
HAL Id: tel-00995066
https://theses.hal.science/tel-00995066v1

Submitted on 22 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-detection in Ambient Intelligence based on the
modeling of physical effects.

Ahmed Mohamed

To cite this version:
Ahmed Mohamed. Fault-detection in Ambient Intelligence based on the modeling of physical effects..
Other. Supélec, 2013. English. �NNT : 2013SUPL0023�. �tel-00995066�

https://theses.hal.science/tel-00995066v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2013-23-TH

SUPÉLEC

ÉCOLE DOCTORALE STITS
« Sciences et Technologies de l’Information, des Télécommunications et des Systèmes »

THÈSE DE DOCTORAT

DOMAINE : STIC
Spécialité : Informatique

Soutenue le
19 novembre 2013

par :

Ahmed MOHAMED

Détection de défaillances fondée sur la modélisation des effets physiques
dans l'ambiant

-
Fault detection in Ambient Intelligence based on the modeling of physical

effects
Composition du jury :

Directeur de thèse : M. Yacine Bellik Univ. Paris-Sud, LIMSI-CNRS

Co-encadrant : M. Christophe Jacquet Supélec

Rapporteurs : M. Amar Ramdane-Cherif Univ. Versailles

 M. Hani Hagras Univ. Essex

Examinateurs : M. Christophe Kolski Univ. Valenciennes

 M. Nicolas Sabouret Univ. Paris-Sud, Supéle

Membre invité : M. Bruno Jean-Bart Trialog

Ce projet est cofinancé par

l'Union européenne.

L'Europe s'engage en Ile-de-

France avec le Fonds

européen de développement

régional

I

This work has been performed within the CBDP project, a project co-funded by the
European Union. Europe is involved in Région Île-de-France with the European Regional
Development Fund.

II

Abstract

This thesis takes place in the field of Ambient Intelligence (AmI). Ambient Intelligent
Systems are interactive systems composed of many heterogeneous components. From a hardware
perspective these components can be divided into two main classes: sensors, using which the
system observes its surroundings, and actuators, through which the system acts upon its
surroundings in order to execute specific tasks.

From a functional point of view, the goal of Ambient Intelligent Systems is to activate some
actuators, based on data provided by some sensors. However, sensors and actuators may suffer
failures. Our motivation in this thesis is to equip ambient systems with self fault-detection and
diagnosis capabilities allowing them to check autonomously whether the intended actions were
performed correctly by the actuators.

To address this issue, one could apply classical control theory to pre-determine closed control
loops using the available sensors. However, the particularity of ambient systems is that instances
of physical resources (mainly sensors and actuators) are not necessarily known at design time;
instead they are dynamically discovered at run-time. In consequence, such control loops cannot
be pre-determined.

We propose an approach in which the fault detection and diagnosis in ambient systems is
dynamically done at run-time, while decoupling actuators and sensors at design time. We
introduce a Fault Detection and Diagnosis framework modeling the generic characteristics of
actuators and sensors, and the effects that are expected on the physical environment when a
given action is performed by the system's actuators. These effects are then used at run-time to
link actuators (that produce them) with the corresponding sensors (that detect them). Most
importantly the mathematical model describing each effect allows the calculation of the expected
readings of sensors. Comparing the predicted values with the actual values provided by sensors
allow us to achieve fault-detection in dynamic and heterogeneous ambient systems.

III

Résumé

Cette thèse s’inscrit dans le domaine de l'intelligence ambiante (Ambient Intelligence - AMI).
Les systèmes d'intelligence ambiante sont des systèmes interactifs composés de plusieurs
éléments hétérogènes. D'un point de vue matériel, les composants de ces systèmes peuvent être
divisés en deux catégories principales : les capteurs, que le système utilise pour observer son
environnement, et les effecteurs, à travers lesquels le système agit sur son environnement afin
d'exécuter des tâches spécifiques.

D'un point de vue fonctionnel, l'objectif des systèmes d’intelligence ambiante est d'activer
certains effecteurs, sur la base des mesures réalisées par des capteurs. Toutefois, les capteurs et les
effecteurs peuvent subir des défaillances. Notre motivation dans cette thèse est de munir les
systèmes ambiants de capacités d'auto-détection des pannes, pour leur permettre de vérifier de
manière autonome si les actions prévues ont été effectuées correctement par les effecteurs.

Pour résoudre ce problème, on pourrait appliquer des techniques classiques en automatique,
et ainsi prédéterminer des boucles de régulation ad-hoc utilisant les capteurs disponibles.
Cependant, une particularité des systèmes ambiants est leur ouverture : les ressources physiques
(principalement les capteurs et effecteurs) ne sont pas nécessairement connues au moment de la
conception, mais elles sont plutôt découvertes dynamiquement lors de l'exécution. En
conséquence, ces boucles de régulation ne peuvent pas être établies à l’avance.

Nous proposons une nouvelle approche dans laquelle la stratégie de détection de défaillances
dans un système ambiant est déterminée dynamiquement lors de l'exécution. Pour cela, les
couplages entre capteurs et effecteurs ne sont pas déterminés par le concepteur du système, mais
déduits automatiquement lors de l’exécution. Ceci est rendu possible par la modélisation des
caractéristiques des capteurs, des effecteurs, ainsi que des phénomènes physiques (que nous
appelons effets) qui sont attendus dans l'environnement ambiant quand une action donnée est
effectuée par un effecteur. Ces effets sont utilisés lors du fonctionnement du système pour lier les
effecteurs (produisant les effets) avec les capteurs correspondants (détectant les effets).

Nous introduisons une plateforme de détection des pannes qui génère à l’exécution un
modèle de prédiction des valeurs attendues sur les capteurs. Ce modèle, de nature hétérogène (il
mêle flots de données et automates finis) est exécuté par un outil adapté (ModHel’X) de façon à
fournir les valeurs attendues à chaque instant. Notre plateforme compare alors ces valeurs avec
les valeurs réellement mesurées de façon à détecter les défaillances.

IV

Acknowledgments

Foremost, I would like to express my sincere gratitude to my thesis advisor Assistant
Professor Yacine Bellik and my thesis supervisor Associate Professor Christophe Jacquet for
their support, patience, and immense knowledge. Their encouragements and advices were
necessary for me to proceed through with my research works and to complete my dissertation.

Besides my advisors, I would like to thank the rest of my thesis committee: Professor Kolski
Christophe, Professor Ramdane-Cherif Amar, Professor Hagras Hani, Professor Nicolas
Sabouret, and “Trialog” Manager Bruno Jean-Bart for accepting to be in my thesis committee
and for their insightful comments and questions.

Special thanks go to the members and fellow lab mates at the departments of computer
science at Supelec and at Limsi for their friendship and assistance.

I also wish to thank my parents, to whom I owe everything, my brother, and my friends for
their unconditional love and support.

V

Table of Contents

Chapter 1. Summary of the Thesis in French .. 1

1.1. Introduction .. 1

1.1.1. Contexte et Motivations .. 1

1.1.2. Plan de la thèse .. 3

1.2. Etat de l’art .. 4

1.2.1. Intelligence Ambiante (AmI) .. 4

1.2.2. Technologies .. 4

1.2.2.1. Contrôleurs .. 5

1.2.2.2. Effecteurs ... 5

1.2.2.3. Capteurs .. 5

1.2.3. Détection et Diagnostic de Pannes .. 5

1.2.4. Architecture générale d’un environnement ambiant ... 6

1.3. AmILoop : Une plateforme de détection de pannes dans l’ambiant .. 6

1.3.1. Architecture générale d’AmILoop ... 7

1.3.1.1. Point de vue structurel ... 7

1.3.1.2. Point de vue comportemental ... 8

1.3.1.3. Découplage entre effecteurs et capteurs .. 9

1.3.2. Concept d’effet .. 9

1.3.2.1. Effet lumière .. 10

1.3.3. Capteurs (Récepteurs d’effets) .. 11

1.3.4. Effecteurs (Générateurs d’effet) ... 12

1.3.5. Modificateurs d’effet .. 13

1.3.6. Modèle de prédiction.. 14

1.4. Implémentation... 15

1.4.1. Le projet « Context Based Digital Personality » (CBDP).. 15

1.4.2. ModHel’X : outil de modélisation hétérogène ... 16

1.5. Exemples de détection de pannes dans un environnement ambiant : système luminaire ... 17

1.5.1. Description de l’environnement ... 17

1.5.2. Construction des modèles ... 17

1.5.2.1. Modèle concret .. 17

1.5.2.2. Exécution ... 18

1.6. Conclusions et perspectives .. 19

VI

1.6.1. Notre Contribution .. 19

1.6.2. Perspectives ... 19

1.6.2.1. Modificateur d’effet avancé ... 19

1.6.2.2. Diagnostic de pannes .. 20

1.6.2.3. Diagnostic portant sur les tâches des utilisateurs ... 20

1.6.3. Conclusion ... 20

Chapter 2. Introduction ... 22

2.1. Context & Motivation .. 22

2.2. Outline of the thesis ... 25

Chapter 3. State of the Art .. 27

3.1. Ambient intelligence (AmI) .. 27

3.1.1. From Artificial Intelligence to Ambient Intelligence .. 27

3.1.2. Definitions ... 30

3.1.3. Ambient Intelligence and human interaction ... 31

3.1.3.1. Context-aware human interaction .. 32

3.1.3.2. Human-centered compting .. 33

3.1.3.3. Multi-modal human interaction .. 35

3.1.4. Smart Environments .. 35

3.1.4.1. Smart homes .. 36

3.1.4.2. Smart hospitals and healthcare monitoring systems .. 37

3.1.4.3. Smart industrial plants and factories .. 38

3.1.4.4. Smart transportation systems .. 39

3.1.4.5. Smart museums ... 39

3.1.4.6. Smart campus .. 40

3.2. Technologies ... 41

3.2.1. Controllers ... 41

3.2.2. Actuators .. 42

3.2.3. Sensors .. 42

3.2.4. Sensor Networks ... 46

3.3. Fault Detection and Diagnosis (FDD) .. 46

3.3.1. FDD In the field of automatic control: Terminologies and definitions 46

3.3.1.1. Fault .. 47

3.3.1.2. Fault types .. 47

VII

3.3.1.3. FDD: The offline Vs the real-time method .. 48

3.3.1.4. Supervision ... 48

3.3.1.5. Model-based fault detection method and Fault modeling .. 48

3.3.1.6. Fault Diagnosis .. 49

3.3.2. FDD in the field of Ambient Intelligence... 57

3.4. Ambient Intelligent System Modeling ... 61

3.4.1. A general architecture for a typical Ambient Intelligent Environment 64

3.5. Conclusion ... 65

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence ... 67

4.1. General Architecture of the FDD Framework .. 69

4.1.1. Architecture of the FDD framework: from a general structural point of view 69

4.1.2. Architecture of the FDD framework: a behavioral point of view................................... 70

4.1.3. The FDD Framework Models: actuator-sensor decoupling and main concepts 71

4.1.3.1. Actuator-sensor decoupling ... 71

4.1.3.2. The FDD framework models and main concepts ... 72

4.2. The Concept of Effect ... 73

4.2.1. The Light Effect ... 74

4.2.1.1. The Light Effect – the concept ... 75

4.2.1.2. Deduce Illuminance from luminous flux–mathematical modeling of physical laws

 ... 75

4.2.1.2.1. Functions in a 3 dimension described environment (most detailed) 76

4.2.1.2.2. In a 2 dimension described environment (less detailed) 77

4.2.1.2.3. In a zone divided environment (least detailed) ... 78

4.2.1.3. Light related entities in the concrete model .. 79

4.2.2. The Heat Effect .. 80

4.2.2.1. Deduce temperature from heat emission – physical definition 80

4.2.2.2. Deduce temperature from heat emission –mathematical modeling physical laws 82

4.2.2.3. Deduce temperature from heat emission –the concrete model 82

4.2.3. The Water Flow Effect .. 83

4.2.3.1. Deduce liquid level from liquid discharge rate –mathematical modeling (the law

sets) ... 84

4.2.3.2. Deduce liquid level from liquid discharge rate –the concrete model 85

4.3. The Concept of Sensor (Effect Receiver) ... 86

4.3.1. Meta-model of the concept of Sensor ... 86

VIII

4.3.2. The Measured value (Measurable Property) .. 87

4.3.3. Sensor Properties .. 87

4.4. The Concept of Actuator (Effect Producers) .. 88

4.4.1. Meta-model of the concept of Actuator ... 88

4.4.2. The Actuator’s Behavioral Model .. 89

4.4.2.1. Classic Finite State Machines... 89

4.4.2.2. Timed Finite State Machines ... 90

4.5. The Concept of Effect Modifier (an Effect Receiver and Producer) 92

4.5.1. The Meta-model of the concept of Effect Modifier ... 92

4.5.2. Effect Modifier’s Behavioral Model ... 95

4.6. Algorithm for building the prediction model from the conceptual models 95

4.6.1. The Prediction Model .. 95

4.7. Conclusion ... 98

Chapter 5. Implementation ... 100

5.1. The Context Based Digital Personality project .. 100

5.1.1. CBDP’s AAL ontology .. 101

5.1.2. The CBDP framework ... 102

5.1.3. Integration of the Fault Detection and Diagnosis approach with the CBDP

framework .. 103

5.2. ModHel’X, our heterogeneous modeling tool ... 104

5.3. Building the prediction model .. 106

5.3.1. Defining the Concrete Model and the Instances of the actual devices 107

5.3.2. Defining the Behavioral Models and their instantiation ... 108

5.3.3. Generating the Prediction Model (Prediction Engine) ... 109

5.4. Execution of the Prediction Model ... 112

5.4.1. Use of the Prediction Model in simulation ... 112

5.4.2. Fault Detection ... 115

5.5. Conclusion ... 115

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home 117

6.1. Scenario_CBDP: Automatic Light Switch with Light System fault detection and diagnosis

 .. 118

6.1.1. Description of the ambient environment .. 118

6.1.2. Running the scenario .. 119

IX

6.2. Scenario_1: Light system fault detection and diagnosis ... 120

6.2.1. Description of the ambient environment .. 120

6.2.2. Building the models .. 122

6.2.2.1. The concrete model .. 122

6.2.2.2. The mathematical model .. 123

6.2.2.3. The behavioral models ... 124

6.2.3. Instantiating the Models .. 125

6.2.4. Performing fault detection .. 125

6.2.4.1. The simulator and building of the Prediction Model .. 125

6.2.4.2. The simulation ... 127

6.3. Scenario_2: Light system fault detection and diagnosis with Effect Modifier 141

6.3.1. Description of the smart environment .. 141

6.3.2. Building the models .. 142

6.3.2.1. The concrete model .. 142

6.3.2.2. The mathematical model .. 143

6.3.2.3. The Behavioral Models .. 145

6.3.3. Instantiating the Models .. 146

6.3.4. Performing fault detection .. 147

6.3.4.1. The simulator and building the Prediction Model ... 147

6.3.4.2. The simulation ... 150

6.4. Scenario_3: Ambient Bathtub fault detection and diagnosis (Heat Effect and Water Flow

Effect): ... 155

6.4.1. Building the models .. 156

6.4.1.1. The concrete model .. 156

6.4.1.2. The mathematical models .. 157

6.4.1.3. The behavioral models ... 158

6.4.2. Instantiating the Models .. 159

6.4.3. Performing fault detection .. 160

6.4.3.1. The simulator and building the Prediction Model ... 160

6.4.3.2. The simulation ... 161

6.5. Conclusion ... 165

Chapter 7. Conclusion and perspectives ... 167

7.1. Our Contribution ... 167

7.2. Perspectives ... 168

X

7.2.1. Advanced Effect Modifier ... 168

7.2.2. Fault Diagnosis.. 168

7.2.2.1. Using probabilistic approach for fault diagnosis .. 169

7.2.2.2. Using Fault Trees for fault diagnosis ... 170

7.2.2.3. Using Ontologies for diagnosis ... 171

7.2.3. Considering the user ... 172

7.3. Conclusion ... 172

XI

List of Figures

Figure 1. Principaux axes de recherche étudiant les tâches dans un environnement ambiant 2

Figure 2. Boucle de régulation ad-hoc classique .. 3

Figure 3. Architecture d’un environnement ambiant .. 6

Figure 4. Architecture AmILoop dans le contexte d’un environnement ambiant 7

Figure 5. Le modèle abstrait d’AmILoop ... 8

Figure 6. Les modèles d’AmILoop .. 8

Figure 7. Hiérarchie des modèles d’AmILoop ... 9

Figure 8. Architecture d’exécution d’AmILoop ... 9

Figure 9. Arbre d’appel pour l’ensemble de lois 2D Light Law Set .. 11

Figure 10. Entités relatives à l’objet "Sensor" dans le modèle abstrait ... 12

Figure 11. Entités relatives à l’objet "Actuator" dans le modèle abstrait ... 12

Figure 12. Modèle abstrait : représentation du modèle comportemental d’un effecteur 13

Figure 13. Exemple : modèle comportemental d’une lampe à incandescence 13

Figure 14. Modèle abstrait : modificateur d’effet ... 14

Figure 15. Automate fini de bulb_1 ... 14

Figure 16. Formule de prédiction instanciée sur l’exemple .. 15

Figure 17. Intégration de l’approche de détection de pannes dans CBDP .. 16

Figure 18. Le modèle concret CBDP dans le contexte de lumière ... 16

Figure 19. Machine à états finis d’une lampe fluocompacte émettant 1500lm 17

Figure 20. Modèle concret du scenario 1 .. 18

Figure 21. Modèle de prédiction exécuté par ModHel’X ... 19

Figure 22. Main research questions studying tasks in an AmI environment 23

Figure 23. Classic ad-hoc control loop for system diagnosis ... 24

Figure 24. Ambient intelligence as an evolution of artificial intelligence ... 28

Figure 25. AmI and several scientific areas ... 30

Figure 26. Example of a smart-home where computing devices disappear into the background

[61] .. 37

Figure 27. Example of a Mobile Point of Care .. 38

Figure 28. ZigBee lighting controller: Touch Panel Dimmer Switch (one way) 41

Figure 29. The U600LF model of ZigBee relay control; to be placed between power source and

lighting device to control it wirelessly. .. 41

Figure 30. Ideal versus measured curve showing linearity error .. 43

Figure 31. Hysteresis curve .. 43

XII

Figure 32. Sensor rise-time definition ... 44

Figure 33. fall-time definition ... 44

Figure 34. Output versus input signal curves showing (a) quadratic error; (b) cubic error 45

Figure 35. Fault detection, fault diagnosis and fault management system ... 47

Figure 36. General schema of process model-based fault detection .. 49

Figure 37. Fault-symptom relationship in an actual system and in a diagnosis system 50

Figure 38. Fault diagnosis with classification methods ... 50

Figure 39. Pattern classification methods ... 51

Figure 40. Example of the decision boundary of a polynomial classifier .. 52

Figure 41. Example of a decision tree for the distinction of two classes F1 and F2 53

Figure 42. Example of a decision tree for the distinction of two classes F1 and F2. Resulting

partitioning in a s1 and s2 plane, where the symptoms s1 and s2 are continuous variables............... 54

Figure 43. Example of nearest neighbor classification. .. 54

Figure 44. Scheme of a fault tree for binary symptoms .. 56

Figure 45. Architecture of the prototype diagnosis system [153] .. 59

Figure 46. A typical Ambient Intelligent Environment ... 64

Figure 47. The FDD Framework Architecture in the AmI context ... 68

Figure 48. FDD Abstract Model .. 68

Figure 49. The FDD Framework Models ... 69

Figure 50. The FDD Framework Models' Hierarchy ... 69

Figure 51. Run-time Architecture of the FDD Framework .. 70

Figure 52. Simplified example of actuator-sensor decoupling .. 71

Figure 53. The abstract model entities modeling "effect" and "law set" .. 73

Figure 54. Call tree for the 3D Light Law Set .. 77

Figure 55. Call tree for the 2D Light Law Set .. 78

Figure 56. Call tree for the zone Light Law Set ... 79

Figure 57. Entities of the concrete model after the definition of Light Effect 80

Figure 58. Call tree for the Ambient Temperature Law Set ... 82

Figure 59. Entities of the concrete model after definition of Heat Effect .. 83

Figure 60. A simple Ambient Environment bathtub configuration ... 84

Figure 61. Call tree for the Liquid Level Law Set .. 85

Figure 62. Entities of the concrete model after definition of Liquid Flow Effect 86

Figure 63. Entities from the abstract model connected to "Sensor" .. 87

Figure 64. Entities from the abstract model connected to "Actuator" ... 88

XIII

Figure 65. The actuator's behavioral model ... 89

Figure 66. On Off only device's FSM ... 89

Figure 67. Finite state machine for a 40 Watts incandescent light bulb ... 90

Figure 68. Compact Fluorescent Light Bulbs Finite State Machine ... 91

Figure 69. Light flux value according to time for a typical CFL light bulb 91

Figure 70. Entities from the abstract model connected to "Effect Modifier" 92

Figure 71. Entities from the abstract model connected to "Effect Modifier" (special case when a

Sensor is linked to a Modifier) .. 94

Figure 72. A two-state door finite state machine ... 95

Figure 73. Call tree of 2D Light Law Set in the Prediction Model ... 97

Figure 74. First level of the CBDP ontology ... 101

Figure 75. Ontology entities required for proper operation of the CBDP framework 102

Figure 76. Architecture of the CBDP framework ... 102

Figure 77. The Fault Detection and Diagnosis framework integration into the CBDP ontology (in

grey) – Abstract Model .. 103

Figure 78. Specialization for the Light Effect from the CBDP ontology – Concrete Model 104

Figure 79. A model (top) that can be interpreted according to two different MoCs (bottom) 105

Figure 80. A ModHel’X block .. 105

Figure 81. A ModHel'X model ... 105

Figure 82. A ModHel'X interface block .. 106

Figure 83. File structure of the java application ... 107

Figure 84. ModHel'X block describing CFL Bulb FSM ... 109

Figure 85. Call tree for a single sensor in the Prediction Model ... 110

Figure 86. Dataflow model in ModHel’X - A Single Call tree highlighted 111

Figure 87. A Zoomed-out view of the ModHel'X representation of the Prediction Model 113

Figure 88. The ModHel’X main block inputs .. 114

Figure 89. The Prediction Model outputs ... 114

Figure 90. Control panel for the Prediction Model inputs ... 114

Figure 91. Prediction Model’s output trace window ... 115

Figure 92. Input/Output configuration of scenario_CBDP ... 118

Figure 93. Example 1 of Light system fault detection and diagnosis ... 121

Figure 94. Example 1: Concrete Model for the Ambient Light System... 122

Figure 95. Inc Bulb Finite State Machine ... 124

Figure 96. bulb_1 Finite State Machine .. 124

XIV

Figure 97. bulb_2 Timed Finite State Machine .. 125

Figure 98. General View of the ModHel'X representation of the Prediction Model for Scenario_1

 ... 129

Figure 99. Control panel for the Prediction Model inputs – scenario_1 ... 130

Figure 100. Prediction Model’s output trace window – scenario_1 ... 130

Figure 101. Scenario_1 Test1 simulation trace values .. 130

Figure 102. Scenario_1 Test2 simulation trace values .. 131

Figure 103. Scenario_1 Test3 simulation trace values .. 132

Figure 104. Scenario_1 Test4 simulation trace values .. 134

Figure 105. Scenario_1 Test5 simulation trace values .. 136

Figure 106. Scenario_1 Test6 simulation trace values .. 138

Figure 107. Scenario_1 Test7 simulation trace values - (1/2).. 141

Figure 108. Scenario_1 Test7 simulation trace values - (2/2).. 141

Figure 109. Ambient environment light example ... 142

Figure 110. Concrete Model (down) created from the Abstract Model (top) in the context of

Light FDD ... 143

Figure 111. Double hinged Door Finite State Machine ... 146

Figure 112. Window Blinds Finite State Machine ... 146

Figure 113. Sliding Door Finite State Machine .. 146

Figure 114. Control panel for the Prediction Model inputs – scenario 2 151

Figure 115. General View of the ModHel'X representation of the Prediction Model for Scenario

2 ... 152

Figure 116. Scenario_2 simulation trace values – Initial values ... 153

Figure 117. Scenario_2 Test1 simulation trace values – (1/2) ... 153

Figure 118. Scenario_2 Test1 simulation trace values – (2/2) ... 153

Figure 119. Scenario_2 Test2 simulation trace values (1/2) .. 154

Figure 120.Scenario_2 Test2 simulation trace values (2/2) ... 154

Figure 121. Scenario2 Test3 simulation trace values ... 155

Figure 122. Scenario2 Test4 simulation trace values ... 155

Figure 123. Components of the Bathtub Fault Detection and Diagnosis Example 156

Figure 124. The Concrete Model for the Bathtub Fault Detection and Diagnosis 157

Figure 125. Water Discharger finite state machine ... 158

Figure 126. Water Discharger finite state machine ... 158

Figure 127. Resistor finite state machine .. 159

XV

Figure 128. Control panel for finite state machines in scenario 3 ... 161

Figure 129. Prediction Model of the Bathtub scenario ... 162

Figure 130. Scenario_3. Call tree for the Water Level Indicator at the second 150 163

Figure 131. A simplified Decision tree for narrowing possible failure causes 170

Figure 132. Radiant flux .. 174

Figure 133. Radiant intensity .. 174

Figure 134. Irradiance ... 175

Figure 135. Radiance .. 175

XVI

List of Tables

Table 1. Water Level Expected Values 15 seconds after Water Taps are Opened 163

Table 2. Water Temperature Expected Values .. 165

Table 3. Luminous efficacy table for known lamp types .. 176

Table 4. Examples of Illuminance values under natural conditions ... 177

Table 5. Table of specific heat capacities .. 179

Chapter 1:

Summary of the Thesis in
French

Chapter 1. Summary of the Thesis in French

1

Chapter 1.

Summary of the Thesis in French

1.1. Introduction

1.1.1. Contexte et Motivations

Nos travaux s’inscrivent dans le domaine de l'intelligence ambiante (Ambient Intelligence -
AMI). Les systèmes d'intelligence ambiante sont des systèmes interactifs composés de plusieurs
éléments hétérogènes qui peuvent être catégorisés dans deux classes principales : les capteurs, que
le système utilise pour observer son environnement, et les effecteurs, par lesquels le système agit
sur son environnement pour exécuter des tâches particulières. Le but de ces tâches est d’assurer
le confort de l'occupant de l'environnement, faciliter la réalisation de certains travaux, superviser
et aider les utilisateurs qui ont besoin d'aide ou de soins. Les systèmes d'intelligence ambiante
s’appliquent à de nombreux contextes d’utilisation : usage personnel (« maisons intelligentes »),
cadre professionnel (hôpitaux par exemple), ou cadre industriel (usines).

De nombreux aspects du domaine de l'intelligence ambiante font l'objet de travaux de
recherche et de développement, comme le matériel et les technologies déployés dans les
environnements ambiants, les concepts et les techniques qui ajoutant une couche d'intelligence à
l'environnement ambiant, la contextualisation et les techniques d'auto-configuration, la
modélisation de tâches, etc. Il y a principalement trois types de tâches qui sont exécutées dans un
environnement d'intelligence ambiante : des tâches effectuées par les utilisateurs (très difficiles à
prévoir), des tâches effectuées par le système (via les effecteurs), et des tâches exécutées dans le
cadre des interactions homme-machine. Dans le domaine de l'intelligence ambiante, ces tâches
sont abordées et étudiés selon des différents angles (voir Figure 1).

Notre travail porte sur les tâches effectuées par le système via des effecteurs. Notre objectif
est de superviser les actions du système afin de détecter tout dysfonctionnement. Outre le fait
que les effecteurs sont sujets à des défaillances, l'hétérogénéité des divers dispositifs des systèmes
d’intelligence ambiante rend difficile la détection de la cause réelle d’une panne. Des thèmes tels
que l’adaptativité des équipements, l'auto-résolution de problèmes et la tolérance aux pannes sont
ainsi étudiés dans le domaine. Nous estimons qu’un système ambiant doit pouvoir « découvrir »,
« comprendre » et « corriger » les défauts qui se produisent durant l'exécution de ses tâches d’une
manière autonome. La « découverte » des défauts est appelée détection de défaut, et la
« compréhension » des défauts (déduire plus d'informations au sujet d’une panne, y compris son
origine idéalement) est appelée diagnostic.

Chapter 1. Summary of the Thesis in French

2

L'objectif général de notre travail est de proposer une architecture générique pour le
diagnostic de pannes dans les systèmes d'intelligence ambiante. Nous détaillons et validons, à
travers des exemples, la partie relative à la détection des défauts.

Figure 1. Principaux axes de recherche étudiant les tâches dans un environnement ambiant

Un système ambiant est souvent en interaction avec son environnement. Pour cela le système
perçoit l'état de son environnement en utilisant des capteurs, et agit en conséquence sur
l'environnement en utilisant des effecteurs. D'une part, pour assurer la réalisation de ses objectifs,
le système ambiant dépend fortement de la bonne exécution des tâches qui sont effectuées par
ses effecteurs. D'autre part, les systèmes d'intelligence ambiante sont conçus pour maintenir un
certain niveau de non-ingérence, afin d'éviter toute gêne des usagers. C'est pourquoi les tâches
sont généralement exécutées en arrière-plan d'une manière non perceptible par les utilisateurs.
Une telle exigence rend inacceptable le fait d'inonder l'utilisateur avec un grand nombre de
données relatives à la détection de pannes. En revanche, ne pas informer les utilisateurs d’un
défaut détecté peut être dangereux, car les personnes pourraient continuer à se reposer sur un
service défaillant [1]. Ceci peut être particulièrement problématique pour des applications
critiques comme garantir la sûreté des patients dans un hôpital.

Pour ces raisons, nous voulons donner aux systèmes ambiants le moyen de vérifier de
manière autonome si oui ou non les tâches systèmes ont été effectuées correctement. Quand un
système ambiant envoie des ordres à un effecteur, la bonne façon de vérifier si un ordre a été
exécuté correctement est d'exploiter les données des capteurs afin de s'assurer que l'état de
l'environnement a changé comme prévu. Prenons l’exemple d’un système qui allume une
ampoule. L'infrastructure matérielle et les moyens de communication peuvent permettre au
système de vérifier si la commande a été correctement transmise et que le circuit électrique de
l'ampoule a été fermé. Cependant, de nombreux facteurs pourraient empêcher la lumière d'être
émise, par exemple l'ampoule pourrait avoir été endommagée et donc ne pas s’allumer, ou bien
elle pourrait être recouverte par un objet opaque, etc. Donc, pour vérifier que la lumière est
vraiment émise, il faut utiliser un capteur de lumière (voir Figure 2). Une solution classique, issue
du domaine de l’automatique consiste à installer des capteurs ad-hoc pour réaliser des boucles de
régulation. Cependant, l'une des principales particularités de systèmes ambiants est que,
contrairement aux systèmes traditionnels, les ressources physiques (principalement les capteurs et
effecteurs) ne sont pas nécessairement connues au moment de la conception du système. Elles
sont dynamiquement découvertes et peuvent apparaître et/ou disparaître au moment de
l'exécution, donc on peut difficilement installer des capteurs ad-hoc et prédéterminer des boucles
de régulation.

Chapter 1. Summary of the Thesis in French

3

Figure 2. Boucle de régulation ad-hoc classique

Dans cette thèse, nous proposons une solution qui permet la construction dynamique des
liens déduits entre les effecteurs et capteurs dans les systèmes ambiants en exploitant les
ressources disponibles à un moment donné, et l’utilisation de ces liens pour détecter l’existence
de défaillances en cours d’exécution. L'approche est basée sur la modélisation des phénomènes
physiques (que nous appelons les effets) qui se produisent dans l'environnement quand un
effecteur donné est activé. Les effets sont caractérisés par des lois physiques qui peuvent être
modélisées selon différents niveaux de détails. Ces lois dépendent des paramètres physiques qui
sont associés aux effecteurs et aux capteurs. En exploitant la connaissance sur les capteurs et
effecteurs présents à un moment donné ainsi que ces les lois physiques, le système est capable de
créer automatiquement des associations entre des capteurs et des effecteurs. Ensuite, en
effectuant les calculs appropriés, le système déduit les mesures attendues au niveau d'un capteur
donné lorsqu’une certaine action est effectuée par un effecteur (par exemple, une augmentation
de la température peut être prévue après un certain laps de temps quand un système de chauffage
est activé). De cette façon, le système est capable, par la comparaison de ces valeurs calculées
avec les mesures réelles des capteurs, de détecter les défaillances et éventuellement d’utiliser les
données collectées pour produire un diagnostic. La détection de pannes se fait au moment de
l'exécution, sans nécessiter le couplage explicite de capteurs et d'effecteurs au moment de la
conception. Nous estimons que cette technique est bien adaptée au caractère ouvert des systèmes
d'intelligence ambiante, dans lesquels on peut ajouter et retirer des composants en cours
d’exécution.

1.1.2. Plan de la thèse

Cette thèse est organisée comme suit. Le chapitre III est un état de l’art, dans lequel nous
introduisons le domaine de l'intelligence ambiante. Nous présentons également quelques travaux
relatifs à la détection et au diagnostic des pannes dans le domaine de l’automatique. Nous
analysons les limites de ces approches dans le cadre d’une mise en œuvre dans des
environnements ambiants. Le chapitre IV détaille notre approche de détection et de diagnostic de
pannes. Nous décrivons l'architecture de notre plateforme, les modèles qui la composent, la
structure de ces modèles, leur hiérarchie. Nous expliquons aussi comment ces modèles nous
permettent de réaliser la détection et le diagnostic de pannes dans un environnement
d'intelligence ambiante. Le chapitre V est consacré à la mise en œuvre de notre plateforme. Nous
détaillons l’implémentation de notre plateforme en Java et en utilisant ModHel'X, une plateforme
permettant la représentation et l’exécution de modèles hétérogènes. Nous abordons également
l’intégration de notre plate-forme dans une application de « Ambient Assisted Living », et la mise
en œuvre d'un simulateur permettant de dérouler des scénarios. Dans le chapitre VI, nous
utilisons notre simulateur pour tester la plateforme sur des scénarios plus réels. Le chapitre VII
est une conclusion dans laquelle nous discutons des apports et des limites de notre approche.
Nous donnons des pistes pour surmonter ces limitations et améliorer les performances de notre
approche et la précision de la détection des pannes et du diagnostic.

Chapter 1. Summary of the Thesis in French

4

1.2. Etat de l’art

Depuis que l’on construit et utilise des machines, assurer le bon fonctionnement de ces
machines est une problématique importante. La détection des pannes et leur diagnostic est un
domaine de recherche à part entière, qui s’est complexifié à mesure de la complexification des
systèmes [2]. L'idée générale est de créer des modèles représentant le système diagnostiqué, et de
superposer ces modèles avec le système réel afin de détecter des pannes. Parmi les systèmes qui
peuvent bénéficier de la détection de défaillances, nous nous concentrons dans cette thèse sur les
systèmes d’intelligence ambiante.

1.2.1. Intelligence Ambiante (AmI)

“ Les technologies les plus importantes sont celles qui disparaissent. Elles empreignent la vie quotidienne
jusqu'à se fondre en elle.”- M. Weiser [22]

L'intelligence ambiante (AmI) est une vision du monde futur, où la technologie est
omniprésente mais invisible. Les utilisateurs ne sont pas nécessairement conscients d’interagir
avec des environnements très riches technologiquement. En effet, un système d'intelligence
ambiante est un système interactif dans lequel les capacités de traitement et d’interaction sont
dissimulées dans les outils du quotidien, facilitant ainsi l’introduction d'une couche d'intelligence
faisant de l’ensemble un environnement intelligent.

Les maisons intelligentes, les hôpitaux intelligents, les transports publics intelligents et les
usines intelligentes sont quelques exemples d'application des environnements intelligents. Les
buts de ces applications varient de la simple facilitation des tâches de la vie quotidienne au
contrôle et à la garantie de la sûreté des patients dans des hôpitaux.

Dans ce contexte les tâches de détection et diagnostic de pannes sont importantes, et
méritent un traitement spécifique. En effet les systèmes ambiants présentent un certain nombre
de caractéristiques particulières par rapport aux autres systèmes, rendant inefficaces l’application
des approches de diagnostic classiques.

Parmi les caractéristiques spécifiques des systèmes ambiants, on trouve notamment leur
aspect ouvert : des composants d’un système ambiant peuvent être ajoutés ou retirés au cours de
l’exécution. Dans le cadre de la détection et du diagnostic de pannes, cette caractéristique rend
impossible la prédétermination de boucles capteur-effecteur.

Les systèmes d’intelligence ambiante présentent d’autres caractéristiques particulières. Par
exemple dans [18], ils sont décrits comme des systèmes sensibles (ils détectent la présence des
utilisateurs) et réactifs (ils réagissent à la présence des utilisateurs). Dans [24], les auteurs insistent
sur la transparence des services rendus par les systèmes ambiants : ils sont non intrusifs et
disparaissent même à l’arrière-plan [25].

Une autre, très importante, caractéristique des systèmes d'intelligence ambiante, est la gestion
autonome [29]. Cela recouvre des propriétés telles que l'auto-configuration, l'auto-adaptation,
l'auto-optimisation, l’auto-protection et l'auto-réparation. Cette dernière est possible après l'auto-
diagnostic [31].

1.2.2. Technologies

Nous présentons ici quelques technologies parmi celles qui sont les plus utilisées dans le
contexte des environnements ambiants.

Chapter 1. Summary of the Thesis in French

5

1.2.2.1. Contrôleurs

Les contrôleurs sont utilisés pour contrôler le fonctionnement des effecteurs. Il existe de
simples contrôleurs permettant des fonctionnalités comme allumer/étendre (ou ouvrir/fermer)
des effecteurs, comme il existe des contrôleurs plus avancés permettant un contrôle plus avancé
de l’état des effecteurs (comme les variateurs de lumière ou les thermostats).

1.2.2.2. Effecteurs

Les effecteurs sont le moyen à travers lesquels le système ambiant agit sur son
environnement. Les effecteurs permettent de convertir des ordres électriques en des actions
physiques.

Dans cette thèse nous ne distinguons pas entre effecteurs et contrôleurs. Dans nos modèles
nous considérons l’ensemble en tant qu’une seule entité que nous appelons effecteur.

1.2.2.3. Capteurs

Pour effectuer les bonnes actions au bon moment, le système ambiant a besoin d’être au
courant de l’état de son environnement et d’être alerté de tout événement qui s’y produit.

Un capteur convertit une propriété physique mesurable en un signal pouvant être traité par le
système.

1.2.3. Détection et Diagnostic de Pannes

Dans le domaine de l’automatique, les tâches de détection et diagnostic de pannes peuvent
être divisées en trois catégories [105] :

• Détection de pannes : la détection, suite à une comparaison, d’une différence entre le
système et son modèle.

• Isolement de la panne : après analyse des symptômes de la panne, on essaie de trouver
la (les) cause(s) exacte(s) de la panne.

• Identification de la panne : on tente de déduire d’avantages d’informations à propos de
la panne : son ampleur, son type, etc.

Le terme diagnostic recouvre l’isolement et l’identification de pannes.

Plusieurs travaux ont visé à appliquer des techniques de diagnostic à des systèmes ambiants.
Par exemple dans [143] un middleware supervise constamment le contexte du système ambiant,
afin de déclencher un ensemble de règles en fonction du contexte. Le système de diagnostic de ce
middleware cherche à vérifier que les bonnes règles ont été déclenchées par le middleware, en
supposant que les données fournies en entrée du moteur de contexte sont correctes. Dans
[145][146], on vérifie au contraire si ces données d’entrée sont bel et bien correctes.

D’autres projets ont visé à créer une infrastructure pour les systèmes d’intelligence ambiante,
comme le Context Toolkit [147], Aura [148], Solar [149], ConFab [150], et Gaia [151]. Ces
infrastructures fournissent des mécanismes de niveau système pour superviser des composants de
l'application afin de faciliter la résolution de certains problèmes particuliers qui peuvent survenir
au cours de son fonctionnement.

Chapter 1. Summary of the Thesis in French

6

1.2.4. Architecture générale d’un environnement ambiant

Sur la Figure 3 on peut observer l’architecture générale d’un environnement ambiant typique.
L’architecture est centrée autour de l’utilisateur.

L'utilisateur peut interagir avec le système soit directement via les interfaces homme-machine
disponibles, soit indirectement en agissant sur l’état et l'environnement. Dans ce dernier cas, le
système ambiant peut détecter ces changements via des capteurs.

Figure 3. Architecture d’un environnement ambiant

1.3. AmILoop : Une plateforme de détection de pannes
dans l’ambiant

Comme présenté sur la Figure 4 (à gauche), nous utilisons trois niveaux de modèles. Un
modèle abstrait universel est concrétisé en un modèle propre à chaque type d’environnement. Ce
modèle concret est finalement instancié pour représenter les composants réels du système.

Le modèle abstrait est détaillé sur la Figure 5. Le modèle abstrait décrit l’environnement
d’une manière qui découple les capteurs des effecteurs. Ceci est réalisé via le concept d’Effet, qui
est une modélisation des conséquences physiques des actions des effecteurs sur l’environnement.

Le modèle concret hérite du modèle abstrait sa structure générale tout en définissant les types
des composants, les phénomènes physiques attendus, les lois physiques les décrivant, et les liens
entre toutes ces entités.

Les instances sont créées au moment de l’exécution par le moteur de contexte. Les instances
représentent les composants actuellement présents ainsi que les valeurs actuelles des phénomènes
physiques observés.

Ces données sont utilisées par le moteur de prédiction afin de prédire les mesures attendues
au niveau des capteurs. La détection de pannes se fait par une comparaison entre valeurs

Chapter 1. Summary of the Thesis in French

7

théoriques et valeurs mesurées. Les pannes potentielles sont ensuite diagnostiquées en utilisant un
modèle de diagnostic (à droite).

1.3.1. Architecture générale d’AmILoop

1.3.1.1. Point de vue structurel

De point de vue structurel, les modèles utilisés par la plateforme AmILoop pour réaliser les
tâches de détection et de diagnostic de pannes peuvent être regroupés en trois grands
modèles (voir Figure 6):

• Le modèle statique de l’environnement : il est défini par le concepteur du système.

• Le modèle dynamique de l’environnement : il contient les types et instances réels.

• Le modèle de diagnostic : contenant les informations pour pouvoir isoler les pannes
détectées. La nature de ce modèle dépend du type du moteur de diagnostic choisi (par
exemple utilisation de moteur de raisonnement avec une ontologie comme modèle de
diagnostic). Nous ne mettons pas de restriction sur les types de modèles possibles.

Sur la Figure 6, la relation « use » (utilise) définit le sens d’échange d’information entre
modèles.

Figure 4. Architecture AmILoop dans le contexte d’un environnement ambiant

Chapter 1. Summary of the Thesis in French

8

Figure 5. Le modèle abstrait d’AmILoop

1.3.1.2. Point de vue comportemental

Les tâches de détection de pannes et de diagnostic de pannes dépendent de modèles
spécifiques. Ces modèles sont exploités par des moteurs correspondants afin de tirer des
conclusions vis-à-vis des pannes. L’architecture d’exécution de la plateforme AmILoop (voir
Figure 51) peut être résumée dans ces étapes :

i) Le moteur de contexte (Context Engine) utilise les informations de la couche matérielle et
des informations du modèle statique (comme illustré sur la Figure 7) pour instancier les
objets actuellement présents dans l’environnement et pour initialiser les valeurs des attributs
de ces objets (comme les mesures des capteurs, les positions des objets, etc.).

ii) Les informations du modèle statique et les informations du modèle dynamique sont
exploitées par le moteur de prédiction pour construire un modèle de prédiction. Ce dernier
contient des modèles comportementaux de certains objets et des formules mathématiques
permettant le calcul des valeurs attendues sur les capteurs. Le modèle de prédiction est à la
base de la phase de détection de pannes.

iii) Les conclusions de la comparaison entre les valeurs théoriques des mesures des capteurs
déduites par le modèle de prédiction et les valeurs réelles, les liens déduits entre capteurs et
effecteurs, les états des composants, etc., sont ajoutés aux informations dans le moteur de
diagnostic. Ces informations sont exploitées par le moteur de diagnostic pour déduire
davantage d’informations sur les causes probables des pannes détectées. C’est la phase de
diagnostic de pannes. Il est à noter que, dans cette thèse, nous proposons une plateforme qui
met en œuvre les modèles et moteurs relatifs à la détection de défaillances. Cependant notre
plateforme prévoit dans son architecture (sans l’implémenter) la tâche de diagnostic des
pannes détectées.

Figure 6. Les modèles d’AmILoop

Chapter 1. Summary of the Thesis in French

9

Figure 7. Hiérarchie des modèles d’AmILoop

Figure 8. Architecture d’exécution d’AmILoop

1.3.1.3. Découplage entre effecteurs et capteurs

Pour pouvoir effectuer les tâches de détection de pannes et diagnostic dans un cadre ouvert
tel qu’un environnement ambiant, dans lequel les composants ne sont pas forcement connus au
moment de la conception du système et peuvent être découverts au moment de l’exécution, il est
impossible d’exiger au moment de la conception un couplage explicite entre effecteurs et
capteurs. Pour pouvoir faire le lien entre ces entités tout en les découplant, on introduit le
concept d’effet, comme illustré sur la Figure 5. Les effecteurs sont des producteurs d’effets
physiques, et les capteurs sont des récepteurs de ces effets. Des formules mathématiques
modélisant les lois physiques permettent de relier les grandeurs produites par les premiers aux
grandeurs mesurées par les seconds. Via les effets et en appliquant les formules au moment de
l’exécution, les liens entre capteurs et effecteurs peuvent être déterminés dynamiquement et
automatiquement. Cette approche permet en outre de modéliser un effecteur qui produit plus
d’un seul effet physique. Par exemple une fenêtre agit à la fois sur la lumière et la température
d’une pièce.

Notre proposition est donc bien adaptée au caractère ouvert des systèmes ambiants : les
composants réels ne sont pas connus au moment de la conception ; ils ne sont découverts qu’au
cours de l’exécution, et peuvent être ajoutés ou retirés à tout moment.

1.3.2. Concept d’effet

Un effet est une définition de la conséquence physique de l’action des effecteurs sur
l’environnement. L’effet constitue le seul lien entre les capteurs et les autres composants
(effecteurs principalement).

Chapter 1. Summary of the Thesis in French

10

Le phénomène physique défini par l’effet est décrit par un ensemble de formules
mathématiques (law-set). Ces formules utilisent comme paramètre de calcul les propriétés de
l’effet (ex : intensité lumineuse) ainsi que les propriétés des composants (ex : position).

Les effets peuvent être modélisés selon différents niveaux de détails. Le choix de ce dernier
est laissé au concepteur final. Le choix peut se baser sur :

• le contexte d’utilisation global. Par exemple un concepteur de système peut choisir une
définition très détaillée de l’effet physique du propagation du son dans un environnement
ambiant pour les malentendants.

• le contexte d’exécution courant. On peut imaginer un système programmé pour utiliser une
définition détaillée de l’effet lumière pendant la nuit (là où les effecteurs de lumière sont les
plus utilisés), et une définition moins détaillée (présence/absence) pendant la journée
(détectant ainsi des erreurs dans l’état « ouvert ou fermé » des rideaux par exemple).

Par conséquent à chaque effet on peut associer une hiérarchie de law-sets du plus détaillé au
moins détaillé.

Dans la suite nous détaillons l’effet lumière et nous donnons le modèle mathématique associé.

1.3.2.1. Effet lumière

Nous appelons effet lumière les ondes lumineuses produites par une source lumière. L’effet
lumière est caractérisé par l’intensité du flux lumineux (en lumen). La propriété physique
observée per les capteurs est l’intensité lumineuse (en lux).

Le modèle mathématique permet de prédire des valeurs théoriques des mesures des capteurs
qui captent un effet particulier. On peut donner des formules (law-sets) à différents niveaux de
détails. Pour l’effet lumière, on peut proposer par exemple trois modèles (du plus détaillé au
moins détaillé) : prise en compte de l’intensité lumineuse en 3D, prise en compte de l’intensité en
2D, prise en compte simplement de la présence ou de l’absence de lumière. Dans ce qui suit nous
décrivons le modèle mathématique de l’effet lumière dans un environnement 2D :

Nous appelons cet ensemble de lois 2DLightLawSet ; il est composé des lois suivantes :

)()(),(sameZone azoneszoneas ≡= (L1)

() ()






∞+
−+−=

falseisaswhen

trueisaswhenaysyaxsx
as

),sameZone(

),sameZone()()()()(
),(distance

22

 (L2)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

as

a
as = (L3)

∑
∈

=
ersLightEmitta

ass),(tExposuredirectLigh)(yhtIntensitambientLig (L4)

(L1) vérifie si les deux composants en question sont dans la même zone. En effet un capteur
est sensible à la lumière d’une source de lumière qui est dans la même zone (dans la même pièce
d’une maison par exemple), et ne détecte pas la lumière d’une source dans une zone différente. La
fonction (L1) permet d’alléger les calculs en ignorant la lumière venant des sources se trouvant
dans des zones différentes. Le cas du passage de la lumière entre les zones est traité dans la
section 1.3.5.

Chapter 1. Summary of the Thesis in French

11

(L2) utilise les coordonnées (x, y) pour calculer la distance entre deux objets s’ils sont dans la
même zone.

(L3) calcule l’intensité lumineuse mesurée par un capteur exposé à une seule source de
lumière. Pour faire le calcul cette fonction utilise la valeur de la distance (calculée par (L2)).

(L4) calcule, pour un capteur donné, la somme des contributions des différentes sources de
lumière (qui résultent de différents appels à (L3)). (L4) est la fonction qui calcule la valeur
théorique de la mesure du capteur.

Les applications successives de fonctions sont pour l’ensemble 2DLightLawSet sont
représentées de façon arborescence sur la Figure 9.

Figure 9. Arbre d’appel pour l’ensemble de lois 2D Light Law Set

1.3.3. Capteurs (Récepteurs d’effets)

Le capteur est le composant qui permet au système d’intelligence ambiante d’être informé de
l’état de l’environnement et des évènements qui peuvent s’y produire. Notre approche se base sur
l’utilisation des capteurs disponibles à un instant donné pour vérifier le bon déroulement des
actions dans l’environnement ambiant.

Dans le modèle abstrait, le capteur est un récepteur d’effet. En effet un capteur données
détecte une propriété physique particulière d’un effet, comme l’illustre l’extrait de modèle abstrait
de la Figure 10.

Chapter 1. Summary of the Thesis in French

12

Figure 10. Entités relatives à l’objet "Sensor" dans le modèle abstrait

1.3.4. Effecteurs (Générateurs d’effet)

Dans un environnement ambiant un effecteur est l’entité qui agit physiquement sur
l’environnement (voir Figure 11).

Figure 11. Entités relatives à l’objet "Actuator" dans le modèle abstrait

Un effecteur produit un ou plusieurs effets, caractérisés chacun par une ou plusieurs
propriétés, qui quantifient des paramètres physiques observables. Au niveau des instances, les
propriétés de l'effet et les propriétés des effecteurs (comme leur position (x, y), une valeur de
tolérance, etc.) sont utilisées comme entrées dans les formules mathématiques du law-set. La
valeur d’une telle propriété peut être soit statique, auquel cas la propriété garde sa valeur
indéfiniment (une valeur de tolérance par exemple), ou bien elle peut être dynamique, auquel cas
sa valeur change en fonction de l'état actuel de l’effecteur. Ces valeurs peuvent être déduites du
modèle comportemental de l’effecteur.

Chapter 1. Summary of the Thesis in French

13

Figure 12. Modèle abstrait : représentation du modèle comportemental d’un effecteur

Sur la Figure 12 est décrit le lien entre un effecteur (ou tout autre composant actif) et son
modèle comportemental. Un modèle comportemental est une modélisation du comportement
d’un composant du système. Dans cette thèse nous utilisons les automates finis comme modèles
comportementaux des composants actifs. Un automate est constitué d'états et de transitions. On
peut associer des actions aux transitions. Au niveau des instances, ces actions permettent de
modifier les valeurs des propriétés associées aux composants actifs.

