
HAL Id: tel-00995328
https://theses.hal.science/tel-00995328

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rendu sonore dynamique d’environnements complexes
Raphaël Loyet

To cite this version:
Raphaël Loyet. Rendu sonore dynamique d’environnements complexes. Other [cs.OH]. Université
Claude Bernard - Lyon I, 2012. English. �NNT : 2012LYO10304�. �tel-00995328�

https://theses.hal.science/tel-00995328
https://hal.archives-ouvertes.fr

N˚d’ordre : 304 Année 2012
1
2

Thèse de l’université de Lyon

Délivrée par

L’université Claude Bernard Lyon 1

École doctorale InfoMaths

Diplôme de doctorat

(arrêté du 7 août 2006) soutenu publiquement le 18 décembre 2012 par

Raphaël Loyet

Dynamic Sound Rendering of Complex Environments

Rendu sonore dynamique d’environnements complexes

Directeur de thèse : Victor Ostromoukhov

Jury

M. Kadi Bouatouch, rapporteur

M. Nicolas Tsingos, rapporteur

M. Victor Ostromoukhov, directeur de thèse

M. Judicaël Picault, président du jury

M. Jean-Claude Iehl, examinateur

M. Julien Maillard, examinateur

Acknowledgments

Remerciements

S’il ne devait y avoir qu’un remerciement, il irait aux membres de ma famille pour leur soutien
indéfectible durant les cinq années de ces travaux et toutes les années qui ont précédé. Un grand grand
merci à mes parents pour avoir toujours cru en moi, pour m’avoir toujours soutenu tant personnellement
que financièrement pendant mes études. Un grand merci à mon petit frère, pour n’être plus si petit que
ça. Et à celle qui fût autrefois ma petite sœur. Celle qui est finalement devenue la grande sœur à la fin
de ces travaux.

Mes remerciements vont ensuite à ceux qui ont porté ce travail et ont rendu cette soutenance pos-
sible. Bernard Péroche et Jean-Claude Iehl pour m’avoir encadré dès le début de ma thèse et Victor
Ostromoukhov pour avoir repris le flambeau lors du départ à la retraite de mon directeur de thèse. Merci
aux membres du LIRIS pour leurs nombreux conseils et commentaires concernant ma présentation.

Merci à l’équipe du CSTB pour m’avoir accueilli dans ses locaux pendant les trois premières années de
mes travaux. Un merci particulier à Nicolas Noé et Dirk van Maerck pour les discussions que nous avons
eues au sujet de ma thèse, pour leur très grande expertise du sujet et pour leurs styles diamétralement
opposés. Surtout, merci à Julien Maillard pour avoir supporté dans son bureau un doctorant qui a
la mauvaise habitude de faire de la musique (certains diraient du bruit) avec tout ce qui lui passe
sous les doigts. Mais aussi pour son soutien constant, pour tous ses éclaircissements dans le domaine du
traitement du signal, pour sa grande rigueur qui a amélioré la qualité de mes travaux et de ce manuscrit.

Un merci très chaleureux aux membres du jury venus tous trois spécialement de la côte ouest pour
l’occasion (certaines côtes ouest étant plus éloignées que d’autres). Merci à Nicolas Tsingos et Kadi
Bouatouch pour avoir accepté de rapporter mes travaux, pour leurs nombreux commentaires et anno-
tations. Merci aussi à Judicael Picault, ce président du jury qui a décortiqué mon manuscrit tel un
rapporteur.

J’ai eu la chance pendant ces travaux d’être porté et transporté par des amies, des amantes qui
m’ont soutenu à leur façon. Merci Céline pour m’avoir porté et supporté pendant toutes ces années.
Merci Eglantine pour m’avoir libéré et émancipé. Merci Fanny pour tes passions, pour m’avoir conduit
si haut que l’air se fait rare. Merci Charlotte pour la ligne en pointillés tracée ensemble depuis deux
ans, pour notre insoutenable légèreté et pour les quatre premiers chapitres. Merci aux passantes pour
n’avoir rien demandé.

Un grand merci à tous les amis, ceux qui ont toujours été là avant, pendant et qui, je le sais resteront
encore là pour un bout de route ensemble.

Merci à tous ceux qui m’ont inspiré, en vrac et de façon non exhaustive : Brassens, Brel, Kundera,
Brahms, Aronofski, Lebowski, Jardin, Joe Simpson, Cobain, Кустурица, Bregović, Les bérus, Almo-
dovar, Les Têtes Raides, Balanescu Quartet, Leprest, Django, Bratsch, les VRP, Mano Solo, Pierre
Schaeffer, the Clash, The Presidents of the USA . . .

i

Merci à tous ceux avec qui nous nous sommes inspirés mutuellement, toujours en vrac : la 5ème Danse
Hongroise, Yebarov, les Scared of Bumps, les Patates à la Cave, les Skalators, les Trois Moustiquaires,
Das Band, les Laborieux du Dépliant, les Woodchucks, les Shpiritus Movens, les musiciens du café
Bayard, tous ceux rencontrés sur la route.

Enfin, merci à tous ces gens, toutes ces images, tous ces sons furtifs, qui rendent la vie si douce : les
regards d’Istanbul, les joueurs de cymbalum de Barcelone ou de Freiburg, les compagnons de cordées,
Sibiu, le Женекия, la petite bergère qui a perdu son troupeau au fond du canyon de Colca, le désert de sel
d’Uyuni, Huayna Potosi, Montserrat, la pluie irlandaise, le feu écossais, le vétérinaire de Gradesnica, la
Slovaquie, le Machu Picchu, Eddy, le Mont Aiguille, le Boléro de Ravel et tout ce qui reste à découvrir . . .

Raphaël Loyet
27 décembre 2012

ii

Contents

Acknowledgments i

List of Figures vii

List of Figures ix

List of Tables xi

List of Tables xi

List of Algorithms xiii

List of Notations xv

Abstract xxi

Résumé xxiii

Introduction 1

1 Representations of sound 5
1.1 The physics of sound propagation . 6

1.1.1 The physics of sound . 7
1.1.2 What is a virtual scene ? . 9
1.1.3 Sound source . 10
1.1.4 Sound receiver . 10
1.1.5 Room Acoustic Rendering Equation (RARE) . 11

1.2 Digital signal processing for auralization . 17
1.2.1 Analog vs. Digital signal processing . 17
1.2.2 Fourier analysis . 18
1.2.3 Impulse response . 19
1.2.4 Echogram . 19
1.2.5 Convolution . 20
1.2.6 Filtering . 21
1.2.7 Delay . 22
1.2.8 Doppler shift . 23
1.2.9 Block processing for real-time algorithms . 24

1.3 Spatial hearing – The perception of sound . 24
1.3.1 Perceived intensity of sound . 25
1.3.2 Frequency perception of sound . 25
1.3.3 Spatial perception of sound . 27
1.3.4 3D audio rendering techniques . 28

iii

1.4 Room Acoustics – Structure of the reverberation . 29
1.4.1 Room Impulse Response (RIR) analysis . 29
1.4.2 Reverberation time . 30
1.4.3 Objective parameters for the evaluation of a room 31

2 Analysis and implementation of propagation algorithms 33
2.1 State of the art . 34

2.1.1 Ray or particle propagation . 34
2.1.2 Sound emitter . 36
2.1.3 Sound ray/particle propagation and reflections 36
2.1.4 Sound receiver . 40
2.1.5 Pure specular contributions to the sound field . 45
2.1.6 Diffuse reflections . 49
2.1.7 Grammar and tree representation of acoustical paths 55

2.2 Independent processing of specular and diffuse field . 57
2.2.1 Specular paths . 58
2.2.2 Diffuse paths . 58
2.2.3 Reflection graph algorithm . 59

2.3 Implementation of a hybrid source image / radiosity algorithm 60
2.3.1 FE→i and FR→j calculation . 61
2.3.2 Fi→j calculation . 61
2.3.3 Collecting diffuse and specular paths . 63

2.4 Spatial coherence of the sound field in rooms : the rendering hierarchy 66
2.5 Implementation of sound propagation with specular and diffuse reflection algorithms for

real-time auralization . 67
2.5.1 Deterministic ray tracing algorithm with growing sphere 68
2.5.2 Incremental Monte Carlo particle tracing algorithm 70

2.6 Conclusion . 72

3 Auralization of the pressure sound field 73
3.1 State of the art . 74

3.1.1 Auralization of a single specular ray . 74
3.1.2 Auralization of the specular paths . 75
3.1.3 Digital Signal Processing (DSP) of binaural rendering 76
3.1.4 Efficient Independent Component Analysis (ICA) decomposition of the Head Re-

lated Transfer Functions (HRTF) . 77
3.1.5 Auralization of diffuse and specular fields by convolution 78

3.2 Auralization of pure specular paths . 79
3.2.1 Description of the specular auralization process 79
3.2.2 Spatialization of the most significant paths . 82

3.3 Diffuse field rendering . 85

iv

3.3.1 Creation of the RIR . 85
3.3.2 Graphical Processing Unit (GPU) convolution 89

3.4 Combining specular and diffuse field for a unified audio rendering 94
3.5 The Specular/Cluster/Diffuse (SCD) decomposition of the Impulse Response (IR) . . . 95
3.6 Conclusion . 97

4 Perceptive simplifications of pure specular paths 99
4.1 State of the art . 100

4.1.1 Localization of a sound source . 101
4.1.2 Multi-sources localization . 103
4.1.3 Perceptual simplification for binaural room auralization 106

4.2 The masking functions . 108
4.2.1 Spatial masking . 108
4.2.2 Temporal masking . 109
4.2.3 Termination criterion T . 110

4.3 The perceptive clustering algorithm . 111
4.4 Subjective evaluation . 111

4.4.1 The binaural auralization framework . 111
4.4.2 Population and Test Cases . 113
4.4.3 The test procedure . 114
4.4.4 Results . 114
4.4.5 Discussion . 116

4.5 Conclusion and general discussion . 116

5 Efficient task scheduling 119
5.1 State of the art . 120

5.1.1 Real-Time Acoustic Rendering of Complex Environments Including Diffraction
and Curved Surfaces . 121

5.1.2 Frequency domain acoustic radiance transfer for real-time auralization 122
5.2 Digital Signal Processing (DSP) audio graph . 124

5.2.1 Presentation of the audio graph . 124
5.2.2 Parallel execution of the nodes . 126

5.3 Multi-thread general structure . 129
5.3.1 Multiple buffering . 130
5.3.2 Task scheduling . 131

5.4 Progressive impulse response update . 133
5.4.1 The progressive update algorithm . 133

5.5 Conclusion . 136

v

6 Validation 137
6.1 The test procedure . 138
6.2 Results . 139

6.2.1 Validation . 139
6.2.2 Execution time . 139

6.3 Discussion . 143

Synthesis of the research and perspectives 147

A Mathematical tools 149
A.1 Solid Angle . 149
A.2 Spherical coordinates . 150
A.3 Dirac distribution . 150
A.4 Expected value, variance, standard deviation . 151
A.5 Interpolation . 151

A.5.1 Drop-sample interpolator . 151
A.5.2 Linear interpolator . 152
A.5.3 Hermite interpolator . 152

A.6 Numerical integration . 153
A.6.1 Rectangle method . 153
A.6.2 Trapezoidal method . 154
A.6.3 Simpson method . 154

A.7 Monte Carlo integration . 154
A.7.1 Russian Roulette [after Pharr and Humphreys, 2004] 155

B Test scenes 157
B.1 Round Robin 3 on Room acoustics . 157

B.1.1 Phase 1 . 157
B.1.2 Phase 2 . 158
B.1.3 Phase 3 . 160

Bibliography 163

vi

List of Figures

1 Auralization pipeline. 2

1.1 Radiance notations: Ω is a solid angle, and Ω⊥ the projected solid angle. 8
1.2 Rendering equation notations (cf. Equation 1.12). 11
1.3 Geometric term G notations. 13

2.1 Specular reflection construction and notation. 38
2.2 Reflection direction according to the ratio wavelength over element size — after Cox et al.

[2006]. 39
2.3 Combining Lambertian and specular Bidirectional Reflectance Distribution Function (BRDF). 40
2.4 An echogram of a collect sphere with spatial information — after Lentz et al. [2007]. . . 43
2.5 Two rays intersecting a large collect structure. 44
2.6 Image sources of order zero, one and two, and a back-traced ray for one of them. 47
2.7 Some grammar extractions of the hybrid image source / radiosity algorithm for test scene

B.1.1. 56
2.8 Graph representation of a grammar: (left) two trees generated from a source and a

receiver, (right) two examples of paths EDSR and ESDSSR. 57
2.9 Hybrid image source radiosity algorithm. 60
2.10 Three different integration steps on a specular echogram. 64
2.11 The result of the convolution of two form factors FE→i between a source image and a

wall, and FR→i between the same wall and a receiver image. 65
2.12 Evaluation of the form factors : (left) exchanges between an image source, a wall and an

image receiver FE→i ∗ FR→i, (right) exchanges between an image source, two walls and
an image receiver FE→i ∗ Fi→i+1 ∗ FR→i+1. 65

2.13 Extraction of the grammar for six realizations of the hybrid image source radiosity algo-
rithm for the six couples of points/receivers of scene B.1.1. 67

2.14 Standard deviations between the observations of Figure 2.13. The maximal values of each
curve are used as coherence criterion. 68

3.1 DSP propagation algorithm, after Deille et al. [2006a]. 76
3.2 DSP binaural auralization algorithm, after Deille et al. [2006a]. 77
3.3 Spatialization algorithm including propagation delay, material attenuation, air attenua-

tion and HRTF filtering. 80
3.4 Half Hann windows used for starting (blue) and stopping (green) paths. 83
3.5 Smoothing of the echogram when re-sampling from 86 Hz to 44100 Hz. 86
3.6 Creation of an impulse response sampled at 44100 Hz from a 86 Hz integrated echogram. 87
3.7 Frequency dependent re-sampling of the blocks. 88
3.8 Constant-OverLap and Add (COLA) principle. 90

vii

3.9 Convolution procedure executed on GPU — Only the first part of the convolution is kept
as the output block. The remaining samples are kept and summed with the following
blocks (see Figure 3.8). 92

3.10 Full auralization process including propagation, DSP and perceptive reduction. 95
3.11 Two views of the Specular/Cluster/Diffuse (SCD) decomposition of the Room Impulse

Response (RIR) generated the scene described in Appendix B.1.3. 96

4.1 Classical precedence effect experiment [compiled from Blauert, 1999; Litovsky et al., 1999;
Hacıhabiboğlu and Murtagh, 2006]. 105

4.2 The two step clustering algorithm [after Hacıhabiboğlu and Murtagh, 2008]. 107
4.3 Spatial clustering, the suppressors are rays that satisfy both equations 4.4 and 4.5. . . . 109
4.4 Clustering algorithm. 112
4.5 Spectrograms of the three anechoic test sounds. 113
4.6 Subjective test results. 115

5.1 Acoustic radiance transfer method for real-time auralization computation on GPU and
Computer Processing Unit (CPU) [after Siltanen et al., 2009]. 123

5.2 Unified Modeling Language (UML) representation of the structure of an audio node, an
audio graph, and their inheritances. 125

5.3 The macroscopic view of the audio application. 126
5.4 GPU convolution audio node. 128
5.5 Full auralization framework with triple buffering and the pilot module. 132
5.6 Incremental algorithm for the asynchronous update of the modules according to the move-

ment of the source or listener. 135

6.1 T30 for all arrangements of source receivers for the second phase of the round robin (with
open curtains). 140

6.2 Objective parameters for position S1R1 for the second phase of the round robin (with
open curtains). 141

6.3 Relative mean error of all participants for the second phase for three octave bands, aver-
aged over six positions (with open curtains). 142

A.1 The solid angle, Ω, on a sphere of radius r, is the ratio of the surface, A to r2, just like
the angle, θ, on a circle of radius, r, is the length of the arc a divided by r. 149

A.2 Drop-sample interpolation impulse response [after Niemitalo, 2001]. 152
A.3 Linear interpolation impulse response [after Niemitalo, 2001]. 152
A.4 Hermite impulse response [after Niemitalo, 2001]. 152
A.5 Comparison of three interpolation methods (Drop-sample, linear and Hermite). 153
A.6 Three integration methods. 154

B.1 Musical studio of the Physikalisch-Technische Bundesanstalt (PTB) with wooden diffusers.158

viii

B.2 The scene of the first phase of the third round robin on room acoustics with the position
of the sources and receivers [after Bork, 2005b]. 160

B.3 The scene of the second phase of the third round robin on room acoustics with open
curtains. 161

B.4 Details of the structure of the diffusing wall and ceiling of the PTB studio [after Bork,
2005a,b]. 161

B.5 The scene of the third phase of the third round robin on room acoustics with close curtains.162

ix

List of Tables

2.1 Number of image sources depending on the number of walls and the order of reflections. 46
2.2 Descriptive grammar of acoustical paths. 57

4.1 Localization blur for various signals in front of the listener [after Blauert, 1999]. 102

6.1 Parameters for Off-Line (OL) and Real-Time (RT) test procedures. 138
6.2 Subjective difference limen used as reference for Figure 6.3 [after Bork, 2005b]. 141
6.3 Total execution time in milliseconds of each module for the five test cases. 141
6.4 Average execution time for one reflection order of the specular and the diffuse reflections

algorithms, and one audio block processing by the audio application module. 143

B.1 Position of the sources and receivers in Cartesian coordinates. 158
B.2 Absorption coefficients, α, for the materials of the second and third phase of the round

robin. 159
B.3 Scattering coefficients, s, for the materials of the second and third phase (except wood-

absorbers and ceiling) of the round robin. 159
B.4 Scattering coefficients, s, for the materials of the third phase of the round robin. 160

xi

List of Algorithms

1 Image source recursive algorithm. 45
2 Deterministic Ray Tracing (DRT) algorithm. 49
3 Sonel emission. 54
4 Sonel collect. 54
5 The four recursive functions of the reflection graph algorithm. 60
6 Fi→j calculation using particles. 62
7 Incremental deterministic ray tracing with growing sphere algorithm. 70
8 Incremental Monte Carlo particle tracing. 71

xiii

List of Notations

A Surface area

c Celerity of the sound

C80 Clarity

Cn Corrective coefficient

C Clustering function

CS Spatial clustering function

CT Temporal clustering function

d Distance

dR Distance traveled by a ray

ddopp Doppler shift

D Detection function

D50 Definition

Dmax Maximal density of rays in a cluster

E Emitter (sound source)

f Frequency

fr BRDF

frS Specular BRDF

frD Diffuse BRDF

Fi→j Form factor from i to j

Fs Sampling frequency

G Geometric term

g Geometric term in Temporal Intensity Algebra (TIA) form

h General impulse response

hαE Source directivity filter

hαR HRTF filter

Hαm Sound source convolved with air absorption

I Intensity

IE Intensity emitted by the sound source

I(θ) Irradiance in direction θ

� Imaginary part

xv

l Time dependent radiance

L Radiance

Lp Sound pressure level

LI Sound intensity level

LW Acoustical power

n Normal to a surface

NIS Number of image sources

NP Number of particles

Nrefl Number of reflections

NRIR Number of coefficients of a RIR

Nwalls Number of walls

p Sound pressure

p̃ Root Mean Square (RMS) sound pressure

P Particle

r Radius of a sphere

rR Radius of the receiver

r(x, x′, Ω) Reflection kernel

R Ray

R Sound Receiver

� Real part

s General signal

sE Emitted signal

sE Emitted signal with directivity

sES∗ Signal after specular reflections

si Input signal

so Output signal

S Suppressor

Ŝ Fourier transform of signal s

Sr Temporal displacement operator

S̃r Propagation operator

t Time

xvi

T60 Reverberation time

T Termination criterion

V Visibility function

w Window signal

wh Hann window signal

W Radiant energy

x Position in 3D space

(x, y, z) Cartesian coordinates

(xE , yE , zE) Cartesian coordinates of a sound source

(xI , yI , zI) Cartesian coordinates of an intersection

(xR, yR, zR) Cartesian coordinates of a receiver

α Absorption coefficient

αm Absorption of the medium

β Splitting coefficient

δ Dirac distribution

γ Cluster

λ Wavelength

φs Phase of signal s

Φ Energy

ΦD Energy reflected diffusely

ΦE Emitted Energy

ΦR Energy carried by a ray

ΦS Energy reflected specularly

τhigh Temporal source separation threshold

τlow Temporal echo threshold

(θ, φ) Orientation in polar coordinates

(θE , φE) Orientation of a sound source in polar coordinates

(θR, φR) Orientation of a sound receiver in polar coordinates

ϑS Specular reflectance

ϑD Diffuse reflectance

ξ Uniformly distributed random number

xvii

List of Acronyms

ADC Analog-to-Digital Converter

API Application Programming Interface

BEM Boundary Element Method

BRDF Bidirectional Reflectance Distribution Function

BSA Binaural Spatialization Algorithm

BSSRDF Bi-directional Subsurface Scattering Reflectance Distribution Function

COLA Constant-OverLap and Add

CPU Computer Processing Unit

CSTB Centre Scientifique et Technique du Bâtiment

DAC Digital-to-Analog Converter

DAT Digital Audio Tape

DFT Discrete Fourier Transform

DRT Deterministic Ray Tracing

DSP Digital Signal Processing

ESPRO Espace de Projection

FEM Finite Element Method

FFT Fast Fourier Transform

FIR Finite Impulse Response

GPU Graphical Processing Unit

GUI Graphical User Interface

HRTF Head Related Transfer Functions

IACC Interaural Cross-Correlation

ICA Independent Component Analysis

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

xix

IR Impulse Response

IRCAM Institut de Recherche et de Coordination Acoustique/Musique

ITD Interaural Time Difference

LF Lateral Fraction

LFC Lateral Fraction Cosine

MC Monte Carlo

MCRT Monte Carlo Ray Tracing

MLS Maximum Length Sequence

OL Off-Line

PTB Physikalisch-Technische Bundesanstalt

RARE Room Acoustic Rendering Equation

RIR Room Impulse Response

RMS Root Mean Square

RT Real-Time

SCD Specular/Cluster/Diffuse

SRT Stochastic Ray Tracing

TIA Temporal Intensity Algebra

UML Unified Modeling Language

VBAP Vector Base Amplitude Panning

WOLA Weighted-OverLap-Add

xx

Abstract

During the past twenty years many studies have been conducted in the field of auralization, which aims
at rendering audible the results of an acoustic simulation. These studies have mainly focused on the
propagation algorithms and the sound field audio rendering for complex environments. Currently, much
research concentrates on real-time audio rendering.

This thesis addresses the problematic of real-time audio rendering of complex environments accord-
ing to four axes: sound propagation, Digital Signal Processing (DSP), spatial perception of sound and
computational optimizations. In the field of propagation, a method that aims at analyzing the variety
of existing algorithms is proposed. This method yields two algorithms dedicated to the real-time propa-
gation of both specular and diffuse information. In the field of DSP, the auralization is performed with
an efficient binaural spatialization module for the most significant specular information, and a GPU
convolution algorithm for the diffuse sound field auralization. The most significant paths are extracted
thanks to a perceptive model based on temporal and spatial masking of the specular contributions.
Finally, the implementation of these algorithms on recent computer architectures, taking advantage of
the parallel processing of the new CPUs, and the benefits of GPUs for DSP calculations is presented.

Keywords
Auralization – real-time – perceptive reduction – subjective evaluation – sound propagation – ray-tracing
– binaural audio rendering – GPU – parallel computing – multi-thread – progressive impulse response
update

xxi

Résumé

De nombreuses études ont été menées lors des vingt dernières années dans le domaine de l’auralisation.
Elles consistent à rendre audible les résultats d’une simulation acoustique. Ces études se sont majori-
tairement focalisées sur les algorithmes de propagation et la restitution du champ acoustique dans des
environnements complexes. Actuellement, de nombreux travaux portent sur le rendu sonore en temps
réel.

Cette thèse aborde la problématique du rendu sonore dynamique d’environnements complexes selon
quatre axes : la propagation des ondes sonores, le traitement du signal, la perception spatiale du son et
l’optimisation informatique. Dans le domaine de la propagation, une méthode permettant d’analyser la
variété des algorithmes présents dans la bibliographie est proposée. A partir de cette méthode d’analyse,
deux algorithmes dédiés à la restitution en temps réel des champs spéculaires et diffus ont été extraits.
Dans le domaine du traitement du signal, la restitution est réalisée à l’aide d’un algorithme optimisé de
spatialisation binaurale pour les chemins spéculaires les plus significatifs et un algorithme de convolution
sur carte graphique pour la restitution du champ diffus. Les chemins les plus significatifs sont extraits
grace à un modèle perceptif basé sur le masquage temporel et spatial des contributions spéculaires.
Finalement, l’implémentation de ces algorithmes sur des architectures parallèles récentes en prenant en
compte les nouvelles architectures multi-cœurs et les nouvelles cartes graphiques est présenté.

Mots clés
Auralisation – temps réel – réduction perceptive – évaluation subjective – propagation du l’onde sonore
– lancer de rayons – restitution binaurale – rendu sur carte graphique – programmation parallèle – mise
à jour progressive de la réponse impulsionnelle

xxiii

Introduction

The first reaction of an acoustician investigating a new room is to clap in his hands, and listen. This
empirical method was always used to gain a first insight of the acoustics of the place. The most
experienced acoustician or sound engineers maintain that this method will always be very practical to
perceive the acoustical qualities of a room. There are two main drawbacks with this empirical method:
it is very subjective and it can only be performed in existing buildings. Regarding the first drawback,
the discipline of room acoustics provides a certain number of methods and indicators to provide an
objective analysis of an enclosed space. These methods are usually based on the analysis of the Room
Impulse Response (RIR). The RIR presents the result of the propagation of an impulsive sound between
a source and a receiver in an environment. It can be measured with e.g. a balloon pop or a gun shoot
as impulsive sounds. This is, in some way, similar to a hand clap, but more precise. Here are some
examples of questions that are usually addressed by architects to acoustician when designing a room:

• What will be the acoustics of this room?

• What type of materials should I choose to improve the intelligibility of this room?

• What is the influence of this diffuser on the sound perceived in front of the stage?

• How can I increase the reverberation time of this room?

These questions lead us to the second drawback of the hand clapping method; the room does not
necessary exist when the previous questions are addressed. Many predictive algorithms were imple-
mented during the past 35 years to estimate the acoustics of virtual spaces. In this document, virtual
spaces refer to 3D models that represent existing or non existing places. We especially focus on a family
of algorithms based on geometrical acoustic propagation, where the propagation of sound between a
source and a receiver is represented by geometrical elements such as rays, beams, particles. . .

Context
This study is related to the field of virtual reality, and especially spatial audio rendering, i.e., auraliza-
tion. It covers the evaluation and auralization of the acoustics of an enclosed space, taking into account
its geometry and the physical properties of the materials. The audio rendering is interactive: the source
and the receiver can move within the virtual scene. These elements allow estimation of the acoustical
qualities of a place before its construction or refurbishment through listening tests. It is then possible
to estimate and compare different construction scenarios, and thus increase user comfort. The previous
studies conducted in the field of real-time auralization are either based on a pre-calculation step [see e.g.
Siltanen et al., 2009], or on an approximate rendering of the late reverberation [see e.g. Funkhouser
et al., 2004]. The main strength of these algorithms is their low computation cost, that make them
compatible with interactive simulations. However, the approximations of the late reverberation and
the pre-calculation time could be prohibitive for both the quality and the calculation time of multiple
scenarios of buildings. In parallel, Hacıhabiboğlu and Murtagh [2008] proposed a method to reduce the

1

Figure 1: Auralization pipeline.

volume of information perceived by the listener. This reduction method is based on the spatial percep-
tion of sounds, and the masking schemes associated. However, this method is computationally expensive
and thus not directly relevant for real-time auralization. Figure 1 shows an overview of the auralization
pipeline. It includes all the steps from propagation to audio rendering. A review of the previous works
will be presented at the beginning of each chapter.

Goal of the dissertation
A review of the aforementioned methods shows that it is possible to realize an interactive navigation in
complex environments. It also shows that it is possible to significantly reduce the volume of information
without altering the quality of the rendering, i.e., by focusing on the most significant information from
a perceptual point of view. However, there is currently no optimal solution permitting the exploitation
of the perceptive reduction phenomenon in an auralization algorithm.

This justifies this study, which consists in developing an algorithm to estimate and render audible
the acoustics of an enclosed place when the source or the listener are moving.

Contributions of the dissertation
The main contribution of this study is to provide a global method for dynamic sound rendering of
complex environments. To reach this goal, improvements over existing approaches were introduced in
the fields of sound propagation, Digital Signal Processing (DSP), psycho-acoustics and computational
optimization.

In the field of sound propagation, we first present an algorithm based on radiosity and image source
to extract exhaustively all acoustical paths between a source and a receiver in a virtual scene. This
algorithm is coupled with an analysis method based on the representation of these paths as a grammar or
a tree. This analysis yields to a decomposition between pure specular and diffuse sound fields. Starting
from these observations, we present a criterion that evaluates the spatial coherence of pure specular
and diffuse sound fields for each order of reflection. We also present two algorithms adapted to real-
time propagation. The first is based on deterministic ray tracing, it is dedicated to the rendering of

2

specular paths. The second is based on Monte Carlo Ray Tracing (MCRT) and is dedicated to the
rendering of the diffuse sound field. Both have an incremental mechanism to perform the propagation
step by step in order to have an incremental auralization system. This incremental rendering process is
another contribution of this study. Starting from the analysis of the execution times of all the modules
that compose the real-time auralization framework, we present a step by step decomposition for the
calculation of the Room Impulse Response (RIR). As we deal with dynamic rendering in this study,
either the source or the receiver may move in the virtual scene. Each time one of the elements moves,
the first specular and diffuse reflections are recalculated. When the source or the receiver stop moving,
further reflections are updated, until the whole Room Impulse Response (RIR) is updated to the new
position.

The contribution in the field of Digital Signal Processing (DSP) consists in a rearrangement of the
binaural spatialization algorithm presented by Deille et al. [2006a]. We analyzed this algorithm and
reordered the processing steps to have an efficient real-time auralization of specular contributions. The
other Digital Signal Processing (DSP) contribution consists in a convolution algorithm on GPU. This
convolution is dedicated to the auralization of the diffuse field.

Finally, the last contribution is an extension of the works conducted by Hacıhabiboğlu and Murtagh
[2008] on the perceptive reduction of specular information. We present a clustering algorithm that
reduces the number of specular paths rendered in order to meet real-time requirements with a high
quality level. In previous studies, the auralization of specular paths was generally based on the arrival
time of sound paths, or their level. Here, we focus the rendering calculations on the most significant
paths from a perceptive point of view, and thus concentrate the calculation on perceptive rather than
physical parameters.

Organization of the document
This document is decomposed in six main chapters. Chapter 1 presents the basic materials in the fields
of sound propagation, Digital Signal Processing (DSP), psycho-acoustics and room acoustics. These
notions are presented to help the reader in the comprehension of the rest of the document. Some of
them are extended at the beginning of the dedicated chapters when necessary.

The three next chapters are dedicated to sound propagation, auralization and perceptive reduction
respectively. They all share the same structure, with a substantial state of the art in the considered
domain, followed by the presentation of our contribution about this domain.

Chapter 2 focuses on the propagation of sound wave in the field of geometrical acoustics. The state
of the art consists in a presentation of the major geometrical propagation algorithms such as ray tracing,
particle tracing, image sources . . . Our contribution is divided in two parts. (i) The presentation of an
algorithm based on image sources and radiosity used to generate exhaustively all diffuse and specular
paths in a virtual scene. With this algorithm, we propose two analysis methods of the propagation
algorithms based on grammar and tree representations. The implementation of this algorithm yields a
criterion used to establish a hierarchy between paths for real-time rendering. This hierarchy is based
on the spatial coherence of the specular and diffuse sound fields at various orders of reflection. (ii)
Starting from these observations, we present at the end of Chapter 2 two algorithms suited for real-time

3

propagation of specular and diffuse paths.
Chapter 3 presents the DSP methods used to auralize the pressure sound field. We first present

the methods from the bibliography used for early and late reverberation. Then we present one real-
time algorithm dealing with specular field audio rendering and another real-time algorithm dedicated to
diffuse field auralization. An original aspect of this thesis is to decompose the rendering into diffuse and
specular paths instead of early and late reflections. Specular reflections are rendered using a binaural
rendering algorithm based on the Independent Component Analysis (ICA) decomposition of the Head
Related Transfer Functions (HRTF) [adapted from Deille et al., 2006a]. The diffuse field auralization
is performed with convolution techniques in the frequency domain. We present the approach to convert
data between the propagation and the auralization stages. We also present the implementation of this
module on a Graphical Processing Unit (GPU).

Chapter 4 deals with the spatial perception of sound. The state of the art presents the different
aspects of spatial hearing, including the localization of a sound source in 3D space, the localization of
multiple sources and the masking that occurs between coherent sources. In this chapter, we present
a perceptive clustering algorithm based on the works conducted by Hacıhabiboğlu and Murtagh [2008].
This algorithm applies a perceptive reduction on the specular paths of the simulations. A subjective
study presents the tests that were conducted to provide appropriate parameters to tune the perceptive
algorithm. This chapter concludes with a discussion on the implementation and the benefits of such a
mechanism in an auralization framework.

Chapter 5 is a more technical chapter discussing the implementation of the algorithms presented
in the three previous chapters on recent computer architectures. It addresses the issues of both multi
thread implementation on CPU and heterogeneous development, across both CPU and GPU. This
chapter finally presents the progressive impulse response update that aims at performing the audio
rendering in real-time while the modules that compose the auralization framework do not necessarily
reach real-time requirements. This method explains the decomposition of the calculation in different
steps. The most significant parts of the process are updated when the source or the receiver move in
the virtual scene. Then, the rest of the Room Impulse Response (RIR) is gradually updated.

Finally, Chapter 6 presents the validation of our algorithms. Two aspects are studied: the validity
of the RIR generated according to the standard objective parameters of room acoustics as well as the
execution time our algorithms (to justify real-time rendering). The tests were performed on the scenes
of the third round robin in room acoustics [Bork, 2005b].

4

1
Representations of sound

This chapter presents the basic materials about sound in the field of physics (see Section 1.1), signal
processing (see Section 1.2), psycho-acoustics (see Section 1.3) and room acoustics (see Section 1.4).
These notions will be developed when necessary in the following chapters.

Contents
1.1 The physics of sound propagation . 6
1.2 Digital signal processing for auralization . 17
1.3 Spatial hearing – The perception of sound . 24
1.4 Room Acoustics – Structure of the reverberation . 29

5

What is a sound? The answers given to this simple question can be looked upon from three dif-
ferent points of view. In this chapter, we present the three different definitions of sound that will be
developed in the following chapters. The first is explained from the point of view of the physician. We
present the different physical quantities used to describe sound waves, and to characterize acoustical
sources and receivers. We then explain the concept of virtual scenes and its geometric definition. In
Section 1.1.5 we present the Room Acoustic Rendering Equation (RARE) as formulated by Siltanen
et al. [2007] and Kiminki [2005]. In the following section, we describe the sound from Digital Signal
Processing (DSP) perspective. We present the basic notions of signal processing, and in particular DSP.
The time/frequency analysis is presented in order to introduce DSP operators such as filtering, delay,
convolution and Doppler shifting and to analyze their complexity. We conclude this chapter with the
point of view of the psycho-acoustician. We present how the sound is perceived by the human ear,
and how it is possible to locate a sound in a three dimensional space. In Section 1.3 we present the
methods used to simulate a virtual sound in three dimensions. Finally, we present some basic concepts
of room acoustics. They are used as a bridge between subjective and objective ways of evaluation audio
simulations. Objective parameters are used in Chapter 5 to validate our model.

1.1 The physics of sound propagation

We present in this section the basic notions of physics commonly used to study the propagation of
sound. In common language, the sound represents the set of all phenomena that can be perceived by
the human ear, i.e., that can be heard. Listening is possible thanks to the eardrum, that is located in
the middle ear. The eardrum is sensitive to the fluctuations of pressure in the air.

In an enclosed space, it is possible to observe that after a short period without turbulences the
pressure reaches a steady state. That means a state with a local energy minimum. The propagation of
the wave occurs when particles are moving around their rest state. It depends on the characteristics of
the medium. In the air, the speed of propagation can be approximated by1

c = 343.2
√

273.15 + υ

293.15
(1.1)

Where c is called the speed of sound in the air in [m · s−1], and υ is the temperature in degrees
Celsius.

The motion of the wave in the air can be represented by a mass spring system Cadoz et al. [1993].
When one mass is displaced by an excitation (the membrane of a speaker, the vibration of a string ...)
it takes kinetic energy. The attached spring is then compressed, stores potential energy and transfers it
to the neighboring masses, and so on.

As the sound travels in the air, or as it interacts with materials, it gets attenuated. This attenuation
is dependent on the frequency.

1A more precise definition can be found in ISO9613-3 [1996].

6

1.1.1 The physics of sound

Sound wave propagation can be described with some assumptions on the wavelength relative to the
dimensions of the surrounding objects. By analogy to light propagation, the wave front propagation of
the sound is generally represented by rays, beams or particles. This type of representation is developed
in the field of geometrical acoustics. We present here the basic quantities used to describe acoustical
phenomena under the assumptions of linear acoustics. Note that for clarity reasons, the frequency
parameter is omitted in the following equations.

Pressure

While listening to sounds, the ear is sensitive to the variations of pressure around a rest state p0.
While the medium is compressed and decompressed, the total pressure ptot at the measurement point
is dependent on space and time. The sound pressure p can be expressed as

p = ptot − p0 (1.2)

These are very small pressure fluctuations that are perceived by the ear. In equation 1.2 the scales
are very different between the values. The static pressure p0 is 1, 013 · 105 Pa or one bar in normal
laboratory conditions (20˚C, no wind, ...), whereas the acoustical pressure p is very rarely above ten
Pa. The RMS pressure (pRMS or p̃), the value that we can read on our measurement tools (or that our
ear perceives) is defined during a time period T :

p̃ = pRMS =

√
1
T

∫ T

0
p2(t)dt (1.3)

Flux

The flux, also called power or radiant power is the rate of flow of energy. It is in general expressed in
watts [W] or in joules per second [J · s−1]. Therefore, if W is the radiant energy, the radiant power Φ is
defined by

Φ =
dW

dt
(1.4)

Irradiance and Intensity

Irradiance I(θ) is the power radiated per surface area, it is expressed in watt per meter square [W ·m−2]:

I(θ) =
dΦ
dA

cos θ (1.5)

where θ is the angle between the normal n to the surface, and the measured intensity. dΦ the power
leaving the surface dA. According to Morfey [2000], the intensity I is the measure of the irradiance in

7

Figure 1.1: Radiance notations: Ω is a solid angle, and Ω⊥ the projected solid angle.

orthogonal incidence angle, I is expressed as

I =
dΦ
dA

(1.6)

In the case of plane wave propagation, the intensity can be linked to the pressure by the following
formula:

|I| =
p̃2

ρ0c
(1.7)

where ρ0c is the characteristic impedance of the medium in [kg · m−2 · s−1]2.

Radiance

Radiance L is the power per projected solid angle per unit area3. It is measured in watts per steradian
per meter square [W · st−1 · m−2]. Radiance is a function of position and orientation, therefore a 5D
function4. It is defined as (the notations of solid angle and projected solid angle refers to Figure 1.1):

L =
d2Φ

dΩ⊥dA
=

d2Φ
dΩ cos θdA

(1.8)

We deduce from equations 1.6 and 1.8 that

L =
dI

dΩ cos θ
(1.9)

With these last two expressions, it is important to note that:

• The radiance measured from an object does not depend on the distance.

• If an object emits twice as much energy, but covers twice the solid angle of another object, the
total radiance received will be the same.

