triangle (Q0, Q1, R) is positively oriented.

with oriented angles a0 and a1 as defined in Fig. 1.3 and where Q0, Q1 are respectively
the centers of curvature of the two curvature elements (P0, T0, k0) and (P1, T1, k1).

Notice that each interpolating curve produced by Theorem 2 is an involute of a G1

convex segment r(t) of length k−1
0 −k−1

1 , with endpoints Q0 and Q1, with tangent vectors
Q0R at Q0 and RQ1 at Q1, and inscribed in the triangle (Q0RQ1). Since Tschirnhausen
quartics are exactly the involutes of Tschirnhausen cubics, we will now construct the

13



previous curve r(t) as a tangent continuous curve composed of T-cubics.
Precisely, given a G2 curve s(t), the strategy is the following.

-1. Perform a geometric segmentation by computing all vertices (points with locally
extremal curvature) of the curve s(t).

-2. Evaluate additional points such that the turning angle of the tangents between
two consecutive breakpoints is smaller than π. This leads to a sequence of admissible
curvature elements.

-3. Construct a G2 piecewise rational PH curve of class 3, with monotone curvature,
which interpolates these curvature elements.

Consider now this last step.

• G2 interpolation by T-quartics.

1/k1

R

Q0

Q1

1P
P0

T1

T0

01/k

a0

a1

G1

G2

A

B

S

Fig. 1.4 -
G2 Hermite interpolation of admis-
sible curvature elements by two seg-
ments of T-quartics with G2 contact
and monotonous curvature.

Given two admissible curvature elements as in Fig. 1.4 and two real parameters α, β ∈
]0, 1[, we consider the two triangles (Q0AG1) and (G1BQ1) with points A,B,G1 defined
by

A = (1− α)R + αQ0, B = (1− α)R + αQ1, G1 = (1− β)A+ β B.

Then, using Proposition 2, we consider the two T-cubics T (Q0AG1) and T (G1BQ1),
forming a G1 T-cubic curve denoted by Tα,β(Q0RQ1).

Theorem 3. [2] – Let l be a real number such that |Q0Q1| < l < |Q0R|+ |RQ1|. Then,
for each value of β in ]0, 1[, there exists an unique ᾱ in ]0, 1[ such that the arc length of
the G1 T-cubic Tᾱ,β(Q0RQ1) associated with the triangle (Q0RQ1) and the two reals ᾱ
and β is l.

Thus, noting that for two admissible curvature elements (P0, T0, k0) and (P1, T1, k1),
with increasing curvature, we have according to Theorem 2

|Q0Q1| < 1
k0
− 1
k1

< |Q0R|+ |RQ1|,
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a PH solution of our G2 Hermite interpolation problem is obtained, for each value of β
in ]0, 1[, as an involute of the G1 T-cubic curve Tᾱ,β(Q0RQ1), of length k−1

0 − k−1
1 , as

specified in Theorem 3.
This construction (see Fig. 1.4) provides a new curvature element (G2, TG2 , kG2), with
kG2 = |G1G2|−1, such that the curvature elements (P0, T0, k0), (G2, TG2 , kG2) and (P1, T1, k1)
are T-connected.

Consider now the construction of dual Bézier control structure of the involute of a
T-cubic curve (Ait-Haddou et al. [1, 2]).

• Construction of involutes of a T-cubic.
A simple and elegant method to construct the dual Bézier control structure of the

involute of a T-cubic curve is based on the dual representation of the osculating circles of
the involute at the endpoints (Pottmann [43]).

Q
0

Q
1

P
0

P
1

S

P
0

~ P
1

~

b*
0

~

b*
1

~
b*

2

~

b*
3

~

b*
0

b*
1

b*
2

b*
3

B*
0

B*
1 B*

2

B*
3

Fig. 1.5 - Osculating circles at the endpoints of a T-quartic with their dual control
structure.

Theorem 4. Consider two T-connected curvature elements (P0, T0, k0) and (P1, T1, k1).
The Bézier lines B∗

1 and B∗
2 , of the dual representation of the interpolating T-quartic

segment C, pass through the point S defined by :

S =
ρ1

ρ1 − ρ0
Q0 +

ρ0

ρ0 − ρ1
Q1,

where ρi = k−1
i , i = 0, 1 and where Q0, Q1 are respectively the centers of curvature of the

two curvature elements (P0, T0, k0) and (P1, T1, k1).
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Given a T-cubic curve, each of its involutes (T-quartics) yields connected curvature
elements. The first and the last Bézier line of the involute are deduced from the tangent
vectors of the T-cubic curve at the end-points, and the point S of the previous Theorem
4 is evaluated from the end-points of the T-cubic curve as centers of curvature. Hence,
we get the second and third Bézier lines according to Theorem 4. Finally, the Farin lines
of the involute are obtained by degree elevation of one corresponding circular arc in class
3, and by performing parallel translation of the Farin lines.

• Results and concluding remarks.

Fig. 1.6 - Left : G2 approximation with monotonous curvature of a logarithmic spiral
with influence of parameter β. Right : G2 approximation with monotonous curvature of

a cubic B-spline together with its offsets.

Because of the monotone curvature of the logarithmic spiral segment shown in Fig. 1.6
(left), we just have to verify that the turning angle between two consecutive breakpoints
of the geometric segmentation is less than π. Furthermore, we can see the influence of the
tension parameter β for the approximation of this logarithmic spiral segment. In Fig. 1.6
(right), some rational PH approximations of a cubic B-spline curve and of its offsets are
shown. Since the Tschirnhausen quartics are closed under offsetting, PH approximation
of each offset of a cubic spline segment involves just an appropriate translation of the dual
Bézier control structure of the G2 PH approximation of the initial curve.

1.3 PH Ovals of Constant Width

The theory of curves of constant width has generated an important literature, much of
which is related to extremal phenomena or to the theory of convex bodies in general
(Bonnensen [8]). Recently, the idea of constant width has been developed in a somewhat
different spirit, as a topic of differential geometry, so that the nature of parametrization
of these curves has not really been studied in great details.

The main objective in (Ait-Haddou et al. [5]) is to demonstrate the adequacy of using
piecewise PH curves in constructing ovals and rosettes of constant width. The crucial
element that brings PH curves into the scene of ovals of constant width is the fact that
the interior offset of an oval Γ of constant width D at the distance D is the curve Γ itself.
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Therefore, the characterization of offsets of PH curves in terms of simple manipulations
on the dual Bézier structure of the original curve give an elegant method of construction
of ovals of constant width. Another construction of ovals and rosettes of constant width
is based on the idea of Hammer and Sobczyk [32], that generates plane curves of constant
width as orthogonal trajectories of certain planar line families.

• Motivating example.
We are concerned in this section with modeling of cams. A cam is mechanical device

allowing to transform a rotating motion w(t) into a periodic longitudinal alternating
motion X(t). A camshaft is a system generally used in piston engines to control the
opening of valves. It consists of a cylindrical axis with a number of oblong lobes protruding
from it, one for each valve. As they rotate, the cams open the valves by pressing them.

Of course, this system requires a permanent contact between the cam and the valve.
The contact is realized by mean of a spring pushing the axis against the cam (see Fig. 1.7).

From http://en.wikipedia.org/wiki/Camshaft

X(t)
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Fig. 1.7 - Cam mechanism with spring.

Another solution, avoiding the spring mechanism, would be to consider two sided
opposite contacts of the cam with a U-device interdependent with the axis (see Fig. 1.8).
But of course, such a mechanism requires that the cam is an oval of constant width D.
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Fig. 1.8 - Cam mechanism without spring.

Thus, considering this second approach, we are concerned with the two following
problems. The first one concerns the modeling and construction of rational ovals of
constant width. For technological applications in which curves of constant width are
needed (Drexler [18]), the piecewise polynomial or rational forms are preferred, so that
they may be incorporated into current CAD software in order to be easily handled by
numerical control milling machines for manufacturing.

The second problem concerns the construction of cams with respect to a given periodic
longitudinal alternative motion X(t). Precisely, assuming that the rotation of the cam is
uniform, we are concerned by the approximation of a cam by a piecewise rational oval of
constant width in order to produce a given periodic longitudinal alternating motion X(t).
This reverse problem has not been yet fully achieved.

We now consider in the following of this section two constructions of ovals of constant
width involving T-quartic curves and rational PH curves of class m > 4.

• Ovals and rosettes of constant width.
A positively oriented rosette is a G2 plane closed curve with positive curvature (Strubecker

[45]). An oval is a simple rosette, i.e., a G2 plane closed simple curve with positive curvature.
Let us consider a rosette C: s �→ C(s), for 0 ≤ s ≤ L, where s and L will denote respectively

the arc length and the perimeter of the rosette. The tangent and normal vectors to C at C(s) are
denoted by T (s) and N(s) respectively while k(s) will denote the curvature at point C(s). We
will consider the functions C, T,N and k to be periodic of period L. Furthermore, let us denote
by a ∈ [0, L] the smallest parameter such that T (a) = −T (0). Then, for a positively oriented
rosette C as above, let us consider ψ : s �→ ψ(s), the real regular function such that ψ(0) = a and
T ◦ψ(s) = −T (s), for 0 ≤ s ≤ L, and the following vector and functions :

p∗ = C ◦ ψj − C, δ∗ =< p∗, N >, Δ∗ =< p∗, T >, 2λ∗ =
1
k

+ (−1)j+1 1
k◦ψj

,

where j is the index of C (notice that j = 1 for an oval C). The function δ∗ will be called the
width function of C.
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Fig. 1.9 - Width function of an ellipse and of an oval of constant width.

A pair of points of a rosette which have the same normal line will be called an orthodiameter
pair. A rosette C is said to be of constant width if δ∗ is a constant function.

Theorem 5. [16].
An oval is of constant width if and only if each of its points belongs to an orthodiameter pair. The
index of a rosette C of constant width is an odd number and δ∗ = ||p∗|| = 2λ∗. A rosette is of
constant width if and only if each of its points belong to an orthodiameter pair.

• Construction of piecewise T-quartic rosettes of constant width.
In this section we give a geometric construction of ovals and rosettes of constant width

composed of piecewise rational PH curves of class 3 (T-quartics). These constructions
are based on the fact that T-quartics are exactly the involutes of T-cubic curves and on
a condition for the existence of orthogonal trajectories of a continuous family of lines.

A continuous family of lines U(t) is said to be k-simple if there exists a circle C
such that any point exterior to C is covered exactly k times by lines of U(t). Then, as
emphasized in [32, 33, 47], if k is an odd number, regular orthogonal trajectories of a k-
simple family of lines exist and are rosettes of constant width. Each orthogonal trajectory
of the family U(t) is one involute of the envelope of this family. Therefore, to get piecewise
T-quartic rosettes of constant width, we just have to find a piecewise T-cubic curve such
that its tangent lines form a k-simple family of lines.

Case k = 1 – Construction of ovals of constant width.
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Fig. 1.10 - Construction of a piecewise T-cubic curve.
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1. Consider a non-degenerate triangle (ABC) with interior angles less than π/2 (see
Fig. 1.10). There exist unique points P0, P1 and P2 exterior to the triangle (ABC),
such that the Bézier curves BP [P0, A,B, P1], BP [P1, B,C, P2] and BP [P2, C,A, P0]
are T-cubic curves.

2. The family of the tangent lines to this piecewise T-cubic curve is simple.

3. Therefore, the involutes of this piecewise T-cubic curve provide ovals of constant
width, which are composed of 6 T-quartic segments (see Fig. 1.11).

Fig. 1.11 - T-quartic oval of constant width and its offsets.

General case : k is an odd number – This case is a direct generalization of the previous
algorithm for the construction of rational rosettes of constant width (see [5] for a detailed
construction).
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Fig. 1.12 - Construction of the family T [A1A2...A5].
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1. There exists a unique piecewise T-cubic curve (see Fig. 1.12) associated with any
polygon (A1A2...A2n+1), n ∈ IN∗, with unoriented interior angles αi satisfying the
relations

k+2n∑
j=k

(−1)j−kαj > 0 for k = 1, 2, ..., 2n + 1. (1.8)

2. The family of the tangent lines to this piecewise T-cubic curve is (2n− 1)-simple.

3. Therefore, regular involutes of this piecewise T-cubic curve yield rosettes of constant
width, which are composed of 2(2n + 1) T-quartic segments (see Fig. 1.13).

Fig. 1.13 - T-quartic rosette of constant width.

It is clear that this construction of rosettes of constant width will remain true for a
large class of “appropriate” non-regular polygons.

• Dual construction of rational ovals of constant width.
The dual Bézier representation reveals a remarkably simple construction of ovals of

constant width. A crucial element for this construction is the fact that the interior offset
of an oval Γ of constant width D at the distance D is the curve Γ itself. Thus, using the
fact that the dual control structure of the offset of a rational PH curve can be obtained
by appropriate translations (which depend on the distance of the corresponding original
dual control structure of the circular arc from its midpoint) we developed two slightly
different constructions based on a piecewise rational dual representation of a given circle
C of diameter D.

As these constructions are somewhat technical, we just outline the main ideas of the
general algorithm (see [5] for details).

1. We first define a piecewise rational dual parametrization of the circle C composed of
segments Ck, k = 1, ..., 2n, the segment Cj being the interior offset at the distance
D of the segment Cn+j for j = 1, ..., n (see Fig. 1.14).
The constructions consist then in performing appropriate parallel translations of
the Bézier and Farin lines of Cj and Cn+j.
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Fig. 1.14 - Dual control structure of a circle in class 2 and 6.