Figure 13. Exemple : modèle comportemental d’une lampe à incandescence

Sur la Figure 13 est décrit un modèle comportemental possible pour une lampe à
incandescence. On a choisi de la modéliser sous forme d’un automate à deux états (lampe
allumée, lampe éteinte). La valeur du flux lumineux Ф change selon l’état de la lampe et selon la
valeur définie pour le type de lampe qui sera instancié.

1.3.5. Modificateurs d’effet

Jusqu’à présent, nous n’avons traité que d’effets qui sont produits directement par un
effecteur dans une zone donnée. Cependant, les effets peuvent passer d’une zone à l’autre, avec
éventuellement des modifications. Par exemple, la lumière peut passer d’une pièce à l’autre à
travers une porte, mais cette transmission peut n’être partielle, par exemple si la porte est
partiellement fermée.

Nous introduisons donc le concept de modificateur d’effet, (le deuxième composant actif dans
notre plateforme avec les effecteurs) qui permet de relayer un effet d’une zone à une autre. Un
modificateur d’effet se comporte comme un récepteur d’effet dans une première zone, et comme
générateur d’effet dans une deuxième zone. Pour calculer la valeur des propriétés de l’effet après
passage d’une zone 1 à une zone 2, on commence par déterminer quelle serait la valeur perçue
par un capteur dans la zone 1, puis on applique une formule de modification, par exemple
simplement un taux de modification (transformation ratio) défini comme propriété intrinsèque
du modificateur d’effet (voir Figure 14). Par exemple pour l’effet lumière :

Ф = γ . I

Chapter 1. Summary of the Thesis in French

14

Où :

γ est le taux de modification, qui est une propriété du modificateur d’effet.

I est la valeur de l’intensité lumineuse que le modificateur d’effet reçoit dans la zone 1.

Ф est le flux lumineux que le modificateur d’effet « génère » dans la zone 2.

Figure 14. Modèle abstrait : modificateur d’effet

Comme pour un effecteur, un modificateur d’effet peut disposer d’un modèle
comportemental.

1.3.6. Modèle de prédiction

Le modèle de prédiction contient :

• Les instances des composants réels et les valeurs de leurs propriétés.

• Les instances des modèles comportementaux des différents composants actifs, définissant à
chaque instant les valeurs des propriétés des composants. Par exemple si on a une instance
(bulb_1) de lampe à incandescence émettant un flux lumineux de 600 lm, Ф est remplacé par
la valeur 600 dans le modèle comportemental de l’instance bulb_1, tel que représenté sur la
Figure 15.

• Les formules de calcul, instanciées sur la situation concrète de l’environnement, déduites des
law-sets. Lors de l’instanciation, on remplace les variables libres par leur valeur, et les grands
opérateurs (comme par exemple ∑ dans L4) sont itérés comme nécessaire. Par exemple dans
le cas de l’effet lumière, si on avait un capteur (sensor_1) et deux lampes (bulb_1 et bulb_2),
les formules seraient instanciées, et on obtiendrait une formule concrète dont une
représentation arborescente est donnée sur la Figure 16.

Figure 15. Automate fini de bulb_1

Chapter 1. Summary of the Thesis in French

15

Figure 16. Formule de prédiction instanciée sur l’exemple

avec :

x(sensor_1) : le coordonnée x de sensor_1

y(sensor_1) : le coordonnée y de sensor_1

x(bulb_1) : le coordonnée x de bulb_1

y(bulb_1) : le coordonnée y de bulb_1

luminousFlux(bulb_1) : la valeur du flux lumineux produit par bulb_1

x(bulb_2) : le coordonnée x de bulb_2

y(bulb_2) : le coordonnée y de bulb2

luminousFlux(bulb_2) : la valeur du flux lumineux produit par bulb_2

1.4. Implémentation

Dans cette partie nous parlons de l’intégration de notre approche dans le projet européen
CBDP [187], puis nous parlons de l’implémentation de notre approche utilisant la plateforme
d’exécution de modèle hétérogène ModHel’X.

1.4.1. Le projet « Context Based Digital Personality » (CBDP)

La plateforme CBDP est construite autour d’une ontologie, utilisant des composants logiciels
écrits en Java et déployés sur une plateforme OSGi (Open Services Gateway initiative Framework)
[188].

La Figure 17 montre une partie de l’ontologie utilisée dans le projet CBDP (en gris), à
laquelle nous avons ajouté les concepts abstraits définis pour la détection de défaillance.
Principalement nous avons intégré les concepts d’effet, propriété d’effet et les formules
mathématiques.

Chapter 1. Summary of the Thesis in French

16

Figure 17. Intégration de l’approche de détection de pannes dans CBDP

Selon le type d’effecteur défini dans le modèle concret, le type approprié d’effet physique lui
sera lié (relation « produces »), et selon le type de capteur, la propriété physique appropriée lui
sera associée (relation « detects »). Par exemple pour le cas de l’effet lumière, ce modèle abstrait se
concrétise comme indiqué sur la Figure 18.

Figure 18. Le modèle concret CBDP dans le contexte de lumière

1.4.2. ModHel’X : outil de modélisation hétérogène

Comme expliqué dans la section 1.3.6, le modèle de prédiction est un modèle hétérogène
puisqu’il contient, en plus des instances des objets réels, des modèles comportementaux
(automates) et des formules mathématiques (flots de données). Afin de réaliser une prédiction, il
est donc nécessaire de disposer d’un outil d’exécution de modèles hétérogènes. Il faut notamment
pouvoir spécifier clairement ce qui se produit à l’interface entre un modèle de type automate et
un modèle de type flot de données. Nous avons décidé, au lieu de créer un moteur d’exécution
dédié, d’utiliser un outil de conception et d’exécution des modèles hétérogène développé à
Supélec, ModHel’X [196].

ModHel'X permet la création de modèles via une API, et offre une animation graphique pour
visualiser les modèles. Il permet d’exécuter des modèles en temps simulé ou en temps réel. Par
conséquent ModHel'X peut être utilisé à la fois pour effectuer des simulations ou exécuter des
systèmes réels. Par conséquent, le cœur du travail d’implémentation d’AmILoop consistait à
construire le modèle de prédiction en utilisant l'API fournie par ModHel'X, après quoi ModHel'X
peut exécuter ce modèle de manière autonome.

Chapter 1. Summary of the Thesis in French

17

1.5. Exemples de détection de pannes dans un
environnement ambiant : système luminaire

Dans ce résumé de thèse nous présentons les résultats du Scenario_1 décrivant la détection
de pannes des luminaires d’un environnement ambiant. Plus de détails sur ce scenario, de même
que le reste des scénarios, sont fournis dans le manuscrit final de la thèse.

1.5.1. Description de l’environnement

L’environnement étudié est une pièce carrée de 16 mètres carré, équipée de 2 lampes à
incandescence, une lampe fluocompacte (CFL), et deux capteurs de lumière.

La lampe fluocompacte requiert une phase de préchauffage (de 30 secondes) avant d’émettre
la lumière à son intensité maximum. Son comportement est décrit dans une machine à états finis
(voir Figure 19).

Figure 19. Machine à états finis d’une lampe fluocompacte émettant 1500lm

1.5.2. Construction des modèles

1.5.2.1. Modèle concret

Comme décrit dans la section 1.3.1, un modèle concret est déduit du modèle abstrait. Il
contient les différents types de composants, les liens entre les différentes classes de composants,
et les phénomènes physiques que le concepteur du système juge nécessaires dans le contexte de
l’application visée.

Le modèle concret du Scenario_1 est illustré dans la Figure 20 ci-dessous :

Chapter 1. Summary of the Thesis in French

18

Figure 20. Modèle concret du scenario 1

1.5.2.2. Exécution

Le modèle concret précèdent (avec tous les objets et autres modèles qu’il contient : formules,
modèles comportementaux) permet de générer un modèle de prédiction. Ce dernier est créé
automatiquement dans ModHel’X en utilisant l’API correspondante.

Sur la Figure 21 nous pouvons voir le modèle de prédiction complet (les lampes sont
appelées la1, la2, et la3. Les deux capteurs de lumières sont appelés ls1 et ls2). Le modèle utilise
les données d'un service de gestion d'objet (ou moteur de contexte) afin de mettre à jour les
données nécessaires pour les calculs. Ces données peuvent être des valeurs simples, utilisé
directement dans des calculs, ou des événements qui déclenchent des changements d'état de
certaines des automates à états finis, générant à leur tour de nouvelles valeurs alimentant les
calculs.

Sur le modèle de prédiction on note les différentes parties suivantes (de haut vers le bas):

• Les entrées du modèle de prédiction venant du service de gestion d'objets.

• Les automates à états finis correspondants aux trois effecteurs lampes.

• Le modèle calculatoire (voir détails de ce modèle dans [216]).

• La sortie du modèle correspondant aux mesures prédites pour les deux capteurs.

La plateforme ModHel’X permet d’exécuter le modèle de prédiction calculant ainsi les valeurs
qui devraient être observées au niveau des capteurs.

Validation des modèles :

Pour valider le modèle de prédiction nous avons déroulé un scénario, dans lequel les résultats
de l’exécution du modèle de prédiction sur ModHel’X ont été comparés avec les prédictions
déterminées manuellement.

Les validations des modèles pour chaque scénario sont détaillées dans le manuscrit de thèse.

Chapter 1. Summary of the Thesis in French

19

Figure 21. Modèle de prédiction exécuté par ModHel’X

1.6. Conclusions et perspectives

1.6.1. Notre Contribution

Dans cette thèse nous avons présenté une nouvelle approche pour effectuer les tâches de
détection et diagnostic de pannes dans les environnements ambiants. L’approche proposée est
fondée sur une modélisation des phénomènes physiques que nous avons appelée effet. L’effet est
le seul lien entre capteur et effecteur, ce qui permet de découpler les entités au moment de la
conception du système. Les liens concrets sont déduits automatiquement au moment de
l’exécution, en fonction des effecteurs et capteurs réellement présents.

A partir d’un examen de ces liens, nous générons un modèle de prédiction qui calcule les
valeurs attendues au niveau des capteurs. La comparaison entre les valeurs théoriques calculées
et les valeurs réelles permet de détecter les défaillances.

Nous avons implémenté notre approche sous la forme d’une plateforme AmILoop. Les
modèles de prédiction, qui sont de nature hétérogène car ils contiennent à la fois des flots de
données et des comportements, sont exécutés à l’aide de l’outil ModHel’X.

1.6.2. Perspectives

1.6.2.1. Modificateur d’effet avancé

Les modificateur d’effet actuellement implémentés supposent que le taux de transformation
d’effet est le même dans les deux sens, sauf que dans la réalité ce n’est pas toujours le cas. Nous
pouvons alors imaginer une modélisation plus poussée des modificateurs permettant de prendre
en compte les zones source(s) et destination(s) pour appliquer la fonction appropriée.

Chapter 1. Summary of the Thesis in French

20

1.6.2.2. Diagnostic de pannes

Dans notre approche nous n’avons pas pu implémenter une technique de diagnostic de
pannes. Nous avons proposé une architecture générique pour le diagnostic qui se base sur
l’utilisation d’un moteur de diagnostic qui exploite un modèle de diagnostic approprié. Plusieurs
techniques concrètes peuvent être utilisées pour le diagnostic.

Modèle probabiliste. Nous pouvons envisager l’utilisation de modèles probabiliste pour
décider lesquels des composants concernés par la panne (lesquels peuvent être déduits à partir du
modèle de prédiction) sont plus susceptibles d’être la cause de la panne détectée. L’idée est de
calculer pour chaque composant une probabilité de défaillance.

Arbres de décision. Nous pouvons aussi imaginer un modèle de diagnostic qui se base sur
une arbre de décision pour répondre à une série de questions permettant de réduire la liste des
objets qui peuvent causer la panne détectée. Par exemple un tel arbre peut mener à vérifier s’il y a
d’autres capteurs qui détectent la même anomalie, de façon à confirmer ou pas la défaillance de
l’effecteur.

Ontologies. Nous pouvons aussi appliquer un raisonnement plus sémantique sur les
informations déduites de la phase de détection de pannes. Dans un tel cas une ontologie [189]
peut être utilisée pour décrire (sémantiquement) l’environnement, ses composants et les liens
entre les entités impliquées. On peut alors spécifier des règles de raisonnement qui permettent de
raisonner sur les informations de l’ontologie. Ces règles sont exploitées par un moteur d’inférence
qui peut, en plus, tirer parti des valeurs et données déduites par le modèle de prédiction.

1.6.2.3. Diagnostic portant sur les tâches des utilisateurs

Notre plateforme de diagnostic permet de détecter des pannes du système, mais elle ne prend
pas en compte les actions des utilisateurs. Au contraire des actions du système, les actions des
utilisateurs sont plus imprévisibles, et par conséquent plus difficiles à diagnostiquer. Des travaux
sont menés dans le domaine de la modélisation des tâches utilisateurs en tenant compte des
particularités des environnements ambiants [211].

1.6.3. Conclusion

Les systèmes ambiants ont un potentiel de développement important à l’avenir. Ils seront
probablement utilisés par des personnes pour leurs activités quotidiennes, sans même qu’elles
s'en aperçoivent. La fiabilité et la capacité d’auto-diagnostic de ces systèmes seront donc des
propriétés très importantes, voire critiques.

Notre travail porte sur l’auto-diagnostic. Nous proposons une solution originale pour la
détection de pannes dans le contexte ambiant. Cette solution pourra à l’avenir être complétée
pour prendre en compte le diagnostic des pannes.

21

Chapter 2:

Introduction

Chapter 2. Introduction

22

Chapter 2.

Introduction

2.1. Context & Motivation

Our works are in the domain of Ambient Intelligence (AmI). Ambient intelligent systems are
interactive systems composed of many heterogeneous components that can be mainly divided
into sensors, using which the system observes its surroundings, and actuators, through which the
system acts upon its surroundings in order to execute specific tasks. The aim of the tasks is to
provide comfort to the occupant of the environment, improve life in general, supervise and assist
users that need help or care. Ambient Intelligent techniques are used in many contexts such as
homes, hospitals, factories, etc. in order to add a layer of intelligence to the environment, which
improves the overall experience of the users (when it is for personal use) and develops the
productivity (when it is used in a professional and/or industrial setting) according to the context
of use.

There are many aspects of the Ambient Intelligence field that are subject to research and
development works, such as the hardware and technologies that are used in a smart environment,
the concepts and techniques that add an intelligence layer to Ambient Intelligent environment,
contextualization and self-configuring techniques, task modeling in Ambient Intelligent
environments, etc. There are three main types of tasks performed in an Ambient Intelligent
environment: tasks performed by the users (very difficult to predict), tasks performed by the
system (via the actuators) and tasks executed as part of user-system interactions. In the field of
Ambient Intelligence, these tasks are approached and studied according to different angles (see
Figure 22).

Our work concerns tasks that are performed by the system via the actuators. We aim to
supervise the actions of the system in order to detect any potential malfunction. In addition to
the fact that actuators are very prone to faults, the heterogeneity of Ambient Intelligent systems’
devices makes detecting the real cause of the fault a difficult mission. Experts in the domain of
Ambient Intelligence (AmI) are interested in designing adaptive, self-healing, and fault tolerant
ambient intelligent systems. We reckon that such systems should be able to autonomously
“discover”, “understand” and “correct” the faults that occur in the execution of system tasks in
an ambient environment. Discovering faults is called fault detection, and understanding faults
(deducing more information about it, including the source of the fault ideally) is called fault
diagnosis (see 3.3.1 for detailed definition).

Our work’s overall goal is to create such a fault tolerant system. In this thesis we propose a
high level and scalable architecture for a fault detection and diagnosis layer for Ambient

Chapter 2. Introduction

23

Intelligent Systems. We detail and validate, via examples, the fault detection part. We explain how
the general architecture allows the use of most state of the art techniques to diagnose detected
faults.

Figure 22. Main research questions studying tasks in an AmI environment

The field of Ambient Intelligence refers to interactive systems in which the processing and
interaction capabilities are embedded into everyday objects, thus facilitating the installation of an
intelligence layer creating a smart environment. Smart homes, hospitals, public transport, and
factories, are some examples of application of smart environments. Applications range from
enhancing everyday life tasks to monitoring and guaranteeing patients’ safety in hospitals. The
main objective of an Ambient Intelligent environment is to address the needs and preferences of
the user. To do so, the ambient system interacts with its surroundings; it perceives the state of its
surrounding using sensors, and acts accordingly upon the environment using actuators. On the
one hand, to ensure the achievement of its goals, the ambient system depends strongly upon the
proper conduct of the tasks that are performed by its actuators. On the other hand, Ambient
Intelligent systems are designed to keep a certain level of non-intrusiveness in order to avoid any
discomfort of users. That is why tasks are usually executed in the background in a way that is
unnoticeable by the user. Such a requirement makes it unacceptable to flood the user with a large
number of fault detection data. Conversely, not informing the users of detected faults may cause
that users continue to rely on failed services without noticing [1]. This can even be dangerous in
some cases, for instance in the case where an Ambient Intelligent system is used for monitoring
patients in a hospital, while some patients’ data are corrupt due to a detected, but undeclared (ex.
until next maintenance intervention), actuator or sensor failure. This characteristic, which is not
trivial to attain, constitutes, among others explained later, one of the particularities of Ambient
Intelligent systems that motivates research in this field.

In this context we want to endow such systems with tools allowing them to check
autonomously whether or not systems tasks are performed properly. As a matter of fact, when an
ambient system sends out orders to an actuator, the proper way to verify whether an order has
been executed properly is to exploit the sensors’ readings in order to ensure that the state of the
environment has changed as expected. For instance, when the system activates a light bulb, the
hardware infrastructure and communication capabilities allow the system to verify whether the
order has been transmitted properly and that the electric circuit of the light bulb has been closed.
However, many factors could stop the light from being emitted, for instance the light bulb could
have been damaged and so it would not be lit properly, or the bulb could have been covered by a
non transparent object, etc. So to verify that the light has really been switched on, the readings of
the proper light sensors must be considered (see Figure 23). New challenges arise: first selecting

Chapter 2. Introduction

24

relevant sensors (here light sensors), second selecting only sensors that are exposed to the actions
of specific actuators (here light sensors exposed to, and affected by, the light emitted by a given
light bulb). A solution to that from control theory consists in pre-determining closed control
loops using ad-hoc sensors. However, one of the main particularities of ambient systems is that,
unlike traditional systems, physical resources (mainly sensors and actuators) are not necessarily
known at design time. In fact they are dynamically discovered and may appear and/or disappear
at run-time, so the solution using pre-determined control loops cannot be adopted in such an
open environment.

Figure 23. Classic ad-hoc control loop for system diagnosis

With this work we propose a solution that allows the automatic and dynamic construction of
the proper links between actuators and sensors in ambient systems by exploiting available
resources at a given time, and using them to perform fault detection and diagnosis at run-time.
The approach is based on the modeling of the physical phenomena (that we call effects) expected
to occur in the environment when a given actuator is activated. Effects are characterized by
physical laws that can be modeled at various levels of details. These laws depend on physical
parameters that are associated with actuators and sensors types. By exploiting modeled
information and physical laws at any given time, the system is able to automatically create
associations between actuators and sensors at run-time. Then by performing the proper
calculations, the system deduces the measurements expected from a given sensor when a certain
action is performed by an actuator (for instance, an increased temperature level may be expected
within a certain time lapse when a heating system is activated). This way, the system is able, first
by comparing these calculated values with the actual sensors readings, to detect the existence of
faults (fault detection), then by reasoning over the available information (from the diagnosis
model), to produce an accurate diagnosis (finding the fault source, which could be the actuators,
the sensors, or any other modeled system object) at run-time without requiring the explicit
coupling of actuators and sensors at design time. In fact, the relations between the actual
components are entirely deduced at run-time from the characteristics of actuator and sensor
types (physical phenomena produced by an actuator type and detectable by a sensor type), and
from characteristics of actuators and sensors that are instances of these types (actual area affected
by actions of an actuator, actual area visible by a sensor, the positions of actuators and sensors
and the distance between them, etc.). Therefore it is well adapted to the openness of Ambient
Intelligent Systems. Moreover, Ambient Intelligent Systems are very dynamic in the sense that the
states (on/off state, output value, position, etc.) of the actual components are constantly
changing, hence deducing faults in such a dynamic setting might depend on the previous state of
the system (overall state or some components states) and of the environment. For instance, an
error consisting in an unexpected drop in light level is detected by comparing the current light
level with the previous one. In other cases, a progressive increase in temperature level may be
expected within a certain time lapse when a heating system is activated, in which case the current

Chapter 2. Introduction

25

temperature value at every point in time is calculated by adding the calculated increase (or
decrease) of temperature relative to a previous temperature state. Thus, it is crucial to consider
their overall temporal behavior. For this reason, we also introduce temporal extensions to the
Fault Detection and Diagnosis framework.

2.2. Outline of the thesis
This thesis is organized as follows. Chapter III is a state of the art, in which we introduce the

field of Ambient Intelligence, and we define some related fields and concepts and show some
similarities and differences between them. In the same chapter we identify some of the works
that have been done in the field of fault detection and diagnosis in the field of automatic control,
and some of the adaptations of these methods and some new methods of fault detection and
diagnosis in the field of ambient intelligence and pervasive computing. We focus on the
limitations of these approaches; especially the non compatibility of these methods with some of
the main particularities of ambient intelligence field (mainly its openness and dynamicity). These
particularities are also highlighted in this chapter. Chapter IV details our Fault Detection and
Diagnosis Framework. We describe our framework’s architecture, composing models, these
models structure, hierarchy, nature, and (in some cases) the sub-models within the models. We
also explain how these models allow us to overcome the challenges faced by working in an
Ambient Intelligent environment and ensure the good execution of the fault detection and
diagnosis tasks. The latter tasks are also detailed in this section. In Chapter V, we focus on the
implementation aspect of our framework. More precisely we detail the integration of our fault
detection and diagnosis framework into an Ambient Assisted Living application, and the
development of a java simulator in order to test and validate (by simulating scenarios) our Fault
Detection and Diagnosis approach. In Chapter VI we use our simulator in order to test the
framework in more real life scenarios. The scenarios presented in this section are used for
evaluating the Fault Detection and Diagnosis tasks accuracy. We validate our approach by
simulating some scenarios via ModHel’X, which is a framework for heterogeneous modeling and
for simulating the execution of multi-formalism models. Chapter VII is a conclusion where we
resume the work in our thesis and where we also point out some of the limitations; then we
discuss some of the possible future works that would help overcome the mentioned limitations
and ameliorate the our approach’s performances and the accuracy of the Fault Detection and
Diagnosis results.

26

Chapter 3:

State of the Art

Chapter 3. State of the Art

27

Chapter 3.

State of the Art

Since humans started building machines and relying on them to perform tasks, ensuring the
proper functioning of these machines had become an important matter. As machines evolved
into more complex systems and their uses broadened into almost every field, all humans became,
directly or indirectly, dependent on the proper operation of these systems. Nowadays many fields
use complex systems, among which we cite: agriculture, communication and information,
transportation, healthcare, manufacturing etc. As human safety and lives became reliant on these
systems, avoiding malfunctions became more and more of an issue, and fault detection and
diagnosis became an essential research domain. At first, many studies have been made for
diagnosing systems in the field of automatic control. Later systems evolved into more complex
and digitalized systems, which led to the appearance of modern control systems [2] that are able
to meet increased performance and safety requirements of modern complex systems. The general
idea behind control systems is to create models representing the diagnosed system, and draw fault
detection and diagnosis conclusions from the models or from superimposing the models and the
real system. These studies have been the foundation for later fault detection and diagnosis
techniques for various other domains with different types of systems. Among these systems, we
focus in this thesis on modern pervasive, ubiquitous computer based ambient intelligent systems.

In the state of the art we will first define ambient intelligence, ambient intelligent
environments, pervasive and ubiquitous computing systems; exact definitions are to be set,
relations between concepts, and the particularities of each of them are to be detailed. We also
show the importance of having fault free systems in the ambient intelligent systems context. In
the second part we make an overview of fault detection and diagnosis techniques in the field of
automatic control, from which we will fix our terminologies and definitions that will be adopted
for the rest of the dissertation. We conclude by showing how fault detection and diagnosis
techniques from the field of automatic control ought to be inspired from and/or adapted for the
new complex, dynamic and heterogeneous Ambient Intelligent systems. We also mention some
of the particular challenges in the field of Ambient Intelligence that should be overcome in order
to efficiently detect faults and perform diagnosis and consequently obtain a fault free Ambient
Intelligent system. The third part discusses some existing works that have been done in the
ambient intelligence domain for fault detection, diagnosis and self-healing in order to provide
fault-free systems.

3.1. Ambient intelligence (AmI)

3.1.1. From Artificial Intelligence to Ambient Intelligence

Ambient Intelligence (AmI) is a vision of the future world, in which technology is present
everywhere but invisible. In such context users are not necessarily aware of using the technology
embedded in their surroundings. The technology in an Ambient Intelligent context is available at
all times with simple interactions with any device. Such technology ought to be smartly adaptive
to different contexts of use and to different users’ preferences. The technology is also

Chapter 3. State of the Art

28

autonomous in the sense that it is self configuring and self healing [3]. In [4], Ambient
Intelligence is considered as the next step in the evolution of Artificial Intelligence. In fact the
authors show, while citing previous works describing the deep bond between the two fields
[5][6], that Ambient Intelligence cannot be achieved without Artificial Intelligence’s concepts,
methods, techniques and technologies. From Figure 24 [4], Ambient Intelligence’s evolution
from Artificial Intelligence is depicted via the parallel evolution of three layers:

Figure 24. Ambient intelligence as an evolution of artificial intelligence

(a) The hardware (also called the operational layer), which evolved from analog devices and early
computers, to modern digital computers. These computers were then connected in networks. As
networks became more democratized and easy to access the web emerged. Then as
heterogeneous modern digital devices got connected to the web it is our whole environment that
became the hardware layer of our technologies. This was made possible by the miniaturization of
electronics and the fact that small devices with strong (compared with earlier technology)
computational capacities can now be bought at affordable prices.

(b) The formal AI concepts, tools and techniques, which are used to properly exploit the hardware
layer in order to generate intelligence. Making the best of the hardware advances, these concepts
evolved. So from artificial neural networks, which were implemented on the available analog
hardware devices in order to solve particular tasks (such as in [7] and [8]), tools complexified
into knowledge-based systems that are able to make intelligent decisions about a specific domain.
As hardware evolved into networks the concept of distributed agents was created and the
decision making tool was decentralized. Ontology-based techniques evolved as the networks
became the web and the quantity of information exploded and it had to be more intelligently
exploited. When the information available in the web became accessible and embedded into
almost all modern devices, the tools, recently, evolved into what we now call Ambient
Intelligence.

(c) The applications that resulted from applying AI techniques to the hardware layer, such as, William
Grey Walter’s educational robots (called Walter’s turtles), which were designed in the late 1940’s
and were used in computer science and mechanical engineering training. In the 1980s they were
equipped with pen mechanisms allowing the use of Logo programming language to create
designs on papers for educational purposes [9]. Also using analog hardware, the SNARC
(Stochastic Neural Analog Reinforcement Computer) was a self learning calculator created by
Marvin Minsky and Dean Edmonds. SNARC was a neural network based machine implemented
using vacuum tubes as a hardware platform. As better performing digital computers were used
with knowledge based systems simple inference engines were made possible and expert systems
such as MYCIN [10] emerged. MYCIN was an expert system that recognized infections,
identified bacteria that caused them, and recommended the proper antibiotics. Other expert
systems were also developed such as STRIPS (Stanford Research Institute Problem Solver) [11],
which is an automated planner that permits the execution of a sequence of actions in order to
achieve a specific goal. Then computers got connected in networks and agents were used to

Chapter 3. State of the Art

29

create collaborative applications such as Authorizer’s assistant [12], which is a rule-based system
used, on an banking IBM mainframe networked environment, by American Express to analyze
credit cards requests and complement online credit authorizations. With the development of the
web recently and the fact that the amount of data became very important and very various on the
web, search engines are continuously updating their techniques using new very efficient (faster
and more precise) search algorithms. New concepts also emerged such as ontologies that added a
semantic layer to the information available on the web. This makes search requests in a more
human like form and results more ‘intelligent’. A known application that uses this is the
recommender systems. Recommender systems predict and recommend data that is interesting to
the user according to previous activities and preferences [13]. Now we have ambient intelligent
applications that exploit all the communication and computation capabilities that are
incorporated in most modern devices that surround us. The remarkable progress in Ambient
Intelligent technology has created a variety of new intelligent systems that we discuss furthermore
as we list a number of smart environments in 3.1.4.

According to the above definitions, (b) and (c) can be called the intelligent layer that envelops
the operational layer (a) in an Ambient Intelligent system.

The makers of these new technologies are constantly trying to make them more user friendly,
by making them easier to use and more intuitive. This has resulted in the spread of this
technology worldwide among all types of users; add to that the miniaturization of the hardware,
the result is the embedding of the computational and communication capabilities into almost
everyday objects. This is called ubiquity [14]. Ubiquitous technology (also called embedded
technology) has allowed these objects, besides allowing technology to be everywhere, to act in a
very unnoticeable manner by the users. This has made it possible for technology to disappear in
the background and task that they help accomplish became naturally part of everyday life
activities. The embedding of technology in the environment is boosted by the fact that new
systems are equipped with more intuitive multi-modal interfaces [15], which allow users to
interact with their surroundings in a natural way. This idea is pushed even further by the use of
spoken language to receive commands from the system’s users [16]. In [17] the authors proposed
an approach in which speech and gesture are used simultaneously as a mean of interaction.

The field of Ambient Intelligence is recent and technologies and terms that are used are
evolving as researchers publish new works. That is why, in the next section, we define some of
the most common concepts and technologies that are related to the field of Ambient Intelligence,
and we show some similarities and overlapping characteristics between them. Another factor that
contributes to varying definitions of Ambient Intelligence (and of some concepts when used in
Ambient Intelligence context) is due to the fact that it can be found (applied) in many contexts.
So given the diversity of potential applications, the definitions naturally extends to other areas of
science like education, health and social care, entertainment, transportation, etc. Ambient
Intelligence started to be used as a term to describe this type of developments about a decade ago
[18] and it has now been adopted as a term to refer to a multidisciplinary area which covers a
variety of other fields of computer science as well as engineering [19], as illustrated in Figure 25
[20]. Some concepts and definitions from these fields might overlap with Ambient Intelligence
but they sill are specific fields in comparison with the field of Ambient Intelligence. For instance
human-computer interaction (HCI) is a very important part of Ambient Intelligence. As a matter
of fact observing users’ needs and requests in order to satisfy their requests and preferences is a
central part of Ambient Intelligent systems. However the field of HCI does not cover Ambient
Intelligence. The same thing can be said about Pervasive Computing (see next paragraph), Multi-
Agent Systems [21], Sensor Networks and Robotics.

Chapter 3. State of the Art

30

Figure 25. AmI and several scientific areas

Another recent technology, which is not a direct evolution from Artificial Intelligence, worth
mentioning in this context, is sensor networks. As more and more modern systems and
techniques rely on sensor networks, the latter became a field by itself. See 3.2.4 for further details
and positioning of our work relatively to the field of sensor networks.

3.1.2. Definitions

“The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life
until they are indistinguishable from it.”- M. Weiser [22]

In this section we define, from Ambient Intelligence perspective, concepts and technologies

that are related to the field Ambient Intelligence.

In recent years, the field of computer science has gone though fast and major progress. We
are already living in a connected world on a human level. With the embedding of intelligence and
computational capacity into the devices in our environment we are going toward the social
network of objects. This will further improve the way we interact with our environment. This
embedding of intelligence everywhere all the time and the technical possibilities generated from
such technology are subjects of studies that are being explored in an area called Ambient
Intelligence.

Ambient Intelligence has different definitions given by researchers who looked at the concept
from different angles and points of interests [23]. For instance in [18], an ambient intelligent
system is viewed as a sensitive and responsive system. It is sensitive since it recognizes the
presence of users, and responsive since it acts in response to our presence and in accordance to
our actions and requests. In [24], which is a visionary work done in 2001 imagining different
scenarios in a world of ambient intelligence; the authors adopt the same definition, however, in
addition to the sensitive and responsive characteristics, the systems in the scenarios emphasized
on the transparency of the systems’ services. This transparency is made possible by the
ubiquitous character of the technologies used in Ambient Intelligent systems; that is to act in an
unnoticeable manner. Work in [25] shares the same vision of transparency by assuming that the
use of Ambient Intelligence brings humans an easier and entertaining life while disappearing into
their environment background. The work in [26] adds to the non-intrusive and transparent
characteristics, the intelligence characteristic. Intelligence and transparency are also the main
characteristics in the definition of an Ambient Intelligent environment in [27] alongside with

Chapter 3. State of the Art

31

sensitivity to the current state (or context), in order to properly adapt to the needs of the user.
Adaptability of Ambient Intelligent systems is also the center of interest in [28].

Another, very important, characteristic of Ambient Intelligent systems, which they share with
the field of autonomic computing, is self-management [29]. This characteristic is very much
bond to context awareness [30] in the sense that it is very important for the system to be aware
(via its sensors) of the current context (state of all elements involved in the environment) in order
to choose the best automatic ‘next action’ and provide the most suitable service, and to the
appropriate user(s). Self-management is a very general characteristic that can be divided into a
broad list of more fine-grained characteristics, such as self-configuration, self-adaptation, self-
optimization, self-protection and self-healing. The latter is possible after self-diagnosis [31].

What we notice from these different, but overlapping, definitions is that Ambient Intelligent
systems have some similarities and differences with fields such as Ubiquitous Computing, where
computers (technology in general) are disappearing into the background and where transparency
is one of the main characteristics. However the main difference is that the goal of Ubiquitous
computing field is a technological goal, which is to successfully build portable technologies that
can be embedded discreetly and efficiently into the environment.

Pervasive Computing, however, is a field that uses ubiquitous technology to benefit from the
transparency characteristic [32], but focuses on the accessibility of the information and the ease
of use of the technology, which are user-centered goals. So Pervasive Computing can be defined
as a field where digital and physical devices are seamlessly integrated together in the user’s
environment, and where users can access information from any device with the same facility of
accessing it from computers.

Even though pervasive computing surrounds the user in its environment, it should not
intrude the user’s consciousness [22]. To do so effectively, the system should be able to adapt its
behavior according to the context of use. This specific aspect of the technology is thoroughly
discussed in the field of Context-Aware Computing. Sensitivity, responsiveness, and adaptability
are the main characteristics of the field of Context-Aware Computing.

Ambient Intelligence also incorporates aspects of artificial intelligence as the tasks of
analyzing, understanding and adapting the system behavior to the user needs and preferences in
most times resort to using machine learning algorithms and agent-based paradigm. However
analyzing, understanding and adapting to users makes Ambient Intelligence field interacts more
with human senses (hearing and vision), human language, human knowledge, human reasoning,
and human intelligence in general; hence one of the particularities of Ambient Intelligence field
[33].

Moreover Ambient Intelligence goal can be resumed in “Intelligence Everywhere”, which we
reckon is a more general goal than the other related field. More than that, from a human user
point of view, Ambient Intelligence can be seen as the ultimate goal to be achieved by most of
the mentioned modern technological and scientific research fields. That is why we can define
Ambient Intelligence as a field that draws features from Pervasive Computing, Context-Aware
Computing, Ubiquitous Computing, and Artificial Intelligence, augmenting sensitivity,
responsiveness, adaptability, and transparency of the system, in order to enhance the users’
everyday life tasks, comfort and overall experience.

3.1.3. Ambient Intelligence and human interaction

Ambient Intelligent systems are systems that are able to interact with humans in an
‘intelligent’ way in order to provide services. To provide these services with a humanly perceived
intelligence, Ambient Intelligent systems must be context-aware. Context awareness requires
adapting to users preferences and different situations.

Chapter 3. State of the Art

32

3.1.3.1. Context-aware human interaction

To acquire knowledge of users’ preferences, Ambient Intelligent systems can either learn
them (via observing and recording users’ behaviors) or having them pre-set (by the user itself or
by an expert). From a technological point of view, the learning method requires the use of
sensors, this means the analysis and fusion of various input data (for instance using Kalman
filters [34], statistical techniques [35], or other techniques for combining data from different
sources [36]). These inputs come from different sensors readings, and they may also come from
human interaction. To make Ambient Intelligent systems as human friendly as possible, the
means of interaction between humans and Ambient Intelligent systems are designed in such way
that humans use intuitive ways to communicate with, and/or control, Ambient Intelligent
systems. Therefore many techniques have been adopted from the field of human computer
interaction in order to facilitate this task. Among these techniques there are various automatic
recognition techniques, such as speech processing [37], motion tracking and gesture recognition
[38], facial expression recognition [39] and emotion recognition [40].

As showed in the previous section, Ambient Intelligent field is a multi-disciplinary field in the
sense that it is multi-technological (a wide range of heterogeneous devices are being used) and
multi-modal (different concepts and technologies are being used). Among the challenges that
arise in a field with such heterogeneity is to provide a practical feedback to the users of the
system. Feedback is very important to keep users aware of what is happening to the systems.
Ambient Intelligent Systems have to use the easiest to understand, yet the richest representation
possible, hence the importance of knowledge representation in Ambient Intelligent systems [4].
This uses many automatic translation techniques, statistical and knowledge-based approaches.

Ambient Intelligent Systems add a layer of ‘intelligence’ to the users’ surroundings. To do so
Ambient Intelligent systems are trying to get close to humans in their way of observing and
analyzing their surroundings and situations. In nature, vision is one of the richest sensorial inputs.
For computers vision is a geometric reasoning problem to be solved. Computer vision comprises
many areas, such as image acquisition, image processing, object recognition (2D and 3D), scene
analysis, and image-flow analysis. In practice computer vision can be used in different cases in the
field of Ambient Intelligence field, such as identifying traffic problems, patterns, or approaching
vehicles. It can also be used to identify human gestures (to control devices for instance) or
human facial expressions to identify emotional states. Since Ambient Intelligent systems deals
mainly with humans, social and emotional factors ought to be considered. For instance some
social aspects, such as receiving visitors, or emotional aspects, such as being in a bad mood,
might make a person not wanting to watch his or her regular favorite program. Some work has
been done in the field of AI on affective computing [41] and social computing [42] and are used
in the field of Ambient Intelligence. According to [43] there is a correlation between the person’s
emotional state and facial and body expression, which makes it possible to detect a person’s
emotional state based on a picture or a video using computer recognition of facial expressions
techniques.

The operational layer of Ambient Intelligent system is composed of many technologies.
These technologies are from a multitude of disciplines involving human-computer interfaces,
networking and pervasive computing, and services architectures. Such technologies are based on
actuators and sensors [20]. The main drive of the technology is satisfying the user preferences.
As a matter of fact, many Ambient Intelligence-based smart environment applications were
developed based on user-centric data extraction and decision making techniques. That is why
many of these applications interact with users using gesture interpretation, detection of regions of
interest (associating them with particular events or situations), and interactions between the user’s
behavior or mood and the surrounding environment devices [44][45].

Chapter 3. State of the Art

33

Moreover, this technological progress that have been made, especially in devices such as
cameras, embedded processors, and the fact that these technologies have become cheaper and
more democratized, contributed in making it easier to realize original real-time solutions such as
immersive human-computer interfaces for virtual reality experiences. These solutions can be used
to revolutionize various types of applications such as gaming, teleconferencing, smart
presentations, and gesture-based control, and even patient monitoring and assistive technologies
[20].

A very remarkable aspect of these new Ambient Intelligent technologies is the fact that on an
operational level (hardware) they rely on very heterogeneous devices. They are in fact
heterogeneous in their technology, purpose and means of communication. This led to the rise of
new challenges in communication (incompatibility of communication protocols),
synchronization, fault diagnosis, performance, etc. In fact Ambient Intelligence is a field that
benefits from works in other fields in order to overcome such challenges. Among these
techniques there are data fusion, event interpretation, context extraction, generation of behavior
models, and algorithms designed for collaborative sensing and collaborative processing [20].

When implementing and using these concepts in the field of Ambient Intelligence, certain
adaptations should be done considering the context of use. The context of use may favor certain
technologies, approaches, or concepts over others according to the main goal of the application
or the current task (in this case the Ambient Intelligent system may have to change its
configuration for each task, thus the importance of self-configuring capability in this case), for
that reason we reckon that there is no absolute best architecture for the perfect Ambient
Intelligent System. For example, in [45] the authors show that techniques from a patient
monitoring application, which are designed mainly to improve the quality of life of patients
and/or the elderly by assisting them and detecting any abnormal behavior or accidents, are
considered as intrusive in many other contexts where privacy is a priority.

3.1.3.2. Human-centered compting

Ambient Intelligence is a new paradigm that uses, among other tools, low level technologies,
mentioned in the previous paragraph, and combines them to achieve human centricity, which lies
at the core of Ambient Intelligent systems. Ambient Intelligent systems use technology to serve
their user in whatever form and flavor that best offers the intended experience of the application
of interest by the user. In this new field many concepts are being used, such as privacy
management, ease of use, unobtrusive design, customized system, self-healing, self-configuring
and self-management [31].

In [46], human-centered computing is defined as a set of methodologies that are applied to
any field that uses any form of devices that have computational capabilities. On the latter devices
ought to be installed applications allowing humans to directly interact with the whole system.
Human-centered field can be divided into three main areas of research: content production by
users, analysis of data, and human-computer interaction. Human-centered computing main aim is
to facilitate for non-technical users of intelligent environments the translation of conceptual ideas
of the functionalities of computerized environments (and/or appliances) into concrete designs. A
good example for that is Pygmalion, which is a visual programming system that was implemented
on an interactive computer with a two-dimensional graphical display [47]. The technique was
further developed by [48], where it was called ‘programming by example’. The proposed
approach allowed non-technical users to program distributed computing platforms for intelligent
systems.

In order to achieve the vision of human centricity in Ambient Intelligent Systems a number
of novel concepts and methodologies are used, in particular the deconstructed appliance model,
which is a new networked service aggregation model developed by [49], and defined as the

Chapter 3. State of the Art

34

process of decomposing, then reconstructing, traditional appliances into more elementary
functions that are network accessible. For instance a television set can be decomposed into more
‘atomic’ network services, such as display, audio transducer, etc. These services can be shared
between devices (display can be shared between a TV and a computer). They also can be
combined with other services allowing people to re-configure them into novel combinations.
Such technique creates what the authors call ‘personalized soft-appliances’. The concept of meta-
appliances/applications is introduced. Another concepts used are dComp [50], which is an
ontology to support decomposition, and Pervasive Interactive Programming [51], which is a tool
for programming coordinated behavior in rule-based network artifacts. User evaluation of this
methodology demonstrates that users find the system both simple and enjoyable to use.

Beyond the comfort that Ambient Intelligent systems provide their users, these systems play a
more ‘serious’ role when it comes to the well-being of people suffering from physical
impairments. The authors in [20] reckon that the intelligent human computer interfaces, by
facilitating web browsing, sending emails, posting messages, text or image editing, creating
animations etc., can significantly improve the whole experience of communicating and
participating in the information society for physically impaired users. Technically, assistive
software process real time input from advanced camera-based interfaces to help physically
impaired users execute in an easier way. The authors also reckon that camera-based interfaces are
preferred by physically disabled users because of the fact that they do not require much physical
interaction. Another factor that makes such interfaces preferable is the fact that they are
customizable, which facilitates taking account of specific particularities of different physical
impairments.

The adaptability and customizability nature of Ambient Intelligent systems allows users of
these systems to create their own smart environments that know their preferences and
understand their speeches and gestures. This causes new challenges when the ambient
environment is a shared space between different users with different habits and preferences.
Among these challenges we can cite the automatic analysis of data of multi-party interactions
(with the system or between users themselves) that come from sensors [20]. The interactions can
be verbal or nonverbal, such as gestures, postures, activity, visual attention etc. In order to extract
information from nonverbal cues Ambient Intelligent systems have recourse to cognition, social
psychology, and social behavior analysis techniques. These techniques are adapted to be used in
smart spaces equipped with sensing devices such as microphones and cameras. Many applications
use these techniques to enhance remote conversation between users and to recognize social
behavior of the occupants of the smart environment.

To push the technology even further, wearable system for automatically sensing, inferring,
and logging a variety of human physical activity have been introduced in [52]. The data collected
from such systems can be exploited by Ambient Intelligent systems to analyze users’ behaviors
outside the smart environment, which enrich the data collected about the behavior and
preferences of the user and improve the overall performance of the Ambient Intelligent system.

This concept of mobility and content access (and upload) from anywhere raises new
challenges [20]. For instance the Ambient Intelligent system must allow the streaming of heavy
multimedia content such as music, pictures, video clips, games, etc. via many mobile devices
and/or appliances in the environment. Not only that but the system should do so without
overloading the Ambient Intelligent system available communication means; especially that the
latter are necessary for more important system tasks. Moreover, in some cases, the content of the
information must be altered to suit the device, the context, or the user profile; hence the
introduction of new content delivery mechanisms that are based on identifying and considering
the current context while delivering the information. This method is claimed to emphasize user-
driven design. In fact, when shared content environments are being set up and configured in an

Chapter 3. State of the Art

35

Ambient Intelligent system, the users’ roles exceed that of content consumers to content
producers and co-designers.

3.1.3.3. Multi-modal human interaction

In the same scope, which is using advanced human-system interaction in order to make the
use of the system as natural as possible; works from the field of multi-modal human computer
interaction are being re-used in the Ambient Intelligence field. The goal is to create specialized
dialogue systems for interaction with the user [15][16]. These specialized dialogue systems, using
heterogeneous sensors’ data, collects information about the user and the context, then applies the
proper dialogue management strategies, user models and contextual information to link the user
with its environment [20]. The dialogue system must also properly handle the case when the
interaction is initiated by proactive Ambient Intelligent environments. A possible scenario
allowed by such specialized dialogue systems is using speech or gesture to turn on and off an
appliance in a smart home. From other works done in multi-modal dialogue between Ambient
Intelligent systems and users, more precisely in the representation of information field, we cite
[53], which aims at using several communication modalities to produce the most relevant user
outputs, [54] a context-aware assistance device for the blind, and [55], which provides a
multimodal output specification and simulation platform for the design of an output multimodal
system. The proposed framework helps overcoming difficulties that are mainly due to the
richness of Ambient Intelligence interaction contexts. As a matter of fact, the contextualization
of the interaction becomes mandatory because of the diversity of environments, systems and user
profiles. Historically interactions had to be adapted to a given application and for a specific
interaction context. In an Ambient Intelligent system, the interactions have to be adapted to a
multitude of different situations and a context that is in constant evolution and changes [56].
This diversity of the interaction context emphasizes the complexity of a multimodal system
design. It requires the adaptation of the design process and more precisely the implementation of
a new generation of user interface tools. These tools should help the designer and/or the system
to make the proper choices for the interaction technique or modality to be used in a given
context at every moment with each user profile or state.

3.1.4. Smart Environments

Smart Environments (SmE) are spaces that are equipped with Ambient Intelligent systems.
They are the direct application of Ambient Intelligent technologies so they are environments
where we have the concept of “disappearing computers” [57][58].

From a hardware point of view, Smart environments are places that have been enriched with
technologies such as sensors, processors, actuators, information terminals, and other devices
interconnected through a network, in order to enhance services provided to human occupants of
the environment.

Technologically, an Ambient Intelligent environment is a multi-sensory environment,
generally supported with embedded computer technology. Such environment can capture and
interpret what the user is doing, maybe anticipating what the user is wanting, and therefore the
environment can be pro-active and re-active; that means capturing what is going on for later use,
or acting as an environment that assists the user in real-time or collaborates with the user in real-
time. The boost in use of ubiquitous computing technology will help spread (and hide)
computing and communication capabilities all around us. That is, creating smart environments in
our daily work places, in our home environment and in our recreation spaces, equipped with
intelligent perceptual competence helping us to profit from this technology. The miniaturization
of the technology has made it possible to integrate, in a concealed way, a lot of devices in our

Chapter 3. State of the Art

36

private or public environment. We rely on these devices for our everyday activities. A lot of these
devices and household appliances have already become so integrated into our daily routine that
we use them without consciously thinking about the technologies and the ‘intelligence layer’
behind them. In fact, now we have processing and computational capabilities in almost all
household appliances, from refrigerators, heating systems and even toys and learning devices.

This processing capability makes it possible to add a layer of intelligence (reasoning capacity)
around us. The same computational capabilities can be found in modern cars that are equipped
with embedded sensors and actuators that assist the driver. Another application of smart
environments in public places is tracking devices allowing the detection of particular situations in
crowd behavior. Like for example detecting a dangerous situation where the number of person
becomes dangerously big in a subway station, or facilitating the evacuation of a crowd in
emergencies [59].

With the continuing progress in computing powers in smart environments, our lives are
enhanced furthermore, whether it is by anticipating when an action should be done (for instance
turn on lights), facilitating transport commuting, or helping to take care of patients in hospital.
To end up with “smart environments” from these computing devices they have to be
coordinated by intelligent systems and mechanisms that properly integrate and make ‘intelligent’
use of the available resources in order to improve the lives of their users. Joining together all
these technologies and concepts helps the creation of smart environments. A Smart Environment
is defined by [60] as “a digital environment that proactively, but sensibly, supports people in their
daily lives”.

The most known applications of Ambient Intelligence are Smart Homes, hospitals, cars,
classrooms, offices, malls, etc. Ambient Intelligence enhances the global behavior of such a
system by providing high level functionality which provides an added value to the typical services
expected in a specific environment. This is done by continuously analyzing, in real-time, the
events occurring within the smart environment and taking the proper actions and providing the
proper services to the occupant of the smart environment. There is a wide range of services that
an Ambient Intelligent environment can provide. Typical examples are services related to
guaranteeing occupants safety in smart homes. Smart homes also help assisting people with
physical impairments or advanced age to safely perform some tasks. Equally, cars can be
transformed into smart environments to assist drivers in difficult conditions, classrooms can be
equipped to enhance the teaching-learning experience and offices can be supplemented with
technology to support effective workgroup collaboration. By Ambient Intelligence we refer to the
mechanisms that control the behavior of the environment.

Next we present some examples of smart environments.

3.1.4.1. Smart homes

Smart homes are the most known application of ambient intelligent systems. A smart home is
a residential setting equipped with a set of advanced devices (sensors and actuators) designed for
improving the safety, comfort and quality of life of the home residents, care delivery, remote
monitoring and early detection of problems or emergency cases. To do so, information and
communication capabilities are integrated into the smart homes devices so these devices can
deliver non intrusive services to the users. In Figure 26, we see an example of a smart home
where computing modern devices disappear in the background replacing old home devices.

Chapter 3. State of the Art

37

Figure 26. Example of a smart-home where computing devices disappear into the background [61]

These systems are user-centered as they are designed to address the needs of individuals.
Many smart homes are designed in a way that focuses on the creating an environment that
maximizes the productivity of its inhabitants and minimizes operation cost [62]. In that sense
Smart Homes can be used to encourage better lifestyles by comparing trends, or action patterns,
recorded from the activities of the occupant over a longer period of time, against targets set by
the house occupants. For example we can imagine achieving economical targets through a
rational use of energy, or entertainment goals by providing personalized television or music
services depending on the types of activities and time of the day that they are requested. In order
to achieve this goal, the house must be able to predict reason about, and adapt to the context and
to its inhabitants’ preferences [63][64].

Recently a new field have emerged called Ambient Assisting Living (AAL) [70]. The field of
AAL is open and changing; hence AAL applications are very technologically rich and extensible.
Moreover, AAL applications are trans-disciplinary. For instance, they can mix automatic control
techniques with modeling of user behavior. The field also covers home-based healthcare
monitoring systems, which are described more in the next paragraph.

3.1.4.2. Smart hospitals and healthcare monitoring systems

Like in most fields nowadays, the equipment in the medical field is becoming more and more
computerized. In fact modern hospitals have been transformed into sophisticated medical
facilities where diagnostic gear, analytical equipment, drug dispensing carts, computerized
physiotherapy, patient infotainment terminals, multi-parameter patient monitoring devices, etc.
are based on computers.