2The characteristic impedance for air at normal conditions, 20˚C is 414 kg · m−2 · s−1.
3Details about solid angle geometry can be found in Appendix A.1.
4Three dimensions for space and two dimensions for orientation.

8

• Since the solid angle is connected to the square of the distance, we have the well known property
that the energy received from objects diminishes with the square of the distance.

It is also important to note that radiance is invariant along a straight line — the radiance going from
point A to point B is equal to the radiance incoming at point A from the direction of point B.

1.1.2 What is a virtual scene ?

Since the invention of computer graphics, it is possible to construct representations of geometrical entities
on the screen of a computer. The first investigations in this field were conducted by Bresenham [1965]
who provided algorithms to find an easy way to discretize a line on a computer screen — where the
discretization steps are the pixels of the screen. With the modernization of computers, it is now possible
to have 3D representations of very large and complex models. It is for example possible to visualize a
representation of a full city with a model that has a precision of the order of the centimeter. It is also
possible to have dynamic displacement inside this model in order to provide the user a virtual visit.

In this study, we restrict our field to the auralization of complex enclosed spaces such as concert halls,
theaters, classrooms, or recording studios. But, the major advantage with the concept of virtual scenes,
is that they can model nonexistent projects, like architect ideas at the design stage, archaeological
reconstructions of no longer existing buildings, or unrealizable buildings for the purpose of artistic
experimentations.

Geometry

The geometry of virtual scenes can be defined by a set of triangles defining walls and other objects
of the scene. Triangles are defined by three points in R

3 space, and a normal vector n that gives the
orientation of the triangle. In the following, it is assumed that triangles are not connected by any
topological information.

The level of detail for an acoustic virtual scene does not need to be as accurate as the models for
visualization, as the effects involved are proportional to the wavelength λ of the effect we want to model.

λ =
c

f
(1.10)

where f is the frequency in [Hz]. As human ear can detect sounds of frequency f between 20 Hz and 20
kHz5, the wavelength we are interested in are within the range [17 · 10−3 m → 17 m]. In practice, the
geometries used for acoustics usually have details of the order of the meter [Siltanen et al. [2008]]. Scenes
with a too high level of details can lead to wrong estimations in low frequencies. This under-sampling
of the scenes is a great benefit for acoustics, as the scenes we usually deal which have generally three to
four orders of magnitude less triangles than scenes in computer graphics.

5See Section 1.3 for more information on psycho-acoustics.

9

1.1.3 Sound source

Sound sources (or sound emitters) are all the elements of everyday life capable of producing sounds.
Some examples of emitters are: musical instruments, people talking, singing, clapping their hands, a
door clapping, a hammer knocking on a nail, a bee flying around a head, a drill on a construction site,
the wind on the leaves . . . In fact, all elements of every day life are capable of producing a sound.

Depending on the geometry of the source, we can define the attenuation pattern αE as a function of
the direction of emission (θ, φ in polar coordinates), and the frequency f .

From a geometrical point of view, the sound emitter can be seen as a punctual element of the
virtual scene defined by its position in Cartesian coordinates (xE , yE , zE) and its orientation in polar
coordinates (θE , φE). As this study is about dynamic sound rendering, the source can be moved inside
the environment to position (xE , yE , zE) + Δ(x, y, z) or toward orientation (θE , φE) + Δ(θ, φ). In the
following, we assume that the free field radiation of the source can be described by its radiation pattern,
αE , and the emission signal sE(t).

From the physical point of view, the elemental source is represented as an infinitesimal pulsing
sphere called a monopole. As the monopole radiates spherical sound waves, it sets the particles of the
medium into motion. Usually, the sound source is characterized in acoustics by its sound power. The
total radiated sound power can be calculated by integrating the sound intensity over a surrounding
measurement surface. Thus, for a monopole source (uniform directivity), we have the relation between
sound intensity IE and sound power ΦE at a distance r in free field [after Vorländer , 2008]:

IE =
ΦE

4πr2 (1.11)

1.1.4 Sound receiver

A sound receiver can also be seen as a punctual entity in the virtual scene. It is defined by its po-
sition in Cartesian coordinates (xR, yR, zR) and its orientation in polar coordinates (θR, φR) and its
directivity αR. Different types of receivers can be defined for virtual reality applications. Usually, the
receivers directivity and arrangements have the characteristics of microphones used for studio recording.
The characteristics of the microphones can be modeled — directional, cardioid, hyper cardioid, omni-
directional, and the way the microphones are placed (see Mercier et al. [2006] for more information on
microphone arrangement) can be:

• Single microphone,

• XY couple,

• ORTF couple,

• AB couple,

• Microphone ramp,

10

Figure 1.2: Rendering equation notations (cf. Equation 1.12).

• “Sound field” Ambisonic,

• Artificial head.

Artificial head recording, uses two microphones positioned at the entrance of the ear canal of a fake
torso and head, that aims at recording the sound as human ears could perceive it. The main challenge to
record such a sound, is to take into account all reflection and diffraction effects that occur between the
sound wave and the listener’s body. As the sound reaches the body of the listener, complex interactions
occur with the torso, the shoulders, the face, the pinna, and the outer ear canal. In order to obtain
a more accurate recording of the sound, and to improve their localization, reproduction of human ear
pinna are installed on the dummy head.

Most of the virtual reality simulations try to model the way a human listener perceives the sound
in a 3D environment. The head of the receiver is modeled, like a dummy head for studio recording.
As the sound reaches the ear it is attenuated depending on the direction of arrival on the head. The
attenuation patterns are called Head Related Transfer Functions (HRTF)6.

1.1.5 Room Acoustic Rendering Equation (RARE)

The propagation of the sound in enclosed spaces can be studied either with analytic methods for very
simple geometries or with numerical methods for more complex ones. Numerical methods are generally
decomposed in two main categories: wave base methods such as Boundary Element Method (BEM),
Finite Element Method (FEM) or radiosity and geometric methods such as rays, particles, beams . . . In
this section, we present a method used for the analysis of geometrical methods. For an introduction

6HRTF are a function of direction of arrival and frequency.

11

on analytic and wave based methods, the reader may refer to Vorländer [2008]. The Room Acoustic
Rendering Equation (RARE) is a recent method presented by Kiminki [2005] and Siltanen et al. [2007] to
analyze geometrical sound propagation algorithms. The following equation represents the propagation
of radiance in a virtual scene. The analysis is derived from Kajiya’s rendering equation [Kajiya, 1986]
in the field of computer graphics, or its more recent formulation [Dutre et al., 2002] :

L(x → Θ) = Le(x → Θ) +
∫

G
fr(x, Ψ → Θ)L(x′ → −Ψ)V (x, x′)G(x, x′)dx′ (1.12)

where

• → means “in the direction of”. For instance (x → Θ) means “leaving point x in direction Θ, and
(x, Ψ → Θ) means “coming to point x from direction Ψ and leaving in direction Θ.

• L(x → Θ) is the total radiance leaving current patch at point x in direction Θ.

• Le(x → Θ) is the radiance emitted by current patch at point x in direction Θ, Le is zero if current
patch is not a sound source.

• fr(x, Ψ → Θ) is the BRDF7.

• L(x′ → −Ψ) is the radiance at point x′ in direction −Ψ, the direction toward x.

• V (x, x′) is the visibility function, it is a boolean function that as a value one if the two points x
and x′ see each others, zero otherwise.

• G(x, x′) is a geometric term (see Figure 1.3).

• G belongs to R
3, it represents all points on the surfaces of the scene.

•
∫

G dx′ represents the integration on all the surfaces of the scene.

Figure 1.2 presents the notations used in Equation 1.12.

Geometric term G

The geometric term G is defined as

G(x, x′) =
(

n(x) · x − x′

|x − x′|

)(
n(x′) · x′ − x

|x′ − x|

)
1

|x − x′|2 (1.13)

where n(x) is the normal of the patch that contains x. G represents both the geometric divergence
that is proportional to the square of the distance between x and x′, and the non-orthogonality of the

7see Section 2.1.3 for more information on BRDF.

12

Figure 1.3: Geometric term G notations.

exchange between the two patches. If Ψ1 is the angle between the vector x − x′ and n(x), and Ψ2 is
the angle between the vector x′ − x and n(x′) (see Figure 1.3), G can be reformulated as:

G(x, x′) =
cos Ψ1 cos Ψ2

|x − x′|2 (1.14)

It is important to note that G is reciprocal, i.e., G(x, x′) = G(x′, x).

Temporal Intensity Algebra (TIA)

In this section, we give the basic results formulated by Kiminki [2005] and Siltanen et al. [2007]. For
more information on the temporal extensions of Kajiya [1986] rendering equation, the reader may refer to
Kiminki [2005]. The first element of the Temporal Intensity Algebra (TIA) is the propagation operator.
It is defined as

S̃rI(t) = e−αmrSrI(t) = e−αmrI
(

t − r

c

)
(1.15)

where c is the speed of sound, αm the absorption coefficient of the medium, I the intensity (cf. Sec-
tion 1.1.1). Sr is an operator that applies the temporal displacement to I based on the distance r

traveled by the sound. S̃r is another operator that applies both the temporal displacement, and the
absorption of the medium to I. In the special case of the propagation of an impulsive sound located at
t = 0, i.e., a Dirac distribution δ(t), the following property holds:

S̃r[μ1δ(t) + μ2δ(t)] = [μ1S̃r + μ2S̃r]δ(t) (1.16)

13

By differentiation the propagation operator can also be applied to irradiance and radiance (cf. Sec-
tion 1.1.1). The second property, additivity is expressed as:

S̃r1 S̃r2δ(t) = S̃r1+r2δ(t) (1.17)

The two previous equations justify that the operators can be combined in the case of specular reflection;
the intensity at a point can be computed as the sum of the direct path, and all reflections reaching that
point. Using Equation 1.15 with a Dirac distribution, we obtain:

S̃rδ(t) = e−αmtcSrδ(t) (1.18)

If we incorporate the intensity in the previous definition, we have:

I(t) =

[nrefl∑
i=0

(1 − αi)Sriδ(t)

]
∗ e−αmtcIE(t) = Hαm

nrefl∑
i=0

(1 − αi)Sriδ(t) (1.19)

where IE(t) is the emission intensity varied over time, αi are the Sabine absorption coefficient of the ith

wall intersected, ∗ is the convolution operator. Hαm is an operator that represents the convolution of a
source signal filtered by a medium characterized by its absorption coefficient, αm.

Geometric term extension g

As we have seen in the previous section, it is necessary to include the time in the rendering equation
for acoustics. Siltanen et al. [2007] include the propagation operator Sr in the geometric term G which
becomes g in lower case for acoustic modeling. g gathers the geometric term G defined in Equation 1.13
and the propagation operator Sr (cf. Equation 1.15):

g(x, x′) = S|x−x′|G(x, x′) =
(

n(x) · x − x′

|x − x′|

)(
n(x′) · x′ − x

|x′ − x|

)
S|x−x′|

|x − x′|2 (1.20)

Reflection kernel r

In order to simplify the notations of the RARE, the visibility function V , the BRDF fr and the geometric
operator g are gathered into the reflection kernel r:

r(x, x′, Ω) = V (x, x′)fr(
x − x′

|x − x′| , Ω → x′)g(x, x′) (1.21)

It is important to note that the time dependence is included in the geometric term g. In order to
simplify the writing of equations, time is also omitted in the parameters.

14

Room Acoustic Rendering Equation (RARE)

Since we consider time-dependent radiance in acoustics, the Room Acoustic Rendering Equation (RARE)
has to be defined using the reflection kernel r presented above. In order to differentiate time-dependent
from time-independent radiance, the lower case l symbol is used. As for the previous functions, the time
parameter is omitted in the definition of the function:

l(x → Ω) = l0(x → Ω) +
∫

G
r(x′, x, Ω)l

(
x′ → x − x′

|x − x′|

)
dx′ (1.22)

where

• l(x → Ω) is the time-dependent radiance leaving point x in direction Ω,

• l0(x → Ω) is the emitted radiance (zero if the patch does not belong to a sound source),

•
∫

G dx is the integral on all the surface points of the scene

• r(x, x′, Ω) is the reflection kernel,

• and l
(

x → x−x′
|x−x′|

)
is the incoming, time-dependent radiance in direction x − x′.

Equation 1.22 represents the radiative exchanges of radiance in the case of room acoustics propagation,
the reflection kernel r defined above allows to have a formulation very close to Kajiya’s rendering
equation (cf. Equation 1.12).

With this formulation, it is possible to use the Neumann series8 solutions presented in the original
article of Kajiya [1986] on Equation 1.22:

li+1(x → Ω) =
∫

G
r(x, x′, Ω)li

(
x → x′ − x

|x′ − x|

)
dx′, (1.23)

l(x′ → Ω) =
Nref∑
i=0

li(x′ → Ω). (1.24)

This equation shows that the detection of the total radiance leaving one point in the scene can be
computed as the the sum of the radiance calculated at each reflection order, and that reflections at
each order can be calculated incrementally from the results calculated at previous reflection orders. The
objective of the propagation algorithms presented in Sections 2.1.5 and 2.1.6 is to solve this equation.

Emission

In the previous equations, l0 represents the radiance emitted by a surface. In the case of a point source,
l0 can be taken as the first reflection of the radiance on the walls of the virtual scene. If the source —

8See e.g. Kiminki [2005] of an introduction on Neumann series, and e.g. Guenther and Lee [1996] for an extended
presentation.

15

the emitter — is located at position xE , and the source radiates energy with a pattern αE(Ω), then the
time-dependent irradiance from the source to any point x of the scene is

l0(x → Ω) = r (xE , x, Ω) V (xE , x)g0(xE , x)αE

(
x − xE
|x − xE |

)
(1.25)

with g0 the extension of the geometric term (cf. Equation 1.20) for the exchange between a punctual
entity (the sound source) and a patch of the scene. g0 is expressed:

g0(xE , x) =
S|xE −x|

4π|xE − x|2 �n(x) · xE − x
|xE − x| � (1.26)

In Equations 1.25 and 1.26,

• r (xE , x, Ω) is the reflection kernel (cf. Equation 1.21) for a sound coming from xE to point x and
leaving in direction Ω.

• V (xE , x) is one if the source sees point s, zero otherwise.

• αE
(

x−xE
|x−xE |

)
is the emission pattern attached to the source.

• S|xE −x| is the propagation operator between the source and point x

• �a� is defined by Siltanen et al. [2007] as

�a� =

{
a, a > 0

0, a ≤ 0

Detection

A punctual receiver can be seen as an infinitesimally small sphere located at xR. We consider that the
detection of the incident energy is always performed at point xR orthogonally to the surface of this
sphere. The receiver can be characterized by a direction dependent transfer function9 αR(Ω, I). This
transfer function gives the attenuation of the incoming intensity I for a given direction Ω.

In the case of a punctual emitting source, the detection of the direct sound has to be handled
separately, so the total detection function, D(t), is the sum of the detection of the direct sound, Ddirect(t),
and the reflected radiance on all the surfaces of the scene, Dreflected(t):

D(t) = Ddirect(t) + Dreflected(t) (1.27)

9Sections 1.1.4 and 1.3.4 give more details about these transfer functions, and in particular HRTF.

16

where

Ddirect(t) = αR

(
xR − xE
|xR − xE | , (1.28)

HαmV (xE , xR)
S|xR−xE |

4π|xR − xE |2 αE

(
xR − xE
|xR − xE |

))

and

Dreflected(t) =
∫

G
αR

(
xR − x
|xR − x| , (1.29)

HαmV (x, xR)
S|xR−x|

4π|xR − x|2 l

(
x → xR − x

|xR − x|

)
�n(x) · xR − x

|xR − x| �
)

dx

1.2 Digital signal processing for auralization
In virtual acoustics, the signals involved in the simulations are digital signals with broadband content.
Unlike single harmonic signals, also referred to as pure-tone signals, broadband signals contain multiple
frequencies. A pure tone signal s at frequency f0, with initial phase φ0 is expressed by

s(t) = sin(2πf0t + φ0) (1.30)

Every signal, either harmonic or inharmonic, can be represented by a sum of pure tone signals. For
inharmonic sounds, the sum is infinite.This is the basis of Fourier analysis defined in the next section.

When sound travels in a virtual scene, each path is associated with the sound trajectory. It can be
modeled as a combination of filtering and delay operators applied to the signal representation of sound
pressure. Different methods exist to process delay and filtering, both in time and frequency domains.
These methods are presented in Sections 1.2.6 and 1.2.7. The set of all paths reaching a listener can
also be modeled by a single entity called Impulse Response (IR)10. Convolution is a method that is
generally used to apply the acoustic response of a room to an anechoic sound (cf. Section 1.2.5).

Finally, as we deal with dynamic sound rendering, the effect of time varying delays, i.e., Doppler
effect, has to be studied. Doppler effect describes the frequential modifications of a sound when the
source and the receiver are moving. This is described in Section 1.2.8

More information on signal processing can be found in dedicated books like Soize [1993]; Smith
[1997]; Kahrs and Brandenburg [1998]; Tanguy [2007] or Tisserand et al. [2008].

1.2.1 Analog vs. Digital signal processing

A signal can be studied either with analog or digital formulation. As expected, analog signal processing
considers analog, i.e., continuous signals, whereas digital signal processing considers digital, i.e., discrete
signals. The aim of this study is to provide computational tools for real-time auralization. The signals

10Impulse responses can also be recorded in existing rooms.

17

studied are digital. The analog formulation gives a good theoretical framework for the study of signals,
and can sometimes simplify the formulation of signal processing problems. On the other side, the digital
formulation gives methods that can be implemented directly in algorithms. The latter formulation was
chosen for this study, unless the continuous formulation proves more convenient.

In auralization, the link between analog signals and digital signals is the Analog-to-Digital Converter
(ADC) and Digital-to-Analog Converter (DAC) of the audio interface. The first converts the input
analog signal from the microphone, whereas the second converts the digital output signal to the speakers.
One important characteristic of ADC is that the sampling rate of the digital signal must respect the
Shanon-Nyquist principle: the signal cannot contain frequencies above the Shanon-Nyquist frequency
which is defined as half the sampling frequency. For example, a signal sampled at 48kHz cannot contain
frequencies above 24kHz. More information on sampling theories can be found in signal processing
books like Smith [1997].

Different notations are used depending on the type of signal used: Continuous temporal signals are
generally noted s(t), with, t, the time (t ∈ R). Digital signals are noted s[n], where n is the sample
number (n ∈ Z).

1.2.2 Fourier analysis

Most of the auralization systems do not process pure tone signals, as most sounds surrounding us are
complex sounds. In order to propagate sounds in an auralization system, the sound source needs to
be recorded without reverberation. Such sound is called an anechoic sound. It can be recorded in an
anechoic room with an absorption coefficient on all the walls very close to one for all frequencies. Fourier
analysis is a very important tool in signal processing. Assuming signals represent linear phenomena, a
given signal, s(t), can be expressed in the frequency domain by its Fourier transform, Ŝ(f):

Ŝ(f) =
∫ +∞

−∞
s(t) e−i2πft dt (1.31)

Ŝ(f) is a complex valued function where f denotes the frequency in [Hz]. We have the symmetrical
expression, called inverse Fourier transform that gives a signal in the temporal domain, starting from
its expression in frequency domain, s(t):

s(t) =
∫ +∞

−∞
Ŝ(f) ei2πft df (1.32)

As Ŝ(f) belongs to C, two important functions are defined to analyze the signal in the frequency
domain. The first is the magnitude of the signal |Ŝ|(f), it defines the frequency content of the signal11:

|Ŝ(f)| =
√

�(Ŝ(f))
2

+ �(Ŝ(f))
2

(1.33)

11�(Ŝ) and �(Ŝ) represents respectively the real and imaginary parts of the complex signal Ŝ, i.e., Ŝ = �(Ŝ) + i�(Ŝ).

18

The second important information is the phase of the signal:

φŜ(f) = tan−1

(
�(Ŝ(f))
�(Ŝ(f))

)
(1.34)

Discrete Fourier Transform (DFT)

All formulas defined above for continuous signals have an equivalent for discrete signals. For signals of
size N , the DFT is defined as

Ŝ[f] =
N−1∑
n=0

s[n] e−i2πfn/N (1.35)

The Inverse Discrete Fourier Transform (IDFT) is defined as

s[n] =
N−1∑
f=0

Ŝ[f] ei2πfn/N (1.36)

Some faster methods were developed to speed up the calculation of DFT. The most famous is the
Fast Fourier Transform (FFT), its implementation is well described by Smith [1997]. Section 3.3.2
presents some works on FFT implementations on GPU.

1.2.3 Impulse response

One of the most used functions in signal processing is the Dirac distribution (noted δ). In digital systems,
it is a vector filled with zeros, except for the first value that is set to one. More details about delta
distribution can be found in Appendix A.3. An arbitrary signal can be seen as the sum of delayed δ

weighted by the amplitude of the sample. When a Dirac distribution is filtered through a linear system,
the resulting output is referred to as the impulse response of the system. Two linear systems that have
the same impulse response are said to be identical. Sometimes, the DSP systems are also characterized
by their transfer function. The transfer function is defined as the Laplace Transform of the impulse
response [Smith, 1997]. For causal systems, this is equivalent to the DFT of the impulse response.

One of the most used impulse responses in room acoustics is the Room Impulse Response (RIR).
It describes the reverberation of a room excited by an impulsive sound — empiric measurement were
usually performed using a gun shot or a balloon pop. According to Müller and Massarani [2001], impulse
responses are more accurately measured with sweep signals or pseudorandom noise.

1.2.4 Echogram

Another signal of interest in room acoustics simulations is the echogram. It is defined as the magnitude
(see Equation 1.33) of the impulse response represented on a logarithmic scale (see Section 1.3.1). The
echogram is used for instance to represent the response of a room with energetic propagation algorithms

19

such as particle tracing (see Section 2.1.6). As the echogram represents the propagation of the energy, it
is proportional to the square of the pressure: therefore, the echogram does not contain phase information.

The echograms that are typically used in virtual acoustics simulations are integrated frequency
dependent echograms i.e., discrete echogram with a temporal step of Δt. The frequency dependent
echograms are used for instance to estimate the energy carried by a particle traveling a virtual scene in
a given frequency band, e.g. , octave or third octave bands. The integrated echograms are widely used
in room acoustics. For example, they can be used for the calculation of the objective room acoustics
parameters defined in Section 1.4. They can also be used to control the precision of propagation
algorithms such as Monte Carlo path tracing (see Section 2.5.2).

1.2.5 Convolution

Convolution is the operator which implements the filtering of an input signal by an impulse response. In
room acoustics, the response of the room can be seen as a linear system. The convolution of an anechoic
sound by the impulse response of a room will produce a sound with the reverberation of the room. For
an input signal, si, an impulse response, h, and an output signal, so, the convolution notation is

so(t) = si(t) ∗ h(t) (1.37)

As we have seen previously, if the input signal of a linear system modeled by its impulse response is a
delta function, the output will be its impulse response:

h(t) = δ(t) ∗ h(t) (1.38)

Convolution is a linear operator, i.e., it respects homogeneity and additivity.
One important property about this operator, is that a convolution in the time domain is equivalent

to a multiplication in the frequency domain:

so(t) = si(t) ∗ h(t) DFT−−−→ Ŝo(f) = Ŝi(f) · Ĥ(f) (1.39)

Due to the symmetry of the Fourier transform, the opposite relation is true: a convolution in the
frequency domain is equivalent to a multiplication in the time domain, i.e.,

Ŝo(f) = Ŝi(f) ∗ Ĥ(f) IDFT−−−−→ so(t) = si(t) · h(t) (1.40)

For digital signals, the convolution operator in the time domain is defined as

so[n] =
Nh−1∑
j=0

h[j]si[n − j] (1.41)

with Nh the number of samples of the impulse response. If NS is the number of samples of the input
sequence, si[n], the output sequence, so[n] will be Nso

= Nh + Nsi
− 1 sample long.

20

In the frequency domain it is directly obtained with

Ŝo[f] = Ĥ[f]Ŝi[f] (1.42)

From the two previous equations, we see that time domain convolution requires Nh multiplications
per output samples, whereas convolution in the frequency domain only requires one. Note that to
completely analyze the complexity of both algorithms, the complexity of FFT and Inverse Fast Fourier
Transform (IFFT) algorithms have to be estimated [see Oppenheim and Schafer , 1975].

1.2.6 Filtering

Filtering is an important operation in the dynamic sound rendering process, as several steps of the
propagation are implemented as filtering operations in the auralization. For example, the direction
dependent emission pattern of a sound source, αE , and the direction dependent detection function, αR,
of a receiver (see Section 1.1.5) correspond to filtering operations. The frequency dependent intersection
of a ray with a wall of the virtual scene represents also a filtering operation.

There are two main families of filters: Finite Impulse Response (FIR) filters and Infinite Impulse
Response (IIR) filters.

Finite Impulse Response (FIR) filtering

FIR filtering is simply defined as the convolution of an input signal with the filter kernel — also called
the convolution kernel. The response of the filter can be calculated either in the frequency or in the time
domain depending on the applications. Efficient convolution with long FIR filters is usually performed
in the frequency domain (see Section 1.2.5).

Infinite Impulse Response (IIR) filtering

IIR filters, also referred to as recursive filters, provide approximations of the impulse response of FIR
filters with a lower number of coefficients, i.e., a lower filter order. The synthesis of IIR filters can
be made using the z-transform12. Deille et al. [2006a] uses for instance IIR filters to implement an
optimized version of HRTF filtering for real-time auralization.

The temporal formulation of a recursive filter is:

so[n] =
1
a0

(b0si[n] + b1si[n − 1] + . . . − a1si[n − 1] − a2si[n − 2] + . . .) (1.43)

where ai and bi represent the polynomial coefficients of the denominator and the numerator of the filter
response respectively. The roots of the denominator and numerator are called the poles and the zeros
of the filter.

12More information on Chebyshev and Butterworth filter synthesis can be found in e.g. Smith [1997].

21

Octave band filtering

FIR and IIR filters enable the implementation of arbitrary filter responses. Octave band filtering refers to
specific filter bands for modeling responses with constant magnitude within octave bands. The approach
is to discretize the frequency in frequency bands. Generally, octave or third octave bands are used, but
other types of discretization like Bark bands [Kahrs and Brandenburg, 1998] based on perception can be
used. We present in this section the filtering process for octave bands, as it is the one used in this study,
but other discretization may be used with the same method13. The principle of octave band filtering
is depicted in Figure 3.7. An input signal is decomposed (filtered) in several octave bands. The signal
remains in the time domain, but only a part of the frequency content is kept. Then, an attenuation gain
is applied to each signal, this corresponds to the gain of the center frequency of the octave band. Once
the gains of all frequency bands have been applied, the signals are summed to recompose the broadband
signal.

The main advantage of this method is its simplicity, and its low computational cost. We have used in
our implementation IIR filters to decompose the original signal, but, for some applications, FIR filters
implemented with FFT can be used to reduce computational load14. Note that the octave band filtering
does not allow representation of the phase information of the transfer function to be modeled.

∗ ∗ ∗

Filtering is a linear operation, this is an important property for auralization, as it permits to change
the order of the filtering operations, and to factorize some parts of the processing. This property is
intensively used in Chapter 3.

1.2.7 Delay

Delay is another essential operation in DSP, it represents a temporal displacement of the signal. This
is for instance the operation used to model the propagation time of a sound ray in room acoustics.
Delay was a very complex operation to perform on analog circuits as it requires the use of circuits with
memory. With a computer, the implementation of a delay becomes really simple: It consists in placing
the samples in memory for the time of their delay. The computational structure is generally called a
delay line. The delay can be represented by the convolution of a Dirac distribution delayed by td:

so[n] = δ[n − td] ∗ si[n] = si[n − td] (1.44)

Fourier transform of the delay is:
Ŝo[f] = Ŝi[f]ei2πt−td (1.45)

The problem with the previous formulation of the delay is that td must be a positive integer, as the
signal is causal and discrete. For non integer values, fractional delay techniques based on interpolation

13Only the filters properties and number changes.
14Details about FFT bank techniques can be found in e.g. Smith [2009].

22

must be used. Here is the formulation of a fractional delay based on linear interpolation:

so[n] = rd si[n − nd] + (1 − rd) s[n − nd − 1] (1.46)

nd represents the integer part of td, and rd the rest15. This formula can be extended with higher order
of interpolation methods as described in Appendix A.5.

Delay, is also a linear operation, for instance, the delay of ray traveling in a virtual scene is the sum
of the delay between each intersection.

Fixed size delay line The implementation of a delay line is in general memory consuming. A delay
is simply a vector of floating point values that store the delayed signal for a certain time. In virtual
acoustics, the time a signal is stored is less or equal the maximal time of the RIR we want to generate
— e.g. for a three seconds RIR sampled at 44.1 kHz, a maximum of 132.300 samples have to be stored.

Delay pointers Another approach to implement delay lines is to read the delayed samples directly
from the original signal loaded in memory. With this method, only one pointer per delay line is neces-
sarily, thus, reducing the associated memory consumption to a minimum. The major problem with this
technique is that the delay has to be the first operation applied to the signal, which is not necessary the
best choice in virtual reality applications.

∗ ∗ ∗

We present in Section 3.2 a modified version of the delay lines that applies the delays right after the
octave band filtering of the signal.

1.2.8 Doppler shift

The Doppler effect is a well known effect in acoustics, it is a modification of the frequency induced by
the relative displacement of a source and a receiver. This effect explains for instance why the sound of
a car driving at constant speed has higher frequency when the car approaches the listener than when it
moves away. The frequency perceived by a listener will be modified by a factor

ddopp =
1 − (xE −xR)

||xE −xR||
vR
c

1 − (xE −xR)
||xE −xR||

vE
c

(1.47)

where xE and xR are the positions of the source and receiver respectively, and vE and vR, their velocity.
The Doppler shift can be implemented in the time domain using the fractional delay presented in

Equation 1.46. The delay time is interpolated between the previous and the current positions of the
source and the receiver.

Note that the Doppler shifting is no-longer a linear operation, so it cannot be interchanged with
other DSP operations such as delay or filtering.

15e.g. if td = 54.8, then nd = 54 and rd = 0.8.

23

1.2.9 Block processing for real-time algorithms

Real-time processing implies that the processing time of one sample of the discrete output signal must
be inferior to the sampling period of the signal16, assuming a single channel output signal. If the
processing time does not meet this requirement, sound artifacts occur, and the simulation fails. Most of
the real-time systems do not process the signal on a sample basis, they are usually organized as blocks
of samples. At every clock signal, the sound card requests to the processing unit the last processed
sample block. Most of the time, the blocks have a size that is a power of two, samples are well suited to
the binary structure of the computer memory,17 as well as frequency domain processing based on FFT.

Overlap methods

When the processing applied to the signals evolves with time, two strategies can be adapted to process
the blocks of signal. Special attention must be paid to the first and last elements of the block. This
is where there is a high probability to have discontinuities during the processing. The first strategy
is to apply a sample based processing, such as interpolated gains or fractional delays between two
values. With this type of process, the increment must be independent of the block size. In the case of
interpolated gains, the process applies the gain to current processing sample, then increments the gain
for the next processing sample. If the next sample belongs to another block, this makes no difference,
thus a smooth transition is performed between blocks.

The second method is suited to processing that applies to blocks of signal, such as FFT filtering,
with a non constant filter in time. In this case, the sample per sample method is no-longer valid and
discontinuities will occur at the block junctions. The method used to have a smooth transition between
block is called the Overlap method. This method creates a smooth interpolation between the blocks,
and thus suppresses the audible artifacts caused by the discontinuity of the filter. We have for instance
implemented overlap methods for the convolution of an anechoic sound, with a RIR evolving in time
(see Section 5.4). More information about overlap methods can be found in e.g. Smith [2009].

1.3 Spatial hearing – The perception of sound
The end goal of auralization algorithms is to produce sounds. The resulting sound samples are presented
to listeners. The topic of this research is to produce sound samples that represent as accurately as pos-
sible the reverberation of enclosed spaces. Psychoacoustics is the science of the sound perception. We
present in this chapter some basic notions of psychoacoustics that will be developed later in Chapter 4.
In our study, psychoacoustics is used both to validate and to optimize our algorithms. As our study is
focused on the perception of reverberation, a great emphasis is put on spatial hearing characteristics.
Thus, in Section 1.3.3, we present the mechanism of 3D sound to locate sound in space and its repre-
sentation using Head Related Transfer Functions (HRTF). Then, in Section 1.3.4 we present various

16For a signal sampled at 44100 Hz, the processing time of a sample must be under 22.6 μs.
17In our implementation, most of the blocks have a size of 29 = 512, this implies that a block of signal must be processed

in less than 11.6 ms. The choice of 512 as the block size is motivated by perceptive parameters presented in Chapter 4.

24

rendering techniques used to produce 3D sounds.
The information gathered in this chapter are mainly extracted from Blauert [1999]; Vorländer [2008];

Tsingos [1998]; Emerit [1995] and Nicol et al. [2008].

1.3.1 Perceived intensity of sound

We have presented in Section 1.1.1 different physical characteristics of sound, including sound intensity,
pressure and power. The human ear is generally sensitive to variations of intensity from 10−12 W · m−2

(audition threshold) to 1 W · m−2 (pain threshold). These limit values vary generally with many
parameters including the age of the listener, the health of his ear or the frequency content of the sound.

As the variations of intensity perceived by human ear cover a wide range of values, of around twelve
orders of magnitude, the linear representation of the intensity is not well adapted to the perception of
sounds. So, it is common in acoustics to use a logarithmic scale to represent the sound intensity levels.
The intensity level, LI , is expressed in decibels as

LI = 10 log10

(
I

I0

)
(1.48)

where I0 is the hearing threshold, I0 = 10−12 W · m−2. Generally the intensity level is expressed in
[dB IL] (decibel intensity level).

Similar formulations exist for sound pressure level, Lp, and acoustical power, LW , that are respec-
tively expressed in [dB SPL] (decibel sound pressure level) and [dB PL] (decibel power level):

Lp = 20 log10

(
p̃

p̃0

)
(1.49)

LW = 10 log10

(
Φ
Φ0

)
(1.50)

with the reference values (audition threshold), p̃0 = 2.10−5 N.m−2 and Φ0 = 10−12 W.

1.3.2 Frequency perception of sound

As for the perception of intensity, the human ear is able to distinguish a wide variety of frequencies in
sounds. For a children’s ear, it is possible to perceive frequencies in the 20 Hz to 20 kHz range. The
upper limit falls in general to a value around 15 kHz for an adult. The upper value of the frequency
perceived by human ear explains for instance the choice of the standard sampling frequencies for digital
signals. We have seen in Section 1.2.1 that the frequency content of an analog signal to be convected
must respect the Shanon-Nyquist condition, i.e., the signal must not have frequency content above half
the sampling frequency. The sampling frequencies commonly used in digital recording are 44.1 kHz for
the compact disk, or 48 kHz for professional standards, like the Digital Audio Tape (DAT).

The perception of frequency content is unequal across the spectrum. The ear sensitivity reaches its
highest value for frequencies in the range 1 to 3 kHz. These frequencies correspond to the spectrum of

25

the spoken voice.
Different models were developed for the analysis of the frequency content of sound. Each one of

them has pros and cons depending on the application. In this section, we present briefly four frequency
analysis models, and discuss their use in the context of room acoustics auralization.

Fine bandwidth model The fine band model considers the full spectrum of the signal, i.e., all
frequency components of the signal Fourier transform evenly spaced between zero and the Shannon-
Nyquist frequency Fs/2 where Fs is the sampling frequency. In this model, each component is complex
including both amplitude and phase information. Fine band models are important for effects such as
frequency interferences. In our study, fine bands are used for the spatialization of sounds using HRTF
(see Sections 1.3.3 and 3.2). The drawback of this method is that the processing of all frequencies using
fine band methods is generally more expensive than the following three methods.

Octave bandwidth model In the octave band model, the frequency spectrum is divided into loga-
rithmically spaced frequency bands where each center frequency is obtained by a factor of two. With
this method, the spectral representation of the signal is a rough approximation of the original signal. It
is generally used for signals that have slow and smooth variation in frequency space. Material attenua-
tion is a good example of the usage of octave bands for acoustical modeling. Most of the databases of
frequencial attenuations of the materials (often referred as Sabine attenuation coefficients) are presented
in octave bands. In this model, the first and last bands are extended to zero and Fs/2 respectively. In
terms of Digital Signal Processing (DSP) operations, this corresponds to using pass band filters for the
central bands, a low-pass filter for the first band, and a high-pass filter for the last band. One example
of material characterization with octave bands is presented by Bork [2005a] where the materials are
presented for six octave bands between 125 Hz and 4 kHz. In our implementation, we used the octave
band decomposition for the propagation of sound in the virtual scene. This method is used to model
the intersections with the walls of the virtual scene, and air absorption (see Section 3.2.1).

Third octave bandwidth model Another method commonly used in room acoustic simulations is
the third octave band decomposition. It is very close to the octave band decomposition, except that
third octave band decomposition is closer to the frequency resolution of the human ear. Tsingos [1998]
uses for instance a decomposition twenty-four third octave bands for his propagation algorithms. This
decomposition is also interesting for the frequency masking study. A sound with a high intensity in
a given third octave band is able to mask sounds in the adjacent bands. As we have not studied the
frequency masking of sounds in our study, and in order to speed up the processing of the algorithms,
we did not use third octave band filtering.

Bark bandwidth model Finally, another decomposition method commonly used in psycho-acoustics
is Bark bands. This decomposition is no longer based on a mathematical decomposition of the frequency
spectrum. Instead, it is based on perceptive parameters. The frequency bands for which the human

26

ear is more sensitive will be narrower, i.e., will contain less frequencies, and thus will be more precise.
Blauert [1999] describes the decomposition of a signal using Bark bands.

Note that for the above three wide frequency band models, the phase information is discarded since
strong variations are usually present within each band.

1.3.3 Spatial perception of sound

The perception of sound in 3D space involves a number of cognitive mechanisms. It can be characterized
as a function of three parameters (dE , θE , φE), which define the position of the sound source (or emitter),
E relative to the head in polar coordinates.

dE represents the distance between the source and the receiver. The perception of the distance is
first related to a decrease of the intensity as the source moves (a decrease of six decibels occurs when the
distance source/receiver is doubled). The second effect linked to the distance is the frequency dependent
attenuation due to air absorption. Air acts as a complex low-pass filter on sounds, and, the longer a
sound travels, the more it gets attenuated. A model of air attenuation can be found in ISO9613-3
[1996]. This is the model implemented in our simulations. Also in reverberant environments such as
enclosed spaces, the perception of the distance is related to the ratio of direct sound (perceived as a
single source)to reverberated sound (perceived as a spatially diffuse source).

To locate a sound source in azimuth, θE , and in elevation, φE , two mechanisms are involved. First,
the difference of arrival time at the two ears. This is called Interaural Time Difference (ITD). This
information gives a first approximation of the position of the sound in space. The ITD is very short
compared to the distance traveled by the sound. It can be zero if the sound is located in the plane of
azimuth θE = 0,◦, and never exceeds 1 ms in the case of a sound coming from the side of the listener
(θE = ±90,◦).

The localization in azimuth and elevation in 3D is also due to the complex interactions of the sound
with the body of the listener. As the sound reaches the listener, complex modifications of the sound
occur. The sound gets diffracted and attenuated many times before it reaches the eardrum. Depending
on their direction of arrival, and their frequency content, it can interact with the torso, the shoulders,
the face and the different parts of the ear of the listener. These modifications applied to the sound
can be modeled as complex transfer functions called Head Related Transfer Functions (HRTF). The
problem with HRTF is that they are unique for every person. Thus, to be accurate, HRTF have to
be measured and adapted to every listener. Much work on HRTF has been conducted to find a model
which is a good representation of the averaged ear characteristics. In this study, we started from works
conducted by Emerit et al. [1995]; Emerit [1995] and Deille et al. [2006a].

