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Résumé

En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétrique sur les nombres eulériens et posé le problème de trouver un q-analogue de leur identité. En utilisant les q-polynômes eulériens introduits par Shareshian-Wachs, nous avons pu obtenir une telle q-identité. La preuve bijective que nous avons imaginée, nous a permis ensuite de démontrer d'autres q-identités symétriques, en utilisant un modèle combinatoire dû à Foata-Han. Entre temps, Hyatt a introduit les fonctions quasisymétriques eulériennes colorées afin d'étudier la distribution conjointe du nombre d'excédances et de l'indice majeur sur les permutations colorées. En appliquant le Decrease Value Theorem de Foata-Han, nous donnons d'abord une nouvelle preuve de sa formule principale sur la fonction génératrice des fonctions quasisymétriques eulériennes colorées, puis généralisons certaines identités eulériennes symétriques, en les exprimant comme des identités sur les fonctions quasisymétriques eulériennes colorées. D'autre part, en prolongeant les travaux récents de Savage-Visontai et Beck-Braun, nous considérons plusieurs q-polynômes de descente des mots signés. Leurs fonctions génératrices factorielles et multivariées sont explicitement calculées. Par ailleurs, nous montrons que certains de ces polynômes n'ont que des zéros réels.

Enfin, nous étudions la fonction génératrice diagonale des nombres de Jacobi-Stirling de deuxième espèce, en généralisant des résultats analogues pour les nombres de Stirling et Legendre-Stirling de deuxième espèce. Il s'avère que cette fonction génératrice est une série rationnelle dont le numérateur est un polynôme à coefficients entiers positifs. En appliquant la théorie des P -partitions de Stanley nous trouvons des interprétations combinatoires de ces coefficients.

Mots-clés: statistiques de permutations, descentes, excédances, l'indice majeur, inversions, inversions admissibles, q-polynômes eulériens, factorisation de crochet, problèmes bijectifs, fonctions quasi-symétriques, fonctions quasi-symétriques eulériennes, P -partitions, multipermutations, nombres de Jacobi-Stirling, permutations de Stirling.

Abstract

In 2010 Chung-Graham-Knuth proved an interesting symmetric identity for the Eulerian numbers and asked for a q-analog version. Using the q-Eulerian polynomials introduced by Shareshian-Wachs we find such a q-identity. Moreover, we provide a bijective proof that we further generalize to prove other symmetric qidentities using a combinatorial model due to Foata-Han. Meanwhile, Hyatt has introduced the colored Eulerian quasisymmetric functions to study the joint distribution of the excedance number and major index on colored permutations. Using the Decrease Value Theorem of Foata-Han we give a new proof of his main generating function formula for the colored Eulerian quasisymmetric functions. Furthermore, certain symmetric q-Eulerian identities are generalized and expressed as identities involving the colored Eulerian quasisymmetric functions. Next, generalizing the recent works of Savage-Visontai and Beck-Braun we investigate some q-descent polynomials of general signed multipermutations. The factorial and multivariate generating functions for these q-descent polynomials are obtained and the real rootedness results of some of these polynomials are given. Finally, we study the diagonal generating function of the Jacobi-Stirling numbers of the second kind by generalizing the analogous results for the Stirling and Legendre-Stirling numbers of the second kind. It turns out that the generating function is a rational function, whose numerator is a polynomial with nonnegative integral coefficients. By applying Stanley's theory of P -partitions we find combinatorial interpretations of those coefficients.
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Introduction

The classical Eulerian polynomials A n (t) are defined by

k≥0 (k +1) n t k = A n (t) (1 -t) n+1 (1) 
for integers n ≥ 0. These polynomials were introduced by Euler [START_REF] Euler | Institutiones calculi differentialis cum eius usu in analysi finitorum ac Doctrina serierum[END_REF] himself in his desire to find a closed expression for 1≤i≤k i n (-1) i . The Eulerian polynomials arise in a variety of contexts in mathematics and have many remarkable properties [START_REF] Foata | Eulerian polynomials: from Euler's time to the present[END_REF][START_REF] Foata | Théorie géométrique des polynômes eulériens[END_REF]. For instance, one can derive easily from (1) the exponential generating function for the Eulerian polynomials n≥0

A n (t)

z n n! = (1 -t)e z e zt -te z . (2) 
A permutation of [n]:={1, 2,...,n} is a bijection π :[n] → [n].L e tS n denote the set of all permutations of [n].A statistic on S n is a mapping st : S n → N. The study of statistics on permutations is a recurrent topic in Enumerative Combinatorics and its history can at least trace back to MacMahon [START_REF] Macmahon | Combinatory Analysis[END_REF][START_REF] Macmahon | The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects[END_REF].

For each permutation π ∈ S n the descent number of π, denoted des(π),i st h e number of positions i, 1 ≤ i ≤ n -1, such that π(i) >π(i +1). A classical result in Enumerative Combinatorics, discovered two centuries after Euler [START_REF] Riordan | An introduction to combinatorial analysis[END_REF], is that the generating function for the descent statistic on permutations is the Eulerian polynomial:

A n (t)= π∈Sn t des(π) = n-1 k=0 A n,k t k . (3) 
So we usually call each statistic equidistributed with the descent number on permutations a Eulerian statistic. Another classical Eulerian statistic on permutations is the so-called excedance number. The bijection [START_REF] Foata | Etude algébrique de certains problèmes d'analyse combinatoire et du calcul des probabilités[END_REF] which proves the equidistribution of the decent number and the excedance number on permutations (or more generally on words) is known as Foata's first fundamental transformation.

CONTENTS

The set S n has a group structure by composition. The resulting group is called the symmetric group, or the type A Coxeter group of order n. One important concept in Coxeter groups is the length of its elements. A well-known result in the theory of Coxeter groups is that, in the type A case, the length of an element equals its inversion number [START_REF] Björner | Combinatorics of Coxeter Groups[END_REF]. Recall that the inversion number of a permutation π ∈ S n is the number of pairs (i, j) such that 1 ≤ i<j≤ n and π(i) >π(j).T h e sum of all the descent positions of a permutation is called the major index of this permutation, which was introduced by MacMahon [START_REF] Macmahon | The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects[END_REF]. It is known [START_REF] Macmahon | Two applications of general theorems in combinatory analysis[END_REF] that the inversion number and the major index are identically distributed on permutations, and in memory of MacMahon, every statistic equidistributed with the inversion number and the major index is called a Mahonian statistic. There is also a bijection [START_REF] Foata | On the Netto inversion number of a sequence[END_REF], usually called Foata's second fundamental transformation, that proves the equidistribution of the inversion number and the major index on permutations (or more generally on words).

The above four classical permutation statistics give rise to four kinds of q-Eulerian polynomials:

A des,maj n (t, q):= π∈Sn t des(π) q maj(π) , A des,inv n (t, q):= π∈Sn t des(π) q inv(π) , A exc,inv n (t, q):= π∈Sn t exc(π) q inv(π) , A exc,maj n (t, q):= π∈Sn t exc(π) q maj(π) , where exc(π), inv(π) and maj(π) denote the excedance number, the inversion number and the major index of π, respectively. The generating functions for the first three q-Eulerian polynomials were derived by Carlitz [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF], Stanley [START_REF] Stanley | Binomial posets, Möbius inversion, and permutation enumeration[END_REF] and Clarke-Steingrímsson-Zeng [START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF], respectively. For a long time, the fourth q-Eulerian polynomial had not been exploited until in 2007, Shareshian and Wachs [START_REF] Shareshian | q-Eulerian polynomials: Excedance Number and Major Index[END_REF][START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF] introduced some Eulerian quasisymmetric functions and proved an elegant q-analog of (2) for the exponential generating function for the polynomials A exc,maj n (t, q). It is worth noting that Foata and Han [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF] studied various statistics on words and calculated the quadruple distribution of the number of fixed points, descents and excedances, together with the major index over permutations, in the form of a factorial generating formula, which implies the result of Shareshian-Wachs. After that, the q-Eulerian polynomials A exc,maj n (t, q) have attracted the attention of several authors [START_REF] Chung | Generalized Eulerian Sums[END_REF][START_REF] Foata | The q-Tangent and q-Secant numbers via basic Eulerian polynomials[END_REF][START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF][START_REF] Foata | Decreases and descents in words[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF][START_REF] Han | Permutations with extremal number of fixed points[END_REF][START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF][START_REF] Shareshian | Poset homology of Rees products, and q-Eulerian polynomials[END_REF][START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF]. In particular, Foata and Han [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF][START_REF] Foata | The q-Tangent and q-Secant numbers via basic Eulerian polynomials[END_REF] derived another combinatorial interpretation of A exc,maj n (t, q) by making use of Gessel's hook factorization [START_REF] Gessel | A coloring problem[END_REF] of permutations.

In Chapter 1 we continue along this line of research. The coefficients A n,k appearing in [START_REF] Andrews | The Jacobi-Stirling numbers[END_REF] are traditionally called Eulerian numbers [START_REF] Riordan | An introduction to combinatorial analysis[END_REF]. In 2010 Chung-Graham-Knuth [START_REF] Chung | A symmetric Enulerian identity[END_REF] found the following symmetric identity involving both Eulerian numbers and binomial coefficients

k≥1 a + b k A k,a-1 = k≥1 a + b k A k,b-1 for a, b ≥ 1 (4) 
and asked for a q-analog version of it. We find such a q-analog which involves A exc,maj n (t, q) and the q-binomial coefficients, and thereby answer their question. Chung and Graham [START_REF] Chung | Generalized Eulerian Sums[END_REF] further proved some similar symmetric q-Eulerian identities and asked for bijective proofs. Using Foata and Han's combinatorial model, we provide bijective proofs for all the above symmetric q-Eulerian identities. We also study some restricted q-Eulerian polynomials and obtain a generalized symmetric identity for them. Moreover, a new recurrence formula for the q-Eulerian polynomials A exc,maj n (t, q) is found. Let l be a fixed positive integer and let C l ≀ S n be the wreath product of the cyclic group C l of order l by the symmetric group S n of order n. The group C l ≀ S n is also known as the colored permutation group. In the case l =1(resp. l =2 ) the wreath product C l ≀ S n is the symmetric group S n (resp. the group of the signed permutations or the Type B Coxeter group B n ). Various statistics on colored permutation groups have been studied in the literature and several q-analogs of colored Eulerian polynomials have been proposed [START_REF] Chow | Counting derangements, involutions and unimodal elements in the wreath product C r ≀ S n[END_REF][START_REF] Faliharimalala | Flag-major index and flaginversion number on colored words and Wreath product[END_REF][START_REF] Faliharimalala | Fix-Euler-Mahonian statistics on wreath products[END_REF][START_REF] Foata | Signed words and permutations, I: A fundamental transformation[END_REF][START_REF] Foata | Signed words and permutations, III; The MacMahon Verfahren[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF][START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF][START_REF] Steingrímsson | Permutation statistics of indexed permutations[END_REF]. In particular, Foata and Han [START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF] derived from their Decrease Value Theorem [START_REF] Foata | Decreases and descents in words[END_REF] a factorial generating formula for the quadruple distribution of the number of fixed points, flag descents [START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF][START_REF] Steingrímsson | Permutation statistics of indexed permutations[END_REF], flag excedances [START_REF] Bagno | On the excedance numbers of colored permutation groups[END_REF] and of the flag major index [START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF][START_REF] Steingrímsson | Permutation statistics of indexed permutations[END_REF] on colored permutations. Generalizing the Eulerian quasisymmetric functions of Shareshian and Wachs, Hyatt [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] introduced some colored Eulerian quasisymmetric functions which enable him to calculate another quadruple distribution involving the so-called starred descents instead of the flag descents on colored permutations. The starting point of Chapter 2 is the attempt to obtain a symmetric function generalization of (1.1) for colored permutation groups.

In Chapter 2, we show how Hyatt's generating function formula for the fixed point colored Eulerian quasisymmetric functions can be deduced from the Decrease Value Theorem. Using this generating function formula, we prove two symmetric function generalizations of the symmetric Eulerian identity (4) for some flag Eulerian quasisymmetric functions, which are specialized to the flag excedance numbers on colored permutations. Combinatorial proofs of those symmetric identities are also constructed. We also study some other properties of the flag Eulerian quasisymmetric functions. In particular, we confirm a recent conjecture of Mongelli [START_REF] Mongelli | Excedances in classical and affine Weyl groups[END_REF] about the unimodality of the generating function for the flag excedances CONTENTS over the type B derangements. Moreover, colored versions of the hook factorization and the admissible inversions [START_REF] Shareshian | q-Eulerian polynomials: Excedance Number and Major Index[END_REF][START_REF] Linusson | Rees products and lexicographic shellability[END_REF] of permutations are found. Finally, we introduce a colored analog of Rawlings major index [START_REF] Rawlings | The r-major index[END_REF] for colored permutations. We obtain an interpretation of the colored Eulerian quasisymmetric functions as a sum of some fundamental quasisymmetric functions related to the colored Rawlings major index, by applying Stanley's P -partition theory and a decomposition of the chromatic quasisymmetric functions due to Shareshian and Wachs [START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF].

The rest of this dissertation is devoted to the generalizations and extensions of identity [START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF], which, by [START_REF] Andrews | The Jacobi-Stirling numbers[END_REF], can be written as

k≥0 (k +1) n t k = 1 (1 -t) n+1 π∈Sn t des(π) . (5) 
Carlitz [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF] gave the following q-analog of (5):

k≥0 ([k +1] q ) n t k = 1 n j=0 (1 -tq j ) π∈Sn t des(π) q maj(π) , (6) 
where

[n] q := 1 + q + •••+ q n-1 .
Recently, Savage and Schuster [START_REF] Savage | Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences[END_REF] studied the Ehrhart series of lecture hall polytopes and introduced a generalization of the inversion tables called inversion sequences as follows. For a sequence of positive integers s =(s i ) i≥1 , let I s n be the set of s-inversion sequences of length n defined as

I (s)
n := {(e 1 ,...,e n ) ∈ Z n :0≤ e i <s i for 1 ≤ i ≤ n}. The ascent number of an s-inversion sequence e =( e 1 ,...,e n ) ∈ I s n is defined to be asc(e):=|{0 ≤ i<n: e i /s i <e i+1 /s i+1 }|, with the convention that e 0 =0and s 0 =1 .W h e n s =( 1 , 2, 3,...), the set of s-inversion sequences I s n is the set of inversion tables of length n.A ss h o w n in [72, Lemma 1], the ascent numbers on inversion tables of length n has the same distribution as the descent numbers on S n .

In Chapter 3, motivated by a conjecture of Savage and Visontai [START_REF] Savage | The s-Eulerian polynomials have only real roots[END_REF] about the equidistribution of the descent statistic on signed permutations of the multiset {1, 1, 2, 2,...,n,n} and the ascent statistic on (1, 4, 3, 8,...,2n -1, 4n)-inversion sequences, we investigate the descent polynomial over the signed permutations of a general multiset (multipermutations). We obtain a generalization of (6) for a q-analog of these descent polynomials and apply it to show that they have only real roots. Two proofs of the conjecture of Savage and Visontai are provided. Furthermore, multivariate generalizations of (6) that enumerate two different Euler-Mahonian distributions on type B Coxeter groups due to Beck and Braun [START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF] are generalized to signed multipermutations.

The Stirling number [START_REF] Riordan | Combinatorial Identities[END_REF] of the second kind S(n, k) enumerates the number of ways to partition [n] into k non-empty subsets. Inspired by identity (5), Gessel and Stanley [START_REF] Gessel | Stirling Polynomials[END_REF] proved that k≥0

S(n + k, k)t k = 1 (1 -t) 2n+1 π∈Sn t des(π) , (7) 
where S n is the set of permutations of {1, 1, 2, 2, ••• ,n,n} such that for each i, 1 ≤ i ≤ n, the values between the two occurrences of i are larger than i. These restricted permutations are called Stirling permutations. In the study of Spectral theory Everitt et al. [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF] introduced the Jacobi-Stirling numbers JS(n, k; z). Note that the leading coefficient of JS(n, k; z) (viewed as a polynomial in z)i st h e Stirling number S(n, k). Many recent works [START_REF] Andrews | The Jacobi-Stirling numbers[END_REF][START_REF] Egge | Legendre-Stirling permutations[END_REF][START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF][START_REF] Gelineau | Combinatorial interpretations of the Jacobi-Stirling numbers[END_REF][START_REF] Mongelli | Total positivity properties of Jacobi-Stirling numbers[END_REF] have been devoted to the study of Jacobi-Stirling numbers. In particular, Egge [START_REF] Egge | Legendre-Stirling permutations[END_REF] has obtained a result similar to [START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF] for the Legendre-Stirling numbers [START_REF] Everitt | Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression[END_REF] JS(n, k;1).

In Chapter 4, we study the descent statistic on generalized Stirling permutations of the multiset {1, 1, 1, 2, 2, 2,...,n,n,n} that we call Jacobi-Stirling permutations. Generalizing the Gessel-Stanley identity ( 7) and Egge's result concerning the Legendre-Stirling numbers, we give a combinatorial interpretation of some polynomials arising from the diagonal generating functions of Jacobi-Stirling numbers.

Chapter 1

Generalized q-Eulerian polynomials

Introduction and results

For each π ∈ S n a value i,

1 ≤ i ≤ n -1,i sa nexcedance (resp. descent)o fπ if π(i) >i(resp. π(i) >π (i +1)).
Let exc(π) and des(π) denote the number of excedances and descents of π, respectively. Recall that the Eulerian number A n,k counts the permutations in S n with k descents (or k excedances), that is,

A n (t)= π∈Sn t des(π) = π∈Sn t exc(π) = 0≤k≤n-1 A n,k t k ,
where A n (t) is the Eulerian polynomial appearing in [START_REF] Andrews | The Jacobi-Stirling numbers[END_REF]. Also, see [START_REF] Foata | Eulerian polynomials: from Euler's time to the present[END_REF][START_REF] Petersen | Two-sided Eulerian numbers via balls in boxes[END_REF] for some leisurely historical introductions to Eulerian polynomials and Eulerian numbers.

In 2010 Chung, Graham and Knuth [START_REF] Chung | A symmetric Enulerian identity[END_REF] proved the following symmetric identity involving Eulerian numbers and binomial coefficients:

k≥1 a + b k A k,a-1 = k≥1 a + b k A k,b-1 (1.1)
for a, b ≥ 1. At the end of [START_REF] Chung | A symmetric Enulerian identity[END_REF], the authors asked for, among other unsolved problems, a q-analog version of (1.1). Several q-analogs of Eulerian polynomials with combinatorial meanings have been introduced in the literature (see [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF][START_REF] Clarke | New Euler-Mahonian statistics on permutations and words[END_REF][START_REF] Stanley | Binomial posets, Möbius inversion, and permutation enumeration[END_REF][START_REF] Shareshian | q-Eulerian polynomials: Excedance Number and Major Index[END_REF]). Recall that the major index, denoted by maj(π), of a permutation π ∈ S n is the sum of all the descents of π, i.e., maj(π

): = π(i)>π(i+1) i. An element i ∈ [n] is a fixed point of π ∈ S n if π(i)=i
and the number of fixed points of π is denoted by fix(π). Define the (q, r)-Eulerian polynomials A n (t, r, q) by the following extension of (2): n≥0 A n (t, r, q) z n (q; q) n = (1t)e(rz; q) e(tz; q)te(z; q) , (

where

(t; q) n := n-1 i=0 (1 -tq i )
is the q-shifted factorial and e(z; q) is the following q-exponential function e(z; q):= n≥0 z n (q; q) n .

The following interpretation for A n (t, r, q) was given by Shareshian and Wachs [START_REF] Shareshian | q-Eulerian polynomials: Excedance Number and Major Index[END_REF][START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]:

A n (t, r, q)= π∈Sn t exc(π) r fix(π) q (maj -exc)π . (1.3)
These polynomials have attracted the attention of several authors (cf. [START_REF] Foata | The q-Tangent and q-Secant numbers via basic Eulerian polynomials[END_REF][START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF][START_REF] Foata | Decreases and descents in words[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF][START_REF] Han | A symmetric q-Eulerian identity[END_REF][START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF][START_REF] Han | Permutations with extremal number of fixed points[END_REF][START_REF] Linusson | Rees products and lexicographic shellability[END_REF][START_REF] Shareshian | Poset homology of Rees products, and q-Eulerian polynomials[END_REF][START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF]).

Let A n (t, q)=A n (t, 1,q). Define the q-Eulerian numbers A n,k (q) and the fixed point q-Eulerian numbers A n,k,j (q):

A n (t, q)= k A n,k (q)t k and A n (t, r, q)= j,k A n,k,j (q)r j t k .

By (1.3), we have the following interpretations

A n,k (q)= π∈Sn exc(π)=k q (maj -exc)π and A n,k,j (q)= π∈Sn exc(π)=k fix(π)=j q (maj -exc)π .

(1.4)

Recall that the q-binomial coefficients n k q are defined by n k q := (q; q) n (q; q) n-k (q; q) k for 0 ≤ k ≤ n,a n d n k q =0if k<0 or k>n . As developed in Section 1.3, we have got, and then proved the following qanalog of (1.1) involving both the q-binomial coefficients n k q and the q-Eulerian numbers A n,k (q). Theorem 1.1.1. For any integers a, b ≥ 1,

k≥1 a + b k q A k,a-1 (q)= k≥1 a + b k q A k,b-1 (q). (1.5)
Recently, Chung and Graham [START_REF] Chung | Generalized Eulerian Sums[END_REF] derived from (1.2) the following two further symmetric q-Eulerian identities through some analytical arguments. They also asked for bijective proofs.

Theorem 1.1.2 (Chung-Graham). Let a, b, j be integers with a, b ≥ 1 and j ≥ 0.

Then k≥1 (-1) k a + b k q q ( a+b-k 2 ) A k,a (q)= k≥1 (-1) k a + b k q q ( a+b-k 2 ) A k,b (q), (1.6) 
k≥1 a + b + j +1 k q A (j) k,a (q)= k≥1 a + b + j +1 k q A (j) k,b (q). (1.7) 
In this chapter we will apply another interpretation of A n (t, r, q) introduced by Foata and Han [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF] to construct bijective proofs of Theorems 1.1.1 and 1.1.2.

Next, for 1 ≤ j ≤ n we define the restricted q-Eulerian polynomial B (j) n (t, q) by the exponential generating function:

n≥j B (j) n (t, q) z n-1 (q; q) n-1 = A j-1 (t, q)(qz) j-1 (q; q) j-1
e(tz; q)te(tz; q) e(tz; q)te(z; q) . (1.8)

and the restricted q-Eulerian number B

(j) n,k (q) by B (j) n (t, q)= k B (j) n,k (q)t k . Remark 1.1. Originally, the restricted Eulerian number B (j)
n,k in [START_REF] Chung | Generalized Eulerian Sums[END_REF] was defined to be the number of permutations π ∈ S n with des(π)=k and π(j)=n. According to Lemma 1.5.1, B (j) n,k (q) is really a q-analogue of B (j) n,k . This justifies the names "restricted q-Eulerian number" and "restricted q-Eulerian polynomial".

Those q-analogues enable us to obtain the following generalized symmetric identity for the restricted q-Eulerian polynomials.

Theorem 1.1.3. Let a, b, j be integers with a, b ≥ 1 and j ≥ 2. Then

k≥1 a + b +1 k -1 q B (j) k,a (q)= k≥1 a + b +1 k -1 q B (j) k,b (q). (1.9) 
When q =1 , the above identity was proved by Chung and Graham [START_REF] Chung | Generalized Eulerian Sums[END_REF], who also asked for a bijective proof. We shall give a bijective proof and an analytical proof of Theorem 1.1.3, the latter leading to a new recurrence formula for A n (t, r, q). Theorem 1.1.4. The (q, r)-Eulerian polynomials satisfy the following recurrence formula:

A n+1 (t, r, q)=rA n (t, r, q)+t n-1 j=0 n j q q j A j (t, r, q)A n-j (t, q) (1.10)

for n ≥ 1 and initial conditions A 0 (t, r, q)=1,A 1 (t, r, q)=r.

Hook factorization of permutations

A word w = w 1 w 2 ...w m on N is called a hook if w 1 >w 2 and either m =2 ,o r m ≥ 3 and w 2 <w 3 <...<w m . As shown in [START_REF] Gessel | A coloring problem[END_REF], each permutation π ∈ S n admits a unique factorization, called its hook factorization, pτ 1 τ 2 ...τ r , where p is an increasing word and each factor τ 1 , τ 2 , ..., τ k is a hook. To derive the hook factorization of a permutation, one can start from the right and factor out each hook step by step. Denote by inv(w) the numbers of inversions of a word w = w 1 w 2 ...w m , i.e., the number of pairs (w i ,w j ) such that i<jand w i >w j . Foata and Han [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF] Let A 0 , A 1 , ..., A r be a series of sets on N. Define

inv(A 0 , A 1 , ..., A r ):=|{(k, j):k ∈A i ,l ∈A j ,k > l and i<j}|.
We usually write cont(A) for the set of all letters in a word A,s ot h a t (invlec)π =in v(cont(p), cont(τ 1 ),...,cont(τ r ))

if pτ 1 τ 2 ...τ r is the hook factorization of π.

From Foata and Han [34, Theorem 1.4], we have the following combinatorial interpretations of the (q, r)-Eulerian polynomials A n (t, r, q)= π∈Sn t lec(π) r pix(π) q (inv -lec)π .

(1.11)

Therefore A n,k (q)= π∈Sn lec(π)=k q (inv -lec)π and A n,k,j (q)= π∈Sn lec(π)=k pix(π)=j q (inv -lec)π .
(1.12)

It is known [80, Proposition 1.3.17] that the q-binomial coefficient has the interpretation n k q = (A,B)

q inv(A,B) , (1.13) 
where the sum is over all ordered partitions (A, B) of [n] such that |A| = k. We will give bijective proofs of Theorem 1.1.1 and 1.1.2 using the interpretations in (1.12) and (1.13).

Remark 1.2. In [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF], a bijection on S n that carries the triplet (fix, exc, maj) to (pix, lec, inv) was constructed without being specified. This bijection consists of two steps. The first step (see [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF]Section 6]) uses the word analogue of Kim-Zeng decomposition [START_REF] Kim | A new Decomposition of Derangements[END_REF] and an updated version of Gessel-Reutenauer standardization [START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF] to construct a bijection on S n that transforms the triplet (fix, exc, maj) to (pix, lec, imaj), where imaj(π):=maj(π -1 ) for each permutation π. The second step (see [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF]Section 7]) uses Foata's second fundamental transformation (see [START_REF] Lothaire | Combinatorics on Words[END_REF]) to carry the triplet (pix, lec, imaj) to (pix, lec, inv). In view of this bijection, one can construct bijective proofs of Theorems 1.1.1 and 1.1.2 using the original interpretations in (1.4), through our bijective proofs.