Continuing on the same path of seeking a better and more effective care with shorter hospital
stays, modern hospitals are constantly evolving towards smarter and more connected hospitals
networks where everything is managed using computer-based platforms. This facilitates
providing and managing care. The latter task is made easier by modern and very efficient
computerized systems to access medical data. An example of this is the mobile point-of-care
(MPoC) presented in [65][66] (see Figure 27). The idea is to use tablet computers with all of
standard patient care tasks. These computers allow medical staff to access the most recent patient
data (blood test results for instance), at all time. This solution improves nurse/doctor
communication and by consequence the workflow of the hospital staff. From the patient point of
view, this solution improves the overall experience and shortens the hospitalization time.

Chapter 3. State of the Art

38

Figure 27. Example of a Mobile Point of Care

In general modern medical devices have touch-screen interfaces, and the recent embedded
platforms, designed specifically for smart healthcare systems, provide the hardware requirements
of scalability and performance [67].

Note here that dependability is a critical aspect of the system. Relying on failed services in
such a context is hazardous, hence the importance to equip such systems with automated
intelligent diagnosis mechanisms [68][69].

It is to be noted that there are smart healthcare systems that are designed to be installed at
homes creating smart home health care systems [71]. Such systems adapt different techniques
and technologies, which are not specifically designed for health care such as sensor networks and
distributed vision (camera)-based systems [72], to make them useful in the context of home
based health care monitoring system [73].

3.1.4.3. Smart industrial plants and factories

"A smart factory is characterized by several paradigms. All objects - machines, field devices and products are
smart. That means that they have sufficient computing power and communication capabilities to allow for

autonomous operation."[74]

The latter definition came as a result of the continuous research work, mainly, by German
industrials. In fact smart factories started as computer-integrated manufacturing systems in the
80’s. The idea was to make the industrial manufacturing technologies better by experimenting
with new industrial applications. The progress in technologies, especially information and
communication technologies led to the miniaturization and made the systems more intelligent. In
the beginning such technologies were used to satisfy users’ preferences. The idea of smart plants
is to use these technologies in the context of industrial environments in order to assist in mass
production tasks. The idea is to make these tasks perform more efficiently and ‘intelligently’. In
[75] the necessity of Ambient Intelligence for industrial use is discussed.

We notice that in industrial environments, old methods are still being used even though
technology is available, mainly because of costs and risks of changes in industrial environments.
New types of factories are created as feasibility demonstration and test bed for the concept of
‘smart factory’. Ubiquitous technologies are tested in these factories under realistic conditions.
Smart factories are tested for adaptability to meet the demands for variable products and
production methods.

The users are central to this new technology. In fact it is designed, not to replace the factory
workers but to optimally assist them in their tasks. It also assists administrators to supervise
production processes using the central control desk [76]. The latter, as in most traditional
factories, allows monitoring the production process. However by using advanced simulation

Chapter 3. State of the Art

39

technologies combined with ubiquitous devices. This makes it easier to switch between real world
applications and their virtual reality counter parts, which allow the administrators to easily plan
new production processes, change them or adapt them according to clients needs. This makes
new smart factories easily modifiable, expandable and very 'flexible' [77].

In this settings wireless technologies are used to improve agility and gain time required to
connect devices with wires. In particular RFID chips [78] are used to identify products, wireless
communications are set between devices and smart-phones are widely used [80].

It is important to note that RFID chips are widely used in other application domains of
Ambient Intelligence in order to improve the context awareness of ambient systems by locating
different components of the environment. For example, in [79] RFID tags are used to locate
different objects around an interactive table in order to adapt its behavior to different possible
situations around it.

In traditional settings actuators and sensors used analog control signals to communicate,
however with modern wireless technologies, such as Wifi, and microprocessor technologies that
have been integrated in the actuators and sensors, these components can exchange more complex
information and can handle more various situations locally.

A demonstration factory, for producing and bottling liquid soap, was built in Kaiserslautern,
Germany [81]. The smart factory went into operation and served as a research testbed for smart
technologies and for the integration of the smart principles.

In the industrial world, one of the companies that are adopting the smart factory philosophy
is Hareon Solar Corporation. It uses the paradigm to improve productivity across its solar
photovoltaic (PV) cell manufacturing operations in China.

In the years to come, further development is expected from advances in ubiquitous
technology, the increasing of Internet based technologies, the desire for safer factories or the
creation of new standards and specifications [82].

3.1.4.4. Smart transportation systems

The concept of intelligent transportation encloses a huge range of systems and applications.
Smart electric vehicle (EV) charging, citywide traffic monitoring, real-time traveler information,
transit signal priority, centralized vehicle fleet management, the recent Tesla electric car and the
infrastructure imagined around it allowing the availability of charging stations for different routes,
etc. can all be classified as forms of intelligent transportation systems. What makes them smart is
the use of embedded intelligence to connect vehicles to each other and to the infrastructure, as
well as to central operational sites.

Transportation systems are also considered smart when they are applied to achieve smart
policy goals in the urban environment, such as enhanced mobility, lower emissions, reduced fuel
consumption, improved safety, or economic competitiveness [83].

3.1.4.5. Smart museums

This is ambient intelligence applied to the area of museums to create smart museums. The
idea is to guide the users in experiencing art in an interactive manner using augmented reality
techniques and other media technologies. These technologies are usually designed, by artists or
professionals, for a particular artwork or exhibition [84]. In this context the methods, tools and
technologies developed in ambient intelligence domain become part of the infrastructure of
museums. For that, the context, the domain, its inhabitants (visitors, participants, users, etc.),
objectives, and activities ought to be understood by the system. According to characteristics such

Chapter 3. State of the Art

40

as the duration of a visit, the sequential or non-sequential behavior, the selectiveness, the number
of stops, proximity to the exposition items, etc. different visiting methods are identified in [85].
Those who would not follow the designated routes of a typical visit are called the grasshoppers.
Those who take their time studying the items in the exposition are called the ants. Those who are
only interested in some items are classified butterflies. And finally those ho would glance quickly
and superficially are called the fishes.

In MIT’s Museum Wearable project [86], a different classification is made distinguishing
between busy, greedy and selective visitors. The idea is to anticipate, support and influence the
behavior of different types of visitors, for instance by drawing their attention to items in the
exposition that may interest them.

The technologies can also be used to allow remote visits in real-time. In the HIPS project
[87][88] visitors are given handheld guides through whish they can bookmark moments of their
visit, allowing visitors to experience the visit again, share it with others and help plan a next visit.

Other works have been done to improve the experience in the museum making it ‘smarter’
and more enjoyable. For instance, in [89] the authors used virtual and augmented reality
technologies in order to simulate the human museum experience with both autonomous agents
and agents representing humans. In [90], the authors emphasized the domain knowledge (of
museums) via a better modeling of events and actions in smart environments. In [91], the authors
used a semantic Web framework thus improving the contextual information. This allowed the
visitor-oriented framework’s service to identify relevant resources to the visitor and to enforce
user-specified privacy preferences about what information to be shared with other users.

3.1.4.6. Smart campus

The goal of a smart campus is to have a view on the activities that are happening at the
university campus in order to offer adapted services to the users. A location and context aware
smart campus information system is presented in [92], and the ubiquitous computing
architecture and the interface design for this smart campus framework are detailed. In such
environments available services allow navigation using proximity detection and information
posting for news, activities and schedules using Bluetooth and Short Message Service (SMS).

Other works have been done for smart campuses, for instance in [93] the MyCampus group
developed an open Semantic Web infrastructure for context-aware service provisioning using the
concept of e-Wallets, which provides answer to users’ demands for context awareness whilst
maintaining their privacies. Similar work is done in the iCampus project [94]; however its main
motivation is to improve the mobility of blind or partially sighted students within a campus. That
is why it emphasizes on the mobility of the provided services, their quality and their ease of use
by visually impaired students.

To sum up we can say that the definitions and examples of Ambient Intelligence given above

share a special characteristic which is the need for a ‘sensible’ system, this means a system with
reasoning capabilities and intelligence. The definition reflects an analogy with how a trained
assistant, (e.g. a nurse or a technician), typically behaves. The assistant will help when needed but
will not intervene and respect the user personal space when its services are not needed. Being
sensible demands understanding the user, learning (or knowing) her/his preferences, and being
able to exhibit understanding toward the user’s mood and the current situation. In this thesis, we
reserve here the term “Smart Environments” (see for example [95]) to emphasize the physical
infrastructure (sensors, actuators and networks) that supports the system and not the software
part where the intelligence and reasoning capabilities reside [96].

Chapter 3. State of the Art

41

3.2. Technologies

One goal of our work is to provide higher-level abstractions of low-level concepts of ambient
intelligent systems, in order to facilitate the design and implementation of a self-diagnosing
Ambient Intelligent system. For that we do not give a complete list nor a very detailed
description of the low-level technologies used in Ambient Intelligent systems. Nevertherless, in
this section we present some of the most used hardware components, we detail their hardware
specifications, technologies, and particularities.

3.2.1. Controllers

A lighting controller is an electronic device used in building to control the operation of one
or multiple light sources at once. Majority of lighting controllers can control dimmers which, in
turn, control the intensity of the lights. Other types of controllers can also control lighting,
according to specific scenarios. Lighting controllers communicate with the dimmers and other
devices in the lighting system via an electronic control protocol (DALI, DMX, ZigBee, KNX,
etc.). The most common protocol used for lighting today is Digital Addressable Lighting
Interface which is commonly known as DALI. Controllers vary in size and complexity depending
on the types of buildings (from small residential buildings to big tertiary one). For most of the
time the purpose of lighting controllers is the same: to combine the control of the lights into an
organized, easy-to-use system, and to reduce lighting energy consumption.

Controllers are used to control the functioning of actuators. In addition to simple controllers
(ex. Automatic On/Off light switch equipped with a presence sensor), there are more advanced
controllers that can offer advanced control of actuators (ex. Light dimmers [97] controlling the
intensity of lights), and can even offer the possibility to be programmed to follow more complex
specific scenarios. Controllers communicate with the devices via an electronic control protocol.
Among these protocols we cite ZigBee high level communication protocols suite [98]. Zigbee-
based controllers (Figure 28 and Figure 29) can easily communicate with their devices via a
Zigbee ad-hoc network. Some applications in an Ambient Intelligent environment include
wireless light switches and automatic light dimmers that permit the optimization of light use and
reduce energy consumed by the light system.

Figure 28. ZigBee lighting controller: Touch Panel Dimmer Switch (one way)

Figure 29. The U600LF model of ZigBee relay control; to be placed between power source and lighting
device to control it wirelessly.

Chapter 3. State of the Art

42

Other than ZigBee devices, there are other lighting system controllers such as DALI (Digital
Addressable Lighting Interface), DMX, KNX, etc.

3.2.2. Actuators

Actuators are the means with which ambient systems act upon their surroundings. They
convert electric orders into physical actions. Actions of actuators can be emitting light, sound or
heat; physically affecting other objects by moving, heating, cooling, destroying, displaying
information, and any other possible action that changes the state of the environment. In more
general terms actuators are system components whose states can be changed by orders from the
ambient system via controllers; by changing their states they act upon they surroundings.

In our models the entity “Actuator” represents in fact actuators (as defined in this paragraph)
and their corresponding controller(s) (as defined in the previous paragraph) as well. This means
that we suppose that actuators and their controllers are a single entity and that there are no errors
possible in the connection between the actuator and its controller.

3.2.3. Sensors

Sensors are the components responsible for keeping the system aware of the state, and
changes of states, of its surroundings. Sensors are responsible for measuring the real world
conditions. A sensor converts a measurable physical quantity into a signal that can be processed
by the system.

For example in the case of light, a light sensor detects light intensity levels (Definition: Light
intensity measured at a particular position, also called Illuminance and measured in lux – See Annex-A for
detailed definition and references), the existence of light (or its absence), a variation of light state (for
instance a transitions from the state On to Off) a variation from light values (for instance a
sudden dimming of light), etc. Then it converts these different entities into data that is
manageable by the system.

In the case of heat, sensors report current temperature, detect an increase (or decrease) in
temperature, detect fires, etc.

Sound sensors might simply detect the existence of noises; others might go as far as to
sample the sound signal.

There is a variety of other sensor types such as presence sensors, pressure sensors, tactile
sensors, position sensors, wind speed sensors, etc.

In [99] the authors define and describe some of the particular characteristics that affect their
performance. Below are some of these characteristics (The Figures are also from [99]):

• Sensitivity: the minimum input of the measured physical entity that can create a detectable
change in output. A very sensitive sensor is a sensor that measures very small changes in the
measured physical entity.

• Range: the maximum and minimum values of the physical parameter that can be
measured.

• Precision: the degree of reproducibility of a measurement. An ideal sensor would output
exactly the same value every time it is given the same input. In reality sensors output a range
of values distributed in some manner relative to the actual correct value.

• Resolution: the smallest change in the input that can be detected by the sensor.

Chapter 3. State of the Art

43

• Accuracy: is the maximum difference between the actual value and the value that can be
deduced from the output of the sensor. It can be expressed either as a percentage of full scale
or in absolute terms. It is from this characteristic that we will deduce the tolerance value that
will be used in the models of our proposed fault detection and diagnosis framework.

• Offset error: the output value when, theoretically, it should be zero. In other cases it is
the difference between the actual output value and a calculated output value under particular
conditions.

• Linearity: is a mathematical formula that measures the extent to which the actual curve of
measurements of a sensor is different from the ideal curve. Figure 30 shows an example of
such relation between the ideal curve and the curve actually measured.

Figure 30. Ideal versus measured curve showing linearity error

• Hysteresis: the measure of the ability of a sensor to follow the changes of the input
parameter regardless of different previous states and/or values. Figure 31 shows a typical
hysteresis curve. When approaching a fixed input value (for example the point noted B in the
curve of Figure 31) from a higher value (like point P), we obtain a certain output value. This
value is different from the value we obtain when approaching the same input value from a
lesser input value (like point Q or zero). Note that the input value B can be represented by
F(x)1, F(x)2, or F(x)3 depending on the immediate previous value. This is an error due to
hysteresis.

Figure 31. Hysteresis curve

Chapter 3. State of the Art

44

• Response Time: is the time necessary for a sensor to change its output state (to the
correct value) in response to a change in an input parameter. The period of time necessary to
make the change is called the response time (noted T). In other words the response time is
the time required for a sensor output to change from its previous state to settle on a final
value within a tolerance band of the correct new value. This term can be seen as similar to
that for a capacitor charging through a resistance. In Figure 32, the curve represents the
response time following an abrupt positive change of the input parameter of the sensor (Note
the tolerance band). The form shown in Figure 33 is a decay time (noted Td) in response to a
negative change (or absence of) of the input parameter. Decay time is to be distinguished
from response time as they are different for many sensors.

Figure 32. Sensor rise-time definition

Figure 33. fall-time definition

• Dynamic Linearity: The dynamic linearity of a sensor is a measure of its capability to
follow abrupt changes in the input parameter. Many characteristics are important to
determine the value of the dynamic linearity. These characteristics are Amplitude distortion,
phase distortion, and response time. To calculate the value of the amplitude response in a
system of low hysteresis, we use:

F(x)=ax+bx 2+cx 3+dx 4+…+K

In this equation, the term F(x) is the output signal, while the x terms represent the input
parameter and its harmonics (in a wave form signal, a harmonic is a component frequency that is
an integer multiple of the signal main frequency; for instance if the frequency is f, the harmonics
have frequencies 2f, 3f, etc.), and K is an offset constant.

Chapter 3. State of the Art

45

The harmonics are important when the error signal harmonics of the sensor fall into the same
frequency bands as the correct harmonics produced by the sensor. Continuous waveforms are
represented by a Fourier series of a fundamental sinewave and its harmonics. In the case of
nonsinusoidal waveform (like time-varying changes of a physical parameter), harmonics can be
affected by the action of the sensor. The harmonics can be deduced based on the nature of the
nonlinearity of the calibration curve (Figure 34). On the example in Figure 34a, the calibration
(dotted) curve is asymmetrical. We can conclude that only odd harmonic terms exist. We can
assume that the ideal curve can be expressed with:

F(x)=mx+K

The equation for the symmetrical case becomes:

F(x)=ax+bx 2+cx 4+…+K.

Figure 34b introduces another type of calibration curve where the indicated values are
symmetrical around the ideal mx+K curve. In this case,

F(x)=-F(-x)

and the form of the equation becomes:

F(x)=ax+bx 3+cx 5+…+K.

Figure 34. Output versus input signal curves showing (a) quadratic error; (b) cubic error

There are other characteristics that, even though they might be the basis for the choice of a
certain type of sensor over another one for the experiments, are not thoroughly discussed in this
work, such as cost, compatibility with other devices, used communication protocols, etc.

Chapter 3. State of the Art

46

3.2.4. Sensor Networks

A sensor network is a technology consisting in installing distributed autonomous sensors in
an environment in order to monitor some conditions that are detected by the sensors in that
environment, such as temperature, humidity, etc. The particularity of the technology consists in
the cooperative manner different sensors of the sensor network exchange their data and transmit
them to a central location.

Ambient Intelligent systems need to perceive their physical environments before acting upon
it. To do so Ambient Intelligent systems rely on a variety of sensors. With advances made
recently in the field of “Sensor Networks” in general, and “Wireless Sensor Networks” [100] in
particular, the applicability of control technology in day-to-day life is expanded, that is largely due
the cost-effective deployment of large scale sensor-actuator systems [101]. Sensor Networks have
become involved into many fields and applications, among which is Ambient Intelligence field
and context aware applications.

The technologies used and the techniques applied in research of sensor networks have made
it a field of research by itself. The goal of research in this new, and expanding, field is to address
particular challenges such as to have efficient resource management, to optimize energy
management, better data fusion in order to better analyze the data coming from the different
sensors in the sensor network, etc.

These are challenges that are not addressed by our work. And even when fault diagnosis is
addressed its goal is to look for faulty sensors within the sensor network based on the analysis of
different sensors readings [102][103]. Even though, our work detects the existence of faults using
sensors’ data, we try to isolate the component(s) (not necessary a sensor), or the external factor(s)
causing the fault using totally different approach than that used in sensor networks field.

In [104], a wireless sensor network was used in the context of a smart home environment.
The wireless sensor network is based on ZigBee communication protocol. The idea is to keep
track of the state changes of everyday objects based on the user’s interaction with them. However
such information is not used for detecting possible faulty states of the objects, it is in fact used to
better identify user’s activities, current situations, etc.

3.3. Fault Detection and Diagnosis (FDD)

3.3.1. FDD In the field of automatic control: Terminologies and
definitions

From the field of automatic control, fault detection and diagnosis systems consist of three
main tasks [105]

• Fault detection: after comparing the model of the system with the actual system, when a
difference is detected between theory and reality, a fault is detected, and the conclusion
that something is not working as expected in the diagnosed system is made.

• Fault isolation: by analyzing the symptoms, this task tries to find out the exact cause(s)
of the detected fault.

• Fault identification: determining the information that can be concluded about the fault
like the magnitude of the fault, its type, location, etc.

Fault isolation and fault identification are usually referred to together as fault diagnosis. Fault
detection and isolation are the most important tasks in fault detection and diagnosis systems.
Fault identification, even though useful, is sometimes ignored as the effort it requires is not

Chapter 3. State of the Art

47

worth the resulted information. It is to be noted that for the rest of this dissertation we will
suppose that diagnosis consists only in the fault isolation task. In many cases, after a fault has
been diagnosed an action is decided as for how to deal with the diagnosed fault; the action can
vary from displaying a simple alert message to sending an order to the system to correct the
specific diagnosed fault. The main goal of that is to protect the system and, if possible, to correct
the fault. The signal flow for a typical fault detection, fault diagnosis and fault management
system is shown in Figure 35 [107]; the diagnosed system is called process.

Figure 35. Fault detection, fault diagnosis and fault management system

3.3.1.1. Fault

There are different definitions of faults according to the field in which faults are treated. In
the field of automatic control, a fault is a deviation of a (at least one) characteristic property of a
system from the acceptable, predefined, usual, standard condition. The deviation causes failure(s)
and system malfunction.

In the general case a fault can be defined as a deviation of the actual system from the system
model, causing it to fail to fulfill its goal(s). To perform real-time fault detection, the system
model and the actual system are to be compared at all time in order to monitor any deviation.

3.3.1.2. Fault types

Fault types are determined in the fault identification task. Faults are characterized by their
form (systematic or random), time behavior (permanent, transient, noise or drift) and the extent
(local or global, including the size) of the fault. In reality, fault types highly depend on the system
component causing the fault. For instance when there are specification or design flaws in the
hardware and/or software part of the system (bugs caused by bad specification or design, coding
errors, calculation overflows), the faults caused by that are systematic and not at all random. On
the other hand, once the system is running, hardware malfunctions (faults in hardware) are
mostly random. Finding out the type of the fault is not one of our centers of interest in our work,
in which we suppose that there are no design flaws in the diagnosed system and that all faults are
random.

actuators process sensors

µC

fault
diagnosis

fault
management

fault
detection

+ +

Chapter 3. State of the Art

48

3.3.1.3. FDD: The offline Vs the real-time method

Fault detection and diagnosis can be done either offline, by simulating the behavior of the
system with a model of the system, testing it under different conditions and scenarios, and trying
to isolate the critical values or states; or in real time, in which case the system model is run in
parallel of the real system and theoretical values and states from the model are compared to real
values and states from the actual system.

The real time method raises some performance challenges, as computers that are used to
simulate the system behavior need to update the modeled system state in a time that is very close
to the updates of the real system, which is not an easy task considering the particularities
(especially the complexity) of the diagnosed system. For instance, in some cases computers need
to have very fast calculation capacities allowing the proper functioning of reasoning tools that
exploit the system model to perform diagnosis, in other cases big memory spaces are needed to
store big quantities of data that can be used in statistical techniques to deduce faults, etc. This has
become less of an issue with modern computers and devices [108]. It is however a very
important factor to consider when designing the diagnosis system.

3.3.1.4. Supervision

In the field of automatic control, supervision is a process consisting in continuously
monitoring a system process by inspecting measurable variables and comparing them to a
threshold with regard to tolerance values, in order to react to the detection of any deviation
(fault) with a counter action to protect the system. This is called limit value supervision. This
method is simple and reliable for steady state situations.

However, due to the dynamic nature of Ambient Intelligent systems, thresholds of
heterogeneous types (a certain state in a state transition model of a device can be considered as a
threshold), and their values are constantly changing and can not be fixed. In fact in an Ambient
Intelligence context processes (actions) are changing according to context or use (or reuse) of
services by the user. For instance, in a scenario where a radio is controlled by an ambient system
to be used as an alarm clock, the radio clock should start at the right time and at the same time
play the right station or track. The supervision of devices in this scenario depends more on the
context in which the device is used than on the device characteristics themselves. So a
supervision method shall be defined for each new context. In addition, even though fault
detection is possible with this method, correcting the fault in such complex and changing systems
requires more than just the detection of a threshold violation of the values of some variables.

3.3.1.5. Model-based fault detection method and Fault modeling

A model-based method of fault detection deduces the existence of faults from changes in the
measured values of variables and relations between these variables. To do that the diagnosed
system is modeled. In the field of control engineering or automatic control, the diagnosed system
(also called process) is modeled with a mathematical model. The latter is called a mathematical
process model. Generally, the relations between variables that allow the detection of faults are
analytical relations, for instance a fault is detected when the value of a certain feature exceeds a
certain limit. In other cases the system model can be in the form of if-then causality rules, for
instance the presence or absence of a feature determines the existence of a fault [105].

The proper modeling of the process makes it possible to apply a model-based fault detection
method to detect faults. In Figure 36 we see a general scheme for process model-based fault
detection. The mathematical process model describes the relation between the measured input
signal U and the output signal Y. Features, such as parameters θ, state variables x or residual r,

Chapter 3. State of the Art

49

are then extracted. Comparison between these features and their nominal values generates what is
called analytical symptoms s. Analytical symptoms are the results of the limit value checking of
measurable signals, signal or process model fault detection methods and change detection [106].
After that these symptoms will be the basis for fault diagnosis.

Figure 36. General schema of process model-based fault detection

3.3.1.6. Fault Diagnosis

The goal of fault diagnosis is to find out as many details as possible on the detected fault, in
particular the cause of the fault. The basis for fault diagnosis is the analytical symptoms s. These
symptoms are generated via the fault detection task from unusual changes in the features from
their normal or nominal values (as showed in the previous paragraph). As a matter of fact, in an
actual physical system, faults cause certain events which in turn cause symptoms that are
measurable and/or observable. Understanding this cause-effect relationship from faults to
symptoms in a system is the basis for creating its diagnosis model. In fact, the diagnosis model is
used to deduce faults from symptoms in the reverse way as shown in

Figure 37. This idea is the basis for many fault diagnosis methods. These methods vary
mainly according to the available information about fault-symptom causalities of a given system.
Two cases are possible:

The first case is when little information is available; in which case classification methods are used.
The second case is when relationships between symptoms and faults are, at least partially, known;
in this case inference methods are used.

actuators process sensors

feature
generation

change
detection

process
model

+ +
U Y

 r,θ,x features

faults faults faults

s analytical symptoms

normal
behavior

model-based
fault detection

Chapter 3. State of the Art

50

Figure 37. Fault-symptom relationship in an actual system and in a diagnosis system

Classification methods: These methods can be trained with real data from the system
without the need for structural knowledge about relations between symptoms and faults.
Generally the technique consists in using pattern classification method [109] as shown in Figure
38. Expected symptoms are represented in reference symptom vectors sref and are associated with
the faults Fj experimentally by learning or training. Observed symptoms (s) are then compared to
the reference symptoms to determine the faults by classification. The classification methods are
used here as a functional mapping of the diagnosis deduced from the symptom space s to the
space of fault measures fj.

Figure 38. Fault diagnosis with classification methods

The most commonly used classification methods are summarized in Figure 39.

fault

event event

symptom symptom symptom

cause

effect

actual system diagnosis system

fault

event event

symptom symptom symptom

diagnosis

observation

Reference pattern

Classification

sref
F s

s1 F1

s2 F2

+

+ + +

+

+

+

+

+

+

+

+

+..

. . .
.

.
.

.

..

.

Chapter 3. State of the Art

51

Figure 39. Pattern classification methods

Historically, the statistical methods came first, followed by the density-based methods and
general approximation approaches. The artificial intelligence methods were the latest to be
developed for diagnosis problems.

Among these classification methods we detail some:

• Bayes classifier: belongs to statistical methods of classification. It is the most well-
known classification method [110]. The method is based on making assumptions about the
statistical distribution of the symptoms. A common statistical distribution function is the
Gaussian probability density functions [111]

() 






 −∑−−
∑

= −)()(
2

1
exp

2

1
)(0

1
02/12/

sssssp T

nsπ

The procedure consists in determining the maximum likelihood estimations for the constants,
the covariance matrix ∑ and the centers s0 (can be found using the mean values of the
reference data, recursive parameter estimation methods, or Bayes inference) of the Gaussian
probability density function. Building a classification system from the probability density
estimations requires class specific densities. It can be shown that a minimum of wrong
decisions is achieved if the maximum of a posterior probability p(Fj|s) is selected. The prior
probability is the probability that express the uncertainty about p before the actual ‘data’ is
taken into account. This probability is calculated with the help of the Bayes Law:

)(

)()(
)()(

sp

FPFsp
sFpsf

jj

jj ==

The class-specific densities can be estimated from labeled reference data using those data
points belonging to ‘fault’. Since we are only interested in the maximum of the fault data
values, the denominator is not significant (because it does not depend on the function. It only
plays the role of normalizing factor and is irrelevant for the comparison).

However, the prior probabilities are important. Provided enough reference data is available,
they can be estimated from their frequency of the occurrence in the data set. It is to be noted
that in many applications these prior probabilities cannot be determined. In many cases the
reference data is created from experiments where the occurrence of the faults can be
influenced, in which case, unless experience output a better choice, one should assume that

Classification methods

Statistical
methods

-Bayes classifier

-Decision trees

Approximation
methods

-Polynomial
classifier

Density-based
methods

-Geometrical
classifier

Artificial Intelligence
methods

-Fuzzy classifier

-Neural network

Chapter 3. State of the Art

52

f
j n

FP
1

)(=

Where nf(>0) is the total number of faults. This would suggest that all faults have the same
probability. The prior probabilities are important for the overall quality of the diagnosis
system. In fact if they are carefully selected, they can improve the performance of a diagnosis
system significantly. In many cases measurement errors are modeled by a normal distribution.
This does not imply that we assume that the measurement errors are normally distributed; it
is rather used to produces the most conservative predictions possible given only knowledge
about the mean and variance of the errors [112]. However, the common assumption of
normal distribution can be problematic when applied for real problems. This holds for
instance in the case of distributions with overlapping fault areas [113].

If an estimation for p(s|Fj) is represented graphically as a histogram, a more realizable case is
then given. Nonetheless, a necessary condition for that is to have sufficient amounts of data.
For situations with a lack of enough data points, the histogram methods can be used with
variable-size grids. This is very similar to geometric classifiers discussed next.

• The polynomial classifier [114][115]: Belongs to the approximation methods. It is when
the polynomial classifier is used, instead of the Gaussian functions assumed for the Bayes
classification, a special functional approximation is used for the posterior probabilities. For
that polynomials are used:

p(s| Fj) = fj = aj,0 + aj,1 s1 + aj,2 s2 + … + aj,n+1 s1s2 +…

where aj = [aj,0 aj,1 … aj,n]
T are parameters of the polynomials. The classifier is used first to

evaluate all polynomials. Every polynomial is associated with a fault class. Then the maximum
is found based on the calculated fj. Each data point corresponds to a polynomial. In Figure
40 we can see a decision boundary for a two class problem. The decision boundary is
calculated by the line of equal polynomial values:

p(s| F1)= f1(s) and p(s| F2)= f2(s)

Figure 40. Example of the decision boundary of a polynomial classifier

The difficulty that must be overcome when the polynomial classifier is used is to correctly
choose the polynomial terms.

o
o

o o
o o

o

o

o

o
o

s2

s1

x
x

x

x

x
x

x

x
x x

x

x

x

x

x

x
x

x
polynomial
decision
boundary

p(s|F1) = p(s|F2)

x
x

o

Chapter 3. State of the Art

53

In most applications a complete polynomial is usually (unnecessarily) very large. The
challenge here is not to choose a large number of terms because that can easily create an
overfitting with bad generalization behavior, and not to chose a number of terms too small
because that can make the system not flexible enough to properly distinguish between the
classes. To do so, a removal of the nearly linear dependent terms should be done. The
removal can follow Gauss-Jordan algorithm [116], or it can follow a transformation like the
Orthogonal Least Squares [117], or singular value decomposition [118].

• A special type of Decision trees [119][120]: Usually decision trees are not used for
classification when we have “little information” about data. However, this special type of
decision trees, which is originally from social sciences, is used here to classify data (see binary
reasoning paragraph for classic decision tree definition). The system basically relies on
answering a series of questions (is the value si, of “symptomi”, larger or lower than a certain
value?). Depending on the answer the next question narrows the answers more and more
until the exact answer is determined. A complete decision tree is formed of the collection of
all questions. One can picture a whole set of symptoms S0 of data tuples being subdivided
into more sets S11 and S12 by decision D1. The two sets are then again divided into more sets
forming a tree. Ideally, the splitting is finished if the sets contain solely a single class of data.
The class information of the remaining set is called a leaf of the tree. The data is classified in
the tree from top to bottom. Starting from the tree root, a new data point is confronted with
the tree nodes decisions until it reaches a leaf and is classified according to the leaf’s class.
Figure 41 shows such a tree for the distinction of the two faults (or classes of faults) F1 and
F2 using two continuously distributed symptoms s1 and s2. The decisions here are binary but
based on a continuous variable. The example also shows that the tree does not have an
identical size for all of its branches.

Figure 41. Example of a decision tree for the distinction of two classes F1 and F2

The resulting segmentation of the symptom space can be seen in Figure 42.

s1

s1 s2

s1 F2

F2 F2

F2 F2

s1≥0.5 s1<0.5

S2≥1 S2<1

S2<0.5 S2≥0.5

S1≥0 S1<0

Chapter 3. State of the Art

54

Figure 42. Example of a decision tree for the distinction of two classes F1 and F2.
Resulting partitioning in a s1 and s2 plane, where the symptoms s1 and s2 are continuous

variables.

• The geometrical classifier: belongs to the Density-based methods. The geometrical
classifier is based on the calculation of the distance between a data point and a reference data
point. This method determines the class membership of the data point. The reference data
points are determined by their symptom values sref,i and their class assignment (for example:
class F1 or class F2). Using the Euclidean distance technique, the geometrical classifier is the
simplest and most well-known approach. For instance if we want to determine the class of
the data point sj we need to evaluate the minimum

)(min)min(
2

,irefj
ii

i ssd −= 1 ≤ i ≤nref

where nref is the number of reference data points. As shown in Figure 43, the class of sref,min
that is the closest to sj is then considered as the class of sj.

Figure 43. Example of nearest neighbor classification.

This method has some drawbacks. For instance suppose we have only a few reference points
and we have overlapping class regions. In that case the resulting decision boundary is not
smooth; hence, there is probably a more optimal boundary. This can be fixed when the
distance to more than one reference point is evaluated. In that case a voting of the k closest

s2

s1

 x : Class F1
 o : Class F2 F(sj) = F2

sref,min dmin
sj

x
x o

o
o
o

 o

o o x x

x
x

x x
x

o

x

o

s2

1 0.5 0

F1

F2

F2

F1

F2

s1

1

Chapter 3. State of the Art

55

data points is used. This approach is called the k nearest neighbor approach. This method can
be compared to a local parameter-free probability density estimation. In that case, the class
that contains most sref is identical to the class with the highest frequency of occurrence
centered around s in the considered hypersphere. The size of the latter is governed by the
reference data density around s. Another disadvantage of nearest neighbor classification is the
need to store all reference data points. However, modern computation and storing
capabilities solves this problem. Furthermore, an intelligent selection technique reduces the
number of necessary points to be stored. An example of this technique is the condensed
nearest neighbor approach [121].

• Neural networks classifier [122]: belongs to the Artificial Intelligence methods. While
the Bayes Classifier assumes a special function (Gaussian), the neural networks are designed
to match an arbitrary function by reducing an approximate error measure V. The mapping
function of the network depends on a number of weights w that contains the information of
the network. Network training is done by adapting the weights to minimize V. Neural
networks have been shown to be universal approximators, meaning they can fit any function
to an arbitrary accuracy, provided their structure is sufficiently large. As diagnosis tools they
are trained with exactly the same target values as for instance the polynomial classifier which
means that they also approximate the class-conditional posterior probability.

In the field of fault diagnosis, neural networks are frequently employed: In [123] a survey
shows that about half of the publications utilizing a classification procedure for fault
diagnosis relied on neural networks. Moreover, neural networks provide a means to achieve
decent classification results with relatively moderate design effort.

• Fuzzy classifier [124]: Also belongs to Artificial Intelligence classification methods. It is
very similar to neural networks method in the sense that they both try to determine the
transfer function between their feature space and a given class. However, at the contrary of
neural networks that can only be initialized in a random state, a fuzzy classifier can be
initialized in a particular state (ideally a state close to the correct solution by a designer). This
allows fuzzy classifier method to do a faster classification than neural networks.

Inference methods: used when relationships between symptoms and faults are known can
be expressed in the form of an if-then rule set. Among inference methods we cite:

• Predicate logic: fault trees are an established tool for the visualization of the
relationships in reliability and diagnosis [125], representing binary relationships. They are
directed graphs showing the fault situation at the top and symptoms and conditions below.
Elements of the tree are logic connections, events and symptoms. An example is shown in
Figure 44:

Chapter 3. State of the Art

56

Figure 44. Scheme of a fault tree for binary symptoms

Fault trees are a good and intuitive graphical tool for displaying the binary relationships that
will lead to failures. The hierarchical structure supports the human comprehension. They are
common for analysis and diagnosis in safety-critical applications. Quantitative failure
probabilities (between 0 and 1 as shown in Figure 44) can also be derived from the fault
trees. They require information about the failure probabilities of the individual elements. By
combining these with the relationships from the fault trees it is possible to calculate the
probability of a system failure. The fault tree is usually important during the early system
design phase in identifying the critical subsystems that contribute most to the system failure
probability. Examples of fault trees can for instance be found in [126][127].

The fault trees shown here, for industrial robot, are not used for reliability analysis but rather
for the diagnosis. For instance to visualize the diagnostic reasoning from symptoms to faults,
one would start at the root “the fault”, then by answering a series of logical questions
(and/or) about the existence of a symptom or the occurrence of an event we deduce the
diagnostic report. It is then necessary to design one fault tree for each of the faults. The
leaves of the tree are composed of the available symptoms. The decision: which faults have
occurred is ideally a simple binary evaluation of the different fault trees. In most applications,
however, this binary representation is not sufficient. It is common that some symptoms are
not clearly recognized or that they are uncertain. In this case a straightforward evaluation of
the binary decision would not work. A possible strategy is then to use the tree whose
complete evaluation could most easily be achieved by changing the status of the symptoms at
the leaves.

• Approximate reasoning: In the case of rule-based fault diagnosis of continuous
processes with continuous variable symptoms, methods of approximate reasoning are more
appropriate than binary decisions. Based on the available heuristic knowledge in the form of
heuristic process models and weighting of effects, different diagnostic strategies can be
applied, such as a forward or a backward reasoning. Finally the diagnostic goal is achieved by
fault decision which specifies the type, size and location of the fault as well as its time of
detection, [128][129]. A review of developments in reasoning oriented approaches for
diagnosis was given in [130]. As major areas of interest, medicine, [131][132], and
engineering [133], can be observed. Engineering research especially with regard to reliability
analysis of nuclear power stations [134], aero space systems [135] and electrical equipment
[136] started much earlier and followed in many cases the concept of fault tree analysis [137].

fault
Λ

event 2
V

symptom 1

symptom 2 symptom 3

[0,1] [0,1]

[0,1] [0,1]

Chapter 3. State of the Art

57

On the other side, artificial intelligence offered new methods for treatment of cause-effect
relations [138], and for diagnostic problem solving [139].

The development in the area of artificial intelligence was oriented initially to medical
diagnosis and then extended to technical process. Therefore, also for technical diagnosis only
heuristic symptoms were considered. Then more sophisticated diagnostic reasoning strategies
were developed by increasing the level of abstraction [140][141] using the causalities as deep
logic interdependencies. The fault-symptom trees known from engineering and AI strategies
for treating causalities can be brought together for fault diagnosis. Especially the analytical
symptoms generated by the model-based fault detection then allow performing a deep fault
diagnosis by pinpointing on the possible physical fault origin.

3.3.2. FDD in the field of Ambient Intelligence

As showed previously, Ambient Intelligence is a field that has many applications, which vary
from enhancing everyday life tasks to guaranteeing patients safety in hospitals. Such systems’
services, which goal is generally to satisfy the user’s preferences by performing a specific task, are
executed in the background in a way that they are unnoticeable by the user. These characteristics
cause some difficult challenges in fault detecting and diagnosing. Indeed, it is unacceptable for a
system defined as non intrusive to flood the user with a large number of fault detection data.
Conversely, not informing the users of detected faults may cause that users continue to rely on
failed services without noticing [1]. A different approach is proposed in [142] to tackle this
challenge by granting the ambient technology in this context the task of assisting the health carers
via alerts, anticipating problems, explaining directives, etc. The technique is based on using
cameras, equipped with night vision for overnight watches, and analyzing cameras feeds by
specific algorithms that use causality and spatio-temporal reasoning.

Despite this, the challenge of guaranteeing the proper functioning of smart services is
becoming even harder especially that Ambient Intelligent and Pervasive systems are becoming
increasingly autonomous and complex, which makes diagnosis not only a nontrivial task but a
very critical task as well, and in some cases, a matter of life or death for the user (Ambient
Intelligent health monitoring systems).

A good fault detection and diagnosis system in this context should be dynamic and flexible
enough to cope with the openness and the constant changes in system state, and, at the same
time, reliable and precise enough to detect malfunctions with the best accuracy, in accordance
with the context of use. Our motivation in this thesis is to provide a framework for Ambient
Intelligent systems that shapes the system models in a way that makes fault detection and
diagnosis process an intrinsic part of the framework and thus an easier task to perform, which
enforce the self-diagnosis characteristic of the Ambient Intelligent environment, thus bringing it
closer to being self-healing capable.

To do so, we investigate in this section some of the existing works that have been done in the
Ambient Intelligent context for ensuring the creation of fault tolerant systems, such as fault
detection, fault diagnosis, automatic healing, etc. Indeed context-aware and adaptive systems are
systems that are constantly monitoring their surroundings (via sensors) and reacting to their
environment (via actuators). Typically such systems have a context awareness middleware, usually
composed of a context manager (continuously collecting context information) and an adaptation
manager (responsible for applying a set of rules "adaptation rules" defining adaptive actions to
take as context information provided by the context manager change) [143]. In such a context a
fault is the triggering of an incorrect rule or the failing to trigger the correct rule. Detecting
adaptation faults is challenging due to the fact that they are based on shared variables obliging to
handle concurrent triggering of rules, their ordering, etc. Moreover, these context variables are

Chapter 3. State of the Art

58

updated asynchronously according to different frequencies by the context awareness middleware,
which leads to inconsistencies between the actual context and its representation within the
system. These challenges were discussed in [144]; the proposed approach is based on the
definition of a formal finite-state model of adaptation rules. Algorithms are then proposed to
analyze the finite-state model in order to detect adaptation faults. In the model the states
represent equivalence classes of stable configurations of context values, whereas the transitions
represent the satisfaction of rule predicates. Thus a satisfied rule triggers an adaptive change from
one state to another and can also trigger the execution of other associated actions. The limitation
of this approach is the comparison of system state to an already established set of adaptation
fault patterns, whereas, in this thesis, we dynamically deduce faults by comparing the real world
state to the model dynamically at run-time.

Contrary to the latter approach, which is based on the assumption that context inputs in a
context-aware application are correct and check whether there are faults in the triggering of the
corresponding rules, the approach in [145][146] does not adopt this assumption, and so it
performs inconsistency detection by identifying conflicts in context inputs at run-time before
these inputs are fed into an application.

A different approach is introduced in [31], in which a set of context ontologies define the
possible run-time contexts. These contexts might be the devices’ run-time statuses and the
relationships between entities involved in service calls. The goal of the approach is to enable real-
time self-management in an Ambient Intelligent environment. To do so the context ontologies
are reasoned over by a set of rules that detects and handles specific events such as changes in
states of devices, selection of the appropriate services according to the current context and the
detection of malfunctions. Such an approach supposes that we can have a list of possible states
for the Ambient Intelligent system devices. However, among the set of ontologies used in this
approach is the “device malfunction ontology”, which defines a hierarchy of possible
malfunctions. For example the category “error” includes the “device totally down” state, which
has a sub-category “battery error”. There are also the concepts of “Cause” and “Remedy”, which
facilitate the self-healing task. We reckon that there are some unpredictable malfunctions that can
occur in the Ambient Intelligent environment and that are caused by external factors. For
example a lamp that is accidentally covered by another object will not emit light, even though
according to the system state everything is working properly.

Other systems have been built specifically as an infrastructure for pervasive computing, such
as:

- The Context Toolkit [147], which is composed of context widgets that mediate between the
environment and the Ambient Intelligent system to notify it of components and people presence,
identities and current activities, allowing the system to be aware of the context and facilitating the
development of context-enabled applications.

- Aura [148], which is an architectural framework for handling the problem of resource
variability caused by users’ mobility in a ubiquitous computing setting. The approach is based on
the use of user tasks models to configure, supervise, and adapt the Ambient Intelligent system
resources in a proactive manner.

- Solar [149] is an implementation of a graph-based abstraction allowing the management of
context information. The approach allows the sending of context information to the subscribed
applications in the form of events flowing through a directed acyclic graph of event-processing
operators.

- ConFab [150], which is a toolkit providing a customizable framework for managing
(including sharing) personal information in a privacy-sensitive way, allowing the construction of
privacy-sensitive ubiquitous computer-based applications.

Chapter 3. State of the Art

59

- Gaia [151] is an experimental middleware infrastructure that manages the Ambient
Intelligent environment resources, detects and recognizes different contexts, and helps in
developing and executing applications. The solution provides user-oriented interfaces and
network-enabled computing resources allowing users to easily configure the system’s behavior
and to seamlessly integrate personal devices in the environment.

These infrastructures provide system-level mechanisms for monitoring application
components and address particular issues that arise in Ambient Intelligence contexts such as
context-aware management of heterogeneous resources and distributed computing. In addition
to that, Gaia incorporates some fault-tolerance mechanisms. Moreover it has been extended with
some fault handling techniques in [152]. These mechanisms include heart-beat-based status
monitoring, redundant provisioning of alternate services/ applications, and restarting failed
application components. Also different failure reasons were discussed and classified in the latter
work. Indeed components and/or services may fail because of various reasons including low
battery power, physical damage, network disconnections, etc. In the same context other
techniques were presented such as [153], in which a recovery model has been developed for
context-aware environments. However the latter supports object-level monitoring mechanisms to
detect object binding failures and focuses on application-level programmed error recovery
mechanisms rather than on system-level mechanisms for building fault-tolerant and robust
context-aware applications. In fault detection techniques that are based on comparing readings of
each sensor with the model’s calculated values, an inconsistency between the actual sensor
reading and the modeled sensor value does not necessary mean a faulty sensor, it is after further
analysis of the model that conclusions can be made on the fault cause.

Some approaches were presented for monitoring and diagnosis of real-time embedded
systems, among which we cite [154]; it presents a framework for modeling faults in hybrid
systems. Hybrid systems (systems that can behaves in both continuous and discrete manner) here
are used to describe the continuous and discrete dynamics and interactions of sensor-rich
embedded systems such as networked printers or automotive vehicles. The approach integrates
model-based techniques using hybrid system models with distributed signature analysis. The
modeling of fault is done using hybrid automata models. Faults considered are abrupt failures
(discrete faults), which cause the increase of the computational cost, and subtle degradation of
components (continuous faults), which are hard to be estimated efficiently. Using a simulation
technique, the developed model is used to generate, off-line, a fault symptom table for different
fault hypotheses. The table is then integrated into a decision tree used by the on-line diagnoser.
Figure 45 shows the architecture of the on-line diagnostic system for the example of the DC265
printer as an embedded system.

Figure 45. Architecture of the prototype diagnosis system [154]

Chapter 3. State of the Art

60

In the on-line diagnosis system only the temporal discrete-event behavior of the hybrid
system are simulated using a timed Petri net model, whereas the continuous dynamics are
abstracted away. The model compares observed sensor events with their expected values. When a
fault is detected the decision-tree diagnoser is triggered. The originality of the approach comes
from the fact that it presents a fault parameterization that can model both abrupt failures and
subtle degradations of components. Moreover, unlike existing approaches for monitoring and
diagnosing hybrid systems, this approach address the computational data association issue
associated with distributed multi-sensor systems by assuming that sensors’ outputs have already
been properly assembled to form likelihood functions of the system output. Online approaches
are different from this approach since they do not model faults explicitly; instead they deduce
their existence by comparing the sensors actual readings with the simulated ones.

Some diagnosis works have been done for networked embedded systems. The main idea is to
distribute the amount of computation necessary to perform diagnosis among distributed nodes;
each of which collaborates with others and communicates using wired or wireless network. The
nodes are embedded in the environment using devices such as sensors and actuators.

A diagnosis system in such context may be centralized, decentralized or distributed.

Usually to perform centralized diagnosis in distributed systems, observations are made locally
at node level; these observations are sent to a centralized diagnoser. The latter performs the
diagnosis and re-distributes the results to the nodes. In other cases the centralized diagnoser only
re-distributes orders based on the results of the diagnosis. However in networked embedded
systems many constraints may not be met, for instance we may not have a processor with
memory large enough to store a local image of the global diagnostic model and run the
centralized diagnostic algorithm. Instead we have a small local processor in each node. This raises
robustness and scalability issues that must be addressed. In some works, such as in [155], the
efficiency of a centralized diagnostic procedure for a distributed network of computers is
increased using an approximate representation and carefully designed active probing of the
distributed system.

To perform decentralized diagnosis a coordination process is used to allow the assembly of
local diagnosers’ diagnosis reports into a single global diagnosis [156].

In distributed diagnosis architectures, each local diagnoser communicates directly with other
diagnosers and the diagnosis task distributed over each local processor, and they become local
diagnosers. To complete the diagnosis, every local diagnoser performs, locally, partial diagnosis,
using a model of the locally concerned portion of the system and the locally available
observations. Communication is then required to combine the local diagnosis reports into one
global diagnosis. Based on this idea, a distributed diagnosis framework is presented in [157]. The
framework exploits the topology of a physical system to be diagnosed to limit inter-diagnoser
communication and compute diagnoses at anytime and using any information available, making it
resilient to communication and processor failures. The framework adopts the consistency-based
diagnosis formalism and develops a distributed constraint satisfaction realization of the diagnosis
algorithm. The idea is that each local diagnoser first computes locally consistent diagnoses, taking
into account local sensing information only. The local diagnosis sets are reduced to globally
consistent diagnoses through direct communications between local diagnosers. This proposed
approach aims to generate accurate diagnoses in a time-critical manner using the available
computational resources. The challenges discussed in this work are mostly related to the nature
of distributed diagnosis, such as Scalability, Robustness, Reconfigurability, etc. Whereas in our
work we focus on overcoming challenges related to the specific nature of the Ambient
Environments such as the dynamicity in adding and removing devices at run-time (openness)
without impairing the diagnosis results. The Diagnosis is mainly concerned with verifying
whether or not the actuators’ actions were properly executed based on reading from sensors.

Chapter 3. State of the Art

61

3.4. Ambient Intelligent System Modeling

Historically, diagnosis systems were based on if-then rules created by experts in a specific
field. These rules are to be applied to systems that are from that specific field. The rules explicitly
expressed the relation between the abnormal behavior and the possible faults in the system that
might have caused it.

However, systems nowadays are becoming more and more complex, so such ad-hoc
diagnosis systems became difficult to develop, and their maintenance and scalability became
extremely difficult tasks. Moreover, it is almost impossible to provide a formal scientific
measurement for the quality of such hand-crafted, and ad-hoc, diagnosis systems [158].

Practically, in order to perform a rule-based diagnosis for a certain system, an expert should
identify situations and states of the system to be diagnosed that might cause failures and then
associate each state (cause) with the appropriate failure (fault) in the form of if-then rules.

Even though such rules are intuitive to make and easy to execute, they are very susceptible to
conception errors and there is no formal way to verify the correctness of the rules, or to verify
that all rules covering all possible faults have been created. In the case of model-based diagnosis
system, we first start by creating a model describing the totality of the system (not only faulty
states), and then the model is exploited by algorithms that reason to deduce the existence of
faults and the component(s) that caused the fault.

Such a method guarantees scalability of the diagnosis system when the system model is
updated [158]. This method also gives more flexibility for the modeling language to use to model
the system. It is to be noted that the right diagnosis algorithms have to be chosen for the
appropriate modeling language used. And executing these algorithms to perform on-line
diagnosis task can be demanding in computational resources.

So in conclusion a fault-based diagnosis approach, regardless of the field or application in
which it is used, can be summarized in the development of a model that simulates a real system
and then apply diagnosis algorithms on the model. By doing so, we can observe and decide
whether the behavior is normal or not (that is fault detection). When there is an abnormality,
other algorithms are applied to isolate the system’s component that is responsible for the
abnormal behavior (that is fault diagnosis) [159].

We reckon that model-based diagnosis approach are more adapted to complex systems, such
as Ambient Intelligent systems, and that is why, in this thesis, we have adopted a model-based
diagnosis approach.

In this part we expand more on the concept of a system model, which is a conceptual
representation of a real system focusing on particular aspect of the system (structure, functioning,
relationship with other systems, etc.). In the next part there are short definitions of the main
types of models used in this dissertation. With these definitions we aim to clarify the difference
between two particular types of models; the mathematical models, which are the models used in
the field of automatic control (which is the field where the concept of fault detection and
diagnosis of faults in a system was first introduced. “see 3.3”), and the conceptual models, which
are used to design most of software representations of real systems. In the literature, models
describing systems, including conceptual models, are created according to two approaches: a non-
architectural approach, where every aspect of the system (structure, behavior, data flow and
communication between entities) is illustrated in a separate model, each of these models has its
own syntax and particularities, and an architectural approach, where one single complete model
incorporating every aspect of the system. In this dissertation we combine architectural (when we
expose the FDD System in general) and non-architectural (when we zoom-in on a particular

Chapter 3. State of the Art

62

aspect of our System to better detail it) approaches in order to give the most complete
description of our Fault Detection and Diagnosis System.