∗ ∗ ∗

Reverberation is another effect linked to sound in 3D space. The reverberation is created by the
multiple reflections of sound on the walls of an enclosed space. The purpose of this work is to provide
an accurate simulation of the reverberation in enclosed spaces. So, the concept of reverberation is
presented in the following chapters. Chapter 2 presents the algorithms implemented to find the different

27

reflections of a sound in 3D space and to implement the reverberation model. Chapter 3 presents the
DSP operations applied to the path to auralize the sound paths generated by propagation algorithms.
Chapter 4 is dedicated to the perceptive analysis of the reverberation. In our simulation, only the most
significant paths, from a perceptive point of view are kept. Finally, Chapter 5 presents the methods
used to update interactively the reverberation in virtual reality applications.

1.3.4 3D audio rendering techniques

Starting from the description of how a listener perceives a sound in 3D space, we present briefly in this
section the methods used for the 3D auralization of sound.

Monophonic This very basic type of auralization is used when the system is limited to a single
speaker. Monophonic rendering is not strictly speaking a method of spatial rendering as it is necessary
to have at least two signals to produce a spatialized sound.

Stereophonie and Vector Base Amplitude Panning (VBAP) VBAP is a method used for
the auralization with a set of speakers placed in 2D or 3D, for rendering in the azimuthal plan, and
in 3D space respectively. In this method, the same signal is sent to two or three of the speakers with
appropriate gains. The choice of the speakers and the gains depend on the position of the virtual source.
This technique has he advantage to be easy to implement, to fit irregular arrangements of speakers (as
long as their position is known). On the other hand, some artifacts may occur during the auralization
process. They are due to the fact that the speakers radiates the same signal at different positions in
space, thus, the signal reaching the listener’s ears may be incoherent. In the simple case of two speakers
located in front of the listener, this technique is called stereophony. This was the first technique used for
sound spatialization. More information on VBAP techniques can be found in Pulkki [1997] and Pulkki
et al. [1999].

Binaural This method is dedicated to headphone auralization. It improves the rendering by taking
into account Head Related Transfer Functions (HRTF). The basic implementation for binaural spatial-
ization takes each path provided by the propagation algorithm, delay them according to the Interaural
Time Difference (ITD) and filter them with the HRTF. The details about binaural rendering are widely
described in Section 3.1.3. Similar methods exist with a broadcasting over speakers instead of head-
phones. This technique is usually called binaural broadcasting over speakers or trans-auralization. The
implementation over speakers is a bit more complex, as the signal emitted by the speaker opposite to the
listener’s ear has to be canceled using cross talk cancellation filtering. More information on transaural
techniques can be found in e.g. Sibbald [2009].

Ambisonics Ambisonic broadcasting can be seen as an extension of VBAP methods. It is a method
for recording and auralization of 3D sound using speakers. As for VBAP, ambisonic systems can be built
for 2D and 3D reproduction. The basic principle of ambisonics is to recreate a sound field around the

28

listener using the signal emitted by the speakers. In order to produce such a sound field, gains and delays
are applied to the signal emitted by the speakers, in order to create interfering sound waves. In VBAP
techniques, only the two or three speakers located in the direction of the virtual sound source are active.
With Ambisonic systems, more speakers may interact in order to produce the correct interferences. The
interested reader may refer to Daniel [2001].

1.4 Room Acoustics – Structure of the reverberation
Room acoustics provides useful methods to estimate the quality of a room. This section explains how
these tools can be used to provide further analysis of our algorithms, as well as to estimate the real need
for enclosed space audio simulation.

1.4.1 Room Impulse Response (RIR) analysis

The Room Impulse Response (RIR) represents the temporal distribution of the sound contributions
between a source and a receiver in a room. The RIR is an important signal, as its convolution with an
anechoic sound produces a sound reverberated with the characteristics of the room. Two main families
of methods may be used to obtain a RIR. It is first possible to measure the response, using an impulsive
sound, i.e., a gun shot or a balloon pop in an existing room. More accurate methods, such as Maximum
Length Sequence (MLS) or sweep methods (see e.g. Müller and Massarani [2001]) are often used for
RIR measurements. More information on RIR measure can be found in room acoustics books such as
Kuttruff [1973]. The other method used to create RIR is numerical simulation. We present in Chapter 2
many algorithms that can be used to model a RIR.

Most of the time, the RIR are decomposed into two or three parts according to the arrival time of
the contributions. Some of the decompositions that are often seen in room acoustics publications are :

Early/Late reflections — The first contributions of the sound are considered as early reflections,
they have to be modeled precisely in order to catch the characteristics of the room. The late reflections,
often called diffuse field, can be modeled with less accuracy.

Early/Middle/Late reflections This decomposition is similar to the previous one, except that the
portion of the RIR where the early and late reflections overlap is given a special attention. Nearly all
commercial room acoustics software use this model.

Direct sound Some authors also extract other parts of the RIR depending on the characteristics of
the algorithms. Most of the time, the direct sound, i.e., the first contribution between the source and
the receiver, is processed apart from the rest of the RIR.

∗ ∗ ∗

29

In Section 3.5, we propose a new way to decompose the Room Impulse Response (RIR). We called
this decomposition Specular/Cluster/Diffuse (SCD) model. This decomposition is linked to the algo-
rithms used to produce the virtual sound field and psycho-acoustic parameters. In this model, the most
significant reflections (that are not necessarily the first ones) are treated independently from the rest of
the Room Impulse Response (RIR).

1.4.2 Reverberation time

The reverberation time is defined as the duration over which the sound intensity decreases by a factor
10−6, equivalent to a gain of -60 dB (T60).

Reverberation time can be estimated from geometric simulation. Sabine provided a hypothesis based
on empirical results that gives a good approximation of T60 [after Jouhaneau, 2000]:

T60 =
0.16V

A + 4mV
(1.51)

With V , the volume of the room, 4mV , the atmospheric absorption proportional to room volume,
and A, Sabine’s equivalent absorbent area:

A =
∑

i

Ai =
∑

i

Siαi (1.52)

With Ai, the equivalent absorption area of wall, Si, the associated surface area, αi Sabine’s energy
absorption coefficient per unit surface.

To remain valid, the calculation of T60 must respect Sabine’s hypothesis:

• Homogeneous diffusion

• Room neither too small nor too absorbent (αi << 1)

• Measure have to be made in far field

Sabine’s absorption coefficients are in general given in octave bands for different materials.
T60 can also be estimated from the decay curve associated with the RIR. The formulation of the

decay curve, h2, is

h2(t) =
∫ ∞

t

p2(τ)dτ (1.53)

with p the impulse response.
The reverberation time, is generally evaluated from a logarithmic slope regression between -5 dB and

-35 dB of the decay curve. This evaluation multiplied by 2 gives the reverberation time, it is generally
called T30.

The two previous formulations of the reverberation time are important, as they are theoretically
very close. They provide a simple way to validate the algorithms as a first approximation.

30

1.4.3 Objective parameters for the evaluation of a room

As subjective evaluation of room impulse response is a long process, many objective indicators have
been introduced in room acoustics in order to have a simple way to compare the acoustic quality of a
room. We present here the two main parameters that we used for the validation of our algorithms, but
the reader may refer to e.g. Vorländer [2008]; Kuttruff [1973]; Bork [2005a] or Beranek [2003] for more
objective parameters.

Definition D50 The definition is the percentage of energy reaching the listener during the 50 first
milliseconds over total energy. It helps to characterize the percentage of intelligibility of speech. This
information is essential for classroom or amphitheater modeling:

D50 = 100

(∫ 0.05
0 p2(t)dt∫ +∞
0 p2(t)dt

)
(1.54)

Clarity C80 The clarity expressed in dB is based on a ratio of energy during the first 80 ms over the
energy after 80 ms.

C80 = 10 log

(∫ 0.08
0 p2(t)dt∫ +∞
0.08 p2(t)dt

)
(1.55)

∗ ∗ ∗

We presented in this chapter the basic materials in the fields of physics, signal processing, psycho-
acoustics and room acoustics to understand the following chapters. Some important notions were dis-
cussed briefly in this chapter, they will be developed when necessary in the following chapters.

31

2
Analysis and implementation of propagation

algorithms

In this chapter, we present the propagation of sound in enclosed spaces. We begin with a state of the
art (cf. Section 2.1) of the various existing techniques. Starting from these observations, we introduce
an algorithm that aims at enumerating all paths between a source and a receiver in a virtual scene
(cf. Section 2.3). The objective of this algorithm is to analyze the propagation algorithms in terms of
propagation depth, and the types of interactions they model. The algorithms can be classified thanks to
the grammar presented in Section 2.1.7. As a result of this analysis, we present a criterion to optimize
the rendering hierarchy of real-time algorithms: the spatial coherence criterion (see Section 2.4). Fi-
nally, the implementation of two optimized algorithms that fit the problem of real-time auralization is
presented. The first one is used to reproduce pure specular paths (cf. Section 2.5.1). The second one is
dedicated to the auralization of diffuse sound field (cf. Section 2.5.2.)

Contents
2.1 State of the art . 34
2.2 Independent processing of specular and diffuse field 57
2.3 Implementation of a hybrid source image / radiosity algorithm 60
2.4 Spatial coherence of the sound field in rooms : the rendering hierarchy 66
2.5 Implementation of sound propagation with specular and diffuse reflection algo-

rithms for real-time auralization . 67
2.6 Conclusion . 72

33

2.1 State of the art

Acoustic propagation of a sound in a room necessarily involves the description of the sound wave
propagation. Sound is emitted from a sound source in every direction of the virtual scene. The frequency
content of the sound is modified as it interacts with objects of the scene. A receiver located in the scene
gathers the sound information every time it is intersected by a sound wave. Propagation algorithms have
been widely studied since the invention of the computer, and a wide variety of algorithms have been
developed to take into account the different characteristics of propagation. None of these algorithms are
perfect, and this section gives an analysis of the most popular algorithms in order to find the one that
best fits dynamic sound rendering in complex environments.

This section only deals with geometrical acoustic algorithms. They are better suited for auralization,
as described in Chapter 3. Vorländer [2008] gives an introduction to other methods called wave based
methods — BEM, FEM, difference methods ... —. Another family of methods is based on statistical
models of the reverberation. They are independent of the geometry and thus do not fit for an accurate
rendering of complex environments. Some of these methods, based on recursive filters are presented by
Kahrs and Brandenburg [1998].

It was decided not to take into consideration diffraction in our analysis. In order to be complete, our
model should add this missing information, but in many cases, diffraction has only a minor influence on
the auralization of the calculations in an enclosed space. This restriction leads to the point that coupled
volumes, or volumes with occluders will be misestimated.

In our analysis, we have split the auralization algorithms into two categories depending on the
intersection types they model. The two major intersections modeled in geometric algorithms are specular
reflections and diffusion. We first talk about the basic algorithms that only deal with specular reflections,
such as image source (cf. Section 2.1.5) or Deterministic Ray Tracing (DRT) (cf. Section 2.1.5). We
then describe the radiosity algorithm (cf. Section 2.1.6) that is well suited for pure diffuse propagation,
and conclude with various algorithms that combine both specular and diffuse reflections such as MCRT.

2.1.1 Ray or particle propagation

This chapter is restricted to geometric propagation algorithms; these algorithms are in general described
as algorithms of the family of ray tracing. Before we present the details of such algorithms, it is important
to describe what is a ray, and how it travels in the virtual scene. In the definition of some algorithms,
the concept of ray is sometimes replaced by particle, or other entities like beam, frustum or cone. The
naming of these elements has evolved over the years, and we propose in this section a naming convention
depending on the entity that is propagated.

The first ideas of ray-based algorithms that were developed are the Stochastic Ray Tracing (SRT)
algorithms by Allred and Newhouse [1958a,b]. Kulowski [1985] later presented a detailed article on the
implementation of ray tracing algorithms on computer architectures. The basic stochastic algorithm is
based on the generation of sound rays in every direction, starting from the sound source. The rays are

34

then reflected specularly1. Then the receiving sphere collects the particles as it is intersected by a ray.
In this method, a histogram is filled, and all rays crossing the receiver during a short period of time are
summed.

Another approach of ray tracing called Deterministic Ray Tracing (DRT) is briefly discussed in
Vorländer [2008]. The method is similar to the previous one, except that the collection is no-longer
based on the summation of rays, but on the detection of a unique ray that has a propagation sequence
reaching the receiver. This ray is linked to the unique image source representing a given sequence of
intersection. In this version, the ray does not carry a portion of the radiated source energy, it carries
the full energy, and, as it is collected, it gets attenuated by the distance of propagation, according to
the 1/d2

R law.

In the recent implementations of stochastic ray-based algorithms such as Sonel Mapping Kapralos
et al. [2006], Phonon Tracing Bertram et al. [2005], or sound particles Stephenson [1990], the rays are
often called particles. In order to clarify the definitions of the propagation algorithms in the following
chapters, we propose the following definitions:

Definition 2.1. A particle is an entity traveling in a virtual scene that has no memory of its travel.
A particle carries a portion of the energy of the sound source that is proportional to the number of
particles emitted by the sound source.

Definition 2.2. A ray is an entity traveling in a virtual scene with a record of its travel, i.e., the path
followed by the ray between the source and its current position can be traced at any time. The ray
carries the total energy of the source and gets attenuated during its travel according to the 1/d2

R law,
with dR the distance traveled by the ray.

Definition 2.3. A path represents the full trajectory of a ray or a particle from the point it is emitted
to the point it is observed. A path keeps track of every position and direction (for emission, for each
intersection and for the observation). It also keeps the characteristics of the walls intersected. A path
can be observed at every instant of its travel. If it is observed while it reaches the receiver, the path
represents the full trajectory between the source and the receiver.

In the rest of the document, all presented algorithms will use the above definitions. The original
names of the algorithms will be kept unchanged. — for instance, the Monte Carlo Ray Tracing (MCRT)
algorithm does not refer to the propagation of rays, but to the propagation of particles, according to
the previous definitions.

The algorithms of beam tracing, cone tracing, and frustum tracing belongs to the family of ray
algorithms. The difference is that the ray is no-longer a punctual entity. It defines a volume whose
shape is given by the name of the algorithm.

1At least in the version of Kulowski [1985].

35

2.1.2 Sound emitter

From a computational point of view, the sound source can be seen as a punctual point radiating small
particles2. These particles are infinitesimal elements traveling with the wavefront in the direction of
propagation. It can be seen as a small element exploding into Np particles that are spread omni-
directionally and that continue their travel in the virtual scene. Some examples of such a representation
are presented by Deines et al. [2006].

In all ray-based and particle-based algorithms, the source emits elements in the virtual scene. There
are two ways to distribute the rays or the particles. The first is to make a deterministic discretization
of the sphere. This can be for instance an exosphere, i.e., a kind of equally discretized sphere, where
the corners of all patches represent the direction of emission of rays or particles.

The second method is to sample the sphere using a random number generator. The random numbers
define directions distributed uniformly on the surface of the sphere — generally, we use a unit sphere,
as it is useful to manage unit vectors for propagation. The uniformly distributed samples x of Cartesian
coordinates (x, y, z) on the unit sphere can be computed with two uniformly distributed parameters in
the interval [0..1], ξ1 and ξ2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x =
√

1 − z2 cos θ

y =
√

1 − z2 sin θ

z = 1 − 2ξ1

, θ = 2πξ2 (2.1)

Tests were performed using a pseudo random number generator presented by Wong et al. [1997]. But
no real improvements were observed in term of the convergence speed of the algorithms3 compared to
uniform distributions.

2.1.3 Sound ray/particle propagation and reflections

Once a ray or a particle was emitted, it travels in the virtual scene until it is absorbed, or until it leaves
the scene (for the cases where the scene is open). Every time a particle or a ray encounters a wall, it is
reflected, absorbed, or stored in a collect structure associated with the diffusion model.

In the previous sections, one parameter was omitted in the definition of the acoustic problem: the
frequency. The signals used in general for auralization are broadband sounds 4 that are obtained by
anechoic recording of voices, instruments or any other source present in the environment. The sound
is attenuated during its propagation in the air, this attenuation depends on the frequency. During its
travel in the virtual scene, the sound spectrum is also modified by the objects it interacts with. Two
kinds of interactions can be observed: (i) diffraction, that is not presented in this study — The reader
can refer to Keller [1961] for basics of the geometrical theory of diffraction, Peter et al. [1999]; Calamia

2More complex sound sources (e.g. vibrating surfaces) can be approximated by multiple point sources.
3This study is part of Galletti [2010] report.
4Mono frequency sounds are generally only used during the tests of the algorithms.

36

[2009] for Biot-Tolstoy-Medvin method, Tsingos [1998]; Tsingos et al. [2000] for specific information on
the diffraction for virtual acoustic, and Kapralos [2006] for diffraction using Sonel mapping; (ii) the
reflection of the sound on the walls of the virtual scene. As the sound reflects on a surface, it gets
attenuated. That means that part of its energy is absorbed by the wall. This absorption is in general
frequency dependent.

Bidirectional Reflectance Distribution Function (BRDF) fr

As a sound wave reaches a patch of the virtual scene, it is reflected. A general method to characterize
the reflection of a wave on a surface is the Bidirectional Reflectance Distribution Function (BRDF) that
was quickly introduced in Section 1.1.5. Bi-directional Subsurface Scattering Reflectance Distribution
Function (BSSRDF) is a more general way to model reflections, it can model more complex kinds of
interactions, like waves at grazing incidence, but its study is beyond the scope of this document.

BRDF is a reflectance function, it expresses how much energy flow arriving at point x will leave x.
Formally, BRDF is defined as the ratio of the outgoing differential radiance for a given direction over
the incoming differential irradiance (for a given direction, over an incoming differential solid angle):

fr(x, Ψ → Θ) =
dL(x → Θ)
dI(x ← Ψ)

=
dL(x → Θ)

L(x ← Ψ) cos ψdΨ
(2.2)

where

• Θ is the outgoing direction,

• Ψ is the incoming direction,

• ψ is the angle between the incoming direction Ψ and the normal at point x.

The notations used in Equation 2.2 refer to Figure 1.2.
BRDF has the following properties:

• it can take any positive value,

• it is in general frequency dependent,

• it is a six dimension function: two for the position x (over the surface of the object), and two
angles in polar coordinates (the incoming Ψ and outgoing Θ directions),

• it is reciprocal fr(x, Ψ → Θ) = fr(x, Θ → Ψ),

• and it conserves energy; according to the first law of thermodynamic, energy can not be created,
but only transformed. Our reflecting material can not add more energy into the scene, it can only
decrease it. Expressing this rule in our physical quantities, we get that the outgoing power at
point x must be smaller than the incoming power.

In this document, we limit ourselves to specular and diffuse BRDFs, discussion of other types of BRDF
can be found in computer graphics books like Pharr and Humphreys [2004].

37

Figure 2.1: Specular reflection construction and notation.

Specular reflections

Specular reflections, also called mirror reflections, are one of the most important effects in room acoustics.
They occur when a sound wave interferes with a hard surface — for instance a concrete wall. This kind
of BRDF has been studied a long time before the invention of the computer — at least in optics. In
1634, Descartes gave the rules describing the reflection of light on a reflector:

• A single ray of incoming light is reflected as a single ray of outgoing light,

• the reflected ray is inside the plane defined by the incoming ray and the normal to the surface,

• the reflected ray makes with the normal an angle equal to the angle of the incoming ray.

The geometric expression of these observations is:

⎧⎨
⎩ Ψ = Θ + 2d

d = (−Θ·n)n
n2

(2.3)

where Ψ is the outgoing direction of a ray, R, after reflection, and d is the projection of vector Θ, the
incident direction of the ray on the normal, n, to a reflector.

This can be expressed as a BRDF, frS, using a Dirac delta function5:

frS =
ϑS

cos θi
δ(cos θi − cos θE)δ(φi − φE ± π) (2.4)

where ϑS is the specular reflectance of the material. The reflectance, also called sound power reflection
coefficient, is defined as the ratio of reflected to incident wave power. The specular reflectance represents
the portion of sound reflected in a specular direction. (θi, φi) and (θE , φE) are respectively the incident
and outgoing angle of the ray in polar coordinates.

It is important to note that Equations 2.3 and 2.4 are valid for rays and particles.

5The definition of the Dirac delta function is given in Appendix A.3.

38

Figure 2.2: Reflection direction according to the ratio wavelength over element size — after Cox et al.
[2006].

Lambertian (or diffuse) reflections

The diffuse BRDF is given by the formula:

frD =
ϑD

π
(2.5)

where ϑD is the diffuse reflectance of the material. The diffuse reflectance represents the portion of sound
reflected in diffuse direction. It is important to note that it has lost all directional dependencies: the
diffuse reflectance does not depend on the incoming or outgoing direction of the ray or particle. The
difficulty with diffuse reflections in ray-tracing algorithms, is that every time a ray is diffused, it should
be re-emitted in an infinity of directions. This problem was solved with algorithms like radiosity, Monte
Carlo Ray Tracing (MCRT), or sonel mapping (see Section 2.1.6).

Scene materials - The specular/diffuse model

One of the most used model in room acoustic simulation is the combination of specular and diffuse
models. It has the major advantage to be easily compatible with particle algorithms, and requires less
computation than complete BRDF algorithms. Some methods like Tsingos et al. [2007] were developed
in order to estimate the BRDF of materials and perform propagation. But, usually, the BRDFs of the
materials used in the simulations are unknown6.

Scattering occurs when the corrugations of the surface are of the order of λ/2, with λ the wavelength
of the sound propagated (see Figure 2.2). That means that the type of reflection is frequency depen-
dent. In the specular/diffuse model, the BRDFs are approximated by a combination of specular and

39

Figure 2.3: Combining Lambertian and specular BRDF.

Lambertian BRDFs, as shown in figure 2.3.
The energy reflected specularly (ΦS), diffusely (ΦD) and the total reflected energy (Φtot) are

ΦS = Φi(1 − α)(1 − s) = ϑSΦi (2.6)

ΦD = Φi(1 − α)s = ϑDΦi (2.7)

Φtot = ΦS + ΦD = Φi(1 − α) (2.8)

where Φi is the incident energy, α is the Sabine absorption coefficient [see Kuttruff , 1973], s is the
scattering coefficient — it defines the portion of the reflected sound that is diffused. ϑS is the portion of
energy reflected in specular direction, and ϑD is the portion of energy diffused. Databases of frequency
dependent Sabine (α) and diffuse coefficient (s) can be found in e.g. Bork [2005a] and Vorländer [2008].
Some recent investigations on the determination of α and s were presented by Hanyu [2010].

2.1.4 Sound receiver

Rays or particles collection is the link between geometric processing and auralization. This section
presents various structures used in the literature to collect rays or particles. It describes what kind
of elements are collected by the receiver and how they are arranged. Various receiver characteristics
will lead to various auralization methods, or to various improvements in the propagation algorithms.
The analysis of the pros and cons of six structures is presented in this section. An alternative way
of collecting rays based on perceptive information is presented in Chapter 4. But, first of all, we will
present the differences related to the collection of rays or particles.

Ray versus particle collect algorithms

The processing of a ray or a particle is very different after the collect step. The propagation algorithms
for rays or particles may share some characteristics. But, once the propagated entities are detected, the
algorithms become really different. We present here the basic information about the collect of these two
entities. The steps following the collect are explained in Chapter 3.

6In some special cases, analytic formulations can also be found.

40

Ray collect As we have seen earlier, the rays traveling in the virtual scene keep track of their history,
i.e., the set of all reflections encountered during their travel. When they reach the receiver, they have
traveled a certain distance, dR, from the source, and have an associated energy, ΦR. The direction of
arrival on the receiver, (Rθ, Rφ), is also kept. When a ray reaches the receiver, it is possible to add
its contribution directly to the RIR as the ray carries the full energy emitted by the source. Figure
2.7(d) presents the collect of pure specular rays in the scene of Appendix B.1.1 up to order five. A ray
can be located in time very precisely, even if the receiver is not punctual, as it is possible to detect the
corresponding image source thanks to the ray history.

Particle collect The method used for collecting particles is very different from that for rays. As a
particle reaches a receiver, the energy it carries is added to an integrated echogram (a part of the re-
ceiver’s energy proportional to the number of particles emitted). If the integration steps of the echogram
are too small, the particles will be spread in many bins of the echogram, and the specular contributions
will not be perfectly located in time. If the integration steps are too high, many paths coming from
various reflections may be summed and the echos or interferences caused by specular paths may be lost.
Figure 2.10 shows three integrated echograms with different integration steps. Chapter 4 discusses the
choice of the integration steps from a perceptive point of view.

∗ ∗ ∗

The collect structures presented in the current section are suited for particle or ray algorithms. They
present various ways to improve collect of the rays or particles propagation.

Fixed size structures (for particles)

The first structures that were implemented can be classified as fixed size structures. Krokstad et al.
[1968]; Kulowski [1985]; Vorländer [1989] used such structures to implement the first versions of particle
tracing algorithms in acoustics.

The main problem in particle tracing algorithms is that a particle is infinitely small, and cannot
be detected by an infinitely small sensor, i.e., a collecting structure. Different types of sensors can be
implemented, depending on the applications. Kulowski [1985] presents in details the two simplest types
of structures to collect paths. The first one is a plane, that can be seen just like all other triangulated
parts of the virtual scene. Each time a particle reaches this structure, it is collected in the echogram
to form the impulse response of the scene. This structure has the obvious disadvantage of being very
directional: particles parallel to this plane will be lost. The second collect structure is a sphere centered
on the receiver point. This structure is very often used in ray or particle tracing algorithms. It has
the main advantage of being an omni-directional sensor, and collect can be simply implemented by
computing the particle/sphere intersection. This is written as:

⎧⎨
⎩ (xI − xR)2 + (yI − yR)2 + (zI − zR)2 = r2

R

xI = xP + t.dP
(2.9)

41

where xR, yR and zR are the coordinates of the center of the receiver sphere, rR the sphere radius, xI ,
the intersection point of coordinates (xI , yI , zI), xP and dP, the incoming particle origin and direction
respectively7. The number of rays used in a simulation for a sphere of radius rR [after Vorländer , 1989]:

Np ≥ 4(ctmax)2

r2
R

(2.10)

with tmax, the duration of the echogram to generate and c, the speed of sound. This equation shows
that to generate an echogram of one and a half seconds with a sphere of radius one meter, around 106

particles have to be propagated. With this structure, the collected particles increase the energy of the
echogram bin associated with their arrival time.

The problem with the previous structure is that it only stores the energy of the incoming particle
reaching the sensor: the incoming directions are lost. The resulting echogram will therefore allow
monophonic rendering only.

Fixed size structure with history mechanism (for rays)

This structure is an extension of the previous one to ray propagation algorithms. It is used for instance
in Deterministic Ray Tracing (DRT) (see Section 2.1.5). In this algorithm, the propagated ray stores
a history of all surfaces encountered during its travel in the scene. The collect structure has the same
geometry as the one described in the previous section. But, every time a ray is collected, it is compared
with all previously collected rays. If one of the previously collected rays has the same history, only one
of the rays is kept8.

With this structure, the energy ΦR carried by every ray R is

ΦR =
1

d2
R

Nrefl∏
i=1

(1 − αi) (2.11)

where dR is the distance traveled by ray R, Nrefl, the number of reflections that occurred before the
ray was captured, and αi the Sabine absorption coefficient for the ith intersected wall.

There are two drawbacks to this method: (i) the comparison between the current ray and the
previously collected rays is of order O(N2

rays); (ii) the only way to manage curved surfaces is to discretize
them, i.e., curved surfaces lose their continuity. They are triangulated, and a source image is associated
to every triangle.

Fixed size structures with spatial information (for particles)

Fixed size structures are still very often used. Lentz et al. [2007] use a sphere sensor and Röber et al.
[2007] use a cube. Recently, the concept of the fixed size structure was extended to capture the incoming

7xI = xR + t.dR for a ray.
8This is the ray with the smaller arrival time, as specular ray reflections minimize the distance between the source and

the receiver after Nrefl reflections. The other rays are discarded.

42

Figure 2.4: An echogram of a collect sphere with spatial information — after Lentz et al. [2007].

directions of the rays. Röber et al. [2007] introduced a structure called cube-map which is a discretized
cube where each cell stores the incoming rays energy and delay per frequency band. The stored data
are used to obtain the arrival direction in order to produce a binaural synthesis. One of the problems
with this structure is that it is not omnidirectional, some directions are privileged during the collect.

Another approach of spherical collection is proposed by Lentz et al. [2007]. The principle is the
same as the cube collect structure, except that the sensor here is a discretized sphere. Figure 2.4 shows
that the sphere gathers an echogram — energy and delay per frequency bands — for each cell of the
sphere. A small problem with this structure, is that the discretization is not regular. This has two
disadvantages. First, the poles of the sphere will provide a better location of the sound because the
patches are smaller in these regions — this is not adapted to human perception. Second, some cells on
the poles will have a very small probability to collect rays, this will lead to empty echograms, that can
consume unused memory.

The above structure, with a regular discretization, like an exosphere could be a good choice for fixed
size structure algorithms. Other strategies can be used for the discretization, like a discretization based
on perceptive parameters. This is the approach proposed in Chapter 4.

Adaptive structures (for particles)

Recently, Lesoinne and Embrechts [2008] and Lesoinne [2006] presented a method based on an adaptive
spherical receptor in order to accelerate particle tracing methods. In this method, the size of the receiver
increases according to the propagation distance of the rays in the virtual scene. In order to keep a low
statistical error, either the number of particles or the size of the receiver increases when tmax increases
(cf. Equation 2.10). This method can be seen as the generation of several echograms, each of them
associated with increasing tmax. In their method Lesoinne and Embrechts [2008] adapt the number of
rays traveling in the scene according to the size of the receiver. They also describe a growing receiver
that can be larger than the room dimensions when dealing with late reflections. The growing factors and
temporal steps are arbitrarily determined by the authors. The collect algorithm is modified as follows:

A temporal spreading of the particles contributions is introduced: If the collect structure is longer
than the temporal resolution of the echogram, the particle energy is spread over time intervals [tin, tout],

43

(a) Ray temporal spread when crossing a large re-
ceiver. The ray energy is spread over time intervals
between tin and tout.

(b) Ray intersection times when receiver is larger than
room dimensions.

Figure 2.5: Two rays intersecting a large collect structure.

with tin, the incoming and tout, the outgoing intersection times with the sphere.
When the collect sphere becomes larger than the room, intersection times are taken at the wall

position as shown in Figure 2.5. The same temporal spreading mechanism is applied between these two
points.

To keep a constant particle/receiver intersection probability, the number of rays is decreased each
time the sphere grows up. When the sphere dimensions change, particles are terminated, i.e., they are
no longer propagated in the scene. When the radius of the sphere grows from r1 to r2, the new number
of particles in the scene, Np2, is:

Np2 = Np1

(
r1
r2

)2
(2.12)

To keep a constant global energy of the rays at any given time, the energy of the Np2 new rays must
be multiplied by Np1/Np2. If the receiver size is larger than room dimensions, its equivalent radius is
determined using an offline preprocessing step as explained in Lesoinne and Embrechts [2008].

More information on the implementation of such a mechanism can be found in Hermant [2010].

Other types of collect methods

In this section, we have presented the collect structures commonly used for ray or particle collect
algorithms. Depending on the propagation algorithms, other collect structures can be implemented. For
algorithms that propagate beams, pyramids or cones, the receiver is a punctual entity. The detection is
then made by testing if the point corresponding to the receiver’s position is inside or outside the volume
of the propagated element (cone, beam, frustum, ...).

44

Another way of collecting the information propagated from the sound emitter is to perform a second
ray or particle shooting from the receiver following the shooting from the emitter. These algorithms are
called bidirectional algorithms, and the receiver in this case is also punctual. The detection of the paths
is made every time a ray or a particle starting from the receiver intersects a wall. At every intersection,
the collect of the information propagated from the source (and stored on the walls) is performed. Sonel
mapping (see Section 2.1.6) is an example of such an algorithm.

2.1.5 Pure specular contributions to the sound field

In room acoustics, the most significant paths from a perceptive point of view are the first specular
reflections. In this section, we also include the direct sound in the set of specular paths as it can be seen
as a specular path without reflection, or a zero order specular path. The first orders of specular paths
carry information about the direction of the sound, as well as perceptive information about the size of
the scene. Specular reflections of higher orders also carry important information on the characteristics
of the room. For instance, in a perfect shoe box room, a coloration of the sound or a flutter echo can be
heard when rendering specular paths of at least three orders. In this section, we present two algorithms
specialized in the detection of specular paths in the virtual scene. The image source algorithm and the
Deterministic Ray Tracing (DRT) algorithm.

Image source algorithm

Algorithm 1: Image source recursive algorithm.
Data: Image Source Ei

Receiver R
Wall wprec

Reflection order o
begin ImageSourceRec {Ei, R, wprec, o}

if o = Nrefl then
return

else
foreach w ∈ walls, w
= wprec do

Ei+1 = MirrorImage(Ei, w)
BackwardRayTracing (R,Ei+1)
ImageSourceRec (Ei+1,R,w,o + 1)

The image source algorithm presented by Allen and Berkley [1976] is the simplest way to find
exhaustively all specular paths between a source and a receiver in a virtual scene. The first order of
image sources is obtained by mirroring the source with all the walls of the scene. The second order of
image sources is generated by mirroring all the first order image sources with all the walls of the scene
except the one that generated second order image sources. The same scheme is used for the following

45

Nwalls

Nrefl 1 10 20 50 100

6 7 1.2 · 107 1.2 · 1014 1.1 · 1035 9.9 · 1069

50 51 8.1 · 1016 6.5 · 1033 3.3 · 1084 1.0 · 10169

100 101 9.1 · 1019 8.3 · 1039 6.1 · 1099 3.7 · 10199

1000 1001 9.9 · 1029 9.8 · 1059 9.5 · 10149 9.1 · 10299

Table 2.1: Number of image sources depending on the number of walls and the order of reflections.

orders of reflections. The problem with this method is its exponential complexity. Table 2.1 gives the
number of image sources calculated for various orders of reflections and number of walls in a virtual
scene. The exact number of image sources, NIS , depending on the number of non coplanar walls in the
scene, Nwalls, and the order of reflections, Nrefl, is

NIS = 1 + Nwalls +
Nrefl∑
i=2

(Nwalls − 1)i (2.13)

One problem remains with the algorithm of image sources; not all of the image sources constructed
are visible from the receiver. Every time the processing is applied to complex scenes — at least more
complex than shoe box rooms — some of the image sources are hidden. They can be hidden by an
occluder, or by a complex element of the geometry. Borish [1984] proposed a method for extending the
calculation of image sources to arbitrary polyhedral environments. In this method, for all newly created
image sources, a test is performed to check if it is in a visibility zone from the receiver or not. One of
the most used methods to determine whether the image source is valid or not is to perform a backward
ray-tracing from the receiver, and check if the ray reaches the source. The algorithm of ray tracing is
similar to the one described in the next section. In order to check occlusion, the ray is created at the
position of the receiver, and is oriented in the direction of the image source to check. The ray is then
propagated in the scene upon the same order than the image source. If the ray reaches the receiver
after the last specular reflection in the scene, then the image source is valid, and can be kept for the
calculation of the IR. Figure 2.6 illustrates an image source creation for a simple 2D geometry, and the
back-traced ray to check if one of the sources is valid. In this figure, the studied room is represented by
solid lines, the other rooms in dash lines contain the image sources, they are called the virtual rooms
by Borish [1984].

The main advantage of the image source algorithm is that it gives a totally exhaustive list of the
specular paths up to the considered reflection order Nrefl. We have implemented this algorithm in order
to build the tree of reflections, a tree structure containing all the image sources contained in a virtual
scene (see Section 2.1.7).

Algorithm 1 shows the recursive procedure to find the image sources in an arbitrary room. This

46

Figure 2.6: Image sources of order zero, one and two, and a back-traced ray for one of them.

algorithm includes the back-tracing method to check the validity of the image source, i.e., no occluder
exists between the image and the receiver, and they can be connected with a specular ray. The position
of the image source xE,i+1

9 after the mirror reflection is (after Borish [1984])

xE,i+1 = xE,i + 2dn, d = −n · (a − xE,i) (2.14)

where a is any point on the wall, d, the projection of the vector a − xE,i on the normal to the wall.

Deterministic ray tracing

One of the most important algorithms in geometrical acoustics is the ray tracing algorithm. It is
important in the sense that it defines the basic concept for most of the propagation algorithms presented
in this research. The main algorithms derived from the ray-tracing algorithm in acoustics are:

• the stochastic ray tracing algorithm — Dalenbäck [1996];

• the beam tracing algorithm — Funkhouser et al. [2004];

• the cone tracing algorithm — van Maercke and Martin [1993];

• the sonel mapping algorithm — Kapralos [2006];

• the phonon tracing algorithm — Bertram et al. [2005];

• the acoustic radiance transfer — Siltanen et al. [2007].

There are still possible improvements in geometrical acoustics, following progress in the field of computer
graphics. In particular ray-tracing algorithms were declined in various versions, such as:

9xE,i+1 represents an image of the source E. As the source corresponds to an image of order zero, it could also be
noted xE,0.

47

• the path tracing algorithm — Kajiya [1986];

• the bidirectional path tracing algorithm — Lafortune and Willems [1993];

• the photon mapping algorithm — Jensen [2001]; 10

• the metropolis ray tracing algorithm — Veach and Guibas.

Ray tracing is a geometric method that connects a source and a receiver. Sources and receivers
are located in an environment where sound propagates. Ray tracing algorithms are based on Fermat
principle, also called the principle of least time, that is the path taken between two points by a ray
is the path that can be traveled in the least time. As we have seen before, the travel time is directly
proportional to the distance traveled by a sound wave, so a ray is defined as the minimal distance
between two points after Nrefl reflections. This principle yields the very important property that the
traveling direction of a ray has no influence on the simulation, i.e., a ray starting from the source and
reaching the receiver will have the same characteristics if the source and the receiver were permuted.

The first simulations in the field of room acoustics were made using a stochastic method to sample
the distribution of the rays in a virtual scene [Allred and Newhouse, 1958a,b]. This is the first article
about Monte Carlo Ray Tracing (MCRT) algorithm (see Section 2.1.6 for more information on MCRT).
This method was used to estimate acoustical properties such as reverberation time or mean free path
in parallelepipedic rooms.

In the DRT algorithm, the rays are thrown from the source, then reflected on the walls of the scene
as purely specular contributions and finally collected by the receiver. The receiver is in general a sphere,
in order to have an omnidirectional collecting element (see Section 2.1.4). According to Equation 2.10,
the number of rays, Nrays, 11 to throw depends on the receiver radius, rR, and the maximum time of
the echogram, tmax, according to the relation

Nrays ≥ 4(ctmax)2

r2
R

(2.15)

Algorithm 2 presents a simple version of the DRT algorithm, where the termination criterion, i.e.,
the time a ray disappears from the scene, is based on the energy of the ray. In the DRT algorithm, the
termination criterion could be either the travel time of the ray, or the remaining energy of the ray. In
the first part of the algorithm, the ray position, xR, direction, dR, distance, dR, and energy, ΦR, are
initialized. Then the ray is propagated until its energy falls below a termination threshold, εE . When
the ray travels in the scene, each intersection is characterized by an intersection object I. Depending
on the kind of intersection, the following behaviors occur.

(i) If the ray crosses a receiver, and no other ray collected by the receiver has the same history, then
the ray is stored by the receiver.

10That is the basis for sonel and phonon algorithms in acoustics.
11Here, Nrays is equivalent to the number of particles Np.

