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RÉSUMÉ

La description magnétohydrodynamique est utilisée pour étudier les plasmas de fusion

par confinement magnétique dans deux configurations: tokamak et reversed field pinch.

Une méthode de Fourier pseudo-spectrale et une technique de pénalisation en volume sont

employées pour résoudre les équations. La méthode de pénalisation permet d’introduire

des conditions aux limites de Dirichlet et donc de faire varier facilement la géométrie

considérée. Les simulations dans des géométries toroı̈dales de type tokamak montrent

l’apparition spontanée de vitesses. Une importante composante toroı̈dale se développe si

le système est peu dissipatif. Il est aussi montré que la brisure de symétrie dans la forme

de la section du tore fait apparaı̂tre un moment angulaire toroı̈dal. Pour le Reversed Field

Pinch on montre l’émergence de structures hélicoı̈dales. La forme de ces structures varie

en fonction des coefficients de transport ainsi que du paramètre de pincement du champ

magnétique imposé. Pour compléter l’étude on compare les résultats du tore aux calculs

dans un cylindre périodique. Les différences dans la dynamique des deux cas sont mises

en avant. Finalement les simulations sont confrontées à des expériences et un meilleur

accord est observé entre simulation et expérience pour la géométrie toroı̈dale que pour la

géométrie cylindrique.

Mots clés : magnétohydrodynamique, tokamak, reversed field pinch, méthode de

pénalisation en volume, méthode Fourier pseudo-spectrale, moment angulaire, influence

de la toroı̈dicité.

ABSTRACT

A magnetohydrodynamic description is used to study magnetic fusion plasmas in two

different configurations: tokamak and reversed field pinch. A Fourier pseudo-spectral

method with a volume penalization technique are used to solve the system of equations.

The penalization method is used to introduce Dirichlet boundary conditions and it al-

lows to easily modify the consider geometry. The simulations of a tokamak configuration

in a toroidal geometry show the spontaneous appearance of velocities. These velocities

are dominated by their toroidal component if the system is little dissipative. It is also

shown that the symmetry breaking of the cross section of the torus causes a toroidal an-

gular momentum to develop. For the Reversed Field Pinch configuration we show the

appearance of helical structures. The shape of these structures varies with the value of the

transport coefficients and with the pinch ratio parameter of the imposed magnetic field.

To complete the study, we compare the results of simulations obtained in toroidal and

in periodic cylindrical geometries. The differences in the dynamics of these two cases

are highlighted. Finally, simulations are compared to experimental data and a significant

better agreement is observed between the simulation and the experiment for the toroidal

geometry than for the cylindrical case.

Keywords: magnetohydrodynamics, tokamak, reversed field pinch, volume penali-

zation method, spectral method, toroidal momentum, quasi single helicity, toroidicity

effects.
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NOTATIONS
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Re Reynolds number
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I
INTRODUCTION

Nuclear fusion is a possible source of energy. Indeed, it is the reaction that powers the

sun. The process involves lighter elements than those used in fission reactions. Where in

the latter uranium atoms are split, in fusion mainly hydrogen and its isotopes deuterium

and tritium are combined to produce other particles like helium. In this process a large

amount of energy becomes available. For the last 60 years actively research has been

conducted to achieve controlled thermonuclear fusion on earth. Succeeding, this could

bring to the planet a source of energy with almost unlimited resources, while generating

only a very small amount of radioactive waste. During the past decades various devices

and methods have been developed. Two different ways to obtain a controlled reaction are

inertial fusion and magnetic fusion. In the former, high energy laser beams hit a target

containing the fuel. The resulting shock waves compress and heat the deuterium-tritium

mixture making the atoms fuse. In a magnetic fusion configuration to start the reactions

very high temperatures have to be reached, of the order of 150 · 106K [35], hotter than

the center of the sun. For practical reasons the pressure in a magnetic fusion reactor is

far less than during a fusion reaction in the stars, and this lack of high pressure must be

compensated by an important thermal agitation that increases the probabilities of having

collisions fusing the particles.

The main idea behind magnetic fusion is that the very high temperature ionizes the

media, forming a plasma that can be controlled, in principle, by means of a magnetic

field. This is essential, because no material on earth can support the temperatures reached

in a fusion reactor. The conducting fluid, or plasma, can therefore be isolated from the

walls by a strong magnetic field. Different magnetic configurations have been studied for

the past decades to achieve a controlled magnetic fusion reaction. Two of them, on which

we will focus here, are the tokamak and the RFP (Reversed Field Pinch). These two

devices have many points in common. The magnetic field is produced by external coils
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and is combined with the magnetic field induced by an electric current flowing through

the plasma itself. Both configurations have a toroidal shape and the imposed magnetic

field that confines the plasma is helical and surrounds the toroidally shaped chamber (see

Fig. 1.1).

Figure 1.1: Toroidal geometry surrounded by helical magnetic field lines.

The tokamak is technologically the most advanced configuration and has a high proba-

bility to achieve a controlled nuclear reaction. In this device a strong magnetic field con-

fines the plasma. The toroidal component of this field is usually larger than the poloidal

component. The reason for this is that, in this geometry it is tried to avoid magneto-

hydrodynamic instabilities that develop if the ratio of toroidal over poloidal field is lower

than unity. In contrast, for the RFP the poloidal and toroidal components of the magnetic

field are usually of the same order of magnitude. The plasma is then unstable, and several

instabilities can develop making the conducting fluid more difficult to confine.

One of the key issues to make a fusion reactor work is the ability to increase the

confinement time of the plasma. In practice this is equivalent to reducing the thermal

losses, which are mainly caused by turbulent fluctuations. These fluctuations degrade the

quality of the confinement and thereby reduce the performance of the fusion reactor. In the

tokamak configuration it was discovered three decades ago (in the ASDEX experiment)

[109] that, under certain circumstances, the turbulent activity is reduced, leading to a

better confinement. This improved regime is called high confinement mode (H mode)

in contrast with the commonly found low confinement state (L mode). In H mode the

confinement time is roughly two times bigger than in L mode. This increment might

seem small but it can be of great importance for the performance of future reactors like

ITER (the international experimental reactor being constructed in Cadarache, France).

In existing fusion reactors, large bulk velocities are observed [91, 90]. In particular

the H mode is characterized by toroidal velocities that are several times superior to the

ones measured in L-mode [94]. It is not yet well understood if these velocities are either

2



at the origin, or a consequence of the low-to-high confinement transition (L-H transition).

Different theories have been proposed to explain the spontaneous generation of toroidal

velocity, mostly based on the turbulent transport of toroidal momentum generated at the

tokamak edge (e.g., in Refs. [63, 81, 28]), but no complete understanding of the phe-

nomenon is available at present. Toroidal velocities, and the understanding of plasma

velocities in general will be one of the main subjects of the present thesis.

The RFP possesses a great advantage compared to the tokamak which is the necessity

of a lower magnetic field to confine the plasma, approximatively ten times smaller. The

toroidal field has a weak reversal in the plasma edge, which is the reason for the name

“Reversed Field Pinch”. The weak RFP magnetic field yields several advantages: the use

of normal magnets instead of superconductors, high mass density and the possibility of

reaching thermonuclear temperatures without additional heating besides the Ohmic one

[60]. The drawback of the device is the broad spectrum of magnetohydrodynamic resis-

tive instabilities that increases the turbulence and thereby lowers the energy confinement

performance. However, recently quasi-single helicity (QSH) states were observed in ex-

periments. In these states the full turbulent regime is avoided [32]. There is a decrease

of magnetic chaos and the formation of a coherent helical structure within the plasma.

Further, as for the tokamak, in the RFP important velocities have been measured [86] and

their origin also remains unclear.

In this thesis we will focus on the numerical study of these two magnetic fusion con-

figurations (tokamak and RFP) using one of the simplest models describing a plasma, the

magnetohydrodynamic (MHD) approximation. Far more sophisticated descriptions of fu-

sion plasmas are at hand nowadays, such as kinetic or gyrokinetic approximations and at

a detailed level these descriptions must be superior. However, it seems that at present,

if one is interested in global dynamics of the full fusion plasma over timescales relevant

to the bulk dynamics, MHD is the only possible description which allows to be treated

numerically. With respect to previous fusion related studies our work differs in that we

consider both RFP and tokamak dynamics in a fully toroidal domain taking into account

nonzero viscosity and resistivity without assuming any macroscopic equilibrium. Several

assumptions, such as uniform transport coefficients, isothermal, incompressible plasma

dynamics, order unity magnetic Prandtl number, are obviously oversimplifications com-

pared to reality, but they should be considered as a logical first step in understanding the

basic viscoresistive MHD behavior, in toroidal geometry, while retaining the freedom to

easily change the precise shape of the domain.

In order to allow an efficient computation of the full viscoresistive MHD equations,

we use a Fourier pseudo-spectral method. To take into account boundary conditions we

have implemented and validated a volume penalisation technique originally developed for

hydrodynamics [1]. The large advantage of this method is the flexibility on the consid-

ered geometry and the ease of implementation. This flexibility facilitates the comparison

of different geometries and the assessment of the boundary effects on the dynamics of

the considered physical systems. The strength of the combination of a Fourier pseudo-

spectral solver with the penalization method is that the numerical code uses fast Fourier

3
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transforms, that can be easy parallelized, and at the same time a large variety of relatively

complex geometries can be taken into account.

In Chap. II we present the MHD equations and detail the numerical algorithm. The

penalization method is described and several validation test-cases are exposed. Different

implementations of the penalization technique are compared and the order of convergence

of the numerical method is presented. We consider two- and three-dimensional test-cases

for hydrodynamic and magnetohydrodynamic systems†.

In Chap. III the study of the magnetohydrodynamic flows generated in toroidal geo-

metries is presented. The magnetic configuration (as measured by the safety factor) is

here close to that of the tokamak device. Two different toroidal geometries, one with a

symmetric and the other with an asymmetric cross section are compared. The diffusivity

of the system is varied and a transition in the flow topology is observed. The differences

resulting of the change in the geometry are highlighted as well as the influence of the

change of the ratio of the toroidal over the poloidal imposed magnetic field. In particular

we present a mechanism which explains the spontaneous generation of toroidal angular

momentum, which is also observed in existing tokamaks. The mechanism we observe

seems to be generic since it is present even in the coarsest description of a fusion plasma:

viscoresistive magnetohydrodynamics§.

In Chap. IV the toroidal dynamics are presented for a magnetic configuration close

to a RFP reactor. The transition from a calm axisymmetric state to a fluctuating helical

state are presented for a toroidal and for a cylindrical geometry. The differences in the

bulk velocities and other features of the plasma dynamics of these two configurations are

stressed. Finally the numerical results are compared to experimental RFP data.

Most of the more technical details are given in the appendices. The dimensionless

quantities, that should be introduced in the MHD simulations to reproduce the physical

values of a tokamak like JET, are shortly discussed in Appendix E. Also, in Appendix F

can we find a short report on preliminary simulations of a plasma dynamo experiment.

†This chapter is an adapted version of the manuscript [75], reporting on the investigation carried out in

collaboration with Matthieu Leroy and Kai Schneider in Marseille.
§Chap. III is an adaptation of a manuscript [74], which was written in collaboration with Kai Schneider

and David C. Montgomery.

4



II
NUMERICAL METHOD AND VALIDATION

1 INTRODUCTION

Magnetohydrodynamics is the discipline that studies the interaction between conducting

fluids and magnetic fields. Depending on the topology and the intensity of the magnetic

field, as well as on the values of the kinematic viscosity and the magnetic diffusivity, nu-

merous different flow behaviors can be observed. As a function of the viscosity the flows

can vary from a laminar to a highly turbulent state and the magnetic diffusivity allows to

change the dynamics from a highly diffusive transport to an almost frozen-in advection of

the magnetic field. Therefore, in the turbulent state, even in the statistically homogeneous

case, a large range of dynamically active scales can be observed. Most of the interest-

ing applications of MHD are however not statistically homogeneous due to the presence

of solid walls. Examples are the planetary dynamo mechanism, magnetically confined

fusion plasmas and industrial applications involving liquid metals [27, 103]. In order to

study these phenomena, either experiments need to be carried out, or a set of nonlinear

differential equations must be solved, combined with adequately chosen boundary con-

ditions. In most cases, these equations cannot be solved analytically, so that numerical

integration is needed in order to describe the dynamics. A wide range of MHD solvers

have been developed over the last decades and an exhaustive listing is beyond the scope of

this chapter. Nevertheless we will mention several approaches which are used to compute

MHD in wall-bounded geometry. MHD codes applied to tokamak geometry are proposed

in [58, 42] and to Reversed Field Pinch geometry in [24]. A more complete review of

MHD solvers developed to compute fusion-plasma-related flows is given in [46]. Solvers

aiming at a description of the dynamo effect are, for example, given in [38, 45, 89] and

computations investigating the magnetorotational instability in bounded domain were re-

ported by Rüdiger and Shalybkov [95], Gissinger et al. [36] and Willis and Barenghi
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[110]. An early numerical approach to study MHD in cylindrical geometry was proposed

and validated by Shan et al. [102] and more recently applied to spherical geometry by

Mininni et al. [64]. Most of these solvers are adapted to either a single geometry or a par-

ticular application. To change the geometry substantial effort must be invested to adapt

the numerical mesh or to change the basis functions used in the numerical algorithm.

We present in this chapter the implementation and validation of the volume penal-

ization method applied to magnetohydrodynamics. The strength of this approach is the

high flexibility in the geometry and the ease of implementation. The volume penalization

method is an immersed boundary method [82], in which both the fluid region and the con-

fining boundaries are part of the same computational domain. The influence of the bound-

aries is then modeled by adding a force or drag term to the dynamical equations in the

part of the domain in which the boundaries are to be present. In the volume-penalization

method, for the hydrodynamic case, the solid bodies are modeled as porous media whose

permeability tends to zero. This so called Navier–Stokes/Brinkman model, where the

penalization source term in the momentum equation corresponds to the Darcy drag, was

first proposed by Arquis and Caltagirone [3] in the context of the natural convection flow

inside a cavity with porous walls. It was then generalized to study fluid - porous wall -

solid boundary systems [2]. In addition to being physically motivated, this model is math-

ematically justified, since Angot et al. [1] rigorously proved that the method converges

to the Navier–Stokes equations combined with no-slip boundaries, when the porosity in

the part of the domain corresponding to the boundaries is taken infinitesimally small. A

first use of the method in combination with a pseudo-spectral Navier–Stokes solver was

reported in [98]. An extensive validation of the method for three dimensional fixed and

moving boundaries is reported in [52].

The strength of the combination of a pseudo-spectral Navier–Stokes solver with the

penalization method is the compromise between accuracy and ease of implementation

while retaining a great flexibility in the choice of the geometry of the boundaries. The

method has been used to study two-dimensional MHD [11, 76, 12] which allowed to

compare square, circular and periodic boundaries using the same Cartesian grid and nu-

merical method. In the present chapter we will present a detailed validation of the method

for two- and three-dimensional confined hydrodynamic and MHD flows.

The chapter is organized as follows. In section 2 – 3, we expose the physical model

and its numerical discretization. Section 4 assesses the parallel performance of our imple-

mentation. As a first validation, section 5 presents two-dimensional kinematic and mag-

netic test cases together with a comparison to analytical results. Validation of the three-

dimensional periodic MHD calculations is exposed in section 6.1. Subsequently Ohmic

decay is considered in section 6.2. Sections 6.3 and 6.4 compare our three-dimensional

results for 3D Taylor-Couette hydrodynamic and MHD flows with those available in the

literature, as further validation. Section 6.5 reports on the flow induced in a conducting

fluid by the presence of an imposed helical magnetic field.

6
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2 MHD EQUATIONS

The media we study are isothermal, incompressible and we consider constant perme-

ability µ , permittivity ε and conductivity σ of the material. The MHD equations for

this case are the Navier–Stokes equation (including the Lorentz force) and the induction

equation (that combines Ohm’s law, Faraday’s equation and Ampère’s law). Introducing

conventional normalization of the velocity by the Alfvén velocity Ca = B0/
√

ρµ , a refer-

ence magnetic field B0 and a conveniently chosen lengthscale L, the normalized equations

read,
∂u

∂ t
−ν∇2u =−∇Π+u×ω+ j×B, (2.1)

and
∂B

∂ t
−λ∇2B = ∇× [u×B] , (2.2)

where ν is the dimensionless kinematic viscosity (inverse of the Reynolds number), λ the

dimensionless magnetic diffusivity (inverse of the magnetic Reynolds number) and ρ = 1

is the density. The vorticity ω and current density j are given by

ω = ∇×u (2.3)

j = ∇×B, (2.4)

and Π = P+ 1
2
u2 is the modified pressure. The velocity field u is considered incompress-

ible and the magnetic field B divergence free,

∇ ·u= 0, (2.5)

∇ ·B = 0. (2.6)

To complete the problem one needs to specify the initial and the boundary conditions

corresponding to the physical system that we are interested in. In particular the boundary

conditions will be discussed in more detail in the rest of this chapter.

3 THE NUMERICAL CODE

The penalization method was introduced into two independently developed pseudo spec-

tral MHD solvers, the L-code from Lyon and the M-code from Marseille. The cross-check

of the results obtained by the two codes allowed a careful debugging and implementation

of the method.

3.1 PSEUDO-SPECTRAL DISCRETIZATION

A classical Fourier pseudo-spectral method is used for the spatial discretization of a cubic

periodic domain Ω of size 2π [17]. The physical size of the domain can be modified

7
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rescaling the box by multiplying by Lx, Ly and Lz. Spatial derivatives are evaluated in

Fourier space and multiplications are computed in physical space. In the following we

denote the Fourier Transform by the symbol ˆ or F { }. All fields are represented as

truncated Fourier series and here we show this representation explicitly for the velocity:

u(x, t) =
Nx/2−1

∑
kx=−Nx/2

Ny/2−1

∑
ky=−Ny/2

Nz/2−1

∑
kz=−Nz/2

û(k, t)eik·x, (2.7)

û(k, t) =
8π3

NxNyNz

Nx−1

∑
nx=0

Ny−1

∑
ny=0

Nz−1

∑
nz=0

u(xn, t)e
−ik·xn , (2.8)

with the wave vector k = (kx,ky,kz) where −Nx/2 ≤ kx ≤ Nx/2−1,−Ny/2 ≤ ky ≤ Ny/2−
1,−Nz/2 ≤ kz ≤ Nz/2− 1, xn = (nx2π/Nx,ny2π/Ny,nz2π/Nz) ∈ [0,2π]3 with nx = 0,

..., Nx − 1,ny = 0, ...,Ny − 1,nz = 0, ...,Nz − 1. The number of grid points in x, y and

z-direction, Nx, Ny and Nz, respectively, can be adapted to obtain the accuracy needed

in the different directions. To avoid aliasing errors, i.e., the production of small scales

due to nonlinear terms which are not resolved on the grid, the velocity and magnetic

fields are dealiased at each time step by truncating its Fourier coefficients using the 2/3

rule [17]. For the transformation between physical and Fourier space two different Fourier

transforms were used in the two codes, firstly the P3DFFT routine, based on the FFTW

library, secondly the JMFFT library. Both Fourier Transforms have an order of complexity

of N log2 N with N = NxNyNz.

The pressure term can be eliminated from the equations in spectral space by using

the incompressibility condition of the medium. This introduces the projector Pi j = δi j −
kik j/k2 in front of the nonlinear term. The Eqs. (2.1) and (2.2) in spectral space are then

written:

∂ ûi

∂ t
+νk2ûi = Pi j

{(
û×ω+ ĵ×B

)
j

}
, (2.9)

∂ B̂i

∂ t
+λk2B̂i =

[
ik× ̂(u×B)

]
i
, (2.10)

where k2 = |k2|.

3.2 PENALIZATION METHOD

The volume penalization method is based on the idea of modeling solid bodies as porous

media whose permeability tends to zero. The flow is considered in a domain in which

both fluid and solid domains are embedded. The difference between the fluid and solid

subdomain is the permeability. In the fluid domain the permeability is infinite and in the

solid domain the permeability tends to zero. The method allows to consider an arbitrary

8
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shape and number of obstacles. The equations are modified by adding the penalization

term:

∂u

∂ t
= u×ω−∇Π+ν∇2u+ j×B− χ

η
(u−uwall) (2.11)

∂B

∂ t
= ∇× (u×B)+λ∇2B− χ

η
(B−Bwall), (2.12)

with uwall and Bwall the imposed values of the velocity and magnetic field in the solid

domain and η is the permeability of the solid domain, i.e., the penalization parameter,

which could be different for each equation, and χ(x, t) the mask function (see Fig. 2.1):

χ(x, t) =

{
0 for x ∈ Ω f , the fluid domain

1 for x ∈ Ωs, the solid domain.
(2.13)

Note that Bwall can be freely chosen, we are not obliged to penalize all components.

For instance choosing Bwall = B‖ with B‖ the component of B parallel to the wall, only

penalizes the normal component and leaves the parallel component free. According to

Eqs. (2.11) and (2.12), the flow is governed by the Navier–Stokes and induction equa-

tions in Ω f , and by Darcy’s law in Ωs for small η . As mentioned in the introduction,

the convergence of the velocity of the penalized equation in the limit of vanishing η to

the solution given by the Navier–Stokes equations with no-slip boundary conditions was

rigorously proven by Angot et al. [1] for fixed obstacles. The estimates were then refined

by Carbou and Fabrie [22], who demonstrated that the solution of the penalized equations

converges in the L2-norm with
√

η towards the solution of the non-penalized equations

with Dirichlet boundary conditions. Similar results are anticipated for the induction equa-

tion.

  Ωs

  Ωf

Figure 2.1: The computational domain Ω contains both the fluid domain Ω f and the solid domain

Ωs.

To use a pseudo-spectral solver we need to Fourier-transform Eqs. (2.11) and (2.12)

and we obtain

∂ ûi

∂ t
+νk2ûi = Pi j

{[
û×ω+ ĵ×B−F

{
χ

η
(u−uwall)

}]

j

}
. (2.14)

9
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We stress here that the Riesz projector Pi j is also applied to the penalization term. Indeed,

this form straightforwardly appears in the Fourier-transformed equations when the pres-

sure is eliminated by solving a Laplace equation. The fact that the projector also acts on

the penalization term is important to ensure incompressibility, since the penalization term

is not necessarily divergence free at the fluid-solid boundary. This is also the case for the

magnetic field. Due to the penalization term, the magnetic field is no longer divergence

free. One way to cure this is to add an auxiliary pressure to the magnetic field

∂B

∂ t
−λ∇2B = ∇× [u×B] −∇Ξ︸ ︷︷ ︸

Auxiliary

pressure

−χ

η
(B−Bwall)

︸ ︷︷ ︸
Penalization term

. (2.15)

In the absence of boundaries in the domain, this pressure gradient would be equal to zero,

as can be directly seen by solving a Laplace equation for Ξ and using the solenoidality

constraint, Eq. (2.6). Indeed the (curl)-term ik× ̂(u×B) is necessarily divergence free.

Eliminating the pressure from Eq. (2.15), we find for the Fourier-transformed equation

for the magnetic field,

∂ B̂i

∂ t
+λk2B̂i = Pi j

{[
ik× ̂(u×B)−F

{
χ

η
(B−Bwall)

}]

j

}
, (2.16)

which guarantees the incompressibility.