• Conceptual model

In the field of computer science a conceptual model, as its name indicates, is a model that
represents concepts and the relations between them. These concepts are also known as entities.
The conceptual model is a high level representation of concepts and ideas in the sense that it is
independent of implementation constraints [160].

There are many notations to describe a conceptual model, among which we cite UML [161]
and Entity Relationship Modeling [162].

• Mathematical model

Mathematical models are theoretical descriptions of systems using mathematical equations.
These models are used in a wide range of scientific fields in order to describe components or
phenomena, and to analyze and/or predict actions (or their effects) of system’s components
[163].

There are different types of mathematical models, among which we cite dynamical systems
(in which time is considered) [164], statistical systems (in which the mathematical equation relates
variables according to stochastic and probabilistic theories) [165], differential equations
[166][167], etc.

• Architectural model

An architectural model not only describes the structure of a system, but also its behavior
(general behavior and the behavior of the components) and the relations that the system has with
its surrounding (for example other systems) [168].

In this dissertation we use several kinds of models to describe our fault detection and
diagnosis system, using heterogeneous modeling techniques:

- Block diagrams are used for the high-level description of components of our system and
connections between them [169].

- UML (Unified Modeling Language) is used for a more detailed description of the entities
that make the components of the system.

- Finite State Machines (FSM) are used to describe the behavior of components. A
(deterministic) Finite State Machine is a structure composed of states and transitions between
states. At the start, the system under study is in a so-called “initial state”, and at any moment, it is
in exactly one of the states. When an event occurs in input, it can change state by following one
of the current state’s outgoing transitions. Therefore, transitions are labeled with “firing” events.
A variant of FSM is called TFSM for Timed FSM. In such a state machine, some transitions are
labeled not with an input event, but with a duration: these are called timed transitions. When
entering a state, a timer is reset. If at some point it reaches the duration of an outgoing timed
transition, then the transition is activated. If the state changes before the timer elapses, the timer
is deactivated.

• Multi-paradigm modeling

Chapter 3. State of the Art

63

As seen above, when modeling a complex system such as an Ambient Intelligent system, one
has to deal with several kinds of models. For instance, if we want to build a model to predict the
expected output of a light sensor in a room with a window, we must combine:

- A block diagram relating physical variables, consisting of mathematical operators,

- A finite state machine modeling the state and state changes of objects, such as the automatic
blinds of the window.

Therefore, the overall model of the environment is heterogeneous: it combines models built
using several modeling languages, several modeling paradigms. The field of multi-paradigm modeling
[170] studies the ways in which these modeling paradigms may be combined, how the semantics
of the resulting model can be defined precisely.

Defining the meaning of heterogeneous is difficult [171], first because it requires to precisely
specify the semantics of each one of the modeling languages used in the model, and second
because it requires to define how information is interpreted at the boundaries between the
models of the heterogeneous subsystems. Indeed, different modeling paradigms may use
different structures for data (arrays, samples, functions), different notions of time (continuous,
discrete, periodic, triggering), and different ways of combining the behavior of the elements of a
model (sequential, concurrent, synchronous, with blocking communications). These semantic
components define the underlying Model of Computation (MoC) of the modeling paradigm [172].

Well-known MoCs include (Timed) Finite State Machines (FSM, TFSM), Discrete Events
(DE) or Synchronous Data Flow (SDF). We have described FSM and TFSM above. Both SDF
and DE fall in the category of “block diagrams”.

SDF [173] enables one to model sampled systems: a model is a graph composed of operators
that exchange flows of data tokens at fixed rates. An SDF model may be analyzed and scheduled
statically using a simple mathematical method.

DE [174] enables to model sub-systems in which components exchange messages at specific
instants. For instance it is well suited to model the exchange of messages on a bus or on a
network. Each message has a value and a time-stamp, and if several messages have the same
time-stamp, they are delivered in a sequence of microsteps (determined by a topological ordering
of the components), so that the overall observation at that time is causal and deterministic.

Several categories of approaches, like model transformation, language composition or model
composition, address the problem of modeling a system composed of heterogeneous
components. A classification and a comparison of these approaches is proposed in [171]. Among
them we can cite Ptolemy II [174], Metropolis [175] the MATLAB/Simulink toolchain by The
MathWorks, and ModHel’X [172].

Ptolemy II [174] is one of the first approaches for model composition. It supports a wide
range of MoCs that may be combined with each other to form heterogeneous models. The
adaptation between MoCs is hard-coded and cannot be changed. If the model designer wants to
use his/her own adaptation scheme, he/she must explicitly add adaptation blocks into the
models themselves. Such artifacts render models quite difficult to understand and to reuse.

Metropolis [175] is a heterogeneous system design environment which relies on the
separation of communication and computation concerns. Metropolis models are made of
communicating processes. Heterogeneous processes may be connected through adapters.

MATLAB/Simulink supports a set of hardcoded MoCs, for instance a variant of TFSM
(Stateflow) and a variant of SDF (Simulink). The semantic adaptation between a Simulink and a
Stateflow models can be specified explicitly using functions and truth tables. However, all MoCs
cannot be composed in the same way. For instance, using a Simulink (SDF-like) model into a

Chapter 3. State of the Art

64

SimEvents [176] (DE-like) model requires different adaptation artifacts such as event translation
blocks [175]. Therefore adaptation is ad-hoc, specific to every pair of MoCs.

To address these issues, a new approach called ModHel’X is being developed at Supélec
[172]. ModHel’X allows the composition of heterogeneous parts through hierarchy: at a given
level, a model is homogeneous, but it can contain blocks that embed other models that obey
different models of computation. These special adapter blocks are called interface blocks.
ModHel’X introduces abstract semantics that allow the easy addition of new MoCs and new
types interface blocks. ModHel’X will be used in the implementation of our approach, so it is
described more precisely in Section 5.2.

3.4.1. A general architecture for a typical Ambient Intelligent
Environment

From the above definitions we can draw a very general architecture of a typical Ambient
Environment (see Figure 46).

As illustrated, the architecture is user-centered. An Ambient Intelligent Environment (Smart
home, smart hospital, smart factory, etc.) is equipped with an Ambient Intelligent System. The
Ambient Intelligent System has an operational layer (hardware) and an intelligent layer. The user
can interact with the Ambient Intelligent System that is installed in his/her surrounding, either
directly via the available human computer interfaces available, or indirectly by acting upon and
changing the Ambient Intelligent Environment. In the latter case scenario, the Ambient
Intelligent system can detect these changes via sensors. The Ambient Intelligent System can also
act upon the surroundings in order to change their state via actuators.

Figure 46. A typical Ambient Intelligent Environment

In this thesis we focus on the “act upon”-“perceive” relationships between the Ambient
Intelligent system and the Ambient Intelligent Environment, as we aim to add a Fault Detection

Chapter 3. State of the Art

65

and Diagnosis (FDD) layer to monitor and supervise system tasks. The FDD layer proceeds to
simulate the “act upon”-“perceive” actions of actuators and sensors in order to predict sensors
readings and compare them with actual readings to detect anomalies.

3.5. Conclusion

In this chapter we gave an overview of the field of Ambient Intelligence and we cited some
application examples of Ambient Intelligent Systems. Then we gave some definitions from the
field of fault detection and diagnosis, in which we introduced the classical approach and cited
some fault detection and diagnosis approaches applied to the field of Ambient Intelligence.

In our work we adopted basic definitions from Fault Detection and Diagnosis field (such as
differentiation between the Fault Detection task and the Fault Diagnosis task). We noticed that
even though some of these techniques were applied to Ambient Intelligent Systems, they were
not fully adapted to handle the particularities of Dynamicity and Openness of such Systems. In
this thesis we give a new method for verifying the proper conduct of Ambient Intelligent System
actions via a generic modeling of Actuators (that are performing the actions), using information
from available resources (mainly sensors’ readings), via a (more or less) detailed definitions of the
physical phenomena that are observed in the Ambient Environment. These physical phenomena
definitions allow decoupling Actuators and Sensor at design time (since we can deduce these links
at run-time by applying the definitions to actual devices), thus overcoming Dynamicity and
Openness of Ambient Intelligence when designing a Fault Detection and Diagnosis System. In
the next chapter we present our approach, and we detail our Fault Detection and Diagnosis
framework that implements the proposed approach.

66

Chapter 4:

AmILoop:

A Fault Detection and
Diagnosis Framework for

Ambient Intelligence

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

67

Chapter 4.

AmILoop: A Fault Detection and Diagnosis
Framework for Ambient Intelligence

In this section we detail our Fault Detection and Diagnosis framework for Ambient
Intelligent Environments. We start by presenting our Fault Detection and Diagnosis general
architecture. In this part we examine the different models constituting the framework and the
relationships between them. Then we examine our models’ composing entities a little deeper by
detailing their structure and their role in the fault detection and diagnosis tasks, mainly we define
our new concept introduced in this framework.

In Figure 47, we can see the FDD framework situated within the context of a real Ambient
Intelligent System. The latter’s most important components, that are necessary to the operation
of the FDD framework, can be classified in two main types that are actuators and sensors. Such
components, when used in the context of an Ambient Intelligent Environment can be
dynamically added or removed at run-time. That is why we cannot have classic ad-hoc control
loops to control the proper functioning of the Ambient Intelligent System. The FDD framework
introduces new entities and techniques that permit to deduce the links between actuators and
sensors at run-time.

These components (and other entities), how they communicate, and how their data is being
used by our framework are described in this section. We describe the structure of our framework
by constructing a hierarchy of models and we simulate the use of these models, at run-time, when
performing Fault Detection and Diagnosis Tasks.

As illustrated in Figure 47, to construct the models that describe the Ambient Environment,
the FDD framework relies mainly on an abstract model of the environment. From this abstract
model an environment concrete model is deduced. The latter is finally instantiated to represent
real components of the ambient environment.

• The abstract model of the environment is detailed in Figure 48. It defines the structure of the
environment model in a way that enforces the decoupling of sensors and actuators at all
levels. This is achieved by introducing the concept of Effect, which is a modeling of the
physical consequence(s) of the actions of actuators onto the environment. The Abstract
Model and the concept of effect are further discussed in Subsection 4.1.3.

• The concrete model of the environment follows the general structure of the abstract model and
defines sensor and actuator types, the expected physical effects, the appropriate physical laws
and the relations between all these entities.

• The environment instances are created at runtime by the context engine that intercepts system
events and signals. It contains the actual sensors and actuators as well as the actual values of
effects produced by actuators and read by sensors.

Because the models of a particular Ambient Intelligent system follows a common abstract
model, it is exploitable by the prediction engine, responsible for deducing the values expected to be
read by the sensors. Comparing these values with the actual sensor readings makes it possible to

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

68

perform Fault Detection. Then, using a diagnosis model, the diagnosis engine is responsible for
isolating these faults and determining exactly what components are responsible for them. In the
following subsections, we discuss the different models composing our FDD framework and the
fault detection task.

Figure 47. The FDD Framework Architecture in the AmI context

Figure 48. FDD Abstract Model

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

69

4.1. General Architecture of the FDD Framework

To better explain our approach we will look at the FDD framework from two perspectives;

(i) An architectural point of view: A general view for the framework’s overall structure,
hierarchy, and operations of the FDD framework (see Figure 51), in particular how the
constituting models are generated, populated (with new types or instances), updated, and/or
exploited by the FDD framework’s engines to perform the fault detection task.

(ii) A conceptual point of view: A more detailed look into the FDD Framework’s Models (see
Figure 49 and Figure 50), which describes the way the ambient environment and its
components are modeled within the framework.

Figure 49. The FDD Framework Models

Figure 50. The FDD Framework Models' Hierarchy

4.1.1. Architecture of the FDD framework: from a general
structural point of view

In order to the FDD Framework to perform the Fault Detection and Diagnosis tasks it uses
information from the following models:

• The Environment’s Static Models: defined and updated by the designer of the system

• The Environment's Dynamic Model: contains the instances corresponding to the actual
devices in the environment. It can be updated by the system at run-time in order to
add/remove/update devices or values associated to the devices.

• The Diagnosis Model: contains information that can be used to pinpoint the source of the
detected fault.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

70

In Figure 47, the “use” relation between the models describes in fact the way the FDD
framework uses information from one model to construct the other. For example, as explained
earlier, the FDD framework uses information from the static model in order to populate the
dynamic model (create environment instances).

The Diagnosis Model is used to achieve fault isolation. Therefore its nature is completely
dependent on the type of Diagnosis Engine used. We neither restrict the range of fault isolation
techniques, nor the nature of the diagnosis model to be used. In all cases however, the FDD
framework uses the static model to build or complete the Diagnosis Model.

4.1.2. Architecture of the FDD framework: a behavioral point of
view

The operations of fault detection and fault diagnosis depend on specific models from the
FDD Framework. These models are exploited by engines in order to deduce fault detection and
diagnosis conclusions. The general run-time behavior of the framework, as shown in Figure 51,
can be summarized by these steps:

iv) The Context Engine uses information from the hardware layer and from the Environment's
Static Models (composed of the Abstract Model and the Concrete Model) to properly
instantiate the real-world objects and initializes their attributes values (actual positions, actual
readings, current state, current emitted value, etc.).

v) Information contained in the Environment's Static Model (Physical Laws to apply and/or
Deduced Links between Different Types of Actuators and Sensors) and information
contained in the Dynamic model (Actual Instances and their values) are used by the
Prediction Engine to generate the Prediction Model. The latter is a combination of
Behavioral Models and Mathematical Models allowing the calculation of the expected values
of sensors’ readings. The comparison between predicted values and real readings of sensors
allows us to detect probable faults. This is the Fault Detection task.

vi) These conclusions (probable faults) with the calculated values for sensors readings,
information about the current System structure, component states, links deduced at run-time
between components, etc. which exist in the Prediction Model, and information from the
Diagnosis Model are exploited by the Diagnosis Engine to perform Fault Isolation. The
Fault Diagnosis task is then complete.

Figure 51. Run-time Architecture of the FDD Framework

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

71

4.1.3. The FDD Framework Models: actuator-sensor decoupling
and main concepts

4.1.3.1.Actuator-sensor decoupling

In this part we show how the abstract model allows one to model the ambient environment
while enforcing the decoupling of actuators and sensors at design time. As a matter of fact, one
of the challenges for creating classic control loops in an Ambient Environment is the dynamicity
of adding and removing devices at run-time. Such property makes impossible to predict such
control loops at design time. Our framework overcomes the necessity of coupling actuators and
sensors at design phase by introducing the concept of effect. The latter, with help of
mathematical formulas representing the physical phenomena observed in the environment,
deduces links between components in the environment at run-time. The dynamic deduction of
links between actuators and sensors is further detailed in 4.2.

The general idea around actuator-sensor decoupling is illustrated in Figure 52:

Figure 52. Simplified example of actuator-sensor decoupling

The idea is define actuators as “producers” of physical effects and sensors as “detectors” of
physical effects. The mathematical formulas will automatically couple each sensor with the
corresponding actuator(s). In addition to the decoupling, such definition allows a design of an
Ambient Environment that is closer to reality since we can consider special cases where an
actuator is producing more than one physical phenomenon in the environment. For a certain
actuator, this can be by design (A window affects the light and the temperature of the room) or
an accidental secondary effect (A fireplace can affect the ambient light of a room).

As we can see in the Abstract Model in Figure 48, we impose a certain structure to the model
that will inherit from it (the concrete model). This structure allows, by forcing the definition of
effects, the decoupling of Actuators and Sensors. This permits the modeling of the ambient
environment without knowing in advance what the types of the components of the Ambient
Intelligent system are, which means in consequence, modeling the environment without knowing
in advance what the relations between the objects (mainly actuators and sensors) in the
environment are going to be; this is very suited for the openness of Ambient Intelligent systems.
What allows the deduction, at run-time, of these relationships is the key element of our model,
which is the effect and the physical laws that will exploit the effect properties.

Physical phenomena (Physical phenomena (Physical phenomena (Physical phenomena (EffectsEffectsEffectsEffects))))

LightLightLightLight
ActuatorActuatorActuatorActuator

LightLightLightLight
SensorSensorSensorSensor

HeatHeatHeatHeat
ActuatorActuatorActuatorActuator

HeatHeatHeatHeat
SensorSensorSensorSensor

Detects Produces

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

72

4.1.3.2. The FDD framework models and main concepts

As shown in Figure 50, the environment model can be divided into two main parts: a static
one and a dynamic one.

The static model contains (i) the abstract model composed of generic entities, namely Actuator,
Sensor, Effect, etc. and (ii) the concrete model that specializes and concretizes these entities (Light
Sensor, Sound Actuator, etc.). Actuators produce Effects, which have Effect Properties (Figure
48). Sensors detect Measurable Properties. Laws relate all these kinds of Properties in order to
model physical phenomena. Using laws it is possible to estimate the values detected by the
Sensors.

The dynamic model contains the actual instances of sensors and actuators located in the
physical environment. It stores the current state of the environment (sensor values, actuator
commands) and it is updated continuously at run-time.

It is to be noted that even though the concrete model is considered as part of the static layer,
it can be updated at run-time in the case where a new device (instance of actuator, or sensor, or
modifier) that is of a new type is introduced. In that case we might have to add, in addition to the
new device type, a new type of effect, effect property, measurable property, and/or law set.

Let us see how this works on a concrete environment model, corresponding to a lighting
system. The abstract Sensor entity is concretized as a Light Sensor entity (or a specific Light
Sensor Type), the abstract Actuator entity as a Light Bulb (or a specific Light Bulb Type). Light
Sensors and Light Bulbs share an Ambient Property which is the Zone in which they are located
(for example the name of the room). A Light Sensor can detect a light level (Ambient Light
concretizes Measurable Property). Likewise, a Light Bulb produces a Light Effect (concretization
of Effect) which is characterized by a Light Intensity (concretization of Effect Property). A
corresponding set of Laws is instantiated in order to calculate the value of the Light Intensity
around the Light Sensor entity.

The calculations will use properties such as the position of the Light Bulb and the Light
Sensor to determine the distance between the two components, the light intensity emitted by the
Light Bulb to determine the received light intensity. A combination law can be used if there is
more than one Light Bulb emitting light toward the Light Sensor. It is important to note here
that our approach does not impose a level of detail for the physical laws. It is up to the designer
to choose the relevant level of granularity. Indeed one can imagine a different modeling for our
example, in which the effect of light is represented by a Boolean value (light absent – light
present). This freedom to choose the level of granularity is well adapted to Ambient Intelligent
systems since their use in real world varies according to context. We can imagine a smart home
design for people with hearing impairment in which the modeling of the effect of sounds is very
detailed in order to enhance the perception of sound.

In the rest of this chapter we will focus on some key entities of the Abstract Model, we will
explain their role, their relationships, etc. and we will show how we construct the Concrete Model’s
entities by instantiating these abstract entities, thus creating actual types that are going to describe
actual devices and physical phenomena that are observed in the Ambient Intelligent
Environment.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

73

4.2. The Concept of Effect

Figure 53. The abstract model entities modeling "effect" and "law set"

In Figure 53 we see the entities that are involved in defining the concept of effect (not to be
confused with the entity Effect) which are: Effect, Effect Property, Law Set, Property and Measurable
Property.

The purpose of the concept of effect is to enable the simulation of the physical consequences
of an action in an Ambient Intelligent Environment. In the proposed approach the concept of
effect becomes the complete definition of a specific physical phenomenon that can be observed
in the environment. The concept of effect plays the role of the (only) link between the actuators
and the sensors; thus making it possible to model an Ambient Intelligent Environment while
decoupling actuators and sensors at design time.

As a matter of fact, in an ambient environment, actuators, when receiving orders sent by the
system, emit actions whose actual effects on the surrounding environment are only visible to the
system through its sensors. We consider these actions from the point of view of the physical
environment; accordingly they are defined as one or more physical phenomena. The format, the
value and the way these actions are perceived by the sensors and processed by the system follow
corresponding physical laws. These laws depend on a number of well-known physical parameters.
In the proposed approach an explicit list of the effects that are expected to be observed in the
environment must be defined and modeled by the system designer. For each declared effect a
number of properties are defined too. These properties, which we will call effect properties from
now on, correspond to the physical parameters defining the physical laws mentioned before. If
we observe carefully the nature of the data collected by sensors, we conclude that these effect
properties match exactly what sensors are sensible to. Even though this list of properties can be
very explicit, it is to be noted that in reality the number and the nature of the properties are
conditioned by the hardware configuration (the nature of the sensors and their precision) and the
degree of details wanted by the user. In the latter case, the degree of granularity can be chosen
according to:

- the global context of use. For instance we can imagine the designer choosing a very detailed
definition of the effect of sound in an Ambient Intelligent Environment designed for assisting
users with hearing impairments.

- or the current context of use. For example we can imagine an automated scenario that, in
order to detect light-related malfunctions, uses a detailed definition of the light effect (modeled

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

74

using classical laws of physics for light propagation [177]) by night; and then uses an undetailed
definition of the same light effect (using a very simple On/Off rule) during the day, allowing only
the detection of the existence (or not) of external light from windows and doors, thus deducing
malfunctions that are related to the state of window stores. The same undetailed rule can also be
used at night in special cases (a closet) to detect the state of a light bulb (on or off); the rule
would say “if a light bulb is on in a room then the light sensors that are in that room should detect
light”.

Practically, our motivation for proposing such a definition is to be able to predict from the
model, at run-time, the expected value a sensor is supposed to read. By comparing these
theoretical values to the actual readings of a sensor, we can deduce inconsistencies around
sensors. Hence we can conclude whether or not actuators (effect creator) that are connected to
the “faulty” sensor, has completed their actions successfully.

As the definition of the effect can follow different levels of granularity, an actuator that
produces more than one effect can have its different effects defined according to different levels
of details. In fact, an effect may be defined more than once depending on the importance of the
produced effect with respect to each device. For example the heating effect generated by light
bulbs is not as significant as the heating effect generated by heaters; nevertheless it might be
important to model the light bulb heating effect in a particular scenario, like in the case of
modeling the effect of a strong light projector. We can push the model further by defining the
same effect that is produced by the same device more than once with different levels of details,
for instance when an actuator generates effects in different rooms. In this case we can have the
same effect represented in different level of details in each room. The diagnosis results from the
different levels can be useful for the system’s overall diagnosis. This generality and flexibility of
the definition allows us to have more or less realistic definitions of the physical laws depending
on different criteria such as the architecture of the system, the diagnosis technique used for the
system, how accurate we want the diagnosis result to be, the desired level of detail we want for
the diagnosis report, the context of use of the ambient environment, etc. Such flexibility is well-
suited to the dynamic and heterogeneous nature of ambient environments.

An Effect is either produced by an actuator, or it is conducted from one zone to the other by
an effect modifier (ex. a window). Each effect type has a certain number of properties that are
used by a number of mathematical functions modeling the physical laws; the goal is to estimate,
using effect properties and other properties of the objects, the value of the reading of a sensor
sensible to that specific effect.

We chose to group these mathematical functions in sets we call law-sets. A set of mathematical
functions models the entire corresponding physical phenomenon according to a certain level of
granularity. An effect can be exploited by one or several law sets. The choice of which law set to
use depends on the available information at the time of use of these functions by the prediction
engine. We can imagine a hierarchy of law sets to choose from according to the level of detail of
the data available to the Ambient Intelligent system.

In our work we use the proposed fault detection and diagnosis framework to model, as
examples, the following types of Effects: Light Effect, Heat Effect, and Water Flow Effect.
Following the same modeling steps, other effects can be modeled according to different level of
details.

4.2.1. The Light Effect

Having the ‘right’ ambient lighting is one of the requests of ambient environment users. Light
as a physical phenomenon is any radiation that is capable of causing a visual sensation directly
[178]. We call ‘Light Effect’ the light waves produced by light sources. It is characterized by

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

75

luminous flux (in lumen). The observed property by light sensors is ambient light intensity (in
lux). See Annex-A for detailed definition. In the next sections we first describe the light
phenomenon from a physical point of view, then from a modeling point of view; finally we
describe the concept of “light effect” as it is presented in our framework.

4.2.1.1. The Light Effect – the concept

The light effect is the entity modeling the physical phenomenon of emitting a visible light. In
the proposed model light effect can have different definitions according to the wanted level of
details. The difference between the different definitions is the Light Effect Properties. For
instance we can imagine light effect with one property “state” that describe whether or not there
is light. In this case state would have the values On/Off (or 0/1). We can imagine a more
detailed definition of the light effect in which we have the luminous flux value of the emitted
light. In this case we would use standard optical measurement laws described in [179][180] (see
Annex-A “Light as a physical phenomenon – definitions” for detailed physical definitions).

These laws will be integrated in the model using law sets (see next paragraph).

4.2.1.2. Deduce Illuminance from luminous flux–mathematical modeling of
physical laws

The aim of modeling the light effect is to allow the calculations (prediction) of the theoretical
value of the Illuminance, that is caused by a light source’s known luminous flux, around a light
sensor (or any point of the environment). To do so we define a certain number of laws with
which we define a law-set. The law set is composed of mathematical functions that are used in
real time to perform the calculations.

In input, the mathematical functions use the values of properties from instances and results
from other functions within the same law set. It is to be noted here that one of the most
important physical attributes to calculate in the case of light is the distance between the light
source and the point at which we wish to calculate the Illuminance. To estimate this distance the
positions of the concerned object is to be known. The description with wish the position is
described can be organized according to its level of detail. For instance when the Ambient
Intelligent Environment components positions are described according to a 3 dimensions
coordinates system (x,y,z) we say that it is the most detailed. We can imagine a hierarchy of law
sets from the most detailed to the least detailed. The most detailed being the 3D light law set,
then the 2D light law set, where components’ positions are described via (x,y) coordinates, and
finally the least detailed law set where each component is defined to be located in a zone, in
which only components having the same value for the property zone can interact with each other.
The Ambient Intelligent system starts by trying to evaluate the most detailed law set, if the latter
is impossible to apply (due to a lack of information in the model), the system tries the next least
detailed set, and so on.

In output, the only constraint is to have only one mathematical function within the law set
that calculates the measurable property meant to be measured by the sensor, in our case the
ambient light Illuminance.

In the following mathematical formulas we use a pseudo-code syntax. Each mathematical
function has an identifying name, and it has a specific number of arguments that represent the
instance(s) on which we are performing the calculations. In the body of a function we can have:
standard mathematical operations and/or constants, we can also use a call to another function by its name,
and/or we can use the value of a property of an instance (an instance of an entity from the model)
using the following syntax:

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

76

property(entity instance)

which gives the value of the property for the specified instance in argument. For example to
have the value of the property x of the instance s of the entity sensor we use :

x(s)

Below is the hierarchy of ambient light law sets (each with its mathematical functions) from
the most detailed law set to the least detailed law set. It is to be noted that the most detailed law
set will give more accurate fault detection results than the least detailed law set.

4.2.1.2.1.Functions in a 3 dimension described environment (most detailed)

This is the most detailed law set for the light effect. In the model we call this law set the
3DLightLawSet.

The 3DLightLawSet is composed of the following functions:

)()(),(sameZone azoneszoneas ≡= (L1)

() () ()






∞+
−+−+−=

falseisaswhen

trueisaswhenazszaysyaxsx
as

),sameZone(

),sameZone()()()()()()(
),(distance

222

 (L2)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

as

a
as = (L3)

∑
∈

=
ersLightEmitta

ass),(tExposuredirectLigh)(yhtIntensitambientLig (L4)

In the previous law set

(L1) verifies whether or not s and a (generally a sensor and an actuator) are in the same zone.
The ‘≡’ operator is the equality operator. After converting zones values to integers, this function
can be implemented mathematically with the function: 0(zone(s)-zone(a)). So it returns 1 when a and s
are in the same zone, and 0 otherwise.

(L2) uses the x,y coordinates to calculate the distance between an actuator and a sensor that
are in the same zone. This function returns an infinite distance value when the two objects are
not in the same room. We can imagine that this function divides the results of the square roots
(in all cases) with the result of (L1) for the same objects s and a.

(L3) estimates the light intensity value at a light sensor when exposed to a single light source
positioned at a certain distance (calculated from (L2)) and generating a certain luminous flux.
The input parameter luminous flux is the effect property that ensures that (L3), and consequently
the whole ambient light law set, only considers actuators that produce a light effect.

(L4) calculates the sum of all the results from (L3), which is the sum of the light intensities
caused by each single light source on this particular light sensor. (L4) is the function that
calculates the theoretical value of the measurable property ambient light intensity (Illuminance)
around a sensor. The comparison of this value with the actual reading of the sensor is the basis of
the fault detection task.

Note here that Light Emitters does not necessary mean only Light Actuators (in 4.5 we will
introduce the concept of Effect Modifier that can also play the role of Effect Emitter in general).

In Figure 54 we see the call tree for the 3DLightLawSet. This call tree gives us an idea about
how the prediction engine part of the Fault Detection and Diagnosis framework (see Figure 47)

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

77

construct the prediction model. In fact every instance of this call tree (instantiated for sensors
that have as the measurement property, the output of the law-set) is a prediction model for a
certain sensor. The instances of prediction models constitute the System’s Prediction Model.
Every sensor’s prediction model evaluates the law set and predicts the value of the reading of the
corresponding sensor. A successful evaluation is an evaluation that covers all the leaves of the call
tree. The leaves of the tree are represented with ellipses, whilst the rest of the nodes are
represented with rectangles.

Figure 54. Call tree for the 3D Light Law Set

4.2.1.2.2.In a 2 dimension described environment (less detailed)

With this law set we go down one level in the hierarchy of granularity of the law sets defining
the light effect. In the model we call this law set the 2DLightLawSet.

The 2DLightLawSet is composed of the following functions (note that only the distance
function (L2) from the previous law set is replaced by (L5)):

)()(),(sameZone azoneszoneas ≡= (L1)

() ()






∞+
−+−=

falseisaswhen

trueisaswhenaysyaxsx
as

),sameZone(

),sameZone()()()()(
),(distance

22

 (L5)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

as

a
as = (L3)

∑
∈

=
ersLightEmitta

ass),(tExposuredirectLigh)(yhtIntensitambientLig (L4)

The call tree for the 2D Light Law Set is depicted on Figure 55

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

78

Figure 55. Call tree for the 2D Light Law Set

4.2.1.2.3. In a zone divided environment (least detailed)

Going down further in the hierarchy of the detail level of the law sets defining the light effect
we define the OnOffLightLawSet.

In some cases we can’t estimate the luminous flux of a light source, or we don’t know the
exact position of the light source and/or the light sensor; in that case the Ambient Intelligent
system fails to predict the theoretical value of the light sensor using the previous law sets, which
are more detailed, that is why it tries to detect faults with the Boolean (or on/off) law set, which
uses less information from the model, thus naturally giving less accurate fault detection results.
The goal is no longer to match the theoretical value of what the light sensor is supposed to read,
but to determine whether or not the status (activated/not activated) of the sensor corresponds to
the status(on/off) of the light source that is in the same zone. So the fault detecting in that case is
mainly finding out if the light sensor and the light source are activated or deactivated in the same
time when at the same zone.

The mathematical functions of this law set are:

)()(),(sameZone azoneszoneas ≡= (L1)





≡
≠

=
alse),sameZone(0)(uxluminousFl

),sameZone(0)(uxluminousFl
),(posureectLightExbooleanDir

fisasORawhenfalse

trueisasANDawhentrue
as (L6)

U
ersLightEmitta

ass
∈

=),(posureectLightExbooleanDir)(yhtIntensitambientLig (L7)

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

79

In (L6) we suppose that on status corresponds to the value true, and the off status corresponds
to the value false.

(L7) To estimate the status of the light sensor when exposed to many light sources we apply a
general OR Boolean function to all light sources, which means that it is enough to have on of the
light sources on to expect the sensor to be activated (readings of the sensor are different from the
value 0 or null).

The call tree of the Zone Light Law Set is as shown in Figure 56:

Figure 56. Call tree for the zone Light Law Set

4.2.1.3. Light related entities in the concrete model

From the description of light effect we can deduce the main entities to be introduced added
to the concrete model. These entities are:

- Light Effect: instance of the abstract entity Effect.

- Luminous flux: instance of the abstract entity Effect Property.

- Ambient Light Intensity: instance of the abstract entity Measurable Property.

- 3D Light Law Set, 2D Light Law Set and Zone Light Law Set: instances of the abstract entity
Law Set.

- 3D Position, 2D Position and Zone: instances of the abstract entity Property.

The relationships between these new entities are deduced from the abstract entities that hey
instantiate. We can see these relationships in Figure 57 below:

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

80

Figure 57. Entities of the concrete model after the definition of Light Effect

Note here that we added Light Actuator Type and Light Sensor Type, as instances of the abstract
types, respectively, Actuator and Sensor. Note that we use generic names, such as Light Actuator
Type and Light Sensor Type, at this level only for explanation purposes. We insist here that in order
to have a better designed concrete model actual types of actuators and sensors should be
instantiated, such as, for light actuator types, Incandescent Light Bulb 40Watt, Fluorescent Light Bulb
80Watt, etc. and, for light sensor types, P-I-N Photo Diode, Infra Red Photo Transistor etc.

According to these specific types the relationships with the other properties are drawn. In
this case we have drawn all possible relationships for the Light Actuator Type and Light Sensor Type.

4.2.2. The Heat Effect

Having the preferred ambient temperature is also one of the main requests of ambient
environments users. In our model we call this effect the “Heat Effect”. Typically, the Heat Effect
is produced by actuators of type Heaters or Air Conditioners (AC). It is characterized with, at
least, the effect property heat emission, which can be of positive (heating) or negative (cooling)
value. It is detected by the sensor type ‘Thermometers’. The measured property by thermometers
is the ambient temperature.

4.2.2.1. Deduce temperature from heat emission – physical definition

The incremental heat elevation is caused, according to enthalpy theory [181], by total
accumulated quantity of energy Q added to the system by an actuator generating that energy. The
value of the energy Q is calculated using an integration of the instantaneous amount of power P
that is generated by a resistor over time:

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

81

][).(jouledttPQ
f

i

t

t
∫= (F1)

In (F1), ti refers to the instant where the resistor started generating the power P, and tf refers
to the moment the resistor stopped generating the power P. From a modeling point of view these
moments in time refer, respectively, to the start and end time of the Heat Effect having the
property heat emission, whose value is P. To be able to perform discrete calculations, this integral
is converted into a sum of instant power values over the same interval of time:

][)(jouletPQ
f

i

t

tt
∑
=

= (F2)

It is to be noted that with this method the current energy value is calculated using both, the
current (at t) produced heat emission (power value generated by the resistor), and the previous (at
t-1) calculated energy value. To calculate the ambient temperature of the air (or any other
surrounding. e.g. water) from this energy formula we use enthalpy formulas [182][183].

- The first formula that states that at a constant volume and pressure:

∆Τ
∆Η=cv. (F3)

In (F3)

c is the milieu-specific heat capacity, which is the amount of heat required to change a
chemical’s temperature (air, water, oil, etc.). In physics this constant is called the volumetric heat
capacity. For instance the volumetric heat capacity of air is 0.001297 J.cm-3.K-1. (See Annex-B for
the complete list of volumetric heat capacities of different chemicals).

v is the total volume of the chemical to be heated (or cooled). For the case of air, this value
(in cm3) can be deduced via the dimensions (width, length and height) of the zone (e.g room) in
which the calculations are performed.

∆H is the enthalpy variation and ∆T is the temperature variation.

- The second formula states that, also under constant (atmospheric) pressure, the quantity
of heat Q received by a system is equal to its enthalpy change ∆H. So, from ti to tf, a body of
volume v where the temperature (the value we want to evaluate by these calculations, which
corresponds to the reading of thermometer) receives the amount of heat:

∆Η=Q (F4)

So to calculate the value of the expected temperature reading of a thermometer at any moment

in time, we need to estimate the temperature variation ∆T between the start of the heating effect
(ti) and the moment of evaluation (tf). We start by calculating the volume of the air exposed to the
heating actuator (in the case of the air it is equal the dimensions of the room). Then we calculate
the accumulated heating energy dispersed in the air using (F2). Then using (F3), while replacing
∆H with Q (F4) value calculated in (F2), we can calculate the temperature variation ∆T.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

82

4.2.2.2. Deduce temperature from heat emission –mathematical modeling
physical laws

The functions described in the previous section are from a physical definition point of view;
they are converted into laws and added to a Law Set. We call the resulting Law Set the Ambient
Temperature Law Set. It is composed of the following laws:

)()(),(sameZone azoneszoneas ≡= (L1)



 ×

=
alse),sameZone(0

),sameZone()(
),(Energy

fisaswhen

trueisaswheneelapsedTimaonheatEmissi
as (L8)

()casEnergys
rsHeatEmittea

×÷






= ∑
∈

ν),()(etemperatur (L9)

The value of elapsed time in (L8) is deduced by the Fault Detection and diagnosis system at run
time.

In (L9) the value of c (the volumetric heat capacity) is a constant that can be deduced from
the type of medium through which the effect is propagated. However we suppose, for now, that
the value of v (total volume of the air) is a constant value provided by the Fault Detection and
Diagnosis system.

In the call tree for the Ambient Temperature Law Set the elapsedtime, v and c are considered as
leaves.

Figure 58. Call tree for the Ambient Temperature Law Set

4.2.2.3. Deduce temperature from heat emission –the concrete model

From the description of the Heat Effect we can instantiate a number of entities that we can
add to the concrete model. These entities are:

Light Effect: instance of the abstract entity Effect.

Luminous flux: instance of the abstract entity Effect Property.

Ambient Light Intensity: instance of the abstract entity Measurable Property.

3D Light Law Set, 2D Light Law Set and Zone Light Law Set: instances of the abstract entity Law.

3D Position, 2D Position and Zone: instances of the abstract entity Property.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

83

The relationships between these new entities are deduced from the abstract entities that they
instantiate. We can see these relationships in Figure 59 below:

Figure 59. Entities of the concrete model after definition of Heat Effect

We note here that the same remarks about Light Actuator Type and Light Sensor Type, from the
previous concrete sub model, are also valid for Heat Actuator Type and Heat Sensor Type.

As specific types of Heat Actuator Type we cite heating fan, air conditioner, electric fire place,
etc. and the Heat Sensor Type is typically a thermometer.

Note that when the Heat Actuator Type is a type of device designed for heating the
Heat Emission property value is positive, and when the Heating Actuator is for cooling the air
the Heat Emission property value is negative.

4.2.3. The Water Flow Effect

Among the many automated services that an Ambient Environment provide to its users is to
automatically prepare a bathtub. The command of preparing a bathtub usually triggers a physical
phenomenon that can be modeled with the concept of Effect, which is the filling of the bathtub
with water. Such task should be supervised to make sure it goes without errors (avoiding water
leakage). In this section we study and model the Water Flow Effect. Note here that this effect can
be applied to any “filling a container with a liquid” task that is done by the Ambient System, and
that we only take the bathtub as an illustrative example.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

84

Figure 60. A simple Ambient Environment bathtub configuration

The main actuators for controlling the liquid level are flow actuator (the water tap), and the
liquid drain (the bathtub drain). And we have one sensor to control the liquid level.

It is important to note here tha preparing a bathtub usually is associated to a preferable
temperature of the water by the user. In the previous section we considered the heat effect in air;
however it is important to note that when considering the heat effect in water (e.g swimming
pool, bathtub) the dimensions of the zone containing the water do not necessary correspond to
the volume of the water. That is another reason why we need a mathematical law allowing the
evaluation of water volume.

Water flow effect makes the task of filling a container with liquid a diagnosable phenomenon,
for instance when the system is filing a swimming pool with water at a certain level, and it is
equipped with water level sensors, our fault detection and diagnosis framework needs to be able
to detect any inconsistencies between the wanted level and the real level.

4.2.3.1. Deduce liquid level from liquid discharge rate –mathematical
modeling (the law sets)

The idea is to define the Liquid Flow Effect so that it has the property liquid discharge rate. The
latter is used with the elapsed time to deduce the expected amount of water that is supposed to
be in the liquid container and compare that with the readings of the Liquid Level Sensor that is in
the same container.

 We call the mathematical set responsible for these calculations Liquid Level Law Set. The
complete mathematical law set is as below:

)()(),(sameZone azoneszoneas ≡= (L1)



 ×

=
alse),sameZone(0

),sameZone()(atedischargeR
),(l

fisaswhen

trueisaswheneelapsedTima
asevel

(L12)

 ∑
∈

+=
esWaterSourca

aslevellstotalLevel),()(0 (L13)

In (L1), by same zone here we mean same water container (e.g swimming pool, bathtub, sink,

etc.).

(L12) is associated with the water flow effect, which is produced by actuators of type water
source and has the effect property discharge rate (liter per second) that is used in the

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

85

mathematical law. Multiplying the discharge rate with the elapsed time gives us the water level
discharged by the current actuator.

(L13) considers the water quantity that is produced by the different actuators and sums up
their produced water quantities. The result of (L13) is the total liquid level, which is comparable
to the water level which is reading of the water level sensor. l0 is the initial water level in the water
container.

In the call tree of the Liquid Level Law Set (below), l0 and elapsedTime are considered as leaves.

Figure 61. Call tree for the Liquid Level Law Set

4.2.3.2. Deduce liquid level from liquid discharge rate –the concrete model

From the description of the Liquid Flow Effect we can deduce a number of entities that we
add here to the concrete model. These entities are:

- Liquid Flow Effect: instance of the abstract entity Effect.

- Liquid Discharge Rate: instance of the abstract entity Effect Property.

- Liquid Level: instance of the abstract entity Measurable Property.

- Liquid Level Law Set: instance of the abstract entity Law.

- Zone: instance of the abstract entity Property.

The relationships between these new entities are duplicated based on the abstract entities that
they instantiate. The new concrete model is shown Figure 62:

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

86

Figure 62. Entities of the concrete model after definition of Liquid Flow Effect

At instance level there are mainly two kinds of Liquid Discharge Actuator types: Those
whose Liquid Discharge Rate are positive such as water taps or water sources, and those whose
Liquid Discharge Rate are negative like water drains.

4.3. The Concept of Sensor (Effect Receiver)

The Sensor is the component that allows the Ambient Intelligent System to be aware of what
is happening and of the state of the Ambient Intelligent Environment. Our fault detection
approach is based on using the available sensors in the Ambient Intelligent Environment to
monitor the proper functioning of the different controllable devices (actuators, modifiers) and to
determine, when a fault is detected, the device(s) or external factors causing the fault.

4.3.1. Meta-model of the concept of Sensor

From the Abstract Model’s (more precisely from the Effect’s) point of view, the entity
“Sensor” is the Effect receiver. In fact a sensor has a “receive” relationship with the entity
“Measurable Property” as shown in

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

87

Figure 63. Entities from the abstract model connected to "Sensor"

4.3.2. The Measured value (Measurable Property)

The entity Measurable Property is the key to the Fault detection task. The Measurable Property
entity represents the supposed reading of the Sensor that “detects” it.

At instance level the entity of type Measurable Property contains the value of the reading of the
sensor that it is connected to (with the relation “detects”).

Once the Prediction Model is created, it is able, via the laws composing the Law Set (note the
latter’s “output” relation with Measurable Property in Figure 63 and in the Concrete Models in
Figure 57, Figure 59, and Figure 62), to assign a theoretical second value for this entity.

It is based on the comparison between the predicted theoretical value and the actual value for
the same entity Measurable Property, that the Fault Detection task is done.

4.3.3. Sensor Properties

Like other entities of type “Ambient Object”, at the Concrete Model level, sensors can have
other properties. Next we list the most useful (in some cases necessary) for a better Fault
Detection and Diagnosis.

• Localization properties (also used for other Ambient Object instances)

The localization properties are also used for other Ambient Objects in order to localize them
in the Ambient Environment Space. They are important as they are crucial to evaluate some
important physical quantities such as “distance”. The localization property is particularly
important for sensors because when they are missing, unlike for actuators in which case the latter
are simply ignored in the Prediction Model, the quality of the fault Detection and Diagnosis
results are significantly lowered. To better see this, considering a sensor that is exposed to the
effects of 3 actuators, if the localization properties are well defined for all entities except for 1
actuator, the sensor performs the fault detection task ignoring that actuator. However if all the
entities have well defined localization properties except for the sensor, physical laws cannot be
applied for all entities.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

88

Among these properties we cite Zone, 2DPosition, and 3DPosition. When no localization
property is given to all Ambient Objects, the framework assumes that they are all in the same
“Zone” and the appropriate Law-Sets (usually the least detailed) are selected for generating the
Prediction Model. For an Ambient Environment that is composed of multiple zones, we
recommend having at least the localization property Zone (in reality it is up to the designer to
chose the name of the property Zone, it can have different name such as Room, Area, Range, or
simply Zone).

• Tolerance

The tolerance value is deduced from the accuracy property that is usually given by the
sensor’s constructor (see accuracy definition in 3.2.3). It is very useful to consider the tolerance
value when comparing the theoretical value versus the actual reading of a sensor, in order to
avoid false fault-detection alarms.

4.4. The Concept of Actuator (Effect Producers)

In an Ambient Intelligent Environment, an actuator is the component that physically acts
upon the environment. In our framework we represent these actions in the form of effects.
Naturally the actuator is the producer of these effects.

4.4.1. Meta-model of the concept of Actuator

In Figure 64 we see how these entities (actuator and effect) are connected.

Figure 64. Entities from the abstract model connected to "Actuator"

An actuator produces one or more effects; each of these effects has one or more effect
properties. These properties represent a quantification of the physical property of the effect that
can be observed in the environment. At instance level, these effect properties and actuator
properties (such as x y position, tolerance value, etc.) are used as inputs in the laws constituting
the law-set that mathematically models the effect. The values of these properties can either be
static, in which case they keep their defined values indefinitely (the tolerance value for instance),
or they can be dynamic, in which case their value changes according to the current state of the
actuator. The latter case can be modeled via behavioral model.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

89

4.4.2. The Actuator’s Behavioral Model

Figure 65. The actuator's behavioral model

In Figure 65 is a zoom-in on the entities from the abstract model that defines the
relationship between the entity Actuator and the entity Behavioral Model. Entities of types Actuator
follow a Behavioral Model. In fact, at instance level, these behavioral models define and update the
values of entities of type Property that are associated to the actuator. Behavioral Models are also
used to define the values of entities of type Effect Property that are associated to the Effect
generated by the instances of Actuator.

In practice we use two types of finite state machines to describe components behaviors:
classic finite state machines and timed finite state machines.

It is important to note that even though we chose finite state machines as behavioral models
here; our approach does not impose a specific formalism to describe object behavior, so the
designer is free to use different types of behavioral models, for instance Petri Nets.

4.4.2.1. Classic Finite State Machines

As classic finite state machine we use a subset of UML state machine. The labels on the
transitions have the format “event/action”. Where event is what triggered the transition to the next
state, and action is what is to be executed with the transition. We use these Finite State Machines
to model devices behavior. A typical Finite state machine for a device that has only on and off
states is the following:

Figure 66. On Off only device's FSM

The action that is done in the transition is to change the value of an Effect Property related to
the device. There are two transitions in this finite state machine:

- From the state off to the state on, during which the Effect produced by the device changes
value to value_1.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

90

- From the state on to the state off, during which the Effect property of the effect produced by
the device changes value to value_2.

This is the default finite state machine for most simple on/off controlled devices such as
incandescent light bulbs.

Let’s suppose we have a 40 Watts incandescent light bulb. Incandescent light bulbs have luminous
efficacy of 15 lumens per Watt (see Table 3), which means the luminous flux would be:

40 W x 15 lm/W = 600 lm

The Finite state machine that models the behavior of such a light bulb would be as described
in Figure 67:

Figure 67. Finite state machine for a 40 Watts incandescent light bulb

4.4.2.2. Timed Finite State Machines

In fact, effects model physical phenomena, and frequently the latter depends on time
variables. In fact when examining the behavior of the actuators in an Ambient Intelligent
Environment, we notice that, many times, from the time actuators are activated, the physical
impact takes a certain delay before it can be observed. The duration of these delays vary
depending on:

- The nature of the physical phenomena: for instance after turning on a heater, the heat effect
that is supposed to be produced is not detectable until a certain time has passed; the length of
this time is defined by heat transfer laws.

- The type of the actuator: for example compact fluorescent lamps (CFL) take a certain time
before they emit their maximum amount of light. This warming up time is usually defined by the
constructor.

To take such properties into account we use Time Finite State Machine, which are a variation
of Finite State Machine that have integer boundaries for time guards and performs a time reset
operation at every transition [184].

A typical example of actuators whose behavior is described using timed finite state machines
are the light actuators of type Compact Fluorescent Light (CFL) Bulbs. In fact, when we turn a
CFL light bulb on, it needs a certain time until it reaches its maximum luminosity. This is called
the heating time. The heating time is different between different types of CFL light bulbs.

In Figure 68 we see a timed state machine that better describes the behavior of a CFL light
bulb. T represents the elapsed time since the beginning of the current transition.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

91

Figure 68. Compact Fluorescent Light Bulbs Finite State Machine

For every instance of CFL light bulb we will have different values for:

Ф: the value of the luminous flux calculated using Table 3.

α: the heating up time; the time necessary for the CFL bulb to reach its maximum luminous
flux value.

β: the cooling down value; the time necessary for the CFL bulb to cool down. It is important
to calculate this time because if the CFL bulb is reactivated before the cooling time has passed it
will not behave as it normally would when turned on (go through Bulb Heating state). Instead it
will transition directly to the Bulb On state.

i: the rate of light flux augmentation every unit of time during the warming up phase.

These entities are defined as properties for the Actuator type CFL Bulb in the concrete model.

The plot in Figure 58 illustrates a scenario where we turn on a cooled CFL light bulb. Then
we turn it off, and before it cools down again we turn it on.

Figure 69. Light flux value according to time for a typical CFL light bulb

We can observe the gradual augmentation of the value of the light flux at the heating phase
(from the turning on moment TON until TON+α). After turning off the CFL bulb (at TOFF), we

Ф

Flux

Time
TON+α TON TOFF TOFF+ β 0

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

92

turn it on again before the cooling time elapsed (TOFF+β), we notice then the abrupt
augmentation in light flux.

We note here that in some cases more advanced temporal behaviors ought to be modeled. In
fact our FDD framework also allows the use of a variation of temporal logic that has real time
constraints, which is Metric Temporal Logic [185]. The latter allows the definition of lower and
upper bounds and ranges for relative and real time constraints. With MTL, we can model
deadlines between environment events and corresponding system responses when describing the
behavior of real-time system.

Considering the following scenario as an example [186]: {when an “alarm” is triggered, we
must “shut down” the system after 10 time units unless an “all clear” signal is received before
that}; such constraint is represented as follows:

□(alarm (◊(0,10) allclear ˅ ◊{10} shutdown))

where ◊(0,10) means sometime in the next 10 time units

and ◊{10} means in exactly 10 time units

4.5. The Concept of Effect Modifier (an Effect Receiver
and Producer)

The Effect Modifier is a special case of Ambient Objects. An Effect Modifier is not an actuator in
the sense that it does not generate a physical phenomenon itself. And it is not a sensor in the
sense that it does not have sensing capabilities to know the actual value of the physical
phenomenon that it is exposed to. However a modifier is a device that is part of the Ambient
Intelligent Environment and that is controlled by the Ambient Intelligent System. This device is
usually an object that connects two or more zones of the Ambient Intelligent Environment, such
as a door, a window, window blinds, etc., and that relays a physical phenomenon between the
zones it connects.

The most important characteristic (in the sense that it affects the result of a fault detection
and diagnosis results) of an Effect Modifier is that it modifies a physical phenomenon that is already
produced by an actuator in the environment when the physical phenomenon is relayed to a
neighboring zone.

4.5.1. The Meta-model of the concept of Effect Modifier

Figure 70. Entities from the abstract model connected to "Effect Modifier"

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

93

The entity of type Modifier has a transformation law associated (Modifier Law) that defines the
change that it makes on the physical phenomenon it relays from one Zone to another. The
Modifier Law has (in addition to the Measurable Property it is exposed to and the Effect
Property it would relay), one or more, property called the Transformation Ratio. For instance when
defining a Light Effect Modifier in the Concrete Model the Modifier Law would be:

Luminous Flux : Ф = γ . I

where:

γ: is the transformation ratio, which is a Property of the Effect Modifier. The value of the
transformation ratio changes according to the current state of the Effect Modifier, which is defined
by the behavioral model; see 4.5.2.

