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Abstract

Disproportion among class priors is encountered in a large number of domains making conventional
learning algorithms less effective in predicting samples belonging to the minority classes. Most of
the proposals reported in the literature deal with classi cation imbalanced problems composed of two
classes usually named as dichotomies, whereas small efforts have been directed towards multiclass
recognition tasks, which are referred to as polychotomies. In this latter case existing approaches can be
roughly divided in two groups. In the rst one there are the methods addressing directly the multiclass
tasks, whereas in the second group there are the methodsdesiogposition scheme& decomposi-

tion scheme divides the polychotomy into several binary classi cation tasks, and thearsstruction

rule combines the predictions of binary learners to estimate the nal decisions. In the case of a skewed
classi cation task addressed by a decomposition approach, existing methods propose specialized clas-
si cation algorithms that work at level of single binary learners, while little efforts have been directed

to develop a reconstruction rule speci cally tailored for class imbalance learning. On this motivation,
we aim at developing a reconstruction rule suited to multiclass skewed data. In performing this task we
look with interest to the classi cation reliability i.e. a measure of the goodness of classi cation acts.
This quantity takes into account phenomena like noise, borderline samples, etc., and conveys useful
information on the classi cation process. Hence, we decide to use these information in reconstruction
rule tailored for imbalanced domains. In the framework of One-per-Class decomposition scheme we
design a novel reconstruction rule, which is referred to as Reconstruction Rule by Selection. This rule
uses classi ers reliabilities, crisp labels and a-priori samples distribution to compute the nal decision.
Experimental tests carried out with four classi ers on several public and arti cial datasets show that
system performance improves using this rule rather than using well-established reconstruction rules.
Furthermore, the use of this rule improves classi cation performance in terms of accuracy, geometri-
cal mean of accuracies per class &theasure, proving to be suited for skewed classi cation task.

To further explore the effects of reconstruction rule in handling imbalanced domains we investigate a
statistical reconstruction rule in the Error Correcting Output Cadeo) decomposition framework.
Inspired by a statistical reconstruction rule designed for the One-per-Class and Pair-Wise Coupling de-
composition approaches, we have developed a ruledarc scheme that applies softmax regression

in order to estimate the nal classi cation. To exploit the information provided by the reliability, we
introduce this quantity in the reconstruction rule. Experimental results show that this choice improves
the performances with respect to the existing statistical rule extendedda framework, as well as

to other well-established reconstruction rules. On the topic of reliability estimation we notice that sev-
eral methods exist to estimate reliability and, in certain cases, posterior probability. Nevertheless small
attention has been given to ef cient posteriors estimation in the boosting framework. On this reason
we develop an ef cient posteriors estimator by boosting Nearest Neighbors. Using Universal Nearest
Neighbours classi er we prove that a sub-class of surrogate losses exists, whose minimization brings
simple and statistically ef cient estimators for Bayes posteriors. Furthermore, we perform tests to eval-
uate the contribution of posterior estimation to set the nal decision of the Universal Nearest Neighbors
classi er. Results show also that the posterior reliability used at the reconstruction stage leads to an
improvement of the system performance.






1. Introduction

Machine learning is the eld that concerns the study of the algorithms that can learn from
data [14]. These algorithms nd application in a wide range of elds: speech and handwrit-
ing recognition, computer vision and object recognition, medical diagnosis, brain-machine
interfaces, information retrieval and affective computing, to name a few. The large diffusion

of these systems is due to the heterogeneity of the data that they can process: images, video
sequences, signals, measures, etc. These raw data are typically preprocessed to transform
them into some new space of variables where, it is hoped, the pattern recognition problem
will be easier to solve. This pre-processing stage is also chdktire extractiorand maps

the raw data into a vector of values referred tdestures vectorThe categories of the data,
referred also aslassesare known in advance, typically by inspecting them individually and
hand-labelling them with Ebel. Where samples belong to two ore more classes are named as
binary or multiclass classi cation tasks. Furthermore, they are also referreddicrastmies
andpolicotmies respectively.

Techniques existing in machine learning eld can be roughly divided in three main branches.
The rst one deals with pattern recognition problems where the training data consists of a set
of input vectors without any corresponding target values. The goal inswsipervised learn-
ing problems may be to discover groups of similar examples within the data, where it is called
clustering, or to determine the distribution of data within the input space, known as density es-
timation, or to project the data from a high-dimensional space down to two or three dimensions
for the purpose of visualization [10, 66, 93, 95].

The second one is the techniquereinforcement learninghat concerns with the problem
of nding suitable actions to take in a given situation in order to maximize a reward [77, 134].
Here the learning algorithm discovers the optimal outputs by a process of trial and error.
Typically there is a sequence of states and actions in which the learning algorithm is interacting
with its environment.

The last one concerns applications where the training data comprises examples of the input
vectors along with their corresponding target vectors are known. This problem are referred to
assupervised learningCases in which the aim is to assign each input vector to one of a nite
number of discrete categories, are called classi cation problems. If the desired output consists
of one or more continuous variables, then the task is called regression.

We focus in this work on supervised learning and in particular on classi cation problems.

In these problems, a collection of samples is used to tune the parameters of an adaptive model.
This provides to the classi er the knowledge of the problem at hand. This phase is called
training phase also known agearning phaseand the set of samples used is referred to as
training set During this training stage, the model's parameters of the learner are computed
minimizing a loss function which reduces the error rate on the training set. After the training
stage, new samples are presented to the learner, which assigns a label accordingly with its
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model. This step is callegsting phaseSince in practical applications, the input vectors can
comprise only a tiny fraction of all possible input vectors, classi er knowledge is limited. This
issue limits the learner's generalization ability, i.e. the ability to infer information on unknown
data. The number of misclassi cations can depend also on several factors such as overlapping
of class distributions, borderline samples, dataset noise, to name a few.

Our work deals with particular attention to tidass imbalance learninthat refers to clas-
si cation problems where datasets have a disproportion between class priors. The skewed
distribution makes many conventional learning algorithms less effective, especially in pre-
dicting samples belonging to the minority classes. This happens because they are designed
to minimize errors over training samples, and also assume or expect balanced class distribu-
tions. Therefore, when skewed datasets are presented to most standard learning algorithms,
this cause an improper representation of data distributive characteristics, producing a bias
towards the majority classes and providing unsatisfactory accuracies across the classes com-
posed of few instances. When this phenomenon occurs in real-world domains, skewed data
represents a recurring problem of high importance with wide-ranging applications such as
text classi cation, currency validation, medical diagnosis and protein fold classi cation, to
name a few [20, 37, 52, 104, 116, 132, 130, 135, 151, 152]. The relevance of this issue and
its potential impact on the development of learning algorithms suited for real-world domains
have motivated recent research on class imbalance learning. In this respect, most of the exist-
ing literature concerns binary classi cation problems while smaller efforts have been directed
towards multiclass recognition tasks.

In case of binary problems, existing solutions work at pre-classi cation stage, at algorithmic
level and at post-classi cation stage. At pre-classi cation level they provide different forms
of resampling, such as undersampling and oversampling [5, 13, 44, 47, 48, 52, 56, 57, 64, 70,
73, 85, 91, 142, 92]. At algorithmic level they introduce a bias to compensate the skewness of
the classes, e.g. using ensemble techniques and adjusting the costs of classes [9, 25, 41, 43,
68, 110, 74, 94, 137, 144, 145]. At post-classi cation stage they adjust decision thresholds or
combine several learners in an ensemble system [17, 20, 71, 84, 92, 104, 108, 116, 121, 132,
140, 151].

The large number of domains where samples belong to more than two classes pose new
challenges that have not been observed in two classes problems [139, 156]. When classes
have different misclassi cation costs, Zhetial. [156] showed that it is harder to cope with
a polychotomy than a dichotomy. They reported that most of learning techniques originally
designed only for two-class scenarios are less effective, or even cause a negative effect when
applied to multiclass tasks. Recent works tackling with imbalanced multiclass distributions
can be roughly divided into two groups. In the rst one there are the approaches directly ad-
dressing the polychotomy [1, 96, 139, 147, 156]. In the second group there are the approaches
handling multiclass imbalance problems using decomposition schemes, which reduce the mul-
ticlass problem in less complex binary subtasks, each one addressed by a dichotomizer [3]. In
this framework the three most popular decomposition schemes are One-per-Class (OpC), Pair-
wise Coupling (PC) and Error Correcting Output Code¢C) [3, 40, 46, 50, 55, 72, 111, 123,

128, 148, 150]. To provide the nal classi cation, dichotomizers' outputs are combined ac-
cording to areconstruction rule It is worth noting that results of experiments carried out by
Alejo et al. [1] show that a decomposition approach achieves larger recognition performances
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than directly addressing the polychotomy. This last result agrees with [111], where the au-
thors prove that OpC is preferable to a more complex error-correcting coding scheme or a
single-machine scheme. Focusing on using decomposition approaches in multiclass imbal-
ance learning, we observe that most of the aforementioned proposals work at level of single
dichotomizer [24, 46, 50, 90, 126, 135, 155], while little efforts have been directed to develop
a reconstruction rule speci cally tailored for class imbalance learning.

On these motivations, we aim at developing new reconstruction rules suited for imbalanced
domains. In order to achieve this goal, we look with interest to the classi cation reliability,
which is a measure of the classi er's “con dence” on its predictions. A large value of the
reliability suggests that the recognition system is likely to provide a correct classi cation [27,
82]. Conversely a low value of reliability suggests that the decision on the test sample is not
safe. This quantity takes into account several issues in uencing the achievement of a correct
classi cation such as border line samples, dataset noise, outliers, etc.

Considering these interesting characteristics of the reliability, we decide to use this quantity
in the reconstruction rule in order to deal with imbalanced domains. Hence, we develop an
heuristic reconstruction rule in the OpC decomposition framework suited to classify skewed
data [30, 34]. The key idea of this approach is that learner reliabilities can be used to de-
tect classi cation acts where the presence of an imbalanced distribution among the classes is
leading to a misclassi cation. To this aim, our rule therefore incorporates the reliabilities at
reconstruction stage in order to correct possible misclassi cations. We carried out tests on
several imbalanced domains, both real and synthetic, using four different classi cation algo-
rithms. Tests results point out two main contributions. First, this rule provides larger overall
performance compared with well-established reconstruction rules. Second, our rule is suited
for classify imbalanced domains since geometric means of accuracids raedsure show
that this rule improves performance with respect to minority classes.

In a decomposition scheme each binary learner outputs its prediction on the input sample.
The collection of these predictions build a vector that maps the sample into a new space and
thus it can be considered as a new feature vector. Hence, after binary classi cation, test sam-
ples are described in a new set of second order features that, together with the original labels,
de ne a new classi cation task. Considering the problem from this point of view, we further
investigate the use of the reconstruction rule in order to handle imbalanced datasets. We pro-
pose a statistical reconstruction rule extending an existing method, suited for One-per-Class
and Pairwise Coupling, in the case of Error Correcting Output Cede() [31, 32]. This rule
applies the softmax regression on the feature vectors generated by binary learners. In order to
achieve improvements with respect to the minority classes we integrate classi er reliabilities
in the reconstruction stage. Results show that the rule provides satisfactory performance when
compared with well established rules in theoc framework and when compared with the
softmax regression without the use of reliability.

Exploring the reliability issue, we became aware that several methods to compute reliability
measure from classi er outputs exist. In some cases, it is even possible to compute classi ca-
tion reliability in terms of posterior probability [18, 60, 107, 154]. Among all the proposals, to
the best of our knowledge, little efforts have been directed toward ef cient posteriors estima-
tion in boosting approach. Boosting algorithms are remarkably simple and ef cient from the
classi cation standpoint, and are being used in a rapidly increasing number of domains and
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problems [18]. Nevertheless it is widely believed that boosting and conditional class probabil-
ity estimation are in con ict with each other, as boosting iteratively improves classi cation at
the price of progressively over- tting posteriors [19, 54]. Existing experimental results display
that this estimation is possible, but it necessitates a very ne tuning of the algorithms [18].

For this reason, we propose a novel ef cient posterior estimator by boosting Nearest Neigh-
bors. We use the Universal Nearest Neighbours demonstrating that a sub-class of surrogate
losses exists, whose minimization brings simple and statistically ef cient estimators for Bayes
posteriors [33]. The point of our work is that boosting topological approaches, like nearest
neighbors, is possible to estimate class conditional probabilities, without tedious tunings, and
without over tting. Furthermore, experimental results show that the use of the estimated pos-
terior probabilities to set the nal decisions leads to an improvement of system performances.

The thesis is organized as follows. The next chapter presents an overview of the litera-
ture related to the issue of classify imbalanced datasets and the rationale behind our research
activities. Chapter 3 presents the datasets, the learners and the performance metrics used to
validate our proposals. Chapters 4,5 and 6 present our contributions and, nally, Chapter 7
summarizes results obtained with the proposed approaches.



2. Background

In an imbalanced dataset the most relevant source of misclassi cation is the skewed data distri-
bution between classes. Many authors pointed out that the problem of imbalance distribution
occurs often together with other phenomena that in uence the performance of learning algo-
rithms in detecting the minority samples. As an example in [73] authors show that dataset
complexity and the presence of small disjunctions can cause a degradation in standard classi-
ers' performance. The dif culty in separating the small class from the prevalent one is the
key issue in this task and if patterns of each class are overlapping at different levels in some
feature space, discriminative rules are hard to induce.

Furthermore one of the critical factors in learning from imbalanced datasets is the sample
size. When the sample size is limited, uncovering regularities inherent in small class is unre-
liable. In [70] authors report that as the size of the training set increases, the error rate caused
by the imbalanced class distribution decreases. When more data can be used, relatively more
information about the minority class bene ts the classi cation modeling, which becomes able
to distinguish rare samples. It is obvious that in real life problems it is not always possible to
increase the size of the sample.

Therefore the imbalance distribution issue is rather complex and in general it is not easily
solvable [49, 63, 65, 83, 131]. Itis not limited to binary classi cation tasks (dichotomies) and
it holds also in multiclass problems (polichotomies). In the latter case an imbalanced dataset
has one or more classes with fewer samples than others.

A number of proposed solutions can be tracked back in the literature to solve imbalanced
datasets issue. These solutions have been focused mainly in case of binary problems whereas
contribution for multiclass tasks is still limited.

In the following we rstly present the solutions proposed to solve binary problems dis-
tinguishing between methods addressing the imbalanced issue at pre-classi cation level, in-
algorithms approaches and post-classi cation techniques. Secondly we present solutions that
aim at solving multiclass tasks.Thirdly, we describe the decomposition techniques. Finally,
we introduce the classi cation reliability.

2.1. Binary Methods

Many solutions have been proposed to handle imbalanced dataset issue in case of binary clas-
si cations. As reported in gure 2.1 these methods are divided in three main afas:

classi cation, In-AlgorithmsandPost-classi cationtechniques. The objective of the formers

is to re-balance the class distributions by resampling the data space. At the algorithm level,
solutions try to adapt existing classi ers to strengthen learning with regards to the small class.
Post-classi cation techniques combine classi er outputs or tune prediction thresholds in order
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Figure 2.1.: Techniques tassonomy for binary inbalanced dataset tasks

to reduce the misclassi cation in the minority class. As reported in the gure, often the divi-
sion in this taxonomy is not strict since in many cases proposals use techniques belonging to
different areas.

2.1.1. Pre-classi cation techniques

At the data level, different forms of re-sampling methods have been proposed aiming at gen-
erate balanced data distributions. Indeed in the specialized literature, several papers study the
effect of changing class distributions empirically proving that a preprocessing step is usually
a positive solution [13, 44, 47, 48, 91].

In [70] the effect of imbalance in a dataset is discussed and two re-sampling strategies are
consideredRandom re-samplingonsists of re-sampling the smaller class at random until it
consists of as many samples as the majority class, whéveased re-samplingonsists of
re-sampling only those minority instances that occur on the boundary between the minority
and majority classes. Experiments in [70] show that both the two sampling approaches are
effective, and the author proves that using more sophisticated sampling techniques do not give
any clear advantage in the domain considered.

In addition to these classical re-sampling methods, many others have been presented in the
literature, such as heuristic re-sampling methods, combination of over-sampling and under-
sampling methods, embedding re-sampling methods into data mining algorithms, and so on.

Examples of proposals regarding improved under-sampling methods are as follows. In [85]
authors presented tlome-side selectionnder-sampling method, which heuristically balances
the dataset through eliminating the noise and redundant examples of the majority class. The
majority class instances are classi ed as "safe”, "borderline” and "noise” instances. Border-
line and noisy cases are detected using Tomek links, and are removed from the dataset. Only
safe majority class instances and all minority class instances are used for training the learning
system. In [56, 57] authors propose an under-sampling procedure where genetic algorithms
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are applied for the correct identi cation of the most signi cant instances. A features and
instances selection method [52] has been tested on imbalanced domains in [130]. Authors'
method computes the discriminative power of each feature and then selects those samples that
show the highest score. In [5] author proposes a Condensed Nearest Neighbour Rule that
performs under-sampling bases on the notion of a consistent subset of a sample set, which is
a subset who can correctly classi es all of the remaining examples in the training set when
used as a stored reference set for the NN rule. One of the advantages of this algorithm is
the fast learning speed. In [142] the Edited Nearest Neighbour Rule is proposed. This al-
gorithm removes any example whose class label differs from the class of at least two of its
three nearest neighbours. In [92] two under-sampling algorithms are presented: EasyEnsem-
ble and BalanceCascade. The rst one samples several subsets from the majority class, trains a
learner using each of them, and combines the outputs of those learners. The second one trains
the learners sequentially, where in each step, the majority class examples that are correctly
classi ed by the current trained learners are removed from further consideration.

Among proposals of over-sampling techniques there is SMOTE (Synthetic Minority Over-
sampling Technigue) method [22], which generates new synthetic instances along the line
between the minority examples and their selected nearest neighbours. Authors show that
best performances are achieved combining SMOTE and under-sampling. The advantage of
SMOTE is that it makes the decision regions larger and less speci c. In [64] authors propose
two methods based on SMOTE aiming at oversampling only the minority examples near the
borderline: borderline-SMOTEL and borderline-SMOTEZ2. The key idea of this approach is
that borderline examples of the minority class are more easily misclassi ed than those ones far
from the borderline. In [73] authors put forward a cluster-based over-sampling method which
deals with between-class imbalance and within-class imbalance simultaneously. The idea
behind this method is that classi cation performances drop when class imbalanced problem is
related also with the problem of small disjunctions.

Other methods propose a combination between over-sampling and under-sampling to re-
solve the imbalance distribution problem. In [13] authors show results that contradict the liter-
ature. Testing ten different methods they show that over-sampling methods are more accurate
than under-sampling methods. In [44] there is an attempt to investigate three aspects: i) which
one is the most performing technique between under-sampling and over-sampling; ii) which
one is the ideal re-sampling rate; iii) if it is possible to combine re-sampling methods to im-
prove classi cation performance. Authors nally propose a method that performs multiple re-
sampling, both oversampling and under-sampling, selecting the most appropriate re-sampling
rate adaptively. Authors in [43] report that when using C4.5s default settings, over-sampling
is surprisingly ineffective, often producing little or no change in performance in response to
modi cations of misclassi cation costs and class distributions. Moreover, they noted that
over-sampling prunes less the trees and therefore generalizes less than under-sampling.

The level of imbalance is reduced in both under-sampling and over-sampling methods, with
the hope that a more balanced training set can give better results. Both sampling methods
are easy to implement and have been shown to be helpful in imbalanced problems. Both
methods have also drawbacks. Under-sampling requires shorter training time, at the cost of
ignoring potentially useful data. Oversampling increases the training set size and thus requires
longer training time. Furthermore, it tends to lead to over- tting since it repeats minority
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class examples. In this way, a symbolic classi er, for instance, might construct rules that are
apparently accurate, but actually, cover one replicated instance.

2.1.2. In Algorithms

In this section we report all the methods that operate on the algorithm rather than at dataset
level.

One of the most used algorithms in the eld of machine learning is the Support Vector
Machine gvM™). In its traditional form, when deals with imbalanced data sets, it increases
the misclassi ed rate of the minority class. For this reason several attempts have been done to
modify internally this classi er to hanlde imbalanced distributions [74, 137, 144, 145]. In [74]
authors present asvM that can directly optimize a large class of performance measures (e.g.

F measure, Precisoon/Recall at Breakeven point) formulating the problem as a multivariate
prediction of all the examples. In [137] two methods to control the sensitivity and speci city

of the svM are proposed. With this aim the authors introduce different loss functions for
positive and negative samples. In [144, 145] authors modify the kernel matrix according to
the imbalanced data distribution. This is done in order to compensate for the skew associated
with imbalanced datasets which pushes the hyper-plane closer to the positive class.

ThesvM is not the only classi er that has been modi ed to solve the problem of imbalanced
data. In [9] authors try to compensate for the imbalance in the training sample without altering
the class distributions. They use a weighted distance in the classi cation phase of kKNN. Thus,
weights are assigned, unlike in the usual weighted k-NN rule, to the respective classes and not
to the individual prototypes. In this way, since the weighting factor is greater for the majority
class than for the minority one, the distance to positive minority class prototypes becomes
much lower than the distance to prototypes of the majority class. This produces a tendency
for the new patterns to nd their nearest neighbours among the prototypes of the minority
class. C4.5 algorithms performances in [43] are evaluated when re-sampling techniques are
used together with algorithm parameters tuning. It is shown that over-sampling is ineffective
if C4.5s parameter to increase the in uence of pruning and other over- tting avoidance factors
are not well set. In [68] authors propose the Biased Minimax Probability Machine to resolve
the imbalance distribution problem. Given the reliable mean and covariance matrices of the
majority and minority classes, this algorithm can derive the decision hyper-plane by adjusting
the lower bound of the real accuracy of the testing set.

Furthermore, there are other effective methods such as one-class learning [25, 94] and cost-
based learning.

The rst strategy, i.e. One-class learning, creates the learning model using only examples
from the positive class. Differently from a discriminative based approach that distinguishes
between positive and negative samples, the One-class learning recognizes only the samples
of the minority class. Hence, it belongs to recognition-based approaches. In [25] authors
show that one-class learning from positive class examples can be very robust classi cation
techniqgue when dealing with imbalanced data. They argue that the one-class approach is
related to aggressive feature selection methods, but is more practical since feature selection
can often be too expensive to apply. Algorithms such as SHRINK that looks fdvesie
positive regionand BRUTE [110] that performs an exhaustive search for accurate predictive
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rule belong also to this category.

The second approach integrates costs during the decision making process leading to an
improvement in performance in case of imbalanced domain. The cost matrix is usually ex-
pressed in terms of average misclassi cation costs for the problem. The goal in cost sensitive
classi cation is to minimize the cost of misclassi cation, which can be realized by choosing
the class with the minimum conditional risk. In [41] authors propose a general framework
that makes an arbitrary classi er costs sensitive. This procedure is called MetaCost and it
estimates class probabilities using bagging and then relabels the training examples with their
minimum expected cost classes, and nally relearns a model using the modi ed training set.
This approach can be used with any number of classes. Standard boosting algorithms , e.g.
Adaboost, increase the weights of misclassi ed examples and decrease the weights of those
correctly classi ed. The weights updating rule is uniform for all the samples and does not con-
sider the imbalance of the data sets. For this reason these algorithms do not perform well on
the minority class. In [45] authors propose a cost sensitive version of Adaboost referred to as
Adacost. In this algorithm to the examples belonging to rare class that are misclassi ed are as-
signed higher weights than those belonging to common class. It is empirically shown that the
proposed system produces lower cumulative misclassi cation costs than AdaBoost. In [76] an
improved boosting algorithm is proposed, which updates weights of positive predictions dif-
ferently from weights of negative predictions. It scales false-positive examples in proportion
to how well they are distinguished from true-positive examples and scales false-positive exam-
ples in proportion to how well they are distinguished from true-negative examples, allowing
the algorithm to focus on both Recall and Precision equally. The new algorithm can achieve
better prediction for the minority class. In SMOTEBoost [23] authors recognize that boost-
ing may suffer from the same problems as over-sampling (e.g., over- tting), since will tend
to weight examples belonging to the rare classes more than those belonging to the common
classes. For this reason SMOTEBoost alters the distribution by adding new minority-class
examples using the SMOTE algorithm. The synthetic samples for the rare class are added
into the training set to train a weak classi er and discarded after the classi er is built. The
SMOTE procedure in each iteration makes every classi er learn more from the rare class, and
thus broadens the decision regions for the the rare class. All these Boosting variation can be
applied to binary problems as well as to multiclass tasks. An analysis of the cost-sensitive
boosting algorithms is reported in [133].

