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Résumé

En 2010 Chung, Graham et Knuth ont démontré une remarquable identité symétri-
que sur les nombres eulériens et posé le problème de trouver un q-analogue de leur
identité. En utilisant les q-polynômes eulériens introduits par Shareshian–Wachs,
nous avons pu obtenir une telle q-identité. La preuve bijective que nous avons
imaginée, nous a permis ensuite de démontrer d’autres q-identités symétriques, en
utilisant un modèle combinatoire dû à Foata–Han. Entre temps, Hyatt a introduit
les fonctions quasisymétriques eulériennes colorées afin d’étudier la distribution
conjointe du nombre d’excédances et de l’indice majeur sur les permutations colo-
rées. En appliquant le Decrease Value Theorem de Foata–Han, nous donnons
d’abord une nouvelle preuve de sa formule principale sur la fonction génératrice
des fonctions quasisymétriques eulériennes colorées, puis généralisons certaines
identités eulériennes symétriques, en les exprimant comme des identités sur les
fonctions quasisymétriques eulériennes colorées.

D’autre part, en prolongeant les travaux récents de Savage–Visontai et Beck–
Braun, nous considérons plusieurs q-polynômes de descente des mots signés. Leurs
fonctions génératrices factorielles et multivariées sont explicitement calculées. Par
ailleurs, nous montrons que certains de ces polynômes n’ont que des zéros réels.

Enfin, nous étudions la fonction génératrice diagonale des nombres de Jacobi–
Stirling de deuxième espèce, en généralisant des résultats analogues pour les nom-
bres de Stirling et Legendre–Stirling de deuxième espèce. Il s’avère que cette
fonction génératrice est une série rationnelle dont le numérateur est un polynôme
à coefficients entiers positifs. En appliquant la théorie des P -partitions de Stanley
nous trouvons des interprétations combinatoires de ces coefficients.

Mots-clés: statistiques de permutations, descentes, excédances, l’indice ma-
jeur, inversions, inversions admissibles, q-polynômes eulériens, factorisation de cro-
chet, problèmes bijectifs, fonctions quasi-symétriques, fonctions quasi-symétriques
eulériennes, P -partitions, multipermutations, nombres de Jacobi–Stirling, permu-
tations de Stirling.
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Abstract

In 2010 Chung–Graham–Knuth proved an interesting symmetric identity for the
Eulerian numbers and asked for a q-analog version. Using the q-Eulerian polyno-
mials introduced by Shareshian–Wachs we find such a q-identity. Moreover, we
provide a bijective proof that we further generalize to prove other symmetric q-
identities using a combinatorial model due to Foata–Han. Meanwhile, Hyatt has
introduced the colored Eulerian quasisymmetric functions to study the joint distri-
bution of the excedance number and major index on colored permutations. Using
the Decrease Value Theorem of Foata–Han we give a new proof of his main gen-
erating function formula for the colored Eulerian quasisymmetric functions. Fur-
thermore, certain symmetric q-Eulerian identities are generalized and expressed as
identities involving the colored Eulerian quasisymmetric functions. Next, gener-
alizing the recent works of Savage–Visontai and Beck–Braun we investigate some
q-descent polynomials of general signed multipermutations. The factorial and mul-
tivariate generating functions for these q-descent polynomials are obtained and the
real rootedness results of some of these polynomials are given. Finally, we study
the diagonal generating function of the Jacobi–Stirling numbers of the second kind
by generalizing the analogous results for the Stirling and Legendre–Stirling num-
bers of the second kind. It turns out that the generating function is a rational
function, whose numerator is a polynomial with nonnegative integral coefficients.
By applying Stanley’s theory of P -partitions we find combinatorial interpretations
of those coefficients.

Keywords: permutation statistics, descents, excedances, major index, in-
versions, admissible inversions, q-Eulerian polynomials, bijective problems, hook
factorization, quasisymmetric functions, Eulerian quasisymmetric functions, P -
partitions, multipermutations, Jacobi–Stirling numbers, Stirling permutations
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Introduction

The classical Eulerian polynomials An(t) are defined by

∑

k≥0

(k + 1)ntk =
An(t)

(1− t)n+1
(1)

for integers n ≥ 0. These polynomials were introduced by Euler [25] himself in
his desire to find a closed expression for

∑
1≤i≤k i

n(−1)i. The Eulerian polyno-
mials arise in a variety of contexts in mathematics and have many remarkable
properties [32, 41]. For instance, one can derive easily from (1) the exponential
generating function for the Eulerian polynomials

∑

n≥0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
. (2)

A permutation of [n] := {1, 2, . . . , n} is a bijection π : [n] → [n]. Let Sn denote
the set of all permutations of [n]. A statistic on Sn is a mapping st : Sn →
N. The study of statistics on permutations is a recurrent topic in Enumerative
Combinatorics and its history can at least trace back to MacMahon [60, 61].

For each permutation π ∈ Sn the descent number of π, denoted des(π), is the
number of positions i, 1 ≤ i ≤ n− 1, such that π(i) > π(i+ 1). A classical result
in Enumerative Combinatorics, discovered two centuries after Euler [70], is that
the generating function for the descent statistic on permutations is the Eulerian
polynomial:

An(t) =
∑

π∈Sn

tdes(π) =
n−1∑

k=0

An,kt
k. (3)

So we usually call each statistic equidistributed with the descent number on permu-
tations a Eulerian statistic. Another classical Eulerian statistic on permutations
is the so-called excedance number. The bijection [30] which proves the equidistri-
bution of the decent number and the excedance number on permutations (or more
generally on words) is known as Foata’s first fundamental transformation.
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The set Sn has a group structure by composition. The resulting group is called
the symmetric group, or the type A Coxeter group of order n. One important con-
cept in Coxeter groups is the length of its elements. A well-known result in the
theory of Coxeter groups is that, in the type A case, the length of an element
equals its inversion number [6]. Recall that the inversion number of a permutation
π ∈ Sn is the number of pairs (i, j) such that 1 ≤ i < j ≤ n and π(i) > π(j). The
sum of all the descent positions of a permutation is called the major index of this
permutation, which was introduced by MacMahon [61]. It is known [62] that the
inversion number and the major index are identically distributed on permutations,
and in memory of MacMahon, every statistic equidistributed with the inversion
number and the major index is called a Mahonian statistic. There is also a bijec-
tion [31], usually called Foata’s second fundamental transformation, that proves
the equidistribution of the inversion number and the major index on permutations
(or more generally on words).

The above four classical permutation statistics give rise to four kinds of q-
Eulerian polynomials:

Ades,maj
n (t, q) :=

∑

π∈Sn

tdes(π)qmaj(π),

Ades,inv
n (t, q) :=

∑

π∈Sn

tdes(π)qinv(π),

Aexc,inv
n (t, q) :=

∑

π∈Sn

texc(π)qinv(π),

Aexc,maj
n (t, q) :=

∑

π∈Sn

texc(π)qmaj(π),

where exc(π), inv(π) and maj(π) denote the excedance number, the inversion num-
ber and the major index of π, respectively. The generating functions for the first
three q-Eulerian polynomials were derived by Carlitz [11], Stanley [83] and Clarke–
Steingrímsson–Zeng [21], respectively. For a long time, the fourth q-Eulerian poly-
nomial had not been exploited until in 2007, Shareshian and Wachs [74, 76] in-
troduced some Eulerian quasisymmetric functions and proved an elegant q-analog
of (2) for the exponential generating function for the polynomials Aexc,maj

n (t, q).
It is worth noting that Foata and Han [34] studied various statistics on words
and calculated the quadruple distribution of the number of fixed points, descents
and excedances, together with the major index over permutations, in the form
of a factorial generating formula, which implies the result of Shareshian–Wachs.
After that, the q-Eulerian polynomials Aexc,maj

n (t, q) have attracted the attention
of several authors [19, 35, 34, 33, 39, 51, 52, 75, 77]. In particular, Foata and
Han [34, 35] derived another combinatorial interpretation of Aexc,maj

n (t, q) by mak-
ing use of Gessel’s hook factorization [45] of permutations.
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In Chapter 1 we continue along this line of research. The coefficients An,k

appearing in (3) are traditionally called Eulerian numbers [70]. In 2010 Chung–
Graham–Knuth [20] found the following symmetric identity involving both Eule-
rian numbers and binomial coefficients

∑

k≥1

(
a+ b

k

)
Ak,a−1 =

∑

k≥1

(
a+ b

k

)
Ak,b−1 for a, b ≥ 1 (4)

and asked for a q-analog version of it. We find such a q-analog which involves
Aexc,maj

n (t, q) and the q-binomial coefficients, and thereby answer their question.
Chung and Graham [19] further proved some similar symmetric q-Eulerian iden-
tities and asked for bijective proofs. Using Foata and Han’s combinatorial model,
we provide bijective proofs for all the above symmetric q-Eulerian identities. We
also study some restricted q-Eulerian polynomials and obtain a generalized sym-
metric identity for them. Moreover, a new recurrence formula for the q-Eulerian
polynomials Aexc,maj

n (t, q) is found.
Let l be a fixed positive integer and let Cl ≀Sn be the wreath product of the

cyclic group Cl of order l by the symmetric group Sn of order n. The group Cl ≀Sn

is also known as the colored permutation group. In the case l = 1 (resp. l = 2)
the wreath product Cl ≀ Sn is the symmetric group Sn (resp. the group of the
signed permutations or the Type B Coxeter group Bn). Various statistics on col-
ored permutation groups have been studied in the literature and several q-analogs
of colored Eulerian polynomials have been proposed [18, 28, 29, 36, 37, 39, 52, 85].
In particular, Foata and Han [39] derived from their Decrease Value Theorem [33]
a factorial generating formula for the quadruple distribution of the number of fixed
points, flag descents [1, 85], flag excedances [5] and of the flag major index [1, 85]
on colored permutations. Generalizing the Eulerian quasisymmetric functions of
Shareshian and Wachs, Hyatt [52] introduced some colored Eulerian quasisym-
metric functions which enable him to calculate another quadruple distribution
involving the so-called starred descents instead of the flag descents on colored per-
mutations. The starting point of Chapter 2 is the attempt to obtain a symmetric
function generalization of (1.1) for colored permutation groups.

In Chapter 2, we show how Hyatt’s generating function formula for the fixed
point colored Eulerian quasisymmetric functions can be deduced from the Decrease
Value Theorem. Using this generating function formula, we prove two symmet-
ric function generalizations of the symmetric Eulerian identity (4) for some flag
Eulerian quasisymmetric functions, which are specialized to the flag excedance
numbers on colored permutations. Combinatorial proofs of those symmetric iden-
tities are also constructed. We also study some other properties of the flag Eulerian
quasisymmetric functions. In particular, we confirm a recent conjecture of Mon-
gelli [64] about the unimodality of the generating function for the flag excedances
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over the type B derangements. Moreover, colored versions of the hook factoriza-
tion and the admissible inversions [74, 58] of permutations are found. Finally, we
introduce a colored analog of Rawlings major index [68] for colored permutations.
We obtain an interpretation of the colored Eulerian quasisymmetric functions as a
sum of some fundamental quasisymmetric functions related to the colored Rawl-
ings major index, by applying Stanley’s P -partition theory and a decomposition
of the chromatic quasisymmetric functions due to Shareshian and Wachs [77].

The rest of this dissertation is devoted to the generalizations and extensions of
identity (1), which, by (3), can be written as

∑

k≥0

(k + 1)ntk =
1

(1− t)n+1

∑

π∈Sn

tdes(π). (5)

Carlitz [11] gave the following q-analog of (5):
∑

k≥0

([k + 1]q)
ntk =

1∏n
j=0(1− tqj)

∑

π∈Sn

tdes(π)qmaj(π), (6)

where [n]q := 1 + q + · · ·+ qn−1.
Recently, Savage and Schuster [72] studied the Ehrhart series of lecture hall

polytopes and introduced a generalization of the inversion tables called inversion
sequences as follows. For a sequence of positive integers s = (si)i≥1, let I

s

n be the
set of s-inversion sequences of length n defined as

I
(s)
n := {(e1, . . . , en) ∈ Zn : 0 ≤ ei < si for 1 ≤ i ≤ n}.

The ascent number of an s-inversion sequence e = (e1, . . . , en) ∈ I
s

n is defined to
be

asc(e) := |{0 ≤ i < n : ei/si < ei+1/si+1}|,

with the convention that e0 = 0 and s0 = 1. When s = (1, 2, 3, . . .), the set
of s-inversion sequences I

s

n is the set of inversion tables of length n. As shown
in [72, Lemma 1], the ascent numbers on inversion tables of length n has the same
distribution as the descent numbers on Sn.

In Chapter 3, motivated by a conjecture of Savage and Visontai [73] about
the equidistribution of the descent statistic on signed permutations of the multiset
{1, 1, 2, 2, . . . , n, n} and the ascent statistic on (1, 4, 3, 8, . . . , 2n − 1, 4n)-inversion
sequences, we investigate the descent polynomial over the signed permutations of
a general multiset (multipermutations). We obtain a generalization of (6) for a
q-analog of these descent polynomials and apply it to show that they have only
real roots. Two proofs of the conjecture of Savage and Visontai are provided. Fur-
thermore, multivariate generalizations of (6) that enumerate two different Euler–
Mahonian distributions on type B Coxeter groups due to Beck and Braun [7] are
generalized to signed multipermutations.
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The Stirling number [69] of the second kind S(n, k) enumerates the number of
ways to partition [n] into k non-empty subsets. Inspired by identity (5), Gessel
and Stanley [48] proved that

∑

k≥0

S(n+ k, k)tk =
1

(1− t)2n+1

∑

π∈Sn

tdes(π), (7)

where Sn is the set of permutations of {1, 1, 2, 2, · · · , n, n} such that for each i,
1 ≤ i ≤ n, the values between the two occurrences of i are larger than i. These
restricted permutations are called Stirling permutations. In the study of Spectral
theory Everitt et al. [27] introduced the Jacobi–Stirling numbers JS(n, k; z). Note
that the leading coefficient of JS(n, k; z) (viewed as a polynomial in z) is the
Stirling number S(n, k). Many recent works [3, 24, 27, 43, 63] have been devoted
to the study of Jacobi–Stirling numbers. In particular, Egge [24] has obtained a
result similar to (7) for the Legendre–Stirling numbers [26] JS(n, k; 1).

In Chapter 4, we study the descent statistic on generalized Stirling permuta-
tions of the multiset

{1, 1, 1̄, 2, 2, 2̄, . . . , n, n, n̄}

that we call Jacobi–Stirling permutations. Generalizing the Gessel–Stanley iden-
tity (7) and Egge’s result concerning the Legendre–Stirling numbers, we give a
combinatorial interpretation of some polynomials arising from the diagonal gener-
ating functions of Jacobi–Stirling numbers.
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Chapter 1

Generalized q-Eulerian polynomials

1.1 Introduction and results

For each π ∈ Sn a value i, 1 ≤ i ≤ n − 1, is an excedance (resp. descent) of π
if π(i) > i (resp. π(i) > π(i + 1)). Let exc(π) and des(π) denote the number of
excedances and descents of π, respectively. Recall that the Eulerian number An,k

counts the permutations in Sn with k descents (or k excedances), that is,

An(t) =
∑

π∈Sn

tdes(π) =
∑

π∈Sn

texc(π) =
∑

0≤k≤n−1

An,kt
k,

where An(t) is the Eulerian polynomial appearing in (3). Also, see [32, 67] for some
leisurely historical introductions to Eulerian polynomials and Eulerian numbers.
In 2010 Chung, Graham and Knuth [20] proved the following symmetric identity
involving Eulerian numbers and binomial coefficients:

∑

k≥1

(
a+ b

k

)
Ak,a−1 =

∑

k≥1

(
a+ b

k

)
Ak,b−1 (1.1)

for a, b ≥ 1. At the end of [20], the authors asked for, among other unsolved
problems, a q-analog version of (1.1).

Several q-analogs of Eulerian polynomials with combinatorial meanings have
been introduced in the literature (see [11, 21, 83, 74]). Recall that the major index,
denoted by maj(π), of a permutation π ∈ Sn is the sum of all the descents of π,
i.e., maj(π) :=

∑
π(i)>π(i+1) i. An element i ∈ [n] is a fixed point of π ∈ Sn if

π(i) = i and the number of fixed points of π is denoted by fix(π). Define the
(q, r)-Eulerian polynomials An(t, r, q) by the following extension of (2):

∑

n≥0

An(t, r, q)
zn

(q; q)n
=

(1− t)e(rz; q)

e(tz; q)− te(z; q)
, (1.2)
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where

(t; q)n :=
n−1∏

i=0

(1− tqi)

is the q-shifted factorial and e(z; q) is the following q-exponential function

e(z; q) :=
∑

n≥0

zn

(q; q)n
.

The following interpretation for An(t, r, q) was given by Shareshian and Wachs [74,
76]:

An(t, r, q) =
∑

π∈Sn

texc(π)rfix(π)q(maj− exc)π. (1.3)

These polynomials have attracted the attention of several authors (cf. [35, 34, 33,
39, 50, 52, 51, 58, 75, 77]).

Let An(t, q) = An(t, 1, q). Define the q-Eulerian numbers An,k(q) and the fixed
point q-Eulerian numbers An,k,j(q):

An(t, q) =
∑

k

An,k(q)t
k and An(t, r, q) =

∑

j,k

An,k,j(q)r
jtk.

By (1.3), we have the following interpretations

An,k(q) =
∑

π∈Sn
exc(π)=k

q(maj− exc)π and An,k,j(q) =
∑

π∈Sn
exc(π)=k
fix(π)=j

q(maj− exc)π. (1.4)

Recall that the q-binomial coefficients
[
n
k

]
q

are defined by

[
n

k

]

q

:=
(q; q)n

(q; q)n−k(q; q)k

for 0 ≤ k ≤ n, and
[
n
k

]
q
= 0 if k < 0 or k > n.

As developed in Section 1.3, we have got, and then proved the following q-
analog of (1.1) involving both the q-binomial coefficients

[
n
k

]
q

and the q-Eulerian
numbers An,k(q).

Theorem 1.1.1. For any integers a, b ≥ 1,

∑

k≥1

[
a+ b

k

]

q

Ak,a−1(q) =
∑

k≥1

[
a+ b

k

]

q

Ak,b−1(q). (1.5)
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Recently, Chung and Graham [19] derived from (1.2) the following two further
symmetric q-Eulerian identities through some analytical arguments. They also
asked for bijective proofs.

Theorem 1.1.2 (Chung–Graham). Let a, b, j be integers with a, b ≥ 1 and j ≥ 0.
Then

∑

k≥1

(−1)k
[
a+ b

k

]

q

q(
a+b−k

2 )Ak,a(q) =
∑

k≥1

(−1)k
[
a+ b

k

]

q

q(
a+b−k

2 )Ak,b(q), (1.6)

∑

k≥1

[
a+ b+ j + 1

k

]

q

A
(j)
k,a(q) =

∑

k≥1

[
a+ b+ j + 1

k

]

q

A
(j)
k,b(q). (1.7)

In this chapter we will apply another interpretation of An(t, r, q) introduced by
Foata and Han [34] to construct bijective proofs of Theorems 1.1.1 and 1.1.2.

Next, for 1 ≤ j ≤ n we define the restricted q-Eulerian polynomial B(j)
n (t, q) by

the exponential generating function:
∑

n≥j

B(j)
n (t, q)

zn−1

(q; q)n−1

=

(
Aj−1(t, q)(qz)

j−1

(q; q)j−1

)
e(tz; q)− te(tz; q)

e(tz; q)− te(z; q)
. (1.8)

and the restricted q-Eulerian number B
(j)
n,k(q) by B

(j)
n (t, q) =

∑
k B

(j)
n,k(q)t

k.

Remark 1.1. Originally, the restricted Eulerian number B
(j)
n,k in [19] was defined to

be the number of permutations π ∈ Sn with des(π) = k and π(j) = n. According
to Lemma 1.5.1, B(j)

n,k(q) is really a q-analogue of B(j)
n,k. This justifies the names

“restricted q-Eulerian number” and “restricted q-Eulerian polynomial”.

Those q-analogues enable us to obtain the following generalized symmetric
identity for the restricted q-Eulerian polynomials.

Theorem 1.1.3. Let a, b, j be integers with a, b ≥ 1 and j ≥ 2. Then
∑

k≥1

[
a+ b+ 1

k − 1

]

q

B
(j)
k,a(q) =

∑

k≥1

[
a+ b+ 1

k − 1

]

q

B
(j)
k,b(q). (1.9)

When q = 1, the above identity was proved by Chung and Graham [19], who
also asked for a bijective proof. We shall give a bijective proof and an analyt-
ical proof of Theorem 1.1.3, the latter leading to a new recurrence formula for
An(t, r, q).

Theorem 1.1.4. The (q, r)-Eulerian polynomials satisfy the following recurrence
formula:

An+1(t, r, q) = rAn(t, r, q) + t
n−1∑

j=0

[
n

j

]

q

qjAj(t, r, q)An−j(t, q) (1.10)

for n ≥ 1 and initial conditions A0(t, r, q) = 1, A1(t, r, q) = r.
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1.2 Hook factorization of permutations

A word w = w1w2 . . . wm on N is called a hook if w1 > w2 and either m = 2, or
m ≥ 3 and w2 < w3 < . . . < wm. As shown in [45], each permutation π ∈ Sn

admits a unique factorization, called its hook factorization, pτ1τ2...τr, where p
is an increasing word and each factor τ1, τ2, . . . , τk is a hook. To derive the
hook factorization of a permutation, one can start from the right and factor out
each hook step by step. Denote by inv(w) the numbers of inversions of a word
w = w1w2 . . . wm, i.e., the number of pairs (wi, wj) such that i < j and wi > wj.
Foata and Han [34] introduced the statistics

lec(π) :=
∑

1≤i≤k

inv(τi) and pix(π) := length(p).

For example, the hook factorization of π = 1 3 4 14 12 2 5 11 15 8 6 7 13 9 10 is

1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10.

Hence p = 13 4 14, τ1 = 12 2 5 11 15, τ2 = 86 7, τ3 = 13 9 10, pix(π) = 4 and

lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Let A0,A1, ...,Ar be a series of sets on N. Define

inv(A0,A1, ...,Ar) := |{(k, j) : k ∈ Ai, l ∈ Aj, k > l and i < j}|.

We usually write cont(A) for the set of all letters in a word A, so that

(inv− lec)π = inv(cont(p), cont(τ1), . . . , cont(τr))

if pτ1τ2...τr is the hook factorization of π.
From Foata and Han [34, Theorem 1.4], we have the following combinatorial

interpretations of the (q, r)-Eulerian polynomials

An(t, r, q) =
∑

π∈Sn

tlec(π)rpix(π)q(inv− lec)π. (1.11)

Therefore

An,k(q) =
∑

π∈Sn
lec(π)=k

q(inv− lec)π and An,k,j(q) =
∑

π∈Sn
lec(π)=k
pix(π)=j

q(inv− lec)π. (1.12)

It is known [80, Proposition 1.3.17] that the q-binomial coefficient has the inter-
pretation [

n

k

]

q

=
∑

(A,B)

qinv(A,B), (1.13)
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where the sum is over all ordered partitions (A,B) of [n] such that |A| = k. We will
give bijective proofs of Theorem 1.1.1 and 1.1.2 using the interpretations in (1.12)
and (1.13).

Remark 1.2. In [34], a bijection on Sn that carries the triplet (fix, exc,maj) to
(pix, lec, inv) was constructed without being specified. This bijection consists of
two steps. The first step (see [34, Section 6]) uses the word analogue of Kim–
Zeng decomposition [55] and an updated version of Gessel–Reutenauer standard-
ization [47] to construct a bijection on Sn that transforms the triplet (fix, exc,maj)
to (pix, lec, imaj), where imaj(π) := maj(π−1) for each permutation π. The second
step (see [34, Section 7]) uses Foata’s second fundamental transformation (see [59])
to carry the triplet (pix, lec, imaj) to (pix, lec, inv). In view of this bijection, one
can construct bijective proofs of Theorems 1.1.1 and 1.1.2 using the original inter-
pretations in (1.4), through our bijective proofs.

To construct our bijective proofs, we need two elementary transformations. Let
τ be a hook with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where x1 < . . . < xm.
Define

d(τ) =

{
xmx1 · · · xm−1, if k = 1,

xm−k+1x1 . . . xm−kxm−k+2 . . . xm, if 2 ≤ k ≤ m− 1.
(1.14)

Clearly, d(τ) is the unique hook with cont(d(τ)) = cont(τ) satisfying

inv(d(τ)) = m− k = |cont(τ)| − inv(τ).

Let τ be a hook or an increasing word with inv(τ) = k and cont(τ) = {x1, . . . , xm},
where x1 < . . . < xm. Define

d′(τ) = xm−kx1 . . . xm−k−1xm−k+1 . . . xm. (1.15)

Clearly, d′(τ) is the unique hook (when k < m − 1) or increasing word (when
k = m− 1) with cont(d(τ)) = cont(τ) satisfying

inv(d(τ)) = m− k − 1 = |cont(τ)| − 1− inv(τ).

1.3 Proofs of Theorem 1.1.1 and 1.1.2

A generating function proof of Theorem 1.1.1. Setting r = 1 in (1.2) and
subtracting both sides by 1 we obtain

∑

n≥1

An(t, q)
zn

(q; q)n
=

e(z; q)− e(tz; q)

e(tz; q)− te(z; q)
. (1.16)
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Replacing t by t−1 and z by tz yields

tnAn(t
−1, q) = tAn(t, q).

Thus, we have the symmetry property

An,k(q) = An,n−k−1(q). (1.17)

Multiplying both sides of (1.16) by e(tz; q)− te(z; q) we get

(
e(tz; q)− te(z; q)

)∑

n≥0

An(t, q)
zn

(q; q)n
=
∑

k

(1− tk)zk

(q; q)k
. (1.18)

Now,

e(tz; q)
∑

n≥1

An(t, q)
zn

(q; q)n
=
∑

k

(tz)k

(q; q)k

∑

n,i

An,i(q)t
i zn

(q; q)n

=
∑

k,n,i

[
n+ k
k

]

q

An,i(q)t
i+k zn+k

(q; q)n+k

=
∑

k,n,i

[
n
k

]

q

An−k,i−k(q)t
i zn

(q; q)n
,

and

te(z; q)
∑

n≥1

An(t, q)
zn

(q; q)n
= t

∑

k

zk

(q; q)k

∑

n,i

An,i(q)t
i zn

(q; q)n

=
∑

k,n,i

[
n+ k
k

]

q

An,i(q)t
i+1 zn+k

(q; q)n+k

=
∑

k,n,i

[
n
k

]

q

An−k,i−1(q)t
i zn

(q; q)n
.

Substituting the last two expressions in (1.18) and identifying the coefficients of
tizn/(q; q)n on both sides yields

∑

k

[
n
k

]

q

An−k,i−k(q)−
∑

k

[
n
k

]

q

An−k,i−1(q) =

⎧
⎪⎨
⎪⎩

1, if i = 0 �= n,

−1, if i = n �= 0,

0, otherwise.

By setting i = a, n = a+ b, and using (1.17), we obtain (1.5).
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In the following, we will construct bijective proofs of Theorem 1.1.1 and 1.1.2 by
making use of the two involutions d and d′ defined in (1.14) and (1.15), respectively.
As a warm-up, we first prove the symmetry property (1.17) by constructing an
explicit involution on permutations.

Lemma 1.3.1. There is an involution π �→ σ on Sn satisfying

lec(π) = n− 1− lec(σ), and (inv− lec)π = (inv− lec)σ.

Proof. Let π = pτ1τ2 . . . τr be the hook factorization of π ∈ Sn.

• If p �= ∅, let σ = d′(p)d(τ1)d(τ2), . . . , d(τr).

• If p = ∅, let σ = d′(τ1)d(τ2)d(τ3) . . . d(τr).

