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Doktorska disertacija. Ljubljana, UL, FGG.

III

BIBLIOGRAPHIC-DOCUMENTALISTIC INFORMATION AND ABSTRACT

UDC 624.012.45:624.042.2:624.042.7(043.3)

Author: Miha Jukić
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Abstract

In this work, several beam finite element formulations are proposed for failure analysis of planar rein-

forced concrete beams and frames under monotonic static loading. The localized failure of material is

modeled by the embedded strong discontinuity concept, which enhances standard interpolation of dis-

placement (or rotation) with a discontinuous function, associated with an additional kinematic parameter

representing jump in displacement (or rotation). The new parameters are local and are condensed on

the element level. One stress resultant and two multi-layer beam finite elements are derived. The stress

resultant Euler-Bernoulli beam element has embedded discontinuity in rotation. Bending response of

the bulk of the element is described by elasto-plastic stress resultant material model. The cohesive re-

lation between the moment and the rotational jump at the softening hinge is described by rigid-plastic

model. Axial response is elastic. In the multi-layer beam finite elements, each layer is treated as a

bar, made of either concrete or steel. Regular axial strain in a layer is computed according to Euler-

Bernoulli or Timoshenko beam theory. Additional axial strain is produced by embedded discontinuity

in axial displacement, introduced individually in each layer. Behavior of concrete bars is described by

elasto-damage model, while elasto-plasticity model is used for steel bars. The cohesive relation between

the stress at the discontinuity and the axial displacement jump is described by rigid-damage softening

model in concrete bars and by rigid-plastic softening model in steel bars. Shear response in the Tim-

oshenko element is elastic. The multi-layer Timoshenko beam finite element is upgraded by including

viscosity in the softening model. Computer code implementation is presented in detail for the derived

elements. An operator split computational procedure is presented for each formulation. The expressions,

required for the local computation of inelastic internal variables and for the global computation of the

degrees of freedom, are provided. Performance of the derived elements is illustrated on a set of numeri-

cal examples, which show that the multi-layer Euler-Bernoulli beam finite element is not reliable, while

the stress-resultant Euler-Bernoulli beam and the multi-layer Timoshenko beam finite elements deliver

satisfying results.
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Tip dokumenta: doktorska disertacija

Obseg in oprema: 200 str., 120 sl., 424 en.
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Izvleček

V disertaciji predlagamo nekaj formulacij končnih elementov za porušno analizo armiranobetonskih

nosilcev in okvirjev pod monotono statično obtežbo. Lokalizirano porušitev materiala modeliramo z

metodo vgrajene nezveznosti, pri kateri standardno interpolacijo pomikov (ali zasukov) nadgradimo

z nezvezno interpolacijsko funkcijo in z dodatnim kinematičnim parametrom, ki predstavlja velikost

nezveznosti v pomikih (ali zasukih). Dodatni parametri so lokalnega značaja in jih kondenziramo

na nivoju elementa. Izpeljemo en rezultantni in dva večslojna končna elementa za nosilec. Rezul-

tantni element za Euler-Bernoullijev nosilec ima vgrajeno nezveznost v zasukih. Njegov upogibni odziv

opišemo z elasto-plastičnim rezultantnim materialnim modelom. Kohezivni zakon, ki povezuje moment

v plastičnem členku s skokom v zasuku, opišemo s togo-plastičnim modelom mehčanja. Osni odziv je

elastičen. V večslojnih končnih elementih vsak sloj obravnavamo kot betonsko ali jekleno palico. Stan-

dardno osno deformacijo v palici izračunamo v skladu z Euler-Bernoullijevo ali s Timošenkovo teorijo

nosilcev. Vgrajena nezveznost v osnem pomiku povzroči dodatno osno deformacijo v posamezni palici.

Obnašanje betonskega sloja opišemo z modelom elasto-poškodovanosti, za sloj armature pa uporabimo

elasto-plastični model. Kohezivni zakon, ki povezuje napetost v nezveznosti s skokom v osnem pomiku,

opišemo z modelom mehčanja v poškodovanosti za beton in s plastičnim modelom mehčanja za jeklo.