I: An input to the Modifier Law in this case, it is the amount of Light Intensity that the Effect
Modifier is exposed to. This value is calculated using the Law Set that is used to predict the reading
of a Light Sensor in a Zone.

Ф: An output of the Modifier Law, it is the value of the Luminous Flux (Effect Property) of the Light

Effect that the Effect Modifier is relaying to a neighboring Zone to that in which the value of I was
estimated.

The connection between this Modifier Law and the Light Effect is made by matching the
type of the Properties that are input and output of the Modifier Law. A modifier can relay
different types of Effect. A modifier can then have different Modifier Laws to define the
different effects it relays.

When we consider an Effect Modifier between Zone1 and Zone2, if we want to estimate the
amount of an Effect that is relayed from Zone1 to Zone2, the Effect Modifier would be
considered as a Sensor in Zone1, in order to apply the Law Set that estimate the exact amount of
the Effect it is exposed to at its position. Once the value is calculated (for instance the light
intensity I) to which the modifier is exposed, we can apply the Modifier Law to calculate the
value of the Effect (for instance the Luminous Flux Ф) it produces. The Effect Modifier is now
considered as an Actuator in Zone2 that produces the corresponding Effect. For instance a
window is considered by a light sensor as light source even though it does not generate the light
(it produces into the Ambient Environment) itself.

It is important to note here that when estimating the value of a physical property (for
instance the light intensity I) to which a certain modifier is exposed, we do not consider the
contribution of the same Effect Modifier’s produced Effect (for instance Luminous Flux) when
evaluating the laws to calculate the received physical l property. In fact doing so can result in an
infinite calculation loop when a modifier considers its own contribution to the final calculation
results.

A consequence of that would be a small difference when estimating the values of L4, L7, L9,
L13 by a real Sensor and by an Effect Modifier that considered as a Sensor. The difference is that
when applying such laws (L4 as an example) for a Sensor we consider that LightEmitters in

∑
∈ ersLightEmitta

 refer to all devices that produce the Light Effect (i.e. Actuators and Effect

Modifiers), however when applying the same law for an Effect Modifier considered as a Sensor
(to estimate the value of a physical property) the LightActuators refers to Actuators and Effect
Modifiers except for the Effect Modifier that is doing the calculations.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

94

• Special case:

In some cases we can have a Sensor that is in the same position (or close enough) to an
Effect Modifier. In that case the latter’s reading can be used to determine the value of a
measurable physical property (like the Light Intensity) it is receiving from the Zone where the
Sensor is located. A typical example of this is an outside Sensor that reads an external physical
property (such as light intensity or temperature). Such sensor can be used for instance to estimate
the amount of light is coming through a Window type Modifier, without having to use the law set
to estimate the light intensity coming from the outside at the window (which is impossible in fact
since the outside effect sources are not known neither controlled by the system). In order to
implement such solution, the corresponding entities in the Concrete Model should inherit the
following extra relation between the Effect Modifier and the Sensor:

EffectModifier-trustedSensor-Sensor .

Figure 71. Entities from the abstract model connected to "Effect Modifier" (special case when a Sensor is

linked to a Modifier)

When such relation (as shown in Figure 71) is instantiated between an instance of Effect
Modifier and an instance of Sensor, the value of the Effect Property (for instance I for Light
Effect) that the Effect Modifier is exposed to (the input of the Modifier Law) is not calculated via
the appropriate Effect’s Law Set, but instead it is deduced directly from the Sensor’s readings.
Such a solution leads to less calculations and it is particularly useful when the Effect Modifier is
relaying an Effect from a non controlled Zone where the devices and components are not
controlled by the system (for instance: the outside). It is important to note here that it is up to the
system designer to choose such a solution for special cases.

Even though this solution manually connects Effect Modifiers to Sensors, Actuators are not
considered, and are not concerned with this solution, thus the decoupling between Actuators and
Sensor is still verified. Moreover, one would argue that Effect Modifiers (e.g windows, doors,
glass walls, etc.) are generally not dynamic components, in the sense that they are not usually
discovered, removed, or moved at run-rime.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

95

4.5.2. Effect Modifier’s Behavioral Model

The Effect Modifier’s Behavioral Model governs the changes that happen to the values of the
Modifier’s Properties according to the current state of the Effect Modifier. In particular the
behavioral model defines the value of the Transformation Ratio value used in the Modifier Law. The
behavioral model can also control the value of other Effect Modifier’s Properties. That is why,
when designing the Concrete Model, we keep the entity Behavioral Model linked to the abstract
entity Property (super class of Transformation Ratio).

In the same way that an Effect Modifier would have different Modifier Laws for the different
Effects it relays, the Effect Modifier would have different Behavioral Models that define the
modification ratio value for each Modifier Law.

A typical behavioral model for a two-state door (open-closed) that relays the totality of the
Light Effect it receives from one Zone to the other is depicted on Figure 72 finite state machine:

Figure 72. A two-state door finite state machine

So when the door is opened the transformation ratio for the Light Effect is equal to 1, which
means that the door would relay the totality of the Light Effect it receives from a Zone to the
neighboring Zone. And when the door is closed it would not relay the Light Effect at all, which
would be modeled (to respect the Modifier Law definition) by a Light Effect that has the Light
Flux value of 0.

4.6. Algorithm for building the prediction model from the
conceptual models

In this section we explain the models definition syntax and we present our fault detection and
diagnosis algorithm in an informal high-level pseudo-code.

4.6.1. The Prediction Model

Once we have our Concrete Model and the Instances well defined we can create our
Prediction Model. The algorithm that generates the Prediction Model and the syntax in which it
is defined in the framework are described in Chapter 5: Implementation. The prediction Model
contains:

- The instances for the actual components of the Ambient System with their properties’
values in a given configuration.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

96

- Behavioral models for active components (Actuators and Effect Modifiers) allowing the
update of their state, and by consequence the update of the latter mentioned properties’ values.

- The Mathematical Model composed of sensors’ call trees generated from law sets. In fact,
the prediction Model applies the laws in the Law Sets on the actual instances, so the laws that
have iterative expressions, such as ∑ in L4, are expanded according to the existing instances. For
example if we have an Ambient Environment described in a two dimensional space, composed
of one zone and equipped with one light sensor (sensor_1) and two light bulbs (bulb_1 and
bulb_2). The Law Set for the Light Effect in a two dimensional space is the following:

() ()22)()()()(),(distance aysyaxsxas −+−= (L5)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

as

a
as =

 (L3)

∑=
a

ass),(tExposuredirectLigh)(yhtIntensitambientLig (L4)

Note that we eliminated L1 (the zone verification Law) from the Law Set in this example
because we suppose that the Ambient Environment is composed on one single zone.

Here’s a list of the properties (on an instance level) that are going to be used in the evaluation
of this Law Set:

sensor_1.x: the x coordinates of sensor_1

sensor_1.y: the y coordinates of sensor_1

sensor_1.i: the reading of the light sensor indicating the value of the Ambient Light Intensity
around it

bulb_1.x: the x coordinates of bulb_1

bulb_1.y: the y coordinates of bulb_1

bulb_1.flux: the value that bulb_1 produces of its Light Effect’s property Luminous Flux

bulb_2.x: the x coordinates of bulb_2

bulb_2.y: the y coordinates of bulb_2

bulb_2.flux: the value that bulb_2 produces of its Light Effect’s property Luminous Flux

The call tree, in the Prediction Model, for this Law Set applied to sensor_1, and using the
instances we have defined would look as follows:

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

97

Figure 73. Call tree of 2D Light Law Set in the Prediction Model

In the previous call tree we have:

x(sensor_1)= sensor_1.x

y(sensor_1)= sensor_1.y

x(actuator_1)= actuator_1.x

y(actuator_1)= actuator_1.y

distance(sensor_1,bulb_1)=

sqrt([x(sensor_1)-x(bulb_1)]^2+[y(sensor_1)-y(bulb_ 1)]^2)

luminousFlux(bulb_1)= bulb_1.flux

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1)/distance(sensor_1,bulb_1)^2

x(actuator_2)= actuator_2.x

y(actuator_2)= actuator_2.y

distance(sensor_1,bulb_2)=

sqrt([x(sensor_1)-x(bulb_2)]^2+[y(sensor_1)-y(bulb_ 2)]^2)

luminousFlux(bulb_2)= bulb_2.flux

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2)/distance(sensor_1,bulb_2)^2

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+directLightExp osure(sensor_1,bulb_2)

where sqrt is the square root function and x^y is x to the power y.

Chapter 4. AmILoop: A Fault Detection and Diagnosis Framework for Ambient Intelligence

98

Note how L4 (the summation operator) is expanded to add the contribution of each light
bulb (bulb_1 and bulb_2) in Luminous Flux to the final Ambient Light Intensity around the
sensor (sensor_1).

When evaluating the previous call tree, the Prediction Model will replace all the instances’
properties by their respective values. These values can be defined as fixed property values (e.g
tolerance, position of non movable objects, etc.), or dynamic property values (eg. light flux,
transformation ratio), in which case they would appear on the behavioral models of their objects’
instances.

The Prediction Model is updated when a new object is added (new instance) to the Ambient
Environment or removed from it. However we do not need to update the whole Prediction
Model when some properties’ values change, as the instances and their relationships composing
the model did not change, thus we can use the same model (and call trees) with different values
to perform Fault Detection calculations.

Technically the Prediction Model is a local model created and contained (and constantly
updated) in the Prediction Engine (see Figure 51). The constant data flow that updates the
properties’ values in the Prediction Model is governed by the behavioral models (in our case the
finite state machines) of the corresponding objects. So not only the Prediction Model is a
heterogeneous model, it is also a dynamic model that is executed at run-time in order to
perform the Fault Detection task. The fault detection algorithm is detailed more in Chapter 5:
Implementation.

4.7. Conclusion

In this chapter we have detailed “AmILoop”, our Fault Detection and Diagnosis framework.
We depicted its general architecture. Our framework is composed of different types of models
that describe different aspects of the framework. In fact in the framework we described the
structure of the components (their relations and their hierarchy) as well as their behaviors. We
also introduced the different mathematical models that define some physical “effects”. We also
described how all these models are used by the prediction engine to generate a Prediction Model
allowing the calculation of what sensors are supposed to read. In the next chapter we propose an
implementation of our Fault Detection and Diagnosis Framework. We also detail the way our
Fault Detection approach was integrated into a real Ambient Intelligent System. Then, in order to
test more scenarios, we explain how we use the implemented framework with the heterogeneous
model simulator ModHel’X in order to perform real-time model simulations.

99

Chapter 5:

Implementation

Chapter 5. Implementation

100

Chapter 5.

Implementation

In this chapter we present the implementation of our Fault Detection and Diagnosis (FDD)
framework. At its heart lies a program that analyses the changes that occurs in the environment.
Each time a significant change happens, it computes a new prediction model suited to the new
configuration of the relevant entities (sensors, actuators, and their respective locations inside a
building). The prediction model allows one to determine the values that should be reported by
the sensors if everything worked properly. One can then easily compare these predicted values
with the actual values to perform fault detection.

The prediction model is of heterogeneous nature: it contains both mathematical
computations and finite state machines for representing the state of objects. Therefore we use a
heterogeneous modeling framework to describe and execute this model. Among the
heterogeneous modeling tools introduced in Section 3.4 we chose to use ModHel’X, a tool that is
being developed at Supélec. This tool executes the prediction model at runtime, thereby
providing the predicted values for sensor readings.

The implementation was developed within a European project called CBDP (Context Based
Digital Personality) [187]. The project investigated several scenarios related to ambient
intelligence, especially Ambient Assisted Living (AAL). We conducted tests using a simulated
environment, but the same implementation could be used as is for real-scale experiments.

This chapter is organized as follows. Section 5.1 introduces the context for the
implementation, the CBDP project. Section 5.2 is an introduction to ModHel’X, the underlying
model execution engine that we use. Section 5.3 describes the software architecture of our FDD
framework AmILoop, and it explains how the prediction model is built. Section 5.4 deals with
the execution of the prediction model. It is mainly a short description of our simulation
environment.

5.1. The Context Based Digital Personality project

CBDP (Context Based Digital Personality) was a European CELTIC project that ran from
April 2009 to April 2012. It involved several French, Spanish and Turkish partners around the
design and implementation of a framework for the creation of ambient-intelligent applications. It
introduces the concept of Digital Personality to represent the preferences of users. We were
mainly involved with the applications to Ambient Assisted Living (AAL), but other application
domains were considered, such as digital TV guides or assistants for construction workers.

The CBDP framework is built around an ontology, and it uses software components written in
Java and deployed over OSGi (Open Services Gateway initiative framework) [188].

Chapter 5. Implementation

101

5.1.1. CBDP’s AAL ontology

The approach of CBDP is based on ontologies to capture domain knowledge, and to perform
run-time tasks such as the interconnection of devices, the exchange of data, the execution of
system tasks, and fault detection and diagnosis. CBDP’s AAL ontology is defined using the OWL
language [189], which is based on the Resource Description Framework (RDF) [190]. The
knowledge in RDF is represented in the form of triples (also called statements) of the form of
subject predicate object .

As depicted in Figure 74, the main domains of the CBDP ontology are:

• Device: the entities of this domain are based on the DogOnt ontology [191] that has been
simplified, while keeping the modeling axes of typology, functionality and state.

• Digital Personality: composed of the entities: Person representing a human user, and Digital
Personality that stores the user’s preferences in order to personalize the services offered to
him/her.

• Location: this entity is important since most of the services offered by the CBDP framework
(in particular the AAL applications) must know the position of the user (for instance
inside/outside the house, in the bedroom/in the kitchen, etc.) and of the devices (sensors
and actuators).

• Time: entities of this domain are imported from W3C’s existing Time Ontology [192].

• Fault Detection and Diagnosis: the entities of the diagnosis framework described in Chapter
Chapter 4 can be inserted in CBDP.

Figure 74. First level of the CBDP ontology

The fact that the ontology is loosely coupled with the framework makes changing the ontology
without affecting the framework easier. This fact facilitates integrating our main FDD framework
entities into the CBDP framework. However some basic parts of the ontology are fixed and
cannot be changed, for instance the entities describing the delivery of commands to the physical
devices. The entities describing this functionality are depicted in Figure 75.

Chapter 5. Implementation

102

Figure 75. Ontology entities required for proper operation of the CBDP framework

5.1.2. The CBDP framework

The CBDP Framework aims to dynamically handle ontology data in order to initiate actions
when specified conditions in the ontology are verified. The CBDP framework is written in Java
and it is based on OSGi. OSGi allows one to flexibly build applications by combining bundles.
The physical devices (actuators, sensors) are connected to the platform using the Zigbee wireless
communications protocol.

As described in Figure 76 a typical CBDP application is composed of CBDP’s core bundles,
which are the Context Reasoner and the Sensor/Actuator Layer, and application-specific bundles.

Figure 76. Architecture of the CBDP framework

• Context Reasoner: it manages (add, retrieve, perform queries about) the information coming
from external components, such as the AAL Application or the Zigbee Driver by structuring
them according to the used ontology. The ontology is manipulated using the Jena library [193].
The Context Reasoner has a rule engine. The purpose of the latter is to select the appropriate
actions to perform to help the user and facilitate common tasks, based on a set of application-
specific rules, which is why the rules are provided by a bundle specific to the application (AAL
Application bundle in our case). The rules are in the form of Horn clauses [194]. This means
that a rule is composed of two main parts: the premises that determine the conditions under

Chapter 5. Implementation

103

which the rule applies, and a conclusion that basically adds a new “fact” into the ontology
(such as a new property value). An example of such rules in pseudo code is the following:

IF a PresenceSensor detects somebody
AND the PresenceSensor,LightActuator are in the sam e room

THEN Turn the LightActuator on

The exact rule expressed in Jena syntax is at Annex-D.Rule1. This rule is evaluated by the
framework when the Presence Sensor’s value has changed in the ontology.
Rules like this are applied by Jena’s basic reasoning engine, using forward chaining. In order to
avoid applying all the rules at each instant, only rules matching some application-specific filters
are applied. These filters are defined by the bundle of the application-specific bundle. This idea
solves performance issues, which is why a “catch-all” filter is used at first, and then the filters
are refined in a way that enhances the performance.

• Sensor/Actuator Layer: it connects the sensors and actuators to the ontology. The
communication goes in two directions: The first direction is to send Sensor data (through
Zigbee) to be stored in the ontology. This allows the performing of semantic queries and
semantic reasoning over sensor data. The second direction is when command requests are
inserted in the ontology (using a property called hasCommand), which triggers the actual
emission of a command to the actuator. A specific OSGi service called EventAdmin is
responsible for connecting the sensors to the Context Reasoner. In order to allow the
communication between the drivers and the S/A layer, a specific communication protocol has
been defined through OSGi events. A description of this communication protocol is given in
[195].

• Application-specific bundles for the Ambient Assisted Living application: In the case of
the AAL application there are two main bundles, which are:
(i) The AAL-specific application bundle that contains the rules that define the wanted application
behavior, which are meant to assist the user according to his/her needs.
(ii) The Zigbee Driver bundle, which allows exchanging data between the physical devices that are
connected via a wireless Zigbee network, and the CBDP Framework.

5.1.3. Integration of the Fault Detection and Diagnosis approach
with the CBDP framework

This section shows how our FDD framework may be integrated with CBDP. As shown in
Figure 77, the main concepts from our FDD framework can be integrated into the CBDP
ontology, namely: Effect, Effect Property, and Formula.

Figure 77. The Fault Detection and Diagnosis framework integration into the CBDP ontology (in grey) –
Abstract Model

Chapter 5. Implementation

104

This results in a similar integration at the level of the Concrete Model, as shown in Figure
78:

Figure 78. Specialization for the Light Effect from the CBDP ontology – Concrete Model

5.2. ModHel’X, our heterogeneous modeling tool

As explained in introduction, the prediction model is heterogeneous by nature, because it
contains, namely, state machines and computations. Instead of creating an ad-hoc execution
engine for this model, we have decided to use a specialized tool. We have chosen to use
ModHel’X, which is developed at Supélec, and that has an experimental, yet clean and usable
implementation.

The goal of ModHel’X [196][172] is to develop new ideas about the executable semantics of
heterogeneous models. There are two main tasks to achieve in order to obtain a meaningful
heterogeneous model using model composition:

(1) the precise definition of the semantics of each modeling language;

(2) the precise definition of the semantic adaptation between parts of a model that use
different modeling languages.

In order to define the semantics of different modeling languages, ModHel’X is composed of
a generic meta-model for describing the structure of models, and a generic execution engine for
interpreting such structures. To attach semantics to this structure, ModHel’X uses the concept of
model of computation (MoC). The model of computation in ModHel’X handles the scheduling
of actions for the models’ components, and how values are transferred between different model
components [196], thereby refining the execution engine’s abstract semantics. ModHel’X
currently implements three MoCs: timed finite state machines (TFSM), discrete events (DE),
synchronous data flow (SDF). Refer to Section 3.4 for a description of these common MoCs.
Those who create models may use these MoCs off-the-shelf.

For instance, Figure 79 shows that two models can share the same structure (two
components A and B linked by two arrows) with different semantics, i.e., different MoC: a finite
state machine (FSM) or two processes communicating through discrete events (DE). When
interpreted by the FSM MoC, the model represents an FSM with two states. When interpreted by
the DE MoC, it represents two processes that communicate through events.

Chapter 5. Implementation

105

Figure 79. A model (top) that can be interpreted according to two different MoCs (bottom)

The elementary unit of behavior in ModHel’X is the block, which is composed, as shown in
Figure 80, of an interface (pins) and of an update operation allowing to observe the behavior of
the block through the interface. A block is a black box: the pins are responsible of sending and
receiving information and defining what can be observed from the outside of the block. To
observe the block’s behavior the update operation of the block’s interface is invoked, causing the
block to consider its input and update the output according to inputs and current state of the
block.

Figure 80. A ModHel’X block

As shown on Figure 81, a model is composed of a structure, which contains blocks
interconnected via relations (arrows), and which is interpreted according to a MoC (shown in a
diamond-shaped label). Interpreting a model means executing the behavior described by that
model according to the semantics of the MoC. An execution is a series of observations of the
model, each observation being computed through the sequential observation of the blocks of the
model using a fixed-point algorithm. The observation of one block is called an update. Each
MoC dictates the rules for scheduling the update of the blocks of a model, for propagating values
between blocks, and for determining when the computation of the observation of the model is
complete.

Figure 81. A ModHel'X model

For hierarchical composition and heterogeneity support ModHel’X uses the concept of
interface block, which is a block whose behavior is defined by a model inside it, as shown in
Figure 82. The MoC used by the inner model of an interface block can differ from the MoC of
the outer model to which the interface block belongs. The InterfaceBlock acts as an adapter

Chapter 5. Implementation

106

between the two MoCs. The dashed arrows between the pins of the interface block and the pins
of the inner model represent the semantic adaptation between the two MoCs, which is realized by
the interface block. As shown in [172], three aspects are be considered in this adaptation: data
(which may not have the same form in the inner and outer models), time (the notion of time and
the time scales may differ in the inner and outer models) and control (the instants at which it is
possible or necessary to communicate with a block through its interface).

Figure 82. A ModHel'X interface block

ModHel’X allows the creation of models through an API, and offers a graphical animator for
visualizing models. It executes models in simulated time or in real-time. Therefore ModHel’X can
be used both for performing simulations or running actual systems. For instance it has been used
to manage the interaction between a user and a virtual environment, the gestures of the user
being captured by a Kinect device [197].

Therefore, the core of the work of the FDD framework is to build a prediction model using
the API provided by ModHel’X; after that ModHel’X can execute this model autonomously.

5.3. Building the prediction model

We have implemented our FDD framework using Java. It creates a prediction model to be
executed by ModHel’X, as a simulation or in real-scale. Using this configuration we were able to
define several scenarios, and to test our Fault Detection approach results in those scenarios (see
Chapter 6).

In input the Java application takes the definition of the Concrete Model and the Instances,
and in output it uses the API of ModHel’X to create the Prediction Model is depicted in Figure
83.

The complete description of the Ambient System to be diagnosed by the FDD framework is
described in the form of triplet statements (Models.alpl). The latter file contains two main sections,
the class section, which has the definition of the types (the concrete model), and an instance section
that holds the instances corresponding to the real devices and objects in the ambient intelligent
environment that are involved in the fault detection and diagnosis process (see next paragraph
5.3.1 for detailed syntax).

For some types of devices described in the class section there is a reference to behavioral
models (Finite State Machines in our case) described in xml files (FSM.xml).

The models in Models.alpl file are mirrored in an OWL ontology (Ontology.owl). In addition for
being the medium for the integration with the CBDP project, the ontology contains the Abstract
Model description; hence it is used for analyzing the Concrete Models described in the Models.alpl
file.

Chapter 5. Implementation

107

The analysis process can be summerized in two main tasks:

- Verifying that the abstract types used in the Concrete Model exist in the Abstract Model.

- Verifying the correctness of the structure, this means verifying that the links that are defined
between the concrete types are also defined between the abstract types from which the concrete
types are inherited.

We use the Jena library [193] to manipulate the ontology, in particular to create ontology
entities that mirror the classes and devices’ instances described in the Models.alpl file, and/or
instances that are added at run-time.

All this information is used to generate a Prediction Model in ModHel’X.

Figure 83. File structure of the java application

5.3.1. Defining the Concrete Model and the Instances of the actual
devices

In the various files, our models (the concrete model and the instances) are described in the
form of statements of the form:

subject-predicate-object

This is inspired by Resource Description Framework (RDF) [190].

The subject in this case is the resource to be described, the object is usually another resource
or a literal value, and the predicate denotes the relationship between the subject and the object.

For example, one way for declaring the fact that “a light bulb is producing light effect, and
the light effect has a property called luminous flux”, using triples is in fact composed of two
statements:

light_bulb_1 produce light_effect

light_effect has_property luminous_flux

Models.alpl

*.class

Ontology.owl

AmILoop.Compiler.java

Use/Create

Compile

Instantiate

ModHel’X
Generate

(Prediction Model)

FSM.xml

Chapter 5. Implementation

108

In the latter statements we have a triplet composed of:

entity-relationship-entity

Note here that the relationship names are as declared in the abstract model (Figure 48).

Continuing with the same example, to initialize the value of the luminous flux of the light
effect to a certain value (100 lumens for example), we simply state:

luminous_flux has_value 100

which is a statement composed of:

entity-attribute-value

Using this syntax we have created our own grammar to describe the all models composing
the fault detection and diagnosis framework. In addition to the relationships between entities that
are already declared in the abstract model, we have added some relationships that describe some
implicit relationships in the models such as the inheritance and the assignment of a value to an
entity. For the latter we added the relationship has_value to be used as in the previous example.

Out Models.alpl file is composed of two main sections:

- The Classes section: containing the declaration of the concrete model entities from the
abstract model.

To declare an entity of the concrete model that is a specialization of an entity of the abstract
model we use the keyword: TYPE. For instance to declare the type of incandescent light bulb,
which is a type of actuators we use the triplet:

IncandescentLightBulb TYPE Actuator

- The Instances section: containing the declaration of the instances from the types defined
in the concrete Model (the Classes section).

To declare an instance an entity declared in the concrete model we use the keyword: is. For
example to create two instances of incandescent light bulb we use the two triples:

Bulb_1 is IncandescentLightBulb

Bulb_2 is IncandescentLightBulb

5.3.2. Defining the Behavioral Models and their instantiation

The generic behavioral models of the active types (Actuators and Effect Modifiers) are
defined in separate XML files. The latter are associated in the Concrete Model to their declared
types with their file paths:

FluorescentLightBulb FSM resources/FSM/FluorescentL ightBulb_FSM.xml;

For instance the structure of the FSM defined in Figure 68 for Fluorescent Light Bulbs in
XML format would be:

<FSM Name="FluorescentLightBulb_FSM" ControlledProp ertyName="LightFlux">
 <EventInput Name='TurnON' />
 <EventInput Name='TurnOFF' />

 <Output Name='LightFlux' />

 <State Name="OFF" Value="0">
 <Event Name="TurnON" NextState="HEATING">
 <Set Output="LightFlux" Value="50" />

Chapter 5. Implementation

109

 </Event>
 </State>

 <State Name="HEATING" Value="50">
 <Event Delay="30" NextState="ON">
 <Set Output="LightFlux" Value="1500" />
 </Event>
 <Event Name="TurnOFF" NextState="OFF">
 <Set Output="LightFlux" Value="0" />
 </Event>
 </State>

 <State Name="ON" Value="1500">
 <Event Name="TurnOFF" NextState="COOLING">
 <Set Output="LightFlux" Value="0" />
 </Event>
 </State>

 <State Name="COOLING" Value="0">
 <Event Delay="60" NextState="OFF">
 <Set Output="LightFlux" Value="0" />
 </Event>
 <Event Name="TurnON" NextState="ON">
 <Set Output="LightFlux" Value="1500" />
 </Event>
 </State>

</FSM>

The algorithm that generates the Prediction engine will instantiate these Behavioral Models
for each instance and replace the variables with their values defined for each Instance in the
Instances section. It will then convert them to ModHel’X blocks as the one depicted in Figure
84:

Figure 84. ModHel'X block describing CFL Bulb FSM

5.3.3. Generating the Prediction Model (Prediction Engine)

Based on the previous declarations, the Prediction Engine will generate the Prediction Model.
The Prediction Model must be regenerated each time the structure of the environment changes,
namely when a new object is introduced in the ambient environment, and each time an object is

Chapter 5. Implementation

110

removed. However when it the case of variations of property values, it is not necessary to
regenerate the model because the structure does not change; we must only continue its execution
with new input values.

We must determine the expected sensor outputs using the formulae associated with the effects.
Starting from the needed values, we recursively iterate over the formulae and we construct
symbolic call tree. For instance the call tree for a single light sensor expanding the (L4) law from
the 2DLightLawSet (see 4.2.1.2.2 for the complete Law-Set) and two light sources would result in
the call tree depicted on Figure 85. In the process, iterating operators, such as the sigma notation
for a sum, must be expanded depending on the current situation of the environment. For
instance, when dealing with a summation operator that iterates over “all the light sources”, we
actually iterate over the light sources currently present in the environment and create as many
branches in the call tree as there are light sources. Therefore the current situation of the
environment determines the structure of the call tree, hence the structure of the model.

Figure 85. Call tree for a single sensor in the Prediction Model

This call tree is directly translated into a dataflow model, with each elementary function being
an operator. Depending on the library of operators available, an operator can yield a single block
in ModHel’X, or a sub-tree of lower-level blocks. The Model of Computation chosen for this
computational model is Synchronous Dataflow (SDF). SDF enables us to treat the computational
model as a sample system, computing its new outputs regularly, for instance each second. Figure
86 shows (the highlighted area) the dataflow model associated with one call tree that has three
main branches (predicting the reading of a sensor that is exposed to three light sources).

Chapter 5. Implementation

111

Figure 86. Dataflow model in ModHel’X - A Single Call tree highlighted

This output of some actuators depends on their behavioral model. For instance, the luminous
flux of a light bulb depends on the state it is currently in (switched off, heating or switched on).
Therefore the state machines must be integrated in the prediction model. In this way, the
prediction model can not only be used to compute new predictions based on new values, but also
taking into account the flow of commands sent to the system (for example, “switch on bulb_1”,
“switch off bulb_2”, etc.). The state machines are modeled using the TFSM Model of
Computation. Using timed state machines is necessary, because some transitions fire
spontaneously after some time (for instance, the state machine modeling a light bulb might
transition from “heating” to “switched on” after 30 seconds in the former state.

At this point we have two parts in the model: a computational dataflow model using the SDF
MoC, and a number of state machines using the TFSM MoC. Of course, the dataflow
calculations depend on the current states of the state machines. Therefore the two heterogeneous
parts must be integrated. Therefore a top-level model using the discrete events (DE) MoC is
created. Discrete events allow state changes to be propagated to the SDF model. The TFSMs and
the SDF model are plunged into this DE model, and semantic adaptation is performed using
adapters (interface blocks).

At the boundary between DE and TFSM, in input, events such as “switch on this lamp” just
have to be forwarded to the TFSM. In output, the TFSM produces events such as “Light flux
now at 1500 lm” that also just have to be forwarded to DE.

Chapter 5. Implementation

112

The adaptation is more complex at the boundary between DE and SDF. In input, and event
such as “Light flux now at 1500 lm” cannot in general be taken into account immediately.
Indeed, an SDF model is a sampled system that reacts at a specific rate. Therefore, events are
translated into values, and these values are memorized so as to be provided to the model at its
next activation instant. For example, “Light flux now at 1500 lm” creates a new value of 1500 on
the pin corresponding to the actuator’s light flux, and after receiving this event, this new value is
emitted at each SDF instant. Therefore, the DE/SDF adapter embeds some kind of “translation
table”. A generic DE/SDF adapter is provided by ModHel’X, that can be parameterized with
such a custom translation table. In output, the adapter sends an event in DE only when a value
changes in SDF, so as not to create too many events.

5.4. Execution of the Prediction Model

The Prediction Model may be used for simulation or for running an actual system. It is just a
matter of connecting either simulation components or actual sensors in input of the model.

At the moment, we have only performed tests using simulation. Therefore we have built a
control panel to generate all kinds of events, such as commands sent to the actuators, or values
read from the sensors.

5.4.1. Use of the Prediction Model in simulation

When the Prediction Model is run, ModHel’X provides us with an animator that may be used
to understand and debug the model. We obtain an interface like the one depicted in Figure 87 :

(a.) The ModHel’X main block inputs: It simulates the data coming from the hardware layer.
Figure 88 is a zoom in on this part.

(b.) The finite state machines (Figure 84 is a zoom-in on one of the finite state machines).

(c.) The calculations block representing the call trees generated of the Law Sets
(mathematical model)

(d.) The Prediction Model output: or the results of the calculations. It represents the sensors’
readings predicted values. This part is zoomed in on Figure 89. Note that we have as many
outputs as the number of sensors in the environment.

We can start the simulation by clicking run. One second is the time step. Once the simulation
is running we have two new graphic interfaces:

i) One is for controlling the values for the properties of the instances (for instance x and y
values), and for triggering the transitions in the finite state machines (for instance turning on and
off the bulbs), as showed in Figure 90.

With this interface we can simulate the behavior of the real devices of the environment by
changing the values of their properties.

ii) The second graphic interface is for tracing the Prediction Model output, which in this case
is the sensors’ predicted readings values, as showed in Figure 91.

The Prediction Model output is in fact the result of the applicable law-set for each sensor
present in the environment.

There is also a log file to save the history of the predicted values, and the graphic layout of
the Prediction Model can also be saved.

Chapter 5. Implementation

113

Figure 87. A Zoomed-out view of the ModHel'X representation of the Prediction Model

a.

b.

d. c.

Chapter 5. Implementation

114

Figure 88. The ModHel’X main block inputs

Figure 89. The Prediction Model outputs

Figure 90. Control panel for the Prediction Model inputs

Chapter 5. Implementation

115

Figure 91. Prediction Model’s output trace window

5.4.2. Fault Detection

Once the execution of the Prediction Model provides values expected to be read for each
sensor, fault detection is a trivial task. One has just to compare the expected values with the
actual values. If they differ beyond a specified tolerance, then there is a fault.

Next we propose a generic fault detection algorithm in pseudo-code. The idea is to loop over
all sensors in the Prediction Model and compare, for each one of them, their actual readings with
the predicted value by the Prediction Model.

FOR EACH Sensor in the PredictionModel
 IF Sensor.reading is NOT IN

[PredictionModel.PredictedValue(Sensor)-Sensor.tole rance,
PredictionModel.PredictedValue(Sensor)+Sensor.toler ance]

THEN
Sensor.info=”Fault Detected”

 END IF
END FOR EACH

Note how the tolerance value is considered when comparing the theoretical and the actual
reading. The tolerance value can be defined as a property of the Sensor or it can be deduced from
the accuracy value (the difference between the actual value and the value that can be read from
the output of the sensor), which is usually a characteristic of the sensor given by their
constructors.

5.5. Conclusion

In this chapter we have proposed an implementation of our Fault Detection and Diagnosis
framework that can be integrated into an actual AAL framework, the CBDP framework. The
main task of the FDD framework is to generate a Prediction Model, of heterogeneous nature,
that can be executed by a dedicated tool called ModHel’X. The results of the execution of the
model enable one to actually detect faults.

Currently the execution has been performed in a simulated environment. However, with
minor changes we could use exactly the same toolchain to diagnose a real-scale AAL application.

In the next chapter we detail scenarios that were used to test our framework.

116

Chapter 6:

Application Examples of
Fault Detection and

Diagnosis in a Smart Home

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

117

Chapter 6.

Application Examples of Fault Detection and
Diagnosis in a Smart Home

In this chapter we present four complete examples, in which our FDD framework is used to
perform fault detection and diagnosis on a smart environment. The first example is a scenario
that was run in an AAL application setting in the context of the CBDP European project
validation (we call it Scenario_CBDP). The rest of the examples (we Call Scenario_1,
Scenario_2, and Scenario_3) are scenarios imagined and simulated using our java simulator
presented in the previous chapter. For our simulator scenarios we suppose that we have three
main Ambient Systems running in our environment: Ambient Light System, Ambient Heating
System, and Ambient Hot-Bath System.

For simplification reasons (not to have crowded illustrations of the design models) fault
detection and diagnosis of different systems will be described separately. Scenario_1 and
Scenario_2 will describe the fault detection in an Ambient Light System, and Scenario_3 will
describe fault detection of Heating and Water Flow in an Ambient Hot-Bath System.

For the first example (scenario_CBDP), we focus on “when and how” our Fault Detection
and Diagnosis framework intervenes in order to contribute to ameliorating the overall execution
of an Ambient Intelligent System. So, for this scenario, we describe a general AAL scenario and
we highlight the parts where our FDD is executed.

For the rest of the examples, we focus on showing the “step by step building” of the FDD
framework. So, for each example, we start by a description of the Ambient Intelligent
Environment, then we start building the Models of our FDD framework, starting with the
Concrete Model, by defining the types of the devices in the environment and the physical
phenomena that are going to be observed in the environment, then we fix the Mathematical
Model by choosing the appropriate Law-Sets that are going to be used by the Prediction Engine,
then we define our Behavioral Models for the different types of active devices, then we
instantiate the Models with the actual devices, finally we run a simulation to perform fault
detection using ModHel’X and we compare the results with the theoretical values to validate the
framework.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

118

6.1. Scenario_CBDP: Automatic Light Switch with Light
System fault detection and diagnosis

6.1.1. Description of the ambient environment

We suppose that we have a room composed of:

• A controlled light bulb

• A light sensor

• A presence sensor

• A non controlled (human-operated) lamp: even though this light source is not controlled,
the position of the adjustment knob allowing the user to manually control the intensity of
the light is known; hence the system can know what light flux is generated from this
source at any time.

As shown in Figure 92, the input and output devices used in this scenario are all Zigbee
devices controlled by the Zigbee driver (see 3.2.1), which connects to the CBDP platform
through OSGi [188]. The light actuators and the light sensors are all in the same room, so
naturally the light sensor detects light emitted by both light bulbs, the controlled one and the
human-operated one.

The functionality detailed in this Ambient Assisted Living scenario aims to help elderly
people avoid finding themselves lost in a dark room. The wanted system behavior may be
summarized by this rule:

“if the ambient light level is under a threshold of a specific user
(specified in the Digital Personality) and if the u ser is present in the

room, then the light must be turned on ”.

Although simple, this scenario demonstrates all the aspects of the system: sensor data gathering,
reasoning, command of actuators, and fault detection and diagnosis.

Figure 92. Input/Output configuration of scenario_CBDP

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

119

6.1.2. Running the scenario

In this scenario we suppose that the Illuminance in the room is 80 lux coming the the light
flux of the human-operated lamp. The current Illuminance value is updated in the ontology (see
5.1 for a complete description of the CBDP framework). Then a user comes in the room. The
system verifies his/her Digital Personality, which states that he/she does not like to be in a room
where the Illuminance is under 100 lux. The system then launches the following sequence of
actions:

1) When the user enters the room, the PresenceSensor sends a notification to the driver
through Zigbee network. The driver sends an event to the framework and the ontology is then
updated to consider the new change in the user’s position.

2) The framework detects this change in the value of the PresenceSensor and evaluates the
following Jena rule, expressed here in pseudo-natural language for simplification reasons (for the
exact rule in Jena syntax see Annex-D.Rule2):

IF a LightSensor value is <{userPreference in the D igital Personality}
AND a PresenceSensor detects somebody
AND the LightSensor,PresenceSensor,LightActuator ar e in the same room

THEN Turn the LightActuator on

The reasoning engine evaluates the rule by reading the current light level, the current
presence status, and the user preferences from the ontology. The premises of the rules are
evaluated as true, so the conclusion is by consequence executed. To determine the rules to apply,
forward chaining reasoning algorithm is used by Jena.

3) This rule causes the adding of a new statement to the ontology, which is:

LightActuator hasCommand OnCommand

The Sensor/Actuator Layer (as described in 5.1) detects the predicate hasCommand. In
consequence, the framework sends an event to the driver asking for the Light Actuator to be turn
on.

4) Through Zigbee network, the driver commands the Light Actuator, which turns the light
on.

5) It is at this point that the system calls our Fault Detection and Diagnosis components to
determine whether the action described in 4) was successfully executed.

In this scenario we have an Ambient Environment equipped with two light actuators (we’ll
call their two instances la1 and la2 respectively), and a light sensor (ls1). The light actuators are
instances of the concrete type LightActuator, and the light sensor is instance of the concrete type
LightSensor (see Figure 78 for the Concrete Model). Note that initially there is absolutely no link
between the actuators and the sensor. The links will be deduced automatically at run-time via the
Prediction Model. This is done when the mathematical formula’s input variables are replaced with
the properties of actual instances and the iterative functions are expanded. So the mathematical
function (3) in 5.1.3 becomes:

Replacing illum functions with their respective expressions gives:

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

120

Then we replace distance functions with their expressions:

The latter expression is the actual Mathematical Model associated to the ls1 instance in the
Prediction Model. The latter formula depends only on object properties and it can be used at any
time to predict the expected ls1 readings. To decide whether or not there is an inconsistency
between the model and the reality the calculations results are compared with actual sensor’s
readings. We suppose that the calculations give 120 lux.

6) The comparison between the actual value (80 lux) or Illuminance reported by the sensor,
and the expected value (120 lux) calculated with the prediction model, leads the system to deduce
that there is a failure. Either the controlled actuator or the sensor is broken. This is Fault
Detection. However, we can have another scenario where we have another light sensor in the
room. In such a case, if the second light sensor’s theoretical value (calculated with its own set of
rules from the Prediction Model) is also different from its actual reading, then the faulty
component is most probably the light bulb. In the opposite case, if the second light sensor
theoretical value is equal (or close enough) to its reading, then the first light sensor is most
probably the faulty component. This reasoning to try to find the cause of the fault is Fault
Diagnosis.

We note here that a more detailed probabilistic approach is introduced in the Perspective
section in this dissertation. We reckon that our framework’s Prediction Model contains enough
information. This information is mainly, the sensor(s) reporting the failure(s) (or symptoms), and
the links between actuators and sensors discovered at run-time. The latter allows having a better
understanding of the actual dynamic system structure at all time. This information combined
allows the performing of Fault Diagnosis using state of the art diagnosis techniques, such as
probability.

7) In this scenario we suppose that the system deduces that it is most probably the light bulb
that is burnt out. It then sends an error notification to the user. If the latter confirms it, his/her
feedback can be added as a statement to the ontology for possible further use. User feedbacks
can be used as an amelioration (or correction) for the Fault Diagnosis conclusions. In fact if the
user’s feedback confirms that the light bulb is properly working despite the fact that the
framework reports otherwise, the system deduces that it is in fact the sensor that is not
functioning correctly.

6.2. Scenario_1: Light system fault detection and diagnosis

6.2.1. Description of the ambient environment

We start with a square-shaped, 16 square meters(4x4), one-zone room equipped with three
light actuators and 2 light sensors positioned as illustrated in Figure 93. The x y coordinates have
the bottom left corner as an origin.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

121

Figure 93. Example 1 of Light system fault detection and diagnosis

In the example depicted in Figure 93 we have (using Table 3 to deduce Luminous Flux in lm
from Watt for light bulbs):

• (1.) In the bottom left corner, a 40 Watt Incandescent Light Bulb emitting a Luminous
Flux Ф of 600 lm; called “Inc Bulb” for short in the rest of the chapter.

• (2.) In the center of the room, a 30 Watt Compact Fluorescent Light Bulb emitting a
Luminous Flux Ф of 1500 lm; called “CFL Bulb” for short in the rest of the chapter.

• (3.) In the top right corner, a 60 Watt Inc Bulb emitting a Luminous Flux Ф of 900 lm.

• (4.) In the bottom right corner, a light sensor of type photo diode with a current amplifier
with accuracy of ±33%; called “Photo Diode” for short in the rest of the chapter. Note
that the exact accuracy is usually defined by the constructor of the component; here we
adopt a mean value for Photo Diodes Sensors as described in [198].

• (5.) In the top left corner, a Photo Diode Light Sensor with accuracy of ±33%.

Following the finite state machines describing the behaviors of light bulbs defined in the
previous chapter, we have the following description of the behavior of the light bulbs.

Inc Bulbs have two possible states: On, in which case they are emitting their defined
luminous flux value, and Off, in which case the emitted luminous flux is null.

CFL Bulbs require a slight warm-up time for the electrical current to fully heat the cathodes
and reach their full luminous flux output, thus they have four possible states: On and Off that are
similar to the description of On and Off of incandescent light bulbs, and the states warming and
cooling that are the transitional states between On and Off. The warming state lasts 30 seconds
during which the Luminous Flux increases by 50 lm each second. The cooling state lasts 60
seconds during which the Luminous Flux is 0. If the CFL bulb is tuned on again before the end
of the cooling time it will skip the warming state and go directly to being On.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

122

6.2.2. Building the models

6.2.2.1. The concrete model

In the Concrete Model we define the types and entities that are going to be instantiated later.
The instances will be the basis for building the Prediction Model.

To build the concrete model based on the description of the environment given earlier, we
identify and separate components that are of type actuators, sensors, and effect modifiers. Then
we distinguish between different types of actuators, different types of sensors, and different types
of effect modifiers.

The actuators types we identify based on the description of the Ambient Environment are
the two types of light bulbs: Inc Bulb and CFL Bulb.

The only light sensor type used in the description is Photo Diode.

There are no effect modifiers in this example.

The Effect that is observed in this example is the Light Effect with one Effect Property
Luminous Flux.

The Ambient environment is described in a 2-dimensional space so we would use the 2D
Light Law Set and the On/Off Light Law Set.

From this description we can now build the Concrete Model.

Figure 94. Example 1: Concrete Model for the Ambient Light System

The main entities that are introduced are:

Inc Bulb: an instance of Actuator from the Abstract Model. It represents the Incandescent
Light Bulbs type.

CFL Bulb: also is an instantiation of the Abstract Type Actuator representing the Compact
Fluorescent Light Bulbs.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

123

Photo Diode: a Sensor type for Photo Diode Light Sensors.

Light Effect: an instantiation of the abstract type Effect. Modeling the physical phenomenon
of light waves propagations in the Ambient Environment.

Luminous Flux: instance of the abstract type Effect Property. It is the Light Effect
property. It contains the information about the light flux emitted by the components that
produce a Light Effect.

Ambient Light Intensity: instance of Measurable Property from the Abstract Model. It
contains the value of the reading of the sensor it is connected to. In this case it contains the value
of the reading of the Light Sensor. The Prediction Model will try to estimate the value of this
entity to perform fault detection.

2D Light Law Set: instance of Law Set containing a set of laws that allows the calculation of
the ambient light intensity received by a device according to its 2 dimensional position.

OnOff Light Law Set: another instance of Law Set, to be used when estimating the ambient
light intensity value that a device, not having 2 dimensional coordinates, is exposed to.

2D Position: an instance of Property. Actuator types and Sensor types have this property.
When an instance does not have a property value for this entity the Prediction Model uses the
OnOff Light Law Set with that instance to perform Fault Detection.

Tolerance: also an instance of Property. In this example only Sensor types have this
Property.

Inc Bulb FSM: instance of the abstract type Behavioral Model. It is the finite state machine
describing the general behavior of Inc Bulbs.

CFL Bulb FSM: also instance of the abstract type Behavioral Model. In the case of CFL
Bulbs, it is a timed finite state machine describing the general behavior of CFL Bulbs.

6.2.2.2. The mathematical model

As described earlier, we chose the 2D Light Law Set and the On/Off Light Law Set.
However, the environment is also a one-zone environment so in order to reduce the amount of
calculations we can consider a sub set of the Law Sets we are going to use where we eliminate the
L1 law (verifying objects are in the same zone).

So our final Law Sets are (in order of their hierarchy from most detailed “to try first” to least
detailed “to try last”):

2D Light Law Set

() ()






∞+
−+−=

falseisaswhen

trueisaswhenaysyaxsx
as

),sameZone(

),sameZone()()()()(
),(distance

22

 (L5)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

as

a
as = (L3)

∑=
a

ass),(tExposuredirectLigh)(yhtIntensitambientLig (L4)

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

124

On Off Light Law Set





≡
≠

=
alse),sameZone(0)(uxluminousFl

),sameZone(0)(uxluminousFl
),(posureectLightExbooleanDir

fisasORawhenfalse

trueisasANDawhentrue
as (L6)

U
torsLightActuaa

ass
∈

=),(posureectLightExbooleanDir)(yhtIntensitambientLig (L7)

6.2.2.3. The behavioral models

To describe the behavior of the active and controlled devices in the environment in a formal
way we use finite state machines. At instance level, the final values of every instance property
depend on the current object state. Note that all objects that are controlled by the Ambient
Intelligent System have to be described at least according to the minimal state machine, which is
the on-off state machine with two transitions: turn On, turn Off.

The finite state machine for the actuator type Inc Bulb is depicted on Figure 95:

Figure 95. Inc Bulb Finite State Machine

This finite state machine describes the general behavior of Inc Bulbs in general.

When instantiating the Inc Bulbs that are present in the environment their particular
Luminous Flux Ф values are defined. Later when the Prediction Model starts evaluating the
values of the properties of each Inc Bulb instance using this Finite State Machine, the Luminous
Flux Ф is replaced by its value for each instance. So, in the Prediction Model, the Finite state
machine for the Inc Bulb (that we will call bulb_1) described by Figure 93.1. would look like:

Figure 96. bulb_1 Finite State Machine

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

125

The exact value for the Luminous Flux Ф is 600 lm.

The behavior of the compact fluorescent light bulbs, as described in the environment
description paragraph, depends on time so we use the timed finite state machine from Figure 68.

From the Description given for this CFL Bulb, the values of Ф, α, β, and i are:

Ф: 1500 lm.

α: 30 s.

β: 60 s.

i: 50 lm.

After instantiation of the only CFL Bulb in the environment ((2.) in Figure 93), the
Prediction Model will create the following timed finite state machine for the CFL bulb (that we
will call bulb_2) depicted in Figure 97:

Figure 97. bulb_2 Timed Finite State Machine

As we did for bulb_1, for bulb_2 we replaced the properties of the Bulb Type (here Ф, α, β,
and i) with their values for the Bulb Instance.

6.2.3. Instantiating the Models

Based on the description of the Ambient Environment in Figure 93, and following the structure
of the Concrete Model in Figure 94, we create the following instances:

bulb_1: instance of Inc Bulb, with the 2 Dimensional coordinates (0,0), and Ф=600.

bulb_2: instance of CFL Bulb, with the coordinates (2,2), and with Ф=1500.

bulb_3: instance of Inc Bulb, at the position (4,4), and with Ф=900.

lSensor_1: instance of Photo Diode, at the position (4,0), and with tolerance value of 0.33.

lSensor_2: instance of Photo Diode, at the position (0,4), and with tolerance value of 0.33.