Since d and d′ are two involutions, it is routine to check that such a mapping is
an involution with the required properties.

For each fixed positive integer n, a two-pix-permutation of [n] is a sequence of
words

v = (p1, τ1, τ2, . . . , τr−1, τr, p2) (1.19)

satisfying the following conditions:

(C1) p1 and p2 are two increasing words, possibly empty;

(C2) τ1, . . . , τr are hooks for some positive integer r;

(C3) The concatenation p1τ1τ2 . . . τr−1τrp2 of all components of v is a permutation
of [n].

We also extend the two statistics to the two-pix-permutations by

lec(v) = inv(τ1) + inv(τ2) + · · ·+ inv(τr),

inv(v) = inv(p1τ1τ2 . . . τr−1τrp2).

It follows that

(inv− lec)v = inv(cont(p1), cont(τ1), cont(τ2), . . . , cont(τr), cont(p2)). (1.20)

Lemma 1.3.2. The generating function for all two-pix-permutations v of n such
that lec(v) = s by the statistic inv− lec is

∑

k≥0

[
n
k

]

q

Ak,s(q). (1.21)
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Proof. By the hook factorization, the two-pix-permutation v in (1.19) is in bi-
jection with the pair (σ, p2), where σ = p1τ1τ2 . . . τr−1τr is a permutation on
[n] \ cont(p2) and p2 is an increasing word. Thus, by (1.12), (1.13), and (1.20), the
generating function for the two-pix-permutations v of [n] such that lec(v) = s and
|p2| = n− k with respect to the weight q(inv− lec)(v) is [ nk ]q Ak,s(q).

Lemma 1.3.3. There is a bijection v �→ u on the set of all two-pix-permutations
of [n] satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u.

Proof. We give an explicit construction of the bijection. Let v be a two-pix-
permutation and write

v = (τ0, τ1, τ2, . . . , τr−1, τr, τr+1),

where τ0 = p1 and τr+1 = p2. If τi (respectively τj) is the leftmost (respectively
rightmost) non-empty word (clearly i = 0, 1 and j = r, r + 1), we can write v in
the following compact way by removing the empty words at the beginning or at
the end:

v = (τi, τi+1, . . . , τj−1, τj). (1.22)

It is easy to see that the above procedure is reversible by adding some necessary
empty words at the two ends of the compact form (1.22). Now we work with the
compact form. Recall that

(inv− lec)v = inv(cont(τi), cont(τi+1), . . . , cont(τj−1), cont(τj)) (1.23)

and lec(v) =
∑j

k=i inv(τk).
If i = j, then only one word τi is in the sequence v. We define u = (∅, σi, ∅),

where σi is the unique word (hook) with content [n] such that inv(σi) = n − 2 −
inv(τi).

If j > i, we define the two-pix-permutation u by

u = (d′(τi), d(τi+1), d(τi+2), . . . , d(τj−1), d
′(τj)),

where d and d′ are two involutions defined in (1.14) and (1.15).
Since inv(d′(τi)) = |cont(τi)| − 1− inv(τi), inv(d′(τj)) = |cont(τj)| − 1− inv(τj)

and inv(d′(τk)) = |cont(τk)| − inv(τk) for k �= i, j, we have

lec(u) =
∑

|cont(τk)| − 2− lec(v) = n− 2− lec(v).

Finally, it follows from (1.23) that (inv− lec)u = (inv− lec)v.
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We give an example to illustrate the bijection. Let v = (27, 6389, 514, ∅). Then
v is a two-pix-permutation of [9] and inv(v) = 19, lec(v) = 3, (inv− lec)v = 16.
The compact form is (27, 6389, 514), so that

u = (d′(27), d(6389), d′(514) = (72, 9368, 145).

Since the first word 72 is not increasing, we obtain the standard form by adding the
empty word at the beginning, so that u = (∅, 72, 9368, 145). Hence inv(u) = 20,
lec(u) = 4, and (inv− lec)u = 16.

Bijective proof of Theorem 1.1.1. Combining Lemmas 1.3.1, 1.3.2 and 1.3.3,
we obtain a bijective proof of Theorem 1.1.1.

Bijective proof of (1.6). Let Sn(k) = {π ∈ Sn : pix(π) = k} and Dn = Sn(0).
We first note that the left-hand side of (1.6) has the following interpretation:

∑

π∈Dn
lecπ=a

q(inv− lec)π =
∑

k≥1

(−1)n−k

[
n

k

]

q

q(
n−k
2 )Ak,a(q). (1.24)

This interpretation follows immediately from [76, Corollary 4.4] and (1.11). One
can also give a direct combinatorial proof of (1.24). Actually, by (1.12) and (1.13)
we have

An,a(q) =
∑

π∈Sn
lecπ=a

q(inv− lec)π

=
∑

k

∑

π∈Sn(k)
lecπ=a

qinv(cont(p),cont(τ1...τr))+inv(cont(τ1),cont(τ2),...,cont(τr))

=
∑

k

∑

A⊆[n]
|A|=k

qinv(A,[n]\A)
∑

π∈Dn−k
lecπ=a

q(inv− lec)π

=
∑

k

[
n

k

]

q

∑

π∈Dk
lecπ=a

q(inv− lec)π.

Applying Gaussian inversion (or q-binomial inversion) to the above identity we
obtain (1.24).

Lemma 1.3.4. For 0 ≤ j ≤ n, there is an involution v �→ u on Sn(j) satisfying

lec(u) = n− j − lec(v) and (inv− lec)u = (inv− lec)v.

Proof. Let v = pτ1τ2 . . . τr be the hook factorization of v ∈ Sn(j), where p is
an increasing word and each factor τ1, τ2, . . . , τr is a hook. We define u to be
pd(τ1) . . . d(τr), where d is defined in (1.14). It is easy to check that this mapping
is an involution on Sn(j) with the desired properties.
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Now, by (1.24), the symmetric identity (1.6) is equivalent to the j = 0 case of
the above Lemma.

By (1.12), Lemma 1.3.4 gives a simple bijective proof of the following known [19,
76] symmetry property of the fixed point q-Eulerian numbers.

Corollary 1.3.5. For n, k, j ≥ 0,

An,k,j(q) = A
(j)
n,n−j−k(q). (1.25)

Bijective proof of (1.7). Let Wn(j) denote the set of all two-pix-permutations
of [n] with |p1| = j.

Lemma 1.3.6. Let a, j be fixed nonnegative integers. Then,

∑

v∈Wn(j)
lecv=a

q(inv− lec)v =
∑

k≥1

[
n

k

]

q

A
(j)
k,a(q). (1.26)

Proof. By the hook factorization, the two-pix-permutation in (1.19) is in bijection
with the pair (σ, p2), where σ = p1τ1τ2 . . . τr−1τr is a permutation on [n] \ cont(p2)
and p2 is an increasing word. Thus, by (1.12), (1.13) and (1.20), the generating
function for all two-pix-permutations v of [n] with |p1| = j such that lec(v) = a

and |p2| = n− k with respect to the weight q(inv− lec)v is
[

n
n−k

]
q
A

(j)
k,a(q).

Lemma 1.3.7. Let j be a fixed nonnegative integer. Then, there is an involution
v �→ u on Wn(j) satisfying

lec(v) = n− j − 1− lec(u), and (inv− lec)v = (inv− lec)u.

Proof. We give an explicit construction of the bijection using the involutions d and
d′ defined in (1.14) and (1.15). Let v = (p1, τ1, τ2, . . . , τr−1, τr, p2) be a two-pix-
permutation of [n] with |p1| = j. As previously, we write v in compact from by
removing the possible empty word at the end:

v = (p1, τ1, . . . , τi−1, τi),

where i = r or r + 1. Define

u = (p1, d(τ1), d(τ2), . . . , d(τi−1), d
′(τi)).

As d and d′ are involutions, this mapping is an involution on Wn(j).
Since we have lec(d(τk)) = |cont(τk)|−lec(τk) for 1 ≤ k ≤ i−1 and lec(d′(τi)) =

|cont(τi)| − 1, it follows that

lec(u) =
i−1∑

k=1

|cont(τk)|+ |cont(τi)| − 1− lec(v) = n− j − 1− lec(v).
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Finally, it follows from (1.20) that (inv− lec)u = (inv− lec)v. This finishes the
proof of the lemma.

Combining Lemmas 1.3.6 and 1.3.7 we obtain a bijective proof of (1.7).

1.4 A new recurrence formula for (q, r)-Eulerian

polynomials

The Eulerian differential operator δx is defined by

δx(f(x)) :=
f(x)− f(qx)

x
,

for any f(x) ∈ Q[q][[x]] in the ring of formal power series in x over Q[q] (instead
of the traditional (f(x) − f(qx))/((1 − q)x), see [2, 15]). We need the following
elementary properties of δx.

Lemma 1.4.1. For any f(x), g(x) ∈ Q[q][[x]], we have

δx(f(x)g(x)) = f(qx)δ(g(x)) + δ(f(x))g(x)

and

δx

(
1

f(x)

)
=

−δx(f(x))

f(qx)f(x)
(f(x) �= 0).

Proof of Theorem 1.1.4. It is not difficult to verify that, for any variable a

δz(e(az; q)) = ae(az; q). (1.27)

Now, applying δz to both sides of (1.2) and using the above property and Lemma 1.4.1,
we obtain
∑

n≥0

An+1(t, r, q)
zn

(q; q)n

=δz

(
(1− t)e(rz; q)

e(tz; q)− te(z; q)

)

=δz((1− t)e(rz; q))(e(tz; q)− te(z; q))−1 + δz
(
(e(tz; q)− te(z; q))−1

)
(1− t)e(rzq; q)

=
r(1− t)e(rz; q)

e(tz; q)− te(z; q)
+

(1− t)e(rzq; q)(te(z; q)− te(tz; q))

(e(tqz; q)− te(qz; q))(e(tz; q)− te(z; q))

=r
∑

n≥0

An(t, r, q)
zn

(q; q)n
+ t

(
∑

n≥0

An(t, r, q)
(qz)n

(q; q)n

)(
∑

n≥1

An(t, q)
zn

(q; q)n

)
.

Taking the coefficient of zn

(q;q)n
in both sides of the above equality, we get (1.10).
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Remark 1.3. A different recurrence formula for An(t, r, q) was obtained in [76,
Corollary 4.3]. Eq. (1.10) is similar to two recurrence formulas in the literature:
one for the (inv, des)-q-Eulerian polynomials in [66, Corollary 2.22] (see also [15])
and the other one for the (maj, des)-q-Eulerian polynomials in [66, Corollary 3.6].

We shall give another interpretation of An(t, r, q) as follows. Let π ∈ Sn.
Recall that an inversion of π is a pair (π(i), π(j)) such that 1 ≤ i < j ≤ n and
π(i) > π(j). An admissible inversion of π is an inversion (π(i), π(j)) that satisfies
either

• 1 < i and π(i− 1) < π(i) or

• there is some l such that i < l < j and π(i) < π(l).

We write ai(π) the number of admissible inversions of π. Define the statistic
aid(π) := ai(π) + des(π). For example, if π = 42153 then there are 5 inversions,
but only (4, 3) and (5, 3) are admissible. So inv(π) = 5, ai(π) = 2 and aid(π) =
2 + 3 = 5. The statistics “ ai ” and “aid” were first studied by Shareshian and
Wachs [74] in the context of Poset Topology. Here we follow the definitions in [58].
The curious result that the pairs (aid, des) and (maj, exc) are equidistributed on
Sn was proved in [58] using techniques from Poset Topology.

Let W be the set of all the words on N. We define a new statistic, denoted
by “rix", on W recursively. Let W = w1w2 · · ·wn be a word in W and wi be the
rightmost maximum element of W . We define rix(W ) by (with convention that
rix(∅) = 0)

rix(W ) :=

⎧
⎪⎨
⎪⎩

0, if i = 1 �= n,

1 + rix(w1 · · ·wn−1), if i = n,

rix(wi+1wi+2 · · ·wn), if 1 < i < n.

For example, we have rix(1 5 2 4 3 3 5) = 1 + rix(1 5 2 4 3 3) = 1 + rix(2 4 3 3) =
1+ rix(3 3) = 2+ rix(3) = 3. As every permutation can be viewed as a word on N,
this statistic is well-defined on permutations.

We write S
(j)
n the set of permutations π ∈ Sn with π(j) = n. For n ≥ 1

and 1 ≤ j ≤ n, we define Bn(t, r, q) :=
∑

π∈Sn
tdes(π)rrix(π)qai(π) and its restricted

version by

B(j)
n (t, r, q) :=

∑

π∈S
(j)
n

tdes(π)rrix(π)qai(π). (1.28)

We should note here that the restricted q-Eulerian polynomial B
(j)
n (t, q) is not

equal to B
(j)
n (t, 1, q) but to some modification of it, as will be shown in the next

section.
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Theorem 1.4.2. We have the following interpretation for (q, r)-Eulerian polyno-
mials:

An(t, r, q) =
∑

π∈Sn

tdes(π)rrix(π)qai(π). (1.29)

Proof. We will show that Bn(t, r, q) satisfies the same recurrence formula and initial
condition as An(t, r, q). For n ≥ 1 it is clear from the definition of Bn(t, r, q) that

Bn+1(t, r, q) =
∑

1≤j≤n+1

B
(j)
n+1(t, r, q). (1.30)

It is easy to see that

B
(1)
n+1(t, r, q) = tBn(t, 1, q) and B

(n+1)
n+1 (t, r, q) = rBn(t, r, q). (1.31)

We then consider B
(j)
n+1(t, r, q) for the case of 1 < j < n+ 1.

For a set X let
(
X
m

)
denote the m-element subsets of X and SX the set of

permutations of X. Also let W(n, j) be the set of all triples (W,π1, π2) such that
W ∈

(
[n]
j

)
and π1 ∈ SW , π2 ∈ S[n]\W . Clearly, the mapping π �→ (W,π1, π2)

defined by

• W = {π(i) : 1 ≤ i ≤ j − 1},

• π1 = π(1)π(2) · · · π(j − 1) and π2 = π(j + 1)π(j + 2) · · · π(n)

is a bijection between S
(j)
n and W(n− 1, j − 1) and satisfies

des(π) = des(π1) + des(π2) + 1, rix(π) = rix(π2)

and
ai(π) = ai(π1) + ai(π2) + inv(W, [n− 1] \W ) + n− j.

Thus, for 1 < j < n+ 1 we have

B
(j)
n+1(t, r, q) =

∑

π∈S
(j)
n+1

tdes(π)rrix(π)qai(π)

=tqn+1−j
∑

(W,π1,π2)∈W(n,j−1)

qinv(W,[n]\W )qai(π1)tdes(π1)rrix(π2)qai(π2)tdes(π2)

=tqn+1−j
∑

W∈( [n]
j−1)

qinv(W,[n]\W )
∑

π∈SW

qai(π1)tdes(π1)
∑

π2∈S[n]\W

rrix(π2)qai(π2)tdes(π2)

=tqn+1−j

[
n

j − 1

]

q

Bj−1(t, 1, q)Bn+1−j(t, r, q), (1.32)
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where we apply (1.13) to the last equality. Substituting (1.31) and (1.32) into (1.30)
we obtain

Bn+1(t, r, q) = rBn(t, r, q) + tBn(t, 1, q) + t
n−1∑

j=1

[
n

j

]

q

qjBj(t, r, q)Bn−j(t, 1, q).

By Theorem 1.1.4, Bn(t, r, q) and An(t, r, q) satisfy the same recurrence formula
and initial condition, thus Bn(t, r, q) = An(t, r, q). This finishes the proof of the
theorem.

Corollary 1.4.3. The three triples (rix, des, aid), (fix, exc,maj) and (pix, lec, inv)
are equidistributed on Sn.

Remark 1.4. At the Permutation Patterns 2012 conference, A. Burstein [10] gave
a direct bijection on Sn that transforms the triple (rix, des, aid) to (pix, lec, inv).
The new statistic “rix” was introduced independently therein under the name “aix”.
Actually, the definitions of both are slightly different, but they are the same up to
an easy transformation. It would be very interesting to find a similar bijective proof
of the equidistribution of (rix, des, aid) and (fix, exc,maj). See also Remark 1.2.

1.5 Two proofs of Theorem 1.1.3

1.5.1 An interpretation of B(j)
n,k(q) and a proof of Theorem 1.1.3

It follows from (1.2) and (1.8) that B
(1)
1,0(q) = 1 and B

(1)
n,k(q) = An−1,k−1(q) for

k ≥ 1. For j ≥ 2, we have the following interpretation for B
(j)
n,k(q).

Lemma 1.5.1. For 2 ≤ j ≤ n, B(j)
n,k(q) =

∑
π∈S

(j)
n

des(π)=k

qai(π)+2j−n−1.

Proof. Let j ≥ 2. By means of the recurrence relation (1.32) one can compute
without difficulty that the factorial generating function

∑

n≥j

q2j−n−1B
(j)
n (t, 1, q)zn−1

(q; q)n−1

is exactly the right side of (1.8) using (1.2) and (1.29).

Lemma 1.5.2. For 1 < j < n, we have

B
(j)
n,k(q) = B

(j)
n,n−1−k(q).
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Proof. We first construct an involution f : π �→ π′ on Sn satisfying

ai(π) = ai(π′) and des(π) = n− 1− des(π′). (1.33)

For n = 1 define f(id) = id. For n ≥ 2 suppose that π = π1 · · · πn is a permutation
of {π1, · · · , πn} and πj is the maximum element in {π1, · · · , πn}. We construct f
recursively as follows

f(π) =

⎧
⎪⎨
⎪⎩

f(π2π3 · · · πn) π1, if j = 1,

πn f(π1π2 · · · πn−1), if j = n,

f(π1π2 · · · πj−1) πj f(πj+1πj+2 · · · πn), otherwise.

For example, if π = 32 5 7 6 4 1, then

f(π) = f(3 2 5) 7 f(6 4 1) = 5 f(3 2)7 f(4 1) 6 = 5 2 3 7 1 4 6.

Clearly, ai(π) = 7 = ai(π′) and des(π) = 4 = 7 − 1 − des(π′). It is easy to check
that f is an involution. Moreover, we can show that f satisfies (1.33) by induction
on n.

For each π = π1 · · · πj−1 nπj+1 · · · πn in S
(j)
n we then define

g(π) = f(π1 · · · πj−1)n f(πj+1 · · · πn).

As f is an involution, g is an involution on S
(j)
n . It follows from (1.33) that

ai(g(π)) = ai(π) and des(π) = n − 1 − des(g(π)), which completes the proof in
view of Lemma 1.5.1.

Remark 1.5. A bijective proof of Lemma 1.5.2 when q = 1 was given in [19].
But their bijection does not preserve the admissible inversions. Supposing that
π = π1 · · · πn is a permutation of {π1, · · · , πn} and πj is the maximum element in
{π1, · · · , πn}, we modify f introduced above and make use of f ′ defined as follows:

f ′(π) =

⎧
⎪⎨
⎪⎩

f ′(π2π3 · · · πn) π1, if j = 1,

π, if j = n,

f ′(π1π2 · · · πj−1) πj f
′(πj+1πj+2 · · · πn), otherwise.

Then, f ′ provides another bijective proof of Corollary 1.3.5 using (des, rix, ai).

Now we are in position to give a generating function proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. We start with the generating function given in (1.8).
Multiplying both sides by e(tz; q)− te(z; q), we obtain

∑

n,k

B
(j)
n,k(q)t

k zn−1

(q; q)n−1

(e(tz; q)− te(z; q)) =
(qz)j−1Aj−1(t, q)

(q; q)j−1

(e(tz; q)− te(tz; q)).
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Expanding the exponential functions, we have

∑

n,k,i

B
(j)
n,k(q)

tk+izn+i−1

(q; q)i(q; q)n−1

−
∑

n,k,i

B
(j)
n,k(q)

tk+1zn+i−1

(q; q)i(q; q)n−1

=
(qz)j−1Aj−1(t, q)

(q; q)j−1

∑

n≥0

(1− t)tnzn

(q; q)n
.

Identifying the coefficient of tlzm−1 gives

∑

k

B
(j)
m+k−l,k(q)

(q; q)l−k(q; q)m+k−l−1

−
∑

i

B
(j)
m−i,l−1(q)

(q; q)i(q; q)m−i−1

=
qj−1 (Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))

(q; q)j−1(q; q)m−j

.

Multiplying both sides by (q; q)m−1, we get

∑

k

B
(j)
m+k−l,k(q)

[
m− 1

l − k

]

q

−
∑

i

B
(j)
m−i,l−1(q)

[
m− 1

i

]

q

=(Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))q
j−1

[
m− 1

j − 1

]

q

.

Changing the variables of the two summations on the left-hand side gives

∑

k

B
(j)
k,k+l−m(q)

[
m− 1

k − 1

]

q

−
∑

k

B
(j)
k,l−1(q)

[
m− 1

k − 1

]

q

= (Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))q
j−1

[
m− 1

j − 1

]

q

. (1.34)

Applying the symmetry property in Lemma 1.5.2 to the first summation on the
left-hand side of (1.34) we obtain

∑

k

B
(j)
k,k+l−m(q)

[
m− 1

k − 1

]

q

= B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]

q

+
∑

k �=j

B
(j)
k,m−1−l(q)

[
m− 1

k − 1

]

q

. (1.35)

It follows from Lemma 1.5.1 and Theorem 1.4.2 that

B
(n)
n,k(q) =

∑

π∈S
(n)
n

des(π)=k

qai(π)+n−1 = qn−1An−1,k(q).
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Using the symmetry property of An,k(q), that is, An,k(q) = An,n−1−k(q), and the
above property, the right-hand side of (1.34) can be treated as follows:

(Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))q
j−1

[
m− 1

j − 1

]

q

=B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]

q

− Aj−1,m−1−l(q)q
j−1

[
m− 1

j − 1

]

q

=B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]

q

−B
(j)
j,m−1−l(q)

[
m− 1

j − 1

]

q

. (1.36)

Now, substituting (1.35), (1.36) into (1.34) we obtain

∑

k

B
(j)
k,m−1−l(q)

[
m− 1

k − 1

]

q

=
∑

k

B
(j)
k,l−1(q)

[
m− 1

k − 1

]

q

,

which becomes (1.9) after setting m = a+ b+ 2 and l − 1 = b.

Remark 1.6. The only case left out in Theorem 1.1.3 is the case j = 1. How-
ever, as B

(1)
n,k(q) = An−1,k−1(q), the corresponding symmetric identity for this case

is (1.5).

1.5.2 A bijective proof of Theorem 1.1.3

Let
S̄

(j)
n := {π ∈ Sn : π(j + 1) = 1} for 1 ≤ j < n

and
S̄

(n)
n := {π′

�1 : π′ ∈ S[n]\{1}}.

The “�” in π = π1π2 · · · πn−1�1 ∈ S̄
(n)
n means that the n-th position of π is empty

and the hook factorization of π is defined to be pτ1 · · · τr�1, where pτ1 · · · τr is the
hook factorization of π1 · · · πn−1 and “�1” is viewed as a hook. We also define the
statistics

lec(π1π2 · · · πn−1�1) =
r∑

i=1

lec(τi), inv(π1π2 · · · πn−1�1) = inv(π1π2 · · · πn−11).

For example, we have S̄
(3)
3 = {32�1, 23�1} with lec(32�1) = 1, lec(23�1) = 0,

inv(32�1) = 3, and inv(23�1) = 2.

Lemma 1.5.3. For 1 ≤ j ≤ n, B(j)
n,k(q) =

∑
π∈S̄

(j)
n

lec(π)=k

q(inv− lec)π.
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Proof. Let B̄
(j)
n (t, q) :=

∑
π∈S̄

(j)
n

q(inv− lec)πtlec π. We recall that, to derive the hook
factorization of a permutation, one can start from the right and factor out each
hook step by step. Therefore, the hook factorization of π = π1 · · · πj−1πj1πj+2 · · · πn

in π ∈ S̄
(j)
n is pτ1 · · · τsτ ′1 · · · τ

′
r, where pτ1 · · · τs and τ ′1 · · · τ

′
r are hook factorizations

of π1 · · · πj−1 and πj1πj+2 · · · πn, respectively. When n > j, from the structure of
hook factorization we see that

lec(πj1πj+2 · · · πn) = 1 + lec(πjπj+2 · · · πn)

and
(inv− lec)(πj1πj+2 · · · πn) = (inv− lec)(πjπj+2 · · · πn).

Thus, by (1.13) we have

B̄(j)
n (t, q) = Aj−1(t, q)q

j−1

[
n− 1

j − 1

]

q

tAn−j(t, q) (1.37)

for n > j. Clearly, B̄(j)
j (t, q) = Aj−1(t, q)q

j−1. So, by (1.2) the exponential gen-

erating function
∑

n≥j B̄
(j)
n (t, q)zn−1/(q; q)n−1 is the right-hand side of (1.8). This

finishes the proof of the lemma.

Remark 1.7. This interpretation can also be deduced directly from the interpre-
tation in Lemma 1.5.1 using Burstein’s bijection [10].

For X ⊂ [n] with |X| = m and 1 ∈ X, we can define S̄
(j)
X for 1 ≤ j ≤ m

similarly as S̄
(j)
m like this:

S̄
(j)
X := {π ∈ SX : π(j+1) = 1} for 1 ≤ j < m and S̄

(m)
X := {π′

�1 : π′ ∈ SX\{1}}.

For 1 ≤ j ≤ n we define a j-restricted two-pix-permutation of [n] to be a pair
v = (π, p2) satisfying the following two properties:

• p2 (possibly empty) is an increasing word on [n];

• π ∈ S̄
(j)
X with X = [n] \ cont(p2).

Similarly, we define lec(v) = lec(π) and inv(v) = inv(π) + inv(cont(π), cont(p2)).
Let W

(j)
n denote the set of all j-restricted two-pix-permutations of [n].

Lemma 1.5.4. Let a, j be positive integers. Then,

∑

v∈W
(j)
n

lecv=a

q(inv− lec)v =
∑

k≥1

[
n− 1

k − 1

]

q

B
(j)
k,a(q). (1.38)
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Proof. It follows from Lemma 1.5.3 and some similar arguments as in the proof of
Lemma 1.3.6.

Lemma 1.5.5. Let 2 ≤ j ≤ n. Then, there is an involution v �→ u on W
(j)
n

satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u. (1.39)

Proof. Suppose v = (π, p2) ∈ W
(j)
n and π = τ0τ1 · · · τr is the hook factorization of

π such that τ0 is a hook or an increasing word and τi (1 ≤ i ≤ r) are hooks. We
also assume that p2 = x1 · · · xl if p2 is not empty. Note that 1 /∈ cont(τ0) since
j �= 1. We will use the involutions d and d′ defined in (1.14) and (1.15). There are
several cases to be considered:

(i) τr = �1. Then,

u =

{
(d′(τ0)d(τ1) · · · d(τr−1)xl1x1x2 · · · xl−1, ∅), if p2 �= ∅;

(d′(τ0)d(τ1) · · · d(τr−1)�1, ∅), otherwise.

(ii) τr = ys1y1 · · · ys−1. Then,

u =

⎧
⎪⎨
⎪⎩

(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d
′(p2), ∅), if p2 �= ∅;

(d′(τ0)d(τ1) · · · d(τr−1)�1, y1 · · · ys), if p2 = ∅ and ys > ys−1;

(d′(τ0)d(τ1) · · · d(τr−1)d
′(τr), ∅), otherwise.

(iii) 1 /∈ cont(τr). Then,

u =

⎧
⎪⎨
⎪⎩

(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d
′(p2), ∅), if p2 �= ∅;

(d′(τ0)d(τ1) · · · d(τr−1), d
′(τr)), if p2 = ∅ and lec(τr) = |τr| − 1;

(d′(τ0)d(τ1) · · · d(τr−1)d
′(τr), ∅), otherwise.