Strižni odziv Timošenkovega nosilca je elastičen. Večslojni končni element za Timošenkov nosilec nad-

gradimo z viskoznim modelom mehčanja. Za vsak končni element predstavimo računski algoritem ter

vse potrebne izraze za lokalni izračun neelastičnih notranjih spremenljivk in za globalni izračun pros-

tostnih stopenj. Delovanje končnih elementov preizkusimo na več numeričnih primerih. Ugotovimo, da

večslojni končni element za Euler-Bernoullijev nosilec ni zanesljiv, medtem ko rezultantni končni ele-

ment za Euler-Bernoullijev nosilec in večslojni končni element za Timošenkov nosilec dajeta zadovoljive

rezultate.
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Notes: 200 p., 120 fig., 424 éq.
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Résumé

Dans ce travail, différentes formulations d’éléments de poutres sont proposées pour l’analyse a rupture de struc-

tures de type poutres ou portiques en béton armé soumises a des chargements statiques monotones. La rupture

localisée des matériaux est modélisée par la méthode a discontinuité forte, qui consiste a enrichir l’interpolation

standard des déplacements (ou rotations) avec des fonctions discontinues associées a un paramètre cinématique

supplémentaire interprété comme un saut de déplacement (ou rotation). Ces paramètres additionnels sont lo-

caux et condensés au niveau élémentaire. Un élément fini écrit en efforts résultants et deux éléments finis multi-

couches sont développés dans ce travail. L’élément de poutre d’Euler Bernouilli écrit en effort résultant présente

une discontinuité en rotation. La réponse en flexion du matériau hors discontinuité est décrite par un modèle

élastoplastique en effort résultant et la relation cohésive liant moment et saut de rotation sur la rotule plastique

est, quant a elle, décrite par un modèle rigide plastique. La réponse axiale est suppposée élastique. Pour ce

qui concerne l’approche multi-couche, chaque couche est considérée comme une barre constituée de béton ou

d’acier. La partie régulière de la déformation de chaque couche est calculée en s’appuyant sur la cinématique

associée a la théorie d’Euler Bernoulli ou de Timoshenko. Une déformation axiale additionnelle est considérée par

l’introduction d’une discontinuité du déplacement axial, introduite indépendamment dans chaque couche. Le com-

portement du béton est pris en compte par un modèle élasto-endommageable alors que celui de l’acier est décrit

par un modèle élastoplastique. La relation cohésive entre la traction sur la discontinuité et le saut de déplacement

axial est décrit par un modèle rigide endommageable adoucissant pour les barres (couches) en béton et rigide plas-

tique adoucissant pour les barres en acier. La réponse en cisaillement pour l’élement de Timoshenko est supposée

élastique. Enfin, l’élément multi-couche de Timoshenko est enrichi en introduisant une partie visqueuse dans la

réponse adoucissante. L’implantation numérique des différents éléments développés dans ce travail est présentée

en détail. La résolution par une procédure d’operator split est décrite pour chaque type d’élément. Les différentes

quantités nécessaires pour le calcul au niveau local des variables internes des modèles non linéaires ainsi que pour

la construction du système global fournissant les valeurs des dégrés de liberté sont précisées. Les performances

des éléments développés sont illustrées a travers des exemples numériques montrant que la formulation basée sur

un élément multicouche d’Euler Bernouilli n’est pas robuste alors les simulations s’appuyant sur des éléments

d’Euler Bernouilli en efforts résultants ou sur des éléments multicouche de Timoshenko fournissent des résultats

très satisfaisants.
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Doktorska disertacija. Ljubljana, UL, FGG.