The penalization method allows for a simple implementation of complex geometries,

since to change the shape of the walls, one only needs to redefine the mask function.

This is a huge advantage, because almost no effort is required to modify the shape of the

flow geometry during an investigation and arbitrarily complex shapes can be considered.

Several limitations should however be mentioned. First, the dynamical equations are

solved in both the fluid domain and the penalized domain, so that, if the penalized domain

is large, an important part of the numerical resources is used to compute the dynamically

unimportant flow inside the walls (see for example section 6.4). Second, here no mesh

refinement near the wall is used, so that, to capture small scale dynamics near boundaries,

one needs to globally increase the resolution. Third, the boundary conditions imposed by

the numerical method need to be satisfied in the computational domain. Let us explain

this latter point in more detail.

Intrinsically, the boundary conditions of the Fourier pseudo-spectral solver are pe-

riodic in the three directions. Thus in the computational domain this periodicity must

be satisfied. This imposes certain constraints on the geometries and especially on the

boundary conditions that can be considered. If in the geometry sketched in Fig. 2.1 the

solid domain corresponds to no-slip walls, i.e. uwall = 0, the periodicity condition is met

automatically. However, if the outer-walls are chosen to move in solid-body rotation anti-

clockwise, the left border of the domain will move downwards whereas the right border

will move upwards. In that case the periodicity condition is not satisfied. A solution to

this problem is to add a third, unpenalized, subdomain outside the walls which will allow

10
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Ωf

Ωf

Ωs

  Ωf

  Ωs

Figure 2.2: Leaving a part of the domain unpenalized at the edges of the computational domain

allows to use inhomogeneous Dirichlet conditions at the fluid solid interface, without violating the

periodicity condition at the edge of the domain (left). Another option is to interpolate the imposed

velocity to a zero value with a horizontal tangent at the domain frontier with an interpolating

Hermite polynomial. The velocity field in the whole computational region belongs then to the C1

class (right).

to respect the periodic boundary conditions of the computational domain. This solution

is sketched in Fig. 2.2 (left). However it has an inconvenience which we will describe

below.

Discontinuities in the velocity field, or in its gradients, are a source of Gibbs oscilla-

tions. These oscillations are an unavoidable feature in the present approach, and as long

as their amplitude is small compared to physical effects, they do not constitute a serious

problem in most cases. When discontinuities become strong, the Gibbs-oscillations also

increase in size. Considering Fig. 2.2 (left), it is clear that if the solid domain turns and

the outer fluid domain is very small, the velocity gradient becomes strong in the outer

fluid domain and the discontinuity of the velocity gradient will become large on the in-

terface between Ωs and the outer Ω f . Gibbs oscillations might get strong in this case.

One solution is the following: instead of imposing in Ωs a solid body rotation, we impose

a velocity profile which gives the correct boundary condition at the solid-fluid interface,

and which smoothly tends to zero towards the edges of the computational domain Fig. 2.2

(right). The latter solution is slightly more complicated since an interpolation needs to

be computed, using a Hermite’s interpolating polynomial for instance. Its advantage is

that the continuity of the solution and its derivatives between the boundary value and zero

value can be imposed in a smooth way, which yields an improved order of convergence of

the algorithm, as we will see in section 5 (an analytical analysis can be found in Appendix

A).

Another drawback of the penalization method is that it is not yet possible to im-

pose inhomogeneous Neumann conditions at the boundaries using a Fourier spectral

code. In Appendix B a one-dimensional penalization method for taking into account
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non-homogeneous Neumann boundary conditions is presented. The lack of a three-

dimensional implementation makes it not yet possible to impose arbitrary values of the

velocity gradient or magnetic gradient, for example, to impose the vorticity and the cur-

rent density at the walls. This would in particular be important to model the influence of

solid boundaries with arbitrary magnetic properties on the magnetic field generated in the

fluid. A recent investigation by Kadoch et al. [49] presents a technique for implementing

homogeneous Neumann conditions using the penalization method with a spectral method.

The extension to three-dimensional inhomogeneous Neumann conditions is an important

perspective for further research.

3.3 TIME-DISCRETIZATION

Two different implementations of the penalization method in the time-advancing scheme

will be compared. The first is explicit and constrains the penalization parameter η to be

bigger than the time step ∆t to avoid numerical instabilities. The second is a semi-implicit

implementation that allows the penalization parameter to be independent of the time step.

Second and third order time schemes are used. In all approaches an exact integration

of the viscous and magnetic diffusion term is used. In the following two sections these

different methods are detailed.

EXPLICIT IMPLEMENTATION OF THE PENALIZATION TERM

In this section we detail the time integration of the equations using an explicit treatment

of the nonlinear and penalization terms. It must be noted that along with its simplicity

and robustness this approach has a drawback: the explicit treatment of the penalization

term imposes a stability condition, in addition to the usual CFL condition. An analytical

analysis of the magnetic part of the method has yet to be done to check if it adds another

stability condition. Up to now no problem occurred if the same stability criterions were

used for the velocity and the magnetic field.

The basic time-stepping schemes that are implemented are an adaptive second and

third order Adams-Bashforth method (denoted by AB2 and AB3 respectively). The use

of these schemes fits well into our general concept of compromise between the ease of

implementation and computational efficiency. Exact integration of the diffusion term is

feasible because the Laplace operator is diagonal in Fourier space and hence no linear

system has to be solved. It improves stability of the scheme, avoiding the stability con-

dition ∆t < ∆x2/ν . The remaining terms are discretized explicitly to avoid the solution

of nonlinear equations, however it implies a CFL condition on the time step size ∆t and

also a condition due to the explicit discretization of the penalization term , i.e., ∆t < η for

AB2 and ∆t < 6
11

η for AB3, as linear stability analysis shows [52].

For illustration, the equations will be given for the case of the velocity only. The

discretization of the magnetic field is handled analogously, the only difference is the exact

12
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form of the nonlinear and penalization terms. First the Navier–Stokes equation is rewritten

in the form of a nonlinear evolution equation and transformed into Fourier space,

∂tu−ν∇2u = N(u) (2.17)

∂t û+νk2û = N̂(û). (2.18)

For the initial condition û(k, tn), the above equation has the following solution

û(k, tn+1) = e−ν∆tn+1k2

û(k, tn)+
∫ tn+1

tn

e−ν(tn+1−s)k2

N̂ (û(k,s))ds, (2.19)

which can be discretized

AB2 −→ û(k, tn+1) =e−ν∆tn+1k2
(

û(k, tn)+β10N̂n +β11e−ν∆tnk2

N̂n−1
)

AB3 −→ û(k, tn+1) =e−ν∆tn+1k2
(

û(k, tn)+β20N̂n

+e−ν∆tnk2
(

β21N̂n−1 +β22e−ν∆tn−1k2

N̂n−2
))

,

(2.20)

with N̂n denoting the value of the nonlinear term at the time instant tn, the second order

Adams-Bashforth coefficients

β10 =
1

2

∆tn+1

∆tn
(∆tn+1 +2∆tn)

β11 =−1

2

∆t2
n+1

∆tn
,

(2.21)

and the third order Adams-Bashforth coefficients

β20 =
∆tn+1(2∆t2

n+1 +6∆tn∆tn+1 +3∆tn−1∆tn+1 +6∆t2
n +6∆tn−1∆tn)

6∆tn(∆tn +∆tn−1)

β21 =
−∆t2

n+1(2∆tn+1 +3∆tn +3∆tn−1)

6∆tn−1∆tn

β22 =
∆t2

n+1(2∆tn+1 +3∆tn)

6∆tn−1(∆tn +∆tn−1)
,

(2.22)

where ∆tn = tn − tn−1 [98]. For start-up a first order scheme is used, as two time steps are

required to start a second-order scheme. Similarly a first order and a second order scheme

are used to start the third order scheme.

The time step size control is based on the CFL stability limit of the explicit discretiza-

tion of the nonlinear term, with addition of the stability criterion due to the penalization.

Therefore, at each time step tn, the maximal point-wise velocity is computed and the new

time step is given by ∆tn+1 = C∆x/Umax where C < 1 is the CFL constant and ∆x is the

minimal spatial grid size. Moreover, the time step has to verify the condition ∆tn+1 < η
(AB2) or ∆tn+1 < 6

11
η (AB3) due to the presence of the penalization term. The same

method is applied to the magnetic field and the time step is chosen to be small enough to

verify the stability criteria of both the magnetic field and velocity field discretization.
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SEMI-IMPLICIT IMPLEMENTATION

As noted in the previous section, the stability condition for a third order time scheme con-

strains ∆t < 6
11

η . To avoid this limitation, an implicit implementation was introduced by

Kolomenskiy and Schneider [52] for Burgers’ equation and extended to Navier–Stokes’

equation by Jause-Labert et al. [47]. In this case the penalization term is evaluated at the

time step tn+1. The penalization is thus no longer treated together with the nonlinear term.

The diffusion term, as in the explicit method, is exactly integrated.

This method is more time-expensive because two additional Fourier transforms are

required. In addition to the projection of the nonlinear term, a second projection is realized

(that includes the penalization term at tn+1) to ensure the solenoidal nature of the two

considered fields. The fact that the time step can be adaptive (taking into account the CFL

condition) makes this technique more suitable for unsteady simulations. The penalization

term is introduced using a first order time scheme, which does not influence negatively

the precision as long as boundaries are fixed.

The magnetic equations being handled analogously we present the new time scheme

for the velocity field

ûi (k, tn+1) = Pi j



F

[
F−1 {Qn

i }+ ∆t
η χ uwalli (x, tn+1)

1+ ∆t
η χ

]

j



 . (2.23)

The third order Adam-Bashforth scheme is retained for the nonlinear terms in this formu-

lation

Q
n
i = e−ν∆tn+1k2

(
û(k, tn)+β20N̂n + e−ν∆tnk2

(
β21N̂n−1 +β22e−ν∆tn−1k2

N̂n−2
))

. (2.24)

This numerical scheme for a penalization parameter η sufficiently small (η << ∆t) con-

verges towards an explicit modified scheme where the time step ∆t replaces the penaliza-

tion parameter η and where the nonlinear term vanishes in the solid region. We therefore

call this method semi-implicit. This is further explained in Appendix C. For this case

with very small penalization parameter, the permeability of the solid media is given by

the value of the time step. The asymptotic convergence of the porous boundaries towards

a solid wall, if η is sufficiently small, is in that case limited by the value ηeffective ≈ ∆t.

4 PARALLEL PERFORMANCES

The numerical code is parallelized using MPI libraries. The parallelization performances

are evaluated on the calculator Vargas of the French high performance computing cen-

ter IDRIS. The performances are estimated for a hydrodynamic and MHD calculation

for three different grid resolutions. The test cases used are a three-dimensional Taylor-

Couette flow for the hydrodynamic calculation (see section 6.3) and a MHD Taylor-

Couette for the MHD calculation (see section 6.4). The comparison is made to ensure
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that the extra MPI exchanges and cache memory effects of the MHD calculations do not

produce important slowdowns.

We find that the MHD calculation is roughly twice as long as the hydrodynamic one.

This is expected as we use for a MHD run the double number of fast Fourier transforms

at each iteration. Note that per iteration, using a semi-implicit implementation of the

penalization term, we need 12 Fourier transforms for each vector field. The results are

shown in table 2.1 and in Fig. 2.3.

Processors 4 8 16 32 64 128

Time per iteration per proc Hydro 1.06 0.61 0.47 0.35 – –

resolution 1283 (s) MHD 2.06 1.26 0.76 0.62 – –

Time per iteration per proc Hydro 10.01 5.11 2.97 1.80 1.21 –

resolution 2563 (s) MHD 19.96 10.06 6.05 3.45 2.41 –

Time per iteration per proc Hydro – – – 18.61 11.68 8.20

resolution 5123 (s) MHD – – – 37.11 22.53 15.10

Table 2.1: Parallel performances of the numerical code.
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Figure 2.3: Code scaling in the calculator Vargas of IDRIS for hydrodynamic and MHD calcula-

tions.

The time per iteration per processor scales with the number of processors following

an approximate power-law dependence close to the ideal scaling law, 1/(number of pro-

cessors).

5 TWO-DIMENSIONAL VALIDATION

In this section we present a purely hydrodynamic test-case, the two-dimensional Taylor-

Couette flow and a purely magnetic test-case, the z-pinch configuration. For both cases
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analytical solutions are known, which allows a careful convergence study and which al-

lows to check different ways to introduce the boundary conditions.

5.1 TWO-DIMENSIONAL TAYLOR-COUETTE FLOW

We consider the classical two-dimensional hydrodynamic problem of a flow between two

coaxial rotating cylinders (e.g., Taylor [104]). The inner cylinder rotates at constant speed,

while the outer cylinder is kept at rest. The steady flow solution of the problem is

Uθ (r) =
Ω2R2

2 −Ω1R2
1

R2
2 −R2

1

r+
(Ω1 −Ω2)R

2
1R2

2

R2
2 −R2

1

1

r
, (2.25)

where Ω(1,2) are the angular velocities of the cylinders, R(1,2) the radii of the cylinders

and r the cylindrical coordinate (see Fig. 2.4).

R
1

R
2


1


2

Figure 2.4: Taylor-Couette flow configuration.

The relative L2 error in the fluid domain || fnumerical − fanalytical||L2
/|| fanalytical||L2

with

f being the considered field, is calculated for different penalization parameters η and

number of grid points N (64, 128, 256, 512), in one direction with N = Nx = Ny and

Nz = 4.

As mentioned above, the present calculation is entirely hydrodynamic. The simula-

tions are carried out until a steady state is obtained, so that the error is independent of

the time discretization. A cubic domain with size-length 2π is considered, the time step

is fixed to a value ∆t = 5.10−5 and the kinematic viscosity ν = 1. The radii R1,R2 are

(0.32π ,0.82π) respectively. At t = 0 the fluid domain is at rest and the inner-cylinder

is set into movement with a fixed velocity Uθ (R1) = 1 while the velocity Uθ (R2) is kept

equal to zero. The runs are stopped when the time tmax = 5 is reached. At this time instant,

the difference in the kinetic energy between two iterations is less than 10−9 (for a kinetic

energy of order unity), which indicates that a steady state is satisfactorily achieved.

The velocity profile imposed in the mask is chosen in two different ways, correspond-

ing to the discussion in section 3.2. In the first case, the velocity in the inner cylinder is
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straightforwardly set to a solid-body rotation, Uθ = Ω1r, in the inner cylinder and Uθ = 0

in the outer cylinder. This is the most obvious choice. The component Ur is set to zero at

the boundaries. The velocity field is hereby continuous, but there exists a discontinuity of

the velocity field derivative at the fluid boundaries (which is also the case in the real, phys-

ical situation). The error evolution with the penalization parameter and the convergence

of the error with the resolution are shown in Figs. 2.5 and 2.6. For these calculations

the expected
√

η convergence order [22] is found and the convergence is second order in

space as a function of the resolution N, confirming the results in [52]. We also observe a

saturation of the error for large N, corresponding to the penalization error.
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Figure 2.5: Taylor-Couette: convergence of the
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Figure 2.6: Taylor-Couette: convergence of the

relative L2 error of uθ with the resolution N

which shows a second order convergence.

A second way to impose the velocity in the mask will now be described. In this partic-

ular test-case the analytical solution is known (Eq. (2.25)) and we can use this information

to increase the precision of the method. As mentioned in section 3.2, Gibbs oscillations

are created due to discontinuities in the fluid variables or their derivatives. The discon-

tinuity in the velocity gradient field can here be removed by using a 4th order Hermite

interpolation at the boundaries at r = R1,R2. Any purely azimuthal, axisymmetric flow is

solenoidal so we can freely choose the velocity Uθ (r) in the mask, as long as it respects

the correct boundary conditions at r = R1, r = R2 and r = π , the latter condition being im-

posed by the periodicity of the pseudo-spectral method. The velocity Uθ (r) in the mask is

chosen such that velocity and derivative at the fluid-solid boundaries are continuous. Sub-

sequently the velocity field is interpolated to decay smoothly from the analytical solution

at r = R1,R2 to zero at r = 0 and r = π respectively, using an interpolating Hermite poly-

nomial. Any discontinuity on the derivative of the velocity field at the fluid boundaries

is thus avoided and the Gibbs oscillations are hereby significantly reduced. In principle

even higher order velocity derivatives could be smoothed in this way using higher order

Hermite interpolation. Note that a similar regularization is used in [54] for the velocity

field, where the imposed velocity in the mask is called an internal flow.

The error as a function of the penalization parameter and the convergence of the error
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with the resolution are shown respectively on Figs. 2.7 and 2.8. The numerical error

is only calculated in the fluid domain. It is observed that the convergence of the error

with the penalization parameter is close to third order. An optimum for the penalization

parameter depending on the resolution appears, when the gridscale becomes of order√
νη . At this scale the viscous term becomes of the order of the penalization term. In

Figs. 2.7 and 2.8 results for both explicit and semi-implicit methods are presented.

The regularization of the boundary conditions using an interpolation clearly improves

the numerical convergence of the solution with the penalization parameter. Also the con-

vergence with the grid resolution is improved. If the Hermite interpolation is used, a

fourth order convergence with N is found for both the explicit (dashed line) and semi-

implicit (solid line) implementations (see Fig. 2.8). We recall that if no regularization of

the velocity field is introduced, second order convergence is recovered (see Fig. 2.6).
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5.2 THE Z-PINCH

The second validation test is the reproduction of the z-pinch phenomenon, a well-known

textbook example of a confined plasma situation [41]. This configuration is illustrated in

Fig. 2.9. Two ideal electrodes drive an axial current in the z-direction producing a purely

azimuthal magnetic field (in the θ -direction). The current density in the z-direction, which

together with the induced azimuthal magnetic field yield a radially pinching Lorentz force,

is the motivation for the name z-pinch. In this configuration we set the velocity to zero so

the code is entirely magnetic. We impose the boundary conditions Bθ = BC and Br = 0 at

r = R1 the radius of the fluid domain. The component Bz is not penalized and can freely

evolve.

Periodic conditions are set in the axial direction. In this configuration the governing
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equations reduce to

∂tB = λ∇2B (2.26)

In cylindrical coordinates, the steady state solution is a linear evolution of the azimuthal

magnetic field

Bθ (r) =
BCr

R1
. (2.27)

The quantity BC/R1 is linked to the constant axial current density, using Ampère’s law,

jz =
2BC

R1
. (2.28)

The computational domain is chosen similar to Fig. 2.2 (left). The mask is chosen to be

annular, leaving the outer domain free to adapt to the periodic boundary conditions of

the computational domain. If a uniform azimuthal magnetic field is imposed inside the

mask, the discontinuity in the profile of the radial derivative of the azimuthal magnetic

field at the boundary causes Gibbs’ oscillations in the current density, analogously to what

was observed in the Taylor-Couette case. To avoid this, a linear profile of Bθ (r) =
BCr
R1

is

imposed inside the mask to ensure a continuity with the analytical solution. This feature

eliminates the discontinuity at r = R1 in the derivative of the magnetic field and thus

greatly reduces the oscillations for jz. The convergence of the method can be further

enhanced by using a Hermite polynomial to smoothly interpolate the magnetic field in the

mask to zero at the outer boundaries of the computational domain. With this method, the

continuity of the derivative of the magnetic field is assured through the entire domain (see

Fig. 2.2 (right)).

jz

Bθ

R1

Figure 2.9: z-pinch configuration.

For these simulations the number of grid points are the same as for the Taylor-Couette

case (N ∈ {64,128,256,512}). The parameters are a cubic domain with size-length 2π
with magnetic diffusivity λ = 1, the time step is fixed to ∆t = 5.10−5 and tmax = 5. For

t = tmax the difference in the magnetic energy between two iterations is less than 10−9 so

we have reached the steady state. The inner radius of the annulus is R1 = 0.65π and the

outer radius is R2 = 0.78π . If the Hermite polynomial is used, the radius where it reaches

the value 0 is R3 = 0.94π . The boundary condition BC = 1.
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II NUMERICAL METHOD AND VALIDATION

In Fig. 2.10 the convergence of the method is shown as a function of the penalization

parameter η and the resolution N. An improved convergence, proportional to η4 or N−4

is observed. The relative importance of the smoothing of the magnetic field in the mask

is illustrated in Fig. 2.10 where the results of these computations with and without regu-

larization are compared. Without the regularization technique, the convergence reduces

to second order in N and order
√

η for the penalization parameter.
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Figure 2.10: Z-pinch: convergence of the relative L2 error with the penalization parameter η (left)

and with the resolution N (right) for the magnetic field in the z-pinch geometry. Comparison of

the results with and without Hermite polynomial interpolation.

5.3 ASSESSMENT OF THE REGULARIZATION METHOD TO ENHANCE

THE PERFORMANCE OF THE PENALIZATION METHOD

For these two-dimensional test cases, either Taylor-Couette or z-pinch, the error of conver-

gence as a function of the penalization parameter and the resolution are determined. The

regularization of the different fields in the solid domain (or mask) allows an enhancement

of the accuracy of the numerical solution in the fluid region. The fact that the continuity

of the velocity derivative field inside the solid domain affects the error inside the fluid

domain is an intrinsic feature of the pseudo-spectral method. Such methods use periodic

trial functions and the Gibbs oscillations introduced in one point of the domain decay only

inversely proportional to the distance from the discontinuity. The Hermite interpolation

method regularizes and yields fields which are C1 in the whole domain (see Appendix

A for an analytical analysis of the Hermite regularization). Gibbs oscillations are thus

reduced and consequently the numerical errors are also decreased considerably. The lim-

itation of this method is that an analytical solution must be known, or a baseflow, which

is not far from the expected developed flow. Without such regularization the convergence

is reduced to second order in resolution, which can be sufficient for many applications, as

illustrated in the following sections.
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6 THREE-DIMENSIONAL VALIDATION

In this section the code will be validated by considering three-dimensional test-cases. First

a periodic MHD case is considered, without using the penalization method, subsequently

the magnetic part of the code is validated by studying the Ohmic decay in a cylindrical

cavity. Then the three-dimensional Taylor-Couette flow is studied with and without the

presence of a magnetic field and to conclude we investigate the instabilities in a cylinder

with helical magnetic boundary conditions.

6.1 PERIODIC MHD VALIDATION

To validate the capacity of the numerical code to simulate the three-dimensional non-

linear MHD equations, we reproduce first a classical test-case with periodic boundary

conditions. This case is the generalization of the Orszag-Tang vortex to three dimensions.

The results are compared with those of Mininni et al. [65].

The initial condition used for the simulation is given analytically and yields:

u(x,y,z, t = 0) = [−2sin(y),2sin(x),0] for x,y,z ∈ [0,2π]3 (2.29)

and

B(x,y,z, t = 0) = β [−2sin(2y)+ sin(z),2sin(x)+ sin(z),sin(x)+ sin(y)] (2.30)

with β = 0.8, the initial kinetic energy, Ek = 2, and the corresponding magnetic energy,

Em = 1.92. The energies are evaluated by Ek = 1
2
〈u2〉 and Em = 1

2
〈B2〉 with 〈..〉 the

volume average. The maximum of the current density is calculated by

max |j|= max

√
j2
x + j2

y + j2
z (2.31)

and the total dissipation rate is

ε(t) = ν 〈ω2〉+λ 〈 j2〉, (2.32)

where ν and λ are respectively the kinematic viscosity and the magnetic diffusivity. Three

runs are performed: the first with N3 = 643 and ν = λ = 0.01, the second with N3 = 1283

and ν = λ = 0.005 and the third N3 = 2563 with ν = λ = 0.001.