2. The main construction allows to interpolate general curvature elements “close” to
the given circle C (see Fig. 1.15 and Fig. 1.16) by PH segments of class m, m ≥ 5.
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Fig. 1.15 - Interpolating oval of constant width.

Left : initial piecewise dual control structure of the circle C, with n = 3. Right : each
PH curve Hi has a G2 contact with the circle C at points Bi and Bi+1. Furthermore,
each PH curve Hj+3 is the interior offset at the distance D of the PH curve Hj.

22



B
2

B
5

B
3

B
1 B

6

C
1

B’
4

C
2

C
3

C
4

C
5

C
6

B
4

B’
1

B’
3

B
4

H
3

B
3

B’
4

H
4

H
2

B’
5

B’
2

B
2

B
5

H
5

B’
6

H
1

B
1

B
6

B’
1

H
6

Fig. 1.16 - Oval of constant width of class 6.

Left : piecewise dual control structure of the circle C, with n = 3, where only the first
and last Bézier lines (tangent lines) are represented. We can proceed in the following
way. First, we perform arbitrary parallel translations to the 3 first Bézier lines of
the segment C1. Second, in order to get a G2 contact in B′

1, we perform parallel
translations to the 3 last Bézier lines of the segment C6 according to lemma 1 of [5].
The associated Farin lines are then translated accordingly. Finally, we translate the
corresponding Bézier and Farin lines of the segments C3 and C4 so that the resulting
PH curves H3 and H4 are the interior offsets at the distance D of the segments H6

and H1.
Right : each PH curve Hi has a G2 contact with the PH curves Hi−1 (at point B′

i)
and Hi+1 (at point B′

i+1). Furthermore, each PH curve Hj+3 is the interior offset
at the distance D of the PH curve Hj .

• Concluding remarks.
These two approaches provide ovals and rosettes of constant width with rational PH-

parameterizations. The last construction allows us to interpolate curvature elements
“close” to a given circle and thus can be used for the inverse problem concerning the
construction of cams with respect to a given periodic longitudinal alternative motion
X(t). Precisely, some characteristic curvature elements of the cam could be estimated
from the motion X(t) providing data for the approximation.

Furthermore, notice that such an approach of construction will lead, in a straightfor-
ward way, to ovals of constant width in the Minkowski plane in which the analogue of
PH curves are the Minkowski isoperimetric-hodograph curves as defined in (Ait-Haddou
et al. [4]) (see also Section 1.4).

1.4 Minkowski IH curves

General offset curves (see Fig. 1.17) are treated in the context of Minkowski geometry,
the geometry of the two-dimensional plane, stemming from the consideration of a strictly
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convex, centrally symmetric given curve as its unit circle. Minkowski geometry permits
us to move beyond classical confines and provides us with a framework in which to gener-
alize the notion of Pythagorean-hodograph curves in the case of rational general offsets,
namely, Minkowski isoperimetric-hodograph curves. Differential geometric topics in the
Minkowski plane, including the notion of normality, Frenet frame, Serret Frenet equa-
tions, involutes and evolutes are introduced. These lead to an elegant process from which
an explicit parametric representation of the general offset curves is derived. Using the du-
ality between indicatrix and isoperimetrix, and between involutes and evolutes, rational
curves with rational general offsets are characterized. The dual Bézier notion is invoked
to characterize the control structure of Minkowski isoperimetric-hodograph curves. This
characterization empowers the constructive process of freeform curve design involving
offsetting techniques.

Fig. 1.17 - General offset curves as the envelope of a family of copies of an indicatrix U

• The Minkowski plane.
We associate a norm with any centrally symmetric, closed, strictly convex plane curve

U with its center O at the origin, such that this curve becomes the unit circle with respect
to this norm. The plane endowed with such a norm is called the Minkowski plane. This
norm allows us to define a notion of normality between two lines, which is analogous to
orthogonality in the Euclidean plane. However, the Minkowski notion of normality is not
reciprocal and requires the introduction of a dual geometry through which the reciprocity
issue is resolved.
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Precisely, we associate the curve U with the
Minkowski metric m(x, y) and the Minkowski
norm ||x||U defined by

m(x, y) =
2 e(x, y)
e(x′, y′)

, and ||x||U =
||x||2
||x�||2 ,

where points x′ and y′ of U define the diameter
[x′, y′] of the indicatrix parallel to the Euclidean
line (xy) and with e(x, y) the Euclidean distance
(see Fig. 1.18).
The plane with this new metric shall be referred
to as the Minkowski plane M with U being its
indicatrix which can be viewed as the unit circle
in the Minkowski plane.

Fig. 1.18 - Indicatrix U of the
Minkowski plane.

In all cases (Busemann [11]) wherein the indicatrix is not an ellipse, the norm does not
stem from a scalar product, thereby requiring us to move beyond the confines of Euclidean
geometry. The study of these cases is rendered possible in the context of Minkowski
geometry.

In the Euclidean plane, of all closed, simple curves of equal perimeter, the circle is the
one enclosing the greatest area. In the Minkowski plane, however, this extremal curve is
not a homothetic copy of the Minkowski unit circle, i.e., the indicatrix U as one could
expect by direct analogy. In fact, this extremal curve is the core of the dual geometry and
consists of a curve which is homothetic to the isoperimetrix U0 of the Minkowski plane
(Busemann [11]).

Fig. 1.19 - Isoperimetrix U0 of the Minkowski plane.

Precisely, the isoperimetrix U0 of a Minkowski plane with indicatrix U is the polar
reciprocal of U with respect to the Euclidean unit circle, rotated by an angle −π/2.
The isoperimetrix U0 can be considered as the indicatrix of a Minkowski plane M0.
Then, we have (M0)0 = M revealing the duality between the two Minkowski planes.
Furthermore the parameterization u(t) of the indicatrix U is related to the corresponding
parameterization u0(t) of the isoperimetrix U0 by the identity det(u0(t), u(t)) ≡ 1.

This norm allows to define a notion of normality between two lines (and then between
vectors). Precisely, a line ḡ is U -normal to a line g if and only if there exists a homothety
and a translation that transforms the indicatrix U to a closed curve which has its center
on the line ḡ and is tangent to the line g at the point of intersection of the two lines (see
Fig. 1.20).
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Fig. 1.20 - Normality.

Notice that the Minkowski notion of normality is not reciprocal since a line g1 is U -normal
to a line g2 if and only if the line g2 is U0-normal to the line g1.

• Differential Geometry in the Minkowski plane.
We then consider some material concerning differential geometry of plane curves in

the Minkowski plane. By associating any plane curve with its Frenet frame, we establish
the generalized Serret-Frenet equations. From this, we establish generalized notions of the
involute and evolute, as well as their analytic and geometric properties. As this material
is somewhat technical, we refer to (Ait-Haddou et al. [4]) and just outline the main ideas.

In the Minkowski plane (see Fig. 1.21), the U-tangent vector tU(t) of the curve pos-
sesses the same direction as in the Euclidean case, being subject only to a normalization
with respect to the new norm. To define the U-normal vector nU (t), however, we consider
the generalized notion of normality described above.
Thus, the vector tU (t) is U -normal to the vector nU (t), and the vector nU (t) is U0-normal
to the vector tU(t). Furthermore, tU (t) is a parameterization of a segment of the indicatrix
whereas nU (t) is a parameterization of a segment of the isoperimetrix.

Fig. 1.21 - Serret-Frenet frame in the Minkowski plane.

Then, introducing the notions of U -arclength, U -Minkowski curvature and U -circular
curvature of a curve in the Minkowski plane, we generalize the Serret-Frenet equations
(relating the U -normal and U -tangent vectors to their rate of change along the curve) and
then the notions of involute and evolute (see Fig. 1.22) in the Minkowski plane, as well as
their analytic and geometric properties (Ait-Haddou et al. [4]).
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Fig. 1.22 - Involute and evolute of a curve in the Minkowski plane.

• General offset curves.
The notion of general offset curves is introduced as the envelope of a homothetic copy

of U (see Fig. 1.17), translated, with no change in size, along a given curve. Such an
U -offset curve of a C2, regular parametric curve F (t) at a signed distance d is the curve
defined by the parametric equation

Fd(t) = F (t) + dnU0(t).

Note that if the indicatrix of the geometry is the Euclidean unit circle, then the isoperimetrix
is also the Euclidean unit circle and we recover the expression of the standard offset curve.
Note also that the general offset curve can be viewed as the boundary of the Minkowski
sum of the curve and the homothetic copy of the indicatrix, in the case where the gen-
eral offset curve possesses no singularities (Kaul and Farouki [36], Lee et al. [39]). In
a seismological context, a given curve can be viewed as an exploding interface/reflector
separating two anisotropic-homogeneous media. The indicatrix U corresponds to an ele-
mentary wavefront generated at point sources along the reflector, while the general offset
curve illustrates the total wavefront consisting of the envelope stemming from all point
sources exploding along the interface (Arnold [6]). The concept of an exploding reflector is
commonly used in modeling seismic data. The standard Euclidean approach corresponds
to isotropic homogeneous media, while the Minkowski-plane approach conveniently and
rigorously extends the exploding-reflector method to include anisotropic-homogeneous
media (see Chapter 5).

• Minkowski IH curves.
We assume now that the indicatrix U is a rational curve. Then, given a rational

curve F (t), we show that the U-offset parametrization Fd(t) is rational if and only if the
function ||F ′(t)||U0 is rational. Such a curve is said to be a Minkowski Isoperimetric-
hodograph (Minkowski IH) curve, or a U -IH curve for simplicity.

We then consider the geometric characterization of U -IH curve. Fiorot and Gensane
[30] and, independently, Pottmann [42], provided a geometric characterization of the sets
of rational Pythagorean-hodograph curves, namely, the involutes of rational curves with
rational arclength. We provide a generalization of this characterization by means of
Minkowski IH curves (Ait-Haddou et al. [3, 4]). Let D be the set of rational parametric
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curves with support in a line and C be the set of rational parametric curves with support
in the indicatrix.

The set of rational curves with rational U-offsets (i.e., Minkowski IH curves) is equal
to the union of the set of the U-involutes of rational curves with rational U-arclength
with the set D and C.

• Dual representation of Minkowski IH curves.
Rational Pythagorean-hodograph curves, manipulated by their dual-Bézier control

structure, have been elegantly incorporated into freeform design (Pottmann [42, 43]).
We are now concerned by generalizing this feature to Minkowski IH curves where the
indicatrix of the geometry is a rational curve.

We show (Ait-Haddou et al. [3, 4]) that the Bézier control structure of an IH curve
in the Minkowski plane may be obtained by merely substituting the indicatrix of the
Minkowski plane for the Euclidean unit circle in the Pottmann construction. Surprisingly,
the isoperimetrix does not manifest itself in the final algorithmic construction despite the
fact that it is indispensable in deriving this result. This fact is not obvious in the case of
the Euclidean plane since the isoperimetrix of the Euclidean unit circle is the circle itself.

The dual control structure of a rational Minkowski IH curve is characterized by the
property that each of its Bézier and Farin lines is parallel to its corresponding line
in the control structure of the dual representation of a segment of the indicatrix (see
Fig. 1.23).

Fig. 1.23 - Left : dual Bézier representation of an U-IH curve. Right : dual Bézier
construction of the U-offset curve.

• Concluding remarks.
The introduction of Minkowski geometry allows to establish a comprehensive mathe-

matical framework for the study of Pythagorean-hodograph curves to the case of general
offset curves. The geometric and dual Bézier characterizations of the set of rational curves
with rational general offsets (Minkowski IH curves) empower the constructive process of
freeform curve design involving offsetting techniques. Further research is aimed at the
inverse-theory applications for determining the shape and position of a deep, seismic
reflector beneath an anisotropic-homogeneous medium.
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1.5 Future works

The works and results presented in Sections 1.2, 1.3 & 1.4 where only concerned with
planar Pythagorean-hodograph curves in the Euclidean and Minkowski plane.

We took advantage of these planar offsetting techniques in Chapter 5 for industrial
applications in a seismological context. In this context, the standard Euclidean approach
corresponds to isotropic homogeneous media, while the Minkowski-plane approach con-
veniently and rigorously extends the exploding-reflector method to include anisotropic-
homogeneous media. The indicatrix U corresponds to an elementary wavefront generated
at point sources along the reflector, while the general offset curve illustrates the total
wavefront consisting of the envelope stemming from all point sources exploding along the
interface.

Pythagorean-hodograph (PH) space curves have been introduced by Farouki and
Sakkalis [24]. Pythagorean-hodograph (PH) space curves are polynomial parametric
curves r(t) = (x(t), y(t), z(t)) with the distinguishing property that their derivatives or
hodographs r′(t) = (x′(t), y′(t), z′(t)) satisfy the Pythagorean condition

x′2(t) + y′2(t) + z′2(t) = σ2(t), (1.9)

where σ(t) is a polynomial. This feature ensures that PH space curves admit exact
measurement of arc length, a fact that is especially advantageous in the formulation of
real-time interpolators to drive multi-axis CNC machines along curved paths at fixed or
variable feedrates [26, 27, 46].