XIII

4.33 Pinned portal frame: geometry, loading pattern and reinforcement. . . . . . . . . . . . . . . . . 143

4.34 P −w diagram: results for different meshes of finite elements if all elements to the right of force

P are the same (left) and if reinforcement is weakened in one of them (right). . . . . . . . . . . 144

4.35 P −w diagram: comparison to experiment and results of Saje et al. . . . . . . . . . . . . . . . . 144

4.36 Moments at the joint of the beam and the column (left) and in the middle of the span (right):

comparison to experiment and results of Saje et al. . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.37 Portal frame: material state at different stages of analysis (marked with dots). . . . . . . . . . . 145

4.38 Portal frame: discontinuities (cracks) at different stages of analysis (marked with dots). . . . . . 146

4.39 Two story frame: geometry, loading pattern and cross-sections. . . . . . . . . . . . . . . . . . . 147

4.40 Stress - strain diagrams for steel (left) and concrete in compression (right) used by Vecchio and

Emara, compared to diagrams used in present analysis. . . . . . . . . . . . . . . . . . . . . . . 148

4.41 Response of two story frame: results for different meshes (left), comparison of results for 16 FE

in a column and 14 FE in a beam with experiment and results of Pham (right). . . . . . . . . . . 148

4.42 Response of two story frame: loading and unloading for a mesh of 16 FE in a column and 14 FE

in a beam. Comparison to experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.43 Two story frame: stages of analysis, corresponding to images in Figs. 4.44 and 4.45. . . . . . . . 149

4.44 Two story frame: material state at different stages of analysis, marked in Fig. 4.43. . . . . . . . . 150

4.45 Two story frame: discontinuities at different stages of analysis, marked in Fig. 4.43. . . . . . . . 151

5.1 Axial force - displacement diagrams for concrete beam in pure tension (left) and pure compression

(right) for different values of viscosity parameter. . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2 Axial force - displacement diagram for steel beam (layer) in pure tension for different values of

viscosity parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3 Axial force - displacement diagram for concrete beam in pure compression for different meshes

of finite elements - without viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4 Axial force - displacement diagram for concrete beam in pure compression for different values of

viscosity parameter (5 FE mesh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Axial force - displacement diagram for steel beam (layer) in pure tension for different meshes of

finite elements - without viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6 Axial force - displacement diagram for steel beam (layer) in pure tension for different values of

viscosity parameter (5 FE mesh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.7 Moment - rotation diagram for cantilever beam under end moment for different meshes of finite

elements - without viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.8 Moment - rotation diagram for cantilever beam under end moment for different values of viscosity

parameter (5 FE mesh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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2.8 Notranje sile, ki ustrezajo prostostnim stopnjam v vozlišču mreže končnih elementov. . . . . . . 14
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Doktorska disertacija. Ljubljana, UL, FGG.

XV
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3.24 Diagram osna sila - pomik za jekleni nosilec (sloj) v čistem nategu. . . . . . . . . . . . . . . . . 84

3.25 Diagram osna sila - pomik za armiranobetonski nosilec v čistem nategu (levo) in čistem tlaku
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parametra (mreža s 5 KE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
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1

1 INTRODUCTION

In the introductory chapter, the motivation for research on numerical modeling of localized failure of material, with

emphasis on reinforced concrete, is presented. Previous achievements in this field of research are briefly reviewed,

and the goals and the outline of the thesis are explained.

1.1 Motivation

Localized failure is a common phenomenon in variety of materials, used in civil engineering. At a certain load

level, materials often exhibit highly localized deformations before failing. Typical examples are cracks in brittle

materials, such as concrete, stone, brick or ceramic, and shear bands in metals or soils, see [1] and references

therein. Growth of localized deformations is accompanied by reduction of stress, a process called softening of

material. Adequate description of this phenomenon is essential for a comprehensive material model, which allows

for a more accurate numerical modeling of structures and structural elements, made of such material.