The evolution of the maximum of the current density and total dissipation rate in the

domain are shown in Fig. 2.11. Results are compared using a second- and third-order

Adams-Bashforth time advancing scheme described in section 3.3. Both schemes give

the same results. The results agree well with the computations presented in reference

[65]. The same exponential growth followed by a self similar growth ∼ t3 is found in our

calculations for the evolution of the maximum current density (see Fig. 2.11 (left)). With

an increasing Reynolds number Re the maximum of |j| is also found to be reached at later
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Figure 2.11: Comparison of the solution of the numerical code for the time evolution of the max-

imum of the current (left) and total dissipation rate (right) using second (dashed line) and third

order time-schemes (solid line). The inset (left) shows the evolution at early times in lin-log units.

times. The evolution of the total dissipation rate (see Fig. 2.11 (right)) shows the same

delay in the onset of the formation of small scales with increasing Re as exposed in the

cited article. This test allows us to evaluate the full MHD code and validate the numerical

results for relatively high Reynolds numbers (up to Re = 3000).

6.2 OHMIC DECAY IN A PERIODIC CYLINDER

In this test case we compute the evolution of the magnetic field in a periodic three di-

mensional cylinder coated with an insulator [40, 53]. In the induction equation we set the

velocity to zero so the equation for the magnetic field reduces to the diffusion equation:

∂B

∂ t
= ∇2B. (2.33)

We consider an axisymmetric case, z-independent and the magnetic field has no r compo-

nent. This case is not completely three-dimensional since we use the three components of

the magnetic field (Bx,By,Bz), but the derivatives are zero in the z direction. In cylindrical

coordinates the set of equations is:





∂Bθ

∂ t
= ∂ 2Bθ

∂ r2 + 1
r

∂Bθ

∂ r
− Bθ

r2

∂Bz

∂ t
= ∂ 2Bz

∂ r2 + 1
r

∂Bz

∂ r
.

(2.34)

Using separable elementary solutions, the magnetic field can be written in the following

form: {
Bθ (r, t) = A f (r)e−ω2

θ t

Bz(r, t) = B g(r)e−ω2
z t .

(2.35)

22



6 THREE-DIMENSIONAL VALIDATION

Introducing the following change of parameter: s = ωr the system of equations writes:
{

s2
θ f ′′+ sθ f ′+(sθ

2 −1) f = 0

s2
z g′′+ szg

′+ s2
z g = 0.

(2.36)

The solutions of these equations are Bessel functions. Imposing at the radius R0 of the

cylinder the azimuthal and axial field vanishing the general solution is:




Bθ (r, t) = J1

(
j1
R0

r
)

e
−
(

j1
R0

)2
t

Bz(r, t) = J0

(
j0
R0

r
)

e
−
(

j0
R0

)2
t
.

(2.37)

Here j0 = 2.4048... and j1 = 3.8314... are the first zeros of the Bessel functions J0 and J1

respectively.

In our simulation we set R0 = 1. The decay rate is determined doing a least square

fitting of the azimuthal and axial magnetic energy time evolutions (Figs. 2.12 and 2.13).

In table 2.2 we present our results for the decay rate of the azimuthal and axial fields

and we compare them to the analytical values (see Eq. (2.37)). All the simulations are

done with 963 grid points, the penalization parameter η = 5 ·10−4 and the computational

domain size is Lx = Ly = Lz = 2π . We calculate the error for different fixed time steps.

In none of these calculations the regularization of the magnetic field in the solid region

(mask) is used.

Time step Theory Numerical Error Theory Numerical Error

ωθ
2 ωθ

2 ωθ
2 ωz

2 ωz
2 ωz

2

1 ·10−2

14.68

12.68 14 %

5.78

4.99 14 %

1 ·10−3 13.99 5 % 5.51 5 %

5 ·10−4 14.13 4 % 5.57 4 %

1 ·10−4 14.28 3 % 5.62 3 %

Table 2.2: Comparison of analytical (see Eq. (2.37)) and numerical calculation of the decay rate

for the Ohmic diffusion in an infinite cylinder.

For these calculations of the diffusion of a magnetic field in a periodic cylinder the

decay rate of the azimuthal and axial component of the magnetic field agree quite well

with the analytical values. We find the same relative error in the azimuthal and in the axial

direction at each considered time discretization.

This test-case yields a validation of the magnetic part of the numerical code and shows

that the magnetic boundary conditions are well taken into account via the penalization

method. Also we note that the time scheme is well implemented as it allows to recover

the analytical decay rates for the considered components of the magnetic field with good

accuracy. The numerical solution converges towards the analytical solution if the time

step is decreased.
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Figure 2.12: Azimuthal magnetic energy de-

cay for different time steps in an periodic

cylinder.
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Figure 2.13: Axial magnetic energy decay for

different time steps in an periodic cylinder.

6.3 THREE-DIMENSIONAL TAYLOR-COUETTE FLOW

In this test case we aim to determine the critical Reynolds number for the first instability of

the Taylor-Couette flow with periodic boundaries in the axial direction. Different values

of the Reynolds number are explored with several calculations with a resolution of 1283

grid-points, the penalization parameter η = 5 ·10−4 and the computational domain size is

Lx = Ly = 5π/2 and Lz = 2π . To assess the influence of the Hermite interpolation method,

in one of these calculations the regularization of the velocity in the solid region (mask)

is used (for the case with Re = 120). The reference length scale is the gap between the

inner and outer cylinder L = Rext −Rint and the reference velocity is the inner rotation

speed U = ΩintRint . The outer cylinder is fixed. We define the Reynolds number and also

a radius ratio ζ and a aspect ratio Γ as follows:

Re =
UL

ν
, ζ =

Rint

Rext
, Γ =

Lz

L
, (2.38)

where Lz is the axial length. To be able to compare with the literature we take the same

values as in [39] for the dimensionless values, radius ratio and aspect ratio, ζ = 0.5 and

Γ = 4. The base flow consists of an azimuthal velocity only, as in the two-dimensional

case (section 5.1). The first Taylor-Couette instability is centrifugal and is characterized

by vortices that appear and break the axial invariance. Velocities in the radial and axial

directions thereby appear. To determine the critical Reynolds number we analyze the

evolution of the axial kinetic energy. The analysis of the evolution of the axial kinetic

energy allows us to assess the critical Reynolds number (when the instability is triggered).

The value of the critical Reynolds is compared with a theoretical value of Re = 68.23 that

has been determined by Chandrasekhar [25]. We present in Fig. 2.14 the axial kinetic

energy evolution for Reynolds numbers varying from Re= 65.7 to Re= 69.7. We start the

simulations with a small random perturbation so the initial axial kinetic energy is non zero.

The axial energy either grows or decays exponentially. The critical Reynolds number
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can be determined from Fig. 2.14. Increasing the Reynolds number from Re = 67.3 to

Re = 68.1 the axial kinetic energy changes from decaying to increasing. A simple linear

interpolation of the growth and decay rates (that are determined with a least square method

fitting) gives the value of the critical Reynolds Rec ≈ 67.9. The estimated error compared

with the theoretical result is ∼ 0.44%. The theoretical estimate is thus well approached

by our numerical simulations.
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Figure 2.14: Evolution of the axial kinetic energy for different Re numbers.
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Figure 2.15: Evolution of the axial kinetic energy for Re= 120, with and without the regularization

technique.

The Taylor vortices appear early in the simulation and they grow or decay in strength

depending on the Reynolds number. Fig. 2.15 presents the axial kinetic energy evolu-

tion of a Taylor-Couette flow for Re = 120 comparing two simulations, one with Hermite

regularization and one without. The difference between the two considered methods is
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the onset of the instability, it is slightly earlier if the Hermite regularization is used. The

growth rates are similar, when the nonlinear saturation is reached, a steady state is ob-

tained that almost coincides for both methods. In Figs. 2.16 to 2.19 we visualize the

Taylor vortices in the steady state. Two pairs of counter-rotating vortices appear. The

aspect ratio is Γ = 4 so that four vortices form. In Fig. 2.17 we distinguish the boundary

layer, in which the azimuthal vorticity is contrary to the vorticity of the Taylor-vortices.

The flow structure of Figs. 2.16 to 2.19 can be compared with the one presented by

Guermond et al. (Fig. 5 in [39]). The same flow topology with four vortices is found. In

Figs. 2.18 and 2.19 we note that there is a transport of azimuthal momentum by the radial

flow. The azimuthal velocity isosurfaces are not axial invariant but they are dragged in-

and outwards by the radial flow. A positive radial velocity increases the azimuthal velocity

near the inner cylinder.

Figure 2.16: Axial velocity uz (color) for Re =
120.

Figure 2.17: Azimuthal vorticity ωθ (color) for

Re = 120.

To compare quantitatively both simulations, in table 2.3 the maxima of the three ve-

locity components at the steady state are compared with those of Guermond et al. [39].

The azimuthal velocity is not exactly unity because with the penalization method the

precise value at the boundary is not necessarily coinciding with the numerical grid as

is the case in [39]. Nevertheless the numerical method yields good agreement for all

three components of the velocity with the results of the code described in [39]. The three

numerical methods yield similar relative variations, there is an improvement in the error

with the regularization for the radial component of the velocity field. The improvement is

limited because the tangent imposed with the Hermite polynomial is calculated using the
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Figure 2.18: Azimuthal velocity uθ (color) for

Re = 120.

Figure 2.19: Radial velocity ur (color) for Re =
120.

Guermond

et al. [39]

3rd order semi-

implicit

2nd order explicit 3rd order semi-

implicit

no regularization no regularization with regularization

max ur 0.1935 0.19434 (∼ 0.43%) 0.1969 (∼ 1.75%) 0.19355 (∼ 0.03%)

max uθ 1 0.99693 (∼ 0.31%) 0.9980 (∼ 0.20%) 0.99669 (∼ 0.33%)

max uz 0.1454 0.14639 (∼ 0.68%) 0.1506 (∼ 3.57%) 0.14632 (∼ 0.63%)

Table 2.3: Maximum velocity components comparison and relative errors for Re = 120 in a peri-

odic cylinder.

analytical base flow, which is known in this case. Since the development of the instability

makes the flow change, discontinuities appear at the fluid-solid interface and the Gibbs

oscillations can grow. The improvement can be substantial if the saturated state is not far

from the calculated analytical base flow.

With this test-case the well known linear first instability threshold of the Taylor-

Couette flow is found. Also the nonlinear saturation is comparable to what is reported

in the literature. The same topology of the flow is observed and quantitatively similar

velocity magnitudes at the steady state are established. This makes us confident about the

accuracy of the method in taking into account centrifugal, pressure and nonlinear effects

in a bounded domain.
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6.4 MAGNETOHYDRODYNAMIC TAYLOR-COUETTE FLOW

We now extend our validation to the test-case of the instability of an axisymmetric MHD

Taylor-Couette flow with periodic boundary conditions in the axial direction. In this case

the instability studied in the previous section is modified due to the presence of an axial

magnetic field. An imposed constant axial field B0 is added to the magnetic field. It is

well known that such an axial magnetic field has a significant stabilizing effect. This

phenomenon of delay in the appearance of the first Taylor-Couette instability was found

by Chandrasekhar [25], confirmed by linear numerical calculations in [95] and by spectral

numerical simulations [110, 111]. The fluid flow will try to bend the axial magnetic field

lines but the restoring Lorentz force will prevent the fluid motion, which stabilizes the

flow profile.

To assess our numerical code in this context, we evaluate the evolution of the axial

kinetic energy as a function of the Hartmann number Ha, which measures the ratio be-

tween electrodynamic forces and viscous forces. The presence of a uniform magnetic

field in the axial direction does not affect the profile of the stable azimuthal velocity that

exists without the magnetic field, Eq. (2.25), which we choose as initial condition. The

dimensionless geometric parameters, radius ratio ζ and aspect ratio Γ are the same as in

the previous section. We introduce here the magnetic Prandtl number which is the ratio

of viscosity and magnetic diffusivity. The dimensionless numbers describing the problem

are then

Pr =
ν

λ
, Re =

UL

ν
, Ha =

B0L√
µ0ρνλ

, ζ =
Rint

Rext
, Γ =

Lz

L
, (2.39)

where µ0 is the magnetic constant and ρ is the fluid density. The simulations are per-

formed for Pr = 1, Re = 100, ζ = 0.5 and Γ = 4. The resolution used is N3 = 1283, the

penalization parameter η = 5 ·10−4 and the computational domain size is Lx = Ly = 5π/2

and Lz = 2π . For none of these calculations regularization of the velocity or magnetic field

in the solid region (or mask) is used. The boundary conditions described in [95] are a fixed

azimuthal velocity on the inner cylinder (U = ΩintRint = 1), no-slip on the outer cylinder

and perfectly conducting walls, so that the normal magnetic field at the wall and the axial

current density vanish (br = 0 and jz = 0) [95]. With these parameters the Taylor-Couette

flow is hydrodynamically unstable, as was observed in the previous section. With the

penalization method we can impose the vanishing radial magnetic field but the current

density is not constrained.

The evolution of the axial kinetic energy varies as a function of the imposed magnetic

field (or Hartmann number), for a fixed Reynolds number, as is shown in Fig. 2.20. These

calculations allow us to determine the threshold for the instability. For Re = 100 the

critical Hartmann number found is Hac ≈ 7.9. Like in the previous section the threshold

is determined by linear interpolation of the growth and decay rates. For Re = 100 the

flow is hydrodynamically unstable and Taylor vortices should appear, but for Ha > 7.9,

the instability is suppressed by the magnetic field.

28



6 THREE-DIMENSIONAL VALIDATION

1.10
−35

1.10
−30

1.10
−25

1.10
−20

1.10
−15

1.10
−10

1.10
−5

1

0 100 200 300 400 500 600

A
x

ia
l

E
k

Time

Ha = 5

Ha = 7

Ha = 7.5

Ha = 7.75

Ha = 8

Ha = 9

Ha = 10

Ha = 12

Ha = 15

Figure 2.20: Evolution of the axial kinetic energy for different Hartmann numbers.

In Fig. 2.21 we show the topology of the flow resulting of our simulation (cut in the

r− z plane). This figure could be compared to Fig. 1 in [110]. This comparison is merely

qualitative, since the ratio of the radii is ζ = 0.95 in the cited reference and here we have

used ζ = 0.5. We have not tried to quantitatively study the same geometry, since our

method is not particularly adapted for the case ζ = 0.95, because a very large part of the

computational domain would correspond to the mask. To obtain a reasonable number of

grid-points in the fluid domain, extremely large resolutions would be needed. Immersed

boundary methods with uniform space discretization are clearly not the most adapted

tool for this aspect ratio. The parameters chosen in our simulation are Pr = 1, Ha = 7,

Re = 100, ζ = 0.5 and Γ = 4. Despite the different parameters for the two computations,

the resulting hydromagnetic flow has a similar topology. We note how the magnetic lines

are advected by the flow. The resulting restoring Lorentz force stabilizes the fluid.

u B

0

2π

α

Rint Rext

Figure 2.21: Hydromagnetic flow. Cut in the r− z plane of velocity u (left) and magnetic (B) field

(right) for Pr = 1, Ha = 7, Re = 100, ζ = 0.5 and Γ = 4.

With this test-case we therefore found the well known stabilizing effect of an axial
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magnetic field on the Taylor-Couette flow. Qualitatively the flow behavior is very similar

to what is found in other investigations. We were not able to quantitatively compare with

the literature since our boundary conditions on the magnetic field are not the same as

those considered in previous studies on magnetohydrodynamic Taylor-Couette flow and

the parameter ζ was different. To compare with more accuracy our code with the literature

we treat in the following section a test case with boundary conditions and geometry which

are adapted to our numerical method.

6.5 FLOW INDUCED BY A HELICAL MAGNETIC FIELD

Shan, Montgomery and Chen [102] studied numerically a conductive fluid confined in a

periodic cylinder where an axial electric and magnetic field are imposed, which results

in a helical magnetic field (see Fig. 2.22). They used a spectral code which decomposed

the fields into Chandrasekhar-Kendall orthonormal eigenfunctions of the curl. In that

study they discovered a transition between an axisymmetric state with a zero velocity to

a laminar helical state where a dynamic equilibrium appears, i.e., a steady state with non

zero velocity.

z

Figure 2.22: Helical magnetic field scheme.

The parameters chosen for the numerical study are selected to closely reproduce the

simulations in [102]. A fixed axial magnetic field B0 = 4.5 is imposed and the fluid has a

constant magnetic diffusivity and kinematic viscosity λ = ν = 0.045. The computational

domain size is Lx = Ly = 0.8π and Lz = 8. The typical length scale is the cylinder radius,

L = R0 = 1, the axial length is Lz = 8R0, the resolution used for the simulations is

N3 = 1283 grid-points and the penalization parameter η = 5 ·10−4. Three dimensionless

numbers characterize the system: the Lundquist number (S), the Hartmann number (Ha)

and the pinch ratio for the axisymmetric zero flow state (Θ0):

S =
CAL

λ
, Ha =

B0L√
ρµ0λν

, Θ0 =
Bθ

〈Bz〉
, (2.40)

with CA the axial Alfvén velocity CA = B0/
√

ρµ0, Bθ is the wall-averaged poloidal mag-

netic field and 〈Bz〉 is the volume-averaged axial magnetic field.
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The transition between states is determined as a function of one of these dimensionless

numbers, the pinch ratio Θ0, which is varied by adjusting the imposed average axial elec-

tric field E0 and which is directly linked to the poloidal magnetic field. The other dimen-

sionless numbers are maintained constant, S=Ha= 100. For the parameters given above,

the linear theory predicts a transition for an imposed electric field E0 = 0.33 [102, 71].

To compare with Shan et al. we impose the same boundary conditions. The walls are

treated as perfect conductors and are coated with a thin layer of insulator. Hereby both the

radial magnetic and current density field vanish (Br = jr = 0). For the velocity field only

the radial component vanishes at the wall. The penalization method is used to impose a

vanishing normal component of the velocity (u ·n = 0) without any regularization tech-

nique. Also an azimuthal magnetic field B0θ
is imposed via the penalization term. In this

case the vanishing radial current density ( jr = 0) is automatically satisfied because the

azimuthal magnetic field does not generate a radial current density (the r-component of

the curl of the imposed magnetic field is zero). The boundary conditions are thus satisfied.

The way the electric field is imposed in our simulations differs from the simulations

by Shan et al.. In their simulations the electric field explicitly appears in the discretized

equations, whereas in our case the electric field is indirectly imposed through the magnetic

field at the wall (which can be related to the electric field using Stokes’ theorem). This

can lead to small differences in the transients, but is not expected to greatly affect the

steady state solutions.

The azimuthal magnetic field B0θ
(r) is imposed with the volume penalization method

in the solid region using the regularization technique, like for the z-pinch case (see section

5.2). The azimuthal magnetic field increases linearly with r from r = R0 (the fluid-solid

frontier) to r = 0.34π and then smoothly tends to zero using a Hermite’s interpolating

polynomial from r = 0.34π to r = 0.385π . The periodicity of the computational region is

hereby satisfied and the magnetic derivative of the base-field is continuous at the wall.

To validate the code we perform the same calculations done by Shan et al.. We vary

the axial current density ( jz) and we calculate E0 when the simulation reaches a steady

state using Ohm’s law

E0 = (−u×B)z +
jz

σ
. (2.41)

We find (see Fig. 2.24) that the instability threshold between the axisymmetric and

helical state is situated between E0 = 0.302 and E0 = 0.355 as found in [102]. The kinetic

energy starts to grow when the imposed electric current is E0 = 0.355. The growth rate of

the energy is calculated using Alfvén time units (tA = tnumCA/Lz). A least-square fitting

gives the growth rate of the kinetic energy as 0.54, corresponding to a growth rate of 0.27.

This can be compared to the analytical value 0.279 calculated for an applied electric field

E0 = 0.35. Taking into account that our imposed magnetic field is slightly different (since

the electric field is imposed indirectly in our case), the two different growth rates match

in good order. In Fig. 2.23 the excited mode is visualized, which is a helical mode with

azimuthal and axial mode numbers m = kz = 1, respectively, as in [102].
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Figure 2.23: First helical mode, velocity stream-

lines colored with the axial velocity uz.
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Figure 2.24: Evolution of the kinetic energy for

different imposed axial electric fields.

Increasing the pinch ratio to E0 = 0.402 the flow returns to its axisymmetric copper-

wire solution, which is also observed for certain values in [102]. An explanation for this

behavior is the shape of the instability curves in the Θ0 −Ha plane. By increasing the

pinch ratio, different (m,kz) helical modes appear at a fixed Ha, but they can disappear

by increasing Θ0 to even higher values. This was investigated in [100].

In the next figures, 2.25 to 2.28, we compare our different simulations with the ones

performed by Shan et al.. We find quantitatively the same evolution of the average current

density and the total dissipation rate (εT = λ 〈j2〉+ ν 〈ω2〉). These quantities are time

averaged during the dynamical steady state, since the flow becomes chaotic, if the pinch

ratio (or E0) is large.
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Figure 2.25: Zoom: average axial current as a

function of the average electric field.
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Figure 2.26: Zoom: total energy dissipation rate

as a function of the average electric field.
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Figure 2.27: Average axial current as a function

of the average electric field.
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Figure 2.28: Total energy dissipation rate as a

function of the average electric field.

Some quantitative differences are observed in Figs. 2.25 and 2.26 for values around

E0 = 0.6. At that point both methods might not trigger exactly the same helical modes,

since the electric field is imposed in a slightly different way. Both methods might there-

fore give results corresponding to different multi-mode states. When the pinch ratio is

increased further, the deviations become smaller, as can be seen in Figs. 2.27 and 2.28.

This test-case allows us to validate the nonlinear MHD code with boundary conditions

imposed on both the velocity and magnetic field. A linear analytical result is confirmed.

The “multi-mode” and turbulent states that are observed in literature also appear in our

simulations.

7 CONCLUDING REMARKS CONCERNING THE NUMER-

ICAL METHOD

An extension and implementation of the penalization method into a pseudo spectral Fourier

code solving the MHD equations is presented. This penalization method, which allows

the introduction of obstacles and walls in the computational domain, is implemented in

different ways with respect to the numerical scheme and definition of the fields within the

solid domains.

The numerical code is validated by comparison with several test-cases and theory.

First in two dimensions the convergence of the results towards an analytical solution

by decreasing the penalization parameter and increasing the resolution are shown. The

method converges faster than second order if a regularization technique in the solid do-

main is applied which removes the discontinuities in the derivatives of the velocity and

magnetic field at the solid-fluid boundary.
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II NUMERICAL METHOD AND VALIDATION

Then in three dimensions the first instability threshold of the hydrodynamic Taylor-

Couette flow is found with good accuracy. Also the nonlinear saturation of this flow is

compared and validated with the literature. For the MHD Taylor-Couette flow the current

inability to impose non-homogeneous Neumann boundary conditions using the penaliza-

tion method, makes the comparison of our numerical results with the literature difficult.

A more appropriate test-case to validate the three-dimensional implementation of the pe-

nalization method to compute MHD flows is the flow induced by a helical magnetic field.

