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One-way Vehicle Sharing Systems (VSS)

Bike Sharing Systems e.g. Vélib’ Paris (2007)

Protocol

1. Take a bike at a station

2. Use it

3. Return it to the chosen station

In more than 400 cities !
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One-way Vehicle Sharing Systems (VSS)

Bike Sharing Systems e.g. Vélib’ Paris (2007)

Protocol

1. Take a bike at a station

2. Use it

3. Return it to the chosen station

In more than 400 cities !

Car Sharing Systems – Same protocol

• Car2Go (2008) > 15 cities • Autolib’ Paris (dec. 2011)
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Is it really freedom?
Frequent and uncontrolled dissatisfaction

• Taking impossible (no vehicle available)
• Returning impossible (no free parking spot)
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Is it really freedom?
Frequent and uncontrolled dissatisfaction

• Taking impossible (no vehicle available)
• Returning impossible (no free parking spot)

Causes
• Gravitation (Topography – Montmartre hill, Vélib’ Paris)

• Tides (Home ↔ Work)

Source Côme (2012) on Vélib’, Paris
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• Gravitation (Topography – Montmartre hill, Vélib’ Paris)

• Tides (Home ↔ Work)

Current optimization
• Fleet/station sizing Bikes X, Cars X
• Truck redistribution Bikes X, ✘✘✘Cars

• Chemla, Meunier, and Wolfler Calvo (2012)

• Raviv, Tzur, and Forma (2013)

• Contardo, Morency, and Rousseau (2012)
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Is it really freedom?
Frequent and uncontrolled dissatisfaction

• Taking impossible (no vehicle available)
• Returning impossible (no free parking spot)

Causes
• Gravitation (Topography – Montmartre hill, Vélib’ Paris)

• Tides (Home ↔ Work)

Current optimization
• Fleet/station sizing Bikes X, Cars X
• Truck redistribution Bikes X, ✘✘✘Cars

• Chemla, Meunier, and Wolfler Calvo (2012)

• Raviv, Tzur, and Forma (2013)

• Contardo, Morency, and Rousseau (2012)

Our approach - An alternative

⇒ Self regulation through incentives (pricing) Bikes X, Cars X
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On models’ metaphysics
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Study assumptions

Sap

Cham
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• Stochastic demand

• For a station to station trip

• In real-time

• With reservation of parking spot at destination

Ariel Waserhole VSS Pricing Optimization 5
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Study assumptions
An elastic demand

0 Price

Demand

potential demand λ(p0)

p0
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Study assumptions
An elastic demand

0 Price

Demand

potential demand λ(p0)

p0

gain = yλ × p0 →

≥ satisfied demand yλ
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Study assumptions
An elastic demand

Objective: Maximize transit

→ Implicit pricing/incentive

⇒ Set demand rate λ

0 Price

Demand

potential demand λ✟✟(p0)

✚✚p0

gain = yλ
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Study assumptions
An elastic demand

Objective: Maximize transit

→ Implicit pricing/incentive

⇒ Set demand rate λ

Continuous demand

• Maximum demand Λ

⇒ Any demand λ ∈ [0,Λ] reachable

0 Price

Demand

λ

Λ ← maximum demand
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Research question

Can pricing improve on the transit of the generous policy?

∑

a,b

yΛ
a,b

0 Price

Demand

Λ ← generous price policy

yΛ ← baseline
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Research question

Can pricing improve on the transit of the generous policy?

⇔ ∃? pricing policy λ such that
∑

a,b

yλ
a,b >

∑

a,b

yΛ
a,b

0 Price

Demand

λ

Λ ← generous price policy

yλ

yΛ ← baseline
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VSS stochastic optimization problem

Input

• Time-dependent continuous stochastic demand bounded by Λt

• A fleet of N vehicles

• A set of M stations with capacity Ka

Output Set the demand (= price) on each trip (a, b) at each instant t

• λt
a,b ∈ [0,Λt

a,b]

Objective

⇒ Maximize the number of trips sold

Ariel Waserhole VSS Pricing Optimization 7
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VSS stochastic evaluation model
Closed queuing network – Finite capacities – Time-varying rates λt

• M stations of size Ka

• N vehicles
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na ≤ Ka nb ≤ Kb

• M stations of size Ka (servers) (example with M = 2)

• N vehicles (jobs) (
∑

a∈M

na = N)
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VSS stochastic evaluation model
Closed queuing network – Finite capacities – Time-varying rates λt

a

a-a

b-a b-b

b

a-b

na ≤ Ka nb ≤ Kb

na,bna,a

nb,bnb,a

λt
b,a

λt
a,b

λt
a,a

λt
b,b

na,aµt
a,a na,b µt

a,b

nb,aµt
b,a

nb,bµt
b,b

• M stations of size Ka (servers) (example with M = 2)

• N vehicles (jobs) (
∑

a∈M

na +
∑

b∈M

na,b = N)