6.2.4. Performing fault detection

6.2.4.1. The simulator and building of the Prediction Model

Here we show the triples syntax statements that define the concrete Model and the instances
that are used by the simulator to build the Prediction Model.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

126

First the definition of the Concrete Model (depicted in Figure 94):

FluorescentLightBulb TYPE Actuator;
IncandescentLightBulb TYPE Actuator;

PhotoDiode TYPE Sensor;

AmbientLight TYPE PhysicalProperty;

AmbientLightModificationRatio TYPE PhysicalProperty ;

LightFlux TYPE PhysicalProperty;

X TYPE AbsolutePosition;
Y TYPE AbsolutePosition;

LightEffect TYPE Effect;

FluorescentLightBulb produces LightEffect.LightFlux ;
IncandescentLightBulb produces LightEffect.LightFlu x;

PhotoDiode detects AmbientLight;

FluorescentLightBulb hasProperty X;
FluorescentLightBulb hasProperty Y;

IncandescentLightBulb hasProperty X;
IncandescentLightBulb hasProperty Y;

PhotoDiode hasProperty X;
PhotoDiode hasProperty Y;

PhotoDiode hasTolerance 33;

AmbientLightLawSet2D TYPE LawSet;

#ambientLightIntensity function is called here Tota lIllumination2D
#to be compatible with corresponding java function.
#Different java function were defined for 3D, 2D, a nd onOff
#similar redefining was done for the other function s of the Law-Sets

TotalIllumination2D TYPE Function;
TotalIllumination2D hasOutput AmbientLight;
TotalIllumination2D hasExpression _SUM(a, LightActu ator, SingleIllumination2D(a,

sensor));
TotalIllumination2D hasArg sensor;

AmbientLightLawSet2D hasFunction TotalIllumination2 D;

SingleIllumination2D TYPE Function;
SingleIllumination2D hasOutput singleSourceLight;
SingleIllumination2D hasExpression (actuator.LightF lux)/(Distance2D(actuator,

sensor)^2);
SingleIllumination2D hasArg actuator;
SingleIllumination2D hasArg sensor;

AmbientLightLawSet2D hasFunction SingleIllumination 2D;

Distance2D TYPE Function;
Distance2D hasOutput distance;
Distance2D hasExpression (((a.X-b.X)^2)+((a.Y-b.Y)^ 2))^(0.5);
Distance2D hasArg a;
Distance2D hasArg b;

AmbientLightLawSet2D hasFunction Distance2D;

LightEffect hasLawSet AmbientLightLawSet2D;

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

127

AmbientLightLawSetOnOff TYPE LawSet;

TotalIlluminationOnOff TYPE Function;
TotalIlluminationOnOff hasOutput AmbientLight;
TotalIlluminationOnOff hasExpression _OR(a, LightAc tuator,

SingleIlluminationOnOff(a, sensor));
TotalIlluminationOnOff hasArg sensor;

AmbientLightLawSetOnOff hasFunction TotalIlluminati onOnOff;

SingleIlluminationOnOff TYPE Function;
SingleIlluminationOnOff hasOutput SingleSourceLight ;
SingleIlluminationOnOff hasExpression actuator.Ligh tFlux;
SingleIlluminationOnOff hasArg actuator;
SingleIlluminationOnOff hasArg sensor;

AmbientLightLawSetOnOff hasFunction SingleIlluminat ionOnOff;

LightEffect hasLawSet AmbientLightLawSetOnOff;

FluorescentLightBulb FSM resources/FSM/FluorescentL ightBulb_FSM.xml;
IncandescentLightBulb FSM resources/FSM/Incandescen tLightBulb_FSM.xml;

Then the declaration of the instances:

bulb_1 is IncandescentLightBulb;
bulb_1 X 0;
bulb_1 Y 0;
bulb_1 LightFlux 600;
bulb_2 is FluorescentLightBulb;
bulb_2 X 2;
bulb_2 Y 2;
bulb_2 LightFlux 1500;
bulb_3 is IncandescentLightBulb;
bulb_3 X 4;
bulb_3 Y 4;
bulb_3 LightFlux 900;
lSensor_1 is PhotoDiode;
lSensor_1 X 4;
lSensor_1 Y 0;
lSensor_1 AmbientLight 20;
lSensor_2 is PhotoDiode;
lSensor_2 X 0;
lSensor_2 Y 4;
lSensor_2 AmbientLight 25;

Note the complete decoupling between Actuators and Sensors in the previous definition of

the Concrete Model and of the Instances. The links are going to be deduces automatically once
the simulation is running, due to the evaluation of the Mathematical Model. The links are in fact
different Properties from Actuators and Sensors that are exploited in the Mathematical Functions
of the Law-Sets.

6.2.4.2. The simulation

In order to facilitate our series of tests we use a simulation instead of real devices. The real
devices behavior is simulated by our simulation application. The module simulating the behavior
of the devices is decoupled from the core of the FDD framework and thus can be easily replaced
by an interface for connecting real devices (hardware layer) with the FDD framework.

The goal of this simulation is to observe the running of the fault detection task of the FDD
framework using ModHel’X in order to validate the correctness of our theoretical study.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

128

Using the previous description of the Concrete Model and the instances the simulator creates
a Prediction Model that is converted to ModHel’X forma in order to run the simulation while
visualizing the Prediction Model and the time units’ steps.

Figure 98 depicts how the Prediction Model of Scenario 1 looks like in ModHel’X:

Figure 99 is the control panel for controlling the values of the devices instances parameters,
and for triggering state transitions in the instantiated finite state machines of the actuators.

Figure 100 is the trace output of the Prediction Model, it depicts the sensors predicted
readings estimated via the Calculation Block that contains the instantiated Mathematical Model..

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

129

Figure 98. General View of the ModHel'X representation of the Prediction Model for Scenario_1

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

130

Figure 99. Control panel for the Prediction Model inputs – scenario_1

Figure 100. Prediction Model’s output trace window – scenario_1

- Validating the Model:

Next we run the simulation, during which we perform a series of tests to verify the
correctness of the Prediction Model’s calculations.

Test 1: We start with the light bulbs in their initial state Off, which means the luminous flux
Ф for both light bulbs equals 0 lm. We observe the following output:

Figure 101. Scenario_1 Test1 simulation trace values

This verifies the manual calculations for the predicted reading for the sensors; since the law
L3, applied to sensor_1 or to sensor_2, is always equal to 0 for both light bulbs, which means
that the sum calculated by L4 would also be equal to 0 for both sensors.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

131

Test 2: We turn on bulb_1 (emitting light flux Ф = 600 lm) and we observe a change in
sensors’ predicted readings:

Figure 102. Scenario_1 Test2 simulation trace values

Having the same predicted reading value for both sensors is verifiable since bulb_1 is at equal
distance from both sensors.

Evaluating the Mathematical Model and Validation: The value calculated by L4 for sensor_1
should be 37.5. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

Second call to L3:

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

Third call to L3:

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

with

luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=0

luminousFlux(bulb_3)=0

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:

distance(sensor_1,bulb_1)=

Sqrt[(x(sensor_1)-x(bulb_1))^2 + (y(sensor_1)-y(bul b_1))^2]

Second call to L5:

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

Third call to L5:

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

132

with

x(sensor_1)=4 y(sensor_1)=0

x(bulb_1)=0 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give

distance(sensor_1,bulb_1)=4

distance(sensor_1,bulb_2)=2.82

distance(sensor_1,bulb_3)=4

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_1,bulb_1)=600/16

directLightExposure(sensor_1,bulb_2)=0/8

directLightExposure(sensor_1,bulb_3)=0/16

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=37.5+0+0= 37.5

That is equal to the value predicted by the Prediction Model.

As a possible optimization to the simulation engine calculations we can choose to ignore the
second and third call to L5 as the luminous flux value for bulb_2 and bulb_3 equals 0. This could
alleviate a lot of calculation charges when we have too many devices to consider. We would
ignore those who generate 0 effects in the environment.

Test 3: Then we turn on bulb_3 along side with bulb_1. We obtain the following output:

Figure 103. Scenario_1 Test3 simulation trace values

The distance between sensor_1 and bulb_1 is equal to the distance between sensor_2 and
bulb_1, and the distance between sensor_1 and bulb_3 is equal to the distance between sensor_2
and bulb_3, which justifies having the same predicted value for both sensors. We verify the value
of the predicted sensor_1 reading.

Evaluating the Mathematical Model and Validation: The value calculated by L4 for sensor_1
should be 87.5. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:

directLightExposure(sensor_1,bulb_1)=

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

133

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

Second call to L3:

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

Third call to L3:

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

with

luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=0

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:

distance(sensor_1,bulb_1)=

Sqrt[(x(sensor_1)-x(bulb_1))^2 + (y(sensor_1)-y(bul b_1))^2]

Second call to L5:

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

Third call to L5:

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

with
x(sensor_1)=4 y(sensor_1)=0

x(bulb_1)=0 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_1,bulb_1)=4

distance(sensor_1,bulb_2)=2.82

distance(sensor_1,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_1,bulb_1)=600/16

directLightExposure(sensor_1,bulb_2)=0/8

directLightExposure(sensor_1,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_1)=37.5+0+50= 87.5

That is equal to the value predicted by the Prediction Model.

Test 4: We move bulb_1 2 meters in the positive direction of the x axis. This generates the

following output:

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

134

Figure 104. Scenario_1 Test4 simulation trace values

Evaluating the Mathematical Model and Validation: The value calculated by L4 for sensor_1
should be 200. The 2D Light Law Set calls are as follows:

Call to L4:
ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

Third call to L3:
directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=0

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5: one for each bulb.

First call to L5:
distance(sensor_1,bulb_1)=

Sqrt[(x(sensor_1)-x(bulb_1))^2 + (y(sensor_1)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

Third call to L5:
distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

with
x(sensor_1)=4 y(sensor_1)=0

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which gives
distance(sensor_1,bulb_1)=2

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

135

distance(sensor_1,bulb_2)=2.82

distance(sensor_1,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_1,bulb_1)=600/4

directLightExposure(sensor_1,bulb_2)=0/8

directLightExposure(sensor_1,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_1)=150+0+50= 200

That is equal to the value predicted by the Prediction Model.

The bulbs are no longer at equal distance from the sensors, so we calculate the value
calculated by L4 for sensor_2 also, which should be 80. The 2D Light Law Set calls are as
following:

Call to L4:
ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

Third call to L3:
directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=0

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:
distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_2)-x(bulb_2))^2 + (y(sensor_2)-y(bul b_2))^2]

Third call to L5:
distance(sensor_2,bulb_3)=

Sqrt[(x(sensor_2)-x(bulb_3))^2 + (y(sensor_2)-y(bul b_3))^2]

with
x(sensor_2)=0 y(sensor_2)=4

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

136

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_2,bulb_1)=4.47

distance(sensor_2,bulb_2)=2.82

distance(sensor_2,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_2,bulb_1)=600/20

directLightExposure(sensor_2,bulb_2)=0/8

directLightExposure(sensor_2,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_2)=30+0+50= 80

That is equal to the value predicted by the Prediction Model.

Test 5: We turn on bulb_2, the first second we should observe a 50 lm effect on the sensors.

The consequence of this effect is the following:

Figure 105. Scenario_1 Test5 simulation trace values

Evaluating the Mathematical Model and Validation: The value calculated by L4 for sensor_1
should be 206.25. The 2D Light Law Set calls are as following:

Call to L4:
ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

Third call to L3:
directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=50

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

137

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:
distance(sensor_1,bulb_1)=

Sqrt[(x(sensor_1)-x(bulb_1))^2 + (y(sensor_1)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

Third call to L5:
distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

with
x(sensor_1)=4 y(sensor_1)=0

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_1,bulb_1)=2

distance(sensor_1,bulb_2)=2.82

distance(sensor_1,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_1,bulb_1)=600/4

directLightExposure(sensor_1,bulb_2)=50/8

directLightExposure(sensor_1,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_1)=150+6.25+50= 206.25

That is equal to the value predicted by the Prediction Model.

The bulbs are no longer at equal distance from the sensors, so we calculate the value
calculated by L4 for sensor_2 also, which should be 86.25. The 2D Light Law Set calls are as
following:

Call to L4:
ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

Third call to L3:

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

138

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=50

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:
distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_2)-x(bulb_2))^2 + (y(sensor_2)-y(bul b_2))^2]

Third call to L5:
distance(sensor_2,bulb_3)=

Sqrt[(x(sensor_2)-x(bulb_3))^2 + (y(sensor_2)-y(bul b_3))^2]

with
x(sensor_2)=0 y(sensor_2)=4

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_2,bulb_1)=4.47

distance(sensor_2,bulb_2)=2.82

distance(sensor_2,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_2,bulb_1)=600/20

directLightExposure(sensor_2,bulb_2)=50/8

directLightExposure(sensor_2,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_2)=30+6.25+50= 86.25

That is equal to the value predicted by the Prediction Model.

Test 6: After 30 seconds of turning on bulb_2 we should observe the 1500 lm effect on the

sensors, in fact we observe:

Figure 106. Scenario_1 Test6 simulation trace values

Evaluating the Mathematical Model and Validation: The value calculated by L4 for sensor_1
should be 287.5. The 2D Light Law Set calls are as following:

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

139

Call to L4:
ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

Third call to L3:
directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=1500

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:
distance(sensor_1,bulb_1)=

Sqrt[(x(sensor_1)-x(bulb_1))^2 + (y(sensor_1)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

Third call to L5:
distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

with
x(sensor_1)=4 y(sensor_1)=0

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_1,bulb_1)=2

distance(sensor_1,bulb_2)=2.82

distance(sensor_1,bulb_3)=4

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_1,bulb_1)=600/4

directLightExposure(sensor_1,bulb_2)=1500/8

directLightExposure(sensor_1,bulb_3)=800/16

Finally the call to L4 for sensor_1 gives

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

140

ambientLightIntensity(sensor_1)=150+187.5+50= 387.5

That is equal to the value predicted by the Prediction Model.

The bulbs are no longer at equal distance from the sensors, so we calculate the value
calculated by L4 for sensor_2 also, which should be 267.5. The 2D Light Law Set calls are as
following:

Call to L4:
ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)

� this generates 3 calls to the Law L3; one for each bulb

First call to L3:
directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

Second call to L3:
directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

Third call to L3:
directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

with
luminousFlux(bulb_1)=600

luminousFlux(bulb_2)=1500

luminousFlux(bulb_3)=800

� this generates 3 calls to the Law L5; one for each bulb

First call to L5:
distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

Second call to L5:
distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_2)-x(bulb_2))^2 + (y(sensor_2)-y(bul b_2))^2]

Third call to L5:
distance(sensor_2,bulb_3)=

Sqrt[(x(sensor_2)-x(bulb_3))^2 + (y(sensor_2)-y(bul b_3))^2]

with
x(sensor_2)=0 y(sensor_2)=4

x(bulb_1)=2 y(bulb_1)=0

x(bulb_2)=2 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

which give
distance(sensor_2,bulb_1)=4.47

distance(sensor_2,bulb_2)=2.82

distance(sensor_2,bulb_3)=4

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

141

using these values to evaluate previous L3 calls gives
directLightExposure(sensor_2,bulb_1)=600/20

directLightExposure(sensor_2,bulb_2)=1500/8

directLightExposure(sensor_2,bulb_2)=800/16

Finally the call to L4 for sensor_1 gives
ambientLightIntensity(sensor_2)=30+0+50= 267.5

That is equal to the value predicted by the Prediction Model.

Test 7: We turn off bulb_2 we should observe the same readings as in Figure 104 of Test 4.

Figure 107. Scenario_1 Test7 simulation trace values - (1/2)

Those readings are verified in Figure 107.

After turning off bulb_2, and before the passing of the 60 seconds cooling time described by
the bulb_3 finite state machine we turn it on again, we should observe the same readings as Test
6, without passing by the heating phase as in Test 5. This is also verified as we obtain the
following predicted readings (same as in Test 5):

Figure 108. Scenario_1 Test7 simulation trace values - (2/2)

We can conclude that the Prediction Model mathematical predictions and finite state machine
described behaviors verify the theoretical calculations for this scenario. In the next scenario we
generate a Prediction Model that takes into account the concept of Effect Modifier when
predicting sensors’ readings.

6.3. Scenario_2: Light system fault detection and diagnosis
with Effect Modifier

6.3.1. Description of the smart environment

We consider the environment illustrated in Figure 109, in which we have two rooms (room 1
and room 2) separated by a wall.

In room 1 we have (as described on Figure 109):

• (1.) a 120 Watt incandescent light bulb with luminous flux Ф of 1750 lm.

In room 2 we have (also as described on Figure 109):

• (2.) a 23 Watt compact fluorescent light bulb emitting a luminous flux of 1500 lm.

• (3.) a 60 Watt incandescent light bulb emitting 800 lm.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

142

Incandescent light bulbs have two possible states: On, in which case they are emitting their
defined luminous flux value, and Off, in which case the emitted luminous flux is null.

Compact fluorescent light bulbs require a slight warm-up time for the electrical current to
fully heat the cathodes and reach their full luminous flux output, thus they have four possible
states: On and Off that are similar to the description of On and Off of incandescent light bulbs,
and the states warming and cooling that are the transitional states between On and Off.

In both rooms we have ((as depicted on Figure 109) (4.) and (5.) photo diodes with a
current amplifier light sensor (with accuracy of ±33% [198]; called “Photo Diode” for short in
the rest of the example).

In addition we have (6.) a photo transistor (with accuracy of ±75%) reporting the light
intensity outside the two rooms.

room 1 and room 2 are connected with (7.) a double hinged door that opens into room 2.
The double hinged door can have 4 possible states: Closed, open, partially open on the right and
partially open on the left.

room 1 has a window that opens on the outside. The window is equipped with (8.) electric
window blinds. The state of the window blinds is independent from that of the window and they
can be either up (open) or down (shut).

room 1 also has (9.) an electric sliding door that opens to the outside. The door can be either
fully open or fully closed.

Figure 109. Ambient environment light example

6.3.2. Building the models

6.3.2.1.The concrete model

In this part we build the environment models. The models will be the basis for creating the
proper instances representing the components described in Figure 109. The fault detection and
diagnosis will be performed on those instances.

The first step in identifying the entities in the Concrete Model would be to separate actuators
and sensors, then to distinguish between different types of actuators and different types of
sensors. We suppose that actuators and sensors are objects that are necessarily controlled by the
system. In general, sensors send the system readings reporting the state of the environment, and
actuators are objects that act upon the environment via their actions. In this light system fault
detection and diagnosis example all components (from (1.) to (9.)) are considered with respect to
light. In a first phase we distinguish the types: light actuators ((1.), (2.) and (3.)), light sensors
((4.), (5.) and (6.)) and light bridges ((7.), (8.) and (9.)).

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

143

From the characteristic and behavioral description of the components in the previous
paragraph we can furthermore refine the types of light actuators, light sensors and light bridge.

As illustrated in the concrete model on Figure 110, we distinguish two types of light
actuators: incandescent light bulbs ((1.) and (3.)), and compact fluorescent light bulbs (2.); two
types of light sensors: photo diodes ((4.) and (5.)), and photo transistors (6.); and three types of
light bridges: double hinged doors (7.), window blinds (8.), and sliding doors (9.).

Figure 110. Concrete Model (down) created from the Abstract Model (top) in the context of Light FDD

Following the general structure of the abstract environment model, light actuators produce an
effect, namely a light effect that has the effect property Luminous Flux. The value of the luminous
flux is different for each light actuator, and it is determined by the characteristics of each type of
the light actuator and its current state as described in the behavioral model. Light sensors detect
the measurable property Ambient Light Intensity. The latter property is going to be the basis for
fault detection, since it is going to be calculated via the prediction model and compared to the
real value read by the sensor.

6.3.2.2. The mathematical model

To predict the theoretical value of the ambient light intensity, a set of laws is defined. The law
set is composed of mathematical functions that are used in real time to perform calculations.

In input, the mathematical functions use the values of properties from instances and results
from other functions within the same law set. One, and only one, mathematical function within a
law set must have as output the measurable property measured by the sensor, in our case the
ambient light intensity. Here is a reminder of the ambient light law set mathematical functions for
2 dimensional described spaces:

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

144

)()(),(sameZone azoneozoneao ≡= (L1)

() ()






∞+
−+−=

falseisaowhen

trueisaowhenayoyaxox
ao

),sameZone(

),sameZone()()()()(
),(distance

22

 (L5)

2),distance(

)ux(luminousFl
),(tExposuredirectLigh

ao

a
ao = (L3)

∑
∈

=
o\

),(tExposuredirectLigh)(yhtIntensitambientLig
ersLightEmitta

aoo (L4*)

Note that we use the variable name o: for object, instead of s: for sensor, since in this case
sensors and Effect Modifiers will use these laws to estimate the amount of light intensity they are
exposed to at their respective positions.

 (L1) verifies whether or not an object and an actuator are in the same zone. For instance,
when called for (1.), and (.5) from Figure 109, (L1) returns true since zone of (1.) and zone of
(5.) is room 1. Zone here is an input. It is to be noted here that in order for the prediction engine
to perform the calculations correctly, the model is completed with additional information in the
form of properties to the declared types. At the instance level we find the actual values of these
properties. These values can be inherited from the types, like in the case of tolerances (declared
as a property of the type light sensor), or updated via the context engine, such as the positioning
of tracked mobile components (for instance components equipped with Ubisence tracking
system [212]). For non mobile objects, the coordinates can be added manually by the designer (or
the final user “human diagnoser”) at runtime.

(L2) uses the x,y coordinates (when they are defined) to calculate the distance between an
actuator and any object that are in the same zone, we make a choice to return the an infinite
distance value when the two objects are not in the same room.

(L3) estimates the light intensity value at the current position of an object when exposed to a
single light source that is positioned at a certain distance (calculated from (L2)) and that is
generating a certain luminous flux. The input parameter luminous flux is the effect property that
ensures that (L3), and consequently the whole ambient light law set, only considers actuators that
produce light effect.

(L4*) calculates the sum of all the results from (L3), which is the sum of the light intensities
caused by each single light source on this particular object. (L4*) is the function that calculates
the theoretical value of the measurable property ambient light intensity around a Sensor (to be
compared to the actual reading), and an Effect Modifier (to be transmitted). Note that this
function considers all light emitters (i.e Actuators and Effect Modifiers) except the object that is
calling the function. This avoids infinite loop when an Effect Modifier calls the function.

As defined in section 4.5, Effect Modifiers are active components that do not produce an
effect directly. However they do let a part of the effect circulate from one zone to another.
Regardless of how small the interference is in some cases, it is important to model it and consider
it in calculations in order to have more accurate fault detection and diagnosis results. For that
transformation laws are defined for every Effect Modifier. These formulas calculate how much of
the Effect that an Effect Modifier is exposed to in a zone (using L4*, L3, L2, and L1), is
transmitted to the other zone.

For example to calculate how room 1 affect room 2 in Figure 109. First, the ambient light
intensity is calculated around the position of the double-hinged door (the Effect Modifier
between room 1 and room 2) as if it was a sensor (the ambient light law set can be reused in this

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

145

case). Then, the Effect Modifier Law (from section 4.5) is used to convert the calculated light
intensity value into luminous flux again. It is in this conversion, from ambient light intensity to
luminous flux, that the Effect Modifier property transformation ratio is considered in the
calculations. The value of this transformation ratio is governed by the current state of the Effect
Modifier defined in its behavioral model. Now in room 2, the Effect Modifier is considered as
an actuator generating the newly calculated luminous flux. This flux is considered when
estimating ambient light intensity around a light sensor in this room. This approach results in
much accurate estimation of the sensor’s reading.

To sum up, we can say that an Effect Modifiers behaves like a sensors in the sense that it uses
the law set to estimate the light it is exposed to, and it behaves like an actuator in the sense that it
produces an Effect which property value is deduced from the calculations done as a sensor
multiplied by a transformation ratio.

So when Light Modifiers need to estimate the value of the Light Intensity they are exposed
to, in order for them to estimate the amount they let through to a neighboring area, they need to
call (L4*). The latter function ignores the contribution of other Light Modifiers in the
calculations.

When an Effect Modifier Em behaves as an actuator in the current zone, the law that
calculated the value of the emitted luminous flux for Em is:

Luminous Flux (Em) : Ф = γ . I(Em) (L5)

With γ the transformation ratio defined by the Em Behavioral Model.

And I(Em) is estimated by calling (L4*).

6.3.2.3. The Behavioral Models

From the structure of the Abstract Model, and as shown in the description, every type of
active objects (those who affect the environment in anyway; in our case: light actuators and Light
Effect Modifiers) has a well defined behavior. To describe this behavior in a formal approach we
use finite state machines. At instance level, the final values of every instance property depend on
the current object state. Note that all objects have to be described at least according to the
minimal state machine, which is any equivalent of the on-off state machine with two transitions
equivalent to turn on-turn off.

So, at instance level, the Incandescent Light Bulb (1.) (from Figure 109) would have the
finite state machine described in Figure 66 with value_1 corresponding to luminous flux Ф, with a
value equal to 1750 lm. And the incandescent Light Bulb (3.) would have Ф equal to 800 lm.

As for the CFL Light Bulb (2.), it would have the behavioral model defined in Figure 68.
The values of the properties such as the incremental increase of light flux with time “i”, the warm
up time “α”, the cooling up time “β”, and the flux value “Ф” are all deduced from the object
characteristics at the instance level.

The behavior of the double hinged door as described in the environment description
paragraph is modeled in the finite state machine in Figure 111. The value of the transformation
rate from luminous intensity to luminous flux γ is updated with every transition. So at instance
level the value of γ is deduced from the current state.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

146

Figure 111. Double hinged Door Finite State Machine

The window blinds finite state machine is depicted in Figure 112.

Figure 112. Window Blinds Finite State Machine

The finite state machine of the sliding door is in Figure 113.

Figure 113. Sliding Door Finite State Machine

6.3.3. Instantiating the Models

Following the description of the Ambient Environment in Figure 109, we create the instances
from the types created in the concrete model as follows:

Room 1: instance of the type Zone.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

147

Room 2: instance of the type Zone.

Outside: instance of type Zone.

Light Bulb1: instance of the type Incandescent Light Bulb.

Light Bulb 2: instance of Incandescent Light Bulb.

Light Bulb 3: instance of CFL Bulb.

Light Sensor 1: instance of the type Photo Diode.

Light Sensor 2: instance of the type Photo Diode.

Light Sensor 3: instance of the type Photo Transistor.

Interior Door: instance of Double Hinged Door.

Main Window: instance of Window Blinds.

Main Door: instance of Sliding Door.

6.3.4. Performing fault detection

6.3.4.1. The simulator and building the Prediction Model

We define the Concrete Model and the instances using the triples. This definition is used by
the simulator to build the Prediction Model.

First the definition of the Concrete Model (as detailed in Figure 110):

LightActuator TYPE Actuator;
FluorescentLightBulb TYPE LightActuator;
IncandescentLightBulb TYPE LightActuator;

PhotoDiode TYPE Sensor;
PhotoTransistor TYPE Sensor;

DoubleHingedDoor TYPE Modifier;
SlidingDoor TYPE Modifier;
WindowBlinds TYPE Modifier;

AmbientLightModificationRatio TYPE PhysicalProperty ;
DoubleHingedDoor hasProperty AmbientLightModificati onRatio;
SlidingDoor hasProperty AmbientLightModificationRat io;
WindowBlinds hasProperty AmbientLightModificationRa tio;

ModifierLawSet2D TYPE LawSet;

ModifierLaw2D TYPE Function;
ModifierLaw2D hasOutput LightFlux;
ModifierLaw2D hasExpression
modifier.AmbientLightModificationRatio*TotalIllumin ation2D(modifier);
ModifierLaw2D hasArg modifier;

ModifierLawSet2D hasFunction ModifierLaw2D;

ModifierLawSetReleyEffect TYPE LawSet;

ModifierLawReleyEffect TYPE Function;
ModifierLawReleyEffect hasOutput LightFlux;
ModifierLawReleyEffect hasExpression

modifier.AmbientLightModificationRatio*sensor.Ambie ntLight;
ModifierLawReleyEffect hasArg sensor;

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

148

ModifierLawSetReleyEffect hasFunction ModifierLawRe leyEffect;

AmbientLight TYPE PhysicalProperty;

LightFlux TYPE PhysicalProperty;

X TYPE AbsolutePosition;
Y TYPE AbsolutePosition;
Zone TYPE Area;

FluorescentLightBulb produces LightFlux;
IncandescentLightBulb produces LightFlux;

PhotoDiode detects AmbientLight;
PhotoTransistor detects AmbientLight;

FluorescentLightBulb hasProperty X;
FluorescentLightBulb hasProperty Y;
FluorescentLightBulb hasProperty Zone;

IncandescentLightBulb hasProperty X;
IncandescentLightBulb hasProperty Y;
IncandescentLightBulb hasProperty Zone;

PhotoDiode hasProperty X;
PhotoDiode hasProperty Y;
PhotoDiode hasProperty Zone;

PhotoTransistor hasProperty X;
PhotoTransistor hasProperty Y;
PhotoTransistor hasProperty Zone;

LightEffect TYPE Effect;

AmbientLightLawSet2D TYPE LawSet;

#ambientLightIntensity function is called here Tota lIllumination2D
#to be compatible with corresponding java function.
#Different java function were defined for 3D, 2D, a nd onOff
#similar redefining was done for the other function s of the Law-Sets

TotalIllumination2D TYPE Function;
TotalIllumination2D hasOutput AmbientLight;
TotalIllumination2D hasExpression _SUM(a, LightActu ator, SingleIllumination2D(a,

sensor));
TotalIllumination2D hasArg sensor;

AmbientLightLawSet2D hasFunction TotalIllumination2 D;

SingleIllumination2D TYPE Function;
SingleIllumination2D hasOutput singleSourceLight;
SingleIllumination2D hasExpression

(SameZone(actuator,sensor)*actuator.LightFlux)/(Dis tance2D(actuator,
sensor)^2);
SingleIllumination2D hasArg actuator;
SingleIllumination2D hasArg sensor;

AmbientLightLawSet2D hasFunction SingleIllumination 2D;

Distance2D TYPE Function;
Distance2D hasOutput distance;
Distance2D hasExpression (((a.X-b.X)^2)+((a.Y-b.Y)^ 2))^(0.5);
Distance2D hasArg a;
Distance2D hasArg b;

AmbientLightLawSet2D hasFunction Distance2D;

SameZone TYPE Function;

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

149

SameZone hasOutput sameZone;
SameZone hasExpression (0^(a.Zone-b.Zone));
SameZone hasArg a;
SameZone hasArg b;

AmbientLightLawSet2D hasFunction SameZone;

LightEffect hasLawSet AmbientLightLawSet2D;

AmbientLightLawSetOnOff TYPE LawSet;

TotalIlluminationOnOff TYPE Function;
TotalIlluminationOnOff hasOutput AmbientLight;
TotalIlluminationOnOff hasExpression _OR(a, LightAc tuator,
SingleIlluminationOnOff(a, sensor));
TotalIlluminationOnOff hasArg sensor;

AmbientLightLawSetOnOff hasFunction TotalIlluminati onOnOff;

SingleIlluminationOnOff TYPE Function;
SingleIlluminationOnOff hasOutput SingleSourceLight ;
SingleIlluminationOnOff hasExpression SameZone(actu ator,sensor)*actuator.LightFlux;
SingleIlluminationOnOff hasArg actuator;
SingleIlluminationOnOff hasArg sensor;

AmbientLightLawSetOnOff hasFunction SingleIlluminat ionOnOff;

AmbientLightLawSetOnOff hasFunction SameZone;

LightEffect hasLawSet AmbientLightLawSetOnOff;

FluorescentLightBulb FSM resources/FSM/FluorescentL ightBulb_FSM.xml;
IncandescentLightBulb FSM resources/FSM/Incandescen tLightBulb_FSM.xml;
DoubleHingedDoor FSM resources/FSM/DoubleHingedDoor _FSM.xml;
SlidingDoor FSM resources/FSM/SlidingDoor_FSM.xml;
WindowBlinds FSM resources/FSM/WindowBlinds_FSM.xml ;

Then the declaration of the instances:

#room1: Zone = 1
#room2: Zone = 2
#outside: Zone = 3

bulb1 is IncandescentLightBulb;
bulb1 X 1;
bulb1 Y 2;
bulb1 Zone 1;
bulb1 LightFlux 1750;
bulb2 is FluorescentLightBulb;
bulb2 X 3;
bulb2 Y 2;
bulb2 Zone 2;
bulb2 LightFlux 1500;
bulb3 is IncandescentLightBulb800;
bulb3 X 4;
bulb3 Y 4;
bulb3 Zone 2;
bulb3 LightFlux 800;
sensor1 is PhotoDiode;
sensor1 X 3;
sensor1 Y 4;
sensor1 Zone 2;
sensor1 AmbientLight 20;
sensor2 is PhotoDiode;
sensor2 X 1;

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

150

sensor2 Y 4;
sensor2 Zone 1;
sensor2 AmbientLight 25;
sensor3 is PhotoTransistor;
sensor3 Zone 3;
sensor3 AmbientLight 33000;
doubleHingedDoor is DoubleHingedDoor;
doubleHingedDoor X 2;
doubleHingedDoor Y 2;
doubleHingedDoor Zone 1;
doubleHingedDoor Zone 2;
doubleHingedDoor AmbientLightModificationRatio 0;
slidingDoor is SlidingDoor;
slidingDoor X 1;
slidingDoor Y 0;
slidingDoor Zone 1;
slidingDoor Zone 3;
slidingDoor AmbientLightModificationRatio 0;
slidingDoor TrustedSensor sensor3;
windowBlinds is WindowBlinds;
windowBlinds X 0;
windowBlinds Y 3;
windowBlinds Zone 1;
windowBlinds Zone 3;
windowBlinds AmbientLightModificationRatio 0;
windowBlinds TrustedSensor sensor3;

In order for the ‘same zone’ law to be better interpreted by the Mathematical Model we

convert it to a mathematical power expression (0^(a.Zone-b.Zone)) , which will return 1 only if a
and b Zones are equal (0^0=1) , and 0 otherwise. For that we did not instantiate room1 and
room2 as instances of ‘Zone’, instead we directly assign an integer value representing the zone of
each component. The mapping between zones and the integer values is given as comment before
the instance section.

Note that we define the initial value for sensor3 (33000 lux) which is an estimate of the direct
sun exposure Illuminance (usually between 32000 lux and 130000 lux. See Table 4). Being a
special case of a sensor reporting the Illuminance outside, this value will be used for calculating
the amount of Light Intensity that is passed through Effect Modifiers connecting room 1 with
the outside.

6.3.4.2. The simulation

Using this triplet definition of our environment we obtain a Prediction Model (depicted in
Figure 115) that contains, in addition to finite state machines to control the Actuators’ behavior,
finite state machines that controls the Modifiers’ behavior. The control panel for the controllable
Properties is depicted in Figure 114

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

151

Figure 114. Control panel for the Prediction Model inputs – scenario 2

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

152

Figure 115. General View of the ModHel'X representation of the Prediction Model for Scenario 2

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

153

We start the simulation with all finite state machines at their initial states (all Actuators are off
and all Modifiers are closed), and we obtain the output depicted in Figure 116. Then we run a
series of test consisting in specific situations described in the Prediction Model by a certain
combinations of states.

Figure 116. Scenario_2 simulation trace values – Initial values

We focus in this scenario on the consequences of introducing Modifiers to the Fault
Detection results. However we start by verifying that turning on all Actuators produce the
expected results in each separate room (we keep the Effect Modifiers closed for now).

Calculation verifications for all test results in Scenario_2 are in Annex-C.

Test 1: We turn on bulb1 (emitting light flux Ф = 1750 lm), bulb2 (Ф = 1500 lm), and bulb3
Ф = 800 lm) and we observe the changes to the predicted sensors’ readings:

As expected (from turning on bulb_2, which is a CFL light bulb) we observe a transition
phase (see sensor1 reading in Figure 117) where bulb2 is heating, before attaining its full
luminosity (see sensor1 reading in Figure 118).

Figure 117. Scenario_2 Test1 simulation trace values – (1/2)

Figure 118. Scenario_2 Test1 simulation trace values – (2/2)

So when all light bulbs are On, and all effect modifiers are closed we have 1175 lux read by
sensor1, and 437.5 lux read by sensor2.

Test 2: Keeping all the light bulbs On, we open wide (the two hinges of) the double hinged
door, thus allowing (by applying L5 with transformation ratio property of the double hinged door
equals to 1) the propagation of the full amount of light that reaches the door from one room to
the other (in the two directions). This amount of light at the double hinged door is calculated
using the ambient light law set mathematical functions for 2 dimensional described spaces as if
the double hinged door was a light sensor. The resulting value is then fully transmitted (as the
transformation ratio is 1) to the neighboring zone in the form of light flux as if the double hinged

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

154

door was a light actuator. This is done in two directions: from room1 to room2 and from room2
to room1.

The definition of L5 in the triplet syntax defining the concrete model is (note the call to L4
with the modifier as argument instead of a sensor):

modifier.AmbientLightModificationRatio * ambientLig htIntensity(modifier);

As expected, an augmentation in the readings of sensor1 and sensor2 is noticed (Figure
119):

Figure 119. Scenario_2 Test2 simulation trace values (1/2)

When we opened the double hinged door, sensor1(in room2) became exposed to light (from
room1) passing through the Double Hinged Door, and we notice an augmentation in reading
value for sensor1 from 1175 to 1525 lux. Likewise, when the double hinged door was opened,
sensor2(in room1) became exposed to light (from room2) passing through the Double Hinged
Door, and we notice an augmentation in reading value for sensor2 from 437.5 to 757.5 lux.

Then we close the double hinged door and we observe the same values as in Figure 118

(readings when all modifiers were closed and all light bulbs are On).

Figure 120.Scenario_2 Test2 simulation trace values (2/2)

Test 3 (special case of relaying an external sensor value): For this special case we create
the Law-Set (we calle ModifierLawSetReleyEffect in the triplet syntax in the Concrete Model)
that uses the value of readings of a sensor, instead of calculating the amount of light received by a
modifier using Ambient Light Law-Set. To the value of the reading of the sensor we apply the
modifier’s transformation ratio. The definition of this special law is:

modifier.AmbientLightModificationRatio * sensor.Amb ientLight;

Note that, at the contrary of other laws where instances to be used in the Prediction Model
are deduced at run-time (hence the actuator-sensor decoupling aspect of our framework), sensor
here is explicitly linked to the modifiers it provide readings to. The triplets defining these links are
(at instance level):

windowBlinds TrustedSensor sensor3;

slidingDoor TrustedSensor sensor3;

We keep the all the light bulbs On, and the double hinged door and the sliding door closed,
then we change the state of window blinds (connecting room1 to the outside) to ‘Open’, thus

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

155

making it relay external Ambient Light that is read by sensor3. We should not observe any
changes in the value of sensor1 (1175 lux) in room2, however we should observe an
augmentation in the readings of sensor2 in room1.

Figure 121. Scenario2 Test3 simulation trace values

As expected, we observe an augmentation in the readings of sensor2 in room1 (Figure 121)
from 437.5 to 16937.5.

Test 4 (continuing the special case of relaying an external sensor value – Effect
Modifier relaying effect of another Effect Modifier):

Keeping the windowBlinds open, we then open one of the hinges of the doubleHingedDoor.
We should observe an augmentation of the readings of sensor1 in room2 now that it is exposed
to some (which should be half of the light intensity that reaches the doubleHingedDoor
according to its finite state machine) of the light of room1, which in turn is exposed to external
light coming from the outside though the windowBlinds.

Figure 122. Scenario2 Test4 simulation trace values

As expected, we observe an augmentation in the readings of sensor1 in room2 (Figure 122)
from 1175 to 2450, and in the readings of sensor2 in room1 from 16937.5 to 17258.5. The latter
augmentation is caused by the (half of) light of bulb2 and bulb3 passing from room2 to room1.
In fact, when the doubleHingedDoor calculated to contribution in light from room2 to room1, it
only considered bulb2 and bulb3 in the calculations, ignoring by that its own contribution to
light intensity in room2; that is done in order to avoid an infinite loop. Hence only a 320 lux
augmentation (17258.5=16937.5+320) is noticed by sensor2, which is the same augmentation
observed earlier (in test_2) when the doubleHingedDoor was opened, while the windowBlinds
were closed (757.5=437.5+320).

6.4. Scenario_3: Ambient Bathtub fault detection and
diagnosis (Heat Effect and Water Flow Effect):

In this example, we will see how fault detection and diagnosis is performed in a scenario
where a bathtub is being filled. In this scenario we combine two different Effects: Heat Effect
and Liquid Flow Effect, which is why we have non typical Bathtub that behaves like a hot tub in
the sense that it has a resistor allowing heating the water in the tub. This allows us to apply the
same approach of fault detection to the Heating System of an Ambient Room for instance. All it

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

156

is needed to do is to change the Heat Effect carrier from water to air, which imposes the
changing of a single constant value (volumetric heat capacity; se Annex-B).

As illustrated in Figure 123, we have a bathtub and four actuators controlled by the system’s
controller:

• A hot water tap: an actuator controlled by the system for pouring hot water at the rate
of 110cm3/s.

• A cold water tap: for cold water, pouring cold water at the rate of 140cm3/s.
• A water drain: an actuator controlled by the system for releasing water, at the rate of

50 cm3/s.
• A resistor: a “kettle element” (like that found in electric kettle) actuator for controlling

the temperature of the water in the bathtub, generating 2.5kW of power.
There are also two sensors reporting the state of the environment to the Ambient System

(water temperature and level):
• A thermometer: reporting water temperature in Celsius.
• A liquid level indicator: reporting water level in the bathtub. Used to estimate water

quantity in the bathtub.

Figure 123. Components of the Bathtub Fault Detection and Diagnosis Example

6.4.1. Building the models

6.4.1.1. The concrete model

As in previous scenarios we start by building the environment models. The models will be the
basis for creating the proper instances representing the components described in Figure 123.

We start by identifying the different types of actuators and sensors. In order to do that we
identify what effects are produced by the actuators and what physical properties are detected by
the sensors. In fact the water taps (cold and hot) and the drain can be classified as Liquid
Discharge Actuators (as described in 4.2.3), with positive (or null) Discharge Rate for the
water taps, and negative (or null) Discharge Rate for the water drain. The level indicator is the
Liquid Level Sensor. These Actuators and Sensors are going to be linked at run-time by the
Prediction Model using the Liquid Flow Effect. The Resistor and the thermometer are,
respectively, the Heat Actuator and the Heat Sensor (as described in 4.2.2) in this scenario.
The Concrete Model is depicted in Figure 124.

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

157

Figure 124. The Concrete Model for the Bathtub Fault Detection and Diagnosis

6.4.1.2. The mathematical models

To predict the theoretical value of the Liquid Level Indicator and the Thermometer, we use
the Liquid Level Law Set (defined in 4.2.3.1), but with removing L1 (same zone verification law)
since we only have one zone (the bathtub) to consider in this scenario. This gives us the
following law-set:

eelapsedTimaasevel ×=)(atedischargeR),(l (L12’)

∑
∈

+=
esWaterSourca

aslevellstotalLevel),()(0 (L13)

(L12’) has the same mathematical formula as L12 but without the ‘same zone’ condition.

To predict the theoretical value of the water Temperature we use the Ambient Temperature Law

Set (as described in 4.2.2.2). Here also we ignore the ‘same zone’ verification law. This gives us the
following law-set:

eelapsedTimaonheatEmissias ×=)(),(Energy (L8’)

()casEnergys
orsHeatActuata

×÷






= ∑
∈

ν),()(etemperatur (L9)

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

158

With:

c is the volumetric heat capacity for water. The volumetric heat capacity of water is 4.1796
J.cm-3.K-1. (See Annex-B for the complete list of volumetric heat capacities of different
chemicals).

v is the total volume of the water. This value (in cm3) can be deduced via L13 from the Liquid
Level Law Set.

(L8’) has the same mathematical formula as L8 but without the ‘same zone’ condition.

6.4.1.3.The behavioral models

As in previous scenarios we use finite state machines as our behavioral models.

• The water taps (Liquid Discharger) have two possible states:
- Idle, in which case they don’t discharge water (Discharge Rate equals to 0);
- Discharging Water, in which case they discharge a fixed amount d of water in liter per

second. That amount is specific to each instance of Water Tap.

The finite state machine for Water Taps is depicted in Figure 125.

Figure 125. Water Discharger finite state machine

• The bathtub drain (Water Evacuator) can be:
- Opened, in which case it has a value d of discharge rate. This value should be negative;
- Closed, in which case it has a null value of discharge rate.

The finite state machine of the bathtub drain is described in Figure 126.

Figure 126. Water Discharger finite state machine

We note here that the finite state machines of the bathtub taps and drain can be grouped into
one state machine with two global states (Inactive, Active). In which case when transitioning
from Inactive to Active, the value of discharge rate would be set to a positive value when the

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

159

FSM is instantiated by a water tap, and to a negative value when it is instantiated by a water drain.
The transition from Active to Inactive would always set the discharge rate to 0. However we
adopt the solution of different FSMs for water taps and water drains because we reckon that
having specific state names for each device type is a more explanatory solution.

• The resistor of the Bathtub also has two possible states:

- Off, in which case it doesn’t emit heat;
- On, in which case it emits h joule per second of heat emission. h is also defined at instance

level.

The finite state machine for the bathtub resistor is defined in Figure 127.

Figure 127. Resistor finite state machine

6.4.2. Instantiating the Models

Following the description of the Ambient Bathtub in Figure 123, we create the instances
from the types created in the Concrete Model defined in Figure 124 as follows:

Hot Water Tap: instance of the type Liquid Discharger, to which we associate a Liquid Flow
Effect, having the property Liquid Discharge Rate with the value 110.

Cold Water Tap: instance of Liquid Discharger, to which we associate a Liquid Flow Effect,
having the property Liquid Discharge Rate with the value 140.

Drain: instance of Liquid Evacuator, to which we associate a Liquid Flow Effect, having the
property Liquid Discharge Rate with the value -50.

Bathtub Resistor: instance of the type Resistor.

Water Level Indicator: instance of the type Liquid Level Sensor.

Thermometer: instance of the type Heat Sensor.

We suppose that we have a constant Water Discharge Rate of 140cm3 per second for Cold
water and 110cm3/s for Hot Water (when they are opened), and a constant Water Discharge Rate
of 0 cm3/s (drain is closed).

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

160

6.4.3. Performing fault detection

6.4.3.1. The simulator and building the Prediction Model

Here we define the Concrete Model and the instances using the triples’ syntax.

First we use the triplet synthax for the definition of the Concrete Model that is illustrated in
Figure 124:

LiquidDischarger TYPE Actuator;
LiquidEvacuator TYPE Actuator;
HeatEmitter TYPE Actuator;
WaterTap TYPE LiquidDischarger;
Drain TYPE LiquidDischarger;
Resistor TYPE HeatEmitter;

LiquidLevelSensor TYPE Sensor;
HeatSensor TYPE Sensor;

AmbientTemperature TYPE PhysicalProperty;
LiquidLevel TYPE PhysicalProperty;

HeatEmission TYPE PhysicalProperty;
LiquidDischargeRate TYPE PhysicalProperty;

WaterTap produces LiquidDischargeRate;
WaterTap produces LiquidDischargeRate;
Drain produces LiquidDischargeRate;
Resistor produces HeatEmission;

LiquidLevelSensor detects LiquidLevel;
HeatSensor detects AmbientTemperature;

LiquidFlowEffect TYPE Effect;
HeatEffect TYPE Effect;

LiquidLevelLawSet TYPE LawSet;

TotalLiquidLevel TYPE Function;
TotalLiquidLevel hasOutput LiquidLEvel;
TotalLiquidLevel hasExpression _SUM(a, LiquidDischa rger, SingleDischarge(a));

LiquidLevelLawSet hasFunction TotalLiquidLevel;

SingleDischarge TYPE Function;
SingleDischarge hasOutput liquidLEvel;
SingleDischarge hasExpression (actuator.LiquidDisch argeRate);
SingleDischarge hasArg actuator;

LiquidLevelLawSet hasFunction SingleDischarge;

LiquidFlowEffect hasLawSet LiquidLevelLawSet;

AmbientTemperatureLawSet TYPE LawSet;

TotalLiquidLevel TYPE Function;
TotalLiquidLevel hasOutput temperature;
TotalLiquidLevel hasExpression _SUM(a, HeatEmitter, SingleSourceHeat(a));

AmbientTemperatureLawSet hasFunction TotalLiquidLev el;

SingleSourceHeat TYPE Function;
SingleSourceHeat hasOutput energy;
SingleSourceHeat hasExpression a.HeatEmission*TIME* 4.1796*TotalLiquidLevel(a);
SingleSourceHeat hasArg a;

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

161

AmbientTemperatureLawSet hasFunction SingleSourceHe at;

HeatEffect hasLawSet AmbientTemperatureLawSet;

WaterTap FSM resources/FSM/WaterTap_FSM.xml;
Drain FSM resources/FSM/Drain_FSM.xml;
Resistor FSM resources/FSM/Resistor_FSM.xml;

Then the declaration of the instances:

hotWaterTap is WaterTap;
hotWaterTap LiquidDischargeRate 0.14;
coldWaterTap is WaterTap;
coldWaterTap LiquidDischargeRate 0.11;
drain is Drain;
drain LiquidDischargeRate -0.05;
resistor is Resistor;
resistor HeatEmission 2500;

6.4.3.2. The simulation

When we run the simulator using the previous triplet definition of our environment we
obtain the Prediction Model depicted in Figure 129. We can see the 4 finite state machines
controlling the behavior of our 4 sensors in this scenario. We can change the state of these
machines using the control panel as shown in Figure 128.

Figure 128. Control panel for finite state machines in scenario 3

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

162

Figure 129. Prediction Model of the Bathtub scenario

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

163

In the next sections we verify the two observed Effects in this system separately.

Water Level test: (Liquid Flow Effect)

The fault detection task goes as follows: knowing the system’s overall water discharge rate
value (hot and cold water taps and the drainer), at any given time the FDD framework knows
both the value of the water level detected by the level indicator sensor and the value of the
expected water level calculated by the corresponding physical laws. Let us also suppose that
diagnosis over water level is performed periodically every 3 seconds. Table 1 illustrates the traces
of the calculated water level every 30 seconds for 180 seconds (“timer”=0 being the moment the
water taps are opened).

Time Ambient Water Quantity

(From Prediction Model)

0 s 0.00 cm3 (0.00 liter)

30 s 7500.00 cm3 (7.50 liter)

60 s 15000.00 cm3 (15.00 liter)

90 s 22500.00 cm3 (22.50 liter)

120 s 30000.00 cm3 (30.00 liter)

150 s 37500.00 cm3 (37.50 liter)

180 s 45000.00 cm3 (45.00 liter)

Table 1. Water Level Expected Values 15 seconds after Water Taps are Opened

Calculation verification for the values at the second 150:

The water quantity predicted by the Water Flow Ambient Law is 37500cm3. It is the sum of
the water quantity produced by the Hot Water Tap after 150 seconds (calculated by (L12’)), the
water quantity produced by the Cold Water Tap after 150 seconds (calculated by (L12’)), and the
water quantity evacuated by the Drain after 150 seconds (calculated by (L12’)). The initial water
level is set 0.

(L13) = (L12’):[140cm3.s-1 x 150s] + (L12’):[110cm3.s-1 x 150s] + (L12’):[0cm3.s-1 x 150s] + 0

The call tree representing the mathematical model of the predicted water level indicator is
illustrated in Figure 130:

Figure 130. Scenario_3. Call tree for the Water Level Indicator at the second 150

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

164

Water Temperature test: (Heat Effect)
In this second part of the example, we verify the bathtub’s “hot tub” functionality. Water

already present in the bathtub is heated by an immersed heating element that is basically
composed of a resistor that converts electric power into heat. We know that this heating element
has a power rating of 2.5kW. We change the configuration so that water now comes only from
the cold water tap. What we should notice here is that the water temperature elevation is
incremental over time.

In order to estimate the water quantity in the bathtub (necessary for applying the Ambient
Temperature Law-Set) we use the Liquid Level Law-Set. To remain consistent with previous
results for water level calculations, we consider now that the cold water discharge rate is
250cm3/s (which was previously the sum of hot and cold water discharge rates), and that the hot
water tap is closed. With this configuration we obtain the same results for water level diagnosis as
the first part of the example. We also consider that we have the property “heat power” (with the
value of 2500J/s) as an effect property of the “heat emission effect” produced by the actuator
“resistor”. We also suppose that we have a constant loss of heat caused by the direct contact of
the water with ambient air and the bathtub material, this heat loss is represented by a “heat
power” of -500J/s; to differentiate from previous heat property we call this property “heat loss”.
As a total we then have a total “heat power” of 2000J/s produced by the combination of heat
loss and the resistor.

During the first 3 minutes (180 seconds), we obtain the temperature traces illustrated in
Table 2. The traces are calculated every 30 seconds.

The initial temperature variation is considered to be null “0 K”, which verifies the
calculations even though it is not realistic. This would result in the detection of a fault during the
first seconds of the fault detection task. This can be overcome by defining an initial value to the
water temperature. The problem would be to estimate such value. A possible solution would be
adopting an approach inspired from the (special case) trusted external light sensor of the previous
scenario. In which case, we would use the reading of another thermometer (when available) as an
initial temperature value. It is very important to note that this requires the existence of another
sensor, since using the reading of the same sensor would mean that we are using the reading of a
sensor to estimate the value of readings the same sensor.

Calculation verification for the values at the second 150:

The water quantity calculated by the Water Flow Ambient Law is 37500cm3

(L13)= (L12’):[250cm3.s-1 x 150s]+0+0+0.
The accumulated water heat energy, calculated by (L8’), is 300000J

(L8’)= [2000J.s-1x150s].
The ambient water temperature is calculated by (L9).

It is the result of the temperature augmentation at t=150s, which is 1.9140K
(L9)= [300000/(v.c); where v=37500cm3; and c=4.1796 J.cm-3.K-1],
plus the temperature calculated at t=149s, which is equal to 285.1947K.
The final result is 285.1947+1.9140=287.1088K (13.95°C).