To construct our bijective proofs, we need two elementary transformations. Let τ be a hook with inv(τ )=k and cont(τ )={x 1 ,...,x m }, where x 1 <...<x m . Define

d(τ )= x m x 1 •••x m-1 , if k =1, x m-k+1 x 1 ...x m-k x m-k+2 ...x m , if 2 ≤ k ≤ m -1. (1.14) Clearly, d(τ ) is the unique hook with cont(d(τ )) = cont(τ ) satisfying inv(d(τ )) = m -k = |cont(τ )|-inv(τ ).
Let τ be a hook or an increasing word with inv(τ )=k and cont(τ )={x 1 ,...,x m }, where x 1 <...<x m . Define

d ′ (τ )=x m-k x 1 ...x m-k-1 x m-k+1 ...x m . (1.15) 
Clearly, d ′ (τ ) is the unique hook (when k<m-1) or increasing word (when A n (t, q) z n (q; q) n = e(z; q)e(tz; q) e(tz; q)te(z; q) . (1.16)

k = m -1) with cont(d(τ )) = cont(τ ) satisfying inv(d(τ )) = m -k -1=|cont(τ )|-1 -inv(τ ).

Generalized q-Eulerian polynomials

Replacing t by t -1 and z by tz yields

t n A n (t -1 ,q)=tA n (t, q).
Thus, we have the symmetry property

A n,k (q)=A n,n-k-1 (q).
(1.17)

Multiplying both sides of (1.16) by e(tz; q)te(z; q) we get e(tz; q)te(z; q

) n≥0 A n (t, q) z n (q; q) n = k (1 -t k )z k (q; q) k . (1.18)
Now,

e(tz; q) n≥1 A n (t, q) z n (q; q) n = k (tz) k (q; q) k n,i A n,i (q)t i z n (q; q) n = k,n,i n + k k q A n,i (q)t i+k z n+k (q; q) n+k = k,n,i n k q A n-k,i-k (q)t i z n (q; q) n , and 
te(z; q) n≥1 A n (t, q) z n (q; q) n = t k z k (q; q) k n,i A n,i (q)t i z n (q; q) n = k,n,i n + k k q A n,i (q)t i+1 z n+k (q; q) n+k = k,n,i n k q A n-k,i-1 (q)t i z n (q; q) n .
Substituting the last two expressions in (1.18) and identifying the coefficients of t i z n /(q; q) n on both sides yields

k n k q A n-k,i-k (q) - k n k q A n-k,i-1 (q)= ⎧ ⎪ ⎨ ⎪ ⎩ 1, if i =0 = n, -1, if i = n =0, 0, otherwise.
By setting i = a, n = a + b, and using (1.17), we obtain (1.5).

In the following, we will construct bijective proofs of Theorem 1.1.1 and 1.1.2 by making use of the two involutions d and d ′ defined in (1.14) and (1.15), respectively. As a warm-up, we first prove the symmetry property (1.17) by constructing an explicit involution on permutations.

Lemma 1.3.1. There is an involution π → σ on S n satisfying lec(π)=n -1lec(σ), and (invlec)π =(in v-lec)σ.

Proof. Let π = pτ 1 τ 2 ...τ r be the hook factorization of π ∈ S n .

• If p = ∅, let σ = d ′ (p)d(τ 1 )d(τ 2 ),...,d(τ r ). • If p = ∅, let σ = d ′ (τ 1 )d(τ 2 )d(τ 3 ) ...d(τ r ).
Since d and d ′ are two involutions, it is routine to check that such a mapping is an involution with the required properties.

For each fixed positive integer n,atwo-pix-permutation of

[n] is a sequence of words v =(p 1 ,τ 1 ,τ 2 ,...,τ r-1 ,τ r ,p 2 ) (1.19)
satisfying the following conditions:

(C1) p 1 and p 2 are two increasing words, possibly empty;

(C2) τ 1 ,...,τ r are hooks for some positive integer r;

(C3) The concatenation p 1 τ 1 τ 2 ...τ r-1 τ r p 2 of all components of v is a permutation of [n].

We also extend the two statistics to the two-pix-permutations by

lec(v)=in v(τ 1 )+inv(τ 2 )+•••+inv(τ r ), inv(v)=in v(p 1 τ 1 τ 2 ...τ r-1 τ r p 2 ).
It follows that

(inv -lec)v =in v(cont(p 1 ), cont(τ 1 ), cont(τ 2 ),...,cont(τ r ), cont(p 2 )). (1.20) Lemma 1.3.2.
The generating function for all two-pix-permutations v of n such that lec(v)=s by the statistic invlec is

k≥0 n k q A k,s (q). (1.21)
Proof. By the hook factorization, the two-pix-permutation v in (1. [START_REF] Chung | Generalized Eulerian Sums[END_REF]) is in bijection with the pair (σ, p 2 ), where σ = p 1 τ 1 τ 2 ...τ r-1 τ r is a permutation on [n] \ cont(p 2 ) and p 2 is an increasing word. Thus, by (1.12), (1.13), and (1.20), the generating function for the two-pix-permutations v of [n] such that lec(v)=s and Proof. We give an explicit construction of the bijection. Let v be a two-pixpermutation and write

|p 2 | = n -k with respect to the weight q (inv -lec)(v) is [ n k ] q A k,s (q).
v =(τ 0 ,τ 1 ,τ 2 ,...,τ r-1 ,τ r ,τ r+1 ),
where τ 0 = p 1 and τ r+1 = p 2 .I fτ i (respectively τ j ) is the leftmost (respectively rightmost) non-empty word (clearly i =0 , 1 and j = r, r +1), we can write v in the following compact way by removing the empty words at the beginning or at the end: v =(τ i ,τ i+1 ,...,τ j-1 ,τ j ).

(

It is easy to see that the above procedure is reversible by adding some necessary empty words at the two ends of the compact form (1.22). Now we work with the compact form. Recall that (invlec)v =in v(cont(τ i ), cont(τ i+1 ),...,cont(τ j-1 ), cont(τ j )) (1.23) and lec(v)= j k=i inv(τ k ). If i = j, then only one word τ i is in the sequence v. We define u =( ∅,σ i , ∅), where σ i is the unique word (hook) with content [n] such that inv(σ i )=n -2inv(τ i ).

If j>i , we define the two-pix-permutation u by

u =(d ′ (τ i ),d(τ i+1 ),d(τ i+2 ),...,d(τ j-1 ),d ′ (τ j )),
where d and d ′ are two involutions defined in (1.14) and (1.15). Since inv(d

′ (τ i )) = |cont(τ i )|-1 -inv(τ i ), inv(d ′ (τ j )) = |cont(τ j )|-1 -inv(τ j ) and inv(d ′ (τ k )) = |cont(τ k )|-inv(τ k ) for k = i, j,w eh a v e lec(u)= |cont(τ k )|-2 -lec(v)=n -2 -lec(v).
Finally, it follows from (1.23) that (invlec)u =(in v-lec)v.

We give an example to illustrate the bijection. Let v =(27, 6389, 514, ∅).T h e n v is a two-pix-permutation of [START_REF] Brenti | q-Eulerian polynomials arising from Coxeter groups[END_REF] and inv(v)=1 9 , lec(v)=3 , (invlec)v =1 6 . The compact form is [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF]6389,514),s ot h a t u =(d ′ (27),d(6389),d ′ (514) = [START_REF] Savage | Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences[END_REF]9368,145).

Since the first word 72 is not increasing, we obtain the standard form by adding the empty word at the beginning, so that u =( ∅, 72, 9368, 145). Hence inv(u)=2 0 , lec(u)=4,a n d(invlec)u =16. Bijective proof of (1.6). Let S n (k)={π ∈ S n : pix(π)=k} and D n = S n (0). We first note that the left-hand side of (1.6) has the following interpretation:

Bijective proof of

π∈Dn lec π=a q (inv -lec)π = k≥1 (-1) n-k n k q q ( n-k 2 ) A k,a (q). (1.24) 
This interpretation follows immediately from [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]Corollary 4.4] and (1.11). One can also give a direct combinatorial proof of (1.24). Actually, by (1.12) and (1.13) we have

A n,a (q)= π∈Sn lec π=a q (inv -lec)π = k π∈Sn(k)
lec π=a q inv(cont(p),cont(τ 1 ...τr))+inv(cont(τ 1 ),cont(τ 2 ),...,cont(τr))

= k A⊆[n] |A|=k q inv(A,[n]\A) π∈D n-k lec π=a q (inv -lec)π = k n k q π∈D k lec π=a q (inv -lec)π .
Applying Gaussian inversion (or q-binomial inversion) to the above identity we obtain (1.24).

Lemma 1.3.4. For 0 ≤ j ≤ n, there is an involution v → u on S n (j) satisfying lec(u)=njlec(v) and (invlec)u =(in v-lec)v.

Proof. Let v = pτ 1 τ 2 ...τ r be the hook factorization of v ∈ S n (j), where p is an increasing word and each factor τ 1 , τ 2 , ..., τ r is a hook. We define u to be pd(τ 1 ) ...d(τ r ), where d is defined in (1.14). It is easy to check that this mapping is an involution on S n (j) with the desired properties.

1. Generalized q-Eulerian polynomials Now, by (1.24), the symmetric identity (1.6) is equivalent to the j =0case of the above Lemma.

By (1.12), Lemma 1.3.4 gives a simple bijective proof of the following known [START_REF] Chung | Generalized Eulerian Sums[END_REF][START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF] symmetry property of the fixed point q-Eulerian numbers.

Corollary 1.3.5. For n, k, j ≥ 0,

A n,k,j (q)=A (j) n,n-j-k (q).
(1.25)

Bijective proof of (1.7). Let W n (j) denote the set of all two-pix-permutations of [n] with |p 1 | = j.

Lemma 1.3.6. Let a, j be fixed nonnegative integers. Then, 

v∈Wn(j) lec v=a q (inv -lec)v = k≥1 n k q A (j) k,a (q). ( 1 
(inv -lec)v is n n-k q A (j)
k,a (q). Lemma 1.3.7. Let j be a fixed nonnegative integer. Then, there is an involution v → u on W n (j) satisfying lec(v)=nj -1lec(u), and (invlec)v =(in v-lec)u.

Proof. We give an explicit construction of the bijection using the involutions d and d ′ defined in (1.14) and (1.15). Let v =( p 1 ,τ 1 ,τ 2 ,...,τ r-1 ,τ r ,p 2 ) be a two-pixpermutation of [n] with |p 1 | = j. As previously, we write v in compact from by removing the possible empty word at the end:

v =(p 1 ,τ 1 ,...,τ i-1 ,τ i ),
where i = r or r +1. Define

u =(p 1 ,d(τ 1 ),d(τ 2 ),...,d(τ i-1 ),d ′ (τ i )).
As d and d ′ are involutions, this mapping is an involution on W n (j).

Since we have lec(d(τ

k )) = |cont(τ k )|-lec(τ k ) for 1 ≤ k ≤ i-1 and lec(d ′ (τ i )) = |cont(τ i )|-1, it follows that lec(u)= i-1 k=1 |cont(τ k )| + |cont(τ i )|-1 -lec(v)=n -j -1 -lec(v).
1.4. A new recurrence formula for (q, r)-Eulerian polynomials 29 Finally, it follows from (1.20) that (invlec)u =( i n v-lec)v. This finishes the proof of the lemma.

Combining Lemmas 1.3.6 and 1.3.7 we obtain a bijective proof of (1.7).

1.4 A new recurrence formula for (q, r)-Eulerian polynomials

The Eulerian differential operator δ x is defined by

δ x (f (x)) := f (x) -f (qx) x , for any f (x) ∈ Q[q][[x]
] in the ring of formal power series in x over Q[q] (instead of the traditional (f (x)f (qx))/((1q)x), see [START_REF] Andrews | On the foundations of combinatorial theory V, Eulerian differential operators[END_REF][START_REF] Chow | A recurrence relation for "inv" analogue of q-Eulerian polynomials[END_REF]). We need the following elementary properties of δ x .

Lemma 1.4.1. For any f (x),g(x

) ∈ Q[q][[x]], we have δ x (f (x)g(x)) = f (qx)δ(g(x)) + δ(f (x))g(x)
and

δ x 1 f (x) = -δ x (f (x)) f (qx)f (x) (f (x) =0).
Proof of Theorem 1.1.4. It is not difficult to verify that, for any variable a δ z (e(az; q)) = ae(az; q). (1.27)

Now, applying δ z to both sides of (1.2) and using the above property and Lemma 1.4.1, we obtain n≥0 A n+1 (t, r, q) z n (q; q) n =δ z

(1t)e(rz; q) e(tz; q)te(z; q) =δ z ((1t)e(rz; q))(e(tz; q)te(z; q)) -1 + δ z (e(tz; q)te(z; q)) -1 (1t)e(rzq; q) = r(1t)e(rz; q) e(tz; q)te(z; q) + (1t)e(rzq; q)(te(z; q)te(tz; q)) (e(tqz; q)te(qz; q))(e(tz; q)te(z; q)) =r n≥0 A n (t, r, q) z n (q; q) n + t n≥0

A n (t, r, q) (qz) n (q; q) n n≥1

A n (t, q) z n (q; q) n .

Taking the coefficient of z n (q;q)n in both sides of the above equality, we get (1.10).

1. Generalized q-Eulerian polynomials Remark 1.3. A different recurrence formula for A n (t, r, q) was obtained in [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]Corollary 4.3]. Eq. (1.10) is similar to two recurrence formulas in the literature: one for the (inv, des)-q-Eulerian polynomials in [START_REF] Park | The r-Multipermutations[END_REF]Corollary 2.22] (see also [START_REF] Chow | A recurrence relation for "inv" analogue of q-Eulerian polynomials[END_REF]) and the other one for the (maj, des)-q-Eulerian polynomials in [START_REF] Park | The r-Multipermutations[END_REF]Corollary 3.6].

We shall give another interpretation of A n (t, r, q) as follows. Let π ∈ S n . Recall that an inversion of π is a pair (π(i),π(j)) such that 1 ≤ i<j≤ n and π(i) >π(j).A nadmissible inversion of π is an inversion (π(i),π(j)) that satisfies either

• 1 <iand π(i -1) <π(i) or
• there is some l such that i<l<j and π(i) <π(l).

We write ai(π) the number of admissible inversions of π. Define the statistic aid(π): =a i ( π) + des(π). For example, if π = 42153 then there are 5 inversions, but only (4, 3) and (5, 3) are admissible. So inv(π)=5 , ai(π)=2and aid(π)= 2+3=5 . The statistics "ai" and "aid" were first studied by Shareshian and Wachs [START_REF] Shareshian | q-Eulerian polynomials: Excedance Number and Major Index[END_REF] in the context of Poset Topology. Here we follow the definitions in [START_REF] Linusson | Rees products and lexicographic shellability[END_REF]. The curious result that the pairs (aid, des) and (maj, exc) are equidistributed on S n was proved in [START_REF] Linusson | Rees products and lexicographic shellability[END_REF] using techniques from Poset Topology.

Let W be the set of all the words on N. We define a new statistic, denoted by " rix", on W recursively. Let W = w 1 w 2 •••w n be a word in W and w i be the rightmost maximum element of W . We define rix(W ) by (with convention that rix(∅)=0)

rix(W ):= ⎧ ⎪ ⎨ ⎪ ⎩ 0, if i =1 = n, 1+rix(w 1 •••w n-1 ), if i = n, rix(w i+1 w i+2 •••w n ), if 1 <i<n.
For example, we have rix(1 5 2 4 3 3 5) = 1 + rix(1 5 2 4 3 3) = 1 + rix(2 4 3 3) = 1 + rix(3 3) = 2 + rix(3) = 3. As every permutation can be viewed as a word on N, this statistic is well-defined on permutations. We write S (j)

n the set of permutations π ∈ S n with π(j)=n.F o r n ≥ 1 and 1 ≤ j ≤ n,w ed e fi n eB n (t, r, q): = π∈Sn t des(π) r rix(π) q ai(π) and its restricted version by

B (j)
n (t, r, q):= π∈S (j) n t des(π) r rix(π) q ai(π) .

(1.28)

We should note here that the restricted q-Eulerian polynomial B (j) n (t, q) is not equal to B (j) n (t, 1,q) but to some modification of it, as will be shown in the next section.

1.4. A new recurrence formula for (q, r)-Eulerian polynomials 31 Theorem 1.4.2. We have the following interpretation for (q, r)-Eulerian polynomials:

A n (t, r, q)= π∈Sn t des(π) r rix(π) q ai(π) .

(1.29)

Proof. We will show that B n (t, r, q) satisfies the same recurrence formula and initial condition as A n (t, r, q).F o rn ≥ 1 it is clear from the definition of B n (t, r, q) that

B n+1 (t, r, q)= 1≤j≤n+1 B (j) n+1 (t, r, q). (1.30)
It is easy to see that

B ( 1 
)
n+1 (t, r, q)=tB n (t, 1,q) and B (n+1) n+1 (t, r, q)=rB n (t, r, q).

(1.31)

We then consider B (j) n+1 (t, r, q) for the case of 1 <j<n+1. For a set X let X m denote the m-element subsets of X and S X the set of permutations of X. Also let W(n, j) be the set of all triples (W,

π 1 ,π 2 ) such that W ∈ [n] j and π 1 ∈ S W ,π 2 ∈ S [n]\W . Clearly, the mapping π → (W, π 1 ,π 2 ) defined by • W = {π(i):1≤ i ≤ j -1}, • π 1 = π(1)π(2) •••π(j -1) and π 2 = π(j +1)π(j +2)•••π(n) is a bijection between S (j)
n and W(n -1,j -1) and satisfies des(π) = des(π 1 ) + des(π 2 )+1, rix(π) = rix(π 2 )

and ai(π)=ai(π 1 )+ai(π 2 )+inv(W, [n -1] \ W )+n -j.
Thus, for 1 <j<n+1 we have

B (j) n+1 (t, r, q)= π∈S (j) n+1 t des(π) r rix(π) q ai(π) =tq n+1-j (W,π 1 ,π 2 )∈W(n,j-1)
q inv(W,[n]\W ) q ai(π 1 ) t des(π 1 ) r rix(π 2 ) q ai(π 2 ) t des(π 2 )

=tq n+1-j W ∈( [n] j-1 ) q inv(W,[n]\W ) π∈S W q ai(π 1 ) t des(π 1 ) π 2 ∈S [n]\W r rix(π 2 ) q ai(π 2 ) t des(π 2 ) =tq n+1-j n j -1 q B j-1 (t, 1,q)B n+1-j (t, r, q), (1.32) 
where we apply (1.13) to the last equality. Substituting (1.31) and (1.32) into (1.30) we obtain B n+1 (t, r, q)=rB n (t, r, q)+tB n (t, 1,q)+t n-1 j=1 n j q q j B j (t, r, q)B n-j (t, 1,q). By Theorem 1.1.4, B n (t, r, q) and A n (t, r, q) satisfy the same recurrence formula and initial condition, thus B n (t, r, q)=A n (t, r, q). This finishes the proof of the theorem.

Corollary 1.4.3. The three triples (rix, des, aid), (fix, exc, maj) and (pix, lec, inv) are equidistributed on S n .

Remark 1.4. At the Permutation Patterns 2012 conference, A. Burstein [START_REF] Burstein | A combinatorial proof of joint equidistribution of some pairs of permutation statistics, talk at Permutation Patterns[END_REF] gave a direct bijection on S n that transforms the triple (rix, des, aid) to (pix, lec, inv). The new statistic "rix" was introduced independently therein under the name "aix". Actually, the definitions of both are slightly different, but they are the same up to an easy transformation. It would be very interesting to find a similar bijective proof of the equidistribution of (rix, des, aid) and (fix, exc, maj). See also Remark 1.2.

1.5 Two proofs of Theorem 1.1.3

1.5.1 An interpretation of B (j)
n,k (q) and a proof of Theorem 1.1.3

It follows from (1.2) and (1.8) that B

(1)

1,0 (q)=1and B

n,k (q)=A n-1,k-1 (q) for k ≥ 1.F o rj ≥ 2, we have the following interpretation for B (j)

n,k (q). Lemma 1.5.1. For 2 ≤ j ≤ n, B (j) n,k (q)= π∈S (j) n des(π)=k q ai(π)+2j-n-1 .
Proof. Let j ≥ 2. By means of the recurrence relation (1.32) one can compute without difficulty that the factorial generating function

n≥j q 2j-n-1 B (j) n (t, 1,q)z n-1 (q; q) n-1
is exactly the right side of (1.8) using (1.2) and (1.29). Lemma 1.5.2. For 1 <j<n, we have

B (j) n,k (q)=B (j) n,n-1-k (q).
Proof. We first construct an involution f : π → π ′ on S n satisfying ai(π)=ai(π ′ ) and des(π)=n -1des(π ′ ).

(1.33)

For n =1define f (id)=id. For n ≥ 2 suppose that π = π 1 •••π n is a permutation of {π 1 , ••• ,π n } and π j is the maximum element in {π 1 , ••• ,π n }.
We construct f recursively as follows

f (π)= ⎧ ⎪ ⎨ ⎪ ⎩ f (π 2 π 3 •••π n ) π 1 , if j =1, π n f (π 1 π 2 •••π n-1 ), if j = n, f (π 1 π 2 •••π j-1 ) π j f (π j+1 π j+2 •••π n ), otherwise.
For example, if π = 3257641,t h e n

f (π)=f (3 2 5) 7 f (6 4 1) = 5 f (3 2)7 f (41)6 = 5237146.
Clearly, ai(π)=7=a i ( π ′ ) and des(π)=4=7-1des(π ′ ). It is easy to check that f is an involution. Moreover, we can show that f satisfies (1.33) by induction on n.

For each π = π 1 •••π j-1 nπ j+1 •••π n in S (j) 
n we then define

g(π)=f (π 1 •••π j-1 ) nf(π j+1 •••π n ).
As f is an involution, g is an involution on S

n . It follows from (1.33) that ai(g(π)) = ai(π) and des(π)=n -1des(g(π)), which completes the proof in view of Lemma 1.5.1.

Remark 1.5. A bijective proof of Lemma 1.5.2 when q =1was given in [START_REF] Chung | Generalized Eulerian Sums[END_REF]. But their bijection does not preserve the admissible inversions. Supposing that π = π 1 •••π n is a permutation of {π 1 , ••• ,π n } and π j is the maximum element in {π 1 , ••• ,π n }, we modify f introduced above and make use of f ′ defined as follows:

f ′ (π)= ⎧ ⎪ ⎨ ⎪ ⎩ f ′ (π 2 π 3 •••π n ) π 1 , if j =1, π, if j = n, f ′ (π 1 π 2 •••π j-1 ) π j f ′ (π j+1 π j+2 •••π n ), otherwise.
Then, f ′ provides another bijective proof of Corollary 1.3.5 using (des, rix, ai).

Now we are in position to give a generating function proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. We start with the generating function given in (1.8).

Multiplying both sides by e(tz; q)te(z; q), we obtain

n,k B (j)
n,k (q)t k z n-1 (q; q) n-1 (e(tz; q)te(z; q)) = (qz) j-1 A j-1 (t, q) (q; q) j-1 (e(tz; q)te(tz; q)).

Generalized q-Eulerian polynomials

Expanding the exponential functions, we have

n,k,i B (j) n,k (q) t k+i z n+i-1 (q; q) i (q; q) n-1 - n,k,i B (j) n,k (q) 
t k+1 z n+i-1 (q; q) i (q; q) n-1

=

(qz) j-1 A j-1 (t, q) (q; q) j-1 n≥0

(1t)t n z n (q; q) n .

Identifying the coefficient of

t l z m-1 gives k B (j) m+k-l,k (q) (q; q) l-k (q; q) m+k-l-1 - i B (j) m-i,l-1 (q) (q; q) i (q; q) m-i-1 = q j-1 (A j-1,l+j-m (q) -A j-1,l+j-m-1 (q)) (q; q) j-1 (q; q) m-j .
Multiplying both sides by

(q; q) m-1 ,w eg e t k B (j) m+k-l,k (q) m -1 l -k q - i B (j) m-i,l-1 (q) m -1 i q =(A j-1,l+j-m (q) -A j-1,l+j-m-1 (q))q j-1 m -1 j -1 q .
Changing the variables of the two summations on the left-hand side gives

k B (j) k,k+l-m (q) m -1 k -1 q - k B (j) k,l-1 (q) m -1 k -1 q =(A j-1,l+j-m (q) -A j-1,l+j-m-1 (q))q j-1 m -1 j -1 q . (1.34)
Applying the symmetry property in Lemma 1.5.2 to the first summation on the left-hand side of (1.34) we obtain

k B (j) k,k+l-m (q) m -1 k -1 q = B (j) j,j+l-m (q) m -1 j -1 q + k =j B (j) k,m-1-l (q) m -1 k -1 q . (1.35)
It follows from Lemma 1.5.1 and Theorem 1.4.2 that

B (n) n,k (q)= π∈S (n) n des(π)=k q ai(π)+n-1 = q n-1 A n-1,k (q).
Using the symmetry property of A n,k (q), that is, A n,k (q)=A n,n-1-k (q), and the above property, the right-hand side of (1.34) can be treated as follows: 

(A j-1,l+j-m (q) -A j-1,l+j-m-1 (q))q j-1 m -1 j -1 q =B (j) j,j+l-m (q) m -1 j -1 q -A j-1,m-1-l (q)q j-1 m -1 j -1 q =B (j) j,j+l-m (q) m -1 j -1 q -B (j) j,m-1-l (q) m -1 j -1 q . ( 1 
B (j) k,m-1-l (q) m -1 k -1 q = k B (j) k,l-1 (q) m -1 k -1 q ,
which becomes (1.9) after setting m = a + b +2 and l -1=b.

Remark 1.6. The only case left out in Theorem 1.1.3 is the case j =1 .H o wever, as B

n,k (q)=A n-1,k-1 (q), the corresponding symmetric identity for this case is (1.5).

A bijective proof of Theorem

1.1.3 Let S(j) n := {π ∈ S n : π(j +1)=1} for 1 ≤ j<n and S(n) n := {π ′ 1:π ′ ∈ S [n]\{1} }. The " " in π = π 1 π 2 •••π n-1 1 ∈ S(n)
n means that the n-th position of π is empty and the hook factorization of π is defined to be pτ

1 •••τ r 1, where pτ 1 •••τ r is the hook factorization of π 1 •••π n-1
and " 1" is viewed as a hook. We also define the statistics

lec(π 1 π 2 •••π n-1 1) = r i=1 lec(τ i ), inv(π 1 π 2 •••π n-1 1) = inv(π 1 π 2 •••π n-1 1).
For example, we have

S(3) 3 = {32 1, 23 1} with lec(32 1) = 1, lec(23 1) = 0, inv(32 1) = 3,a n dinv(23 1) = 2. Lemma 1.5.3. For 1 ≤ j ≤ n, B (j) n,k (q)= π∈ S(j) n lec(π)=k q (inv -lec)π .

Generalized q-Eulerian polynomials

Proof. Let B(j) n (t, q):= π∈ S(j) n q (inv -lec)π t lec π . We recall that, to derive the hook factorization of a permutation, one can start from the right and factor out each hook step by step. Therefore, the hook factorization of

π = π 1 •••π j-1 π j 1π j+2 •••π n in π ∈ S(j) n is pτ 1 •••τ s τ ′ 1 •••τ ′ r , where pτ 1 •••τ s and τ ′ 1 •••τ ′ r are hook factorizations of π 1 •••π j-1 and π j 1π j+2 •••π n ,
respectively. When n>j, from the structure of hook factorization we see that

lec(π j 1π j+2 •••π n ) = 1 + lec(π j π j+2 •••π n ) and (inv -lec)(π j 1π j+2 •••π n )=(in v-lec)(π j π j+2 •••π n ).
Thus, by (1.13) we have

B(j) n (t, q)=A j-1 (t, q)q j-1 n -1 j -1 q tA n-j (t, q) (1.37)
for n>j . Clearly, B(j) j (t, q)=A j-1 (t, q)q j-1 . So, by (1.2) the exponential generating function n≥j B(j) n (t, q)z n-1 /(q; q) n-1 is the right-hand side of (1.8). This finishes the proof of the lemma.