Spatial PH curves were first investigated in [24], using the form

x′(t) = u2(t)− v2(t)− w2(t),
y′(t) = 2u(t)v(t), (1.10)
z′(t) = 2u(t)w(t),
σ(t) = u2(t) + v2(t) + w2(t),

in terms of three polynomials u(t), v(t), w(t) as a sufficient condition for the satisfaction
of (1.9). However, the form (1.10) has a fundamental defect - it is not invariant under
arbitrary 3-dimensional rotations. A sufficient-and-necessary condition for satisfaction of
(1.9) was identified by Dietz et al. [17] - namely, the hodograph components must be
expressible in terms of four polynomials u(t), v(t), p(t), q(t) in the form

x(t) = u2(t) + v2(t)− p2(t)− q2(t),
y(t) = 2[u(t)q(t) + v(t)p(t)], (1.11)
z(t) = 2[v(t)q(t) − u(t)p(t)],
σ(t) = u2(t) + v2(t) + p2(t) + q2(t).

Subsequently, Choi et al. [13] gave an elegant characterization of this form in terms
of quaternions. This interpretation is invaluable in demonstrating [28] the rotation-
invariance of (1.11).

More recently, a new special family of spatial PH curves, namely the RRMF curves,
has been introduced by Choi and Han [14, 34] for motion control purposes. The first non

29



trivial examples of such curves have then been exhibited by Farouki et al. [29]. In motion
planning, computer animation, geometric design, and robotics, it is often necessary to
specify the variation of an orthonormal frame (f1, f2, f3) along a given space curve r(t), that
describes the orientation of a rigid body along the given path. The so so-called adapted
frames on space curves, in which the unit curve tangent t is chosen as the frame vector
f1 are commonly invoked in such contexts. Klok [37] identified the rotation-minimizing
frames (RMFs) as the best suited to swept surface constructions.

The variation of any adapted frame (f1, f2, f3) with f1 = t along a curve r(t) is specified
in terms of its vector angular velocity ω(t), through the differential relations

f ′1 = ω × f1 , f ′2 = ω × f2 , f ′3 = ω × f3 .

The characteristic property of a rotation–minimizing adapted frame on r(t) is that its
angular velocity has no component along f1 = t. This implies that f2, f3 have no instan-
taneous rotation about f1 = t — they vary only because t is varying along r(t), and they
are compelled to remain orthogonal to it (and each other).

Polynomial and rational space curves do not ordinarily admit exact rational RMF
representation. Nevertheless, recently, greater interest in constructing polynomial curves
that possess exact rational rotation–minimizing frames (or RMMF curves) has emerged.
Such curves are necessarily PH curves since only the PH curves have rational unit tan-
gents.

Thus, a collaboration with Rida Farouki (UC Davis) is currently in progress concerning
spatial PH curves and RRMF curves. The fact that the Darboux frame is rotation–
minimizing along the lines of curvature of a smooth surface is invoked to construct rational
surface patches with given boundary curves as lines of curvature. The patch boundaries
are specified as quintic RRMF curves — i.e., spatial Pythagorean–hodograph (PH) curves
that possess rational rotation–minimizing frames.

Some other topics are also of interest. – Identification and characterization of family of
polynomial surfaces with PH curves as isoparametrics. – Geometric design of rational PH
cams for optimum performance in high–speed applications (in addition to direct geometric
constructions).
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Chapter 2

Computing Geodesics on
subdivision surfaces

Computation of shortest paths is a well known problem in Computational Geometry.
Geodesic curves play an important role in many areas of science, engineering and computer
graphics, such as robot motion planning, surface parameterization, terrain navigation,
geographical information systems, re-meshing, front propagation over surfaces... The
increasing development of discrete surface models as well as linear approximations of
smooth surfaces require the definition of geodesics, sometimes called discrete geodesics,
on surfaces represented by triangular meshes.

Considering smooth surfaces, analytical approaches using differential equations are
pretty complex. Maekawa [13], consider the problem of computing the shortest path
between two points and between a point and a curve on a free-form parametric surface
by solving a two point boundary value problem, thanks a relaxation method relying on
finite difference discretization. Hotz & Hagen [7], introduced a geometric method for the
construction of geodesics on any smooth surface. They construct locally the geodesic by
orthogonal projection relative to the tangent plane. This approach is computationally less
intensive and has been used for visualizing geodesic nets. New approaches emerged for
efficient computation of geodesic distances on triangular meshes. Polthier and Schmies
[20] introduced the notion of discrete geodesic curvature of curves and defined straightest
geodesics on polyhedral surfaces. This approach gives information about how a geodesic
should pass through a vertex but does not take into account the polyhedral surface normals
while computing the straightest geodesics. This allows a unique solution of the initial
value problem for geodesics. Ravi Kumar et al. [21], consider the computation of discrete
geodesics on the tessellated surface of a NURBS by taking into account the tessellation
normal.

Some other different formulations for this problem are the following. The single source
shortest path problem, in which we wish to find a shortest path between a source point
and any other point on the surface. And the more complex formulation is to find a shortest
path between any pair of points in the surface. Most of the algorithms use front propa-
gation or some other kind of Dijkstra’s-like algorithm. Many authors, Kimmel et al. [10],
Kimmel & Sethian [11], Novotni & Klein [17], Zigelman et al. [25], approximate geodesic
distances on triangulated domains by considering wavefront propagation algorithms. The
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central idea is to advance a front to produce new distance values at the vertices of the
mesh. These informations allow then to get an approximation of the geodesic path. Fol-
lowing these ideas, Martinez et al. [14], compute a locally shortest geodesic joining two
points over a triangulated surface. Their method uses an iterative process to obtain
discrete geodesic approximation, both on convex and non-convex surfaces.

The Ph.D thesis of Valérie Pham-Trong [19], co-directed with N. Szafran, is related
to the computation of shortest and geodesic paths on any continuous surface. As already
mentioned, geodesic paths on smooth surfaces can be evaluated by solving differential
equations. Nevertheless, due to the use of linear elements, whole real objects are often
modeled by surfaces which are not even C1, and for many applications in computer
graphics, smooth surfaces are just a limit of a subdivision process. So that, computer
geometric design often operates with triangle elements. Thus, considering the computing
of geodesic paths, we are concerned with the need of a purely geometric algorithm.

So, we consider in Section 2.1 of this chapter a geometric method for the computation
of a geodesic (or shortest) path between two given points on any three-dimensional subdi-
vision surface or triangular mesh. Notice that this method also works for the computation
of geodesic curves originated from a point in a given direction. The implementation is
based on finding the shortest path on the successive control nets of the surface. The con-
vergence property of the control nets to the surface provides then the required shortest
path or geodesic path (Pham-Trong et al. [18, 19]), or an approximation of this geodesic
path according any desired accuracy. In a second part, in Section 2.3, we present an
algorithm for determining geodesic loops on surfaces. This work has been initiated for
a specific application to the geometric modeling of myocardium (Mourad et al. [15]).
The aim of this project, involving research groups from Grenoble (TIMC, LMC, CHU,
L3S) was to check a conjecture according to which myocardial fibres are geodesic curves
running on some surfaces (Streeter [22]). Finally, in Section 2.4, future works are outlined.

2.1 Geodesic path on a polyhedron

Characterization and properties of geodesic curves on smooth surfaces are considered
in Chapter 3. We assume in this section that all surfaces are polyhedron composed of
triangular faces, so that we are essentially concerned with geodesic curves running on
piecewise continuous planar surfaces. On a planar surface, a geodesic curve is a straight
line and is thus the shortest path between two any of its points. On a general surface,
a shortest path is always a geodesic curve whereas a geodesic curve is not necessarily a
shortest path (see Fig. 2.1 : the red curve is a geodesic path but not the shortest path
between the two vertices of the left face). A geodesic curve is defined as a locally shortest
path, which means that any local deformation of the curve between two close points of
the curve lengthen the path.
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Fig. 2.1 - Flattening of a cube and geodesic path.

Consider a simplicial polyhedron P (so that all faces are triangles) and a sequence
F1,F2, ...,Fn of adjacent triangular faces of P such that Fi and Fi+1 (i = 1, ..., n − 1)
share a common non trivial edge Ai with Ai �= Ai+1 for all i. The flattening of this
sequence consists in performing successive rotations around the common edges (without
overlap between two adjacent faces) in order that these triangular faces lie in a same
plane. We thus obtain a new sequence F1, F2, ..., Fn of adjacent faces lying in a plane Π
with edges Ai. Each face Fi is isometric to the corresponding face Fi. Notice that the
flattening of a sequence can produce some global overlap.

A linear path on a simplicial polyhedron is a continuous curve running on the poly-
hedron, linear on each triangular face. A linear path is thus associated with a sequence
of adjacent faces F1,F2, ...,Fn and is characterized by a sequence of points

[
X0, a1, a2,

..., an−1, X1

]
, with ai ∈ Ai and where X0 ∈ F1, X1 ∈ Fn are the starting and arrival

points. The flattening of the sequence (Fi) transform the path Γ =
[
X0, a1, a2, ..., an−1,

X1

]
into the path γ =

[
x0, α1, α2, ..., αn−1, x1

]
included in the planar sequence of faces

F1, F2, ..., Fn such that the two paths Γ and γ have the same length.
Polthier and Schmies [20] introduced straightest geodesics inspired by the characteri-

zation of smooth geodesics. They defined discrete geodesic curvature as a generalization
of the well-known concept of geodesic curvature and straightest geodesics as polygonal
curves over the polyhedron P with zero geodesic curvature everywhere. If we call θ the
sum of incident angles at a vertex P of a curve over P and θr and θl the respective sum
of right and left angles, a straightest geodesic verify in particular θr = θl at every point.
A vertex P is said to be parabolic or euclidean if θ = 2π, elliptic if θ < 2π and hyperbolic
if θ > 2π. The following results (Polthier & Schmies [20]) explores the differences between
straightest and shortest geodesics (a shortest geodesic being a local shortest geodesic curve
as mentioned above).

(1) A straightest geodesic through an elliptic vertex is not locally shortest.
(2) A geodesic containing no surface vertex is both shortest and straightest.
(3) There exist a family of shortest geodesics through a hyperbolic vertex. Exactly

one of them is a straightest geodesic.

However, since our main purpose is to compute shortest paths, we shall consider local
shortest geodesics (i.e., geodesic curves) instead of straightest geodesics. The following
remarks will be useful for our strategy.

(a) A geodesic curve can not go through an elliptic vertex.
(b) If γ lie on a straight line going through the sequence of faces (Fi), then Γ is a

geodesic curve on the polyhedron P.
(c) The converse is not true in general. A geodesic curve Γ on the polyhedron P can be

associated with a path γ admitting some deviation in the flattened sequence of adjacent
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faces (Fi). Such deviations can only occur at vertices associated with hyperbolic vertices
(such vertices will be called critical–vertices).

θ1 θ2

Vue 3D Les deux mises à plat

3D view Flattened view.

θ2
θ1

Vue 3D Les deux mises à plat

3D view Flattened view.
Fig. 2.2 - Path going through an elliptic and an hyperbolic vertex.

• Strategy.
The determination of a geodesic path joining two given points on a simplicial poly-

hedron consists essentially in determining the appropriate sequence of adjacent faces on
which lies this path. Then, the flattening of this sequence permits to explicit this geodesic
curve. So, given two points X0 and X1 of the polyhedron P lying on two faces F and F ′,
the algorithm is the following.

1. Choose an initial sequence of adjacent faces F = F1, F2, ..., Fn = F ′ joining faces
F and F ′.

2. Determine the shortest path γ between x0 et x1 inside the flattened sequence
F1, ..., Fn. This path γ can possess some deviations at some vertices (called pivot–
vertices).

3. For each pivot–vertex, update the sequence of adjacent faces by minimizing the
deviation. At the end of this process, the (eventual) remaining pivot–vertices are
critical–vertices and the final updated curve γ provides the shortest path Γ.

• Choice of the initial sequence.
If the simplicial polyhedron is an approximation of a parameterized surface, the initial

sequence is evaluated in the parameter domain. In that case, since each face of the
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polyhedron is associated with a triangular face in the parameter domain, we consider the
sequence of faces of the parameter domain meeting the segment [x̂0, x̂1], where x̂0 and x̂1

are the parameter points associated with the two points X0 and X1 of the polyhedron P.
For a more general simplicial polyhedron or subdivision surface, the initial sequence

can be obtained by an appropriate projection of the segment [X0,X1] on the surface. This
point has not been treated since we only consider Bézier and NURBS surfaces.

• Shortest path in a flattened sequence.
The problem of finding a shortest path between two points x0 and x1 inside a flattened

sequence F1, ..., Fn has been studied by many authors : Chazelle [1], Lee & Preparata [12].
Such a shortest path exists and is unique. It consists in a polygonal line [x0, y1, ..., yp, x1],
whose vertices yj are a subset of the vertices involved in the flattened sequence. As already
mentioned, these vertices are the pivot–vertices.

Fig. 2.3 - Shortest path in a flattened sequence.

A linear algorithm (with respect to the number of faces) has been developed inde-
pendently by Chazelle [1] and Lee & Preparata [12] for computing the shortest path in a
flattened sequence.

• Update of the sequence of adjacent faces.
The update is performed with respect to pivot–vertices. Let y be a pivot–vertex of the

flattened sequence, Y the associated vertex of the polyhedron and Fk, Fk+1, ..., Fk+r the
faces of the flattened sequence which contain the pivot–vertex y. Thus, in this flattened
sequence, the shortest path goes through the face Fk, the vertex y and the face Fk+r (see
Fig. 2.4).

Denote then by Fk, Fk+1, ..., Fk+r, Fk+r+1, ..., Fk+s, (Fk+s+1 = Fk) the ordered set
of all faces of the polyhedron containing the vertex Y . The update of the flattened
sequence with respect to the vertex y consists in considering the complementary faces,
i.e., the faces Fk,Fk+s,Fk+s−1, ...,Fk+r.