Chapter 6. Application Examples of Fault Detection and Diagnosis in a Smart Home

165

T
im

e (s)

W
ater Q

uantity
“C

alculated Liquid Level
Law

-S
et

A
ccum

ulated W
ater H

eat
Q

uantity “C
alculated by

(5)” (joule)

A
m

bient W
ater

T
em

perature “C
alculated

by (6) and (7)” (K
)

0 0 . .

30 7500 60000 57.42 (-215.72°C)

60 15000 120000 114.84 (-158.30°C)

90 22500 180000 172.26 (-100.88°C)

120 30000 240000 229.68 (-43.46°C)

150 37500 300000 287.10 (13.95°C)

180 45000 360000 344.53 (71.38°C)

Table 2. Water Temperature Expected Values

6.5. Conclusion

In this chapter we ran some scenarios in order to test and validate our approach. In the first
scenario we positioned our Fault Detection and Diagnosis approach in the context of an
Ambient Assisted Living application. Even though our FDD framework had limited
functionalities in that context (the Prediction Model generated was composed only of the
Mathematical Model allowing the prediction of sensors values, but no description of devices
behaviors was provided), we showed “how and when” our FDD framework would intervene in a
real Ambient Environment Setting. We overcome the first scenario limitations by using our FDD
implementation based simulator, which allowed us to run 3 separate scenarios, via which we
tested the full functionalities of our FDD framework. In these scenarios we have successfully
performed fault detection on the Light System, Liquid Discharge System, and Heating System

166

Chapter 7:

Conclusion and perspectives

Chapter 7. Conclusion and perspectives

167

Chapter 7.

Conclusion and perspectives

In this thesis we presented our contribution to Fault Detection and Diagnosis in the field of
Ambient Intelligence. We start this chapter by a short recap of our contribution to Fault
Detection and Diagnosis in Ambient Intelligent Systems, we give a summary of AmILoop, our
FDD framework and the main issues treated by our approach, and then we give some
perspectives for future works, finally we conclude.

7.1. Our Contribution

Our FDD framework presents a novel way to perform fault detection and diagnosis in
Ambient Intelligent Systems.

The proposed approach is based on modeling the Ambient Environment and its
heterogeneous components. The proposed modeling methodology allows the decoupling of
actuators and sensors at design time, hence solving the problem of dynamicity in Ambient
Intelligent Environment where devices of different types are added and removed at run-time.

The decoupling of sensors and actuators is made possible by the introduction of the concept
of Effect. Effects allow the deduction of relationships between sensors and actuators at run-time,
without requiring these relationships to be made explicit. An effect is a description of a physical
phenomenon that takes place in the environment. To each effect is associated a hierarchy (from
most detailed description to least detailed description) of Law-Sets. Law-Sets are sets of
mathematical functions that calculate the values of some physical parameters based on known
values of other physical parameters. It is through a series of calculations that the physical
parameters produced by actuators and physical parameters detected by sensors are ‘linked’, thus
deducing links between actuators and sensors at run-time, and at the same time predicting values
that are supposed to be read by the sensors. The comparison of theoretical values and actual
values of a certain sensor is the basis for the fault detection task.

At runtime, our FDD framework generates a multi-paradigm Prediction Model from a
description of the structure of the Ambient System, its devices’ behavior, and its Effects’
Mathematical Models. The purpose of the Prediction Model is to allow the calculation of the
sensors’ expected values. Comparing the expected values with actual values finally enables the
fault detection task.

Chapter 7. Conclusion and perspectives

168

We have integrated our Fault Detection Approach into a running Ambient Assisted Living
application. And we have implemented our Fault Detection and Diagnosis framework AmILoop.
We have used ModHel’X, a state of the art multi-paradigm model execution environment, as our
execution platform. We have also developed a simulator in order to conduct experiments on
various scenarios. The simulator uses the actual implementation; it just simulates the input and
output of an ambient intelligent environment.

7.2. Perspectives

In this part we discuss some limitations discovered during this work, and we give some
perspectives for future work in order to overcome these limitations.

7.2.1. Advanced Effect Modifier

As presented earlier the Modifier has a transformation law that defines how the effect
changes when it go through the modifier. We considered this law as symmetric; however in a
more realistic definition this law would be asymmetric. For instance, the glass of a window can be
made with a one-way tint or film. In such a case we should have two laws defining the
transformation law. We have not yet implemented this new approach, as the general case requires
more work on the definition of the relation between the modifier and the zones it connects.
Currently our abstract model represents such a relationship with:

Object hasProperty Property

which is finally instantiated with a Modifier and the Zones it connects with:

door1 hasProperty kitchen

door1 hasProperty livingRoom

This definition describes two zones (kitchen and living room) connected via a door (door1).
When a Light Effect crosses over from one zone to another we apply the same transformation law
to calculate the amount of the effect that passed through.

However if the door was made of a one-way tinted glass we should define two
transformation functions, moreover we should describe which side of the tinted glass is facing
the kitchen and which side is facing the living room, which requires a different (more detailed)
definition of the door and its modification laws, and of the relations between the door and the
zones it connects.

Moreover we can have more than two zones connected with the same door, in which case an
even more thorough definition is to be made as for what side of the tinted glass is facing which
zone and what transformation law to use in the 6 cases (3 zones) of Light Effect passing through
from zone to zone. The number of cases to consider will explode as the number of zones is
higher.

7.2.2. Fault Diagnosis

As shown in our FDD architecture description in Figure 47, we do not impose a type of
fault isolation techniques, nor a nature for the diagnosis model to be used. The latter’s nature,
however, can depend on the type of Diagnosis Engine used (for instance an ontology based
model when we use a reasoning engine).

Usually the Fault Diagnosis task takes place after (sometimes simultaneously [199]) an
inconsistency between the theoretical predicted value and the real value of a certain sensor has
been detected (fault detection). A potential fault is to be located and diagnosed. After the fault

Chapter 7. Conclusion and perspectives

169

detection step we do have a list of involved devices and components that are in relation with the
sensor reporting the failure. The fault diagnosis task aims to select, with a better precision, the
component that is most likely the cause of the fault. We think that, once the fault detection task
is performed (the Prediction Model is generated and the calculations have been evaluated), we
dispose of an amount of information sufficient to apply different state of the art fault diagnosis
techniques. Indeed, we know the relations between components, the existence or absence of
other sensors connected to common actuators to which a sensor reporting a fault is also
connected, the location of involved components and their tolerance values. In this thesis we have
only detailed the fault detection part of the broader fault detection and diagnosis framework.
However our FDD framework, as shown in 5.1.3, could allow us to apply the idea of a
probabilistic diagnosis approach. To explore this idea, in the next paragraph we define the
diagnosis problem setup from a probabilistic point of view. We then cite some existing
approaches for solving the probabilistic diagnosis problem. Finally we show some challenges that
arise when applying these techniques in an Ambient Intelligent Environment.

7.2.2.1. Using probabilistic approach for fault diagnosis

Once a failure has been detected, ideally fault diagnosis would identify with 100% certainty
the device causing the failure. However in reality this cannot be achieved. For instance even if
two sensors receiving light from one light bulb returning both a failure, this does not mean that it
is 100% certain that the bulb is faulty; in fact both sensors can fail simultaneously. Yet this case is
very improbable, but we should be able to determine its probability. In reality, an FDD system
tries to minimize the number of fault candidates in its diagnosis output, while ordering them
from the most probable to the least probable. Ideally the diagnosis output is a single faulty
component. However, since modeling errors can always occur, an FDD system that opts for the
single faulty component solution has more risk of choosing the wrong component.

As we saw in 5.1.3, when we have multiple sensors reading the same actuator, it is useful to
compare the sensors’ failure reports in order to decide which is “more probable” to be faulty: the
actuator or one of the sensors. However the particular example we treated was relatively simple:
two light sensors exposed to the light of a light bulb. If the first sensor reports a failure at the
light bulb and the second sensor agrees, then the failure is “most probably” caused by the light
bulb. However if the second sensor disagrees (meaning that it reads the value of Illuminance
expected from the light bulb), then it is “most probably” the first sensor that is the cause of the
detected failure. There are a lot of works that propose different probabilistic modeling, based on
the Bayesian classification theory [110], for resolving the diagnosis problem, such as [200], [201],
[202], and [203].

A first issue with these probabilistic approaches is that the quality of their conclusions is
based on a prior probability assumption about the value of the probability that the sensor
gives a correct reading even when it is broken. This was demonstrated in [204]. The author
introduces the Transferable Belief Model (TBM), which is a model that is based on an
interpretation of the Dempster-Shafer approach [205] for representing quantified beliefs based
on belief functions. The author applies the approach on different diagnosis problems (including
finding the faulty sensor) [206] and concludes that, when our diagnosis problem lacks certain
information, TBM gives more reliable diagnosis decision then classical Bayesian solutions.

 In fact, there are already systems that use the probabilistic approach (or the TBM approach
[207]) for deciding on what (only) sensors are most probably the faulty ones, using the readings
of other sensors, when these sensors do not “agree”. Such systems are used a lot in the industry
for process control [208], and in the field of aerospace engineering to avoid faults in the sensors,
which in this case may lead to catastrophic system failure [200]. However, our motivation is to
use the available sensor data in an Ambient Intelligent Environment in order to decide, when a

Chapter 7. Conclusion and perspectives

170

failure is detected, which component is responsible whether it is an actuator or a sensor. The
problem is that actuators and sensors cannot be considered in a single probabilistic model, mainly
because they have very different prior failure probabilities. Moreover they are of a very different
nature when it comes to information production. A sensor reads information and sends it to the
system, the information is processed and decisions are made accordingly. A probabilistic model
to decide on the correctness of the information based on other information from other sensors is
imaginable. The same thing cannot be done for actuators; hence we reckon that a different
approach should be imagined that combines information from all system components, probably
combining information from same types of components into separate probabilistic models. We
would also need a novel way of drawing conclusions based on combining diagnosis results from
each separate probabilistic model.

7.2.2.2. Using Fault Trees for fault diagnosis

Fault trees are an intuitive tool for displaying the binary relationships that will lead to failures.
We reckon that they are more adapted to Ambient Assisted Living (or an Ambient Home setting
in general), because of the relatively reduced number of components (compared to an Industrial
plant for instance). They allow one to perform qualitative diagnosis, as opposed to the
quantitative probabilistic diagnosis. Nevertheless quantitative failure probabilities deduced with
the techniques discussed previously can be combined to be used with fault trees (see Figure 44).

We reckon that using fault trees is compatible with our Fault Detection and Diagnosis
technique. In fact after the Fault Detection phase, we have a Prediction Model that contains the
current connections between components. These connections could possibly be used to navigate
in a Fault Diagnosis Tree through a series of questions in order to narrow down the possible
causes of the fault, such as the fault tree described in Figure 131. The latter would constitute our
Diagnosis Model in Figure 47.

Figure 131. A simplified Decision tree for narrowing possible failure causes

The leaves here are the Diagnosis Conclusions. The “other Sensors” on the fault tree are
other Sensors that are also connected with the same Actuator to which the Sensor S is connected.
These “other sensors” can only deduced from the Prediction Model, hence after the fault
detection task is done. This s consistent with our run-time architecture depicted in Figure 51

Sensor S detects Failure

Failure source is Actuator

Is there “other Sensors” connected to the same Actuator?

YES NO

YES NO

Failure source is Actuator Do ALL “other Sensors” DISAGREE with S on the failure ?

Failure source is Unknown Failure source is Sensor

Do ALL “other Sensors” AGREE with S on the failure ?

YES NO

Chapter 7. Conclusion and perspectives

171

where the diagnosis engine uses the Diagnosis Model (the fault tree in this case) and the
Prediction Model (extracting the “other Sensors” list in this case).

Note that this is a simplified Fault Tree. One would detail more branches handling more
complicated cases (In particular for the Failure source is Unknown diagnosis conclusion) in order to
have a better Fault Diagnosis conclusions. Also this fault tree handles only the case where a
sensor is reporting a failure from one Actuator. A completely different fault tree should be
defined for the case where the sensor reports a failure when it is monitoring the effects of many
Actuators.

7.2.2.3. Using Ontologies for diagnosis

The reasoning presented in the previous paragraph can be expressed with rules that are used
to reason on ontologies. Similar simple diagnosis rules (in the form of Horn clauses) were used
for the CBDP AAL Application to perform diagnosis. However, in this case since we have one
conclusion that we reach if all the premises are verified, every leaf in the previous decision tree
would correspond to a conclusion, and the questions leading to it would constitute, among other
conditions, the premises. A problem arises in this case when using Jena rules is that only the
existence of instances can be matched in the premises. For instance we can not verify the non
existence of other Sensors in order to conclude that the Actuator is Faulty after answering the
first question in the previous decision tree. So the rule that decides that Failure source in Unknown
can be expressed with the following Jena rule:

[DIAGNOSIS_SENSOR:

(?DLS RDF:type AMI:LightSensor),
(?OLS1 RDF:type AMI:LightSensor),
(?OLS2 RDF:type AMI:LightSensor),
(?LA RDF:type AMI:LightActuator),
(?R RDF:type ?RT),
(?RT RDFS:subClassOf AMI:Room),
(?DLS AMI:isIn ?R),
(?OLS1 AMI:isIn ?R),
(?OLS2 AMI:isIn ?R),
(?LA AMI:isIn ?R),
(?DLS AMI:faultDetection ‘failure’),
(?OLS1 AMI:faultDetection ‘failure’),
(?OLS2 AMI:faultDetection ‘sucess’)

-> (?DLS AMI:faultDiagnosis ‘unknown’)]

In other words: If there is a least one other Sensor (here we answered the other
sensors existence first question) that detects a failure, and another Sensor that

does not detect a failure we can answer the question: “Do ALL other Sensors DISAGREE
with S on the failure?” with No, thus concluding that the Source of the Fault is unknown .

In the AAL application we used the specific ALL application bundle to launch simple and
special cases rules (for example: 1 sensor 2 actuators) corresponding to specific predetermined
scenarios. We reckon that we can create more generic diagnosis rules that verify the non-
existence of instances, in order to perform diagnosis, with other RDF query languages such as
SPARQL [209], which has the EXIST/NOT EXIST built-in functions.

On a more general scope, ontologies can represent sophisticated knowledge about a specific
domain and can describe in great detail contextual information about a system, hence allowing to
reason over this knowledge in order to deduce precise conclusions. This can be used for fault

Chapter 7. Conclusion and perspectives

172

diagnosis. For instance work in [210] uses ontologies to represent different aspects of an
electrical network from a diagnosis point of view, and uses these ontologies to perform Fault
Diagnosis on the electrical network. We reckon that an Ontology can be used by our FDD
framework as the Diagnosis Model and an Ontology Reasoning Engine can be sued as
Diagnosis Engine, in order to perform accurate Fault Diagnosis. The diagnosis ontology would
be constantly updated with contextual information from the Prediction Model such as detected
faults, predicted and actual sensor values, links between components, etc. The Diagnosis engine
would deduce Diagnosis reports based on these information and other domain specific
information that should also be represented in the diagnosis ontology.

7.2.3. Considering the user

In the context of our Fault Detection and Diagnosis framework, it would be an interesting
addition to consider the user’s feedback, in order to confirm, or refute a diagnosis report. If
stored by the Ambient Intelligent System, this information can even be useful for future
diagnosis. In the CBDP Ambient Assisted Living Application, the framework stores users’
feedbacks in the ontology. However this information is not actually used for future diagnosis,
since the rules that reason over the stored feedbacks are to be defined.

Note that our FDD framework only supervises the Ambient System’s actions (done via
actuators) in order to detect malfunctions and does not supervise the users’ actions. In fact,
unlike system actions, users’ behaviors are unpredictable and require different modeling and fault
diagnosis approach. The field of users tasks supervision and assistance in Ambient Intelligent
Systems is a new field. Research in this field aims at helping users to perform their tasks properly,
and detecting any unwanted or dangerous deviations of normal users’ behaviors, in order to help
them complete their wanted tasks. Some works have been done in that context that aim to
creating a novel ambient user task model, which takes into consideration the specificities of user
tasks in an Ambient Intelligent Environment setting [211].

7.3. Conclusion

Ambient Intelligent Systems are a fast growing trend in modern societies that is enhancing
people’s way of life. More and more people rely on these systems for their everyday activities
without even noticing them. This makes reliability of such systems a very important property, and
the self-diagnosis capability of such systems a very critical characteristic.

Our work falls within this general idea of equipping Ambient Intelligent systems with auto
diagnosis capabilities. With our proposed approach we have overcome particular challenges that
arise in Fault Detection and Diagnosis in the Ambient Intelligence context. We have also
proposed directions for future works in order to complete our research in Fault Detection and
Diagnosis in Ambient Intelligence.

Annex

173

Annexes

Annex

174

Annex-A

A. Light as a physical phenomenon – definitions [179][180]

A.1 Radiometry

Radiometry is the science of the measurement of electromagnetic radiation. The basic
concepts that describe the power and distribution of the radiation are:

• Radiant Flux

Radiant flux is the total radiant power emitted from a light source. In some cases, like when
we are considering light that is passing through a certain area, radiant power can be defined as the
rate of flow of radiant energy passing through that area. The SI unit of radiant flux is the Watt.

Figure 132. Radiant flux

• Radiant Intensity

Radiant intensity is the directed density of radiation from a source in accordance to a solid
angle (defines the size of the cone of intensity radiated by a source point), noted Ω. The value of
a radiant intensity emitted by a light source in a given direction is the sum of the power of all the
rays that are following that direction.

The SI unit for radiant intensity is Watt per steradian, noted W/sr.

Figure 133. Radiant intensity

• Irradiance

Irradiance is the measure of radiant flux incidence on an object’s surface.

The SI unit for irradiance is Watt per square meter, noted W/m2.

Annex

175

Figure 134. Irradiance

• Radiance

Radiance is the quantity of radiation calculated when the emitted light beam falls on a surface
following a solid angle Ω and in a specified direction.

The SI unit for radiance is Watt per square meter steradian, noted Watt/m2.sr.

Figure 135. Radiance

A.2 Spectroradiometry

The field of Spectroradiometry aims to measure the energy of light within the electromagnetic
spectrum. The energy can be measured over the entire spectrum of wavelengths or within a
specific band of wavelengths.

• Spectral Irradiance

Spectral Irradiance is the measure of the total radiant flux per surface unit projected on a surface
at a particular wavelength. The wavelengths of energy values are measured in nanometer (nm).

The SI unit for spectral radiance is Watt per square meter nanometer, noted W/m2.nm.

• Spectral Radiance

The spectral radiance is the sum of all energy measured over a spectrum. The radiations fall on
the surface in a specific direction and following a solid angle Ω. The SI unit for spectral radiance
is Watt per square meter steradian nanometer, noted W/m2.sr.nm.

A.3 Photometry

Photometry focuses on measuring the characteristics of the electromagnetic energy that are visible
to the human eye, hence the use of the term ‘luminous’, which refers to visible light.

The basic concepts that make photometry are:

• Luminous flux (what light sources produce)

Analogically to the radiant flux, which is the total radiant power emitted from a light source,
luminous flux is the flow of light energy emitted by a source that is visible by the human eye. The

Annex

176

value is calculated from the radiant flux by applying the luminosity function V(λ), which is a
standard function established by the CIE1 to convert radiant energy into luminous energy visible
by the ‘standard eye’.

The V(λ) function defines how the average human eye is sensitive to different wavelengths
(interpreted by the human eye with different light colors) of light.

The SI unit for luminous flux is lumen, noted lm.

Light bulbs’ powers are described in Watt. To convert from Watt to lumen we need to know the
value of the luminous efficacy of the light source ηv. The luminous efficacy is the ratio of
luminous flux (lm) emitted by the source to the input power (watt) [178]. To calculate the
luminous efficacy we need to determine two entities: the radiant efficiency of the source (ratio of
output radiant flux to input power), noted ηe, and the luminous efficacy of radiation (ratio of
luminous flux to radiant flux), noted K. ηv is then calculated by:

ηv= ηe . K

Using this we can draw an approximate luminous efficacy table for different known type of
commercial light sources (see Table 3 [213])

Light type Approximate luminous efficacy

(lumens/watt)

incandescent light bulb 12-17 lm/W

Halogen lamp 16-24 lm/W

Fluorescent lamp 45-75 lm/W

MCOB LED lamp 100-130 lm/W

Metal halide lamp 75-100 lm/W

High pressure sodium vapor lamp 85-150 lm/W

Low pressure sodium vapor lamp 100-200 lm/W

Mercury vapor lamp 35-65 lm/W

Table 3. Luminous efficacy table for known lamp types

 For example the luminous flux of a 30 Watts Fluorescent lamp that has luminous efficacy of 50
lumens per Watt is:

30 W x 50 lm/W = 1500 lm

• Luminous intensity

This expresses the power of a light source. It is defined as the quantity of luminous flux emitted
in a given direction per solid angle Ω (per steradian).

The unit is candela, noted cd.

To calculate the luminous intensity in candela knowing the luminous flux in lumens of the source,
we divide the luminous flux value by the solid angle Ω in steradians:

Iv = Φv / Ω

To deduce the value of the solid angle Ω in steradians we use:

1 CIE stands for ‘Commission Internationale de l' Éclairage’ or ‘International Commission on Illumination’. It is
the international authority on light, illumination, color, and color spaces.

Annex

177

Ω = 2π[1 - cos(θ/2)]

Where θ is the angle of the light beam emitted from the light source to a certain surface.

• Illuminance (what light sensors detect)

Illuminance is luminous flux per area unit or at a point.

The SI unit for Illuminance is lux, noted lx. Where 1 lx = 1 lm/m2.

The next table depicts some examples of Illuminance provided under natural conditions [214]:

:Illuminance Surfaces illuminated by:

10−4 lux Moonless, overcast night sky (starlight)

0.002 lux Moonless clear night sky with airglow

0.27–1.0 lux Full moon on a clear night

400 lux Sunrise or sunset on a clear day.

10,000–25,000 lux Full daylight (not direct sun)

32,000–130,000 lux Direct sunlight

Table 4. Examples of Illuminance values under natural conditions

• Luminance

Luminance is also called brightness in photometry. It is the luminous intensity emitted in a certain
direction from a light source per unit area.

The SI unit is the candelas per square meter, noted cd/m2.

Annex

178

Annex-B

Table of specific heat capacities [181][215]

Table of specific heat
capacities at 25 °C (298

K)
Phase

(mass)
specific

heat
capacity
cp or cm
J·g−1·K−1

Constant
pressure

molar
heat

capacity
Cp,m

J·mol−1·K−1

Constant
volume
molar
heat

capacity
Cv,m

J·mol−1·K−1

Volumetric
heat

capacity
Cv

J·cm−3·K−1

Constant
vol.

atom-
molar
heat

capacity
in units of

R
Cv,m(atom)
atom-
mol−1

Air (Sea level, dry,
0 °C (273.15 K))

gas 1.0035 29.07 20.7643 0.001297 ~ 1.25 R

Air (typical
room conditions) gas 1.012 29.19 20.85 0.00121 ~ 1.25 R

Aluminum solid 0.897 24.2 2.422 2.91 R

Antimony solid 0.207 25.2 1.386 3.03 R

Argon gas 0.5203 20.7862 12.4717 1.50 R

Arsenic solid 0.328 24.6 1.878 2.96 R

Beryllium solid 1.82 16.4 3.367 1.97 R

Cadmium solid 0.231 26.02 3.13 R

Carbon dioxide CO2 gas 0.839* 36.94 28.46 1.14 R

Chromium solid 0.449 23.35 2.81 R

Copper solid 0.385 24.47 3.45 2.94 R

Ethanol liquid 2.44 112 1.925 1.50 R

Gasoline (octane) liquid 2.22 228 1.64 1.05 R

Gold solid 0.129 25.42 2.492 3.05 R

Granite solid 0.790 2.17

Graphite solid 0.710 8.53 1.534 1.03 R

Helium gas 5.1932 20.7862 12.4717 1.50 R

Hydrogen gas 14.30 28.82 1.23 R

Iron solid 0.450 3.537 3.02 R

Lead solid 0.129 26.4 1.44 3.18 R

Lithium solid 3.58 24.8 1.912 2.98 R

Magnesium solid 1.02 24.9 1.773 2.99 R

Mercury liquid 0.1395 27.98 1.888 3.36 R

Nitrogen gas 1.040 29.12 20.8 1.25 R

Neon gas 1.0301 20.7862 12.4717 1.50 R

Oxygen gas 0.918 29.38 21.0 1.26 R

Annex

179

Table of specific heat
capacities at 25 °C (298

K)
Phase

(mass)
specific

heat
capacity
cp or cm
J·g−1·K−1

Constant
pressure

molar
heat

capacity
Cp,m

J·mol−1·K−1

Constant
volume
molar
heat

capacity
Cv,m

J·mol−1·K−1

Volumetric
heat

capacity
Cv

J·cm−3·K−1

Constant
vol.

atom-
molar
heat

capacity
in units of

R
Cv,m(atom)
atom-
mol−1

Silver solid 0.233 24.9 2.44 2.99 R

Sodium solid 1.230 28.23 3.39 R

Steel solid 0.466

Tin solid 0.227 27.112 3.26 R

Titanium solid 0.523 26.060 3.13 R

Tungsten solid 0.134 24.8 2.58 2.98 R

Uranium solid 0.116 27.7 2.216 3.33 R

Water at 100 °C
(steam)

gas 2.080 37.47 28.03 1.12 R

Water at 25 °C liquid 4.1813 75.327 74.53 4.1796 3.02 R

Water at 100 °C liquid 4.1813 75.327 74.53 4.2160 3.02 R

Water at −10 °C (ice) solid 2.11 38.09 1.938 1.53 R

Zinc solid 0.387 25.2 2.76 3.03 R

Table 5. Table of specific heat capacities

Annex

180

Annex–C

Test 1:

Evaluating the Mathematical Model and Validation for results reported in Figure 117:

sensor_1 : According the trace in the figure, the value calculated by L4 for sensor_1 should
be 812.5. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)+

directLightExposure(sensor_1,doubleHingedDoor)+

directLightExposure(sensor_1,slidingDoor)+

directLightExposure(sensor_1,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

directLightExposure(sensor_1,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_1, doubleHingedDoor)^2

directLightExposure(sensor_1,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_1,slidi ngDoor)^2

directLightExposure(sensor_1,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_1,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=50 (first second of heating phase)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=0*ambientLightIntens ity(doubleHingedDoor)=0

because doubleHingedDoor.AmbientLightModificationRatio=0 (door closed).

Same for other closed Effect Modifiers:

Annex

181

luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_1,bulb_1) returns FALSE (room2!=room1).

sameZone(sensor_1,bulb_2) returns TRUE (room2=room2).

sameZone(sensor_1,bulb_3) returns TRUE (room2=room2).

sameZone(sensor_1,doubleHingedDoor) returns TRUE (room2=room2).

sameZone(sensor_1,slidingDoor) returns FALSE (room2!=room1).

sameZone(sensor_1,windowBlinds) returns FALSE (room2!=room1).

So now the calls to L5 look like the following:

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

distance(sensor_1,doubleHingedDoor)=

Sqrt[(x(sensor_1)-x(doubleHingedDoor))^2 +

(y(sensor_1)-y(doubleHingedDoor))^2]

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

with

x(sensor_1)=3 y(sensor_1)=4

x(bulb_2)=3 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

Annex

182

which give

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=2

distance(sensor_1,bulb_3)=1

distance(sensor_1,doubleHingedDoor)=Sqrt(5)

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_1,bulb_1)=1750/ ∞

directLightExposure(sensor_1,bulb_2)=50/4

directLightExposure(sensor_1,bulb_3)=800/1

directLightExposure(sensor_1,doubleHingedDoor)=0/5

directLightExposure(sensor_1,slidingDoor)=0/ ∞

directLightExposure(sensor_1,windowBlinds)=0/ ∞

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=0+12.5+800+0+0+0= 8 12.5

That is equal to the value predicted by the Prediction Model.

sensor_2 : The value calculated by L4 for sensor_2 should be 437.5 The 2D Light Law Set
calls are as following:

Call to L4:

ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)+

directLightExposure(sensor_2,doubleHingedDoor)+

directLightExposure(sensor_2,slidingDoor)+

directLightExposure(sensor_2,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

directLightExposure(sensor_2,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

directLightExposure(sensor_2,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

directLightExposure(sensor_2,doubleHingedDoor)=

Annex

183

luminousFlux(doubleHingedDoor) / distance(sensor_2, doubleHingedDoor)^2

directLightExposure(sensor_2,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_2,slidi ngDoor)^2

directLightExposure(sensor_2,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_2,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=50 (first second of heating phase)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=0*ambientLightIntens ity(doubleHingedDoor)=0

because doubleHingedDoor.AmbientLightModificationRatio=0 (door closed).

Same for other closed Effect Modifiers:
luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_2,bulb_1) returns TRUE (room1=room1).

sameZone(sensor_2,bulb_2) returns FALSE (room1!=room2).

sameZone(sensor_2,bulb_3) returns FALSE (room1!=room2).

sameZone(sensor_2,doubleHingedDoor) returns FALSE (room1!=room2).

sameZone(sensor_2,slidingDoor) returns TRUE (room1=room1).

sameZone(sensor_2,windowBlinds) returns TRUE (room1=room1).

So now the calls to L5 look like the following:

distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_2,doubleHingedDoor)=

Sqrt[(x(sensor_2)-x(doubleHingedDoor))^2 +

(y(sensor_2)-y(doubleHingedDoor))^2]

Annex

184

distance(sensor_2,slidingDoor)=

Sqrt[(x(sensor_2)-x(slidingDoor))^2 +

(y(sensor_2)-y(slidingDoor))^2]

distance(sensor_2,windowBlinds)=

Sqrt[(x(sensor_2)-x(windowBlinds))^2 +

(y(sensor_2)-y(windowBlinds))^2]

with
x(sensor_2)=1 y(sensor_2)=4

x(bulb_1)=1 y(bulb_1)=2

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_2,bulb_1)=2

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_1,doubleHingedDoor)=Sqrt(5)

distance(sensor_2,slidingDoor)=4

distance(sensor_2,windowBlinds)=Sqrt(2)

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_2,bulb_1)=1750/4

directLightExposure(sensor_2,bulb_2)=50/ ∞

directLightExposure(sensor_2,bulb_3)=800/ ∞

directLightExposure(sensor_2,doubleHingedDoor)=0/5

directLightExposure(sensor_2,slidingDoor)=0/4

directLightExposure(sensor_2,windowBlinds)=0/2

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=437.5+0+0+0+0+0= 43 7.5

That is equal to the value predicted by the Prediction Model.

sensor_3 : Reports the Illuminance of the outside without: 100000 lm. No calculations are
performed as it is defined as a special sensor (trusted sensor of an Effect Modifier).

Evaluating the Mathematical Model and Validation n for results reported in Figure 118:

The only value that changed after 30 seconds is the value of sensor_1, it is because it is
exposed to the Fluorescent Light Bulb in the room, which reached its maximum capacity after 30
seconds:

Annex

185

sensor_1 : According the trace in the figure, the value calculated by L4 for sensor_1 should
be 1175. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)+

directLightExposure(sensor_1,doubleHingedDoor)+

directLightExposure(sensor_1,slidingDoor)+

directLightExposure(sensor_1,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

directLightExposure(sensor_1,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_1, doubleHingedDoor)^2

directLightExposure(sensor_1,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_1,slidi ngDoor)^2

directLightExposure(sensor_1,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_1,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500 (CFL reached its maximum capacity)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=0*TotalIllumination2 D(doubleHingedDoor)=0

because doubleHingedDoor.AmbientLightModificationRatio=0 (door closed).

Same for other closed Modifiers:
luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

� this generates the following calls to the Law L5; one for each component

Annex

186

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_1,bulb_1) returns FALSE (room2!=room1).

sameZone(sensor_1,bulb_2) returns TRUE (room2=room2).

sameZone(sensor_1,bulb_3) returns TRUE (room2=room2).

sameZone(sensor_1,doubleHingedDoor) returns TRUE (room2=room2).

sameZone(sensor_1,slidingDoor) returns FALSE (room2!=room1).

sameZone(sensor_1,windowBlinds) returns FALSE (room2!=room1).

So now the calls to L5 look like the following:

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

distance(sensor_1,doubleHingedDoor)=

Sqrt[(x(sensor_1)-x(doubleHingedDoor))^2 +

(y(sensor_1)-y(doubleHingedDoor))^2]

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

with

x(sensor_1)=3 y(sensor_1)=4

x(bulb_2)=3 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=2

distance(sensor_1,bulb_3)=1

Annex

187

distance(sensor_1,doubleHingedDoor)=Sqrt(5)

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_1,bulb_1)=1750/ ∞

directLightExposure(sensor_1,bulb_2)=1500/4

directLightExposure(sensor_1,bulb_3)=800/1

directLightExposure(sensor_1,doubleHingedDoor)=0/5

directLightExposure(sensor_1,slidingDoor)=0/ ∞

directLightExposure(sensor_1,windowBlinds)=0/ ∞

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=0+375+800+0+0+0= 11 75

That is equal to the value predicted by the Prediction Model.

sensor_2 : Does not change value (437.5 lux), since it is not exposed to a CFL bulb.

Test 2:

Evaluating the Mathematical Model and Validation for results reported in Figure 119:

sensor_1 : According the trace in the figure, the value calculated by L4 for sensor_1 should
be 1525. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)+

directLightExposure(sensor_1,doubleHingedDoor)+

directLightExposure(sensor_1,slidingDoor)+

directLightExposure(sensor_1,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

Annex

188

directLightExposure(sensor_1,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_1, doubleHingedDoor)^2

directLightExposure(sensor_1,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_1,slidi ngDoor)^2

directLightExposure(sensor_1,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_1,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500 (CFL reached its maximum capacity)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=1*ambientLightIntens ity(doubleHingedDoor)=0

because doubleHingedDoor.AmbientLightModificationRatio=1 (door opened).

Other Modifiers are kept closed:
luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

Now that the double hinged door is fully opened, we have to evaluate

ambientLightIntensity(doubleHingedDoor)in room1 to estimate how much the
doubleHingedDoor contributes in luminous flux in ro om2

So:
luminousFlux(doubleHingedDoor)=1*ambientLightIntens ity(doubleHingedDoor)

in room2 in room1

The call is treated as if it was a call from a sensor, but with ignoring the effect modifier
doubleHingedDoor in the calculations.

So, unlike when sensor_2 called ambientLightIntensity in room1, when the
doubleHingedDoor calls it, it generates 5 calls to directLightExposure instead of 6 calls. These
calls are highlighted in blue:

doubleHingedDoor :

Call to L4:

ambientLightIntensity(doubleHingedDoor)=

directLightExposure(doubleHingedDoor,bulb_1)+

directLightExposure(doubleHingedDoor,bulb_2)+

directLightExposure(doubleHingedDoor,bulb_3)+

directLightExposure(doubleHingedDoor,doubleHingedDo or)+

directLightExposure(doubleHingedDoor,slidingDoor)+

directLightExposure(doubleHingedDoor,windowBlinds)

Annex

189

� this generates the following calls to the Law L3; one for each device

directLightExposure(doubleHingedDoor,bulb_1)=

luminousFlux(bulb_1) / distance(doubleHingedDoor,bu lb_1)^2

directLightExposure(doubleHingedDoor,bulb_2)=

luminousFlux(bulb_2) / distance(doubleHingedDoor,bu lb_2)^2

directLightExposure(doubleHingedDoor,bulb_3)=

luminousFlux(bulb_3) / distance(doubleHingedDoor,bu lb_3)^2

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=

luminousFlux(slidingDoor) / distance(doubleHingedDo or,slidingDoor)^2

directLightExposure(doubleHingedDoor,windoBlinds)=

luminousFlux(windoBlinds) / distance(doubleHingedDo or,windoBlinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500

luminousFlux(bulb_3)=800

luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

 (Closed Effect Modifiers):

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

doubleHingedDoor has room1 and room2 as Zones in property, but in these calculations it is
considered as part of room1 (we want to calculate how much of light from room1 is going to
room2).

sameZone returns FALSE when comparing zones of same objects for additional safety (so
the Effect Modifier doesn’t consider itself in the calculations).

sameZone(doubleHingedDoor,bulb_1) returns TRUE (room1=room1).

sameZone(doubleHingedDoor,bulb_2) returns FALSE (room1!=room2).

sameZone(doubleHingedDoor,bulb_3) returns FALSE (room1!=room2).

sameZone(doubleHingedDoor,doubleHingedDoor) returns FALSE.

sameZone(doubleHingedDoor,slidingDoor) returns TRUE (room1=room1).

sameZone(doubleHingedDoor,windowBlinds) returns TRUE (room1=room1).

Annex

190

So now the calls to L5 look like the following:

distance(doubleHingedDoor,bulb_1)=

Sqrt[(x(doubleHingedDoor)-x(bulb_1))^2+

(y(doubleHingedDoor)-y(bulb_1))^2]

distance(doubleHingedDoor,bulb_2)= ∞

distance(doubleHingedDoor,bulb_3)= ∞

distance(doubleHingedDoor,doubleHingedDoor)= ∞ (also for additional safety)

distance(doubleHingedDoor,slidingDoor)=

Sqrt[(x(doubleHingedDoor)-x(slidingDoor))^2 +

(y(doubleHingedDoor)-y(slidingDoor))^2]

distance(doubleHingedDoor,windowBlinds)=

Sqrt[(x(doubleHingedDoor)-x(windowBlinds))^2 +

(y(doubleHingedDoor)-y(windowBlinds))^2]

with
x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(bulb_1)=1 y(bulb_1)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(doubleHingedDoor,bulb_1)=1

distance(doubleHingedDoor,bulb_2)= ∞

distance(doubleHingedDoor,bulb_3)= ∞

distance(doubleHingedDoor,doubleHingedDoor)= ∞

distance(doubleHingedDoor,slidingDoor)=Sqrt(3)

distance(doubleHingedDoor,windowBlinds)=Sqrt(3)

using these values to evaluate previous L3 calls gives

directLightExposure(doubleHingedDoor,bulb_1)=1750/1

directLightExposure(doubleHingedDoor,bulb_2)=1500/ ∞

directLightExposure(doubleHingedDoor,bulb_3)=800/ ∞

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=0 /3

directLightExposure(doubleHingedDoor,windowBlinds)= 0/3

Annex

191

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(doubleHingedDoor)=1750+0+0+0+ 0+0= 1750

So luminousFlux(doubleHingedDoor)=1*1750 =1750

Now that we know the value of luminousFlux(doubleHingedDoor)=1750 , we continue
our calculations as if the doubleHingedDoor was another actuator in room2.

We return to Room2.

We left at estimating directLightExposure for every component.

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_1,bulb_1) returns FALSE (room2!=room1).

sameZone(sensor_1,bulb_2) returns TRUE (room2=room2).

sameZone(sensor_1,bulb_3) returns TRUE (room2=room2).

sameZone(sensor_1,doubleHingedDoor) returns TRUE (room2=room2).

sameZone(sensor_1,slidingDoor) returns FALSE (room2!=room1).

sameZone(sensor_1,windowBlinds) returns FALSE (room2!=room1).

So now the calls to L5 look like the following:

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

distance(sensor_1,doubleHingedDoor)=

Sqrt[(x(sensor_1)-x(doubleHingedDoor))^2 +

(y(sensor_1)-y(doubleHingedDoor))^2]

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

Annex

192

with

x(sensor_1)=3 y(sensor_1)=4

x(bulb_2)=3 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=2

distance(sensor_1,bulb_3)=1

distance(sensor_1,doubleHingedDoor)=Sqrt(5)

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_1,bulb_1)=1750/ ∞

directLightExposure(sensor_1,bulb_2)=1500/4

directLightExposure(sensor_1,bulb_3)=800/1

directLightExposure(sensor_1,doubleHingedDoor)=1750 /5

directLightExposure(sensor_1,slidingDoor)=0/ ∞

directLightExposure(sensor_1,windowBlinds)=0/ ∞

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=0+375+800+350+0+0= 1525

That is equal to the value predicted by the Prediction Model.

This confirm the augmentation in reading value (we saw on Figure 119) for sensor_1 when
we opened the door, from 1175 to 1525. Sensor_1 is now exposed to light from the next room.

sensor_2 : According the trace in the figure, the value calculated by L4 for sensor_2 should
be 757.5. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)+

directLightExposure(sensor_2,doubleHingedDoor)+

directLightExposure(sensor_2,slidingDoor)+

directLightExposure(sensor_2,windowBlinds)

� this generates the following calls to the Law L3; one for each device

Annex

193

directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

directLightExposure(sensor_2,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

directLightExposure(sensor_2,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

directLightExposure(sensor_2,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_2, doubleHingedDoor)^2

directLightExposure(sensor_2,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_2,slidi ngDoor)^2

directLightExposure(sensor_2,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_2,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500 (CFL reached its maximum capacity)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=1*ambientLightIntens ity(doubleHingedDoor)=0

because doubleHingedDoor.AmbientLightModificationRatio=1 (door opened).

Other Modifiers are kept closed:
luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

Now that the double hinged door is fully opened, we have to evaluate

ambientLightIntensity(doubleHingedDoor)in room2 to estimate how much the
doubleHingedDoor contributes in luminous flux in ro om1

So:
luminousFlux(doubleHingedDoor)=1*ambientLightIntens ity(doubleHingedDoor)

in room1 in room2

The call is treated as if it was a call from a sensor, but with ignoring the effect modifier
doubleHingedDoor in the calculations.

So, unlike when sensor_1 called ambientLightIntensity in room2, when the
doubleHingedDoor calls it, it generates 5 calls to directLightExposure instead of 6 calls. These
calls are highlighted in blue:

doubleHingedDoor :

Annex

194

Call to L4:

ambientLightIntensity(doubleHingedDoor)=

directLightExposure(doubleHingedDoor,bulb_1)+

directLightExposure(doubleHingedDoor,bulb_2)+

directLightExposure(doubleHingedDoor,bulb_3)+

directLightExposure(doubleHingedDoor,doubleHingedDo or)+

directLightExposure(doubleHingedDoor,slidingDoor)+

directLightExposure(doubleHingedDoor,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(doubleHingedDoor,bulb_1)=

luminousFlux(bulb_1) / distance(doubleHingedDoor,bu lb_1)^2

directLightExposure(doubleHingedDoor,bulb_2)=

luminousFlux(bulb_2) / distance(doubleHingedDoor,bu lb_2)^2

directLightExposure(doubleHingedDoor,bulb_3)=

luminousFlux(bulb_3) / distance(doubleHingedDoor,bu lb_3)^2

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=

luminousFlux(slidingDoor) / distance(doubleHingedDo or,slidingDoor)^2

directLightExposure(doubleHingedDoor,windoBlinds)=

luminousFlux(windoBlinds) / distance(doubleHingedDo or,windoBlinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500

luminousFlux(bulb_3)=800

luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

 (Closed Effect Modifiers):

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

doubleHingedDoor has room1 and room2 as Zones in property, but in these calculations it is
considered as part of room1 (we want to calculate how much of light from room1 is going to
room2).

sameZone returns FALSE when comparing zones of same objects for additional safety (so
the Effect Modifier doesn’t consider itself in the calculations).

Annex

195

sameZone(doubleHingedDoor,bulb_1) returns FALSE (room2!=room1).

sameZone(doubleHingedDoor,bulb_2) returns TRUE (room2=room2).

sameZone(doubleHingedDoor,bulb_3) returns TRUE (room2=room2).

sameZone(doubleHingedDoor,doubleHingedDoor) returns FALSE.

sameZone(doubleHingedDoor,slidingDoor) returns FALSE (room2!=room1).

sameZone(doubleHingedDoor,windowBlinds) returns FALSE (room2!=room1).

So now the calls to L5 look like the following:

distance(doubleHingedDoor,bulb_1)= ∞

distance(doubleHingedDoor,bulb_2)=
Sqrt[(x(doubleHingedDoor)-x(bulb_2))^2+

(y(doubleHingedDoor)-y(bulb_2))^2]

distance(doubleHingedDoor,bulb_3)=
Sqrt[(x(doubleHingedDoor)-x(bulb_3))^2+

(y(doubleHingedDoor)-y(bulb_3))^2]

distance(doubleHingedDoor,doubleHingedDoor)= ∞ (also for additional safety)

distance(doubleHingedDoor,slidingDoor)= ∞

distance(doubleHingedDoor,windowBlinds)= ∞

with
x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(bulb_2)=3 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(doubleHingedDoor,bulb_1)= ∞

distance(doubleHingedDoor,bulb_2)=1

distance(doubleHingedDoor,bulb_3)=Sqrt(8)

distance(doubleHingedDoor,doubleHingedDoor)= ∞

distance(doubleHingedDoor,slidingDoor)= ∞

distance(doubleHingedDoor,windowBlinds)= ∞

using these values to evaluate previous L3 calls gives

Annex

196

directLightExposure(doubleHingedDoor,bulb_1)=1750/ ∞

directLightExposure(doubleHingedDoor,bulb_2)=1500/1

directLightExposure(doubleHingedDoor,bulb_3)=800/8

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=0

directLightExposure(doubleHingedDoor,windowBlinds)= 0

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(doubleHingedDoor)=0+1500+100+ 0+0+0= 1600

So luminousFlux(doubleHingedDoor)= 1*1600=1600

Now that we know the value of luminousFlux(doubleHingedDoor)=1600 , we continue
our calculations as if the doubleHingedDoor was another actuator in room2.

We return to Room2.

We left at estimating directLightExposure for every component.

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_2,bulb_1) returns TRUE (room1=room1).

sameZone(sensor_2,bulb_2) returns FALSE (room1!=room2).

sameZone(sensor_2,bulb_3) returns FALSE (room1!=room2).

sameZone(sensor_2,doubleHingedDoor) returns TRUE (room1=room1).

sameZone(sensor_2,slidingDoor) returns TRUE (room1=room1).

sameZone(sensor_2,windowBlinds) returns TRUE (room1=room1).

So now the calls to L5 look like the following:

distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_2,doubleHingedDoor)=

Sqrt[(x(sensor_2)-x(doubleHingedDoor))^2 +

(y(sensor_2)-y(doubleHingedDoor))^2]

Annex

197

distance(sensor_2,slidingDoor)=

Sqrt[(x(sensor_2)-x(slidingDoor))^2 +

(y(sensor_2)-y(slidingDoor))^2]

distance(sensor_2,windowBlinds)=

Sqrt[(x(sensor_2)-x(windowBlinds))^2 +

(y(sensor_2)-y(windowBlinds))^2]

with
x(sensor_2)=1 y(sensor_2)=4

x(bulb_1)=1 y(bulb_1)=2

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_2,bulb_1)=2

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_2,doubleHingedDoor)=Sqrt(5)

distance(sensor_2,slidingDoor)=4

distance(sensor_2,windowBlinds)=Sqrt(2)

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_2,bulb_1)=1750/4

directLightExposure(sensor_2,bulb_2)=1500/ ∞

directLightExposure(sensor_2,bulb_3)=800/ ∞

directLightExposure(sensor_2,doubleHingedDoor)=1600 /5

directLightExposure(sensor_2,slidingDoor)=0

directLightExposure(sensor_2,windowBlinds)=0

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=437.5+0+0+320+0+0= 757.5

That is equal to the value predicted by the Prediction Model.

This confirm the augmentation in reading value (we saw on Figure 119) for sensor_1 when
we opened the door, from 437.5 to 1195. Sensor_1 is now exposed to light from the next room.

Test 3:

Evaluating the Mathematical Model and Validation for results reported in Figure 121:

sensor_2 : According the trace in the figure, the value calculated by L4 for sensor_2 should
be 16937.5 . The 2D Light Law Set calls are as following:

Call to L4:

Annex

198

ambientLightIntensity(sensor_2)=

directLightExposure(sensor_2,bulb_1)+

directLightExposure(sensor_2,bulb_2)+

directLightExposure(sensor_2,bulb_3)+

directLightExposure(sensor_2,doubleHingedDoor)+

directLightExposure(sensor_2,slidingDoor)+

directLightExposure(sensor_2,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_2,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_2,bulb_1)^2

directLightExposure(sensor_2,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_2,bulb_2)^2

directLightExposure(sensor_2,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_2,bulb_3)^2

directLightExposure(sensor_2,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_2, doubleHingedDoor)^2

directLightExposure(sensor_2,slidingDoor)=

luminousFlux(slidingDoor) / distance(sensor_2,slidi ngDoor)^2

directLightExposure(sensor_2,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_2,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500 (CFL reached its maximum capacity)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=0

luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=1*AmbientLight(trustedSens or)

The value of the AmbientLight property of the trusted sensor for windowBlinds (this is the
special case discussed in Effect Modifier secion in 4.5), which is sensor_3 is 33000.

So:
luminusFlux(windoBlinds)=33000

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

Annex

199

sameZone(sensor_2,bulb_1) returns TRUE (room1=room1).

sameZone(sensor_2,bulb_2) returns FALSE (room1!=room2).

sameZone(sensor_2,bulb_3) returns FALSE (room1!=room2).

sameZone(sensor_2,doubleHingedDoor) returns TRUE (room1=room1).

sameZone(sensor_2,slidingDoor) returns TRUE (room1=room1).

sameZone(sensor_2,windowBlinds) returns TRUE (room1=room1).

So now the calls to L5 look like the following:

distance(sensor_2,bulb_1)=

Sqrt[(x(sensor_2)-x(bulb_1))^2 + (y(sensor_2)-y(bul b_1))^2]

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_2,doubleHingedDoor)=

Sqrt[(x(sensor_2)-x(doubleHingedDoor))^2 +

(y(sensor_2)-y(doubleHingedDoor))^2]

distance(sensor_2,slidingDoor)=

Sqrt[(x(sensor_2)-x(slidingDoor))^2 +

(y(sensor_2)-y(slidingDoor))^2]

distance(sensor_2,windowBlinds)=

Sqrt[(x(sensor_2)-x(windowBlinds))^2 +

(y(sensor_2)-y(windowBlinds))^2]

with
x(sensor_2)=1 y(sensor_2)=4

x(bulb_1)=1 y(bulb_1)=2

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_2,bulb_1)=2

distance(sensor_2,bulb_2)= ∞

distance(sensor_2,bulb_3)= ∞

distance(sensor_2,doubleHingedDoor)=Sqrt(5)

Annex

200

distance(sensor_2,slidingDoor)=4

distance(sensor_2,windowBlinds)=Sqrt(2)

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_2,bulb_1)=1750/4

directLightExposure(sensor_2,bulb_2)=1500/ ∞

directLightExposure(sensor_2,bulb_3)=800/ ∞

directLightExposure(sensor_2,doubleHingedDoor)=0

directLightExposure(sensor_2,slidingDoor)=0

directLightExposure(sensor_2,windowBlinds)=33000/2

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=437.5+0+0+0+0+16500 = 16937.5

That is equal to the value predicted by the Prediction Model.

Test 4:

Evaluating the Mathematical Model and Validation for results reported in Figure 122:

sensor_1 : According the trace in the figure, the value calculated by L4 for sensor_1 should
be 2450. The 2D Light Law Set calls are as following:

Call to L4:

ambientLightIntensity(sensor_1)=

directLightExposure(sensor_1,bulb_1)+

directLightExposure(sensor_1,bulb_2)+

directLightExposure(sensor_1,bulb_3)+

directLightExposure(sensor_1,doubleHingedDoor)+

directLightExposure(sensor_1,slidingDoor)+

directLightExposure(sensor_1,windowBlinds)

� this generates the following calls to the Law L3; one for each device

directLightExposure(sensor_1,bulb_1)=

luminousFlux(bulb_1) / distance(sensor_1,bulb_1)^2

directLightExposure(sensor_1,bulb_2)=

luminousFlux(bulb_2) / distance(sensor_1,bulb_2)^2

directLightExposure(sensor_1,bulb_3)=

luminousFlux(bulb_3) / distance(sensor_1,bulb_3)^2

directLightExposure(sensor_1,doubleHingedDoor)=

luminousFlux(doubleHingedDoor) / distance(sensor_1, doubleHingedDoor)^2

directLightExposure(sensor_1,slidingDoor)=

Annex

201

luminousFlux(slidingDoor) / distance(sensor_1,slidi ngDoor)^2

directLightExposure(sensor_1,windoBlinds)=

luminousFlux(windoBlinds) / distance(sensor_1,windo Blinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500 (CFL reached its maximum capacity)
luminousFlux(bulb_3)=800

luminousFlux(doubleHingedDoor)=1*ambientLightIntens ity(doubleHingedDoor)=0.5

because doubleHingedDoor.AmbientLightModificationRatio=0.5 (half opened).