Remark 1.7. This interpretation can also be deduced directly from the interpretation in Lemma 1.5.1 using Burstein's bijection [START_REF] Burstein | A combinatorial proof of joint equidistribution of some pairs of permutation statistics, talk at Permutation Patterns[END_REF].

For X ⊂ [n] with |X| = m and 1 ∈ X, we can define S(j) X for 1 ≤ j ≤ m similarly as S(j) m like this:

S(j) X := {π ∈ S X : π(j+1) = 1} for 1 ≤ j<m and S(m) X := {π ′ 1:π ′ ∈ S X\{1} }.
For 1 ≤ j ≤ n we define a j-restricted two-pix-permutation of [n] to be a pair v =(π, p 2 ) satisfying the following two properties:

• p 2 (possibly empty) is an increasing word on [n];

• π ∈ S(j) X with X =[n] \ cont(p 2 ). Similarly, we define lec(v) = lec(π) and inv(v)=i n v ( π)+inv(cont(π), cont(p 2 )). Let W (j)
n denote the set of all j-restricted two-pix-permutations of [n]. Lemma 1.5.4. Let a, j be positive integers. Then,

v∈W (j) n lec v=a q (inv -lec)v = k≥1 n -1 k -1 q B (j) k,a (q). (1.38)
Proof. It follows from Lemma 1.5.3 and some similar arguments as in the proof of Lemma 1.3.6.

Lemma 1.5.5. Let 2 ≤ j ≤ n. Then, there is an involution v → u on W

(j) n satisfying lec(v)=n -2 -lec(u), and (inv -lec)v =(in v-lec)u. (1.39) Proof. Suppose v =(π, p 2 ) ∈W (j)
n and π = τ 0 τ 1 •••τ r is the hook factorization of π such that τ 0 is a hook or an increasing word and τ i (1 ≤ i ≤ r) are hooks. We also assume that

p 2 = x 1 •••x l if p 2 is not empty. Note that 1 /
∈ cont(τ 0 ) since j =1. We will use the involutions d and d ′ defined in (1.14) and (1.15). There are several cases to be considered:

(i) τ r = 1. Then, u = (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 )x l 1x 1 x 2 •••x l-1 , ∅), if p 2 = ∅; (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 ) 1, ∅), otherwise. (ii) τ r = y s 1y 1 •••y s-1 . Then, u = ⎧ ⎪ ⎨ ⎪ ⎩ (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 )d(τ r )d ′ (p 2 ), ∅), if p 2 = ∅; (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 ) 1,y 1 •••y s ), if p 2 = ∅ and y s >y s-1 ; (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 )d ′ (τ r ), ∅), otherwise. (iii) 1 / ∈ cont(τ r ). Then, u = ⎧ ⎪ ⎨ ⎪ ⎩ (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 )d(τ r )d ′ (p 2 ), ∅), if p 2 = ∅; (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 ),d ′ (τ r )), if p 2 = ∅ and lec(τ r )=|τ r |-1; (d ′ (τ 0 )d(τ 1 ) •••d(τ r-1 )d ′ (τ r ), ∅), otherwise.
First, one can check that u ∈W (j)

n . Second, as d, d ′ are involutions, the above mapping is an involution. Finally, this involution satisfies (1.39) in all cases. This completes the proof of the lemma.

Combining Lemmas 1.5.4 and 1.5.5 we obtain a bijective proof of Theorem 1.1.3.

1. Generalized q-Eulerian polynomials

Concluding remarks

F o rafi x e dk ≥ 1, recall that the Rawlings major index rmaj k (π) of π ∈ S n can be defined as follows:

DES ≥k (π):={i ∈ [n -1] : π i -π i+1 ≥ k}, inv <k (π):=|{(i, j) ∈ [n] × [n]:i<j, and 0 <π i -π j <k}|, maj ≥k (π):= i∈DES ≥k (π) i, rmaj k (π):=in v <k (π)+maj ≥k (π).
It is clear that rmaj 1 (π)=m a j ( π) and rmaj n (π)=i n v ( π) for π ∈ S n . Rawlings [START_REF] Rawlings | The r-major index[END_REF] showed that rmaj k (π) is a Mahonian statistic for each k ≥ 1. Shareshian and Wachs [START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF] studied some chromatic quasisymmetric functions a n dp r o v e dt h e following equidistribution.

Theorem 1.6.1 ([77, Theorem 4.19]). The two pairs (exc, maj) and (ides, rmaj 2 ) are equidistributed on S n , where ides(π) := des(π -1 ).

In view of the above result and Corollary 1.4.3, the following problem is interesting. This problem was also posed by Burstein [START_REF] Burstein | A combinatorial proof of joint equidistribution of some pairs of permutation statistics, talk at Permutation Patterns[END_REF] at the Permutation Patterns 2012 conference. Problem 1.1. Can we describe a statistic "st" on S n so that the two triples (fix, exc, maj) and (st, ides, rmaj 2 ) are equidistributed on S n ?

Chapter 2

Colored Eulerian quasisymmetric functions

Introduction and preliminaries

Let l be a fixed positive integer throughout this chapter. Consider the wreath product C l ≀ S n of the cyclic group C l of order l by the symmetric group S n of order n. The group C l ≀ S n is also known as the colored permutation group. In case l =1, 2, C l ≀ S n are respectively the symmetric group S n and the Type B Coxeter group B n . Various statistics on colored permutation groups have been studied in the literature and several kinds of q-analog of colored Eulerian polynomials are proposed [START_REF] Chow | Counting derangements, involutions and unimodal elements in the wreath product C r ≀ S n[END_REF][START_REF] Faliharimalala | Flag-major index and flaginversion number on colored words and Wreath product[END_REF][START_REF] Faliharimalala | Fix-Euler-Mahonian statistics on wreath products[END_REF][START_REF] Foata | Signed words and permutations, III; The MacMahon Verfahren[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF][START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF][START_REF] Steingrímsson | Permutation statistics of indexed permutations[END_REF]. It is worth noting that Foata and Han [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF] studied various statistics on words and calculated the quadruple distribution of the number of fixed points, descents and excedances, together with the major index over permutations, in the form of a factorial generating function formula, which implies (1.2). They further extended their results to colored permutations [START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF]. Recently, in order to generalize (1.2) to colored permutation groups, Hyatt [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] introduced the colored Eulerian quasisymmetric functions, which generalize the Shareshian-Wachs Eulerian quasisymmetric functions [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]. The starting point for this chapter is the attempt to obtain a symmetric function generalization of (1.1) for colored permutation groups.

In [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF], Hyatt introduced the cv-cycle type colored Eulerian quasisymmetric functions Qλ ,k , where λ is a particular cv-cycle type. They are defined by first associating a fundamental quasisymmetric function with each colored permutation and then summing these fundamental quasisymmetric functions over colored permutations with cv-cycle type λ and k excedances. The precise definition of Qλ ,k is given in Section 2.2.1. It was announced in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] that Qλ ,k is in fact a symmetric function. This follows from the colored ornament interpretation of Qλ ,k and the plethysm inversion formula [START_REF] Wachs | Poset Topology: Tools and Applications, Geometric combinatorics[END_REF]Section 2.4]. But more importantly, we will give a combinatorial proof of this fact, which is needed in the bijective proof of the generalized symmetric identity in Theorem 2.4.12.

Another interesting Eulerian quasisymmetric function is the fixed point colored Eulerian quasisymmetric function Q n,k, α, β , for α ∈ N l and β ∈ N l-1 , which can be defined as a certain sum of Qλ ,k . The main result in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] is a generating function formula (see Theorem 2.2.6) for Q n,k, α, β , which when applying the stable principal specialization would yield an extension of (1.2) for the joint distribution of excedance number and major index on colored permutations. This generating function formula was obtained through three main steps:

(1) a colored analog of the Gessel-Reutenauer bijection [START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF] is used to give the colored ornaments characterization of Qλ ,k ;

(2) the Lyndon decomposition is used to give the colored banners characterization of Qλ ,k ;

(3) the generating function formula is derived by establishing a recurrence formula using the interpretation of Qλ ,k as colored banners.

The recurrence formula in step (3) was established through a complicated generalization of a bijection of Shareshian-Wachs [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF], so it would be reasonable to expect a simpler approach. In Section 2.3, we will show how step (3) can be deduced directly from the Decrease Value Theorem developed by Foata-Han [START_REF] Foata | Decreases and descents in words[END_REF]. Section 2.4 deals with the symmetric function generalizations of (1.1) for colored permutation groups. We modify the fixed point Eulerian quasisymmetric functions to some Q n,k,j that we call flag Eulerian quasisymmetric functions,which are also a kind of generalization of the Eulerian quasisymmetric functions and would specialize to the flag excedance numbers studied in [START_REF] Bagno | On the excedance numbers of colored permutation groups[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF]. The generating function formula for Q n,k,j follows easily from Hyatt's generating function formula for Q n,k, α, β . By making use of this generating function formula, we study the symmetry and unimodality of the flag Eulerian quasisymmetric functions and prove two symmetric function generalizations of (1.1), which involve both the complete homogeneous symmetric functions h n and Q n,k,j . We will construct bijective proofs of those two generalized symmetric identities, one of them leading to a new interesting approach to step 3 in the proof of [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]Theorem 1.2]. As one benefit of the study of the flag Eulerian quasisymmetric functions, we prove symmetry and unimodality of some colored q-Eulerian polynomials related to the number of fixed points, the flag excedances and the flag major index [START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF] on colored permutations. Moreover, it motives us to find colored versions of Gessel's hook factorizations (introduced in Section 1.2) and the Linusson-Shareshian-Wachs admissible inversions (introduced in Section 1.4) for colored permutations.

Recently, Shareshian and Wachs [START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF] introduced the chromatic quasisymmetric functions of graphs and proved a surprising result that the two pairs (exc, maj) and (ides, rmaj 2 ) are equidistributed on S n ; see Theorem 1.6.1. The main purpose of Section 2.5 is to extend this result from permutations to colored permutations. More precisely, let Q n,k, β be the colored Eulerian quasisymmetric function (the fixed points is not taken into account) defined by Q n,k, β := α Q n,k, α, β . We introduce a colored analog of Rawlings major index [START_REF] Rawlings | The r-major index[END_REF] for colored permutations and prove a new interpretation of Q n,k, β as a sum of some fundamental quasisymmetric functions related with these colored Rawlings major index. This is established by applying the P -partition theory and a decomposition of the chromatic quasisymmetric functions due to Shareshian and Wachs [START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF].

Quasisymmetric functions

We collect here the definitions and some facts about Gessel's quasisymmetric functions that will be used in the rest of this chapter; a good reference is [START_REF] Stanley | Enumerative Combinatorics[END_REF]Chapter 7].

The quasisymmetric functions were originally introduced by Gessel [START_REF] Gessel | Multipartite P -partitions and inner products of skew Schur functions[END_REF] in the combinatorial interpretation of inner products of Skew Schur Functions. Let f (x) be a formal power series of bounded degree in the variables x := {x 1 ,x 2 ,...} with rational coefficients. The function f (x) is called a symmetric function if for any permutation w of the positive integers P we have f (x w(1) ,x w(2) ,...)=f (x 1 ,x 2 ,...); it is called a quasisymmetric function if for any a 1 ,...,a k ∈ P we have

[x a 1 i 1 •••x a k i k ]f =[x a 1 j 1 •••x a k j k ]f whenever i 1 < ••• <i k and j 1 < ••• <j k . Here, [x a 1 i 1 •••x a k i k ]f means the coefficient of x a 1 i 1 •••x a k i k in f .
Clearly, every symmetric function is a quasisymmetric function, but not conversely. For instance, the series i<j x 2 i x j is quasisymmetric but not symmetric.

Given a subset S of [n -1], define the fundamental quasisymmetric function F n,S by

F n,S = F n,S (x):= i 1 ≥•••≥in≥1 j∈S⇒i j >i j+1 x i 1 •••x in .
(2.1)

If S = ∅,t h e nF n,S is the complete homogeneous symmetric function h n and if S =[ n -1],t h e nF n,S is the elementary symmetric function e n . T h es e to fa l l quasisymmetric functions forms a ring and has the fundamental quasisymmetric functions as a basis. Define ω to be the involution on the ring of quasisymmetric functions that maps F n,S to F n,[n-1]\S , which extends the involution on the ring of symmetric functions that takes h n to e n . The stable principal specialization ps is the ring homomorphism from the ring of symmetric functions to the ring of formal power series in the variable q, defined by ps(x i )=q i-1 .

The following property of ps is known [START_REF] Gessel | Counting permutations with given cycle structure and descent set[END_REF]. 

ps(F n,S )= q i∈S i (q; q) n . (2.2)
In particular, ps(h n )= 1 (q; q) n and ps(e n )= q n(n-1)/2 (q; q) n .

Proof. To any sequence

(i 1 ,...,i n ) such that i 1 ≥•••≥i n ≥ 0 and j ∈ S ⇒ i j > i j+1 we can associate a sequence (i ′ 1 ,...,i ′ n ) with i ′ k = i k -|{j ∈ S : j ≥ k}| for k =1, 2,...,n. It is clear that j i j = j i ′ j + j∈S j.
Applying ps to (2.1), we have

ps(F n,S )= i 1 ≥•••≥in≥0 j∈S⇒i j >i j+1 q i 1 +i 2 +•••+in = q j∈S j i ′ 1 ≥•••≥i ′ n ≥0 q i ′ 1 +•••+i ′ n ,
which is equivalent to (2.2).

Hyatt's colored Eulerian quasisymmetric functions

Statistics on colored permutation groups

We recall the definition of the colored Eulerian quasisymmetric functions introduced in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF]. Consider the following set of l-colored integers from 1 to n

[n] l := 1 0 , 1 1 ,...,1 l-1 , 2 0 , 2 1 ,...,2 l-1 ,...,n 0 ,n 1 ,...,n l-1 .
If π is a word over [n] l ,w eu s eπ i and ǫ i ∈{ 0, 1,...,l -1} to denote the i-th letter of π and the color of the i-th letter of π, respectively. We let |π i | denote the positive integer obtained from π i by removing the superscript. If π is a word of length m over [n] l ,w ed e n o t eb y|π| the word

|π| := |π 1 ||π 2 |•••|π m |.
In one-line notation the colored permutation group C l ≀ S n can be viewed as the set of the words π over [n] l such that |π|∈S n . Now, the descent number, des(π),theexcedance number, exc(π), and the major index, maj(π), of a colored permutation π ∈ C l ≀ S n are defined as follows:

DES(π):={j ∈ [n -1] : π j >π j+1 }, des(π):=| DES(π)|, maj(π):= j∈DES(π) j, EXC(π):={j ∈ [n]:π j >j 0 }, exc(π):=| EXC(π)|,
where we use the following color order

E := 1 l-1 < ••• <n l-1 < 1 l-2 < ••• <n l-2 < ••• < 1 0 < ••• <n 0 .
Also, for 0 ≤ k ≤ l -1,thek-th color fixed point number fix k (π) and the k-th color number col k (π) are defined by

fix k (π):=|{j ∈ [n]:π j = j k }| (2.3) and col k (π):=|{j ∈ [n]:ǫ j = k}|.
(2.4)

The fixed point vector fix(π) ∈ N l and the color vector col(π) ∈ N l-1 are then defined as fix(π):=(fix 0 (π), fix 1 (π),...,fix l-1 (π)), col(π):=(col 1 (π),...,col l-1 (π))

respectively. For example, if π =5 2 2 1 4 0 3 2 1 2 6 0 ∈ C 3 ≀ S 6 ,t h e nDES(π)={3, 4}, des(π)=2, EXC(π)={3}, exc(π)=1, maj(π)=7, fix(π)=(1, 1, 0) and col(π)= (1, 3).
A colored permutation π can also be written in cycle form such that j ǫ j follows i ǫ i means that π i = j ǫ j . Continuing with the previous example, we can write it in cycle form as

π =(1 2 , 5 2 )(2 1 )(3 2 , 4 0 )(6 0 ). (2.5) For each vector β =( β 1 ,...,β l-1 ) ∈ N l-1 let | β| := β 1 + ••• + β l-1 . Given a partition λ =( λ 1 ≥•••≥λ i ) of n with λ i ≥ 1,acv-cycle type is defined to be a multiset of pairs λ = {(λ 1 , β 1 ),...,(λ i , β i )}, (2.6) 
where β 1 ,..., β i are vectors from N l-1 with the property that | β j |≤λ j for j = 1,...,i.N o w ,i fγ is a cyclic colored permutation, written as a cycle (c 1 ,...,c ℓ(γ) ) of length ℓ(γ), define the cv-cycle type of γ to be the singleton λ := {ℓ(γ), γ},s o that the inequality | col(γ)|≤ℓ(γ) holds. Next, if a permutation π from C l ≀ S n is the product of the disjoint cycles π = γ 1 •••γ i , written in non-increasing order of their lengths, define the cv-cycle type of π to be the multiset of pairs λ(π):={(ℓ(γ 1 ), col(γ 1 ),...,(ℓ(γ i ), col(γ i ))}.

With the above convention the sequence (ℓ(γ 1 ),...,ℓ

(γ i )) is a partition λ =(λ 1 ≥ ••• ≥ λ i ) of n. Moreover, | col(γ j )|≤λ j = ℓ(γ j ) for j =1 ,...,i and col(π)= col(γ 1 )+•••+ col(γ i
) by using component-wise addition. Thus, π is a well-defined cv-cycle type. For example, col(1 2 , 5 2 )=( 0 , 2), col(3 2 , 4 0 )=( 0 , 1), col(2 1 )= (1, 0), col(6 0 )=( 0 , 0), so that the cv-cycle type of the permutation π in (2.5) reads λ(π)={(2, (0, 2)), (2, (0, 1)), (1, (1, 0)), (1, (0, 0))}.

Next, we define a set value statistic DEX on C l ≀ S n that will be used in the definition of colored Eulerian quasisymmetric functions. Let

A := { 1 0 < 2 0 < ••• < n 0 } < E,
where E has the same order as above, but now the letters with a tilde are less than the letters in E. Given a colored permutation π ∈ C l ≀ S n , construct a word π of length n over A as follows: if i ∈ EXC(π), then replace π i by π i , otherwise leave π i alone.

For example, if π =4 2 6 0 2 0 5 0 3 2 1 2 ∈ C 3 ≀ S 6 ,t h e n π =4 2 6 0 2 0 5 0 3 2 1 2 .T h e n DEX(π) is defined by DEX(π):=DES( π).

Using the example above we have

DEX(4 2 6 0 2 0 5 0 3 2 1 2 )=DES(4 2 6 0 2 0 5 0 3 2 1 2 )={1, 3, 5}.
We are now ready to give the definition of the main object of this chapter. summed over π ∈ C l ≀ S n with λ(π)= λ and exc(π)=k. Given α ∈ N l , β ∈ N l-1 , the fixed point colored Eulerian quasisymmetric functions are then defined as

Q n,k, α, β = π F n,DEX(π) (2.7)
summed over all π ∈ C l ≀ S n such that exc(π)=k, fix(π)= α and col(π)= β.

Lemma 2.2.1 ([52, Lemma 2.2]). For every π ∈ C l ≀ S n we have

i∈DEX(π) i =maj(π) -exc(π).
The following specialization of the fixed point colored Eulerian quasisymmetric functions follows from the above lemma and Eq. (2.2). Lemma 2.2.2. For al l n, k, α and β,

ps(Q n,k, α, β )=(q; q) -1 n π q (maj -exc)π (2.8)
summed over all π ∈ C l ≀ S n such that exc(π)=k, fix(π)= α and col(π)= β.

Colored ornaments

We will use the colored ornament interpretation in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] to prove combinatorially that Qλ ,k is a symmetric function.

Let B be the infinite ordered alphabet given by

B := {1 0 < 1 1 < ••• < 1 l-1 < 1 0 < 2 0 < 2 1 < ••• < 2 l-1 < 2 0 < 3 0 < 3 1 < •••}.
(2.9) A letter of the form u m from B is said to be m-colored, and each letter u 0 is also said to be 0-colored. If w is a word over B, we define the color vector col(w) ∈ N l-1 of w to be col(w):=(col 1 (w), col 2 (w),...,col l-1 (w)),

where col m (w) is the number of m-colored letters in w for m =1 ,...,l-1.T h e absolute value of a letter is the positive integer obtained by removing any colors or bars, so

|u m | = |u 0 | = u.T h eweight of a letter u m or u 0 is x u .
We consider the circular word over B.I fw is a word on B, we denote (w) the circular word obtained by placing the letters of w around a circle in a clockwise direction. A circular word (w) is said to be primitive if the word w can not be written as w = w ′ w ′ •••w ′ where w ′ is some proper subword of w. For example,

(1 0 , 2 1 , 1 0 , 2 1 ) is primitive but (1 0 , 2 1 , 1 0 , 2 1 ) is not because 1 0 2 1 1 0 2 1 = w ′ w ′ with w ′ =1 0 2 1 .

Definition 2.2 ([52, Definition 3.1]).

A colored necklace is a circular primitive word (w) over the alphabet B such that (1) Every barred letter is followed by a letter of lesser or equal absolute value.

(2) Every 0-colored unbarred letter is followed by a letter of greater or equal absolute value.

(3) Words of length one may not consist of a single barred letter.

A colored ornament is a multiset of colored necklaces.

The weight wt(R) of a ornament R is the product of the weights of the letters of R. Similar to the cv-cycle type of a colored permutation, the cv-cycle type λ(R) of a colored ornament R is the multiset

λ(R)={(λ 1 , β 1 ),...,(λ i , β i )},
where each pair (λ j , β j ) corresponds to precisely one colored necklace in the ornament R with length λ j and color vector β j . For example, if l =3and Proof. We will extend the bijective poof of [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]Theorem 5.8] involving ornaments to the colored ornaments. For each j ∈ P we will construct a bijection ψ between colored necklaces that exchanges the number of occurrences of the value j and j +1 in a colored necklace, but preserves the number of occurrences of all other values, the total number of bars and the color vector. Since such a ψ can be extended to colored ornaments by applying ψ to each colored necklace, the results will then follow from Theorem 2.2.3.

R =(2 1 , 3 0 , 1 0 , 1 2 , 2 1 , 5 0 , 3 0 )(2 1 , 2 2 )(6 0 , 7 0 )(2 0 )(3 1
Qλ ,k = R∈R( λ,k) wt(R).
Case 1: The necklace R contains only the letters with values j and j +1. Without loss of generality, we assume that j =1 . First replace all 1's with 2's and all 2's with 1's, leaving the bars and colors in their original positions. Now the problem is that each 0-colored 1 that is followed by a 2 has a bar but each 0-colored 2 that is followed by a 1 lacks a bar. We call a 1 that is followed by a 2 a rising 1 and a 2 that is followed by a 1 a falling 2. Since the number of rising 1 equals the number of falling 2 and they appear alternately, we can switch the color of each rising 1 with the color of its closest (in clockwise direction) falling 2. If, in addition, the rising 1 has a bar, then we also move the bar to its closest falling 2, thereby obtaining a colored necklace R ′ with the same number of bars and the same color vector as R, but with the number of 1's and 2's exchanged. Let

ψ(R)=R ′ . Clearly, ψ is reversible. For example if R =(2 2 2 0 1 1 1 0 1 0 2 0 2 3 2 0 2 1 1 0 1 0 2 0 1 2 1 0 1 0 ) then we get (1 2 1 0 2 1 2 0 2 0 1 0 1 3 1 0 1 1 2 0 2 0 1 0 2 2 2 0 2 0 )
before the colors and bars are adjusted. After the colors and bars are adjusted, we have

ψ(R)=(1 2 1 0 2 1 2 0 2 0 1 0 1 3 1 0 1 0 2 0 2 1 1 0 2 2 2 0 2 0 ).

Case 2:

The necklace R has letters with values j and j +1, and other letters which we will call intruders. The intruders enable us to form linear segments of R consisting only of letters with value j or (j +1). To obtain such a linear segment start with a letter of value j or j +1 that follows an intruder and read the letters of R in a clockwise direction until another intruder is encountered. For example if R =(5 0 3 1 3 0 4 2 4 0 3 0 3 1 3 0 3 2 6 2 6 0 3 0 3 0 3 1 4 0 2 0 4 3 4 0 )

(2.10) and j =3, then the segments are 3 1 3 0 4 2 4 0 3 0 3 1 3 0 3 2 , 3 0 3 0 3 1 4 0 and 4 3 4 0 . There are two types of segments, even segments and odd segments. An even (odd) segment contains an even (odd) number of switches, where a switch is a letter of value j followed by one of value j +1 (call a rising j) or a letter of value j +1 followed by one of value j (call a falling j +1). We treat the even and odd segments separately.

Subcase 2.1: Even segments. In an even segment, we replace all j's with (j +1)'s and all (j +1)'s with j's. Again, this may produce problems on rising j or falling j +1. So we switch the color of the i-th rising j with the color of the i-th falling j +1 and move the bar (if it really has) from the i-th rising j to the i-th falling j +1 to obtain a good segment, where rising j's and falling (j +1)'s are counted from left to right. This preserves the number of bars and color vector, and exchanges the number of j's and (j +1)'s. For example, the even segment 3 1 3 0 4 2 4 0 3 0 3 1 3 0 3 2 gets replaced by 4 1 4 0 3 2 3 0 4 0 4 1 4 0 4 2 . After the bars and colors are adjusted we obtain 4 1 4 0 3 2 3 0 4 0 4 1 4 0 4 2 . Subcase 2.2: Odd segments. An odd segment either starts with a j and ends with a j +1, or vice versa. Both cases are handled similarly. So we suppose we have an odd segment of the form

j m 1 (j +1) n 1 j m 2 (j +1) n 2 •••j mr (j +1) nr ,
where each m i ,n i > 0 and the bars and colors have been suppressed. The number of switches is 2r -1. We replace it with the odd segment

j n 1 (j +1) m 1 j n 2 (j +1) m 2 •••j nr (j +1) mr ,
and put bars and colors in their original positions. Again, we may have created problems on rising j's (but not on falling (j +1)'s); so we need to adjust bars and colors around. Note that the positions of the rising j's are in the set

{N 1 + n 1 ,N 2 + n 2 ,N 3 + n 3 ,...,N r + n r }, where N i = i-1
t=1 (n t + m t ). Now we switch the color in position N i + n i with the color in position N i + m i and move the bar (if it really has) to position N i + m i , thereby obtain a good segment. For example, the odd segment 3 0 3 0 3 1 4 0 gets replaced by 3 0 4 0 4 1 4 0 before the bars and colors are adjusted. After the bars and colors are adjusted we have 3 1 4 0 4 0 4 0 .