48

Algorithm 2: Deterministic Ray Tracing (DRT) algorithm.
foreach Ray R do

xR ← xE
dR ← UniformSampleSphere()
dR ← 0
ΦR ← ΦE
while ΦR

R2
R

≥ εE do
I = GetNearestIntersection()
if Itype is Receiver then

if CheckUnique (R) then
Collect (R)

else if Itype is ∞ then
continue

else if Itype is Wall then
xR ← Ipos

dR ← SpecularReflection(R, I)
ΦR ← ΦR · αI
dR ← dR + dI
Rhistory ← Rhistory|I

(ii) If the scene is opened, the ray may miss a surface and go to infinity, here, the ray stops its travel,
and disappears from the scene.

(iii) If the ray intersects a wall, then its new position is the intersection point, xI , its new direction
is a specular reflection (see 2.1.3), its energy gets attenuated by the Sabine coefficient of the surface,
αI , and its travel distance is incremented by the distance between the last and current intersection.
Finally, its history, Rhistory, keeps a history of the reflection. In Algorithm 2, the symbol | represents
the concatenation operator.

We present in Section 2.5.1 an alternative implementation of DRT algorithm that is suited to the
problem of real time auralization.

2.1.6 Diffuse reflections

We have seen in Section 2.1.3 that the specular model is not sufficient to describe the propagation
of a sound wave in a complex environment. In this section, we present the radiosity algorithm that
can be used to estimate the diffuse sound field in a room. It is impossible with classical radiosity
algorithms to obtain the specular reflections between source and receiver. Tsingos [1998] proposed a
progressive radiosity algorithm that is suited to the problem of specular paths in radiosity algorithms.
The presentation of this algorithm is beyond the framework of this study. Instead, we decided to
implement a mixed version of the classical radiosity algorithm and image source method (see Section 2.3).
We then present methods based on Monte Carlo Ray Tracing (MCRT) to calculate both the specular
and the diffuse part of the propagation using ray based algorithms.

49

Radiosity

The radiosity technique was first used in the 50’s to calculate thermal propagation. It has then been
adapted in various fields of research, such as electromagnetism, computer graphics, and acoustics. The
principle of radiosity is based on the propagation of radiance in the virtual scene. The formulation of
the total radiance L emitted by a point x of an element of the scene in direction Θ (from Equation
1.12) is

L(x → Θ) = Le(x → Θ) +
∫

G
fr(x, Ψ → Θ)L(x′ → −Ψ)V (x, x′)G(x, x′)dx′ (2.16)

If we consider here the particular case of Lambertian surfaces with a time independent BRDF (see
Equation 2.5), we then have

L(x) = Le(x) +
ϑD

π

∫
G

L(x′ → −Ψ)V (x, x′)G(x, x′)dx′ (2.17)

where

• L(x) is the total radiance leaving point x at the instant t;

• Le(x) is the radiance emitted by the patch at point x at time instant t;

• L(x′ → −Ψ) is the incident radiance at point x and instant t from direction −Ψ;

• ϑD is the diffuse reflectance of the patch.

• V (x, x′) is the visibility function, it is a boolean function that as a value one if the two points x
and x′ see each others, zero otherwise.

• G(x, x′) is a geometric term (see Section 1.1.5).

In the special case of radiosity, the total intensity Ii(t) leaving a patch i is proportional to the direction
independent radiance L(t):

I(t) = πL(t) (2.18)

The radiosity technique can be formulated by discretizing the integral over all surfaces of the scene
by a sum of all radiative exchanges between patches. For patch i, this is expressed as:

Ii(t) = Ie,i(t) + ϑD

Npatch∑
j=1

Fi→jIj(t − tij) (2.19)

where

• Ii, the intensity leaving patch i;

• Ie,i, the intensity emitted by patch i;

• ϑD, the diffuse reflectance of the material;

50

• Ij , the intensity emitted by patch j;

• tij , the propagation time between the center of the patches i and j.

Symbol Fi→j represents the form factor that measures the proportion of energy leaving patch i that
reaches patch j:

Fi→j =
1

Ai

∫
Ai

∫
Aj

cos Ψ1 cos Ψ2
π |x − x′|2 V (x, x′)dxdx′ (2.20)

where

• Ψ1 is the angle between vector xx′ and the normal at point x;

• Ψ2 is the angle between vector x′x and the normal at point x′;

• Ai is the area of patch i;

• V is the visibility function.

The notations refer to Figure 1.3. For the specific case of exchanges between a punctual point in the
scene and a surface, the form factor becomes

Fj =
1

Aj

∫
Aj

cos Ψ1
4π||x − x′||2 V (x, x′)dx′ (2.21)

It is important to underline the fact that in acoustics, the form factors are time dependent, as the
radiative exchanges between patches cannot be considered as instantaneous.

The calculation of the form factors will be detailed in Section 2.3, where a step by step description
of the hybrid image source/radiosity algorithm is presented.

Monte Carlo Ray Tracing (MCRT)

We have presented previously DRT algorithm (see Section 2.1.5). This section introduces ray tracing
algorithms based on Monte Carlo integration. The mathematical theory about Monte Carlo integration
can be found in Appendix A.7. Recalling from the definitions given in Section 2.1.1, this algorithm is
considered as a particle algorithm. So, in the rest of the document, the basic propagation element of
the MCRT algorithms will be particles, and not rays as suggested by the name of the algorithm.

We present here a version of MCRT that takes into account specular and diffuse reflections. Although
the algorithm is stochastic, the particles can be generated either by stochastic or deterministic patterns
as described in Section 1.1.3. The particles travel with a portion of the energy, ΦP , proportional to the
number of particles emitted by the source, Np:

ΦP =
ΦE
Np

(2.22)

where, ΦE is the energy of the source. Every time a particle intersects a surface of the virtual scene, it
is reflected according to the properties of the material (see Section 2.1.3). Different behaviors can be

51

applied in order to simulate the material BRDF. Here, we restrict the BRDF to the specular/diffuse
model. In case of a simple specular reflection, the resolution is simple, as the particle gets reflected
in the mirror direction (see Equation 2.3), and gets attenuated by α, the reflection coefficient of the
intersected wall material. In case of a simple diffuse reflection, the problem is more complex, as the
sound is reflected in every direction from the surface. An accurate implementation can be made by
sampling the hemisphere above the surface for each new diffuse reflection. This implies throwing Np2

new particles every time a diffuse surface is intersected. The problem with this approach is that the
number of particles in the scene will increase exponentially, and that it will be difficult to reach high
orders of reflections. Another method is to generate a random direction on the hemisphere above the
surface. If the number of initially thrown particles, Np, is big enough, the result will also converge. The
direction of reflection can then be computed — uniformly sampled in local polar coordinates (θP , φP)
— as [after Pharr and Humphreys, 2004]

⎧⎨
⎩ θP = 2πξ1

φP = arccos(
√

ξ2)
(2.23)

where, ξ1 and ξ2, are uniformly generated random numbers, θP is the rotation angle of the particle
around the normal and φP is the angle with the normal.

Finally, if the material has both specular and diffuse properties, the previous methods are combined.
We can:

• generate one particle in specular direction, and Np2 particles to sample diffuse space,

• or, generate one particle in specular direction, and one random particle to model the diffusion,

• or, keep only one particle, and determine if it is specular or diffuse.

The last solution is the most interesting as it keeps the number of particles traveling in the scene
constant. The type of reflection is determined randomly according to:

⎧⎨
⎩ ξ ∈ [0 . . . s] → diffuse reflection

ξ ∈]s . . . 1] → specular reflection
(2.24)

where, s, is is the scattering coefficient defined in Section 2.1.3 and ξ follows a uniform distribution
between zero and one.

Finally, to reduce the number of particles traveling in the scene, the principle of Russian roulette
can be applied [Kapralos et al. [2005]]. Russian roulette (see Appendix A.7.1) is an unbiased statistical
method that reduces the number of particles traveling in the scene as the order of reflection increases.
The counterpart of this method is that it increases the variance of the solution as the number of particles

52

decreases. The method is also based on a random number generation to determine the type of interaction:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ ∈ [0 . . . ϑD] → diffuse reflection

ξ ∈]ϑD . . . ϑS + ϑD] → specular reflection

ξ ∈]ϑS + ϑD . . . 1] → absorption

(2.25)

where, ϑD and ϑS are respectively the specular and diffuse reflectance (see Section 2.1.3).
When a particle is absorbed, it disappears from the virtual scene, and the algorithm processes the

next particle. The main disadvantage of the Russian Roulette is the increase of the variance toward the
end of the echogram as the number of particles that contribute becomes small. If the initial number
of particles generated is too small, the resulting echogram will have empty bins that lead to audible
artifacts. Therefore, we chose not to implement the Russian Roulette in our algorithms.

The collect phase of the particles is done by one of the structures presented in Section 1.1.4. In the
case of a simple collect sphere, each particle intersecting the sphere is summed in the echogram that
will be later used for auralization.

The major problem with the MCRT algorithm is that its behavior is frequency dependent, i.e.,
the behavior of the particles when they interact with a wall depends on the frequency characteristics
of the material. The method commonly used to implement a frequency dependent processing is to
repeat the simulation for each frequency band. The resulting echograms are frequency dependent and
each of them represent the energy exchanges for a given frequency band12. Embrechts [2000] proposed
a modification of the MCRT algorithm where the particles carry the information to reconstruct the
frequency dependent echograms. This algorithm uses a new coefficient called the splitting coefficient, β,
that is identical for all frequency bands — so that only one particle shoot is necessary. In order to keep
an unbiased simulation, every time a particle intersects a wall, a corrective coefficient, Cn, is applied to
each frequency band. For the nth reflection, the coefficient is given by

⎧⎨
⎩ Cn(f) = s/βn, for a diffuse reflection

Cn(f) = (1 − s)/βn, for a specular reflection
(2.26)

The validity of the algorithm does not depend on the value of βn, but the rate of convergence does.
Embrechts [2000] showed that the best results were achieved using the following expression for the
coefficient, βn:

βn =
maxf

[(∏n−1
i=0 Ci(f)

)
s(f)

]
maxf

[(∏n−1
i=0 Ci(f)

)
s(f)

]
+ maxf

[(∏n−1
i=0 Ci(f)

)
(1 − s(f))

] (2.27)

The definition of βn is thus reflection iterative (Ci represents the corrective coefficient for the previous
reflections), it is the value that minimizes the maximum of the Cn coefficients in both specular and

12Usually octave bands or 1/3rd octave bands.

53

diffuse case. Finally, the choice of the direction of the particle is made similarly to equation 2.24 with
the splitting coefficient β: ⎧⎨

⎩ ξ ∈ [0 . . . β] → diffuse reflection

ξ ∈]β . . . 1] → specular reflection
(2.28)

Sonel mapping

Algorithm 3: Sonel emission.
foreach Particle P do

continue = True
while continue do

I = GetNearestIntersection()
ξ = Rand[0 . . . 1]
if ξ ∈ [0 . . . ϑD] then

AddToSonelMap (P)
DiffuseReflection (P)

else if ξ ∈]ϑD . . . ϑD + ϑS] then
SpecularReflection (P)

else
continue = False

Algorithm 4: Sonel collect.
foreach Ray R do

continue = True
while continue do

I = GetNearestIntersection()
if Itype is Emitter then

CollectSpecularRay (R)
else

ξ = Rand[0 . . . 1]
if ξ ∈ [0 . . . αD] then

< P > = CollectKNearestSonnels(I)
AddSonelsToEchogram (< P >)

else if ξ ∈ [ϑD . . . ϑD + ϑS] then
SpecularReflection (R)

else
continue = False

54

Sonel mapping is an extension of the MCRT methods proposed by Kapralos [2006] and based on the
photon mapping by Jensen [2001] used in computer graphics. Sonel mapping is a two pass algorithm.
In a first pass, the particles are emitted by the sound source. The propagation of the particles in the
virtual scene is the same as in classical MCRT algorithms with Russian roulette. During the first pass
of propagation, no particle is collected by the receiver, but the particles are stored in a structure called
sonel map every time they reflect diffusely from a wall. The sonel map stores the particles at the position
where they reflected on the wall. Kd-tree structures are commonly used to implement sonel (or photon)
maps (see Jensen [2001]). It has to be noted that if the photons are ordered in a kd-tree, the research
of the k nearest particles in a set of Np is made in O(k log Np). This property is used during the second
pass of sonel mapping.

The second pass, referred to as the collect pass, is based on ray tracing. Rays are traced from the
receiver. If they reach the sound source, this means that a specular reflection must be added to the final
echogram. When a ray intersects a wall, a reflection test is performed according to Equation 2.24 to
determine whether the ray is reflected specularly or diffusely. Every time a ray is specularly reflected, it
continues its travel in the virtual scene, and its intersection with the sound source is tested. If the ray
is diffused, the k nearest sonels are collected from the sonel map and added to the echogram; the ray
terminates its travel. If the ray is absorbed, it also terminates its travel. Algorithms 3 and 4 describes
the two passes of the sonel mapping algorithm.

One of the major advantage of the sonel mapping algorithm is that the propagation pass can be kept
as long as the sound source is immobile in the virtual scene. The particles propagated during this pass
will not be modified until the source moves. In case of a moving source and receiver, the two passes
have to be re-executed, and the benefits of this algorithm are lost.

2.1.7 Grammar and tree representation of acoustical paths

In this section we present two classification methods commonly used in computer graphics to represent
the history of a path. These notations have also been used in acoustics by e.g. Dalenbäck [1996]. These
methods will be used later to analyze the pros and the cons of each propagation algorithm. The first
method is a classification of algorithms with a grammar that represents the history of all ray reflection in
a virtual scene. The second representation is an extension of the grammar with a graph representation.

Acoustical path grammar

It is usual in the field of computer graphics to represent the history of the travel of a path by a grammar
[Heckbert [1990]; Jensen [2001]; Veach [1997]]. This approach has also been used in acoustics [Dalenbäck
[1996]; Dalenbäck et al. [1994]]. Table 2.2 defines a grammar that permits to identify all the types of
paths. As an example, the purely diffuse paths produced by radiosity algorithms (see Section 2.1.6)
will be of the form ED+R. Figure 2.7(a) represents pure diffuse energetic transfers between a source
and a receiver in the scene described in Appendix B.1.1. The algorithms of deterministic ray tracing

55

0.05 0.1 0.15 0.2

0

10

20

30

40

50

60

70

Time (s)

E
ne

rg
y

(d
B

)

Diffuse field

EDR
ED2R
ED3R
ED4R
ED5R
ED6R
ED+R

(a) Pure diffuse field.

0.05 0.1 0.15 0.2 0.25

0

10

20

30

40

50

60

70

Time (s)

E
ne

rg
y

(d
B

)

ESD+R

ESDR
ESD2R
ESD3R
ESD4R
ESD5R
ESD+R

(b) Pure diffuse field after one specular reflection.

0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

Time (s)

E
ne

rg
y

(d
B

)

Total diffus field

ES*DS*R
ES*D2S*R
ES*D3S*R
ES*D4S*R
ES*D5S*R
ES*D+S*R

(c) Total diffuse field.

0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70

80

Time (s)

E
ne

rg
y

(d
B

)

Total specular field

ESR
ES2R
ES3R
ES4R
ES5R
ES6R
ES*R

(d) Specular field.

Figure 2.7: Some grammar extractions of the hybrid image source / radiosity algorithm for test scene
B.1.1.

56

E Emitter
R Receiver
D Diffuse reflection
S Specular reflection
X+ At least one occurrence of X
X∗ Zero or more occurrences of X
XN Exactly N occurrences of X
(D|S) A reflection either diffuse or specular

Table 2.2: Descriptive grammar of acoustical paths.

Figure 2.8: Graph representation of a grammar: (left) two trees generated from a source and a receiver,
(right) two examples of paths EDSR and ESDSSR.

(see Section 2.1.5) or source image (see Section 2.1.5) will produce pure specular paths (ES∗R). The
algorithms based on particles like MCRT will generate all types of paths with diffuse and specular
reflections E(S|D)∗R.

Graph representation of the paths In order to have a visual representation of all the paths in the
virtual scene, the grammar of every path can be drawn on a graph (see Figure 2.8). This method is well
suited to the analysis of local phenomena involving a small number of paths. As the number of paths
increases, the graph is too large and not readable. It appears non practical in this case.

2.2 Independent processing of specular and diffuse field
Starting from the description of the classical algorithm for geometric acoustic propagation, and the
grammar/tree classifications, we present an algorithm that combines image source (see Section 2.1.5)
and radiosity (see Section 2.1.6) to determine exhaustively all paths between a source and a receiver in
a simple virtual scene.

57

Our algorithm is based on the decomposition of pure specular reflections ES∗R and diffuse field in a
virtual scene. The diffuse field is composed of all paths that have at least one diffuse reflection during
their travel, i.e., all paths with grammar ES∗DS∗R or ES∗D(S|D)∗DS∗R. It is important to note that in
these three grammars there is a symmetry between the reflections starting from the source, and those
starting from the receiver. This symmetry is used in bidirectional algorithms to determine the origin of
the rays — starting from the source, or from the receiver.

2.2.1 Specular paths

We have presented in Section 2.1.5 two algorithms to gather the specular paths in a virtual scene. The
algorithm we are presenting aims at giving an exhaustive representation of all paths in virtual scenes
with few walls. In order to ensure that no path is omitted, we have selected the image source algorithm.
Figure 2.8 shows how two trees are built from the source and the receiver. In order to build the fully
specular paths in these trees, the image source algorithm is used twice. The first pass is the classic image
source algorithm, images are created from the source up to a given order. The second pass is executed
from the receiver. The image receivers are created, they represent, as for image sources, the mirror
reflections of the receiver on the walls. At this stage, we have built two trees, one from the source, the
other from the receiver, that contain all visible image sources and image receivers up to a given order
of reflection. The contribution between a source image and a receiver image13 is characterized by its
arrival time, tE :

tE =
||xE − xR||

c
(2.29)

and its energy:

ΦES =
1

||xE − xR||

Nrefl∏
i=1

ϑS,i (2.30)

where xE is image source position, xR, image receiver position and c, the celerity of the sound wave in
the medium, Nrefl, the number of reflections and ϑS,i, the specular reflectance of the ith reflection.

2.2.2 Diffuse paths

In our approach, the denomination diffuse path is not restricted to pure diffuse paths ED+R. It includes
all paths with at least one diffuse reflection. These paths are separated into three categories, each of
them having a specific treatment:

• ES∗DS∗R are the paths containing only one diffuse reflection between two image source/receiver,

• ES∗D+S∗R are the paths containing more than one diffuse reflection between two image source/receiver,

• ES∗D(S|D)∗DS∗R are the paths that may contain specular paths between two diffuse reflections.

13Source and receivers are considered as image sources and image receivers. They are usually called zero order image
source/receiver.

58

In the case of paths with only one diffuse reflection ES∗DS∗R, it is possible to calculate the diffuse
field energy with:

ΦS∗DS∗ = FE→i ∗ FR→i (2.31)

where FE→i is the form factor between the image source and the diffuse wall, and FR→i, the form factor
between the image receiver and the diffusing surface. ∗ is the convolution operator. As the form factor
in acoustics is a mono-dimensional signal depending on time, the convolution is form factor is identical
to the convolution of signals defined in Section 1.2.5.

For path containing more than one diffuse reflection (ES∗D∗S∗R), a new convolution is applied to
each radiative exchange Fi→i+1 between walls. The resulting diffuse field energy is:

ΦS∗D+S∗ =

⎛
⎝FE→i ∗ FR→i+Ndiff

Ndiff −1∏
Fi→i+1

⎞
⎠Ndiff∏

i=1
(ϑD,i)

Nspec∏
i=1

(ϑS,i) (2.32)

where
∏Ndiff −1

Fi→i+1 represents the convolution product between each diffuse wall encountered by
the path, i + Ndiff is the index of the last diffuse wall. Ndiff and Nspec are respectively the number of
diffuse and specular reflections of the path.

The paths that represent specular reflections between two diffuse reflections ES∗D(S|D)∗DS∗R are
replaced for simplicity by pure diffuse reflections. As diffuse reflections also carry specular energy, the
reflected diffuse energy becomes the total energy (after Equation 2.8):

ΦD = Φtot (2.33)

2.2.3 Reflection graph algorithm

Starting from the graph representation of the propagation of the sound wave (see Section 2.1.7), the
image source / image receiver algorithm, and the diffuse path generation, we propose an algorithm to
collect exhaustively all paths between a sound source and a receiver in a virtual scene. As the exhaustive
method involves a number of paths exponentially growing with the number of walls and the order of
reflections, this algorithm is only applied to simple scenes — e.g. scene B.1.1 , with reflection orders
up to seven. We call this method the reflection graph, that should not be confused with Stavrakis
et al. [2008] reverberation graph algorithm. This algorithm is based on a recursive travel across the
two specular reflection graphs presented in Section 2.2.1. We remind that those two trees contain all
specular reflections generated from the source and the receiver up to a certain order. For each reflection
detected while traveling recursively in the trees, a path collect is made. The tree recursion starts from
the sound source. At each specular reflection, the path is propagated specularly (ES∗), and diffusely
(ES∗D) toward all the other patches of the scene. When a diffuse reflection is made starting from the
source, a recursion on the receiver tree is made. The specular (DS∗R) and diffuse (D∗R) reflections are
then collected. During a recursion from the receiver, a specular reflection generates all specular (S∗R)
and diffuse (D∗S∗R) paths on every wall of the scene.

59

Figure 2.9: Hybrid image source radiosity algorithm.

Finally, a diffuse reflection starting from the receiver collects all reflections (S|R) with diffuse energy
(see Equation 2.33). Algorithm 5 shows the pseudo-code of the four recursion functions.

Algorithm 5: The four recursive functions of the reflection graph algorithm.
begin ES∗{wi−1} // Pure specular from src

SpecularCollect ()
foreach w ∈ walls, w
= wi−1 do

ES∗(w)
ES∗D(w)

begin ES∗D{wi−1} // Pure specular ending with a diffuse from src
DiffuseCollect ()
foreach w ∈ walls, w
= wi−1 do

S∗R(w)
D∗S∗R(w)

begin S∗R{wi−1} // Pure specular from recv
DiffuseCollect ()
foreach w ∈ walls, w
= wi−1 do

S∗R(w)
D∗S∗R(w)

begin D∗S∗R{wi−1} // Pure specular finished by pure diffuses from recv
DiffuseCollect ()
foreach w ∈ wall, w
= wi−1 do

D∗S∗R(w)

2.3 Implementation of a hybrid source image / radiosity algorithm
Figure 2.9 depicts a summary of the steps that compose the algorithm. It starts with the creation
of the image source tree and the image receiver tree as presented in Section 2.2.1. Then the virtual
scene is subdivided into triangles to calculate the form factors, Fi, between the image sources and the
walls and Fj , between the image receivers and the walls for the radiosity algorithm. The form factors

60

between the walls, Fi→j , are calculated using Monte Carlo integration with the method presented by
Bekaert [1999] (cf. Algorithm 6). Then, all combinations of Fij convolutions are calculated up to the
given order of reflection for the simulation — due to memory restrictions, the tests of this algorithm
were performed up to six orders of reflections. The end of the processing is repeated once for each
frequency band in order to take into account the frequency dependent attenuation of the materials and
medium. The frequency dependent processing starts with the exploration of the graph using Algorithm
5. Every time a path is collected, it is added to the global echogram of the simulation. It may also be
added to a specific echogram corresponding to the grammar we want to analyze. For instance, if the
current path is composed of three specular reflections (ES3R), and we want to analyze the evolution of
specular reflections in the scene, then, the path will be added to the global echogram, to an echogram
that gathers the specular paths (ES∗R), and to a third echogram that gathers the third order specular
paths (ES3R).

2.3.1 FE→i and FR→j calculation

The calculation of the form factors between an image source (or an image receiver) and a wall is
performed with a numerical integration on the surface of the patch, as presented in Equation 2.21.
This integration is performed with a simple numerical integration. The patches are discretized, and the
integration is performed at the middle of the patch — no interpolation is performed. The result of this
integration is an echogram that represents the energy exchanges between a punctual entity and a wall of
the virtual scene. The echogram has a temporal resolution Fs of 86Hz14. Starting from this observation,
we found that the distance between two integration points, i.e., the center of the subdivided patches,
must be less or equal than dsub with:

dsub =
c

2Fs
≈ 2 [m] (2.34)

The 1/2 factor is included to respect Shannon’s sampling theory. During the image source graph
exploration, every path containing at least one diffuse reflection will contain a FE→i and a FR→j term,
i being the index of the first patch and j the index of the last one. Note that in the special case of a
unique diffuse reflection i = j.

2.3.2 Fi→j calculation

The echograms corresponding to the form factors between two patches of the scene were calculated
thanks to a Monte Carlo (MC) integration with an adaptation of the techniques presented by Bekaert
[1999].

The Fi→j factors satisfy the following relation:

Fi→j =
Ai

Aj
Fj→i (2.35)

14The temporal resolution of the echogram is based on perceptive parameters of the diffuse sound field presented in
Chapter 4.

61

with Ai and Aj the areas of patches i and j respectively. This property enables us to store only one
echogram for each couple of patches in the scene. We also store the areas of both patches in order to
apply the correction ratio latter. The stored echogram will be AiFi→j or equivalently AjFj→i.

Algorithm 6 presents the calculation of Fi→j for an enclosed scene, i.e., a scene where the particles
stay inside. During the initialization step of the algorithm, each particle is thrown from a sound source
of the virtual scene in a random direction. The first intersection performed with a wall Ii is stored,
and the particle is reflected omni-directionally on the hemisphere above the wall intersected. Then, a
loop is performed until the calculated Fi→j converges. The next intersection Ij of the particle is also
stored. The two walls intersected, i and j, will be used for the computation of the form factor Fi→j .
The propagation time between the two intersections (Ij,time −Ii,time) gives the bin of the form factor to
increment. The form factor is the amount of energy exchanged between the two patches i and j. In order
to obtain this information from the previous calculation, we need to store the number of particles Ni

emitted from patch i, to establish the ratio between the number of emitted particles Ni, and the number
of particles reaching patch j15. This correction factor, is applied along with the wall area correction
presented in Equation 2.35 as the last step of the algorithm.

In simple scenes like the one presented in Appendix B.1.1, a number of tries Ntry of the order of
100.000 particles is sufficient to have a low variance on the Fi→j factors.

Algorithm 6: Fi→j calculation using particles.
/* Initialization */
Particle P
xP ← Epos

dP ← UniformSampleSphere()
Ii = GetNearestIntersection()
dP ← UniformSampleHemisphere()
/* Processing */
foreach Ntry do

Ij = GetNearestIntersection()
dP ← UniformSampleHemisphere()
Fi→j [Ij,time − Ii,time] ← Fi→j [Ij,time − Ii,time] + 1
Ni ← Ni + 1
Ii ← Ij

/* Apply correction factor */
foreach Fi→j do

AiFi→j ← AiFi→j

Ni

Fi→j convolution

As the algorithm operates on simple scenes, the number of Fi→j factors is small, and can be pre-
calculated and stored for each patch couple. It is also important to note that the Fi→j factors are

15This information is stored in Fi→j during the processing.

62

independent of the position of the source and receivers. On the other side, Fi and Fj have to be
calculated on the fly as they are relative to the position of the source image and the receiver image. We
have seen in Equation 2.32 that a diffuse path of type ES∗D+S∗R may contain one or more form factors
that are convolved (

∏Ndiff −1
Fi→i+1). This convolution is also independent of the position of the source

and the receiver. It is also pre-calculated for each combination of patches up to the simulation order.
In order to reduce the number of echograms calculated and stored, we use the commutativity property
of the convolution :

Fi→j ∗ Fj→k = Fj→k ∗ Fi→j (2.36)

2.3.3 Collecting diffuse and specular paths

The aim of our analysis algorithm is to extract and compare algorithms that have different characteris-
tics, and that can be described or parameterized using a grammar. We have presented in Algorithm 5
a recursive method to collect exhaustively all the paths of the scene. We will describe here the imple-
mentation of the specular and diffuse collects. The results of the simulations will be presented in the
form of echograms. In order to have a coherent analysis of the specular and diffuse fields, the echograms
must have the same resolution. Usually, for auralization, we sample echogram at 44.1 kHz, but as the
diffuse field echograms are sampled at 86 Hz, we choose to sample all echograms at 86 Hz. Figure 2.10
shows three integrated echograms for the specular paths; the first one has a sampling frequency of 44.1
kHz, the second has a sampling frequency of 689 Hz (= 44100 / 64), and the last one has a sampling
frequency of 86 Hz (= 44100 / 512). Tests have been performed with various sampling frequencies from
1378 Hz (= 44100 / 32) to 10 Hz (= 44100 / 4096). They did not show better results above 86 Hz,
as the diffuse response in real room has a low level of details. Below 86 Hz, the curve becomes too
smooth, and thus details are lost. In this thesis, the sampling frequency of 86 Hz is kept for the diffuse
echograms.

The specular collect phase is made every time a pure specular path (ES∗R) is found during the graph
exploration. The time of arrival in the echogram and the energy collected are given by Equations 2.29
and 2.30. Here, the arrival time is punctual, as the echogram is discretized, the energy is collected in
the nearest echogram bin. As the energy is spread in the bin, it also has to be divided by the sampling
frequency of the echogram FS :

Φbin =
ΦS

Fs
(2.37)

For the diffuse paths collection, the energy exchanged between the source and the receiver is spread
over time. Equation 2.32 shows that the resulting echogram is the convolution of one echogram for the
exchange between an image source and the first diffuse wall FE→i, one convolution for each diffuse wall
found during the travel Fi→i+1 and one convolution for the exchange between the image receiver and
the last wall found FR→j . Figure 2.12 shows the geometry of the exchanges for a path of type ESDSR
(left), and a path of type ESDDSR (right). Figure 2.11 shows the two echograms generated from the

63

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

Time (s)

E
ne

rg
y

(d
B

)

ES*R sampled at 44.1kHz

ES*R

(a) Specular echogram sampled at 44.1 kHz.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

10

20

30

40

50

60

70

80

Time (s)

E
ne

rg
y

(d
B

)

ES*R sampled at 689Hz

ES*R

(b) Specular echogram sampled at 689 Hz.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

10

20

30

40

50

60

70

80

90

Time (s)

E
ne

rg
y

(d
B

)

ES*R sampled at 86Hz

ES*R

(c) Specular echogram sampled at 86 Hz.

Figure 2.10: Three different integration steps on a specular echogram.

64

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

10

20

30

40

50

60

Time (s)

E
ne

rg
y

(d
B

)

FE→ i ∗ FR→ i

FE→ i

FR→ i

FE→ i ∗ FR→ i

Figure 2.11: The result of the convolution of two form factors FE→i between a source image and a wall,
and FR→i between the same wall and a receiver image.

source and the receiver. It also shows the result of the convolution of these two echograms.

During the exploration of the graph, a global echogram is created that gathers all paths that have a
contribution between the source and the receiver. Paths are also collected while they match with a given
grammar, in order to analyze the contributions of various algorithms (characterized by their grammar).
Examples of realizations of this algorithm are given in Figure 2.7.

Figure 2.12: Evaluation of the form factors : (left) exchanges between an image source, a wall and an
image receiver FE→i ∗FR→i, (right) exchanges between an image source, two walls and an image receiver
FE→i ∗ Fi→i+1 ∗ FR→i+1.

65

2.4 Spatial coherence of the sound field in rooms : the rendering
hierarchy

Starting from the hybrid image source / radiosity algorithm, we have extracted two characteristics
of the propagation algorithms: the depth of reflections, and the extraction of purely specular, and
diffuse fields. We decided to use this algorithm in order to provide a parameter to tune the real-time
algorithms. The spatial coherence parameter gives an estimation of how much the purely specular and
the diffuse sound fields vary in an enclosed space. Bigger variations of the sound field will involve more
computational resources allocated to the corresponding reflection order of the algorithm. The simulation
with the hybrid algorithm was performed between each couple of source/receiver of the third round robin
on room acoustics (see Appendix B.1.1). Figure 2.13 shows the realizations of the simulation of four
different grammars ESR, ES5R, EDR, ED5R. In order to have equivalent echograms for specular and diffuse
fields, the specular echogram is integrated over a period of 11.6ms — that is equivalent to diffuse field
sampling of 86 Hz. Figure 2.14 shows the standard deviation ρ for the realizations of echograms over the
six positions of the source and receiver. The aim of this analysis is to establish a hierarchy between the
propagation algorithms, and their reflection depth. The criterion we kept for the spatial coherence is the
maximum of standard deviation between the realizations. As expected, we observed that the diffuse field
is more coherent than the specular field, and the coherence grows with the number of reflections. But,
one of the major information to extract from Figure 2.14 shows that the spatial coherence of specular
paths of order five is equivalent to the coherence of diffuse paths of order one in the test scene (the value
of the spatial coherence is indicated above each curve). In the realization of a real-time propagation
algorithm, this means that the budget16 allocated to the specular paths of order five and diffuse path
of order one must be of the same order.

The main drawback of this method is that all local effects of the rays are hidden as the energy of
the ray is summed. The energy of the rays is calculated from their history, i.e., the distance between
the source and the receiver and the materials of the walls intersected. However, this method produces a
rough view of how the reflections, whether they are specular or diffuse, have an influence on the impulse
response. And, particularly how this response is modified when the source or the receiver moves.

∗ ∗ ∗

In this section, we have developed an exhaustive method to enumerate all paths between a source
and a receiver in a virtual scene. The ranking of the paths according to a graph of a grammar is used to
characterize the algorithm — the type of algorithm or its parameters. The methods of dynamic sound
rendering are in general constructed around an optimized algorithm dedicated to reproduce as many
propagation information as possible within the allocated time and computational resources. The analysis
provides a first step to the conception of these algorithms; it organizes in a hierarchy the propagation
steps according to the spatial coherence criterion, i.e., algorithms with lower coherence will be allocated
less budget. So, it is possible starting from these results to parameterize real-time algorithms in simple

16Computational resources.

66

Figure 2.13: Extraction of the grammar for six realizations of the hybrid image source radiosity algorithm
for the six couples of points/receivers of scene B.1.1.

scenes. Note that, the exhaustive approach has its limits. It is impossible to make exhaustive simulations
on the test scene of Appendix B.1.1 up to seven orders of reflections due to restrictions on calculation
time and memory storage.

In order to reach higher reflection orders, and thus allocate the budget to the specular and diffuse
algorithm up to orders 100 or more, a different algorithm should be used. We have thought about a
variant of Monte Carlo particle tracing where the purely specular and diffuse particles are collected
independently. However, this algorithm has not been implemented.

The exhaustive approach allows to characterize independently each path, and to gather them accord-
ing to their grammar. In the next section, we describe the implementation of two real-time algorithms
dedicated to specular and diffuse fields respectively.

2.5 Implementation of sound propagation with specular and diffuse
reflection algorithms for real-time auralization

Starting from the observations of the previous chapter, we have implemented two propagation algorithms
suited for real-time rendering. As explained earlier, the exhaustive approach is computationally too
expensive, so it is not applicable to real-time rendering. The two algorithms that were implemented are
derived respectively from deterministic ray tracing for specular contributions, and Monte Carlo particle

67

Figure 2.14: Standard deviations between the observations of Figure 2.13. The maximal values of each
curve are used as coherence criterion.

tracing for the diffuse part of the echogram17. The idea behind the separation of pure specular and
diffuse field, is to have algorithms operating in parallel on recent computer architectures. The priorities
allocated to each algorithm, can then be established with the coherence criterion defined in Section 2.4.
Another reason for the separation between the specular and diffuse algorithms, is that the perceptive
mechanism associated with the rendering of each phenomenon can be studied separately (see Chapter
4).

2.5.1 Deterministic ray tracing algorithm with growing sphere

Starting from the simple classical DRT Algorithm 2, the analysis made on the receivers (see Section
2.1.4), and the fact that our algorithm should be prioritized depending on the depth of reflections, we
present below a new algorithm that collects efficiently specular rays.

This algorithm is composed of four main elements:

• The rays R are the elements propagated in the virtual scene. A ray is defined by its position, xR,
and its direction, dR, at a given time in the simulation. The energy carried by the ray is ΦR,
and its travel distance is dR. As the ray propagates through the scene, it keeps the history of its
travel, Rhistory. The history is the ordered list of all walls intersected during its travel. If two rays
have the same history as they reach the receiver — this means that they are issued from the same
image source — and thus only one is kept.

17Rays and particles are expressed in the sense of definitions 2.1 and 2.2.

68

• The rays originate from a sound emitter, E , that is characterized by its position, xE , and the
energy it emits, φE . A directivity function, αE , can also be associated with the source.

• While a ray propagates through the scene, it creates intersections, I, every time it interacts with a
wall. An intersection is characterized by its position, xI , the wall that was hit, Iwall, the specular
absorption of the wall, αIS, and the distance to the previous intersection, dI .

• The last structure is the receiver, it has the shape of a sphere and it collects the rays that cross
the sphere during their travel. The receiver R is characterized by its position xR and its radius
rR.

This algorithm starts with the generation of rays in the virtual scene. The generation uses an omnidi-
rectional uniform sphere sampling. Then, the ray travels through the virtual scene. The main difference
with classical deterministic algorithms is that the rays do not travel until they are absorbed. Instead, in
our approach, we launch all the rays, and, as they interact with a wall, their reflection direction is calcu-
lated, and the intersection with the receiver is checked. With this arrangement of the rays propagation,
it is easier to control the depth of propagation of the algorithm as the next step of the algorithm is
identical: the rays will be propagated from their current location (the position of the last intersection).

The main advantage of the current algorithm is that it can be stopped every time an algorithm with
higher priority needs computational resources, at the cost of an increase of memory (the rays have to
be all stored).

We have also implemented the concept of growing sphere for this algorithm. According to Equation
2.10, the radius of the receiver in free field depends on the maximum time of the echogram, the speed of
sound, and the number of particles. Let tsup be the maximal time a ray can travel in the virtual scene
between two reflections18. At each reflection order o of the algorithm, we can update the radius of the
receiver as:

rR = o
c tsup√
Nrays

(2.38)

The main advantage with a deterministic ray tracing algorithm is that the frequency dependence of
the material has no influence on the direction of reflection of a ray. Thus, we can perform only one ray
shooting for all frequency bands. If we consider frequency dependent materials, the energy of the ray,
ΦR, becomes a spectrum, and contains the number of values used for the simulation.19

The incremental deterministic ray tracing with growing sphere is presented in Algorithm 7. It is
important to note that this algorithm does not consider the direct sound between the emitter and the
receiver path, instead, the visibility between the source and the receiver is tested directly.

18tsup can be approximated by a first step of ray tracing using very few rays. It can be updated during the algorithm
if one of the rays has a longer travel time than tsup.

19In our implementation, we use six octave bands values from 125 Hz to 4 kHz.

69

Algorithm 7: Incremental deterministic ray tracing with growing sphere algorithm.
/* Initialization */

foreach Ray R do
xR ← xE
dR ← UniformSampleSphere()
Rd ← 0
ΦR ← ΦE

/* Processing */
while NextStep? do

UpdateReceiverRadius ()
foreach Ray R do

I = GetNearestIntersection()
if Itype is Wall then

xR ← xI
dR ← SpecularReflection(I)
ΦR ← ΦR · αI
dR ← dR + dI
Rhistory ← Rhistory|I

else if I is ∞ then
continue

if IntersectReceiver () then
Collect (R)

2.5.2 Incremental Monte Carlo particle tracing algorithm

Starting from the deterministic algorithm of Section 2.5.1, the classical MCRT algorithm, and the anal-
ysis of Section 2.4, we present an incremental algorithm dedicated to the reproduction of diffuse sound
field in enclosed spaces. This algorithm shares some characteristics with the incremental deterministic
algorithm. The intersections, I, and emitter, E , have the same properties. In this algorithm, these are
no longer rays that are propagated, but particles, P . A particle has a position, xP, and a direction,
dP, like a ray, but a particle does not travel with the total energy emitted by the source. Instead, the
energy is distributed uniformly on all the particles of the simulation. The energy carried by a particle is
defined in Equation 2.22. Another important difference is that a particle does not conserve the history
of its travel.