• Users arrivals following a time-dependent Poisson process

 λt
a,b for trips from a to b at time-step t (service time and routing)

• Exponential transportation time of mean µt
a,b

−1
(infinite server a-b)
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VSS stochastic evaluation model
Closed queuing network – Finite capacities – Time-varying rates λt

a

a-a

b-a b-b

b

a-b

na,bna,a

nb,bnb,a

na +

∑

b∈M

nb,a ≤ Ka nb +

∑

a∈M

na,b ≤ Kb

λt
b,a

λt
a,b

λt
a,a

λt
b,b

na,aµt
a,a na,b µt

a,b

nb,aµt
b,a

nb,bµt
b,b

Blocking issues

• Parking spot reservation at destination

• Blocking Before Service type
→ Joint constraint on “station” and “transport” queue sizes

Ariel Waserhole VSS Pricing Optimization 8
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VSS stochastic evaluation model
Closed queuing network – Finite capacities – Time-varying rates λt
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State of the art – Another optimization: Fleet sizing

• Only fixed stationary demand λt = λ (NOT pricing)

• George and Xia (2011)

→ Infinite station capacities

• Fricker and Gast (2012)

→ Perfect cities λt
a,b

= λ and µt
a,b

= µ

Ariel Waserhole VSS Pricing Optimization 8
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VSS stochastic evaluation model
Closed queuing network – Finite capacities – Time-varying rates λt
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An intractable model
With all our assumptions

• Exact evaluation of the transit for a given demand “hard”

• Curse of dimensionality

⇒ Easy to evaluate by simulation

Ariel Waserhole VSS Pricing Optimization 8
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VSS pricing optimization

An “intractable” stochastic model

Sap
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Gre

Simplified stochastic model already hard to evaluate (exactly)

“Keep it as simple as possible but not simpler” (A. Einstein)

Ariel Waserhole VSS Pricing Optimization 9



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

VSS pricing optimization

An “intractable” stochastic model
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Optimization on approximations⇓
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“Tractable” models
Heuristic Upper bound

• Simplified stoch. models X X W. and Jost (2013a)

• Scenario-based approach APX-hard X W., Jost, and Brauner (2013b)

• Fluid approximation X X W. and Jost (2013b)
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“Tractable” models
Heuristic Upper bound

(2) Simplified stoch. models X X W. and Jost (2013a)

(3) Scenario-based approach APX-hard X W., Jost, and Brauner (2013b)

(4) Fluid approximation X X W. and Jost (2013b)

• Decomposable MDP Exact Solution W., Gayon, and Jost (2013a)
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Looking for “tractable” solution methods

1. Simplified stochastic model

• No station capacity and no time-varying demand
as in George and Xia (2011) + no transportation times

→ Evaluate exactly a pricing policy
⇒ “Feel” stochastic optimization

2. Scenario based approach

3. Fluid approximation

Ariel Waserhole VSS Pricing Optimization 10
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Stochastic optimization of a simplified model
Null transportation times, stationary demand (λt = λ), infinite station capacity (K = ∞)
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Demand graph, M = 3 stations
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State graph, M = 3, N = 1 vehicle

Evaluation: a Continuous-Time Markov Chain (CTMC)

• State: (n1, . . . , nM),
∑

na = N

• na: number of vehicles in station a
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State graph, M = 3 stations, N = 2 vehicles

Evaluation: a Continuous-Time Markov Chain (CTMC)

• State: (n1, . . . , nM),
∑

na = N

• na: number of vehicles in station a

→ State graph of exponential size: |S| =
(

N+M−1
N

)

states
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Stochastic optimization of a simplified model
Null transportation times, stationary demand (λt = λ), infinite station capacity (K = ∞)
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State graph, M = 3 stations, N = 2 vehicles

• Static policy

= Not state dependent
→ Decisions on the demand graph

Ariel Waserhole VSS Pricing Optimization 11



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Stochastic optimization of a simplified model
Null transportation times, stationary demand (λt = λ), infinite station capacity (K = ∞)

12

3

Λ1,2

Λ2,1

Λ1,3
Λ3,1Λ2,3

Λ3,2

Demand graph, M = 3 stations

λs
1,2 ≤ Λ1,2

λs
1,2 ≤ Λ1,2

λs
1,2 ≤ Λ1,2

(0,0,2)

(0,2,0) (2,0,0)

(0,1,1)

(1,1,0)

(1,0,1)

State graph, M = 3 stations, N = 2 vehicles

• Static policy

= Not state dependent
→ Decisions on the demand graph

• Dynamic policy

= State dependent
→ Decisions on the state graph

Ariel Waserhole VSS Pricing Optimization 11



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Stochastic optimization of a simplified model
Null transportation times, stationary demand (λt = λ), infinite station capacity (K = ∞)

12

3

Λ1,2

Λ2,1

Λ1,3
Λ3,1Λ2,3

Λ3,2

Demand graph, M = 3 stations

λs
1,2 ≤ Λ1,2

λs
1,2 ≤ Λ1,2

λs
1,2 ≤ Λ1,2

(0,0,2)