Let ψ(R) be the colored necklace obtained by replacing all the segments in the way described above. For example if R is the colored necklace given in (2.10) then

ψ(R)=(5 0 4 1 4 0 3 2 3 0 4 0 4 1 4 0 4 2 6 2 6 0 3 1 4 0 4 0 4 0 2 0 3 3 3 0 ).
It is rountine to check that ψ is reversible in all cases and thus is a bijection of colored necklaces. This completes the proof of the theorem.

Colored banners

We shall first give a brief review of Hyatt's colored banner interpretation [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] for Qλ ,k and then present a slightly different version of his interpretation that will be used in the next section.

Definition 2.3 ([52, Definition 4.2]). A colored banner is a word B = B(1)B(2) ••• over the alphabet B such that (1) if B(i) is barred then |B(i)|≥|B(i +1)|, (2) if B(i) is 0-colored and unbarred, then |B(i)|≤| B(i +1)| or i equals the length of B, (3) 
the last letter of B is unbarred.

Recall that a Lyndon word over an ordered alphabet is a word that is strictly lexicographically larger than all its circular rearrangements. It is a result of Lyndon (cf. [59, Theorem 5.1.5]) that every word has a unique factorization into a lexicographically weakly increasing sequence of Lyndon words, called Lyndon factorization. We say that a word of length n has Lyndon type λ (where λ is a partition of n) if the parts of λ are equal to the lengths of the factors in the Lyndon factorization.

We make use of the Lyndon factorization in our colored banners study. The cv-cycle type of a colored banner B is defined to be the multiset

λ(B)= (λ 1 , β 1 ), ..., (λ k , β k ) ,
where B has Lyndon type λ, and the corresponding word of length λ i in the Lyndon factorization has color vector β i .T h eweight wt(B) o fab a n n e ri sd e fi n e dt ob e the product of the weights of all letters in B. For example, if l =3and

B =2 0 2 2 2 1 3 1 5 0 3 0 2 1 3 0 1 0 1 2 2 1 7 0 6 0 , then the Lyndon factorization of B is B =(2 0 )(2 2 , 2 1 )(3 1 )(5 0 , 3 0 , 2 1 , 3 0 , 1 0 , 1 2 , 2 1 )(7 0 , 6 0 )
and λ(B)={(7, (2, 1)), (2, (1, 1)), (2, (0, 0)), (1, (0, 0)), (1, (1, 0))}.

Let K( λ, k) be the set of all colored banners with k barred letters whose cv-cycle type (with respect to the order of B in (2.9)) is λ.

Theorem 2.2.5 (New colored banner interpretation). There is a weight-preserving bijection from R( λ, k) to K( λ, k). Consequently,

Qλ ,k = B∈K( λ,k)
wt(B).

Proof. The proof applies Lyndon factorization to the colored banners and is identical to the proof of [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF]Theorem 3.6].

Remark 2.1. Consider the following order < B on the alphabet B:

1 1 < B ••• < B 1 l-1 < B 2 1 < B ••• < B 2 l-1 < B ••• < B n 1 < B ••• < B n l-1 < B < B 1 0 < B 1 0 < B 2 0 < B 2 0 < B 3 0 < B 3 0 < B •••n 0 < B n 0 .
Hyatt [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF]Theorem 4.3] applied the Lyndon factorization to the colored banners with the above order < B on B to give a different colored banner interpretation of Qλ ,k , which we should call the original colored banner interpretation. Our new colored banner interpretation stated here is closer to the word interpretation in Lemma 2.3.1, while the original colored banner interpretation will be used in the proof of Theorem 2.4.14.

The following generating function for Q n,k, α, β was computed in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF] by establishing a recurrence formula based on the original colored banner interpretation of Qλ ,k . Theorem 2.2.6 (Hyatt). Fix l ∈ P and let

r α = r α 0 0 •••r α l-1 l-1 and s β = s β 1 1 •••s β l-1 l-1 . Then n,k≥0 α∈N l , β∈N l-1 Q n,k, α, β z n t k r α s β = H(r 0 z)(1 -t)( l-1 m=1 E(-s m z)H(r m s m z)) (1 + l-1 m=1 s m )H(tz) -(t + l-1 m=1 s m )H(z)
, (2.11) where H(z):= i≥0 h i z i and E(z):= i≥0 e i z i .

An application of the Decrease Value Theorem

The main objective of this section is to show how (2.11) can be deduced from the Decrease Value Theorem directly.

Decrease values in words

We begin with some word statistics studied in [START_REF] Foata | Decreases and descents in words[END_REF][START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF]. Let w = w 1 w 2 •••w n be an arbitrary word over N. Recall that an integer i ∈

[n -1] is a descent of w if w i >w i+1 ;i ti sadecrease of w if w i = w i+1 = ••• = w j >w j+1 for some j such that i ≤ j ≤ n -1.
The letter w i is said to be a decrease value of w. The set of all decreases (resp. descents) of w is denoted by DEC(w) (resp. DES(w)). Each descent is a decrease, but not conversely. Hence DES(w) ⊂ DEC(w).

In parallel with the notions of descent and decrease, an integer i ∈ [n] is a rise of w if w i <w i+1 (By convention that w n+1 = ∞, and thus n is always a rise); it is an increase of w if i/ ∈ DEC(w). The letter w i is said to be an increase value of w. The set of all increases (resp. rises) of w is denoted by INC(w) (resp. RISE(w)). Clearly, each rise is an increase, but not conversely. Hence RISE(w) ⊂ INC(w).

Furthermore, a position i is said to be a record if w i ≥ w j for all j such that 1 ≤ j ≤ i -1 and the letter w i is called a record value. Denote by REC(w) the set of all records of w. Now, we define a mapping f from words on N to colored banners as follows

f : w = w 1 w 2 ...w n → B = B(1)B(2) ...B(n),
where • B(i)=u 0 ,i fw i is a decrease value such that w i = ul for some u ∈ P;

• otherwise B(i)=( u +1) m , where w i = ul + m for some u, m ∈ N satisfies 0 ≤ m ≤ l -1.
For 

is also satisfied. This shows that f is well defined. A letter k ∈ N is called a m-colored letter (or value) if it is congruent to m (0 ≤ m ≤ l -1) modulo l. For a word w = w 1 ...w n over N, we define the colored vector mod(w) ∈ N l-1 of w to be mod(w):=(mod 1 (w),...,mod l-1 (w)), where mod m (w) is the number of m-colored letters in w for m =1 ,...,l -1. Supposing that w i = u i l + m i for some 0 ≤ m i ≤ l -1, we then define the weight wt(w) of w to be the monomial x d(w 1 ) ...x d(wn) , where d(w i )=u i if w i is a decrease value and m i =0, otherwise d(w i )=u i +1. We also define the cv-cycle type of w to be the multiset λ(w)= (λ 1 , α 1 ), ..., (λ k , α k ) if w has Lyndon type λ (with respect to the order of N), and the corresponding word of length λ i in the Lyndon factorization has color vector α i .

Lemma 2.3.1. Let W ( λ, k) be the set of all words over N with cv-cycle type λ and exactly k 0-colored decrease values. Then

Qλ ,k = w∈W ( λ,k)
wt(w).

Proof. Clearly, the mapping f is a bijection which maps 0-colored decrease values to 0-colored barred letters and preserves the color of letters. It is also weight preserving wt(w)=wt(f (w)). It is not hard to check that if the Lyndon factorization of a word w over N is

w =(w 1 )(w 2 ) •••(w k ),
then the Lyndon factorization (with respect to the order of B in (2.9)) of the banner f (w) is

f (w)=(f (w 1 ))(f (w 2 )) •••(f (w k )).
Thus f also keeps the Lyndon factorization type, which would complete the proof in view of Theorem 2.2.5.

Combinatorics of the Decrease Value Theorem

Let [0,r] * be the set of all finite words whose letters are taken from the alphabet [0,r]: ={0, 1,...,r}. Introduce six sequences of commuting variables

(X i ), (Y i ), (Z i ), (T i ), (Y ′ i ), (T ′ i ) (i =0 , 1, 2,...)
, and for each word w = w 1 w 2 ...w n from [0,r] * define the weight ψ(w) of w to be

ψ(w):= i∈DES X w i i∈RISE \ REC Y w i i∈DEC \ DES Z w i × i∈(INC \ RISE)\REC T w i i∈RISE ∩ REC Y ′ w i i∈(INC \ RISE)∩REC T ′ w i .
The following generating function for the set [0,r] * by the weight ψ was calculated by Foata and Han [33, Theorem 1.2] using the properties of Foata's first fundamental transformation on words (see [START_REF] Lothaire | Combinatorics on Words[END_REF]Chap. 10]) and a noncommutative version of MacMahon Master Theorem (see [START_REF] Cartier | Problèmes combinatoires de commutation et réarrangements[END_REF]Chap. 4]).

Theorem 2.3.2 (Decrease Value Theorem). We have:

w∈[0,r] * ψ(w)= 1≤j≤r 1-Z j 1-Z j +X j 0≤j≤r 1-T ′ j 1-T ′ j +Y ′ j 1 - 1≤k≤r 1≤j≤k-1 1-Z j 1-Z j +X j 0≤j≤k-1 1-T j 1-T j +Y j X k 1-Z k +X k .
(2.12)

We show in the following that one can also use the Kim-Zeng decomposition of multiderangement [START_REF] Kim | A new Decomposition of Derangements[END_REF] (but not the word-analog of the Kim-Zeng decomposition developed in [START_REF] Foata | Fix-mahonian calculus III; a quardruple distribution[END_REF]Theorem 3.4]) instead of MacMahon Master Theorem to prove the Decrease Value Theorem combinatorially.

A letter w i which is a record and also a rise value is called a riserec value.A word w ∈ [0,r] * having no equal letters in succession is called horizontal derangement. Denote by [0,r] * d the set of all the horizontal derangement words in [0,r] * without riserec value. It was shown in [START_REF] Foata | Decreases and descents in words[END_REF] that the decrease value theorem is equivalent to

w∈[0,r] * d ψ(w)= 1 1≤j≤r (1 + X j ) - 1≤i≤r 0≤j≤i-1 (1 + Y j ) i+1≤j≤r (1 + X j ) X i
, which again can be rewritten as

w∈[0,r] * d ψ(w)= 1 1 - 1≤i≤r 0≤j≤i-1 (1 + Y j ) -1 i+1≤j≤r (1 + X j ) X i . (2.13) A word σ = s 1 s 2 •••s k of k distinct nonnegative integers is called a cycle of length k if s 1 = min{s 1 ,s 2 ,...,s k }.
The rises of a cycle σ are called the excedances of σ. Using Foata's first fundamental transformation on words, we can factorize each word in [0,r] * d as a product of cycles of length at least 2, where the rises of the word are transformed into the excedances of the cycles.

A cycle σ = s 1 s 2 •••s k is called a prime cycle if there exists i, 2 ≤ i ≤ k, such that s 1 < ••• <s i-1 <s k <s k-1 < ••• <s i+1 <s i .
By the two decompositions in [START_REF] Kim | A new Decomposition of Derangements[END_REF], a product of cycles of length at least 2 admits a decomposition to some components of prime cycles preserving excedances, from which we can see Eq. (2.13) directly.

A new proof of Hyatt's result

Introduce three sequences of commuting variables (ξ i ), (η i ), (ζ i ), (i =0 , 1, 2,...) and make the following substitutions:

X i = ξ i ,Z i = ξ i ,Y i = η i ,T i = η i ,Y ′ i = ζ i ,T ′ i = ζ i (i =0, 1, 2,...).
The new weight ψ ′ (w) attached to each word w = y 1 y 2 •••y n is then

ψ ′ (w)= i∈DEC(w) ξ y i i∈(INC \ REC)(w) η y i i∈(INC ∩ REC)(w) ζ y i , (2.14) 
and identity (2.12) becomes:

w∈[0,r] * ψ ′ (w)= 1≤j≤r (1-ξ j ) 0≤j≤r (1-ζ j ) 1 - 1≤k≤r 1≤j≤k-1 (1-ξ j ) 0≤j≤r (1-η j ) ξ k . (2.15)
Let η denote the homomorphism defined by the following substitutions of variables:

η := ξ j ← tY i-1 ,ζ j ← r 0 Y i ,η j ← Y i , if j = li; ξ j ← s m Y i ,ζ j ← r m s m Y i ,η j ← s m Y i , if j = li + m for some 1 ≤ m ≤ l -1.
Lemma 2.3.3. We have

j≥0 (1 -sY j ) -j≥0 (1 -Y j ) j≥0 (1 -Y j ) =(1-s) i≥0 Y i 0≤j≤i-1 (1 -sY j ) 0≤j≤i (1 -Y j )
.

Proof. First, we may check that

0≤j≤r (1 -sY j ) - 0≤j≤r (1 -Y j ) = 0≤i≤r 0≤j≤i (1 -sY j ) i+1≤j≤r (1 -Y j ) - 0≤i≤r 0≤j≤i-1 (1 -sY j ) i≤j≤r (1 -Y j ) =(1 -s) 0≤i≤r Y i 0≤j≤i-1 (1 -sY j ) i+1≤j≤r (1 -Y j ).
Multiplying both sides by

1 0≤j≤r (1-Y j ) yields 0≤j≤r (1 -sY j ) -0≤j≤r (1 -Y j ) 0≤j≤r (1 -Y j ) =(1-s) 0≤i≤r Y i 0≤j≤i-1 (1 -sY j ) 0≤j≤i (1 -Y j )
.

Letting r tend to infinity, we get the desired formula.

Theorem 2.3.4. We have

lim r→∞ w∈[0,r] * ηψ ′ (w)= H(r 0 Y )(1 -t)( l-1 m=1 E(-s m Y )H(r m s m Y )) (1 + l-1 m=1 )H(tY ) -(t + l-1 m=1 )H(Y ) , (2.16) 
where H(tY

)= i≥0 (1 -tY i ) -1 and E(sY )= i≥0 (1 + sY i ).
Proof. To apply the homomorphism η, we write (2.15) as

w∈[0,r] * ψ ′ (w)= N r D r , (2.17) 
where

N r = 1≤j≤r (1 -ξ j ) 0≤j≤r (1 -ζ j )
and

D r =1- 1≤k≤r 1≤j≤k-1 (1 -ξ j ) 0≤j≤r (1 -η j ) ξ k .
Applying η to both sides of (2.17) we have

w∈[0,r] * ηψ ′ (w)= η(N r ) η(D r ) , (2.18) 
where

η(N r )= 1≤i≤⌊r/l⌋ (1 -tY i-1 ) l-1 m=1 0≤i≤⌊(r-m)/l⌋ (1 -s m Y i ) 0≤i≤⌊r/l⌋ (1 -r 0 Y i-1 ) l-1 m=1 0≤i≤⌊(r-m)/l⌋ (1 -r m s m Y i ) and η(D r )=1- 1≤k≤r 1≤i≤⌊(k-1)/l⌋ (1 -tY i-1 ) l-1 m=1 0≤i≤⌊(k-1-m)/l⌋ (1 -s m Y i ) 0≤i≤⌊(k-1)/l⌋ (1 -Y i ) l-1 m=1 0≤i≤⌊(k-1-m)/l⌋ (1 -s m Y i ) η(ξ k ) =1- 1≤k≤r 1≤i≤⌊(k-1)/l⌋ (1 -tY i-1 ) 0≤i≤⌊(k-1)/l⌋ (1 -Y i ) η(ξ k ).
Letting r tend to infinity in (2.18) we obtain

lim r→∞ w∈[0,r] * ηψ ′ (w)= i≥0 (1-tY i ) l-1 m=1 i≥0 (1-smY i ) i≥0 (1-r 0 Y i-1 ) l-1 m=1 i≥0 (1-rmsmY i ) 1 - k≥1 1≤i≤⌊(k-1)/l⌋ (1-tY i-1 ) 0≤i≤⌊(k-1)/l⌋ (1-Y i ) η(ξ k ) . (2.19)
By the definition of η,

1 - k≥1 1≤i≤⌊(k-1)/l⌋ (1 -tY i-1 ) 0≤i≤⌊(k-1)/l⌋ (1 -Y i ) η(ξ k ) =1 - i≥0 0≤j≤i-1 (1 -tY j ) 0≤j≤i (1 -tY j ) tY i - l-1 m=1 i≥0 0≤j≤i-1 (1 -tY j ) 0≤j≤i (1 -tY j ) s m Y i =1 -(t + l-1 m=1 s m ) i≥0 0≤j≤i-1 (1 -tY j ) 0≤j≤i (1 -tY j ) Y i .
By Lemma 2.3.3 the above identity becomes

1 - k≥1 1≤i≤⌊(k-1)/l⌋ (1 -tY i-1 ) 0≤i≤⌊(k-1)/l⌋ (1 -Y i ) η(ξ k ) =1 - t + l-1 m=1 s m 1 -t × j≥0 (1 -tY j ) - j≥0 (1 -Y j ) j≥0 (1 -Y j ) .
Substituting this expression into (2.19), we get (2.16).

Combining the above theorem with Lemma 2.3.1 we get a Decrease Value Theorem approach to Hyatt's generating function (2.11).

Flag Eulerian quasisymmetric functions

Definition 2.4 (Flag Eulerian quasisymmetric functions). For β =(β 1 ,...,β l-1 ) ∈

N l-1 let csum( β):= l-1 i=1 i × β i .
Define the Flag Eulerian quasisymmetric functions Q n,k,j as

Q n,k,j := i, α, β Q n,i, α, β ,
where the sum is over all integers i, vectors α ∈ N l and β ∈ N l-1 such that li + csum( β)=k and α 0 = j.

We will show later that the flag Eulerian quasisymmetric functions have many analog (or generalized) properties of the Shareshian-Wachs Eulerian quasisymmetric functions [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF].

Corollary 2.4.1 (of Theorem 2.2.6). We have

n,k,j≥0 Q n,k,j t k r j z n = (1 -t)H(rz) H(t l z) -tH(z) , (2.20) 
where Q 0,0,0 =1.

For each positive integer n the polynomial [n] q is defined as

[n] q := 1 + q + •••+ q n-1 . By convention, [0] q =0. Corollary 2.4.2. Let Q n (t, r)= j,k≥0 Q n,k,j t k r j .
Then, Q n (r, t) satisfies the following recurrence relation:

Q n (t, r)=r n h n + n-1 k=0 Q k (t, r)h n-k t[l(n -k) -1] t . (2.21) 
Moreover,

Q n (t, r)= m k 0 ≥0 lk 1 ,...,lkm≥2 k i =n r k 0 h k 0 m i=1 h k i t[lk i -1] t . (2.22)
Proof. By (2.20), we have

n,k,j≥0 Q n (t, r)z n = H(rz) 1 -n≥1 t[ln -1] t h n z n ,
which is equivalent to (2.21). It is not hard to show that the right-hand side of (2.22) satisfies the recurrence relation (2.21). This proves (2.22).

For each colored permutation π ∈ C l ≀ S n define the flag excedance statistic fexc(π) studied in [START_REF] Bagno | On the excedance numbers of colored permutation groups[END_REF][START_REF] Foata | Signed words and permutations, V: A sextuple distribution[END_REF][START_REF] Foata | The decrease value theorem with an application to permutation statistics[END_REF] as

fexc(π):=l • exc(π)+ n i=1 ǫ i .
Note that when l =1, flag excedances are excedances on permutations. Define the number of fixed points of π, fix(π),b y fix(π):=|{j ∈ [n]:π j = j 0 }|.

Clearly, fix(π)=fi x 0 (π) defined in (2.3). The colored (q, r)-Eulerian polynomials A (l) n (t, r, q) are then defined as

A (l)
n (t, r, q):= π∈C l ≀Sn t fexc(π) r fix(π) q (maj -exc)π .

In particular, the polynomial

A (l) n (t, q):=A (l) n (t, 1,q) is called colored q-Eulerian polynomial.
The following specialization follows immediately from Lemma 2.2.2.

Lemma 2.4.3. Let Q n (t, r)= j,k≥0 Q n,k,j t k r j . Then we have ps(Q n (t, r)) = (q; q) -1 n A (l)
n (t, r, q). For nonnegative integers k 0 ,...,k m such that k 0 + ... + k m = n define the q-multinomial coefficient n k 0 ,...,k m q := (q; q) n (q; q) k 0 •••(q; q) km .

Applying the specialization ps to both sides of (2.20), (2.21) and (2.22) yields the following formulas for A (l) n (t, r, q). Corollary 2.4.4. We have n≥0 A (l) n (t, r, q) z n (q; q) n = (1t)e(rz; q) e(t l z; q)te(z; q) . (2.23)

Remark 2.2. The above generalization of (1.2) can also be deduced from [39, Theorem 1.3] through some calculations; see the proof of [39, Theorem 5.2] for details.

Corollary 2.4.5. We have

A (l) n (t, r, q)=r n + n-1 k=0 n k q A (l) k (t, r, q)t[l(n -k) -1] t (2.

24)

and

A (l) n (t, r, q)= m k 0 ≥0 lk 1 ,...,lkm≥2 k i =n n k 0 ,...,k m q r k 0 m i=1 [lk i -1] t .

Symmetry and unimodality

Let A(t)=a r t r +a r+1 t r+1 +•••+a s t s be a nonzero polynomial in t whose coefficients come from a partially ordered ring R.T h e nA(t) is t-symmetric with center of symmetry s+r 2 if a r+k = a s-k for all k =0 , 1,...,s-r;i st-unimodal if for some

s ≤ k ≤ r, a r ≤ R a r+1 ≤ R ••• ≤ R a k-1 ≤ a i ≥ a k+1 ••• ≥ R a s-1 ≥ R a s ; is log-concave if a 2 k ≥ a k-1 a k+1 for all k = r +1,r +2,...,s-1.
The following result is classical (see [22, p. 270]). Lemma 2.4.6. A polynomial with positive coefficients and with only real roots is log-concave and that log-concavity implies unimodality.

It is well known (see [22, p. 292]) that the Eulerian polynomial A n (t) is symmetric and has only real roots and therefore unimodal. The following fact [84, Proposition 1] is useful.

Lemma 2.4.7. The product of two symmetric unimodal polynomials with respective centers of symmetry c 1 and c 2 is symmetric and unimodal with center of symmetry c 1 + c 2 .

Let A (l) n (t) be the colored Eulerian polynomials defined as

A (l) n (t):=A (l) n (t, 1, 1) = π∈C l ≀Sn t fexc(π) .
Foata and Han [39, Eq. (5.15)] showed that

A (l) n (t)=A n (t)(1 + t + t 2 + •••+ t l-1 ) n . (2.25)
Recently, Mongelli [64, Proposition 3.3] rediscovered the l =2case of (2.25), which implies that A

n (t) is symmetry and has only real roots and therefore unimodal.

Remark 2.3. We can give a multivariate extension of (2.25) as follows. For each π ∈ C l ≀ S n we define the function

s(π, i):= ⎧ ⎪ ⎨ ⎪ ⎩ t l , if ǫ i =0and i ∈ EXC(|π|); 1, if ǫ i =0and i/ ∈ EXC(|π|); s ǫ i , if ǫ i =0,
and set w(π)=t l•exc(π) s

col 1 (π) 1 •••s col l-1 (π) l-1
(see (2.4) for the definition of col i (π)). It is easy to see that w(π)= n i=1 s(π, i). For a fix σ ∈ S n with exc(σ)=h we have

π∈C l ≀Sn |π|=σ w(π)= π∈C l ≀Sn |π|=σ n i=1 s(π, i) = i∈EXC(σ) (t l + s 1 + •••+ s l-1 ) i/ ∈EXC(σ) (1 + s 1 + •••+ s l-1 ) =(t l + s 1 + s 2 + •••+ s l-1 ) h (1 + s 1 + s 2 + •••+ s l-1 ) n-h .
It follows that

π∈C l ≀Sn t l•exc(π) s col 1 (π) 1 •••s col l-1 (π) l-1 = σ∈Sn π∈C l ≀Sn |π|=σ w(π) = n-1 h=0 A n,h (t l + s 1 + s 2 + •••+ s l-1 ) h (1 + s 1 + s 2 + •••+ s l-1 ) n-h =A n t l + s 1 + s 2 + •••+ s l-1 1+s 1 + s 2 + •••+ s l-1 (1 + s 1 + s 2 + •••+ s l-1 ) n .
Setting s i = t i in the above equation yields (2.25). Note that (2.25) can also be deduced from (2.23) directly.

From Lemma 2.4.7 and (2.25) we see that A n (t) is symmetric and unimodal with center of symmetry (ln -1)/2, although not real-rootedness when l>2. A sequence a 0 ,a 1 ,...,a n is said to has no interval zero if there do not exist integers 0 ≤ i<j<k≤ n satisfying a i =0 ,a j =0 ,a k =0 . It is known [84, Proposition 2] that the product of two log-concave polynomials with nonnegative coefficients and no interval zero coefficients is again log-concave, thus by (2.25) we have the following stronger result. t fexc(π) = A (2) n (t, 0, 1).

(2.26)

At the end of [START_REF] Mongelli | Excedances in classical and affine Weyl groups[END_REF], Mongelli noticed that d B 5 (t) is not real-rootedness and conjectured that d B n (t) is unimodal for any n ≥ 1. It is this conjecture that motivates us to study the symmetry and unimodality of the coefficients of t k in the flag Eulerian quasisymmetric functions and the colored (q, r)-Eulerian polynomials. We first recall some necessary definitions. Let Par be the set of all partitions of all nonnegative integers. Let b = {b λ : λ ∈ Par} be a basis of the space of symmetric functions. We can define a partial order relation on the ring of symmetric functions by Theorem 2.4.9. Let Q n,k = n j=0 Q n,k,j . Using the h-basis to partially order the ring of symmetric functions, we have for all n, j, k,

f ≤ b g ⇔ g -f is b-positive,
(1) the flag Eulerian quasisymmetric function Q n,k,j is a h-positive symmetric function;

(2) the polynomial ln-1 k=0 Q n,k,j t k is t-symmetric and t-unimodal with center of symmetry l(nj)/2;

(3) the polynomial ln-1 k=0 Q n,k t k is t-symmetric and t-unimodal with center of symmetry (ln -1)/2.

Proof. Part (1) follows from (2.22). We will use the fact in Lemma 2.4.7 to show Part (2) and (3). By (2.22) we have

ln-1 k=0 Q n,k,j t k = m lk 1 ,...,lkm≥2 k i =n-j h j m i=1 h k i t[lk i -1] t .
As each term h j m i=1 h k i t[lk i -1] t is t-symmetric and t-unimodal with center of symmetry i lk i /2=l(nj)/2, the sum of the terms on the right-hand side of the above equation has the same property, which shows Part (2).