Fig. 2.4 - Update with respect to a critical–vertex.
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Then, two situations can occur.

 Generally, the pivot–vertex disappears in the new flattened sequence, which means that
the shortest path in the new flattened sequence does not go anymore through vertex y .

 However, the vertex y can remain as a pivot–vertex in the new flattened sequence. Such
a pivot–vertex has a deviation angle strictly greater than π whatever the flattening, and is
potentially a critical–vertex. The notion of critical–vertex is global. Indeed, the update of
the flattened sequence with respect to other pivot–vertices can lead to the disappearance
of some “potentially” critical–vertex.

Thus, critical–vertices are the residual pivot–vertices at the end of the process.

Fig. 2.5 - Update of the sequences of adjacent
faces on the polyhedron.

Fig. 2.5 exhibits the different updates of the sequence of adjacent faces for the com-
putation of the shortest path (or a geodesic path) between two opposite corners of the
surface. It can be seen that the geodesic path on this polyhedron contains two critical–
vertices at hyperbolic vertices.
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• ALGORITHM :

F ← initial list of triangles joining X0 and X1

C ← shortest path in F
L ← list of pivot–vertices of C in F
L′ ← empty
while L �= L′ do

L′ ← L
update F around each vertex of L
C ← shortest path in F
L ← list of pivot–vertices of C

end–while
G ← C
(L list of critical–vertices)

2.2 Geodesic paths on a subdivision surface

The previous algorithm will now allow us to compute geodesic paths on any subdivi-
sion surface but appears to be more efficient on subdivision surfaces associated with a
parametrization such as Bézier or NURBS surfaces (Pham-Trong et al. [18, 19]). Such a
surface S is associated with an initial control polyhedron P0, a parameter domain D and
a subdivision process. The sequence of subdivided polyhedron Pk converges towards the
surface.

The method consists at each step in using the geodesic curve Γk evaluated on the
polyhedron Pk to initialize, by projection, the computation of the geodesic curve Γk+1

on the subdivided polyhedron Pk+1. The projection of Γk is performed in the parameter
domain D.

Precisely, the main ideas for our strategy are the following.


 Each triangular face of a polyhedron Pk is associated with a unique triangular face
in the parameter domain.


 Each geodesic curve Γk on the polyhedron Pk is associated with a unique curve Γ̂k

in the domain parameter.


 Each shortest (or geodesic) path Γk on a polyhedron Pk is computed from an initial
path Γk,0 on Pk.

Thus, the algorithm can be summarized as follows.


 Consider two points x̂0 and x̂1 in the parameter domain D. These two points are
uniquely associated with two points Xk

0 and Xk
1 on each subdivided polyhedron Pk,

defining two points X0 and X1 on the limit surface S.


 Γ̂0,0 is the linear segment [x̂0, x̂1] from which we deduce an initial sequence of faces
for the evaluation of the shortest path Γ0 between the two points X0

0 and X0
1 on

the initial polyhedron P0.
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 Γ̂k+1,0 is the projection of Γ̂k on the associated faces of the polyhedron Pk+1 in the
parameter domain D. The path Γ̂k+1,0 provides an initial sequence of faces for the
evaluation of the shortest path Γk+1 between the two points Xk+1

0 and Xk+1
1 on the

polyhedron Pk+1.

Fig. 2.6 - Computation of a geodesic
path by projection on a subdivision sur-
face.
Above, are the initial path Γk,0 (left) and
the geodesic path Γk (right) on the poly-
hedron Pk.
Opposite, is the geodesic path Γk+1 on
the polyhedron Pk+1.

Notice that the projected path Γ̂k+1,0 is generally close from the associated geodesic
path Γ̂k+1.
Fig. 2.7 exhibits an example with four computed geodesic curves on a Bézier surface.

Fig. 2.7 - Four geodesic curves on a subdivision surface.
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2.3 Myocardium and geodesic loops

In this section, we present an algorithm for determining geodesic loops on surfaces. This
work has been initiated for a specific application to the geometric modeling of myocardium
(Mourad et al. [15]). The aim of this project, involving research groups from Grenoble
(TIMC, LMC, CHU, L3S) and directed by A. Raoult and D. Caillerie was to check a
conjecture according to which myocardial fibres are geodesic curves running on some
surfaces (Streeter [22]). This conjecture was first stated and experimentally checked by
Streeter (1979) for the equatorial part of the left free wall. Quantitative polarized light
microscopy provides measurements on fibre orientation that could lead to evidence that
the conjecture remains true for the whole of the left ventricle (Jouk et al. [8, 9]).

• Left ventricle.

Fig. 2.8 - Simplified geometric models for left and right ventricle.

This conjecture has been studied in the PhD thesis of A. Mourad [16] for the left
ventricle which can be modeled as a “stack” of included revolution surfaces. On such rev-
olution surfaces, the computation of geodesic curves is performed by using the invariance
of the Clairaut constant along geodesics [3]. This approach provided geodesic loops on
this 3D simple model compatible with the experimental anatomic data [9, 15, 16].

Fig. 2.9 - Anatomic data and reconstruction of myocardial fibres paths in order to
verify Streeter hypothesis on the left ventricle – Mourad et al. [15].
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• Geodesic loops on toroidal surfaces.
The right ventricle possesses a more intricate geometry and is modeled by a toroidal

surface (see Fig. 2.8 – Right). There is no easy way for computing geodesics or geodesic
loops on such a surface. Our contribution was essentially to develop an algorithm for com-
puting geodesic loops on such toroidal surfaces (assumed to be modeled by a subdivision
process).

For this purpose, we consider the previous algorithm, developed in Sections 2.2 and
2.1 and any initial closed curve on the surface by taking X0 = X1. We associate this
initial loop with the periodic sequence of adjacent faces (see Fig. 2.10)

...,F1, F2, ...,Fn−1 ,Fn = F1, ....

where X0 = X1 ∈ F1 = Fn.

Fig. 2.10 - Flattened periodic sequence for a geodesic loop.

In fact, as point X0 = X1 will generally disappear in the shortening process, this point
is chosen as a vertex of the subdivided surface. Formally we should not consider any more
starting and ending points, even if such an extremity vertex is useful in practice.


 If the extremity vertex is a pivot–vertex of the shortest path in the flattened periodic
sequence, the update is performed around all pivot–vertices.

 If not, any other pivot–vertex is chosen as the extremity vertex and the update is
performed as above.

 If there are no more pivot–vertices in the shortest path, it is then possible to shorten the
path inside the same flattened sequence, providing so a new vertex as extremity (Szafran
et al. [23]).
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• Results.

Fig. 2.11 - Geodesic loops on a model of the right ventricle. Initial and geodesic loop
are drawn on the same view.

Fig. 2.12 - Geodesic loop on a toroidal surface : initialization (Left) and final result
(Right).

• Concluding remarks.
For smooth subdivision surfaces the algorithm produces, as expected, a smooth geodesic

loop. Indeed, the process is essentially to tighten an initial closed curve (a loop) running
on the surface.

The following problem arises in the verification of the hypothesis of Streeter for the
right ventricle. Given a point P and a direction T on a toroidal surface, does it exist a
geodesic loop running on this surface through point P in the direction T ?
Nevertheless, we did not obtain a satisfactory result relating to this problem.

2.4 Conlusion and future works

The computation of a geodesic curve joining two points on any subdivision surface (i.e.,
without a parameterization) is quite similar. For this purpose, the projection step must be
defined. That is, the projection of the geodesic Γk (evaluated on the polyhedron Pk) on
the subdivided polyhedron Pk+1 (for the initialization step). Each face of the subdivided
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polyhedron Pk+1 is related to few faces of the polyhedron Pk by a local scheme, so that
a local projection can be defined.

Then, following the idea of Ravi Kumar et al. [21], we are now considering, with N.
Szafran, an other approach for computing geodesic curves on triangular surfaces by taking
into account the normal at each vertex. Our purpose is to consider local properties of the
surface for the approximation of the geodesics. Our first experiments, shows that exact
geodesic curves can be evaluated on non regular triangular approximations of a smooth
surface (See Fig. 2.13).

Fig. 2.13 - Some examples computed by N. Szafran. Geodesic paths of the first row are
evaluated with the classical flattening method whereas geodesic paths of the second row
are computed by taking into account the normal at each vertex. In these examples, we

consider geodesic paths starting from a point, in a given direction. It can be noticed, that
even with a symmetric regular triangulation of the sphere such a geodesic is not closed

by using the classical method.

The results concerning geodesic loops have just been published in the proceeding of a
national conference [23]. The question of the regularity of the evaluated geodesic loops on
a smooth surface should be studied precisely... Furthermore, the existence of a geodesic
loop running on a surface through a given point and in a assigned direction appears
intricate. It involves both the local differential properties (for the geodesic definition)
and the global behavior of the surface (for the existence of a regular loop).
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Chapter 3

Surface reconstruction via
geodesic interpolation and
micro-sensors

We are concerned here with the reconstruction of physical surfaces from curves running on
the surface. The Coons methods [4, 3, 16, 7] allow one to construct interpolating surfaces
from some given curves on the surface by “filling” processes. See also [21, 25, 26] for con-
struction processes of smooth surfaces from given boundary curve data. The shape of the
surface is thus essentially modeled by these initial spatial curves. Considering a physical
surface, we are first concerned with the question of acquiring such curves from the surface.
Then, in order to develop a reliable construction process, these curves must represent in-
trinsic features of the surface. That can be achieved by employing a ribbon of embedded
micro-sensors providing geodesic curves running on the surface (see below). The con-
struction of surfaces that incorporate one or two given space curves as geodesics has been
considered by several authors [1, 20, 24, 33, 34], in the context of applications such as
distortion–free mapping of textures onto free–form surfaces; specifying fabric shapes for
garment and shoe design; and in the layout of fibers in composite material structures.
However, the problem of constructing rectangular or triangular surface patches, when all
four prescribed boundary curves are required to be geodesics of the resulting surface, does
not appear to have been previously studied.

The activity presented in this chapter was initiated by a collaboration with D. David
from the team of Micro-systèmes et Objets Communicants of the laboratory CEA/LETI
(CEA is a French government-funded technological research organization) in Grenoble.
We are here concerned with the reverse engineering problem of re–constructing 2D and
3D shapes from tangential data. These tangential data are provided by embedded sensors
(micro–accelerometers and micro–magnetometers) along a curve represented by a ribbon.
This problem is not a dual interpolation or approximation problem (Hoschek [18]) as
the tangential data are not localized in space. In her PhD thesis [29] (co-directed with
B. Lacolle), Nathalie Sprynski developed methods for the reconstruction of planar and
spatial curves, by using appropriate geometric tools. These results have been validated
by a real-time demonstrator : the Morphosense ribbon–like device (see Fig. 3.1 & 3.4)
equipped with 32 micro–sensors (Sprynski & CEA, [27]).
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Different strategies [29] have then been developed for the problem of reconstruct-
ing a surface from spatial curves running on it, obtained with the Morphosense ribbon.
Precisely, by placing the Morphosense on a physical surface at regular intervals along
different directions, the surface is divided into a system of rectangular and triangular
patches, which can then be filled by Coons processes [3, 4]. However, in practice some
difficulties appear due to numerical imprecisions of the reconstructed spatial curves. The
network of reconstructed 3D curves does not always cross as expected, so that corrections
are necessary. In addition, since the distances between sensors are physically imposed
on the ribbon, another major difficulty is to reconstruct the network of spatial curves
fulfilling the length constraints. Methods for solving these constraints are proposed in the
PhD thesis of N. Sprynski [29].

Then, remarking that the Morphosense ribbon assumes the shape of a geodesic when
laid on a smooth physical surface (see [31] for a proof), we developed specific methods
for the re–construction of surfaces interpolating boundary geodesic curves (Sprynski et
al. [31] – Farouki et al. [13, 14, 15]). In particular, considering the motivation of con-
structing computer representations of free–form surfaces, we first considered the problem
of constructing a C2 surface patch R(u, v) interpolating two given spatial curves in such
a way that these two boundary curves correspond to geodesics of the surface (Sprynski
et al. [31]).

Then, given two pairs of regular space curves r1(u), r3(u) and r2(v), r4(v) that define
a curvilinear rectangle, we considered the problem of constructing a C2 surface patch
R(u, v) for which these four boundary curves correspond to geodesics of the surface
(Farouki et al. [13]). The possibility of constructing such a surface patch has been
shown to depend on the given boundary curves satisfying two types of consistency con-
straints. The first constraint is global in nature, and is concerned with compatibility of
the variation of the principal normals along the four curves with the normal to an oriented
surface. The second constraint is a local differential condition, relating the curvatures and
torsions of the curves meeting at each of the four patch corners to the angle between those
curves. For curves satisfying these constraints, the surface patch is constructed using a
bicubically–blended Coons interpolation process. We then considered the similar problem
of constructing a C2 triangular surface patch R(u1, u2, u3), in terms of barycentric coor-
dinates, bounded by three curves in such a way that they are geodesics of the constructed
surface (Farouki et al. [15]).