(0,2,0) (2,0,0)

(0,1,1)

(1,1,0)

(1,0,1)

State graph, M = 3 stations, N = 2 vehicles

• Static policy

= Not state dependent
→ Decisions on the demand graph

• Dynamic policy

= State dependent
→ Decisions on the state graph

Ariel Waserhole VSS Pricing Optimization 11



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Can static policies improve on the generous policy?
N = 1 vehicle
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Can static policies improve on the generous policy?
N = 1 vehicle
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1≤110≤10

1≤1

Generous policy (λ ≤Λ)

Availability AN
a : probability to have a vehicle in station a

Transit on trip ya,b = AN
a λa,b: expected transit for trip (a, b)

Total transit
∑

(a,b)∈D

ya,b
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Generous policy (λ ≤Λ)

• Generous policy

◦ 1 vehicle → 5 trips/hour

Availability AN
a : probability to have a vehicle in station a

Transit on trip ya,b = AN
a λa,b: expected transit for trip (a, b)
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N = 1 vehicle
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b
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0

Policy closing station c (λ ≤Λ)

• Generous policy

◦ 1 vehicle → 5 trips/hour

• Policy closing station c

◦ 1 vehicle → 10 trips/hour

Availability AN
a : probability to have a vehicle in station a

Transit on trip ya,b = AN
a λa,b: expected transit for trip (a, b)

Total transit
∑
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ya,b
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Can static policies improve on the generous policy?
N = 1 vehicle

10≤10

10≤10

0≤10

0≤10 ≤10

0 ≤1

1
2A1

b
= 1

2

0

Policy closing station c (λ ≤Λ)

• Generous policy

◦ 1 vehicle → 5 trips/hour
⇒ ∞ vehicles → dominant?

• Policy closing station c

◦ 1 vehicle → 10 trips/hour
⇒ Optimal policy ∀N?

Availability AN
a : probability to have a vehicle in station a

Transit on trip ya,b = AN
a λa,b: expected transit for trip (a, b)

Total transit
∑

(a,b)∈D

ya,b

Ariel Waserhole VSS Pricing Optimization 12



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Optimizing static policies
Exact optimization for N vehicles

AN
a : probability to have a vehicle in station a

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
∑

(a,b)∈D

ya,b (Expected flow)

Ariel Waserhole VSS Pricing Optimization 13



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Optimizing static policies
Exact optimization for N vehicles

AN
a : probability to have a vehicle in station a

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
∑

(a,b)∈D

ya,b (Expected flow)

s.t.
∑

(a,b)∈D

ya,b =
∑

(b,a)∈D

yb,a ∀a ∈M (Flow conservation)

ya,b = AN
a λa,b ∀(a, b) ∈ D (Satisfied demand)

Ariel Waserhole VSS Pricing Optimization 13



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Optimizing static policies
Exact optimization for N vehicles

AN
a : probability to have a vehicle in station a

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
∑

(a,b)∈D

ya,b (Expected flow)

s.t.
∑

(a,b)∈D

ya,b =
∑

(b,a)∈D

yb,a ∀a ∈M (Flow conservation)

ya,b = AN
a λa,b ∀(a, b) ∈ D (Satisfied demand)

0 ≤ AN
a ≤ 1 ∀a ∈M (Probability)

AN ∈ AN (Admissible Proba)

Ariel Waserhole VSS Pricing Optimization 13



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Optimizing static policies
Exact optimization for N vehicles

AN
a : probability to have a vehicle in station a

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
∑

(a,b)∈D

ya,b (Expected flow)

s.t.
∑

(a,b)∈D

ya,b =
∑

(b,a)∈D

yb,a ∀a ∈M (Flow conservation)

ya,b = AN
a λa,b ∀(a, b) ∈ D (Satisfied demand)

0 ≤ AN
a ≤ 1 ∀a ∈M (Probability)

AN ∈ AN (Admissible Proba)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max Demand)

Ariel Waserhole VSS Pricing Optimization 13



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Optimizing static policies
Exact optimization for N vehicles

AN
a : probability to have a vehicle in station a

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
∑

(a,b)∈D

ya,b (Expected flow)

s.t.
∑

(a,b)∈D

ya,b =
∑

(b,a)∈D

yb,a ∀a ∈M (Flow conservation)

ya,b = AN
a λa,b ∀(a, b) ∈ D (Satisfied demand)

0 ≤ AN
a ≤ 1 ∀a ∈M (Probability)

AN ∈ AN (Admissible Proba)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max Demand)

• Evaluation of a policy λ polynomial in N and M George and Xia (2011)

→ Optimization problem ∈ NP ... exact complexity remains open
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Optimizing static policies
Relaxation for N vehicles

AN
a = 1: always a vehicle available

ya,b: expected transit for trip (a, b) with demand λa,b

Maximize
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ya,b (Expected flow)

s.t.
∑

(a,b)∈D

ya,b =
∑

(b,a)∈D

yb,a ∀a ∈M (Flow conservation)

ya,b =��A
N
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Optimizing static policies
Maximum Circulation