In the following, we show that Part (3) also follows from (2.22). For any sequence of positive integers (k 1 ,...,k m ) we define

G (l) k 1 ,...,km := m i=1 h k i t[lk i -1] t .
Then, by (2.22) we have

ln-1 k=0 Q n,k,0 t k = m lk 1 ,...,lkm≥2 k i =n G (l) k 1 ,...,km and j≥1 ln-1 k=0 Q n,k,j t k = m lk 1 ,...,lkm≥2 k i =n h k 1 G (l) k 2 ,...,km assuming l ≥ 2. We claim that G (l) k 1 ,...,km + h k 1 G (l) k 2 ,.
..,km is t-symmetric and tunimodal with center of symmetry (ln -1)/2. Note that

G (l) k 1 ,...,km + h k 1 G (l) k 2 ,...,km = h k 1 (t[lk 1 -1] t +1)G (l) k 2 ,...,km . Clearly, t[lk 1 -1] t +1=1+t + •••+ t lk 1 -
1 is t-symmetric and t-unimodal with center of symmetry (lk 1 -1)/2,a n dG k 2 ,...,km is t-symmetric and t-unimodal with center of symmetry l(nk 1 )/2. Therefore, our claim holds and the proof of Part (3) is complete because of

ln-1 k=0 Q n,k t k = ln-1 k=0 Q n,k,0 t k + j≥1 ln-1 k=0 Q n,k,j t k .
Remark 2.4. We can give a bijective proof of the symmetric property

Q n,k,j = Q n,l(n-j)-k,j
(2.27) using the colored ornament interpretation of Q n,k,j . We construct an involution ϕ on colored ornaments such that if the cv-cycle type of a colored banner R is λ(R)={(λ 1 , β 1 ),...,(λ r , β r )},

then the cv-cycle type of ϕ(R) is λ(ϕ(R)) = {(λ 1 , β 1 ⊥ ),...,(λ r , β r ⊥ )},
where β ⊥ := (β l-1 ,β l-2 ,...,β 1 ) for each β =( β 1 ,...,β l-1 ) ∈ N l-1 . Let R be a colored banner. To obtain ϕ(R), we first bar each unbarred 0-colored letter of each nonsingleton colored necklace of R and unbar each barred 0-colored letter. Next, we change the color of each m-colored letter of R to color lm for all m =1,...,l-1. Finally, for each i we replace each occurrence of the i-th smallest value in R with the i-th largest value leaving the bars and colors intact. This proves (2.27) because Q n,k,j is a symmetric function by Theorem 2.2.4.

For the ring of polynomials Q[q], where q is an indeterminate, we use the partial order relation: f (q) ≤ q g(q) ⇔ g(q)f (q) has nonnegative coefficients.

We will use the following key fact from [76, Lemma 5.2].

Lemma 2.4.10. If f is a Schur positive homogeneous symmetric function of degree n, then (q; q) n ps(f ) is a polynomial in q with nonnegative coefficients.

Theorem 2.4.11. We have for n ≥ 1 and j ≥ 0,

(1) the polynomial π∈C l ≀Sn fix(π)=j t fexc(π) q (maj -exc)π is t-symmetric and t-unimodal with center of symmetry l(n-j) 2 ,

(2) the polynomial A (l) n (t, q) is t-symmetric and t-unimodal with center of symmetry ln-1 2 . Proof. Let f and g be two homogeneous symmetric functions of degree n with f ≤ h g. Since h-positivity implies Schur positivity [81, Corollary 7.12.4], by Lemma 2.4.10, we have (q; q) n ps(f ) ≤ q (q; q) n ps(g). 

By

Generalized symmetric Eulerian identities

In this section we prove two generalized symmetric Eulerian identities involving the flag Eulerian quasisymmetric functions Q n,k,j .

Theorem 2.4.12. For a, b ≥ 1 and j ≥ 0 such that a + b +1=l(nj),

i≥0 h i Q n-i,a,j = i≥0 h i Q n-i,b,j .
(2.28)

Proof. Cross-multiplying and expanding all the functions H(z) in (2.20), we obtain

n≥0 h n (t l z) n n,j,k≥0 Q n,k,j r j t k z n -t n≥0 h n z n n,j,k≥0 Q n,k,j r j t k z n =(1-t) n≥0 h n (rz) n .
Now, identifying the coefficients of z n yields i,j,k

h i Q n-i,k-li,j r j t k - i,j,k h i Q n-i,k-1,j r j t k =(1-t)h n r n .
Hence, for j<nwe can identity the coefficients of r j t k and obtain

i≥0 h i Q n-i,k-li,j = i≥0 h i Q n-i,k-1,j . (2.29) 
Applying the symmetry property (2.27) to the left-hand side of the above equation yields

i≥0 h i Q n-i,l(n-j)-k,j = i≥0 h i Q n-i,k-1,j ,
which becomes (2.28) after setting a = k -1 and b = l(nj)k since now n>j.

A bijective proof of Theorem 2.4.12. We will give a bijective proof of

Q n,k = Q n,ln-k-1 (2.30) 
by means of colored banners, using Theorem 2.2.5. Construct an involution θ on colored banners as follows. Let B be a colored banner. To obtain θ(B), first bar each unbarred 0-colored letter of B, except the last letter; also unbar each barred letter. Next, change the color of each m-colored letter of B to color lm for all m =1,...,l-1, except the last letter; if the color of the last letter is a, change it to l -1a. Finally, for each i replace each occurrence of the i-th smallest value in B with the i-th largest value, leaving the bars and colors intact. Since a+b = l(n-j)-1, by (2.30) we have

Q n-j,a = Q n-j,b , which is equivalent to i≥0 Q n-j,a,i = i≥0 Q n-j,b,i .
(2.31)

For any m, k, i, it follows from Theorem 2.2.3 that

Q m,k,i = h i Q m-i,k,0 . (2.32) 
Thus, Eq. (2.31) becomes

i≥0 h i Q n-j-i,a,0 = i≥0 h i Q n-j-i,b,0 .
Multiplying both sides by h j then gives

i≥0 h j h i Q n-j-i,a,0 = i≥0 h j h i Q n-j-i,b,0 .
Applying (2.32) once again, we obtain (2.28).

Remark 2.6. As the analytical proof of Theorem 2.4.12 is reversible, the above bijective proof together with the bijective proof of (2.27) provides a different proof of Corollary 2.4.1 using interpretations of Q n,k,j as colored ornaments and colored banners. In particular, this gives an alternative approach to Step 3 in the proof of Theorem 1.2 in [START_REF] Shareshian | Eulerian quasisymmetric functions[END_REF].

Theorem 2.4.13. Let Q n,k = j Q n,k,j .F o ra, b ≥ 1 such that a + b = ln we have: n-1 i=0 h i Q n-i,a-1 = n-1 i=0 h i Q n-i,b-1 . (2.33)
Proof. With r =1identity (2.20) becomes:

n,k≥0 Q n,k t k z n = (1 -t)H(z) H(t l z) -tH(z)
.

Subtracting both sides by Q 0,0 =1gives n≥1,k≥0

Q n,k t k z n = H(z) -H(t l z) H(t l z) -tH(z) .
Cross-multiplying and then identifying the coefficients of

t k z n (1 ≤ k ≤ ln -1) yields n-1 i=0 h i Q n-i,k-li = n-1 i=0 h i Q n-i,k-1 .
Applying the symmetry property (2.30) to the left-hand side we get

n-1 i=0 h i Q n-i,ln-1-k = n-1 i=0 h i Q n-i,k-1 ,
which is (2.33) when a-1=k-1 and b-1=ln-1-k, since now 1 ≤ k ≤ ln-1.

To construct a bijective proof of Theorem 2.4.13, we need a refinement of the decomposition of the colored banners from [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF].

A 0-colored marked sequence, denoted by (ω, b, 0), is a weakly increasing sequence ω of positive integers, together with a positive integer b, which we call the mark, such that 1 ≤ b<length(ω). Let M (n, b, 0) denote the set of all 0-colored marked sequences with length(ω)=n and mark equal to b.

For m ∈ [l -1],am-colored marked sequence, denoted by (ω, b, m), is a weakly increasing sequence ω of positive integers, together with a integer b such that 0 ≤ b<length(ω). Let M (n, b, m) denote the set of all m-colored marked sequences with length(ω)=n and mark equal to b.

Here we will use the original colored banner interpretation from Remark 2.1. Let K 0 (n, j, β) denote the set of all colored banners of length n, with Lyndon type having no parts of size one formed by a 0-colored letter, color vector equal to β and j bars. For m ∈ [l -1] and β m > 0, define

X m := 0≤i≤n-1 j-n+i<k≤j K 0 (i, k, β(m)) × M (n -i, j -k, m),
where β(m)=(β 1 ,...,β m-1 ,β m -1,...,β l-1 ) and let X m := 0 if β m =0. We also define

X 0 := 0≤i≤n-2 j-n+i<k<j K 0 (i, k, β) × M (n -i, j -k, 0).
Theorem 2.4.14. There is a bijection

Υ:K 0 (n, j, β) → l-1 m=0 X m such that if Υ(B)=( B ′ , (ω, b, m)), then wt(B)=w t ( B ′ )wt(ω) and β(m)= col(B ′ ) if m ≥ 1 otherwise β = col(B ′ ).
Proof. By [23, lemma 4.3], every banner B ∈ K 0 (n, j, β) has a unique factorization, that we also called increasing factorization (here we admit parts of size one formed by a letter with positive color),

B = B 1 • B 2 •••B d where each B i has the form B i =(a i , ..., a i p i times ) • u i ,
where a i ∈B, p i > 0 and u i is a word (possibly empty) over the alphabet B whose letters are all strictly less than a i with respect to

< B , a 1 ≤ B a 2 ≤ B ••• ≤ B a d and if u i is empty then B i = a i and for each k ≥ i with a k = a i we has B k = B i = a i .
Note that the increasing factorization is a refinement of the Lyndon factorization.

For example, the Lyndon factorization of the banner is (6 1 , 1 2 , 5 1 ) • (6 1 ) • (6 1 ) • (4 0 , 4 0 , 4 1 , 4 0 , 4 0 , 3 2 ) • (5 0 , 7 1 ), and its increasing factorization is

(6 1 , 1 2 , 5 1 ) • (6 1 ) • (6 1 ) • (4 0 , 4 0 , 4 1 , 4 0 ) • (4 0 , 3 2 ) • (5 0 , 7 1 ).
First, we take the increasing factorization of B,s

a yB = B 1 • B 2 •••B d . Let B d =(a, ..., a p times ) • u,
where a ∈B, p>0 and u is a word (possibly empty) over B whose letters are all strictly less than a with respect to the order < B . Let γ be the bijection defined in [START_REF] Hyatt | Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups[END_REF]Theorem 4.5]. Now we describe the map Υ.

Case 1: a is 0-colored. Define Υ(B)=γ(B).

Case 2: a has positive color and u is not empty. Suppose that

u = i 1 ,i 2 , ••• ,i k . Case 2.1: If k ≥ 2, then define ω = |i 1 |, b =0 , m is the color of i 1 and B ′ = B 1 •••B d-1 • B d , where B d = a, ..., a p times ,i 2 , ••• ,i k . Case 2.2: If k =1, then define ω = |i 1 |, b =0, m is the color of i 1 and B ′ = B 1 •••B d-1 • a • a •••a p times
, where each a is a factor. Case A: (inverse of Case 1) a is 0-colored or length(ω) ≥ 2. Define

Υ -1 ((B, (ω, b, m))) = γ -1 ((B, (ω, b, m))).
Case B: (inverse of Case 2.1) a has positive color, ω = j 0 is a letter with positive color m and j

1 , ••• ,j k is not empty. Then let Υ -1 ((B, (ω, b, m))) = B 1 •••B d-1 • B d , where B d = a, ..., a p times ,j 0 ,j 1 , ••• ,j k .
Case C: a has positive color, ω = j 0 is a letter with positive color m and B d = a. In this case, there exists a nonnegative integer k such that

B d-k = B d-k+1 = ••• = B d = a but B d-k-1 = a.
Case C1: (inverse of Case 3) If j 0 ≥ B a, then define

Υ -1 ((B, (ω, b, m))) = B 1 •••B d • j 0 ,
where j 0 is a factor.

Case C2: (inverse of Case 2.2) Otherwise, j 0 is strictly less than a with respect to < B and we define

Υ -1 ((B, (ω, b, m))) = B 1 •••B d-k-1 • B d-k , where B d-k = a, ..., a k+1 times ,j 0 .
This completes the description of Υ -1 . One can check case by case that both maps are well defined and in fact inverses of each other.

For any nonnegative integers i, j, let K j (n, i, β) denote the set of all colored banners of length n, with Lyndon type having j parts of size one formed by a 0-colored letter, color vector equal to β and i bars. Let Com j (n, i, β) be the set of all compositions σ =(ω 0 , (ω 1 ,b 1 ,m 1 ),...,(ω r ,b r ,m r )) for some integer r, where ω 0 is a weakly increasing word of positive integers of length j and each (ω i ,b i ,m i ) is a m i -colored marked sequence and satisfying By Theorem 2.4.14, we can construct a weight preserving bijection between K j (n, i, β) and Com j (n, i, β) by first factoring out the j parts of size one formed by a 0-colored letter in the Lyndon factorization of a banner and then factoring out marked sequences step by step in the increasing factorization of the remaining banner. Thus we have the following interpretation of Q n,k,j .

Corollary 2.4.15. We have

Q n,k,j = i∈N, β∈N l-1 σ∈Com j (n,i, β) li+csum( β)=k wt(σ).
Definition 2.5 (Two-fix-banners). For each fixed positive integer n,atwo-fixbanner of length n is a sequence

v =(ω 0 , (ω 1 ,b 1 ,m 1 ),...,(ω r ,b r ,m r ),ω ′ 0 ) (2.34)
satisfying the following conditions:

(C1) ω 0 and ω ′ 0 are two weakly increasing sequences of positive integers, possibly empty;

(C2) each (ω i ,b i ,m i ) is a m i -colored marked sequence; (C3) length(ω 0 ) + length(ω 1 )+•••+length(ω r ) + length(ω ′ 0 )=n.
Define the flag excedance statistic of v by

fexc(v):=l r i=1 b i + r i=1 m r .
A bijective proof of Theorem 2.4.13. The two-fix-banner v in (2.34) is in bijection with the pair (σ, ω), where ω = ω ′ 0 is a weakly increasing sequence of positive integers with length i for some nonnegative integer i and

σ =(ω 0 , (ω 1 ,b 1 ,m 1 ),...,(ω r ,b r ,m r ))
is a composition with r j=0 length(ω j )=ni. Thus, by Corollary 2.4.15 we obtain the following interpretation.

Lemma 2.4.16. Let TB n denote the set of all two-fix-banners of length n.F o r any nonnegative integer a, we have

v∈TBn fexc(v)=a wt(v)= n-1 i=0 h i Q n-i,a .
By the above lemma, it suffices to construct an involution Φ:T B n → TB n satisfying fexc(v) + fexc(Φ(v)) = ln -2 for each v ∈ TB n . First we need to define two local involutions. For a weakly increasing sequence of positive integers ω with length(ω)=k,w ed e fi n e

d ′ (ω)=(ω, k -1,l-1),
which is a (l-1)-colored marked sequence. For a m-colored mark sequence (ω, b, m) with length(ω)=k,w ed e fi n e

d((ω, b, m)) = (ω, k -b, 0) if m =0; (ω, k -1 -b, l -m), otherwise.
We also define

d ′ ((ω, b, m)) = ω, if b = k -1 and m = l -1; (ω, k -1 -b, l -1 -m), otherwise.
One can check that d and d ′ are well-defined involutions.

Let v be a two-fix-banner and write

v =(τ 0 ,τ 1 ,τ 2 ,...,τ r-1 ,τ r ,τ r+1 ),
where τ 0 = ω 0 and τ r+1 = ω ′ 0 .I fτ i (respectively τ j ) is the leftmost (respectively rightmost) non-empty sequence (clearly i =0, 1 and j = r, r +1), we can write v in the following compact way by removing the empty sequences at the beginning or at the end: v =(τ i ,τ i+1 ,...,τ j-1 ,τ j ).

(2.35)

It is easy to see that the above procedure is reversible by adding some necessary empty words at the two ends of the compact form (2.35). Now we work with the compact form. If i = j (v has only one sequence), we define

Φ(v)= ⎧ ⎪ ⎨ ⎪ ⎩ (∅, (τ i ,n-1,l-2), ∅), if τ i is a weakly increasing sequence; (ω, ∅), if τ i =(ω, n -1,l-2) is a marked sequence; (∅, (ω, n -1 -b, l -2 -m), ∅), otherwise, suppose τ i =(ω, b, m).
If j>i(v has at least two sequences), we define the two-fix-banner Φ(v) by

Φ(v)=(d ′ (τ i ),d(τ i+1 ),d(τ i+2 ),...,d(τ j-1 ),d ′ (τ j )).
As d and d ′ are involutions, Φ is also an involution and one can check that in both cases Φ satisfy the desired property. This completes our bijective proof. By Lemma 2.4.3, if we apply ps to both sides of (2.28) and (2.33), we obtain the following two symmetric q-Eulerian identities.

Corollary 2.4.17. For a, b ≥ 1 and j ≥ 0 such that a + b +1=l(nj),

k≥0 n k q A (l) k,a,j (q)= k≥0 n k q A (l)
k,b,j (q), (2.36)

where

A (l) n (t, r, q)= k,j A (l)
n,k,j (q)t k r j .

Corollary 2.4.18. For a, b ≥ 1 such that a + b = ln,

k≥1 n k q A (l) k,a-1 (q)= k≥1 n k q A (l) k,b-1 (q), (2.37) 
where

A (l) n (t, q)= k A (l) n,k (q)t k .
Remark 2.7. When l =1, symmetric identities (2.36) and (2.37) reduces to (1.7) and (1.5), respectively.

Two interpretations of colored (q, r)-Eulerian polynomials

We will introduce the colored hook factorization of a colored permutation. Recall that a word w = w 1 w 2 ...w m over N is called a hook if w 1 >w 2 and either m =2, or m ≥ 3 and w 2 <w 3 < ... < w m . We can extend the hooks to colored hooks. Let

[n] l ⊂ N l := 1 0 , 1 1 ,...,1 l-1 , 2 0 , 2 1 ,...,2 l-1 ,...,i 0 ,i 1 ,...,i l-1 ,... .

Definition 2.6 (Colored hook).

A word w = w 1 w 2 ...w m over N l is called a colored hook if

• m ≥ 2 and |w| is a hook and only w 1 may have positive color;

• or m ≥ 1 and |w| is an increasing word and only w 1 has positive color.

Clearly, each colored permutation π = π 1 π 2 ...π n ∈ C l ≀ S n admits a unique factorization, called its colored hook factorization, pτ 1 τ 2 ...τ r , where p is a word formed by 0-colored letters, |p| is an increasing word over N and each factor τ 1 , τ 2 , ..., τ k is a colored hook. To derive the colored hook factorization of a colored permutation, one can start from the right and factor out each colored hook step by step. When l =1, colored hook factorization is the hook factorization introduced by Gessel [START_REF] Gessel | A coloring problem[END_REF] that we have already used in Section 1.2. For example, the colored hook factorization of

2 0 4 0 5 1 8 0 3 0 7 0 10 1 1 0 9 0 6 1 ∈ C 2 ≀ S 10 (2.38) is 2 0 4 0 |5 1 |8 0 3 0 7 0 |10 1 1 0 9 0 |6 1 .
Let w = w 1 w 2 ...w m be a word over N. Define inv(w):=|{(i, j):i<j,w i >w j }|. For example, if π is the colored permutation in (2.38), then inv(π)=16, lec(π)=4, flec(π)=11and pix(π)=2.

Theorem 2.4.19. For n ≥ 1, we have

A (l) n (t, r, q)= π∈C l ≀Sn
t flec(π) r pix(π) q inv(π)-lec(π) .

(2.39)

Proof. Note that a colored hook of length k may contribute 1, 2,...,lk-1 to the statistic "flec" of a colored permutation. Consider the last colored hook (possibly empty) of each colored permutation then gives

π∈C l ≀Sn t flec(π) r pix(π) q (inv -lec)(π) = n k=0 π∈C l ≀Sn π=pτ 1 ...τr #τr =n-k t flec(π) r pix(π) q (inv -lec)(π) = r n + n-1 k=0 n k q t[l(n -k) -1] t π∈C l ≀S k t flec(π) r pix(π) q (inv -lec)(π) ,
where we apply (1.13) to the last equality. This shows that the right-hand side of (2.39) satisfies recurrence (2.24), which finishes the proof of the theorem.

Remark 2.9. Once again, the derangement polynomial d B n (t) defined in (2.26) is t-symmetric and t-unimodal with center of symmetry n follows from the recurrence (2.40) by induction on n using Lemma 2.4.7.

Recurrence relation (2.40) enables us to obtain another interpretation of the colored (q, r)-Eulerian polynomials A (l) n (t, r, q). First, we define the zero-descent number of a colored permutation π ∈ C l ≀ S n , denoted des z (π),b y

des z (π):=|{i ∈ [n -1] : ǫ i =0and |π i | > |π i+1 |}|.
We also define the flag zero-descent number by

fdes z (π):=l • des z (π)+ n i=1 ǫ i .
Definition 2.7 (Colored admissible inversion). A colored admissible inversion of π is a pair (i, j) with 1 ≤ i<j≤ n that satisfies any one of the following three conditions

• 1 <iand |π i-1 | < |π i | > |π j |;
• there is some k such that i<k<j and

|π j | < |π i | < |π k |;
• ǫ j > 0 and for any k such that i ≤ k<j, we have

|π k | < |π j | < |π j+1 |, where
we take the convention |π n+1 | =+∞.

We write ai(π) the number of colored admissible inversions of π. For example, if π =4 0 1 0 2 1 5 0 3 1 in C 2 ≀ S 5 ,t h e nai(π)=3 .W h e nl =1 , the colored admissible inversions agree with admissible inversions defined in Section 1.4.

Finally, we extend the statistic "rix" defined in Section 1.4 to the set of all words over N l . Let w = w 1 •••w n be a word over N l . Suppose that w i is the unique rightmost letter of w such that |w i | = max{|w 1 |, |w 2 |,...,|w n |}. We define rix(w) by (with convention that rix(∅)=0)

rix(w):= ⎧ ⎪ ⎨ ⎪ ⎩ 0, if i =1 = n, 1+rix(w 1 •••w n-1 ), if i = n and ǫ n =0, rix(w i+1 w i+2 •••w n ), if 1 <i<n.
As a colored permutation can be viewed as a word over N l , the statistic "rix" is well-defined on colored permutations. For example, if π =1 0 6 1 2 0 5

1 3 0 4 1 7 0 ∈ C 2 ≀S 7 ,thenrix(π) = 1+rix(1 0 6 1 2 0 5 1 3 0 4 1 ) = 1+rix(2 0 5 1 3 0 4 1 ) = 1+rix(3 0 4 1 )= 1+rix(3 0 )=2.
We have the following colored version of Theorem 1.4.2.

Corollary 2.4.21. For n ≥ 1, we have

A (l) n (t, r, q)= π∈C l ≀Sn
t fdes z (π) r rix(π) q ai(π) .

(2.41)

Proof. By considering the position of the letter of π with maximal absolute value, we can show that the right-hand side of (2.41) satisfies the same recurrence relation (2.40) and initial condition as

A (l)
n (t, r, q). The discussion is quite similar to the proof of Theorem 1.4.2 and is omitted.

By setting r =1in (2.41), we have A (l) n (t, q)= π∈C l ≀Sn t fdes z (π) q ai(π) .A nother statistic whose joint distribution with fdes z is the same as that of ai will be discussed in next section (see Corollary 2.5.2). i.

Rawlings major index for colored permutations

Then the Rawlings major index of π is defined as

rmaj k (π):=maj ≥k (π)+inv <k (π). For example, if π =2 0 6 1 1 0 5 0 4 1 3 1 7 0 ∈ C 2 ≀S 7 ,thenDES ≥2 (π)={2, 4}, inv <2 (π)= 2, maj ≥2 (π)=2+4=6and so rmaj 2 (π)=6+2=8
. Note that when l =1 , rmaj k is the k-major index studied by Rawlings [START_REF] Rawlings | The r-major index[END_REF].

Let Q n,k, β be the colored Eulerian quasisymmetric functions defined by

Q n,k, β := α Q n,k, α, β .
The main result of this section is the following interpretation of Q n,k, β .

Theorem 2.5.1. We have

Q n,k, β = inv <2 (π)=k col(π)= β F n,DES ≥2 (π) .
It follows from Theorem 2.5.1 and Eq. (2.7) that

inv <2 (π)=k col(π)= β F n,DES ≥2 (π) = exc(π)=k col(π)= β F n,DEX(π) .
By Lemma 2.2.2 and Eq. ( 2.2), if we apply ps to both sides of the above equation, we will obtain the following new interpretation of the colored q-Eulerian polynomial

A (l) n (t, q). Corollary 2.5.2. Let s β = s β 1 1 •••s β l-1 l-1 for β ∈ N l-1 . Then π∈C l ≀Sn t exc(π) q maj(π) s col(π) = π∈C l ≀Sn t inv <2 (π) q rmaj 2 (π) s col(π) .
Consequently,

A (l) n (t, q)= π∈C l ≀Sn t l•inv <2 (π)+ n i=1 ǫ i q maj ≥2 (π) = π∈C l ≀Sn t fdes z (π) q maj ≥2 (π -1 ) .
Remark 2.10. When l =1, the above result reduces to Theorem 1.6.1.

In view of interpretation (2.41), we have the following colored version of Problem 1.1.

Problem 2.1. Can we describe a statistic, denoted "fix 2 ", equidistributed with "fix" on colored permutations, so that

A (l)
n (t, r, q)= π∈C l ≀Sn t fdes z (π) r fix 2 (π) q maj ≥2 (π -1 ) ?

Proof of Theorem 2.5.1: Chromatic quasisymmetric functions

Let G be a graph with vertex set [n] and edge set E(G).Acoloring of a graph G is a function κ :[ n] → P such that whenever {i, j}∈E(G) we have κ(i) = κ(j). Given a function κ :[n] → P, set

x κ := i∈[n]
x κ(i) .

Shareshian and Wachs [77] generalized Stanley's Chromatic symmetric function of

G to the Chromatic quasisymmetric function of G as

X G (x,t):= κ t asc G (κ) x κ ,
where the sum is over all colorings κ and asc G (κ):=|{{i, j}∈E(G):i<j and κ(i) >κ(j)}|.

Recall that an orientation of G is a directed graph o with the same vertices, so that for every edge {i, j} of G, exactly one of (i, j) or (j, i) is an edge of o.A n orientation is often regarded as giving a direction to each edge of an undirected graph. Let P be a poset. Define

X P = X P (x):= σ x σ ,
summed over all strict order-reversing maps σ : P → P (i.e. if s< P t,t h e n σ(s) >σ(t)). Let o be an acyclic orientation of G and κ a coloring. We say that κ is o-compatible if κ(i) <κ(j) whenever (j, i) is an edge of o. Every proper coloring is compatible with exactly one acyclic orientation o, viz., if {i, j} is an edge of G with κ(i) <κ (j), then let (j, i) be an edge of o. Thus, if K o denotes the set of o-compatible colorings of G,a n di fK G denotes the set of all colorings of G,t h e n we have a disjoint union

K G = ∪ o K o . Hence, X G = o X o , where X o = κ∈Ko x κ .
Since o is acyclic, it induces a poset ō: make i less than j if (i, j) is an edge of o and then take the transitive closure of this relation. By the definition of X P for a poset and of X o for an acyclic orientation, we have X ō = X o . Also, according to the definition of asc G (κ) for a o-compatible coloring κ, asc G (κ) depends only on o, that is,

asc G (κ)=asc G (κ ′ ) for any κ, κ ′ ∈ K o .
Thus, we can define asc G (o) of an acyclic orientation o by

asc G (o):=asc G (κ) for any κ ∈ K o . So X G (x,t)= o t asc G (o) X ō, (2.42) 
summed over all acyclic orientations of G.