This case is correctly reproduced. The linear threshold of the transition between an axi-

symmetric and a helical state is found. Also the evolution of the average axial current and

the total dissipation rate as a function of the average electric field are compared with the

literature and are in good agreement.

All these test-cases allowed us to validate the numerical method to solve correctly the

MHD equations in a confined domain. The limitations are the restricted magnetic bound-

ary conditions that can be applied. Presently, the current density can only be imposed

indirectly via the magnetic field. A modified volume penalization method that allows

the introduction of non-homogeneous three-dimensional Neumann boundary conditions

is currently being developed, preliminary one-dimensional results are presented in Ap-

pendix B.
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III
MAGNETOHYDRODYNAMICALLY

GENERATED VELOCITIES IN CONFINED

PLASMA

1 INTRODUCTION

Toroidal magnetic plasma confinement has been under investigation since the 1940s when

it was recognized as a promising geometry for controlled thermonuclear fusion. Despite

all the attention devoted to the idea, there are aspects of it that must be regarded as in-

complete, even in theory. The difficulties in many cases reduce to the fact that there is no

mathematical description of a magnetically active, dissipative plasma that is tractable, by

use of even the fastest supercomputers. Time dependent electromagnetic fields combined

with the particle kinetics of plasmas having the range of mass ratios represented among

the various charges is simply a too large system to be susceptible to a complete treatment.

Enormous simplifying assumptions have to be made to achieve any analytical/numerical

progress. A common assumption has been that of an unstable ideal equilibrium whose

numerous linear instabilities may reveal insight into the nonlinear dynamical behavior

that is observed. It must be conceded that any description that is manageable at a detailed

level will omit certain important features of a real plasma and at this stage it is to some

extent a matter of taste as to which incomplete theoretical description is adopted for study.

In the following pages, we report the investigation of one such description: a voltage

driven, dissipative magnetohydrodynamic (MHD) fluid with non-ideal toroidal bound-

aries. We omit some features that would be desirable and which seem reasonable to inject,

at a later date, one at a time, into the numerical recipe we use. The principal unrealistic
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assumptions we make are those of uniform mass density and incompressibility, a scalar

valued Newtonian viscosity, a scalar valued electrical conductivity, and the omission of a

finite thermal conductivity (it will be seen that in effect an infinite thermal conductivity

has been assumed, since no thermal effects are allowed to develop except those associated

with the incompressible velocity field). Despite what appear to be these gross oversimpli-

fications, what remains is at the very perimeter of what is computable if we intend to stay

with arbitrary initial configurations which are not in equilibrium, and to follow through

with enforcing viscous and resistive boundary conditions.

What is of particular interest is the spontaneous development of both toroidal and

poloidal rotation of the bulk magnetofluid as a whole. It is not physically obvious that

this should happen, even though it has been known for some time to occur in toroidal

laboratory devices [94]. The importance of non-zero velocities in the MHD description

of toroidally confined plasma was realized by Pfirsch and Schlüter [83], however without

taking into account all the different terms in the force balance. We will take into account

all these terms. The resulting flow pattern is presented here as a computational fact.

The degree of the two types of rotation are seen to depend upon several things, such as

the Reynolds-like dimensionless numbers assumed for the magnetofluid; the geometry

of the toroid, which is allowed to have variable cross sections; the safety factor of the

magnetofluid; and perhaps others.

The pseudo-spectral algorithm combined with the volume penalization method are

used. This numerical method was presented in detail in the Chap. II. In this chapter a

toroidal geometry is carved out within the periodic volume.

In Sec. 2, we fix the geometry of the confined magnetofluid and write down the system

of equations and boundary conditions that will govern the dynamics. An external forcing

of the magnetic field provides the toroidal electric field which initiates and drives the

current. A vacuum toroidal dc magnetic field, regarded as externally supported from

outside the system, is also assumed to be present. In addition another toroidal component

of the magnetic field is allowed to develop in time if the dynamics so dictate.

In Sec. 3, the results are presented. They are divided in four different parts. The first

discusses the generation of toroidal velocities for a dissipative system. The second ex-

poses the results where the nonlinear term is dominant and a comparison is made between

different toroidal geometries. In the third section we study the effect of the variation of

the safety factor and in the last part, how the system evolves if the imposed toroidal mag-

netic field is inverted. We illustrate in detail the development of the driven magnetofluid

configurations and the development of spontaneous toroidal rotation.

2 GEOMETRY AND GOVERNING EQUATIONS

In the MHD approximation the plasma is described as a charge-neutral conducting fluid.

Despite its low complexity compared to kinetic descriptions it can give rise to a wealth of

intricate phenomena and its analytical treatment is only possible in some simplified cases,
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either in the absence of velocity fields [7, 99] or in the absence of non-linear interactions

[6]. If one considers the complete problem one necessarily needs to consider a discretized

numerical approximation of the full nonlinear system. Here we recall the equations we

consider for the reader’s convenience: the dimensionless incompressible viscoresistive

MHD equations for the velocity field u and for the magnetic field B, in ‘Alfvénic’ units

[51].

∂u

∂ t
−M−1∇2u =−∇

(
P+

1

2
u2

)
+u×ω+ j×B, (3.1)

∂B

∂ t
=−∇×E, (3.2)

E = S−1 j−u×B, (3.3)

∇ ·u = 0, ∇ ·B = 0, (3.4)

with the current density j = ∇×B, the vorticity ω = ∇×u, the pressure P and the electric

field E. These equations are non-dimensionalized using the toroidal Alfvén speed CA =
Bre f /

√
ρµ0 as typical velocity, with Bre f = 1.2 the reference toroidal magnetic field at the

center of the torus (R = R0 = 0.55π ≈ 1.73 and Z = 0 for both considered geometries),

ρ the density and µ0 the magnetic constant. We will exclusively consider two toroidal

geometries with differently shaped cross-sections (see Fig. 3.1). The reference length L

is the diameter of the cross section for the circular case and is the minor diameter for the

asymmetric ‘D’ shape (L = 0.6π ≈ 1.88 for both geometries). The ‘D’ shape parametric

equation is a modified version of the formula given by Manickam [59],

R(t) = R0 +
L

2
[cos(t −α +δ sin(t))cos(ζ )−κ sin(t)sin(ζ )] , (3.5)

Z(t) =
L

2
[cos(t −α +δ sin(t))sin(ζ )+κ sin(t)cos(ζ )] , (3.6)

with t ∈ [0,2π], δ the triangularity, κ the ellipticity, α the asymmetry and ζ the rota-

tion angle. For the considered asymmetric cross section the following values of these

parameters are chosen: δ = 0.5, κ = 2.1, α = 0.4 and ζ = 0.15.

The MHD equations are completed by the initial and boundary conditions of the

problem, and two dimensionless quantities: the viscous Lundquist number (M) and the

Lundquist number (S) defined as

M =
CAL

ν
, S =

CAL

λ
, (3.7)

with λ the magnetic diffusivity and ν the kinematic viscosity. The ratio of these two

quantities is the magnetic Prandtl number Pr = ν/λ , which we have chosen unity in the

present study, thereby reducing the number of free parameters, which characterize the

magnetofluid, to one, the viscous Lundquist number, M. Previous investigations indicate

that it is the geometric mean of the viscosity and the magnetic diffusivity which is im-

portant to the dynamics [21, 101]. In setting the Prandtl number to one, a change in the

viscous Lundquist numbers, M or S, is equivalent to a change in the Hartmann number.
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Figure 3.1: Cross-sections of the toroidal geometries considered in the present work. The toroidal

direction is labelled T and the poloidal P.

In the ideal MHD framework a scalar-pressure equilibrium state is assumed in which

u = 0,

j×B = ∇P. (3.8)

This equilibrium is possible in a cylindrical geometry, for instance in z- and θ -pinches. It

is shown in [72, 5] that in the case of finite conductivity such an equilibrium is not possible

in a toroidal geometry if irrotational toroidal magnetic and electric fields are applied. A

steady state in Faraday’s law imposes the toroidal electric field to be irrotational in the

region of interest. The chosen spatial dependence for E0T
is ∝ 1/R. In the simple case of

a space-uniform conductivity, which we consider in the present study, the current density

has the same dependence. The form for the imposed toroidal magnetic field, which is

also proportional to 1/R, comes from the integration of Ampère’s law on a toroidal loop.

So the externally imposed magnetic field and toroidal, laminar, voltage-driven current

density are given by,

B0T
(R) ∝

R0

R
eT , j0T

(R) ∝
R0

R
eT . (3.9)

The toroidal magnetic and current density profiles give the imposed three-dimensional

helical magnetic field B0 = B0T
+B0pol

, with B0pol
= B0R

eR +B0Z
eZ . The poloidal mag-

netic field is calculated from the current density distribution j0T
(R). The reference toroidal

current density at the center of the geometry (at R = R0 and Z = 0) is jTre f
= 0.5. For the

details of generating the poloidal magnetic field in general geometries numerically we

refer to Appendix D. Here eT , eR and eZ are unit vectors in the toroidal/azimuthal, radial

and vertical directions respectively (Fig. 3.1).

The toroidal magnetic field magnitude is tuned to have an edge safety factor q =
rB0T

|wall/R0B0P
|wall = 5.7 for the asymmetric geometry and q = 3.3 for the symmetric

cross section. A bar over a symbol indicates an average over the entire boundary. These

safety factor values will be used for the majority of studied cases. The pinch-ratio associ-

ated to these values of q, defined as the ratio between the wall-averaged poloidal and the
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volume-averaged toroidal imposed magnetic field, Θ0 = B0P
/〈B0T

〉 = 0.16, is the same

for both geometries. The resulting three-dimensional magnetic field lines are visualized

for both geometries in Fig. 3.2.

Figure 3.2: Three-dimensional magnetic field lines colored with the vertical magnetic field (BZ).

For the symmetric (left) and asymmetric (right) cross sections.

The Lorentz force resulting from the calculated poloidal field B0pol
and the imposed

toroidal current density j0T
is not curl-free [72, 5]. Since the curl of a pressure gradient

is necessarily zero, the equilibrium described by (3.8) becomes impossible and additional

terms of Eq. (3.1) need to be taken into account to balance the equation. Since all other

terms in (3.1) are proportional to (or quadratic in) the velocity, the resulting state must

be dynamic. In other words if we take the curl of Eq. (3.1) we end with the vorticity

equation,
∂ω

∂ t
−M−1∇2ω−∇× (u×ω) = ∇× (j×B) 6= 0, (3.10)

we observe that if the Lorentz force term is not curl-free, it acts as a source of vorticity: a

toroidal plasma, described by viscoresistive MHD, confined by curl-free toroidal electric

and magnetic fields, necessarily moves!

It is true that the rationale described above depends on the choice of the electric con-

ductivity, which was assumed to be uniform. It was however shown [69] that to satisfy

Eq. (3.8) in a torus, very unusual profiles of the electrical conductivity must be assumed.

The simple case of constant magnetic resistivity is then treated in this study. The case of

non-uniform resistivity profiles is one important perspective.

It follows from the foregoing that it is necessary to take into account all other terms in

the MHD equations, and analytical treatment becomes impossible unless symmetries are

assumed. To study the full dynamics we are obliged to solve numerically the system and

this is what is done in the present investigation. Equations (3.1)-(3.4) are discretized with

a Fourier pseudo-spectral method on a Cartesian grid. To impose the boundary conditions

we use the volume-penalization technique. The method is presented in detail for three-

dimensional viscoresistive MHD equations in Chap. II.

The total magnetic field is decomposed into a base component and a perturbation,

B = B0 +B′. (3.11)

39



III MAGNETOHYDRODYNAMICALLY GENERATED VELOCITIES IN CONFINED PLASMA

Numerically only the perturbation of the magnetic field is computed, the base magnetic

field, B0, computed from (3.9) is fixed and it is introduced in the Navier-Stokes equation

and in the induction equation as follows,

∂u

∂ t
−M−1∇2u =−∇

(
P+

1

2
u2

)
+u×ω+

(
j′+ j0

)
×
(
B′+B0

)
(3.12)

∂B′

∂ t
−S−1∇2B′ = ∇×

[
u×

(
B′+B0

)]
(3.13)

To close the equations we have the incompressibility of the velocity field and the solenoidal

constraint on the perturbed part of the magnetic field,

∇ ·u = 0, ∇ ·B = 0. (3.14)

The boundary conditions are to be no-slip, u|wall = 0, for the velocity. For the mag-

netic perturbation, the poloidal component and the component normal to the wall van-

ish, B′
Pwall

= B′⊥wall
= 0, while the toroidal component is free. The normal component

B⊥ vanishing at the wall physically corresponds to perfectly conducting boundary condi-

tions. The zero poloidal fluctuations B′
Pwall

are imposed for numerical convenience. Since

the perturbed magnetic field remains small compared to the field B0 in the present inves-

tigation, we do not think that this simplification significantly influences the results.

The initial condition for the simulations is zero magnetic perturbations and zero ve-

locity. The simulations are carried out on a cubic domain of size (2π)3 for the asymmetric

and (2π ×2π ×π) for the symmetric cross section consisting of 2563 grid points. We fix

the penalization parameter to η = 5 ·10−4. The time step is adaptive and the chosen CFL

coefficient is 0.1.

3 RESULTS AND DISCUSSION

The results are divided into four different parts. The first shows the solution of the simu-

lations at a low viscous Lundquist number, where an illustration of the generation of

toroidal velocities is presented. The second exposes the calculations at higher viscous

Lundquist, where the flow behavior of the plasma changes towards a dominantly toroidal

flow. In the third section we compare, at fixed transport coefficients, simulations carried

out for different safety factors and in the fourth section we show the results when the

toroidal magnetic field is reversed.

3.1 GENERATION OF TOROIDAL VELOCITIES AT LOW VISCOUS

LUNDQUIST NUMBER

In this section the calculations are performed for a low viscous Lundquist number, M =
23, in the geometry with symmetric cross section and q= 3.3. All the results are presented

when the system has reached a statistically stationary state.
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Fig. 3.3 shows the presence of a poloidal flow, a pair of counterrotating vortices in

the poloidal plane. In this case the flow topology is almost axisymmetric with respect

to the Z-axis. To visualize more clearly the toroidal velocities and the double poloidal

recirculation, the azimuthally averaged velocity field is presented in Fig. 3.4. We dis-

tinguish four different zones, where the toroidal velocity changes sign, and the already

mentioned “double smoke ring”. Indeed, in the limit of vanishing nonlinearity, Bates and

Montgomery [6] showed analytically that the steady state solution is a pair of poloidally

rotating vortices, aligned with the toroidal direction.

Figure 3.3: Streamlines colored with toroidal velocity (uT ) for M = 23.
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Figure 3.4: Azimuthally averaged toroidal velocity and poloidal stream function contours (solid

line positive, dotted line negative contours).

The origin of toroidal velocities was demonstrated for vanishing viscous Lundquist in

a rectangular cross section [50]. For a circular cross section and at low M number we will

illustrate the generation of this velocity component. First, we illustrate that the forcing

appearing in the vorticity equation (3.10) creates a toroidal vorticity with opposite sign
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in relation to the mid-plane of the torus (see Fig. 3.5 (a)). This creates automatically a

radial velocity that will interact with the imposed toroidal magnetic field (Fig. 3.5 (b)).
The interaction will produce a perturbation to the toroidal magnetic field (B′

T ). Notice

that this magnetic field will have positive and negative areas located in a similar position

as the radial velocity (Figs. 3.5 (b) and (c)). It was shown [50] that the equation giving

the first order perturbed toroidal magnetic component B
′(1)
T is,

∇2(B
′(1)
T eT )∼−uR

BTre f

R2
eT . (3.15)

The sign of the right hand side, will only depend on the sign of uR and of the imposed

toroidal field BTre f
.

ωT

−5 ·10
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−2

0

3 ·10
−2

5 ·10
−2

(a)

uR

(b)

B′
T

(c)

Figure 3.5: Azimuthally averaged: (a) Toroidal vorticity ωT and poloidal stream function, (b)
radial velocity uR and (c) perturbation of the toroidal magnetic field, B′

T .

j’pol & B′
T

(a)

j’pol & B0pol

(b)

FT

(c)

Figure 3.6: Azimuthally averaged: (a) Poloidal current density j’pol (vectors) and perturbation of

the toroidal magnetic field B′
T , (b) current density j’pol (vectors) and imposed poloidal magnetic

field lines B0pol
and (c) toroidal Lorentz force FT .

It follows that the curl of the perturbed toroidal magnetic field (B′
T ) will produce a

poloidal current density, j’pol = ∇×B′
T (Fig. 3.6 (a)). The imposed poloidal magnetic

field B0pol
will then interact with the perturbed current density j’pol to create a toroidal

Lorentz force (see Figs. 3.6 (b) and (c)). The Lorentz force will finally induce toroidal
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velocities. Note that there is a similarity in the negative and positive zones between the

toroidal velocity and the toroidal Lorentz force fields (see Figs. 3.4 and 3.6 (c)). We note

that the sign in the toroidal Lorentz force depends exclusively on the angle between j’pol

and B0pol
. As a consequence this angle influences directly the toroidal velocity direction.
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Figure 3.7: Poloidal and toroidal square velocity component evolutions at early times, in toroidal

Alfvénic time units (τ).

Another way, to apprehend the fact that the poloidal flow interacts first with the mag-

netic field creating subsequently toroidal velocities, is to see the time evolution of the

different velocity components. The velocities in the poloidal plane (in the poloidal direc-

tion P and in the minor radius direction r) grow first. After that the toroidal velocity is

generated (see Fig. 3.7).

At low viscous Lundquist number the dominant velocities are in the poloidal plane

and form two counterrotating vortices. Small toroidal velocities appear and they form a

quadrupole with alternating positive and negative directions. The analytical results pub-

lished by Bates and Montgomery [6] are in good agreement. Also the numerical genera-

tion of toroidal velocities agrees with the calculations made by Kamp et al. [50].

3.2 SIMULATIONS FOR HIGHER VISCOUS LUNDQUIST NUMBERS

In this section the calculations are made for the asymmetric cross section with fixed

q = 5.7 and for the circular cross section, q = 3.3. The viscous Lundquist numbers are

modified changing the transport coefficients ν and λ (with Pr = 1), keeping the geometry

and the reference toroidal magnetic field unchanged, Bre f = 1.2.

With higher viscous Lundquist numbers it takes longer for the system to reach the

saturated state. In the first instants an oscillatory behavior is present (see for example the

different energy evolutions in Figs. 3.8 and 3.9). The kinetic and the fluctuating magnetic

energy oscillate in opposition of phase, but these oscillations are damped out in a finite

time. In the following section we will analyse and compare the different simulations when

the system has reached this non-oscillatory steady state.

43



III MAGNETOHYDRODYNAMICALLY GENERATED VELOCITIES IN CONFINED PLASMA

1 · 10
−7

1 · 10
−6

1 · 10
−5

1 · 10
−4

0 40 80 120 160 200 240

E
k

τ

Asym M = 1131

Asym M = 4524

Symm M = 1131

Symm M = 2262

1 · 10
−7

1 · 10
−6

1 · 10
−5

1 · 10
−4

0 4 8 12 16 20

E
k

τ

Asym M = 1131

Asym M = 4524

Symm M = 1131

Symm M = 2262

Figure 3.8: Kinetic energy evolution at large times (left) and oscillatory behavior at early time

(right) in toroidal Alfvénic time units, for asymmetric and symmetric geometry.

1 · 10
−6

1 · 10
−5

1 · 10
−4

1 · 10
−3

0 40 80 120 160 200 240

E
m

a
g

τ

Asym M = 1131

Asym M = 4524

Symm M = 1131

Symm M = 2262

1 · 10
−6

1 · 10
−5

1 · 10
−4

1 · 10
−3

0 4 8 12 16 20

E
m

ag

τ

Asym M = 1131

Asym M = 4524

Symm M = 1131

Symm M = 2262

Figure 3.9: Fluctuating magnetic energy evolution at large times (left) and oscillatory behavior at

early time (right) in toroidal Alfvénic time units, for asymmetric and symmetric geometry.

Figure 3.10: Streamlines colored with toroidal velocity (uT ) for M = 23 (left) and M = 226 (right)

for the symmetric torus.

The calculations with increasing viscous Lundquist number show an important change

in the fluid flow. The previously small toroidal velocities increase considerably and will
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become more important, in magnitude, than the poloidal plane velocities. For nonzero

nonlinearity, i.e., by increasing M, the vortices start moving in the toroidal direction.

The toroidal velocity increases with M in the two considered geometries. The three di-

mensional velocity streamlines show a substantial change of topology, from dominantly

poloidal to dominantly toroidal flow (see Figs. 3.10 and 3.11).

Figure 3.11: Streamlines colored with toroidal velocity (uT ) for M = 23 (left) and M = 226 (right)

for the asymmetric torus.

The flow evolution is quantified in Fig. 3.12, where we observe that the principal di-

rection of the flow is toroidal if M is raised beyond ∼ 40. The square toroidal velocity

saturates for increasing M at a value of ∼ 80% of the total square velocity for the asym-

metric cross section and at ∼ 60% for the circular profile. This toroidal organization of the

flow is consistent with the tendency of the velocity field to align with the magnetic field,

as is illustrated in Fig. 3.13, where we compute the average (over the toroidal domain)

of the absolute value of the cosine of the angle between the velocity and magnetic field.

This quantity is equal to one if the velocity and the magnetic field are perfectly aligned

or antialigned. The evolution of the ratio 〈u2
T 〉/〈

∣∣u2
∣∣〉 with M shows the same trend as the

alignment between the magnetic and the velocity field.

An important difference is observed between the flows that are generated in the two

geometries. The volume averaged toroidal angular momentum is defined by

〈LT 〉=
1

V

∫

V
RuT dV. (3.16)

For the torus with circular cross section, this quantity is zero to a good computational

approximation (< 10−15). The up-down anti-symmetry of the velocity field is responsible

for this absence of toroidal angular momentum. However, for the torus with asymmetric

cross section this is not the case. There is a symmetry breaking of the flow and the volume

integral of the toroidal velocity is nonzero. In our calculations this can be visualized in

the azimuthally averaged velocity fields in Fig. 3.14. It is more clear for the last case,

at M = 4524, that the positive toroidal velocity occupies a larger part of the poloidal

plane than the negative toroidal velocity. To quantify the amount of dissymmetry in the
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Figure 3.13: Average over the domain of the absolute value of the cosine of the angle between the

velocity field and magnetic field.

flow we present the evolution of the normalized toroidal angular momentum with M (see

Fig. 3.15). This quantity increases with the viscous Lundquist number. This up-down

symmetry effect is in agreement with time-independent computations [51] and also with

gyrokinetic simulations and experiments [16, 15].

Furthermore in Fig. 3.14 we can observe the two counterrotating vortices. They are

still present at higher viscous Lundquist but undergo a deformation and their center is

shifted outwards. The larger toroidal velocities concentrate near the boundaries as well

as the poloidal speeds (this can be seen from the stream function isocontours that tend

to converge near the boundaries). Nevertheless the velocity magnitude is globally less

important for high M. In fact the kinetic energy has a maximum and then decreases if

the viscous Lundquist number is raised (see Fig. 3.16). This behavior is explained by the

decrease of the magnitude of the Lorentz force with the viscous Lundquist number in the

center of the domain. Indeed, the plasma seems to self-organize to a state with a force-

free region in the center, a behavior also observed for straight-cylinder computations at
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Figure 3.14: Azimuthally averaged flow visualizations: toroidal velocity uT and poloidal stream

function contours (solid line positive, dotted line negative contours) for M = 23 (a), M = 1131 (b)
and M = 4524 (c). (d) Toroidal velocity profiles along a vertical cut. The position of these cuts is

indicated in (a), (b) and (c) by a dotted vertical line.
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Figure 3.15: Normalized toroidal angular momentum |〈LT 〉|/LTrms
as a function of M observed in

the tori with asymmetric and symmetric cross section, respectively.

high pinch ratio [26].