Other variations of traditional classi cation algorithms have been proposed in the area of
rule based algorithms. Indeed these traditional methods often show poor performances when
learned from imbalanced datasets. We have already introduced BRUTE algorithm [110] where
brute-force induction is applied in Boeing manufacturing domain. In [2] authors use Emerging
Patterns (EPs) [42] to handle imbalanced problems. The algorithm works in three stage: gen-
erating new undiscovered rare class EPs, pruning low-support EPs and increasing the supports
of rare class EPs. In [75] authors propose a two-phase rule induction method in the context
of learning complete and precise signatures of minority classes. The rst phase aims for high
recall by inducing rule with high support and reasonable level of accuracy. The second phase
tries to improve the precision by learning rules to remove false positive in the collection of the
records covered by the rst phase.
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2.1.3. Post-classi cation techniques and ensemble

One of the strategy adopted in the post classi cation stage is the tuning of decision thresholds
[116, 121] . Provost [108] highlights that adjusting decision thresholds is a critical factor
in classi cation of imbalanced data. This strategy is adopted in [132] where authors show
thatsvM threshold relaxation can be used in hierarchical text classi cation to avoid blocking
documents at high-level categories in the hierarchy. Some classi ers, such as the Naive Bayes
classi er or Neural Networks, supply a score that represents the degree to which an example
belongs of a class. Such ranking can be used to tune the nal decision by varying the threshold
of an example pertaining to a class [140] . In [17] authors, in addition of experiments with
cost-based adjustment of the dividing hyperplane, show that the learner achieves improved
performance mostly altering the score threshold directly.

An Ensemble learner [39] contains a number of learners which are usually called base
learners that are combined by combination schemes. Since ensemble learning has established
its superiority in machine learning, in recent years many attempts have been done in using
ensemble systems to handle imbalanced domains. In ensemble systems results of several
classi ers are combined to provide the nal prediction. The diversity among base classi ers
guarantees an improvement in nal system performance. The diversity can be achieved also
by using various class distributions. Boosting algorithms like Adacost [45], Rare-Boost [76]
and SMOTEBoost [23] are enclosed also in this category.

One of the most adopted strategy in ensemble systems is to generate many subsets starting
from the original distribution. Usually this datasets are generated through re-sampling tech-
niques. In Section 2.1.1 we have already introduced this method when we described the two
systems in [92]: EasyEnsemble and BalanceCascade. In [20] and in [151] authors, starting
from the original dataset, generate many subsets each one containing all the minority class
examples and an equal number of samples drawn from the majority one. In the rst work
it is presented wrapper method where each learning algorithm is trained using a subset and
the nal decision is taken according to a stacking strategy. It can be used with any learning
method internally. In the second work authors use an ensemble sys®avief They show
that this method is more stable than the traditional re-sampling techniques.

In [104] authors present a method that, in the domain of fraud detection, uses a single meta-
classi er to choose the best base classi ers, and then combine their predictions to improve
costs-saving. The data subsets are generated trough oversampling of minority class. They
show that their stacking-bagging procedure achieves the highest costs saving which is almost
the twice of the conventional back-propagation procedure.

In [84] authors use techniques of agent-based knowledge discovery to handle the problem
of imbalanced datasets. They use three agents (the rst learns using Naive Bayes, the second
using C4.5 and the third using 5NN) on a lItered version of training data and combine their
predictions according to a voting scheme. The intuition of authors is that the models generated
using different learning are more likely to make errors in different way and thus increase the
diversity of system.

In [71] the author combines classi cation techniques from both supervised and unsuper-
vised learning. He uses an unsupervised method of re-labeling already labelled data. A clas-
si er is then run on several version of the same dataset and their results are combined using a
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Figure 2.2.: Techniques tassonomy for multiclass inbalanced dataset tasks

voting techniques.

2.2. Multiclass

It is known that it is harder to cope with a polychotomy than a dichotomy when classes have
different misclassi cation costs [156]. In [156] authors show that most of learning techniques
originally designed only for two-class scenarios are less effective or even cause a negative
effect when applied to multiclass tasks. The large number of domains where samples belong
to more than two classes de nes new challenges that have not been observed in two classes
problems [139, 156].

Recent works tackling with imbalanced multiclass distributions can be roughly divided into
two groups (gure 2.2). In the rst one there are approaches directly addressing the poly-
chotomy [1, 96, 139, 156]. In the second group there are approaches handling multiclass
imbalance problems using class decomposition schemes [24, 46, 90, 126, 135, 155]. To pro-
vide the nal classi cation, dichotomizers' outputs are combined according to a reconstruction
rule. It is worth noting that, results of experiments carried out by Alejo et al. [1] show that
a decomposition approach achieves larger recognition performances than directly addressing
the polychotomy.

2.2.1. Direct Methods

As in the case of binary methods we can divide the proposal to handle multiclass imbalanced
classes at the level of Pre-classi cation, In-Algorithm and Post-classi cation.

In the rst category there is the method proposed in [146] where on the majority classes
is applied a local clustering, whereas on the minority ones, is adopted oversampling. The

11
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algorithm adjusts the over-sampling parameter to match with the clustering result so that the
rare class size is approximate to the average size of the partitioned majority classes.

In the second category there are works such as: [1, 26, 96]. RIPPER [26] algorithm is a
rule induction system that utilizes a separate-and-conquer approach to iteratively build rules to
cover previously uncovered training examples. Each rule is grown by adding conditions until
no negative examples are covered. It normally generates rules for each class from the most
rare class to the most common class. Given this architecture, itis quite straightforward to learn
rules only for the minority class, a capability that Ripper provides. In [1] authors introduce
several cost functions in the learning algorithm in order to improve the generalization ability of
the networks and speed up the convergence process. In [96] a two stage evolutionary algorithm
is presented with two sequential tness functions, the entropy for the rst step and the area for
the second one. This algorithm is based on the accuracy and minimum sensitivity given by
the lowest percentage of examples correctly predicted to belong to each class. The two-stage
approach obtains high classi cation rate level in the global dataset with an acceptable level of
accuracy for each class.

In the last category we report, as in the case of binary, thresholding techniques [152] and
ensemble learning systems[37]. The use of the threshold is studied in [152] where three thresh-
olding strategies in text classi cation are studied on the performance of a KNN classi er. The
author shows that proportional thresholding performs well in classifying minority class sam-
ples for multicategory classi cation tasks. A system that automatically discovers classi cation
patterns by applying several empirical learning methods to different representation of datasets
is presented in [37] in the eld of document categorization. Different representations of the
datasets are obtained performing feature selection based on genetic algorithm. The nal docu-
ment category is obtained by the genetic combination of the decision made by all the learners.

Among the methods that address directly the problem of multicass imbalanced datasets we
include SMOTEBoost [23] , MetaCost [41] and AdaCost [45] that can be applied both to
binary and to multiclass tasks.

In [156] the effect of sampling and threshold-move is empirically studied in a training
cost-sensitive neural networks. Both over-sampling and under-sampling are considered. The
threshold is moved toward inexpensive classes such that examples with higher costs become
harder to be misclassi ed. Furthermore the effect of hard and soft voting is also used to
build the ensemble decision. This paper can be categorized in all the three sections. Indeed,
re-sampling techniques, a cost-sensitive classi er, a threshold moving strategy and nally an
ensemble decision are used in the approach proposed by the authors.

2.2.2. In Decomposition Framework

Given a polychotomy witlK > 2 classes, decomposition methods can be traced back to the
following three categories [3, 24, 40, 46, 72, 90, 126, 128, 135, 155]: One-per-Class (OpC),
Pairwise Coupling (PC), and distributed output code. There exist other proposals that do not
perfectly tthis categorization, e.g. the hierarchical dichotomies generation [86], but this does
not introduce any limitations in the rest of the work. We provide in Section 2.3 a complete
description of decomposition methods, whereas we report the description of approaches that
handle imbalanced multiclass datasets based on these schemes [24, 46, 90, 135] in the follow-
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ing. In [24] authors use the min-max modular network to decompose a multi-label problem
into a series of small two-class subproblems. They present several decomposition strategies
to improve the performance of min-max modular networks showing that the proposed method
has better generalization thawm. In [46] authors use pairwise coupling framework where
each sub-problem is processed with SMOTE algorithm in order to balance data distribution.
As a base classi er is used a linguistic Fuzzy Rule Based Classication system. The experi-
mental results support the goodness of their methodology as it generally outperforms the ba-
sic and pairwise learning multi-classi er approach. In [90] 22 data preprocessing methods are
tested to perform classi cation of weld aws with imbalanced classes in an OpC decomposition
scheme. Their results show that some data preprocessing methods do not improve any crite-
rion and they vary from one classi er to another. In [135] authors propose a novel ensemble
machine learning method that improves the coverage of the classi ers under the multi-class
imbalanced sample sets by integrating knowledge induced from different base classi ers, and
they illustrate that the approach performs at least as well as the traditional technique over a
single joined data source. Finally, in [50] authors experimentally study the contribution of
re-sampling techniques in the OpC ans PC decomposition schemes.

2.3. Decomposition Methods

The techniques reducing a multiclass recognition problem to several binary subtasks are usu-
ally named aslecomposition methodSeveral proposals exist in the literature, and the most
used ones are the One-per Class (OpC), the Pairwise Coupling (PC), and the distributed output
code.

The rst decomposition method, OpC, is also known as One-against-All. It is based on a
pool of K binary learning functions, each one separating a single class from all the others.
Thus in the OpC framework theh dichotomizer is specialized in thé¢h class when it aims
at recognizing if the input sample belongs either tojttieclass or, alternatively, to any other
class. This decomposition scheme, even if it is often used to derive multiclass classi er by bi-
nary learning algorithms, has not received the same attention in literature as other rules. Some
authors state that other schemes are preferable to OpC [50], nevertheless it has been proven
that OpC performs as well as more complex error-correcting coding schemes or dicothomizer
are well tuned [111].

The second approach, PC, it is also citechAslassi er, One-against-One or even Round
Robin classi cation [55]. In this case the recognition system is composé&d of K 1)=2
base dichotomizers, each one specialized in discriminating between pair of classes. Predic-
tions of the base classi ers are then aggregated to a nal decision using a voting criterion. For
example, in [72, 128] the authors propose a voting scheme adjusted by the credibilities of the
base classi ers, which are calculated during the learning phase of the classi cation. Indeed,
in this case the typical approach consists in using the confusion matrix.

The third approach, distributed output code, assigns a unique codeword, i.e. a binary string,
to each class. Assuming that the string habits, the recognition system is composed by
L binary classi cation functions. Given an unknown sample, the classi ers provide-an
bits string that is compared with the codewords to set the nal decision. For example, the
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input sample can be assigned to the class with the closest codeword according to a distance
measure such as the Hamming distance. In this framework, in [40] the authors propose an ap-
proach, known ag&rror-Correcting Output Code$ecoC), where the use of error correcting
codes as distributed output representation yield a recognition system less sensitive to noise.
This result can be achieved via the implementation of an error-recovering capability derived
from the coding theory. Recently, other researchers investigateslcthe approach propos-
ing diversity measures between codewords and the output of dichotomizers that differ from
the Hamming distance. For example, Kuncheva in [87] presents a measure accounting for the
overall diversity in the ensemble of binary classi ers, whereas Windeatt [143] describes two
techniques for correlation reduction between different codes. As regard to classi cation relia-
bility in ECOcdecompositions, in [40] the authors propose a reliability estimator based on two
Euclidean distances: the rst between the outputs of the base classi ers and the nearest code-
word; the second between these outputs and the second-nearest codeword. The con dence is
then estimated as the difference between these two distances. The limit of this approach is that
the con dence does not explicitly depend upon the position of the pattern in the feature space.
More formally given a polychotomy withiK > 2 classes represented by the label set

= flq;12::0;1 kg, the decomposition through the application of decomposition schemes
generates a pool df dichotomizers each one denotedMg. When feed with a test sam-
plex 2 <", each dichotomizer outputs the quantity (x), which is collected in the vector

approach adopted. Decomposition schemes can be uni ed in a common framework represent-
ing the outputs of the dichotomizers by a binary code matrix, named as decomposition matrix
D 2 <KX x<!. Its elements are de ned as:

8
2 1 ifclasscisinthe subgroup associated to label yf
D(¢j)= S 1 if classcis in the subgroup associated to label -IMyf (2.1)
0 ifclasscis in neither groups associated to label -1 or Mgf

with ¢ = f1;2;:::;Kg. We also denote aB(! .) the cth row of D which is the binary
codeword associated to the clasddence, the labels are codedfds+1g according to their

class membership, whereas zero entries indicate that a particular class is not signi cative for
a given dichotomy. Obviously, this latter situation occurs only in the PC approach.

When the decomposition system is fed by a test samp <, theL binary classi ers
outputs crisp or soft labels, which are collected intotést codewordTo set the nal label, a
reconstruction rule compares, according to a certain criterion, this test codeword with the base
codewords associated to each class and de ned in the niatrix

Hard reconstruction rule. In this case crisp decisions are made on the outputs of the
binary learners. Using the previously introduced notation, the crisp output Mdgtoy =

by the dichotomizers for each sample2 <". A well-known reconstruction rule, usually
referred to atHamming decodingHmD) [3], sets the indes of the nalclass! ¢ 2  as:
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s= argmin.dywo (C(! ¢); M (X)) (2.2)

where
1 sign(D(! ¢;j)M;(x))

bS
Aump (D(! ¢); M (X)) = >

j=1

(2.3)

i.e. abstract, rank or measuremeisince it requires the crisp labels, only.

Soft reconstruction rule. A disadvantage of the hard decoding technique is that it com-
pletely ignores the magnitude of the soft outputs, which represent an indicator of the reliability
of the decision taken by the dichotomizer. Therefore, a common strategy is to consider the
real-valuesf; (x) provided by thg th dichotomizer, which are collected fijx). In many
approaches this quantity is combined with the crisp label, thus computing the margin. The
margin of a training sample is a number that is positive if and only if the sample is correctly
classi ed by a given classi er and whose magnitude is a measure of con dence in the pre-
diction. In case of a test sample, the margin of binary learners can be collected in the vector
m(x), whose elements

m; (x) = M; ()f; (x) (2.4)

This vector is exploited looking for the binary learner returning the largest positive output [40].
Hence, the indes of the nal class! s is given by:

S = argmax,m (Xx) (2.5)

An extension of the original maximum rule was provided by Allweinal. [3], which
introduced the loss-based decoding). This rule is based on a loss functionevaluated
on the margin. Hence, the nal label is given by equation 2.2 widgyg is replaced by,
that is computed as follows:

DS
dieo(D(! ¢); M(X)) = (D(!e] );fj (X)) (2.6)

j=1

It is worth observing that such an approach can be used also when the loss function of the
dichotomizers is not known since can be substituted by elther L, norm distance [123].

1The various classi cation algorithms can be divided into three categories [iy§i#]:l (abstrac), that supplies
only the label of the presumed clagge Il (rank) that ranks all classes in a queue where the class at the top
is the rst choice,type Il (measuremethat attributes each class a value that measures the degree that the
input sample belongs to that class.
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2.4. Classi cation Reliability

Classi cation performances are often deteriorated by several factors, e.g. the noise affecting
the samples, borderline samples and the differences between the objects to be recognized and
those used to train the classi er.

The classi cation reliability is a measure that takes into account such several issues in u-
encing the achievement of a correct classi cation. It permits to estimate the “con dence”
of a classier in its classi cation act, providing useful information on classi er decision
[27, 82, 113]. A large value of the reliability suggests that the recognition system is likely
to provide a correct classi cation [27, 82]. Conversely a low value of reliability suggests that
the decision on the test sample is not safe.

The reliability measure is very useful in a wide range of tasks. For instance, the reliability is
used in ensemble learning to derive the “Weighted Voting” methods [67, 89] which works as
follows: rstit collects the crisp outputs of all the experts, second it computes their reliability,
third it weights the outputs with the corresponding reliability and, fourth it assigns the sample
to the class that shows the highest sum of votes.

Several approaches exist to compute classi er reliability. In general, the most common
choice for evaluating the classi cation reliability is to use the confusion matrix or other mea-
sures that depend on the recognition performance achieved during the learning phase. For
example, if an expert assigns the input sample to a certain class, a reliability proportional to
the recognition rate achieved on the training set on that class is attributed to such a decision
[150]. The drawback of this approach is that all the patterns attributed to the same class have
equal reliability, regardless of the quality of the sample. Indeed, the average performance
on the learning set, although signi cant, does not necessarily re ect the actual reliability of
each classi cation act. However, several works have demonstrated that more effective solu-
tions could be achieved by introducing parameters that estimate the accuracy of each single
classi cation act of the system [27, 113, 153].

A reliability parameter should permit to distinguish between the two reasons causing unre-
liable classi cations : (a) either the sample is signi cantly different from those presented in
the reference set, i.e. in the feature space the sample point is far from those associated with
any class, (b) the sample point lies in the region where two or more classes overlap. In [27] au-
thors propose a reliability computation method, suited for Nearest Neighbours (NN) and Multi
Layer PerceptronMLP), that considers these situations. For each one of these two cases, it
is de ned a reliability parameter, nameq and |, respectively. Based on these de nitions,
the parameter providing an inclusive measure of the classi cation reliability can be de ned as
follows:

=min( a; b) (2.7)

This form is conservative since it considers a classi cation unreliable as soon as one of the two
alternatives causing unreliable classi cations happens. The de nition of both the parameters
a and yrelies on the particular classi er architecture adopted.
In the case of NN classi ers, following [27], the samples belonging to the training set are
divided into two sets: the reference set and the training test set. The former is used to perform
the classi cation of the unknown patterq i.e. it plays the role of training set for the NN
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classi er, whereas the latter provides further information needed to evaluatg frerameter.
More speci cally, the two reliability estimators are de ned as:

2 =max(1 gmi” :0) (2.8)
max
Omin
=1 2.9
° Omin 2 ( )

where: On, Is the distance between and the nearest sample of the reference set, i.e. the
sample determining the clasg(x), Omax is the highest among the values@©f,, obtained
from all samples of clask; (x) belonging to the training test set, a¥h, » is the distance
betweerx and the nearest sample in the reference set belonging to a class other(thparin

the case of MLP classi ers the reliability can be estimated as:

= min ( Owin ; Owin OZWin) = Owin Oowin = b (2-10)

where: Oy, is the output of the winner neuro@,yin is the output of the neuron with the
highest value after the winner. The interested reader may nd further details in [27]. Note that
such estimators have been useful also in other applications, e.g. in [36, 124].

In general, the use of classi cation reliability does not limit the choice of a classi er archi-
tecture since it is always possible to obtain a soft label output for each classi cation act of
any kind of classi er [69]. In some speci c cases, it is even possible to compute classi ca-
tion reliability as posterior probability. One of the most known approach that maps classi er
continuous output to posterior probability is the Platt sigmoid function [107]. This method
transformssvM continuous output, i.e. the distance from hyperplamg)), in posterior
probability (p(x)) through:

1 .
1+exp(ah(x)+ b ’

p(x) = (2.11)
wherea andb are estimated by maximizing the log-likelihood of the training sample with a
ve-fold cross validation.

Considering all the characteristics of the reliability, we believe that using this measure can
lead to an improvement of the performance with regard to the minority classes in a multiclass
imbalanced problem. On this motivation we present in the following two reconstruction rule
based on classi cation reliability.

The rst one is a reconstruction rule in the One-Per-Class decomposition scheme. This
rule, referred to as Reconstruction Rule by Selectrmg], uses the useful information con-
tained in the classi cation reliability to distinguish between safe and dangerous dichotomizer
classi cations, and then it applies different rules for each of these two cases.

The second rule that we propose is a statistical rules. Shirahishy et al. [122] proposed an
effective statistical rule designed for OpC and PwC decomposition schemes which use the
raw outputs of the binary classi ers. Inspired by their work, we extend their method to the
Ecoc decomposition scheme and, furthermore, we improve their proposal incorporating the
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2. Background

use of reliability in the decision stage.

In addition on the development of the two reconstruction rule we propose also an ef cient
posterior estimation in case of boosting algorithms. Indeed we notice that several methods
exist to compute the reliability or posterior probability, but small effort has been done in the
case of boosting algorithm. This is due mainly to the fact that is widely believed that boosting
and conditional class probability estimation are in con ict with each other. Indeed boosting
iteratively improves classi cation at the price of progressively over tting posteriors [19, 54].
We use the Universal Nearest Neighbouwssii{) [105], which is an algorithm that leverages
nearest neighbors while minimizing a convex loss function. We demonstrate that a sub-class of
surrogate losses exists, whose minimization brings simple and statistically ef cient estimators
for Bayes posteriors. We show also that the use of posteriors in the nal decision improves
system performance.
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3. Materials and Methods

In this chapter we present information regarding the general experimental set-up used to vali-
date our proposals. We brie y describe datasets used to test the two methods, the classi cation
algorithms used as base classi ers in the decomposition framework and the metrics chosen to
evaluate classi cation performances. We depute to speci ¢ sections in the next chapters the
task to provide further details on the speci ¢ set-up used.

The chapter is organized as follow. In the rst section we describe the datasets used, in the
second section we give a short description of the classi cation algorithms employed and we
nally describe the performance metrics adopted to evaluate classi cation outputs.

3.1. Datasets

We use 15 datasets in which 9 of them belong to medical domains. In order to validate the
proposed methods for each one we chose a subset of these datasets providing an heterogeneous
test bench. We report a short description of each one hereunder, and a summary in terms of
number of samples, classes, features and class distributions can be found in table 3.1.

Breast TissueERTIss): This dataset collects electrical impedance spectroscopy mea-
surements performed on breast tissue samples. Each one of these samples belong to
one out of 6 possible classes i.e. carcinoma, bro-adenoma, mastopathy, glandular, con
connective, adipose. Samples distribution among classes ranges from 20.8% to 13.2%.

Cells(BI0CELLS)[106]: The images are acquired by means of a fully uorescence mi-
croscope. In biological experiments different NIS proteins mutated are expressed for
putative sites of phosphorylation. The effect on the protein localization of each muta-
tion is studied after immunostaining using anti-NIS antibodies. Immunocytolocalization
analysis on 489 cells revealed 2 cell types with different subcellular distributions of NIS.

Dermatology DERM): This dataset is composed of 366 samples described by 33 fea-
tures. The classi cation task is to classify each sample in 6 classes aiming at predict
a differential diagnosis of erythemato-squamous diseases. Samples distribution range
from 30.6% to 5.5%.

Ecoli (EcoLl): This dataset is composed by 336 samples. Each sample, described by 8
features, represents a localization site. Samples are distributed in 6 classes. As common
practice we remove the classes with less than 10 samples. Distribution among classes
ranges from 43.7% to 7.5%.
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3. Materials and Methods

Dataset Number of Number of Number of Class distribution (%)
samples classes features  Majority class Minority class

BIOCELLS 489 2 64 79.6% 20.5%
BRTISS 106 6 9 20.8% 13.2%
DERM 366 6 33 30.6% 5.5%
ECOLI 327 5 7 43.7% 6.1%
FER 876 6 50 28.1% 7.5%
GLASS 205 5 9 37.0% 6.3%
ICPRsoF 721 6 1024 28.9% 8.0%
ICPRsF 721 6 1024 28.9% 8.0%
IFI 600 3 57 36.0 % 31.5%
ORHD 5620 10 60 10.2% 9.8%
SAT 6425 6 36 23.9% 9.7%
SEEDS 210 7 3 33.0% 33.0%
SUN10 1677 10 2048 14.4% 6.9%
WFRN 5456 4 24 40.4% 6.0%
WINE 178 3 13 39.9% 27.0%
YEAST 1479 9 8 31.3% 1.6%

Table 3.1.: Summary of datasets characteristics. For each dataset are shown the number of samples, the
numbero of classes, the number of features, the number of majority class samples (%) and
the number fo minority class samples (%)

Facial Expression Recognitiof€R): This dataset is derived from Cohn-Kanade AU-
Coded Facial Expression Database [79]. It is composed of videos showing an actor that
performs 6 prototypical facial expressions i.e. anger, happiness, disgust, fear, sadness,
surprise. These expressions correspond to the classes of the dataset. This dataset is
composed by 876 instances, described by 50 features accordingly to [35]. A priori
probabilities of classes range from 7.5% to 28.1%.