The collect of the particles is made by a spherical receiver. Every time a particle crosses the receiver
it is collected and stored in the echogram. The receiver, R, is characterized by its position, xR, and its
radius, rR.

As the MCRT algorithm is designed for both specular and diffuse field, it is important to omit all
pure specular paths (ES∗R) reaching the receiver. The specular paths have to be discarded because
they are already collected by the deterministic algorithm. With this method, we can collect all paths
containing at least one diffuse reflection.

The particularity of this algorithm is that it can be paused at every reflection order of the particles

70

in the similar way as the deterministic algorithm. The particles are first emitted from the sound source.
They then travel through the virtual scene until they intersect a patch. The frequency dependent
reflections are performed using Embrechts [2000] splitting coefficient method described in Section 2.1.6.
As the splitting coefficient, βP , is linked to the history of a particle, it is also part of the particle object.
The corrective attenuation coefficient, CP , (see Equation 2.26), is also stored in the particle. Once they
reach a wall, the particles are reflected either diffusely or specularly. The position and direction of the
particles are stored, and the intersection test with the receiver is performed for the collect.

Algorithm 8: Incremental Monte Carlo particle tracing.
/* Initialization */
foreach Particle P do

xP ← xE
dP ← UniformSampleSphere()
dP ← 0
ΦP ← ΦE/Npart

/* Processing */
while NextStep? do

foreach Particle P do
I = GetNearestIntersection()
if Itype is Wall then

βP = maxf {CP IS}
maxf {CP IS} maxf {CP (1−IS)}

xP ← xI
ΦP ← ΦR · (1 − αI)
ξ = Rand[0..1]
if ξ > βP then /* Specular */

dP ← SpecularReflection(I)
CP ← CP · 1−s

βP

else /* Diffuse */
dP ← DiffseReflection(I)
CP ← CP · s

βP

else if I is ∞ then
continue

if IntersectReceiver (P) & NonPureSpecular (P) then
ΦP ← ΦP · CP

Collect (P)

As this algorithm concentrates on diffuse field, it is not necessary to conserve the directional infor-
mation during the collect. So, the resulting echogram is independent of the orientation of the receiver.

71

2.6 Conclusion
In this chapter we have presented some of the algorithms commonly used for the sound wave propagation.
Starting from the analysis of these algorithms, we have developed and hybrid algorithm based on image
sources and radiosity to enumerate exhaustively the diffuse and specular sound path in an enclosed
space. Starting from the independent analysis of the diffuse and specular reflections, we presented a
criterion that prioritizes the algorithms of propagation. This criterion is based on the spatial coherence
of the sound field at different orders of specular and diffuse reflections. Finally, we presented the two
propagation algorithms that we implemented to produce real time propagation of the diffuse and specular
paths. The details about the implementation of these algorithms and the global parallel structure is
presented in Chapter 5. The validation of both the quality of rendering and execution time is presented
in Chapter 6. The next chapter will present the Digital Signal Processing (DSP) methods used of the
auralization for the information generated by the two real-time algorithms.

72

3
Auralization of the pressure sound field

In this chapter we present the auralization of sound based on Digital Signal Processing (DSP) opera-
tions. Starting from the propagation algorithms described in the previous chapter, we present in Sec-
tion 3.1 various auralization methods from the literature. We first present the binaural auralization of
pure specular paths (see Section 3.2). In Section 3.3, we present a convolution algorithm implemented
on Graphical Processing Unit (GPU) to perform the auralization of diffuse sound field generated by
Monte Carlo Ray Tracing (MCRT) algorithms. In Section 3.4, we discuss the combination of specular
and diffuse sound fields in room acoustics, and compare it to the classical room acoustics early/late
reflection model presented in Section 1.4.1. Finally, in Section 3.5, we present a decomposition method
for Room Impulse Response (RIR) modeling called Specular/Cluster/Diffuse (SCD).

Contents
3.1 State of the art . 74
3.2 Auralization of pure specular paths . 79
3.3 Diffuse field rendering . 85
3.4 Combining specular and diffuse field for a unified audio rendering 94
3.5 The Specular/Cluster/Diffuse (SCD) decomposition of the Impulse Response (IR) 95
3.6 Conclusion . 97

73

Starting from the geometric information provided during the propagation stage, we report in this
section different methods used to auralize the sound field existing in a virtual scene. In a first part,
we present known methods from the literature for auralization. We then report the modifications we
propose in order to implement a real-time auralization of both specular and diffuse field in complex
environments.

3.1 State of the art
In this section we report the DSP operations applied to an anechoic signal to produce audio rendering.
There are two families of auralization techniques. The first one is based on the independent audio
rendering of paths. It is limited to a small number of paths (around 100 on current computers), but
it allows to have a precise management of each path. Complex effects like Doppler shift (see Section
1.2.8) can be implemented with this technique. The second family is based on the auralization of the
entire sound field with convolution methods (see Section 1.2.5). With a modern implementation of
convolution, it is possible to reproduce a full Room Impulse Response (RIR), but the individual path
information is lost, only the delayed sum of their contribution is kept.

3.1.1 Auralization of a single specular ray

A single specular ray traveling in the virtual scene has the following history pattern (given by the RARE,
cf. Section 1.1.5). It is first emitted by the sound source which is characterized by its emission pattern,
αE . Then it travels through the scene. At every intersection with a wall of the virtual scene, the ray gets
attenuated by the specular BRDF of the material, frS. The ray gets also delayed by the propagation
operator, Sr. Finally, as the ray reaches the receiver, it gets attenuated by the directivity function of
the receiver, αR. More complex directivity functions can be implemented when dealing for instance
with binaural rendering, these methods will be developed in Section 3.1.3. It is important to note that
all the attenuations applied to a ray are in general frequency dependent, and may not be reduced to a
single gain, i.e., an amplification factor.

From a DSP point of view, ray corresponds to a single channel between a source and a receiver. The
operations applied to a ray are frequency dependent gains and delays. They can be decomposed as:

sE[n] = sE [n] ∗ hαE [n] (3.1)

sE represents the same radiated pressure including the effects of the frequency dependent radiation
pattern, (hαE). sE represents the source signal, it must be an anechoic sound.

As the ray travels through the virtual scene, it gets filtered by the materials it encounters, and
delayed to take into account the propagation time. The signal, sES∗ , after Nref reflections is

sES∗ [n] = sE[n]
Nrefl+1∏

i=1
hϑS,i [n] ∗ δ

[
n − |xi − xi−1|

c

]
(3.2)

74

with
∏

, the convolution product of the material filters, hϑS,i
, propagation delays, δ, and |xi − xi−1|, the

distance between two successive intersections along a path1. Finally, when the ray is captured by the
receiver, the attenuation linked to the detection function is applied to the signal.

sES∗R[n] = sR[n] = sES∗ [n] ∗ hαR [n] (3.3)

The global propagation of a ray in terms of DSP operations can thus be expressed as:

sR[n] = sE [n] ∗ hαE [n] ∗ hαR [n]
NRefl+1∏

i=1
hϑS [n] ∗ δ

[
n − |xi − xi−1|

c

]
(3.4)

Using the linearity properties of the filters and delay, this leads to

sR[n] = sE [n] ∗ δ

[
n − Rd

c

]
∗

⎡
⎣hαE [n] ∗ hαR [n]

NRefl+1∏
i=1

hϑS [n]

⎤
⎦

︸ ︷︷ ︸
hES∗D[n]

(3.5)

with Rd, the total distance traveled by a ray. This last equation shows that the propagation of a ray
can be implemented in DSP using one delay that represents the total travel time, and one filter being
the convolution of all filters encountered during the travel. As the convolution of filters is a heavy
process, this step is simplified using octave band filtering (see Section 1.3.2). The convolution of filters
corresponds to a multiplication in the frequency domain. So the octave band attenuation gains of all
filters are multiplied to build the reflection filter of a specular ray hES∗R. To be complete, the definition
of the filter should also include the convolution by the air absorption Hαm defined in Section 1.1.5. The
frequency dependence is managed using octave band decomposition of the spectrum of the ray.

3.1.2 Auralization of the specular paths

In the current section and the following one, we present the works conducted by Deille et al. [2006a,b]
on the rendering of specular paths, i.e., the specular paths given by the specular reflection algorithm.
As seen before, the linearity of signal processing operators permits the factorization of some operations.
When more than one ray travels in the virtual scene, one DSP channel is created per propagated ray.
All of them share the same origin (the signal attached to the emitter). Figure 3.1 shows the processing
of a path before it gets spatialized. The separation of the spatialization step is a good way to produce a
modular virtual application, as the modification of the system (monophonic, stereophonic, binaural, ...
see Section 1.3.4) only changes the part of the algorithm dedicated to the spatialization, not the whole
signal processing algorithm. We present in the next section how binaural spatialization is performed.

The first step of the auralization is the decomposition of the signal into octave bands, as described in
Section 1.2.6. The filtering of the signal is performed using an octave band filter bank, the octave band

1x0 is the position of the source, and xNrefl+1 is the position of the receiver.

75

Figure 3.1: DSP propagation algorithm, after Deille et al. [2006a].

signals, si
E , are multiplied by gains, αi

j , that correspond to the attenuation of the central frequency of the
octave band — i ∈ [1 · · · Nbands] represents the octave band number, and j ∈ [1 · · · Nrays] the number
of rays propagated. In Equation 3.5, we presented the filter hES∗R that represents the full attenuation
of a path during its travel. The αi

j are calculated as the square root of Sabine coefficient for a given
material and a given frequency band. For Deille et al. [2006a], the filter does not include the receiver
filtering — as it is part of the spatialization. So, the αi

j represent the values of the filter hϑS,k,

hES∗ [n] =
1

d2
R

Hαm hαE [n] ∗
NRefl+1∏

k=1
hϑS,k[n] (3.6)

d2
R, represents the geometric divergence, Hαm , the air absorption, hαE , the emission pattern and hϑS,k,

the impulse response associated with the reflection on the material for kth order of reflection. Finally,
the octave band signals are summed to recreate the filtered paths. It is important to note that at
this stage, no delay was applied. Deille et al. [2006a] transfered the delays to the spatialization step
to factorize the delays of propagation and the ITD. A pure propagation algorithm would include the
propagation delay in this structure.

3.1.3 Digital Signal Processing (DSP) of binaural rendering

Starting from the description of binaural rendering (see Section 1.3.4), we present here the basic signal
processing operations necessary for the rendering of a sound spatialized with HRTF. The DSP block
diagram is shown in Figure 3.2. In a first step, the signal is split into two channels, for the left and
right ear. A delay is applied to these channels to take into account the propagation time of the sound

76

Figure 3.2: DSP binaural auralization algorithm, after Deille et al. [2006a].

between the two ears. Then, each path is filtered by the Head Related Transfer Functions (HRTF)
filter corresponding to the incoming direction of the path. The HRTF filter models the effect of the
interactions with the listener’s head. These interactions are complex, thus, octave band filtering is not
sufficient to model this phenomenon. So, filtering must be performed using complex filters parameterized
by the direction of arrival of the ray on the listener. The implementation of the filters will be presented
in the next sections.

3.1.4 Efficient Independent Component Analysis (ICA) decomposition of
the Head Related Transfer Functions (HRTF)

The method presented in the previous section is too expensive to provide the auralization of a great
number of paths in real-time. Emerit et al. [1995] proposed a method based on the ICA decomposition
of HRTF to reduce the number of filters used. This method was implemented by Deille et al. [2006a,b]
to factorize the rendering of many paths using a combination of ICA filters. Figure 3.2 shows the DSP
block diagram of the binaural auralization algorithm.

77

The first step of the binaural processing is to apply the Interaural Time Difference (ITD). A path
entering the spatialization step is split into two channels for right and left ear, each of them having
a delay, τ i

L and τ i
R. In order to have an accurate rendering of the position of the paths, and to have

smooth transitions when paths are moving, fractional delays are used at this stage. We have seen earlier
that the propagation module presented by Deille et al. [2006a] does not apply the propagation delay.
Instead, the delay is included in the spatialization, so, the delay of a path corresponds to the delay
traveled in the virtual scene, plus the ITD.

The ICA decomposition of the HRTF creates a set of filters for the right and left ear. A set of
weighting coefficients αi

j,L and αi
j,R are associated for every position of incoming rays2. With this

method, every filtered path is only multiplied by one gain per filter, hj . The number of filters is
thus constant, and independent of the number of paths to auralize. That makes this method efficient.
Figure 3.2 shows the example of Nrays spatialized with a bank of three filters per channel (left and
right).

3.1.5 Auralization of diffuse and specular fields by convolution

Another method commonly used for auralization is the convolution of the anechoic source sound by
the RIR. This is a FIR filtering operation (see Section 1.2.6), where the filter kernel is the RIR. This
filtering replaces all previous filtering, gain and delay operations by single filtering operation.

Specular auralization by convolution

The RIR is created by using the information gathered during the propagation phase. To produce the
specular information, the DSP algorithms presented in the previous section can be used. If we recall
from Section 1.2.5 that the response of a filter corresponds to its output when a Dirac distribution is
passed as input, we can use specular auralization algorithms with an impulsive sound to produce the
specular part of the RIR. The aim of this method is to process only once the audio processing graph
associated with specular reflections. The drawback is that the produced impulse response has to be
regenerated every time the source or the receiver moves in the virtual scene, and no dynamic processing
such as Doppler shift can be applied.

Rendering of both specular and diffuse reflections by convolution

Another method to reproduce both specular and diffuse reflections was presented by Kuttruff [1993].
This rendering method is based on the auralization of an echogram generated by particle tracing. We
have seen in the previous chapter that particle tracing permits to generate echograms containing all
specular and diffuse paths (E(S|D)∗R) between a source and a receiver in a virtual scene. The problem
with this approach is that the echogram represents the radiative exchanges between a source and a
receiver. Thus, the phase information is lost. However, according to Kuttruff [1993], the phase of the
signal for virtual acoustic auralization is subjectively insignificant. Kuttruff [1993] proposes the following

2The azimuths and elevation are divided in 100 slices, then, the gains are interpolated between the nearest neighbors.

78

method to perform auralization of a frequency dependent integrated echogram (see Section 1.2.4). The
integrated echogram is filled with Poisson-distributed points that have the same energy as the bins of
the echograms to auralize. In order to have a smooth transition between the bins of the echogram, the
authors use a smoothing function. We present in Section 3.3.1 an algorithm based on the Ebinaure
method (van Maercke and Martin [1993]) to auralize the diffuse sound field.

The studies presented in this section are mainly those that were used at Centre Scientifique et
Technique du Bâtiment (CSTB) during the past decade. The interested reader may refer to Vorländer
[2008] or Kleiner et al. [1993] for general informations on auralization, or Savioja et al. [1999] for the
methods used in other auralization systems such as DIVA.

3.2 Auralization of pure specular paths, the Binaural Spatialization
Algorithm (BSA)

Starting from the auralization algorithm presented by Deille et al. [2006a], after Emerit et al. [1995],
and the specular deterministic ray-tracing algorithm presented in Section 2.5.1, we present here the
auralization algorithm we have developed for the rendering of specular paths. This algorithm is designed
to produce a binaural auralization of the specular paths. It manages paths linked to both static and
dynamic sources/receivers.

3.2.1 Description of the specular auralization process

Figure 3.3 presents the full procedure to produce a binaural auralization system. This system was
designed to spatialize specular paths reaching the receiver. As the delay lines are based on fractional
delay, Doppler effect (see Section 1.2.8) can be applied to every spatialized path with no audible artifacts.

We have planned to implement these algorithms on GPU, and compare the execution times with
CPU implementation. However, the GPU implementation of these algorithms is not yet functional while
writing this thesis.

Octave band splitting The first step of the algorithm is the decomposition of an input signal in
octave bands. The implementation of Deille et al. [2006a] was based on a preprocessing of the signals3

to extract the octave bands. In our implementation, octave band filtering is performed on the fly. This
allows real-time spatialization of sounds captured by a microphone. The decomposition is performed by
a set of second order doubled IIR Butterworth filters [see Oppenheim and Schafer , 1975]

Delay line implementation We have seen in Section 3.1.1 that the linearity of DSP operators allows
to permute and factorize some operations. In our implementation, all delays have been factorized, so
that only two delays are necessary for each path. The two delays correspond to the time of arrival of

3The signals are generally anechoic sound files sampled at 44100 Hz.

79

Figure 3.3: Spatialization algorithm including propagation delay, material attenuation, air attenuation
and HRTF filtering.

80

the path at the listener’s ears. The total delay of a sound ray τLefl reaching the receiver left ear will be:

τLefl =
dR

c
+ ITDL(θR, φR) (3.7)

with dR the total distance traveled by the ray R in the virtual scene. The total delay of a sound ray
τRight reaching the receiver right ear will be:

τRight =
dR

c
+ ITD(θR, φR) (3.8)

ITD a function that calculates the Interaural Time Difference (ITD) depending on (θR, φR) the direction
of arrival of the ray on the receiver.

The implementation of the delay line presented in Figure 3.3 uses one delay line per frequency band
filtered signal. This implementation allows sharing a delay line between many paths. Once the sound is
filtered, it is written in a circular buffer whose size must be greater than the maximal distance traveled
by a ray in the virtual scene (see Section 1.2.7). Every path of the simulation will have two pointers
(one for left and one for right channel) to read the delayed signals.

Two other strategies to build the delays could be implemented. In order to save memory, a single
delay line could be used before the octave band filtering process. This would reduce the memory used
to store samples, but the filtering of the signal would have to be performed for every path (instead of
only one time in our implementation). This strategy would be really computationally consuming. The
other strategy would be to have a delay line per path4. If the number of paths to reproduce is high
compared to the number of octave bands5, this method would become very memory consuming, and
the gain in terms of computational resources would not be very important.

We think that our method is the best compromise between memory occupancy and computational
time.

Ray attenuation With the decomposition of sound in octave bands, the frequency dependent at-
tenuation of the ray during its travel is simplified to a multiplication of the band filtered signal by an
attenuation coefficient. The coefficient αj

i represent the values of the filter hES∗ presented in Equation 3.6.

Windowed sum during reconstruction

The symbol represents the windowed sum of the signals. It is defined as

so[n] =

⎛
⎝Nsig∑

i=0
si[n]

⎞
⎠ w[n] (3.9)

where so is the output signal, si, the input signals that are summed, and w represents a windowing
function. The usage of the windowed sum will be described in the next section.

4This is the strategy used by Deille et al. [2006a].
5The difference is generally of one or two orders of magnitude.

81

Spatialization with HRTF The last step of DSP is the binaural spatialization of sounds with the
ICA decomposition of the HRTF. The method used in our implementation is identical to the ones
described by Deille et al. [2006a] and Emerit et al. [1995] presented in Section 3.1.4. The filters used in
these simulations are order 10 IIR filters. The HRTF basis functions were obtained from ICA applied
to a set of 8 individual HRTF.

3.2.2 Spatialization of the most significant paths

The algorithm we have presented is able to process around 150 paths in real-time on current computers6.
As we have seen in Table 2.1, the number of paths grows exponentially with the complexity of the scene,
and the order of reflections. As a consequence, our algorithm cannot be applied to every specular path
of a virtual scene. In our implementation, only the most significant paths, from a perceptive point of
view, are rendered using the BSA. The selection of the most significant paths is presented in Section
4.3. Here, we present how the most significant paths are processed. One important point for the design
of the BSA is that the most important paths in a virtual scene change as the source or the listener
moves. This implies that there is not necessarily coherence between the paths spatialized during the
simulation.

Transition of the paths

The transition between paths is managed using the windowed sum mechanism defined in the previous
section (). The audio process of the BSA is based on block processing (see Section 1.2.9), the paths to
be rendered cannot be exchanged during a block process; changing occurs necessarily at the beginning
of the process of the next block. The spatialization algorithm is assigned a given number of channels
depending on the computational resources. This number is static, and defined at the beginning of the
simulation. When a new block is processed, four cases may be distinguished for each channel:

• no path is rendered on the current channel, so the path has to be started with a smooth transition
to avoid artifacts;

• a path was rendered before, but no path is assigned to the current channel for this block, so the
previous path has to be stopped smoothly;

• a path was previously assigned to the channel, but it is not coherent with the previous path, a
smooth transition has to be performed between the two paths;

• the path to be spatialized is coherent with the last processed block, so, no transition has to be
performed (w[n] = 1).

6Around 150 paths can be spatialized while the other algorithms (propagation, perceptive reduction, diffuse field
rendering implemented in parallel).

82

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

am
pl

itu
de

sample

On / Off path windows

On

Off

Figure 3.4: Half Hann windows used for starting (blue) and stopping (green) paths.

Figure 3.4 presents the two windowing functions used for starting paths and stopping paths. The
incoherent path processing is simply a double processing of a starting and a stopping path, to create a
simple transition between them. When the path is coherent, no window has to be applied.

This interpolation technique has been previously implemented in auralization software, like DIVA
(see e.g. Savioja et al. [1999]).

A fast method to check path coherence

Coherent rays are the rays that have the same history, i.e., that encountered the same sequence of walls
during their travel. Some methods have been implemented in the literature in order to check this coher-
ence. One of them, presented by Stavrakis et al. [2008], is based on the calculation of the transformation
matrix associated with the image source — The translations associated with the displacement of the
source are expressed as a matrix transformation. The advantage of this method is that the transfor-
mation matrix can be applied to every new position of the source to find the new image sources. This
method is useful if the transformation is needed. In our implementation, we just need an information
on the history of the rays. So, to check the coherence of the paths, we only need the information about
the sequence of walls encountered by the ray. The information of travel of a ray is coded on a 128 bits
integer. Every time a ray R intersects a wall, the coherence value RCV is incremented by (Iwall), the
index of the wall, multiplied by one plus the number of walls in the scene Nwalls to the power of the
order of reflection, o:

RCV ← RCV + Iwall (1 + Nwalls)o (3.10)

83

To reduce the size of RCV in Equation 3.10, we give to coplanar walls the same index, as the two
image sources issued from two coplanar walls will be the same. This implies that Nwalls represents the
number of non coplanar walls in a scene.

The use of a 128 bits integer restricts the validity of our algorithm when RCV becomes bigger than
2128, that occurs in a very complex scene with 1000 non coplanar walls for reflection orders greater than
13. To reduce the probability of error in the coherence check, we perform a double check:

• First, the order of reflection of the ray Ro is tested, two rays with a different reflection order will
not produce the same image source, and thus will not be coherent.

• Second, the check on the coherence value of the ray RCV to discard the paths with the same order
of reflection that do not have the same history.

This coherence test is used twice in the global auralization process. It is first used during propagation
algorithm with deterministic ray tracing to discard rays with the same history that hit twice the receiver.
Then it is used in the BSA to check the coherence of the paths when either the source or the receiver
has moved.

Interpolation of the gains

We have seen in Equation 3.6 that the attenuation of a path depends on the medium attenuation (αm),
the distance traveled by the ray (dR), and the wall absorption coefficients (ϑS).

A coherent moving path will share wall absorption as it is linked to the same image source, but the
attenuation by the medium and the distance attenuation will be different, that is why the gains of the
paths (αR) are interpolated. Linear interpolation is used in our implementation. Even if the sources are
moving fast (see Maillard [2009] for implementation of urban noise simulation), the linear interpolation
of the gains is sufficient.

When a source or a receiver moves, the direction of arrival of the path on the receiver evolves with
time. For this reason, the binaural gains αL,i and αR,i are also interpolated for coherent paths.

Doppler effect using fractional delay lines

The fractional delay lines presented in Section 1.2.8 are implemented in order to interpolate moving
paths. The Doppler effect is generally of minor influence in room acoustics, but this method can be
used for instance to simulate a fast moving source. For example, a bee flying around the head of a
listener is a good example of a Doppler effect.

In our implementation, the interpolation of the delay is linear, which causes no audible artifacts when
the source or the receivers moves normally in the virtual scene. For fast moving paths, more complex
interpolations have to be implemented [see Maillard, 2009]. Generally, the sources and receivers in room
acoustics applications have slow motion, so, linear interpolation is sufficient for this kind of application.

84

3.3 Diffuse field rendering

In Chapter 2, we presented two algorithms to simulate propagation of the sound in a virtual scene. The
first one, the deterministic ray tracing algorithm aims at extracting specular contributions. The set of
specular contributions contains the most important information from a perceptive point of view for the
localization of the sound, and for the characteristics of the reverberation. The auralization of specular
paths was presented in the previous section. The other propagation algorithm presented in Section 2.5.2
is the incremental Monte Carlo particle tracing. This algorithm is dedicated to the rendering of diffuse
field, i.e., the set of all paths that have at least one diffuse reflection during their travel. We remind that
this algorithms produces integrated echograms sampled at 86 Hz. The Room Impulse Response (RIR)
is the sum of the specular paths rendered with BSA, and the diffuse field. In order to be consistent
with specular response, the diffuse field part of the impulse response has to be re-sampled at the same
frequency, i.e., 44100 Hz.

We present here the method used to reproduce a diffuse sound field with windowed white noise from
an integrated echogram provided by the MCRT algorithm presented in Section 2.5.2. Then, we present
the implementation of a convolution system on GPU for the auralization of diffuse sound field.

3.3.1 Creation of the RIR

We have briefly presented in Section 3.1.5 a method to fill an integrated echogram with Poisson-
distributed samples [after Kuttruff , 1993].

In our approach, the auralization of the diffuse sound field is based on the summation of precomputed
white noise windowed by a Hann window.

Smoothing of the echogram with the Hann window

The re-sampling of the echogram from 86 Hz to 44100 Hz with a nearest neighbors strategy would create
audible artifacts, due to the discontinuities in the RIR. To perform a smooth interpolation of the bins
of the echogram, we chose to sum Hann windows with 50% overlap. Figure 3.5 shows the smoothing of
an echogram with weighted Hann windows.

The Hann window is defined as

wh[n] =
1
2

(
1 − cos

(
2πn

Nhann

))
(3.11)

with Nhann is the number of samples of the window.

85

Figure 3.5: Smoothing of the echogram when re-sampling from 86 Hz to 44100 Hz.

Re-sampling of the diffuse echogram with windowed white noise

In order to conserve energy, the impulse response, p(t), created while re-sampling the integrated
echogram must satisfy the following equation:

Φi =
∫

Δt

p2dt (3.12)

The energy contained in a bin of the echogram, Ei, must be equal to the square of the pressure integrated
on Δt. The notations refer to Figure 3.5.

The impulse response is created using pre-calculated noise blocks windowed by a Hann window. For
each pre-calculated block of noise, its energy ΦN,i is calculated as

ΦN,i =
Nhann∑

i=1
(n[i] wh[i])2 (3.13)

Where n[i] is a sample generated with normal distribution of mean value n̄ = 0 and standard
deviation σn = 1.

Finally, the resulting IR is constructed as a sum of delayed windowed noise blocks scaled by a factor
αn,i =

√
Φi/ΦN,i. Figure 3.6 presents an integrated echogram and the resulting impulse response

obtained by summation of the noise blocks. In our implementation, the non causal samples (i.e., t < 0)
are discarded. This particular case could be managed using a half Hann window (see Figure 3.4).

86

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

am
pl

itu
de

time

Echogram
Impulse response

Figure 3.6: Creation of an impulse response sampled at 44100 Hz from a 86 Hz integrated echogram.

Frequency dependent echogram auralization We have seen in Section 2.5.2 that the frequency
dependence of the simulation is managed by creating one echogram per octave band. In order to produce
frequency dependent RIR, the windowed noise method is applied, but the noise blocks are filtered with
octave band filters 7. The blocks are processed independently for every frequency dependent echogram.
Finally, the frequency dependent echograms are summed to recompose the broadband RIR. Figure 3.7
presents the procedure used for the creation of such an echogram. The signal is convolved with six
octave band filters. Then, a window is applied with the smoothed echogram for all frequency bands.
Finally, the signals are summed to produce frequency dependent RIR.

Binaural rendering A strong correlation of binaural signals is generally localized by the listener
inside the head, whereas two uncorrelated signals are perceived as two separate events. In order to
provide a binaural auralization, a different impulse response is generated for the left and right channels.
In order to create the binaural impulse responses of the diffuse field, the preprocessed noise blocks are
thus generated twice — one time for each channel. With this method, the sound field provided to the
left and right ears is uncorrelated. According to Jot [1992] and Blauert [1999], a partially correlated
signal could be a good choice to improve the auralization accuracy. Further investigation should be
made to find a correlation coefficient that best represents the diffuse field in our model.

7The same octave band filters used in Section 3.2.1 for specular paths attenuation.

87

Figure 3.7: Frequency dependent re-sampling of the blocks.

88

3.3.2 Graphical Processing Unit (GPU) convolution

The auralization of the diffuse sound field is performed by convolution of the anechoic sound by the
RIR representing the filter kernel. Even if on recent computer architectures it is possible to perform
convolution with long kernels on CPU (see e.g. Siltanen et al. [2009]), we found that GPU is best
suited for this kind of calculation. The convolution algorithm can be implemented as a set of simple
parallel operations. For our implementation, we decided to build the development of the convolution
algorithm on OpenCL8 which is a recent standard used to produce reusable source codes on GPU. The
implementation of the computation on GPU allows to use all the computation time of the CPU for
propagation and specular paths auralization.

Basics of GPU computing

In our implementation, the GPU is a device commanded by the CPU. We have seen earlier that for
the processing of 512 samples at a frequency of 44.1 kHz, the processing time of a block must be under
11.6 ms. One of the main bottleneck in real-time GPU algorithms is the rate of data transfer between
the CPU and the GPU. Most of GPU applications share the following processing steps: (i) data is first
transferred from the CPU to the GPU; (ii) then, processed on GPU; (iii) then transferred back to the
CPU. In our application, the data transferred to the GPU is

• the blocks of anechoic signal transferred every 11.6 ms,

• the binaural impulse response, updated upon each modification.9

The data returned at the end of the processing is a block of the convolved signal. At this point, it is
important to note that the size of the filters, i.e., the RIR, is greater than the size of the processed
blocks. Typically, the size of the blocks is around 11.6 ms, while the size of the RIR is 3 s. This means
that the result of the convolution of the current block also depends on the convolution of the previous
blocks. This is logical, as in real life, the sound that arrives at human ear at a given time is the sum of
all delayed sounds that were emitted and propagated in the environment where the listener is placed.
Imagine the simple case of an echo in the mountain. A few times after the direct sound is perceived,
a second sound is perceived. Numerically, this corresponds to blocks of data that are processed earlier,
and stored until they are sent to the listener.

Static convolution procedure

The convolution algorithm on GPU was implemented in two phases. First, the convolution with a static
RIR was implemented in order to test the principle of convolution on GPU. This spatialization method
is used for the rendering of a static source and receiver in a static virtual environment. This means that
the RIR can be pre-calculated, and only the convolution of the anechoic sound with the filter kernel is

8OpenCL stands for Open Computing Language. It is a standard supported by Kronos Group that aims at standardizing
the routines on various GPU, and more generally, heterogeneous computing platforms, in order to produce reusable source
code. The details about OpenCL can be found in the specification document Munshi [2009].

9Section 5.4 presents the methods used for updating the RIR.

89

Figure 3.8: Constant-OverLap and Add (COLA) principle.

performed in real-time. We will present in the next section the evolutions of the algorithm for dynamic
sound rendering that were implemented in the second phase.

Three main methods may be used for real-time convolution of an audio signal with an impulse
response. First, the convolution is performed on filters that have the size of the RIR (usually more than
three seconds of the signal sampled at 44.1 kHz). The time domain method could be a good strategy,
as one input sample of the original produces one output value. But, this is a really inefficient method
to provide the convolution with long FIR filters. The second method is a filtering in the frequency
domain. The convolution in the time domain reduces to a multiplication in the frequency domain. As
this method is based on Fourier transform, it cannot be processed sample per sample (sample per sample
Fourier transform makes no sense).

The third method used to perform the convolution is called COLA10. This method is based on
the convolution in the frequency domain of short blocks of signal. With this method, it is possible to
perform the real-time convolution of the audio blocks provided by the sound card. Figure 3.8 presents
the principle of OverLap and Add method. The size of the FFT is defined as NF F T = NRIR +Nblock −1
in order to prevent temporal aliasing [Smith, 1997]. This implies, as shown in Figure 3.8, that the
output size of a convolution block is greater than the size of an input block. The mechanism of COLA
generates for every block Nblock + NRIR − 1 samples. The first samples correspond to the convolution
with the beginning of the impulse response; they are rendered directly. The other samples are summed
with the response of the following blocks.

With this method, no windowing has to be applied to the input signal, and the FFT size has to
be the next power of two after Nblock + NRIR − 1. It is important to note that in this method, as the
response of the filter is static in time, the input blocks do not have to overlap 11. This method is called
by Smith [2009] COLA with rectangular window, or COLA with a hop size equal to the block size.

10The mathematical definition of COLA can be found in Smith [2009].
11The name of the algorithm Constant-OverLap and Add (COLA) comes from the fact that the output blocks overlap

and are summed (added).

90

COLA is a more general algorithm that we will present in the next section.

Implementation details We have implemented the previous algorithm in C++ with the GPU com-
puting library OpenCL. To implement the FFT, we used a FFT algorithm based on Govindaraju et al.
[2008]. The impulse response is calculated and transferred to the GPU, and its FFT is calculated on
GPU during the pre-processing stage. In our implementation, we needed to process a RIR of around
three seconds. For an impulse response sampled at 44.1 kHz, the nearest power of two value gives
217 = 131.072 samples. This provides a RIR of 2.97 seconds. To avoid temporal aliasing, the FFT size
of the convolution must be NF F T = NRIR + Nblock − 1. So, with an FFT size of 217, we define the
maximal size of the RIR to NRIR = NF F T − Nblock + 1 = 130.561 samples.

The real-time processing of the input blocks is the following:

• the input blocks are transferred from the CPU to the GPU;

• a zero padding is applied to have a signal of NF F T elements;

• the FFT of the signal is performed;

• the RIR and block signal are multiplied in the frequency domain;

• the IFFT is applied to obtain the resulting signal in the time domain;

• the output signal is normalized;

• the output signal is delayed of Nblock samples and summed with the previously calculated values;

• finally, the first Nblock values of the signal are transferred back to the CPU.

Some optimizations were implemented to speed up processing. They are presented in Section 3.3.2.

Dynamic convolution procedure

In the context of dynamic rendering, the filter used for the convolution algorithm is no more static.
This implies a certain number of changes in the processing presented above; the data transfer and the
FFT of the RIR have to be performed in real-time. In our implementation, the frequency of update of
the RIR is independent of the frequency of update of the blocks. So, the synchronization mechanism
was implemented (see Section 5.3). Then, interpolations are required between two successive impulse
responses.

COLA method [Allen, 1977; Allen and Rabiner , 1977] is used to overlap of half a block. In our
implementation, the window used for the input blocks is a Hann window, another window that sums to
one can also be used to decompose the input signal in blocks.

For an optimal implementation, we only perform the block processing when the impulse response
changes, i.e., when it is updated by the propagation algorithm. COLA algorithm with a 50% overlap is

91

Figure 3.9: Convolution procedure executed on GPU — Only the first part of the convolution is kept
as the output block. The remaining samples are kept and summed with the following blocks (see
Figure 3.8).

92

presented in Figure 3.9. Let i be the index of the blocks, and j the index of the RIRs12. When the RIR
changes, the block is processed twice. The first time, the block processed with a window decaying at the
end of the block wout. The signal is convolved in frequency with the previous impulse response hj−1.
The result is summed in the accumulation buffer containing the convolutions of the previous blocks.
The second time the block is processed, a fade-in window is applied at the end of the block (with 50%
overlap). The convolution is performed with the new impulse response hj . The result is summed in the
same accumulation buffer, so that the result of the faded blocks accumulates.

As we want to provide binaural auralization, the COLA algorithm is performed twice, with the RIRs
corresponding to the left and right ear.

In the case of fast changing impulse responses, an overlap of a half block may not be sufficient, and
audible artifacts might occur. So, we have also extended the method to longer overlap window (from
a half block to 2,5 blocks overlap). But, in the case of room acoustics simulations with sound sources
moving at normal speed, no difference is audible between the methods. So, the half block method is
kept, as it is the least computationally expensive.

We also implemented the Weighted-OverLap-Add (WOLA) method [Crochiere, 1980]. In this method,
two windows are applied to the signal. The first one is applied to the input signal, before performing
the FFT, and the second after the IFFT. The pair of windows is called analysis and synthesis windows.
This method is used to compensate the non-linearities present during the filter change. In order to
preserve the energy of the signal after such a transform, the windows used are the square root of the
windows used for the COLA algorithm, as they are applied twice. In our implementation, the windows
are square root Hann windows, also called MLT sine windows [Smith, 2009]. Informal listening tests
have shown that no difference was audible with this method. Consequently, we kept the basic COLA
method described above.

Some tests were also performed with static RIR of around six seconds. The static version of our
algorithm works well, but the dynamic version reaches the limit of the computation time allowed for
a block. This restriction is linked to the hardware used for our tests, and newer generations of GPU
would push these limits further.

Optimizations

During GPU development, it was noted that some specific coding approaches that have no influence
on CPU may lead to large performance loss on GPU. Some of the best practices in GPU development
[NVidia, 2009; Tsuchiyama et al., 2010] were implemented in order to speedup the convolution process.
Here are some of the optimizations that helped us reach real-time rendering.

Complex to complex Fourier transform This optimization is based on the characteristics of the
library used to perform the FFT on the GPU. This library, only performs complex to complex Fourier
transform. As the input and output audio signals are real, half of the information transformed is unused.

12i and j are different as the frequency of update of the blocks is independent of the frequency of update of the impulse
responses.

93

Based on the two symmetry properties of the Fourier Transform13, we performed the Fourier transform
with two real signals passed as real and imaginary parts of a complex number. Then after the FFT, the
transformed signals are decomposed thanks to the symmetrical properties. For the IFFT, the procedure
is the same. The details of the complex to complex and invert complex to complex transformations are
presented in Guicquero Le Beyec [2010].

Computation on local memory One of the main reasons behind GPU code slow execution is due
to bad management of the memory accesses. On GPU, the code is executed simultaneously on many
processing units that both have shared and local memory. Shared memory is usually slower as it has to
manage concurrent access of different processing units. The use of local memory in our algorithms such
as complex to complex transform has sped up the process by a factor two.

∗ ∗ ∗

The algorithms we have implemented for convolution provide sufficient performances for the spa-
tialization of one source in a virtual environment. This implementation could be improved with an
intelligent partitioning of the impulse response and the input signal. These techniques were presented
for instance by Soo and Pang [1990]; Gardner [1995]; García [2002]. But, to our knowledge, no imple-
mentation of these methods have be made on GPU.

3.4 Combining specular and diffuse field for a unified audio rendering

We have presented in Section 3.3 a method suited for diffuse field auralization, and in Section 3.2 a
method for individual specular paths rendering. The problem with the specular rendering algorithm is
that it is not able to reproduce every specular contribution provided by the propagation algorithm in
real-time. In order to have a complete auralization of the sound field, a choice has to be made on the
most significant specular paths to reproduce. And, in order to conserve the energy of the simulation,
the paths that are not rendered with the specular algorithm have to be rendered with another method,
i.e., it is impossible to discard completely those paths.

One strategy that can be used for the selection of the paths is to follow the well know principle
of room acoustics based on early and late reflections (see Section 1.4.1). This implies sorting the rays
reaching the receiver by arrival time, and only rendering the first ones with the spatialization algorithm.
Another very close approach would be to sort the specular rays reaching the listener by decreasing
energy, and again rendering the first rays with the BSA (see Section 3.2).