First, one can check that u ∈ W
(j)
n . Second, as d, d′ are involutions, the above

mapping is an involution. Finally, this involution satisfies (1.39) in all cases. This
completes the proof of the lemma.

Combining Lemmas 1.5.4 and 1.5.5 we obtain a bijective proof of Theorem 1.1.3.
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1.6 Concluding remarks

For a fixed k ≥ 1, recall that the Rawlings major index rmajk(π) of π ∈ Sn can
be defined as follows:

DES≥k(π) := {i ∈ [n− 1] : πi − πi+1 ≥ k},

inv<k(π) := |{(i, j) ∈ [n]× [n] : i < j, and 0 < πi − πj < k}|,

maj≥k(π) :=
∑

i∈DES≥k(π)

i,

rmajk(π) := inv<k(π) + maj≥k(π).

It is clear that rmaj1(π) = maj(π) and rmajn(π) = inv(π) for π ∈ Sn. Rawl-
ings [68] showed that rmajk(π) is a Mahonian statistic for each k ≥ 1. Shareshian
and Wachs [77] studied some chromatic quasisymmetric functions and proved the
following equidistribution.

Theorem 1.6.1 ([77, Theorem 4.19]). The two pairs (exc,maj) and (ides, rmaj2)
are equidistributed on Sn, where ides(π) := des(π−1).

In view of the above result and Corollary 1.4.3, the following problem is inter-
esting. This problem was also posed by Burstein [10] at the Permutation Patterns
2012 conference.

Problem 1.1. Can we describe a statistic “ st ” on Sn so that the two triples

(fix, exc,maj) and (st, ides, rmaj2)

are equidistributed on Sn?
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Chapter 2

Colored Eulerian quasisymmetric

functions

2.1 Introduction and preliminaries

Let l be a fixed positive integer throughout this chapter. Consider the wreath
product Cl ≀ Sn of the cyclic group Cl of order l by the symmetric group Sn of
order n. The group Cl ≀Sn is also known as the colored permutation group. In case
l = 1, 2, Cl ≀Sn are respectively the symmetric group Sn and the Type B Coxeter
group Bn. Various statistics on colored permutation groups have been studied in
the literature and several kinds of q-analog of colored Eulerian polynomials are
proposed [18, 28, 29, 37, 39, 52, 85]. It is worth noting that Foata and Han [34]
studied various statistics on words and calculated the quadruple distribution of the
number of fixed points, descents and excedances, together with the major index
over permutations, in the form of a factorial generating function formula, which
implies (1.2). They further extended their results to colored permutations [39].
Recently, in order to generalize (1.2) to colored permutation groups, Hyatt [52]
introduced the colored Eulerian quasisymmetric functions, which generalize the
Shareshian–Wachs Eulerian quasisymmetric functions [76]. The starting point for
this chapter is the attempt to obtain a symmetric function generalization of (1.1)
for colored permutation groups.

In [52], Hyatt introduced the cv-cycle type colored Eulerian quasisymmetric
functions Qλ̌,k, where λ̌ is a particular cv-cycle type. They are defined by first as-
sociating a fundamental quasisymmetric function with each colored permutation
and then summing these fundamental quasisymmetric functions over colored per-
mutations with cv-cycle type λ̌ and k excedances. The precise definition of Qλ̌,k

is given in Section 2.2.1. It was announced in [52] that Qλ̌,k is in fact a symmetric
function. This follows from the colored ornament interpretation of Qλ̌,k and the
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plethysm inversion formula [87, Section 2.4]. But more importantly, we will give
a combinatorial proof of this fact, which is needed in the bijective proof of the
generalized symmetric identity in Theorem 2.4.12.

Another interesting Eulerian quasisymmetric function is the fixed point colored
Eulerian quasisymmetric function Qn,k,�α,�β, for �α ∈ Nl and �β ∈ Nl−1, which can
be defined as a certain sum of Qλ̌,k. The main result in [52] is a generating
function formula (see Theorem 2.2.6) for Qn,k,�α,�β, which when applying the stable
principal specialization would yield an extension of (1.2) for the joint distribution
of excedance number and major index on colored permutations. This generating
function formula was obtained through three main steps:

(1) a colored analog of the Gessel–Reutenauer bijection [47] is used to give the
colored ornaments characterization of Qλ̌,k;

(2) the Lyndon decomposition is used to give the colored banners characterization
of Qλ̌,k;

(3) the generating function formula is derived by establishing a recurrence for-
mula using the interpretation of Qλ̌,k as colored banners.

The recurrence formula in step (3) was established through a complicated gen-
eralization of a bijection of Shareshian–Wachs [76], so it would be reasonable to
expect a simpler approach. In Section 2.3, we will show how step (3) can be
deduced directly from the Decrease Value Theorem developed by Foata–Han [33].

Section 2.4 deals with the symmetric function generalizations of (1.1) for col-
ored permutation groups. We modify the fixed point Eulerian quasisymmetric
functions to some Qn,k,j that we call flag Eulerian quasisymmetric functions, which
are also a kind of generalization of the Eulerian quasisymmetric functions and
would specialize to the flag excedance numbers studied in [5, 39]. The generating
function formula for Qn,k,j follows easily from Hyatt’s generating function formula
for Qn,k,�α,�β. By making use of this generating function formula, we study the sym-
metry and unimodality of the flag Eulerian quasisymmetric functions and prove
two symmetric function generalizations of (1.1), which involve both the complete
homogeneous symmetric functions hn and Qn,k,j. We will construct bijective proofs
of those two generalized symmetric identities, one of them leading to a new in-
teresting approach to step 3 in the proof of [76, Theorem 1.2]. As one benefit
of the study of the flag Eulerian quasisymmetric functions, we prove symmetry
and unimodality of some colored q-Eulerian polynomials related to the number
of fixed points, the flag excedances and the flag major index [1, 39] on colored
permutations. Moreover, it motives us to find colored versions of Gessel’s hook
factorizations (introduced in Section 1.2) and the Linusson–Shareshian–Wachs ad-
missible inversions (introduced in Section 1.4) for colored permutations.
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Recently, Shareshian and Wachs [77] introduced the chromatic quasisymmetric
functions of graphs and proved a surprising result that the two pairs (exc,maj)
and (ides, rmaj2) are equidistributed on Sn; see Theorem 1.6.1. The main purpose
of Section 2.5 is to extend this result from permutations to colored permutations.
More precisely, let Qn,k,�β be the colored Eulerian quasisymmetric function (the
fixed points is not taken into account) defined by Qn,k,�β :=

∑
�α Qn,k,�α,�β. We intro-

duce a colored analog of Rawlings major index [68] for colored permutations and
prove a new interpretation of Qn,k,�β as a sum of some fundamental quasisymmetric
functions related with these colored Rawlings major index. This is established by
applying the P -partition theory and a decomposition of the chromatic quasisym-
metric functions due to Shareshian and Wachs [77].

2.1.1 Quasisymmetric functions

We collect here the definitions and some facts about Gessel’s quasisymmetric func-
tions that will be used in the rest of this chapter; a good reference is [81, Chapter 7].

The quasisymmetric functions were originally introduced by Gessel [44] in the
combinatorial interpretation of inner products of Skew Schur Functions. Let f(x)
be a formal power series of bounded degree in the variables x := {x1, x2, . . .} with
rational coefficients. The function f(x) is called a symmetric function if for any
permutation w of the positive integers P we have

f(xw(1), xw(2), . . .) = f(x1, x2, . . .);

it is called a quasisymmetric function if for any a1, . . . , ak ∈ P we have

[xa1
i1
· · · xak

ik
]f = [xa1

j1
· · · xak

jk
]f

whenever i1 < · · · < ik and j1 < · · · < jk. Here, [xa1
i1
· · · xak

ik
]f means the coefficient

of xa1
i1
· · · xak

ik
in f . Clearly, every symmetric function is a quasisymmetric function,

but not conversely. For instance, the series
∑

i<j x
2
ixj is quasisymmetric but not

symmetric.
Given a subset S of [n − 1], define the fundamental quasisymmetric function

Fn,S by

Fn,S = Fn,S(x) :=
∑

i1≥···≥in≥1
j∈S⇒ij>ij+1

xi1 · · · xin . (2.1)

If S = ∅, then Fn,S is the complete homogeneous symmetric function hn and if
S = [n − 1], then Fn,S is the elementary symmetric function en. The set of all
quasisymmetric functions forms a ring and has the fundamental quasisymmetric
functions as a basis. Define ω to be the involution on the ring of quasisymmetric



42 2. Colored Eulerian quasisymmetric functions

functions that maps Fn,S to Fn,[n−1]\S, which extends the involution on the ring of
symmetric functions that takes hn to en.

The stable principal specialization ps is the ring homomorphism from the ring
of symmetric functions to the ring of formal power series in the variable q, defined
by

ps(xi) = qi−1.

The following property of ps is known [47].

Lemma 2.1.1 ([47, Lemma 5.2]). For any n ≥ 1 and S ⊆ [n− 1] we have

ps(Fn,S) =
q
∑

i∈S i

(q; q)n
. (2.2)

In particular,

ps(hn) =
1

(q; q)n
and ps(en) =

qn(n−1)/2

(q; q)n
.

Proof. To any sequence (i1, . . . , in) such that i1 ≥ · · · ≥ in ≥ 0 and j ∈ S ⇒ ij >
ij+1 we can associate a sequence (i′1, . . . , i

′
n) with i′k = ik − |{j ∈ S : j ≥ k}| for

k = 1, 2, . . . , n. It is clear that
∑

j ij =
∑

j i
′
j +

∑
j∈S j. Applying ps to (2.1), we

have

ps(Fn,S) =
∑

i1≥···≥in≥0
j∈S⇒ij>ij+1

qi1+i2+···+in

= q
∑

j∈S j
∑

i′1≥···≥i′n≥0

qi
′
1+···+i′n ,

which is equivalent to (2.2).

2.2 Hyatt’s colored Eulerian quasisymmetric func-

tions

2.2.1 Statistics on colored permutation groups

We recall the definition of the colored Eulerian quasisymmetric functions intro-
duced in [52]. Consider the following set of l-colored integers from 1 to n

[n]l :=
{
10, 11, . . . , 1l−1, 20, 21, . . . , 2l−1, . . . , n0, n1, . . . , nl−1

}
.

If π is a word over [n]l, we use πi and ǫi ∈ {0, 1, . . . , l − 1} to denote the i-th
letter of π and the color of the i-th letter of π, respectively. We let |πi| denote the
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positive integer obtained from πi by removing the superscript. If π is a word of
length m over [n]l, we denote by |π| the word

|π| := |π1||π2| · · · |πm|.

In one-line notation the colored permutation group Cl ≀ Sn can be viewed as the
set of the words π over [n]l such that |π| ∈ Sn.

Now, the descent number, des(π), the excedance number, exc(π), and the major
index, maj(π), of a colored permutation π ∈ Cl ≀Sn are defined as follows:

DES(π) := {j ∈ [n− 1] : πj > πj+1},

des(π) := |DES(π)|, maj(π) :=
∑

j∈DES(π)

j,

EXC(π) := {j ∈ [n] : πj > j0}, exc(π) := |EXC(π)|,

where we use the following color order

E :=
{
1l−1 < · · · < nl−1 < 1l−2 < · · · < nl−2 < · · · < 10 < · · · < n0

}
.

Also, for 0 ≤ k ≤ l−1, the k-th color fixed point number fixk(π) and the k-th color
number colk(π) are defined by

fixk(π) := |{j ∈ [n] : πj = jk}| (2.3)

and
colk(π) := |{j ∈ [n] : ǫj = k}|. (2.4)

The fixed point vector �fix(π) ∈ Nl and the color vector �col(π) ∈ Nl−1 are then
defined as

�fix(π) := (fix0(π), fix1(π), . . . , fixl−1(π)), �col(π) := (col1(π), . . . , coll−1(π))

respectively. For example, if π = 52 21 40 32 12 60 ∈ C3 ≀S6, then DES(π) = {3, 4},
des(π) = 2, EXC(π) = {3}, exc(π) = 1, maj(π) = 7, �fix(π) = (1, 1, 0) and �col(π) =
(1, 3).

A colored permutation π can also be written in cycle form such that jǫj follows
iǫi means that πi = jǫj . Continuing with the previous example, we can write it in
cycle form as

π = (12, 52)(21)(32, 40)(60). (2.5)

For each vector �β = (β1, . . . , βl−1) ∈ Nl−1 let |�β| := β1 + · · · + βl−1. Given a
partition λ = (λ1 ≥ · · · ≥ λi) of n with λi ≥ 1, a cv-cycle type is defined to be a
multiset of pairs

λ̌ = {(λ1, �β1), . . . , (λi, �βi)}, (2.6)
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where �β1, . . . , �βi are vectors from Nl−1 with the property that |�βj| ≤ λj for j =
1, . . . , i. Now, if γ is a cyclic colored permutation, written as a cycle (c1, . . . , cℓ(γ))

of length ℓ(γ), define the cv-cycle type of γ to be the singleton λ̌ := {ℓ(γ), �γ}, so
that the inequality | �col(γ)| ≤ ℓ(γ) holds. Next, if a permutation π from Cl ≀Sn is
the product of the disjoint cycles π = γ1 · · · γi, written in non-increasing order of
their lengths, define the cv-cycle type of π to be the multiset of pairs

λ̌(π) := {(ℓ(γ1), �col(γ1), . . . , (ℓ(γi), �col(γi))}.

With the above convention the sequence (ℓ(γ1), . . . , ℓ(γi)) is a partition λ = (λ1 ≥

· · · ≥ λi) of n. Moreover, | �col(γj)| ≤ λj = ℓ(γj) for j = 1, . . . , i and �col(π) =
�col(γ1)+ · · ·+ �col(γi) by using component-wise addition. Thus, π̌ is a well-defined
cv-cycle type. For example, �col(12, 52) = (0, 2), �col(32, 40) = (0, 1), �col(21) =

(1, 0), �col(60) = (0, 0), so that the cv-cycle type of the permutation π in (2.5)
reads

λ̌(π) = {(2, (0, 2)), (2, (0, 1)), (1, (1, 0)), (1, (0, 0))}.

Next, we define a set value statistic DEX on Cl ≀ Sn that will be used in the
definition of colored Eulerian quasisymmetric functions. Let

A := {1̃0 < 2̃0 < · · · < ñ0} < E ,

where E has the same order as above, but now the letters with a tilde are less than
the letters in E . Given a colored permutation π ∈ Cl ≀Sn, construct a word π̃ of
length n over A as follows:

if i ∈ EXC(π), then replace πi by π̃i, otherwise leave πi alone.

For example, if π = 42 60 20 50 32 12 ∈ C3 ≀ S6, then π̃ = 42 6̃0 20 5̃0 32 12. Then
DEX(π) is defined by

DEX(π) := DES(π̃).

Using the example above we have

DEX(42 60 20 50 32 12) = DES(42 6̃0 20 5̃0 32 12) = {1, 3, 5}.

We are now ready to give the definition of the main object of this chapter.

Definition 2.1 ([52, Definition 2.1]). For any particular cv-cycle type λ̌ define the
cv-cycle type colored Eulerian quasisymmetric functions Qλ̌,k by

Qλ̌,k :=
∑

π

Fn,DEX(π),
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summed over π ∈ Cl ≀Sn with λ̌(π) = λ̌ and exc(π) = k. Given �α ∈ Nl, �β ∈ Nl−1,
the fixed point colored Eulerian quasisymmetric functions are then defined as

Qn,k,�α,�β =
∑

π

Fn,DEX(π) (2.7)

summed over all π ∈ Cl ≀Sn such that exc(π) = k, �fix(π) = �α and �col(π) = �β.

Lemma 2.2.1 ([52, Lemma 2.2]). For every π ∈ Cl ≀Sn we have
∑

i∈DEX(π)

i = maj(π)− exc(π).

The following specialization of the fixed point colored Eulerian quasisymmetric
functions follows from the above lemma and Eq. (2.2).

Lemma 2.2.2. For all n, k, �α and �β,

ps(Qn,k,�α,�β) = (q; q)−1
n

∑

π

q(maj− exc)π (2.8)

summed over all π ∈ Cl ≀Sn such that exc(π) = k, �fix(π) = �α and �col(π) = �β.

2.2.2 Colored ornaments

We will use the colored ornament interpretation in [52] to prove combinatorially
that Qλ̌,k is a symmetric function.

Let B be the infinite ordered alphabet given by

B := {10 < 11 < · · · < 1l−1 < 10 < 20 < 21 < · · · < 2l−1 < 20 < 30 < 31 < · · · }.
(2.9)

A letter of the form um from B is said to be m-colored, and each letter u0 is also
said to be 0-colored. If w is a word over B, we define the color vector �col(w) ∈ Nl−1

of w to be
�col(w) := (col1(w), col2(w), . . . , coll−1(w)),

where colm(w) is the number of m-colored letters in w for m = 1, . . . , l − 1. The
absolute value of a letter is the positive integer obtained by removing any colors
or bars, so |um| = |u0| = u. The weight of a letter um or u0 is xu.

We consider the circular word over B. If w is a word on B, we denote (w) the
circular word obtained by placing the letters of w around a circle in a clockwise
direction. A circular word (w) is said to be primitive if the word w can not be
written as w = w′w′ · · ·w′ where w′ is some proper subword of w. For example,
(10, 21, 10, 21) is primitive but (10, 21, 10, 21) is not because 10211021 = w′w′ with
w′ = 1021.
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Definition 2.2 ([52, Definition 3.1]). A colored necklace is a circular primitive
word (w) over the alphabet B such that

(1) Every barred letter is followed by a letter of lesser or equal absolute value.

(2) Every 0-colored unbarred letter is followed by a letter of greater or equal
absolute value.

(3) Words of length one may not consist of a single barred letter.

A colored ornament is a multiset of colored necklaces.

The weight wt(R) of a ornament R is the product of the weights of the letters
of R. Similar to the cv-cycle type of a colored permutation, the cv-cycle type λ̌(R)
of a colored ornament R is the multiset

λ̌(R) = {(λ1, �β1), . . . , (λi, �βi)},

where each pair (λj, �βj) corresponds to precisely one colored necklace in the orna-
ment R with length λj and color vector �βj. For example, if l = 3 and

R = (21, 30, 10, 12, 21, 50, 30)(21, 22)(60, 70)(20)(31),

then
λ̌(R) = {(7, (2, 1)), (2, (1, 1)), (2, (0, 0)), (1, (0, 0)), (1, (1, 0))}.

For a cv-cycle type λ̌ and a nonnegative integer k let R(λ̌, k) be the set of all
colored ornaments of cv-cycle type λ̌ and exactly k barred letters. Using a colored
analog of the Gessel–Reutenauer bijection [47], Hyatt [52, Corollary 3.3] proved
the following colored ornament interpretation of Qλ̌,k.

Theorem 2.2.3 (Hyatt’s Colored ornament interpretation).

Qλ̌,k =
∑

R∈R(λ̌,k)

wt(R).

Theorem 2.2.4. The cv-cycle type Eulerian quasisymmetric function Qλ̌,k is a
symmetric function.

Proof. We will extend the bijective poof of [76, Theorem 5.8] involving ornaments
to the colored ornaments. For each j ∈ P we will construct a bijection ψ between
colored necklaces that exchanges the number of occurrences of the value j and j+1
in a colored necklace, but preserves the number of occurrences of all other values,
the total number of bars and the color vector. Since such a ψ can be extended
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to colored ornaments by applying ψ to each colored necklace, the results will then
follow from Theorem 2.2.3.

Case 1: The necklace R contains only the letters with values j and j + 1.
Without loss of generality, we assume that j = 1. First replace all 1’s with 2’s
and all 2’s with 1’s, leaving the bars and colors in their original positions. Now
the problem is that each 0-colored 1 that is followed by a 2 has a bar but each
0-colored 2 that is followed by a 1 lacks a bar. We call a 1 that is followed by a 2
a rising 1 and a 2 that is followed by a 1 a falling 2. Since the number of rising 1
equals the number of falling 2 and they appear alternately, we can switch the color
of each rising 1 with the color of its closest (in clockwise direction) falling 2. If, in
addition, the rising 1 has a bar, then we also move the bar to its closest falling 2,
thereby obtaining a colored necklace R′ with the same number of bars and the same
color vector as R, but with the number of 1’s and 2’s exchanged. Let ψ(R) = R′.
Clearly, ψ is reversible. For example if R = (22 20 11 10 10 20 23 20 21 10 10 20 12 10 10)
then we get (12 10 21 20 20 10 13 10 11 20 20 10 22 20 20) before the colors and bars are
adjusted. After the colors and bars are adjusted, we have

ψ(R) = (12 10 21 20 20 10 13 10 10 20 21 10 22 20 20).

Case 2: The necklace R has letters with values j and j + 1, and other letters
which we will call intruders. The intruders enable us to form linear segments of R
consisting only of letters with value j or (j + 1). To obtain such a linear segment
start with a letter of value j or j + 1 that follows an intruder and read the letters
of R in a clockwise direction until another intruder is encountered. For example if

R = (50 31 30 42 40 30 31 30 32 62 60 30 30 31 40 20 43 40) (2.10)

and j = 3, then the segments are 31 30 42 40 30 31 30 32, 30 30 31 40 and 43 40.
There are two types of segments, even segments and odd segments. An even

(odd) segment contains an even (odd) number of switches, where a switch is a
letter of value j followed by one of value j + 1 (call a rising j) or a letter of value
j + 1 followed by one of value j (call a falling j + 1). We treat the even and odd
segments separately.

Subcase 2.1: Even segments. In an even segment, we replace all j’s with
(j + 1)’s and all (j + 1)’s with j’s. Again, this may produce problems on rising j
or falling j + 1. So we switch the color of the i-th rising j with the color of the
i-th falling j + 1 and move the bar (if it really has) from the i-th rising j to the
i-th falling j + 1 to obtain a good segment, where rising j’s and falling (j + 1)’s
are counted from left to right. This preserves the number of bars and color vector,
and exchanges the number of j’s and (j + 1)’s. For example, the even segment
31 30 42 40 30 31 30 32 gets replaced by 41 40 32 30 40 41 40 42. After the bars and colors
are adjusted we obtain 41 40 32 30 40 41 40 42.
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Subcase 2.2: Odd segments. An odd segment either starts with a j and ends
with a j + 1, or vice versa. Both cases are handled similarly. So we suppose we
have an odd segment of the form

jm1(j + 1)n1jm2(j + 1)n2 · · · jmr(j + 1)nr ,

where each mi, ni > 0 and the bars and colors have been suppressed. The number
of switches is 2r − 1. We replace it with the odd segment

jn1(j + 1)m1jn2(j + 1)m2 · · · jnr(j + 1)mr ,

and put bars and colors in their original positions. Again, we may have created
problems on rising j’s (but not on falling (j + 1)’s); so we need to adjust bars
and colors around. Note that the positions of the rising j’s are in the set {N1 +
n1, N2+n2, N3+n3, . . . , Nr +nr}, where Ni =

∑i−1
t=1(nt+mt). Now we switch the

color in position Ni +ni with the color in position Ni +mi and move the bar (if it
really has) to position Ni +mi, thereby obtain a good segment. For example, the
odd segment 30 30 31 40 gets replaced by 30 40 41 40 before the bars and colors are
adjusted. After the bars and colors are adjusted we have 31 40 40 40.

Let ψ(R) be the colored necklace obtained by replacing all the segments in the
way described above. For example if R is the colored necklace given in (2.10) then

ψ(R) = (50 41 40 32 30 40 41 40 42 62 60 31 40 40 40 20 33 30).

It is rountine to check that ψ is reversible in all cases and thus is a bijection of
colored necklaces. This completes the proof of the theorem.

2.2.3 Colored banners

We shall first give a brief review of Hyatt’s colored banner interpretation [52] for
Qλ̌,k and then present a slightly different version of his interpretation that will be
used in the next section.

Definition 2.3 ([52, Definition 4.2]). A colored banner is a word B = B(1)B(2) · · ·
over the alphabet B such that

(1) if B(i) is barred then |B(i)| ≥ |B(i+ 1)|,

(2) if B(i) is 0-colored and unbarred, then |B(i)| ≤ |B(i + 1)| or i equals the
length of B,

(3) the last letter of B is unbarred.
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Recall that a Lyndon word over an ordered alphabet is a word that is strictly
lexicographically larger than all its circular rearrangements. It is a result of Lyn-
don (cf. [59, Theorem 5.1.5]) that every word has a unique factorization into a
lexicographically weakly increasing sequence of Lyndon words, called Lyndon fac-
torization. We say that a word of length n has Lyndon type λ (where λ is a
partition of n) if the parts of λ are equal to the lengths of the factors in the
Lyndon factorization.

We make use of the Lyndon factorization in our colored banners study. The
cv-cycle type of a colored banner B is defined to be the multiset

λ̌(B) =
{
(λ1, �β1), ..., (λk, �βk)

}
,

where B has Lyndon type λ, and the corresponding word of length λi in the Lyndon
factorization has color vector �βi. The weight wt(B) of a banner is defined to be
the product of the weights of all letters in B. For example, if l = 3 and

B = 20 22 21 31 50 30 21 30 10 12 21 70 60,

then the Lyndon factorization of B is

B = (20)(22, 21)(31)(50, 30, 21, 30, 10, 12, 21)(70, 60)

and
λ̌(B) = {(7, (2, 1)), (2, (1, 1)), (2, (0, 0)), (1, (0, 0)), (1, (1, 0))}.

Let K(λ̌, k) be the set of all colored banners with k barred letters whose cv-cycle
type (with respect to the order of B in (2.9)) is λ̌.

Theorem 2.2.5 (New colored banner interpretation). There is a weight-preserving
bijection from R(λ̌, k) to K(λ̌, k). Consequently,

Qλ̌,k =
∑

B∈K(λ̌,k)

wt(B).

Proof. The proof applies Lyndon factorization to the colored banners and is iden-
tical to the proof of [76, Theorem 3.6].

Remark 2.1. Consider the following order <B on the alphabet B:

11 <B · · · <B 1l−1 <B 21 <B · · · <B 2l−1 <B · · · <B n1 <B · · · <B nl−1 <B

<B 10 <B 10 <B 20 <B 20 <B 30 <B 30 <B · · ·n0 <B n0.

Hyatt [52, Theorem 4.3] applied the Lyndon factorization to the colored banners
with the above order <B on B to give a different colored banner interpretation
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of Qλ̌,k, which we should call the original colored banner interpretation. Our new
colored banner interpretation stated here is closer to the word interpretation in
Lemma 2.3.1, while the original colored banner interpretation will be used in the
proof of Theorem 2.4.14.

The following generating function for Qn,k,�α,�β was computed in [52] by estab-
lishing a recurrence formula based on the original colored banner interpretation of
Qλ̌,k.

Theorem 2.2.6 (Hyatt). Fix l ∈ P and let r�α = rα0
0 · · · r

αl−1

l−1 and s
�β = sβ1

1 · · · s
βl−1

l−1 .
Then

∑

n,k≥0

�α∈Nl,�β∈Nl−1

Qn,k,�α,�βz
ntkr�αs

�β =

H(r0z)(1− t)(
l−1∏
m=1

E(−smz)H(rmsmz))

(1 +
l−1∑
m=1

sm)H(tz)− (t+
l−1∑
m=1

sm)H(z)

, (2.11)

where H(z) :=
∑

i≥0 hiz
i and E(z) :=

∑
i≥0 eiz

i.

2.3 An application of the Decrease Value Theorem

The main objective of this section is to show how (2.11) can be deduced from the
Decrease Value Theorem directly.

2.3.1 Decrease values in words

We begin with some word statistics studied in [33, 34]. Let w = w1w2 · · ·wn be
an arbitrary word over N. Recall that an integer i ∈ [n − 1] is a descent of w if
wi > wi+1; it is a decrease of w if wi = wi+1 = · · · = wj > wj+1 for some j such
that i ≤ j ≤ n − 1. The letter wi is said to be a decrease value of w. The set of
all decreases (resp. descents) of w is denoted by DEC(w) (resp. DES(w)). Each
descent is a decrease, but not conversely. Hence DES(w) ⊂ DEC(w).