Glass GLASS): This dataset is composed of 205 samples, described by 10 attributes [6].
The dataset is developed for glass type classi cation motivated by criminological inves-
tigation. As common practice we remove the two classes having less than ten samples.
Remaining classes distribution ranges between 6.3% to 37.0%.

International Conference on Pattern Recognition HEp2 C@$R): HEp2 images are
acquired by means of a uorescence microscope coupled with a 50W mercury vapor
lamp. This dataset has 791 instances distributed over 6 classes. We generated two
version of this dataset, ICBBr and ICPR,r using two kind of descriptors: Bag of
Features and BIF respectively.

Indirect Immuno uorescence intensityifl): Connective tissue diseases are autoim-
mune disorders characterized by a chronic in ammatory process involving connective
tissues [112]. Test based on HEp-2 substrate is usually performed, since it is the recom-
mended method [127]. The dataset consists of 14 features extracted from 600 images of
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patient sera thorough the Indirect Immuno uorescence method [127]. The samples are
distributed over 3 classes, namely positive (36.0%), negative (31.5%) and intermediate
(32.5%) .

Optical Recognition of Handwritten Digit©RHD): This dataset is composed by 5620
samples representing handwritten digits through 64 attributes [6]. Samples are divided
in 10 classes where the a priori distributions range between 9.9% and 10.1%.

Statlog (Landsat Satellite) (SAT)he dataset consists of the multi-spectral values of
pixels in 3x3 neighbourhoods in a satellite image, and the classi cation associated with
the central pixel in each neighbourhood [6]. There are 6425 samples described by 36
features. The sample are distributed in 6 classes: red soil (23.9%), cotton crop (10.9%),
grey soil (21.1%), damp grey soil (9.7%), soil with vegetation stubble (11.0%), very
damp grey soil (23.4%).

Sun 6UN10): This dataset is a collection of annotated images covering a large variety
of environmental scenes, places and the objects within [149]. We have extracted 1677
samples divided in 10 classes. Each samples is described by 2048 attributes generated
applying the bag-of-features approach to SIFT descriptors. Class prior ranges between
14.4% and 6.9%.

Wall-Following Robot NavigationWfFRN): This is a dataset with 5456 samples repre-
sented by 24 features. The data were collected as the SCITOS G5 navigates through the
room following the wall in a clockwise direction, for 4 rounds [6]. To navigate, the robot
uses 24 ultrasound sensors arranged circularly around its "waist”. The sample are dis-
tributed in 4 classes: move-forward (40.4%), slight-right-turn (15.2%) , sharp-right-turn
(38.4%), slight-left-turn (6.0%).

Wine WINE): This dataset is the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars [6]. The analysis deter-
mined the quantities of 13 constituents found in each of the three types of wines. There
are 178 samples describe by 13 features. Samples are distributed in three classes, whose
priors are 39.9%, 33.1% and 27.0%.

Yeast(YEAST)[6]: This database contains information about 10 localization sites of
Yeast cells. It is composed of 1484 instances represented by 8 features. We remove
the endoplasmic reticulum lumen class that makes impossible perform ten-fold cross
validation since it has only 5 samples.

3.2. Classi ers

As classi cation algorithms we used Support Vector Machine (SVM) as kernel machine, k-
Nearest Neighbours as non-parametric algorithm, Multi Layer Perceptron as Neural Networks
and Adaboost as Boosting approach. Classi ers' hyper-parameter values and optimization

21



3. Materials and Methods

methods are reported in a speci ¢ paragraph in the description of each method. A brief de-
scription of these algorithms is reported in the following:

SVM algorithm performs classi cation building hyperplane or set of hyperplanes in a
high-dimensional space. In addition to performing linear classi cation, SVM can ef-
ciently perform a non-linear classi cation using what is called the kernel trick i.e.
implicitly mapping its inputs into high-dimensional feature spaces. A good separation
is achieved by the hyperplane that has the largest distance to the nearest training data-
points of any class, since in general the larger the margin the lower the generalization
error of the classi er. An important property of SVM is that the determination of the
model parameters corresponds to a convex optimization problem, and so any local solu-
tion is also a global optimum.

k-nearest neighbo(k-NN) algorithm is amongst the simplest of all machine learning
algorithms and should be one of the rst choices for a classi cation task when there
is little or no prior knowledge about the distribution of the data. K-nearest neighbour
classi cation was developed from the need to perform discriminant analysis when reli-
able parametric estimates of probability densities are unknown or dif cult to determine.
The k-nearest neighbours algorithm is a non-parametric method for classi cation and
regression, that predicts objects' "values” or class memberships based on the k closest
training examples in the feature space. An object is classi ed by a majority vote of
its neighbours, with the object being assigned to the class most common amongst its k
nearest neighbours (k is a positive integer, typically smallk # 1 then the object is
simply assigned to the class of that single nearest neighbour. Usually Euclidean distance
is used as the distance metric.

multilayer perceptronMLP) is a modi cation of the standard linear perceptron and
can distinguish data that are not linearly separable. It consists of multiple layers of
nodes in a directed graph, it is a feed-forward neural network whose processing nodes
(neurons) compute the weighted average of its inputs and then transform the average by
an activation function such as the hyperbolic tangent and logistic function. What makes
a multilayer perceptron different from perceptron is that each neuron uses a nonlinear
activation function which was developed to model the frequency of action potentials, or
ring, of biological neurons in the brain. This function is modelled in several ways, but
must always be normalizable and differentiable.

AdaBoos{Adaptive Boosting) extends boosting to multi-class and regression problems.
AdaBoost has many variations, such as AdaBoost.M1 for classi cation problems where
each classi er can attain a weighted error of no more theth, AdaBoost.M2 for those

weak classi ers that cannot achieve this error maximum (particularly for problems with
large number of classes, where achieving an error of less than 1/2 becomes increasingly
dif cult), among many others. We adopt the most popular of AdaBoost's variations,
AdaBoost.M1 for multi-class problems. In AdaBoost.M1, bootstrap training data sam-
ples are drawn from a distribution D that is iteratively updated such that subsequent
classi ers focus on increasingly dif cult instances. This is done by adjusting D such
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Table 3.2.: Confusion matrix ofld -classes classi er

that previously misclassi ed instances are more likely to appear in the next bootstrap
sample. The classi ers are then combined through weighted majority voting.

3.3. Performance metrics

Traditionally, the most frequently used performance metrics are the accuegyaqd its
counterpart, the error rate. GivBhsamples distributed ov&r classes, left 1; 2;:::; ¢;:::; k9O
be the predicted class labels. A representation of classi cation performance can be formulated
by the confusion matrix, as illustrated in Table 3.2. The recognition accuracy is de ned as
P K

j=1 Mij

acc=
N

(3.2)
wheren;; is the number of elements of clgssorrectly labelled.

In certain situations, measuring the performances using only accuracy can be deceiving
since it fails to re ect the extent of minority class misclassi cations. For example, consider
the a-priori distribution ofGLASS dataset, where th6:3% of samples are in the minority
class, the87:0% of samples belong to the majority one, and the remaib®@% of samples
are in the other classes. One should develop a classi cation system that perfectly classi es
every sample on classes except for the minority one, achieving an accur@8y/%, that
should appears satisfactory. That is to say, the accuracy in this case does not provide adequate
information on a classi er's functionality with respect to the type of classi cation required.
Indeed, the accuracy is a performace measure based on values from both rows of confusion
matrix, whose values depend on class distribution. Any performance measure based on values
from rows will be inherently sensitive to class skew, as accuracy is.

Hence, it would be more interesting to use a performance measure dissociating the hits (or
the errors) that occur in each class. From Table 3.2, we compute the accuracy per class, which

only one row of the confusion matrix, it is independent of prior probabilities. Furthermore,
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the combination of the accuracies per class provides an estimator of summarizing the perfor-
mances of the classi er. It is the geometric mean of accuracies (pgiven by:

g=  acg (3.2)

It is worth nothing thag is a non-linear measure. Indeed, a change in one of its arguments
has a different effect depending on its magnitude; for instance, if a classi er misses the la-
bels of all samples in thgth class, it results imcg = 0, andg = 0. Another measure
used to evaluate classi ers performance is the F-measure. It is de nednasaBure =
2((Recall) 1 (Precision) 1) 1. WhereRecallis the fraction of samples labelled as be-
longing to the considered class that are correctly classi ed, whd?esgsionis the fraction
of samples in the considered class that are correctly classi ethe&sure shares with the
GAcc the property of not suffering from the same issues that affect the Accuracy. Indeed it
is computed from independent rows of the confusion matrix.

Hence, these three metrics, Accuracy, geometric mean of accuracy per cl&ssaadurepro-
vide an overall analysis of the classi cation performance tacking in account also the perfor-
mance with respect of each class.
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4. Reconstruction Rule by Selection

Literature analysis (Chapter 2) reveals that existing proposals, addressing multiclass skewness
in decomposition framework, work at level of single dichotomizer [3, 24, 40, 46, 72, 90, 126,
128, 135, 155], whereas, to the best of our knowledge, no attempt have been done to solve this
issue at reconstruction rule level. On this motivation, we propose here a reconstruction rule
for OpC decomposition approach which copes with skewness between classes. First, it distin-
guishes between safe and dangerous binary classi cations using the classi cation reliabilities
assigned by binary classi ers to the input sample, and then it sets the nal multiclass label
applying different reconstruction rules for each of these two cases. Hereinafter, the proposed
rule is referred to aRkeconstruction Rule by SelectiGRRS). The decision to develop our
proposal in the OpC framework arises from the fact that this decomposition scheme, even if it
is often used to derive multiclass classi er by binary learning algorithms, has not received the
same attention in literature as other rules. Some authors state that other schemes are prefer-
able to OpC [50], nevertheless it has been proven that OpC performs as well as more complex
error-correcting coding schemes when dicothomizers are well tuned [111]. Furthermore it is
well know that OpC scheme produces imbalanced binary tasks and then, among all the de-
composition schemes, it is the one that could bene t more of a rule suited for imbalanced
domains.

We extensively compare this rule with other two well-established reconstruction criteria on
a set of eight public and four arti cial datasets, testing four classi cation architectures. The
results show that the proposed reconstruction rule provides larger performances than those
returned by the other criteria, reducing the effects of class skewness. The large number of
experiments we carry out shows also that the employment of reliability in the reconstruction
rule permits to achieve larger values of accuracy and geometric mean of accuracies than using
only the crisp labels.

This chapter is organized as follows. We rstly describe the proposed method, secondly we
provide details on the experimental set-up, nally we present and discuss results.

4.1. Method description

In order to present RRS method we introduce the following notation:
= flq;1, 0T kgis the set of class labels;
N is the total number of samples;
N; is the number of samples belonging to the class

X 2 <"isasample;

25



4. Reconstruction Rule by Selection

X

dichotomizer 1

A4

dichotomizer 2

Y

dichotomizer L

(M41,! 1) (M 2,! 2) ML)

A\ 4 A Y

reconstruction rule

v

Figure 4.1.: System architecture of traditional One-per-class decomposition.

the binary pro leM(x) is theK -bit vector which collects dichotomizers' outputs »n

Each entry ; (x) lies in[0; 1] and represents the degree thdtelong or not to class pre-
dicted by thg th dichotomizer.

the reverse a-priori probability pro I® contains the knowledge on the a-priori classes
1 Nj=N;

Moreover, in the following for brevity a binary dichotomizer classi cation is referred to as
positiveif the sample is assigned to the dichotomizer own class,NMg(x) = 1, negative
otherwise.

The basic idea of our approach is depicted in Figure 4.2, where the block named as pro-
le analysis distinguishes betweesafe and dangerousclassi cations on the basis of mea-
sures derived from dichotomizers' soft labels. Intuitively, safe classi cations are those where
an analysis of binaryv(x) and reliability (x) pro les suggest that all dichotomizers are
strongly con dent about their output. Conversely, dangerous classi cations are classi cations
where the same pro les suggest that dichotomizers' output might be negatively affected by

IHereinafter, instead of usinig1;1g labels for negative and positive outputs, we adoptfidg notation to
simplify the following formulas.
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Figure 4.2.RRs system architecture. Left side: decomposition of the polychotomy into several di-
chotomies, introducing also the pro le analysis. Right side: it shows R&s works,
distinguishing between safe and dangerous classi cations. The abbreviation r.r. stands for
reconstruction rule.

the skewed nature of the dataset. The rule used to compose dichotomizers' outputs is different
in the two cases and it uses the reverse a-priori probability pfe e set the nal decision

in case dichotomizers' classi cations turn out to be dangerous. The introduction of this block
is therefore the main difference with respect to the traditional OpC reconstruction approach
represented in Figure 4.1.

Formally, let be the lowest reliability value among those
provided by dichotomizers whose output is 0, i.e. the dichotomizers providing a negative
classi cation, and let be the largest value of reliability
among those provided by dichotomizers whose output is 1, i.e. the dichotomizers providing
positive classi cations. Let also— , with  indicator function, be the
average value of reliabilities associated with dichotomizers whose output is 0. Furthermore,
the minimum and the maximum conventionally evaluate to O if sets and

are empty, respectively.
With these positions, the classi cations provided by dichotomizers are considered danger-
ous if:
- (4.1)

where and are thresholds in estimated on a validation set maximizing the average
accuracy per class. We will discuss the contributes of this two parameters at the and of this
section. Condition 4.1 states that classi cations are dangerous when: (i) both the highest re-
liability of classi ers providing positive classi cations and the lowest reliability of classi ers
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providing negative classi cations are below given thresholds or, alternatively, (ii) the high-
est reliability of classi ers providing positive classi cations is higher than the corresponding
threshold, but the average value of reliabilities of classi ers providing negative classi ca-
tions is below a given threshold. Case (i) corresponds to when all positive classi cations are
scarcely reliable and there is at least one negative classi cation that is scarcely reliable too
(meaning this classi cation might have been positive instead), whereas case (ii) corresponds
to when many negative classi cations are scarcely reliable although there is at least one posi-
tive classi cation suf ciently reliable.

To make more clear the rationale of condition 4.1, consider its negate, that can be rewritten
as:

(1)< 1™ o¥)  o)_(ax) 127 70o(X) o) (4.2)

Condition 4.2 states that classi cations can be retained safe when either all classi ers provid-
ing negative classi cations are suf ciently con dent although positive classi cations have low
reliabilities, or there is at least one positive classi cation that is suf ciently reliable and many
negative classi cation are suf ciently reliable too.

In the following we refer to quantitiesg(x), 1(x), and o(x) omitting the dependence on
x if this does not introduce ambiguity.

To set the nal classi cationRRsapplies different criteria for safe and dangerous classi -
cations.

In the former case, let b¥l;(x) the negate of thg¢th dichotomizer output anth =

jK:1 M; (x) the number of dichotomizers providing a positive classi cation, i.e. recogniz-
ing x as belonging to their own class. The inderf the dichotomizer setting the nal class
's2 isgiven by:

S argmax(M;(x) (<) if m2[LK]
s= 4.3)
argmim; (M;(x) (x)) if m=0

Since we are in a safe case, now the nal decision depends onvbpthand (x), without
considering data related to the degree of imbalance presented in the dataset.

When a dangerous classi cation occurs, it should be interpreted as an error due to class
skew. In this case, we cannot rely any more on dichotomizers decision only, but we should
also take into account somehow the a-priori class distribution. Indeed, we have to decide if the
sample should be assigned either to the alassgnizedwith the highest reliability (all other
positive classi cations, if any, are less reliable) or to the clastsrecognizeavith the lowest
reliability (all other negative classi cations are more reliable). In this respect there are two
alternatives: either (i) relying on purely bayesian classi cation, or (ii) deciding in favor of the
minority class. Note, however, that the latter makes sense only if the reliability of the positive
classi cation is high, since this could indicate that class unbalance may have led to a wrong
decision (remember we are considering the case when there are chances the classi cation is
wrong). We therefore consider the quantitigsand ; to discriminate between these two
possibilities.
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When o> 1,i.e. when the reliability of the most reliable positive classi cation is low, we
choose to rely on purely bayesian classi cation and the sample is assigned to the class with the
lower reverse probability, i.e. the class most populated in the training set. Indeed, in this case
reliabilities of both classi ers are very low and it is unlikely that a classi cation error has been
caused by class imbalance. Conversely, whgn 1, i.e. when the reliability of the most
reliable positive classi cation is high, we assign the sample to the class with highest reverse
a-priori class distribution. Note that this means that the most reliable positive classi cation
is con rmed if and only if the corresponding a-priori class distribution is lesser that the one
associated to the least reliable negative classi cation.

More formally, the rule to be applied in case of dangerous classi cation is the following.
Letj, andj, be the indices of the most reliable positive classi cation and of the least reliable
negative classi cation, respectively. The inds»f the dichotomizer setting the nal class
l's2 isgiven by: 8

2 argminajogf; if 0> 1
s= (4.4)
argmax;zf jojigfi f o 1

4.1.1. About gand 1

We try here to give a deeper insight gfand ; parameters role in the proposed rdle;; 19 2
< values ranges in [0,1]. They are chosen maximizing average accuracies per class on a vali-
dation sets. The search of the optimal value has been exhaustively performed using stepwise
construction of a grid with step equal to 0.05. Graphical samples of grid search results are
reported in gure 4.3 where average accuracies per class values are represented as function of
o and ; on the considered validation set. The corf20] corresponds to not applying any
distinction between safe and dangerous classi cation. Observing the shapes in the gure, we
notice the importance of the tuning of the two parameters. Indeed variation of these values
improve or drop signi cantly the classi cation performance. We chose to optimize this value
on average accuracy per class since this lead to a better generalization ability with respect of
the minority classes.

4.2. Experimental set-up

In this section we present our experimental set-up, providing the list of used datasets and
details on classi cation paradigms employed as well as the list of performance metrics.

4.2.1. Datasets

We used twelve datasets: eight are a collection of real public datasets and four are arti cial
datasets. The real datasets that we have chosen in order to provide an heterogeneous test-
bench to validate our proposal aER, GLASS, IIFI, ORHD, SAT, SUN10, WFRN andwINE.
Description of real datasets is reported in section 3.1 and datasets details can be found in table
3.1 whereas arti cial datasets description is reported in the following.
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Figure 4.3.: Examples of performance on validation set, in term of average accuracies per class, ob-
tained varying g and ; parameters. From left to right and from top to bottorNk svm,
MLP andADA.

Inspired by [88], in Figure 4.4 we graphically represent the degree of imbalance for each
dataset. The chart represents the prior probability of the minority class as a function of prior
probability of the majority class. The feasible space is below the diagonal line of the plot,
which also corresponds to equiprobable classes. This line can be therefore thought of as the
edge of balanced problems. The balance disappears towards the bottom right corner. Point
(0.5,0.5) corresponds to two equiprobable classes. This graphical representation helps us to
observe how much the datasets are heterogeneous with respect to the imbalance ratio. For
instance, in the gure we notice thaRHD is a quite balanced dataset, whereagss and
WFRN have a strong degree of imbalance.

Arti cial datasets

We generate simulated examples involving fairly complex decision boundaries. To this aim,
synthetic samples are represented by a feature vector composed of 15 elements randomly
drawn from a 15-dimensional normal distributian N ( ; ). Mean value of each

normal distribution . 2 f 1; ,;:::; «kgis randomly taken in the rand®; 1], while is

equal to 1.5 for all the distributions. We generate four arti cial sets with different number of
classes, i.eK = 5;10; 15, 209, which are referred to asm1, sim2, siMm3 andsiM4 respec-

tively. In each dataset the smallest class has ten samples, whereas the largest class has one
thousand samples, providing a ratio between the two classes always e%al Tde number

of samples belonging to other classes is computed as follows:

2 1000

chm ] 212,30, K 1g (4.5)

30



4. Reconstruction Rule by Selection

0.5

B FER
B F
0.4 ORHD
B sAT
B suN

B WFRN RO |
0.3 |mwine

B cLAss -
---Balanced Edge
0.2r i

Prior probability of minority class

.
.
.
.
‘
L a ]
. I
.
.
. g
. - -

0O 0.1 0.2 0.3 0.4 0.5
Prior probability of major class

Figure 4.4.: Dataset distribution as function of prior distribution of majority (x-axis) and minority (y-
axis) class.

For instance considéd = 5. Each class has a number of samples equal to 1000, 666, 500,
400, 333, 10; providing ratios between the smallest class and the others which are equal to
0.010, 0.015,0.020, 0.025, 0.030 and 1.

4.2.2. Classiers

We employ a k-Nearest NeighbourNk) as a statistical machine, an Support Vector Ma-
chine BvMm) as a kernel machine, an AdaboosbA) as a weak learning algorithms, and a
Multi-Layer PerceptronLP) as a neural network. Brief descriptions of these algorithms
are reported in 3.2. In this subsection we describe how we tune the free parameters of the
classi ers and how we estimate the classi cation reliablities.

KNN. The kNN require no speci c set-up. We test valueslokqual tof 1; 3;5; 79 and
choose the value providing the best performances on a validation set according to a ve-
fold cross validation. We estimate the reliability of each classi cation act on the basis of
information directly derived from the output of the expert and analysing also the reasons in
the feature space giving rise to unreliable classi cation. For further details the interested
reader may refer to [27].

svM. We test asvM with a gaussian radial basis kernel. Values of regularization parameter
C and scaling factor are selected withifiL; 10] and[10 #; 10], adopting dog scale to sample
the two intervals. The value of each parameter is tuned using a ve fold cross-validation on a
validation set. The reliability of &vMm classi cation is estimated as proposed in [107], where
the decision value of the classi er is transformed in a posterior probability.

MLP. We use aMmLP with a number of hidden layers equal to half of the sum of features
number plus class number. The number of neurons in the input layer is given by the number
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4. Reconstruction Rule by Selection

Classi ers

Datasets Metrics kNN SVM MLP ADA
HMD 73.78 1.92 94.10 1.19 86.22 1.00 39.57 1.34

FER LBD 79.69 1.41 94.33 1.33 88.27 0.75 40.40 1.07
RRS 81.13 1.38 96.83 0.78 79.58 6.56 46.97 3.10

HMD 68.36 2.68 65.29 2.58 68.28 2.15 62.47 2.96
GLASS LBD 70.55 2.70 54.46 2.00 57.99 212 56.50 2.81
RRS 70.55 2.70 66.97 3.49 63.27 2.88 69.49 2.40

HMD 65.49 219 66.18 140 66.51 1.78 63.85 2.45
[FI LBD 63.75 2.38 64.59 193 6545 1.24 64.68 2.68
RRS 68.93 2.05 7217 143 68.16 1.24 58.62 4.13

HMD 97.43 0.21 97.53 0.16 96.94 0.14 76.76 0.89
ORHD LBD 97.87 0.22 98.65 0.16 98.45 0.17 87.97 0.37
RRS 97.87 0.22 98.65 0.16 98.45 0.17 87.97 0.37

HMD 86.81 0.54 91.40 0.33 86.79 0.38 87.78 0.20
SAT LBD 86.61 0.51 90.31 0.43 86.66 0.59 93.93 0.24
RRS 90.64 0.42 91.92 0.35 90.68 0.25 72.20 4.17

HMD 51.92 094 65.78 1.05 64.28 0.95 47.46 1.00
SUN10 LBD 57.25 0.77 7496 143 72.21 1.05 58.78 1.30
RRS 57.43 0.87 74.76 139 7221 1.05 58.72 1.32

HMD 89.56 0.45 89.93 0.38 87.88 0.32 71.33 0.48
WFRN  LBD 90.64 0.42 90.77 0.36 88.52 0.38 76.97 0.57
RRS 86.99 0.50 91.84 0.35 88.60 0.27 95.38 0.19
HMD 9596 1.65 96.51 1.77 96.59 1.73 9495 151

WINE LBD 95.11 1.66 96.65 1.22 97.15 0.92 9492 2.07
RRS 9596 1.65 97.72 1.51 97.74 0.90 84.10 8.14

Table 4.1.: Average values of the global accuracg¢fon real datasets whemk, svm, MmLP and
ADA are used as base classi er.

of the features whereas the number of neurons in the output layer is two. The reliability is a
function of the values provided by neurons in the output layer [27].