We have the following reciprocity theorem for chromatic quasisymmetric functions, which is a refinement of Stanley [79, Theorem 4.2].

Theorem 2.5.3 (Reciprocity theorem). Let G be a graph on

[n]. Define X G (x,t)= (o,κ) t asc G (o) x κ ,
summed over all pairs (o,κ) where o is an acyclic orientation of G and κ is a function κ :

[n] → P satisfying κ(i) ≤ κ(j) if (i, j) is an edge of o. Then X G (x,t)=ωX G (x,t),
where ω is the involution defined in Section 2.1.1.

Proof. For a poset P define

X P = σ x σ ,
summed over all order-preserving mappings σ : P → P, i.e., if s< P t then σ(s) ≤ σ(t). The reciprocity theorem for P -partitions [80, Theorem 4.5.4] implies that ωX P = X P . Now, apply ω to Eq. (2.42). We get

ωX G (x,t)= o t asc G (o) ωX ō = o t asc G (o) X ō,
where o summed over all acyclic orientations of G.H e n c eX G (x,t)=ωX G (x,t), as desired.

For π ∈ S n ,t h eG-inversion number of π is inv G (π):=|{(i, j):i<j, π(i) >π(j) and {π(i),π(j)}∈E(G)}|.

For π ∈ S n and P a poset on [n],t h eP -descent set of π is 

DES P (π):={i ∈ [n -1] : π(i) > P π(i +1)}.
G (x,t)= π∈Sn t inv G (π) F n,DES P (π) .
Proof of Theorem 2.5.1. Let bar(B) be the number of barred letters of a colored banner B. By Lemma 2.2.5 we have

Q n,k, β = B wt(B), (2.43) 
where the sum is over all colored banners B with bar(B)=k and col(B)= β. Let c = c 1 c 2 ...c n be a word of length n over {0}∪[l -1]. Define P c n,k to be the poset on vertex set [n] such that i< P j in P c n,k if and only if i<j and either c i =0or ji ≥ k.L e tG c n,k be the incomparability graph of P c n,k (see Fig. 2.1). Clearly,

X G c n,2 (x,t)= B wt(B)t bar(B) , (2.44) 
where the sum is over all colored banners B such that B(i) is c i -colored. Theorems 2.5.3 

X G c n,2 (x,t)= π∈Sn t inv G c n,2 (π) F n,DES P c n,2 (π) . 
Comparing with (2.44) we get

π∈Sn t inv G c n,2 (π) F n,DES P c n,2 (π) = B wt(B)t bar(B) , (2.45) 
where the sum is over all colored banners B such that

B(i) is c i -colored. For each π = π 1 •••π n ∈ C l ≀ S n ,ifc = c 1 c 2 ...c n is defined by the identification {1 c 1 , 2 c 2 ,...,n cn } = {π 1 ,π 2 ,...,π n },
then we can verify that

inv <k (π)=in v G c n,k (|π|) and DES ≥k (π)=DES P c n,k (|π|). (2.46) 
Therefore, by (2.45) we have

π∈C l ≀Sn col(π)= β t inv <k (π) F n,DES ≥k (π) = B wt(B)t bar(B) ,
where the sum is over all colored banners B with col(B)= β. This finishes the proof of the theorem in view of the interpretation of Q n,k, β in (2.43).

New Mahonian statistics on colored permutations

A statistic "st" on the colored permutation group C l ≀ S n is called Mahonian if

π∈C l ≀Sn q st(π) =[l] q [2l] q •••[nl] q .
Adin and Roichman [START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF] introduced the flag major index of a colored permutation π, denoted fmaj(π) and defined as

fmaj(π):=l • maj(π)+ n i=1 ǫ i .
It is known (cf. [START_REF] Faliharimalala | Flag-major index and flaginversion number on colored words and Wreath product[END_REF]) that the flag major index is Mahonian. Note that π∈C l ≀Sn t fexc(π) r fix(π) q fmaj(π) = A (l) n (tq,r,q l ).

(2.47)

When l =1, Rawlings [START_REF] Rawlings | The r-major index[END_REF] proved that rmaj k is Mahonian for each k. Define the flag Rawlings major index

of π ∈ C l ≀ S n , fmaj k (π),b y fmaj k (π):=l • rmaj k (π)+ n i=1 ǫ i .
We should note that fmaj =f m a j 1 if l ≥ 2. It follows from Eq. (2.47) and Corollary 2.5.2 that fmaj 2 is equidistributed with fmaj on colored permutation groups and thus is also Mahonian. More general, we have the following result.

Theorem 2.5.5. For any l, k ≥ 1 the flag Rawlings major index fmaj k is Mahonian.

Proof. A poset P on [n] satisfying the following conditions:

(1) x< P y implies x< N y;

(2) if the disjoint union (or direct sum) {x< P z} + {y} is an induced subposet of P then x< N y< N z;

is called a natural unit interval order. It was observed in [START_REF] Shareshian | Chromatic quasisymmetric functions and Hessenberg varieties[END_REF] that if P is a natural unit interval order, then by a result of Kasraoui [54, Theorem 1.8],

π∈Sn

q inv inc(P ) (π)+maj P (π) =[1] q •••[n] q (2.48)
with maj P (π):= i∈DES P (π) i. Denote by W l n the set of all words of length n over

{0}∪[l -1]. For each c = c 1 •••c n in W l
n , let P c n,k and G c n,k be the poset and the graph defined in the proof of Theorem 2.5.1, respectively. Note that P c n,k is a natural unit interval order. Thus

π∈C l ≀Sn q fmaj k = π∈C l ≀Sn q l(rmaj ≥k (π)+inv <k (π))+ n i=1 ǫ i = c∈W l n π∈Sn q l(inv G c n,k (π)+maj P c n,k (π))+ i c i (by (2.46)) = c∈W l n q i c i [1] q l •••[n] q l (by (2.48)) =(1+q + •••+ q l-1 ) n [1] q l •••[n] q l =[l] q [2l] q •••[nl] q ,
which completes the proof of the theorem.

Remark 2.11.

For each π ∈ C l ≀ S n fmaj n (π)=l inv <n (π)+ i∈DES ≥n (π) i + i ǫ i ,
where inv <n (π)=|{(i, j):ǫ i =0,i < j, and

|π i | > |π j |}| and DES ≥n (π)={i : ǫ i =0and |π i | > |π i+1 |}.
Foata-Han [START_REF] Foata | Signed words and permutations, I: A fundamental transformation[END_REF] introduced a colored version of the inversion number called flag inversion number as:

finv(π):= 1≤i≤j 0≤ǫ≤l-1 χ(|π i | ǫ i +ǫ >π j )+ i ǫ i ,
where the operation ǫ i + ǫ is in the cyclic group C l . The statistic "finv" is also a Mahonian statistic (see [START_REF] Faliharimalala | Flag-major index and flaginversion number on colored words and Wreath product[END_REF]). Clearly, the statistic "fmaj n " is exactly the statistic of inversion number on S n . However, for l ≥ 2 the statistic "fmaj n " is different with the flag inversion number on C l ≀ S n .

Chapter 3

Descent polynomials of signed multipermutations

Introduction

For each sequence of positive integers s = {s i } i≥1 let I s n be the set of s-inversion sequences of length n defined as

I (s) n := {(e 1 ,...,e n ) ∈ Z n :0≤ e i <s i for 1 ≤ i ≤ n}.
The ascent set of an s-inversion sequence e =(e 1 ,...,e n ) ∈ I s n is the set Asc(e):= 0 ≤ i<n: e i s i < e i+1 s i+1 , with the convention that e 0 =0and s 0 =1 . Let asc(e): =| Asc(e)| be the ascent statistic on e ∈ I s n .T h es-inversion sequences and the ascent statistic were introduced by Savage and Schuster in [START_REF] Savage | Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences[END_REF]. When s =( 1 , 2, 3,...), the set of sinversion sequences I s n is known as the set of inversion tables (or Lehmer codes)of length n.

Let π = π 1 π 2 •••π n be a word of length n with letters from Z.Adescent of π is an index i ∈{ 0, 1,...,n-1} such that π i >π i+1 (with the convention that π 0 =0). Denote by DES(π) the set of descents of π and by des(π) the number of descents of π.T h emajor index of π, denoted maj(π), is defined as

maj(π):= i∈DES(π) i.
In this chapter, permutations or signed permutations of a multiset are viewed as words on Z.

It is well known that the number of descents on permutations of [n] has the same distribution as the number of ascents on inversion tables of length n; see [72, Lemma 1] for multivariate equidistribution. Let P ({1, 1, 2, 2,...,n,n}) be the set of permutations of the multiset {1, 1, 2, 2,...,n,n}. The following connection between multiset permutations and special inversion sequences was shown in [START_REF] Savage | The s-Eulerian polynomials have only real roots[END_REF]Theorem 3.23].

Theorem 3.1.1 (Savage-Visontai [START_REF] Savage | The s-Eulerian polynomials have only real roots[END_REF]).

π∈P ({1,1,2,2,...,n,n})

t des(π) = e∈I (1,1,3,2,...,2n-1,n) 2n
t asc(e) . Now we introduce the signed multiset permutations as follows: let

P ± ({1, 1, 2, 2,...,n,n})
be the set of all signed permutations of the multiset {1, 1, 2, 2,...,n,n}, whose elements are those of the form

±π 1 ± π 2 •••±π 2n with π 1 π 2 •••π 2n ∈ P ({1, 1, 2, 2,...,n,n}).
For convenience, write -n by n for each positive integer n. For example,

P ± ({1, 1})={11, 1 1, 11, 1 1}. Clearly, |P ± ({1, 1, 2, 2,...,n,n})| =2 n (2n)! = |I (1,4,3,8,...,2n-1,4n) 2n |. 
Savage and Visontai [START_REF] Savage | The s-Eulerian polynomials have only real roots[END_REF]Conjecture 3.25] further conjectured the following equidistribution, which was proved very recently (and independently) by Chen et al. [START_REF] Chen | sinversion Sequences and P -Partitions of type B[END_REF] using type B P -Partitions.

Theorem 3.1.2. For any n ≥ 1, we have

π∈P ± ({1,1,2,2,...,n,n}) t des(π) = e∈I (1,4,3,8,...,2n-1,4n) 2n t asc(e) . (3.1) 
For n ≤ 2,w eh a v e π∈P ± ({1,1})

t des(π) =1+3t = e∈I (1,4) 2 t asc(e)
and π∈P ± ({1,1,2,2})

t des(π) =1+31t +55t 2 +9t 3 = e∈I (1,4,3,8) 4 
t asc(e) .

In Section 3.2, we will give a simple proof of Theorem 3.1.2 by verifying that both sides of (3.1) satisfy the same recurrence formula. Motivated by this conjecture, our purpose is to study the descent polynomial of signed permutations of a general multiset (or called general signed multipermutations for brevity). In Section 3.3, we prove a factorial generating function formula for the (des, fmaj)enumerator of general signed multipermutations, which generalizes a result of Chow and Gessel [START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF]. In particular, a different proof of Theorem 3.1.2 is also provided. In Section 3.4, we use the factorial formula to show that the descent polynomial of the signed multipermutations is real-rooted. Moreover, another different descent polynomial of the signed multipermutations is also shown to be real-rooted. In Section 3.5, we extend some multivariate identities due to Beck and Braun [START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF] from permutations to (signed) multipermutations. We end this chapter with some related open questions. 

E n (t)= 2n-1 i=0 E n,i t i := e∈I s 2n t asc(e) .
Then,

E n+1,i =(2i 2 +3i +1)E n,i +(2i(4n -2i +3)+2n +1)E n,i-1 +(2n +2-i)(4n -2i +5)E n,i-2 , (3.2) 
with boundary conditions E n,i =0for i<0 or i>2n -1.

Proof. The following formula was established in [72, Theorem 13] using Ehrhart theory:

E n (t) (1 -t) 2n+1 = k≥0 ((k + 1)(2k +1)) n t k . (3.3) 
Thus we have

E n+1 (t) (1 -t) 2n+3 = k≥0 ((k + 1)(2k +1)) n+1 t k = k≥0 ((k + 1)(2k +1)) n (k + 1)(2k +1)t k = k≥0 ((k + 1)(2k +1)) n (2k(k -1) + 5k +1)t k =2t 2 (E n (t)(1 -t) -2n-1 ) ′′ +5t(E n (t)(1 -t) -2n-1 ) ′ + E n (t) (1 -t) 2n+1 .
Multiplying both sides by (1t) 2n+3 gives

E n+1 (t)=2t 2 [E ′′ n (t)+[(8n +4)t 2 (1 -t)+5t(1 -t) 2 ]E ′ n (t) +[(8n 2 +2n)t 2 +(10n +3)t +1]E n (t).
Extracting the coefficients of t i in both sides we have

E n+1,i =2i(i -1)E n,i -4(i -1)(i -2)E n,i-1 +2(i -2)(i -3)E n,i-2 +5iE n,i +(8n -6)(i -1)E n,i-1 +(1-8n)(i -2)E n,i-2 + E n,i +(10n +3)E n,i-1 +(8n 2 +2n)E n,i-2 ,
which becomes (3.2) after simplification.

Lemma 3.2.2. Let

P n (t)= 2n-1 i=0 P n,i t i := π∈P ± ({1,1 ,2,2,...,n,n}) 
t des(π) .

Then,

P n+1,i =(2i 2 +3i +1)P n,i +(2i(4n -2i +3)+2n +1)P n,i-1 +(2n +2-i)(4n -2i +5)P n,i-2 , (3.4) 
with boundary conditions P n,i =0for i<0 or i>2n -1.

Proof. Denote by P n,i the set of signed permutations of {1, 1, 2, 2,...,n,n} with i descents. Clearly, every signed permutation in P n+1,i can be obtained from a signed permutation in P n,i , P n,i-1 or P n,i-2 by inserting {n +1,n+1}, {n +1, n +1} or {n +1, n +1}.

For each π ∈P n,i , there are i +1 positions in π that inserting n +1 will not produce an extra descent. These are the i descent positions of π plus the position to the right of π. Differently, we can only insert n +1 to the i descent positions of π that may not produce an extra descent. Therefore, there are i+1 2 ways to insert {n +1,n+1}, i 2 ways to insert {n +1, n +1} and (i +1)i ways to insert {n +1, n +1} into π to let it become a signed permutation in P n+1,i . So there are (2i 2 +3i +1)P n,i signed permutations in P n+1,i constructed from P n,i .

Similarly, there are (2i(4n-2i+3)+2n+1)P n,i-1 and (2n+2-i)(4n-2i+5)P n,i-2 signed permutations in P n+1,i constructed from P n,i-1 and P n,i-2 , respectively. Summarizing all the above three cases, we obtain (3.4).

By Lemma 3.2.1 and 3.2.2, we see that E n,i and P n,i satisfy the same recurrence relation and boundary conditions, so they are equal. This finishes the proof of Theorem 3.1.2.

General signed multipermutations

In this section, we consider the descent polynomial on signed permutations of the general multiset M m := {1 m 1 , 2 m 2 ,...,n mn } for any m := (m 1 ,m 2 ,...,m n ) ∈ P n . Let P (m) and P ± (m) denote the set of all permutations and signed permutations of the multiset M m , respectively.

The following result is attributed to MacMahon [60, Volme 2, p. 211], whose proof can be found in [40, Section 7].

Theorem 3.3.1. For every m ∈ P n with m 1 + •••+ m n = m, we have π∈P (m) t des(π) q maj(π) (t; q) m+1 = k≥0 m 1 + k m 1 q ••• m n + k m n q t k . (3.5) 
Our signed version is:

Theorem 3.3.2. For every m ∈ P n with m 1 + •••+ m n = m, we have π∈P ± (m)
t des(π) q fmaj(π) z neg(π)

(t; q 2 ) m+1 = k≥0 n r=1 mr i=0 (zq) i m r -i + k m r -i q 2 i + k -1 i q 2 t k , (3.6) 
where fmaj(π):=2maj(π)+neg(π) and neg(π) is the number of negative signs in π. In particular,

π∈P ± (m) t des(π) q fmaj(π) (t; q 2 ) m+1 = k≥0 n r=1 m r +2k m r q t k . (3.7) 
For example, wt(|| 1| 22|1||)=t 6 q 26 z 2 . Now, we count the barred permutations in B(m) by the weight "wt" in two different ways. First, fix a permutation π ∈ P ± (m), and sum over all barred permutations on π. Then, fix the number of bars k, and sum over all barred permutations with k bars. Fix a permutation π a barred permutation on π can be obtained by inserting one bar in each descent space and then inserting any number of bars in all spaces. So counting all the barred permutations on π by the weight "wt" gives t des(π) q fmaj(π) z neg(π)

i≥0 t i i≥0 (tq 2 ) i ••• i≥0 (tq 2m ) i ,
which is equal to t des(π) q fmaj(π) z neg(π) (t;q 2 ) m+1

. This shows that σ∈B(m) wt(σ)= π∈P ± (m) t des(π) q fmaj(π) z neg(π) (t; q 2 ) m+1 .

(3.9)

For a fixed integer k ≥ 0 let B k (m) be the set of all barred permutations in B(m) with k bars. Now, each barred permutation in B k (m) can be constructed by putting k bars in one line and then inserting m r integers from {r, -r}, for 1 ≤ r ≤ n,t ot h ek +1 spaces between each two adjacency bars (including the space in the left side and the right side), with the rule that • all integers between two adjacency bars are in increasing order;

• negative integers can not be inserted to the left side of all bars.

Observe that inserting a positive (resp. negative) integer to the (j+1)th space (from right to left) of two adjacency bars would contribute the factor q 2j (resp. (qz)q 2j ) to the weight of the resulting barred permutation. Thus, by the well-known interpretation (cf. [START_REF] Foata | The q-series in Combinatorics; Permutation Statistics, Preliminary version[END_REF]Proposition 4.1]) of the q-binomial coefficient

n + r n q = 0≤c 1 ≤c 2 •••≤cn≤r q c i , (3.10) 
we have

σ∈B k (m) wt(σ)= n r=1 mr i=0 (zq) i m r -i + k m r -i q 2 i + k -1 i q 2 t k .
Summing over all k in the above equation and comparing with Eq. (3.9) we get (3.6). By setting z =1in (3.6) and using the q-binomial theorem

1 (t; q) k = i≥0 k -1+i i q t i ,
we obtain (3.7).

Signed versions of Simion's result about realrootedness

It was shown in [START_REF] Savage | The s-Eulerian polynomials have only real roots[END_REF]Theorem 1.1] that the ascent polynomial has only real roots for any positive integer n.

Simion [START_REF] Simion | A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences[END_REF]Section 2] proved that the descent polynomial on the permutations of a general multiset has only real roots. Theorem 3.4.2 (Simion [START_REF] Simion | A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences[END_REF]). The descent polynomial π∈P (m) t des(π) has only real roots for every m ∈ P n .

We have the following signed version of Simion's result, which generalizes the The key point of the proof of the above result lies in the following simple lemma.

m 1 = m 2 = ••• = m n =1(i.
Lemma 3.4.4. Let F n (t) (1 -t) n+1 = k≥0 f (k)(ak + b)t k and F n-1 (t) (1 -t) n = k≥0 f (k)t k . (3.11)
If a>0, n> b a , F n-1 (t) is a real-rooted polynomial with nonnegative coefficients and F n (t) is a polynomial with nonnegative coefficients, then F n (t) has only real roots.

Proof. Clearly, by (3.11) we have

F n (t) (1 -t) n+1 = k≥0 f (k)(ak + b)t k = b F n-1 (t) (1 -t) n + a F n-1 (t) (1 -t) n ′ t.
From the above equation we deduce that

F n (t)=((an -b)t + b) F n-1 (t)+at(1 -t)F ′ n-1 (t).
The lemma then follows by applying a result of Brenti [START_REF] Brenti | Unimodal, Log-concave, and Pólya Frequency Sequences in Combinatorics[END_REF]Theorem 2.4.5], which was established through some standard argument by using Rolle's theorem.

Proof of Theorem 3.4.3. By setting q =1,z =1in Eq. (3.7), we have

π∈P ± (m) t des(π) (1 -t) m+1 = k≥0 n r=1 (2k + 1)(2k +2)•••(2k + m r ) m r ! t k . (3.12)
We proceed by induction on m = m 1 + m 2 + •••+ m n using the above formula. When m =1 ,t h e n π∈P ± ({1}) t des(π) =1+t and the result is true. Suppose that m ≥ 2 and the result is true for m -1. Let me 1 := {1 m 1 -1 , 2 m 2 ,...,n mn }. By Eq. (3.12) we have 

π∈P ± (m) t des(π) (1 -t) m+1 = k≥0 f (k) (2k + m 1 ) m 1 t k and π∈P ± (m-e 1 ) t des(π) (1 -t) m = k≥0 f (k)t k , where f (k)= (2k+1)(2k+2)•••(2k+m 1 -1) (m 1 -1)! n r=2 ( 
a = 2 m 1 > 0,n = m> m 1 2 = b a ,
the polynomial π∈P ± (m-e 1 ) t des(π) is real-rooted with nonnegative coefficients by induction hypothesis and π∈P ± (m) t des(π) is a polynomial with nonnegative coefficients. This implies that π∈P ± (m) t des(π) is real-rooted, which completes the proof of the theorem.

Remark 3.3. Note that the above approach is also available for Theorem 3.4.2 about the real-rootedness of π∈P (m) t des(π) .

The following interesting properties of the descent polynomial of signed multipermutations can be obtained by combining Theorem 3.4.3 and Lemma 2.4.6.

Corollary 3.4.5. The descent polynomial π∈P ± (m) t des(π) is log-concave and unimodal for each m ∈ P n .

The following is another signed version of Simion's result. Theorem 3.4.6. The flag descent polynomial π∈P ± (m) t fdes(π) has only real roots for every m ∈ P n . In particular, every flag descent polynomial of signed multipermutations is log-concave and unimodal.

Proof. By [37, Theorem 1.2], we can derive that

π∈P ± (m) t fdes(π) (1 -t)(1 -t 2 ) m = k≥0 m 1 + k m 1 ••• m n + k m n t k . (3.13)
On the other hand, by setting q =1in Theorem 3.3.1 we have

π∈P (m) t des(π) (1 -t) m+1 = k≥0 m 1 + k m 1 ••• m n + k m n t k .
Comparing with Eq. (3.13), we obtain

π∈P ± (m) t fdes(π) =(1+t) m π∈P (m)
t des(π) .

It follows from the above relation and Theorem 3.4.2 that the flag descent polynomial π∈P ± (m) t fdes(π) is real-rooted.

Remark 3.4. For m 1 = m 2 = ••• = m n =1
, the above result was already known to Mongelli [START_REF] Mongelli | Excedances in classical and affine Weyl groups[END_REF].

Multivariate identities

The following well-known identity is due to Carlitz [START_REF] Carlitz | A combinatorial property of q-Eulerian numbers[END_REF]:

π∈Sm t des(π) q maj(π) (t; q) m+1 = k≥0 ([k +1] q ) m t k , (3.14) 
where S m is the symmetric group of order m. Let z 0 ,z 

z 0 z π 1 z π 2 •••z π i m i=0 (1 -z 0 z π 1 z π 2 •••z π i ) = k≥0 m i=1 [k +1] z i z k 0 . (3.15) 
This identity, as well as many type B versions, were established via the machine of polyhedral geometry.

Remark 3.5. As was pointed out in [START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF], the approach of polyhedral geometry is related to Stanley's theory of P -partitions and Eq. (3.15) resembles Corollary 7.1 in [START_REF] Stanley | Ordered Structures and Partitions[END_REF]. The technique of barred permutations is also closely related to the theory of P -partitions, as both were foreshadowed by work of MacMahon [START_REF] Macmahon | Combinatory Analysis[END_REF]. 

z 0 z π 1 z π 2 •••z π i m i=0 (1 -z 0 z π 1 z π 2 •••z π i ) = k≥0 m 1 + k m 1 z 1 ••• m n + k m n zn z k 0 . (3.16)
The proof of the above identity, together with other multivariate generalizations for signed multipermutations involving the descents and the flag descents, will be given in this section.

Proof of Theorem 3.5.1. As P (m) ⊆ P ± (m), the definition of barred permutations on π ∈ P (m) is valid. We will count the set of all barred permutations on P (m), denoted A(m), according to the weight

wt A (σ)= m i=0 (z 0 z π 1 •••z π i ) b i
for any barred permutation σ on π with b i bars in the i-th space of π, in two different ways similarly as in the proof of Theorem 3.3.2.

Fix a permutation π, a barred permutation on π can be obtained by inserting one bar in each descent space and then inserting any number of bars in all spaces. So counting all the barred permutations on π by the weight wt A gives

k≥0 z k 0 k≥0 (z 0 z π 1 ) k ••• k≥0 (z 0 z π 1 •••z πm ) k i∈DES(π) z 0 z π 1 z π 2 •••z π i , that is i∈DES(π) z 0 z π 1 z π 2 •••z π i m i=0 (1 -z 0 z π 1 z π 2 •••z π i )
.

Therefore, we have

σ∈A(m) wt A (σ)= π∈P (m) i∈DES(π) z 0 z π 1 z π 2 •••z π i m i=0 (1 -z 0 z π 1 z π 2 •••z π i )
.

(3.17)

Fix an integer k ≥ 0 and let A k (m) be the set of barred permutations in A(m) with k bars. Now each barred permutation in A k (m) can be constructed by putting k bars in one line and then inserting m r copies of r, for 1 ≤ r ≤ n,t ot h ek +1 spaces between each two adjacency bars (including the left and right spaces). Note that all integers inserted to the same space must in increasing order and inserting an integer i in the (j +1)th spaces (from right to left) would contribute the factor z j i to the weight of the resulting barred permutation. Thus by the interpretation of q-binomial coefficients (3.10) we have

σ∈A(m) wt A (σ)= m 1 + k m 1 z 1 ••• m n + k m n zn z k 0 .
Comparing with (3.17) we get (3.16).

Setting z 0 = t and z 1 = z 2 = •••z m = q in (3.16) we get (3.5). Also, when [START_REF] Chow | Descents, Quasi-Symmetric Functions, Robinson-Schensted for Posets, and the Chromatic Symmetric function[END_REF]) becomes the Beck-Braun identity (3.15). We continue to generalize other Beck-Braun identities of type B to signed multipermutations. For any π = π 1 •••π m ∈ P ± (m), introduce the sign change function

m 1 = m 2 = ••• = m r =1identity (3.
δ π : {1, 2, ••• ,m}→{0, 1} m as δ π (i)=δ π i := 1 if π i π i+1 < 0 or i = m and π m < 0, otherwise 0.
Define ch(π):= j δ π j to be the total sign change in π. For example, if π =1 32 2 311 then δ π = 1011001 and ch(π)=4. Recall that the flag descent of π is fdes(π) = 2 des(π)χ(π 1 < 0).

We begin with the following relationships between the sign function and the statistics of flag descent, descent and flag major index. Lemma 3.5.2. For each π ∈ P ± (m) we have

fdes(π)= j∈DES(π) δ π j =0 2+ch(π), (3.18 
)

des(π)= j∈DES(π) δ π j =0 1+⌈ch(π)/2⌉, (3.19 
)

fmaj(π)= j∈DES(π) δ π j =0 2j + m j=1 δ π j j. (3.20) 
Proof. A descent j of π can arise in three cases:

• zero descent: j =0and π 1 < 0,o r

• sign change descent: δ π j =1and π j >π j+1 ,o r

• standard descent: δ π j =0and π j >π j+1 .