The evolution with M of the root mean square (RMS) value of this force is presented

in Fig. 3.17. The spatial distribution of the norm of the Lorentz force vector in the poloidal

plane is visualized for the asymmetric geometry in Fig. 3.18. The vanishing of the Lorentz

force in the core comes from the alignment between the magnetic and current density

fields. A measure giving the alignment between these three-dimensional quantities is the

volume-averaged current helicity defined as

H j =

〈
j ·B

‖ j ‖‖ B ‖

〉
. (3.17)

We observe (Fig. 3.19) that for increasing viscous Lundquist number the global current

density and magnetic field tend to be oriented in the same direction, the quantity in the

figure approaches the unit value. This causes the Lorentz force term to decrease for higher
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Figure 3.16: Kinetic energy as a function of M for the asymmetric and symmetric cross sections.
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Figure 3.17: Root mean square value of the Lorentz force as a function of the viscous Lundquist

number.

M in the center of the domain, the magnitude of the imposed toroidal current density and

magnetic fields remaining constant.

Mainly, the variation of the alignment between j and B occurs in the poloidal plane.

To quantify the alignment among the poloidal current density and the poloidal magnetic

field we compute the volume-averaged absolute value of the cosine of the angle between

these two fields,

〈|cosΦ|〉=
〈 ∣∣jpol ·Bpol

∣∣
‖ jpol ‖‖ Bpol ‖

〉
, (3.18)

where Jpol and Bpol are the projections of J and B on the poloidal plane. This quantity at

low viscous Lundquist is smaller compared to the value of the current helicity at the same

M number (see Figs. 3.19 and 3.20). With increasing viscous Lundquist the cosine of this

angle grows and approaches unity. There is a stronger change in the alignment between

the current density and magnetic field in the poloidal plane. This poloidal alignment

makes the toroidal Lorentz force vanish in the core of the domain.
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(a) (b) (c)

Figure 3.18: Azimuthally averaged vector norm of the Lorentz force for M = 23 (a), M = 1131

(b) and M = 4524 (c).
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Figure 3.19: Current helicity as a function of M for the asymmetric and symmetric cross sections.

Whether or not the Lorentz force term reaches an asymptote at higher M or if a tran-

sition to another state exists remains an open question.

The system is almost axisymmetric around Z but small fluctuations around the toroidally

averaged fields exist, defined as

ũ = u−〈u〉T , B̃
′
= B′−〈B′〉T . (3.19)

The most important normalized fluctuations around the axisymmetric state are in the

velocity field (Fig. 3.21), they are localized at the boundaries (see Fig. 3.23). The evo-

lution of the normalized kinetic and magnetic fluctuations as a function of the viscous
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Figure 3.20: Volume-averaged absolute value of the cosine of the angle between the poloidal

current density (jpol) and the poloidal magnetic field (Bpol).
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Figure 3.21: RMS value of the non azimuthally symmetric velocity fluctuations, normalized by

the total root mean square velocity.
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Figure 3.22: RMS value of the non azimuthally symmetric magnetic fluctuations, normalized by

the total root mean square perturbed magnetic field.
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(a) (b) (c)

Figure 3.23: Azimuthally averaged square velocity fluctuations around the azimuthal mean value

for M = 23 (a), M = 1131 (b) and M = 4524 (c).

(a) (b) (c)

Figure 3.24: Azimuthally averaged square magnetic fluctuations around the azimuthal mean value

for M = 23 (a), M = 1131 (b) and M = 4524 (c).

Lundquist number are presented respectively in Figs. 3.21 and 3.22. For the highest vis-

cous Lundquist, M = 4524 and asymmetric cross section, we have the maximum ratio

ũrms/urms ∼ 0.14. The greatest normalized departure from axisymmetry for the perturbed

magnetic field is also at M = 4524 for the ‘D’ cross section, B̃
′
rms/B′

rms ∼ 0.015. In fact

for the magnetic field, the fluctuations are of the same order of magnitude as the velocity

field, but the magnitude of the perturbed magnetic field is larger, hence the normalized

quantities are smaller. The distribution of the perturbations in the two-dimensional plane

(Figs. 3.23 and 3.24) show the velocity fluctuations mainly concentrated at the bound-

aries. These are the areas where the velocity is peaked (see e.g. velocity profiles Fig. 3.14

(d)) and where the velocity gradients are important. For the magnetic field the fluctua-
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tions are spread in a larger region, they are more important at the high and low field side

of the torus.
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Figure 3.25: Left: kinetic energy evolution. Right: a zoom on the early time instants. Time is

given in toroidal Alfvénic time units.

3.3 INFLUENCE OF THE SAFETY FACTOR ON THE DYNAMICS

The study of the influence of the safety factor q is presented in this section where we

consider only the asymmetric cross section geometry and the transport coefficients are

kept constant (ν = λ = 2 · 10−3). We recall that for all the simulations presented in this

manuscript the magnetic Prandtl number is equal to one, Pr = 1. In this case the viscous

Lundquist number varies because the reference magnetic field used for its calculation

is the imposed toroidal component and to modify the safety factor the magnitude of this

field is changed, as also done in experiments [92, 93]. The parameter q takes four different

values. We recall that the safety factor is defined as the ratio between the wall-averaged

toroidal and poloidal imposed magnetic fields,

q =
rB0T

|wall

R0B0P
|wall

. (3.20)

The values of the viscous Lundquist number associated to each safety factor are presented

in Tab. 3.1.

q 5.7 4.8 3.8 2.9

M 1131 942 754 565

Table 3.1: Corresponding viscous Lundquist number for each safety factor value.

The evolution of the total kinetic energy and the magnetic energy of the perturbation

is similar for all the studied cases (see Figs. 3.25 and 3.26). The main difference is the
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Figure 3.26: Left: perturbed magnetic energy evolution. Right: a zoom on the early time instants.

Time is given in toroidal Alfvénic time units.
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Figure 3.27: Kinetic energy as a function of q.

magnitude of the energies that is higher if the safety factor is small. At the steady state

the dependence of the kinetic energy on the safety factor is visualized in Fig. 3.27.

The growth of the kinetic energy with decreasing q is in agreement with the reduction

of the current helicity value (Fig. 3.28). Hence the Lorentz force term is stronger for a low

safety factor. It is also observed that in the toroidal direction the Lorentz force increases,

since the alignment between the poloidal current density and the poloidal magnetic field is

less important for small q (Fig. 3.29). This variation is smaller compared to the variation

caused by the transport coefficients modification, as shown in Sec. 3.2.

As in the previous section the toroidal velocity dominates, but the ratio 〈u2
T 〉/〈

∣∣u2
∣∣〉

decreases with decreasing q (Fig. 3.30). Also the alignment between the magnetic and

velocity field is less important (inset Fig. 3.30).

An important feature is the change of sign in the volume averaged toroidal angular

momentum, found also in experimental observations [92, 93, 97], when the toroidal mag-

netic field, hence the safety factor, is varied (Fig. 3.31). In our case the averaged angular

momentum changes completely in sign, it passes from negative to positive for increasing
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Figure 3.28: Current helicity as a function of the safety factor q.
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current density (jpol) and the poloidal magnetic field (Bpol).

q. The two-dimensional azimuthally averaged toroidal velocities (Fig. 3.32) show the

increase of the area in which the toroidal velocity is negative when the safety factor is de-

creased. For the lowest value of q that we consider, the vertical cut (Fig. 3.32 (d)) shows

larger velocities and a small downward shift of the position where the toroidal velocity

changes sign. This displacement enlarges the negative velocity area. The growth of the

negative toroidal velocity is better visualized in the cuts along the direction of the big

radius (Fig. 3.33). For decreasing q the velocities tend to be more peaked and near the

center of the torus a region appears where the toroidal velocity is negative. We notice that

the change of sign of the toroidal velocity mainly occurs in the center of the geometry.

Close to the boundaries the toroidal component grows but does not reverse sign.

As presented in the previous section small fluctuations around the azimuthal average

exist. We see in Fig. 3.34 that the magnitude of these fluctuations is relatively insensitive

to the value of the safety factor. The change is just of a few percent for the normalized
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Figure 3.31: Normalized toroidal angular momentum 〈LT 〉/LTrms
as a function of q.

velocity fluctuations. It is larger for the normalized magnetic fluctuations, but it remains

below ∼ 20% (Fig. 3.35). Hence the safety factor variation, in the considered range, does

not increase substantially the non-axisymmetric perturbations.

3.4 INFLUENCE OF THE REVERSAL OF THE IMPOSED TOROIDAL

MAGNETIC FIELD

The simulation with inverted toroidal magnetic field is performed for q = 5.7 and M =
1131. The results show that the velocity reverses sign in the whole domain (Fig. 3.36).

The counterrotating poloidal vortices are unchanged, only the toroidal velocities are af-

fected. In Fig. 3.36 (c) the profiles are exactly symmetric with respect to the vertical axis.

Basically, what happens is that the perturbed toroidal magnetic field reverses its sign and

this generates an inverse poloidal current density. The existing poloidal magnetic field as-

sociated with the inverted poloidal current density field gives an opposite toroidal Lorentz
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Figure 3.32: Azimuthally averaged flow visualizations: toroidal velocity uT and poloidal stream

function contours (solid line positive, dotted line negative contours) for q = 5.7 (a), q = 3.8 (b)
and q = 2.9 (c). (d) Toroidal velocity profiles along a vertical cut. The position of these cuts is

indicated in (a), (b) and (c) by a dotted vertical line.
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Figure 3.33: Toroidal velocity profiles along a horizontal cut, at the center of the domain.

force. Finally, this Lorentz force will make the toroidal velocities reverse in all the do-

main. We can write the three components of the Lorentz force in cylindrical coordinates:





FR = jT BZ − 1
R

∂ (RBT )
∂R

BT ,

FT = ∂BT

∂Z
BZ +

1
R

∂ (RBT )
∂R

BR,

FZ =−∂BT

∂Z
BT + jT BR.

(3.21)

The inversion of the sign of BT transforms the original Lorentz force vector (FR,FT ,FZ)
into (FR,−FT ,FZ). Only the toroidal component is affected. Hence the poloidal velocities

are unchanged but the toroidal velocities are inverted.
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Figure 3.34: Square velocity fluctuations normalized by the total square velocity.
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Figure 3.35: Square magnetic fluctuations normalized by the total square perturbed magnetic field.

4 CONCLUDING REMARKS ABOUT THE GENERATION OF

VELOCITIES IN TOROIDAL GEOMETRIES

In this chapter it was demonstrated numerically, solving the fully nonlinear time-dependent

resistive MHD equations, that in a toroidal geometry, assuming constant transport coef-

ficients, if the imposed toroidal magnetic and toroidal electric fields are irrotational, the

conducting flow inside a torus necessarily moves. The reason for this is that the curl of

the Lorentz force resulting of the imposed fields is nonzero. It follows that the gradient

of a scalar (in this case the pressure) can not balance the equation. Consequently vorticity

is created. This vorticity in the toroidal direction creates poloidal velocities. The poloidal

velocities interact with the imposed toroidal magnetic field creating a perturbation that

gives rise to a poloidal current density. This current density associated with the exist-

ing poloidal magnetic field produces a toroidal Lorentz force. As a consequence toroidal

velocities appear. The angle between the poloidal current density and poloidal magnetic

field plays an important role in the determination of the toroidal velocity direction.
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Figure 3.36: Azimuthally averaged flow visualizations: toroidal velocity uT and poloidal stream

function contours (solid line positive, dotted line negative contours) for imposed positive B0T
(a)

and negative B0T
(b). (c) Toroidal velocity profiles along a vertical cut. The position of these cuts

is indicated in (a) and (b) by a dotted vertical line.

For a low viscous Lundquist number the system tends to produce small toroidal ve-

locities, the dominant flow being a pair of counterrotating vortices in the poloidal plane.

A dramatic change occurs when the viscous Lundquist number is increased. There is a

transition from a dominantly poloidal to dominantly toroidal flow. This transition is in

agreement with the tendency of the velocity field to align with the magnetic field.

Two different toroidal geometries are considered in the present study, one with an up-

down symmetric and the other with an asymmetric cross section. A fundamental differ-

ence exists between both studied cases: the volume-averaged angular momentum is zero

for the symmetric case, while for the asymmetric cross section a finite volume-averaged

angular momentum appears. There is a breaking in the up-down symmetry of the flow

and a toroidal preferred direction emerges. This volume-averaged normalized angular

momentum tends to increase with the viscous Lundquist number.

Nevertheless the kinetic energy decreases with increasing nonlinearity, since the to-

tal magnetic and current density fields tend to align in the center of the domain. The

limitation in the numerical resources prevents the study of this system for larger viscous

Lundquist numbers. It remains an open question if there will be a continuous increase of

the alignment between the magnetic and current density field or if a transition exists.

When the safety factor is decreased while maintaining the transport coefficients con-

stant, the kinetic and fluctuating magnetic energy become higher. The main qualitative

effect is the influence on the toroidal velocity direction. There is a change in the volume-

averaged angular momentum that reverses sign. For low q it is negative and at large safety

factor it becomes positive. Mainly in the center of the domain, for decreasing q, the region

in which the velocity is negative becomes larger, at expense of the region with positive

toroidal velocity. Near the boundaries the toroidal velocity direction remains unchanged.
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The last part of the chapter was dedicated to the influence of the reversal of the toroidal

magnetic field. It is shown that it plays a role only in the toroidal velocities. The reversal

changes the sign of the poloidal current density, that gives rise to the toroidal Lorentz

force. In consequence the toroidal force reverses in the whole volume making the toroidal

velocities reverse their direction compared to the original case.
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IV
MAGNETOHYDRODYNAMICS FOR HIGH

PINCH RATIOS IN TOROIDAL AND

CYLINDRICAL GEOMETRIES

1 INTRODUCTION

The Reversed Field Pinch (RFP) is characterized by pinch ratios bigger than unity. This

device, together with the tokamak and the stellarator, is one of the magnetic fusion con-

figurations that could achieve thermonuclear fusion. A practical advantage of the RFP

as compared to the tokamak geometry is that to confine the plasma the RFP needs a

smaller externally imposed magnetic field. The toroidal field is enhanced through the

self-organization of the plasma in the center, via a dynamo mechanism induced by the

plasma itself, and decreases at the plasma edge. The reduction of the toroidal field can be

very large and the value at the edge can reverse sign.

The dynamo mechanism can be explained if we consider the following simple ex-

ample which we adopted from Escande et al. [31]. Let us consider a wire placed in the

interior of a solenoid (Fig. 4.1). The current in the wire and the magnetic field created by

the solenoid are in the same direction. If this wire is exactly at the geometrical center, it

is in unstable equilibrium, because the currents in the solenoid attracting the wire radially

compensate one another. If this wire is deformed by a small perturbation, it will bend,

forming a helical geometry that will follow the original solenoid. As a consequence there

is a second ‘solenoid’ which is created in the interior of the first one. This second winding

will produce a magnetic field in the same direction as the original in the center, but it will

induce an opposite magnetic field on its exterior. In the center it will therefore enhance
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Figure 4.1: Wire model (top view): (left) initial position of the current-carrying wire (red) sur-

rounded by the solenoid with poloidal current jP and (right) development of the perturbed poloidal

current density, j′P (when the wire in the center is kinked) with enhancement of the axial magnetic

field in the center (+Bz) and decrease at the edge (−Bz).

the magnetic field but near the edges the magnetic field is decreased and can even reverse

sign.

As a consequence of the high pinch ratio, magnetohydrodynamic instabilities such

as the above discussed kink-instability appear in the RFP, which increase the turbulence

and lower the energy confinement performance. Generally this chaotic regime is called

multiple-helicity (MH) state because a multitude of helically extended modes interact.

However in the last decades quasi-single helicity (QSH) states were observed in exper-

iments where the full turbulent regime is avoided and one helical mode predominates

above the others [32, 61, 77, 14, 96]. In the QSH state there is a decrease of magnetic

chaos and the formation of a coherent helical structure within the plasma. The reduction of

particle transport has been observed in QSH states with respect to MH states [34, 87, 37].

Also it has been found that increasing the toroidal current makes the QSH regime more

persistent [62, 57, 56]. The QSH state is responsible for the creation of internal transport

barriers (ITB) that improve the confinement time by a factor of two [23, 85]. It has also

been discovered relatively recently that external transport barriers (ETB) are created for

low plasma densities that increase in 30% the confinement time. The origin of this barrier

is not well understood but it could be related to a shear flow [88].

The majority of numerical studies of the RFP, using the MHD approximation, con-

sider periodic cylindrical geometries, ignoring the influence of the curvature of the mag-

netic field. In the eighties the first MHD calculations were performed using the non-

viscous MHD model (see e.g. [26, 4]) and in the nineties viscoresistive calculations

were performed [102, 101, 100]. In the last decades the viscoresistive MHD model
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has been taken into account using a constant-pressure constant-density approximation

(SpeCyl code) [21, 18, 8, 108]. Also in a cylinder, but using the full compressible viscore-

sistive MHD equations, the effect of the compressibility has been studied for a constant

uniform [79, 80] and nonuniform resistivity [78].

Three dimensional codes solving the MHD equations exist, but there is not yet, at our

knowledge, a complete study of the dynamics of a toroidal magnetofluid in the RFP con-

text. A recent three dimensional code with a toroidal geometry implementation (PIXIE3D)

has been compared with the cylindrical SpeCyl code [9, 20]. Also, a MHD toroidal code

(MIPS) has been used to study the dynamics of the RFP RELAX [66].

In this chapter we study the helical plasma configurations using the viscoresistive

MHD model in a torus and in a periodic cylinder. In general in real experiments the βP

(average ratio of the plasma pressure over the poloidal magnetic pressure, 2〈P〉/B2
P(a)) is

considerably below unity so it is believed that the toroidal outward shift of the magnetic

surfaces is small such that equilibrium and stability are well described in a cylindrical

approximation. Here we perform cylindrical and toroidal simulations to find out if there

are important changes between these two geometries and if the cylindrical approximation

can be justified.

First we discuss, in Sec. 2, the results of simulations in toroidal geometry. We inves-

tigate in some detail the transition from an axisymmetric state towards different helical

regimes in a toroidal geometry. The pinch ratio of the imposed magnetic field will be

varied and we will consider two different viscous Lundquist numbers. For the cylindrical

case (Sec. 3) the self-organisation of the magnetofluid is investigated. As for the toroidal

geometry, the pinch ratio is varied and two viscous Lundquist numbers are considered.

In Sec. 4 a comparison is made between the toroidal and cylindrical results, where it is

shown that even if the two configurations share some characteristics, a fundamental dif-

ference between the two flows exist, in particular when the torus and cylinder results are

compared with experimental data (Sec. 4.2).

2 TOROIDAL SIMULATIONS

In this section we will first briefly illustrate the RFP dynamo effect. Then the transition

from an axisymmetric to a helical state with increasing pinch ratio is discussed. The

toroidal mode energies at the steady state are presented as well as the velocity field topo-

logy and different volume averaged quantities as a function of the pinch ratio. Finally the

time evolution of the different toroidal modes for the velocity field are assessed and the

diversity of dynamics in this system are underlined.

The toroidal geometry has a minor radius a = 0.3π and a big radius R0 = 0.55π ,

the aspect ratio is Γ = R0/a ≈ 1.83 (Fig. 4.2). The size of the periodic box where the

calculations are performed is (2π × 2π ×π). We fix the penalization parameter to η =
5 ·10−4. The resolution for all the toroidal calculations is 1283 grid points and we consider

constant resistivity and viscosity. The dimensionless numbers characterising the system
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Figure 4.2: Toroidal circular geometry.

are four, two of them are the pinch ratio and the reversal parameter,

Θ =
BP(a)

〈BT 〉
, F =

BT (a)

〈BT 〉
, (4.1)

with a the small radius. The remaining two are the viscous Lundquist number and the

magnetic Prandtl number,

M =
CAL

ν
, Pr =

ν

λ
, (4.2)

with CA the poloidal Alfvén velocity, as reference length we take the diameter L = 0.6π ,

ν the viscosity and λ the magnetic diffusivity. We vary the viscous Lundquist number

(M) with constant magnetic Prandtl number (Pr) and evaluate the system as a function of

the pinch ratio at the final state (Θ).

The imposed magnetic field for the toroidal geometry has the same topology as the

one in the previous chapter. The imposed current in the center of the domain at R = R0

(Fig. 4.2) is fixed at, J0 = 1. The poloidal magnetic field is calculated with a precalculation

as presented in Appendix D.

To vary the pinch parameter (Θ) numerically, we modify the toroidal magnetic field.

Here we recall the profile of this quantity,

B0T
∝

R0

R
eT . (4.3)

The imposed poloidal component of the magnetic field is kept constant. For the toroidal

calculations presented in this chapter the reference magnetic field (Bre f ) is the surface

averaged poloidal magnetic field at the boundaries, Bre f = BP(a) = 0.35. This value of

Bre f is invariant for all the toroidal simulations.
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2.1 DYNAMO EFFECT AND TRANSITION TO A HELICAL STATE

The toroidal simulations are started with zero velocity field and zero magnetic perturba-

tions, and we fix the magnetic Prandtl number to Pr = 3. This value of the Prandtl number

is chosen because Pr > 1 is expected to be found in fusion plasmas and in previous nume-

rical studies Pr ∈ [1,20] [18]. However, since the value of the viscosity in fusion plasmas

is not so well defined, this choice should be considered of arbitrary nature and parametric

studies on the influence of the Prandtl number constitute a very interesting perspective of

the present investigation.

As shown in the previous chapter an axisymmetric flow develops, characterized by

two counter-rotating vortices with their vorticity aligned with the toroidal direction. If

the pinch ratio is increased an instability appears. This helical instability deforms the

pre-existing axisymmetric state. This instability was absent in the previous chapter.

The instability consist in the growth of a helical-kink perturbation [31] with a toroidal

mode number n. The value of this mode depends on the considered case: the variation of

the diffusion coefficients and the pinch ratio modifies the value of the dominant toroidal

mode.
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Figure 4.3: Pinch ratio evolution as a function

of the poloidal Alfvén time.
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Figure 4.4: Reversal parameter evolution as a

function of the poloidal Alfvén time.

After a linear phase the instability saturates through nonlinear effects and different

dynamics in the time evolution of the system exist. The mode, that grows at the early

stages of the nonlinear phase, can be damped leaving its place to other modes. Oscillatory

behavior appears for high values of the viscous Lundquist number and pinch ratios, as will

be shown later.

We now present the evolution of the volume averaged quantities for three different

simulations. First we show the evolution of the pinch ratio and the reversal parameter,

respectively, in Figs 4.3 and 4.4. From the Θ and F time evolution we can see the system

reaching a steady state. Fluctuations in this state are present for the highest value of

the viscous Lundquist number and pinch ratio. We note in Fig. 4.4 that at the steady

state we do not have a complete reversal of the toroidal magnetic field at the edge, i.e.,
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Figure 4.5: Perturbed toroidal component of the magnetic field as a function of the poloidal Alfvén

time.