ADA: We use the "Adaboost M1” algorithm proposed in [53], where weak learners are de-
cision stumps. The number of iteration is equal to 100. The reliabilitie®afclassi cations
are estimated using the magnitude of the nal hypothesis [115].

4.2.3. Performance metrics

Performance of the propose method and competitors are evaluated in term of acaacagy (
the geometric mean of accuraciesyN&x) andF measure. For further details on these metrics
see Section 3.3.
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4. Reconstruction Rule by Selection

Classi ers
Datasets Metrics KNN SVM MLP ADA
HMD 61.37 7.03 91.71 1.93 81.38 1.60 0.00 0.00
FER LBD 72.22 5.71 92.84 187 85.09 127 493 3.21
RRS 76.95 2.14 9594 1.08 74.30 8.24 2.49 242
HMD 6.67 6.49 0.00 0.00 0.00 0.00 0.00 0.00
GLASS LBD 11.16 8.75 6.07 590 0.00 0.00 0.00 0.00
RRS 11.16 8.75 0.00 0.00 6.96 6.76 8.18 7.95
HMD 62.53 2.45 60.29 197 6240 2.09 59.13 2091
[FI LBD 62.26 2.52 61.46 2.13 63.18 1.70 61.37 2.91
RRS 67.94 2.17 70.01 1.70 65.77 149 57.70 4.21
HMD 97.39 0.21 97.49 0.16 96.90 0.14 46.52 12.31
ORHD LBD 97.85 0.23 98.64 0.16 98.44 0.17 87.62 0.42
RRS 97.85 0.23 98.64 0.16 98.44 0.77 87.62 0.42
HMD 86.48 0.57 85.97 0.68 82.65 0.42 0.00 0.00
SAT LBD 88.06 0.47 87.66 0.64 85.01 054 12.46 8.07
RRS 88.06 0.47 89.13 0.56 87.71 0.34 59.02 3.60
HMD 26.43 5.7 56.21 534 58.74 150 17.94 5.83
SUN10 LBD 43.06 4.81 7259 164 70.70 1.22 54.46 1.93
RRS 43.13 4.86 72.47 1.60 70.70 1.22 54.42 1.93
HMD 85.87 0.88 89.05 0.47 83.59 0.82 0.00 0.00
WFRN  LBD 86.01 0.81 88.91 0.53 8596 0.81 90.64 0.74
RRS 86.59 0.72 90.26 0.54 88.10 0.52 92.95 0.63
HMD 96.40 1.48 96.40 1.89 9641 199 93.98 1.82
WINE LBD 9562 151 96.71 1.21 97.15 1.01 94.79 212
RRS 96.40 1.48 97.76 1.81 97.65 1.01 80.46 10.62

Table 4.2.: Average values of the geometric mean of accuraciesg)con real datasets whemki,
SVM, MLP andADA are used as base classi er.

4.3. Results and Discussion

Experimental tests have been performed using three reconstruction rules, four classi cation al-
gorithms, thirteen datasets, and running four times the 10-fold cross validation. This produced
more than 5000 experiments whose results are summarized and discussed in the following
subsections, where we distinguish between those achieved on real and arti cial datasets.

4.3.1. Experiments on real datasets.

The three reconstruction ruless, LBD andHMD) have been tested over eight real datasets
running four times the 10-folds cross validation.

Tables 4.1, 4.2 and 4.3 report the average results in termgof &Acc andF measure,
respectively. Each tabular shows also the 95% con dence interval estimated with the t-student
test.

To facilitate the comparisons between the performance of the reconstruction rules, in tables
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4. Reconstruction Rule by Selection

Classi ers
Datasets Metrics KNN SVM MLP ADA
FER HMD 69.75 2.32 93.80 1.34 85.64 1.23 25.37 1.34
LBD 76.02 2.00 93.24 154 85.82 1.02 29.26 1.09
RRS 7798 1.80 96.49 0.89 77.10 6.58 35.80 2.43
GLASS HMD 55.44 3.47 50.40 2.87 53.81 2.77 46.09 3.82
LBD 59.17 3.86 43.09 2.27 46.15 2.28 40.59 2.83
RRS 59.36 3.81 52.59 3.87 52.82 3.76 55.86 4.40
HE HMD 64.31 2.28 63.72 1.68 64.73 1.85 61.93 2.70
LBD 63.12 2.43 63.16 2.01 64.52 1.41 63.24 2.79
RRS 68.54 2.10 71.16 1.56 67.22 1.31 58.25 4.17
ORHD HMD 97 .45 0.20 97.58 0.15 97.00 0.14 77.37 1.29
LBD 97.88 0.22 98.65 0.16 98.45 0.17 87.9 0.39
RRS 97.88 0.22 98.65 0.16 98.45 0.17 87.9 0.39
AT HMD 88.00 0.49 88.47 0.49 85.93 0.33 55.11 0.29
LBD 88.97 0.45 88.71 0.52 86.39 0.46 66.64 0.92
RRS 88.97 0.45 90.33 0.43 88.85 0.31 66.45 4.12
SUN1O HMD 50.21 0.99 67.45 1.10 64.73 1.85 45.81 0.92
LBD 55.16 0.92 74.77 1.37 7200 1.10 57.36 1.58
RRS 55.23 1.03 7461 1.31 64.73 1.85 57.30 1.59
WERN HMD 86.48 0.73 90.62 0.39 86.72 0.54 67.52 0.21
LBD 8556 0.78 87.03 0.61 83.57 0.76 88.90 0.49
RRS 86.59 0.67 91.13 0.46 87.80 0.48 94.35 0.38
WINE HMD 9593 1.63 96.59 1.76 96.52 1.72 94.87 1.53
LBD 95.06 1.66 96.66 1.25 96.90 1.01 94.88 2.10
RRS 9593 1.63 97.72 1.65 97.60 0.96 83.38 8.64

Table 4.3.: Average values of the geometric mean of accura€iese@sure) on real datasets when
kNN, svM, MLP andADA are used as base classi er.

44,454.6,4.7,4.8,4.9,4.10,4.11 and 4.12 we summarize the results over all folds according
to a win/tie/loss scheme. Tables 4.4, 4.7 and 4.10 report results with respentitahles 4.5

, 4.8 and 4.11 report results with respect tad& and tables 4.6 , 4.9 and 4.12 report results
with respect td- measure. The win/tie/loss scheme works as follows. Given two methods A
and B to be compared, we assign a point to win/tie/loss class every time method A achieves
a larger/equal/lower performance than method B on a fold. Each tabular shows the number
of win/tie/loss in a relative fashion, since they values have been divided by 40, i.e. the total
number of strati ed cross validation folds. For instance the value 25/25/50 means that method
A against B wins 10 tests (25%), ties 10 tests (25%), and losses 20 tests (50%). Furthermore,
the tabulars report in round parentheses a 1 if the performances computed over the 40 folds
are statistically different according to t-test, with a signi cance leve).06. Otherwise in the

round parenthesis there is zero.

In the following, we report the results by pairwise comparing the three reconstruction rules.
Each comparison is organized in three paragraphs, presenting the results in terms of accuracy,
geometric mean and win/tie/loss. In the last paragraph we report the average performance of
each classi ers over the datasets.
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA

FER 100/0/0 (1) 35/45/20 (0) 90/0/10 (1) 50/10/40 (0) 68.8/13.7/17.5
GLASS 50/40/10 (0) 0/7.5/92.5 (1) 0/10/90 (1) 0/40/60 (1) 12.5/24.4/63.2
[FI 15/5/80 (0)  30/17.5/52.5(0) 30/0/70 (0) 52.5/20/27.5|(031.9/10.6/57.5
ORHD 85/10/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1)| 46.3/2.5/1.2
SAT 95/5/0 (1) 100/0/0 (1) 80/10/10 (1) 100/0/0 (1)| 93.8/3.7/2.5
SUN10 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0
WFRN 25/20/55 (0) 7.5/0/92.5 (1) 30/0/70 (0) 100/0/0 (1) 40.6/5.0/54.4
WINE 0/85/15 (0) 10/80/10 (0) 20/60/20 (0) 30/50/20 (0) 15.0/68.7/16.3

Average 58.8/20.6/20.6 47.8/18.8/33.4 56.3/10/33.7  66.6/15/18.4 -

Table 4.4.: Exhaustive comparison between the performances of different classi ers expressed in terms
of global accuracy (A&C), consideringtBD and HMD reconstruction rules. Each tabular
shows the amount of win/tie/loss 8D comparing versuamMb. Round parentheses reports
one if the performances computed over the 40 folds are statistically different according to
t-test, with a signi cance level 00:05. Otherwise in the round parenthesis there is zero.
Last column shows the average values of win/tie/loss achieved by different classi ers on
a given dataset, whereas last row shows the average values achieved by a given classi er
using different datasets.

LBD VS HMD

We compare now the two most used reconstruction rules in the OpC decomposition, i.e.
HMD andLBD. As shown in formulas 2.3 and 2.6, recall thatiD predicts the nal labels
using the crisp labels only, whereiasD applies a loss measure on the soft labels provided by
each dichotomizer. In particular, faBD we have always used an exponential loss function,
as suggested in [3].

Accuracy In table 4.1 we observe thaBD outperformsHMD in 58% of cases, indepen-
dently of binary learners and datasets used. FurtheroBweoutperformsiMD whatever the
dichotomizer inFER, ORHD, SUN10 andwFRN datasets. Looking this table by columns we
observe thatBD achieves larger results in 75% of cases usingaibe classi er, in 63% of
cases using thevm andmLp, and in 50% of cases using tha k.

Geometric mean  The comparison betwearBD andHMD provides similar observations

to those reported above for the accuracy. Table 4.2 shows that, independently of datasets and
classi ers, LBD outperformsHMD method in the 87% of tests. In particulaBD provides

larger performance than those achievedsp using all the dichotomizers ove€ER, ORHD,

SAT andsUN10 datasets. FurthermotegD show larger results thamviD in the 87% of cases

using thesvm, MLP andADA classi ers and in 75% of cases usingX.

F-measure Performing the comparisons betweesb andHMD, we observe in Table 4.3
that, independently of datasets and classi ems) outperformsHmMbD method in the 52% of
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA
FER 95/5/0 (1) 55/25/20 (0) 100/0/0 (1) 20/80/0 (1) 67.5/27.5/5
GLASS 5/90/5 (0) 10/90/0 (1) 0/100/0 (0) 0/100/0 (0) 3.8/95.0/1.2
[FI 35/0/65 (0) 72.5/0/27.5 (0) 40/0/60 (0) 82.5/0/17.5(0)%7.5/0.0/42.5
ORHD 90/5/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/1.2/1.3
SAT 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 20/80/0 (1) 80.0/20.0/0.0
SUN10 90/10/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/2.5/0.0
WFRN 40/15/45 (0) 40/0/60 (0) 100/0/0 (1) 100/0/0 (1) 70.1/3.7/26.2
WINE 0/85/15 (0) 10/80/10 (0)  20/60/20 (0)  30/50/20 (0) 15.0/68.7/16.3

Average 58.9/26.3/16.8 60.9/24.4/14.7  70/20/10 56.6/38.7/ 4.7 -

Table 4.5.: Exhaustive comparison between the performances of different classi ers expressed in terms
of geometric mean of accuraciesAGc), considering.BD andHMD reconstruction rules.
Each tabular shows the amount of win/tie/loss®b comparing versusMbd. Round paren-
theses reports one if the performances computed over the 40 folds are statistically different
according to t-test, with a signi cance level 6f05. Otherwise in the round parenthesis
there is zero. Last column shows the average values of win/tie/loss achieved by different
classi ers on a given dataset, whereas last row shows the average values achieved by a given
classi er using different datasets.

tests. In particulan.BD provides larger performance than those achievedbp using all
the dichotomizers ovesRHD, SAT andsUN10 datasets. Furthermonggbd show larger results
thanHMD in the 87% of cases using t®A classi er and in 63% of cases usingik and
MLP.

Win/Tie/Loss Last column of Table 4.4 averages out over the binary learners win/tie/loss
results measured in terms atc Its values show thatBbD outperformsHmMD in 50% of
cases with a large difference between the number of wins. Indeed, the differences range
from 51.2% €ER dataset) up to 100¥%s(UN10 dataset). In the opposite situation, i.e. when
HMD wins, the differences withBD are smaller and range from 1.2%I(NE dataset) up to
50.6% GLASS dataset). Last row of the same table, which averages out the results for each
dichotomizer over the eight datasets, shows tisat always outperformsimD.
Similar considerations hold for win/tie/loss results in case atG (Table 4.5). Last col-
umn of this table shows that, independently of the classi er used,outperformsimbD in all
cases. Similarly, the last row shows thab outperformsimD independently of the datasets.
Finally in case ofF measure (Table 4.6) we observe in the last column thab show
larger results tharMD, independently of the classi er used, in the 50% of the cases. In the
last rowLBD show larger results thanmbD in the 50% of the cases independently of the
dataset used. We point out that, when the number of winsbfis larger than those obtained
from hamming, the difference between these two values is larger than the opposite case, i.e.
when the number of wins afmD is larger than those achieved bgD.
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA

FER 100/0/0( 1) 32.5/0/67.5(0) 50/0/50(0) 80/0/20 (1) 66/0/34
GLASs 50/35/15(0) 7.5/0/92.5(1) 0/0/100 (1) 10/0/90 (1) 17/9/74
HFI 20/0/80 (0) 47.5/0/52.5(0) 30/0/70 (0) 62.5/0/37.5(0)40/0/60
ORHD 85/0/15 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96/0/4
SAT 95/0/5 (1) 60/0/40 (0) 70/0/30 (0) 100/0/0 (1) 81/0/19
SUN10  100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0
WFRN 0/0/100 (0) 0/0/100 (1) 0/0/100 (1) 100/0/0 (1) 25/0/75
WINE 0/85/15(0)  10/75/15 (0) 20/60/20 (0)  30/30/40 (0) 15/63/23
Average  56/15/29 45/9/46 46/8/46 73/4/23

Table 4.6.: Exhaustive comparison between the performances of different classi ers expressed in terms
of F measure, consideringLBD and HMD reconstruction rules. Each tabular shows the
amount of win/tie/loss ofBD comparing versusmMbD. Round parentheses reports one if the
performances computed over the 40 folds are statistically different according to t-test, with
a signi cance level 0f0:05. Otherwise in the round parenthesis there is zero. Last column
shows the average values of win/tie/loss achieved by different classi ers on a given dataset,
whereas last row shows the average values achieved by a given classi er using different
datasets.

RRS VS HMD

We compare novrRs results with those achieved IBymD. As in the previous comparison,

we rst present the results in terms of accuracy (Table 4.1), second we introduce the results in
terms of geometric mean of accuracies (Table 4.2) and, third, we corrRpar@ndHMD ac-
cording to the win/tie/loss scheme (Table 4.7 and 4.8 ).

Accuracy Table 4.1 shows thaRrs outperformsHmD in the 72% of tabulars. In case of
ORHD andsuN10 datasetg&Rs outperformsimD for all binary learners.

Furthermore, we notice tha usisym andmLP dichotomizersRRrs outperformsHmp re-
construction rule in seven 7 out of eight datasets.

Geometric mean  Similar observations hold looking Table 4.2 whetes outperforms
HMD in 84% of tabulars. It is worth observing that on three datasets, naorpD, SAT,
SUN10 andwFRN, RRS achieves larger performance thambD independently of used di-
chotomizers. Furthermore we natesoutperformsdiMD in all datasets when it usesik and
SVM binary learners.

F-measure Focusing onthe results intermiBéfmeasurein Table 4.3 we note th&Rsout-
performsHMD in the 65% of the tabulars. Results @RHD, SAT and ORHD, show that
RRSperforms better thanBD independently of the base classi er adopted. As in the case of
GAcCcC, RRsoutperformsdMD in all datasets when it usesik andsvm dichotomizers.
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA
FER 100/0/0 (1) 100/0/0 (1) 60/0/40 (0) 10/90/0 (1) 67.5/22.5/0.1
GLASS 5/90/5 (0) 0/100/0 (0) 10/90/0 (1) 10/90/0 (1) 6.3/92.5/1.2
[FI 90/0/10 (1) 100/0/0 (1) 70/0/30 (1) 57.5/7.5/35 (0)/9.4/18.7/18.8
ORHD 90/5/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/1.2/1.3
SAT 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1 100/0/0
SUN10 90/10/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 97.5/2.5/0.0
WFRN 65/5/30 (0) 97.5/0/2.5 (1) 20/0/80 (1) 100/0/0 (1) 70.7/1.2/28.1
WINE 0/100/0 (0) 17.5/80/2.5(0) 20/70/10(0) 30/40/30 (1) 16.9/7.3/10.8
Average 67.5/26.3/6.25 76.9/22.5/6 60/20/20 63.5/28.4/8.1

Table 4.7.: Exhaustive comparison between the performances of different classi ers expressed in terms
of global accuracy (&C), consideringrRrRs and HMD reconstruction rules. Each tabular
shows the amount of win/tie/loss RRscomparing versusMD. Round parentheses reports
one if the performances computed over the 40 folds are statistically different according to
t-test, with a signi cance level 00:05. Otherwise in the round parenthesis there is zero.
Last column shows the average values of win/tie/loss achieved by different classi ers on
a given dataset, whereas last row shows the average values achieved by a given classi er
using different datasets.

Win/Tie/Loss RRS has a number of wins larger tharmD in 84% of tabulars shown in
Table 4.7. These wins are statistically signi cant in the 82% of cases.

Similar considerations hold for Table 4.8, where we observerRatcollects a number
of wins larger tharimD in the 81% of tabulars, and the differences are statistically signi -
cant in the 69% of tests. Last row and last column of the table showrthabutperforms
HMD whatever the dichotomizer and the dataset, with gaps ranging in [25.1%,74.1%] and
[6.3%,100%], respectively. In the casefomeasure (Table 4.9) RRsotperforms, in number
of wins, HMD in all the cases independently of classi ers (last column) and datasets (last row)
used.

RRS VS LBD

We compare novRRS andLBD reconstruction rules, i.e. our proposal against the other rule
setting the nal decision using soft labels.

Accuracy In Table 4.1 we observe thaRRs outperformsLBD in the 59% of tabulars,
whereas in the 16% of them they perform equally. On the one hand, the rate of success of
RRSraises up 75% in case BER, GLASS, IIFI, SAT, WFRN andwWINE datasets, independently

of the binary learners used. On the other hand, xedske classi er while the datasets

vary, we found thaRRs outperforma.BD in the 60% of the tests.
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA

FER 100/0/0 (1) 100/0/0 (1) 60/0/40 (1) 60/10/30 (1) 80.0/2.5/17.5
GLASS  50/40/10 (0) 37.5/37.5/25(0) 20/20/60 (1) 80/20/0 (11)46.9/29.4/23.7
[FI 65/20/15 (1)  95/2.5/2.5 (1) 40/10/50(1) 40/0/60 (1) 60.0/8.1/31.9
ORHD 85/10/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96.3/2.5/1.2
SAT 95/5/0 (1) 100/0/0 (1) 90/0/10 (1) 70/0/30 (0) 88.8/1.2/10.0
SUN10 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1)  100/0/0
WFRN 50/15/35 (0) 85/2.5/12.5 (0) 20/0/80 (1) 100/0/0 (1) 63.7/4.4/31.9
WINE 0/100/0 (0)  17.5/80/2.5 (0) 20/70/10 (0) 30/40/30 (1)16.9/72.5/10.6

Average 68.1/23.8/8.1  79.4/15.3/5.3  56.3/12.5/31.20 72.5/8.8/18.7

Table 4.8.: Exhaustive comparison between the performances of different classi ers expressed in terms
of geometric mean of accuraciesAGc), consideringRRsandHMD reconstruction rules.
Each tabular shows the amount of win/tie/losgas comparing versusMD. Round paren-
theses reports one if the performances computed over the 40 folds are statistically different
according to t-test, with a signi cance level 6f05. Otherwise in the round parenthesis
there is zero. Last column shows the average values of win/tie/loss achieved by different
classi ers on a given dataset, whereas last row shows the average values achieved by a given
classi er using different datasets.

Geometric Mean  Table 4.2 shows thaRs achieves larger results thasD in the 56%

of tabulars, whereas in the 22% of them they perform equally. We observe thi&t ,0pAT,
WFRN and WINE datasetRRs outperformsLBD at least in the 75% of cases. Furthermore,
looking at the table by columns we notice that usimguksvM, MLP classi ersRRS outper-
formsLBD in the 62% of tabulars.

F-measure Table 4.3 shows thatrsachieves larger results thasD in the 50% of tabu-
lars, whereas in the 13% of them they perform equally. We observe tieERIGLASS,IIFI,
WFRN and WINE dataset®RRsS outperformsLBD at least in the 75% of cases. Furthermore,
looking at the table by columns we notice that usizZnNnk SVM classi ers RRS outperforms
LBD in the 62% of tabulars.

Win/Tie/Loss  The results of win/tie/loss comparisons betwe&ss andLBD in terms of
Accand (Acc are reported in Tables 4.10 and 4.11, respectively. Last column of Table 4.10,
which averages out the win/tie/loss along the various dichotomizer architectures, shows that
() RRshas a number of wins larger thasD in six out of eight datasets, with gap ranging in
[15.0%, 67.5%]; (ii) in the two other datasets wheed outperformsRRs, the performance
gap is smaller than before and it ranges in [1.3%, 35.6%]. The last row of the same table
averages out the results along the datasets and it showsRB&ias a number of wins larger
thanLBD, with performance gap ranging in [9.9%, 59.4%]. Tests are statistically signi cant
in the 53.12% of cases.

Turning our attention to results expressed in terms atG last column of Table 4.11
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA

FER 100/0/0 (1) 100/0/0 (1) 50/0/50 (1) 90/0/10 (1) 85/0/15
GLASS 55/35/10 (0) 47.5/2.5/50 (0) 50/0/50 (0) 80/0 /20 (1) 58/9/33
[1FI 85/0/15 (1) 97.5/0/2.5(1) 40/0/60 (1) 42.5/0/57.5(0)66/0/34
ORHD 85/0/15 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 96/0/4
SAT 95/0/5 (1) 100/0/0 (1) 90/0/10 (1) 70/0/30 (1) 89/0/11
SUN10 95/0/5 (1) 100/0/0 (1) 100/0/0 (1) 100/0/0 (1) 99/0/1
WFRN 50/0/50 (0) 95/0/5 (0) 20/0/80 (1) 100/0/0 (1) 66/0/34
WINE 0/100/0 (0) 17.5/80/2.5(0) 20/70/10(0) 30/30/40 (1) 17/70/13

Average  71/17/13 82/10/8 59/9/33 7714120

Table 4.9.: Exhaustive comparison between the performances of different classi ers expressed in terms
of F measure, consideringRRs and HMD reconstruction rules. Each tabular shows the
amount of win/tie/loss oRRscomparing versusmbD. Round parentheses reports one if the
performances computed over the 40 folds are statistically different according to t-test, with
a signi cance level 0f0:05. Otherwise in the round parenthesis there is zero. Last column
shows the average values of win/tie/loss achieved by different classi ers on a given dataset,
whereas last row shows the average values achieved by a given classi er using different
datasets.

shows thaRRs has a number of wins larger thasD in six out of eight datasets, with gap
ranging in [1.5%, 60.5%]. Last row shows thRRs outperformsLBD in all cases, with a
difference between wins and losses cases ranging in [12.5%, 53.4%].