AN
a = 1: always a vehicle available

λa,b : expected transit for trip (a, b)

Maximize
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)

Relaxation

⇒ Maximum Circulation is an upper bound on static policies
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Optimizing static policies
Maximum Circulation policy

Maximize
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)
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3A1

b
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3

1
3

10≤10

10≤10

1≤10
1≤11≤10

1≤1

Circulation policy (λ ≤Λ)

• Generous policy

◦ 1 vehicle → 5 trips/hour

• Policy closing station c

◦ 1 vehicle → 10 trips/hour

• Circulation policy

◦ 1 vehicle → 8 trips/hour
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Optimizing static policies
Maximum Circulation policy

Maximize
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑
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λb,a ∀a ∈M (Flow conservation)
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Circulation policy (λ ≤Λ)

• Generous policy

◦ 1 vehicle → 5 trips/hour

• Policy closing station c

◦ 1 vehicle → 10 trips/hour

• Circulation policy

◦ 1 vehicle → 8 trips/hour

⇒ N vehicles?
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Quantifying policies quality → Upper Bound (UB)

Upper bounds on optimal dynamic policy Pdyn∗
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• Maximum Circulation value Pdyn∗ ≤
∑

λP.Circ∗
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Policies performance for N vehicles
Quantifying policies quality → Upper Bound (UB)

Theorem (For M stations and N vehicles)

Maximum Circulation policy is a N
N+M−1 -approximation on Pdyn∗

• For 9 vehicles per station (N = 9M) ⇒ 9
10 -approximation

◦ Sketch of proof
Ariel Waserhole VSS Pricing Optimization 14
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Availability when number of vehicle N →∞
Why generous so bad?
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Generous policy (λ ≤Λ)

lim
N→∞

AN
a =

A1
a

maxb∈M A1
b

George and Xia (2011)

lim
N→∞

Transit = 6
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1≤1

1A∞
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= 1

1

Circulation policy (λ ≤Λ)

lim
N→∞

AN
a =

A1
a

maxb∈M A1
b

George and Xia (2011)

lim
N→∞

Transit = 24

Availabilities for N vehicles and M stations

∀a ∈M, AN
a = AN =

N

N + M − 1
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PCirc∗= value of the static circulation policy
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N+M−1 = Availability at any station
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Circulation policy approximation
Analytic transit evaluation

Circ∗ = value of Maximum Circulation

PCirc∗= value of the static circulation policy
AN = N

N+M−1 = Availability at any station

Analytic transit of circulation policy

PCirc∗ =
∑

(a,b)∈D

AN
a λCirc∗

a,b = AN
∑

(a,b)∈D

λCirc∗

a,b =
N

N + M − 1
Circ∗

Claim Circ∗ is an UB on optimal dynamic policy PDyn∗

PDyn∗ ≤ Circ∗

⇔
N

N + M − 1
PDyn∗ ≤

N

N + M − 1
Circ∗ = PCirc∗

PCirc∗ cannot be worse than N
N+M−1 PDyn∗ ⇒ N

N+M−1 -approximation
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Looking for “tractable” solution methods

1. Simplified stochastic model
N Good approximation algorithm

H No transportation times, No time-varying demand, No station capacity

2. Scenario based approach

3. Fluid approximation
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Looking for “tractable” solution methods

1. Simplified stochastic model
N Good approximation algorithm

H No transportation times, No time-varying demand, No station capacity

2. Scenario based approach

• Deterministic problem
• Optimize on a scenario → off line optimization problem

3. Fluid approximation
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Scenario approach
First Come First Served Flow (FCFS)

a+1

b

c

0

0

space

time

Request

15 requests
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Scenario approach
First Come First Served Flow (FCFS)

a+1

b

c

0

0

space

time

Request

Served request

15 requests
⇒ 3 trips sold with Generous policy

Ariel Waserhole VSS Pricing Optimization 18



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Scenario approach
First Come First Served Flow (FCFS)

a+1

b

c

0

0

Request on close trip

Request on open trip

space

time

Served request

15 requests
⇒ 7 trips sold with FCFS “{Open,Close}” trip pricing policy

– Closing always trips (a, c) and (b, a)
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Scenario approach
First Come First Served Flow (FCFS)

a+1

b

c

0

0

Request on close trip

Request on open trip

space

time

Served request

Complexity of computing the best static policy?

⇒ FCFS Flow Trip Pricing is APX-Hard
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Scenario approach
Max Flow UB
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Scenario approach
Max Flow UB

a+1

b

c

0

0

space

time

Request

Served request

Max Flow serves 12 trips >> 7 sold in optimal FCFS policy

• UB theoretical guaranty in [2M −M − 1, (M + 2)!]