In this work, we focus on reinforced concrete beams and frames, which are one of the most widespread structural

forms. It has been observed in experimental tests, as well as on actual buildings, damaged in earthquakes, that

most of material damage is concentrated at several critical locations in the structure. Localized failure of reinforced

concrete comprises cracking and crushing of concrete, yielding of reinforcement and bond slip between the two

components. This leads to the concept of plastic hinge in the limit load and push-over analyses, see e.g. [2–4]. In

the classical limit load analysis, the limit capacity of each plastic hinge is kept constant, while additional hinges

develop with the increasing load. This approach restrains the accuracy, with which the limit load of the structure

is determined, and prevents the computation of structure’s ductility and post-peak response. In highly statically

undetermined structures, failure of a critical element does not jeopardize their integrity. It is therefore essential

for an accurate analysis to be able to describe the softening response of the critical element, associated with the

localized failure. This leads to the concept of softening plastic hinge, which allows for computation of ductility

and post-peak response of the analyzed structure.

There are many different approaches to modeling of softening hinges in numerical analysis, see e.g. [5, 6]. In

earthquake engineering, researchers often deal with large scale models of complex structures under rather compli-

cated loads. Effective analysis of such problems can only be performed by using relatively simple finite elements,

e.g. finite element with lumped plasticity, see [7, 8], where all plastic deformations are concentrated in the nodes,

while the rest of the finite element stays elastic. Plastic hardening and softening of the element are described by

the moment-rotation relationship of the nodes. Another way to model a softening hinge is to use a short crack-

band finite element, in which localization is smeared over the whole element, see [9–11]. Since the softening is

described on strain level, a fixed length of the crack-band element has to be computed, which is then considered

a material property. In contrast to these two typical approaches, we decide to use lately established strong discon-

tinuity concept, main characteristic of which is incorporation of discontinuous displacement fields into standard

displacement based finite elements. The aim is to develop precise, effective and robust finite elements, capable of

accurate description of localized failure in reinforced concrete beams and frames.
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1.2 Theoretical background

Past decades have seen significant improvement in modeling of localized failure in numerical analysis, however,

many issues still remain unsolved. A brief history and an overview of proposed solutions can be found in [12–14].

In earlier attempts, the structural softening response, associated with localized failure of material, was modeled

simply by using elastoplastic constitutive model with softening to describe the local relation between the strain

measure and the conjugate stress (or stress resultant), e.g. curvature and bending moment. The moment was com-

puted in the same way as in classical elastoplasticity, except that after the limit load was reached, moment decreased

with increasing curvature. This very simple model, called strain softening, is troubled by several problems, which

are usually described as mathematical, physical and numerical [12].

In a structural element, discretized with a mesh of finite elements, only the critical element fails. Due to volumetric

character of energy dissipation, determined by strain softening, the total energy dissipated in the softening range

approaches zero when the mesh is refined. From mathematical point of view, the tangent stiffness matrix in

softening ceases to be positive definite due to the negative value of tangent modulus. The boundary value problem

becomes ill-posed and the solution of the problem is no longer unique [12, 15, 16]. The limit solution, when finite

element size approaches zero, suggests failure of the structure without energy dissipation, which is physically

unrealistic. From the aspect of numerical modeling, strain softening model leads to severe mesh dependency

[17, 18].

Different approaches have been used to tackle the above mentioned problems. They are often referred to as local-

ization limiters because their purpose is to prevent the strain localization to a vanishing volume. The earlier ones

are briefly described in [19]. The simplest way to deal with the problem is to limit the minimum size of finite ele-

ments, as in crack band models [20–22], where the fracture is smeared over the whole finite element. The crack is

therefore represented by an element-wide crack band. The volume of material, where strain softening takes place,

is obviously still mesh dependent, so the strain softening modulus has to be adjusted according to the chosen mesh,

in order to preserve the fracture energy. A similar approach is to embed a strain softening band of fixed width into

a finite element, with the width of the band a material property [23,24]. As stated in [12], these approaches do not

solve the mathematical issue of an ill-posed boundary value problem and the solution is restricted to certain types

of failure.

Nonlocal continuum theories have been proposed as an alternative [19, 25–27]. Here, the stress at a certain point

of material domain is considered to be a function of average (nonlocal) strain in a representative volume of ma-

terial, centered at that point. More generally, nonlocal strain is a weighted value of the entire strain field, and

the weighting functions determine the domain of influence of strain on stress. This method enables the finite ele-

ment analysis to overcome some problems caused by singularities, such as crack-tip problems. According to [12],

nonlocal theories are fully regularized from the mathematical point of view.