Focusing on the results expressed in termB afeasure, last column of Table 4.12 shows
thatRRshas a number of wins larger thanD in six out of eight datasets, with gap ranging in
[18%, 60%)]. Last row shows tharsoutperforma.BD in all cases, with a difference between
wins and losses cases ranging in [16%, 57%].

Global Comparison

Figure 4.5 presents global comparison between the 12 tested algorithms. Values are reported
in terms of average results obtained on the 8 domains on the three mettics@Acc and
F measure) and in terms of ranking results. In each plot, tested algorithms'name is reported
concatenating the base classi er's name with the reconstruction method's name. As an exam-
ple considering thevM, as the base classi er, and th&s as the reconstruction method, re-
sulting algorithm's name isvMRRS. On the left side of the gure we report the mean values
and the standard deviation for each algorithm respect each metrws{(tép), GAcc (mid-
dle), F measure (bottom). Algorithms are ordered according to the average value of the
metric at hand. We note that, usirgs, a classi er rank rst compared to when it is adopted
using other reconstruction schemes. It is worth nothing that classi cation algorithm showing
larger performance, on all the metricssigM ranking rst and second, respectively.

To drill down into these general results, we have also computed the global ranking results of
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4. Reconstruction Rule by Selection

Figure 4.5.Left Average Standard deviation for the accuracy (top), Geometric mean of relative
accuracies (middle), (bottom) over the 8 domains for all the classi cation
schemesRight. Ranking results: number of times each algorithm performed signi cantly
better than the others (blue) or worse (red) according to a Student paired t-test ().

In each plot, algorithms are ordered from left to right in decreasing average of the metric
at hand.
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4. Reconstruction Rule by Selection

Dataset Classi ers Average
KNN SVM MLP ADA

FER 55/45/0 (0) 90/10/0 (1) 40/10/50 (1) 70/10/20 (1) 63.8/18.7/17.5
GLASS 0/100/0 (0) 100/0/0 (1) 80/20/0 (1) 90/10/0 (1)| 67.5/32.5/0
LFI 90/5/5 (1) 90/2.5/7.5 (1) 50/20/30 (1) 30/12.5/57.5(1$5.0/10.0/25.0
ORHD 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0
SAT 0/100/0 (0) 100/0/0 (1) 80/0/20 (1) 70/0/30 (1)| 62.5/25.0/12.5
SUN10 30/60/10 (0) 15/55/30 (0) 0/100/0 (0) 0/90/10 (0) 11.3/76.2/12.5
WFRN 80/20/0 (0) 100/0/0 (1) 20/0/80 (1) 100/0/0 (1)| 75.0/5.0/20.0
WINE 15/85/0 (0)  27.5/70/2.5 (0) 10/90/0 (0) 30/50/20 (1) 20.6/73.8/5.6

Average 33.8/64.4/1.87 65.3/29.7/11.9 35/42.5/22.5 48.8/34.1/17.1

Table 4.10.: Exhaustive comparison between the performance of different classi ers expressed in terms
of global accuracy (&c), consideringRRS and LBD reconstruction rules. Each tabular
shows the amount of win/tie/loss RRscomparing versussbd. Round parentheses reports
one if the performances computed over the 40 folds are statistically different according to
t-test, with a signi cance level 00:05. Otherwise in the round parenthesis there is zero.
Last column shows the average values of win/tie/loss achieved by different classi ers on
a given dataset, whereas last row shows the average values achieved by a given classi er
using different datasets.

each algorithm, recording the number of times each one ranked rst, second, third and so on,
over the 8 domains. In gure 4.5, we report these results on the right side. To bring statistical
validation to these ranking, we performed Student paired t-test comparison for each algorithm
against all othersl@x12 = 144 comparisons), recording those for which we can reject the
null hypothesis for levegp = 0:1, and then clustering the signi cant differences as to whether
they arebetter (blue), orworse(red), of the algorithm at hand. Once again, we notice that
learners collect a larger number of signi cant wins wirmsis used rather than when other
reconstruction rules are adopted.

4.3.2. Results on arti cial datasets

The four arti cial datasets highlight performance differences between reconstruction rules in
a controlled scenario where only the number of classes vary, whereas the samples are drawn
from a normal distribution.

For each run of the strati ed cross validation, we perform a 5-fold cross validation.

Preliminarily, we observe that performance differences betw&sandLBD both in terms
of Acc and Gacc are less than 0.5% in average, and not statistically signi cant. For this
reason in this subsection we will consigersandHmD, under the remark that all observations
made forRrRshold also forLBD.

Figure 4.6 reports the accuracy for each dichotomizer on the four datasets, where the x-
axis shows the number of classes of each arti cial datasets and the y-axis reports the value
of accuracy. Blue and red lines correspondktos andHMD results, respectively. In this g-
ure,RRSsalways outperformsimMD. In case of kiN classi er, we notice thaRRs outperforms
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Dataset Classi ers Average
KNN SVM MLP ADA
FER 55/45/0 (0) 90/10/0 (1) 40/0/60 (1) 0/80/20 (0) 46.25/36.25/20
GLASS 0/100/0 (0) 0/90/10 (1) 10/90/0 (1) 10/90/0 (1 5/92.5/2.5
[FI 95/0/5 (1) 92.5/0/7.5 (1) 60/10/30 (1) 35/0/65 (0) 70.6/2.5/26.9
ORHD 0/100/0 (0) 0/100/0 (0) 0/100/0 (0) 0/100/0 (0 0/100/0
SAT 0/100/0 (0) 100/0/0 (1) 80/0/20 (1) 90/0/10 (1 67.5/25/7.5
SUN10  30/55/15(0)  15/55/30 (0) 0/100/0 (0) 0/90/10 (Q) 11.25/75/13.75
WFRN 80/20/0 (0) 100/0/0 (1) 20/0/80 (1) 100/0/0 (1 75/5/20
WINE 15/85/0 (0) 27.5/70/2.5 (0) 10/90/0 (0) 30/50/20 (1)52.58/73.75/5.62
Average 34.4/63.1/2.5 53.1/40.6/6.3 28.8/48.7/23.7 33.2/51.2/15.6

Table 4.11.: Exhaustive comparison between the performance of different classi ers expressed in terms
of geometric mean of accuraciesAGc), consideringRRsandLBD reconstruction rules.
Each tabular shows the amount of win/tie/lossrRefs comparing versugseD. Round
parentheses reports one if the performances computed over the 40 folds are statistically
different according to t-test, with a signi cance level 805. Otherwise in the round
parenthesis there is zero. Last column shows the average values of win/tie/loss achieved by
different classi ers on a given dataset, whereas last row shows the average values achieved
by a given classi er using different datasets.

HMD with a difference ranging between 1.7% and 6.3%. Usingstne classi er this differ-

ence ranges between 3.2% and 24.4%. In cas®afthe gap between the two reconstruction

rules ranges between 6.1% and 15.7%. Finally, in caseLef, accuracy improvement of

RRS with respect toHMD ranges between 1.5% and 5.4%. Furthermore, the charts in Fig-
ure 4.6 show that the accuracies decreases as the number of classes increase: this result is
expected since a larger number of classes imply a more complex dataset. Nevertheless, it
is worth observing thakRrs drops the performances less thamD since in many cases the
accuracies gap betweamrsandHMD increases with the complexity of the recognition task.

Let us now focus the attention to the performance for each class. To this aim, Figure 4.7
plots the values of accuracies per class. For the sake of brevity and to not overload such
graphs with many curves, we report results achieved using one classi cation architecture for
each dataset. Furthermore, in this gure we order class labels so as class with more samples
came rst. For instance, chagtvm-SIM1 represents the values a€g provided by the two
reconstruction rules when avwm is used as a dichotomizer. The x-axis reports the number of
classes, and the corresponding ordinates are the values of accuracies for those classes. In gen-
eral, we observe tha&Rs outperforms4MD in each class except in the rst one. This should
be expected since improving the recognition ability on the minority classes usually harms the
hit rate on the majority one, as it also been notices in case of binary skewed classi cation
problems [125].
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Dataset Classi ers Average
KNN SVM MLP ADA
FER 60/ 40/0 (0) 100/0/0 (1) 50/0/50 (1) 80/0/20 (1) 73/10/18
GLASS 10/85/5(0) 82.5/0/17.5(1) 80/10/10(1) 100/0/0 (L)68/24/8
[1FI 90/0/10 (1) 92.5/0/7.5 (1) 70/0/30 (1) 35/0/65 (1) 72/0/28
ORHD 0/100/0 (0) 0/100/0 (0) 0/100/0 (0)  0/100/0 (0) 0/100/0
SAT 0/100/0 (0) 100/0/0 (1) 80/0/20 (1)  70/0/30 (0) 63/25/13
SUN10 30/45/25(0) 15/52,5/32,5(0) 0/100/0 (0) 0/80/20 (0)11/69/19
WFRN 15/85/0(0) 30/67,5/2,5(0) 20/80/0 (0) 30/50/20 (1)24/71/6
WINE 95/5/0 (1) 100/0/0 (1) 20/0/80 (1) 100/0/0 (1) 79/1/20

Average 38/58/5 65/28/8 40/36/24 52/29/19

Table 4.12.: Exhaustive comparison between the performance of different classi ers expressed in terms
of F measure, consideringrRS and LBD reconstruction rules. Each tabular shows the
amount of win/tie/loss oRRS comparing versusBD. Round parentheses reports one
if the performances computed over the 40 folds are statistically different according to t-
test, with a signi cance level 00:05. Otherwise in the round parenthesis there is zero.
Last column shows the average values of win/tie/loss achieved by different classi ers on
a given dataset, whereas last row shows the average values achieved by a given classi er
using different datasets.

4.4. Discussion

As a rstissue, we notice that in imbalance classi cation tasks the reconstruction rules based
on soft labels, i.e.LBD andRRS, provide larger performances than a rule using the crisp
labels only, i.e. HMD. Indeed, the former reconstruction rules in most of the experiments
provide larger values of both accuracy and geometric mean of accuracies. This therefore
suggests us that they are more suited than the latter to tackle with class skew. Indeed our
guantitative assessment on real and synthetic datasets con rms the intuition that the use of
soft labels enriches the information available to the reconstruction rule, thus permitting to de-
rive more effective criterion. Although this observation should appear straightforward, to the
best of our knowledge, this issue has not been discussed so far in the literature where most of
the existing works focusing on OpC decomposition report only the accuracy and they do not
look at the performances on single and/or under-represented classes. Furthermore, the large
number of tests allows also to quantify this improvement, as detailed in previous sections.
Generally, experiments on arti cial datasets show tRat reconstruction rule, which uses
classi cation reliabilities and it is therefore based on soft labels, outperforms the reconstruc-
tion rule using crisp labels onlyH(wD) whatever the number of samples and classes in the
datasets. This consideration also holds for the experiments in real datasets, where we nd out
that performances raise on datasets with different degree of imbalance. For inseanead

RRS achieve the largest performance improvements in comparisemto on FER, ORHD,

SAT andsuN10 datasets, although they have very different a-priori sample distributions (Fig-
ure 4.4).
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KNN SVM

MLP ADA

Figure 4.6.: Results offdn, SvM, MLP andADA classi er measured in terms of accuracy. Blue and red
lines correspond teRsandHMD results, respectively.

As a second issue, we focus on results measured in terms of accuracy per class. The experi-
ments on arti cial datasets show that on most of the claesesprovides values odicg larger
thanHMD. This consideration holds also for tests on real datasets, although we do not burden
the manuscript with the corresponding large number of plots. Broadlg,achieves more
balanced performances among the classes since very often it provides values ®afd
F measurelarger tharimbD andLBD.

The third issue discusses how much the reconstruction rules provide performances which
are balanced betweenck and Gacc. Indeed, the analysis of the literature on binary im-
balance classi cation task points out that very often the miss rate on the majority class raises
when the the hit rate on the minority class raises too. This phenomenon increases the value of
g but lowers the value acfcc[85, 125, 141]. A similar analysis in case of imbalanced mul-
ticlass classi cation task is missing in the literature. Although its complete description and
discussion is out of the scope of this work, we provide a rst attempt to analyze this behaviour
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SVM-SIM1 KNN- SIM2

ADA- SIM3 MLP- SIM4

Figure 4.7.: Accuracy per class on the synthetic datasets. The title of each chart reports both the clas-
si cation architecture and the dataset considered. Class labels are ordered so as class with
more samples came rst.

by computing the following quantity [125]:

r
. O gl g @)

The measure can be easily interpreted considering #yeplane, wherex andy axes cor-
respond to &£c and (Acc, respectively. The performancs of a classi er measure@es; 9
pair get one point ifi0; 1]x[0; 1] and, hence, ranges in0; 1]. Furthermore, the ideal and the
worst performance corresponds to poi(itsl) and(0; 0), respectively. The closer the point
representing classi er performance to the ideal point, the more balanced the performance over
the classes. On this basis, we compufer the four dichotomizer architectures and the eight
datasets used. Then, we normalize values providerR8andLBD with respect to values of
HMD, achieving . Such data are graphically represented as follows (Figure 4.8). For each
dataset and reconstruction rukRSsandLBD), we determine the dichotomizer providing the
minimum value of , i.e. the best one, and we report this value in the gure. Moreover, for
each point of the gure, we draw also a geometric shape giving information on the consid-

46



4. Reconstruction Rule by Selection

A

Figure 4.8.: Radar plot of values forrrRsandLBD reconstruction rules.

ered dichotomizer. For instance, consider He® dataset. The orange and blue lines repre-
sentRRsandLBD performance: the corresponding dichotomizers aresthe and the kN,
whereas values are 0.51 and 0.74, respectively. The gure permits us to derive the following
observation. First, values aBD andRRs are always below 1: this means that they provide
values of smaller thariMD, thus being able to improve the recognition capability over the
classes. This observation con rms once more the rst issue of this section, i.e. soft labels
are more suited than crisp labels to tackle with class skew. Second, we notice that the blue
line is always inner to the orange one. This implies thaalues provided bgrRrsare always
smaller, and therefore better, than thosa.Bb, thus con rming thatRRS in several cases
achieves values of @c and (Acc that are, together, larger than those attained by other rules.
Hence,RRSsimproves the recognition ability on the minority classes affecting the recognition
accuracies on majority classes to a lesser extent than the other rules.

As nal remark we observe that th&/m architecture seems to be the best suited to work
with the proposed reconstruction rule since the overall classi cation system. Indeed, the per-
formances (Ac GAcc and ) achieved when this classi er is used as dichotomizer
are larger than those achieved by other classi ers, wkrais used. In the case of&c, Ta-
ble 4.1 shows thagvm classi er achieves larger results thank MLP andADAIN the 62.5%
of cases. In particular, using this classi @Rs outperformsHmMD and LBD in the 87.5%
and 75.0% of cases. Turning our attention to performances measured in terms ofa@Gd

, Table 4.2 shows thatvm classi er shows larger performances than others in
the 75% of cases, whaxrsis used. Furthermore, respect ta€& results,RRS outperforms
HMD andLBD in the 87.5% and 62.5% of tabulars respectively. Respect to results
our proposal outperforraMb andLBD in the 100% and 75% of tabulars respectively.
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reconstruction rule

Results achievedRsrules, presented in the previous Chapter 4, show that using the classi -
cation reliability in the reconstruction stage leads to an improvement of the systems' perfor-
mances. Motivating by these favourably results we aim to further investigate the effect of this
guantity in designing reconstruction rule suited for skewed data. With this aim, we notice that
in a decomposition scheme for each input sample a dichotomizer produces a raw dutput (
that can be transformed in a reliability value. Hence, after the dichotomizer classi cations,
we have a vector that collects all these real values, describing each input sample in a new
feature space. The task to assign to this vector a label that corresponds to the nal decision
of the system is a classi cation problem itself. Considering the problem from this point of
view, we investigate the reconstruction rules that address the problem using a statistical ap-
proach. Inspired by a statistical reconstruction rule [122] that was designed for Opc and PC
decomposition methods, we present here an extension of this method in the easecafe-
composition approach. Since our nal task is to handle imbalanced datasets, and aware of our
study of the use of reliability at reconstruction level, we decide to improve the existing rule us-
ing reliabilities instead of raw classi ers outputs. The resulting reconstruction rule is referred
to as Reliability-based Softmax reconstruction rul@ 8. Results achieved testing this rule
on eight datasets and three classi ers show two main results. The rst one is that the proposed
rule improves system recognition performance both in therm of accuracy, geometric mean of
accuracies an& measure when compared with well established reconstruction rules. The
second one, according with the results that we achieved in the other proposals, shows that the
reliability improves system performance. The latter result arises from the comparison of the
statistical method [122] extended to teeoc framework when it use reliability and when it
use only the raw outputs.

Next section presentsBS method and, at the end of the section, discusses the differences
between our proposal and [122]. In the sections 5.2 and 5.3 we present the experimental set-up
and the results, respectively. In the last section we discuss results achieved.

5.1. Method

When we use BS reconstruction rule we can considers dichotomizers' outputs as a new
feature vector which have to be classi ed. We present here an approach that solves this clas-
si cation task using the Softmax regression. According to e c decomposition method

a unigue codeword, i.e. a binary string, is assigned to each class. Assuming that the string
hasL bits, the recognition system is composed by L binary classi cation functions. These
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5. Reliability-based Softmax reconstruction rule

binary classi ers provide the binary decision vect(x) and the reliability vector (x) =

Since we aim at designing a reconstruction rule suited for imbalanced datasets, we want
use information owned by classi ers reliability in the reconstruction stage. In order to do this,
we introduce the quantity; (x) that summarizes both the information provided by classi ers.
Indeed | (x) integrates the crisp label and the classi cation reliability that jtite binary
classi er provides for each sampieby multiplying them. Hence, for the whole decomposi-
tion we have: (x) = (X)T M (X) = f 1(X); 2X);:::; L(X)g, where the symbol
represents the element-wise product.

Considering now (x) as second-order features, we have to face with the classi cation
problemf (x);! (x)g, where each sample(x) is a vector described bl features with
label! (x). The classi cation task consists in predicting the lapét) 2 , where =

omit in the following the dependence of all symbols from sample

We solve this classi cation task by using the softmax regression to estimate the posterior
distribution of classi cation acts. Softmax regression is a natural choice since multiclass prob-
lems show multinomial distribution for the output. De ning a setof 1 vectors of param-
eters, = f 1; 2;::1; k 10, to parameterize the multinomial distribution overdifferent

: e .
p(! =vyij ;)= Pr— i=1,215K L (5.1)

P
It is straightforward observing tha{! = y«j ;) =1 < (! = yi;) . The nal
label is set by:

y = argmaxi(p(! =vVvij ;)) : (5.2)

In order to perform this reconstruction technique we have to estimaf this aim, con-
sider a training ser composed ofm, samples. Denoted by" the values of of samples
belonging tatr, can be estimated maximizing the log-likeliholod

K ¥ el I lyi=lg
I() = log (P——)"" (5.3)
i=1 =1 j=1 €'

wherelf g denotes the index function, which is one if the statement inside the bracket is
true, zero otherwise.

To reduce the correlation between classi er outputs when we perform the maximization
of eq. 5.1 we usé 2 penalty, as suggested in [122]. Note thdt is computed performing
a stacking procedure, which avoids problem of reusing training samples during parameter
estimation. Indeed, we rst divide into p folds, and then use 1 folds for training and one
to estimate | , whereh 2 [1;p]. When all folds were considered as test fold, we compute

tr — tr ~P
=f 0 %=

49



5. Reliability-based Softmax reconstruction rule

Algorithm 1: Reliability-based Softmax reconstruction rule
Input: Z = f(x;;!'i)gwithi =21;:5Nx; 2<;12 = flg;001kgg
Input: D : K L code matrix.
1:8x 2 Zmap! 'f  1;1g" usingD.
2: SplitZ in T folds.
3: Initialize second order feature s&= ;.
4:
repeat
Get T-1 folds as training seZ¢,) and 1 as test seZ ().
fort=1toK do
-Train binary classi erC usingZy, = f(x;;y;);y; 2f 1,199
-Test binary classi elC, usingZr.
-Collect hard label and reliability:(M (x); (x)); 8X 2 Zte0!
end for
-Compute the : (x) = M (x) (X); 8X 2 Zre.
-Collect the new featuresS:addf (x);! );8x 2 Z1Q.
until all folds tested
oS!
repeat
Get T-1 folds as training se®f,) and 1 as test se§f.) from S.

-Compute the probabilitp(! = yij ;) for each sample iy, respect each class.
-Compute sample clags= argmax;(p(! = vij ;))
until all folds tested

Reliability-based Softmax reconstruction rule pseudo code The pseudo-code of
the proposed method is reported in Algorithm 1. The inputs are the da@tasshposed oN
pairs sample-labdi(x;;! i)g and the code matri® . The six steps of the algorithm do the

following:

1. We useD to map the multiclass labels of all samples in the new set of binary labels, so
that the label of each sample is now a vectoKobinary values.

2. Our experiments are performed according t®-#ld cross validation: hence, in the
second step we divide the original dataseT ifolds.

3. We de ne a new set, named 8gcond order feature s&trepresenting the new meta-
level dataset which will used to compute the Softmax regressios dach sample is
described by a new feature vector given bk ), computed in the following step of the
algorithm.

4. For each iteration of the cross validation, we dse 1 folds to train the pool oL

collect the labels and the reliabilities of the classi cation on all samples of the test set
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Zt and then we compute the quantityx ). This quantity and its true multi-class label
are added t&.

5. At this point, after that all the folds were classi ed in the previous step, in th€ as¢
collected the second level features for each samplé&s ikVe divide the new dataset
Sin T folds according to the splitting that have been performed on the origindl.set
For each iteration of the cross validation, we Use 1 folds to estimate parameters
maximizing the log-likelihood 5.1 and the test fold to compute posterior probabilities:
p(! = vyj ;) . Final system outputs are computedyas argmax;(p(! = vij ;)) .

Remarks We discuss now the differences between our proposal and the contribution pre-
sented in [122]. These differences consist into three main points.

First, in [122] the authors use the raw outputs of the binary classf ¢rg = ff; (x)gjL:l
to compute the features of second ord¢r) = (x)T f (x). This choice does not permit
to use classi ers providing only crisp labels, e.g. the k-Nearest Neighbour. Conversely, our
contribution uses the quantity(x) = (x)T M (x), which combines the crisps labels with
the reliability, i.e. a measure providing us more information about the classi cation process.
Note that this choice permits us to employ any kind of classi ers.

Second, in [122] OpC and PC decomposition are considered, whereas we focus on the
Ecocframework.

Third, the performances of 85 reconstruction rule are assessed with particular reference
to classi cation of samples belonging to under-represetend classes.

Note that the novel use of the reliability in the regression not only extends the work of [122],
but provides larger classi cation performance as will be reported in Section 5.3.

5.2. Experimental set-up

In this section we give a short description of the speci ¢ experimental set-up used to validate
our proposal. We rst provide the list of datasets used in our tests, then the list of performance
metrics chosen and nally we present details of the experimental protocol.

5.2.1. Datasets

From the dataset presented in 3.1, we use 8 public datasrieg8 DERM, ECOLI, FER,

GLASS, IIFI, SEEDS WINE) which provide an heterogeneous set of classi cation tasks in terms

of number of samples, features and classes. Datasets shows also different skewness among
classes permitting to assess how the classi cation system performs when a class is under-
represented in comparison to others. Their characteristics are summarized in Table 3.1.

As previously done in Chapter 4, in Figure 5.1 we graphically represent the degree of im-
balance of the used datasets[88]. The chart represents the prior probability of the minority
class as a function of prior probability of the majority class. The feasible space is below the
diagonal line of the plot, which also corresponds to equiprobable classes. This line can be
therefore thought of as the edge of balanced problems. The balance disappears towards the
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Figure 5.1.: Dataset distribution as function of prior distribution of majority (x-axis) and minority (y-
axis) class.

bottom right corner. Point (0.5,0.5) corresponds to two equiprobable classes. This graphical
representation helps us to observe how much the datasets are heterogeneous with respect to
the imbalance ratio. In the gure we observe tsaEDsdataset is perfectly balanced whereas
datasets such as AssandDERM have a strong degree of imbalance.