⇒ Still... Max Flow UB competitive in practice
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Looking for “tractable” solution methods

1. Simplified stochastic model
N Good approximation algorithm

H No realistic assumptions

2. Scenario based approach
N Upper bound considering all our constraints

H No good heuristic policy

3. Fluid approximation

Ariel Waserhole VSS Pricing Optimization 19



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Looking for “tractable” solution methods

1. Simplified stochastic model
N Good approximation algorithm

H No realistic assumptions

2. Scenario based approach
N Upper bound considering all our constraints

H No good heuristic policy

3. Fluid approximation

• Another deterministic approach
→ A plumbing problem
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Fluid approximation
Known technique but not directly usable

• Discrete stochastic demand → deterministic continuous
• Stations → tanks linked by pipes
• Vehicles → fluid evolving deterministically
• Pricing control → pipe sizing (tap) λt ∈ [0,Λt ]

λt
a,b

λt
b,a

Ka Kb

µb,a
−1

y t
a,b

Control

Station a Station b

Ariel Waserhole VSS Pricing Optimization 20



Introduction Model Simpler model Scenario approach Fluid Approximation Simulation Conclusion

Fluid approximation
Known technique but not directly usable

• Discrete stochastic demand → deterministic continuous
• Stations → tanks linked by pipes
• Vehicles → fluid evolving deterministically
• Pricing control → pipe sizing (tap) λt ∈ [0,Λt ]

⇒ Static policy & Upper Bound(?)

λt
a,b

λt
b,a

Ka Kb

µb,a
−1

y t
a,b

Control

Station a Station b
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Fluid model
Continuous Linear Program (CLP)

max

∫ T

0

∑

(a,b)∈D

y t
a,bdt (Flow)

s.t. (Continuous periodic conservation flow)

(Number of vehicles)

(Reservation & Station capacities)

0 ≤ y t
a,b ≤ λt

a,b ≤ Λt
a,b ∀(a, b) (Max demand)
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Fluid model
Continuous Linear Program (CLP)

max

∫ T

0

∑

(a,b)∈D

λt
a,bdt (Flow)

s.t. (Continuous periodic conservation flow)

(Number of vehicles)

(Reservation & Station capacities)

0 ≤ λt
a,b ≤ Λt

a,b ∀(a, b) (Max demand)

Generalization of flow constraints

s t
a : stock of vehicle at instant t in station a

s t
a = s0

a +

∫ t

0

∑

(b,a)∈D

λ
θ−µ

−1
b,a

b,a − λθ
a,b dθ ∀a ∈ M, ∀t ∈ [0, T ]
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Fluid model
State Constrained Separated Continuous Linear Program (SCSCLP)

max

∫ T

0

∑

(a,b)∈D

λt
a,bdt (Flow)

s.t. (Continuous periodic circulation flow)

(Number of vehicles)

(Reservation & Station capacities)

(Maximum demand)

• CLP ∈ SCSCLP class, ∃ efficient algorithms (Luo and Bertsimas (1999))

→ Static heuristic policy

→ CLP value conjectured to be an UB on dynamic policies
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Fluid model
State Constrained Separated Continuous Linear Program (SCSCLP)

max

∫ T

0

∑

(a,b)∈D

λt
a,bdt (Flow)

s.t. (Continuous periodic circulation flow)

(Number of vehicles)

(Reservation & Station capacities)

(Maximum demand)

• CLP ∈ SCSCLP class, ∃ efficient algorithms (Luo and Bertsimas (1999))

→ Static heuristic policy

→ CLP value conjectured to be an UB on dynamic policies

SCSCLP still complicated to compute...
Interest of considering time-dependent demand?
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S-Fluid PSA
Pointwise Stationnary Approximation (Green and Kolesar, 1991)
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• Concatenate the solution of each independent LP
⇒ Static heuristic policy

Theorem LP value is an UB on dynamic policies on each time step

( Not the case when concatenated )
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Looking for “tractable” solution methods

1. Simplified stochastic model
N Good approximation algorithm

H No realistic assumptions

2. Scenario based approach
N Upper bound

H No heuristic policy

3. Fluid approximation
N Heuristic policy considering time-dependent demand
H No proved upper bound

→ Interest of a time-dependent model?
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Evaluation on simple instances
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Simulation results
24 stations – Tide – Demand Λ = 18 users/hour/station

Reference: the Generous policy (minimum price → λt = Λt)
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Simulation results
Another tide type – S-Fluid PSA blindness

Reference: the Generous policy (minimum price → λt = Λt)

Heuristic Upper Bound

• Fluid Approximation X X
?