In parallel with the notions of descent and decrease, an integer i ∈ [n] is a rise
of w if wi < wi+1 (By convention that wn+1 = ∞, and thus n is always a rise); it is
an increase of w if i /∈ DEC(w). The letter wi is said to be an increase value of w.
The set of all increases (resp. rises) of w is denoted by INC(w) (resp. RISE(w)).
Clearly, each rise is an increase, but not conversely. Hence RISE(w) ⊂ INC(w).

Furthermore, a position i is said to be a record if wi ≥ wj for all j such that
1 ≤ j ≤ i− 1 and the letter wi is called a record value. Denote by REC(w) the set
of all records of w.
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Now, we define a mapping f from words on N to colored banners as follows

f : w = w1w2 . . . wn �→ B = B(1)B(2) . . . B(n),

where

• B(i) = u0, if wi is a decrease value such that wi = ul for some u ∈ P;

• otherwise B(i) = (u + 1)m, where wi = ul + m for some u,m ∈ N satisfies
0 ≤ m ≤ l − 1.

For example, if l = 3, then

f(12, 12, 10, 1, 9, 12, 8, 12, 16, 2, 13, 19) = 40 40 41 11 40 40 32 50 61 12 51 71.

We should check that such a word B over B is a colored banner. In the definition of
a colored banner, condition (3) is satisfied since the last letter of a word is always
an increase value. If B(i) is barred, then wi is a decrease value and so wi ≥ wi+1,
which would lead |B(i)| ≥ |B(i+1)|, and thus condition (1) is satisfied. Similarly,
condition (2) is also satisfied. This shows that f is well defined.

A letter k ∈ N is called a m-colored letter (or value) if it is congruent to m
(0 ≤ m ≤ l− 1) modulo l. For a word w = w1 . . . wn over N, we define the colored
vector �mod(w) ∈ Nl−1 of w to be

�mod(w) := (mod1(w), . . . ,modl−1(w)),

where modm(w) is the number of m-colored letters in w for m = 1, . . . , l − 1.
Supposing that wi = uil +mi for some 0 ≤ mi ≤ l − 1, we then define the weight
wt(w) of w to be the monomial xd(w1) . . . xd(wn), where d(wi) = ui if wi is a decrease
value and mi = 0, otherwise d(wi) = ui + 1. We also define the cv-cycle type of w
to be the multiset

λ̌(w) =
{
(λ1, �α1), ..., (λk, �αk)

}

if w has Lyndon type λ (with respect to the order of N), and the corresponding
word of length λi in the Lyndon factorization has color vector �αi.

Lemma 2.3.1. Let W (λ̌, k) be the set of all words over N with cv-cycle type λ̌ and
exactly k 0-colored decrease values. Then

Qλ̌,k =
∑

w∈W (λ̌,k)

wt(w).
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Proof. Clearly, the mapping f is a bijection which maps 0-colored decrease values
to 0-colored barred letters and preserves the color of letters. It is also weight pre-
serving wt(w) = wt(f(w)). It is not hard to check that if the Lyndon factorization
of a word w over N is

w = (w1)(w2) · · · (wk),

then the Lyndon factorization (with respect to the order of B in (2.9)) of the
banner f(w) is

f(w) = (f(w1))(f(w2)) · · · (f(wk)).

Thus f also keeps the Lyndon factorization type, which would complete the proof
in view of Theorem 2.2.5.

2.3.2 Combinatorics of the Decrease Value Theorem

Let [0, r]∗ be the set of all finite words whose letters are taken from the al-
phabet [0, r] := {0, 1, . . . , r}. Introduce six sequences of commuting variables
(Xi), (Yi), (Zi), (Ti), (Y

′
i ), (T

′
i ) (i = 0, 1, 2, . . .), and for each word w = w1w2 . . . wn

from [0, r]∗ define the weight ψ(w) of w to be

ψ(w) :=
∏

i∈DES

Xwi

∏

i∈RISE \REC

Ywi

∏

i∈DEC \DES

Zwi

×
∏

i∈(INC \RISE)\REC

Twi

∏

i∈RISE∩REC

Y ′
wi

∏

i∈(INC \RISE)∩REC

T ′
wi
.

The following generating function for the set [0, r]∗ by the weight ψ was cal-
culated by Foata and Han [33, Theorem 1.2] using the properties of Foata’s first
fundamental transformation on words (see [59, Chap. 10]) and a noncommutative
version of MacMahon Master Theorem (see [12, Chap. 4]).

Theorem 2.3.2 (Decrease Value Theorem). We have:

∑

w∈[0,r]∗

ψ(w) =

∏

1≤j≤r

1−Zj
1−Zj+Xj

∏

0≤j≤r

1−T ′
j

1−T ′
j
+Y ′

j

1−
∑

1≤k≤r

∏

1≤j≤k−1

1−Zj
1−Zj+Xj

∏

0≤j≤k−1

1−Tj
1−Tj+Yj

Xk

1−Zk+Xk

. (2.12)

We show in the following that one can also use the Kim–Zeng decomposition of
multiderangement [55] (but not the word-analog of the Kim–Zeng decomposition
developed in [34, Theorem 3.4]) instead of MacMahon Master Theorem to prove
the Decrease Value Theorem combinatorially.
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A letter wi which is a record and also a rise value is called a riserec value. A
word w ∈ [0, r]∗ having no equal letters in succession is called horizontal derange-
ment. Denote by [0, r]∗d the set of all the horizontal derangement words in [0, r]∗

without riserec value. It was shown in [33] that the decrease value theorem is
equivalent to

∑

w∈[0,r]∗d

ψ(w) =
1

∏
1≤j≤r

(1 +Xj)−
∑

1≤i≤r

(
∏

0≤j≤i−1

(1 + Yj)
∏

i+1≤j≤r

(1 +Xj)

)
Xi

,

which again can be rewritten as

∑

w∈[0,r]∗d

ψ(w) =
1

1−
∑

1≤i≤r

((
∏

0≤j≤i−1

(1 + Yj)− 1

)
∏

i+1≤j≤r

(1 +Xj)

)
Xi

. (2.13)

A word σ = s1s2 · · · sk of k distinct nonnegative integers is called a cycle of
length k if s1 = min{s1, s2, . . . , sk}. The rises of a cycle σ are called the excedances
of σ. Using Foata’s first fundamental transformation on words, we can factorize
each word in [0, r]∗d as a product of cycles of length at least 2, where the rises of
the word are transformed into the excedances of the cycles. A cycle σ = s1s2 · · · sk
is called a prime cycle if there exists i, 2 ≤ i ≤ k, such that

s1 < · · · < si−1 < sk < sk−1 < · · · < si+1 < si.

By the two decompositions in [55], a product of cycles of length at least 2 admits
a decomposition to some components of prime cycles preserving excedances, from
which we can see Eq. (2.13) directly.

2.3.3 A new proof of Hyatt’s result

Introduce three sequences of commuting variables (ξi), (ηi), (ζi), (i = 0, 1, 2, . . .)
and make the following substitutions:

Xi = ξi, Zi = ξi, Yi = ηi, Ti = ηi, Y ′
i = ζi, T ′

i = ζi (i = 0, 1, 2, . . .).

The new weight ψ′(w) attached to each word w = y1y2 · · · yn is then

ψ′(w) =
∏

i∈DEC(w)

ξyi
∏

i∈(INC \REC)(w)

ηyi
∏

i∈(INC∩REC)(w)

ζyi , (2.14)
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and identity (2.12) becomes:

∑

w∈[0,r]∗

ψ′(w) =

∏

1≤j≤r

(1−ξj)

∏

0≤j≤r

(1−ζj)

1−
∑

1≤k≤r

∏

1≤j≤k−1

(1−ξj)

∏

0≤j≤r

(1−ηj)
ξk

. (2.15)

Let η denote the homomorphism defined by the following substitutions of vari-
ables:

η :=

{
ξj ← tYi−1, ζj ← r0Yi, ηj ← Yi, if j = li;

ξj ← smYi, ζj ← rmsmYi, ηj ← smYi, if j = li+m for some 1 ≤ m ≤ l − 1.

Lemma 2.3.3. We have
∏

j≥0(1− sYj)−
∏

j≥0(1− Yj)∏
j≥0(1− Yj)

= (1− s)
∑

i≥0

Yi

∏
0≤j≤i−1(1− sYj)∏

0≤j≤i(1− Yj)
.

Proof. First, we may check that

∏

0≤j≤r

(1− sYj)−
∏

0≤j≤r

(1− Yj)

=
∑

0≤i≤r

∏

0≤j≤i

(1− sYj)
∏

i+1≤j≤r

(1− Yj)−
∑

0≤i≤r

∏

0≤j≤i−1

(1− sYj)
∏

i≤j≤r

(1− Yj)

=(1− s)
∑

0≤i≤r

Yi

∏

0≤j≤i−1

(1− sYj)
∏

i+1≤j≤r

(1− Yj).

Multiplying both sides by 1∏
0≤j≤r(1−Yj)

yields

∏
0≤j≤r(1− sYj)−

∏
0≤j≤r(1− Yj)∏

0≤j≤r(1− Yj)
= (1− s)

∑

0≤i≤r

Yi

∏
0≤j≤i−1(1− sYj)∏

0≤j≤i(1− Yj)
.

Letting r tend to infinity, we get the desired formula.

Theorem 2.3.4. We have

lim
r→∞

∑

w∈[0,r]∗

ηψ′(w) =
H(r0Y )(1− t)(

∏l−1
m=1 E(−smY )H(rmsmY ))

(1 +
∑l−1

m=1)H(tY )− (t+
∑l−1

m=1)H(Y )
, (2.16)

where H(tY ) =
∏

i≥0(1− tYi)
−1 and E(sY ) =

∏
i≥0(1 + sYi).
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Proof. To apply the homomorphism η, we write (2.15) as
∑

w∈[0,r]∗

ψ′(w) =
Nr

Dr

, (2.17)

where

Nr =

∏
1≤j≤r

(1− ξj)

∏
0≤j≤r

(1− ζj)

and

Dr = 1−
∑

1≤k≤r

∏
1≤j≤k−1

(1− ξj)

∏
0≤j≤r

(1− ηj)
ξk.

Applying η to both sides of (2.17) we have
∑

w∈[0,r]∗

ηψ′(w) =
η(Nr)

η(Dr)
, (2.18)

where

η(Nr) =

∏
1≤i≤⌊r/l⌋

(1− tYi−1)
l−1∏
m=1

( ∏
0≤i≤⌊(r−m)/l⌋

(1− smYi)

)

∏
0≤i≤⌊r/l⌋

(1− r0Yi−1)
l−1∏
m=1

( ∏
0≤i≤⌊(r−m)/l⌋

(1− rmsmYi)

)

and

η(Dr) = 1−
∑

1≤k≤r

∏
1≤i≤⌊(k−1)/l⌋

(1− tYi−1)
l−1∏
m=1

( ∏
0≤i≤⌊(k−1−m)/l⌋

(1− smYi)

)

∏
0≤i≤⌊(k−1)/l⌋

(1− Yi)
l−1∏
m=1

( ∏
0≤i≤⌊(k−1−m)/l⌋

(1− smYi)

) η(ξk)

= 1−
∑

1≤k≤r

∏
1≤i≤⌊(k−1)/l⌋

(1− tYi−1)

∏
0≤i≤⌊(k−1)/l⌋

(1− Yi)
η(ξk).

Letting r tend to infinity in (2.18) we obtain

lim
r→∞

∑

w∈[0,r]∗

ηψ′(w) =

∏

i≥0

(1−tYi)
l−1∏

m=1

∏

i≥0

(1−smYi)

∏

i≥0

(1−r0Yi−1)
l−1∏

m=1

∏

i≥0

(1−rmsmYi)

1−
∑
k≥1

∏

1≤i≤⌊(k−1)/l⌋

(1−tYi−1)

∏

0≤i≤⌊(k−1)/l⌋

(1−Yi)
η(ξk)

. (2.19)
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By the definition of η,

1−
∑

k≥1

∏
1≤i≤⌊(k−1)/l⌋

(1− tYi−1)

∏
0≤i≤⌊(k−1)/l⌋

(1− Yi)
η(ξk)

=1−
∏

i≥0

∏
0≤j≤i−1

(1− tYj)

∏
0≤j≤i

(1− tYj)
tYi −

l−1∑

m=1

(∏

i≥0

∏
0≤j≤i−1

(1− tYj)

∏
0≤j≤i

(1− tYj)
smYi

)

=1− (t+
l−1∑

m=1

sm)
∏

i≥0

∏
0≤j≤i−1

(1− tYj)

∏
0≤j≤i

(1− tYj)
Yi.

By Lemma 2.3.3 the above identity becomes

1−
∑

k≥1

∏
1≤i≤⌊(k−1)/l⌋

(1− tYi−1)

∏
0≤i≤⌊(k−1)/l⌋

(1− Yi)
η(ξk)

=1−

t+
l−1∑
m=1

sm

1− t
×

∏
j≥0

(1− tYj)−
∏
j≥0

(1− Yj)

∏
j≥0

(1− Yj)
.

Substituting this expression into (2.19), we get (2.16).

Combining the above theorem with Lemma 2.3.1 we get a Decrease Value
Theorem approach to Hyatt’s generating function (2.11).

2.4 Flag Eulerian quasisymmetric functions

Definition 2.4 (Flag Eulerian quasisymmetric functions). For �β = (β1, . . . , βl−1) ∈
Nl−1 let

csum(�β) :=
l−1∑

i=1

i× βi.

Define the Flag Eulerian quasisymmetric functions Qn,k,j as

Qn,k,j :=
∑

i,�α,�β

Qn,i,�α,�β,

where the sum is over all integers i, vectors �α ∈ Nl and �β ∈ Nl−1 such that
li+ csum(�β) = k and α0 = j.
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We will show later that the flag Eulerian quasisymmetric functions have many
analog (or generalized) properties of the Shareshian–Wachs Eulerian quasisym-
metric functions [76].

Corollary 2.4.1 (of Theorem 2.2.6). We have

∑

n,k,j≥0

Qn,k,jt
krjzn =

(1− t)H(rz)

H(tlz)− tH(z)
, (2.20)

where Q0,0,0 = 1.

For each positive integer n the polynomial [n]q is defined as

[n]q := 1 + q + · · ·+ qn−1.

By convention, [0]q = 0.

Corollary 2.4.2. Let Qn(t, r) =
∑

j,k≥0 Qn,k,jt
krj. Then, Qn(r, t) satisfies the

following recurrence relation:

Qn(t, r) = rnhn +
n−1∑

k=0

Qk(t, r)hn−kt[l(n− k)− 1]t. (2.21)

Moreover,

Qn(t, r) =
∑

m

∑

k0≥0
lk1,...,lkm≥2∑

ki
=n

rk0hk0

m∏

i=1

hkit[lki − 1]t. (2.22)

Proof. By (2.20), we have

∑

n,k,j≥0

Qn(t, r)z
n =

H(rz)

1−
∑

n≥1 t[ln− 1]thnzn
,

which is equivalent to (2.21). It is not hard to show that the right-hand side
of (2.22) satisfies the recurrence relation (2.21). This proves (2.22).

For each colored permutation π ∈ Cl ≀ Sn define the flag excedance statistic
fexc(π) studied in [5, 38, 39] as

fexc(π) := l · exc(π) +
n∑

i=1

ǫi.
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Note that when l = 1, flag excedances are excedances on permutations. Define the
number of fixed points of π, fix(π), by

fix(π) := |{j ∈ [n] : πj = j0}|.

Clearly, fix(π) = fix0(π) defined in (2.3). The colored (q, r)-Eulerian polynomials
A

(l)
n (t, r, q) are then defined as

A(l)
n (t, r, q) :=

∑

π∈Cl≀Sn

tfexc(π)rfix(π)q(maj− exc)π.

In particular, the polynomial

A(l)
n (t, q) := A(l)

n (t, 1, q)

is called colored q-Eulerian polynomial. The following specialization follows imme-
diately from Lemma 2.2.2.

Lemma 2.4.3. Let Qn(t, r) =
∑

j,k≥0 Qn,k,jt
krj. Then we have

ps(Qn(t, r)) = (q; q)−1
n A(l)

n (t, r, q).

For nonnegative integers k0, . . . , km such that k0 + . . . + km = n define the
q-multinomial coefficient

[
n

k0, . . . , km

]

q

:=
(q; q)n

(q; q)k0 · · · (q; q)km
.

Applying the specialization ps to both sides of (2.20), (2.21) and (2.22) yields the
following formulas for A

(l)
n (t, r, q).

Corollary 2.4.4. We have
∑

n≥0

A(l)
n (t, r, q)

zn

(q; q)n
=

(1− t)e(rz; q)

e(tlz; q)− te(z; q)
. (2.23)

Remark 2.2. The above generalization of (1.2) can also be deduced from [39,
Theorem 1.3] through some calculations; see the proof of [39, Theorem 5.2] for
details.

Corollary 2.4.5. We have

A(l)
n (t, r, q) = rn +

n−1∑

k=0

[
n
k

]

q

A
(l)
k (t, r, q)t[l(n− k)− 1]t (2.24)

and

A(l)
n (t, r, q) =

∑

m

∑

k0≥0
lk1,...,lkm≥2∑

ki=n

[
n

k0, . . . , km

]

q

rk0
m∏

i=1

[lki − 1]t.
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2.4.1 Symmetry and unimodality

Let A(t) = art
r+ar+1t

r+1+· · ·+ast
s be a nonzero polynomial in t whose coefficients

come from a partially ordered ring R. Then A(t) is t-symmetric with center of
symmetry s+r

2
if ar+k = as−k for all k = 0, 1, . . . , s − r; is t-unimodal if for some

s ≤ k ≤ r,

ar ≤R ar+1 ≤R · · · ≤R ak−1 ≤ ai ≥ ak+1 · · · ≥R as−1 ≥R as;

is log-concave if a2k ≥ ak−1ak+1 for all k = r + 1, r + 2, . . . , s − 1. The following
result is classical (see [22, p. 270]).

Lemma 2.4.6. A polynomial with positive coefficients and with only real roots is
log-concave and that log-concavity implies unimodality.

It is well known (see [22, p. 292]) that the Eulerian polynomial An(t) is sym-
metric and has only real roots and therefore unimodal. The following fact [84,
Proposition 1] is useful.

Lemma 2.4.7. The product of two symmetric unimodal polynomials with respec-
tive centers of symmetry c1 and c2 is symmetric and unimodal with center of sym-
metry c1 + c2.

Let A
(l)
n (t) be the colored Eulerian polynomials defined as

A(l)
n (t) := A(l)

n (t, 1, 1) =
∑

π∈Cl≀Sn

tfexc(π).

Foata and Han [39, Eq. (5.15)] showed that

A(l)
n (t) = An(t)(1 + t+ t2 + · · ·+ tl−1)n. (2.25)

Recently, Mongelli [64, Proposition 3.3] rediscovered the l = 2 case of (2.25), which
implies that A

(2)
n (t) is symmetry and has only real roots and therefore unimodal.

Remark 2.3. We can give a multivariate extension of (2.25) as follows. For each
π ∈ Cl ≀Sn we define the function

s(π, i) :=

⎧
⎪⎨
⎪⎩

tl, if ǫi = 0 and i ∈ EXC(|π|);

1, if ǫi = 0 and i /∈ EXC(|π|);

sǫi , if ǫi �= 0,
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and set w(π) = tl·exc(π)s
col1(π)
1 · · · s

coll−1(π)
l−1 (see (2.4) for the definition of coli(π)). It

is easy to see that w(π) =
∏n

i=1 s(π, i). For a fix σ ∈ Sn with exc(σ) = h we have

∑

π∈Cl≀Sn
|π|=σ

w(π) =
∑

π∈Cl≀Sn
|π|=σ

n∏

i=1

s(π, i)

=
∏

i∈EXC(σ)

(tl + s1 + · · ·+ sl−1)
∏

i/∈EXC(σ)

(1 + s1 + · · ·+ sl−1)

= (tl + s1 + s2 + · · ·+ sl−1)
h(1 + s1 + s2 + · · ·+ sl−1)

n−h.

It follows that
∑

π∈Cl≀Sn

tl·exc(π)s
col1(π)
1 · · · s

coll−1(π)
l−1 =

∑

σ∈Sn

∑

π∈Cl≀Sn
|π|=σ

w(π)

=
n−1∑

h=0

An,h(t
l + s1 + s2 + · · ·+ sl−1)

h(1 + s1 + s2 + · · ·+ sl−1)
n−h

=An

(
tl + s1 + s2 + · · ·+ sl−1

1 + s1 + s2 + · · ·+ sl−1

)
(1 + s1 + s2 + · · ·+ sl−1)

n.

Setting si = ti in the above equation yields (2.25). Note that (2.25) can also be
deduced from (2.23) directly.

From Lemma 2.4.7 and (2.25) we see that A
(l)
n (t) is symmetric and unimodal

with center of symmetry (ln − 1)/2, although not real-rootedness when l > 2.
A sequence a0, a1, . . . , an is said to has no interval zero if there do not exist in-
tegers 0 ≤ i < j < k ≤ n satisfying ai �= 0, aj = 0, ak �= 0. It is known [84,
Proposition 2] that the product of two log-concave polynomials with nonnegative
coefficients and no interval zero coefficients is again log-concave, thus by (2.25) we
have the following stronger result.

Proposition 2.4.8. For l ≥ 1 the polynomial A(l)
n (t) is symmetric and log-concave.

In particular it is unimodal.

Let dBn (t) be the generating function for the flag excedances on the derange-
ments in C2 ≀Sn, i.e.

dBn (t) :=
∑

π∈C2≀Sn
fix(π)=0

tfexc(π) = A(2)
n (t, 0, 1). (2.26)

At the end of [64], Mongelli noticed that dB5 (t) is not real-rootedness and conjec-
tured that dBn (t) is unimodal for any n ≥ 1. It is this conjecture that motivates us
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to study the symmetry and unimodality of the coefficients of tk in the flag Eulerian
quasisymmetric functions and the colored (q, r)-Eulerian polynomials.

We first recall some necessary definitions. Let Par be the set of all partitions
of all nonnegative integers. Let b = {bλ : λ ∈ Par} be a basis of the space
of symmetric functions. We can define a partial order relation on the ring of
symmetric functions by

f ≤b g ⇔ g − f is b-positive,

where a symmetric function is said to be b-positive if it is a nonnegative linear
combination of elements of the b-basis. Here we are concerned with h-basis {hλ :
λ ∈ Par} and the Schur basis {sλ : λ ∈ Par}. The following theorem reduces
to [76, Theorem 5.1] when l = 1.

Theorem 2.4.9. Let Qn,k =
∑n

j=0 Qn,k,j. Using the h-basis to partially order the
ring of symmetric functions, we have for all n, j, k,

(1) the flag Eulerian quasisymmetric function Qn,k,j is a h-positive symmetric
function;

(2) the polynomial
∑ln−1

k=0 Qn,k,jt
k is t-symmetric and t-unimodal with center of

symmetry l(n− j)/2;

(3) the polynomial
∑ln−1

k=0 Qn,kt
k is t-symmetric and t-unimodal with center of

symmetry (ln− 1)/2.

Proof. Part (1) follows from (2.22). We will use the fact in Lemma 2.4.7 to show
Part (2) and (3). By (2.22) we have

ln−1∑

k=0

Qn,k,jt
k =

∑

m

∑

lk1,...,lkm≥2∑
ki

=n−j

hj

m∏

i=1

hkit[lki − 1]t.

As each term hj

∏m
i=1 hkit[lki − 1]t is t-symmetric and t-unimodal with center of

symmetry
∑

i lki/2 = l(n − j)/2, the sum of the terms on the right-hand side of
the above equation has the same property, which shows Part (2).

In the following, we show that Part (3) also follows from (2.22). For any
sequence of positive integers (k1, . . . , km) we define

G
(l)
k1,...,km

:=
m∏

i=1

hkit[lki − 1]t.
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Then, by (2.22) we have

ln−1∑

k=0

Qn,k,0t
k =

∑

m

∑

lk1,...,lkm≥2∑
ki=n

G
(l)
k1,...,km

and
∑

j≥1

ln−1∑

k=0

Qn,k,jt
k =

∑

m

∑

lk1,...,lkm≥2∑
ki=n

hk1G
(l)
k2,...,km

assuming l ≥ 2. We claim that G
(l)
k1,...,km

+ hk1G
(l)
k2,...,km

is t-symmetric and t-
unimodal with center of symmetry (ln− 1)/2. Note that

G
(l)
k1,...,km

+ hk1G
(l)
k2,...,km

= hk1(t[lk1 − 1]t + 1)G
(l)
k2,...,km

.

Clearly, t[lk1 − 1]t + 1 = 1 + t + · · · + tlk1−1 is t-symmetric and t-unimodal with
center of symmetry (lk1 − 1)/2, and Gk2,...,km is t-symmetric and t-unimodal with
center of symmetry l(n− k1)/2. Therefore, our claim holds and the proof of Part
(3) is complete because of

ln−1∑

k=0

Qn,kt
k =

ln−1∑

k=0

Qn,k,0t
k +

∑

j≥1

ln−1∑

k=0

Qn,k,jt
k.

Remark 2.4. We can give a bijective proof of the symmetric property

Qn,k,j = Qn,l(n−j)−k,j (2.27)

using the colored ornament interpretation of Qn,k,j. We construct an involution ϕ
on colored ornaments such that if the cv-cycle type of a colored banner R is

λ̌(R) = {(λ1, �β1), . . . , (λr, �βr)},

then the cv-cycle type of ϕ(R) is

λ̌(ϕ(R)) = {(λ1, �β1
⊥
), . . . , (λr, �βr

⊥
)},

where �β
⊥
:= (βl−1, βl−2, . . . , β1) for each �β = (β1, . . . , βl−1) ∈ Nl−1. Let R be a

colored banner. To obtain ϕ(R), we first bar each unbarred 0-colored letter of
each nonsingleton colored necklace of R and unbar each barred 0-colored letter.
Next, we change the color of each m-colored letter of R to color l − m for all
m = 1, . . . , l−1. Finally, for each i we replace each occurrence of the i-th smallest
value in R with the i-th largest value leaving the bars and colors intact. This
proves (2.27) because Qn,k,j is a symmetric function by Theorem 2.2.4.
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For the ring of polynomials Q[q], where q is an indeterminate, we use the partial
order relation:

f(q) ≤q g(q) ⇔ g(q)− f(q) has nonnegative coefficients.

We will use the following key fact from [76, Lemma 5.2].

Lemma 2.4.10. If f is a Schur positive homogeneous symmetric function of degree
n, then (q; q)nps(f) is a polynomial in q with nonnegative coefficients.

Theorem 2.4.11. We have for n ≥ 1 and j ≥ 0,

(1) the polynomial
∑

π∈Cl≀Sn
fix(π)=j

tfexc(π)q(maj− exc)π is t-symmetric and t-unimodal with

center of symmetry l(n−j)
2

,

(2) the polynomial A(l)
n (t, q) is t-symmetric and t-unimodal with center of sym-

metry ln−1
2

.

Proof. Let f and g be two homogeneous symmetric functions of degree n with
f ≤h g. Since h-positivity implies Schur positivity [81, Corollary 7.12.4], by
Lemma 2.4.10, we have

(q; q)nps(f) ≤q (q; q)nps(g).

By Lemma 2.4.3, Part (1) and (2) are obtained by specializing Parts (2) and (3)
of Theorem 2.4.9, respectively.

Remark 2.5. When l = 1, Parts (1) and (2) of the above theorem reduce to Parts
(3) and (4) of Theorem 5.3 in [76], respectively. Part (1) of the above theorem
implies the unimodality of dBn (t) as conjectured by Mongelli [64, Conjecture 8.1].
Actually, he also conjectured that dBn (t) is log-concave.