5.2.2. Classi ers

We test three different types of classi ers, belonging to different classi cation para-digms.
Therefore, the binary learners are: AdaboagiA) as an ensemble of classi ers, Multilayer
PerceptronNLP) as a neural network and Support Vector Machisen) as as a kernel ma-
chine.

SVM we use a Gaussian radial basis kernel. Values of regularization pardinatet
scaling factor are selected withifi; 10*] and[10 #; 10}, adopting dog scale to sample

the two intervals. The value of each parameter is selected according to average perfor-
mance estimated by ve fold cross-validation on a validation set. The reliability of a
SVM classi cation is estimated as proposed in [107], where the decision value of the
SVM is transformed in a posterior probability.

MLP we use a humber of hidden layers equal to half of the sum of features number plus
class number. The number of neurons in the input layer is given by the number of the
features. The number of neurons in the output layer is always two whemLithas
employed as dichotomizer. To evaluate the reliability of MLP decisions for multiclass
classi cation problems we adopted a method that estimates the test patterns credibility
on the basis of their quality in the feature space [27].

ADA we use as the "Adaboost M1” algorithm proposed in [53], where weak learners are
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decision stumps. The number of iteration is equal to 100. The reliabilitiessf clas-
si cations are estimated using an extension of method [27], where we compute the
difference between the outputs related to winning and losing class.

5.2.3. Performance metrics

On the motivations discussed in section 3.3 we use as performance metrics the a@ugacy (
and the geometric mean of relative accuraciesdG).

5.2.4. Experimental protocol

We test BS method to solve multiclass tasksdnocframework. We applfcocusing the
method proposed by Dietterich et al. [40] for code generation. In particuldr, ifK 7
we use exhaustive codes;8f K 11 we generate exhaustive codes and then select a
good subset of decomposition matrix columns given by the GSAT algorithm [119]. In this
decomposition framework we compare the proposed reconstruction ruleiwithLBD, and
with the method proposed in [122], which is referred tosas in the following. In this lat-
ter case, according to [122], the softmax regression is applied on the second order features
computed starting from classi ers soft labé&léx) = ff; (x)gjLz1 . Hence (x) is computed as

(x)T f (x). Furthermore, all experiments reported in the following are performed accord-
ing to a ve folds cross validation.

5.3. Results

This section presents the results achieved by the three classi ers on the tested datasets varying
the reconstruction rule used, as reported in section 5.2.

Tables 5.1, 5.2 and 5.3 report results obtainedsiayi, MLP and ADA classi ers, respec-
tively. For each table, the top, middle and right side reports performance measured in term of
accuracy, geometric mean of accuracies Bmdeasurerespectively.

Let us now focus on the results obtained by $ive1 classi er (Table 5.1). First we observe
that results measured in terms of accuracy show tB& performs better than others methods
for all datasets. Second results expressed in termsaafcG show that BS outperforms
other methods in 7 cases out of 8. Thitdneasure values show that BS outperforms
other methods in 6 out of 8 datasets. Focusing now on the most imbalanced domains such
asECOLI, FER, GLASs andWINE (Figure 5.1), we observe thatel$ achieve for all the three
metrics better performance that other methods in all domains ad exceptraoanin term of
GAcc. Consider thesLASS dataset we notice thatd$ show largest performance differences
with other methods. In this case, the second best methedijsbut its value of @Qcc is
32.18% lower than the one provided bg&.

Turning our attention to Table 5.2 reporting results achievesiby classi er, we observe
that in terms of A£C RBS achieves the best results in four out of eight datasets. However, there
is not another prevalent method, since best performance are attairsed &gdLBD method
in one and two datasets, respectively. With respect4c &, RBS method shows: (i) larger
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Datasets
BRTISS DERM ECOLI FER GLASS |IIFl SEEDS WINE
Accurag
HMD 71.67 96.96 87.75 97.48 63.88 6250 92.85 97.79
LBD 7158 97.23 87.76 97.60 67.87 67.33 93.33 98.33
SHI 8434 82.74 88.06 92.80 62.66 56.00 90.95 74,79
RBS 90.43 99.45 88.98 98.97 77.11 68.00 93.81 98.87
G mean
HMD 4058 96.60 80.40 96.98 23.34 56.12 92.72 97.52
LBD 40.73 96.83 87.86 97.24 36.62 64.89 93.12 98.17
SHI 80.00 80.00 81.62 80.00 41.18 25.82 79,76 64,72
RBS 80.00 99.47 79.06 99.08 73.36 65.40 93.75 98.75
F measure
HMD 69.32 97.46 8090 9491 6152 61.86 92.83 97.86
LBD 71.70 97.46 84.25 9482 60.78 67.44 93.25 098.28
SHI 89.43 80.60 67.72 81.45 64.61 56.52 72.00 77.00
RBS 89.42 9849 8576 96.49 72.02 67.34 93.75 98.78

Rule

Table 5.1.: Support Vector Machine results in term afdytop), Gacc(middle) and= measure (bot-
tom), usingHMD, LBD, SHI and R8BS reconstruction rules.

Datasets
BRTISS DERM ECOLI FER GLASS IIFl SEEDS WINE
Accuragy
HMD 68.09 98.36 88.06 9452 71.25 68.84 94.28 97.19
LBD 67.17 98.36 88.03 95.32 73.08 70.14 95.23 97.14
SHI 92.72 64.19 70.06 4554 62.27 4351 47.61 33.78
RBS 90.00 99.17 86.88 98.62 76.95 69.31 95.23 97.74
G mean
HMD 13.86 98.40 80.77 92.86 1494 6557 94.20 96.98
LBD 27.73 98.40 82.02 9357 14.88 68.67 95.14 97.30
SHI 80.00 40.79 53.66 35.15 22.84 3500 37.03 8.91
RBS 80.00 99.10 78.78 98.11 55.68 67.27 95.14 97.53
F measure
HMD 62.84 98.27 83.79 93.63 63.00 66.84 9435 97.22
LBD 63.82 98.27 84.04 94.32 6397 6950 9524 97.13
SHI 82.49 49.64 6298 4049 5273 39.35 4294 26.52
RBS 77.37 98.77 8141 98.27 71.00 6839 9525 97.73

Rule

Table 5.2.: Multilayer Perceptron results in term of&(top), Gacc(middle) andF measure (bot-
tom) usingHMD, LBD, SHI and R8BS reconstruction rules.
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Datasets
BRTISS DERM ECOLI FER GLASS IIFl SEEDS WINE
Accuragy
HMD 6891 9754 8594 53.87 68.77 60.02 90.95 96.09
LBD 69.72 98.09 74.05 5764 71.18 66.34 92.85 96.87
SHI 87.22 94.79 82.82 6059 69.36 56.66 43.81 40.53
RBS 9445 98.08 88.12 64.70 74.68 6650 92.38 94.96
G mean
HMD 2795 9530 74.05 0.52 0.00 5490 90.76 96.09
LBD 4497 97.08 7890 1143 0.00 64.69 92.68 96.87
SHI 77.75 94.06 59.78 5150 37.93 54.25 33,55 0.00
RBS 92.14 97.47 80.02 53.65 12.76 65.14 92.21 95.38
F measure
HMD 65.50 98.27 7899 36.89 4892 57.93 91.01 96.24
LBD 67.92 98.27 83.46 41.17 53.69 6558 92.84 96.76
SHI 8586 98.77 82.17 58.02 67.56 5552 39.71 34.09
RBS 87.77 99.08 84.02 58.39 68.83 6588 9237 95.19

Rule

Table 5.3.: AdaBoost classi er results in term o€A (top), Gacc(middle) andF measure (bottom),
usingHMD, LBD, SHI and R8S reconstruction rules.

performance than other methods on four datasets out of eight, (ii) best performanee on B
Tiss dataset which are also equal to those providedbBymethod, (iii) lower performance
thanLBD method in the other two cases. Focusing on results in terfhragasure we ob-
serve that RS performs better than other methods in ve cases out of eight. Considering
again datasets with highest degree of imbalaE@®( |, FER, GLASS andWINE), RBS per-
form better in 3 out of 4 domains in respect of al the three considered metrics. Consider again
the GLASs dataset where BS shows best performance: in case afd the difference with
the second best methodBD) is 3.77%, in case of &cc the difference with respect tHIis
32.84% and in case &f measure the difference with respect t®D is 7.03%.

Turning our attention to results achieved using Ama classi er (Table 5.3), we observe
that RBS globally has larger performance than other methods. Indeed, considering both the
accuracy and the geometric mean of accuracies$ Rhows the largest values in ve out
of eight datasets, whereas considerihgheasure, it overcomes others methods in six out
eight datasets. Focusing on the most imbalanced datasets ( FER, GLASS and WINE)
RBSperforms better than other methods on: i) 3 out of 4 datasets considering the accuracy;
i) on 2 out of 4 datasets consideringaGc; iii) on 3 out 4 cases considerirfg measure.
Furthermore, it is worth observing the value oA& on theGLASS dataset: only the use of
a reconstruction rule based on Softmax regression permit to attains a valuecaof arger
than zero. This means that batlwD andLBD misclassi es all samples of one class, at least.
This does not occur fagHI and RBS methods.
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Figure 5.2.Left. Average Standard deviation for the accuracy (top), Geometric mean of rela-
tive accuracies (middle), F-measure (bottom) over the 8 domains for all the classi cation
schemesRight. Ranking results: number of times each algorithm performed signi cantly
better than the others (blue) or worse (red) according to a Student paired t-test ().

In each plot, algorithms are ordered from left to right in decreasing average of the metric
at hand.

Figure 5.2 presents global comparison between the 12 tested algorithms. Values are re-
ported in terms of average results obtained on the 8 domains on the three metcs (A
GAcc and ) and in terms of ranking results. In each plot tested algorithms'name
is reported concatenating the base classi er's name with the reconstruction method's name.
As an example considering tise/m, as the base classi er, and thaR, as the reconstruction
method, resulting algorithm's name $s¥MRBF. On the left side of the gure we report the
mean values and the standard deviation for each algorithm respect each metiic@og),

GAcc (middle), (bottom). Algorithms are ordered according to the average value
of the metric at hand. We note that, using®R a classi er rank rst compared to when it is
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adopted using other reconstruction schemes. It is worth nothing that classi cation algorithms
showing larger performance, on all the metrics, sy andMLP ranking rst and second,
respectively.

To drill down into these general results, we have also computed the global ranking results of
each algorithm, recording the number of times each one ranked rst, second, third and so on,
on the 8 domains. In gure 5.2, we report these results on the right side. To bring statistical
validation to these ranking, we performed Student paired t-test comparison for each algorithm
against all others ( comparisons), recording those for which we can reject the
null hypothesis for level , and then clustering the signi cant differences as to whether
they arebetter(blue), orworse of the algorithm at hand. Once again, we notice that learners
collect a larger number of signi cant wins whersB is used than when other reconstruction
rules are adopted.

Figure 5.3.: Average values (left) over the 8 domains for all the classi cation schemes. Ranking
results (right): number of times each algorithm performed signi cantly better than the
others (blue) or worse (red) according to a Student paired t-test ( ). In each plot,
algorithms are ordered from left to right in decreasing average bdlote that lower values
of correspond to better classi cation performance

5.4. Discussions

From the analysis of results intables 5.1, 5.2 and 5.3 and gures 5.2 we provesBahBthod
provides performances that are larger that those provided by other methods in the large major-
ity of tests, regardless of the classi er architecture. Furthermore, from rank results in gure
5.2, we observe that, not considering® SsHI is not the best performing method. These
observations suggest again that the introduction of the reliability in the reconstruction rule
provides a signi cant advantage. Moreover, considering the results achieved on the most
imbalanced datasets, namefiGoLI, FER, GLASS and WINE, we notice that this advantage
permits the proposed reconstruction rule to handle imbalanced domains effectively. Indeed
the improvements are not limited to the accuracy, but they regard also Abe @nd the
. This is important since these two last metrics take in account the behaviour of

the classi cation system with respect to the minority classes (Section 3.3).

As a nalissue, we notice that the proposed reconstruction rule provides valuesodnd
GAcc that are, together, larger than the corresponding ones of other reconstruction rules. This
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results is summarized in Figure 5.3 in term of the following quantity [125]:

r
. eyl o 54

The measure can be easily interpreted considering ®yeplane, wherex andy axes corre-
spond to ALC and (ACC, respectively. The performancs of a classi er measurethas; 9

pair get one point ifi0; 1]x[0; 1] and, hence, ranges in0; 1]. Furthermore, the ideal and the
worst performance corresponds to poi(itsl) and(0; 0), respectively. The closer the point
representing classi er performance to the ideal point, the more balanced the performance over
the classes. The ideal condition implies thais equal to zero and the worst one thats

equal to 1. Hence in the gure 5.3 lower is the value better is the corresponding system per-
formance. The notation and plot type of gure 5.3 are the same that we have used in gure 5.2
described above. In this gure we report the average value foir each algorithm on all the
datasets (left) and the corresponding rank score (right). Results point outaBaitriproves
performances of the system, so tisatv, MLP andADA using R8BS rank on the top 4 ranks.

We deem that this result is relevant since most of the algorithms coping with class imbalance
improve the geometric mean of accuracies harming the global accuracy [125]. Being able to
provide larger values of both@c and Gacc implies that RBBS improves the recognition abil-

ity on the minority class without, or with a small extend, affecting the recognition accuracies
on majority classes.
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6. Boosting Nearest Neighbours for
the ef cient posterior probability
estimation

In this chapter we present an ef cient posterior probability estimation by boosting nearest
Neighbours. Boosting refers to the iterative combination of classi ers which produces a clas-
si er with reduced true risk (with high probability), while the base classi ers may be weakly
accurate [81]. The nalstrongclassi er h, satis esim(h) R. Such an output carries out

two levels of information. The simplest one is the sign of the output. This discrete value is
suf cient to classify an unknown observatiort h(x) predicts thatx belongs to a class of
interest iff it is positive. The most popular boosting results typically rely on this sole informa-
tion [98, 114, 115] (and many others). The second level is the real value itself, which carries
out as additional information a magnitude which can be interpreted, applying some suitable
transformation, as a “con dence” or reliability in the classi cation. This continuous informa-
tion may be tinto a link functionf : R! [0; 1] to estimate conditional class probabilities,
thus lifting the scope of boosting to that of Bayes decision rule [54]:

Prly = 1jx] = f(h(x)) : (6.1)

To date, estimating posteriors with boosting has not met the same success as predicting (dis-
crete) labels. It is widely believed that boosting and conditional class probability estimation
are, up to a large extent, in con ict with each other, as boosting iteratively improves classi-
cation at the price of progressively over tting posteriors [19, 54]. Experimentally, limiting
over tting is usually obtained by tuning the algorithms towards early stopping [18].

We analyse, in the light of this problem, a recent algorithm has been proposed to leverage
the famed nearest neighboN(N ) rules [105],UNN. This algorithm,uNN, ts real-valued
coef cients for examples in order to minimize a surrogate risk [12, 98]. These leveraging
coef cients are used to balance the votes in the kalNNy rule. It is proven that, as the
number of iterationg ! 1, UNN achieves the global optimum of the surrogate risk at hand
for a wide class of surrogates called strictly convex surrogates [99, 98].

Perhaps the simplest road towards computing the conditional class probabilities for each
classc, also called (estimated) posteriors estimators consists in adopting a OpC decomposition
approach. In such a way we ha@eroblems with corresponding sam@@€ = f (x;;Vic);i =
1; 2; :::;; mg. For each of these problems, we learn frBra classierh : O! R out of which
we may accurately compute (6.1), typically wif(x) = f (h(x)) for some relevant function
f.

There exists a convenient approach to carry out this path as a whole, for each elass
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f(x)
A 1 x)? %(1+ X) x(1 x)
1 xInx
B log,(1+exp( X)) [1+exp( x)] 1 XNl x)
Ny o 1 x log, x
C Iog2(1n+2 ) [1+2 %] (1 x)logy(1 x)
D x+ Trxz 3 leerg Cx(T %)
E  Ix(sign(x) 1) Lo 2minfx; 1
2X(519 0 if x<0 S
exp( x) [1+exp( 2)] * N/A
1+ 2 1
2 T 4 1 Hx T
G 1+ 1TX 1+ ﬁ N/A

Table 6.1.: Examples of surrogates(Throughout the work, we ldh denote the base4ogarithm,
andlog, (x) = In( x)=In(z) denote the basedogarithm). From top to bottom, the losses
are known as: squared loss, (normalized) logistic loss, binary logistic loss, Matsushita loss
[99, 98], linear Hinge loss, exponential loss, Amaridoss, for 2 ( 1;1) [98]. Strictly
convex losses are A, B, C, D, F, G. Balanced convex losses are A, B, C, D (E corresponds
to a limit behavior of balanced convex losses [98]). For eactve give the corresponding
estimatorgd.(x) = f (h(x)). (Theorem A.2 and Eqgs (A.6, A.8) below: replacen f (x)
by hopt (X)), and if they are balanced convex losses, the corresponding concave signature
(See text for details).

1;2;:::; C: learnh by minimizing asurrogate riskover S [12, 98, 99]. A surrogate risk has
general expression:

xXn

Whi) = 7 (eh(x) ; 62)

i=1

for some function that we call asurrogate loss Quantityyi.h(x) 2 R is called theedge

of classi er h on example(x;;y;) for classc. The demonstration that exist a subclass of
surrogate losses, whose minimization brings simple and ef cient estimators for Bayes (true)
posteriors f(x) = Pr[y. = 1jx]), can be found by interested reader in the appendix A.

In the following of this section we show explicit convergence rates towards these estimators
for UNN, for any such surrogate loss, under a Weak Learning Assumption which parallels
that of classical boosting results. We provide also experiments and comparisons on synthetic
and real datasets. displaying that boosting nearest neighbours brings very good results from
the conditional class probabilities estimation standpaintfioutthe over tting problem of
classical boosting approaches.
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Algorithm 2: Algorithm UNIVERSAL NEARESTNEIGHBORS UNN(S; ;K )

Input: S= f(x;;yi);i =1;2;:m; x; 2 0;y; 2f 1;1g%g, strictly convex loss (De nition A.1)k 2 N ;
Let ; 0;8) =1;2;:5;m;

forc=1;2;::;C do

Letw r ©0)1;

fort=1;2;::;T do

[1.0] Let]j Wic(S;w);

[I.1] Let ; 2 R solution of:

X
Yie Yje I iYieYie + 1 ( wi) =0; (6.3)
ik

0.218i:j i, let

wior iYieYie 1 T wi) (6.4)

L [1.3] Let ic ic ¥t s

L P
Output: H(x) = iex 0 Yi

6.1. Leveraging and boosting Nearest Neighbors

The nearest neighbor rule belongs to the oldest, simplest and most widely studied classi -
cation algorithms [28, 38]. We denote ByN(x) the set of thek-nearest neighbors (with
integer constank > 0) of an examplgx;y) in setS with respect to a non-negative real-
valued "distance” function. This function is de ned on dom&nand measures how much
two observations differ from each other. This dissimilarity function thus may not necessarily
satisfy the triangle inequality of metrics. For the sake of readability, we let x denote the
assertion that examp(&; ; y;) belongs t&kNN(x ). We shall abbreviate  x; byj ¢ i.To
classify an observation 2 O, thek- NN gule H overS computes the sum of class vectors
of its nearest neighbors, that ist(x) = ; , 1 y;, where isthe Hadamard product.
H predicts thak belongs to each class whose corresponding coordinate in the nal vector is
positive. Aleveragedk- NN rule is a generalization of this to:
X
H(x) = i Yis (6.5)

iokX

where ; 2 R® is a leveraging vector for the classes/in Leveraging approaches to nearest
neighbors are not new [117, 118], yet to the best of our knowledge no convergence results
or rates were known, at least until the algoritlumn [105]. Algorithm 2 gives a simpli ed
version of theuNN algorithm of [105] which learns a leverag&e NN . Oracle Wc(S;, w)

is the analogous foN N of the classical weak learners for boosting: it takes learning sample
Sand weightav overS, and returns the index of some examplé&iwhich is to be leveraged.

[105] prove that for any strictly convex loss UNN converges to the global optimum of the
surrogate risk at hand. However, they prove boosting-compliant convergence rates only for
the exponential loss. For all other strictly convex losses, there is no insight on the rates with
which UNN may converge towards the optimum of the surrogate risk at hand. We now provide
such explicit convergence rates under the followikigak Learning Assumption
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WLA : There exist somé& > 0;% >0 such that, givenank 2 N ,c = 1;2;::;;C and any
distributionw overS, the weak index chooser oraclei@returns an index such that
the following two statements hold:

@ Proll «i] %
(ii) I:)rw [yjc 6 yicjj k i] = #or I:)rw [yjc 6 yicjj k i] =+ #.

Requirement (i) is a weatoveragerequirement, which “encourages” \@/to choose indexes

in dense regions 0. Before studying the boosting abilities ofNN, we focus again on
surrogate risks. So far, the surrogate risk (6.2) has been evaluated with respect to a single
class. In a multiclass multilabel setting, we may computettital surrogate risk over all
classes as:

. . 1%,
s(H) = c s(he;0) ; (6.6)
c=1

whereH is the set of allC classi ershy; hy; :::; hc that have been trained to minimize each
"s(;;0;c= 1,2, C. We split classi ers just for convenience in the analysis: if one trains
asingleclassieH : O f 1;2;::;;Cg ! R like for example [115], then we de ng. to
be H in which the second input coordinate is xed to be Minimizing the total surrogate
risk is not only ef cient to estimate posteriors (Appendix A.2): it is also useful to reduce the
error in label prediction, s thq;total surrogate risk is an upperbound fdddhaming risk
[115]:"§(H) = (1 =(mC)) 5—1 iz1 I[Yichc(xi) < 0], wherel[:] denotes the indicator vari-
able. It is indeed not hard to check that for any strictly convex surrogate lpgge have
"H(H) (1= (0)) "g(H). We are left with the following question abouiiN:

"are there suf cient conditions on the surrogate losthat guarantee, under the stl4A | a
convergence rateowards the optimum of (6.6) witaNN ?”

We give a positive answer to this question when the surrogate loss meets the following smooth-
ness requirement.

de nition [78] is saidto bd strongly smooth iff there exists sorhe 0 such that, for
allx;x°2 int(dom( )),D (xkx) 5(x° x)? where

D (xkx) = % ) x° x)r (x) (6.7)

denotes the Bregman divergence with generatf98].

Denoten,; = jf i 1]« igjthe number of examples i@ of which (x;;y;) is a nearest
neighbor, anch = max; n;. Denote alsdH , the leveragedk- NNy which minimizes
"s(H); it corresponds to the set of classi efr\lgpt of Appendix A.2 that would minimize (6.2)
over each class. We are now ready to state our main result (remarl (ki) (0)).
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theorem SupposeWWLA ) holds and choose asis any! strongly smooth, strictly convex
loss. Then for any xed 2 ['g(Hopt); (0)], UNN has t a leveragedk- NNy classier H
satisfying"q(H) provided the number of boosting iteratiohsn the inner loop satis es:

( (@) )imn

T 22948

(6.8)

Theorem proof can be found in Appendix B.

Appendix A.2 has underlined the importance of balanced convex losses in obtaining simple
ef cient estimators for conditional class probabilities. Coupled with Theorem 6.1, we now
show thatuNN may be a fast approach to obtain such estimators.

corollary  Consider any permissiblethat has been scaled without loss of generality so that
(=)=1, (0)= (1) =0. Then for the corresponding balanced convex loss  and
under theWNLA , picking
T > mn (6.9)

2#29% minxz(o;l) %

in the inner loop ofuNN, for eachc = 1; 2;:::; C, guarantees to yield an optimal leveraded
NNy H, satisfying"s(H) = "g(Hopt). This leveraged- NN yields ef cient estimators for
conditional class probabilities, for each class, by computing:

Pe(x) = 1 -H(he(x)) : (6.10)

(Proof omitted) For the most popular permissible functions (Table 6.1), quanitity .1 %

does not take too small value: its values are respectielyIn 2, 4 for the permissible func-
tions corresponding to the squared loss, logistic loss, Matsushita loss. Hence, in these cases,
the bound fofT in (6.9) is not signi cantly affected by this term.