• Stable Fluid PSA X X
λt=λ

• Max-Flow on a scenario X
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Conclusion

1. A pioneer study on a real-practical problem

• Development of a methodology
• Dissection into sub-problems
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Conclusion

1. A pioneer study on a real-practical problem

• Development of a methodology
• Dissection into sub-problems

2. Study of a (simple) stochastic model (however intractable)

• Development of “tractable” solution methods (static policies)

• Fluid approximation
• Stable fluid PSA

• Information on remaining optimization gap (dynamic policies)

• Max Circulation approximation algorithm
• Max Flow UB
• Fluid UBs

3. Development of an open source simulator (ongoing)

• Specification
• Creation of benchmarks
• Estimation of potential optimization gaps

⇒ YES pricing can improve Vehicle Sharing Systems performance

• Under assumptions...
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Perspectives

• Optimization
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Perspectives

• Optimization

• Extend Max Circulation approximation to consider
transportation times

• Develop heuristics for scenario approach
• Incorporate availabilities in the fluid approximation
• Optimization by simulation (e.g. dynamic threshold policies)

• More realistic models (utility models / economics)

• Spatio-temporal flexibilities
• Demand elasticity

• Improving the benchmark (statistics / data mining)

• Estimate uncensored demand (λ 6= y trips sold)
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VSS pricing optimization

An “intractable” stochastic model

Sap

Cham

$$

$$$

$$$

$

$$$

$

Gre

⇒ Preliminary
answer

Optimization on approximation⇓ ⇑ Evaluation by simulation

Ariel Waserhole VSS Pricing Optimization 30

“Tractable” models
Heuristic Upper bound

• Simplified stoch. models X X W. and Jost (2013a)

• Scenario-based approach APX-hard X W., Jost, and Brauner (2013b)

• Fluid approximation X X W. and Jost (2013b)

• Decomposable MDP Exact Solution W., Gayon, and Jost (2013a)
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Circulation policy approximation

Theorem – For M stations and N vehicles

Maximum Circulation policy is a N
N+M−1 -approximation on optimal

dynamic policy.
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Circulation policy approximation

Theorem – For M stations and N vehicles

Maximum Circulation policy (together with its optimal vehicle
distribution) is a N

N+M−1 -approximation on optimal dynamic policy.

Sketch of proof
• We assume Maximum Circulation policy is strongly connected
→ Otherwise need to spread vehicles in the clustered city
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Circulation policy approximation (1/3)
Circulation policy ↔ uniform stationary distribution

c

ba

State graph
N=8 vehicles
M=3 stations

Demand graph
M=3 stations

πs : probability to be in state s ∈ S

Circulation policies have a uniform stationary distribution

→ ∀s ∈ S, πs =
1

|S|
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Circulation policy approximation (2/3)
Availability ⇔ number of states

AN
a : probability to find a vehicle available in station a

c

ba

State with at least 
1 vehicle in c

State graph
N=8 vehicles
M=3 stations

Demand graph
M=3 stations

(na, nb , nc ≥ 1)
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)

Here
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Availability for N vehicles and M stations

AN =
|S(N − 1, M)|

|S(N , M)|
=

N

N + M − 1
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Circulation policy approximation (3/3)
Analytic transit evaluation

Circ∗ = value of Maximum Circulation

PCirc∗= value of the static circulation policy
AN

a = AN = N
N+M−1 = Availability at station a
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Circulation policy approximation (3/3)
Analytic transit evaluation

Circ∗ = value of Maximum Circulation

PCirc∗= value of the static circulation policy
AN

a = AN = N
N+M−1 = Availability at station a

Analytic transit of circulation policy

PCirc∗ =
∑

(a,b)∈D

AN
a λCirc∗

a,b = AN
∑

(a,b)∈D

λCirc∗

a,b =
N

N + M − 1
Circ∗

Claim Circ∗ is an UB on optimal dynamic policy PDyn∗

PDyn∗ ≤ Circ∗

⇔
N

N + M − 1
PDyn∗ ≤

N

N + M − 1
Circ∗ = PCirc∗

PCirc∗ cannot be worse than N
N+M−1 PDyn∗ ⇒ N

N+M−1 -approximation
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Dynamic policies optimization
Decomposable CTMDP – (W., Gayon, and Jost (2013a))

Continuous-Time Markov Decision Process (CTMDP)→ Dynamic policy

c

ba

State graph
N=8 vehicles
M=3 stations

Demand graph
M=3 stations

State graph
M = 3 stations, N = 8 vehicles

• M stations, 2 prices per trip

→ λs
a,b ∈ {0,Λa,b}

• “Classic” CTMDP

→ 2M2

decisions per state
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Dynamic policies optimization
Decomposable CTMDP – (W., Gayon, and Jost (2013a))

Continuous-Time Markov Decision Process (CTMDP)→ Dynamic policy

c

ba

State graph
N=8 vehicles
M=3 stations

Demand graph
M=3 stations

State graph
M = 3 stations, N = 8 vehicles

• M stations, 2 prices per trip

→ λs
a,b ∈ {0,Λa,b}

• “Classic” CTMDP

→ 2M2

decisions per state

• Action Decomposable CTMDP

→ Reduced to 2 × M2 decisions

Still exponential number of states
... Work only for toy systems

⇒ Need compact representation of dynamic policies
Ariel Waserhole VSS Pricing Optimization 36
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Dynamic policies optimization
Optimal dynamic policies characterization?