2.4.2 Generalized symmetric Eulerian identities

In this section we prove two generalized symmetric Eulerian identities involving
the flag Eulerian quasisymmetric functions Qn,k,j.

Theorem 2.4.12. For a, b ≥ 1 and j ≥ 0 such that a+ b+ 1 = l(n− j),

∑

i≥0

hiQn−i,a,j =
∑

i≥0

hiQn−i,b,j. (2.28)
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Proof. Cross-multiplying and expanding all the functions H(z) in (2.20), we obtain
∑

n≥0

hn(t
lz)n

∑

n,j,k≥0

Qn,k,jr
jtkzn − t

∑

n≥0

hnz
n
∑

n,j,k≥0

Qn,k,jr
jtkzn = (1− t)

∑

n≥0

hn(rz)
n.

Now, identifying the coefficients of zn yields
∑

i,j,k

hiQn−i,k−li,jr
jtk −

∑

i,j,k

hiQn−i,k−1,jr
jtk = (1− t)hnr

n.

Hence, for j < n we can identity the coefficients of rjtk and obtain
∑

i≥0

hiQn−i,k−li,j =
∑

i≥0

hiQn−i,k−1,j. (2.29)

Applying the symmetry property (2.27) to the left-hand side of the above equation
yields ∑

i≥0

hiQn−i,l(n−j)−k,j =
∑

i≥0

hiQn−i,k−1,j,

which becomes (2.28) after setting a = k − 1 and b = l(n − j) − k since now
n > j.

A bijective proof of Theorem 2.4.12. We will give a bijective proof of

Qn,k = Qn,ln−k−1 (2.30)

by means of colored banners, using Theorem 2.2.5. Construct an involution θ on
colored banners as follows. Let B be a colored banner. To obtain θ(B), first bar
each unbarred 0-colored letter of B, except the last letter; also unbar each barred
letter. Next, change the color of each m-colored letter of B to color l −m for all
m = 1, . . . , l− 1, except the last letter; if the color of the last letter is a, change it
to l − 1− a. Finally, for each i replace each occurrence of the i-th smallest value
in B with the i-th largest value, leaving the bars and colors intact.

Since a+b = l(n−j)−1, by (2.30) we have Qn−j,a = Qn−j,b, which is equivalent
to ∑

i≥0

Qn−j,a,i =
∑

i≥0

Qn−j,b,i. (2.31)

For any m, k, i, it follows from Theorem 2.2.3 that

Qm,k,i = hiQm−i,k,0. (2.32)

Thus, Eq. (2.31) becomes
∑

i≥0

hiQn−j−i,a,0 =
∑

i≥0

hiQn−j−i,b,0.
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Multiplying both sides by hj then gives

∑

i≥0

hjhiQn−j−i,a,0 =
∑

i≥0

hjhiQn−j−i,b,0.

Applying (2.32) once again, we obtain (2.28).

Remark 2.6. As the analytical proof of Theorem 2.4.12 is reversible, the above
bijective proof together with the bijective proof of (2.27) provides a different proof
of Corollary 2.4.1 using interpretations of Qn,k,j as colored ornaments and colored
banners. In particular, this gives an alternative approach to Step 3 in the proof of
Theorem 1.2 in [76].

Theorem 2.4.13. Let Qn,k =
∑

j Qn,k,j. For a, b ≥ 1 such that a + b = ln we
have:

n−1∑

i=0

hiQn−i,a−1 =
n−1∑

i=0

hiQn−i,b−1. (2.33)

Proof. With r = 1 identity (2.20) becomes:

∑

n,k≥0

Qn,kt
kzn =

(1− t)H(z)

H(tlz)− tH(z)
.

Subtracting both sides by Q0,0 = 1 gives

∑

n≥1,k≥0

Qn,kt
kzn =

H(z)−H(tlz)

H(tlz)− tH(z)
.

Cross-multiplying and then identifying the coefficients of tkzn (1 ≤ k ≤ ln − 1)
yields

n−1∑

i=0

hiQn−i,k−li =
n−1∑

i=0

hiQn−i,k−1.

Applying the symmetry property (2.30) to the left-hand side we get

n−1∑

i=0

hiQn−i,ln−1−k =
n−1∑

i=0

hiQn−i,k−1,

which is (2.33) when a−1 = k−1 and b−1 = ln−1−k, since now 1 ≤ k ≤ ln−1.

To construct a bijective proof of Theorem 2.4.13, we need a refinement of the
decomposition of the colored banners from [52].
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A 0-colored marked sequence, denoted by (ω, b, 0), is a weakly increasing se-
quence ω of positive integers, together with a positive integer b, which we call the
mark, such that 1 ≤ b < length(ω). Let M(n, b, 0) denote the set of all 0-colored
marked sequences with length(ω) = n and mark equal to b.

For m ∈ [l− 1], a m-colored marked sequence, denoted by (ω, b,m), is a weakly
increasing sequence ω of positive integers, together with a integer b such that 0 ≤
b < length(ω). Let M(n, b,m) denote the set of all m-colored marked sequences
with length(ω) = n and mark equal to b.

Here we will use the original colored banner interpretation from Remark 2.1.
Let K0(n, j, �β) denote the set of all colored banners of length n, with Lyndon type
having no parts of size one formed by a 0-colored letter, color vector equal to �β
and j bars. For m ∈ [l − 1] and βm > 0, define

Xm :=
⊎

0≤i≤n−1
j−n+i<k≤j

K0(i, k, �β(m̂))×M(n− i, j − k,m),

where �β(m̂) = (β1, . . . , βm−1, βm− 1, . . . , βl−1) and let Xm := 0 if βm = 0. We also
define

X0 :=
⊎

0≤i≤n−2
j−n+i<k<j

K0(i, k, �β)×M(n− i, j − k, 0).

Theorem 2.4.14. There is a bijection

Υ : K0(n, j, β) →
l−1⊎

m=0

Xm

such that if Υ(B) = (B′, (ω, b,m)), then wt(B) = wt(B′) wt(ω) and �β(m̂) =
�col(B′) if m ≥ 1 otherwise �β = �col(B′).

Proof. By [23, lemma 4.3], every banner B ∈ K0(n, j, β) has a unique factorization,
that we also called increasing factorization (here we admit parts of size one formed
by a letter with positive color), B = B1 · B2 · · ·Bd where each Bi has the form

Bi = (ai, ..., ai︸ ︷︷ ︸
pi times

) · ui,

where ai ∈ B, pi > 0 and ui is a word (possibly empty) over the alphabet B whose
letters are all strictly less than ai with respect to <B, a1 ≤B a2 ≤B · · · ≤B ad and
if ui is empty then Bi = ai and for each k ≥ i with ak = ai we has Bk = Bi = ai.
Note that the increasing factorization is a refinement of the Lyndon factorization.

For example, the Lyndon factorization of the banner

61, 12, 51, 61, 61, 40, 40, 41, 40, 40, 32, 50, 71
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is
(61, 12, 51) · (61) · (61) · (40, 40, 41, 40, 40, 32) · (50, 71),

and its increasing factorization is

(61, 12, 51) · (61) · (61) · (40, 40, 41, 40) · (40, 32) · (50, 71).

First, we take the increasing factorization of B, say B = B1 · B2 · · ·Bd. Let

Bd = (a, ..., a︸ ︷︷ ︸
p times

) · u,

where a ∈ B, p > 0 and u is a word (possibly empty) over B whose letters are all
strictly less than a with respect to the order <B. Let γ be the bijection defined
in [52, Theorem 4.5]. Now we describe the map Υ.

Case 1: a is 0-colored. Define Υ(B) = γ(B).

Case 2: a has positive color and u is not empty. Suppose that u = i1, i2, · · · , ik.

Case 2.1: If k ≥ 2, then define ω = |i1|, b = 0, m is the color of i1 and
B′ = B1 · · ·Bd−1 · B̃d, where

B̃d = a, ..., a︸ ︷︷ ︸
p times

, i2, · · · , ik.

Case 2.2: If k = 1, then define ω = |i1|, b = 0, m is the color of i1 and

B′ = B1 · · ·Bd−1 · a · a · · · a︸ ︷︷ ︸
p times

,

where each a is a factor.

Case 3: a has positive color and u is empty. In this case Bd = a. Define
ω = |a|, b = 0, m is the color of a and B′ = B1 · · ·Bd−1.

This complete the description of the map Υ. Next we describe Υ−1. Suppose
we are given a banner B with increasing factorization B = B1 · · ·Bd where

Bd = a, ..., a︸ ︷︷ ︸
p times

, j1, · · · , jk,

and a m-colored marked sequence (ω, b,m).

Case A: (inverse of Case 1) a is 0-colored or length(ω) ≥ 2. Define

Υ−1((B, (ω, b,m))) = γ−1((B, (ω, b,m))).
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Case B: (inverse of Case 2.1) a has positive color, ω = j0 is a letter with
positive color m and j1, · · · , jk is not empty. Then let Υ−1((B, (ω, b,m))) =

B1 · · ·Bd−1 · B̃d, where
B̃d = a, ..., a︸ ︷︷ ︸

p times

, j0, j1, · · · , jk.

Case C: a has positive color, ω = j0 is a letter with positive color m and
Bd = a. In this case, there exists a nonnegative integer k such that Bd−k =
Bd−k+1 = · · · = Bd = a but Bd−k−1 �= a.

Case C1: (inverse of Case 3) If j0 ≥B a, then define

Υ−1((B, (ω, b,m))) = B1 · · ·Bd · j0,

where j0 is a factor.

Case C2: (inverse of Case 2.2) Otherwise, j0 is strictly less than a with respect
to <B and we define Υ−1((B, (ω, b,m))) = B1 · · ·Bd−k−1 · B̃d−k, where

B̃d−k = a, ..., a︸ ︷︷ ︸
k+1 times

, j0.

This completes the description of Υ−1. One can check case by case that both
maps are well defined and in fact inverses of each other.

For any nonnegative integers i, j, let Kj(n, i, �β) denote the set of all colored
banners of length n, with Lyndon type having j parts of size one formed by a
0-colored letter, color vector equal to �β and i bars. Let Comj(n, i, �β) be the set of
all compositions

σ = (ω0, (ω1, b1,m1), . . . , (ωr, br,mr))

for some integer r, where ω0 is a weakly increasing word of positive integers of
length j and each (ωi, bi,mi) is a mi-colored marked sequence and satisfying

r∑

j=0

length(ωj) = n,
r∑

j=1

bj = i and �β = (β1, . . . , βl−1),

where βk equals the number of mi such that mi = k. Define the weight of σ by

wt(σ) := wt(ω0) · · ·wt(ωr).

By Theorem 2.4.14, we can construct a weight preserving bijection between
Kj(n, i, �β) and Comj(n, i, �β) by first factoring out the j parts of size one formed
by a 0-colored letter in the Lyndon factorization of a banner and then factoring
out marked sequences step by step in the increasing factorization of the remaining
banner. Thus we have the following interpretation of Qn,k,j.
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Corollary 2.4.15. We have

Qn,k,j =
∑

i∈N,�β∈Nl−1

σ∈Comj(n,i,�β)

li+csum(�β)=k

wt(σ).

Definition 2.5 (Two-fix-banners). For each fixed positive integer n, a two-fix-
banner of length n is a sequence

v = (ω0, (ω1, b1,m1), . . . , (ωr, br,mr), ω
′
0) (2.34)

satisfying the following conditions:

(C1) ω0 and ω′
0 are two weakly increasing sequences of positive integers, possibly

empty;

(C2) each (ωi, bi,mi) is a mi-colored marked sequence;

(C3) length(ω0) + length(ω1) + · · ·+ length(ωr) + length(ω′
0) = n.

Define the flag excedance statistic of v by

fexc(v) := l
r∑

i=1

bi +
r∑

i=1

mr.

A bijective proof of Theorem 2.4.13. The two-fix-banner v in (2.34) is in bi-
jection with the pair (σ, ω), where ω = ω′

0 is a weakly increasing sequence of
positive integers with length i for some nonnegative integer i and

σ = (ω0, (ω1, b1,m1), . . . , (ωr, br,mr))

is a composition with
∑r

j=0 length(ωj) = n − i. Thus, by Corollary 2.4.15 we
obtain the following interpretation.

Lemma 2.4.16. Let TBn denote the set of all two-fix-banners of length n. For
any nonnegative integer a, we have

∑

v∈TBn
fexc(v)=a

wt(v) =
n−1∑

i=0

hiQn−i,a.

By the above lemma, it suffices to construct an involution Φ : TBn → TBn

satisfying fexc(v)+ fexc(Φ(v)) = ln− 2 for each v ∈ TBn. First we need to define
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two local involutions. For a weakly increasing sequence of positive integers ω with
length(ω) = k, we define

d′(ω) = (ω, k − 1, l − 1),

which is a (l−1)-colored marked sequence. For a m-colored mark sequence (ω, b,m)
with length(ω) = k, we define

d((ω, b,m)) =

{
(ω, k − b, 0) if m = 0;

(ω, k − 1− b, l −m), otherwise.

We also define

d′((ω, b,m)) =

{
ω, if b = k − 1 and m = l − 1;

(ω, k − 1− b, l − 1−m), otherwise.

One can check that d and d′ are well-defined involutions.
Let v be a two-fix-banner and write

v = (τ0, τ1, τ2, . . . , τr−1, τr, τr+1),

where τ0 = ω0 and τr+1 = ω′
0. If τi (respectively τj) is the leftmost (respectively

rightmost) non-empty sequence (clearly i = 0, 1 and j = r, r + 1), we can write v

in the following compact way by removing the empty sequences at the beginning
or at the end:

v = (τi, τi+1, . . . , τj−1, τj). (2.35)

It is easy to see that the above procedure is reversible by adding some necessary
empty words at the two ends of the compact form (2.35). Now we work with the
compact form.

If i = j (v has only one sequence), we define

Φ(v) =

⎧
⎪⎨
⎪⎩

(∅, (τi, n− 1, l − 2), ∅), if τi is a weakly increasing sequence;

(ω, ∅), if τi = (ω, n− 1, l − 2) is a marked sequence;

(∅, (ω, n− 1− b, l − 2−m), ∅), otherwise, suppose τi = (ω, b,m).

If j > i (v has at least two sequences), we define the two-fix-banner Φ(v) by

Φ(v) = (d′(τi), d(τi+1), d(τi+2), . . . , d(τj−1), d
′(τj)).

As d and d′ are involutions, Φ is also an involution and one can check that in
both cases Φ satisfy the desired property. This completes our bijective proof.
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By Lemma 2.4.3, if we apply ps to both sides of (2.28) and (2.33), we obtain
the following two symmetric q-Eulerian identities.

Corollary 2.4.17. For a, b ≥ 1 and j ≥ 0 such that a+ b+ 1 = l(n− j),

∑

k≥0

[
n
k

]

q

A
(l)
k,a,j(q) =

∑

k≥0

[
n
k

]

q

A
(l)
k,b,j(q), (2.36)

where A
(l)
n (t, r, q) =

∑
k,j A

(l)
n,k,j(q)t

krj.

Corollary 2.4.18. For a, b ≥ 1 such that a+ b = ln,

∑

k≥1

[
n
k

]

q

A
(l)
k,a−1(q) =

∑

k≥1

[
n
k

]

q

A
(l)
k,b−1(q), (2.37)

where A
(l)
n (t, q) =

∑
k A

(l)
n,k(q)t

k.

Remark 2.7. When l = 1, symmetric identities (2.36) and (2.37) reduces to (1.7)
and (1.5), respectively.

2.4.3 Two interpretations of colored (q, r)-Eulerian polyno-
mials

We will introduce the colored hook factorization of a colored permutation. Recall
that a word w = w1w2 . . . wm over N is called a hook if w1 > w2 and either m = 2,
or m ≥ 3 and w2 < w3 < . . . < wm. We can extend the hooks to colored hooks.
Let

[n]l ⊂ Nl :=
{
10, 11, . . . , 1l−1, 20, 21, . . . , 2l−1, . . . , i0, i1, . . . , il−1, . . .

}
.

Definition 2.6 (Colored hook). A word w = w1w2 . . . wm over Nl is called a
colored hook if

• m ≥ 2 and |w| is a hook and only w1 may have positive color;

• or m ≥ 1 and |w| is an increasing word and only w1 has positive color.

Clearly, each colored permutation π = π1π2 . . . πn ∈ Cl ≀ Sn admits a unique
factorization, called its colored hook factorization, pτ1τ2...τr, where p is a word
formed by 0-colored letters, |p| is an increasing word over N and each factor τ1,
τ2, . . . , τk is a colored hook. To derive the colored hook factorization of a colored
permutation, one can start from the right and factor out each colored hook step by
step. When l = 1, colored hook factorization is the hook factorization introduced
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by Gessel [45] that we have already used in Section 1.2. For example, the colored
hook factorization of

20 40 51 80 30 70 101 10 90 61 ∈ C2 ≀S10 (2.38)

is
20 40 |51 |80 30 70 |101 10 90 |61.

Let w = w1w2 . . . wm be a word over N. Define

inv(w) := |{(i, j) : i < j, wi > wj}|.

For a colored permutation π =∈ Cl ≀Sn with colored hook factorization pτ1τ2...τr,
we define

inv(π) := inv(|π|) and lec(π) :=
r∑

i=1

inv(|τi|).

We also define

flec(π) := l · lec(π) +
n∑

i=1

ǫi and pix(π) := length(p).

For example, if π is the colored permutation in (2.38), then inv(π) = 16, lec(π) = 4,
flec(π) = 11 and pix(π) = 2.

Theorem 2.4.19. For n ≥ 1, we have

A(l)
n (t, r, q) =

∑

π∈Cl≀Sn

tflec(π)rpix(π)qinv(π)−lec(π). (2.39)

Proof. Note that a colored hook of length k may contribute 1, 2, . . . , lk − 1 to the
statistic “ flec ” of a colored permutation. Consider the last colored hook (possibly
empty) of each colored permutation then gives

∑

π∈Cl≀Sn

tflec(π)rpix(π)q(inv− lec)(π)

=
n∑

k=0

∑

π∈Cl≀Sn
π=pτ1...τr
#τr=n−k

tflec(π)rpix(π)q(inv− lec)(π)

= rn +
n−1∑

k=0

[
n

k

]

q

t[l(n− k)− 1]t
∑

π∈Cl≀Sk

tflec(π)rpix(π)q(inv− lec)(π),

where we apply (1.13) to the last equality. This shows that the right-hand side
of (2.39) satisfies recurrence (2.24), which finishes the proof of the theorem.
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Remark 2.8. The above theorem reduces to [35, Theorem 4] when l = 1.

The recurrence in Theorem 1.1.4 can be generalized to the colored (q, r)-
Eulerian polynomials as follows.

Theorem 2.4.20. The colored (q, r)-Eulerian polynomials satisfy the following
recurrence formula:

A
(l)
n+1(t, r, q) = (r + t[l − 1]tq

n)A(l)
n (t, r, q)

+ t[l]t

n−1∑

k=0

[
n

k

]

q

qkA
(l)
k (t, r, q)A

(l)
n−k(t, q) (2.40)

with A
(l)
0 (t, r, q) = 1 and A

(l)
1 (t, r, q) = r.

Proof. Applying the Eulerian differential operator δz to both sides of (2.23) and
using the property (1.27) and Lemma 1.4.1, we obtain

∑

n≥0

A
(l)
n+1(t, r, q)

zn

(q; q)n
= δz

(
(1− t)e(rz; q)

e(tlz; q)− te(z; q)

)

=
δz((1− t)e(rz; q))

e(tlz; q)− te(z; q)
+ δz

(
(e(tlz; q)− te(z; q))−1

)
(1− t)e(rzql; q)

=B + C,

where

B =
r(1− t)e(rz; q)

e(tlz; q)− te(z; q)
= r

∑

n≥0

A(l)
n (t, r, q)

zn

(q; q)n
,

and

C =
(1− t)e(rzq; q)(te(z; q)− tle(tlz; q))

(e(tlqz; q)− te(qz; q))(e(tlz; q)− te(z; q))

=
(1− t)e(rzq; q)

e(tlqz; q)− te(qz; q)

(
tl(e(z; q)− tle(tlz; q)

e(tlz; q)− te(z; q)
+

te(z; q)− tle(z; q)

e(tlz; q)− te(z; q)

)

=

(
∑

n≥0

A(l)
n (t, r, q)

(qz)n

(q; q)n

)(
tl
∑

n≥1

A(l)
n (t, q)

zn

(q; q)n
+ t[t]l−1

∑

n≥0

A(l)
n (t, q)

zn

(q; q)n

)
.

Taking the coefficient of zn

(q;q)n
in both sides of the equality

∑

n≥0

A
(l)
n+1(t, r, q)

zn

(q; q)n
= B + C,

we get (2.40).
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Remark 2.9. Once again, the derangement polynomial dBn (t) defined in (2.26)
is t-symmetric and t-unimodal with center of symmetry n follows from the recur-
rence (2.40) by induction on n using Lemma 2.4.7.

Recurrence relation (2.40) enables us to obtain another interpretation of the
colored (q, r)-Eulerian polynomials A

(l)
n (t, r, q). First, we define the zero-descent

number of a colored permutation π ∈ Cl ≀Sn, denoted desz(π), by

desz(π) := |{i ∈ [n− 1] : ǫi = 0 and |πi| > |πi+1|}|.

We also define the flag zero-descent number by

fdesz(π) := l · desz(π) +
n∑

i=1

ǫi.

Definition 2.7 (Colored admissible inversion). A colored admissible inversion of
π is a pair (i, j) with 1 ≤ i < j ≤ n that satisfies any one of the following three
conditions

• 1 < i and |πi−1| < |πi| > |πj|;

• there is some k such that i < k < j and |πj| < |πi| < |πk|;

• ǫj > 0 and for any k such that i ≤ k < j, we have |πk| < |πj| < |πj+1|, where
we take the convention |πn+1| = +∞.

We write ai(π) the number of colored admissible inversions of π. For example, if
π = 40 10 21 50 31 in C2 ≀S5, then ai(π) = 3. When l = 1, the colored admissible
inversions agree with admissible inversions defined in Section 1.4.

Finally, we extend the statistic “ rix ” defined in Section 1.4 to the set of all
words over Nl. Let w = w1 · · ·wn be a word over Nl. Suppose that wi is the unique
rightmost letter of w such that |wi| = max{|w1|, |w2|, . . . , |wn|}. We define rix(w)
by (with convention that rix(∅) = 0)

rix(w) :=

⎧
⎪⎨
⎪⎩

0, if i = 1 �= n,

1 + rix(w1 · · ·wn−1), if i = n and ǫn = 0,

rix(wi+1wi+2 · · ·wn), if 1 < i < n.

As a colored permutation can be viewed as a word over Nl, the statistic “ rix ”
is well-defined on colored permutations. For example, if π = 10 61 20 51 30 41 70 ∈
C2 ≀S7, then rix(π) = 1+rix(10 61 20 51 30 41) = 1+rix(20 51 30 41) = 1+rix(30 41) =
1 + rix(30) = 2. We have the following colored version of Theorem 1.4.2.
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Corollary 2.4.21. For n ≥ 1, we have

A(l)
n (t, r, q) =

∑

π∈Cl≀Sn

tfdes
z(π)rrix(π)qai(π). (2.41)

Proof. By considering the position of the letter of π with maximal absolute value,
we can show that the right-hand side of (2.41) satisfies the same recurrence rela-
tion (2.40) and initial condition as A

(l)
n (t, r, q). The discussion is quite similar to

the proof of Theorem 1.4.2 and is omitted.

By setting r = 1 in (2.41), we have A
(l)
n (t, q) =

∑
π∈Cl≀Sn

tfdes
z(π)qai(π). An-

other statistic whose joint distribution with fdesz is the same as that of ai will be
discussed in next section (see Corollary 2.5.2).

2.5 Rawlings major index for colored permutations

2.5.1 Rawlings major index and colored Eulerian quasisym-
metric functions

Definition 2.8 (Colored Rawlings major index). For π ∈ Cl ≀Sn and k ∈ [n], we
define

DES≥k(π) := {i ∈ [n] : |πi| > |πi+1| and either ǫi �= 0 or |πi| − |πi+1| ≥ k},

inv<k(π) := |{(i, j) ∈ [n]× [n] : i < j, ǫi = 0 and 0 < |πi| − |πj| < k}|,

maj≥k(π) :=
∑

i∈DES≥k(π)

i.

Then the Rawlings major index of π is defined as

rmajk(π) := maj≥k(π) + inv<k(π).

For example, if π = 20 61 10 50 41 31 70 ∈ C2≀S7, then DES≥2(π) = {2, 4}, inv<2(π) =
2, maj≥2(π) = 2 + 4 = 6 and so rmaj2(π) = 6 + 2 = 8. Note that when l = 1,
rmajk is the k-major index studied by Rawlings [68].

Let Qn,k,�β be the colored Eulerian quasisymmetric functions defined by

Qn,k,�β :=
∑

�α

Qn,k,�α,�β.

The main result of this section is the following interpretation of Qn,k,�β.
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Theorem 2.5.1. We have

Qn,k,�β =
∑

inv<2(π)=k

�col(π)=�β

Fn,DES≥2(π).

It follows from Theorem 2.5.1 and Eq. (2.7) that
∑

inv<2(π)=k

�col(π)=�β

Fn,DES≥2(π) =
∑

exc(π)=k
�col(π)=�β

Fn,DEX(π).

By Lemma 2.2.2 and Eq. (2.2), if we apply ps to both sides of the above equation,
we will obtain the following new interpretation of the colored q-Eulerian polynomial
A

(l)
n (t, q).

Corollary 2.5.2. Let s�β = sβ1

1 · · · s
βl−1

l−1 for �β ∈ Nl−1. Then

∑

π∈Cl≀Sn

texc(π)qmaj(π)s
�col(π) =

∑

π∈Cl≀Sn

tinv<2(π)qrmaj2(π)s
�col(π).

Consequently,

A(l)
n (t, q) =

∑

π∈Cl≀Sn

tl·inv<2(π)+
∑n

i=1 ǫiqmaj≥2(π) =
∑

π∈Cl≀Sn

tfdes
z(π)qmaj≥2(π

−1).

Remark 2.10. When l = 1, the above result reduces to Theorem 1.6.1.

In view of interpretation (2.41), we have the following colored version of Prob-
lem 1.1.

Problem 2.1. Can we describe a statistic, denoted “ fix2 ”, equidistributed with
“ fix ” on colored permutations, so that

A(l)
n (t, r, q) =

∑

π∈Cl≀Sn

tfdes
z(π)rfix2(π)qmaj≥2(π

−1)?

2.5.2 Proof of Theorem 2.5.1: Chromatic quasisymmetric
functions

Let G be a graph with vertex set [n] and edge set E(G). A coloring of a graph G
is a function κ : [n] → P such that whenever {i, j} ∈ E(G) we have κ(i) �= κ(j).
Given a function κ : [n] → P, set

xκ :=
∏

i∈[n]

xκ(i).
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Shareshian and Wachs [77] generalized Stanley’s Chromatic symmetric function of
G to the Chromatic quasisymmetric function of G as

XG(x, t) :=
∑

κ

tascG(κ)xκ,

where the sum is over all colorings κ and

ascG(κ) := |{{i, j} ∈ E(G) : i < j and κ(i) > κ(j)}|.