F remains positive. The reversal parameter has a transient period where it is negative

but at the final times it grows and becomes positive for the considered cases. Notice

that the Θ and F time evolution are similar. We can explain the evolution of these two

quantities if we consider the dynamo effect that enhances the toroidal magnetic field.

Fig. 4.5 shows the evolution of the perturbed toroidal magnetic field that is enhanced by

the dynamo mechanism (phenomenon illustrated in Fig. 4.1). The increase of this self-

generated magnetic field decreases the pinch ratio and at the same time increases the F

parameter.

The dynamo mechanism will limit the maximum value that can be reached by Θ.

Numerically, to rise the pinch parameter we decrease the imposed toroidal magnetic field

(B0T
). For B0T

tending to zero, the generated toroidal magnetic field tends to a constant

value. The perturbed toroidal component generated by the dynamo mechanism dominates

the system if B0T
is sufficiently decreased. As a consequence the steady state pinch ratio

reaches an asymptote when the initial pinch ratio tends to infinity†.

Figure 4.6: Velocity streamlines colored with the toroidal velocity for M = 329, Θ = 0.32 (left)

and M = 658, Θ = 1.45 (right).

†An additional effect limiting the reversal of the toroidal magnetic field can be the periodicity condition

imposed by our numerical method and we are currently investigating this. The outcome of the test and

possible solution to the problem will be presented elsewhere.
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Figure 4.7: Ratio of the kinetic energy of the dominant toroidal modes over the total kinetic energy

for the torus geometry, M = 329 (left) and M = 658 (right) as a function of Θ.

The transition to a dominant helical system appears for a pinch parameter superior

to one. This phenomenon is visualized in Fig. 4.6. Here the color of the streamlines,

representing the toroidal velocity, is azimuthally invariant (Fig 4.6 (left)). On the other

hand, a helical deformation in the streamlines appears in Fig. 4.6 (right). This is a transi-

tion from a dominant axisymmetric state to a helical configuration. The streamlines form

two helices, one with positive and the other with negative toroidal velocity. The energy

contained in the different toroidal modes allows us to highlight this transition. In Fig. 4.7

(left) is presented the ratio of the energy of the 0, 3 and 4 toroidal modes over the total

energy, for a viscous Lundquist number M = 329. It is shown that for a pinch ratio in-

ferior to unity the energy is contained in the zero toroidal mode (the axisymmetric field).

For a value of Θ ≈ 1.4 the zero mode is not longer dominant, the energy of the mode

n = 3 contains ∼ 70% of the total energy. For increasing pinch ratio there are two other

states. The first for Θ ≈ 1.8 where the dominant mode is not longer n = 3 but n = 4, with

also ∼ 70% of the total energy. And for the highest pinch parameter (Θ ≈ 2) there is a

regrowth of the n = 3 mode (∼ 70% of the total energy), the energy of the fourth mode

being reduced.

For the highest viscous Lundquist number (M = 658), we have only considered Θ

values larger than one (Fig. 4.7 (right)). As for the previous case we have the toroidal

modes three and four that dominate alternatively. In this case for Θ ≈ 1.45, the dominant

mode is n = 3 with ∼ 75% of the total energy. And for the highest values of the pinch

ratio, Θ ≈ 1.57, we have the n = 4 mode dominating with ∼ 50% of the total energy. For

this last case the energy is spread over a larger number of modes. Whether a completely

turbulent state can be reached at higher values of the viscous Lundquist number remains

an open question.

The helical modes, n = 3 and n = 4, dominating our system are visualized in Fig. 4.8

for different pinch parameter values but constant viscous Lundquist M = 658. In this

figure a positive and a negative isocontour of the toroidal velocity are presented. Three

and four lobes appear respectively, for Θ = 1.45 and Θ = 1.57.

Another visualization is presented in Fig. 4.9, where a perturbed magnetic isocontour
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Figure 4.8: Toroidal velocity isocontours +0.01 (blue), -0.01 (orange) for M = 658, Θ= 1.45 (left)

and Θ = 1.57 (right).

Figure 4.9: Toroidal perturbed magnetic isocontour colored by the toroidal velocity (top view) for

M = 658, Θ = 1.45 (left) and Θ = 1.57 (right).

in the core is colored by the toroidal velocity. For the first figure (left) two opposite

toroidal velocities are clearly visualized as well as the toroidal mode deformation n = 3

in the toroidal magnetic isocontour. For increasing pinch ratio (Fig. 4.9 (right)) the mode

n = 4 dominates the velocity field but with oscillations at the frontier between the positive

and negative toroidal velocities. Now if we look at the shape of the magnetic isocontour,

a correlation between the toroidal velocity pattern and the deformation of the toroidal

magnetic component seems to exist. This isocontour takes a square shape (n = 4) that

corresponds to the dominant mode in the velocity field. Experimentally (in the RFP MST)

similar correlations have been measured between the fluctuation amplitude of the toroidal

magnetic field and the velocity field projected in the direction of the experimental measure

(chord projected) [84].

Taking into account the spectra at the final state, Fig. 4.10 for Θ = 1.45 and Fig. 4.11

for Θ = 1.57, we see that there is clear correlation between the dominant toroidal modes

of the velocity field and the toroidal magnetic field component. The spectrum maximum

68



2 TOROIDAL SIMULATIONS

2 ·10
−5

4 ·10
−5

6 ·10
−5

8 ·10
−5

2 4 6 8 10 12 14 16 18 20

〈û
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Figure 4.10: Toroidal spectrum of the square velocity (left) and toroidal spectrum of the square

toroidal magnetic field component (right) for M = 658 and Θ = 1.45.
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Figure 4.11: Toroidal spectrum of the square velocity (left) and toroidal spectrum of the square

toroidal magnetic field component (right) for M = 658 and Θ = 1.57.

for the different two quantities is located at the same toroidal mode number, n = 3 for

the low, and n = 4 for the high value of Θ. Notice that in Fig. 4.10 the mode n = 1 is

important for the toroidal magnetic field, but is not large for the velocity field. It is not

clear how the interaction between the two fields generates this n = 1 mode. It is probably

a complex nonlinear effect composed of a dynamo action and a Lorentz force feedback.

In Fig. 4.12 the azimuthally averaged toroidal and poloidal components of the velocity

field are visualized for three different values of the pinch parameter and a constant vis-

cous Lundquist number, M = 329. Before the transition, Fig. 4.12 (a), the poloidal flow

is composed of the already presented (see Chap. III) pair of counter-rotating vortices, and

in the poloidal plane four different zones can be distinguished with positive and negative

toroidal velocities. After the transition, Fig. 4.12 (b), the poloidal vortices are consider-

ably enhanced and the toroidal velocity is distributed in just two regions with opposite

toroidal directions. For the highest value of the pinch ratio, Fig. 4.12 (c), the ‘double

smoke ring’ is still present and in the center of the poloidal plane a circular zone emerges
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Figure 4.12: Azimuthally averaged toroidal (colour) and poloidal (vectors) components of the

velocity field for (a) Θ = 0.32 (here vector norm ×10), (b) Θ = 1.44 and (c) Θ = 2.03, for

M = 329.

with small toroidal velocity values. This is a consequence of the helical deformation of

the magnetofluid. In the poloidal velocities we can notice large values close to the bound-

aries. There is a steep poloidal velocity gradient in this region. The double vortex flow

pattern has been experimentally found in the RFX-mod device [10]. In the literature a

flow is shown with poloidal mode number m = 1 with the same shear at the plasma edge

(for the experiment at r/a ≈ 0.75). This steep gradient zone could be related to internal

transport barriers (ITB) that are observed on a statistical basis in RFX-mod at r/a ≤ 0.7
[88]. For the toroidal velocity component, recent measurements have been performed in

the MST experiment that show the toroidal velocity inversion for r/a ∼ 0.5 [30].

The azimuthally averaged perturbed toroidal magnetic field is presented in Fig. 4.13

for three different pinch parameters as in the previous paragraph. In this figure we see,

with increasing Θ, the enhancement of the toroidal field by the dynamo effect. For the
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axisymmetric simulation a very weak toroidal field develops (Fig. 4.13 (a)). For increas-

ing pinch ratio the helical transition occurs and we observe a more important toroidal field

(Fig. 4.13 (b)). In the last image (Fig. 4.13 (c)) the toroidal magnetic field continues to

grow and becomes more peaked in the center.

(a) (b) (c)

Figure 4.13: Azimuthally averaged perturbed toroidal magnetic field for Θ = 0.32 (a), Θ = 1.44

(b) and Θ = 2.03 (c), for M = 329 at the saturated state.
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Figure 4.14: Kinetic energy evolution as a

function of the poloidal Alfvén time.
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Figure 4.15: Evolution of the magnetic energy

of the perturbation as a function of the poloidal

Alfvén time.

2.2 EVOLUTION OF GLOBAL QUANTITIES

The kinetic energy and the magnetic energy of the perturbation are presented, respec-

tively, in Figs. 4.14 and 4.15. The saturation, as well as the oscillations for high viscous

Lundquist and pinch ratio values are visualized. At the steady state the kinetic energy of

the system varies considerably with the pinch ratio (see Fig. 4.16). For increasing values

of Θ the kinetic energy grows at the steady state. We observe that for low values of the

pinch parameter the kinetic energy is more important if the viscous Lundquist number is

low (as also observed in the previous chapter). But for a certain value of Θ (≈ 1.4) the

high viscous Lundquist curve crosses the other curve and the system with lower viscosity

has a larger kinetic energy. Also we notice that after the transition (between Θ = 0.65 and

Θ = 1.44) the kinetic energy increases by a factor of ten (Fig. 4.16, curve M = 329).

The magnetic energy of the fluctuation is calculated at the steady state, and its evo-

lution with the pinch parameter is presented in Fig. 4.17. This energy increases with the
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Figure 4.16: Kinetic energy as a function of the

pinch ratio.
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Figure 4.17: Fluctuating magnetic energy as a

function of the pinch ratio.
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Figure 4.19: Volume averaged current helicity

as a function of the pinch ratio.

pinch ratio. Its magnitude and its growth rate with Θ are large for the higher viscous

Lundquist simulations.

For the case M = 329 we note a large increase of the perturbed magnetic energy

between the first two Θ values.

The root mean square value of the Lorentz force is shown in Fig. 4.18. We observe

that there is not a significant change in its value for increasing pinch ratio and for the

considered viscous Lundquist numbers. There is a slight increase of the magnitude of

the Lorentz force with the pinch parameter. This is compatible with the decrease of the

alignment between the current density and magnetic field with Θ. This misalignment is

stressed in Fig. 4.19 where the current helicity is presented. It is shown that for increasing

pinch ratio the alignment between the magnetic and current density field is less important.

The spatial distribution of the norm of the Lorentz force (Fig. 4.20) shows that for

increasing pinch ratio the central region of the torus becomes force free, as also observed

in the previous chapter. But as stated above the root mean square of this quantity slightly
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grows, and this is because at the boundaries the magnitude of the Lorentz force strongly

increases.
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Figure 4.20: Azimuthally averaged vector norm of the Lorentz force for Θ = 0.32 (a), Θ = 1.44

(b) and Θ = 2.03 (c), for M = 329 at the saturated state.

2.3 TIME EVOLUTION OF THE DIFFERENT TOROIDAL MODES

In the present study we have seen that the energy is distributed over a relatively small

number of modes. In this section we will focus on the analysis of the system when it has

arrived at the saturated state. Generally the simulations show a large variety of behaviors

depending on the choice of the parameters. Small changes in the imposed parameters

can generate significant modifications in the magnetofluid dynamics. With the evolution

of the kinetic energy contained in the different toroidal modes, we want to illustrate the

diversity in the dynamics and the sensibility of the magnetofluid to the variation of the

pinch parameter and the viscous Lundquist number.

The evolution of different mean square toroidal spectra is presented in Fig. 4.21 for

different pinch ratios and fixed M = 329. Here the transition is clearly visible, it occurs

between the cases Θ = 0.649 and Θ = 1.437. The first two figures (at the top) show no

fluctuations and the zero toroidal mode is at least two orders of magnitude bigger than the

second largest. For Θ = 1.437 the zero mode is not longer dominant. If we look at this

figure the axisymmetric mode (n = 0) shows a non oscillatory behavior unlike the other

modes that oscillate with a large time period. The dominant mode n = 4 alternates with

others and at the final time a steady state can be suspected.

The dynamics of the magnetofluid for a higher pinch parameter (Θ = 1.820) are quite

different. For the early times the system oscillates importantly and then for a time τ ≈ 700

(in poloidal Alfvén times) the system is completely steady, all the temporal oscillations

are damped. A similar phenomenon appears for the two highest values of Θ presented in

Fig. 4.21. The system oscillates strongly and then settles into a quiet steady state.

For increasing viscous Lundquist number (M = 658) a different behavior is present

(see Fig. 4.22). After the transition to a helical state between Θ = 1.227 and Θ = 1.454

the system starts to strongly oscillate. Only for the case Θ = 1.454 we have a similar
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Figure 4.21: Time evolution of the kinetic energy contained in the first toroidal modes for M = 329

and Pr = 3.

behavior as presented previously: at early times we have strong oscillations followed by a

relatively calm stationary state. For the rest of the cases, with large Θ, the oscillations that

started in the early times are not damped and a strongly fluctuating steady state develops.
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Figure 4.22: Time evolution of the kinetic energy contained in the first toroidal modes for M = 658

and Pr = 3.

Notice also the change in the dominant toroidal mode: after the instability the n = 3 mode

holds the highest energy value but for the last oscillating three cases the dominant mode

is n = 4.
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To quantify and compare the oscillations in the system we compute the standard de-

viation of the kinetic and magnetic energies in the saturated state (see Fig. 4.23). For

both energies the standard deviation for the biggest viscous Lundquist number is one or

two orders of magnitude bigger than for the low viscous Lundquist number. The figure

also shows a transition with increasing pinch ratio. For a particular value of Θ there is a

strong increase in the value of the standard deviation (at least one order of magnitude).

This threshold is at the same position for the kinetic and magnetic energies. Its value is

Θ ≈ 1.9 for M = 329 and Θ ≈ 1.55 for M = 658.
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Figure 4.23: Temporal standard deviation of the kinetic (left) and perturbed magnetic energy

(right) at the saturated state for the torus geometry.

2.4 SUMMARY OF THE TOROIDAL SIMULATIONS

In this section we have presented the transition of the toroidal magnetohydrodynamic flow

between an axisymmetric and a helical state. This transition appears for increasing pinch

ratio and sufficiently large viscous Lundquist and Prandtl numbers. The helical state is

characterized by different toroidal modes that dominate the system depending on the con-

sidered parameters. The kinetic and perturbed magnetic energies increase considerably

when the instability is triggered. The root mean square average of the Lorentz force is

almost invariant but its spatial distribution changes considerably. For increasing pinch

ratio at the center of the domain a force free region appears but at the edge of the torus

the magnitude of this force is considerably enhanced.

The analysis of the time evolution of the mean square velocity for each toroidal mode

displays a complex behavior. Depending on the Θ parameter and the viscous Lundquist

number the dynamics change dramatically. For a low M a non oscillatory steady state is

obtained at the final times. On the other hand for the biggest viscous Lundquist numbers,

strong oscillatory dynamics appear. This state is turbulent in the sense that we observe

chaotic spatio-temporal fluctuations involving different modes, but the dynamics is still

dominated by a single toroidal mode. It is therefore a quasi-single helicity state [32]. It is

76



3 CYLINDRICAL SIMULATIONS

still an open question if multiple helicity states will be obtained with increasing viscous

Lundquist number.

3 CYLINDRICAL SIMULATIONS

In this section the helical states of a cylindrical magnetofluid are presented. We will

roughly consider the same quantities as in the preceding section on the toroidal simula-

tions. This will allow us to highlight the differences and similarities between the dynamics

in the two geometries. First the analysis of the dominant axial modes and the study of the

flow topology as a function of the pinch ratio are carried out. Then the global quantities

varying with Θ are shown. Finally the time evolution of the axial modes is analysed.

The imposed magnetic field for the cylinder is helical. It is composed of a poloidal

linear magnetic field (B0P
(r)) and a constant axial magnetic component (B0z

) (Fig. 4.24).

The linear profile for the poloidal magnetic field comes from an imposed axial constant

electric field in a system with constant resistivity (see Chap. II Sec. 5.2 and [102]). The

profile of the poloidal magnetic field is the following,

B0P
(r) =

σE0z
r

2
. (4.4)

The value of this field is fixed at the boundary of the cylinder and it is kept constant,

B0P
(a) = 0.32 (we recall that a is the cylinder radius). The reference magnetic field for

the cylindrical calculations is fixed to Bre f = B0P
(a) = 0.32.

To vary the pinch ratio we modify the value of the axial magnetic field (B0z
) and the

poloidal component is constant for the considered simulations. The initial velocity field is

a small perturbation. It is a white noise with kinetic energy ≈ 4.3 ·10−7. This perturbation

is necessary to trigger the helical instability. The perturbed initial magnetic field is zero.

Note that no perturbation was needed in the toroidal geometry where the spontaneous

appearance of the n = 0 mode allowed to trigger the transition.

The cylinder has a radius a = 1 and height Lz = 4π , the curvature effects are neglected

which is the major difference with the toroidal case. This corresponds to a “straight torus”

where the aspect ratio, major radius over minor radius is Γ = 2. The size of the periodic

box where the calculations are performed is (0.8π ×0.8π ×4π). We fix the penalization

parameter to η = 5 ·10−4. The resolution for all the cylindrical calculations is 1283 and we

consider for both cases constant resistivity and viscosity. We vary the viscous Lundquist

number (M) and we consider two Prandtl numbers (Pr). We evaluate the system as a

function of the pinch ratio at the final state (Θ). The dimensionless numbers characterizing

the dynamical system are defined as follows,

M =
CAL

ν
, Pr =

ν

λ
, Θ =

BP(a)

〈Bz〉
, F =

Bz(a)

〈Bz〉
, (4.5)
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with CA the poloidal Alfvén velocity. With respect to the toroidal simulations the main

difference is the toroidal magnetic field which has been replaced by the axial magnetic

field Bz. As a reference length we take the diameter L = 2, ν is the viscosity, λ the

magnetic diffusivity and a is the radius of the cylinder.

B0z

B0P

Figure 4.24: Scheme of the helical magnetic field imposed for the cylindrical simulations.

The periodic cylindrical simulations are performed for various pinch ratios and two

viscous Lundquist numbers, as in the previous section. We take into account the following

dimensionless numbers M = 634 with a magnetic Prandtl number Pr = 3 and M = 1902

with Pr = 2. As in the previous section this choice is physically quite arbitrary but allows

for a numerical investigation of a wide range of different pinch ratios.
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3.1 HELICAL FLOWS

The time evolution of the reversal parameter and the pinch ratio are presented in Figs. 4.25

and 4.26 respectively. The two quantities reach an asymptote, and there is a final steady

state. For the highest viscous Lundquist number (M = 1902) there exist oscillations in the

saturated state. This effect is quite similar as the one found in the toroidal simulations.

The F parameter evolution shows a decrease for the early times followed by a regrowth.

This is linked to the dynamo action that enhances the axial magnetic field (see Fig. 4.27).

For the cylindrical case a bigger viscous Lundquist number value (M = 1902) is consid-

ered than for the study of the toroidal geometry. For this large M a reversal of the toroidal

magnetic field is found if the the pinch ratio is increased sufficiently (see Fig. 4.26). The

increase of the viscous Lundquist number seems to be important to make the toroidal

magnetic field reverse at the edge.
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Figure 4.27: Perturbed toroidal component of the magnetic field as a function of the poloidal

Alfvén time.

As in the previous toroidal study, the flow in the cylinder has a transition towards a

helical configuration. The difference is that the state preceding the transition is not longer

a toroidally invariant state (in the case of a cylinder we would say z-invariant or axially

invariant state) but it is a zero velocity field, also called ‘copper wire’ solution [102].

After the transition a helical deformation of the magnetofluid appears. It is characterized

by different axial mode numbers (kz). For the majority of studied cases the dominant axial

mode is kz = 4. For some cases higher dominant modes are present such as, kz = 5 and

kz = 7.

In Fig. 4.28 the ratio of the energy contained in the axial modes 0, 4, 5 and 7 over

the total energy is presented as a function of the pinch ratio and for two different viscous

Lundquist numbers. In both cases the zero axial mode has a negligible fraction of the total

energy for all the pinch ratio values considered.

For the low viscous Lundquist number, M = 634 (Fig. 4.28 (left)) there are always

one or two modes that possess more than 30% of the total energy. Therefore this system

is dominated by a few helical modes. If M = 1902 (Fig. 4.28 (right)) at low pinch ratio
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Figure 4.28: Ratio of the kinetic energy of the dominant modes over the total kinetic energy for

the cylindrical geometry as a function of Θ, M = 634 (left) and M = 1902 (right).

Figure 4.29: Axial velocity isocontours +0.011 (blue) and -0.011 (orange) for Θ = 2.1 (left) and

Θ = 2.8 (right), for both cases M = 634.

(Θ = 0.9) the mode kz = 4 dominates clearly with more than 50% of the total energy.

Then, for a pinch ratio greater than 2.2, the energy of the considered modes converges,

in each mode the energy is below 20% of the total kinetic energy. This means that the

energy spectrum is more flat and we have a state that could be described as a multiple

helicity state.

To illustrate these helical states we show in figure 4.29 a positive and a negative iso-

contour of axial velocity for two different values of the pinch parameter. For the case with

Θ = 2.1 the fourth axial mode dominates the final state. On the other hand for Θ = 2.8
the dominant mode is kz = 5. The two axial velocity isocontours share the same magni-

tude but are in opposite directions. These oppositely signed isocontours have a similar

topology, and they are separated by a short axial distance.

As for the toroidal simulations there is a correlation between the helical deformation

of the perturbed axial magnetic field and the dominant toroidal velocity modes. This is

visualized in Fig. 4.30 where we present a perturbed toroidal magnetic isocontour colored

by the axial velocity. In this figure the deformation of the magnetic field (the shape of the
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Figure 4.30: Axial perturbed magnetic field isocontour colored by the axial velocity for M = 634,

Θ = 2.1 (left) and Θ = 2.8 (right).

isocontours) is well correlated with the change of sign of the axial velocity (indicated by

the color of the isocontours).
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Figure 4.31: Axial spectra of the square velocity field (left) and of the axial component of the

perturbed magnetic field (right) for M = 634 and Θ = 2.1.

If we now look at the kinetic and axial magnetic spectra (Figs. 4.31 and 4.32) we

notice that the maximum values are located at the same axial mode numbers. In the case

with Θ = 2.1 (Fig. 4.31 (left)) the dominant mode for the kinetic field is kz = 4 followed

by the third mode kz = 3. For the axial magnetic field (Fig. 4.31 (right)) the dominant

mode is kz = 3 but the second in magnitude is kz = 4. The same two dominant modes in

the system appear both in the kinetic and in the axial magnetic fields spectra.