6.2. Experiments

In this section we present tests performed in order to validate our proposal. We perform three
different kinds of tests. The rst one, performed on simulated datasets, aim at evaluating
the goodness-of- t of the posterior estimator. The second one testsagainstsvm on

the task of classify challenging SUN computer vision database. The last one, performed on
heterogeneous datasets, evaluates the bene t of using posterior probabilities to set the nal
decision.

We have tested three avors ofNN: with the exponential loss (F in Table 6.1), the logistic
loss (B in Table 6.1) and Matsushita's loss (D in Table 6.1). All three are respectively referred
to asuNN(exp), UNN(log) anduNN(Mat). Itis the rsttime this last avor is tested, even from
the classi cation standpoint. For all these algorithms, we compute the estimation of posteriors
as follows: we use (A.8) fouNN(exp), (6.10) for uNN(log) and UNN(Mat). Leveraging
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ic see (6.11) g:w  g(w)
A W, 1 Wi 2 jeYicYic
B In Wi Wi
1 ch wiIn2+(1 w;In2) exp( jc Yic Yjc )
ic Wi
C IogZ 1 Wi wi +(1 ) 21 cYic Yjc
D 2Wie 1 1 q 1 wit wi2 wjcYicYic
20 Wjc(l Wje) 1+ jZCWi 2 wi)+2(1 w; )P Wi (2 Wi) jcYic Yic
E N/A N/A
Wi ¢
F %In 1 \;Vjc exp( jcyicyjc)
2
2 2 1 1
Wi c T 1 W, c T 2
G 142 (Wje) ( ic) 142 14 jcyicij+ %9*2+Wii

2 2
(Wje)T +1 W)t

Table 6.2.: Computation ofc and the weight update rule of our implementatiowsf, for the strictly
convex losses of Table 6.LUNN leverages examplefor classc, and the weight update is
that of example (See text for details and notations).

UNN(exp) o UNN(Mat)

Figure 6.1.: From left to right: example of simulated dataset witk 1:1; the estimated posterior
for class 1 obtained byNN(exp); the corresponding gridwiseL divergence for class 1;
the estimated posterior for class 1 obtainedulbyw(Mat); the corresponding gridwiseL
divergence for class 1 (see (6.13) and text for details).

coef cients estimation and weights update strategies for these three method are reported in
the following paragraph.

Computing leveraging coef cients and weights update p Fix for shortqﬂ? = fi:
jP k I"Vic = bycgforb2 f +; g . (6.3) may be simpli ed as 249 T +r Y w) =

1259 r +r Y w) . Thereis no closed form solution to this equation in the general
case. While it can be simply approximated with dichotomic search, it buys signi cant compu-
tation time, as this approximation has to be performed for each cécig)e We tested a much
faster alternative which prod,_ujces results that arg in general experimentally quite competitive,
consisting in solving instead: ,qowWir ()= ,qowWr ( ). We get equivalently
that satis es: J J

= — (6.11)
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6
I UNN(exp)
UNN(exp) =—UNN(log)
0.6F = UNN(mat)
5 —— UNN(log) —SVM

= UNN(mat)
—_—SVM

Symmetric Kullback Leibler Divergence
w

Figure 6.2.: Average Symmetria_-divergence (left) and JensenShannon divergence (right) as a func-
tion of on simulated datasets, fonN(exp), UNN(log), UNN(Mat) (left, k = 10) and
SVM.

. . P P P P
with Wjc = ( 1259 w;)=( 1259 w; + 1259 w;). Remark the similarity with (A.5). Table
6.2 gives the corresponding expressions fand the weight updates.

6.2.1. Results on simulated data

In order to evaluate the goodness-of-t of the proposed posterior probability estimator, we
perform tests using simulated data and adopting speci ¢ performances metrics.

Datasets

We crafted a general domain consisting®f 3 equiprobable classes, each of which follows

a Gaussian distributioN( ; 1), for 2 [0:1; 1:1] with steps 0f0:005 and remains the

same. For each value of we compute the average over ten simulations, each of which con-
sists of 1500 training examples and 4500 testing examples. We get overall several thousands
datasets, on which all algorithms are tested.

Classi er

The competitor that we chose to validateN posterior estimation performance is them.

On synthetic datasets/M performs equally using both linear and radial basis function kernel.
Therefore, in the following we indicate simply wigwvM the linear Support Vector Machine.
Values of regularization paramet@ris selected withirfj1; 10*] and[10 #; 10], adopting dog

scale to sample the two intervals. The value of each parameter is selected according to average
performance estimated by ve fold cross-validation on a validation set.sker, we use the
method of [107], which, given avm outputf for classc, forms the posterior:

1 .
1+exp(af (x)+ b '

Pe(x) = (6.12)
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k UNN(exp) UNN(log) UNN(Mat) SVM

10 0.599 1.029 0.848
20 0.372 0.760 0.687

SymmDu. 3, 0.293 0.610 0.646°233
40 0.254 0.534 0.632
10 0.067 0.113 0.0562
20 0.045 0.086 0.045

Dus 30 0.036 0.072 0.0439-2%6
40 0.032 0.065 0.043
10 90.32 89.59 90.58
20 90.62 89.53 90.81

F-measure 5, 90.70 89.26 90.84 2102
40 90.72 88.82 90.88

Table 6.3.: Average results over simulated datayfox (exp), UNN(log), UNN(Mat) with four different
values ofk, and for support vector machines with lineax ).

wherea andb are estimated by maximizing the log-likelihood of the training sample with a
ve-fold cross validation.

Metrics

We use three metrics to evaluate the algorithms. We compute rst Kullback-Lekalgd{ver-
gences between the true and estimated posterior and after their mean obtaining the Symmetric
Kullback-Leibler divergences:

= P R Pe(x) . - P R Pc(X)
Dk (pkp) Pricl Prix]pc(x)In 255d 5 D (Pkp) Priel Prix] pe(x)In 265d
(6.13)
) o1
SymmDy, (pjip) = E(DKL(pkp)+ D (pkp)) (6.14)

and also we compute JensenShannehdivergence:

Dys(fiip) = (Dic (Pka) + D (pke)) (615)

whereq is the average of the two distribution. Our estimaBgymmbD«,_ Dy, (pkp) and
DysDw. (Pkp) rely on a simple ne-grained grid approximation of the integral over the subsets
of O of suf cient mass according to. We use also the measureto evalutate classi cation
performance.
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3
2m 2m

—10m 24 —10m

Figure 6.3.: Average symmetnia -divergence (top) and JensenShannon divergence (bottom) as a func-
tion of on simulated datasets, fonN(exp) (left), UNN(log) (center), uNN(Mat) (right),
when the number of boosting iteratioiisvaries inf 2m; 5m; 10mg. The color code in
the same on each plot. Notice the differences inyttszale forunn(Mat) (see text for
details).

Results

Figure 6.1 presents an example of simulated datasets, along with results obtaimed &xp) and
UNN(Mat) from the standpoints of the posterior estimates &netivergence on the same
class. The estimators are rather good, with the largest mismatchediiergence) located
near the frontiers of classes. AlssyN(Mat) tends to outperforruNN(exp).

Figure 6.2 synthesizes the results from theand Js divergence standpoints. Two clear
conclusions can be drawn from these results. Fusty is the clear winner ovesvm for the
posteriors estimation task. The results of each avoual is indeed better than those of
SVM by orders of magnitude. This is all the more important as the kernels we used are the
theoretical kernels of choice given the way we have simulated data. The second conclusion is
thatuNN(Mat) is the best of all avors olUNN, a fact also con rmed by the synthetic results
of Table 6.3. ThexL andJsdivergences ofJ/NN(Mat) are in general of minute order with
respect to the others. Its behavior (Figure 6.2) is also monotonous: it is predictable that it
increases with the degree of overlap between classes, that is, wittom theclassi cation
standpoint, the average F-measure metrics display a very slight advantage.to

The most important conclusion that can be drawn from the simulated data is shown in Figure
6.3: as the number of boosting iteratidhscreaseyNN doesnotover t posteriors in general.

The only hitch — not statistically signi cant — is the case> 0.7 for unN(Mat), but the
differences are of very small order compared to the standard deviationsiaf ttieergence.
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6.2.2. Results on the SUN database domains

We present now results on SUN dataset. We described this dataset in section 3.1. Our interest
in this dataset rely on the fact that SUN is one of the most challenging dataset in the eld of
large scale image classi cation task.

UNN(exp) UNN(log) UNN(Mat) SVM,
F R F R F R F R

SUN10 89.91 21.35 84.46 5.18 72.473.39 87.99 22.32
SUN20 82.82 36.64 72.34 851 5546251 74.60 33.25
SUN30 73.39 49.92 61.02 14.99 40.835.99 62.81 39.95

Table 6.4.: Area under tHe measure (in percentage) and (R)ejection rate on the SUN databases. For
each database, the best F and R are writtdoold faces

Datasets

We have crafted, out of SUN computer vision database [149], three datasets, consisting in
taking all pictures from the rst tenqUN10), twenty 6UN20) or thirty (SUN30) classes.

Classi er

For experiments on SUN dataset we use the same classi ers con guration that we used on
simulated data described above.

Metrics

On these data, we compute a couple of metrics. First, we compute the F-measure of the clas-
si ers (the harmonic average of precision and recall), based on thresholding the probabilistic
output and deciding that belong to clasg iff p.(x) , for varying 2 (¥=;1). Second,

we compute the rejection rate, that is, the proportion of observations for high <

Either we plot couples of curves for the F-measure and rejection rates, or we summarize both
metrics by their average values asanges througli’=; 1), which amounts to compute the

area under the corresponding curves.

Results

Table 6.4 summarizes the results obtained. This table somehow con rms that classi ca-
tion and posterior estimation may be con icting goals when it comes to boosting [54, 19],
as UNN(Mat) achieves very poor results compared to the other algorithms. Furthermore,
UNN(exp) appears to the clear winner over all algorithms for this classi cation task. These
results have to be appreciated in the light of the rejection rates: in comparison with the other
algorithms,uNN(Mat) rejects a very small proportion of the examples, this indicating a high
recall for the algorithm. Figure 6.4 completes the picture by detailing F-measure and rejection
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Figure 6.4.F measure (top row) and rejection rates (bottom row) on the SUN domains, @ith 10
(left), C = 20 (center) andC = 30 (right, see Table 6.3 for notations).

rates plots. The F-measure plots clearly display the better performancesi¢xp) com-
pared to the other algorithms, and the fact that(Mat) displays very stable performances.
The rejection rates plots show thatin(Mat) indeed rejects a very small proportion of exam-
ples, even for large values of

6.2.3. Results on heterogeneous domains

We present here results achieved using several heterogeneous datasets belonging to real world
domains. In these experiments we verify the ability of the estimated posterior probability to
improved classi cation performances when it is used to set nal label. In order to reach this
goal we use two different reconstruction rules. The rst one estimates the nal label according
to theHamming decodingHMD), whereas the second one sets the nal label according to the
largest probabilityargf max.(p.(x))g among those computed by dichotomizers that output
a crisp label, = 1. When there are no dichotomizers that output a crisp Igbel 1, we
consider the class associatectgf minc(1 p.(x))g, i.e. the class associated with the lowest
probability to predict &. = 0. In the following, this rule is referred to asDs.

Experiments are performed using a 10-fold cross validation scheme. Each fold is randomly
generated maintaining the a-priori distribution of the original dataset. Reported results are
computed averaging out the results obtained for each fold.

Datasets

We used one private and ve public datasets, belonging to images classi cation problems of
different biomedical domains (BCELLS, DERM, IIFI,YEAST, ICPRsor , ICPRsir ). They
are characterized by a large variability with respect to the number and type of features, classes
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and samples, allowing the assessment of classi ers' performances in different conditions. Syn-
thetic data about the used datasets are reported in Table 3.1.

Classi er

Competitor chosen to asses the proposed approach as&thand the kiN. We tested both
thesvm with a linear kernel$vm,) and thesvm with Gaussian kernek{mr). Forsvm, val-
ues of regularization paramet@ris selected withiril; 10*] and[10 #; 10], adopting dog scale
to sample the two intervalssvmr's values of regularization paramet€rand scaling factor

are selected withifil; 10°] and[10 4; 10], adopting dog scale to sample the two intervals.
The value of each parameter is tuned using a ve fold cross-validation on a validation set. The
reliability of asvm (both linear and Gaussian) classi cation is estimated as proposed in [107],
where the decision value of the classi er is transformed in a posterior probability.

The KNN require no speci ¢ set-up. We test valuesloequal tof 1; 3; 5; 79 and choose
the value providing the best performances on a validation set according to a ve-fold cross
validation. We estimate the reliability of each classi cation act following the method presented
in Section 2.4.

Metrics

As measure of classi er performance, we compute the accuracy andrtteabure described
in Section 3.3.

Results

We report in Table 6.5 the classi cation performance providedubyw, svm (with linear

and Gaussian kernel) andik classi ers on the six datasets. For each classi cation task, we
report the results obtained using botibs and HMD reconstruction rules. In order to pro-

vide a global comparison among the results, we calculate the relative performance of each
experimental con gurations with respect to the others (Figure 6.5). We record the number of
times each ranked rst, second, third and so on, on the 6 domains. To bring statistical val-
idation to these ranking, we performed Student paired t-test comparison for each algorithm
against all othersl@x12 = 144 comparisons), recording those for which we can reject the
null hypothesis (that the per-domain difference has zero expectation) forpevél:1, and

then clustering the signi cant differences as to whether they are in favor, or not, of the al-
gorithm at hand. The six ranks for each classi cation method are then summed up to give a
measure of the overall dominance among the methods in terms of accuracy. An analogous
procedure has been carried out in case of F-measure. The analysis of data reported both in
Table 6.5 and Figure 6.5 permits us to derive the following three considerations. The rst one
concerns the comparison betweens andHMD reconstruction rules. Independently of the
classi er and of performance metric considered, the former improves classi cation results in
comparison with the latter ov®0% We deem that such performance improvement is mainly
due to the fact thauDs rule uses not only predicted crisps labelsHa® does, but also the
corresponding classi cation reliability. The second consideration focusesven observing
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Classi ers
Datasets ~ Metrics (%) UNN( ) UNN( ) UNN( ) SVM SVMr kNN
MDS HMD MDS HMD MDS HMD MDS HMD MDS HMD MDS HMD
Acc 87.1 87.1 86.5 865 743 743 87.7 87.7 852 852
B1OCELLS 777 777 769 76.9 789 669 669 769 769 752 752
Acc 97.5 96.5 964 97.7 971 97.1 87.7 969 955 959 955
DERM 97.3 97.3 96.1 957 97.3 96.5 812 95.1 954 952
Acc 695 69.3 688 69.1 68.8 67.2 66.7 715 674 703 68.7
IFI 685 684 684 703 68.0 66.8 648 70.3 655 69.6 67.7
Acc 59.1 58.0 57.1 555 539 535 528 483 545 541 543
YEAST 50.7 46.3 475 454 415 409 412 242 417 46.1 445
Acc 88.1 85.3 846 859 805 654 66.0 863 816 251 26.6
ICPR 87.4 849 86.2 833 811 723 551 852 798 215 21.2
Acc 95.7 949 955 954 949 0918 898 953 944 951 093091
ICPR 95.6 944 954 956 951 90.7 855 952 940 948 937

Table 6.5.: Average values () of accuracy and F-measure of the different classi ers. We mark highest
value (blue) and the second one (green) in each row.

that its performance improve using posterior based reconstruction rule. Indesdcheme
equals or improves/NN performance wittHMD scheme in 85% of the cases, at least. For
instance, focusing on ICPR datasetMDS improvesuNN performance for all the three
con gurations of , at least, in terms of both accuracy and F-measure. The third observa-
tion concerns howNN performance compares with those provided by other classi ers. From
a general point of view, turn our attention to Figure 6.5 where we notice that the value of
UNN( ) rank is larger than the ones of other classi ers. Focusing now on recognition per-
formance we note thaiNN classi ers withMDS scheme always overcome performance of
SVM . UNN also overcome kN results with at least one con guration among the three tested.
Comparing performance efNN with those ofsvMr we note that results are quite similar.

Figure 6.5.: Ranking results: number of times each algorithm performed signi cantly better than the
others (blue) or worse (red) according to a Student paired t-test ( ), for the accuracy
(left), Fmeasure (right) over the 6 domains for all the classi cation schemes. In each plot,
algorithms are ordered from left to right in decreasing average of the metric at hand.
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6.3. Discussions

Boosting algorithms are remarkably simple and ef cient from the classi cation standpoint,
and are being used in a rapidly increasing number of domains and problems [18]. In some
sense, it would be too bad that such successes be impeded when it comes to posterior esti-
mation [19]. Experimental results display that this estimation is possible, but it necessitates a
very ne tuning of the algorithms [18].
The point of our work is that estimating class conditional probabilities may be possible, with-
out such tedious tunings, and sometimes ewdthout over tting, if we boost topological
approaches to learning like nearest neighbors. There is a simple explanation to this fact. For
any classi er, the conditional class probability estimation for soma (A.4) is be the same
as for any other observation in the vicinity ®f where the “vicinity” is to be understood
from theclassi er standpoint. When boosting decision trees, the vicinity @brresponds to
observations classi ed by the same leafasAs the number of leaves of the tree increases,
the vicinity gets narrowed, which weakens the estimation in (A.4) and thus over ts the cor-
responding estimated density. Ultimately, linear combinations of such trees, such as those
performed in AdaBoost, make such a ne-grained approximation of the local topology of data
that the estimators get irreparably con ned to the borders of the intgdya) [19]. Nearest
neighbors do not have such a drawback, as the $enhefarest neighbors faof some observa-
tion x spans a region dD which does not change throughout the iterations. Nearest neighbor
rules exploit a topology of data which, under regularity conditions about the true posteriors,
also carries out information about these posteriors. For these reasons, nearest neighbors might
be a key entry for a reliable estimation of posteriors with boosting. Because of the wealth
of "good” surrogates, this opens avenues of researdeam the most accurate surrogate
on a data-dependent way, such as when it is parameterized (Amdass, see Table 6.1 ).
Furthermore with this contribution we have shown that using posteriors to set the nal la-
bel improvesuNN performances. Indeed on heterogeneous datasets it achieves larger results
when using a reconstruction rule based on classi ers' reliability rather than a reconstruction
rule based on classi ers' row outputs. In this section we have shown also that thanks to this
ef cient posterior estimatioruNN can compete witlsvm, one of the most powerful classi er
especially on dataset such as SUN.

We nally want notice that there is, an analytical and computational bottleneckin as
the leveraging coef cients are solutions to non-linear equations with no closed form expres-
sion in the general case. Boosting compliant approximations are possible, but in the context
of NN rules, they are computationally far too expensive to be performed at each boosting iter-
ation on large datasets. Hence, in appendix C we present "Gentle Nearest Neighbors Boosting
that performs adaptive Newton-Raphson steps to minimize any balanced convex surrogate
with guaranteed convergence rates avoiding this drawback.
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In this thesis we focused on the issues related to the classi cation of samples belonging to
multiclass imbalanced datasets. To the best of our knowledge, existing works in this eld can
be divided in two groups. In the rst one there are methods tackling directly the polychotomy.

In the other one there are approaches that decompose the problem in binary tasks. In the latter
case, existing solutions are proposed only at level of the single dichotomies. furthermore, the
analysis of the literature show that no attempts exist to solve this problem using reconstruction
rules speci cally tailored to skewed data.

We therefore aim at designing a reconstruction rule addressing this open issue. We also
decided to use the classi cation reliability into the decision stage. This measure indicates
the classi er “con dence” towards its prediction taking into account elements such as dataset
noise, borderline samples, outliers, etc. Hence, it owns useful information related to the learn-
ers predictions.

Considering the characteristics of the reliability, we designed a novel heuristic reconstruc-
tion rule. This rule copes with multiclass imbalance problems using classi ers' reliability in
the One-per-Class reconstruction rule. The proposed rule has been compared also with other
two well-established reconstruction criteria on a set of benchmark real and arti cial datasets,
testing four classi cation architectures. Our results showed that the proposed reconstruction
rule provides larger performances than those provided by other criteria. In particular, in sev-
eral cases it attained values of accuracy, geometric mean of accuraciEsvagabsure that
were, together, larger than those attained by other rules. Hence, our proposals improved the
recognition ability on the minority classes affecting the recognition accuracies on majority
classes to a lesser extent than the others. Furthermore, the large number of experiments we
carried out showed and that employing reliability in the reconstruction rule permits to achieve
larger values of accuracy, geometric mean of accuraciesandasure than using only the
crisp labels.

Aiming at further exploring the use of reconstruction rules to handle imbalanced datasets,
we presented a reconstruction rule in theoc decomposition scheme. We considered the
outputs of binary classi ers as a new feature vector. Indeed, each dichotomizer output can be
transformed in a reliability value and the collection of these values maps the input sample in a
new feature space. From this point of view the reconstruction stage is similar to a classi cation
task. Hence, we have proposed an extension of a statistical rule suited for the OpC and PC
decomposition scheme in tleeoc case. According to this rule the nal label is set choosing
the class with the highest posterior probability estimated by the softmax regression. Beside
to the extension to a new decomposition scheme, we modi ed also the rule in order to use
classi ers' reliability. Indeed, the original approach uses directly the dichotomizers' soft label
without using the reliability. Given eight heterogeneous datasets, our proposal was satisfactory
compared with two popular reconstruction rules using three different classi cation algorithms.
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We also provided comparison with the original method [122] extended tbcle case. This
comparison, together with results obtained against other rules, shows that the use of reliability
at the reconstruction stage improves system performance in term of accuracy, geometric mean
of accuracy, as well a8 measure. Hence, we can conclude that the rule shows satisfactory
performances when it deals with imbalanced domains.

Exploring the issue of reliability and posterior estimation, we noticed that, several methods
exist to derive this quantity from classi er soft outputs. In some cases, when the classi cation
function satis ed the requirements of suf cient regularity, the reliability can be estimated in
terms of posterior probability. Nevertheless, we noticed also that, up to now, ef cient estima-
tors for posterior probability for boosting algorithms have not met enough attention. Indeed,
even if boosting algorithms are ef cient for classi cation and are being used in a rapidly
increasing number of domains, it is widely believed that boosting and conditional class prob-
ability estimation are in con ict with each other. Existing experimental results on this subject
show that this estimation is possible, but it necessitates a very ne tuning of the algorithms.
On these reasons, we developed an ef cient method that permits to estimate class conditional
probabilities without such tuning. That is possible boosting topological approaches to learning
like nearest neighbors. As shown in Chapter 6 we achieved this resultwsigvhich lever-
ages nearest neighbors while minimizing a convex loss. Our contribution is threefold. First,
we showed that there exists a subclass of surrogate losses whose minimization brings simple
and statistically ef cient estimators for Bayes posteriors. Second, we showed explicit con-
vergence rates towards these estimatorsfay, for any such surrogate losses, under a Weak
Learning Assumption which parallels that of classical boosting results. Third and last, we pro-
vided experiments and comparisons on synthetic and real datasets, including the challenging
SUN computer vision database. Results clearly display that boosting nearest neighbors may
provide highly accurate estimators, sometimes more than a hundred times more accurate than
those of other contenders like support vector machines. It is worth noting thatloes not
over- t posteriors increasing the number of boosting iteration. This is an interesting results
since it is widely believed that boosting and posterior estimation are in con ict with each other,
as boosting iteratively improves classi cation at the price of progressively over tting poste-
riors [19, 54]. Furthermore, we observed that using the estimated posterior in the decision
making process we improved\N classi cation performances.