Finally, the motivation to constructing surfaces represented as polynomial or rational
Bézier surface patches, compatible with modern CAD systems, leads us to develop a
rational geodesic–interpolating method for four boundary curves (Farouki et al. [14]),
by modifying the bicubically–blended Coons interpolation process. However, a difficulty
arises when considering the whole reconstruction method of a physical surface by using
the ribbon, due to numerical imprecisions. The surface reconstruction methodology is
as follows. First, a network of geodesics on the physical surface is constructed from
the Morphosense measurements by the method described in (Sprynski [29]). Due to
the numerical imprecisions, this step provides Bézier curves that do not exactly satisfy
the geodesic crossing constraints, but it does allow us to determine the surface tangent
plane at each corner, and the osculating planes and curvatures of the boundaries at each
corner. Then, we determine a set of four Bézier boundary curves satisfying the conditions
required for surface geodesics, as described in Section 5 of (Farouki et al. [14]). Finally,
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the construction of a tensor–product Bézier patch interpolating these curves as boundary
geodesics is performed [14].

Notice that all these re–construction methods generate a family of interpolating sur-
faces depending on free parameters. So we benefit from these free parameters to perform
some smoothing of the surface. Our experiments shows that the thin–plate spline energy
usually provides good results.

The remainder of this chapter is organized as follows. The Morphosense ribbon and
the micro–sensors are presented in Section 3.1. The reconstruction process for planar and
space curves, together with some insight about the strategy for surface reconstruction,
are outlined in Section 3.2. We discuss the geodesic acquisition property of the ribbon
in Section 3.3. In Section 3.4, the construction of a surface interpolating two curves as
geodesics on the surface is discussed. In Section 3.5 are identified the constraints on the
boundary curves, whose satisfaction constitutes a sufficient–and–necessary condition for
the existence of analytic surfaces that interpolate those curves as geodesics. The con-
struction of surface patches interpolating a curvilinear rectangle (or triangle) as geodesics
(knowing a priori that these curves satisfy the above constraints) is presented in Sec-
tion 3.6. The Section 3.7 is devoted to the problem of constructing polynomial or rational
tensor–product Bézier patches interpolating four polynomial or rational given curves as
geodesics. Finally, in Section 3.8 future works are outlined.

3.1 The Morphosense ribbon

The laboratory CEA/LETI has developed micro–sensors (micro–accelerometers or micro–
magnetometers) able to give some information about their own orientation. The objective
of CEA/LETI is to introduce new kinds of instrumented devices such as plastic or textile
ribbons or surfaces, equipped with arrays of sensors. The alliance between instrumented
materials and mathematical algorithms will allow materials to access some knowledge
about their own shape, introducing what we could call proprioceptive materials (Sprynski
[29]).

Micro–accelerometers are able to provide the angle between the sensor and the vertical,
whereas micro–magnetometers are able to provide angular information with the earth
magnetic field. The combination of these sensors in a biaxial or a triaxial way, allows to
get the angular orientation of a solid body. The laboratory CEA/LETI developed two
different implementations of such devices on ribbons.

The first one uses only 1D micro–accelerometers (2g MEMS accelerometers by Analog
Device, Tronic’s) which are mounted on a flexible PCB ribbon. The distance between the
sensors is nearly 25 mm. In order to keep robustness and flexibility at a good level, the
sensors are read using the I2C serial bus, which allows limiting the numbers of connections.
The serial bus is connected to a micro–controller which in turn sends the data to the host
computer. Using only 1D micro–accelerometers restricts the variability of recognized
shapes inside a vertical plane.

A second generation ribbon has been developed which overcomes all limitations of
the first system. The ribbon is now equipped with a set of 3D micro–accelerometers,
alternating with a set of 2D micro–magnetometers (AMR type sensors from Honeywell or
similar). Such arrangement of the sensors allows gaining complete tangential information

51



(not exactly at each sensor location, but for a set of two adjacent sensors). Fig. 3.1 shows
sensors on the ribbon.

Fig. 3.1 - From [29] - The Morphosense ribbon alone or laying on a physical surface.

Size and cost reductions of microelectronics and micro–sensors make today possible the
integration of such electronic functions in numerous manufacturing areas. Applications
of such materials are countless in medical domain (e.g. determining shape and curvature
of the spinal column), in aerodynamic domain (acquiring the shape and deformation of a
wing)...

3.2 Curve reconstruction

We present a method for reconstructing curves relying on tangential data which are pro-
vided by embedded sensors (Sprynski et al. [28]). The reconstruction process is based
on the knowledge of the distribution of the sensors along the curve, represented by a
ribbon, and on the associated tangential orientation measurements without any informa-
tion about their positioning in space, so that this problem is not an envelope problem
(see Fig. 3.2). We present the methods for planar and spatial curves and discuss some
physical interpretation. The results have been validated by the real-time demonstrator
Morphosense (Sprynski & CEA, [27]) (see Fig. 3.4).

(1) Hermite interpolation (2) Dual interpolation
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(3a) Tangent directions (3b) Prescribed lengths between contacts
(3) Sensors interpolation

Fig. 3.2 - Reconstruction from sensors data.

As shown in Fig. 3.2, the reconstruction from sensors data differs from the Hermite
and dual interpolation. The dual interpolation (involved in the envelope theory) assumes
that some tangent lines to a planar curve are given, the contact point being unknown. In
our context, the embedded sensors only provide the tangent directions. Furthermore, the
distances between two consecutive contact points must satisfy the prescribed distances
between sensors on the ribbon.

• Planar curves.
Considering the planar curve described by arc-length parameterization C(s) = (x(s),y(s)),

its derivative can be written as a function of the angle α(s), i.e., C ′(s) = (cos(α(s)), sin(α(s))
where α(s) is the angle between the tangent line to the curve and the horizontal axis. As
a consequence, the data from sensors are sampled values of the angle function α(s) for
prescribed arc-length values. Then, we can simply deduce the resolution method from
this model (Sprynski et al. [28]).

 First, we reconstruct the angle function α(s) by interpolation/approximation with re-
spect to the arc-length parameter (see Fig. 3.3 – right).

 Then, the integration of the two coordinates provides a reconstructed curve (see Fig. 3.3
– left).
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Fig. 3.3 - From [29] - Planar curve reconstruction. The initial and reconstructed curves
are both represented on the left figure.

We thus obtain a curve satisfying the length and tangency constraints. Moreover, it
is shown in (Sprynski [29]) that this scheme is invariant under rotation of the data and
that the curve solution converges towards the initial curve when the number of sensors
increases. As we consider arc-length parameterization, the choice of natural cubic spline
for the reconstruction of the angle function α(s) leads to minimize the variations of the
curvature, which is satisfactory, considering the physical behavior of the ribbon.

Fig. 3.4 - From [29] - The real-time demonstrator “Morphosense”.
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Fig. 3.5 - From [29] - Planar curve reconstruction : another example.
Left are shown the original (blue) and reconstructed (green) curves. Right are data

values from sensors together with the reconstructed angle function.

• Spatial curves.
We now extend the previous method for the reconstruction of spatial curves. For a

spatial curve C(s) = (x(s), y(s), z(s)) parameterized by arc-length, the derivative is a unit
vector, and can thus be interpreted as a curve running on the unit sphere. In the same
way, the data from sensors can be viewed as points on the unit sphere. The methodology
is thus quite similar to the planar case (Sprynski et al. [28]).

 First, we interpolate the data by using cubic splines on the unit sphere (Nielson [19])
(see Fig. 3.6 – right).

 Then, we integrate the three coordinates to obtain the reconstructed curve (see Fig. 3.6
– left).

Cubic splines on the unit sphere are an extension of the classical B-splines in the
euclidian space. Notice that linear interpolation has to be replaced by spherical interpo-
lation. See (Nielson [19]) or (Sprynski [29]) for details.

Fig. 3.6 - From [29] - Spatial curve reconstruction.
Left : the original curve (thin) and the reconstructed one (bold). Right : the derivative

reconstructed on the sphere with data values from sensors.

It is shown in (Sprynski [29]) that this scheme is invariant under rotation of the
data, and that the method minimizes a combination of the curvature, the torsion and the
curvature variations of the curve.
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Fig. 3.7 - From [29] - Spatial curve reconstruction : another example.
The original curve is in blue, as well on the left as on the right. The red curve (left) is

reconstructed by using spherical coordinates whereas the green curve (right) is
reconstructed by using cubic splines on the sphere. Middle : the original and

reconstructed derivatives on the sphere with data values from sensors.

• Surface reconstruction...
By placing the Morphosense on a physical surface at regular intervals along different

directions, the surface is divided into a system of rectangular (or triangular) patches,
which can then be filled by Coons processes [3, 4]. In practice, difficulties appear due to
numerical imprecisions of the reconstructed spatial curves. The network of reconstructed
3D curves does not always cross as expected, so that corrections are necessary. In addition,
since the distances between sensors are physically imposed on the ribbon, another major
difficulty is to reconstruct the network of spatial curves fulfilling the length constraints.

As mentioned in the introduction of this chapter, different strategies and methods
for solving these constraints are proposed in the PhD thesis of N. Sprynski (2007) [29].
However, none of these methods take into account any specific geometric feature of these
curves, as surprisingly, we did not bring to light at that time the geodesic acquisition
property of the ribbon.

The remainder of this chapter focus on that point.

3.3 The Morphosense ribbon and geodesic curves

Remarking that the Morphosense ribbon assumes the shape of a geodesic when laid on
a smooth physical surface, we developed specific methods (Sprynski et al. [31], Farouki
et al. [13, 14, 15]) for the re–construction of surfaces interpolating boundary geodesic
curves.

For this purpose, we first review in this section some elementary backgrounds concern-
ing geodesic curves. Then, we discuss the geodesic acquisition property of the ribbon. The
surface reconstruction via geodesic interpolation of two curves is deferred to Section 3.4.

• Background on geometry.
In the following, all curves and surfaces are considered to be regular and “sufficiently smooth”

and all surfaces are considered to be oriented. The variable s is employed to denote arc length
along a space curve. Note that the arc–length parameterization r : s �→ r(s) of a curve satisfies
||r′(s)|| = 1 and r′(s) ⊥ r′′(s) for all s. However, a general parameterization r : t �→ r(t) is often
used in the surface construction problem. The parameters of functions may sometimes be omitted
when no confusion can arise.
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 With each point r(s) of a curve satisfying r′′(s) �= 0, we associate the Serret–Frenet frame
(e(s),n(s),b(s)) where e(s) = r′(s), n(s) = r′′(s)/||r′′(s)||, and b(s) = e(s) × n(s) are, respec-
tively, the unit tangent, principal normal, and binormal vectors of the curve at the point r(s).
The arc–length derivative of the Serret–Frenet frame is governed by the relations

d
ds

⎡
⎣ e(s)

n(s)
b(s)

⎤
⎦ =

⎡
⎣ 0 k(s) 0
−k(s) 0 τ(s)

0 −τ(s) 0

⎤
⎦

⎡
⎣ e(s)

n(s)
b(s)

⎤
⎦ , (3.1)

where the curvature k(s) and torsion τ(s) of the curve r(s) are defined by

k(s) = ||r′′(s)|| and τ(s) =
det(r′(s), r′′(s), r′′′(s))

||r′′(s)||2 . (3.2)

The osculating plane at each curve point r(s) is spanned by the two vectors e(s), n(s) and does
not depend on the curve parameterization. If k(s) = 0 for some s, then r′′(s) = 0 and the normal
vector n(s) and osculating plane are undefined at that point. This condition identifies an inflection
of the curve.

 On a regular oriented surface (u, v) �→ R(u, v), the unit normal is defined at each point in terms
of the partial derivatives Ru = ∂R/∂u, Rv = ∂R/∂v by

N(u, v) =
Ru(u, v)×Rv(u, v)
||Ru(u, v)×Rv(u, v) || . (3.3)


 Consider a curve r(s) = R(u(s), v(s)) on a surface R(u, v), where s denotes arc length for the
space curve r(s), but not necessarily for the plane curve defined by s �→ (u(s), v(s)). With each
point r(s), we associate the Darboux frame (e(s),h(s),N(s)) — where e(s) is the unit tangent
vector of the curve, N(s) is the unit normal vector of the surface at the point R(u(s), v(s)) = r(s),
and h(s) = N(s)× e(s). The arc–length derivative of the Darboux frame is given by the relations

d
ds

⎡
⎣ e(s)

h(s)
N(s)

⎤
⎦ =

⎡
⎣ 0 kg(s) kn(s)
−kg(s) 0 −τg(s)
−kn(s) τg(s) 0

⎤
⎦

⎡
⎣ e(s)

h(s)
N(s)

⎤
⎦ , (3.4)

which define the normal curvature kn(s), the geodesic curvature kg(s), and the geodesic torsion
τg(s) at each point of the curve r(s) as

kn = 〈 de
ds
,N 〉 , kg = 〈 de

ds
,h 〉 , τg = 〈 dN

ds
,h 〉 . (3.5)


 A regular curve r(t) on a surface R(u, v) is called a geodesic of the surface if its geodesic
curvature is identically zero. From (3.1) and (3.4), this is equivalent to requiring that

N(s) = ±n(s) , h(s) = ∓b(s) (3.6)

— i.e., the Frenet and Darboux frames agree modulo signs. Hence, we have the following useful
characterizations of geodesic curves.