In our work, we decided to sort the paths based on perceptive parameters. The details of the
perceptive sorting of the rays are presented in the following chapter. From a signal processing point of
view, our algorithm proceeds as follow:

13The imaginary part is antisymmetric and the real part is symmetric

94

Figure 3.10: Full auralization process including propagation, DSP and perceptive reduction.

• all specular rays generated by the DRT algorithm (see Section 2.5.1) are sorted according to
perceptive parameters;

• the most significant rays are rendered using the BSA;

• all other rays, i.e., the rays clustered by the perceptive algorithm, contribute to the diffuse field,
and thus are rendered on GPU with the algorithm presented in Section 3.3.2.

To process the clustered specular rays as part of the diffuse field, their energy is added to the in-
tegrated echogram. Figure 3.10 depicts the full auralization procedure with propagation algorithms
(sound propagation with specular and diffuse reflexions), DSP algorithms (re-sampling, convolution and
spatialization), and the perceptive reduction module. We observe that the spatialization module feeds
both the spatialization algorithm with the most significant rays, and the re-sampling module with an
integrated echogram containing the energy of the clustered rays.

3.5 The Specular/Cluster/Diffuse (SCD) decomposition of the Im-
pulse Response (IR)

Finally, we present the results of our algorithms on the shape and characteristics of Room Impulse
Responses RIR. Figure 3.11 depicts the impulse response generated for the simulations of the scene
presented in Appendix B.1.3. We presented in Section 1.4.1 the classical way to analyze the IR, with
the early, middle and late reflections. Our approach is slightly different in the sense that the most
significant reflections rendered by our algorithm no-longer depend on the arrival time. Instead, the
choice is based on perceptive parameters. The specular reflections that are not masked14 by other

14Masking schemes for specular reflections will be detailed in Chapter 4.

95

0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

Time (s)

A
m

pl
itu

de
Specular and diffuse impulse response

Diffuse+Clustered
Clustered
Specular

(a) Impulse response decomposition with SCD.

(b) Zoom on the first reflections of the IR.

Figure 3.11: Two views of the Specular/Cluster/Diffuse (SCD) decomposition of the Room Impulse
Response (RIR) generated the scene described in Appendix B.1.3.

96

reflections are spatialized with the Binaural Spatialization Algorithm (BSA) presented in Section 3.2.
This process is heavy, thus, only the most significant paths are rendered using this method.

The other part of the reverberation is rendered using the convolution algorithm on GPU presented
in Section 3.3. This part is composed of the sum of the clustered field, i.e., the set of all specular
reflections that are masked by the most significant reflections, and the diffuse field, i.e., the set of all
acoustic paths that have at least one diffuse reflection.

The advantage of this model is that more computational resources are assigned to the part of the
Room Impulse Response (RIR) that has the most significant information from a perceptive point of
view. One drawback of the algorithm is that an approximation is made on both the diffuse and the
clustered part of the echogram. We can observe in Figure 3.11(a) that the diffuse field is present in the
RIR before the first reflection. This is not physically valid, in the sense that no reflection can reach the
receiver prior to the direct sound. A way to correct this fact could be to have a thinner decomposition
of the diffuse echogram at the beginning of the exchanges, i.e., a non regular sampling of the echogram
with sampling period above 86 Hz at the beginning of the echogram.

Informal listening tests have been performed on Room Impulse Response (RIR)s created with our
algorithm on the scenes presented in B.1. We found that every time, the direct sound is present, the
artifact created by our resampling is not audible.

3.6 Conclusion
Starting from the two propagation algorithms presented in the previous chapter, in this chapter we
presented two algorithms dedicated to the rendering of the most significant specular paths and the
diffuse field in an auralization application. These rendering methods yields to a new decomposition of
the sound field in enclosed spaces. Usually, the room acoustics softwares render the sound field using
the separation in early / late reflections. Here, we propose to split the rendering in two parts with
first an accurate binaural algorithm for the most significant specular sound paths auralization. Then,
a convolution algorithm on GPU for the auralization of the diffuse sound field and the least significant
specular sound paths. The details about the implementation of these algorithms and parallel Digital
Signal Processing (DSP) structure is presented in Chapter 5. The validation of the implementation of
the auralization algorithms is presented in Chapter 6. In the next chapter we will describe the algorithms
used to extract these most significant paths from the set of all specular reflections.

97

4
Perceptive simplifications of pure specular paths

The objective of this chapter is to present a new method to suppress or hide information generated by
the propagation algorithms that cannot be perceived by the human ear in order to reduce the computation
time needed for the auralization process. We start with a presentation of the various psycho-acoustic
effects involved in the localization of a sound in 3D space (see Section 4.1). We also present the
works conducted by Hacıhabiboğlu and Murtagh [2008] on the perceptual simplifications for binaural
room auralization (see Section 4.1.3). We then present a clustering method for specular paths in room
acoustics (see Section 4.3). These algorithms were validated and parametrized using subjective tests (see
Section 4.4). Finally, we discuss the benefits of the perceptive simplification method and its integration
in our auralization framework (see Section 4.5).

Contents
4.1 State of the art . 100
4.2 The masking functions . 108
4.3 The perceptive clustering algorithm . 111
4.4 Subjective evaluation . 111
4.5 Conclusion and general discussion . 116

99

In order to perform real-time auralization with ray-based algorithms, different solutions can be
considered to save CPU time. These solutions can be classified into three categories:

• the type of algorithm used to simulate propagation (ray-tracing, beam-tracing, image-source, ...);

• the digital signal processing methods used for rendering sound;

• the psycho-acoustic methods to avoid the rendering of non-perceivable information.

We study in this chapter the psycho-acoustic simplifications that can be applied to ray-based simulations
associated with binaural auralization.

Many studies have been conducted on the masking of sounds, a good summary of these methods is
presented by Blauert [1999]. More specific studies on the clustering of contributions in room acoustics
were conducted by Bech [1998]; Begault et al. [2001] and more recently by Hacıhabiboğlu and Murtagh
[2008].

In this chapter, we study the clustering of an echogram generated by ray tracing algorithms. After
a state of the art of the different psycho-acoustic mechanism involved in multi-source perception (see
Section 4.1), we present the work conducted by Hacıhabiboğlu and Murtagh [2008] on the reduction
of information for ray-based algorithms (see Section 4.1.3). We then present our clustering algorithm.
The clustering is performed in three steps: spatial clustering (see Section 4.2.1), temporal clustering
(see Section 4.2.2) and late reflections processing (see Section 4.2.3). We finally present the results
of subjective tests (see Section 4.4) that will provide proper parameters for clustering based on the
characteristics of the sounds to auralize.

4.1 State of the art

We have seen in Section 2.1.5 that the set of all specular paths can be represented by a set of independent
sources called the image sources. They represent the reflections of the sound on the walls of the virtual
scene and are characterized by their position in 3D space (in Cartesian or polar coordinates), their
distance and their orientation. We have seen in Sections 1.3.3 and 3.1.3 that it is possible, with Digital
Signal Processing (DSP) operations, to auralize a virtual sound in the space surrounding the listener
using Head Related Transfer Functions (HRTF). In this section, we first present the mechanism involved
in the localization of a sound source (see Section 4.1.1), then the localization of many sound sources
(see Section 4.1.2). Image sources can be seen as a special case of multiple correlated sources.

Not all of the contributions reaching the listener are significant for the perception of the reverberation.
In Section 4.1.2, we present a mechanism called the precedence effect that defines the masking between
sound sources. Finally, in Section 4.1.3, we present a work conducted by Hacıhabiboğlu and Murtagh
[2008] on the perceptive reduction of information for binaural auralization.

100

4.1.1 Localization of a sound source

To locate a sound source in 3D space, a listener needs to determine distance and orientation around his
head. Polar coordinates are often used in auralization methods as they provide a simple way of expressing
some position relative to the listener’s head. From a physical point of view, the 3D perception of a sound
is possible thanks to the ears, but also to the head and the torso, where complex interactions such as
reflection and diffraction occur. These physical considerations lead to the conclusion that the sounds
reaching the eardrum of the two ears are different in delay, phase and spectrum, unless located in the
vertical plane centered on the head

In virtual reality systems, a special attention should therefore be paid to auralization algorithms, as
they must provide coherent phase, spectrum and delay information. Otherwise, the brain of the listener
will provide erroneous messages, and the localization will fail.

Distance perception

For a given direction relative to the listener, the perception of the distance is not related to the morpho-
logical properties of the listener. As the sound reaches the two ears with a given angle, the perception of
the distance is related to the characteristics of the sound. The modifications that occur on a sound wave
during the propagation can be modeled as two DSP operations. The first is the attenuation due to the
distance of propagation. In terms of DSP operations, it can be modeled by a gain (see Section 2.1.1).
The gain corresponds to a level drop of 6 dB as the distance between the source and the receiver is
doubled. The other modification of the sound is due to the absorption of the high frequencies by air.
This operation can be seen as a low-pass filter depending on the distance of propagation.

These models represent the physics of sound propagation, but psycho-acoustic tests have shown
that the perception of the distance is very imprecise in an anechoic room. Gardner [1969] showed, for
instance, that to perceive the doubling distance of a sound in an anechoic room, a level decrease of 6
dB is not sufficient. Instead, a level decrease of around 20 dB must be applied.

This theory is no-longer valid in room acoustics. As the sound source radiates in all directions, the
sound gets reflected on the walls, and reaches the listener many times. In enclosed spaces, the perception
of the distance is thus based on the direct to reverberated sound level ratio.

This last observation is important for the design of an auralization application. It implies that direct
sound should be rendered with high quality algorithms, respecting the correct delay, phase and spectrum
attenuation as it is the most significant element of the auralization.

Localization in the horizontal plane

Much work has been conducted on the localization of sound since 1920. The works conducted by e.g.
Stevens and Newman [1936] showed that the localization error is low for low frequency sounds, then
grows up to reach a maximum at around 3000 Hz. The localization error then decreases for frequencies
higher than 3000 Hz. For the test procedure, the subjects were blindfolded and pure stationary sounds

101

Reference Type of signal Localization
blur (approxi-
mate)

Klemm (1920) Impulses (clicks) 0.75˚– 2˚
King and Laird (1930) Impulse (click) train 1.6˚
Stevens and Newman (1936) Sinusoids 4.4˚
Schmidt et al. (1953) Sinusoids > 1˚
Sandel et al. (1955) Sinusoids 1.1˚– 4.0˚
Mills (1958) Sinusoids 1.0˚– 3.1˚
Stiller (1960) Narrow-band noise - cos2 tone

bursts
1.4˚– 2.8˚

Boerger(1965) Gaussian tone burst 0.8˚– 3.3˚
Gardner (1968) Speech 0.9˚
Perrott (1969) Tone bursts with differing onset

and decay times and frequencies
1.8˚– 11.8˚

Blauert (1970) Speech 1.5˚
Haustein and Schurmer (1970) Broadband noise 3.2˚

Table 4.1: Localization blur for various signals in front of the listener [after Blauert, 1999].

were emitted. The error was measured as the distance between the position position pointed by the
listener and the real position of the sound.

Another common problem with the localization of sound is the front/rear mis-localization. In the
same article, Stevens and Newman [1936] showed that above 2000 Hz, the front/rear localization is
really improved.

Blauert [1999] presents a good summary of the experiments conducted in the localization of sound.
These results are presented in Table 4.1. This table shows that localization does not depend much
on the signal emitted. Instead, Blauert [1999] presents [after Preibisch-Effenberger , 1966] that the
localization precision depends much on the position of the source. For a white noise impulse of 100ms,
the localization blur angle is 3.6˚for a sound coming in front of the listener, it falls to 5.5˚if the sound
comes from the back of the listener, and even worst, to 10˚on the sides (±90˚on the azimuthal plane).

Localization in the vertical median plane

In the median plane, the Interaural Time Difference (ITD) mechanism does not exist. Thus, the local-
ization is only based on the filtering provided by the Head Related Transfer Functions (HRTF). Blauert
[1969] showed that the localization of narrow band sounds is not dependent on the position of the sound
source. Narrow band signals are located at different positions of the median plane depending on the
frequencies of the signal emitted. For instance, sounds with a central frequency of 200 Hz, 2kHz and
16 kHz will be located in front of the receiver, sounds with central frequencies of 1 and 10 kHz will

102

be located behind the head, and sounds with central frequencies of 500 Hz and 8 kHz will be localized
above the head. Blauert [1969] showed that there is a correlation between this localization feature and
the position dependent attenuation of the HRTF.

4.1.2 Multi-sources localization

In room acoustics, the set of all specular reflections reaching the listener can be seen as different sources
at various positions. The positions of the sources are given by the source image algorithm (see Sec-
tion 2.1.5). All signals reaching the listener’s ear have a common origin, the sound emitter. Thus, the
signals have a high degree of coherence. All paths reaching the listener carry a delayed and a filtered
version of the original sound. In this section we will present the localization of multi-sources that are
coherent. Depending on the time between two contributions and the direction of arrival on the listener,
three perceptive effects can be observed:

• the contributions are summed — a unique acoustical event is perceived, but its position depends
on the position of the two sources;

• one of the contributions masks the second — one of the contributions becomes preponderant, the
other one is no-longer perceived by the listener;

• the two contributions are perceived separately — when the delay between two contributions be-
comes high, they can be perceived as two separate events, this is called an echo.

A good review on sound localization in rooms has been provided by Hartmann [1983]; Rakerd and
Hartmann [1985, 1986]; Hartmann and Rakerd [1989]. Here are some relevant elements that were
collected from these articles.

The effects of room size and absorption

Hartmann [1983] showed that the localization of a sound source in a room is independent from the
absorption of the room, but depends on its dimensions. Subjects were placed in the Espace de Projection
(ESPRO) located at the Institut de Recherche et de Coordination Acoustique/Musique (IRCAM) in Paris.
ESPRO is a room with variable acoustic. The dimensions of the room can be modified, as well as the
absorption of the walls. The subjects were listening to a single 5 0ms pulse, rectangularly gated, of a
500 Hz sine tone. The error of localization was measured for various configurations of the room. The
results showed that the localization error for a room with a ceiling at a height of 11.5 m was 3.3˚for
the reflecting room (T60 = 4 s at 500 Hz), and 3.4˚for the absorbing room (T60 = 1 s at 500 Hz).
The experiment was repeated with a ceiling at a height of 3.65 m and a T60 of 2.8 s. There, the mean
localization error falls to 2.8˚.

The interpretation of the authors is that the order of arrival of the early reflections has a high influence
on the localization of sound. The difference of intensity was measured between the reverberating and
the absorbing room. The level of the reflections differs by 7 dB. Thus, the authors conclude that the

103

time of arrival of the early reflections has a higher influence on the localization of the source than the
level difference.

Localization of sounds without attack transients

Other tests were conducted by Hartmann [1983] on the localization of sounds without attack. Tests
were conducted with continuous sine tone at 500 Hz in the absorbing room presented in the previous
paragraph. While the localization was 3.4˚for an impulsive sound, it reaches 12.6˚for a continuous
sound (with a long onset time of around 7 s). We experimented this effect in our tests (see Section 4.4),
where the effects of our clustering algorithm were smaller on sounds with few transients.

The influence of the onset time of the sound

Further investigations were conducted by Rakerd and Hartmann [1985, 1986] on the influence of the
onset time of a pure tone sound on its localization. The test above was reproduced with onset durations
of 5, 10, 50, 100, 500, 1000 and 5000 ms. The results showed that there is a limit above 100 ms where the
onset time no-longer improves the localization precision. This limit is very dependent on the subjects,
and experienced listeners tend to have a limit around 50 ms.

The precedence effect

One of the most studied effects in psycho-acoustics is called the precedence effect. The understanding
of this effect is important for the comprehension of the rest of this chapter. The name precedence effect
comes from the original study by Wallach et al. [1949]. This section is derived from two reviews about
the precedence effect by Blauert [1999] and Litovsky et al. [1999] that gather and analyze the works on
the precedence effect since 1949.

The experimental procedure is depicted in Figure 4.1(a). The listeners are placed in an anechoic
room. Two speakers are arranged at equal distance from the listeners, with angle 45˚and -45˚. The
first speaker emits a signal that represents the direct sound of a room acoustics simulation; this sound
is called the lead sound. The second speaker produces a delayed sound (the lag) that represents the
first reflection. Figure 4.1(b) represents the ideal perception of the auditory events. When there is no
delay between the lead and the lag sounds, the stimuli are perceived as a unique event in front of the
listener. As the delay grows to 1ms, the event is perceived as a single event, but the localization moves
toward the direction of the leading sound. In the range 1 to 5ms, the events are fused at the position
of the leading sound. The lag sound has no influence during this period. After 5ms, the two stimuli
are perceived as two separate events. The echo threshold represents the delay where the events split
from one fused sound to two separate sounds. As shown in Figure 4.1(b), there is a range around 4-5ms
where the localization and discrimination of the lead and lag sounds are hard to distinguish. These
values of the precedence effect are measured with impulsive sounds. Blauert [1999] showed that with
speech signal and musical signals, the echo threshold is generally between 30 and 50 ms.

104

(a) Schematic of the precedence effect experiment.

(b) Direction of the events with respect to the lead/lag delays.

Figure 4.1: Classical precedence effect experiment [compiled from Blauert, 1999; Litovsky et al., 1999;
Hacıhabiboğlu and Murtagh, 2006].

105

This first analysis on the precedence effect shows that some of the contributions provided by the
propagation algorithms may not be significant for the final auralization as they will not be perceived by
tge human ear. In the following sections we present some masking schemes that used to select the most
significant paths.

4.1.3 Perceptual simplification for binaural room auralization

We have presented in Section 2.1.4 various ways to collect rays for ray based propagation algorithms.
A different approach to build an optimal collect structure is described by Hacıhabiboğlu and Murtagh
[2008]. The receiver in this approach is a sphere. The principle of this method is to reorganize the
contributions in several clusters in two steps. The first cluster is based on arrival time. Then, for each
cluster, the rays are sorted depending on their angles of incidence. The aim of these clusters is to extract
the most significant rays from a perceptive point of view, according to the principles of precedence effect.

Early reflections define most of the perceived qualities of a room, even in very reverberant spaces,
i.e., with many interfering reflections. To locate a sound, our auditory system gives precedence to the
first arriving sound wave — This phenomenon is often called the law of the first wavefront.

Precedence effect is only valid during a short time threshold after the leading sound. For broadband
signals, such as clicks or white noise burst, the threshold is τhigh ≈ 5 ms (see Figure 4.1(b)). All sounds
reaching the listener before τhigh will be perceived as a unique sound. All sounds after τhigh will be
localized and perceived as a different contribution.

Based on these observations, Hacıhabiboğlu and Murtagh [2008] present a two steps perceptual clus-
tering structure, with temporal and spatial clustering functions.

Temporal cluster First, image sources are gathered in a set of clusters {γ1, γ2, . . . , γn}. Image sources
Ei = {dE,i, θE,i, φE,i} (in polar coordinates) are gathered in γn, if

(n − 1) τhigh c < dE,i < n τhigh c (4.1)

where, c, is the speed of sound in air.

Spatial clustering For each temporal cluster, γn, a spatial clustering is then performed, as described
in Figure 4.2. This clustering uses an object called suppressor. A suppressor is a particular ray that is
not masked by any predecessor. The set of all suppressors represents the most significant rays of the
simulation. There are never more than three suppressors at a time in the algorithm.

For a given temporal cluster, γn, the first image source, E ′
i = {d′

E,i, θ′
E,i, φ′

E,i}, is kept; it is the
primary suppressor. All image sources, Ej , that match

θ′
E,i − π

2
< θE,j < θ′

E,i +
π

2
(4.2)

are gathered in the first cluster γn,θ1

106

(a) Temporal clustering of the image sources.

(b) Azimuth clustering of the image sources.

Figure 4.2: The two step clustering algorithm [after Hacıhabiboğlu and Murtagh, 2008].

107

For the remaining sources, the secondary suppressor, E ′′
i , is found, with d′′

E,i, the minimal distance
to the listener. All image sources that match

θ′′
E,i − π

2
< θE,j < θ′′

E,i +
π

2
(4.3)

are gathered in cluster γn,θ2.

The remaining sources are gathered in γn,θ3, the cluster where the third suppressor is found. This
two step clustering approach is illustrated in Figure 4.2.

There are two main drawbacks to the method proposed by Hacıhabiboğlu and Murtagh [2008]. First,
the computation time is too long to be used in a real time algorithm. In the next section, we propose a
new implementation of the clustering function combined with a termination criterion in order to reduce
the computation time. The second drawback is that the decomposition of the temporal and spatial
clustering proposed by Hacıhabiboğlu and Murtagh [2008] leads to create many clusters with the same
size. During the auralization step, this fixed size structure creates audible artifacts. In Section 4.2 we
present a new spatial structure to smooth the masking function and thus creates more irregular clusters.
We also propose an incremental parameter to adapt temporally the masking function (the size of the
clusters grows each time a new cluster is created). These two improvements lead to suppress the periodic
artifacts.

4.2 The masking functions

As shown above, Hacıhabiboğlu and Murtagh [2008] have proposed a sequential clustering with a first step
of temporal clustering, followed by a spatial clustering (cf. Section 4.1.3). Our new clustering algorithm
is composed of a single clustering step based on a clustering function, C, and a termination criterion,
T . In our approach, the spatial and temporal aspects of the clustering have the same importance; they
can be studied independently. The termination criterion is used to set the limit between early and late
reflections in the echogram.

Our algorithm is based on the clustering of rays, R = {tR, θR, φR, LR}, with tR, the arrival time of
the ray, θR and φR, the polar coordinates of the arrival direction on the receiver, and LR, the attenuation
level of the ray reaching the receiver. A cluster, γ, is a structure collecting a set of rays sorted by arrival
time. A particular ray in a cluster is its first ray; it is called the suppressor, S.

4.2.1 Spatial masking

For spatial clustering, we propose a new version of the three suppressor clustering method presented by
Hacıhabiboğlu and Murtagh [2008]. The first processed ray1 will be the first suppressor of the algorithm,
S1 = R1. The spatial clustering function Cs is based solely on the incoming azimuth of the rays following

1The direct sound if no occluder is present between the source and the receiver.

108

the suppressor:

Cs (S, R) =

⎧⎨
⎩1 if θS − π

2 < θR < θS + π
2

0 else
(4.4)

Figure 4.3(a) shows that there will never be more than three suppressors at the same time in our
algorithm. An example of spatial clustering is presented in Figure 4.3(b).

(a) Example of suppressor distribution. (b) Spatial clustering of the rays. The big dots represent the
suppressors, the small ones are the clustered rays.

Figure 4.3: Spatial clustering, the suppressors are rays that satisfy both equations 4.4 and 4.5.

4.2.2 Temporal masking

The temporal clustering is based on various studies on the precedence effect [Litovsky et al., 1999;
Blauert, 1999]. Depending on the stimulus used for the tests, the authors collect a great variety of
thresholds to characterize the masking of two sounds. The temporal echo threshold, τlow, is the threshold
above which two reflections become audible as a separate auditory event. Above τlow ≈ 1 ms, the
localisation event depends more on the leading sound than the location of the lagging sound. When the
delay is between τlow and τhigh ≈ 5 ms, the direction of the leading source dominates and the directional
discrimination of the lagging source is suppressed [Hacıhabiboğlu and Murtagh, 2006].

Begault et al. [2001] have studied the influence of both level ratios, ΔL, and the temporal delay, Δt,
between two contributions of an echogram. From the results of their subjective tests, they identified
different masking schemes. One is: a single early reflection should be inaudible when its level is less
than ΔL = 21 dB below the direct sound at Δt = 3 ms, and less than ΔL = 30 dB for 13 < Δt < 30 ms.
These rules can be seen as masking functions defined by a step function parameterized with Δt and ΔL.
To smooth the transition of the masking function, we propose here a new temporal clustering function

109

Ct based on a sigmoid function:

Ct (S, R) =

⎧⎨
⎩1 if LR < LS − ΔL

(
1/
(
1 + e−(tR−tS−Δt)/0.15Δt

))
0 else

(4.5)

With:

• LR, LR the levels of the ray and the suppressor respectively,

• Δt, ΔL the intervals of time and level that parameterize our algorithm.

While performing tests on our clustering algorithm, we have observed that the masking threshold time
grows with the time of arrival of the cluster in the echogram. To include this constraint, we defined Δt

as a function of the cluster index:
Δt = Δt0 + iΔtinc (4.6)

With Δt0, the temporal parameter of the first cluster and Δtinc, the increment for each cluster.
This method has three advantages:

1. it creates small clusters for the direct sound and first order reflections that are important for the
localization;

2. it creates larger clusters where the perceived contributions are less significant;

3. it avoids fixed size clusters that create emergent frequencies during auralization.

Section 4.4 presents the results of our tests for different values of Δtinc. In order to simplify the
subjective analysis, the two parameters Δt0 and ΔL will have fixed values. The parameter Δt0 is set to
1 ms, that is the lowest time threshold for a fusion of two contributions. We have observed that higher
values of Δt0 can amplify the direct sound so that the perception of the distance between the source
and the listener can be distorted. The parameter ΔL is set to 21 dB, according to the observations of
Begault et al. [2001].

4.2.3 Termination criterion T

The temporal clustering function, Ct, with linearly growing Δt may create gaps at the end of the
echogram in the special case of simulations without diffusion. This case occurs when the three suppres-
sors become more significant than the following contributions. To avoid this phenomenon, we stop the
clustering algorithm when more than Dmax rays are present in a cluster. The end of the echogram is
thus considered as diffuse field, and processed with the appropriate algorithm.

This criterion has the other advantage to reduce the computational cost of the clustering, as the
algorithm does not process systematically all contributions.

110

4.3 The perceptive clustering algorithm
From equation 4.4 and 4.5, we can define a clustering function depending on time, level and arrival
azimuth:

C(S, R) = Ct(S, R)Cs(S, R) (4.7)

and a termination criterion:

T (γ) =

⎧⎨
⎩1 if size(γ) > Dmax

0 else
(4.8)

From these functions, we can define a clustering algorithm that takes as input a set of rays Ri, and
returns a set of clusters γi and possibly an echogram containing late reflections. The first ray of the
algorithm becomes the first suppressor S1 = R1. Then, for each ray Ri, the clustering is tested with
suppressors S1, S2 and S3. If a ray is clustered by one of these suppressors Sj , the ray is added to
the corresponding cluster, Sjγ ← Ri. When none of the suppressors clusters the ray, the cluster S1γ

associated with S1 is stored. Then, S2 and S3 become the first suppressors — S1 = S2, S2 = S3. A new
suppressor is created S3 = Ri, and associated with a new cluster γj ← S3. Figure 4.4 shows the full
clustering algorithm.

4.4 Subjective evaluation
Subjective tests are part of a study presented in one of our publications [Loyet et al., 2009]. This study
was performed prior to the creation of the auralization methods presented in the previous chapters. In
the following section, we present the auralization framework that was used to perform the subjective
tests. In Section 4.5, we discuss the benefits and the parameterization of the perceptive clustering
algorithm in our auralization framework. Chapter 6 presents other tests performed on the latest version
of the auralization framework. A good perspective to this work could be to perform the same subjective
tests on the latest version of the auralization framework, in order to tune finely the parameters of the
subjective reduction algorithm.

4.4.1 The binaural auralization framework

Our algorithm was implemented within a binaural auralization framework. The sound propagation
is simulated using the Deterministic Ray Tracing (DRT) algorithm described in Section 2.1.5. The
binaural auralization is performed with the HRTF filtering method presented by Emerit et al. [1995]
(see Section 3.1.2). Our clustering algorithm operates on all the rays collected by the receiver. All the
generated clusters are sent to the auralization module with the direction of the suppressor associated
with the cluster.

The tests were performed on the scene of the third round robin test on room acoustics [Bork,
2005a,b] (See Appendix B.1.2). For the ray tracing procedure, the number of rays was set to 10000 and

111

Figure 4.4: Clustering algorithm.

112

the maximum reflection order to 60. Each time a ray hits the receiver, its travel time, attenuation level,
and direction of arrival are stored. A total of 109068 rays were collected and auralized with the binaural
module, creating a binaural room impulse response (RIR).

Late reflection processing The termination criterion presented in Section 4.2.3 is used to stop the
clustering algorithm. In the implementation of the test procedure, the diffuse field is pre-calculated
once for an arbitrary position of the source and the receiver in the room. The end of this echogram
is convolved with the anechoic sound to produce the late reflections. This mechanism is useful for
propagation systems focused only on specular propagation and auralization.

In the latest implementation of the auralization framework, this mechanism is replaced by the Specu-
lar/Cluster/Diffuse (SCD) decomposition (see Section 3.5), i.e., the rays that arrive after the termination
criterion are no longer replaced by pre-calculated impulse response. They are summed with the diffuse
field to be convolved on GPU.

4.4.2 Population and Test Cases

Eight subjects participated in this experiment. The population was composed of four males and four
females between twenty and twenty-five years old. The subjects were members of the staff at CSTB,
and half of them were experienced listeners.

The test was composed of three comparative listening experiments. Three sounds with different
characteristics were used [Bang and Olufsen, 1992]. The first sound is a xylophone solo2, it contains
many transients and is a good test case to hear the characteristics of the room. The second sound is a
woman’s voice3, it is a sound that is easier to compare for non musicians. The last one is a cello solo4, it
contains very few transients, and the anechoic sound contains the resonance of the instrument. Figure
4.5 presents the spectrograms of the three anechoic sounds.

(a) Xylophone (b) Voice (c) Cello

Figure 4.5: Spectrograms of the three anechoic test sounds.

A first RIR is generated with the ray-tracing algorithm. It is used for late reverberation factorization
2Saber Dance – Kachaturian.
3English Female speech.
4Variation and Theme No.2 – Weber.

113

(see section 4.4.1). Then the receiver is moved and a new simulation is run. The binaural RIR is
convolved with the three test sounds to produce the reference sounds.

Our clustering algorithm is applied nine times with parameters Δt0 = 1 ms, ΔL = 21 dB, Dmax =
300 rays and Δtinc = {10−4, 5.10−4, 10−3, 5.10−3, 10−2, 5.10−2, 0.1, 0.5, 1}. The values of Δt0 and Dmax

were fixed by previous informal listening tests. ΔL were fixed according to Begault et al. [2001] ob-
servations on the masking of sounds. The convolution of the nine RIR with the three sounds gives us
twenty-seven test sounds.

4.4.3 The test procedure

The test consists in comparative listening tests between the reference sounds and the clustered sounds.
The subjects have four levels of classification for a pair of sounds:

1. The sounds are identical: it is impossible to distinguish which one is the reference sound.

2. The sounds are very close: the sounds share the same properties of reverberation time, localization,
spaciousness, but have small differences.

3. The sounds are more or less the same: the characteristics of the rooms are the same, but sounds
can be clearly distinguished.

4. The sounds are denatured: the test sound has artifacts or sounds artificial, it cannot be compared
to the original sound.

As some of the test sounds have very close properties, the subjects had the possibility to give values of
1.5, 2.5, or 3.5, in order to make a more detailed classification of the sounds. During the evaluation,
the test sounds were always played after the reference sound. The subjects were allowed to listen the
sounds several times to make their choice.

4.4.4 Results

Before the first comparative test, the test consisting in playing twice the same sound was performed.
Four of the subjects found that the sounds were identical, the four others said that they were very close.
This observation leads to the conclusion that test sounds ranked below or equal to two can be considered
as good simulations.

Figure 4.6(c) presents the results of the subjective tests. The dots represent the median value of the
tests and the bars the minima and maxima. The first observation is that for Δtinc ≤ 10−6 seconds, our
algorithm gives good results on all three test sounds. On the cello, the algorithm can be used for all
values of, Δtinc, tested, except 10−3. On the xylophone, i.e., the sound where the influence of the room
is highest, our algorithm fails for values of, Δtinc, above 10−6 seconds, and creates audible artifacts.

114

10−7 10−6 10−5 10−4 10−3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Δ tinc (s)

La
te

 re
ve

rb
er

at
io

n
tim

e
(s

)

(a) Evolution of late reverberation time.

10−7 10−6 10−5 10−4 10−3
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Δ tinc (s)
N

b
C

lu
st

er
s

(b) Evolution of the number of clusters.

10−8 10−7 10−6 10−5 10−4 10−3 10−2
identic

very close

more or less

denatured

Δ tinc (s)

Id
en

tif
ic

at
io

n

xylo
voice
cello

(c) Results of subjective tests: Median and min/max interval for different values of Δtinc.

Figure 4.6: Subjective test results.

115

4.4.5 Discussion

The following remarks were formulated during the test procedure, they can be related to figures 4.6(a)
and 4.6(b) that represent the evolution of the late reflection time and the number of clusters as a function
of Δtinc.

Nearly all participants pointed that when Δtinc < 10−5 seconds, the reverberation sounds slightly
artificial. It is due to the fact that for these values, the factorization of late reverberation starts at
less than 0.2 seconds after the direct sound. This implies that the sound fields of the room cannot be
considered as a diffuse field for such values. However, three participants have found that for the voice
test, the signal mainly composed of late reverberation produces a more pleasant sound, even if it is not
perceived as the original sound.

For the voice, none of the subjects found that the test sounds were identical, and they all found a
problem of localization that was not present in the other sounds. This shows that localization is more
sensitive for voices than for musical instruments. However, for Δtinc ≤ 10−6 seconds the characteristics
of the voice are very similar to the reference sound.

In order to improve this method, further tests should be conducted on the perceptive algorithms.

∗ ∗ ∗

We have proposed a new algorithm to cluster information provided by ray-tracing algorithms in
order to perform real-time auralization. Subjective tests were performed in order to determine the best
values to parameterize our algorithm. We have found that with parameters that fit the three tested
sounds, we can reduce the number of auralized contributions by about one order of magnitude, and even
further for all sounds which do not exhibit many transients.

4.5 Conclusion and general discussion
At this stage, we have (for real time auralization):

• two propagation algorithms that find all paths (specular and diffuse) between a source and a
receiver in a virtual scene;

• a costly binaural auralization algorithm for pure specular paths;

• an efficient convolution algorithm on GPU for the rendering of the diffuse field, and the least
significant specular paths;

• an algorithm that selects the most significant specular paths in real-time.

The perceptive reduction algorithm was first developed and tested with a Deterministic Ray Trac-
ing (DRT) algorithm that considers only specular reflections. As we have seen in Section 3.2.2, it is
impossible to apply the HRTF filtering to every specular path generated by the propagation algorithms.

116

This is the reason of our investigations on perceptive simplifications. With this method, the computa-
tional resources are concentrated on the most important parts of the signal (from a perceptive point of
view). The cost of the perceptive reduction is low compared to the auralization of all specular paths.

The subjective results presented in Section 4.4 are based on a different version of the auralization
framework. The diffuse field is estimated once at a given position of the virtual scene, and applied
to the end of the echogram. The mixing time, i.e., the limit between early and late reflections is
given by the termination criterion, T , presented in Section 4.3. In the current implementation of the
auralization framework presented in Section 3.5, the diffuse field is no-longer pre-calculated, nor defined
upon the termination criterion. Instead, the diffuse field contains all information generated by the diffuse
reflections algorithm (see Section 2.5.2) and all the clustered rays.

In the implementation used for the subjective tests (see Section 4.4), the energy conservation is
managed by the suppressors; as a suppressor masks one or more rays, it collects their energy. This leads
to an amplification of the contribution at the position of the suppressor. This method was used because
there were no overlap in the specular and diffuse fields, and thus the energy of the clustered rays had
to be present in the resulting echogram.

With the current implementation, a different strategy is applied. As diffuse and specular fields
overlap, the clustered rays no-longer contribute to the energy of the suppressor. Instead, they are added
to the diffuse echograms, and processed on GPU, as presented in Section 3.4.

Informal listening tests were performed with this method, but further perceptive listening tests
should be made to validate this approach and to find the appropriate clustering parameters for the
auralization with diffuse field.

A last parameter was omitted in the presentation of the perceptive clustering algorithm: the fre-
quency. As the propagation is performed by octave bands, the information given to the clustering
algorithm has the same format. The temporal masking function, Ct, (cf. Equation 4.5) is based on the
level difference between a ray, R, and a suppressor S. Three strategies were tested to determine the
level of the rays:

• the energy of the ray is the energy of an arbitrary frequency band — this method is not satisfactory
because some important information may be lost if the signal is filtered in the given band;

• the energy of the ray is the sum of all frequency bands — this represents the global energy of a
ray;

• the energy of the ray is the maximum of the energy of the bands — this method allows the masking
of contributions that have heterogeneous frequency content.

The last two methods were tested, they provide different clusters for a given set of specular reflections,
but, from a perceptive point of view, the differences were not noticeable during our tests.

The next chapter presents the details of implementation of the different modules that compose an
auralization framework. It also presents their interactions, and the global software structure.

117

5
Efficient task scheduling

In this chapter, we present the technical aspects related to our auralization framework. After a short
review of some real-time auralization methods (see Section 5.1), we present the structure we developed
for real-time Digital Signal Processing (DSP) operations. This structure called audio graph aims at
executing the DSP operations in parallel on recent computers (see Section 5.2). We then present the
global computational structure of our auralization framework (see Section 5.3). After the observations
of the previous chapters, we found that all the elements necessary for auralization can be seen as inde-
pendent modules. We present those different modules, their interactions and the scheduling structure
that pilots themselves. Finally, in Section 5.4, we present a new method for interactive progressive
update of the audio rendering. This method updates the most significant parts of the Room Impulse
Response (RIR) while the listener is moving in the virtual scene. When he stops moving, the remaining
parts of the RIR are progressively updated.

Contents
5.1 State of the art . 120
5.2 Digital Signal Processing (DSP) audio graph . 124
5.3 Multi-thread general structure . 129
5.4 Progressive impulse response update . 133
5.5 Conclusion . 136

119

Gordon Moore explained in 1965 that the complexity of semiconductors doubled every eighteen
months at a constant cost since 1959, the date they were invented. This exponential augmentation has
shortly after been called the law of Moore. This proved to be true until 2004 when the evolution lost
speed, mainly due to the effects of thermal dissipation. As a consequence, the structure that has been
adopted by most of the constructors is the multiplication of calculation cores. Nowadays, the tendency
is the octo-core. Moreover, there is an increase in the use of other calculation units such as Graphical
Processing Unit (GPU).

These innovations make the use of software based on sequential operations only obsolete. This is
why an important part of the conception of our auralization framework is based on parallel processing
of the algorithms. Section 5.2.2 presents the parallelization of DSP operations on both CPU and GPU.
Section 5.3.2 presents the global parallel structure of the application, and how the execution of the
modules is scheduled.

Our application was developed in C/C++ [Stroustrup, 1997]. The main external libraries used for
the development were PortAudio1 for the management of the sound card, OpenCL [Munshi, 2009] for
the computation on GPU, QT2 for the Graphical User Interface (GUI) and OSG3 for the visualization
of the scene. The developments were conducted on a Microsoft Windows platform using the Visual
Studio 32 bits compiler.

The computer used for the development and the tests is an Intel Core 2 Quad at 2.66GHz with 4
Gb of Ram and two NVidia 8800 GTX GPUs.

5.1 State of the art

Many articles have been published in the field of real-time auralization, including (among others) Svens-
son [2002]; Funkhouser et al. [2004]; Schwark et al. [2004]; Lesoinne et al. [2006]; Deille et al. [2006a];
Lentz et al. [2007]; Kajastila et al. [2007]; Röber et al. [2007]; Lauterbach et al. [2007]; Kapralos et al.
[2007]; Noisternig et al. [2008]; Siltanen et al. [2009].