For a larger value of the pinch ratio (Θ = 2.8) the similarity between the kinetic and

magnetic spectra is more pronounced (see Fig. 4.32). The dominant and the secondary

modes are similar. The biggest axial modes correspond to small values of kz, varying from

kz = 3 to kz = 5, with a strong predominance of the fifth mode for the two considered

fields.
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Figure 4.32: Axial spectra of the square velocity field (left) and of the axial component of the

perturbed magnetic field (right) for M = 634 and Θ = 2.8.

(a) (b)

(c)

Figure 4.33: Axially averaged axial (colour) and poloidal (vectors) components of the velocity

field for (a) Θ = 0.90 , (b) Θ = 1.88 and (c) Θ = 2.70, for M = 1902 at the saturated state.
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The velocity field has helical perturbations and varies as a function of the pinch ratio.

To illustrate this variation we take at one instant, in the steady state, the average in the

z direction of the axial and poloidal plane velocities. The Fig. 4.33 shows this velocity

average, two distinct flow topologies as a function of Θ can be distinguished. For the low-

est value of the pinch parameter (Fig. 4.33 (a)) the axial average shows small velocities

compared to the others two figures ((b) and (c)). This is a consequence of the strong dom-

inance of the axial mode kz = 4 for the case (a). It was shown in Fig. 4.28 that the energy

contained in the fourth mode for the pinch ratio Θ = 0.9 is almost 60% of the total energy,

so that we have a laminar quasi-single helicity state. Previously we saw that a positive

axial velocity with a helical structure comes along with a negative one (Fig. 4.29). In this

laminar helical state, the axial averaging adds both contributions up to zero.

The flow topology of the cases (b) and (c) in Fig. 4.33 is similar but its axially average

is qualitatively different. There exist positive and negative axial velocity regions, but the

flow is more chaotic for the largest value of the pinch ratio (Θ = 2.7). A central circular

zone can be distinguished where the flow is oriented in one axial direction and where the

poloidal velocities are relatively small.

3.2 EVOLUTION OF GLOBAL QUANTITIES

The time evolution of the kinetic and perturbed magnetic energy are presented in Fig. 4.34

for a viscous Lundquist number M = 1902. There is a similar growth in both quantities

when the instability is triggered. The increase in the pinch parameter make the two en-

ergies oscillate. At the saturated state there are fluctuations for the calculations with

Θ = 1.88 and Θ = 2.70.
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Figure 4.34: Evolution of the kinetic energy (left) and of the perturbed magnetic energy (right) for

the cylindrical geometry as a function of the poloidal Alfvén time, M = 1902 and Pr = 2.

The evolution of the kinetic and perturbed magnetic energy with the pinch parameter

for the two considered M numbers is almost linear (Fig. 4.35). The kinetic energy for the

largest value of Θ is four times bigger than for the lowest. The influence of the viscous

Lundquist number is not very important in the evolution of the kinetic energy. On the

83



IV MAGNETOHYDRODYNAMICS FOR HIGH PINCH RATIOS IN TOROIDAL AND CYLINDRICAL GEOMETRIES

other hand in the perturbed magnetic energy the computations show different evolutions

depending on the considered M number. There is a linear evolution but at high pinch ratio

the energy for M = 1902 is twice as big as for M = 634. The dynamo action seems to be

stronger for large viscous Lundquist values. Given that the kinetic energy is comparable,

this seems logical since the magnetic perturbation will be more smoothened out by higher

diffusion at lower viscous Lundquist number.
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Figure 4.35: Evolution of the kinetic energy (left) and of the perturbed magnetic energy (right) for

the cylindrical geometry as a function of the pinch ratio.
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Figure 4.37: Current helicity as a function of

Θ.

The evolution in the kinetic and perturbed magnetic energies shows the same tendency

as the evolution of the root mean square of the total Lorentz force in the volume (see

Fig. 4.36). The Lorentz force has a linear evolution with Θ, and there is a growth of

∼ 50% between the lowest and the highest pinch parameter value.

The current helicity is presented in Fig. 4.37. This quantity is far from unity, indicating

the absence of alignment between the total magnetic and current density fields. Both fields

have a tendency to align with increasing pinch ratio, as indicated by the current helicity

value that grows, but this change is relatively small.
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The spatial distribution of the norm of the Lorentz force is presented in Fig. 4.38 for

three different pinch ratios and constant viscous Lundquist number (M = 1902). As for

the toroidal simulations the field tends to be force free in the center of the geometry. There

is also an important increase of the value of its magnitude near the boundaries. Notice

also that for the case with Θ = 2.7 helical perturbations in the center of the domain are

visualized. These will probably average out if in addition to the axial average a time

average would be applied.

(a) (b) (c)

Figure 4.38: Axially averaged vector norm of the Lorentz force for Θ = 0.90 (a), Θ = 1.88 (b)
and Θ = 2.70 (c), for M = 1902 at the saturated state.

3.3 TIME EVOLUTION OF THE DIFFERENT AXIAL MODES

The evolution of the square velocity for the different axial mode numbers is presented

in Fig. 4.39 for M = 634 and in Fig. 4.40 for M = 1902. The axial mode kz = 0 is not

presented because for all the considered simulations the square velocity magnitudes for

this mode are several orders of magnitude smaller than for the other modes exposed here.

In the first figure (Θ = 0.93) there is clear temporal frequency that dominates the

system with a constant period of ∼ 100 poloidal Alfvén unit times. The dominant modes

in this case are: kz = 4 and kz = 5. For increasing pinch ratio the temporal frequency

vanishes and there is a steady predominance of the fourth axial mode (Θ = 2.09).

With a further increase in the pinch ratio (Θ = 2.76) the dominant mode changes, it is

not longer kz = 4 but kz = 5. For the largest value, Θ = 3.16, a higher mode (kz = 7) starts

dominating the system together with the lower mode, kz = 4.

The system at this viscous Lundquist number shows dynamics different from the

toroidal geometry. The mode kz = 4 is only one of the dominant modes. A difference

with the torus case is the appearance of higher mode numbers such as kz = 5 and kz = 7.

For the present viscous Lundquist number and pinch ratios there are no chaotic temporal

oscillations.

Now if we look at the time evolution of the axial modes for the highest viscous

Lundquist number (M = 1902) completely different dynamics appear (Fig. 4.40). For
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Figure 4.39: Time evolution of the kinetic energy contained in the first axial modes for M = 634

and Pr = 3.

the low pinch parameter considered (Θ = 0.90) the dynamics are dominated by the fourth

mode. However if the pinch ratio is increased oscillations around the saturated state ap-

pear (Θ = 1.88). For this case the dominant mode is still kz = 4, but it has an oscillatory

behavior along with the others toroidal modes.

For the highest pinch ratios (Θ = 2.38 and Θ = 2.70), oscillations are presented for a

large spectrum of modes. The difference is that the dominant mode is not unique anymore,

the amplitudes of the oscillations are larger and, in time, different modes possess the

biggest kinetic energy. The dominant axial modes are 4, 5, 6 and 8 for the case with

Θ = 2.38. For the greatest pinch parameter (Θ = 2.70) the dominant ones are 4, 5 and 7.

The kinetic spectrum becomes flatter and we can say that a fully turbulent state starts to

emerge.
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〈û
2
〉

τ

kz = 1

kz = 2

kz = 3

kz = 4

kz = 5

kz = 6

kz = 7

kz = 8

Θ = 1.88

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0 200 400 600

〈û
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Figure 4.40: Time evolution of the kinetic energy contained in the first axial modes for M = 1902

and Pr = 2.

4 COMPARISON BETWEEN THE RESULTS IN TOROIDAL

AND CYLINDRICAL GEOMETRY

4.1 INTERCOMPARISON OF THE SIMULATIONS

The two studied geometries show similarities in the final dynamics of the magnetofluid.

Both cases at the final times develop helical configurations if the pinch ratio is sufficiently

increased, and the fourth toroidal (or axial) mode prevails in the majority of computed

helical cases.

The fundamental difference appearing between the two geometries is the absence of

the zero mode for the cylindrical cases. For the toroidal geometry, at low pinch parameter,

the flow is an axisymmetric velocity field that with increasing Θ has a transition to a

state, where a dominant helical flow is superposed on the original axisymmetric field.
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Figure 4.41: Torus: time and azimuthally aver-

aged toroidal velocity for M = 658, Pr = 3 and

Θ = 1.57.

Figure 4.42: Cylinder: time and axially aver-

aged axial velocity for M = 1902, Pr = 2 and

Θ = 1.88.

To illustrate the difference between the flow in the cylinder and the torus we take one

simulation in each geometry. For the velocity field we perform a time average at the

steady state and then a second spatial average in the azimuthal direction for the toroidal

geometry and in the axial direction for the cylindrical case. A time average is performed

because for both considered cases at the steady state we have an oscillatory evolution

of the magnetofluid. The image resulting of this average is presented in Fig. 4.41 for

the toroidal geometry (M = 658, Pr = 3 and Θ = 1.57) and in Fig. 4.42 for the cylinder

(M = 1902, Pr = 2 and Θ = 1.88). In the toroidal result we can visualize clearly the two

axisymmetric regions with opposite toroidal velocity. The maxima are located near the

boundaries and surround a circular region with small toroidal velocity. On the other hand,

in the cylindrical case, the time and axial average give an axial velocity field which is

negligible compared to the toroidal case.
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Figure 4.43: Ratio of the zero (toroidal or axial) mode kinetic energy over the total kinetic energy

for the toroidal and cylindrical geometries as a function of Θ.

Another way to apprehend this difference between the toroidal and cylindrical flow is
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to see the ratio of the kinetic energy of the zero mode over the total kinetic energy (see

Fig. 4.43). For M = 329 in the toroidal configuration the energy is mainly concentrated

in the zero toroidal mode at low pinch ratio, after the transition between Θ = 0.65 and

Θ = 1.44 the zero mode energy falls but does not reach a negligible value. The same

behavior is observed for the toroidal case with M = 658, where for the greatest Θ the

energy in the zero toroidal mode is small, but still constitutes several percent of the total

kinetic energy. For the cylindrical case for all the considered pinch ratios the energy of

the zero axial mode is always negligible compared the other modes of the spectrum. It is

always inferior to 1.2% of the total energy.

The time evolution of the kinetic energy also shows a different trend. For the toroidal

case rapidly a kinetic energy appears at the poloidal Alfvén time τ = 1 when the axi-

symmetric velocity field emerges. Subsequently the helical instability arises and makes

the kinetic energy increase around τ = 5. For the cylinder case we have also the instability

that develops after τ = 5 but before that there is no increase of the kinetic energy, the

energy remains below 10−5. This is the energy of the initial perturbation that decays to

zero if the threshold of the helical instability is not reached.
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Figure 4.44: Kinetic energy evolution at the early times for the toroidal (left) and the cylindrical

geometry (right).

4.2 COMPARISON WITH EXPERIMENTAL DATA

The numerical results are compared to experimental data of three different RFP devices.

The first experimental data comes from the REPUTE experiment, that is described in

[106, 107], the second set of data is the RFP ZT-40M [106, 29] and the third is from the

device RELAX [43]. This last experiment has a low aspect ratio, Γ= 2, close to the aspect

ratio used in the present simulations. This device has the particularity to allow Θ to be

greater than two, whereas for the majority of RFP experiments the pinch ratio is around

1.5. In RELAX a distinctive deep-reversal configuration of the toroidal magnetic field is

found where the flow is characterized by a low level of fluctuations [43, 44]. In Fig. 4.45

the numerical and the experimental results are presented in the Θ−F plane. We also show
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the theoretical curve found by Taylor [105] that has been recently critically reviewed in

[19] with respect to its relevance to the RFP dynamics.

From the figure we can see that the numerical calculations give similar results com-

pared to the RFP experiments in the Θ−F plane: we have the decrease of the F parameter

with the increase of the pinch ratio (Figs. 4.45 and 4.46). The reversal of the toroidal mag-

netic field BT for the considered experiments occurs around the same value, for Θ ≈ 1.5.

The numerical calculation that fits the best the experiments is the one performed for a

toroidal geometry with Pr = 3 and viscous Lundquist number M = 658. In this figure

we note that the geometry and the viscous Lundquist number play an important role in

the evolution of the reversal parameter F with Θ. We see that increasing the viscous

Lundquist number, the value of Θ, that corresponds to F = 0, decreases.
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Figure 4.45: Field reversal parameter F as a function of the pinch parameter Θ for different viscous

Lundquist numbers, Pr = 3 for the toroidal simulations and for the cylindrical case with M = 634

and Pr = 2 for the cylindrical calculation with M = 1902. Also experimental data of three RFP

devices.

It seems that, using the toroidal geometry and increasing sufficiently the viscous

Lundquist number as well as the magnetic Prandtl number, we fit better the experimental

data. We do not know at present whether we could get a magnetic toroidal reversal at the

torus edge for high enough values of M. In this study the computational resources were

not sufficient to carry out higher resolution computations in order to investigate higher

values of the Lundquist and Prandtl numbers. It will be possible in a close future to per-

form such simulations and to check if we can reach the region, in parameter space, where

the toroidal magnetic field reverses.
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Figure 4.46: Field reversal parameter F as a function of the pinch parameter Θ for different viscous

Lundquist numbers, Pr = 3 for the toroidal simulations and for the cylindrical case with M = 634

and Pr = 2 for the cylindrical calculation with M = 1902.

5 CONCLUDING REMARKS ABOUT THE TOROIDAL AND

CYLINDRICAL SIMULATIONS

The toroidal and cylindrical simulations carried out in the present study help to understand

the similarities and differences that appear between these two geometries. The helical in-

stability appearing for increasing pinch ratio is quite similar for both cases. Generally, if

the viscous Lundquist number is not too important, a single helical mode dominates the

system, so that we are close to the quasi-single helicity state found in experiments. For

increasing viscous Lundquist number an oscillatory steady state is found in both geome-

tries. A turbulent state appears for the cylindrical case at large M number and pinch ratio.

It can be expected that a similar turbulent state will appear in the toroidal configuration if

the viscous Lundquist number is sufficiently increased.

The fundamental qualitative difference between the cylinder and the torus is the axi-

symmetric or axially invariant flow that disappears in the cylindrical configuration. The

toroidally invariant poloidal flow is composed of two counterotating vortices. This flow

topology has been found experimentally [10], and in a straight cylinder this important

characteristic of the plasma dynamics is lost.

In summary, despite some qualitative similarities between the dynamics in the two

geometries, we stress that quantitatively the differences are quite large. We believe that the

curvature of the toroidal geometry needs to be taken into account to correctly reproduce

the experimental flow measurements.
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V
CONCLUSION

The objective of this thesis project was to study the dynamics of a magnetofluid in a

toroidal geometry by the means of the incompressible, isothermal, viscoresistive magne-

tohydrodynamic model with constant transport coefficients. Using this simplified model

many characteristics of a real fusion plasma are not taken into account. Hence we stu-

dy the dynamics of a plasma without many of its complexities. The advantage of this

approach is that basic phenomena can be easily identified. Naturally more realistic char-

acteristics could be introduced later on, one at a time, and a separation of the different

phenomena that influence a more realistic plasma dynamics could then be highlighted. We

believe that, in this way, a better understanding of the dynamical system can be achieved.

First, in Chap. II, a novel numerical method to solve the MHD equations in toroidal

geometries is presented, where a forcing term, added to the Navier-Stokes and the mag-

netic induction equations, allows to take into account Dirichlet boundary conditions in a

pseudo-spectral algorithm. The advantage of the method is that the considered geome-

try can easily be modified. As an example, in this manuscript the MHD equations were

solved in different toroidal and cylindrical configurations.

In Chap. III, where we applied this method to investigate the behavior of MHD in

toroidal geometry, we showed that the presence of an irrotational toroidal electric and

magnetic field in a toroidal configuration automatically produces velocities even in the

absence of MHD instabilities. Therefore under the assumptions we used, no static equili-

brium is possible. If one would like to describe toroidal plasma dynamics as perturbations

around an equilibrium state, this state must therefore be necessarily dynamic. The velo-

cities for high values of the viscosity and resistivity are mainly located in the poloidal

plane, but for increasing nonlinearity and for a large safety factor the toroidal velocity

component considerably increases and dominates the dynamics. Also it is observed that

if an up-down asymmetric cross section of the torus is considered, a net toroidal angular



V CONCLUSION

momentum appears, a feature which is also observed in experiments.

For a toroidal magnetofluid, where the imposed helical magnetic field is characterized

by a small safety factor (or large pinch ratio), more complex dynamics are found. In this

case a transition from an axisymmetric flow field to a helical configuration is observed.

This helical topology resembles the quasi-single helicity state found in RFP experiments.

For increasing nonlinearity and pinch ratio a transition to a fully turbulent system can

be achieved. It is shown, that even though some similar features are present in both, the

cylindrical and toroidal geometry, important differences exist between the flow topology

observed in them, both qualitatively and quantitatively. Also the comparison with experi-

mental data shows a better agreement if the toroidal geometry is considered.

PERSPECTIVES

The physics of toroidally confined fusion plasmas is very rich and almost every aspect of

it can constitute a research field on its own. The MHD model we use can be improved

in many ways to approach reality. However, one should be careful not to exaggerate

this complexification. Indeed the goal of a description such as MHD is not, in our opin-

ion, to build a numerical fusion reactor but to isolate key physical mechanisms that can

help to better understand the plasma dynamics. This understanding can then guide ex-

perimentalists in interpreting experimental results in order to improve magnetic fusion

configurations. Considering too many features at once can perhaps diminish the gap be-

tween numerical and experimental observations, but does not necessarily lead to better

understanding. With this in mind we propose here several perspectives, favouring the

ones which are most simple to consider and which, possibly, have the biggest impact on

the observed plasma behavior.

In the present manuscript, the magnetic Prandtl number was kept close to unity. Exper-

imentally it is difficult to assess the real viscosity value of a plasma, so it seems interesting

to perform a parametric study varying the Prandtl number over several orders of magni-

tude to quantify its influence on the dynamics of the system. This is one of the practically

most simple perspectives since it does not need any modification of the numerical code,

as long as sufficient numerical resources are available.

The influence of the shape of the domain on the RFP dynamics and in particular on

the appearance of quasi-single helicity states deserves definitely further investigation.

The model considered in the present study can further be developed. The first step

could be the introduction of a profile for the resistivity. In this way, the dependence of the

resistivity on the temperature can be taken into account. A more realistic way to include

the influence of non-uniform transport coefficients is to include an evolution equation for

the temperature. This, and including the effects of finite compressibility, will necessitate

a non negligible effort, notably with respect to the introduction of the penalization term

in the energy and in the continuity equations [55].
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Another perspective, which is not directly related to the field of magnetic fusion, is the

use of the numerical code to study less complex plasma experiments that can be used for

a more fundamental understanding of the plasma physics. An example is the preliminary

study of a plasma dynamo presented in Appendix F.
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A
THEORETICAL ANALYSIS OF THE

HERMITE REGULARIZATION

1 ANALYSIS OF A MODEL PROBLEM

In this section a theoretical analysis of the one-dimensional penalized Poisson equation

imposing Dirichlet boundary condition is conducted, and the order of convergence yielded

by the Hermite regularization method will be characterized and compared to the classical

penalization.

The unpenalized problem in [-1;0] reads:
{
−u′′ = 0

u(−1) = 0, u(0) = 1
2

The penalized problem is solved in the interval [-1;1]:
{
−u′′ =− χ

η (u−uwall)

u(−1) = 0, u(1) = uwall(1)
with χ =

{
0 in Ω f = [−1;0[

1 in Ωs = [ 0;1]
(A.1)

At the fluid-solid interface we impose the continuity condition us(x) = u f (x), u′s(x) =
u′f (x) for x = 0.

For the classical penalization, we set uwall =
1
2

and thus uwall(1) =
1
2
. The solutions are





u f (x) = a(x+1), us(x) = K1e
x√
η +K2e

−x√
η + 1

2

with a = α(e2
∗−1)

2(α−1−e2∗−e2∗α)
+ 1

2

and K1 =
−α

2(α−1−e2∗−e2∗α)
, K2 =

αe2
∗

2(α−1−e2∗−e2∗α)
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where α =
√

η and e∗ = e
1√
η . The subscripts ‘s’ and ‘f’ stand for the solid and the fluid

domain, respectively.

For the penalization with the regularization method, the interpolating polynomial must

be defined first. An Hermite interpolation consists in finding a polynomial which fits two

separate points where the values of the function and of a chosen number of derivatives

are imposed. In our case the Hermite polynomial H(x) must match the values of u and its

first derivative at x = 0 and yields H(1) = H ′(1) = 0 at x = 1. As the exact solution of the

unpenalized problem is u(x) = x+1
2

, the expression of the third degree Hermite polynomial

can be easily derived:

{
H(0) = 1

2
, H ′(0) = 1

2
, H(1) = 0, H ′(1) = 0

H(x) = 3x3

2
− 5x2

2
+ x

2
+ 1

2

In equation (A.1), H(x) is set as uwall and, with the same notations as before, the solutions

are





u f (x) = a(x+1), us(x) = K1e
x√
η +K2e

−x√
η +H(x)+(9x−5)η

with a = 14α3(1−e2
∗)+8α2e

α−1−e2∗−e2∗α
+ 1

2
−5α2

and K1 =
14α3+4α2e∗(α+1)

α−1−e2∗−e2∗α
, K2 =

−14α3e2
∗−4α2e∗(α−1)

α−1−e2∗−e2∗α

Figure A.1 shows the exact profiles of the solution of the Poisson equation in [-1,0[

and the penalization term in [0,1]. The solution of the penalized problem should converge

to these profiles when η → 0.
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Figure A.1: Exact solution with the different penalization methods. With the regularization

method, the solution is C1 on the whole domain.

These solutions are compared to the exact solutions u f =
x+1

2
and us =

1
2

in Fig. A.2

for different values of the penalization parameter η . It can be seen that both converge

rapidly to the theoretical solutions when η becomes smaller.
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Figure A.2: Solutions of the penalized problem for various values of η for the classical (left) and

regularized penalization method (right).

From Fig. A.3, the same can be observed for the first derivative (top). The second

derivatives (bottom) do not fit very well but the results are smoother in the case of the

Hermite interpolation. Eventually the class of the function is increased with the second

method, as expected.
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Figure A.3: First (top) and second derivative (bottom) of the solution of the penalized problem for

the classical (left) and regularized penalization method (right).
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2 EVALUATION OF THE ERROR

The penalization error in the L2 norm can be computed directly as

||ε||22 =
∫ 0

−1
(uη −uexact)

2dx =
∫ 0

−1
(a(x+1)− x+1

2
)2dx =

(1−2a)2

12

Then the coefficient a is replaced by the corresponding expressions obtained above in the

two cases and the error becomes :





||ε||2 = | (1−2a)√
12

|
classical penalization : ||ε||2 =

√
η√
12

hermite penalization : ||ε||2 = 10η√
12

The convergence results are confirmed by the numerical experiments shown in Fig. A.4.

The penalized solutions are plotted for several values of η = [10−1,10−2,10−3,10−4,10−5]
and the errors with respect to the exact profiles are computed in the L2 and L∞ norms. The

order of convergence is indeed improved to η for the regularization method instead of√
η with the classical penalization.
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Figure A.4: Penalization errors of uη as a function of η for classical (left) and regularized penal-

ization method (right).

The errors are also presented for the first and second derivative (Fig.A.5). It must be

noticed that the error for the second derivative in the case of the regularized penalization

method still improves when η decreases, whereas it increases for the classical method.