A regular curve t �→ r(t) is a geodesic on the surface R(u, v) if and only if

(D1) the geodesic curvature of r(t) is identically zero;

(D2) the principal normal at each non–inflection point of r(t) is orthogonal to the surface
tangent plane at the point R(u(t), v(t)) = r(t);

(D3) the osculating plane at each non–inflection point of r(t) is orthogonal to the surface
tangent plane at the point R(u(t), v(t)) = r(t).
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• Geodesic acquisition property of the ribbon.
A developable surface D is isometric to a plane, so that any geodesic curve γ on D

can be associated with a straight line on a plane. Then, considering any regular surface
F , if we assume that the two surfaces D and F have a G1 contact along a common curve
γ and that this common curve γ is a geodesic curve on D, we can verify that γ is then
a geodesic curve on the surface F (Sprynski et al. [31]). In practice, to ensure this G1

contact we consider a ribbon Dε on the surface D, of width 2ε, centered on the curve γ.
Obviously, even with a thin ribbon, the contact is theoretical on hyperbolic points of the
surface F .

Fig. 3.8 - The “Morphosense”
ribbon follows geodesic curves on a
surface.

Precisely, let (e(s),h(s),N(s)) be the Darboux frame of the curve γ(s) on the devel-
opable surface Dε. When installing the ribbon on the surface F , this one is deformed in
an isometric way which only authorize local rotations around the vectors e(s) and h(s)
along the curve γ. The idea is that geodesics have to go straight, so that local rotations
around the vector N(s) are forbidden. Such a curve γ on the ribbon Dε (and on the
surface F ) is to be said to be N-rigid. More generally, we can verify that a regular curve
γ running on a surface F is N-rigid if and only if γ is a geodesic curve on F . Finally,
the following result leads to the wanted result (Sprynski et al. [31]).

Proposition 3. Consider two regular oriented surfaces F1 and F2 with a G1 contact
along a common curve γ. Then, if γ is a geodesic curve on one surface, it is a geodesic
curve on the other surface.

From these results we are now able to verify that the Morphosense ribbon actually
follows geodesic curves on the surface F . The ribbon is inextensible and not “flexible”.
It has the same behavior as a thin strip of paper, i.e., as a developable surface. Thus,
Proposition 3 provides a direct proof of the wanted result. Furthermore, results concerning
N-rigid curves connect the mechanical properties of the ribbon to its geometric behavior.

3.4 Geodesic interpolation of two curves

From the ribbon we get tangential informations from which we reconstruct geodesic curves
running on the surface. Thus, considering two regular 3D-curves f0(t) and f1(t), assumed
to be geodesics on a physical surface, our purpose is to construct a numerical surface F
which interpolates these two curves as geodesics on the surface. The algorithm involves
Hermite interpolation and is quite classical [20, 24, 33, 34]. However, the method proposed
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here assumes further numerical developments by providing free parameters for smoothing
and for the whole piecewise reconstruction process.

• The method.
The algorithm can be outlined in the following way (Sprynski et al. [31]) – (see also

Fig. 3.9).

 For each curve fi, the geodesic property determines (at each non-inflection point)

the osculating plane and then the tangent plane of the desired surface F.

 A unit starting vector T0(u) in the tangent plane at point F(u, 0) = f0(u) and a unit

ending vector T1(u) in the tangent plane at point F(u, 1) = f1(u) are defined as follows.

Ti(u) = cos[αi(u)]bi(u) + sin[αi(u)] ei(u), i = 0, 1.


 The surface F(u, v) is then defined by Hermite interpolation.

F(u, v) = [H0(v), H1(v), H2(v), H3(v)]

⎡
⎢⎢⎣

f0(u)
λ0(u)T0(u)
λ1(u)T1(u)

f1(u)

⎤
⎥⎥⎦

with the classical Hermite functions Hi.

T (u)1

T (u)0

Tangent plane
at F(u,1) = f  (u)1

Interpolating curve

Tangent plane
at F(u,0) = f  (u)0

Fig. 3.9 - Geodesic interpolation of two spatial curves f0(u) and f1(u).

The angle functions αi(u) and the magnitude functions λi(u) are free functions of
the parameter u. The following examples give some insight into the influence of these
functions.
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(λ0, λ1) ≡ (1, 1) (λ0, λ1) ≡ (1, 2) (λ0, λ1) ≡ (2, 1)
Fig. 3.10 - Influence of functions λi(u) with αi(u) ≡ 0 in each case.
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Fig. 3.11 - Influence of the angle functions αi(u) for the geodesic interpolation of two
geodesics on a cone.

• Smoothing.
Smoothing of the interpolating surface F can be performed by using the free param-

eter functions αi(u) and λi(u). Several criteria have been tested and of course the final
interpolating surface depends strongly on the initial geodesic curves. Three local criteria
and a global criterion are presented in (Sprynski et al. [31]).

Fig. 3.12 - Interpolating surfaces obtained according four different criteria, with the
same initial data.

Using the three local criteria, interpolating curves are optimized independently, which
can generate oscillations, especially here in Fig. 3.12 with criterion 3. The last global
criterion produces the best interpolating surface for these data.

Furthermore, notice that the initial geodesic curves considered in Fig. 3.12 have been
evaluated on a Bézier surface by employing the algorithm developed in (Pham-Trong [23])
– (see also Chapter 2). Thus, only numerical data are available concerning these geodesic
curves, and the surface reconstruction is carried out by means of a numerical evaluation of
the first and the second derivatives, which requires the smoothing of the binormal vectors.
See (Sprynski et al. [31] – Fig. 12 & Fig. 13) for a complete analysis.
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• Surface reconstruction with the ribbon.

Fig. 3.13 - Numerical model
on which five geodesic curves,
numbered from 1 to 5, have
been computed.

S12 S23 S34

S45 S12345

Fig. 3.14 - Reconstruction via geodesic interpolation. Each surface Sij is the
interpolating surface between geodesics i and j and S12345 is the whole reconstructed

surface.
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Fig. 3.15 - Reconstruction of a part of a physical surface from ribbon’s data
representing transversal geodesic curves.

3.5 Existence conditions for patches interpolating geodesic
boundary curves

As a generalization of Section 3.4, we now consider the problem of constructing C2 tri-
angular and rectangular surface patches for which the boundary curves correspond to
geodesics of the surface (Farouki et al. [13, 15]).

The possibility of constructing such surface patches is shown to depend on the given
boundary curves satisfying two types of consistency constraints. The first constraint is
global in nature, and is concerned with compatibility of the variation of the principal
normals along the curves with the normal to an oriented surface. The second constraint
is a local differential condition, relating the curvatures and torsions of the curves meeting
at each of the patch corners to the angle between those curves.

In this section, we are concerned with identifying constraints on the boundary curves,
whose satisfaction constitutes a sufficient–and–necessary condition for the existence of
analytic surfaces that interpolate those curves as geodesics. Then, for curves satisfying
these constraints, constructive methods are developed in Section 3.6.

• The geodesic crossing property.
We consider notations of Section 3.3 and refer to (Farouki et al. [13]) for details. For

subsequent use, we consider Proposition 4, which identifies a necessary condition for two
intersecting space curves to be geodesics on a regular surface (see [13]).

n1

p

Np

n2

r1

r2
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Fig. 3.16 - Crossing geodesic curves.

Proposition 4. Consider two geodesics r1(s) and r2(s) parameterized by arc length on the
surface R(u, v), with principal normal n1(s) and n2(s), crossing at the point p = r1(s1) =
r2(s2). Assuming that p is not an inflection on either of the curves r1(s) and r2(s), let
α = (r′1(s1), r′2(s2))Np be the oriented angle between them at p, in the sense of the surface
normal Np at that point. Also, let ki(s) and τi(s) be the curvature and torsion of ri(s) for
i = 1, 2. Then, for the values σ1, σ2 ∈ {−1,+1} such that Np = σ1 n1(s1) = σ2 n2(s2),
we have

[ τ1(s1) + τ2(s2) ] sinα = [σ2 k2(s2)− σ1 k1(s1) ] cosα . (3.7)

As a simple example, one can easily check that this relation is satisfied by great–circle
geodesics crossing on a sphere.

Corollary 1. If two space curves intersecting at a point p do not satisfy the relation
(3.7), no regular C2 oriented surface can interpolate these curves in such a manner that
they are geodesics of the surface.

• Consistency constraints on boundary curves.
We are now concerned with identifying constraints on the boundary curves, whose

satisfaction constitutes a sufficient–and–necessary condition for the existence of analytic
surfaces that interpolate those curves as geodesics. As these consistency constraints are
quite similar for a curvilinear rectangle and a curvilinear triangle, we shall establish these
existence–conditions only for a curvilinear rectangle.

Consider, as illustrated in Fig. 3.17, four regular space curves r1(u), r3(u) and r2(v),
r4(v) meeting at corners pij with a non–zero angle of intersection. At each corner pij ,
the tangent plane Πpij of the interpolating surface R(u, v) is thus well defined.

Fig. 3.17 - Surface patch boundary curves.


 Condition (C1): Osculating constraints at corners. –
From the geodesic definitions in Section 3.3 we see that, at each corner pij , the prin-

cipal normals of the boundary curves that meet there must agree modulo sign. These
conditions imply that, at each corner pij , the boundary curves meeting there have oscu-
lating planes orthogonal to the surface tangent plane Πij .


 Condition (C2): Global normal orientation constraint. –
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Let r(t) for t ∈ [ 0, 4 ] denote the “concatenation” of the four boundary curves r2(t),
r3(t), r4(t), r1(t), defined as follows:

r(t) = r2(t), t ∈ [ 0, 1 ] , r(t) = r3(t− 1), t ∈ [ 1, 2 ] ,
r(t) = r4(3− t), t ∈ [ 2, 3 ] , r(t) = r1(4− t), t ∈ [ 3, 4 ] .

(3.8)

The principal normal n(t) of the concatenated curve r(t) is simply the concatenation of
the principal normals ni(t) of the four boundary curves ri(t), according to the parame-
terization (3.8) used for the definition of r(t). The existence of a regular oriented surface
R(u, v) that interpolates the concatenated boundary r(t), with the four individual curves
ri(t) as geodesics, is contingent on the existence of a continuous unit vector function N(t)
such that N(t) = ±n(t) for all t ∈ R. Specifically, a regular oriented interpolating surface
(with unit normal vector N(t)) can exist only if the unit vector function n(t) exhibits an
even number of reversals on the interval t ∈ [ 0, 4 ).

n I+

n I −  n(4)

 n(3)

 n(2)

 n(1)

 n(0)

p11

p10

p01

p00

I

 n(4)

 n(3)

 n(2)

 n(1)

 n(0)

p11

p10

p01

p00

Fig. 3.18 - Left: patch boundaries that satisfy the global normal orientation constraint.
Right: a curvilinear rectangle that is inconsistent with the global normal orientation

constraint since there is only one reversal at corner p00.


 Condition (C3): Geodesic crossing constraints at corners. –
By Corollary (1), the boundary curves ri(t) must satisfy the geodesic crossing con-

straint (3.7) at each corner pij .

• Existence of an interpolating surface.

Proposition 5. (Farouki et al. [13, 15]). – Given a curvilinear rectangle or triangle,
satisfying the consistency constraints (C1-C3), there exists a regular oriented surface R
interpolating these curves in such a way that these curves are geodesics of the surface.
Conversely, if any of the conditions (C1-C3) is not satisfied, such an interpolating surface
can not be constructed.

For curvilinear rectangles or triangles satisfying these consistency constraints, con-
structive methods are developed in Section 3.6.

3.6 Geodesic interpolation of curvilinear rectangles and tri-
angles

We now consider the construction of surface patches with given geodesic boundary curves,
knowing a priori that these curves satisfy the above constraints described in Section 3.5.
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This stipulation can be met by, for example, selecting the boundary curves as known
geodesics on simple analytic surfaces. For general free–form boundary curves, their con-
struction so as to satisfy the system of constraints — or the modification of initial bound-
ary curves so as to satisfy them — is a substantive problem in its own right, which shall
be addressed separately in the next section 3.7.

For such curves satisfying the consistency constraints, a constructive method is pro-
posed using a modified bicubically–blended Coons interpolation process in case of curvi-
linear rectangle, or using a modified cubically–blended triangular Coons interpolation
scheme together with barycentric coordinates in case of a curvilinear triangular.

• Geodesic interpolation of a curvilinear rectangle.
Given four parametric space curves r1(u), r3(u) and r2(v), r4(v) specifying a curvi-

linear rectangle, the Coons interpolation procedure [3, 4, 7, 16] defines a surface patch
R(u, v) bounded by these four curves. In addition to the four boundary curves, the
bicubically–blended Coons patch requires transverse derivative data along them — i.e.,
the four vector functions Rv(u, 0), Rv(u, 1) and Ru(0, v), Ru(1, v) must also be specified.

The desired interpolating surface is defined as a combination of three surfaces (see
Fig. 3.19).

R(u, v) = R13(u, v) + R24(u, v) − R0(u, v) .

The Coons patch is modified in (Farouki et al. [13]) to admit these curves as geodesics
on the constructed surface. Precisely, fields of transverse derivatives are first specified in
a similar way as in Section 3.4.

 For each curve ri, the geodesic property determines (at each non-inflection point)

the osculating plane and then the tangent plane of the desired surface R.

 For each curve ri, a field Ti of unit vectors in the tangent plane is defined as in

Section 3.4.

However, the method involves some supplementary constraints for the consistency of
the bicubically–blended Coons process.

 – Interpolating property of vector fields at corners. The four vector fields must

interpolate the derivatives of the given curves at corners.