Recall that an orientation of G is a directed graph o with the same vertices,
so that for every edge {i, j} of G, exactly one of (i, j) or (j, i) is an edge of o. An
orientation is often regarded as giving a direction to each edge of an undirected
graph. Let P be a poset. Define

XP = XP (x) :=
∑

σ

xσ,

summed over all strict order-reversing maps σ : P → P (i.e. if s <P t, then
σ(s) > σ(t)). Let o be an acyclic orientation of G and κ a coloring. We say that κ
is o-compatible if κ(i) < κ(j) whenever (j, i) is an edge of o. Every proper coloring
is compatible with exactly one acyclic orientation o, viz., if {i, j} is an edge of G
with κ(i) < κ(j), then let (j, i) be an edge of o. Thus, if Ko denotes the set of
o-compatible colorings of G, and if KG denotes the set of all colorings of G, then
we have a disjoint union KG = ∪oKo. Hence, XG =

∑
o
Xo, where Xo =

∑
κ∈Ko

xκ.
Since o is acyclic, it induces a poset ō: make i less than j if (i, j) is an edge of o
and then take the transitive closure of this relation. By the definition of XP for a
poset and of Xo for an acyclic orientation, we have Xō = Xo. Also, according to
the definition of ascG(κ) for a o-compatible coloring κ, ascG(κ) depends only on o,
that is,

ascG(κ) = ascG(κ
′) for any κ, κ′ ∈ Ko.

Thus, we can define ascG(o) of an acyclic orientation o by

ascG(o) := ascG(κ) for any κ ∈ Ko.

So
XG(x, t) =

∑

o

tascG(o)Xō, (2.42)

summed over all acyclic orientations of G.
We have the following reciprocity theorem for chromatic quasisymmetric func-

tions, which is a refinement of Stanley [79, Theorem 4.2].
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Theorem 2.5.3 (Reciprocity theorem). Let G be a graph on [n]. Define

XG(x, t) =
∑

(o,κ)

tascG(o)xκ,

summed over all pairs (o, κ) where o is an acyclic orientation of G and κ is a
function κ : [n] → P satisfying κ(i) ≤ κ(j) if (i, j) is an edge of o. Then

XG(x, t) = ωXG(x, t),

where ω is the involution defined in Section 2.1.1.

Proof. For a poset P define
XP =

∑

σ

xσ,

summed over all order-preserving mappings σ : P → P, i.e., if s <P t then
σ(s) ≤ σ(t). The reciprocity theorem for P -partitions [80, Theorem 4.5.4] implies
that

ωXP = XP .

Now, apply ω to Eq. (2.42). We get

ωXG(x, t) =
∑

o

tascG(o)ωXō =
∑

o

tascG(o)X ō,

where o summed over all acyclic orientations of G. Hence XG(x, t) = ωXG(x, t),
as desired.

For π ∈ Sn, the G-inversion number of π is

invG(π) := |{(i, j) : i < j, π(i) > π(j) and {π(i), π(j)} ∈ E(G)}|.

For π ∈ Sn and P a poset on [n], the P -descent set of π is

DESP (π) := {i ∈ [n− 1] : π(i) >P π(i+ 1)}.

Define the incomparability graph inc(P ) of a poset P on [n] to be the graph with
vertex set [n] and edge set {{a, b} : a �≤P b and b �≤P a}.

Shareshian and Wachs [77, Theorem 4.15] stated the following fundamental
quasisymmetric function basis decomposition of the chromatic quasisymmetric
functions, which refines the result of Chow [16, Corollary 2].

Theorem 2.5.4 (Shareshian–Wachs). Let G be the incomparability graph of a
poset P on [n]. Then

ωXG(x, t) =
∑

π∈Sn

tinvG(π)Fn,DESP (π).
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Proof of Theorem 2.5.1. Let bar(B) be the number of barred letters of a col-
ored banner B. By Lemma 2.2.5 we have

Qn,k,�β =
∑

B

wt(B), (2.43)

where the sum is over all colored banners B with bar(B) = k and �col(B) = �β.
Let c = c1c2 . . . cn be a word of length n over {0} ∪ [l − 1]. Define P c

n,k to be
the poset on vertex set [n] such that i <P j in P c

n,k if and only if i < j and either
ci �= 0 or j − i ≥ k. Let Gc

n,k be the incomparability graph of P c
n,k (see Fig. 2.1).

Clearly,
XGc

n,2
(x, t) =

∑

B

wt(B)tbar(B), (2.44)

where the sum is over all colored banners B such that B(i) is ci-colored. Theorems 2.5.3

� �

1 2 3 4 5 6 7 8 9
� � � � � � �

Figure 2.1: The graph Gc
9,2 with c = 010020121.

and 2.5.4 together gives

XGc
n,2
(x, t) =

∑

π∈Sn

t
invGc

n,2
(π)

Fn,DESPc
n,2

(π).

Comparing with (2.44) we get
∑

π∈Sn

t
invGc

n,2
(π)

Fn,DESPc
n,2

(π) =
∑

B

wt(B)tbar(B), (2.45)

where the sum is over all colored banners B such that B(i) is ci-colored.
For each π = π1 · · · πn ∈ Cl ≀Sn, if c = c1c2 . . . cn is defined by the identification

{1c1 , 2c2 , . . . , ncn} = {π1, π2, . . . , πn},

then we can verify that

inv<k(π) = invGc
n,k
(|π|) and DES≥k(π) = DESP c

n,k
(|π|). (2.46)

Therefore, by (2.45) we have
∑

π∈Cl≀Sn
�col(π)=�β

tinv<k(π)Fn,DES≥k(π) =
∑

B

wt(B)tbar(B),

where the sum is over all colored banners B with �col(B) = �β. This finishes the
proof of the theorem in view of the interpretation of Qn,k,�β in (2.43).
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2.5.3 New Mahonian statistics on colored permutations

A statistic “ st ” on the colored permutation group Cl ≀Sn is called Mahonian if

∑

π∈Cl≀Sn

qst(π) = [l]q[2l]q · · · [nl]q.

Adin and Roichman [1] introduced the flag major index of a colored permutation
π, denoted fmaj(π) and defined as

fmaj(π) := l ·maj(π) +
n∑

i=1

ǫi.

It is known (cf. [28]) that the flag major index is Mahonian. Note that

∑

π∈Cl≀Sn

tfexc(π)rfix(π)qfmaj(π) = A(l)
n (tq, r, ql). (2.47)

When l = 1, Rawlings [68] proved that rmajk is Mahonian for each k. Define the
flag Rawlings major index of π ∈ Cl ≀Sn, fmajk(π), by

fmajk(π) := l · rmajk(π) +
n∑

i=1

ǫi.

We should note that fmaj �= fmaj1 if l ≥ 2. It follows from Eq. (2.47) and
Corollary 2.5.2 that fmaj2 is equidistributed with fmaj on colored permutation
groups and thus is also Mahonian. More general, we have the following result.

Theorem 2.5.5. For any l, k ≥ 1 the flag Rawlings major index fmajk is Maho-
nian.

Proof. A poset P on [n] satisfying the following conditions:

(1) x <P y implies x <N y;

(2) if the disjoint union (or direct sum) {x <P z}+ {y} is an induced subposet
of P then x <N y <N z;

is called a natural unit interval order. It was observed in [77] that if P is a natural
unit interval order, then by a result of Kasraoui [54, Theorem 1.8],

∑

π∈Sn

qinvinc(P )(π)+majP (π) = [1]q · · · [n]q (2.48)
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with majP (π) :=
∑

i∈DESP (π) i. Denote by W l
n the set of all words of length n over

{0} ∪ [l − 1]. For each c = c1 · · · cn in W l
n, let P c

n,k and Gc
n,k be the poset and

the graph defined in the proof of Theorem 2.5.1, respectively. Note that P c
n,k is a

natural unit interval order. Thus
∑

π∈Cl≀Sn

qfmajk =
∑

π∈Cl≀Sn

ql(rmaj≥k(π)+inv<k(π))+
∑n

i=1 ǫi

=
∑

c∈W l
n

∑

π∈Sn

q
l(invGc

n,k
(π)+majPc

n,k
(π))+

∑
i ci (by (2.46))

=
∑

c∈W l
n

q
∑

i ci [1]ql · · · [n]ql (by (2.48))

= (1 + q + · · ·+ ql−1)n[1]ql · · · [n]ql = [l]q[2l]q · · · [nl]q,

which completes the proof of the theorem.

Remark 2.11. For each π ∈ Cl ≀Sn

fmajn(π) = l

(
inv<n(π) +

∑

i∈DES≥n(π)

i

)
+
∑

i

ǫi,

where
inv<n(π) = |{(i, j) : ǫi = 0, i < j, and |πi| > |πj|}|

and
DES≥n(π) = {i : ǫi �= 0 and |πi| > |πi+1|}.

Foata–Han [36] introduced a colored version of the inversion number called flag
inversion number as:

finv(π) :=
∑

1≤i≤j
0≤ǫ≤l−1

χ(|πi|
ǫi+ǫ > πj) +

∑

i

ǫi,

where the operation ǫi + ǫ is in the cyclic group Cl. The statistic “ finv ” is also a
Mahonian statistic (see [28]). Clearly, the statistic “ fmajn ” is exactly the statistic
of inversion number on Sn. However, for l ≥ 2 the statistic “ fmajn ” is different
with the flag inversion number on Cl ≀Sn.
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Chapter 3

Descent polynomials of signed

multipermutations

3.1 Introduction

For each sequence of positive integers s = {si}i≥1 let I
s

n be the set of s-inversion
sequences of length n defined as

I
(s)
n := {(e1, . . . , en) ∈ Zn : 0 ≤ ei < si for 1 ≤ i ≤ n}.

The ascent set of an s-inversion sequence e = (e1, . . . , en) ∈ I
s

n is the set

Asc(e) :=

{
0 ≤ i < n :

ei
si

<
ei+1

si+1

}
,

with the convention that e0 = 0 and s0 = 1. Let asc(e) := |Asc(e)| be the
ascent statistic on e ∈ I

s

n. The s-inversion sequences and the ascent statistic were
introduced by Savage and Schuster in [72]. When s = (1, 2, 3, . . .), the set of s-
inversion sequences Is

n is known as the set of inversion tables (or Lehmer codes) of
length n.

Let π = π1π2 · · · πn be a word of length n with letters from Z. A descent of
π is an index i ∈ {0, 1, . . . , n − 1} such that πi > πi+1 (with the convention that
π0 = 0). Denote by DES(π) the set of descents of π and by des(π) the number of
descents of π. The major index of π, denoted maj(π), is defined as

maj(π) :=
∑

i∈DES(π)

i.

In this chapter, permutations or signed permutations of a multiset are viewed as
words on Z.
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It is well known that the number of descents on permutations of [n] has the
same distribution as the number of ascents on inversion tables of length n; see [72,
Lemma 1] for multivariate equidistribution. Let

P ({1, 1, 2, 2, . . . , n, n})

be the set of permutations of the multiset {1, 1, 2, 2, . . . , n, n}. The following con-
nection between multiset permutations and special inversion sequences was shown
in [73, Theorem 3.23].

Theorem 3.1.1 (Savage–Visontai [73]).

∑

π∈P ({1,1,2,2,...,n,n})

tdes(π) =
∑

e∈I
(1,1,3,2,...,2n−1,n)
2n

tasc(e).

Now we introduce the signed multiset permutations as follows: let

P±({1, 1, 2, 2, . . . , n, n})

be the set of all signed permutations of the multiset {1, 1, 2, 2, . . . , n, n}, whose
elements are those of the form ±π1 ± π2 · · · ± π2n with

π1π2 · · · π2n ∈ P ({1, 1, 2, 2, . . . , n, n}).

For convenience, write −n by n for each positive integer n. For example,

P±({1, 1}) = {1 1, 1 1, 1 1, 1 1}.

Clearly,
|P±({1, 1, 2, 2, . . . , n, n})| = 2n(2n)! = |I

(1,4,3,8,...,2n−1,4n)
2n |.

Savage and Visontai [73, Conjecture 3.25] further conjectured the following equidis-
tribution, which was proved very recently (and independently) by Chen et al. [13]
using type B P -Partitions.

Theorem 3.1.2. For any n ≥ 1, we have
∑

π∈P±({1,1,2,2,...,n,n})

tdes(π) =
∑

e∈I
(1,4,3,8,...,2n−1,4n)
2n

tasc(e). (3.1)

For n ≤ 2, we have
∑

π∈P±({1,1})

tdes(π) = 1 + 3t =
∑

e∈I
(1,4)
2

tasc(e)
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and ∑

π∈P±({1,1,2,2})

tdes(π) = 1 + 31t+ 55t2 + 9t3 =
∑

e∈I
(1,4,3,8)
4

tasc(e).

In Section 3.2, we will give a simple proof of Theorem 3.1.2 by verifying that
both sides of (3.1) satisfy the same recurrence formula. Motivated by this con-
jecture, our purpose is to study the descent polynomial of signed permutations
of a general multiset (or called general signed multipermutations for brevity). In
Section 3.3, we prove a factorial generating function formula for the (des, fmaj)-
enumerator of general signed multipermutations, which generalizes a result of
Chow and Gessel [17]. In particular, a different proof of Theorem 3.1.2 is also
provided. In Section 3.4, we use the factorial formula to show that the descent
polynomial of the signed multipermutations is real-rooted. Moreover, another
different descent polynomial of the signed multipermutations is also shown to be
real-rooted. In Section 3.5, we extend some multivariate identities due to Beck and
Braun [7] from permutations to (signed) multipermutations. We end this chapter
with some related open questions.

3.2 Proof of Theorem 3.1.2

Lemma 3.2.1. Let s = (1, 4, 3, 8, . . . , 2n− 1, 4n) and

En(t) =
2n−1∑

i=0

En,it
i :=

∑

e∈Is2n

tasc(e).

Then,

En+1,i = (2i2 + 3i+ 1)En,i + (2i(4n− 2i+ 3) + 2n+ 1)En,i−1

+ (2n+ 2− i)(4n− 2i+ 5)En,i−2, (3.2)

with boundary conditions En,i = 0 for i < 0 or i > 2n− 1.

Proof. The following formula was established in [72, Theorem 13] using Ehrhart
theory:

En(t)

(1− t)2n+1
=
∑

k≥0

((k + 1)(2k + 1))ntk. (3.3)
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Thus we have

En+1(t)

(1− t)2n+3
=
∑

k≥0

((k + 1)(2k + 1))n+1tk

=
∑

k≥0

((k + 1)(2k + 1))n(k + 1)(2k + 1)tk

=
∑

k≥0

((k + 1)(2k + 1))n(2k(k − 1) + 5k + 1)tk

= 2t2(En(t)(1− t)−2n−1)′′ + 5t(En(t)(1− t)−2n−1)′ +
En(t)

(1− t)2n+1
.

Multiplying both sides by (1− t)2n+3 gives

En+1(t) =2t2[E ′′
n(t) + [(8n+ 4)t2(1− t) + 5t(1− t)2]E ′

n(t)

+ [(8n2 + 2n)t2 + (10n+ 3)t+ 1]En(t).

Extracting the coefficients of ti in both sides we have

En+1,i =2i(i− 1)En,i − 4(i− 1)(i− 2)En,i−1 + 2(i− 2)(i− 3)En,i−2

+ 5iEn,i + (8n− 6)(i− 1)En,i−1 + (1− 8n)(i− 2)En,i−2

+ En,i + (10n+ 3)En,i−1 + (8n2 + 2n)En,i−2,

which becomes (3.2) after simplification.

Lemma 3.2.2. Let

Pn(t) =
2n−1∑

i=0

Pn,it
i :=

∑

π∈P±({1,1,2,2,...,n,n})

tdes(π).

Then,

Pn+1,i = (2i2 + 3i+ 1)Pn,i + (2i(4n− 2i+ 3) + 2n+ 1)Pn,i−1

+ (2n+ 2− i)(4n− 2i+ 5)Pn,i−2, (3.4)

with boundary conditions Pn,i = 0 for i < 0 or i > 2n− 1.

Proof. Denote by Pn,i the set of signed permutations of {1, 1, 2, 2, . . . , n, n} with i
descents. Clearly, every signed permutation in Pn+1,i can be obtained from a signed
permutation in Pn,i,Pn,i−1 or Pn,i−2 by inserting {n+ 1, n+ 1}, {n+ 1, n+ 1} or
{n+ 1, n+ 1}.

For each π ∈ Pn,i, there are i + 1 positions in π that inserting n + 1 will not
produce an extra descent. These are the i descent positions of π plus the position
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to the right of π. Differently, we can only insert n+ 1 to the i descent positions
of π that may not produce an extra descent. Therefore, there are

((
i+1
2

))
ways to

insert {n+1, n+1},
((

i
2

))
ways to insert {n+ 1, n+ 1} and (i+ 1)i ways to insert

{n+1, n+ 1} into π to let it become a signed permutation in Pn+1,i. So there are
(2i2 + 3i+ 1)Pn,i signed permutations in Pn+1,i constructed from Pn,i.

Similarly, there are (2i(4n−2i+3)+2n+1)Pn,i−1 and (2n+2−i)(4n−2i+5)Pn,i−2

signed permutations in Pn+1,i constructed from Pn,i−1 and Pn,i−2, respectively.
Summarizing all the above three cases, we obtain (3.4).

By Lemma 3.2.1 and 3.2.2, we see that En,i and Pn,i satisfy the same recurrence
relation and boundary conditions, so they are equal. This finishes the proof of
Theorem 3.1.2.

3.3 General signed multipermutations

In this section, we consider the descent polynomial on signed permutations of the
general multiset Mm := {1m1 , 2m2 , . . . , nmn} for any m := (m1,m2, . . . ,mn) ∈ Pn.
Let P (m) and P±(m) denote the set of all permutations and signed permutations
of the multiset Mm, respectively.

The following result is attributed to MacMahon [60, Volme 2, p. 211], whose
proof can be found in [40, Section 7].

Theorem 3.3.1. For every m ∈ Pn with m1 + · · ·+mn = m, we have
∑

π∈P (m) t
des(π)qmaj(π)

(t; q)m+1

=
∑

k≥0

[
m1 + k

m1

]

q

· · ·

[
mn + k

mn

]

q

tk. (3.5)

Our signed version is:

Theorem 3.3.2. For every m ∈ Pn with m1 + · · ·+mn = m, we have
∑

π∈P±(m)

tdes(π)qfmaj(π)zneg(π)

(t; q2)m+1

=
∑

k≥0

n∏

r=1

(
mr∑

i=0

(zq)i
[
mr − i+ k

mr − i

]

q2

[
i+ k − 1

i

]

q2

)
tk, (3.6)

where fmaj(π) := 2maj(π) + neg(π) and neg(π) is the number of negative signs in
π. In particular,

∑
π∈P±(m) t

des(π)qfmaj(π)

(t; q2)m+1

=
∑

k≥0

n∏

r=1

[
mr + 2k

mr

]

q

tk. (3.7)
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Remark 3.1. Setting z = 0, we recover Theorem 3.3.1. It is worth noticing
that Foata and Han [37, Theorem 1.2] have calculated (another signed version of
Theorem 3.3.1) the factorial generating function formula for

∑

π∈P±(m)

tfdes(π)qfmaj(π)zneg(π),

involving the so-called flag descent statistic fdes, fdes(π) := 2 des(π)− χ(π1 < 0),
on signed multipermutations (or words).

Corollary 3.3.3 (Chow–Gessel [17]).

∑
π∈P±({1,2,...,n}) t

des(π)qfmaj(π)

(t; q2)n+1

=
∑

k≥0

([2k + 1]q)
ntk.

Proof. Setting m1 = · · · = mn = 1 and z = 1 in Theorem 3.3.2.

Corollary 3.3.4.

∑
π∈P±({1,1,2,2,...,n,n}) t

des(π)

(1− t)2n+1
=
∑

k≥0

((k + 1)(2k + 1))ntk. (3.8)

Proof. Setting m1 = · · · = mn = 2 and z = q = 1 in Theorem 3.3.2.

Remark 3.2. Comparing (3.8) with (3.3) we get another proof of Theorem 3.1.2.

We will prove Theorem 3.3.2 by using the technique of barred permutations
inspired by Gessel and Stanley [48]. For each π = π1 · · · πm ∈ P±(m) we call the
space between πi and πi+1 the i-th space of π for 0 < i < m. We also call the
space before π1 and the space after πm the 0-th space and the m-th space of π,
respectively. If i ∈ DES(π), then we call the i-th space a descent space.

Definition 3.1 (Barred permutations). A barred permutation on π ∈ P±(m) is
obtained by inserting one or more vertical bars into some spaces of π such that
there is at least one bar in every descent space of π. For example, ||1̄|2̄2|1|| is a
barred permutation on π = 1̄2̄21 but 1̄|2̄2|1|| is not, since 0 ∈ DES(π) and there
is no bar in the 0-th space (i.e. before π1 = 1̄).

Proof of Theorem 3.3.2. Let B(m) be the set of barred permutations on P±(m).
Let σ ∈ B(m) be a barred permutation on π with bi bars in the i-th space of π.
We define the weight wt(σ) to be

wt(σ) := t
∑

biqneg(π)+2
∑

ibizneg(π).
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For example, wt(||1̄|2̄2|1||) = t6q26z2. Now, we count the barred permutations
in B(m) by the weight “wt ” in two different ways. First, fix a permutation
π ∈ P±(m), and sum over all barred permutations on π. Then, fix the number of
bars k, and sum over all barred permutations with k bars.

Fix a permutation π a barred permutation on π can be obtained by inserting
one bar in each descent space and then inserting any number of bars in all spaces.
So counting all the barred permutations on π by the weight “wt ” gives

tdes(π)qfmaj(π)zneg(π)
∑

i≥0

ti
∑

i≥0

(tq2)i · · ·
∑

i≥0

(tq2m)i,

which is equal to tdes(π)qfmaj(π)zneg(π)

(t;q2)m+1
. This shows that

∑

σ∈B(m)

wt(σ) =

∑
π∈P±(m) t

des(π)qfmaj(π)zneg(π)

(t; q2)m+1

. (3.9)

For a fixed integer k ≥ 0 let Bk(m) be the set of all barred permutations in
B(m) with k bars. Now, each barred permutation in Bk(m) can be constructed
by putting k bars in one line and then inserting mr integers from {r,−r}, for
1 ≤ r ≤ n, to the k + 1 spaces between each two adjacency bars (including the
space in the left side and the right side), with the rule that

• all integers between two adjacency bars are in increasing order;

• negative integers can not be inserted to the left side of all bars.

Observe that inserting a positive (resp. negative) integer to the (j+1)th space (from
right to left) of two adjacency bars would contribute the factor q2j (resp. (qz)q2j)
to the weight of the resulting barred permutation. Thus, by the well-known inter-
pretation (cf. [40, Proposition 4.1]) of the q-binomial coefficient

[
n+ r

n

]

q

=
∑

0≤c1≤c2···≤cn≤r

q
∑

ci , (3.10)

we have

∑

σ∈Bk(m)

wt(σ) =
n∏

r=1

(
mr∑

i=0

(zq)i
[
mr − i+ k

mr − i

]

q2

[
i+ k − 1

i

]

q2

)
tk.

Summing over all k in the above equation and comparing with Eq. (3.9) we
get (3.6). By setting z = 1 in (3.6) and using the q-binomial theorem

1

(t; q)k
=
∑

i≥0

[
k − 1 + i

i

]

q

ti,

we obtain (3.7).
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3.4 Signed versions of Simion’s result about real-

rootedness

It was shown in [73, Theorem 1.1] that the ascent polynomial
∑

e∈I
(s)
2n

tasc(e) has
only real roots for each s ∈ Pn. In view of Theorem 3.1.2 we have:

Corollary 3.4.1. The polynomial
∑

π∈P±({1,1,2,2,...,n,n})

tdes(π)

has only real roots for any positive integer n.

Simion [78, Section 2] proved that the descent polynomial on the permutations
of a general multiset has only real roots.

Theorem 3.4.2 (Simion [78]). The descent polynomial
∑

π∈P (m) t
des(π) has only

real roots for every m ∈ Pn.

We have the following signed version of Simion’s result, which generalizes the
m1 = m2 = · · · = mn = 1 (i.e., the type B Coxeter group) case of Brenti [8] and
Corollary 3.4.1.

Theorem 3.4.3. The descent polynomial
∑

π∈P±(m) t
des(π) has only real roots for

every m ∈ Pn.

The key point of the proof of the above result lies in the following simple lemma.

Lemma 3.4.4. Let

Fn(t)

(1− t)n+1
=
∑

k≥0

f(k)(ak + b)tk and
Fn−1(t)

(1− t)n
=
∑

k≥0

f(k)tk. (3.11)

If a > 0, n > b
a
, Fn−1(t) is a real-rooted polynomial with nonnegative coefficients

and Fn(t) is a polynomial with nonnegative coefficients, then Fn(t) has only real
roots.

Proof. Clearly, by (3.11) we have

Fn(t)

(1− t)n+1
=
∑

k≥0

f(k)(ak + b)tk = b
Fn−1(t)

(1− t)n
+ a

(
Fn−1(t)

(1− t)n

)′

t.

From the above equation we deduce that

Fn(t) = ((an− b)t+ b)Fn−1(t) + at(1− t)F ′
n−1(t).

The lemma then follows by applying a result of Brenti [8, Theorem 2.4.5], which
was established through some standard argument by using Rolle’s theorem.
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Proof of Theorem 3.4.3. By setting q = 1, z = 1 in Eq. (3.7), we have
∑

π∈P±(m) t
des(π)

(1− t)m+1
=
∑

k≥0

n∏

r=1

(2k + 1)(2k + 2) · · · (2k +mr)

mr!
tk. (3.12)

We proceed by induction on m = m1 +m2 + · · ·+mn using the above formula.
When m = 1, then

∑
π∈P±({1}) t

des(π) = 1 + t and the result is true. Suppose
that m ≥ 2 and the result is true for m− 1. Let m− e1 := {1m1−1, 2m2 , . . . , nmn}.
By Eq. (3.12) we have
∑

π∈P±(m) t
des(π)

(1− t)m+1
=
∑

k≥0

f(k)
(2k +m1)

m1

tk and

∑
π∈P±(m−e1)

tdes(π)

(1− t)m
=
∑

k≥0

f(k)tk,

where f(k) = (2k+1)(2k+2)···(2k+m1−1)
(m1−1)!

n∏
r=2

(2k+1)(2k+2)···(2k+mr)
mr!

. Now we can check that

all the conditions of Lemma 3.4.4 are satisfied (with n = m, a = 2
m1

, b = 1):

a =
2

m1

> 0, n = m >
m1

2
=

b

a
,

the polynomial
∑

π∈P±(m−e1)
tdes(π) is real-rooted with nonnegative coefficients by

induction hypothesis and
∑

π∈P±(m) t
des(π) is a polynomial with nonnegative co-

efficients. This implies that
∑

π∈P±(m) t
des(π) is real-rooted, which completes the

proof of the theorem.

Remark 3.3. Note that the above approach is also available for Theorem 3.4.2
about the real-rootedness of

∑
π∈P (m) t

des(π).

The following interesting properties of the descent polynomial of signed multi-
permutations can be obtained by combining Theorem 3.4.3 and Lemma 2.4.6.

Corollary 3.4.5. The descent polynomial
∑

π∈P±(m) t
des(π) is log-concave and uni-

modal for each m ∈ Pn.

The following is another signed version of Simion’s result.

Theorem 3.4.6. The flag descent polynomial
∑

π∈P±(m) t
fdes(π) has only real roots

for every m ∈ Pn. In particular, every flag descent polynomial of signed multiper-
mutations is log-concave and unimodal.

Proof. By [37, Theorem 1.2], we can derive that
∑

π∈P±(m) t
fdes(π)

(1− t)(1− t2)m
=
∑

k≥0

(
m1 + k

m1

)
· · ·

(
mn + k

mn

)
tk. (3.13)
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On the other hand, by setting q = 1 in Theorem 3.3.1 we have
∑

π∈P (m) t
des(π)

(1− t)m+1
=
∑

k≥0

(
m1 + k

m1

)
· · ·

(
mn + k

mn

)
tk.

Comparing with Eq. (3.13), we obtain
∑

π∈P±(m)

tfdes(π) = (1 + t)m
∑

π∈P (m)

tdes(π).