Regarding sign change descents, consider the partial sums m j=k δ π j of sign changes. By induction on (mk), we can show that

m j=k δ π j = χ(π k < 0) + 2|{i ≥ k : i is a sign change descent of π}|, (3.21) 
from which we obtain (3.18) and (3.19). Also, we have In the following, we deal with the multivariate identities involving flag descents and descents separately. Let z 0 ,z 1 ,z1,z 2 ,z2,... be a sequence of variables.

An identity involving flag descents

We introduce the flag version of barred permutations. Definition 3.2 (Flag barred permutations). For π ∈ P ± (m) a flag barred permutation on π is obtained from π by inserting bars such that • every j-th descent space with δ π j =0of π receives at least 2 bars;

• the parity of the number of bars in the j-th space (1 ≤ j ≤ m)o fπ has the same parity as δ π j . For example, || 1| 22|1|| is a barred permutation on π = 12 21 but not a flag barred permutation, the flag barred permutation on π with the least number of bars is 1|| 2|2||1. and odd(b) denote the sum of all letters, the sum of all even letters, the sum of all odd letters and the number of odd letters in b, respectively. Then, b∈NDWm(r) 

p tot e (b) q tot o (b) z odd(b) = m i=0 (zq) i ⌊(r -1)/2⌋ + i i q 2 ⌊r/2⌋ + m -i m -i p 2 . Proof. Let b = b 1 ...b m ∈ NDW m (r). Let 1 ≤ i 1 < ••• <i k ≤ m (resp. 1 ≤ j 1 < ••• <j l ≤ m)
p tot e (b) q tot o (b) z odd(b) = m i=0 ⎛ ⎝ (zq) i b o ∈NDW i (⌊(r-1)/2⌋) q 2tot(b o ) ⎞ ⎠ ⎛ ⎝ b e ∈NDW m-i (⌊r/2⌋) p 2tot(b e ) ⎞ ⎠ = m i=0 (zq) i ⌊(r -1)/2⌋ + i i q 2 ⌊r/2⌋ + m -i m -i p 2
, as desired.

Theorem 3.5.4.

π∈P ± (m) z neg(π) i∈DES(π) δ π i =0 z 2 0 z 2 π 1 •••z 2 π i m i=1 z δ π i 0 z δ π i π 1 •••z δ π i π i (1 -z 0 ) m i=1 (1 -z 2 0 z 2 π 1 •••z 2 π i ) = k≥0 z k 0 n r=1 mr i=0 (zz r) i ⌊(k -1)/2⌋ + i i z 2 r ⌊k/2⌋ + m r -i m r -i z 2 r . (3.22) 
In particular, if z r = z r for all r ≥ 1, then

π∈P ± (m) i∈DES(π) δ π i =0 z 2 0 z 2 π 1 •••z 2 π i m i=1 z δ π i 0 z δ π i π 1 •••z δ π i π i (1 -z 0 ) m i=1 (1 -z 2 0 z 2 π 1 •••z 2 π i ) = k≥0 z k 0 n r=1 m r + k m r zr . (3.23) 
Proof. For each flag barred permutation σ on π with b i bars in i-th space of π,w e define the weight

wt F (σ)=z neg(π) m i=0 (z 0 z π 1 •••z π i ) b i .
Let F (m) be the set of all flag barred permutations on P ± (m). As previously, we count F (m) by the weight wt F twice. Fix π ∈ P ± (m). The flag barred permutation on π with the least number of bars, denoted by σ, has the weight

wt F (σ)=z neg(π) i∈DES(π) δ π i =0 z 2 0 z 2 π 1 z 2 π 2 •••z 2 π i m i=1 z δ π i 0 z δ π i π 1 z δ π i π 2 •••z δ π i π i .
As every flag barred permutation on π can be obtained from σ by further inserting any number of bars in the 0-th space of π and an even number of bars in the i-th (for 1 ≤ i ≤ m) space of π, we see that counting all the flag barred permutations on π according to the weight wt F gives

z neg(π) i∈DES(π) δ π i =0 z 2 0 z 2 π 1 z 2 π 2 •••z 2 π i m i=1 z δ π i 0 z δ π i π 1 z δ π i π 2 •••z δ π i π i (1 -z 0 ) m i=1 (1 -z 2 0 z 2 π 1 z 2 π 2 •••z 2 π i )
.

Therefore, the enumerative polynomial σ∈F (m) wt F (σ) equals the left-hand side of (3.22).

Next, for a fixed integer k ≥ 0, let F k (m) be the set of flag barred permutations in F (m) with k bars. Now, each flag barred permutation from F k (m) can be obtained in two steps. Firstly, we put k bars in one line and insert m r copies of r, for 1 ≤ r ≤ n, into the spaces between bars. This yields a permutation from P (m) with k bars, which is not necessary a flag barred permutation. Secondly, we determine the signs of all the integers and the order of the integers between each pair of two adjacency bars in the resulting object in such a way that it becomes a flag barred permutation. The signs and the orders of integers are unique according to the definition of a flag barred permutation, since • all integers between two adjacency bars have the same sign and are in increasing order;

• the sign of an integer in the (j +1)th space (from right to left) of the k +1 spaces between the k bars is "+" (resp. " -")i fj is even (resp. odd).

Thus, each way of inserting in the first step induces one and only one flag barred permutation. Moreover, inserting an integer r in the (j +1)-th space (from right to left) of the k +1 spaces between the k bars will contribute the factor z j r (resp. zz j r ) to the weight of the resulting flag barred permutation if j is even (resp. odd). Therefore, by Lemma 3.5.3 we have

σ∈F k (m) wt F (σ)=z k 0 n r=1 mr i=0 (zz r) i ⌊(k -1)/2⌋ + i i z 2 r ⌊k/2⌋ + m r -i m r -i z 2 r .
Summing over all k and comparing with the fact that σ∈F (m) wt F (σ) equals the left-hand side of ( 

= z 2 = ••• = z n = q in (3. 23 
), then we obtain

(1 + t) π∈P ± (m) t fdes(π) q fmaj(π) (t 2 ; q 2 ) m = k≥0 n r=1 m r + k m r q t k ,
which appears as identity (7.3) in [START_REF] Foata | Signed words and permutations, III; The MacMahon Verfahren[END_REF].

An identity involving descents

Theorem 3.5.5.

π∈P ± (m) z neg(π) z ⌈ ch(π) 2 ⌉ 0 i∈DES(π) δ π i =0 z 0 z 2 π 1 •••z 2 π i m i=1 z δ π i π 1 •••z δ π i π i m i=0 (1 -z 0 z 2 π 1 •••z 2 π i ) = k≥0 z k 0 n r=1 mr i=0 (zz r) i i + k -1 i z 2 r m r -i + k m r -i z 2 r . (3.24) 
In particular, if z r = z r for all r ≥ 1, then

π∈P ± (m) z ⌈ ch(π) 2 ⌉ 0 i∈DES(π) δ π i =0 z 0 z 2 π 1 •••z 2 π i m i=1 z δ π i π 1 •••z δ π i π i m i=0 (1 -z 0 z 2 π 1 •••z 2 π i ) = k≥0 z k 0 n r=1 m r +2k m r zr . (3.25) 
Proof. For each barred permutation σ on π ∈ P ± (m) with b i bars in i-th space of π, we define the weight

wt B (σ)=z neg(π) m i=0 (z 0 z 2 π 1 •••z 2 π i ) b i π i <0 z π i .
Fix π ∈ P ± (m). Then through similar discussion as in the second paragraph of the proof of Theorem 3.3.2, we can see that counting all barred permutations on π according to the weight wt B gives

z neg(π) z des(π) 0 i∈DES(π) z 2 π 1 •••z 2 π i π i <0 z π i m i=0 (1 -z 0 z 2 π 1 •••z 2 π i )
.

We claim that

z ⌈ ch(π) 2 ⌉ 0 i∈DES(π) δ π i =0 z 0 z 2 π 1 •••z 2 π i m i=1 z δ π i π 1 •••z δ π i π i = z des(π) 0 i∈DES(π) z 2 π 1 •••z 2 π i π i <0 z π i , (3.26) 
from which we see that σ∈B(m) wt B (σ) equals the left-hand side of (3.24). Clearly, the degrees of z 0 in both sides of (3.26) are equal follows from (3.19). To complete the proof of our claim, it remains to show that for each 1 ≤ i ≤ m, the degrees of z π i in both sides of (3.26) are equal. By (3.21), the degree of z π i in left-hand side of (3.26) is

2|{j ≥ i : j ∈ DES(π),δ π j =0}| + m j=i δ π j =2(|{j ≥ i : j ∈ DES(π),δ π j =0}| + |{j ≥ i : j ∈ DES(π),δ π j =1}|)+χ(π i < 0) =2|{j ≥ i : j ∈ DES(π)}| + χ(π i < 0),
which is exactly the degree of z π i in right-hand side of (3.26). This completes the proof of our claim.

Next, for a fixed integer k ≥ 0, we can show that

σ∈B k (m) wt B (σ)=z k 0 n r=1 mr i=0 (zz r) i m r -i + k m r -i z 2 r i + k -1 i z 2 r
by similar discussions as in the proof of Theorem 3.3.2. Therefore, the enumerative polynomial σ∈B(m) wt B (σ) also equals the right-hand side of (3.24), which finishes the proof of the theorem. 

Some remarks

First of all, it would be interesting to find a bijective proof or a q-analog of the equidistribution (3.1). Probably, a combinatorial interpretation of recurrence (3.2) in terms of the inversion sequences would help us to understand this equidistribution better.

Recall that a polynomial f (z 1 ,...,z m ) ∈ R[z 1 ,...,z m ] is said to be stable, if whenever I(z i ) > 0 for all i then f does not vanish. It is well known that the stability of the multivariate generating functions implies that their univariate counterparts, obtained by diagonalization, have only real roots (see [START_REF] Haglund | Stable multivariate Eulerian polynomials and generalized Stirling permutations[END_REF]Lemma 2.3]). For each m ∈ P n , the three descent polynomials π∈P (m) t des(π) , π∈P ± (m) t des(π) and π∈P ± (m) t fdes (π) appear in this chapter all have only real roots. It would be interesting to find some multivariate generalizations of the above three descent polynomials, similar to the results for generalized Stirling permutations discovered by Haglund and Visontai [START_REF] Haglund | Stable multivariate Eulerian polynomials and generalized Stirling permutations[END_REF], which have the nice stable property.

Finally, the multivariate identities appearing in Section 3.5 can be generalized naturally from signed multipermutations to r-colored multipermutations for r ≥ 1.

When z =1 , the Jacobi-Stirling numbers become the Legendre-Stirling numbers [START_REF] Everitt | Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression[END_REF] of the first and second kinds:

ls(n, k) = js(n, k;1), LS(n, k) = JS(n, k;1). (4.3)
Generalizing the work of Andrews and Littlejohn [START_REF] Andrews | A combinatorial interpretation of the Legendre-Stirling numbers[END_REF] on Legendre-Stirling numbers, Gelineau and Zeng [START_REF] Gelineau | Combinatorial interpretations of the Jacobi-Stirling numbers[END_REF] studied the combinatorial interpretations of the Jacobi-Stirling numbers and remarked on the connection with Stirling numbers and central factorial numbers. Further properties of the Jacobi-Stirling numbers have been given by Andrews, Egge, Gawronski, and Littlejohn [START_REF] Andrews | The Jacobi-Stirling numbers[END_REF].

The Stirling numbers of the second and first kinds S(n, k) and s(n, k) are defined by

x n = n k=0 S(n, k) k-1 i=0 (x -i), n-1 i=0 (x -i)= n k=0 s(n, k)x k . ( 4.4) 
The lesser known central factorial numbers [69, p. 213-217] T (n, k) and t(n, k) are defined by

x n = n k=0 T (n, k) x k-1 i=1 x + k 2 -i , (4.5) 
and

x n-1 i=1 x + n 2 -i = n k=0 t(n, k)x k .
Starting from the fact that for fixed k, the Stirling number S(n + k, n) can be written as a polynomial in n of degree 2k and there exist nonnegative integers c k,j , [START_REF] Gessel | Stirling Polynomials[END_REF] gave a similar combinatorial interpretation for the c k,j in terms of the descents in Stirling permutations. Recently, Egge [START_REF] Egge | Legendre-Stirling permutations[END_REF] has given an analogous result for the Legendre-Stirling numbers, and Gelineau [START_REF] Gelineau | Études combinatoires des nombres de Jacobi-Stirling et d'Entringer[END_REF] has made a preliminary study of the analogous problem for Jacobi-Stirling numbers. In this chapter, we will prove some analogous results for the diagonal generating function for Jacobi-Stirling numbers. As noticed in [START_REF] Gelineau | Combinatorial interpretations of the Jacobi-Stirling numbers[END_REF], the leading coefficient of the polynomial JS(n, k; z) is S(n, k) and the constant term of JS(n, k; z) is the central factorial number of the second kind with even indices T (2n, 2k). Similarly, the leading coefficient of the polynomial js(n, k; z) is s(n, k) and the constant term of js(n, k; z) is the central factorial number of the first kind with even indices t(2n, 2k). Definition 4.1. The Jacobi-Stirling polynomial of the second kind is defined by

1 ≤ j ≤ k, such that n≥0 S(n + k, n)t n = k j=1 c k,j t j (1 -t) 2k+1 ,

Gessel and Stanley

f k (n; z):=JS(n + k, n; z). (4.6) The coefficient p k,i (n) of z i in f k (n; z) is called the Jacobi-Stirling coefficient of the second kind for 0 ≤ i ≤ k.T h u s f k (n; z)=p k,0 (n)+p k,1 (n)z + •••+ p k,k (n)z k . (4.7)
The main goal of this chapter is to prove Theorems 4.1.1 and 4.1.2 below.

Theorem 4.1.1. For each integer k and i such that 0 ≤ i ≤ k, there is a polynomial A k,i (t)= 2k-i j=1 a k,i,j t j with positive integer coefficients such that

n≥0 p k,i (n)t n = A k,i (t) (1 -t) 3k-i+1 . ( 4.8) 
In order to give a combinatorial interpretation for a k,i,j , we introduce the multiset M k := {1, 1, 1, 2, 2, 2,...,k,k, k}, where the elements are ordered by

1 < 1 < 2 < 2 ... < k<k.
Let [ k]:={ 1, 2,..., k}. For any subset S ⊆ [ k],w es e tM k,S = M k \ S. Definition 4.2. A permutation π of M k,S is a Jacobi-Stirling permutation if whenever u<v<wand π(u)=π(w),w eh a v eπ(u) <π (v). We denote by JSP k,S the set of Jacobi-Stirling permutations of M k,S and

JSP k,i = S⊆[ k] |S|=i JSP k,S .
For example, the Jacobi-Stirling permutations of JSP Let π = π 1 π 2 ...π m be a word on a totally ordered alphabet. We say that π has a descent at l, where 1 ≤ l ≤ m -1,i fπ l >π l+1 . Let des(π) be the number of descents of π. The following is our main interpretation for the coefficients a k,i,j . Theorem 4.1.2. For k ≥ 1, 0 ≤ i ≤ k, and 1 ≤ j ≤ 2ki, the coefficient a k,i,j is the number of Jacobi-Stirling permutations in JSP k,i with j -1 descents.

Proof. We proceed by induction on k. By definition, we have

f 1 (n; z) = JS(n +1,n; z)=p 1,0 (n)+p 1,1 (n)z.
As noticed in [43, Theorem 1], the leading coefficient of the polynomial JS(n, k; z) is S(n, k) and the constant term is T (2n, 2k). We derive from (4.4) and (4.5) that p 1,1 (n)=S(n +1,n)=n(n +1)/2, p 1,0 (n)=T (2n +2, 2n)=n(n + 1)(2n +1)/6. Hence (4.13) is true for k =1 . Assume that (4.13) is true for some k ≥ 1.B y (4.12) we have

p k,i (n) -p k,i (n -1) = n 2 p k-1,i (n)+np k-1,i-1 (n).
Since JS(0,k; z)=0if k ≥ 2, we have p k,i (0) = 0. The above equation and the induction hypothesis imply successively that

p k,i (-1) = 0,p k,i (-2) = 0, ..., p k,i (-k +1)=0,p k,i (-k)=0.
The proof is thus complete. 

≤ i ≤ k, there is a polynomial A k,i (t)= 2k-i j=1 a k,i,j t j with integer coefficients such that n≥0 p k,i (n)t n = A k,i (t) (1 -t) 3k-i+1 . ( 4 
p k,i (-n)t n = - A k,i (1/t) (1 -1/t) 2k-i+1 . (4.15) 
Applying (4.13) we see that

a k,i,2k-i+1 = ••• = a k,i,3k-i =0.
The first values of A k,i (t) are given in Table 1. The following result gives a recurrence for the coefficients a k,i,j . Proposition 4.2.4. Let a 0,0,0 =1.F o rk, i, j ≥ 0, we have the following recurrence for the integers a k,i,j :

a k,i,j = j 2 a k-1,i,j +[2(j -1)(3k -i -j -1) + (3k -i -2)]a k-1,i,j-1 +(3k -i -j) 2 a k-1,i,j-2 + ja k-1,i-1,j +(3k -i -j)a k-1,i-1,j-1 , (4.16) 
where a k,i,j =0if any of the indices k, i, j is negative or if j/ ∈{1,...,2k -i}. 

≤ i ≤ k, let F k,i (t)= n≥0 p k,i (n)t n = A k,i (t) (1 -t) 3k-i+1 .
(4.17)

The recurrence relation (4.12) is equivalent to

F k,i (t)=(1-t) -1 [t 2 F ′′ k-1,i (t)+tF ′ k-1,i (t)+tF ′ k-1,i-1 (t)] (4.18) 
with F 0,0 =(1-t) -1 . Substituting (4.17) into (4.18) we obtain

A k,i (t)=(1-t) 3k-i [t 2 (A k-1,i (t)(1 -t) -(3k-i-2) ) ′′ + t(A k-1,i (t)(1 -t) -(3k-i-2) ) ′ + t(A k-1,i-1 (t)(1 -t) -(3k-i-1) ) ′ ] =[t 2 A ′′ k-1,i (t)(1 -t) 2 +2(3k -i -2)t 2 A ′ k-1,i (t)(1 -t) +(3k -i -2)(3k -i -1)t 2 A k-1,i (t)] +[tA ′ k-1,i (t)(1 -t) 2 +(3k -i -2)tA k-1,i (t)(1 -t)] +[tA ′ k-1,i-1 (t)(1 -t)+(3k -i -1)tA k-1,i-1 (t)].
Taking the coefficient of t j in both sides of the above equation, we have

a k,i,j =j(j -1)a k-1,i,j -2(j -1)(j -2)a k-1,i,j-1 +(j -2)(j -3)a k-1,i,j-2 +2(3k -i -2)(j -1)a k-1,i,j-1 -2(3k -i -2)(j -2)a k-1,i,j-2 +(3k -i -2)(3k -i -1)a k-1,i,j-2 + ja k-1,i,j -2(j -1)a k-1,i,j-1 +(j -2)a k-1,i,j-2 +(3k -i -2)a k-1,i,j-1 -(3k -i -2)a k-1,i,j-2 + ja k-1,i-1,j -(j -1)a k-1,i-1,j-1 +(3k -i -1)a k-1,i-1,j-1 ,
which gives (4.16) after simplification.

Corollary 4.2.5. For k ≥ 0 and 0 ≤ i ≤ k, the coefficients a k,i,j are positive integers for 1 ≤ j ≤ 2ki.

Proof. This follows from (4.16) by induction on k. Clearly, this is true for k =0 and k =1 . Suppose that this is true for some k ≥ 1. As each term in the righthand side of (4.16) is nonnegative, we only need to show that at least one term on the right-hand side of (4.16) is strictly positive. Indeed, for k ≥ 2, the induction hypothesis and (4.16) imply that

• if j =1,t h e na k,i,1 ≥ a k-1,i-1,1 > 0; • if 2 ≤ j ≤ 2k -i,t h e na k,i,j ≥ (3k -i -j)a k-1,i-1,j-1 ≥ ka k-1,i-1,j-1 > 0.
These two cases cover all possibilities. 

(n; z)=q k,0 (n)+q k,1 (n)z + •••+ q k,k (n)z k , then n≥1 q k,i (n)t n =(-1) k 2k-i j=1 a k,i,3k-i+1-j t j (1 -t) 3k-i+1 . ( 4 

.21)

Proof. From (4.2) we deduce

js(0, 0; z)=1, js(n, k; z)=0, if k ∈{1,...,n}, js(n, k; z)=js(n -1,k-1; z) -(n -1)(n -1+z) js(n -1,k; z),n , k ≥ 1.
It follows from the above recurrence and (4.19) that

g k (n; z) -g k (n -1; z)=-(n -1)(n -1+z)g k-1 (n -1; z).
Comparing with (4.11) we get (4.20), which implies that q k,i (n)=( -1) i p k,i (-n). Finally (4.21) follows from (4.15).

Jacobi-Stirling posets

We first recall some basic facts about Stanley's theory of P -partitions [START_REF] Stanley | Enumerative Combinatorics[END_REF][START_REF] Stanley | Ordered Structures and Partitions[END_REF]. Let P be a poset, and let ω be a labeling of P , i.e., an injection from P to a totally ordered set (usually a set of integers). A (P, ω)-partition (or P -partition if ω is understood) is a function f from P to the positive integers satisfying 1. if x< P y then f (x) ≤ f (y) 2. if x< P y and ω(x) >ω(y) then f (x) <f(y).

A linear extension of a poset P is an extension of P to a total order. We will identify a linear extension of P labeled by ω with the permutation obtained by taking the labels of P in increasing order with respect to the linear extension. For example, the linear extensions of the poset shown in Figure 4.1 are 213 and 231. We write L (P ) for the set of linear extensions of P (which also depend on the labeling ω). The order polynomial Ω P (n) of P is the number of (P, ω)-partitions with parts in [n]={1, 2,...,n}. It is known that Ω P (n) is a polynomial in n whose degree is the number of elements of P . The following is a fundamental result in the P -partition theory [START_REF] Stanley | Binomial posets, Möbius inversion, and permutation enumeration[END_REF]Theorem 4.5.14 where k is the number of elements of P and des π is computed according to the natural order of the integers. For example, the two linear extensions of the poset shown in Figure 4.1 each have one descent, and the order polynomial for this poset is 2 n+1 

= t k (1 -(z +1)t)(1 -2(z +2)t) •••(1 -k(z + k)t) , (4.23) 
As f k (n; z) = JS(n + k, n; z), switching n and k in the last equation yields

k≥0 f k (n; z)t k = 1 (1 -(z +1)t)(1 -2(z +2)t) •••(1 -n(z + n)t)
.

Identifying the coefficients of t k gives f k (n; z)= In other words, the integer a k,i,j is the number of elements of L (R k,i ) with j -1 descents.

Proof. Extracting the coefficient of z i in both sides of (4.24), then applying (4. It is easy to compute A k,S (1) which is equal to |L (R k,S )| and is also (3ki)! times the leading coefficient of p k,S (n). Proof. We construct a permutation in L (R k,S ) by reading the elements of R k,S in increasing order of their labels and inserting each one into the permutation already constructed from the earlier elements. Each element of R k,S will have two natural numbers associated to it: the reading number and the insertion-position number. It is clear that the insertion-position number of 3j must be equal to its reading number, which is 3jl j (S), since it must be inserted to the right of all the previously inserted elements (those with labels less than 3j). On the other hand, an element not divisible by 3 may be inserted anywhere, so its number of possible insertion positions is equal to its reading number. So the number of possible linear extensions of R k,S is equal to the product of the reading numbers of all elements with labels not divisible by 3. Since the product of all the reading numbers is (3ji)!, we obtain the result by dividing this number by the product of the reading numbers of the elements with labels 3, 6,...,3k.

From (4.28) we can derive the formula for A k,i (1), which is equivalent to Proposition 4.2.1. Proposition 4.3.4. We have

|L (R k,i )| = A k,i (1) = (3k -i)! 3 k-i 2 i i!(k -i)! .
Proof. By Proposition 4.3.3 it is sufficient to prove the identity

1≤s 1 <•••<s i ≤k (3k -i)! k j=1 (3j -l j (S)) = (3k -i)! 3 k-i 2 i i!(k -i)! , (4.29) 
where S = {s 1 ,...,s i } and l j (S)=|{ s ∈ S : s ≤ j }|.

The identity is obvious if S = ∅, i.e., i =0.W h e ni =1, it is easy to see that (4.29) is equivalent to the a =2/3 case of the indefinite summation 

=(3ki -1)A k-1,i-1 (1) + (3ki -1)(3ki -2)A k-1,i (1), from which we easily deduce that A k,i (1) = (3ki)!/3 k-i 2 i i!(ki)!.

Since both of the above proofs of Proposition 4.3.4 use mathematical induction, it is desirable to have a more conceptual proof. Here we give such a proof based on the fact that Proposition 4.3.4 is equivalent to

|L (R k,i )| =2 k-i • (3k -i)! 2! i i!3! k-i (k -i)! . ( 4 

.31)

A combinatorial proof of Proposition 4.3.4. We show that |L (R k,i )| is equal to 2 k-i times the number of partitions of [3ki] with ki blocks of size 3 and i blocks of size 2.

Let S be an i-element subset of [k] and let π be an element L (R k,S ), viewed as a bijection from [3ki] to R k,S . Let σ = π -1 .T h e nσ is a natural labeling of R k,S , i.e., an order-preserving bijection from the poset R k,S to [3ki], and conversely, every natural labeling of R k,S is the inverse of an element of L (R k,S ).

We will describe a map from the set of natural labelings of elements of R k,i to the set of partitions of [3ki] with ki blocks of size 3 and i blocks of size 2, for which each such partition is the image of 2 k-i natural labelings. Given a natural labeling σ of R k,S , the blocks of the corresponding partition are the sets {σ(3m -2),σ(3m -1),σ(3m)} for m/ ∈ S and the sets {σ(3m -1),σ(3m)} for m ∈ S. We note that since σ is a natural labeling, σ(3m) is always the largest element of its block and σ(3) <σ(6) < ••• <σ(3m). Now let P be a partition of [3ki] with ki blocks of size 3 and i blocks of size 2. We shall describe all natural labelings σ of posets R k,S that correspond to P under the map just defined. First, we list the blocks of P as B 1 , B 2 , ..., B k in increasing order of their largest elements. Then σ(3m) must be the largest element of B m .I fB m has two elements, then the smaller element must be σ(3m -1),a n d m must be an element of S.I fB m has three elements then m/ ∈ S,a n dσ(3m -2) and σ(3m -1) are the two smaller elements of B m , but in either order. Thus S is uniquely determined by P , and there are exactly 2 k-i natural labelings of R k,S in the preimage of P .S o|L (R k,i )| is 2 i times the number of partitions of [3ki] with ki blocks of size 3 and i blocks of size 2, and is therefore equal to the right-hand side of (4.31).