In homogeneous cities → Λt
a,b = 1, ∀(a, b) ∈ D

State graph for 8 vehicles

• Refusing 8 vehicles in a station

• Refusing trip if passing from states (6,1,1) → (7,1,0)
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Dynamic policies optimization
Optimal dynamic policies characterization?

In homogeneous cities → Λt
a,b = 1, ∀(a, b) ∈ D

State graph for 8 vehicles
“Spike” for 30 vehicles

• Refusing 28, 29 or 30 vehicles in a station

• Refusing trip if . . .
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Dynamic policies optimization
Optimal dynamic policies characterization?

In homogeneous cities → Λt
a,b = 1, ∀(a, b) ∈ D

State graph for 8 vehicles
“Spike” for 30 vehicles

“Simple” threshold policies sub-optimal. . .
Representation of optimal policies?

Dynamic policies optimization problem ∈ NP?

Ariel Waserhole VSS Pricing Optimization 37



References Appendix Max Circulation Dynamic optim A real case analysis Fluid approximation

Study assumptions
A station to station demand

Origin Destination
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A real case analysis
Capital bikeshare, Washington DC

A ≈null optimization gap Stations average balance

• 30 000 trips sold per week in real-life... 4000 in the simulation

• Use of truck

• Fluid UB information: no optimization gap for these data

→ Corrupted data, only the trips sold
• Need to isolate problems

⇒ Work on toy instances to provide information
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Fluid approximation =? ∞-scaled problem
Modèle fluide – espace d’état continu

SF =
{(

na ∈ R : a ∈ M, na,b ∈ R : (a, b) ∈ D, t ∈ [0, T ]
)

/
∑

i∈M∪D

ni = N & na +
∑

b∈M

nb,a ≤ Ka, ∀a ∈ M, ∀t ∈ [0, T ]

}

s-scaled problème à prix continus – espace d’état discret (R = {1, . . . , s})

S(s) =
{(

s.na ∈ N : a ∈ M, n
r
a,b ∈ N : ((a, b), r) ∈ D × R, s.t ∈ T

)

/
∑

i∈M∪D×R

ni = N & na +
∑

r∈R

∑

b∈M

n
r
b,a ≤ Ka, ∀a ∈ M, ∀s.t ∈ T

}

• Espace d’état rescalé, unité entier → unité fraction 1/s
• Chaque pas de temps divisé en s parties → durée (sT )−1

• Temps de transport → s serveurs en séries avec taux sµt
a,b

• Transitions accélérées par un facteur s → Λt
a,b(s) = sΛt

a,b

• Contrôle continu sur les prix
→ demande λt

a,b(s) ∈ [0,Λt
a,b(s)] obtenue au prix 1

s
pt

a,b(
1
s
λt

a,b(s)).
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Fluid approximation =? ∞-scaled problem

Conjecture

SCSCLP policies

= asymptotic limit of s-scaled problem

• Upper Bound on dynamic policies
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A plumbing problem with equity (FCFS rule)

Flow evaluation y for fixed demand λ

• Departure equity ⇋ Arrival equity?

λt
a,b λt

a,c

y t
a,b

y t
x,a

y t
a,c

y t
z,a

Ka
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A plumbing problem with equity (FCFS rule)

Flow evaluation y for fixed demand λ

• Departure equity ⇋ Arrival equity?

• Infinite size – Only departure equity

λt
a,b λt

a,c

y t
x,ay t

z,a

Ka =∞

y t
a,c = λt

a,cy t
a,b = λt

a,b
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A plumbing problem with equity (FCFS rule)

Flow evaluation y for fixed demand λ

• Departure equity ⇋ Arrival equity?

• Infinite size – Only departure equity

λt
a,b λt

a,c

y t
x,ay t

z,a

Ka =∞

y t
a,b

λt
a,b

= αt
a αt

a =
y t

a,c

λt
a,c
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A plumbing problem with equity (FCFS rule)

Flow evaluation y for fixed demand λ

• Departure equity ⇋ Arrival equity?

• Infinite size – Only departure equity

• Finite size – Non linear dynamic!

→ Steady state evaluation “hard”

. . . Optimization “hard” with discrete prices . . .

λt
a,b λt

a,c

y t
a,b

y t
x,a

y t
a,c

y t
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A plumbing problem with equity (FCFS rule)

Flow evaluation y for fixed demand λ

• Departure equity ⇋ Arrival equity?

• Infinite size – Only departure equity

• Finite size – Non linear dynamic!

→ Steady state evaluation “hard”

. . . Optimization “hard” with discrete prices . . .