It follows from the above relation and Theorem 3.4.2 that the flag descent poly-
nomial

∑
π∈P±(m) t

fdes(π) is real-rooted.

Remark 3.4. For m1 = m2 = · · · = mn = 1, the above result was already known
to Mongelli [64].

3.5 Multivariate identities

The following well-known identity is due to Carlitz [11]:
∑

π∈Sm

tdes(π)qmaj(π)

(t; q)m+1

=
∑

k≥0

([k + 1]q)
mtk, (3.14)

where Sm is the symmetric group of order m. Let z0, z1, z2, . . . be a sequence
of variables. Recently, Beck and Braun [7, Theorem 4.1] obtained the following
multivariate identity that generalizes Carlitz’s identity:

∑
π∈Sm

∏
i∈DES(π)

z0zπ1zπ2 · · · zπi

∏m
i=0(1− z0zπ1zπ2 · · · zπi

)
=
∑

k≥0

m∏

i=1

[k + 1]ziz
k
0 . (3.15)

This identity, as well as many type B versions, were established via the machine
of polyhedral geometry.

Remark 3.5. As was pointed out in [7], the approach of polyhedral geometry is
related to Stanley’s theory of P -partitions and Eq. (3.15) resembles Corollary 7.1
in [82]. The technique of barred permutations is also closely related to the theory
of P -partitions, as both were foreshadowed by work of MacMahon [60].

Note that Eq. (3.14) is the special case m1 = m2 = · · · = mr = 1 of MacMa-
hon’s identity in Theorem 3.3.1. Our technique of barred permutations used in the
proof of Theorem 3.3.2 has the advantage that enables us to extend multivariate
identity (3.15) to the multipermutations easily as follows.
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Theorem 3.5.1.
∑

π∈P (m)

∏
i∈DES(π)

z0zπ1zπ2 · · · zπi

∏m
i=0(1− z0zπ1zπ2 · · · zπi

)
=
∑

k≥0

[
m1 + k

m1

]

z1

· · ·

[
mn + k

mn

]

zn

zk0 . (3.16)

The proof of the above identity, together with other multivariate generalizations
for signed multipermutations involving the descents and the flag descents, will be
given in this section.

Proof of Theorem 3.5.1. As P (m) ⊆ P±(m), the definition of barred permuta-
tions on π ∈ P (m) is valid. We will count the set of all barred permutations on
P (m), denoted A(m), according to the weight

wtA(σ) =
m∏

i=0

(z0zπ1 · · · zπi
)bi

for any barred permutation σ on π with bi bars in the i-th space of π, in two
different ways similarly as in the proof of Theorem 3.3.2.

Fix a permutation π, a barred permutation on π can be obtained by inserting
one bar in each descent space and then inserting any number of bars in all spaces.
So counting all the barred permutations on π by the weight wtA gives

(∑

k≥0

zk0

)(∑

k≥0

(z0zπ1)
k

)
· · ·

(∑

k≥0

(z0zπ1 · · · zπm)
k

) ∏

i∈DES(π)

z0zπ1zπ2 · · · zπi
,

that is ∏
i∈DES(π)

z0zπ1zπ2 · · · zπi

∏m
i=0(1− z0zπ1zπ2 · · · zπi

)
.

Therefore, we have

∑

σ∈A(m)

wtA(σ) =

∑
π∈P (m)

∏
i∈DES(π)

z0zπ1zπ2 · · · zπi

∏m
i=0(1− z0zπ1zπ2 · · · zπi

)
. (3.17)

Fix an integer k ≥ 0 and let Ak(m) be the set of barred permutations in A(m)
with k bars. Now each barred permutation in Ak(m) can be constructed by putting
k bars in one line and then inserting mr copies of r, for 1 ≤ r ≤ n, to the k + 1
spaces between each two adjacency bars (including the left and right spaces). Note
that all integers inserted to the same space must in increasing order and inserting
an integer i in the (j+1)th spaces (from right to left) would contribute the factor
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zji to the weight of the resulting barred permutation. Thus by the interpretation
of q-binomial coefficients (3.10) we have

∑

σ∈A(m)

wtA(σ) =

[
m1 + k

m1

]

z1

· · ·

[
mn + k

mn

]

zn

zk0 .

Comparing with (3.17) we get (3.16).

Setting z0 = t and z1 = z2 = · · · zm = q in (3.16) we get (3.5). Also, when
m1 = m2 = · · · = mr = 1 identity (3.16) becomes the Beck–Braun identity (3.15).
We continue to generalize other Beck–Braun identities of type B to signed multi-
permutations. For any π = π1 · · · πm ∈ P±(m), introduce the sign change function
δπ : {1, 2, · · · ,m} → {0, 1}m as

δπ(i) = δπi := 1 if πiπi+1 < 0 or i = m and πm < 0, otherwise 0.

Define ch(π) :=
∑

j δ
π
j to be the total sign change in π. For example, if π = 13̄2̄23̄1̄1̄

then δπ = 1011001 and ch(π) = 4. Recall that the flag descent of π is

fdes(π) = 2 des(π)− χ(π1 < 0).

We begin with the following relationships between the sign function and the statis-
tics of flag descent, descent and flag major index.

Lemma 3.5.2. For each π ∈ P±(m) we have

fdes(π) =
∑

j∈DES(π)
δπ
j
=0

2 + ch(π), (3.18)

des(π) =
∑

j∈DES(π)
δπ
j
=0

1 + ⌈ch(π)/2⌉, (3.19)

fmaj(π) =
∑

j∈DES(π)
δπ
j
=0

2j +
m∑

j=1

δπj j. (3.20)

Proof. A descent j of π can arise in three cases:

• zero descent: j = 0 and π1 < 0, or

• sign change descent: δπj = 1 and πj > πj+1, or

• standard descent: δπj = 0 and πj > πj+1.
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Regarding sign change descents, consider the partial sums
∑m

j=k δ
π
j of sign changes.

By induction on (m− k), we can show that

m∑

j=k

δπj = χ(πk < 0) + 2|{i ≥ k : i is a sign change descent of π}|, (3.21)

from which we obtain (3.18) and (3.19). Also, we have

m∑

j=1

δπj j =
m∑

k=1

m∑

j=k

δπj

=
m∑

k=1

(
χ(πk < 0) + 2|{i ≥ k : i is a sign change descent of π}|

)

=neg(π) +
m∑

k=1

2|{i ≥ k : i is a sign change descent of π}|

=neg(π) +
∑

j∈DES(π)
δπ
j
=1

2j,

which shows (3.20).

In the following, we deal with the multivariate identities involving flag descents
and descents separately. Let z0, z1, z1̄, z2, z2̄, . . . be a sequence of variables.

3.5.1 An identity involving flag descents

We introduce the flag version of barred permutations.

Definition 3.2 (Flag barred permutations). For π ∈ P±(m) a flag barred permu-
tation on π is obtained from π by inserting bars such that

• every j-th descent space with δπj = 0 of π receives at least 2 bars;

• the parity of the number of bars in the j-th space (1 ≤ j ≤ m) of π has the
same parity as δπj .

For example, ||1̄|2̄2|1|| is a barred permutation on π = 1̄2̄21 but not a flag barred
permutation, the flag barred permutation on π with the least number of bars is
1̄||2̄|2||1.

Lemma 3.5.3. Let NDWm(r) be the set of all non-decreasing words of length m
with letters from {0, 1, . . . , r}. For each b ∈ NDWm(r) let tot(b), tote(b), toto(b)
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and odd(b) denote the sum of all letters, the sum of all even letters, the sum of all
odd letters and the number of odd letters in b, respectively. Then,

∑

b∈NDWm(r)

ptot
e(b)qtot

o(b)zodd(b) =
m∑

i=0

(zq)i
[
⌊(r − 1)/2⌋+ i

i

]

q2

[
⌊r/2⌋+m− i

m− i

]

p2
.

Proof. Let b = b1 . . . bm ∈ NDWm(r). Let 1 ≤ i1 < · · · < ik ≤ m (resp. 1 ≤
j1 < · · · < jl ≤ m) be the sequence of all integers i (resp. j) such that bi is
even (resp. odd). Then, b is completely characterized by the pair (be, bo), where
be := (bi1/2) . . . bik/2) and bo := ((bj1 − 1)/2) . . . ((bjl − 1)/2). Moreover, tote(b) =
2tot(be), toto(b) = 2tot(bo) + |bo| and odd(b) = |bo|. Hence, by the interpretation
of q-binomial coefficients (3.10) we have

∑

b∈NDWm(r)

ptot
e(b)qtot

o(b)zodd(b)

=
m∑

i=0

⎛
⎝(zq)i

∑

bo∈NDWi(⌊(r−1)/2⌋)

q2tot(b
o)

⎞
⎠
⎛
⎝ ∑

be∈NDWm−i(⌊r/2⌋)

p2tot(b
e)

⎞
⎠

=
m∑

i=0

(zq)i
[
⌊(r − 1)/2⌋+ i

i

]

q2

[
⌊r/2⌋+m− i

m− i

]

p2
,

as desired.

Theorem 3.5.4.

∑
π∈P±(m)

zneg(π)
∏

i∈DES(π)
δπ
i
=0

z20z
2
π1
· · · z2πi

m∏
i=1

z
δπi
0 z

δπi
π1 · · · z

δπi
πi

(1− z0)
m∏
i=1

(1− z20z
2
π1
· · · z2πi

)

=
∑

k≥0

zk0

n∏

r=1

mr∑

i=0

(zzr̄)
i

[
⌊(k − 1)/2⌋+ i

i

]

z2r̄

[
⌊k/2⌋+mr − i

mr − i

]

z2r

. (3.22)

In particular, if zr = zr̄ for all r ≥ 1, then

∑
π∈P±(m)

∏
i∈DES(π)

δπ
i
=0

z20z
2
π1
· · · z2πi

m∏
i=1

z
δπi
0 z

δπi
π1 · · · z

δπi
πi

(1− z0)
m∏
i=1

(1− z20z
2
π1
· · · z2πi

)
=
∑

k≥0

zk0

n∏

r=1

[
mr + k

mr

]

zr

. (3.23)
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Proof. For each flag barred permutation σ on π with bi bars in i-th space of π, we
define the weight

wtF (σ) = zneg(π)
m∏

i=0

(z0zπ1 · · · zπi
)bi .

Let F (m) be the set of all flag barred permutations on P±(m). As previously, we
count F (m) by the weight wtF twice.

Fix π ∈ P±(m). The flag barred permutation on π with the least number of
bars, denoted by σ̄, has the weight

wtF (σ̄) = zneg(π)
∏

i∈DES(π)
δπ
i
=0

z20z
2
π1
z2π2

· · · z2πi

m∏

i=1

z
δπi
0 z

δπi
π1z

δπi
π2 · · · z

δπi
πi .

As every flag barred permutation on π can be obtained from σ̄ by further inserting
any number of bars in the 0-th space of π and an even number of bars in the i-th
(for 1 ≤ i ≤ m) space of π, we see that counting all the flag barred permutations
on π according to the weight wtF gives

zneg(π)
∏

i∈DES(π)
δπ
i
=0

z20z
2
π1
z2π2

· · · z2πi

m∏
i=1

z
δπi
0 z

δπi
π1z

δπi
π2 · · · z

δπi
πi

(1− z0)
m∏
i=1

(1− z20z
2
π1
z2π2

· · · z2πi
)

.

Therefore, the enumerative polynomial
∑

σ∈F (m) wtF (σ) equals the left-hand side
of (3.22).

Next, for a fixed integer k ≥ 0, let Fk(m) be the set of flag barred permutations
in F (m) with k bars. Now, each flag barred permutation from Fk(m) can be
obtained in two steps. Firstly, we put k bars in one line and insert mr copies of
r, for 1 ≤ r ≤ n, into the spaces between bars. This yields a permutation from
P (m) with k bars, which is not necessary a flag barred permutation. Secondly, we
determine the signs of all the integers and the order of the integers between each
pair of two adjacency bars in the resulting object in such a way that it becomes a
flag barred permutation. The signs and the orders of integers are unique according
to the definition of a flag barred permutation, since

• all integers between two adjacency bars have the same sign and are in in-
creasing order;

• the sign of an integer in the (j + 1)th space (from right to left) of the k + 1
spaces between the k bars is “ + ” (resp. “− ”) if j is even (resp. odd).
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Thus, each way of inserting in the first step induces one and only one flag barred
permutation. Moreover, inserting an integer r in the (j+1)-th space (from right to
left) of the k+1 spaces between the k bars will contribute the factor zjr (resp. zzjr̄)
to the weight of the resulting flag barred permutation if j is even (resp. odd).
Therefore, by Lemma 3.5.3 we have

∑

σ∈Fk(m)

wtF (σ) = zk0

n∏

r=1

mr∑

i=0

(zzr̄)
i

[
⌊(k − 1)/2⌋+ i

i

]

z2r̄

[
⌊k/2⌋+mr − i

mr − i

]

z2r

.

Summing over all k and comparing with the fact that
∑

σ∈F (m) wtF (σ) equals the
left-hand side of (3.22), we get (3.22).

Remark 3.6. For z = 0, identity (3.22) yields (3.16). Setting m1 = · · · = mn = 1
in (3.23), we recover Corollary 6.4 in [7]. By (3.18) and (3.20), if we set z0 = t
and z1 = z2 = · · · = zn = q in (3.23), then we obtain

(1 + t)
∑

π∈P±(m) t
fdes(π)qfmaj(π)

(t2; q2)m
=
∑

k≥0

n∏

r=1

[
mr + k

mr

]

q

tk,

which appears as identity (7.3) in [37].

3.5.2 An identity involving descents

Theorem 3.5.5.

∑
π∈P±(m)

zneg(π)z
⌈
ch(π)

2
⌉

0

∏
i∈DES(π)

δπ
i
=0

z0z
2
π1
· · · z2πi

m∏
i=1

z
δπi
π1 · · · z

δπi
πi

m∏
i=0

(1− z0z2π1
· · · z2πi

)

=
∑

k≥0

zk0

n∏

r=1

(
mr∑

i=0

(zzr̄)
i

[
i+ k − 1

i

]

z2r̄

[
mr − i+ k

mr − i

]

z2r

)
. (3.24)

In particular, if zr = zr̄ for all r ≥ 1, then

∑
π∈P±(m)

z
⌈
ch(π)

2
⌉

0

∏
i∈DES(π)

δπ
i
=0

z0z
2
π1
· · · z2πi

m∏
i=1

z
δπi
π1 · · · z

δπi
πi

m∏
i=0

(1− z0z2π1
· · · z2πi

)
=
∑

k≥0

zk0

n∏

r=1

[
mr + 2k

mr

]

zr

. (3.25)
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Proof. For each barred permutation σ on π ∈ P±(m) with bi bars in i-th space of
π, we define the weight

wtB(σ) = zneg(π)
m∏

i=0

(z0z
2
π1
· · · z2πi

)bi
∏

πi<0

zπi
.

Fix π ∈ P±(m). Then through similar discussion as in the second paragraph
of the proof of Theorem 3.3.2, we can see that counting all barred permutations
on π according to the weight wtB gives

zneg(π)z
des(π)
0

∏
i∈DES(π) z

2
π1
· · · z2πi

∏
πi<0 zπi∏m

i=0(1− z0z2π1
· · · z2πi

)
.

We claim that

z
⌈
ch(π)

2
⌉

0

∏

i∈DES(π)
δπ
i
=0

z0z
2
π1
· · · z2πi

m∏

i=1

z
δπi
π1 · · · z

δπi
πi = z

des(π)
0

∏

i∈DES(π)

z2π1
· · · z2πi

∏

πi<0

zπi
, (3.26)

from which we see that
∑

σ∈B(m) wtB(σ) equals the left-hand side of (3.24). Clearly,
the degrees of z0 in both sides of (3.26) are equal follows from (3.19). To complete
the proof of our claim, it remains to show that for each 1 ≤ i ≤ m, the degrees of
zπi

in both sides of (3.26) are equal. By (3.21), the degree of zπi
in left-hand side

of (3.26) is

2|{j ≥ i : j ∈ DES(π), δπj = 0}|+
m∑

j=i

δπj

=2(|{j ≥ i : j ∈ DES(π), δπj = 0}|+ |{j ≥ i : j ∈ DES(π), δπj = 1}|) + χ(πi < 0)

=2|{j ≥ i : j ∈ DES(π)}|+ χ(πi < 0),

which is exactly the degree of zπi
in right-hand side of (3.26). This completes the

proof of our claim.
Next, for a fixed integer k ≥ 0, we can show that

∑

σ∈Bk(m)

wtB(σ) = zk0

n∏

r=1

(
mr∑

i=0

(zzr̄)
i

[
mr − i+ k

mr − i

]

z2r

[
i+ k − 1

i

]

z2r̄

)

by similar discussions as in the proof of Theorem 3.3.2. Therefore, the enumera-
tive polynomial

∑
σ∈B(m) wtB(σ) also equals the right-hand side of (3.24), which

finishes the proof of the theorem.

Remark 3.7. For z = 0, identity (3.24) yields (3.16). Setting m1 = · · · = mn = 1
in (3.25), we recover Theorem 6.10 in [7]. By (3.19) and (3.20), if we set z0 = t
and z1 = z1̄ = · · · = zn = zn̄ = q in (3.24), then we go back to (3.6).
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3.6 Some remarks

First of all, it would be interesting to find a bijective proof or a q-analog of the
equidistribution (3.1). Probably, a combinatorial interpretation of recurrence (3.2)
in terms of the inversion sequences would help us to understand this equidistribu-
tion better.

Recall that a polynomial f(z1, . . . , zm) ∈ R[z1, . . . , zm] is said to be stable,
if whenever I(zi) > 0 for all i then f does not vanish. It is well known that the
stability of the multivariate generating functions implies that their univariate coun-
terparts, obtained by diagonalization, have only real roots (see [49, Lemma 2.3]).
For each m ∈ Pn, the three descent polynomials

∑

π∈P (m)

tdes(π),
∑

π∈P±(m)

tdes(π) and
∑

π∈P±(m)

tfdes(π)

appear in this chapter all have only real roots. It would be interesting to find
some multivariate generalizations of the above three descent polynomials, similar
to the results for generalized Stirling permutations discovered by Haglund and
Visontai [49], which have the nice stable property.

Finally, the multivariate identities appearing in Section 3.5 can be generalized
naturally from signed multipermutations to r-colored multipermutations for r ≥ 1.
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Chapter 4

Jacobi–Stirling polynomials and

P -Partitions

4.1 Introduction and results

Let ℓα,β[y](t) be the Jacobi differential operator:

ℓα,β[y](t) =
1

(1− t)α(1 + t)β
(
−(1− t)α+1(1 + t)β+1y′(t)

)′
.

It is well known [14, p. 143] that the Jacobi polynomial y = P
(α,β)
n (t) is an eigen-

vector for the differential operator ℓα,β corresponding to n(n+ α + β + 1), i.e.,

ℓα,β[y](t) = n(n+ α + β + 1)y(t).

For each n ∈ N, the Jacobi–Stirling numbers JS(n, k; z) of the second kind appeared
originally as the coefficients in the expansion of the n-th composite power of ℓα,β
(see [27]):

(1− t)α(1 + t)βℓnα,β[y](t) =
n∑

k=0

(−1)k JS(n, k; z)
(
(1− t)α+k(1 + t)β+ky(k)(t)

)(k)
,

where z = α + β + 1, and can also be defined as the connection coefficients in

xn =
n∑

k=0

JS(n, k; z)
k−1∏

i=0

(x− i(z + i)). (4.1)

The Jacobi–Stirling numbers js(n, k; z) of the first kind are defined by

n−1∏

i=0

(x− i(z + i)) =
n∑

k=0

js(n, k; z)xk. (4.2)
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When z = 1, the Jacobi–Stirling numbers become the Legendre–Stirling numbers
[26] of the first and second kinds:

ls(n, k) = js(n, k; 1), LS(n, k) = JS(n, k; 1). (4.3)

Generalizing the work of Andrews and Littlejohn [4] on Legendre–Stirling numbers,
Gelineau and Zeng [43] studied the combinatorial interpretations of the Jacobi–
Stirling numbers and remarked on the connection with Stirling numbers and central
factorial numbers. Further properties of the Jacobi–Stirling numbers have been
given by Andrews, Egge, Gawronski, and Littlejohn [3].

The Stirling numbers of the second and first kinds S(n, k) and s(n, k) are defined
by

xn =
n∑

k=0

S(n, k)
k−1∏

i=0

(x− i),
n−1∏

i=0

(x− i) =
n∑

k=0

s(n, k)xk. (4.4)

The lesser known central factorial numbers [69, p. 213–217] T (n, k) and t(n, k) are
defined by

xn =
n∑

k=0

T (n, k) x
k−1∏

i=1

(
x+

k

2
− i

)
, (4.5)

and

x
n−1∏

i=1

(
x+

n

2
− i
)
=

n∑

k=0

t(n, k)xk.

Starting from the fact that for fixed k, the Stirling number S(n+ k, n) can be
written as a polynomial in n of degree 2k and there exist nonnegative integers ck,j,
1 ≤ j ≤ k, such that

∑

n≥0

S(n+ k, n)tn =

∑k
j=1 ck,jt

j

(1− t)2k+1
,

Gessel and Stanley [48] gave a similar combinatorial interpretation for the ck,j in
terms of the descents in Stirling permutations. Recently, Egge [24] has given an
analogous result for the Legendre–Stirling numbers, and Gelineau [42] has made
a preliminary study of the analogous problem for Jacobi–Stirling numbers. In
this chapter, we will prove some analogous results for the diagonal generating
function for Jacobi–Stirling numbers. As noticed in [43], the leading coefficient
of the polynomial JS(n, k; z) is S(n, k) and the constant term of JS(n, k; z) is the
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central factorial number of the second kind with even indices T (2n, 2k). Similarly,
the leading coefficient of the polynomial js(n, k; z) is s(n, k) and the constant term
of js(n, k; z) is the central factorial number of the first kind with even indices
t(2n, 2k).

Definition 4.1. The Jacobi–Stirling polynomial of the second kind is defined by

fk(n; z) := JS(n+ k, n; z). (4.6)

The coefficient pk,i(n) of zi in fk(n; z) is called the Jacobi–Stirling coefficient of
the second kind for 0 ≤ i ≤ k. Thus

fk(n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)z
k. (4.7)

The main goal of this chapter is to prove Theorems 4.1.1 and 4.1.2 below.

Theorem 4.1.1. For each integer k and i such that 0 ≤ i ≤ k, there is a polyno-
mial Ak,i(t) =

∑2k−i
j=1 ak,i,jt

j with positive integer coefficients such that

∑

n≥0

pk,i(n)t
n =

Ak,i(t)

(1− t)3k−i+1
. (4.8)

In order to give a combinatorial interpretation for ak,i,j, we introduce the mul-
tiset

Mk := {1, 1, 1̄, 2, 2, 2̄, . . . , k, k, k̄},

where the elements are ordered by

1̄ < 1 < 2̄ < 2 . . . < k̄ < k.

Let [k̄] := {1̄, 2̄, . . . , k̄}. For any subset S ⊆ [k̄], we set Mk,S = Mk \ S.

Definition 4.2. A permutation π of Mk,S is a Jacobi–Stirling permutation if when-
ever u < v < w and π(u) = π(w), we have π(u) < π(v). We denote by JSPk,S

the set of Jacobi–Stirling permutations of Mk,S and

JSPk,i =
⋃

S⊆[k̄]
|S|=i

JSPk,S.

For example, the Jacobi–Stirling permutations of JSP2,1 are:

222̄11, 2̄2211, 2̄1221, 2̄1122, 2212̄1, 1222̄1, 12̄221, 12̄122, 22112̄, 12212̄,

11222̄, 112̄22, 22111̄, 12211̄, 11221̄, 111̄22, 221̄11, 1̄2211, 1̄1221, 1̄1122.

Let π = π1π2 . . . πm be a word on a totally ordered alphabet. We say that π has
a descent at l, where 1 ≤ l ≤ m − 1, if πl > πl+1. Let des(π) be the number of
descents of π. The following is our main interpretation for the coefficients ak,i,j.

Theorem 4.1.2. For k ≥ 1, 0 ≤ i ≤ k, and 1 ≤ j ≤ 2k − i, the coefficient ak,i,j
is the number of Jacobi–Stirling permutations in JSPk,i with j − 1 descents.



104 4. Jacobi–Stirling polynomials and P -Partitions

4.2 Jacobi–Stirling polynomials

Proposition 4.2.1. For 0 ≤ i ≤ k, the Jacobi–Stirling coefficient pk,i(n) is a
polynomial in n of degree 3k − i. Moreover, the leading coefficient of pk,i(n) is

1

3k−i2i i! (k − i)!
(4.9)

for all 0 ≤ i ≤ k.

Proof. We proceed by induction on k ≥ 0. For k = 0, we have p0,0(n) = 1 since
f0(n) = JS(n, n; z) = 1. Let k ≥ 1 and suppose that pk−1,i is a polynomial in n of
degree 3(k−1)− i for 0 ≤ i ≤ k−1. From (4.1) we deduce the recurrence relation:

{
JS(0, 0; z) = 1, JS(n, k; z) = 0, if k �∈ {1, . . . , n},
JS(n, k; z) = JS(n− 1, k − 1; z) + k(k + z) JS(n− 1, k; z), for n, k ≥ 1.

(4.10)

Substituting in (4.6) yields

fk(n; z)− fk(n− 1; z) = n(n+ z)fk−1(n; z). (4.11)

It follows from (4.7) that for 0 ≤ i ≤ k,

pk,i(n)− pk,i(n− 1) = n2pk−1,i(n) + npk−1,i−1(n). (4.12)

Applying the induction hypothesis, we see that pk,i(n)−pk,i(n−1) is a polynomial
in n of degree at most

max(3(k − 1)− i+ 2, 3(k − 1)− (i− 1) + 1) = 3k − i− 1.

Hence pk,i(n) is a polynomial in n of degree at most 3k−i. It remains to determine
the coefficient of n3k−i, say βk,i. Extracting the coefficient of n3k−i−1 in (4.12) we
have

βk,i =
1

3k − i
(βk−1,i + βk−1,i−1).

Now it is fairly easy to see that (4.9) satisfies the above recurrence.

Proposition 4.2.2. For all k ≥ 1 and 0 ≤ i ≤ k, we have

pk,i(0) = pk,i(−1) = pk,i(−2) = · · · = pk,i(−k) = 0. (4.13)
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Proof. We proceed by induction on k. By definition, we have

f1(n; z) = JS(n+ 1, n; z) = p1,0(n) + p1,1(n)z.

As noticed in [43, Theorem 1], the leading coefficient of the polynomial JS(n, k; z)
is S(n, k) and the constant term is T (2n, 2k). We derive from (4.4) and (4.5) that

p1,1(n) = S(n+ 1, n) = n(n+ 1)/2,

p1,0(n) = T (2n+ 2, 2n) = n(n+ 1)(2n+ 1)/6.

Hence (4.13) is true for k = 1. Assume that (4.13) is true for some k ≥ 1. By
(4.12) we have

pk,i(n)− pk,i(n− 1) = n2pk−1,i(n) + npk−1,i−1(n).

Since JS(0, k; z) = 0 if k ≥ 2, we have pk,i(0) = 0. The above equation and the
induction hypothesis imply successively that

pk,i(−1) = 0, pk,i(−2) = 0, . . . , pk,i(−k + 1) = 0, pk,i(−k) = 0.

The proof is thus complete.

Lemma 4.2.3. For each integer k and i such that 0 ≤ i ≤ k, there is a polynomial
Ak,i(t) =

∑2k−i
j=1 ak,i,jt

j with integer coefficients such that

∑

n≥0

pk,i(n)t
n =

Ak,i(t)

(1− t)3k−i+1
. (4.14)

Proof. By Proposition 4.2.1 and standard results concerning rational generating
functions (cf. [83, Corollary 4.3.1]), for each integer k and i such that 0 ≤ i ≤ k,
there is a polynomial Ak,i(t) = ak,i,0 + ak,i,1t+ · · ·+ ak,i,3k−it

3k−i satisfying (4.14).
Now, by [83, Proposition 4.2.3], we have

∑

n≥1

pk,i(−n)tn = −
Ak,i(1/t)

(1− 1/t)2k−i+1
. (4.15)

Applying (4.13) we see that ak,i,2k−i+1 = · · · = ak,i,3k−i = 0.