We briefly present in this section two of them; the first [Deille et al., 2006a] presents a real-time
auralization method with pre-calculation of the propagation. The DSP methods presented in this article
greatly inspired us for the development of our auralization system (see Section 3.1.3 and 3.2). The second
article [Siltanen et al., 2009] presents an original propagation method in the frequency domain and an
implementation on recent GPU architectures.

1http://www.portaudio.com/
2http://qt.nokia.org/
3http://www.openscenegraph.org/

120

5.1.1 Real-Time Acoustic Rendering of Complex Environments Including
Diffraction and Curved Surfaces [after Deille et al., 2006a]

Propagation method

This article presents an auralization framework including the effects of diffraction and curved surfaces.
The propagation is performed using an adaptive beam tracing algorithm [Funkhouser et al., 2004]. The
beam tracing algorithm is a geometric propagation algorithm of the same family as the Deterministic
Ray Tracing (DRT) algorithm (see Section 2.1.5). The major problem with DRT is that the specular
contributions found are linked to the corresponding image sources. Image sources are relative to planar
surfaces, thus, DRT is not suited for environments with curved surfaces.

Diffraction is processed up to the first order of diffraction. In a first pass, diffracting edges are found
using beam tracing. Each diffracting edge then becomes a new source, the cone of diffraction [see Keller ,
1961] is then discretized in new beams and the propagation continues.

The late reverberation is calculated with an artificial reverberation algorithm using the mean free
path, and the reverberation time as input parameters.

Real-time audio rendering

The audio rendering algorithm is composed of two steps. The first operates on specular and diffracted
paths. The second is an artificial reverberation algorithm based on the mean free path and reverberation
time calculated during the propagation step.

The binaural auralization algorithm was presented in Section 3.1.2. It gave us a good basis for
the implementation of our Binaural Spatialization Algorithm (BSA). However, as the spatialization
algorithm is a computationally expensive process, a choice is made on the paths to render. In this
article, the choice is based on the time of arrival of the paths. The maximal number of paths to
reproduce is estimated on user’s computer, and, during runtime, the paths are sorted, and rendered
according to their time of arrival. The advantage of this sorting method is that all the paths that are
rendered using the spatialization algorithm are located at the beginning of the impulse response. Thus,
the auralization of the diffuse field is parametrized by the time of the last specular path rendered. The
drawback is that the auralization of specular paths is not based on perceptive parameters. Thus, a part
of the expensive binaural spatialization process is applied to paths that are not significantly perceptual,
whereas other significant specular paths are rendered statistically with the artificial reverberators.

Precomputed data

The main drawback of this method is that the propagation step is pre-calculated. In order to reach
real-time requirements, the authors focused the real-time rendering on the auralization algorithm. The
propagation is performed for a static position of the source, and a dynamic version of the receiver. To
have a moving receiver, the propagation paths are calculated and stored on the nodes of a grid. During
the real-time auralization, the position of the listener on the grid is fixed, and the auralization is based

121

on the interpolation between the nearest points to the listeners.

5.1.2 Frequency domain acoustic radiance transfer for real-time auralization
[after Siltanen et al., 2009]

Recently Siltanen et al. [2009] proposed a new radiance method using the RARE (see Section 1.1.5) and
based on frequency domain propagation. This method is implemented on recent GPU architectures. We
present in this section the choices that were made by the authors on the distribution of the calculation
modules between CPU and GPU.

Propagation method

The methods used for propagation is called the acoustic radiance transfer method. It was introduced by
the same authors in a previous article [Siltanen et al., 2007]. The acoustic radiance method starts from
the RARE presented in Section 1.1.5. The principle is the following:

• the geometry of the scene is divided into patches;

• acoustic energy is propagated from the (static) sound source in the direction of all un-occluded
patches;

• the patch with the highest undistributed energy radiates as if it was a sound source, and is marked
distributed;

• the energy is weighted by the form factor (see Section 2.1.6) between the patches and the BRDF
of the emitting patch (see Section 2.1.3);

• the propagation step is repeated until the highest undistributed energy falls under a very small
threshold.

With this method, the walls of the scene store the time-dependent energy distributed by the sound
source. The last phase of the algorithm is a collect phase; each time the listener moves, a collect of the
energy on every un-occluded patch is performed.

The authors proposed in the original approach to perform the propagation in the frequency do-
main. As all operations applied to sound propagation can be seen as linear operators, the propagation
operations are replaced in this case by their Fourier transform (see Section 1.2.2).

Pre-computation

During the pre-computation stage, all subdivision and propagation steps from the source are performed
in the frequency domain. This implies that the sound source is static. Apart from the static source
constraint, the main drawback of this method is its pre-calculation time, it goes from around fifteen
minutes for a simple cube scene (twelve patches after subdivision) to 99 hours and 12 minutes for a
complex concert hall (1176 patches).

122

Figure 5.1: Acoustic radiance transfer method for real-time auralization computation on GPU and CPU
[after Siltanen et al., 2009].

Run-time computation

One of the strengths of the method is the implementation of a part of the real-time process on the
GPU. Figure 5.1 presents the distribution of the calculations between the CPU and the GPU. As the
listener is moving in the scene, the visibility computation is performed on the CPU. During this step,
the parameters for each patch are gathered on the CPU and transferred to the GPU. DSP operations in
the frequency domain are performed on the GPU, i.e., delays, gains, air absorption and HRTF filtering.
The results are accumulated to form the frequency response of the room. This response is transferred
back to the CPU to be convolved (multiplied in frequency domain) with the anechoic audio stream.
The processing of the direct sound is also performed on the CPU in order to have a more accurate
auralization (see remarks in Section 4.1.1).

This approach uses the GPU to compute most of the auralization elements, including the specular
part.4 The convolution with the resulting frequency response is then performed on the CPU.

4Note that the acoustic radiance transfer method avoids the use of perfect specular paths. Instead, specular paths are
represented as beams around the specular direction.

123

In our approach, we have the opposite strategy, the rendering of the pure specular paths is performed
on the CPU, while the convolution with the diffuse RIR is performed on the GPU as presented in
Section 3.5. In the next sections, we present the implementation details of our algorithms running both
on CPU and GPU.

5.2 Digital Signal Processing (DSP) audio graph
From a computational point of view, DSP can be represented in the form of a graph. This representation
is for instance used in commercial software such as Matlab Simulink 5. The aim of this representation
is to hide the computational part of every DSP that composes a system. The operations can be seen
as black boxes with a given number of inputs and outputs. A DSP system is thus defined by a set of
interconnected nodes, each node implementing specific operations. As all the signal processing operations
can be represented by a graph, and since we deal with audio signals, we will refer to the overall signal
processing algorithm as the audio graph. We present in this section the basic concepts contained in
the audio graph (see Section 5.2.1), and the details about the parallel execution of the nodes (see
Section 5.2.2). A complete description of audio graph, its implementation details, and some use cases
can be found in Loyet [2007].

5.2.1 Presentation of the audio graph

The two main entities that compose the audio graph are the audio graph itself, and the audio nodes.
We present how they can be used to build an audio application, i.e., a DSP system that generates or
processes audio information.

Audio nodes

An audio node refers to the computational representation of a DSP operation. It can be either a simple
operation such as a pure tone sine generator, a wave file reader, a noise generator, a delay, a mixer,
a filter . . . But it can also be a complex process such as a binaural auralization process or a GPU
convolution. The aim of the audio node structure is to hide the complexity of the process, in order to
focus on the design of the application. The design of the application is performed by interconnecting
audio nodes with a given number of buffers6. An audio node is composed of:

• a process function that defines the DSP operation of the node,

• a given number of input ports,

• a given number of output ports.

Note that the number of ports may be zero, e.g. in the case of a signal generator, there is no input port.
In the case of a node that writes a signal to a file, there is no output port.

5http://www.mathworks.com/products/simulink/
6A buffer is a shared part of memory between two audio nodes

124

Figure 5.2: UML representation of the structure of an audio node, an audio graph, and their inheritances.

The ports are the elements of the node that allow connections between nodes. Depending on the
arrangement of the nodes, the processing can be either sequential or parallel (see Section 5.2.2 for details
about the parallel execution of nodes).

The main characteristic of connection ports is that they can be added or removed dynamically, thus
providing dynamic modular processing. Take the example of a port associated with each specular path
to auralize. When the path disappears, the port is removed, when a new path is found, a new port is
created. The following constraint is applied while connecting ports: an output port can be connected
to one or more input ports. But, an input port can receive the information provided by only one output
port. Therefore, all input ports connected to a given output port can read (and read only) the signal
resulting from the current processing node.

This constraint thus implies a direction in the processing of the nodes. The Binaural Spatialization
Algorithm (BSA) presented in Figure 3.3 shows an example of arrangement of interconnected nodes,
the nodes are processed from left to right.

Audio graph

An audio graph is a computational structure that contains interconnected nodes. This structure manages
the connection between nodes, and thus the way the nodes are executed. But, in order to have a totally
modular structure, an audio graph is also an audio node. This trick of conception is called a composite
object in oriented object programing [Gamma et al., 1995]. Figure 5.2 shows the Unified Modeling
Language (UML) representation of the structure of node and graph. It shows that a graph is both a
child (in the sense of object oriented inheritance) and a container of nodes. The aim of this arrangement
is to provide a hierarchical structure. Note that a graph may also contain other graphs, without any
restriction of levels of inclusion.

As a graph is a node, it also contains input and output ports. The nodes belonging to a graph may
connect to these ports, in order to have interactions with the nodes located outside the graph.

Audio application

An audio application is a special audio graph. It represents the main graph of a DSP system, the graph
that contains all other graphs and nodes. It is a special graph as it must also interact with the sound

125

Figure 5.3: The macroscopic view of the audio application.

card.7 The audio application is for instance the graph that starts/stops the audio stream, that receives
input signals provided by microphones, and that sends the processed signal back to the sound card.

With this hierarchical representation of an audio graph, it is possible to present different levels of
analysis of the auralization process. Figure 5.3 presents a macroscopic view of the audio application. It
hides the whole complexity of the algorithms, and gives a quick view of the main modules implemented.

A detailed view of the Binaural Spatialization Algorithm (BSA) is presented in Section 3.2 (see
Figure 3.3). It may be seen as an audio graph (and is implemented as such). The GPU convolution
algorithm may also be seen as an audio graph. Details of implementation are presented in Section 5.2.2.

5.2.2 Parallel execution of the nodes

The general parallel structure

The parallel processing of audio nodes, as most of parallel processing, implies the use of lightweight
processes called threads. While a sequential execution is executed on only one processor, a parallel code
spreads the execution kernels on all the cores of the CPU. In the case of a graph processing, the nature
of the graph shows if it is possible to execute tasks in parallel. If two nodes share the same predecessor,
then they can be executed in parallel. This is one of the advantages of the graphical representation of
DSP operations. The parts that can be processed in parallel can be seen directly from the graphical
representation — this is more difficult when presented in the form of equations.

However, the central problem of parallel execution is the concurrent access to data when different

7Through PortAudio Application Programming Interface (API).

126

cores process the same audio buffer. The solution to this problem is to schedule the calculation so that
there are never two simultaneous processes that write to the same buffer. The graph structure presented
in the previous section solves this problem. Indeed, each node of a graph is an independent element, it
only needs to have a reading access to his predecessor, and a writing access to its current buffers.

The thread structure used to execute the parallel processing of our audio graphs is called active
objects [Foote and Yoder , 1998]. These are threads attached to objects8 that have two states: waiting
or processing. This method is interesting because it is very close to the implementation of the audio
nodes. When the other nodes are processing, the current node is set in waiting state. When all the
predecessors of the node have finished their process, it changes to the processing state.

Control of parallel execution

The first implementation of the audio graph presented in Loyet [2007] used one active object per audio
node. This method works, but, as the number of nodes in an application becomes high, a great majority
of the threads are in a waiting state. This could be memory consuming. A good design strategy for
a multi-thread application is to have a number of threads equivalent to the number of cores of the
computer where the application is executed. To solve this optimization problem, we implemented a
module that contains a number of threads (this number is defined at startup). This module contains a
list of all the nodes that are waiting for processing, i.e., the nodes whose predecessors have finished their
process. Every time the process of a node terminates, this list is updated, and the thread assigned to
the node that has just finished is re-assigned. This method is an efficient way to parallelize a complex
graph with a fixed number of threads.

GPU calculation nodes

Let us remind from Section 3.3.2 the main calculation steps for the convolution on GPU — for the
process of one audio block of size Nblock:

• the input block is transferred from the CPU to the GPU,

• the RIR is transferred from the CPU to the GPU,

• a zero padding is applied to yield signals of NF F T elements,

• the FFT of the block and the RIR are performed,

• the RIR and block signals are multiplied in the frequency domain,

• the IFFT is applied to have the resulting signal in the time domain,

• the output signal is normalized,

• the output signal is delayed of Nblock samples and summed with the previously calculated values,

• finally, the first Nblock values of the signal are transferred back to the CPU.

127

Figure 5.4: GPU convolution audio node.

128

Figure 5.4 shows the graphical representation of this transform. The steps recalled above represent
the convolution of a single block of audio signal without changes of the RIR. This part is summarized
schematically in Figure 5.4, where the dotted line represents the part of the process performed when
the impulse response is static.

In the case of dynamic updates of the RIR, the convolution is performed twice. First, the input block
is windowed (fade out) and convolved with the previous RIR. Second, the block is windowed (fade in)
and convolved with the current RIR. The rest of the process remains the same.

Figure 5.4 shows that the GPU auralization process can be seen as an audio graph composed of
audio nodes. However, modularity is often incompatible with an optimized code. Some informal tests
were conducted on the implementation of the convolution algorithm by different audio nodes, but to
improve the performances of our algorithms, the process described previously was implemented as a
single audio node.

It is important to note that the procedure presented in this paragraph implements monophonic
convolution. For stereophonic broadcast, the same process must be duplicated — using the optimization
presented in Section 3.3.2.

5.3 Multi-thread general structure
We have presented in the previous section a method to perform parallel operations of DSP. We presented
the structure of audio graph, and the choice that we made to provide a parallel calculation of audio nodes.
However, DSP only represents a part of the total auralization framework. In this section we present the
choices that were made to improve the parallelization of the algorithm.

The major problem that arises when implementing parallel algorithms is the sharing of data between
concurrent processes. Imagine two audio nodes (A and B) generating audio at the same time and writing
to the same memory place. The first node that finishes its process (node A) will write data in memory.
Just after, as the second node finishes (node B), it will overwrite the values generated by A. Imagine
now a third node (node C) that reads the values asynchronously at the same location in memory. Three
behaviors can occur; (i) if C starts to read just after A finished writing, then it will read the values from
A. (ii) If C starts to read the values just after B finished to write, then it will read the values from B.
(iii) If C starts to read while A or B are writing, then C will read incoherent values that are a mix of A
and B values. This last case is problematic in audio processing, because it produces audible artifacts. It
is also a problem for all parallel computing structures, because incoherent values will lead to undesired
behaviors.

One of the solution to prevent this concurrent access to the data is to implement mutual exclusion9

mechanisms on the shared data. Mutual exclusion is a method that locks and unlocks processes. For
instance, in the previous example of the two writers and the reader nodes; all of the three processes can
use a mutex to lock the access to the memory block where the shared data are read/written. If A and

8Object, here refers to object oriented programing.
9Mutual exclusion are often called mutex.

129

C try to access simultaneously the same block of memory, the first will acquire the mutex. The second
will wait until the first has finished (until the mutex is unlocked) to start its processing (and acquire
the mutex).

The major drawback with this method is that a critical section10 can only be executed by one thread
at a time. Thus, the behavior of the application becomes sequential, as the threads are waiting for the
critical section to be released. So, to be optimal, the mechanism of mutual exclusion should be used in
very simple operations (such as vector swapping) in order to reduce to the minimum the waiting time
of the processes. We present in the following section some memory management methods used to share
efficiently memory between processes.

5.3.1 Multiple buffering

Buffers which are blocks of memory are intensively used in audio processing. The audio buffer represents
the element that transits between each audio node. In a more general context, a buffer can be seen as a
chunk of memory used to read, write or share data. In our implementation, we deal with audio buffers,
buffers of rays, buffers of impulse responses or buffers of echograms.

Circular buffer

One type of buffer that is very often used in audio processing is the circular buffer. A circular buffer is
a part of memory where the data are written circularly, i.e., when the write pointer reaches the end of
the structure, writing continues from the beginning, thus, updating the values previously written. This
structure is for instance implemented in the delay lines presented in Sections 1.2.7 and 3.2.2. It is well
suited to the delay line, as there is a distance (the delay) between the writing and the reading pointers.
Thus, there is no risk that the reading and writing pointers overlap unless the delay is zero or the delay
is greater than the size of the circular buffer. For these reasons, two constraints were imposed on the
delay lines: delays must never be smaller than 3ms, i.e., the propagation of sound over one meter in
the air, nor greater than the maximal size of the RIR. Thus, the size of the delay line is defined at the
beginning of the application as the size of the Room Impulse Response (RIR) generated.

Double buffer

We have presented in the introduction of this section the problem of two writers and one reader accessing
the same chunk of memory. This example aims at presenting the problem of concurrent accesses.
Generally, a good conception tries to avoid as much as possible that two processes write on the same
memory zone. Instead, there are often more than one process that reads the results of one process, e.g.
the audio node that reads sound files sends its content to both the binaural spatialization and GPU
convolution modules.

One memory structure is well suited to the problem of one writer and many readers. It is called
double buffer or double buffering. It has been extensively studied in the field of computer graphics. We

10A part of the code that usually has access to shared data.

130

first present its usage in computer graphics, in order to have concrete examples of its usage. Then we
will extend it to the structure of triple buffer, and its implementation in our application.

In 2D or 3D graphics applications, double buffer is a structure where the data is prepared in a first
buffer (that has the same dimensions as the image to display on screen). Once the data are prepared,
the buffer is swapped with a second buffer. The first buffer thus contains the last prepared data, it will
be sent to the screen for visualization. The next writing process will thus be executed on the second
buffer while the first is displayed on screen.

The problem with this method is that a buffer must be locked (with a mutex) as long as it is read. In
the case of many readers accessing the same memory chunk, or reading operations having a long access
to the buffer, this solution may block the writing process unnecessarily.

As a solution, we propose a method based on triple buffers in the next section. This method is first
presented in the framework of computer graphics to keep the analogy with this paragraph, and then
extended to more general buffers.

Triple buffer

Triple buffer, as its name indicates, is analog to the method presented in the previous section with a
third buffer. With this method, there is always a buffer free for writing while one is being read by
another process. To present this structure, we reuse the example of the images produced in computer
graphics that are sent to the screen. Imagine that the process that generates the images finishes his
work while the screen is reading the other buffer. With double buffering, the writing thread has to wait
for the end of the reading thread before starting to generate a new frame. With triple buffering, the
buffer that is currently read is locked, so, it is impossible to permute it. But, the writing thread can
start to process the new data in the third buffer that is free at this time. So, with this method, none of
the threads get locked for more than a pointer swap operation (a very short operation).

In our developments, we have used this method for all the exchanges of data between threads. So, we
implemented triple buffering using a template structure11 in order to use triple buffers of rays, echograms
and impulse responses. Figure 5.5 shows the full auralization process with triple buffering.

5.3.2 Task scheduling

All the modules of the auralization framework presented in Figure 5.5 are processing in parallel. As
for audio nodes, the different modules are implemented as active objects [Foote and Yoder , 1998]. An
additional module was developed called the pilot. The aim of the pilot module is to schedule the
tasks of the other modules, and to interact with the elements outside the auralization framework. The
interactions presented as a control interface in Figure 5.5 could be a Graphical User Interface (GUI), or
another application that pilots the auralization framework.

While the source or the receiver moves in the virtual scene, pilot module collects the related infor-
mation, and transmits it to all other modules. The next section explains how the modules are updated

11Template refers to object oriented development [Stroustrup, 1997].

131

Figure 5.5: Full auralization framework with triple buffering and the pilot module.

132

during the displacement of any element in the virtual scene.

5.4 Progressive impulse response update
The computational structure we presented in the previous sections permits to update dynamically all the
algorithms when either the source or the receiver moves. However, the calculation of the full propagation
for both specular and diffuse fields can not be performed in real-time with the algorithms presented in
Chapter 2. With this implementation, we had a calculation of the order of twelve seconds to perform
the full update of the specular paths up to order fifty and the diffuse field up to order two hundred in
the scene described in Appendix B.1.3. Thus, we implemented an incremental mechanism that updates
the propagation elements incrementally during the auralization process. The principle of these updates
is that the most significant elements are always updated first in order to have a processing time above
11.6 ms.

5.4.1 The progressive update algorithm

Incremental update of the propagation algorithms

We recall from Section 2.5 that we defined an original ordering for the propagation of rays and particles
for the Deterministic Ray Tracing (DRT) and Monte Carlo Ray Tracing (MCRT) algorithms respectively.
Usually, in ray or particle based algorithms, the elements are propagated until they are absorbed or until
they fall below a certain energy threshold. Then, a new ray or particle is propagated. This is repeated
until all elements are propagated.

In our implementation, all elements are propagated from the source until they intersect a wall.
The position of the intersection point and the direction of reflection are stored, and all other rays are
propagated for their first order of reflection. Once all elements are propagated, the algorithm continues
for the second order of reflection and so on, until the rays or particles reach a given order of reflection,
or they disappear from the virtual scene. This method gives a better control on the elements that are
generated by the two propagation algorithms during runtime. At the cost of extra storage of the buffers
for intermediate results.

The progressive update algorithm

As all of the modules that compose the auralization framework process in parallel, it is impossible to
give a sequential representation of the algorithm. So, we will present the major principles that compose
the progressive rendering algorithm. The details about execution times and orders of reflections will be
presented in the next chapter.

Pre-computation When the auralization framework is started, the source and the receiver are as-
signed to a given position. An initial computation step is performed in order to build the full propagation

133

for both specular and diffuse fields at these positions. This operation could also be operated as a pre-
calculation, as the position of the source and receiver are rarely different at start time for a given scene.
The aim of this pre-calculation step is to obtain the full propagation for a given source-receiver position.
This will be used in the subsequent steps.

Moving source and/or receiver When either the source or the receiver moves, the RIR needs
to be updated. During a moving operation, only the first orders of reflections of the DRT and the
MCRT algorithms are updated depending on the available computational resources. A good strategy
to determine which orders have to be updated could be to adapt the rendering hierarchy principles
presented in Section 2.4 with our propagation algorithm such as to yield an appropriate criterion for
each algorithm of which orders can be updated. However, we did not re-implement this algorithm in the
auralization framework. Instead, we defined the orders of reflections to update arbitrarily after informal
listening tests and observations on the execution time of our algorithms. The observations on the orders
of reflection and the execution times are provided in the next chapter.

Fixed source and receiver When the source and the receiver stops moving, the propagation of
both specular and diffuse reflections algorithms is incremented to further propagation depth. As long
as the source and the receiver stay in the same position, the propagation algorithms will continue the
calculation for these positions. If the stop phase is as long as the pre-calculation phase, then, the
information rendered by the auralization framework represent full propagation data associated with
current positions. Before reaching this state, the rendering is a mix of the early reflections calculated
at current position and the late reflections calculated at previous positions. However, we have seen in
Section 2.4 that the late sound field in enclosed spaces is very coherent for late reflections. Thus, the
difference between the sound field rendered, and the real sound field is small. This justifies the proposed
approach.

Update of the other modules The modules of perceptive reduction and re-sampling are synchro-
nized with the calculation of the propagation algorithms. When the calculation of one or more reflection
orders by the propagation algorithm finishes, a new clustering and a new re-sampling are applied (asyn-
chronously in different threads).

The module in charge of the audio rendering, the audio application, is not synchronized with the
propagation algorithms. Instead, it is synchronized with the sound card clock. So, it gathers the last
prepared information from the clustering and re-sampling modules. We see here the importance of the
triple buffer structure, as it allows for instance the audio application to access to information provided
previously by the re-sampling module while it is working on the preparation of new data. Figure 5.6
depicts the interactions between the modules while the source/receiver are moving, or when the sound
card emits a clock signal.

134

Figure 5.6: Incremental algorithm for the asynchronous update of the modules according to the move-
ment of the source or listener.

135

5.5 Conclusion
At this stage, we have:

• two propagation algorithms that find all paths (specular and diffuse) between a source and a
receiver in a virtual scene;

• a costly binaural auralization algorithm for pure specular paths;

• an efficient convolution algorithm on GPU for the rendering of the diffuse field, and the least
significant specular paths;

• an algorithm that selects the most significant specular paths in real-time;

• a complete implementation in parallel on CPU and GPU;

• and an incremental method to concentrate the computational resources on the most significant
parts of the auralization.

So, we have a dynamic sound rendering framework of complex environments. The next chapter is
dedicated to the validation of the algorithms presented in the previous chapters.

136

6
Validation

The algorithms presented in Chapters 3, 4 and 5 were tested on the scenes of the third round robin
in room acoustics [Bork, 2005b]. In Section 6.1, we present the different test procedures used for the
validation of our algorithms. We have presented in Section 1.4 objective parameters used in room
acoustics to evaluate the quality of an enclosed space. In Section 6.2.1 we compare those parameters
with the other auralization software that participated in the round robin test [after Bork, 2005b]. In
Section 6.2.2, we present the execution times of the different modules, in order to validate the use of
our framework for real-time auralization. Finally, the strengths and weaknesses of our algorithms are
discussed in Section 6.3.

Contents
6.1 The test procedure . 138
6.2 Results . 139
6.3 Discussion . 143

137

Parameter OL RT
NRays — Specular 10.000 10.000

Nparticles — Diffuse 100.000 100.000
Depth Specular paths 50 21(1,2,3,15)

Depth Diffuse paths 200 140(5,10,15,20,25,30,35)
Cluster Δt 10−3 s 10−3 s

Cluster Δtinc 10−6 s 10−6 s
Cluster ΔL 21 dB 21 dB

Nb of specular paths rendered 500 50

Table 6.1: Parameters for Off-Line (OL) and Real-Time (RT) test procedures.

6.1 The test procedure

The tests were performed on the three scenes described in the round robin in room acoustics [Bork,
2005a,b]. The geometric data of the scenes are presented in Appendix B. The first phase of the round
robin consists in a very simple scene with seven walls, with absorption and diffusion coefficients equal
to 0.1 for all frequencies. The three test scenes represent the studio of the Physikalisch-Technische
Bundesanstalt (PTB) with different levels of details. The scenes of the round robin in room acoustics
are defined with polygons. Our propagation algorithms uses a fast ray intersector on CPU developed
by Segovia [2007]. This intersector takes as input a triangulated scene, and stores it in a kd-tree [Wald
and Havran, 2006]. So, the first part of the processing consists in splitting the polygons into triangles
to feed the intersector. The three triangulated phases of the round robin have respectively 16, 180 and
632 triangles.

Two series of test were performed. The first focuses on Off-Line (OL) rendering. The aim of this
phase is not to reach real time rendering, but to focus on the quality of the auralization. These tests are
performed to obtain a reference in terms of quality of our algorithms, and in particular the propagation
algorithms. The second serie of tests focuses on Real-Time (RT) rendering. The parameters of the
algorithm are set to reach an execution time below 11ms per sample block for the audio rendering, and
to have a small propagation time (below 50ms) for the first order of reflection. Table 6.1 shows the
parameters used for the two test procedures.

The parameters of the clustering module (Δt, Δtinc, ΔL) are the same for the real-time and the
off-line tests, as well as the number of rays, Nrays, and particles, Nparticles. In the off-line test serie,
the maximum depth of the specular and diffuse algorithms were set to 50 and 200 respectively. For
real-time rendering, the propagation is performed step by step. When the source or the receiver move
in the scene, one order of specular reflection and five orders of diffuse reflections are updated. When
the motion stops, after the end of the previous steps of propagation, two additional specular orders
and ten diffuse orders are calculated. The order sequence used for the tests is indicated in brackets in

138

Table 6.1. Finally, the binaural spatialization module renders 500 paths for the off-line tests, and only
50 for real-time tests. The audio blocks are always composed of 512 samples, and sampled at 44.1 kHz.

The real-time tests were performed on the phase two and three of the round robin, with closed
curtains. The off-line tests were performed on the three phases (also with close curtains). Every test
was performed for the six arrangements of microphones1 described in Appendix B.1.

6.2 Results
In this section, we present the results obtained with our method for the different test cases. In a first
section, we present the validation of the algorithms with the objective parameters of room acoustics
presented in Section 1.4.3. Then, we present the execution time of the different modules that compose
our auralization system, and present how real-time rendering is possible. The results of the tests will
be discussed in the next section.

6.2.1 Validation

The results of the simulation for the second phase of the round robin with closed curtains are presented
in this section. The results are compared with those of the other participants to the round robin. The
participants numbered one to twenty one represent the other participants [Bork, 2005b], the bold black
line represents the values measured in the real PTB studio [Bork, 2005a], AF represents our auralization
framework with off-line parameters and AF RT our auralization framework with real-time parameters.
Figure 6.1 shows the reverberation time T30 obtained by all participants for all frequencies for all the
positions of sources and receivers. Figure 6.2 depicts the four objective parameters T30, EDT , C and D

obtained by all participants for all frequencies at position S1R1. Figure 6.3 shows the average absolute
value of the difference between calculation and measurement for the four objective parameters. To be
consistent with the results presented by Bork [2005b], the results are normalized to the corresponding
subjective limen listed in Table 6.2.

The extraction of the parameters was performed with the help of a software developed at CSTB,
CritJan. This software was validated with the results of the international round robin on room acoustical
impulse response analysis software [Katz, 2004].

6.2.2 Execution time

The second part of the results is dedicated to the execution time of the different modules of the aural-
ization framework. The time of execution was calculated for both Off-Line (OL) and Real-Time (RT)
rendering for the phases two and three of the round robin in room acoustics. It was also calculated

1two sources times three receivers denoted (S1R1,S1R2,S1R3,S2R1,S2R2,S2R3).

139

(a) S1R1 (b) S1R2

(c) S1R3 (d) S2R1

(e) S2R2 (f) S2R3

Figure 6.1: T30 for all arrangements of source receivers for the second phase of the round robin (with
open curtains).

140

(a) T30 (b) EDT

(c) D (d) C

Figure 6.2: Objective parameters for position S1R1 for the second phase of the round robin (with open
curtains).

parameter subjective difference limen
T30 50 ms

EDT 50 ms
D 1 dB
C 5%

Table 6.2: Subjective difference limen used as reference for Figure 6.3 [after Bork, 2005b].

Phase 1 Phase 2 RT Phase 2 OL Phase 3 RT Phase3 OL
Specular Prop. 191 172 310 278 505
Diffuse Prop. 11 913 11 193 16 331 11 972 16 911

Re-sample 14 427 13 815 13 969 13 344 14 021
Cluster 433 216 466 154 461

Audio-App 16 610 2 138 16 521 2 138 16 529

Table 6.3: Total execution time in milliseconds of each module for the five test cases.

141

(a) T30 (b) EDT

(c) D (d) C

Figure 6.3: Relative mean error of all participants for the second phase for three octave bands, averaged
over six positions (with open curtains).

142

Phase 1 OL Phase 2 RT Phase 2 OL Phase 3 RT Phase 3 OL
Specular Prop.
(one order)

3,8 8,2 6,2 13,3 10,1

Diffuse Prop.
(one order)

59,6 79,9 81,7 85,5 84,6

Audio-App
(one block)

64,9 8,4 64,5 8,4 64,6

Table 6.4: Average execution time for one reflection order of the specular and the diffuse reflections
algorithms, and one audio block processing by the audio application module.

for the phase one with OL rendering. The parameters used for the simulation are those presented in
the previous section (cf. Table 6.1). The tests were conducted for the generation of a Room Impulse
Response (RIR) of 217 = 131072 samples. The sampling rate is fixed at 44.1 kHz, thus, the impulse
response has a duration of 2.97 seconds.

Let us remind that the tests were performed on an Intel Core 2 Quad at 2.66 GHz with 4 Gb of Ram
and two NVidia 8800 GTX GPUs2 .

Table 6.3 presents the execution times of all the modules presented in the previous chapters. These
execution times are expressed in milliseconds. They were averaged over the execution time at the six
sources/receivers positions. The test was executed once for each position, and the source and receivers
were static. In order to simplify the comparison of execution times, Table 6.4 shows the propagation
times for one order of reflection for both specular and diffuse fields. It also shows the audio processing
time for one audio block of 512 samples. It is important to note that in these results, there is nearly
one order of magnitude between the propagation time of specular reflection and diffuse reflection. This
is due to the fact that there are ten times more rays/particles thrown for diffuse field than for specular
reflections. These execution times were calculated directly from the values of Table 6.3 and divided by
either the number of reflections or the size of the impulse response (in audio blocks).

6.3 Discussion
Starting from the results presented in the previous section, we discuss the strengths and weaknesses of
our auralization framework, compared to other auralization systems presented in the bibliography. The
discussion is split in two parts with first an analysis of the room impulse responses produced by our
system, and then, the analysis of the execution times in order to reach real-time rendering.

Validation We have presented in Figure 6.1 the reverberation time, T30 for the six arrangements of
the sources and the receivers in the scene, and in Figure 6.3(a) the average value for those six positions.
Reverberation time is certainly the most important parameter in the field of room acoustics. It is

2Curent implementation only uses one GPU. The second can be used for instance to implement propagation algorithms
or the Binaural Spatialization Algorithm (BSA).

143

the first one calculated by the acoustician, and the acoustical quality of an enclosed space is at least
expressed depending on its reverberation time. We see, from the results presented in Figure 6.3(a),
that our estimation of the reverberation time is within the 0.15 ms of the measured reverberation time.
This result is equivalent to the results of the other participants of the round robin for frequencies above
or equal 1 kHz. The results found for the lower frequency band are worse than those of the other
participants except number sixteen. This problem in low frequencies will be discussed later in this
section. The other parameters studied in Figures 6.2 and 6.3 are more sensitive to small variations
in the impulse response. For the EDT , we obtained results equivalent to participants nine to twenty
one, but worse than participants one to eight. From the results expressed in Bork [2005b], we suppose
that these results are extracted from commercial softwares. For the calculation of parameters D and C,
we obtained worst results with our algorithm. We recall from Section 1.4.3 that those two parameters
are very sensitive to the fluctuations of impulse response around 50 and 80 ms respectively. In our
algorithms, there is a great influence of the clustering algorithm at the beginning of the impulse response.

Some informal tests have been conducted in order to find the drawbacks of our method and to
explain the possible causes of these errors on C and D parameters. First, the tests have been conducted
without the perceptive reduction module. The 1000 first specular contributions have been kept and the
others have been added to diffuse part of the echogram. Then, the integration period of the diffuse
field has been changed between various values (see Section 1.3.3) in order to have a more precise diffuse
response. Many other tests have also been performed on the basic propagation algorithms. They have
been tested on simple test scenes (only one source and a receiver, a source a receiver and a wall, a shoe
box room . . .). None of these tests were sufficient to obtain a correct match of the criteria with those
of the round robin.

Regarding the low frequency mismatch mentioned above, Bork [2005b] addresses this problem in the
conclusion of his paper. He states that the limits of the methods used for propagation have been reached.
According to him, the only way to improve the calculation in the low frequency region is to consider
finely the diffraction of the sound wave, the complex impedance of the materials and the interferences
of the waves. Thus using wave based methods such as BEM seems to be a good way to correct these
weaknesses. However, as of today, those methods are not yet suited to real-time auralization.

In order to validate the spatial effects in our algorithm, the other criterion of the round robin in room
acoustics [Bork, 2005a] should be studied. The three criterions Interaural Cross-Correlation (IACC),
Lateral Fraction (LF) and Lateral Fraction Cosine (LFC) give hints on the spatial validity of room
simulation algorithms. In this thesis, the efforts have first been focused on the validation of the criterion
presented earlier. The study of the spatial criterion is left for a further study.

Another aspect that emerged during the analysis of our algorithms is the variance of the results. In
order to continue the validation of our algorithms, an additional study should be performed, focusing
on the parametric evaluation of all modules. The parameters defined for the simulations in this chapter
were defined more or less arbitrarily. In room acoustics software, there are often pre-defined parameters
such as the depth of the propagation algorithm and the number of rays/particles to throw. But, the
choice of these parameters is more often guided by the experience of the acoustician who runs the

144

software. Note that this is consistent with the results presented by [Bork, 2005b] where different users
using the same software to process the scenes of the round robin obtain different results. The extended
study of our algorithms should include the parametric study of every parameter presented in Table 6.1,
their influence on the calculation mean value, variance, and execution time. We have already proposed
in Section 2.4 a method to determine the hierarchy of the diffuse and specular process. This method was
tested in the case of simple scenes with the mixed image sources/radiosity algorithms. A good way to
start this parametric study would be to implement this algorithm for Deterministic Ray Tracing (DRT)
and Monte Carlo Ray Tracing (MCRT) algorithms.

Execution time A short observation on the execution time of the modules in Table 6.3 yields to
the conclusion that it is impossible to execute the full auralization process in real-time. Real-time
processing implies a processing time inferior to the signal generated (here 2.97 seconds). With the
real-time parameters, the execution time of the diffuse reflection algorithm and the re-sampling take
respectively 11.2 and 13.8 seconds for the second phase of the round robin. However, it is possible to
execute the audio application module in real-time. According to Table 6.4, the execution time for one
audio block with RT parameters is 8.4 ms which is inferior to the block duration (11.6 ms). Table 6.4 also
shows that the execution time of the audio application is very stable for both RT and OL configurations.
It is important to have a low variance of the execution time of the real-time algorithms, as a high variance
would lead to un-calculated blocks and thus audible artifacts.

In this thesis, we present a solution to perform all the parts of the auralization in real-time, not
only the audio rendering. The solution presented in Chapter 5 is the progressive impulse response
update, it aims at splitting the computation time of the propagation algorithms. Instead of performing
the full propagation for both specular and diffuse fields, the propagation is performed step by step. A
step consists in multiple orders of reflection. Table 6.1 gives the sequences of orders used for real-time
rendering in our auralization framework. With this method, the propagation of the most significant
paths is performed while the source or the receiver moves in the virtual scene. When they are static, the
propagation is extended to further propagation steps, until all specular and diffuse paths are updated.
According to Table 6.3, when the source and the receiver are static for 278 ms, all specular paths are
updated. When they are static during twelve seconds, all the impulse response is updated to the new
position.

We have seen earlier that the propagation intersector uses a kd-tree hierarchy. Table 6.4 shows that
the computation time for the intersectors as a sub-linear complexity related to the number of triangles
in the scene. This is a good point for the application of the proposed algorithms to complex scenes.

In Table 6.4, we observe that the computation time per reflection order is nearly always longer for
real-time computation than for off-line computation. This is mainly due to the fact that in the off-line
tests, the propagation is performed in one step (all orders of reflection at once). For real time processing,
the mechanism that spreads the computation in different propagation steps involves the storage of the
propagated rays or particles at each step. Thus, it consumes more CPU time.

The main drawback of our current implementation of the algorithm is the re-sampling module. It

145

has a long execution time, and needs to be executed every time the diffuse part of the signal is modified.
As this module represents the link between the propagation and the audio application, it needs to be
executed before the auralization of diffuse field operates on the latest diffuse information. According to
Table 6.3, the re-sampling takes around fourteen seconds to create the diffuse stereo echograms used for
the convolution. Thus, the auralization of the sound at time t is performed with the diffuse reflection
calculated at time t − 14 seconds. Fortunately, the diffuse field changes slowly in enclosed spaces, and
this delay can be tolerated. However, in order to have a more accurate rendering system, this module
should be optimized. The first optimization we could imagine would be to perform a progressive update
of the diffuse impulse response. Currently, when a part of the diffuse field is modified, the re-sampling
module is executed to recreate the whole diffuse impulse response, even if only a small part of it has to
be recalculated. Further, when applying the progressive impulse response method (when the source or
the listener move), the modified part of the impulse response is always located at the beginning. Thus
the re-sampling could be performed only on this part. As of today, the major code optimizations were
performed in the module audio application, as real-time execution of this module is essential for artifact
free auralization. Future work will involve optimization of the re-sampling module.