Several variations of the nonlocal continuum model exist. By expanding the nonlocal variable into Taylor series

and neglecting the higher order derivatives, the gradient (also weakly nonlocal) theory is obtained [28, 29]. Here,

the stress at a certain point is computed from the values of strain and strain gradient at that point. Alternatively,

incorporation of higher order derivatives in the constitutive relation results in higher order gradient theory, e.g. [30]

for plasticity.

Apart from the above described localization limiters, several other regularization concepts have been proposed,

such as Cosserat (or micropolar) continuum models [31, 32], which include local rotation of points in addition to

their translation, or viscoplastic regularization, where the problem is treated as rate dependent [33]. The common

aim of all presented approaches is to capture as accurately as possible the material behavior on the micro scale

and incorporate it into finite elements for numerical analysis of structures subject to localized failure. The finite

elements are devised to automatically develop localization at the critical point of the structure or the structural

element (within their limitations). Appropriate behavior of structural elements on the macro scale is therefore
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granted by sufficiently accurate material description on the micro scale.

Quite an opposite approach is often used in development of finite elements for numerical analysis in earthquake

engineering. Dealing with large and complex structures under rather complicated loading, the analysis can become

very time consuming and computationally demanding, so the finite elements are designed in the simplest possible

way that still provides appropriate macro scale behavior of the structural element. For instance, columns of multi-

story buildings subject to earthquake loading are known to exhibit highly localized inelastic deformations at their

ends. Such behavior can be approximated by the lumped plasticity model, see e.g. [34, 35], where all inelastic

response is concentrated at the zero-length hinges at the ends of the element, while the bulk of the element remains

elastic. Of course, this does not correspond exactly to the actual material state of the beam, but the model captures

all essential properties of the column’s response.

The discrete approach to modeling of localized failure, used in the lumped plasticity and similar models, is an

alternative to the smeared approach, used in previously described concepts. Both have advantages and drawbacks.

The main advantage of the smeared fracture concepts is that the finite elements are developed on the micro scale,

so they can generally represent any piece of material, regardless of its size and position in the structure, and the

localization is positioned automatically. On the downside, many models have been found to suffer from stress

locking due to inadequate kinematic description of discontinuous displacements around a macroscopic crack, see

[13,36] and references within. Besides that, most techniques require sufficiently fine meshing of the softening zone

to achieve mesh objectivity, which can prove computationally too demanding for large structures [12, 36]. In the

discrete approach, the issues regarding size and representation of the softening zone are avoided by contracting it

to a single point and introducing a localized dissipative mechanism. Another benefit of this method is that the finite

elements are capable of kinematically accurate description of strong discontinuities in displacement and rotation.

Consequently, a structure can be represented by a relatively coarse finite element mesh. The main drawback is that

the localized failures can only occur at the predetermined locations.

A new family of methods, characterized by incorporation of the discontinuity within the finite element, has become

very popular recently. Strain (weak) discontinuity models were developed first, by adding new discontinuous

modes into the strain field [37, 38]. The displacement field remained continuous, however, which limited their

applicability, see [36] and references within. This led to development of the strong discontinuity approach, utilized

also in this work.

Numerous variations of strong discontinuity models have been developed, see [39–48] among others. Their ap-

plication to beam finite elements, as in [49–56], is especially relevant for this work. All the models are based

on the same idea. The finite volume of highly localized strain, which represented the fracture energy dissipation

zone in smeared crack approaches, is replaced by a displacement (strong) discontinuity and an associated localized

dissipative mechanism. This is achieved by upgrading displacement interpolation of standard finite elements with

additional discontinuous shape functions. Each interpolation function is associated with an additional parameter,

representing the corresponding displacement jump. Introduction of the conjugate traction at the discontinuity,

related to the displacement jump by a softening cohesive law, establishes a localized dissipative mechanism. Addi-

tional equations for the new parameters are written in the form of local equilibrium between the stress in the bulk

of the element and the traction at the discontinuity [1, 14].