Other Modifiers are kept closed:
luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=1*AmbientLight(trustedSens or)

The value of the AmbientLight property of the trusted sensor for windowBlinds (this is the
special case discussed in Effect Modifier secion in 4.5), which is sensor_3 is 33000.

So:
luminusFlux(windoBlinds)=33000

Now that the double hinged door is half opened, we have to evaluate

ambientLightIntensity(doubleHingedDoor)in room1 to estimate how much the
doubleHingedDoor contributes in luminous flux in ro om2

So:
luminousFlux(doubleHingedDoor)=0.5*ambientLightInte nsity(doubleHingedDoor)

in room2 in room1

The call is treated as if it was a call from a sensor, but with ignoring the effect modifier
doubleHingedDoor in the calculations.

So, unlike when sensor_2 called ambientLightIntensity in room1, when the
doubleHingedDoor calls it, it generates 5 calls to directLightExposure instead of 6 calls. These
calls are highlighted in blue:

doubleHingedDoor :

Call to L4:

ambientLightIntensity(doubleHingedDoor)=

directLightExposure(doubleHingedDoor,bulb_1)+

directLightExposure(doubleHingedDoor,bulb_2)+

directLightExposure(doubleHingedDoor,bulb_3)+

directLightExposure(doubleHingedDoor,doubleHingedDo or)+

directLightExposure(doubleHingedDoor,slidingDoor)+

directLightExposure(doubleHingedDoor,windowBlinds)

� this generates the following calls to the Law L3; one for each device

Annex

202

directLightExposure(doubleHingedDoor,bulb_1)=

luminousFlux(bulb_1) / distance(doubleHingedDoor,bu lb_1)^2

directLightExposure(doubleHingedDoor,bulb_2)=

luminousFlux(bulb_2) / distance(doubleHingedDoor,bu lb_2)^2

directLightExposure(doubleHingedDoor,bulb_3)=

luminousFlux(bulb_3) / distance(doubleHingedDoor,bu lb_3)^2

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=

luminousFlux(slidingDoor) / distance(doubleHingedDo or,slidingDoor)^2

directLightExposure(doubleHingedDoor,windoBlinds)=

luminousFlux(windoBlinds) / distance(doubleHingedDo or,windoBlinds)^2

with

luminousFlux(bulb_1)=1750

luminousFlux(bulb_2)=1500

luminousFlux(bulb_3)=800

luminousFlux(slidingDoor)=0

luminusFlux(windoBlinds)=0

 (Closed Effect Modifiers):

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

doubleHingedDoor has room1 and room2 as Zones in property, but in these calculations it is
considered as part of room1 (we want to calculate how much of light from room1 is going to
room2).

sameZone returns FALSE when comparing zones of same objects for additional safety (so
the Effect Modifier doesn’t consider itself in the calculations).

sameZone(doubleHingedDoor,bulb_1) returns TRUE (room1=room1).

sameZone(doubleHingedDoor,bulb_2) returns FALSE (room1!=room2).

sameZone(doubleHingedDoor,bulb_3) returns FALSE (room1!=room2).

sameZone(doubleHingedDoor,doubleHingedDoor) returns FALSE.

sameZone(doubleHingedDoor,slidingDoor) returns TRUE (room1=room1).

sameZone(doubleHingedDoor,windowBlinds) returns TRUE (room1=room1).

So now the calls to L5 look like the following:

Annex

203

distance(doubleHingedDoor,bulb_1)=

Sqrt[(x(doubleHingedDoor)-x(bulb_1))^2+

(y(doubleHingedDoor)-y(bulb_1))^2]

distance(doubleHingedDoor,bulb_2)= ∞

distance(doubleHingedDoor,bulb_3)= ∞

distance(doubleHingedDoor,doubleHingedDoor)= ∞ (also for additional safety)

distance(doubleHingedDoor,slidingDoor)=

Sqrt[(x(doubleHingedDoor)-x(slidingDoor))^2 +

(y(doubleHingedDoor)-y(slidingDoor))^2]

distance(doubleHingedDoor,windowBlinds)=

Sqrt[(x(doubleHingedDoor)-x(windowBlinds))^2 +

(y(doubleHingedDoor)-y(windowBlinds))^2]

with
x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(bulb_1)=1 y(bulb_1)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(doubleHingedDoor,bulb_1)=1

distance(doubleHingedDoor,bulb_2)= ∞

distance(doubleHingedDoor,bulb_3)= ∞

distance(doubleHingedDoor,doubleHingedDoor)= ∞

distance(doubleHingedDoor,slidingDoor)=Sqrt(3)

distance(doubleHingedDoor,windowBlinds)=Sqrt(3)

using these values to evaluate previous L3 calls gives

directLightExposure(doubleHingedDoor,bulb_1)=1750/1

directLightExposure(doubleHingedDoor,bulb_2)=1500/ ∞

directLightExposure(doubleHingedDoor,bulb_3)=800/ ∞

directLightExposure(doubleHingedDoor,doubleHingedDo or)=0

directLightExposure(doubleHingedDoor,slidingDoor)=0 /3

directLightExposure(doubleHingedDoor,windowBlinds)= 33000/3

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(doubleHingedDoor)=1750+0+0+0+ 0+11000= 12750

Annex

204

So luminousFlux(doubleHingedDoor)=0.5*12750 =6375

Now that we know the value of luminousFlux(doubleHingedDoor)=6375 , we continue
our calculations as if the doubleHingedDoor was another actuator in room2.

We return to Room2.

We left at estimating directLightExposure for every component.

� this generates the following calls to the Law L5; one for each component

� before evaluating L5, each L5 generates the following calls to L1 (the same-zone
verification function)

sameZone(sensor_1,bulb_1) returns FALSE (room2!=room1).

sameZone(sensor_1,bulb_2) returns TRUE (room2=room2).

sameZone(sensor_1,bulb_3) returns TRUE (room2=room2).

sameZone(sensor_1,doubleHingedDoor) returns TRUE (room2=room2).

sameZone(sensor_1,slidingDoor) returns FALSE (room2!=room1).

sameZone(sensor_1,windowBlinds) returns FALSE (room2!=room1).

So now the calls to L5 look like the following:

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=

Sqrt[(x(sensor_1)-x(bulb_2))^2 + (y(sensor_1)-y(bul b_2))^2]

distance(sensor_1,bulb_3)=

Sqrt[(x(sensor_1)-x(bulb_3))^2 + (y(sensor_1)-y(bul b_3))^2]

distance(sensor_1,doubleHingedDoor)=

Sqrt[(x(sensor_1)-x(doubleHingedDoor))^2 +

(y(sensor_1)-y(doubleHingedDoor))^2]

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

with

Annex

205

x(sensor_1)=3 y(sensor_1)=4

x(bulb_2)=3 y(bulb_2)=2

x(bulb_3)=4 y(bulb_3)=4

x(doubleHingedDoor)=2 y(doubleHingedDoor)=2

x(slidingDoor)=1 y(slidingDoor)=0
x(windowBlinds)=0 y(windowBlinds)=3

which give

distance(sensor_1,bulb_1)= ∞

distance(sensor_1,bulb_2)=2

distance(sensor_1,bulb_3)=1

distance(sensor_1,doubleHingedDoor)=Sqrt(5)

distance(sensor_1,slidingDoor)= ∞

distance(sensor_1,windowBlinds)= ∞

using these values to evaluate previous L3 calls gives

directLightExposure(sensor_1,bulb_1)=1750/ ∞

directLightExposure(sensor_1,bulb_2)=1500/4

directLightExposure(sensor_1,bulb_3)=800/1

directLightExposure(sensor_1,doubleHingedDoor)=6375 /5

directLightExposure(sensor_1,slidingDoor)=0/ ∞

directLightExposure(sensor_1,windowBlinds)=0/ ∞

Finally the call to L4 for sensor_1 gives

ambientLightIntensity(sensor_1)=0+375+800+1275+0+0= 2450

That is equal to the value predicted by the Prediction Model.

Annex

206

Annex-D

Rule1:

[CMD_LIGHT_ON_1:

(?MS RDF:type AMI:PresenceSensor),
(?LA RDF:type AMI:LightActuator),
(?R RDF:type ?RT),
(?RT RDFS:subClassOf AMI:Room),
(?MS AMI:isIn ?R),
(?LA AMI:isIn ?R),
(?MS CORE:realStateStringValue ’personInside’),
(?F RDF:type AMI:OnOffFunctionality),
(?LA AMI:hasFunctionality ?F),
(?C RDF:type AMI:OnCommand)

-> (?F AMI:hasCommand ?C)]

Rule2:

[CMD_LIGHT_ON_2:

(?MS RDF:type AMI:PresenceSensor),
(?LS RDF:type AMI:LightSensor),
(?LA RDF:type AMI:LightActuator),
(?R RDF:type ?RT),
(?RT RDFS:subClassOf AMI:Room),
(?MS AMI:isIn ?R),
(?LS AMI:isIn ?R),
(?LA AMI:isIn ?R),
(?DP RDF:type AMI:AAL_DP),
(?DP AMI:isCurentDP ?curDP),
equal(?curDP,’true’),
(?DP AMI:low_AAL_LightThreshold ?LLT),
(?MS CORE:realStateStringValue ’personInside’),
(?LS AMI:realIntValue ?LMV),
lessThan(?LMV,?LLT),
(?F RDF:type AMI:OnOffFunctionality),
(?LA AMI:hasFunctionality ?F),
(?C RDF:type AMI:OnCommand)

-> (?F AMI:hasCommand ?C)]

207

References

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the Physical World
with Pervasive Networks”, IEEE Pervasive Computing, pp.59-69. 2002.

[2] Dorf, Richard C., and Robert H. Bishop. Modern control systems. Pearson, 2011.
[3] Menno Lindwer, Diana Marculescu, Twan Basten, Rainer Zimmermann, Radu

Marculescu, Stefan Jung, Eugenio Cantatore – “Ambient Intelligence Visions and
Achievements: Linking Abstract Ideas to Real-World Concepts.” Automation and
Test in Europe Conference and Exhibition. IEEE, pp.10-15. 2003.

[4] Ramos, C., Augusto, J. C., and Shapiro, D. Ambient intelligence - the next step for
artificial intelligence. IEEE Intelligent Systems, vol.23, no.2 , pp.15-18. 2008.

[5] C. Ramos, “Ambient Intelligence - a State of the Art from Artificial Intelligence
Perspective,” Proc. 13th Portuguese Conf. Ar­tificial Intelligence Workshops, LNAI
4874, Springer, pp.285-295. 2007.

[6] J.C. Augusto and C.D. Nugent, eds., Designing Smart Homes: The Role of Artificial
Intelligence, LNAI, Volume 4008, Springer, 2006.

[7] Ascencio, R.R.L.; Aguilera Galicia, C., "Biomass estimation using artificial neural
networks on field programmable analog devices", 2000. ISIE 2000. Proceedings of
the 2000 IEEE International Symposium on Industrial Electronics, vol.1, no., pp.61-
66 vol.1, 2000.

[8] Hollis, Paul W., and John J. Paulos. “Artificial neural networks using MOS analog
multipliers.” Solid-State Circuits, IEEE Journal of 25, no. 3, pp.849-855. 1990.

[9] Papert, S., Watt, D ., diSessa, A ., & Weir, S. “Final report of the Brookline LOGO
Project: An assessment and documentation of a children's computer laboratory.”
Cambridge, MA: MIT Division for Study and Research in Education, 1979.

[10] Yu, Victor L., Lawrence M. Fagan, Sharon M. Wraith, William J. Clancey, A. Carlisle
Scott, John Hannigan, Robert L. Blum, Bruce G. Buchanan, and Stanley N. Cohen.
“Antimicrobial selection by a computer: a blinded evaluation by infectious disease
experts”. Journal of the American Medical Association vol.242, no.12, pp.1279-1282.
doi:10.1001/jama.1979.03300120033020. PMID 480542. 1979.

[11] R. Fikes and N. Nilsson. “STRIPS: a new approach to the application of theorem
proving to problem solving.” Artificial Intelligence, 2, pp.189-208.1971.

[12] Dzierzanowski, J. M., Chrisman, K. R., MacKinnon, G. J., & Klahr, “The
Authorizer's Assistant. A Knowledge-based Credit Authorization System for
American Express”. Proceedings of the Conference on innovative Applications of
Artificial Intelligence, AAAI, 1989.

[13] Francesco Ricci and Lior Rokach and Bracha Shapira, Introduction to Recommender
Systems Handbook, Recommender Systems Handbook, Springer, 2011, pp. 1-35.

[14] M. Weiser. Hot topics: Ubiquitous computing. IEEE Computer, vol.26, no.10,
pp.71-72, 1993.

[15] Michael Coen, “Design Principals for Intelligent Environments”, Intelligent
Environments, Papers from the 1998 AAAI Spring Symposium, Technical Report
SS-98-02, AAAI Press. 23-25 March, 1998.

[16] Cohen, P., “The role of natural language in a multimodal interface” Proceedings of
User Interface Software Technology (UIST’92) Conference, Academic Press,
Monterey, California, pp.143-149. 1992.

208

[17] Oviatt, S.L., De Angeli, A., Kuhn, K., “Integration and Synchronization of Input
Modes during Multimodal Human-Computer Interaction”. In Proceedings of CHI
1997, pp.415-422, 1997.

[18] E. Aarts and J. Encarnacao. “True Visions: The Emergence of Ambient
Intelligence”. Springer, 2006.

[19] Remagnino, Paolo, and Gian Luca Foresti. « Ambient intelligence: A new
multidisciplinary paradigm. “Systems, Man and Cybernetics, Part A: Systems and
Humans”, IEEE Transactions on 35.1, pp.1-6. 2005

[20] Augusto, J.C., Nakashima, H., Aghajan, H. Handbook on Ambient Intelligence and
Smart Environments: a state of the art. Springer Verlag 2009.

[21] Wooldridge, Michael. An Introduction to MultiAgent Systems. John Wiley & Sons.
ISBN 0-471-49691-X. pp. 366. 2002.

[22] M. Weiser. The computer for the twenty-first century. Scientific American, 165:
pp.94-104, 1991.

[23] DJ Cook, JC Augusto, and VR Jakkulaa, "Ambient intelligence: Technologies,
applications, and opportunities," Pervasive and Mobile Computing, vol. Volume 5,
Issue 4, pp. 277-298, 2009.

[24] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.- C. Burgelman, “Scenarios
for ambient intelligence in 2010,” European Commission, Tech. Rep., 2001.

[25] C. K. M. Crutzen. Invisibility and the meaning of ambient intelligence. International
Review of Information Ethics, 6: pp.1-11, 2006.

[26] J. Rech and K.-D.Althoff. Artificial intelligence and software engineering: Status and
future trends. Themenschwerpunkt KI & SE, KI, 3:5-11, 2004.

[27] A. Vasilakos and W. Pedrycz. “Ambient Intelligence, Wireless Networking, and
Ubiquitous Computing”. Artech House Publishers, 2006.

[28] Raffler, H. "Other perspectives on ambient intelligence." Password Mag 2006.
[29] Kephart, Jeffrey O., and David M. Chess. "The vision of autonomic computing."

Computer 36.1, pp.41-50. 2003.
[30] A. Dey. Understanding and Using Context. Personal and Ubiquitous Computing,

vol.5, no.1, pp.4-7, 2001.
[31] Zhang, W., Hansen, K.M.: Semantic web based self-management for a pervasive

service middleware. In: Second IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2008), Venice, Italy, pp.245-254. October 2008.

[32] P. Krill. IBM research envisions pervasive computing. Info World, 2000.
[33] E. Maeda and Y. Minami. “Steps toward ambient intelligence”. NIT Technical

Review vol.4, no.1, 2006.
[34] Brammer, Karl, and Gerhard Siffling. “Kalman-bucy filters”. Norwood: Artech

House, 1989.
[35] J. O. Berger. “Statistical Decisions.” Springer-Verlag, 1985.
[36] J. Manyika and H. Durrant-Whyte. “Data Fusion and Sensor Management: A

Decentralized Information-Theoretic Approach”. Ellis Horwood, 1994.
[37] R. Xu, G. Mei, Z. Ren, C. Kwan, J. Aube, C. Rochet, and V. Stanford. Speaker

identification and speech recognition using phased arrays. In Y. Cai and J. Abascal,
editors, Ambient Intelligence in Everyday Life, pp.227-238. Springer, 2006.

[38] Cook, Diane, and Sajal Das. “Smart environments: Technology, protocols and
applications.” Vol. 43. John Wiley & Sons, 2004.

[39] M. Pantic. Face for ambient intelligence. In Y. Cai and J. Abascal, editors, “Ambient
Intelligence in Everyday Life”, pp.32-66. Springer, 2006.

209

[40] R. Nakatsu. “Integration of multimedia and art for new human-computer
communications”. In Proceedings of the Pacific Rim International Conference on
Artificial Intelligence, pp.19-28, 2002.

[41] Tao, Jianhua; Tieniu Tan. “Affective Computing: A Review". Affective Computing
and Intelligent Interaction”. LNCS 3784. Springer, pp.981-995. 2005.

[42] F. Wang et al., “Social Computing: From Social Informatics to Social Intelligence”.
IEEE Intelligent Systems, vol. 22, no. 2, pp.79-83, 2007.

[43] Shan, Caifeng, and Ralph Braspenning. “Recognizing facial expressions automatically
from video.” Handbook of ambient intelligence and smart environments. Springer
US, pp.479-509. 2010

[44] Aghajan, Yasmin, et al. “Home Exercise in a Social Context: Real-Time Experience
Sharing Using Avatars.” Intelligent Technologies for Interactive Entertainment.
Springer Berlin Heidelberg, pp.19-31. 2009.

[45] Aghajan, Hamid, Juan Carlos Augusto, and Ramón López-Cózar Delgado, eds.
“Human-centric interfaces for ambient intelligence”. Academic Press, 2009.

[46] Jaimes, Alejandro, Nicu Sebe, and Daniel Gatica-Perez. "Human-centered
computing: a multimedia perspective”. Proceedings of the 14th annual ACM
international conference on Multimedia. ACM, pp.255-864. 2006.

[47] David Canfield Smith, “Pygmalion: a creative programming environment”, Report
no. STAN-CS-75-499. Stanford U. 1975.

[48] R. S. Amant, H. Lieberman, R. Potter, and L. Zettlemoyer, “Programming by
example: visual generalization in programming by example,” Commun. ACM, vol.
43, no. 3, pp.107-114, 2000.

[49] Chin, J., Callaghan, V., Clarke, G., “Soft-appliances: A vision for user created
networked appliances in digital homes”, Journal of Ambient Intelligence and Smart
Environments 1, pp.69-75. 2009.

[50] Chin, J. S. Y., V. Callaghan, M. Colley, H. Hagras, and G. Clarke. “Virtual appliances
for pervasive computing: A deconstructionist, ontology based, programming-by-
example approach.” v2-152. 2005.

[51] Jeannette S Chin, Vic Callaghan, and Graham Clarke. “An end-user programming
paradigm for pervasive computing applications”. In ICPS’06 : Proceedings of the 3rd
International Conference on Pervasive Services, Washington, DC, USA, 2006. doi :
10.1109/PERSER.2006.1652254, pp.325-328. 2006.

[52] Quincy, “The invention of the first wearable computer”, in The Second International
Symposium on Wearable Computers: Digest of Papers, IEEE Computer Society,
pp.4-8. 1998.

[53] Rousseau, Cyril, Yacine Bellik, Frédéric Vernier, and Didier Bazalgette. “A
framework for the intelligent multimodal presentation of information”. Signal
Processing vol. 86, no.12, pp.3696-3713. 2006.

[54] Jacquet, Christophe, Yolaine Bourda, and Yacine Bellik. “A context-aware
locomotion assistance device for the blind”. In People and Computers XVIII—
Design for Life, pp.315-328. Springer London, 2005.

[55] Rousseau, Cyril, Yacine Bellik, and Frédéric Vernier. "Multimodal output
specification/simulation platform." In Proceedings of the 7th international
conference on Multimodal interfaces, pp.84-91. ACM, 2005.

[56] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt,
J. “A unifying reference framework for multi-target user interfaces”. Interacting With
Computer, vol.15, no.3, pp.289-308. 2003.

210

[57] Mark Weiser. “Some computer science issues in ubiquitous computing”. In special
issue, Computer Augmented Environments. CACM, vol.36, no.7, pp.74-83, July
1993.

[58] Streitz, Norbert A. "From human–computer interaction to human–environment
interaction: Ambient intelligence and the disappearing computer." In Universal
Access in Ambient Intelligence Environments, pp.3-13. Springer Berlin Heidelberg,
2007.

[59] Mitleton-Kelly, Eve, et al. "Enhancing Crowd Evacuation and Traffic Management
Through AmI Technologies: A Review of the Literature." Co-evolution of Intelligent
Socio-technical Systems. Springer Berlin Heidelberg, pp.19-41. 2013.

[60] J. C. Augusto and P. McCullah. Ambient intelligence: Concepts and applications.
International Journal on Computer Science and Information Systems, vol.4, no.1:
pp.1-28, 2007.

[61] Tolmie, Peter, James Pycock, Tim Diggins, Allan MacLean, and Alain Karsenty.
“Unremarkable computing.” In Proceedings of the SIGCHI conference on Human
factors in computing systems, pp.399-406. ACM, 2002

[62] D.-M. Han and J.-H. Lim, “Design and implementation of smart home energy
management systems based on zigbee” Consumer Electronics, IEEE Transactions
on, vol. 56, no. 3, pp.1417-1425. 2010.

[63] DJ Cook, “MavHome: An Agent-Based Smart Home,” in Proc. of 1st IEEE Int.
Conf. Pervasive Computing and Communications (PerCom'03). pp.521-524. 2003.

[64] S. K Das, N. Roy and A. Roy “Context-Aware Resource Management in Multi-
Inhabitant Smart Homes: A Framework based on Nash H-Learning”, Pervasive and
Mobile Computing (PMC) Journal, Vol. 2, Issue 4, pp.372-404. Nov. 2006.

[65] Blatt, Mark N. “Mobile Healthcare Solutions and Innovation in Healthcare”. In
proceedings. Brunswick East, Vic.: Health Informatics Society of Australia (HISA) ;
Royal Australian College of General Practitioners (RACGP): pp320-321. 2003.

[66] Blatt, Mark, and George Margelis. “Mobile point of care (MPOC) success stories
from around the world.” HIC 2010: Proceedings; 18th Annual Health Informatics
Conference: Informing the Business of Healthcare, Melbourne Convention and
Exhibition Centre. Health Informatics Society of Australia, pp.24-26 August 2010.

[67] Eleni Stroulia , David Chodos , Nicholas M. Boers , Jianzhao Huang , Pawel
Gburzynski , Ioanis Nikolaidis, “Software engineering for health education and care
delivery systems: The Smart Condo project”. Proceedings of the 2009 ICSE
Workshop on Software Engineering in Health Care, pp.20-28, 18-19 May 2009.

[68] Das, S. K. and Cook, D. J. “Health monitoring in an agent-based smart home”. In
Proceedings of the International Conference on Smart Homes and Health Telematics
(ICOST), 2004.

[69] Das, S. K. and Cook, D. J. (2004b). “Health monitoring in an agent-based smart
home by activity predition”. In Proceedings of the International Conference on
Smart Homes and Health Telematics, vol. 14, pp.3-14. 2004.

[70] G. Van den Broek, F. Cavallo, L. Odetti, and C. Wehrmann, “Ambient Assisted
Living Roadmap,” AALIANCE, Techical Report, 2009.

[71] Tabar, Ali Maleki, Arezou Keshavarz, and Hamid Aghajan. “Smart home care
network using sensor fusion and distributed vision-based reasoning.” In Proceedings
of the 4th ACM international workshop on Video surveillance and sensor networks,
pp.145-154. ACM, 2006.

[72] A. Keshavarz, A. M. Tabar, and H. Aghajan. “Distributed vision-based reasoning for
smart home care”. In Proceedings of ACM SenSys Workshop on DSC, October
2006.

211

[73] Rialle, Vincent, Florence Duchene, Norbert Noury, Lionel Bajolle, and Jacques
Demongeot. “Health" smart" home: information technology for patients at home”.
Telemedicine Journal and E-Health 8, no.4, pp.395-409. 2002.

[74] Zuehlke, D. “SmartFactory –From Vision to Reality in Factory Technologies”. In
Proceedings of the 17th International Federation of Automatic Control (IFAC)
World Congress, Seoul, South Korea, pp. 82-89. 2008.

[75] Zuehlke, Detlef. “SmartFactory - towards a factory-of-things.” Annual Reviews in
Control 34, no.1, pp.129-138. 2010.

[76] Stokic, Dragan; Kirchhoff, Uwe; Sundmaeker, Harald; “Ambient Intelligence in
Manufacturing Industry: Control System Point of View”. The 8th IASTED
International Conference on Control and Applications; Montreal, Quebec, Canada,
pp.63-68. May 2006.

[77] Meixner, Gerrit, Nils Petersen, and Holger Koessling. “User interaction evolution in
the SmartFactory KL”. In Proceedings of the 24th BCS Interaction Specialist Group
Conference, pp.211-220. British Computer Society, 2010.

[78] Finkenzeller, Klaus. RFID Handbook: Radio-frequency identification fundamentals
and applications. New York: Wiley, pp.151-158. 1999.

[79] Kubicki, Sébastien, Sophie Lepreux, and Christophe Kolski. “RFID-driven situation
awareness on TangiSense, a table interacting with tangible objects.” Personal and
Ubiquitous Computing 16.8, pp.1079-1094. 2012.

[80] Ota, N. and P. Wright. “Trends in Wireless Sensor Networks for Manufacturing.”
International Journal of Manufacturing Research 2006 - Vol. 1, No.1, pp.3-17, 2006.

[81] Lucke, Dominik, Carmen Constantinescu, and Engelbert Westkämper. “Smart
factory-a step towards the next generation of manufacturing.” In Manufacturing
Systems and Technologies for the New Frontier, pp.115-118. Springer London,
2008.

[82] Karlsson, Linda. “Distributed generation-the reality of a changing energy market: A
market based evaluation and technical description of small wind power and
photovoltaics in Sweden.” PhD dissertation, Uppsala University, 2011.

[83] S. A. Velastin, B. A. Boghossian, B. P. L. Lo, J. Sun, and M. A. Vicencio-Silva.
“PRISMATICA: toward ambient intelligence in public transport environments”.
IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans,
vol.35, no.1, pp.164-182, 2005.

[84] A. Nijholt, “Smart Exposition Rooms: The Ambient Intelligence View”. Proc.
Electronic Imaging & the Visual Arts (EVA 2004), V. Cappellini & J. Hemsley (eds.),
Pitagora Editrice Bologna, pp.100-105. March 2004.

[85] E. Veron & M. Levasseur. “Ethnographie de l'exposition”. Paris: Bibliotheque
Publique d'Information, Centre Georges Pompidou, 1983.

[86] Flavia Sparacino. “The museum wearable: real–time sensor–driven understanding of
visitors’ interests for personalized visually-augmented museum experiences.” In
Museums and the Web, Boston, MA, 2002.

[87] Marti, P., A. Rizzo, L. Petroni, G. Tozzi, and M. Diligenti. “Adapting the museum: a
non-intrusive user modeling approach.” Courses and Lectures-International Centre
for Mechanical Sciences: pp.311-314, 1999.

[88] P Schmidt, Albrecht, Walter Van de Velde, and Gerd Kortuem. “Situated interaction
in ubiquitous computing.” In CHI'00 extended abstracts on Human factors in
computing systems, pp.374-374. ACM, 2000.

[89] Nijholt, A. “Gulliver Project: Performers and Visitors.” In: Proceedings EVA 2002
Florence: Electronic Imaging & the Visual Arts, Florence, Italy, pp.241-245. 18-22
March 2002.

212

[90] Nijholt, Anton. “Smart Exposition Rooms: The Ambient Intelligence View.” pp.100-
105. 2004.

[91] S-C Chou, W-T Hsieh, F. Gandon and N. Sadeh, “Semantic Web Technologies for
Context-Aware Museum Tour Guide Applications”, International Workshop on
Web and Mobile Information Systems (WAMIS’05), IEEE Computer Society, vol. 2,
pp. 709-714. 2005.

[92] Al Takrouri, Bashar, Antonio Canonico, Layda Gongora, Michal Janiszewski, Claudiu
Toader, and Andreas Schrader. “Eyejot-a ubiquitous context-aware campus
information system.” In ICPCA 2007, 2nd International Conference on Pervasive
Computing and Applications, pp.122-127. IEEE, 2007.

[93] Sadeh, N., F. Gandon, and O.B. Kwon, “Ambient Intelligence: The MyCampus
Experience”. In Ambient Intelligence and Pervasive Computing, T.V.a.W. Pedrycz,
Editor. ArTech House, 2006.

[94] Bromuri, Stefano, Visara Urovi, and Kostas Stathis. “iCampus: A Connected Campus
in the”. International Journal of Ambient Computing and Intelligence (IJACI) vol.2,
no.1, pp.59-65. 2010.

[95] Youngblood, G. Michael, Diane J. Cook, and Lawrence B. Holder. “The mavhome
architecture”. Department of Computer Science and Engineering University of Texas
at Arlington, Techinal Report, 2004.

[96] Das, Sajal K., and Diane J. Cook. “Designing smart environments: A paradigm based
on learning and prediction”. In Pattern Recognition and Machine Intelligence,
Springer Berlin Heidelberg, pp.80-90. 2005.

[97] Bellman, Wilard F. (2001). “Lighting the Stage: Art and Practice”. Third Edition,
Chapter 4 –The Control Console, Broadway Press, Inc. 2006, Louisville Kentucky,
ISBN 0-911747-40-0.

[98] S. Ondrej, B. Zdenek, F. Petr and H. Ondrej, “Zigbee Technology and Device
Design”, International Conference on Systems and Mobile Communication, 2006.

[99] Joseph J. Carr John M. Brown - Introduction to Biomedical Equipment Technology,
Third Edition - ISBN 0-13-849431-2 - Apr 2, 2010.

[100] G. Pottie and W. Kaiser. “Wireless sensor networks”. Communications of the ACM,
43(5):51-58, 2000.

[101] Deshpande, Amol, Carlos Guestrin, and Samuel Madden. “Resource-Aware Wireless
Sensor-Actuator Networks”. IEEE Data Eng. Bull. Vol.28, no.1, pp.40-47. 2005.

[102] Lee, Myeong-Hyeon, and Yoon-Hwa Choi. “Fault detection of wireless sensor
networks”. Computer Communications vol.31, no.14, pp.3469-3475. 2008.

[103] J. Chen, S. Kher and A. Somani, “Distributed fault detection of wireless sensor
networks”. Proceedings of Workshop DIWANS, pp.65-72. 2006.

[104] Surie, Dipak, Olivier Laguionie, and Thomas Pederson. "Wireless sensor networking
of everyday objects in a smart home environment." In International Conference on
Intelligent Sensors, Sensor Networks and Information Processing. ISSNIP 2008,
pp.189-194. IEEE, 2008.

[105] J. Gertler, “Fault Detection and Diagnosis in Engineering Systems”. Marcel Dekker,
New York, 1998.

[106] Isermann, Rolf. “Model base fault detection and diagnosis methods”. In American
Control Conference, 1995. Proceedings of the, vol.3, pp.1605-1609. IEEE, 1995.

[107] Isermann, R. “Fault-diagnosis systems: An introduction from fault detection to fault
tolerance”. Berlin, Germany: Springer. 2006.

[108] L. G. Roberts, “Beyond Moore’s law: Internet growth trends,” IEEE Computer, vol.
vol.33, no.1, pp.117-119, January 2000.

213

[109] R.O. Duda, P.E. Hart, and D.G. Stork, “Pattern Classification” New York: John
Wiley & Sons, 2001, pp. xx + 654, ISBN: 0-471-05669-3. J. Classif. 24, 2 (September
2007), 305-307. DOI=10.1007/s00357-007-0015-9
http://dx.doi.org/10.1007/s00357-007-0015-9.

[110] R. Hanson, J. Stutz, and P. Cheeseman. “Bayesian classification theory”. Technical
Report FIA-90-12-7-01, NASA Ames Research Center, 1990.

[111] Hänsler, E. “Statistische Signale: Grundlagen und Anwendungen (Statistical Signals -
Principles and Applications)” Springer Verlag. 2001.

[112] Jaynes, Edwin T., “Probability Theory: The Logic of Science”. Cambridge University
Press, pp.592-593. 2003.

[113] Füssel, D., “Fault diagnosis with tree-structured neuro-fuzzy systems”, volume
Fortscher.-Ber. VDI Reihe 8, 957. VDI Verlag, Düsseldorf, 2002.

[114] K. Fukunaga. “Introduction to statistical pattern recognition”. Academic press, 1990.
[115] D. F. Specht, “Generation of polynomial discriminant functions for pattern

recognition” IEEE Transactions on Electronic Computers, vol. EC-16, pp.308-319,
June 1967.

[116] Schürmann, Jürgen. “Pattern classification: a unified view of statistical and neural
approaches”. John Wiley & Sons, Inc., 1996.

[117] Nelles, O. “Nonlinear system identification with local linear neuro-fuzzy models”.
Shaker, Aachen, 1999.

[118] Press, W., Flannery, B., Teukolsky, W., and Vetterling, S. “Neumerical recipes in C”.
Cambridge University Press, Cambridge, 1988.

[119] J. R. Quinlan. “Induction of decision trees”. Machine Learning, vol.1, no.1, pp.81-
106. 1986.

[120] J. R. Quinlan. “Simplifying decision trees”. International Journal of Man-Machine
Studies, vol.27, no.3, pp.221-234. September 1987.

[121] Hart, P. “The condensed nearest neighbor rule”. IEEE Transactions on Information
Theory, IT-14, pp.515-516. 1968.

[122] Zhang, Guoqiang Peter. “Neural networks for classification: a survey”. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol.30, no.4, pp.451-462. 2000.

[123] Isermann, R. and Ballé, P. “Trends in the application of model-based fault detection
and diagnosis in technical process”. In 13th IFAC World Congress, volume N, pp.1-
12, San Francisco, CA, USA, 1996.

[124] Kuncheva L.I., “Fuzzy Classifier Design”. Springer-Verlag, Heidelberg, May 2000.
[125] Schneeweiss, Winfrid G. “Reliability theory for large linear systems with helping

neighbors”. IEEE Transactions on Reliability, vol.41, no.3, pp.343-351. 1992.
[126] Barlow, R and Proschan, F. “Statistical theory of reliability and life testing”. Holt,

Rinehart & Winston, Inc., 1975.
[127] Freyermuth, Bernd. “An approach to model based fault diagnosis of industrial

robots.” In Proceedings of IEEE International Conference on Robotics and
Automation, pp.1350-1356. 1991.

[128] Isermann, R. “On fuzzy logic applications for automatic control, supervision and
fault diagnosis”. In proceedings of the 3rd European Congress on Fuzzy and
Intelligent Technologies (EUFIT), vol.2, pp.738-753, Aachen, Germany, 1995.

[129] Isermann, R. and Füssel, D. “Supervision, fault detection and fault-diagnosis
methods – advanced methods and applications”. In Zimmermann, H. –J., editor,
Practical applications of fuzzy technologies, pp.119-159. Kluwer Academic, Boston,
1999.

214

[130] Isermann, Rolf, and Mihaela Ulieru. “Integrated fault detection and diagnosis”. In
Proceedings of IEEE International Conference on ‘Systems, Man and Cybernetics,
Systems Engineering in the Service of Humans’, pp.743-748., 1993.

[131] Shortliffe, E. “Computer-based medical consultations, MYCIN”. Volume 2 of
Artificial Intelligence Series. Elsevier, Amsterdam, 1976.

[132] Sanchez, E. “Solutions in composite fuzzy relation equation – application to medical
diagnosis in browerian logic”. In Gupta, M., Saridis, G., and Gaines, B., editors,
Fuzzy automata and decision processes, pp.221-234, North-Holland, Amsterdam,
1977.

[133] Freyermuth, B. Knowledge-based incipient fault diagnosis of industrial robots. In
Prepr. IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes (SAFEPROCESS), Pergamon Press, volume 2, pp.31-37, Baden-Baden,
Germany, September 1991.

[134] Lee, Wen-Shing, D. L. Grosh, Frank A. Tillman, and Chang H. Lie. “Fault Tree
Analysis, Methods, and Applications - A Review”. IEEE Transactions on Reliability,
vol.34, no.3, pp.194-203, 1985.

[135] Cayrac, D., Dubois, D., and Prade, H. “Handling uncertainty with possibility theory
and fuzzy sets in a satellite fault-diagnosis application”. IEEE Transactions on fuzzy
Systems, vol.4, no.3, pp.251-269, 1996.

[136] Fink, P. and Lusth, J. “Expert systems and diagnostic expertise in the mechanical and
electrical domains”. IEEE Transactions on Systems, Mann and Cybernetics, vol.17,
no.3, pp.340-349, 1987.

[137] Normung, Dindinsf. “Fehlerbaumanalyse-Methode und Bildzeichen (Fault Tree
Analysis - Method and Symbols)”. Berlin: Beuth 1981.

[138] Pearl, J. “Probabilistic reasoning in intelligent systems: networks of plausible
inference”. Morgan Kauffmann Publishers, 1988.

[139] Milne, R. “Strategies for diagnosis”. IEEE Transactions on Systems, Men &
Cybernetics, vol.17, no.3, pp.333-339. 1987.

[140] Reiter, R. “A theory of diagnosis from first principles”. Artificial Intelligence, vol.32,
pp.57-95, 1987.

[141] Kleer, J. de. “An assumption-based TMS”. Artificial intelligence, vol.28, pp.127-162.
1986.

[142] Augusto, J.C., Mccullagh, P., Mcclelland, V., Walkden, J.A. “Enhanced healthcare
provision through assisted decision-making in a smart home environment”. In
Proceedings of the 2nd Workshop on Artificial Intelligence Techniques for Ambient
Intelligence - AITAmI'07, IJCAI, pp.27-32. 2007.

[143] Maria Strimpakou, Ioanna Roussaki, Carsten Pils, Michael Angermann, Patrick
Robertson, and Miltiades E. Anagnostou. “Context modelling and management in
ambient-aware pervasive environments”. In Thomas Strang and Claudia Linnhoff-
Popien, editors, LoCA, volume 3479 of Lecture Notes in Computer Science, pp.2-15.
Springer, 2005.

[144] Sama, Michele, David S. Rosenblum, Zhimin Wang, and Sebastian Elbaum. “Model-
based fault detection in context-aware adaptive applications”. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pp.261-271. ACM, 2008.

[145] C. Xu and S. C. Cheung. “Inconsistency detection and resolution for context-aware
middleware support”. In Proceedings of joint 10th European Software Engineering
Conference and 13th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, vol.30, no.5, pp.336-345, September 2005.

215

[146] C. Xu, S. C. Cheung, and W. K. Chan. “Incremental consistency checking for
pervasive context”. In Proceedings of International Conference on Software
Engineering, pp.292–301, May 2006.

[147] Salber, Daniel, Anind K. Dey, and Gregory D. Abowd. “The context toolkit: aiding
the development of context-enabled applications”. In Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the limit, pp.434-
441. ACM, 1999.

[148] J. De Sousa and D. Garlan, “Aura: An Architectural Framework for User Mobility in
Ubiquitous Computing Environments”. Proceedings of IEEE-IFIP Conference on
Software Architecture, 2002.

[149] Chen, Guanling, and David Kotz. “Context aggregation and dissemination in
ubiquitous computing systems”. In Proceedings Fourth IEEE Workshop on Mobile
Computing Systems and Applications, pp.105-114. IEEE, 2002.

[150] Hong, Jason I., and James A. Landay. “An architecture for privacy-sensitive
ubiquitous computing”. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services, MobiSys. pp.177-189. ACM, 2004.

[151] M.Roman, C.Hess, R.Cerqueira, A.Ranganathan, R.H.Campbell and K.Nahrstedt,
“Gaia: A Middleware platform for active spaces”. ACM SIGMOBILE Mobile
Computing and Communications Review, vol.6, no.4, pp.65-67, 2002.

[152] Chetan, S., Ranganathan, A., & Campbell, R. “Towards fault tolerant pervasive
computing”. IEEE Technology and Society Magazine, vol.24, no.1, pp.38-44. 2005.

[153] D. Kulkarni and A. Tripathi. “A framework for programming robust context-aware
applications”. IEEE Transactions on Software Engineering, vol.36, pp.184-197.
2010.

[154] X. Koutsoukos, F. Zhao, H. Haussecker, J. Reich, and P. Cheung, “Fault modeling
for fault monitoring and diagnosis of sensor-rich hybrid systems”. In Proceedings of
IEEE Orlando, FL, pp.793-801. 2001.

[155] Rish, Irina, Mark Brodie, and Sheng Ma. “Efficient fault diagnosis using probing”. In
AAAI Spring Symposium on Information Refinement and Revision for Decision
Making. 2002.

[156] Debouk, Rami, Stéphane Lafortune, and Demosthenis Teneketzis. “Coordinated
decentralized protocols for failure diagnosis of discrete event systems”. Discrete
Event Dynamic Systems vol.10, no.1-2, pp.33-86. 2000.

[157] J. Kurien, X. Koutsoukos, and F. Zhao, “Distributed diagnosis of networked
embedded systems”. In Proceedings of the 13th International Workshop on
Principles of Diagnosis, Semmering, Austria, pp.179-188. 2002.

[158] Darwiche, A. “Model-based diagnosis under real-world constraints”. AI Magazine.
Vol.21, no.2, pp.57-73. 2000.

[159] Hamscher, W., Console, L. and de Kleer, J. “Readings in Model-Based Diagnosis”.
Morgan Kaufmann Publishers, Inc., San Mateo, California. 1992.

[160] Embley, David W., and Bernhard Thalheim, eds. “Handbook of conceptual
modeling: theory, practice, and research challenges”. Springer ISBN 978-3-642-
15864-3, 2011.

[161] Satish Mishra (1997). “Visual Modeling & Unified Modeling Language (UML) :
Introduction to UML”. Rational Software Corporation. Accessed 9 November 2008.

[162] Chen, P. “The entity-relationship model - Toward a unified view of data”. ACM
Transactions on Database Systems vol.1, no.1, pp.9-36. March 1976.

[163] Bender, E.A. “An Introduction to Mathematical Modeling”. New York: Dover
Publications. ISBN 0-486-41180-X, 2000.

216

[164] Temam, Roger. “Infinite dimensional dynamical systems in mechanics and physics”.
Vol.68. Springer, 1997.

[165] Bickel, Peter J.; Doksum, Kjell A. (2001). Mathematical statistics: Basic and selected
topics. 1 (Second (updated printing 2007) ed.). Pearson Prentice-Hall. ISBN 0-13-
850363-X. MR 443141.

[166] V. I. Arnold, Ordinary Differential Equations, The MIT Press, ISBN 0-262-51018-9.
1978.

[167] E. L. Ince, “Ordinary Differential Equations”. Dover Publications, 1956.
[168] Mark Maier and Eberhardt Rechtin “The Art of Systems Architecture”. 2nd edition,

2002.
[169] SEVOCAB: Software and Systems Engineering Vocabulary. Term: block diagram
[170] Mosterman, P. J. and H. Vangheluwe, “Computer automated multi-paradigm

modeling: An introduction”. Simulation Transactions of the Society for Modeling
and Simulation International vol.80, pp. 433–450, special Issue: Grand Challenges for
Modeling and Simulation. 2004.

[171] C. Hardebolle and F. Boulanger, “Exploring multi-paradigm modeling techniques”.
Simulation Transactions of The Society for Modeling and Simulation International,
vol.85, pp.688-708, November 2009.

[172] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, Dominique Marcadet.
“Semantic Adaptation for Models of Computation”. Proceedings of ACSD 2011
(Application of Concurrency to System Design), pp.153-162. IEEE Computer
Society. June 2011.

[173] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow”. In Proceedings of the
IEEE, vol.75, no.9, pp. 1235-1245. September 1987.

[174] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong, “Taming heterogeneity – the Ptolemy approach,” Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded Software, vol.91, no.1,
pp.127-144, January 2003.

[175] Balarin, Felice, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-
Vincentelli, Marco Sgroi, and Yosinori Watanabe. “Modeling and designing
heterogeneous systems”. In Concurrency and Hardware Design, pp.228-273.
Springer Berlin Heidelberg, 2002.

[176] C. G. Cassandras, M. I. Clune, and P. J. Mosterman, “Hybrid system simulation with
SimEvents”. In Proceedings of the 2nd IFAC Conf. on Analysis and Design of
Hybrid Systems, pp.267-269. 2006.

[177] M. Born and E. Wolf. “Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light”. Cambridge University Press, Cambridge,
England, 7th edition. 2002.

[178] The International Commission on Illumination, Commission Internationale de
L'Eclairage. International Lighting Vocabulary, 4th ed. Joint Publication with IEC,
CIE 17.4. Vienna 1987

[179] Michael Bass, Handbook of Optics Volume II - Devices, Measurements and
Properties, 2nd Edition, McGraw-Hill, ISBN 978-0-07-047974-6 pages 24-40
through 24-47. 1995.

[180] Sillion, Francois X., and Claude Puech. “Radiosity and global illumination”. Vol.11.
San Francisco: Morgan Kaufmann, 1994.

[181] Van Wylen, Gordon John, Richard Edwin Sonntag, and Claus Borgnakke.
“Fundamentals of classical thermodynamics”. New York, NY: Wiley, 1994.

[182] Kittel, C. Kroemer, H. “Thermal Physics”. Second edition, W.H. Freeman, San
Francisco, ISBN 0-7167-1088-9, p.227. 1980.

217

[183] Chang Lee, Joon. “Thermal Physics – Entropy and Free Energies”. World Scientific.
ISBN 981-02-4874-1. 2001.

[184] Merayo, Mercedes G., Manuel Núñez, and Ismael Rodríguez. “Formal testing from
timed finite state machines”. Computer networks vol.52, no.2, pp.432-460. 2008.

[185] E. Chang, A. Pnueli, Z. Manna, “Compositional Verification of Real-Time Systems”.
Proceedings of the 9th IEEE Symposium on Logic in Computer Science, pp. 458-
465. 1994.

[186] J. Ouaknine and J. Worrell, “Some Recent Results in Metric Temporal Logic”. In
Proc. FORMATS, pp.1-13. 2008.

[187] CBDP project description. http://projects.celtic-initiative.org/cbdp/ - Accessed on
11th June 2013.

[188] OSGi Alliance, OSGi service platform, release 3. IOS Press, Inc., 2003
[189] G. Antoniou and F. van Harmelen, “Web ontology language: OWL,” in Handbook

on ontologies, S. Staab and R. Studer, Eds. Springer, pp.91-110. 2009.
[190] http://www.w3.org/TR/PR-rdf-syntax/ “Resource Description Framework (RDF)

Model and Syntax Specification”.
[191] D. Bonino and F. Corno, “DogOnt–ontology modeling for intelligent domotic

environments,” The Semantic Web – International Semantic Web Conference.
ISWC, pp.790-803, 2008.

[192] Jerry R. Hobbs and Feng Pan. (2006) Time Ontology in OWL.
http://www.w3.org/TR/owl-time/ Accessed on 11th June 2013.

[193] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,
“Jena: implementing the semantic web recommendations”. In Proceedings of the
13th international World Wide Web conference on Alternate track papers & posters.
ACM, pp.74-83. 2004.

[194] A. Chandra and D. Harel, “Horn clause queries and generalizations,” The Journal of
Logic Programming, vol.2, no.1, pp.1-15, 1985.

[195] Jacquet, Christophe, Ahmed Mohamed*, and Yacine Bellik. “An Ambient Assisted
Living Framework with Automatic Self-Diagnosis”. International Journal on
Advances in Life Sciences vol.5, no.1. 2013.

[196] Boulanger, Frédéric, and Cécile Hardebolle. "Simulation of Multi-Formalism Models
with ModHel'X”. In 1st International Conference on Software Testing, Verification,
and Validation, pp.318-327. IEEE, 2008.

[197] Romuald Deshayes, Christophe Jacquet, Cécile Hardebolle, Frédéric Boulanger, Tom
Mens. “Heterogeneous Modeling of Gesture-Based 3D Applications”. Proceedings
of MPM 2012 (Multi-Paradigm Modeling workshop at Models 2012), pp.1-6.
October 2012.

[198] Tamara A. Papalias and Mike Wong, “Making Sense of Light Sensors”. Application
notes, CA: Intersil Americas Inc. 2007.

[199] R. Sharifi and R. Langari, “Sensor Fault Diagnosis with a Probabilistic Decision
Process”. Mechanical System and Signal Processing, Vol.34, No.1-2, pp.146-155,
January 2013.

[200] Lampis, M., and J. D. Andrews. “Bayesian belief networks for system fault
diagnostics”. Quality and Reliability Engineering International 25.4 (2009): 409-426.

[201] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri “A review of process
fault detection and diagnosis Part I: Quantitative model-based methods” Computer
and Chemical Engineering, vol.27, pp.293-311. 2003.

[202] S.N. Maheshwari, S.L. Hakimi “On models for diagnosable systems and probabilistic
fault diagnosis” IEEE Transactions on Computers, vol.100, no.3, pp.228-236. 1976.

218

[203] P.H. Ibargüengoytia, S. Vadera, L.E. Sucar “A probabilistic model for information
and sensor validation” Computers Journal, vol.49, no.1, pp.113-126. 2006.

[204] Smets, Philippe, and Robert Kennes. “The transferable belief model.” Artificial
intelligence vol.66. no.2, pp.191-234. 1994.

[205] Yager, Ronald R. “On the Dempster-Shafer framework and new combination rules.”
Information sciences vol.41, no.2, pp.93-137. 1987.

[206] Ph. Smets. The application of the transferable belief model to diagnostic problems.
International Journal of Intelligent Systems, vol.13, pp.127-157. 1998.

[207] Rakar, Andrej, Đani Juričić, and Peter Ballé. “Transferable belief model in fault
diagnosis.” Engineering Applications of Artificial Intelligence vol.12, no.5, pp. 555-
567. 1999.

[208] WANG, Hongm, Tian-You CHAI, Jin-Liang DING, and Martin BROWN. “Data
driven fault diagnosis and fault tolerant control: some advances and possible new
directions.” Acta Automatica Sinica vol.35, no.6, pp.739-747. 2009.

[209] "http://www.w3.org/TR/sparql11-overview/". w3.org. 21/03/2013. Accessed 26th
June 2013.

[210] Bernaras, A., I. Laresgoiti, N. Bartolome, and J. Corera. “An ontology for fault
diagnosis in electrical networks.” In Proceedings of ISAP'96., IEEE International
Conference on Intelligent Systems Applications to Power Systems, pp.199-203.,
1996.

[211] Gharsellaoui, Asma, Yacine Bellik, and Christophe Jacquet. “Requirements of Task
Modeling in Ambient Intelligent Environment”. In Ambient 2012, The Second
International Conference on Ambient Computing, Applications, Services and
Technologies, pp.71-78. 2012.

[212] Steggles, Pete, and Stephan Gschwind. “The Ubisense smart space platform.” In
Adjunct Proceedings of the Third International Conference on Pervasive
Computing, vol.191, pp.73-76. 2005.

[213] Tsao, Jeff Y. “Solid-state lighting: lamps, chips, and materials for tomorrow”.
Circuits and Devices Magazine, IEEE vol.20, no.3, pp.28-37. 2004.

[214] Schlyter, Paul. “Radiometry and photometry in astronomy FAQ.” Stockholm: Paul
Schlyter Home Page. http://stjarnhimlen.se/comp/radfaq.html (2006). Accessed 5th
November 2013.

[215] Wark, Kenneth and Richards, Donald E., Thermodynamics, 6th Ed., McGraw-Hill,
1999.

[216] Jacquet, Christophe, Ahmed Mohamed*, Frédéric Boulanger, Cécile Hardebolle, and
Yacine Bellik. “Building heterogeneous models at runtime to detect faults in
ambient-intelligent environments.” In Proceedings of the 8th Workshop on Models
at Run.time, vol.1079, pp.52-63. 2013.