The order of convergence obtained in Chap. II sections 5.1 and 5.2 is higher than

the one obtained here. This could result from the dissipative terms in the Navier–Stokes

and induction equations, which are not present here. This term smoothens the remain-

ing discontinuities and improves the order of convergence. The principal drawback of

this method is that a baseflow must be known to precompute the regularization term.
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Figure A.5: Penalization errors of u′η (top) and u′′η (bottom) as a function of η for classical (left)

and regularized penalization method (right).

Moreover, it is possible that this baseflow is not continuous if in the numerical solution

instabilities appear. As further perspective, this method should be implemented actively

so that the regularization term fits the numerical solution as closely as possible at each

time-step.
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B
IMPOSING NON HOMOGENEOUS

NEUMANN BOUNDARY CONDITIONS

WITH A PENALIZATION METHOD

1 FORMULATION

A generalization of the volume penalization method to impose non homogeneous Neumann

boundary conditions (BC) will be explained in the following.

The advection-diffusion equation of a scalar field θ(t,x) is considered in a domain Ω,

∂θ

∂ t
+u j∂ jθ = α∆θ , (B.1)

∇θ |∂Ω = γwall, θ(t = 0,x) = f0(x). (B.2)

Taking the gradient of this equation we can obtain a system of advection-diffusion equa-

tions for the different components of the gradient of θ , denoted by γi = ∂iθ . The penal-

ization term is added and inhomogeneous Dirichlet conditions are imposed on γi,

∂γi

∂ t
+∂i(u j∂ jθ) = α∆γi −

χ(x)

η
(γi − γiwall

) . (B.3)

We use a Fourier pseudo-spectral method and thus periodic boundary conditions are ap-

plied at the edge of the computational domain for the imposed γiwall
.

The next step is to integrate this last equation in space to recover the equation for θ .

To do so we apply the divergence operator to the system of equations (B.3). Using the
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relation ∇ · (∇ f ) = ∆ f , the Laplace operator appears in the equation. Thus to recover the

equation for θ a Poisson equation has to be solved. In spectral space this is equivalent to

multiply the equation (B.3) by the operator ıki/k2,

θ̂(k) =
−ıki

k2
γ̂i(k). (B.4)

with k 6= 0. In consequence, in physical space, the advection-diffusion equation with the

penalization term for the gradient, can be written:

∂θ

∂ t
+u j∂ jθ = α∆θ +F

−1

[
ıki

k2
F

{
χ(x)

η
(γi − γiwall

)

}]
. (B.5)

This last equation can be solved numerically with a pseudo-spectral method and the

solution of the advection-diffusion equation with non homogeneous Neumann boundary

conditions can thus be obtained.

To verify this numerical method a one-dimensional test case is presented in the next

section considering an instationary diffusion problem with non homogeneous Neumann

boundary conditions. A different numerical method to take into account homogeneous

boundary conditions using spectral methods is presented in [49].

2 TEST CASE: ONE-DIMENSIONAL INSTATIONARY DIF-

FUSION PROBLEM

We consider the instationary diffusion equation for the temperature θ(x, t), with a positive

heat flux on the left and right boundaries (see Fig.B.1). The equation to be solved is the

following,
∂θ(x, t)

∂ t
= ∇2θ(x, t), (B.6)

with non homogeneous Neumann boundary conditions at x = a and x = b,

∂θ

∂x

∣∣∣∣
x=a

=−q and
∂θ

∂x

∣∣∣∣
x=b

= q. (B.7)

The solution of this system is a combination of a parabolic function in space and a linear

time evolution,

θ(x, t) = q(x−a)

(
(x−a)

(b−a)
−1

)
+

2q

(b−a)
t. (B.8)

The initial condition chosen for the simulation is the parabolic function that respects the

inhomogeneous boundary conditions,

θ(x,0) = q(x−a)

(
(x−a)

(b−a)
−1

)
. (B.9)
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2 TEST CASE: ONE-DIMENSIONAL INSTATIONARY DIFFUSION PROBLEM

Figure B.1: One dimensional diffusion problem scheme for positive heat fluxes at the boundaries.

Numerically the diffusion equation is advanced in time and the two non homogeneous

Neumann boundary conditions are taken into account with a penalization term,

∂θ(x, t)

∂ t
= ∆θ(x, t)+F

−1

[
ıki

k2
F

{
χ(x)

η
(γi(x)− γiwall

(x))

}]

︸ ︷︷ ︸
Non homogeneous Neumann BC term

. (B.10)

In Fig. B.1 the external region (small rectangles) and the internal region (black line) are

visualized. On the border of the domain the periodicity must be ensured and therefore

a zero gradient of θ is imposed at x = 0 and x = L. For this reason we impose a linear

evolution of the gradient (γiwall
(x)) in the solid region,

γiwall
(x)

∣∣
x∈[0,a] =

−q

a
x, γiwall

(x)
∣∣
x∈[b,L] =

q

L−b
(L− x). (B.11)

Hence we verify the Neumann boundary conditions at x = a and x = b, as well as the

periodicity at the edge of the computational domain.
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Figure B.2: Time evolution of the L2 error for the gradient of θ , between the numerical results and

the exact solution, for different resolutions, N (left) and penalization parameters, η (right).

We obtain numerically the solution of the Laplace equation (B.6) with the imposed

Neumann boundary conditions. The computations are performed in a domain size L =
2π taking into account different resolutions (N) and penalization parameters (η). The

numerical error for the gradient of the temperature (∇θ ) is calculated. The time evolution

of the L2-norm error is presented, for different values of N and η , in Fig. B.2. There is a

convergence of the error on a finite time. The computations with varying N are performed

with η = 4 ·10−4 and those with varying η have a constant resolution N = 128.
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for the gradient of θ as a function of the pe-

nalization parameters (η).
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Figure B.4: Evolution of the L∞ and L2 errors

for the gradient of θ as a function of the grid

points (N).

At the steady state (when the error between the numerical results and the exact so-

lution is constant in time) we can evaluate the different error norm and compute their

convergence as a function of the penalization parameter and the resolution. The Fig. B.3

presents the convergence of two error norms with η . With the penalization parameter

second order convergence for the L2 error and a first order for the norm L∞ are obtained.

With the resolution (Fig. B.4) we have a fourth order convergence for L2 and a second

order for the L∞ error.
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C
CORRESPONDING EXPLICIT SCHEME OF

THE SEMI-IMPLICIT PENALIZATION

METHOD

Jause-Labert et al. [47] extended an implicit formulation for the time-integration scheme

for Dirichlet conditions, originally proposed by Kolomenskiy and Schneider [52] for

Burgers’ equation, to relax the constraint on the choice of the time-step. Their approach

is discussed in some detail in this section. We use the following form of the penalized

Navier–Stokes equation:

∂tu = ξ −∂xP− χ

η
u, (C.1)

in this equation uwall = 0, P+u2/2 → P and ξ represents the nonlinear term. The viscous

term can simply be added in the integral form, uexp(−νk2t) → u. In Fourier space we

can write

∂t û = P⊥

(
ξ̂ − 1

η
χ̂u

)
. (C.2)

with P⊥ the Riesz projection-operator. The implicit treatment for the penalization term at

the first order implies

ûn+1 − ûn

∆t
= P⊥

(
ξ̂ n − 1

η
χ̂u

n+1

)
, (C.3)

the fact that in the last term the χ̂ is convoluted with ûn+1 makes it non-trivial to write the

implicit formulation. The following formulation is proposed [47]:

ûn+1 = P⊥F




un +∆t F−1
[
P⊥ξ̂ n

]

1+ χn+1

η ∆t


 . (C.4)



C CORRESPONDING EXPLICIT SCHEME OF THE SEMI-IMPLICIT PENALIZATION METHOD

We know that the χ function takes only the values 0 and 1 depending if we are in the fluid

or in the solid region respectively,

χ(x, t) =

{
0 for x ∈ Ω f , the fluid domain

1 for x ∈ Ωs, the solid domain.
(C.5)

An equivalent form of the Eq. (C.4) can be written as follows

ûn+1 = P⊥F

[(
un +∆t F−1

[
P⊥ξ̂ n

])(
1−χn+1 ∆t

η +∆t

)]
. (C.6)

We recover the Navier–Stokes equation in the fluid domain and the implicit penalized

equation (C.4) in the solid region. Using the following relations

P⊥P⊥â = P⊥â

P⊥û = û,
(C.7)

the differential form of Eq. (C.6) can be written

∂t û = P⊥

(
P⊥ξ̂ − χ̂u

η +∆t
− ∆t

η +∆t
F

{
χ F

−1
[
P⊥ξ̂

]})
. (C.8)

Here we can identify two extreme cases. If ∆t << η the equation (C.8) converges towards

the equation (C.2), we recover the classical penalized Navier–Stokes equation. On the

other hand if η << ∆t we recover the following equation:

∂t û = P⊥

(
F

{
(1−χ)F−1

[
P⊥ξ̂

]}
− χ̂u

∆t

)
. (C.9)

This equation is very close to the classical penalized Navier–Stokes equation. Here the

time step (∆t) replaces the penalization parameter (η) and the nonlinear term vanishes in

the solid region.

The semi-implicit penalization method is in this limit analogous to an explicit formu-

lation. The difference is that, if the penalization parameter is small enough, the porosity

of the solid walls is given by the value of the time step.
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D
CALCULATION OF THE IMPOSED

POLOIDAL MAGNETIC FIELD

We construct the magnetic field satisfying the following properties: (i) it corresponds

to a current density profile ∝ 1/R, (ii) it is parallel to the wall and (iii) it is solenoidal.

With respect to our previous investigation [73] the magnetic topology is changed. In fact

in that investigation the imposed poloidal magnetic field satisfied the imposed toroidal

current density profile j0T
and the solenoidal constraint, but the normal component did

not vanish (as is shown in Fig. D.1 (c)). To solve this problem and to satisfy the three

desired conditions we obtain B0pol
from the current density by writing in terms of a vector

potential B0pol
= ∇×A0|pol , where A0 = A0T

eT .

The poloidal magnetic field is calculated from the imposed toroidal current density

distribution j0T
. It can be obtained using the vector potential, B0pol

= ∇×A0|pol , where

A0 = A0T
eT . Using the Coulomb Gauge we have the following Poisson equation [70],

∇2(A0T
eT ) =−j0T

. (D.1)

The associated boundary condition is the normal component of the magnetic field vanish-

ing at the boundary of the torus.

It is equivalent and more convenient to work with the magnetic flux function χ(R,Z)=
RA0T

, directly. The axisymmetric poloidal magnetic field is easily derived from the flux

function χ(R,Z),
B0pol

= ∇χ ×∇T (D.2)

with ∇T = (1/R)eT . Substituting this into Ampère’s law, ∇×B0pol
= j0T

eT yields

∆∗χ =
∂

∂R

(
1

R

∂ χ

∂R

)
+

1

R

∂ 2χ

∂Z2
=− j0T

. (D.3)
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(a) (b) (c)

Figure D.1: Poloidal magnetic field lines (χ = RA0T
= constant) for the different cross sections:

(a) symmetric, (b) asymmetric. In (c) we show the field lines for the asymmetric geometry used

in Ref. [73].

The boundary condition B0pol
·n
∣∣∣
wall

= 0 implies a Dirichlet boundary condition on the

magnetic flux function χ|wall = constant.

Numerically the calculation of the poloidal magnetic field B0pol
is performed solving

the previous Poisson equation for the magnetic flux function χ . This equation is solved

with a Fourier spectral method and the volume-penalization technique is used to impose

the Dirichlet boundary condition at the wall [75]. The resulting computed equation is the

following,
∂ χ

∂ t
= λ∆∗χ +λ j0T

− Ξ(x)

η
(χ −χwall)

︸ ︷︷ ︸
Penalisation term

. (D.4)

Here λ is a diffusion coefficient (λ = 1), Ξ is the mask function (it takes the value one

in the region where the Poisson equation needs to be solved and zero in the rest of the

computational domain) and η is the penalization parameter (η = 5 · 10−4). The size

of the domain is (2π)3 for the asymmetric and (2π × 2π × π) for the symmetric cross

section. The value of the Dirichlet boundary condition is χwall . This equation is evolved

in time, reaching a steady state, numerically ‖ χn+1 − χn ‖< 10−6. We then recover

with sufficient accuracy the solution of the Poisson equation (D.3) taking into account

the Dirichlet boundary condition via the penalization term. The solution of this pre-

computation will give our basis magnetic field B0 which will be kept constant during the

actual simulation.

The resulting poloidal magnetic topology is presented in Fig. D.1 ((a) and (b)) re-

spectively for the considered symmetric and asymmetric geometries (Fig. 3.1).
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E
RELATION OF THE DIMENSIONLESS

MHD EQUATIONS TO PHYSICAL VALUES

FROM THE JET TOKAMAK

The justification of the choice of the parameters we use in our simulations with respect

to the experimental values in real life fusion reactors is a difficult exercise, in particular

since our assumptions of uniform, scalar transport coefficients are necessarily gross over-

simplifications. However, here we present an attempt to estimate the values we would like

to use ideally if we would aim to approach physical reality as closely as possible. This

estimation is based on the presentation in reference [51].

To determine the dimensionless values that should be introduced in the numerical

code we consider the values of the JET experiment [48]. In this device there is a toroidal

magnetic field of 28 kG (in SI units BJET = 2.8T), a toroidal current I = 3.1 MA, the

minor radius is a = 1.5m and major radius is R0 = 3m. Also we have the plasma density

3.6 · 1019 m−3. For our numerical simulations the evolution along the big radius of the

imposed dimensionless toroidal electric end magnetic fields are:

E∗
0(R) = Ẽ∗R0

R
eT , (E.1)

B∗
0(R) = B̃∗R0

R
eT , (E.2)

with R the major radius, r the minor radius, T the toroidal and P the poloidal direction

(Fig. E.1). Here and in the following stars indicate dimensionless quantities ( ∗). To

determine the dimensionless values Ẽ∗ and B̃∗ compatible with the JET configuration we
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TOKAMAK

Z

RR0

T

L

r Pa

Figure E.1: Toroidal circular geometry.

are going to consider its parameters in SI units. The root mean square value of the toroidal

magnetic field is taken to be BJET = 2.8T, this is the reference magnetic field.

Note that the reference value of B in our simulation is chosen to be the toroidal mag-

netic field at R = R0. The value of JET is the surface averaged magnetic field. This

introduces a first correction. To find the dimensionless B̃∗ value the integration of B∗
0 over

the surface of the circular cross section must be equal to one,

1

A

∫

A
B̃∗R0

R
rdrdP =

1

A

2π∫

0

a∫

0

B̃∗ R0

R0 + rcos(P)
rdrdP = 1, (E.3)

with a = 1.5m, R0 = 3m and A the area of the cross section (considering a circular cross

section A = πa2). We calculate this integral using the numerical software Maple. For

the circular cross section we find the same value as Kamp and Montgomery [51], which

is B̃∗ = 0.94. Numerically if the value of the magnetic field is unity it will be in reality

BJET = 2.8T. Note that the correction induced by the integral (E.3) is of order unity, which

is very small compared to the uncertainties of the transport coefficients.

To find the value of Ẽ∗ we impose a toroidal loop voltage VT = 1V . To have the

corresponding electric field in the cross section VT is divided by the toroidal length,

Esection =
Vt

2πR0
. (E.4)

To make this value dimensionless we divide Esection by CaBJET (E∗ = Esection / CaBJET ).

With Ca = BJET/
√

ρµ the Alfvén velocity (Ca = 7.2 · 106 ms−1), we recall that ρ is the

density and µ is the permeability of free space. The integration of E∗
0 over the cross

section must be equal to the dimensionless value of the electric field E∗. As for the
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toroidal magnetic field we write,

E∗ =
1

A

2π∫

0

a∫

0

Ẽ∗ R0

R0 + rcos(P)
rdrdP. (E.5)

Calculating this integral we find Ẽ∗ = 2.5 · 10−9. Then we fix the resistive Lundquist

number (S) to have the toroidal current I = 3.1 MA. The value of S is determined using

the conductivity σ and considering Ohm’s law:

I = A σEsection, (E.6)

The formula used to find the resistive Lundquist number (S) is:

S =CaLσ
4π ·9 ·109

c2
. (E.7)

with L the diameter of the cross section (see Fig. E.1) and c the speed of light. The

coefficient 4π · 9 · 109/c2 allows us to pass from SI units to cgs units. This way we can

compare with the value in the literature [51].

Now we can calculate the dimensionless poloidal magnetic field (B∗
0pol

) induced by

the dimensionless toroidal electric field (E∗
0). First we consider the dimensional Ampère’s

law:

∇×B = µj. (E.8)

The second equation needed is the relation between a dimensionless and a dimensional

electric field,

E∗ =
E

CaBJET
, (E.9)

with E∗ being the dimensionless field. We replace the current density in Eq. (E.8) by

Eq. (E.9) taking into account Ohm’s law (j = σE),

∇×B = µσBJETCaE∗. (E.10)

To make dimensionless this last equation we divide it by BJET/L,

∇×B∗ =CaLσ µ︸ ︷︷ ︸
S

E∗ (E.11)

Then we can introduce the dimensionless irrotational electric field profile presented in

Eq. (E.1),

∇×B∗
0pol

= SE∗
0. (E.12)

We consider a constant resistivity hence the current density profile is proportional to the

electric field profile. The relation between the dimensionless imposed current density (j0)

and electric field (E0) is the following,

j∗0 = SE∗
0. (E.13)
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TOKAMAK

Finally the dimensionless Ampère’s law can be written,

∇×B∗
0pol

= j∗0. (E.14)

This equation for B∗
0pol

can be solved numerically (see Appendix D) considering the

solenoidal constraint, and imposing the normal component of the poloidal magnetic field

vanishing at the wall as boundary condition.

The resistive Lundquist number is calculated for the circular cross section,

S =CaLσ µ ≈ 1.19 ·108 (E.15)

The characteristic length is L = a/(0.3π) because in the numerical code the minor radius

has a length of 0.3π (a = 1.5m is the real length of the minor radius for JET).

The viscous Lundquist number is defined as M = CaL/ν . The high boundary of the

value of the kinematic viscosity is ν = 1.25 · 1011m2s−1. In fact for a magnetofluid ex-

posed to a strong magnetic field a complicated viscous stress tensor results [13] with

different viscosity coefficient that span about twelve orders of magnitude [68]. So we

have 1.25 · 1011m2s−1 > ν > 1.25 · 10−1m2s−1 [51]. For the circular cross section the

viscous Lundquist number is,

M ∈ [9.18 ·10−5,9.18 ·107]. (E.16)

If we use the arbitrary value ν = 1m2s−1, we find M = 1.51 · 107. Which is at present

impossible to take into account numerically.

To summarize, the parameters of JET tokamak are presented in Tab. E.1. Note that

other characteristic quantities of the spherical tokamak NSTX can be found in the Ap-

pendix A of the article by Ferraro and Jardin [33].
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Parameters Values Formula

Major radius R0 3 m

Minor radius a 1.5 m

Minor radius in the code 0.3π

Characteristic length L ≈ 1.6 L = a
0.3π

Root mean square value of

toroidal field BJET

2.8 T (Tesla)
(

kg

As2

)

B̃∗ ( found in the formula:

B∗
0(R,Z) = B̃∗ R0

R
eT )

0.94 (circular cross sec-

tion)

B∗
0 =

1
A

∫
A

B̃∗
R0+rcos(P)rdrdP=

1

Toroidal loop voltage (arbi-

trary)

1V
(

kgm2

As3

)

Plasma density (deuterium +

electrons) ρ
1.2 · 10−7 kg/m3 or 3.6 ·
1019 m−3

Vacuum Permeability µ 4π ·10−7 Vs/(Am)

Alfvén velocity Ca 7.2 ·106 m/s BJET/
√

ρµ

Reference electric field 2.019 ·107 V/m CaBJET

Toroidal current I 3.1 ·106 A

Dimensionless applied electric

Ẽ∗ ( found in the formula:

E∗
0(R,Z) = Ẽ∗ R0

R
eT )

2.5 ·10−9 E∗
0 =

1
A

∫
A

Ẽ∗
R0+rcos(P)rdrdP=

1V
2πR0CaB̃

Dimensionless applied current

density field j̃∗ ( found in the

formula: j∗0(R,Z) = j̃∗ R0

R
eT )

0.298 j̃∗ = SẼ∗

Plasma conductivity σ allowing

to have a current of 3.1 MA

8.27 ·106 Siemens / m (cir-

cular cross section)
σ = I

AEsection

S
1.19 · 108 (circular cross

section)
S =CaLσ µ

M
9.18 · 10−5 to 9.18 · 107

(circular cross section)
M = CaL

ν

Table E.1: JET tokamak parameters.
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F
LARGE SCALE FORCING OF A PLASMA

DYNAMO

The generation of planetary magnetic fields through the turbulent movement of liquid

metals in the core is an intriguing phenomenon. It is not only an important issue in geo-

physics, but also explains the self-organization in Reversed Field Pinch plasma devices.

This so called dynamo effect is now reproduced in several experimental set-ups such as

the VKS experiment in Cadarache [67], but the detailed physics are still poorly under-

stood. One drawback in the liquid metal experiments is the very low value of the mag-

netic Prandtl number. Liquid metal experiments require therefore a huge kinetic Reynolds

number to obtain only a moderate magnetic Reynolds number. For this reason the con-

struction of a plasma dynamo has been undertaken at the Laboratoire de Physique of the

Ecole Normale Supérieure de Lyon. The use of a plasma instead of a liquid metal allows

the experiment to attain larger magnetic Reynolds numbers at moderate kinetic Reynolds

numbers. The measurement of the dynamics in a plasma experiment, and the forcing of

the large scale flow field, is however highly nontrivial. Therefore, in parallel with the

experiment, we investigate the plasma dynamics by direct numerical simulations§.

In this work we model the plasma vessel by imposing solid, no-slip boundary con-

ditions at the walls of a cylinder, periodic in the axial direction. An imposed magnetic

field B0 is pointing in the axial direction. An electric field is created in the radial direc-

tion as illustrated in Fig. F.1. The hereby generated current induces a Lorentz force in

the azimuthal direction. It is this Lorentz force which is supposed to induce a large scale

motion.

For the preliminary results presented here the viscous and resistive Lundquist numbers

§This investigation is carried out in collaboration with Francesco Palermo, Fabien S. Godeferd and

Nicolas Plihon.
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are M = S = 10, corresponding to unity magnetic Prandtl number. The imposed electric

field, magnetic field and current density are given the value E0 = 5 and B0 = 0.5 and

j0 = 50, respectively. Preliminary results are shown in Fig. F.1 (right) in which it is shown

how the plasma is set into movement in the horizontal plane containing the electrodes.

Three-dimensional flow visualizations are shown in Fig. F.2, where it is observed that a

dipolar velocity structure is created in the plasma.

Figure F.1: Studied geometry and imposed fields (left). Two dimensional velocity streamlines

colored with the azimuthal velocity in a horizontal plane at the axial coordinate where the electric

field is introduced (right).

Figure F.2: Three dimensional velocity streamlines colored with the azimuthal velocity for early

time simulations at low magnetic and kinetic Reynolds numbers. Two views: from a direction

orthogonal to the imposed radial electric field (left), and along the imposed radial electric field

(right).
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H. RAPP, H. RÖHR, F. SCHNEIDER, G. SILLER, E. SPETH, A. STÄBLER, K. H.
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