The first values of Ak,i(t) are given in Table 1. The following result gives a
recurrence for the coefficients ak,i,j.

Proposition 4.2.4. Let a0,0,0 = 1. For k, i, j ≥ 0, we have the following recurrence
for the integers ak,i,j:

ak,i,j = j2ak−1,i,j + [2(j − 1)(3k − i− j − 1) + (3k − i− 2)]ak−1,i,j−1

+(3k − i− j)2ak−1,i,j−2 + jak−1,i−1,j + (3k − i− j)ak−1,i−1,j−1,
(4.16)

where ak,i,j = 0 if any of the indices k, i, j is negative or if j /∈ {1, . . . , 2k − i}.
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Table 4.1: The first values of Ak,i(t)

k\i 0 1 2 3
0 1

1 t + t2 t

2 t + 14t2 + 21t3 + 4t4 2t + 12t2 + 6t3 t + 2t2

3 t + 75t2 + 603t3 + 1065t4 + 460t5 + 36t6 3t + 114t2 + 501t3 + 436t4 + 66t5 3t + 55t2 + 116t3 + 36t4 t + 8t2 + 6t3

Proof. For 0 ≤ i ≤ k, let

Fk,i(t) =
∑

n≥0

pk,i(n)t
n =

Ak,i(t)

(1− t)3k−i+1
. (4.17)

The recurrence relation (4.12) is equivalent to

Fk,i(t) = (1− t)−1[t2F ′′
k−1,i(t) + tF ′

k−1,i(t) + tF ′
k−1,i−1(t)] (4.18)

with F0,0 = (1− t)−1. Substituting (4.17) into (4.18) we obtain

Ak,i(t) =(1− t)3k−i[t2(Ak−1,i(t)(1− t)−(3k−i−2))′′

+ t(Ak−1,i(t)(1− t)−(3k−i−2))′ + t(Ak−1,i−1(t)(1− t)−(3k−i−1))′]

=[t2A′′
k−1,i(t)(1− t)2 + 2(3k − i− 2)t2A′

k−1,i(t)(1− t)

+ (3k − i− 2)(3k − i− 1)t2Ak−1,i(t)]

+ [tA′
k−1,i(t)(1− t)2 + (3k − i− 2)tAk−1,i(t)(1− t)]

+ [tA′
k−1,i−1(t)(1− t) + (3k − i− 1)tAk−1,i−1(t)].

Taking the coefficient of tj in both sides of the above equation, we have

ak,i,j =j(j − 1)ak−1,i,j − 2(j − 1)(j − 2)ak−1,i,j−1 + (j − 2)(j − 3)ak−1,i,j−2

+ 2(3k − i− 2)(j − 1)ak−1,i,j−1 − 2(3k − i− 2)(j − 2)ak−1,i,j−2

+ (3k − i− 2)(3k − i− 1)ak−1,i,j−2 + jak−1,i,j − 2(j − 1)ak−1,i,j−1

+ (j − 2)ak−1,i,j−2 + (3k − i− 2)ak−1,i,j−1 − (3k − i− 2)ak−1,i,j−2

+ jak−1,i−1,j − (j − 1)ak−1,i−1,j−1 + (3k − i− 1)ak−1,i−1,j−1,

which gives (4.16) after simplification.

Corollary 4.2.5. For k ≥ 0 and 0 ≤ i ≤ k, the coefficients ak,i,j are positive
integers for 1 ≤ j ≤ 2k − i.
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Proof. This follows from (4.16) by induction on k. Clearly, this is true for k = 0
and k = 1. Suppose that this is true for some k ≥ 1. As each term in the right-
hand side of (4.16) is nonnegative, we only need to show that at least one term on
the right-hand side of (4.16) is strictly positive. Indeed, for k ≥ 2, the induction
hypothesis and (4.16) imply that

• if j = 1, then ak,i,1 ≥ ak−1,i−1,1 > 0;

• if 2 ≤ j ≤ 2k − i, then ak,i,j ≥ (3k − i− j)ak−1,i−1,j−1 ≥ kak−1,i−1,j−1 > 0.

These two cases cover all possibilities.

Theorem 4.1.1 follows then from Lemma 4.2.3, Proposition 4.2.4 and Corol-
lary 4.2.5.

Now, define the Jacobi–Stirling polynomial of the first kind gk(n; z) by

gk(n; z) = js(n, n− k; z). (4.19)

Proposition 4.2.6. For k ≥ 1, we have

gk(n; z) = fk(−n;−z). (4.20)

If we write gk(n; z) = qk,0(n) + qk,1(n)z + · · ·+ qk,k(n)z
k, then

∑

n≥1

qk,i(n)t
n = (−1)k

∑2k−i
j=1 ak,i,3k−i+1−jt

j

(1− t)3k−i+1
. (4.21)

Proof. From (4.2) we deduce

{
js(0, 0; z) = 1, js(n, k; z) = 0, if k �∈ {1, . . . , n},
js(n, k; z) = js(n− 1, k − 1; z)− (n− 1)(n− 1 + z) js(n− 1, k; z), n, k ≥ 1.

It follows from the above recurrence and (4.19) that

gk(n; z)− gk(n− 1; z) = −(n− 1)(n− 1 + z)gk−1(n− 1; z).

Comparing with (4.11) we get (4.20), which implies that qk,i(n) = (−1)ipk,i(−n).
Finally (4.21) follows from (4.15).
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4.3 Jacobi–Stirling posets

We first recall some basic facts about Stanley’s theory of P -partitions [80, 82]. Let
P be a poset, and let ω be a labeling of P , i.e., an injection from P to a totally
ordered set (usually a set of integers). A (P, ω)-partition (or P -partition if ω is
understood) is a function f from P to the positive integers satisfying

1. if x <P y then f(x) ≤ f(y)

2. if x <P y and ω(x) > ω(y) then f(x) < f(y).

A linear extension of a poset P is an extension of P to a total order. We will
identify a linear extension of P labeled by ω with the permutation obtained by
taking the labels of P in increasing order with respect to the linear extension. For
example, the linear extensions of the poset shown in Figure 4.1 are 2 1 3 and 2 3 1.
We write L (P ) for the set of linear extensions of P (which also depend on the
labeling ω).
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❅❅
✈
1
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��
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✈
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1

Figure 4.1: A poset (left) and its linear extensions

The order polynomial ΩP (n) of P is the number of (P, ω)-partitions with parts
in [n] = {1, 2, . . . , n}. It is known that ΩP (n) is a polynomial in n whose degree
is the number of elements of P . The following is a fundamental result in the
P -partition theory [83, Theorem 4.5.14]:

∑

n≥1

ΩP (n)t
n =

∑
π∈L (P ) t

des π+1

(1− t)k+1
, (4.22)

where k is the number of elements of P and des π is computed according to the
natural order of the integers.

For example, the two linear extensions of the poset shown in Figure 4.1 each
have one descent, and the order polynomial for this poset is 2

(
n+1
3

)
. So equation

(4.22) reads
∑

n≥1

2

(
n+ 1

3

)
tn =

2t2

(1− t)4
.
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Figure 4.2: The labeled poset Rk.

By (4.10) the Jacobi-Stirling numbers have the generating function

∑

n≥0

JS(n, k; z)tn =
tk

(1− (z + 1)t)(1− 2(z + 2)t) · · · (1− k(z + k)t)
, (4.23)

As fk(n; z) = JS(n+ k, n; z), switching n and k in the last equation yields

∑

k≥0

fk(n; z)t
k =

1

(1− (z + 1)t)(1− 2(z + 2)t) · · · (1− n(z + n)t)
.

Identifying the coefficients of tk gives

fk(n; z) =
∑

1≤j1≤j2≤···≤jk≤n

j1(z + j1) · j2(z + j2) · · · jk(z + jk). (4.24)

For any subset S of [k], we define γS,m(j) by

γS,m(j) =

{
j if m ∈ S,

j2 if m �∈ S,

and define pk,S(n) by

pk,S(n) =
∑

1≤j1≤j2≤···≤jk≤n

γS,1(j1)γS,2(j2) · · · γS,k(jk). (4.25)

For example, if k = 2 and S = {1} then

pk,S(n) =
∑

1≤j1≤j2≤n

j1j
2
2 = n(n+ 1)(n+ 2)(12n2 + 9n− 1)/120.
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Figure 4.3: The labeled posets R2,{1} and R2,{2}.

Definition 4.3. Let Rk be the labeled poset in Figure 4.2. Let S be a subset of
[k]. The poset Rk,S obtained from Rk by removing the points 3m− 2 for m ∈ S is
called a Jacobi–Stirling poset.

For example, the posets R2,{1} and R2,{2} are shown in Figure 4.3.

Lemma 4.3.1. For any subset S ⊆ [k], let Ak,S(t) be the descent polynomial of
L (Rk,S), i.e., the coefficient of tj in Ak,S(t) is the number of linear extensions of
Rk,S with j − 1 descents, then

∑

n≥0

pk,S(n)t
n =

Ak,S(t)

(1− t)3k−|S|+1
. (4.26)

Proof. It is easy to see that ΩRk,S
(n) = pk,S(n) and the result follows from (4.22).

For 0 ≤ i ≤ k, Rk,i is defined as the set of
(
k
i

)
posets

Rk,i = {Rk,S | S ⊆ [k] with cardinality i }.

The posets in R2,1 are shown in Figure 4.3. We define L (Rk,i) to be the (disjoint)
union of L (P ), over all P ∈ Rk,i; i.e.,

L (Rk,i) =
⋃

S⊆[k]
|S|=i

L (Rk,S).

Now we are ready to give the first interpretation of the coefficients ak,i,j in the
polynomial Ak,i(t) defined in (4.14).

Theorem 4.3.2. We have

Ak,i(t) =
∑

S⊆[k]
|S|=i

Ak,S(t). (4.27)

In other words, the integer ak,i,j is the number of elements of L (Rk,i) with j − 1
descents.
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Proof. Extracting the coefficient of zi in both sides of (4.24), then applying (4.7)
and (4.25), we obtain

pk,i(n) =
∑

S⊆[k]
|S|=i

pk,S(n),

so that
∑

n≥0

pk,i(n)t
n =

∑

n≥0

∑

S

pk,S(n)t
n =

∑

S

∑

n≥0

pk,S(n)t
n,

where the summations on S are over all subsets of [k] with cardinality i. The
result follows then by comparing (4.14) and (4.26).

It is easy to compute Ak,S(1) which is equal to |L (Rk,S)| and is also (3k − i)!
times the leading coefficient of pk,S(n).

Proposition 4.3.3. Let S ⊆ [k], |S| = i and let lj(S) = |{ s ∈ S | s ≤ j }| for
1 ≤ j ≤ k. We have

Ak,S(1) =
(3k − i)!

∏k
j=1(3j − lj(S))

. (4.28)

Proof. We construct a permutation in L (Rk,S) by reading the elements of Rk,S

in increasing order of their labels and inserting each one into the permutation
already constructed from the earlier elements. Each element of Rk,S will have two
natural numbers associated to it: the reading number and the insertion-position
number. It is clear that the insertion-position number of 3j must be equal to its
reading number, which is 3j − lj(S), since it must be inserted to the right of all
the previously inserted elements (those with labels less than 3j). On the other
hand, an element not divisible by 3 may be inserted anywhere, so its number
of possible insertion positions is equal to its reading number. So the number of
possible linear extensions of Rk,S is equal to the product of the reading numbers
of all elements with labels not divisible by 3. Since the product of all the reading
numbers is (3j − i)!, we obtain the result by dividing this number by the product
of the reading numbers of the elements with labels 3, 6, . . . , 3k.

From (4.28) we can derive the formula for Ak,i(1), which is equivalent to Propo-
sition 4.2.1.

Proposition 4.3.4. We have

|L (Rk,i)| = Ak,i(1) =
(3k − i)!

3k−i2i i! (k − i)!
.
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Proof. By Proposition 4.3.3 it is sufficient to prove the identity

∑

1≤s1<···<si≤k

(3k − i)!
∏k

j=1(3j − lj(S))
=

(3k − i)!

3k−i2i i! (k − i)!
, (4.29)

where S = {s1, . . . , si} and lj(S) = |{ s ∈ S : s ≤ j }|.
The identity is obvious if S = ∅, i.e., i = 0. When i = 1, it is easy to see that

(4.29) is equivalent to the a = 2/3 case of the indefinite summation

k−1∑

s=0

(a)s
s!

=
(a+ 1)k−1

(k − 1)!
, (4.30)

where (a)n = a(a + 1) · · · (a + n − 1) and (a)0 = 1. Since the left-hand side of
(4.29) can be written as

k∑

si=i

(3k − i)!
∏k

j=si
(3j − i)

∑

1≤s1<···<si−1≤si−1

1∏si−1
j=1 (3j − lj(S))

,

we derive (4.29) from the induction hypothesis and (4.30).

Remark 4.1. Alternatively, we may prove the formula for Ak,i(1) as follows:

Ak,i(1) =
∑

S⊆[k]
|S|=i

Ak,S(1)

=
∑

S⊆[k]
|S|=i,k∈S

Ak,S(1) +
∑

S⊆[k]
|S|=i,k/∈S

Ak,S(1)

= (3k − i− 1)Ak−1,i−1(1) + (3k − i− 1)(3k − i− 2)Ak−1,i(1),

from which we easily deduce that Ak,i(1) = (3k − i)!/3k−i2i i! (k − i)!.

Since both of the above proofs of Proposition 4.3.4 use mathematical induction,
it is desirable to have a more conceptual proof. Here we give such a proof based
on the fact that Proposition 4.3.4 is equivalent to

|L (Rk,i)| = 2k−i ·
(3k − i)!

2!i i! 3!k−i(k − i)!
. (4.31)

A combinatorial proof of Proposition 4.3.4. We show that |L (Rk,i)| is equal to
2k−i times the number of partitions of [3k − i] with k − i blocks of size 3 and i
blocks of size 2.
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Let S be an i-element subset of [k] and let π be an element L (Rk,S), viewed as
a bijection from [3k− i] to Rk,S. Let σ = π−1. Then σ is a natural labeling of Rk,S,
i.e., an order-preserving bijection from the poset Rk,S to [3k − i], and conversely,
every natural labeling of Rk,S is the inverse of an element of L (Rk,S).

We will describe a map from the set of natural labelings of elements of Rk,i

to the set of partitions of [3k − i] with k − i blocks of size 3 and i blocks of size
2, for which each such partition is the image of 2k−i natural labelings. Given a
natural labeling σ of Rk,S, the blocks of the corresponding partition are the sets
{σ(3m − 2), σ(3m − 1), σ(3m)} for m /∈ S and the sets {σ(3m − 1), σ(3m)} for
m ∈ S. We note that since σ is a natural labeling, σ(3m) is always the largest
element of its block and σ(3) < σ(6) < · · · < σ(3m).

Now let P be a partition of [3k − i] with k − i blocks of size 3 and i blocks of
size 2. We shall describe all natural labelings σ of posets Rk,S that correspond to
P under the map just defined. First, we list the blocks of P as B1, B2, . . . , Bk in
increasing order of their largest elements. Then σ(3m) must be the largest element
of Bm. If Bm has two elements, then the smaller element must be σ(3m− 1), and
m must be an element of S. If Bm has three elements then m /∈ S, and σ(3m− 2)
and σ(3m − 1) are the two smaller elements of Bm, but in either order. Thus S
is uniquely determined by P , and there are exactly 2k−i natural labelings of Rk,S

in the preimage of P . So |L (Rk,i)| is 2i times the number of partitions of [3k − i]
with k − i blocks of size 3 and i blocks of size 2, and is therefore equal to the
right-hand side of (4.31).

4.4 Two proofs of Theorem 4.1.2

We shall give two proofs of Theorem 4.1.2. We first derive Theorem 4.1.2 from
Theorem 4.3.2 by constructing a bijection from the linear extensions of Jacobi–
Stirling posets to permutations. The second proof consists of verifying that the
cardinality of Jacobi–Stirling permutations in JSPk,i with j− 1 descents satisfies
the recurrence relation (4.16). Given a word w = w1w2 . . . wm of m letters, we
define the jth slot of w by the pair (wj, wj+1) for j = 0, . . . ,m. By convention
w0 = wm+1 = 0. A slot (wj, wj+1) is called a descent (resp. non-descent) slot if
wj > wj+1 (resp. wj ≤ wj+1).

4.4.1 First proof of Theorem 4.1.2

For any subset S = {s1, . . . , si} of [k] we define S̄ = {s̄1, . . . , s̄i}, which is a subset
of [k̄]. Recall that JSPk,S̄ is the set of Jacobi–Stirling permutations of Mk,S̄. We
construct a bijection φ : L (Rk,S) → JSPk,S̄ such that des φ(π) = des π for any
π ∈ L (Rk,S).
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If k = 1, then L (R1,0) = {123, 213} and L (R1,1) = {23}. We define φ by

φ(123) = 1̄11, φ(213) = 111̄, φ(23) = 11.

Suppose that k ≥ 2 and φ : L (Rk−1,S) → JSPk−1,S̄ is defined for any S ⊆ [k−1].
If π ∈ L (Rk,S) with S ⊆ [k], we consider the following two cases:

(i) k /∈ S, denote by π′ the word obtained by deleting 3k and 3k−1 from π, and
π′′ the word obtained by further deleting 3k−2 from π′. As π′′ ∈ L (Rk−1,S),
by induction hypothesis, the permutation φ(π′′) ∈ JSPk−1,S̄ is well defined.
Now,

a) if 3k− 2 is in the rth descent (or nondescent) slot of π′′, then we insert
k̄ in the rth descent (or nondescent) slot of φ(π′′) and obtain a word
φ1(π

′′);

b) if 3k− 1 is in the sth descent (or nondescent) slot of π′, we define φ(π)
by inserting kk in the sth descent (or nondescent) slot of φ1(π

′′).

(ii) k ∈ S, denote by π′ the word obtained from π by deleting 3k and 3k − 1.
As π′ ∈ L (Rk−1,i−1), the permutation φ(π′) ∈ JSPk−1,S̄ is well defined. If
3k − 1 is in the rth descent (or nondescent) slot of π′, we define φ(π) by
inserting kk in the rth descent (or nondescent) slot of φ(π′).

Clearly this mapping is a bijection and preserves the number of descents. For
example, if k = 3 and S = {2}, then φ(25137869) = 1123̄2331̄. This can be seen
by applying the mapping φ as follows:

213 → 25136 → 251376 → 25137869,

111̄ → 11221̄ → 1123̄21̄ → 1123̄2331̄.

Clearly we have des(25137869) = 2 and des(1123̄2331̄) = 2.

4.4.2 Second proof of Theorem 4.1.2

Let JSPk,i,j be the set of Jacobi–Stirling permutations in JSPk,i with j − 1
descents. Let a′0,0,0 = 1 and a′k,i,j be the cardinality of JSPk,i,j for k, i, j ≥ 0. By
definition, a′k,i,j = 0 if any of the indices k, i, j < 0 or j /∈ {1, . . . , 2k− i}. We show
that a′k,i,j’s satisfy the same recurrence (4.16) and initial conditions as ak,i,j’s.

Any Jacobi–Stirling permutation of JSPk,i,j can be obtained from one of the
following five cases:

(i) Choose a Jacobi–Stirling permutation in JSPk−1,i,j, insert k̄ and then kk
in one of the descent slots (an extra descent at the end of the permutation).
Clearly, there are a′k−1,i,j ways to choose the initial permutation, j ways to
insert k̄, and j ways to insert kk.
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(ii) Choose a Jacobi–Stirling permutation of JSPk−1,i,j−1,

1) insert k̄ in a descent slot and then kk in a non-descent slot. In this case,
there are a′k−1,i,j−1 ways to choose the initial permutation, j − 1 ways
to insert k̄, and 3k − i− j − 1 ways to insert kk.

2) insert k̄ in a non-descent slot and then kk in a descent slot. In this case,
there are a′k−1,i,j−1 ways to choose the initial permutation, 3k− i− j−1

ways to insert k̄, and j ways to insert kk.

(iii) Choose a Jacobi–Stirling permutation in JSPk−1,i,j−2, insert k̄ and then kk
in one of the non-descent slots. In this case, there are a′k−1,i,j−2 ways to
choose the initial permutation, 3k − i − j ways to insert k̄, and 3k − i − j
ways to insert kk.

(iv) Choose a Jacobi–Stirling permutation in JSPk−1,i−1,j and insert kk in one of
the descent slots. There are a′k−1,i−1,j ways to choose the initial permutation,
and j ways to insert kk.

(v) Choose a Jacobi–Stirling permutation in JSPk−1,i−1,j−1 and insert kk in
one of the non-descent slots. There are a′k−1,i−1,j−1 ways to choose the initial
permutation, and 3k − i− j ways to insert kk.

Summarizing all the above five cases, we obtain

a′k,i,j = j2a′k−1,i,j + [2(j − 1)(3k − i− j − 1) + (3k − i− 2)]a′k−1,i,j−1

+ (3k − i− j)2a′k−1,i,j−2 + ja′k−1,i−1,j + (3k − i− j)a′k−1,i−1,j−1.

Therefore, the numbers a′k,i,j satisfy the same recurrence and initial conditions as
the ak,i,j, so they are equal.

4.5 Legendre–Stirling posets

Let Pk be the poset shown in Figure 4.4, called the Legendre–Stirling poset. The
order polynomial of Pk is given by

ωPk
(n) =

∑

2≤f(2)≤···≤f(3k−1)≤n

k∏

i=1

f(3i− 1)(f(3i− 1)− 1)

= [xk]
1

(1− 2x)(1− 6x) . . . (1− (n− 1)nx)
,
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Figure 4.4: The Legendre–Stirling poset Pk.

which is equal to JS(n − 1 + k, n − 1; 1) by (4.23), and by (4.3) this is equal to
LS(n− 1 + k, n− 1). By (4.22), we obtain

∑

n≥0

LS(n+ k, n)tn =

∑
π∈L (Pk)

tdes(π)

(1− t)3k+1
.

In other words, we have the following theorem.

Theorem 4.5.1. Let bk,j be the number of linear extensions of Legendre–Stirling
posets Pk with exactly j descents. Then

∑

n≥0

LS(n+ k, n)tn =

∑2k−1
j=1 bk,jt

j

(1− t)3k+1
. (4.32)

We now apply the above theorem to deduce a result of Egge [24, Theorem 4.6].

Definition 4.4. A Legendre–Stirling permutation of Mk is a Jacobi–Stirling per-
mutation of Mk with respect to the order: 1̄ = 1 < 2̄ = 2 < · · · < k̄ = k.

Here 1̄ = 1 means that neither 11̄ nor 1̄1 counts as a descent. Thus, the
Legendre–Stirling permutation 1222̄11̄ has one descent at position 4, while as a
Jacobi–Stirling permutation, it has three descents, at positions 3, 4 and 5.

Theorem 4.5.2 (Egge). The coefficient bk,j equals the number of Legendre–Stirling
permutations of Mk with exactly j − 1 descents.

First proof. Let LSPk be the set of Legendre–Stirling permutations of Mk. By
Theorem 4.5.1, bk,j is the number of linear extensions of the Legendre–Stirling poset
Pk with j descents. Let b′k,j be the number of Legendre–Stirling permutations of
Mk with j − 1 descents. By induction on k, the reader can check that bk,j and b′k,j
satisfy the same recurrence and initial values.
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Second proof. By (4.6), (4.7), and (4.8), we have

∞∑

n=0

JS(n+ k, n; z)tn =
k∑

i=0

zi
∑2k−i

j=1 ak,i,jt
j

(1− t)3k−i+1
.

Setting z = 1 and using (4.3) gives

∞∑

n=0

LS(n+ k, n)tn =
k∑

i=0

(1− t)i
∑2k−i

j=1 ak,i,jt
j

(1− t)3k+1
.

Multiplying both sides by (1− t)3k+1 and applying (4.32) gives

2k−1∑

j=1

bk,jt
j =

k∑

i=0

(1− t)i
2k−i∑

j=1

ak,i,jt
j,

so
k∑

i=0

i∑

l=0

(−1)l
(
i

l

)
ak,i,j−l = bk,j. (4.33)

For any S ⊆ [k̄], let JSPk,S,j be the set of all Jacobi–Stirling permutations of
Mk,S with j− 1 descents. Let Bk,j =

⋃
S⊆[k̄] JSPk,S,j be the set of Jacobi–Stirling

permutations with j− 1 descents. We show that the left-hand side of (4.33) is the
number N0 of permutations in Bk,j with no pattern uū.

For any T ⊆ [k̄], let Bk,j(T,≥) be the set of permutations in Bk,j containing all
the patterns uū for ū ∈ T . By the principle of inclusion-exclusion [83, Chapter 2],

N0 =
∑

T⊆[k̄]

(−1)|T ||Bk,j(T,≥)|. (4.34)

Now, for any subsets T, S ⊆ [k̄] such that T ⊆ [k̄] \ S, define the mapping

ϕ : JSPk,S,j ∩Bk,j(T,≥) → JSPk,S∪T,j−|T |

by deleting the ū in every pattern uū of π ∈ JSPk,S,j ∩ Bk,j(T,≥). Clearly, this
is a bijection. Hence, we can rewrite (4.34) as

N0 =
∑

T⊆[k̄]

(−1)|T |
∑

S,T⊆[k̄]
T∩S=∅

|J SPk,S∪T,j−|T ||

=
∑

T⊆[k̄]

(−1)|T |
∑

S⊆[k̄]
T⊆S

|J SPk,S,j−|T ||.
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For any subset S of [k̄] with |S| = i, and any l with 0 ≤ l ≤ i, there are
(
i
l

)
subsets

T of S such that |T | = l, and, by definition,

∑

S⊆[k̄]
|S|=i

|J SPk,S,j−|T || = ak,i,j−l.

This proves that N0 is equal to the left-hand side of (4.33).
Let LSPk,j be the set of all Legendre–Stirling permutations of Mk with j − 1

descents. It is easy to identify a permutation π ∈ Bk,j with no pattern uū with
a Legendre–Stirling permutation π′ ∈ LSPk,j by inserting each missing ū just to
the right of the second u. This completes the proof.

4.6 A conjecture and a remark

The numerical experiments suggest the following conjecture, which has been veri-
fied for 0 ≤ i ≤ k ≤ 9.

Conjecture 4.6.1. For 0 ≤ i ≤ k, the polynomial Ak,i(t) has only real roots.

Note that by Lemma 2.4.6 and Corollary 4.2.5, Conjecture 4.6.1 would imply
that Ak,i(t) is unimodal. Let Gk be the multiset {1m1 , 2m2 , . . . , kmk} with mi ∈ N.
A permutations π of Gk is a generalized Stirling permutation (see [8, 53, 65]) if
whenever u < v < w and π(u) = π(w), we have π(v) > π(u). For any S ⊆ [k̄],
the set of generalized Stirling permutations of Mk \ S is equal to JSPk,S. By
Lemma 4.3.1 and Theorem 4.1.2, the descent polynomial of JSPk,S is Ak,S(t). It
follows from a result of Brenti [8, Theorem 6.6.3] that Ak,S(t) has only real roots.
By (4.27), this implies, in particular, that the above conjecture is true for i = 0
and i = k.

One can also use the methods of Haglund and Visontai [49] to show that Ak,S(t)
has only real roots, though it is not apparent how to use these methods to show
that Ak,i(t) has only real roots.

Remark 4.2. Very recently, some other positivity properties about Jacobi–Stirling
numbers are studied in [57].
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