 – Geodesic crossing property and twist vectors. The definition of twist vectors must

be consistent with the specification of vector fields.
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p01

p11

p00

(1,v)R

(0,v)R

Osculating
plane

Tangent
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West−East
Interpolating curve

p10

p01

p11

p00

(1,v)R

(0,v)R

Osculating
plane

Tangent
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p10

p01

p11

p00

(u,1)R

(u,0)R

South−North
Interpolating curve

Osculating plane

Tangent plane

p10

p01

p11

p00

(u,1)R

(u,0)R

Osculating plane

Tangent plane

p10

p01

p11

p00 (u,0)R

(0,v)R

(1,v)R

(u,1)R

Fig. 3.19 - Coons interpolation of four geodesic boundary curves.

As the method is rather technical, we refer to (Farouki et al. [13]) for details. Precisely,
consider corner p00. In order to satisfy all the constraints and be able to define the twist
vector at that corner, we must find parameters α11, d11, α21, d21 such that the three
following relations are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−d1L α11
1

sinA00
= d21 − d2L α21

cosA00

sinA00
,

d11 + d1L α11
cosA00

sinA00
= d2L α21

1
sinA00

,

(cosA00)σ1L k1(0) + (sinA00) τ1(0)
= (cosA00)σ2L k2(0)− (sinA00) τ2(0) ,

where d1L, d2L are coefficients previously evaluated and where A00 is the crossing angle
of curves meeting at corner p00.

The third equation is the geodesic crossing property (3.7), and is satisfied through
the assumption that the boundary curves obey the consistency constraints. The two first
equations form a linear system. This linear system admits solutions and provides two
free parameters at each corner which are then used for the smoothing of the interpolating
surfaces.

Smoothing.
Some criteria have been proposed to find optimal parameters dij and αij in order to

get smooth interpolating surfaces.
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Criterion 1: minimization of the parametric speed variation along isoparametric curves.

min
dij

[ ∫ 1

0

∫ 1

0

(d
dv
||Rv(ū, v)||

)2
dv dū +

∫ 1

0

∫ 1

0

(d
du
||Ru(u, v̄)||

)2
dudv̄

]
.

Criterion 2: minimization of the Dirichlet energy.

min
dij

[ ∫ 1

0

∫ 1

0

(
||Ru(u, v)||2 + ||Rv(u, v)||2

)
dudv

]
.

Criterion 3: minimization of the thin plate spline energy.

min
dij

[ ∫ 1

0

∫ 1

0

(
||Ruu(u, v)||2 + 2 ||Ruv(u, v)||2 + ||Rvv(u, v)||2

)
dudv

]
.

Criterion 1. Criterion 2. Criterion 3.

Criterion 1. Criterion 2. Criterion 3.

Fig. 3.20 - Coons patches interpolating the curvilinear rectangle shown in Fig. 3.18 -
left, smoothed according to the criteria 1, 2, and 3 (two different views of each smoothed

surface are presented).

• Geodesic interpolation of a curvilinear triangle.
The previous methods have been extended to the case of geodesic–bounded triangular

surface patches, parameterized in terms of barycentric coordinates, in the submitted paper
(Farouki et al. [15]). Precisely, given three regular space curves r1(t), r2(t), r3(t), that
define a curvilinear triangle, we consider the problem of constructing a C2 triangular
surface patch R(u1, u2, u3) bounded by these three curves, such that they are geodesics
of the constructed surface.

Consistency constraints on the given curves for the existence of such geodesic–bounded
triangular surface patches are identified as above. For curves satisfying these conditions,
the patch is constructed by means of a cubically–blended triangular Coons interpolation
scheme (Gregory et al. [17]). The properties of the constructed surface patches are then
discussed, in the context of the Gauss–Bonnet theorem. A formulation of thin–plate spline
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energy in terms of barycentric coordinates with respect to a general domain triangle is
also derived, and used to optimize the smoothness of the geodesic–bounded triangular
surface patches.

As the process is technical due to barycentric coordinates, we refer to the submitted
paper [15] for details. We just present here some numerical results.

(1) (2)

(3) (4)
Fig. 3.21 - (1) the three boundary curves satisfying consistency conditions, and for
which the corner angles sum to 2π; (2) the initial reconstructed surface with free

parameters equal to zero; (3) and (4) two different views of the reconstructed surface
after smoothing according the thin–plate spline energy criterion.

As a conclusion, consider the following remark. The well–known Gauss–Bonnet the-
orem [5, 32] relates the integral of Gaussian curvature over a region of a surface to the
integral of the geodesic curvature along the boundary of that region. This theorem is
of particular relevance to the geodesic–bounded surface patches constructed herein. Pre-
cisely, if we construct a triangular surface patch so that its boundary curves are geodesics,
the Gaussian curvature K of this surface must satisfy

∫∫
R
K dσ = 2π −

3∑
i=1

Ai , (3.9)

where A1, A2, A3 are the corner angles at the vertices. Thus, given three regular space
curves satisfying consistency conditions (C1)–(C3), such that

∑3
i=1Ai = 2π, any inter-

polating surface must satisfy ∫∫
R
K dσ = 0 , (3.10)

which indicates that the interpolating surface must contain both elliptic and hyperbolic
points (where K > 0 and K < 0) — see Fig. 3.21.

3.7 Geodesic Bézier interpolation

Given four polynomial or rational Bézier curves defining a curvilinear rectangle, we con-
sider the problem of constructing polynomial or rational tensor–product Bézier patches

68



bounded by these curves, such that they are geodesics of the constructed surface. The
existence conditions and interpolation scheme, developed in a general context previously,
are adapted herein to ensure that the geodesic–bounded surface patches are compati-
ble with the usual polynomial/rational representation schemes of CAD systems. Precise
conditions for four Bézier curves to constitute geodesic boundaries of a polynomial or
rational surface patch are identified, and an interpolation scheme for the construction of
such surfaces is presented when these conditions are satisfied (Farouki et al. [14]).

• Geodesic Bézier interpolation.
In general, the interpolation scheme presented in Section 3.6 does not generate a poly-

nomial/rational surface patch, even when the given boundaries are polynomial/rational
curves. Hence, it is desirable to modify it to produce patches that are compatible with
the standard Bézier representation of CAD systems, starting from boundaries specified
as Bézier curves consistent with conditions (C1)–(C3).

Precisely, fields of polynomial or rational transverse derivatives Ti are specified in the
tangent plane, along each boundary curve ri, in the following way (Farouki et al. [14]).

Ti(t) = xi(t) r′i(t) + yi(t) ri
′(t)× ri

′′(t) , (3.11)

where xi(t), yi(t) are polynomial functions. As in Section 3.6, the method involves supple-
mentary constraints for the consistency of the bicubically–blended Coons process. Finally,
the method produces two free parameters at each corner.

Fig. 3.22 - Surface interpolating four planar symmetric boundary curves of degree 4,
each with two inflections, as geodesics.

• Geodesic Bézier curvilinear rectangle.
Precise conditions for four Bézier curves to constitute geodesic boundaries of a poly-

nomial or rational surface patch are identified and a constructive process is described.
The Morphosense measurements provides Bézier curves that do not precisely satisfy

the geodesic conditions (C1)–(C3), but it does allow us to determine the surface tangent
plane at each corner, and the osculating planes and curvatures of the boundaries at
each corner. Thus, using Hermite approximation scheme, we consider the construction
of curvilinear rectangles, composed of four Bézier curves, that satisfy the sufficient–and–
necessary conditions (C1)–(C3) for the existence of a surface patch with these curves as
geodesic boundaries.

Polynomial boundary curves of degree 7.
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When polynomial Bézier curves of degree 7 are chosen as the patch boundaries, we
may freely choose the corner points, the surface tangent planes at those points, and the
osculating planes and (non–zero) curvatures at the end points of each Bézier curve, in a
manner compatible with the conditions (C1)–(C3).
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Fig. 3.23 - Left: control points of the four degree 7 polynomial boundary curves. Right:
the tangent plane and osculating planes at the corner p00.

Fig. 3.24 - Left: the osculating half–planes at each corner. Right: the constructed
boundary Bézier curves together with the Bézier patch interpolating these boundary

curves as geodesics.

Rational boundary curves of degree 5.
We now propose a geometric construction using four rational Bézier curves of degree

5. This construction allows one to freely choose the four patch corners and corresponding
surface tangent planes, and the osculating planes at the Bézier curve end points, in
accordance with conditions (C1) and (C2), and also the end–point curvatures of the
Bézier curves.
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Fig. 3.25 - Left: four rational Bézier curves of degree 5. Right: osculating planes at
corners p00 and p10.

Fig. 3.26 - Left: osculating half–planes at each corner point. Right: the constructed
rational Bézier curves together with the constructed interpolating Bézier patch.

3.8 Future works

A new collaboration with CEA/LETI is currently in progress. Our goal is to extend the
previous surface re–construction methods for animated surfaces. Based on this idea, a
real–time demonstrator, the Morphosense ribbon, has already been built.

The problem of generating computer models of surfaces from physical measurements
obtained with the Morphosense, leads to re–construct surfaces whose boundary curves
are constrained to have a fixed length. A remarkable property of the spatial PH quintic
C1 Hermite interpolation algorithm (Farouki et al. [12]) is that the solutions depend on
two free parameters — which essentially control the length and shape of the interpolants.
The ability to construct curves of given length, with fixed end points/tangents, is very
useful in reconstructing surfaces from physically measured data.

A collaboration with Rida Farouki (UC Davis) is currently in progress concerning
such an approach. As a first step, we propose to develop algorithms to construct spa-
tial PH curves under arc length constraints, for surface reconstruction applications. A
key requirement is to solve the inverse problem of identifying interpolants that match a
prescribed arc length.
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Chapter 4

Variation Diminishing Property of
Bézier Curves

The variation diminishing property of Bézier curves states that the number of time any
straight line L crosses a Bézier curve Γ, defined on a finite interval I, does not exceed the
number of intersections of the line, L with the corresponding control polygon of the curve
Γ over the interval I [3]. There have been several proofs of this variation diminishing
property such as the proof using the Descarte’s rule of signs [4], or the proof using the
Karlin Theorem on totally positive matrices [5] or the proof using the concept of degree
elevation of Bézier curves. The diminishing variation property ensures, to a certain extent,
that the Bézier curve imitate the shape of the corresponding control polygon. For instance,
it states that a convex control polygon is always associated with a convex Bézier curve.
The converse is not true in general [1].

Using the notion of polar derivative introduced by Laguerre [6], we investigate gen-
eralizations of the variation diminishing property of Bézier curves to include statements
on the number of intersections of a line with a Bézier curve as compared to the number
of intersections of the line with a concatenation of sub-Bézier curves (Ait-Haddou et al.
[2]).

Any refinement of the variation diminishing property for Bézier curves will improve
on the applications of the classical variation diminishing property. For instance, localizing
the real roots of a polynomial over an interval can be achieved by iterative subdivision of
the control polygon and elimination of the sub-intervals in which the control polygon have
the same sign. Therefore, the refinement above can lead to more efficient detection of
sub-intervals free of real roots even if the control polygon change sign. Other applications
of this refinement will be given subsequently.

4.1 Polar derivative

Let F (t) be a polynomial of degree n (n ≥ 1), and denote by f(u1, u2, . . . , un) its
blossom. Considering the Bernstein basis Bn

i (t) over the interval [a, b], we can write
F (t) =

∑n
i=0 piB

n
i (t), with pi = f(an−i, bi), where the notation xk indicates that x is to

be repeated k times. The polar derivative ([6], pp. 48-49) with respect to the pole ζ, of
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the polynomial F (t), is the polynomial Fζ(t) of degree n− 1, defined by

Fζ(t) =
n−1∑
i=0

f(an−1−i, bi, ζ)Bn−1
i (t) .

Therefore (see Fig. 4.1), for a polynomial with Bézier points p0, ...pn on [a, b], the polar
derivative with respect to the pole ζ is the polynomial of degree (n − 1), with Bézier
points

qi =
b− ζ
b− a pi +

ζ − a
b− a pi+1, i = 0, ..., n − 1 .

F(t)

Fζ(ζ)=F(ζ)

Fζ(t)

q
0
=f(a,a,ζ)

q
1
=f(a,b,ζ)

q
2
=f(b,b,ζ)

p
0
=f(a,a,a)

p
1
=f(a,a,b)

p
2
=f(a,b,b)

p
3
=f(b,b,b)

Fig. 4.1 - Polar derivative of a parametric cubic polynomial curve expressed in the
Bernstein basis over the interval [a, b].

• A new expression of the polar derivative.
Denoting by Pn the linear space of polynomials of degree less or equal to n, we consider

the following two linear operators d : Pn → Pn−1 and ψζ,n : Pn → Pn defined by

d(F (t)) = F ′(t) and ψζ,n(F (t)) = (t− ζ)n F (ζ +
1

t− ζ ) .

Introducing the map ζ̂ : t �→ ζ̂(t) = ζ + 1/(t − ζ) we have ζ̂ ◦ ζ̂(t) = t for all t �= ζ, from
which we deduce

ψζ,n ◦ ψζ,n = Id ,

where Id is the identity on Pn.
The polar derivative of a polynomial F (t) of degree n, with respect to a pole ζ, can be
expressed in terms of the two operators d and ψζ,n.

ψζ,n−1 ◦ d ◦ ψζ,n(F (t)) = nFζ(t). (4.1)

4.2 Diminishing variation property for univariate polyno-
mials

For our purpose we need precise definitions.
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1 For a polynomial F (t) of degree at most n, we define Zn
[a,b](F (t)) as follows. If F (t)

is identically zero, then Zn
[a,b](F (t)) = n+1. Otherwise Zn

[a,b](F ) denotes the number
of real roots of F (t) in the interval [a, b], counting multiplicities.