Two proofs of Theorem 4.1.2

We shall give two proofs of Theorem 4.1.2. We first derive Theorem 4.1.2 from Theorem 4.3.2 by constructing a bijection from the linear extensions of Jacobi-Stirling posets to permutations. The second proof consists of verifying that the cardinality of Jacobi-Stirling permutations in JSP k,i with j -1 descents satisfies the recurrence relation (4.16). Given a word w = w 1 w 2 ...w m of m letters, we define the jth slot of w by the pair (w j ,w j+1 ) for j =0 ,...,m. By convention w 0 = w m+1 =0 . A slot (w j ,w j+1 ) is called a descent (resp. non-descent) slot if w j >w j+1 (resp. w j ≤ w j+1 ). (i) k/ ∈ S, denote by π ′ the word obtained by deleting 3k and 3k -1 from π,and π ′′ the word obtained by further deleting 3k -2 from π ′ .A sπ ′′ ∈ L (R k-1,S ), by induction hypothesis, the permutation φ(π ′′ ) ∈JSP k-1, S is well defined. Now, a) if 3k -2 is in the rth descent (or nondescent) slot of π ′′ , then we insert k in the rth descent (or nondescent) slot of φ(π ′′ ) and obtain a word φ 1 (π ′′ ); b) if 3k -1 is in the sth descent (or nondescent) slot of π ′ , we define φ(π) by inserting kk in the sth descent (or nondescent) slot of φ 1 (π ′′ ).

(ii) k ∈ S, denote by π ′ the word obtained from π by deleting 3k and 3k -1.

As π ′ ∈ L (R k-1,i-1 ), the permutation φ(π ′ ) ∈JSP k-1, S is well defined. If 3k -1 is in the rth descent (or nondescent) slot of π ′ , we define φ(π) by inserting kk in the rth descent (or nondescent) slot of φ(π ′ ).

Clearly this mapping is a bijection and preserves the number of descents. For example, if k =3and S = {2},t h e nφ(25137869) = 112 3233 1. This can be seen by applying the mapping φ as follows: Let JSP k,i,j be the set of Jacobi-Stirling permutations in JSP k,i with j -1 descents. Let a ′ 0,0,0 =1and a ′ k,i,j be the cardinality of JSP k,i,j for k, i, j ≥ 0.B y definition, a ′ k,i,j =0if any of the indices k, i, j < 0 or j/ ∈{1,...,2k -i}.W es h o w that a ′ k,i,j 's satisfy the same recurrence (4.16) and initial conditions as a k,i,j 's. Any Jacobi-Stirling permutation of JSP k,i,j can be obtained from one of the following five cases:

(i) Choose a Jacobi-Stirling permutation in JSP k-1,i,j , insert k and then kk in one of the descent slots (an extra descent at the end of the permutation).

Clearly, there are a ′ k-1,i,j ways to choose the initial permutation, j ways to insert k,a n dj ways to insert kk. This proves that N 0 is equal to the left-hand side of (4.33).

Let LSP k,j be the set of all Legendre-Stirling permutations of M k with j -1 descents. It is easy to identify a permutation π ∈ B k,j with no pattern uū with a Legendre-Stirling permutation π ′ ∈L SP k,j by inserting each missing ū just to the right of the second u. This completes the proof.

A conjecture and a remark

The numerical experiments suggest the following conjecture, which has been verified for 0 ≤ i ≤ k ≤ 9.

Conjecture 4.6.1. For 0 ≤ i ≤ k, the polynomial A k,i (t) has only real roots.

Note that by Lemma 2.4.6 and Corollary 4.2.5, Conjecture 4.6.1 would imply that A k,i (t) is unimodal. Let G k be the multiset {1 m 1 , 2 m 2 ,...,k m k } with m i ∈ N. A permutations π of G k is a generalized Stirling permutation (see [START_REF] Brenti | Unimodal, Log-concave, and Pólya Frequency Sequences in Combinatorics[END_REF][START_REF] Janson | Generalized Stirling permutations, families of increasing trees and urn models[END_REF][START_REF] Park | P -Partitions and q-Stirling Numbers[END_REF]) if whenever u<v<wand π(u)=π(w), we have π(v) >π (u). For any S ⊆ [ k], the set of generalized Stirling permutations of M k \ S is equal to JSP k,S .B y Lemma 4.3.1 and Theorem 4.1.2, the descent polynomial of JSP k,S is A k,S (t).I t follows from a result of Brenti [8, Theorem 6.6.3] that A k,S (t) has only real roots. By (4.27), this implies, in particular, that the above conjecture is true for i =0 and i = k.

One can also use the methods of Haglund and Visontai [START_REF] Haglund | Stable multivariate Eulerian polynomials and generalized Stirling permutations[END_REF] to show that A k,S (t) has only real roots, though it is not apparent how to use these methods to show that A k,i (t) has only real roots. Remark 4.2. Very recently, some other positivity properties about Jacobi-Stirling numbers are studied in [START_REF] Lin | Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials[END_REF].
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  introduced the statistics lec(π):= 1≤i≤k inv(τ i ) and pix(π):=length(p). For example, the hook factorization of π =1341 41 2251 11 58671 391 0is 1341 4| 12 2 5 11 15 | 867| 13 9 10. Hence p = 13414, τ 1 = 12251115, τ 2 =867, τ 3 =13910, pix(π)=4and lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Lemma 1 . 3 . 3 .

 133 There is a bijection v → u on the set of all two-pix-permutations of [n] satisfying lec(v)=n -2lec(u), and (invlec)v =(in v-lec)u.

Theorem 1 . 1 . 1 .

 111 Combining Lemmas 1.3.1, 1.3.2 and 1.3.3, we obtain a bijective proof of Theorem 1.1.1.

Lemma 2 .

 2 1.1 ([47, Lemma 5.2]). For any n ≥ 1 and S ⊆ [n -1] we have

Definition 2 . 1 (

 21 [52, Definition 2.1]). For any particular cv-cycle type λ define the cv-cycle type colored Eulerian quasisymmetric functions Qλ ,k by Qλ ,k := π F n,DEX(π) ,

  ), then λ(R)={(7, (2, 1)), (2, (1, 1)), (2, (0, 0)), (1, (0, 0)), (1, (1, 0))}. For a cv-cycle type λ and a nonnegative integer k let R( λ, k) be the set of all colored ornaments of cv-cycle type λ and exactly k barred letters. Using a colored analog of the Gessel-Reutenauer bijection [47], Hyatt [52, Corollary 3.3] proved the following colored ornament interpretation of Qλ ,k . Theorem 2.2.3 (Hyatt's Colored ornament interpretation).

Theorem 2 . 2 . 4 .

 224 The cv-cycle type Eulerian quasisymmetric function Qλ ,k is a symmetric function.

Proposition 2 . 4 . 8 .

 248 For l ≥ 1 the polynomial A

n

  (t) is symmetric and log-concave. In particular it is unimodal.

  Let d B n (t) be the generating function for the flag excedances on the derangements in C 2 ≀ S n , i.e.

  where a symmetric function is said to be b-positive if it is a nonnegative linear combination of elements of the b-basis. Here we are concerned with h-basis {h λ : λ ∈ Par} and the Schur basis {s λ : λ ∈ Par}. The following theorem reduces to [76, Theorem 5.1] when l =1.

  Lemma 2.4.3, Part (1) and (2) are obtained by specializing Parts (2) and (3) of Theorem 2.4.9, respectively. Remark 2.5. When l =1, Parts (1) and (2) of the above theorem reduce to Parts (3) and (4) of Theorem 5.3 in [76], respectively. Part (1) of the above theorem implies the unimodality of d B n (t) as conjectured by Mongelli [64, Conjecture 8.1]. Actually, he also conjectured that d B n (t) is log-concave.

Case 3 :

 3 a has positive color and u is empty. In this caseB d = a. Define ω = |a|, b =0, m is the color of a and B ′ = B 1 •••B d-1 .This complete the description of the map Υ. Next we describe Υ -1 . Suppose we are given a banner B with increasing factorizationB = B 1 •••B d where B d = a, ..., a p times ,j 1 , ••• ,j k ,and a m-colored marked sequence (ω, b, m).

  j )=n, r j=1 b j = i and β =(β 1 ,...,β l-1 ), where β k equals the number of m i such that m i = k. Define the weight of σ by wt(σ):=wt(ω 0 ) •••wt(ω r ).

For a colored permutation

  π =∈ C l ≀ S n with colored hook factorization pτ 1 τ 2 ...τ r , we define inv(π):=in v(|π|) and lec(π):= r i=1 inv(|τ i |). We also define flec(π):=l • lec(π)+ n i=1 ǫ i and pix(π):=length(p).

2. 5 . 1

 51 Rawlings major index and colored Eulerian quasisymmetric functionsDefinition 2.8 (Colored Rawlings major index). For π ∈ C l ≀ S n and k ∈ [n],w e define DES ≥k (π):={i ∈ [n]:|π i | > |π i+1 | and either ǫ i =0or |π i |-|π i+1 |≥k}, inv <k (π):=|{(i, j) ∈ [n] × [n]:i<j,ǫ i =0and 0 < |π i |-|π j | <k}|, maj ≥k (π):= i∈DES ≥k (π)

  Define the incomparability graph inc(P ) of a poset P on [n] to be the graph with vertex set [n] and edge set {{a, b} : a ≤ P b and b ≤ P a}. Shareshian and Wachs [77, Theorem 4.15] stated the following fundamental quasisymmetric function basis decomposition of the chromatic quasisymmetric functions, which refines the result of Chow [16, Corollary 2]. Theorem 2.5.4 (Shareshian-Wachs). Let G be the incomparability graph of a poset P on [n]. Then

  ωX

Figure 2 . 1 :

 21 Figure 2.1: The graph G c 9,2 with c =010020121. and 2.5.4 together gives

3. 2 2 Lemma 3 . 2 . 1 .

 22321 Proof of Theorem 3.1.Let s =(1, 4, 3, 8,...,2n -1, 4n) and

t

  asc(e) has only real roots for each s ∈ P n . In view of Theorem 3.1.2 we have: Corollary 3.4.1. The polynomial π∈P ± ({1,1,2,2,...,n,n}) t des(π)

  e., the type B Coxeter group) case of Brenti[START_REF] Brenti | Unimodal, Log-concave, and Pólya Frequency Sequences in Combinatorics[END_REF] and Corollary 3.4.1.Theorem 3.4.3. The descent polynomial π∈P ± (m) t des(π) has only real roots for every m ∈ P n .

  2k+1)(2k+2)•••(2k+mr) mr! . Now we can check that all the conditions of Lemma 3.4.4 are satisfied (with n = m, a = 2 m 1 ,b =1):

  Note that Eq. (3.14) is the special case m 1 = m 2 = ••• = m r =1of MacMahon's identity in Theorem 3.3.1. Our technique of barred permutations used in the proof of Theorem 3.3.2 has the advantage that enables us to extend multivariate identity (3.15) to the multipermutations easily as follows. Theorem 3.5.1. π∈P (m) i∈DES(π)

  k < 0) + 2|{i ≥ k : i is a sign change descent of π}| =neg(π)+ m k=1 2|{i ≥ k : i is a sign change descent of π}| =neg(π)+

Lemma 3 . 5 . 3 .

 353 Let NDW m (r) be the set of all non-decreasing words of length m with letters from {0, 1,...,r}. For each b ∈ NDW m (r) let tot(b), tot e (b), tot o (b)

  be the sequence of all integers i (resp. j) such that b i is even (resp. odd). Then, b is completely characterized by the pair (b e ,b o ), where b e := (b i 1 /2) ...b i k /2) and b o := ((b j 1 -1)/2) ...((b j l -1)/2). Moreover, tot e (b)= 2tot(b e ), tot o (b)=2 tot(b o )+|b o | and odd(b)=|b o |. Hence, by the interpretation of q-binomial coefficients (3.10) we have b∈NDWm(r)

Remark 3 . 7 .

 37 For z =0, identity (3.24) yields(3.16). Settingm 1 = ••• = m n =1 in (3.[START_REF] Euler | Institutiones calculi differentialis cum eius usu in analysi finitorum ac Doctrina serierum[END_REF], we recover Theorem 6.10 in[START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF]. By(3.19) and (3.20), if we set z 0 = t and z 1 = z1 = ••• = z n = z n = q in (3.24), then we go back to(3.6).

Lemma 4 . 2 . 3 .

 423 For each integer k and i such that 0

Figure 4 . 1 :

 41 Figure 4.1: A poset (left) and its linear extensions

Figure 4 . 2 :

 42 Figure 4.2: The labeled poset R k .

1≤j 1 1≤j 1 ≤j 2 ≤n j 1 j 2 2 = 5 Figure 4 . 3 :Definition 4 . 3 .

 1254343 Figure 4.3: The labeled posets R 2,{1} and R 2,{2} .

Theorem 4 . 3 . 2 .

 432 We haveA k,i (t)= S⊆[k] |S|=i A k,S (t).

  i (n)t n = n≥0 S p k,S (n)t n = S n≥0 p k,S (n)t n ,where the summations on S are over all subsets of [k] with cardinality i.T h e result follows then by comparing (4.14) and (4.26).

Proposition 4 . 3 . 3 .

 433 Let S ⊆ [k], |S| = i and let l j (S)=|{ s ∈ S | s ≤ j }| for 1 ≤ j ≤ k. We have A k,S (1) = (3ki)! k j=1 (3jl j (S)) .(4.28)

1 s i - 1 j=1

 11 where (a) n = a(a +1)•••(a + n -1) and (a) 0 =1 . Since the left-hand side of (4.29) can be written ask s i =i (3ki)! k j=s i (3ji) 1≤s 1 <•••<s i-1 ≤s i -1 (3jl j (S)), we derive (4.29) from the induction hypothesis and (4.30).

Remark 4 . 1 .

 41 Alternatively, we may prove the formula for A k,i (1) as follows:

4. 4 . 1

 41 First proof of Theorem 4.1.2 For any subset S = {s 1 ,...,s i } of [k] we define S = {s 1 ,...,s i }, which is a subset of [ k]. Recall that JSP k, S is the set of Jacobi-Stirling permutations of M k, S .W e construct a bijection φ : L (R k,S ) →JSP k, S such that des φ(π)=d e sπ for any π ∈ L (R k,S ). If k =1,t h e nL (R 1,0 )={123, 213} and L (R 1,1 )={23}. We define φ by φ(123) = 111,φ (213) = 11 1,φ (23) = 11.Suppose that k ≥ 2 and φ :L (R k-1,S ) →JSP k-1, S is defined for any S ⊆ [k -1]. If π ∈ L (R k,S ) with S ⊆ [k],we consider the following two cases:

213 → 25136 →

 25136 251376 → 25137869, 11 1 → 1122 1 → 112 32 1 → 112 3233 1.Clearly we have des(25137869) = 2 and des(112 3233 1) = 2.

4. 4 . 2

 42 Second proof of Theorem 4.1.2

( 1

 1 Second proof. By (4.6), (4.7), and (4.8), we have ∞ n=0 JS(n + k, n; z)t n = j=1 a k,i,j t j (1t) 3k-i+1 . Setting z =1and using (4.3) gives∞ n=0 LS(n + k, n)t n = k i=0 t) i 2k-i j=1 a k,i,j t j (1t) 3k+1 .Multiplying both sides by (1t) 3k+1 and applying (4.32) gives2k-1 j=1 b k,j t j = k i=0 (1t) i 2k-i j=1 a k,i,j t j , i,j-l = b k,j .(4.33)For any S ⊆ [ k], let JSP k,S,j be the set of all Jacobi-Stirling permutations of M k,S with j -1 descents. Let B k,j = S⊆[ k] JSP k,S,j be the set of Jacobi-Stirling permutations with j -1 descents. We show that the left-hand side of (4.33) is the number N 0 of permutations in B k,j with no pattern uū. For any T ⊆ [ k], let B k,j (T,≥) be the set of permutations in B k,j containing all the patterns uū for ū ∈ T . By the principle of inclusion-exclusion[START_REF] Stanley | Binomial posets, Möbius inversion, and permutation enumeration[END_REF] Chapter 2],N 0 = T ⊆[ k] (-1) |T | |B k,j (T,≥)|.(4.34) Now, for any subsets T,S ⊆ [ k] such that T ⊆ [ k] \ S, define the mapping ϕ : JSP k,S,j ∩ B k,j (T,≥) →JSP k,S∪T,j-|T | by deleting the ū in every pattern uū of π ∈JSP k,S,j ∩ B k,j (T,≥). Clearly, this is a bijection. Hence, we can rewrite (4.34) as k,S,j-|T | |. For any subset S of [ k] with |S| = i, and any l with 0 ≤ l ≤ i, there are i l subsets T of S such that |T | = l, and, by definition, S⊆[ k] |S|=i |J SP k,S,j-|T | | = a k,i,j-l .

  .[START_REF] Everitt | Legendre polynomials, Legendre-Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression[END_REF] Proof. By the hook factorization, the two-pix-permutation in(1.19) is in bijection with the pair (σ, p 2 ), where σ = p 1 τ 1 τ 2 ...τ r-1 τ r is a permutation on [n] \ cont(p 2 ) and p 2 is an increasing word. Thus, by (1.12), (1.13) and (1.20), the generating function for all two-pix-permutations v of [n] with |p 1 | = j such that lec(v)=a and |p 2 | = nk with respect to the weight q

  example, if l =3,t h e n f[START_REF] Cartier | Problèmes combinatoires de commutation et réarrangements[END_REF][START_REF] Cartier | Problèmes combinatoires de commutation et réarrangements[END_REF][START_REF] Burstein | A combinatorial proof of joint equidistribution of some pairs of permutation statistics, talk at Permutation Patterns[END_REF][START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF][START_REF] Brenti | q-Eulerian polynomials arising from Coxeter groups[END_REF][START_REF] Cartier | Problèmes combinatoires de commutation et réarrangements[END_REF][START_REF] Brenti | Unimodal, Log-concave, and Pólya Frequency Sequences in Combinatorics[END_REF][START_REF] Cartier | Problèmes combinatoires de commutation et réarrangements[END_REF][START_REF] Chow | Descents, Quasi-Symmetric Functions, Robinson-Schensted for Posets, and the Chromatic Symmetric function[END_REF][START_REF] Andrews | On the foundations of combinatorial theory V, Eulerian differential operators[END_REF][START_REF] Chen | sinversion Sequences and P -Partitions of type B[END_REF][START_REF] Chung | Generalized Eulerian Sums[END_REF]) = 4 0 4 0 4 1 1 1 4 0 4 0 3 2 5 0 6 1 1 2 5 1 7 1 .We should check that such a word B over B is a colored banner. In the definition of a colored banner, condition (3) is satisfied since the last letter of a word is always an increase value. If B(i) is barred, then w i is a decrease value and so w

i ≥ w i+1 , which would lead |B(i)|≥|B(i +1)|, and thus condition (1) is satisfied. Similarly, condition

  1 ,z 2 ,... be a sequence of variables. Recently, Beck and Braun [7, Theorem 4.1] obtained the following multivariate identity that generalizes Carlitz's identity:

	π∈Sm i∈DES(π)

  3.22), we get(3.22). For z =0, identity (3.22) yields(3.16). Settingm 1 = ••• = m n =1 in (3.[START_REF] Désarménien | Descent classes of permutations with a given number of fixed points[END_REF], we recover Corollary 6.4 in[START_REF] Beck | Euler-Mahonian statistics via polyhedral geometry[END_REF]. By(3.18) and (3.20), if we set z 0 = t and z 1

	Remark 3.6.

  2,1 are:

	22 211, 22211, 21221, 21122, 221 21, 122 21, 1 2221, 1 2122, 2211 2, 1221 2,
	1122 2, 11 222, 2211 1, 1221 1, 1122 1, 11 122, 22 111, 12211, 11221, 11122.

Table 4 .

 4 1: The first values of A k,i (t)

	k\i	01	2	3
	0	1			
	1	t + t 2	t		
	2	t +14t 2 +21t 3 +4t 4	2t +12t 2 +6t 3	t +2t 2	
	3	t +75t 2 + 603t 3 + 1065t 4 + 460t 5 +36t 6	3t + 114t 2 + 501t 3 + 436t 4 +66t 5	3t +55t 2 + 116t 3 +36t 4	t +8t 2 +6t 3
	Proof. For 0			

  Theorem 4.1.1 follows then from Lemma 4.2.3, Proposition 4.2.4 and Corollary 4.2.5. Now, define the Jacobi-Stirling polynomial of the first kind g k (n; z) by g

k (n; z) = js(n, nk; z). (4.19) Proposition 4.2.6. For k ≥ 1, we have g k (n; z)=f k (-n; -z).

(4.20)

If we write g k

  ]:

	n≥1	Ω P (n)t n =	π∈L (P ) t des π+1 (1 -t) k+1	,	(4.22)

1 , 1 2 , 5 1 , 6 1 , 6 1 , 4 0 , 4 0 , 4 1 , 4 0 , 4 0 , 3 2 , 5 0 ,

[START_REF] Adin | The flag major index and the group actions on polynomial rings[END_REF] 

Acknowledgements

Remark 2.8. The above theorem reduces to [START_REF] Foata | The q-Tangent and q-Secant numbers via basic Eulerian polynomials[END_REF]Theorem 4] when l =1.

The recurrence in Theorem 1.1.4 can be generalized to the colored (q, r)-Eulerian polynomials as follows.

Theorem 2.4.20. The colored (q, r)-Eulerian polynomials satisfy the following recurrence formula:

n+1 (t, r, q)=(r + t[l -1] t q n )A (l) n (t, r, q)

n-k (t, q) (2.40)

with A (l) 0 (t, r, q)=1and A (l) 1 (t, r, q)=r. Proof. Applying the Eulerian differential operator δ z to both sides of (2.23) and using the property (1.27) and Lemma 1.4.1, we obtain n≥0 A (l) n+1 (t, r, q) z n (q; q) n = δ z (1t)e(rz; q) e(t l z; q)te(z; q) = δ z ((1t)e(rz; q)) e(t l z; q)te(z; q) + δ z (e(t l z; q)te(z; q)) -1 (1t)e(rzq l ; q) =B + C, where B = r(1t)e(rz; q) e(t l z; q)te(z; q) = r n≥0 A (l) n (t, r, q) z n (q; q) n , and C = (1t)e(rzq; q)(te(z; q)t l e(t l z; q)) (e(t l qz; q)te(qz; q))(e(t l z; q)te(z; q)) =

(1t)e(rzq; q) e(t l qz; q)te(qz; q) t l (e(z; q)t l e(t l z; q) e(t l z; q)te(z; q) + te(z; q)t l e(z; q) e(t l z; q)te(z; q)

Taking the coefficient of z n (q;q)n in both sides of the equality t fdes(π) q fmaj(π) z neg(π) , involving the so-called flag descent statistic fdes, fdes(π) := 2 des(π)χ(π 1 < 0), on signed multipermutations (or words).

Corollary 3.3.3 (Chow-Gessel [START_REF] Chow | On the descent numbers and major indices for the hyperoctahedral group[END_REF]).

π∈P ± ({1,2,...,n}) t des(π) q fmaj(π) We will prove Theorem 3.3.2 by using the technique of barred permutations inspired by Gessel and Stanley [START_REF] Gessel | Stirling Polynomials[END_REF]. For each π = π 1 •••π m ∈ P ± (m) we call the space between π i and π i+1 the i-th space of π for 0 <i<m . We also call the space before π 1 and the space after π m the 0-th space and the m-th space of π, respectively. If i ∈ DES(π), then we call the i-th space a descent space. Definition 3.1 (Barred permutations). A barred permutation on π ∈ P ± (m) is obtained by inserting one or more vertical bars into some spaces of π such that there is at least one bar in every descent space of π. For example, || 1| 22|1|| is a barred permutation on π = 12 21 but 1| 22|1|| is not, since 0 ∈ DES(π) and there is no bar in the 0-th space (i.e. before π 1 = 1).

Proof of Theorem 3.3.2. Let B(m) be the set of barred permutations on P ± (m). Let σ ∈ B(m) be a barred permutation on π with b i bars in the i-th space of π. We define the weight wt(σ) to be wt(σ):=t b i q neg(π)+2 ib i z neg(π) .

Chapter 4

Jacobi-Stirling polynomials and P -Partitions

Introduction and results

Let ℓ α,β [y](t) be the Jacobi differential operator:

It is well known [14, p. 143] that the Jacobi polynomial y = P (α,β) n (t) is an eigenvector for the differential operator ℓ α,β corresponding to n(n + α + β +1), i.e., ℓ α,β [y](t)=n(n + α + β +1)y(t).

For each n ∈ N,theJacobi-Stirling numbers JS(n, k; z) of the second kind appeared originally as the coefficients in the expansion of the n-th composite power of ℓ α,β (see [START_REF] Everitt | Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression[END_REF]):

where z = α + β +1, and can also be defined as the connection coefficients in

The Jacobi-Stirling numbers js(n, k; z) of the first kind are defined by

for all 0 ≤ i ≤ k.

Proof. We proceed by induction on k ≥ 0.F o rk =0 , we have p 0,0 (n)=1since

From (4.1) we deduce the recurrence relation:

(4.10)

Substituting in (4.6) yields

It follows from (4.7) that for 0

Applying the induction hypothesis, we see that p k,i (n)p k,i (n -1) is a polynomial in n of degree at most

Hence p k,i (n) is a polynomial in n of degree at most 3k -i. It remains to determine the coefficient of n 3k-i ,s a yβ k,i . Extracting the coefficient of n 3k-i-1 in (4.12) we have

Now it is fairly easy to see that (4.9) satisfies the above recurrence.

Proposition 4.2.2. For al l k ≥ 1 and 0 ≤ i ≤ k, we have

1) insert k in a descent slot and then kk in a non-descent slot. In this case, there are a ′ k-1,i,j-1 ways to choose the initial permutation, j -1 ways to insert k,a n d3kij -1 ways to insert kk.

2) insert k in a non-descent slot and then kk in a descent slot. In this case, there are a ′ k-1,i,j-1 ways to choose the initial permutation, 3kij -1 ways to insert k,a n dj ways to insert kk.

(iii) Choose a Jacobi-Stirling permutation in JSP k-1,i,j-2 , insert k and then kk in one of the non-descent slots. In this case, there are a ′ k-1,i,j-2 ways to choose the initial permutation, 3kij ways to insert k,a n d3kij ways to insert kk.

(iv) Choose a Jacobi-Stirling permutation in JSP k-1,i-1,j and insert kk in one of the descent slots. There are a ′ k-1,i-1,j ways to choose the initial permutation, and j ways to insert kk.

(v) Choose a Jacobi-Stirling permutation in JSP k-1,i-1,j-1 and insert kk in one of the non-descent slots. There are a ′ k-1,i-1,j-1 ways to choose the initial permutation, and 3kij ways to insert kk. Summarizing all the above five cases, we obtain

Therefore, the numbers a ′ k,i,j satisfy the same recurrence and initial conditions as the a k,i,j , so they are equal.

Legendre-Stirling posets

Let P k be the poset shown in Figure 4.4, called the Legendre-Stirling poset.T h e order polynomial of P k is given by 

In other words, we have the following theorem. Here 1=1means that neither 1 1 nor 11 counts as a descent. Thus, the Legendre-Stirling permutation 122 21 1 has one descent at position 4, while as a Jacobi-Stirling permutation, it has three descents, at positions 3, 4 and 5.