∗ ∗ ∗

In this chapter we presented the two test procedures that were used to validate the algorithms
presented in the previous chapters. The first validation focuses on the quality of the Room Impulse
Response (RIR) rendered by our algorithm. Our auralization framework is compared to the solutions
of the other participants of the third round robin in room acoustics [Bork, 2005b]. The second test
procedure focuses on the execution time of each module, and their arrangement for real-time auralization.
Finally, the strengths and weaknesses of our algorithms were discussed, and some possible improvement
directions presented.

146

Synthesis of the research and perspectives

The contributions presented in this document concern the creation of an auralization framework for
dynamic sound rendering of complex environments. The results that were obtained thanks to improve-
ments in all the elements of the auralization process.

A great variety of propagation algorithms were developed since the middle of the 70’s. We presented
in Chapter 2 the most significant ones, with their main characteristics and finally chose two of them for
the auralization of specular and diffuse sound field. In the present work, these algorithms were modified
to satisfy the constraints of real-time rendering. We saw in Chapter 6 that the validation of these
algorithms with the objective parameters of room acoustics is not as precise as commercial softwares
based on off-line calculations. However, the comparison still shows promising results. In order to use
our algorithms in room acoustics projects, a deeper validation of the algorithms should be conducted.
Some of the directions to investigate were discussed at the end of Chapter 6.

Real-time is an important aspect in this study. Four contributions are related to this aspect:

• a binaural spatialization algorithm,

• a convolution algorithm on GPU,

• a thread structure to arrange all interconnected modules on both CPU and GPU,

• a progressive impulse response update method.

The auralization framework is designed as a set of interconnected modules. In order to produce
dynamic sound rendering in real-time, the DSP process and the global computational structure have an
efficient thread distribution were investigated and implemented. According to the results presented in
Chapter 6, real-time requirements are fully operational on the test computer. With newer generations
of computers, these limits can be pushed further. This newer generation would allow for instance the
rendering of multiple sound sources, with only slight modifications of the framework structure.

Finally, the novelty of our approach, compared to most of the real-time auralization methods is to
include a perceptive simplification between the propagation and the auralization stages. The accurate
rendering of specular paths in real-time remains a research challenge. However, we have provided
a fast algorithm to extract the most significant paths from a perceptive point of view, and thus to
concentrate the calculation on those paths. The principles of this algorithm were presented, as well
as a first estimation of the relevant parameters. However, in order to have an optimal rendering,
further investigations should be conducted to finely tune those parameters according to the virtual
scene characteristics. Indeed, subjective listening tests were conducted for only one room, and with an
older version of the auralization framework. The first step toward a better estimation of the parameters
should be to perform new subjective tests with the new auralization framework on scenes with various
material properties. It is obvious that the influence of specular paths will be lesser in more diffusive
rooms.

Some restrictions were fixed at the beginning of the study to concentrate on real-time rendering. One
of them is the limitation of the propagation to specular and diffuse paths. This important constraint

147

restricts the validity of our algorithms to scenes where the diffraction has very little influence. Thus,
it is impossible to have an accurate rendering in e.g. coupled volumes, or scenes like open spaces. In
coupled volumes, the diffraction by doors is important. In specular models, the interaction between a
source and a receiver is binary (and analogous to light propagation): if the source and the receiver see
each-others, the path exists, otherwise, it is discarded. In acoustics, an occluded path still exists, but
it gets attenuated. This attenuation is explained in the geometrical theory of diffraction [Keller , 1961].
This observation is true for all cases where the source and receiver are partially occulted. This is the
reason for which our algorithm is not suited in its actual version to outdoor propagation, where most
of the significant paths encounter diffracting edges. However, the implementation of diffraction in our
framework only impacts the propagation phase. The other modules can be reused.

To conclude, we focused this study on high quality rendering dedicated to the perceptive and inter-
active evaluation in the field of room acoustics. It could be interesting to work on algorithms with a
lower degree of fidelity to meet the constraints of audio rendering in other fields such as audio-visual
production or video games.

148

A
Mathematical tools

Here are some of the mathematical tools that are useful for the comprehension of the document.

A.1 Solid angle [after Holtzchuch, 2009]

The solid angle is the extension to 3D coordinates of the standard angle in 2D coordinates. It is measured
in steradian. For an element of area A on a sphere of radius r, the solid angle is:

Ω =
A

r2 (A.1)

If we want to compute the solid angle of an object, as seen from a point, we integrate the differential
solid angle, Ω, over all surface elements of the object, S (see Figure A.1):

Ω =
∫

S

dA⊥

r2 (A.2)

A⊥, is the projection of A, and S is the surface of the object.

Figure A.1: The solid angle, Ω, on a sphere of radius r, is the ratio of the surface, A to r2, just like the
angle, θ, on a circle of radius, r, is the length of the arc a divided by r.

149

A.2 Spherical coordinates [after Pharr and Humphreys, 2004]

Spherical coordinates and Cartesian coordinates are the two 3D representation systems that are widely
used in this document. The conversion from Cartesian (x, y, z) to polar coordinates (d, θ, φ) is1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d =
√

x2 + y2 + z2

θ = cos−1 (z
d

)
φ = tan−1 (y

x

) (A.3)

the inverse conversion is: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = d sin θ cos φ

y = d sin θ cos φ

z = d cos θ

(A.4)

A.3 Dirac distribution [after Holtzchuch, 2009]

The Dirac distribution, δ, also called Dirac delta function, has the following properties:∫
I

f(x)δ(x)dx = 0 if 0 /∈ I∫
I

f(x)δ(x)dx = f(0) if 0 ∈ I (A.5)

The Dirac delta function is a distribution, it can be seen as the derivative of the Heaviside function.
The Dirac distribution is also often used centered on a given point x0:∫

I

f(x)δx0(x)dx = 0 if 0 /∈ I∫
I

f(x)δx0(x)dx = f(x0) if 0 ∈ I (A.6)

In this document, the Dirac distribution is used both in the fields of Digital Signal Processing (DSP)
(see e.g. Section 1.2.7) and propagation (see e.g. Section 2.1.3).

1Note that spherical coordinates are often written (r, θ, φ). In this document, r, represents the radius of a sphere, so,
we used, d, as the distance.

150

A.4 Expected value, variance, standard deviation [after Pharr and
Humphreys, 2004]

The expected value, Ep[f(x)], of a function, f , is defined as the average value of the function over some
distribution of value, p(x), over its domain. Expected value over a domain, D, is defined as:

Ep[f(x)] =
∫

D

f(x)p(x)dx (A.7)

When the distribution used is a uniform distribution, the subscript, p, from, Ep, is dropped, thus, the
expected value is generally denoted E.

The variance, V , of a function is the expected deviation of the function from its expected value.
Variance is a fundamental concept for quantifying the error in the value estimated by Monte Carlo
algorithms (see Section A.7). The variance is defined as:

V [f(x)] = E
[
(f(x) − E[f(x)])2] (A.8)

Another equivalent formulation that is commonly used to compute the variance is:

V [f(x)] = E[f(x)2] − E[f(x)]2 (A.9)

Thus, the variance is the expected value of the square minus the square of the expected value. The
standard deviation, ρ, is defined as the square root of the variance:

ρ(f(x)) =
√

V [f(x)] (A.10)

A.5 Interpolation [after Niemitalo, 2001]

In this section we present different interpolators after Niemitalo [2001]. The original article is focused
on re-sampling of audio signals, but the remarks about the interpolators formulated in this article can
be applied to every type of 1D signals.

A.5.1 Drop-sample interpolator

The drop sample, also called 0th-order, 0th-order B-spline or nearest neighbor interpolator is the easiest
way to to perform the interpolation of a 1D signal. The principle is to take the nearest value of input
signal and keep it constant in the output signal.

The impulse response of the drop sample interpolator is:

151

Figure A.2: Drop-sample interpolation impulse response [after Niemitalo, 2001].

A.5.2 Linear interpolator

Linear interpolation, also called 1st-order interpolation, is defined as the autocorrelation of the drop-
sample interpolator. This is one of the most used interpolators as it suppresses the discontinuities of the
drop-sample interpolator. The drawback of this interpolator is that its first derivative is not continuous.
Thus leading to discontinuities in the first derivative of the signal.

The impulse response of the linear interpolator is:

Figure A.3: Linear interpolation impulse response [after Niemitalo, 2001].

A.5.3 Hermite interpolator

Hermite interpolator, also known as Catmull-Rom spline interpolator is one of the most used interpola-
tors for audio signals. His first derivative is continuous. The impulse response of Hermite interpolator
is:

Figure A.4: Hermite impulse response [after Niemitalo, 2001].

152

∗ ∗ ∗

The reader may refer to Niemitalo [2001] for a complete review on more than thirteen interpolators,
and the design of optimal interpolators.

Figure A.5 shows a signal interpolated with the three methods presented in this section.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
3 Interpolation methods

Under sampled signal

Drop sample interp.

Linear interp.

Hermite interp.

Figure A.5: Comparison of three interpolation methods (Drop-sample, linear and Hermite).

A.6 Numerical integration
Numerical integration represents a broad family of algorithms for calculating the numerical value of an
integral. Numerical integration is often called numerical quadrature for one dimensional signals. The
problem set down is to find an algorithm to compute an approximated solution to a defined integral∫ b

a
f(x)dx. Usually, numerical integration methods are used when there is no analytical solution to the

integral.
Usually, numerical integration is performed in three steps:

• Decomposition of the domain into contiguous sub-domains

• Approximation of the function for each sub-domain

• Summation of the numerical results

A.6.1 Rectangle method

The rectangle method is the easiest way to integrate numerically a function. Each sub-domain is
integrated by a constant function (a zero order polynomial). The estimation of the integral can be

153

(a) Rectangle (b) Trapezoid (c) Simpson

Figure A.6: Three integration methods.

performed either on a, b or any point between a and b. Usually, we use the point located at (a + b)/2.
Thus this method is called middle point method.

The value of the integral is: ∫ b

a

f(x)dx ≈ (b − a)f
(

a + b

2

)
(A.11)

A.6.2 Trapezoidal method

Trapezoidal method is a first order method that evaluates the integral on a sub domain with 2 points:

∫ b

a

f(x)dx ≈ (b − a)
f(a) + f(b)

2
(A.12)

A.6.3 Simpson method

Simpson method is obtained by interpolating f with a second order polynomial. Note that this gen-
eral method works with all interpolators (including those presented in the previous section). Simpson
formulation is: ∫ b

a

f(x)dx ≈ b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
(A.13)

Figure A.6 shows three representations of the methods presented in this section.2

A.7 Monte Carlo integration [after Pharr and Humphreys, 2004]
Monte Carlo (MC) is another integration method. Suppose that we want to evaluate a one-dimensional
integral

∫ b

a
f(x)dx. Given a supply of uniform random variables Xi ∈ [a, b], the MC estimator is defined

as:

FN =
b − a

N

N∑
i=1

f(Xi) (A.14)

2After http://fr.wikipedia.org/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale.

154

The expected value of the estimator is equal to the integral we are computing:

E[FN] =
∫ b

a

f(x)dx (A.15)

The main drawback of MC is its slow convergence rate for low dimensional functions:
√

N . The
great benefit of MC estimator is its ease of implementation and the fact that the convergence rate is
independent of the dimension of the integral.

However, some methods such as importance sampling, stratified sampling, or Russian roulette can
be used to speedup the convergence of the algorithm. More information on MC can be found in e.g.
Millet or Pharr and Humphreys [2004].

A.7.1 Russian Roulette [after Pharr and Humphreys, 2004]

Russian Roulette aims at improving the efficiency of MC algorithms at the cost of an increase of the
variance in the result. Russian roulette addresses the problem of samples that are expensive to evaluate
but makes a small contribution to the final result.

The Russian roulette is based on a termination probability q. This value can be arbitrarily chosen.
For instance in the case of a ray reflecting on a surface, it can be chosen as the probability that the
ray gets absorbed by the surface. With probability, q, the integrand is not evaluated for the sample.
The sample is replaced by some value, c 3. With probability, 1 − q, the integrand is still evaluated, but
weighted by (1 − q)−1, that accounts for the samples that were skipped. The general formulation of the
Russian roulette estimator is thus:

F ′ =

⎧⎨
⎩

F −qc
1−q ξ > q

c otherwise
(A.16)

with, ξ, a uniform random variable in [0..1]. Note that the expected value of the resulting operator is
the same as the expected value of the original estimator:

E[F ′] = (1 − q)
E[F] − qc

1 − q
+ qc = E[F] (A.17)

The choice of a good Russian roulette is essential for a fast convergence of the simulation. For
instance, a Russian roulette that discards too many important samples will increase drastically the
variance of the simulation. Mathematically, the result will be correct, but the convergence will be very
long.

3c = 0 is often used.

155

B
Test scenes

B.1 Round Robin 3 on Room acoustics

Most of the tests conducted on the auralization framework were performed on the scenes described in
the third round robin on room acoustics [Bork, 2005a,b]. The scene used for the round robin was a
studio of the Physikalisch-Technische Bundesanstalt (PTB). The first part of the report [Bork, 2005a]
presents the measurement results for the room acoustical parameters according to ISO3382-1 [2009].
The second part [Bork, 2005b] compares the results of numerical simulations submitted by a number
of users and developers. In this document, we present the three phases studied in the article. The
first phase is a simple model composed of seven walls representing approximately the geometry of the
PTB studio. It was used to test the reliability of the software tested. Phases two and three present
the scene of the studio with different levels of details. In both scenes, the tests were performed both
with open and close curtains. The description of the scenes in different formats can be found at http:
//www.ptb.de/en/org/1/16/163/roundrobin/roundrob3_1.htm. Figure B.1 shows a photography of
the PTB studio with wooden diffusers for a wall and the ceiling.

B.1.1 Phase 1

For this phase, a simple model was created with equal absorption and coefficients of all frequency bands
(α = 0.1 and s = 0.1). The shape corresponds to the shell structure of the studio. Figure B.2 presents
the geometry of the scene, as well as the position of the sources and receivers. Table B.1 presents the
position of the sources and receivers — These positions are identical for the three phases of the round
robin.

157

Figure B.1: Musical studio of the PTB with wooden diffusers.

B.1.2 Phase 2

This is a more detailed model where the fine structure of the diffusing elements of the ceiling and
the wooden wall is neglected and represented as two places with frequency-dependent absorption and
scattering coefficient. The geometry is defined both with open and close curtains. Figure B.3 represents
a view from our auralization software (auralization framework + GUI) of the studio for the second phase
with open curtains. Tables B.2 and B.3 present respectively the absorption and scattering coefficients
of the materials of the scene.

Id x y z

S1 1.5 3.5 1.5
S2 -1.5 5.5 1.5
R1 -2.0 3.0 1.2
R2 2.0 6.0 1.2
R3 0.0 7.5 1.2

Table B.1: Position of the sources and receivers in Cartesian coordinates.

158

Material 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz

parquet 0.04 0.04 0.07 0.06 0.06 0.07
wood 0.20 0.05 0.03 0.01 0.01 0.01

curtainc 0.15 0.30 0.35 0.40 0.50 0.55
curtaino 0.30 0.45 0.60 0.70 0.70 0.70
wilhelmi 0.42 0.28 0.49 0.78 0.58 0.62

studiowall 0.02 0.02 0.02 0.02 0.02 0.02
windowglass 0.10 0.04 0.03 0.02 0.02 0.02

woodabsorbers 0.40 0.33 0.21 0.16 0.15 0.16
ceiling 0.30 0.20 0.06 0.02 0.02 0.02

Table B.2: Absorption coefficients, α, for the materials of the second and third phase of the round robin.

Material 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz

parquet 0.20 0.20 0.20 0.20 0.20 0.20
wood 0.20 0.20 0.20 0.20 0.20 0.20

curtainc 0.21 0.26 0.32 0.39 0.47 0.57
curtaino 0.22 0.31 0.39 0.48 0.59 0.73
wilhelmi 0.20 0.20 0.25 0.30 0.35 0.40

studiowall 0.20 0.20 0.20 0.20 0.20 0.20
windowglass 0.10 0.10 0.10 0.10 0.10 0.10

woodabsorbers 0.50 0.90 0.95 0.95 0.95 0.95
ceiling 0.13 0.56 0.95 0.95 0.95 0.95

Table B.3: Scattering coefficients, s, for the materials of the second and third phase (except woodab-
sorbers and ceiling) of the round robin.

159

Figure B.2: The scene of the first phase of the third round robin on room acoustics with the position of
the sources and receivers [after Bork, 2005b].

Material 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz

woodabsorbers 0.20 0.20 0.20 0.20 0.20 0.20
ceiling 0.20 0.20 0.20 0.20 0.20 0.20

Table B.4: Scattering coefficients, s, for the materials of the third phase of the round robin.

B.1.3 Phase 3

This is the same model as the previous section with geometrical details added for the diffusing areas.
Thus, the scattering coefficients are changed for the two materials as presented in Table B.4. Figure B.4
shows the detailed geometry of the diffusing wall and the ceiling. Figure B.5 represents a view from our
auralization software of the for the 3rd phase with close curtains.

160

Figure B.3: The scene of the second phase of the third round robin on room acoustics with open curtains.

(a) Wall (b) Ceiling

Figure B.4: Details of the structure of the diffusing wall and ceiling of the PTB studio [after Bork,
2005a,b].

161

Figure B.5: The scene of the third phase of the third round robin on room acoustics with close curtains.

162

Bibliography

Allen, J. (1977), Short term spectral analysis, synthesis, and modification by discrete fourier transform,
IEEE Transactions on Acoustics, Speech and Signal Processing, 25 (3), 235 – 238. 91

Allen, J., and L. Rabiner (1977), A unified approach to short-time fourier analysis and synthesis, in
IEEE Proceedings, vol. 65 (11), pp. 1558 – 1564. 91

Allen, J. B., and D. A. Berkley (1976), Image method for efficient simulating small-room acoustics,
JASA, 65 (4), 943–950. 45

Allred, J. C., and A. Newhouse (1958a), Applications of the monte carlo methods to architectural
acoustics, JASA, 30 (1), 1–3. 34, 48

Allred, J. C., and A. Newhouse (1958b), Applications of the monte carlo methods to architectural
acoustics ii, JASA, 30 (10), 903–904. 34, 48

Bang, and Olufsen (1992), Music for archimedes. 113

Bech, S. (1998), Spatial aspects of reproduced sound in small rooms, JASA, 103 (1), 434–445. 100

Begault, D. R., B. U. McClain, and M. R. Anderson (2001), Early reflection thresholds for virtual sound
sources, in Procedings of the International Workshop on spatial Media, Aizu-Wakamatsu, Japan. 100,
109, 110, 114

Bekaert, P. (1999), Hierarchical and stochastic algorithms for radiosity, Ph.D. thesis, Catholieke Uni-
versiteit Leuven. 61

Beranek, L. (2003), Concert Halls and Opera Houses: Music, Acoustics, and Architecture, Springer-
Verlag. 31

Bertram, M., E. Deines, J. Mohring, J. Jerorovs, and H. Hagen (2005), Phonon tracing for auralization
and visualization of sound, in Procedings of 16th IEEE Visualisation, 2005, pp. 20–27. 35, 47

Blauert, J. (1969), Sound localization in the median plane, Acta Acustica, 22, 205 – 213. 102, 103

Blauert, J. (1999), Spatial Hearing, The Psychophysics of Human Sound Localisation, MIT Press. viii,
xi, 25, 27, 87, 100, 102, 104, 105, 109

Borish, J. (1984), Extension of the image model to arbitrary polyhedra, JASA, 75 (6), 1827–1836. 46,
47

Bork, I. (2005a), Report on the 3rd round robin on room acoustical computer simulation - part i :
Measurements, Acta Acustica, 91, 740–752. ix, 26, 31, 40, 111, 138, 139, 144, 157, 161

Bork, I. (2005b), Report on the 3rd round robin on room acoustical computer simulation - part ii :
Calculation, Acta Acustica, 91, 753–763. ix, xi, 4, 111, 137, 138, 139, 141, 144, 145, 146, 157, 160, 161

Bresenham, J. E. (1965), Algorithm for computer control of a digital plotter, IBM Systems Journal,
4 (1), 25–30. 9

Cadoz, C., A. Luciani, and J. L. Florens (1993), CORDIS-ANIMA. a modeling and simulation system
for sound and image synthesis. the general formalism, Computer Music J., 17 (1), 19–29. 6

Calamia, P. T. (2009), Advances in edge-diffraction modeling for virtual-acoustic simulations, Ph.D.
thesis, Princeton University, june. 36

163

Cox, T., B.-I. L. Dalenback, P. D’Antonio, J. J. Embrechts, J. Y. Jeon, E. Mommertz, and M. Vorländer
(2006), A tutorial on scattering and diffusion coefficients for room acoustic surfaces, Acta Acustica,
92, 1–15. vii, 39

Crochiere, R. (1980), A weighted overlap-add method of short-time fourier analysis/synthesis, IEEE
Transactions on Acoustics, Speech and Signal Processing, 28 (1), 99 – 102. 93

Dalenbäck, B.-I. L. (1996), Room acoustic prediction based on a unified treatment of diffuse and specular
reflection, Applied Acoustics, 100 (2), 899–909. 47, 55

Dalenbäck, B.-I. L., M. Kleiner, and P. Svensson (1994), A macroscopic view of diffuse reflection, JAES,
42 (10), 793–805. 55

Daniel, J. (2001), Représentation de champs acoustiques, application à la transmission et à la représen-
tation de scènes sonores complexes dans un contexte multimédia, Ph.D. thesis, Université Paris 6.
29

Deille, O., J. Maillard, N. Noé, K. Bouatouch, and J. Martin (2006a), Real time acoustic rendering
of complex environments including diffraction and curved surfaces, in Procedings of 120th Audio
Enginneering Society Convetion Paper (AES), Paris, France. vii, 3, 4, 21, 27, 75, 76, 77, 78, 79, 81,
82, 120, 121

Deille, O., J. Maillard, N. Noé, K. Bouatouch, and J. Martin (2006b), Interactive real-time auralization
system of complexly-shaped volumes, in Procedings of Euronoise 2006, Tampere, Finland. 75, 77

Deines, E., F. Michel, M. Bertram, H. Hagen, and G. M. Nielson (2006), Visualizing the phonon map,
Proceedings of Eurographics/ IEEE-VGTC Symposium on Visualization (2006), pp. 291–298. 36

Dutre, P., K. Bala, and P. Bekaert (2002), Advanced Global Illumination, A. K. Peters, Ltd., Natick,
MA, USA. 12

Embrechts, J.-J. (2000), Broad spectrum diffusion model for room acoustics ray-tracing algorithms,
J.A.S.A, 107 (4), 2068–2080. 53, 71

Emerit, M. (1995), Simulation binaurale de l’acoustique de salles de concert, Ph.D. thesis, Institut
National Polytechnique de Grenoble. 25, 27

Emerit, M., E. Dudouet, and J. Martin (1995), Head related transfer functions and high-order statistics,
in Procedings of 15th International Congress On Acoustics, Trondheim, 1995, pp. 437–440. 27, 77,
79, 82, 111

Foote, B., and J. Yoder (1998), Metadata and active object-models, in in OOPSLA Metadata workshop,
Vancouver, Canada. 127, 131

Funkhouser, T., N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, and A. Ngan
(2004), A beam tracing method for interactive architectural acoustics, JASA, 115 (2), 739–756. 1, 47,
120, 121

Galletti, O. (2010), Création d’un ordonnanceur pour le rendu sonore dynamique d’environnements
complexes, Tech. rep., CSTB. 36

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995), Design Patterns: Elements of Reusable
Object-Oriented Software, Addison and Wesley. 125

164

García, G. (2002), Optimal filter partition for efficient convolution with short input/output delay, in
Procedings of 113th Audio Engineering Society Convention Paper (AES), Los Angeles, California,
USA. 94

Gardner, M. B. (1969), Distance estimation of 0˚or apparent 0˚oriented speech signals in anechoic
space, JASA. 101

Gardner, W. G. (1995), Efficient convolution without input-output delay, J. Audio Eng. Soc, 43 (3),
127–136. 94

Govindaraju, N. K., B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli (2008), High performance
discrete fourier transforms on graphics processors, in SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pp. 1–12, IEEE Press, Piscataway, NJ, USA, doi:http://doi.acm.org/
10.1145/1413370.1413373. 91

Guenther, R. B., and J. W. Lee (1996), Partial differential Equations of Mathematical Physics and
Integral Equations, Dover Publications Inc. 15

Guicquero Le Beyec, W. (2010), Optimization of dynamic sound rendering algorithms for reverberated
environment, Tech. rep., CSTB. 94

Hacıhabiboğlu, H., and F. Murtagh (2006), An observational study of the precedence effect, Acta Acus-
tica, 92 (3), 440–456. viii, 105, 109

Hacıhabiboğlu, H., and F. Murtagh (2008), Perceptual simplification for model-based binaural room
auralisation, Applied Acoustics, 69, 715–272. viii, 1, 3, 4, 99, 100, 106, 107, 108

Hanyu, T. (2010), A theoretical framework for quantitatively characterizing sound field diffusion based
on scattering coefficient and absorption coefficient of walls, JASA, 128 (3), 1140 – 1148. 40

Hartmann, W. M. (1983), Localisation of sound in rooms, JASA, 74 (5), 1380–1391. 103, 104

Hartmann, W. M., and B. Rakerd (1989), Localisation of sound in rooms iv : The franssen effect, JASA,
86 (4), 1366–1373. 103

Heckbert, P. S. (1990), Adaptive radiosity textures for bidirectional ray tracing, in SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pp. 145–
154, ACM, New York, NY, USA, doi:http://doi.acm.org/10.1145/97879.97895. 55

Hermant, N. (2010), Limitations and improvements for a beam tracing simulation software applied to
room acoustics, Master’s thesis, Chalmers University of Technology. 44

Holtzchuch, N. (2009), Computer graphics ii: Rendering, Master of Science in Informatics at Grenoble
– Course. 149, 150

ISO3382-1 (2009), Acoustics – measurement of room acoustic parameters – part 1: Performance spaces,
International Norm, ISO 3382-1:2009. 157

ISO9613-3 (1996), Acoustics – attenuation of sound during propagation outdoors – part 1: Calculation
of the absorption of sound by the atmosphere, International Norm, ISO 9613-3:1996. 6, 27

Jensen, H. W. (2001), Realistic Image Synthesis Using Photon Mapping, AK Peters, Ltd. 48, 55

Jot, J.-M. (1992), étude et réalisation d’un spatialisateur de sons par modèles physique et perceptifs,
Ph.D. thesis, ENST. 87

165

Jouhaneau, J. (2000), Notions élémentaires d’acoustique - Electroacoustique, Acoustique Appliqué Col-
lection. 30

Kahrs, M., and K. Brandenburg (1998), Applications of digital signal processing to audio and acoustics,
Kluwer Academic Publishers, Norwell, MA, USA. 17, 22, 34

Kajastila, R., T. Lokki, P. Lundén, L. Savioja, and S. Siltanen (2007), A distributed real-time virtual
acoustic rendering system for dynamic geometries, in Procedings of 122th Audio Enginneering Society
Convetion Paper (AES), Vienna, Ausrtia. 120

Kajiya, J. T. (1986), The rendering equation, SIGGRAPH Comput. Graph., 20, 143–150, doi:http:
//doi.acm.org/10.1145/15886.15902. 12, 13, 15, 48

Kapralos, B. (2006), The sonel mapping acoustical modeling methods, Ph.D. thesis, York University
Toronto, Ontario. 37, 47, 55

Kapralos, B., M. Jenkin, and E. Milios (2005), Acoustical modeling using a russian roulette strategy, in
Procedings of 118th Audio Engineering Society Convention Paper (AES), Barcelona, Spain. 52

Kapralos, B., M. Jenkin, and E. Milios (2006), Sonel mapping : A stochastic acoustical modeling
system, in Proecdings of ICASSP 2006 : IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 421–424. 35

Kapralos, B., M. Jenkin, and E. Milios (2007), Diffraction modeling for interactive virtual acoustical
environments, in Proceedings of the 2nd International Conference on Computer Graphics Theory and
Applications (GRAPP), Barcelona, Spain. 120

Katz, B. F. G. (2004), International round robin on room acoustical impulse response analysis software,
ARLO - Acoustics Research Letters Online, 5 (4), 158 – 164. 139

Keller, J. B. (1961), Geometrical theory of diffraction, Journal of the Optical Society of America, 2 (2),
116–130. 36, 121, 148

Kiminki, S. (2005), Sound propagation theory for linear ray acoustic modeling, Master’s thesis, Helsinki
University of Technology. 6, 12, 13, 15

Kleiner, M., B.-I. L. Dalenbäck, and P. Svensson (1993), Auralization - an overview, JAES, 41 (11),
861–875. 79

Krokstad, A., S. Strom, and S. Sorsdal (1968), Calculating the acoustical room impulse response by the
use of a ray-tracing technique, Journal of Sound and Vibrations, 8, 118. 41

Kulowski, A. (1985), Algorithmic representation of the ray tracing technique, Applied Acoustics, 18 (6),
449–469. 34, 35, 41

Kuttruff, H. (1973), Room Acoustics, Applied Science Publishers. 29, 31, 40

Kuttruff, K. H. (1993), Auralization of impulse responses modeled on the basis of ray-tracing results, J.
Audio Eng. Soc, 41 (11), 876–880. 78, 85

Lafortune, E. P., and Y. D. Willems (1993), Bi-directional path tracing, in PROCEEDINGS OF THIRD
INTERNATIONAL CONFERENCE ON COMPUTATIONAL GRAPHICS AND VISUALIZATION
TECHNIQUES (COMPUGRAPHICS ’93, pp. 145–153. 48

166

Lauterbach, C., A. Chandak, and D. Manocha (2007), Interactive sound rendering in complex and
dynamic scenes using frustum tracing, IEEE Transactions on Visualization and Computer Graphics,
13, 1672–1679, doi:http://dx.doi.org/10.1109/TVCG.2007.70567. 120

Lentz, T., D. Schröder, M. Vorländer, and I. Assenmacher (2007), Virtual reality system with integrated
sound field simulation and reproduction, EURASIP : Journal on Advances in Signal Processing. vii,
42, 43, 120

Lesoinne, S. (2006), Techniques d’accélération du tir de rayons pour la simulation acoustique, Master’s
thesis, Université de Liège, Faculté de Sciences Appliquées. 43

Lesoinne, S., and J.-J. Embrechts (2008), Size-adaptative spherical receptor acceleration method for
acoustical ray tracing, in Acoustics’08. 43, 44

Lesoinne, S., N. Werner, and J. Embrechts (2006), 3d real-time auralization with separate rendering of
direct sound, reflections and directional late reverberation, in Proceedings of the 12th International
Conference on Auditory Display, London, UK. 120

Litovsky, R. Y., S. H. Colburn, W. A. Yost, and S. J. Guzman (1999), The precedence effect, JASA,
106 (4), 1633–1654, doi:http://dx.doi.org/10.1121/1.427914. viii, 104, 105, 109

Loyet, R. (2007), Optimisation du rendu sonore d’environnements réverbérés, Master’s thesis, INP
Grenoble. 124, 127

Loyet, R., J. Maillard, J.-C. Iehl, and B. Péroche (2009), Perceptual clustering for ray based auralization,
in Procedings of Euronoise 2009, Edinburgh, Scotland. 111

Maillard, J. (2009), Prediction and auralization of construction site noise, in Procedings of Euronoise
2009, Edinburgh, Scotland. 84

Mercier, D., G. Kisselhoff, J.-L. Ohl, and P. Durovic (2006), Le livre des techniques du son : Tome 3.
L’exploitation, Dunod. 10

Millet, A. (), Méthodes de monte-carlo, Master 2ème année : Spécialité Modélisation Aléatoire – Course.
155

Morfey, C. (2000), The Dictionary of Acoustics, Academic Press. 7

Müller, S., and P. Massarani (2001), Transfer-function measurement with sweeps, JAES, pp. 443–471.
19, 29

Munshi, A. (2009), The opencl specification, Tech. rep., Khronos Group. 89, 120

Nicol, R., J. Daniel, M. Emerit, G. Pallone, D. Virette, N. Chetry, P. Guillon, and S. Bertet (2008), Le
son 3d dans toutes ses dimensions, Acoustique et Technique, 52, 43–50. 25

Niemitalo, O. (2001), Polynomial interpolators for high-quality resampling of oversampled audio, un-
published. viii, 151, 152, 153

Noisternig, M., B. F. Katz, S. Siltanen, and L. Savioja (2008), Framework for real-time auralization in
architectural acoustics, Acta Acustica united with Acustica, 94, 1000–1015(16), doi:doi:10.3813/AAA.
918116. 120

NVidia (2009), Nvidia opencl best practices guide, Tech. rep., NVidia. 93

Oppenheim, A. V., and R. W. Schafer (1975), Digital signal processing, Prentice Hall. 21, 79

167

Peter, S. U., F. I. Roger, and V. John (1999), An analytic secondary source model of edge diffraction
impulse responses, JASA, 106 (5), 2331–2344. 36

Pharr, M., and G. Humphreys (2004), Physically Based Rendering: From Theory to Implementation,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. vi, 37, 52, 150, 151, 154, 155

Preibisch-Effenberger, R. (1966), Die schallokalisationsfähigkeit des menschen und ihre audiometrische
verwendung zut klinischen diagnostik [the human faculty of sound localization and its audiometric
application to clinical diagnostics], Ph.D. thesis, Dresden Technische Universität. 102

Pulkki, V. (1997), Virtual sound source positionong using vector base amplitude panning, JAES, 45 (6),
456–466. 28

Pulkki, V., M. Karjalainen, and J. Huopaniemi (1999), Analyzing virtual sound source attributes using
a binaural auditory model, JAES, 47 (4), 203–217. 28

Rakerd, B., and W. M. Hartmann (1985), Localisation of sound in rooms ii : The effects of a single
reflecting surface, JASA, 78 (2), 524–533. 103, 104

Rakerd, B., and W. M. Hartmann (1986), Localisation of sound in rooms iii : Onset and duration effects,
JASA, 80 (6), 1695–1706. 103, 104

Röber, N., U. Kaminski, and M. Masuch (2007), Ray acoustics using computer graphics technology, in
Procedings of 10th International Conference on Digital Audio Effects (DAFx), Bordeau, France. 42,
43, 120

Savioja, L., H. Jyri, Lokki, and Väänänen (1999), Creating interactive virtual acoustic environments,
JAES, 47 (9), 675–705. 79, 83

Schwark, M., U. Reiter, and A. Dantele (2004), Audiovisual virtual environments: Enabling realtime
rendering of early reflections by scene graph simplification, in Audio Engineering Society Convention
116. 120

Segovia, B. (2007), Interactive light transport with virtual point lights, Ph.D. thesis, Université Claude
Bernard - Lyon I. 138

Sibbald, A. (2009), Transaural acoustic crosstalk cancellation, Tech. rep., Sensaura. 28

Siltanen, S., T. Lokki, S. Kiminki, and L. Savioja (2007), The room acoustic rendering equation, JASA,
122 (3), 1624–1635. 6, 12, 13, 14, 16, 47, 122

Siltanen, S., T. Lokki, L. Savioja, and C. L. Christensen (2008), Geometry reduction in room acoustics
modeling, Acta Acustica united with Acustica, 94, 410–418(9), doi:doi:10.3813/AAA.918049. 9

Siltanen, S., T. Lokki, and S. Lauri (2009), Frequency domain acoustic radiance transfer for real-time
auralization, Acta Acustica, 95 (1), 110–117. viii, 1, 89, 120, 122, 123

Smith, J. O. (2009), Spectral Audio Signal Processing, W3K Publishing. 22, 24, 90, 93

Smith, S. W. (1997), The scientist and Engineer’s Guide to Digital Signal Processing, California Tech-
nical Publishing. 17, 18, 19, 21, 90

Soize, C. (1993), Méthodes mathématiques en analyse du signal, Masson. 17

Soo, J.-S., and K. K. Pang (1990), Multidelay block frequency domain adaptive filter, in IEEE Trans-
action on Acoustics, Speech, and Signal Processing, vol. 38 - 2, pp. 373–376. 94

168

Stavrakis, E., N. Tsingos, and P. Calamia (2008), Topological sound propagation with reverberation
graphs, Acta Acustica, 94 (6), 921–932. 59, 83

Stephenson, U. (1990), Comparison of the mirror image source method and the sound particle simulation
method, Applied Acoustics, 29 (1), 35 – 72, doi:10.1016/0003-682X(90)90070-B. 35

Stevens, S. S., and E. B. Newman (1936), The localization of actual sources of sound, AM. J. Psychol.,
48, 297 – 306. 101, 102

Stroustrup, B. (1997), C++ Programming Language, 3rd ed., Addison-Wesley. 120, 131

Svensson, U. P. (2002), Modeling acoustic spaces for audio virtual reality, in Proc. 1st IEEE Benelux
Workshop on Model based Processing and Coding of Audio (MPCA-2002), Leuven, Belgium. 120

Tanguy, J.-P. (2007), Traitement du signal — Théorie et pratique du signal — Signaux déterministes et
aléatoires en continu et en discret, Ellipses. 17

Tisserand, E., J.-F. Pautex, and P. Schweitzer (2008), Analyse et traitement des signaux — Méthodes
et applications au son et à l’image, 2 ed., Dunod. 17

Tsingos, N. (1998), Simulation de champs sonores de haute qualité pour des applications graphiques
interactives, Ph.D. thesis, Université Joseph Fourier-Grenoble 1. 25, 26, 37, 49

Tsingos, N., T. Funkhouser, N. Addy, and I. Carlbom (2000), Geometrical theory of diffraction for
modeling acoustics in virtual environments. 37

Tsingos, N., C. Dachsbacher, S. Lefebvre, and M. Dellepiane (2007), Extending geometrical acoustics to
highly detailed architectural environments, in Procedings of ICA 2007 : 19th International Congress
on Acoustics, Madrid, Spain. 39

Tsuchiyama, R., T. Nakamura, T. Iizuka, A. Asahara, and S. Miki (2010), The OpenCL Programming
Book, Fixstars Corporation. 93

van Maercke, D., and J. Martin (1993), The prediction of echograms and impulse responses within the
epidaure software, Applied Acoustics, 38 (2-4), 93 – 114, doi:DOI:10.1016/0003-682X(93)90045-8. 47,
79

Veach, E. (1997), Robust monte carlo methods for light transport simulation, Ph.D. thesis, Department
of Computer Science, Stanford University. 55

Veach, E., and L. J. Guibas (), Metropolis light transport, in SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA. 48

Vorländer, M. (1989), Simulation of the transient and steady-state sound propagation in rooms using a
new combined ray-tracing/image-source algorithm, JASA, 86 (1), 172–178. 41, 42

Vorländer, M. (2008), Auralization — Fundamentals of Acoustics, Modelling, Simulation, Algorithms
and Acoustic Virtual Reality, Springer. 10, 12, 25, 31, 34, 35, 40, 79

Wald, I., and V. Havran (2006), In building fast kd-trees for ray tracing, and on doing that in o(nlogn),
Tech. rep., University of Utah SCI Institute (UUSCI). 138

Wallach, H., E. B. Newmaw, and M. R. Rosenzweig (1949), The precedence effect in sound localization,
Am. J. Psychol., LXII (3), 315 – 336. 104

Wong, T.-T., W.-S. Luk, and P.-A. Heng (1997), Sampling with hammersley and halton points, J.
Graph. Tools, 2, 9–24. 36

169