⇒ Use of continuous prices
Always fill the pipes: y t

a,b = λt
a,b

0 Price

Demand

λ

Λ

p(λ)p(Λ)

Elastic demand λt
a,b

∈ [0,Λt
a,b

]

λt
a,b λt

a,c

y t
a,b

y t
x,a

y t
a,c

y t
z,a

Ka

Ariel Waserhole VSS Pricing Optimization 42



References Appendix Max Circulation Dynamic optim A real case analysis Fluid approximation

Fluid approximation – Continuous control
Continuous Non Linear Program

Ariel Waserhole VSS Pricing Optimization 43

max
∑

(a,b)∈D

∫ T

0

λa,b(θ)p(λa,b(θ))dθ (Gain)

s.t.
∑

a∈M

sa(0) = N (Nb. vehicles)

sa(0) = sa(T ) ∀a (Flow stabilization)

sa(t) = sa(0) +

∫ t

0

∑

(b,a)∈D

λb,a(θ − µ−1
b,a) − λa,b(θ) dθ ∀a, t (Flow conservation)

0 ≤ λa,b(t) ≤ Λt
a,b ∀a, b, t (Max demand)

ra(t) =
∑

b∈M

∫

µ
−1
b,a

0

λb,a(t − θ) dθ ∀a, t (Reservation)

0 ≤ sa(t) + ra(t) ≤ Ka ∀a, t (Station capacity)

λt
a,b = y t

a,b
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Fluid approximation – Continuous control
State-Constrained Separated Continuous Linear Program (SCSCLP)
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Fluid approximation – Continuous control
State-Constrained Separated Continuous Linear Program (SCSCLP)
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max
∑

(a,b)∈D

∫ T

0

λa,b(θ)dθ (Flow)

s.t.
∑

a∈M

sa(0) = N (Nb. vehicles)

sa(0) = sa(T ) ∀a (Flow stabilization)
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∫ t
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ra(t) =
∑

b∈M

∫

µ
−1
b,a

0

λb,a(t − θ) dθ ∀a, t (Reservation)

0 ≤ sa(t) + ra(t) ≤ Ka ∀a, t (Station capacity)

• ∈ SCSCLP class, ∃ efficient algorithms (Luo and Bertsimas (1999))

→ Static heuristic policy
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Fluid approximation – Continuous control
State-Constrained Separated Continuous Linear Program (SCSCLP)
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max
∑

(a,b)∈D

∫ T

0

λa,b(θ)dθ (Flow)

s.t.
∑

a∈M

sa(0) = N (Nb. vehicles)

sa(0) = sa(T ) ∀a (Flow stabilization)

sa(t) = sa(0) +

∫ t

0

∑

(b,a)∈D

λb,a(θ − µ−1
b,a) − λa,b(θ) dθ ∀a, t (Flow conservation)

0 ≤ λa,b(t) ≤ Λt
a,b ∀a, b, t (Max demand)

ra(t) =
∑

b∈M

∫

µ
−1
b,a

0

λb,a(t − θ) dθ ∀a, t (Reservation)

0 ≤ sa(t) + ra(t) ≤ Ka ∀a, t (Station capacity)

¿ Upper bound on dynamic policies ?
¿ Interest of considering time dependant demand ?



References Appendix Max Circulation Dynamic optim A real case analysis Fluid approximation

Fluid approximation – Stationary demand
Stable Fluid Linear Program

max
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈ M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)
∑

(a,b)∈D

1

µa,b

λa,b +
∑

a∈M

sa = N (Nb. vehicles)

∑

b∈M

1

µa,b

λa,b + sa ≤ Ka ∀a ∈ M (Reservation)

• λa,b = ya,b
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Fluid approximation – Stationary demand
Stable Fluid Linear Program

max
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈ M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)
∑

(a,b)∈D

1

µa,b

λa,b +

�
�
�

∑

a∈M

sa = N (Nb. vehicles)

∑

b∈M

1

µa,b

λa,b +✚✚sa ≤ Ka ∀a ∈ M (Reservation)

• λa,b = ya,b

• If N ≤
∑

a∈M Ka
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Fluid approximation – Stationary demand
Stable Fluid Linear Program

max
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)
∑

(a,b)∈D

1

µa,b

λa,b ≤ N (Nb. vehicles)

∑

b∈M

1

µa,b

λa,b ≤ Ka ∀a ∈M (Reservation)

Theorem (W. and Jost (2013b) )

Stable fluid LP value is an upper bound on dynamic policies.

Sketch of proof
• Any dynamic policy is giving a solution of stable fluid with same value
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Fluid approximation – Stationary demand
Stable Fluid Linear Program

max
∑

(a,b)∈D

λa,b (Flow)

s.t.
∑

(a,b)∈D

λa,b =
∑

(b,a)∈D

λb,a ∀a ∈M (Flow conservation)

0 ≤ λa,b ≤ Λa,b ∀(a, b) ∈ D (Max. demand)
∑

(a,b)∈D

1

µa,b

λa,b ≤ N (Nb. vehicles)

∑

b∈M

1

µa,b

λa,b ≤ Ka ∀a ∈M (Reservation)

Adaptation to time dependent demands
⇒ Pointwise Stationnary Approximation (PSA) (Green and Kolesar, 1991)

Ariel Waserhole VSS Pricing Optimization 44
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