Summarizing, in this thesis we presented two reconstruction rules based on the classi cation
reliability and an ef cient posterior estimator for boosting algorithm by Nearest Neighbors.
Results achieved on the proposed reconstruction rules show two main results. The rst one is
that overall performances of the tested systems improve when reliability-based reconstruction
rules are used. The second one is that the proposed rules improve the performance with respect
of both the geometric mean of accuracies &nueasure proving that the rules are suited for
skewed domains. Furthermore, in this thesis we showed that the use of classi ers' reliability
in reconstruction rule is an useful instrument to improve performance with respect to minority
classes.

Future works are directed towards a further exploration of the role of classi cation reliabil-
ity in the reconstruction rule. In this work, we extend the [122] in #lzedc scheme proving
that the use of reliability improves the performance with respect of the original method. For
this reason a future contribution will be to verify if the use of this quantity can improve also
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the performance of the softmax reconstruction in the original One-per-Class and Pair Wise
Coupling schemes. Finally, another future work is provide a full comparisons between all the
reconstruction rules suited for skewed data across the decomposition schemes. This future
work could show the existence of a rule suited for imbalanced domains independently of the
datasets, of the learners, and of the decomposition schemes.
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A. Surrogates Losses

In this Appendix we provide the demonstration that exist a subclass of surrogate losses, whose
minimization brings simple and ef cient estimators for Bayes (true) posteriors. These demon-
strations have been provided together with Richard Nock, Wafa Bel Haj Ali, Frank Nielsen,
Michel Barlaud. [33].

A.l. Surrugate Losses

The surrogate risk is an estimator of tinee surrogate riskcomputed oveD:

"o(h;0 = Eol (Ych())] : (A1)

Any surrogate loss relevant to classi cation [12] has to nségi(hop: (X )) = sign(2Prplyc =

1jx = x ] 1), wherehgy, minimizesEp[ (ych(x))jx = x?]. Hence, the sign of the optimal
classi er hyy is as accurate to predict class membership as Bayes decision rule. This Fisher
consistency requirement foris calledclassi cation calibration[12]. We focus in this work

on the subclass of classi cation calibrated surrogates that are strictly convex and differentiable.

de nition [98] A strictly convex lossis a strictly convex function differentiable on
int(dom( )) satisfying (i)im( ) R™, (ii) dom( ) symmetric aroun@, (iii) r (0) < O.

De nition A.1 is extremely general: should we have removed conditions (i) and (ii), The-
orem 6 in [12] brings that it would have encompassed the intersection between strictly con-
vex differentiable functions and classi cation calibrated functions. Conditions (i) and (ii) are
mainly conveniences for classi cation: in particular, it is not hard to see that modulo scaling
by a positive constant, the surrogate risk (C.2) is an upperbound of the empirical risk for any
strictly convex loss. Minimizing the surrogate risk amounts thus to minimize the empirical
risk up to some extent. We de ne the Legendre conjugate of any strictly convex lass

’(x) = xr (x) (r (x)). There exists a particular subset of strictly convex losses
of independent interest [98]. A function: [0;1] ! R™ is calledpermissibleiff it is dif-
ferentiable on(0; 1), strictly concave and symmetric arourd= 1=2 [80, 98]. We adopt the
notation = [98].

de nition  [98] Given some permissible, we let  denote thdalanced convex lossvith
signature as:

. (0O
= ©

(X) (A.2)
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A. Surrogates Losses

Balanced convex losses have an important rationale: up to differentiability constraints, they
match the set of symmetric lower-bounded losses de ning proper scoring rules [98], that is,
basically, the set of losses that t to classi cation problems without class-dependent misclas-
si cation costs. Table 6.1 provides examples of surrogate losses, most of which are strictly
convex surrogates, some of which are balanced convex surrogates. We have derived Amari's

-loss from Amari's famed divergences [4] (proof omitted). The linear Hinge lossad
a balanced convex loss, yet it gures the limit behavior of balanced convex losses [98]. Re-
mark that all signatures are well-known in the domain of decision-tree induction : from the
top-most to the bottom-most, one may recognize Gini criterion, the entropy (two expressions),
Matsushita's criterion and the empirical risk [80, 99].

A (regular) one dimensiona&xponential familj4] is a set of probability density functions
whose elements admit the following canonical form:

pixj 1 = exp(x (1)) Po(x) ; (A.3)

wherepy(Xx) normalizes the density, is a strictly convex differentiable function that we call

the signatureof the family, and is the density's natural parameter. It was shown in [98]

that the ef cient minimization of any balanced convex surrogate riske—a surrogate risk

with a balanced convex loss — amounts to a maximum likelihood estimatonH (x) at

somex for an exponential family whose signature depends solely on the permissible function
. [98] suggest to use the correspondagpectedparameter of the exponential family as the

posterior:

Prly=1jx] = Pr [y=1jx;H]=r _}(H(x)) 2 [0;1] : (A.4)

r _! plays the role of the link function (6.1). The quality of such an estimator shall be ad-
dressed in the following Section.

A.2. Strictly convex losses and the ef cient estimation
of posteriors

There is a rationale to use (A.4) as the posterior: the duality between natural and expectation
parameters of exponential families, via Legendre duality [12, 98], and the fact that the domain
of the expectation parameter of one dimensional exponential families whose signature is (mi-
nus) a permissible function is the intery@] 1] [98]. We improve below this rationale, with the
proof thatBayes posteriorsatisfy (A.4) for the classi er which is the population minimizer

of (A.4).

theorem Suppose strictly convex differentiable. The true surrogate sk (yich(x))]
is minimized at the uniqui,; (X) satisfying:

r ( hopt(x)) — pc(X)

(o) 1 pux) (A-5)

88



A. Surrogates Losses

Furthermore, is is a balanced convex loss, then the population mininfiggrof Ep[  (yich(x))]
satis es:

pe(x) = 1 —*(hopt(X)) ; (A.6)
for which

(pe(x))  (0) |
(= (O

Eo[  (Yichopt (x))] (A.7)

(Proof omitted) Table 6.1 provides examples of expressiong.far as in (A.6). Eq. (A.5)
in Theorem (A.2) brings that we may compute an estimpipr) as:

r( hx)) :
ro(h(x))+r ( h(x))

This simple expression is folklore, at least for the logistic and exponential losses [18, 54]. The
essential contribution of Theorem A.2 relies on bringing a strong rationale to the use of (A.4),
as the estimators converge to Bayes posteriors in the in nite sample case. Let us give some
nite sample properties for the estimation (A.4). We show that the sample-wise estimators
of (A.6) are ef cient estimators of (A.6); this is not a surprise, but comes from properties of
exponential families [97]. What is perhaps more surprising is that the corresponding aggre-
gation of classi ers is not a linear combination of all estimating classi ers, but a generalized

r —L-mean.

Pe(X) =

(A.8)

theorem Suppose we sample datasetsﬁ‘c);j = 1;2;:5n. Denoteﬁopt;j the popu-
lation minimizer forESfc)[ (Yich(x))]. Then eachd; (x) = r 71(ﬁopt;j (x)) is the only
ef cient estimator forp.(x). The corresponding classi efﬁopt aggregating alﬁopt;j, is:
Ropr(x) = 1 - h o dx2s | Yoy (X)) ;8x 2 [;S, wherel n, nis the
number of subsets containixg

proof Letuspick = “in (A.3) and conditiorp[xj ] = p[xj ;x ]for eachx 2 O. We
let = p(x ) (remark that 2 dom( ) = [0;1] because is permissible) the expectation
parameter of the exponential family, and thus r —( ). Using the fact that - = r _, we
get the score:

. - @nplxj ]
s(x = ————==xr —=();
(xj) @ ()
and sax is an ef cient estimator for —( ) = ;infact, itis the only ef cient estimator [97].
Thus,p.(x ) is an ef cient estimator fop;(x ). There remains to use (A.6) to complete the
proof of Theorem A.2. |
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B. Universal Nearest Neigbours
convergence

In this Appendix we provide the proof o theuN convergence given any strongly smooth,
strictly convex loss under the Weak Learning Assumption. This proof has been developed
together with Richard Nock, Wafa Bel Haj Ali, Frank Nielsen, Michel Barlaud. [33].

theorem Suppose\WWLA ) holds and choose asis any! strongly smooth, strictly convex
loss. Then for any xed 2 ['g(Hopt); (0)], UNN has t a leveragedk- NNy classier H
satisfying"q(H) provided the number of boosting iteratiohsn the inner loop satis es:

( (0 )Imn

T
21298

(B.1)

Proof sketch: To t UNN to the notations of (C.1), we lét. represent the leveraged
NNy in which each ; is restricted to j.. We rst analyze"(hc; ¢) for some xedcin the
outer loop of Algorithm 2, after all . have been computed in the inner loop. We adopt the
following notations in this proof: we plug in the weight notation the iteratiamd clas<, so
thatwt(ic) denotes the weight of exampte at the beginning of thefér ¢’ loop of Algorithm
2.

is! strongly smooth is equivalent to being strongly convex with parameter * [78],

that is,

1 .
~(w) 2—|w2 is convex, (B.2)

where we use notation(x) = ?( x). Any convex functiorh satis esh(w9  h(w) +
r n(W)(w® w). We apply this inequality taking as the function in (C.28). We obtain,
8t=1;2:;T;81=1;2;::;m;8c=1,2::;C:

.. 1
jiwg o Wit i w? (B.3)

(c)
D-w ol

(t+1) i

On the other hand, Cauchy-Schwartz inequality and (C.10) yield:

|
v 2
X 2 X X
g§2s 1 Wy wid)? PwP o (B4
i i [HE i ki
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B. Universal Nearest Neigbours convergence

(c) (o)
i Wi T

P
lemma UndertheWLA , indexj returned by WC at iterationt satis es
24%

(proof omitted) Lettinge(t) 2 f 1;2;:::; mg denote the index of the example returned at

iterationt by Wic in Algorithm 2, we obtain:

i

1 X y 1 X 2
m D - WEtCJ)rl)i”Wt(iC) om Wgtcil)i wy” (B.5)
i=1 ) ie(t) i
=) 2
(@ ,,(0
1 ie(t) i rig(t)wtic
2im P © 2 (B.6)
iet) i Tie(t)
24204 1
i =) - (B.7)
iet) i Tie(t)
24294 24294
= : (B.8)

Imn ¢y !'mn

Here, (B.5) follows from (C.29), (B.6) follows from (B.4), (B.7) follows from Lemma B, and
(B.8) follows from the fact thati(gzt) = 1lwhene(t) « i. Summing these inequalities for
t=1;2;::;T yields:

XX 2T #2%
(I .
m . D - W(f+1) i”WtiC Imn . (B.9)
t=1 i=1
Now, UNN meets the following property ([105], A.2):
" N © (0 .
s(h(t+1) (] C) s(htm C) - E D - W(t+1) i” Wi ’ (B.lO)

i=1

whereh;.1) . denotesh, after thet™ iteration in the inner loop of Algorithm 2. We unravel
(B.10), using the fact that all are initialized to the null vector, and obtain that at the end of
the inner looph satis es:

XX © ()
"s(he;o) = (0) m D~ Wiy i)Wy (0)

t=1 i=1

2T #2948
i (B.11)

from (B.9). There remains to compute the minimal valud dbr which the right hand side
of (B.11) becomes no greater than some user- x&l[0; 1] to obtain that'¢(h; )

The aggregation of the bounds foreach 1;2;:::;; Cin"g(H) isimmediate as it is an aver-
age of'5(h; ) over all classes. Hence, this minimal valueTofused for eackh = 1; 2;:::; C,
also yields'g(H) . This ends the proof of Theorem 6.1. |
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C. Gentle Nearest Neighbors
Boosting over Proper Scoring
Rules

This work has been developed in collaboration with Richard Noakafa Bel Haj Al?, Frank
Nielserf, Michel Barlaud. Note that the work has been submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI).

C.1. Introduction

Iterative approaches to learn classi ers have been playing a major role in machine learning
and statistical learning for many decades. The most common high-level scheme consists in
gradually combining from scratch classi ers obtained at each iteration, with the objective to
minimize throughout iterations a convex differentiable risk calledm@ogate risk sometimes
amended with a structural part based on data [11]. Unlike so-called greedy algorithms, that
repeatedly perform ne-grained optimization steps [1i$postingalgorithms rely on weak
optimization stages much less demanding from the statistical and computational standpoints
[54, 29, 102, 115]. In fact, the boosting theory involves at each iteration weak classi ers
slightly different from pure randontut requires that the nal combination be probably as
close as required from optimum, in polynomial time.

Nearest neighbors N ) rules are a non-trivial eld of choice for boosting algorithms
[29, 102], as examples ideally play weak classi ers. In this case, we treat the boosting problem
in its simplest form: the accurate leveraging of examples that vote among nearest neighbors.
In particular, we compute nearest neighbors in the ambient space ofi.datas described
over their initial features. There have been other approaches to boost nearest neighbors by
learning features with (Ada)boosting algorithms, prior to computing nearest neighbor rules on
these new sets of features [58] (and references therein). No boosting results are known for
these algorithms, and it is in fact not known whether they achieve convergence to the opti-
mum of Adaboost's exponential risk. A previous approach in our line of works is algorithm
UNN (for “Universal Nearest Neighbors”), which brings boosting guarantees for merely all

lUniversi& Antilles-Guyane, CEREGMIA-UFR DSE, Campus de Schoelcher, B.P. 7209, Schoelcher 97275,
France

2CNRS - U. Nice, France.

3Sony Computer Science Laboratories, Inc., Tokyo, Japan

4Institut Universitaire de France and CNRS - U. Nice, France.
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C. Gentle Nearest Neighbors Boosting over Proper Scoring Rules

i(=) weightupdatef :w;  f(w;)
A (1 x)? x(1 X) £ gf“” Wi 2 cYicYic
xInx 4In(2) (cij) Wi
lon(l + EXp( X)) +(l X) In(l X) n2 n; wi In2+(1 w; In2) exp( jc Yic Yjc )
« x log, x 8 4 (cj) wi
C |092(1p+ 2 ) +(1 px) |ng(1 X) In(2) n; wi+(1 pWi) 2 icYicYie
D X+ 1+ x2 XL x) 5 e . LWt W@ v cdedie
i 1+ ]ch,(z wi)+2(1 W) wi(2 Wi) jcYic e

[ E | 2x(sign(x)

1) |

minfx; 1 xg

N/A

Table C.1.: From left to right: examples of_balanced convex losse@, B, C, D; we letln denote
the basee logarithm, andog, (x) = In( x)=In(z)); permissible functions; value of as
de ned in (C.41); expression of updatg in (C.10) for" = 1=; expression of the weight
update in (C.11) (See text for details).

strictly convex differentiable surrogates relevant to classi cation [12, 102]. For a wide subset
of surrogates, it yields simple and ef cient estimators of posteriors [33].

There is, however, an analytical and computational bottleneckvm, as the leveraging
coef cients are solutions to non-linear equations with no closed form expression in the general
case. Boosting compliant approximations are possible, but in the contéiNgf rules, they
are computationally far too expensive to be performeeaathboosting iteration on large
datasets. Computationally affordable coarse-grained approximations are also possible, that
yield compelling experimental results, but it is not known if they always lie within the boosting
regime [102].

In this work, we propose a simple boosting compliant solution to this computational bot-
tleneck. Our algorithmaNNB for “Gentle Nearest Neighbors Boosting”, performs adaptive
Newton-Raphson steps to minimize dmlanced convex surrogaf@9] with guaranteed con-
vergence rates. This class, which comprises the popular logistic and squared surrogates [54],
match the set of even, twice differentialpimper scoring ruleg59]. This is a proof of gener-
ality of our approach as being “proper” is the bare minimum one can request from a score — it
roughly states that forecasting the right output yields the optimal score. Our main theoretical
result establishes, for any of these surrogates, convergence rates towards global optimum that
surprisingly compete with those known fonN [102] — thus proving that a complex, time
consuming leveraging procedure is not necessary for fast convergence towards the optimum.
To the best of our knowledge, these are the rst convergence rates under the boosting frame-
work for Newton-Raphson approaches to general surrogate risk minimization, a set whose
most prominent member is Gentle Adaboost [54]. The link with balanced convex surrogates
optimization allows to show thatNNB equivalently ts class posteriors in a way that com-
plies with weak universal consistency requirements. Experiments are provided on a dozen
domains, including small domains from the UCI repository of machine learning database [7]
and large computer vision domains: the Caltech [61] and SUN domains [149]. They display
that GNNB outperformsuNN, both in terms of convergence rate and quality of the solutions
obtained. They also display that, on large domains for which complex learning approaches
like non-linear support vector machines or boosting with deep trees are ruled out for com-
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putational considerationsGNNB offers a simple, lightweight and competing alternative to
heuristic methods like stochastic gradient descent. Our experiments come with an improve-
ment of GNNB aimed at reducing the weak point represented by the curse of dimensionality
for nearest neighbor algorithms on large domains. We provide a low-cost divide-and-conquer
scheme which makes a partition of the description variables before ruaning, and ex-
ploits links with density estimation in proper scoring rules to craft, out of all predictions, an
aggregated score which is shown experimentally to outperform very signi cantly the vanilla
approach without splitting.

The remaining of the work is organized as follows: Section 2 provides de nitions. Sec-
tion 3 present&sNNB. Section 4 and Section 5 respectively state and discuss its theoretical
properties. Section 6 presents experiments, and Section 7 concludes the work.

C.2. De nitions

C.2.1. General setting

Our setting is multiclass, multilabel classi cation [115]. We have access to an input set of
m examples (or prototypes$ = f(x;;yi);i = 1;2;::::mg. Vectory; 2 f 1;1g° encodes
class memberships, assumipng = 1 means that observationy belongs to class. We let

H : O! RC denote a classi erQ being the observations domain to which xjl belong.
Thech coordinate of the output dfi, h, = H., is a classi er which segregates observations
according to their membership to clasdVe learnH by the minimization of dotal surrogate

risk:

o1 X
sH) = & Us(heio) (C.1)
c=1
where
.1 X
"S(hc;c) = E (Yiche(Xi)) (C.2)

i=1

is a surrogate risk associated to classmply named surrogate risk hereafter [54, 99, 98, 115]
(and many others). Quantity.h.(x) 2 R is theedgeof classi er h on examplgx;;y;), for
classc.

C.2.2. Proper scoring rules and surrogate losses

There exists numerous choices for the (surrogatey . In this subsection, we motivate the
analysis of a subset of particular interest, called balanced convex losses [99, 98]. For the sake
of clarity, we assume in this Subsection that we have two clagsesX), and reduce the class
vectorto realy 2 f 1;1g encoding membership to a so-called “positive” class)(““ 1"

means observation does not belong to the positive class, or similarly belongs to a “negative”
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Figure C.1.: Plot of row D in Table C.1 (left) and its matching posterior estimate as a function
of h 2 R (right).

class. In this case, a classi @routputs a single real value.

More general than the problem of predicting labels is the problem of estimating posteriors
[59, 136]: letp = Py = 1jx] de ne for short the unknown true posterior for observation
X. The discrepancy between an estimgi@f p andp is measured by a losg,,(pkp). The
interval [0; 1] in index recalls that its arguments are probabilities, akidmieans that it is
not assumed to be symmetric. There are three requirements one can put on a loss to tit to
statistical requirements of the estimation task while making it suited to convenient algorithmic
minimization. The most important one, requiremedt, is fundamental in estimation, as it
states that,,, de nes a (strictly)proper scoring rule 0 = ", ,(pkp) < * ©y(Pka), for anyq
andp 6 q[59, 62, 98, 136]. This requirement is fundamental in that it encourages reliable
estimations. Second, requirem& states that the loss &/enas™, ,(pkp) = oy(1  pkl
P), and thus there is no class-dependent mis-estimation cost, a common assumption in machine
learning or classi cation. Third and last, requireme@states that, ,, is twice differentiable.
The following Theorem, whose proof can be found in [99, 98], exhibits the true shapg.of

Theorem 1 [99, 98] Any loss ,,; Satis es requiremente 1-R 3 iff it is a Bregman divergence:
“oy(pka) = D (pkg), for some permissible.

Theorem 1 makes use of two important de nitions: a permissibkatis es: : [0; 1] !
R*, it is differentiable on(0; 1), strictly convex, twice differentiable of®; 1) and symmetric
aroundx = =. Also, for any strictly convex differentiable, the Bregman divergencef
(strictly convex differentiablegenerator is:

D (xkx) = x99 ) x° x)r ) ; (C.3)

where 't " denotes rst order derivative. The Legendre convex conjugate of any strictly con-
vex differentiable function is *(x) = xr *(x) (r *(x)).
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De nition 1 [98] Given some permissible, thebalanced convex los@cL) with signature
I 5

(x+ ©. (C.4)

) © (=)

We then have the following Theorem.

Theorem 2 [99, 98] The following identity holds true for any permissibland any classi er
h:

D (p()kpn (x)) = ( (0) (=) (yh(x)) ;

where

P (X) E Y(h(x)) 2 [0;1] ; (C.5)
0 iff y= 1

1 otherwise

p(y) = ply = 1jx] (C.6)
Let us callp., the matching posterior estimate for classileras it represents an estimate
Ph [y = 1jx]. Figure C.1 plot®d., [y = 1jx] for choice D in Table C.1. It comes from
Theorems 1 and 2 that balanced convex losses (for real valued classi cation) match a wide
set of proper scoring rules (for estimation). Thus, they characterize a very important set of
losses. We shall see in the following Section how to achieve the optimum of the score through
a gentle optimization procedure with nearest neighbor classi ers.

Table C.1 includes popular exampleseafLs: squared loss (row A), (normalized) logistic
loss (B), binary logistic loss (C), Matsushita's loss (D). Hinge loss (E) is netiy yet it
de nes the asymptotes of argcL [99], and its is the empirical loss [99]. Adaboost's
exponential loss is notBCL [54]. We nish by stating properties of and . Let us assume
that:

I‘[Bl;lll‘]]H x) > 0; (C.7)

this is the case for all examples in Table C.1. Otherwise, we may repldne +
where , is permissible and meets assumption (C.7). Since permissibility is closed by lin-
ear combinations, function + , is also permissible and satis es (C.7). Sinde (x) =

15( (0) (1=)) H (r %(x))], assumption (C.7) implies:

H =supH (x) 1 ; (C.8)
R

and in factH = H (0) for all examples in Table C.1, and is very small (Cf column
(C.41) and Section C.4). The following Lemma states properties shown in [98].

Lemma 1 [98] For any permissible , the following properties hold true:?(x) = ?( x)+
x;8;r (0)<0, (0)=1,im( ) R".
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Algorithm 3: Algorlthm GENTLE NNy BOOSTING GNNB(S; ;"; Kk )
Input: S= f(x;; y.) |—l 2 nm; x; 20,y 2f 1,19 g, permissible ," 2 (0;1),k 2 N ;
Let 0; 8] :
forc=1;2;: Cdo

Letw (0) =y L
fort =1;2;::;T do

I 0] //Ch0|ce of the example to leverage

Letj Wic(S;w);

[I.1]//Computation of the gentle leveraging coef cient update,
Let

X
(cii) Wi Yic Yic (C.9)
[HEE
o e |
R GV T T (©.10)
H nj

[1.2]//Weights update
8i:j ki,let

rl o ieYietr (0 (=2)wi)
" © (=) ’ e

I/ we havew; 2 0;( (0) (=) 1
[1.3]//Leveraging coef cient update
Let jc ic*+ i

L P
Output: H(x) =

iokx 1 Yi

C.2.3. Empirical risk and its minimization

Lemma 1 makes that surrogate risk minimization may be used as an approximate primer to the
minimization of the empirical risk, as the total surrogate risk (C.1) upperbounds the empirical
(Hamming) risk [115]:

1 X
HHYE S S

c=1

where

X0
Ilyiche(xi) < Q] (C.13)

- -1
s (he;o) = m .
i=1

is the usual empirical risk associated to classTo quantify the performance of the best
possible classi er, we respectively de ne:

("s)e = inhf "o (ho; (C.14)
"2H)e inf "S(hio) ; (C.15)

as the respective Bayes surrogate risks and Bayes empirical risks foc.chgsaging these
expressions following (C.1) and (C.12), we respectively dg(hg) and("s") as the opti-
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