2 For s ≥ 1 and real numbers r1, ..., rs, let

S(r1, ..., rs) =
∣∣i : 1 ≤ i ≤ s, ri = 0

∣∣ +
∣∣i : 1 ≤ i ≤ s− 1, riri+1 < 0

∣∣
be the number of sign changes in the ordered sequence (r1, ..., rs) and

SL(r1, ..., rs) = S(r1, ..., rs)− S(rs),
SR(r1, ..., rs) = S(r1, ..., rs)− S(r1),

be the Left and Right number of sign changes in the sequence.

•Main result (univariate case). Let F (t) be a polynomial of degree n. Then for every
real number ζ in the interval [a, b], a < b, we have

Zn
[a,b]

(
F (t)

) ≤ SL(F (a), Fζ(a)) + Zn−1
[a,b]

(
Fζ(t)

)
+ SR(Fζ(b), F (b)) . (4.2)

• Corollary. Applying repeatedly inequality (4.2) with ζ = a or ζ = b, leads to the
following result.

Zn
[a,b]

( n∑
i=0

piB
n
i (t)

)
≤ SL(p0, ...pk) + Z l−k

[a,b]

( l∑
i=k

piB
l−k
i−k(t)

)
+ SR(pl, ..., pn) ,

for any k, l with 0 ≤ k ≤ l ≤ n.
Notice that for k = l the right hand simplifies as S(p0, ..., pn) which provides the classical
variation diminishing property.

• Remark. The polynomial F (t) below (see Fig. 4.2) has two real roots in the interval
[0, 1], while the two sub-polynomials F1(t) =

∑2
i=0 piB

2
i (t) and F2(t) =

∑3
i=0 p2+iB

3
i (t)

have no real roots in the interval [0, 1]. Therefore, in this situation, we have

Z5
[0,1]

( 5∑
i=0

piB
5
i (t)

)
> Z2

[0,1]

( 2∑
i=0

piB
2
i (t)

)
+ Z3

[0,1]

( 3∑
i=0

p2+iB
3
i (t)

)
,

which shows that inequality (4.2) can not be generalized in a straightforward way.
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Fig. 4.2 - Inequality (4.2) can not be generalized in a straightforward way.

4.3 Variation diminishing property for parametric polyno-
mials

In this section, we merely translate all the results of the last section to 2-dimensional para-
metric polynomial curves. Of course there are corresponding results for any d-dimensional
space curve. Thus, consider a parametric polynomial curve F (t) = (p(t), q(t)) of degree
n and a line Δ in the 2-dimensional space and denote by Zn

Δ,[a,b](F (t)) the number of
intersections of the line Δ with the curve F ([a, b]) (a < b) counting multiplicities. If the
curve F ([a, b]) is included in the line Δ, we shall consider that Zn

Δ,[a,b](F (t)) = n+ 1.
Then, for s ≥ 1 and points M1, . . . ,Ms in the 2-dimensional space, we consider the

number of intersections SΔ(M1, . . . ,Ms) of the line Δ with the polygonal line (M1, . . . ,Ms)
defined in a similar way as in the previous section. See also (Ait-Haddou et al. [2]).

By a standard method, in which statements about the number of roots of a univari-
ate polynomial can be translated to statements about the number of intersections of a
parametric curve with a given line, we obtain the following result.

• Main result (parametric case) . Let F (t) =
∑n

i=0 FiB
n
i (t) be a parametric polyno-

mial curve of degree n defined on an interval [a, b], with Fi = (pi, qi) for i = 0, . . . , n. Let
Δ be an affine line defined by αx + β y + γ = 0. For any real number ζ in the interval
[a, b] we denote by Gi = b−ζ

b−a Fi + ζ−a
b−a Fi+1 for i = 0, . . . , n− 1. Then we have

Zn
Δ,[a,b]

( n∑
i=0

FiB
n
i (t)

)
≤ SΔ,L(F0, G0) + Zn−1

Δ,[a,b]

( n−1∑
i=0

GiB
n−1
i (t)

)
+ SΔ,R(Gn−1, Fn).

(4.3)

• Corollary. Let F (t) =
∑n

i=0 FiB
n
i (t) be a parametric polynomial curve of degree n

defined on an interval [a, b]. For any k, l with 0 ≤ k ≤ l ≤ n we have

Zn
Δ,[a,b]

( n∑
i=0

FiB
n
i (t)

)
≤ SΔ,L(F0, ...Fk) + Z l−k

Δ,[a,b]

( l∑
i=k

FiB
l−k
i−k(t)

)
+ SΔ,R(Fl, ..., Fn).
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Notice again that for k = l the right hand simplifies as SΔ(F0, ..., Fn) which provides the
classical variation diminishing property of Bézier curves.

• Example 1.
More precisely (see Fig. 4.3), the number of intersections of any straight line Δ with a

Bézier curve P (t) =
∑n

i=0 PiB
n
i (t) (in blue) does not exceed the number of intersections

of the line with the red curve (in bold) composed of the polygon (P0, ..., Pk), the Bézier
curve of degree l − k associated with the control polygon (Pk, ..., Pl) and the polygon
(Pl, ..., Pn), for any value of k, l with 0 ≤ k ≤ l ≤ n. In the case of Fig. 4.3, and since
the Bézier curve with control points (Pk, ..., Pl) has no intersection with the line Δ2, the
refinement of the variation diminishing property asserts that, no matter how we change
the control points (P0, ..., Pk−1) and Pl+1, ..., Pn) the number of intersections of the blue
curve with control points (P0, ..., Pn) and the line Δ2 cannot exceed n− l + k.

P
0

P
1

P
n−1

P
n

P
k P

l+1

P(t)

Q(t)

P
n−2

P
2

Δ
1

P
l

P
k+1

Δ
2

Fig. 4.3 - An example of the refinement of the Variation Diminishing Property of Bézier
Curves : The number of intersections of any straight line Δ with the Bézier curve in

blue does not exceed the number of intersections of the line with the red curve (in bold).

• Example 2. The following Fig. 4.4 exhibits a refinement of the variation diminishing
property of Bézier curves : the number of intersections of any line Δ with the blue curve
F (t) does not exceed the number of intersections of that same line with the piecewise curve
in red and bold. Furthermore, considering the two lines Δi, i = 1, 2, we deduce that the
number of intersections of these lines with the Bézier curve F (t) is at most one, since
the lines does not intersect the control polygon of the polar derivative Fζ(t). Naturally,
we can reach the same conclusion by just applying De Casteljau subdivision over the
two intervals [0, ζ] and [ζ, 1]. However, with the refinement of the variation diminishing
property, we can iterate the process, with different poles at each stage, thereby leading to
a strategy with complexity O(n) instead of O(n2) obtained using De Casteljau algorithm.
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Δ
1

Δ
2Fζ(t)

F(t)

Fig. 4.4 - A refinement of the variation diminishing property of Bézier curves. The
polar derivative is performed with respect to the pole ζ = 1/3.

4.4 Future work

For algorithms aimed at localizing the real roots of polynomials, by subdivision of the
control polygon and elimination of the intervals in which the control points have the same
sign, this refinement of the variation diminishing property have the potential of speeding
up the algorithm with more efficient detection of the interval in which the polynomial has
not roots. Such algorithms will improve on applications in intersection detection.

As an example, consider the following direct application of the previous results. Let
F (t) =

∑n
i=0 FiB

n
i (t) be a parametric polynomial curve of degree n defined on an interval

[a, b] and denote by f(u1, u2, . . . , un) its blossom. Let Δ be an affine line. Then, for any
set of n real numbers ζi, i = 1, . . . , n in the interval [a, b], we have

ZΔ,[a,b]

( n∑
i=0

FiB
n
i (t)

)
≤ SΔ(Rn, Rn−1, . . . , R1, R0 = S0, S1, . . . , Sn−1, Sn),

where

Rn = f(an) = F0 , Ri = f(ai, ζ1, . . . , ζn−i) i = 0, . . . , n− 1 ,
Sn = f(bn) = Fn , Si = f(bi, ζ1, . . . , ζn−i) i = 0, . . . , n− 1 .

An interesting choice of the parameters ζi are the ones in which the successive polar
derivative of the polynomial F (t) vanishes. As an illustrative example, consider the
polynomial function F (t) defined in Fig. 4.5. Let ζ1 and ζ2 the real numbers in the interval
[0, 1] such that f(0, 0, 0, 0, ζ1) = 0 and f(0, 1, 1, ζ1, ζ2) = 0. Then, with ζ3 = ζ4 = ζ5 = 1,
we have Z[a,b](F (t)) ≤ S(r5, 0, r3, r2, 0, r0 = s0 = s1 = s2 = s3, s4, s5) = 2. Nevertheless,
for a small perturbation of parameters ζ1 and ζ2, the sign change in r4 disappears whereas
the sign change in r1 always remains. Which leads to Z[a,b](F (t)) ≤ 1, which is an optimal
bound since the polynomial F (t) has only one real root in the interval [0, 1].
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Fig. 4.5 - A refinement of the variation diminishing property : the number of
intersections of any line with the polynomial curve in blue does not exceed the number of

intersections of the same line with the piecewise linear polygon in bold.
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Chapter 5

Industrial activities

This chapter is concerned with wave propagation in homogeneous media. We took ad-
vantage of planar offsetting techniques presented in Chapter 1 for industrial applica-
tions in a seismological context : ELF EP [3] and TOTAL FINA ELF S.A. [3]. In
this context, the standard Euclidean approach corresponds to isotropic homogeneous me-
dia, while the Minkowski-plane approach [1, 2] conveniently and rigorously extends the
exploding-reflector method to include anisotropic-homogeneous media. Nevertheless, the
anisotropic-homogeneous case has not been implemented in the following application.

Our participation split into two parts : the approximation and reconstruction of the
interfaces by quadrics (N. Szafran, B. Lacolle) and the propagation of waves (L. Biard).
Even though these works are confidential, it is possible to outline the main ideas of the
method.

• The method.
We essentially treated the 2D case (planar propagated waves) but some attempts with

3D waves have also been considered. The propagated waves are modeled as offset curves.
More precisely, the method can be summarized as follows.

1. The propagated waves are approximated by planar offset. Precisely, if C0(u) is an
approximation of the initial waves, the propagated wave at time t is defined by

Ct(u) = C0(t) + tN(u) ,

where N(u) is the unit normal to the curve C0.

The relation between the time t and and the distance covered by the waves during
a fixed time is assumed by the norm of the plane. For an isotropic homogeneous
media we consider the Euclidean plane with a sphere as indicatrix.

2. For simplicity, we consider rational parametric approximation of the waves. Since
the approximation depends on the time t, we shall consider PH approximation of
the propagated waves.

More precisely, we consider G1 PH splines, i.e., rational PH curves of class 3 with
G1 contact. Furthermore we consider the dual Bézier characterization of these
PH curves by using a generating circle. Notice that this construction give a free
parameter α for each PH curve of class 3.
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3. Thus, the propagated waves in an uniform medium are obtained by just translating
the dual control structures of the PH curves. It can be noticed that this process
preserves G1 continuity.

4. For reflection/transmission through an interface separating two homogeneous me-
dia, the reflection/transmission of the dual control structure of the PH curves pro-
duces an approximation of the reflected/transmitted waves which is, generally, no
more a PH curve. Thus, we consider again a G1 PH approximation of the re-
flected/transmitted waves after subdivision of the initial propagated wave. Then,
the free parameters allow to improve the approximation by least square method.

Notice that a major difficulty is to control the regularity of the produced PH curves.

• Dual Bézier construction of PH curves.
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c) (d)
Fig. 5.1 - Dual Bézier representation of PH curves of class 3 and of their offsets.

The dual-Bézier control structure of a rational curve [5, 6] provides a natural tool for
the construction of rational curves with a G1 contact. Precisely, for two such curves of
class 3, with Bézier lines Bi and bi, i = 0, ..., 3, the G1 contact is realized if and only if

B3 ≡ b0 and B2 ∩B3 = M = b0 ∩ b1 .
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Fig. 5.2 - G1 continuity for curves in their dual-Bézier representation.

• Direct propagation in the same media.
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Fig. 5.3 - Direct propagation of an initial PH wave front C0(u). The dual control
structure of the propagated wave Ct(u) is deduced from the initial dual control structure

by a simple translations.

• Reflection and transmission.
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Fig. 5.4 - Reflection and transmission.
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Fig. 5.5 - Reflection of the wave front and its approximation by a PH curve.

We can see in Fig. 5.5 - (b), that the exact reflected front wave is correctly approx-
imated by the one parameter family of PH curves depending on the free parameter α.
The best approximation can be evaluated from a mid-point of the curve and least square
method.
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Fig. 5.6 - Then, after reflection, the propagation of the front wave is straightforward.

• Subdivision.
In order to increase the precision of the approximation of the different propagated

waves, we perform a subdivision of each PH curve of class 3 for each reflection/transmission.
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(a) : before subdivision of the one parameter family of PH-approximating curves.
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(b) : after subdivision of the one parameter family of PH-approximating curves.
Fig. 5.7 - Subdivision of the propagated wave.

• Conclusion.
As noticed above, the implementation of such an algorithm is somewhat technical.

Notice that the need to control singularities of the approximating curves lead us not to
consider PH curves of higher degree.
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Fig. 5.8 - Offset surface.

Finally, we made some attempts to model offset surfaces deduced from a sphere as
proposed by Pottmann [5, 6]. But, this approach appears to be to much intricate for such
an application.
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