Strong discontinuity approach can be described as a hybrid of the smeared and discrete approaches and it combines

strong points of both concepts. Since the fracture energy dissipation is associated with the discontinuity, which

has zero volume, the issues with the vanishing volume of the localization zone are successfully avoided and the

physically unrealistic failure without energy dissipation is prevented. Mesh objectivity is granted as well, because

the width of the softening zone and the energy dissipation at the discontinuity do not depend on the finite element

size. From the mathematical point of view, the boundary value problem is well posed, which means that the

concept efficiently copes with the physical, numerical and mathematical inconsistencies, presented earlier.

The enhanced kinematics provide an accurate description of the discontinuous displacement field around the frac-
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ture, allowing for development of non-locking finite elements, namely the additional displacement modes are

designed in such manner that they enable the finite elements to capture the stress-free state in case of a fully

softened discontinuity [14]. Moreover, incorporation of local kinematics, describing the small-scale response of

material (fracture), into the large-scale material model, corresponds well to the multi-scale nature of the consid-

ered physical problem [1, 12, 14, 36, 40]. Hence, the discontinuity can be adequately modeled with a relatively

coarse mesh. Since each finite element is capable of forming a discontinuity, there is no need to predetermine its

location. It occurs automatically and propagates through the structure, without modification of the original finite

element mesh. These properties make the strong discontinuity concept convenient for numerical analysis of larger

problems.

Implementation of displacement jumps can be performed by different methods, but generally two major families

are distinguished – extended finite element methods (X-FEM) [39,40,42,57–59], and embedded discontinuity finite

element methods (ED-FEM) [41, 60–63]. They differ in treatment of the additional parameters, associated with

enhanced displacement modes. In X-FEM methods, the parameters are connected to the nodes of the finite element

mesh and treated as global unknowns. In ED-FEM methods on the other hand, the parameters are associated with

the finite elements and treated as local variables. Several studies have been performed, comparing advantages

and disadvantages of both approaches [14, 64]. The main advantage of ED-FEM methods is that the additional

unknowns can be eliminated from the global equations by static condensation, while in X-FEM each additional

discontinuity increases the global system of equations. In this work, we follow the ED-FEM concept, motivated

mainly by the previous work and experience in our research group. Illustration of the method on a basic 1D

example can be found in [65].

1.3 Goals and outline of the thesis

Failure analysis has received much attention in our research group. Recently, a great part of research has been

focused on modeling of localized failure of material with the strong discontinuity approach, more specifically the

embedded discontinuity concept (ED-FEM) [46–48, 54, 66, 67]. The original contribution of Ibrahimbegovic and

Brancherie [48] with respect to the strong discontinuity approach was to combine two inelastic mechanisms, both

hardening in fracture process zone and softening at the discontinuity. This concept has been generalized to different

structural models - continuum mechanics, plate and shell models, beam elements etc. The thesis relates particularly

to the recent works, dealing with beam models. Dujc et al. [54] have developed a stress-resultant Euler-Bernoulli

beam finite element with embedded discontinuities in rotation and axial displacement for failure analysis of steel

(metal) beams and frames. Pham et al. [52] have presented a stress-resultant Timoshenko beam finite element with

embedded discontinuity in rotation for failure analysis of reinforced concrete beams and frames. The first objective

of the thesis is to combine the two concepts, namely to develop a similar finite element that uses Euler-Bernoulli

kinematics and material laws for reinforced concrete. The next objective is to extend this concept to a multi-layer

finite element in a similar manner as presented in [51]. More specifically, the goals are to:

• develop a straight planar stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity

in rotation for simple, robust and efficient failure analysis of reinforced concrete beams and frames,

• develop a straight planar multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-

tinuities in axial displacement for precise failure analysis of reinforced concrete beams and frames, and for

computation of stress-resultant properties, required in analysis with the stress-resultant finite element,

• develop a straight planar multi-layer Timoshenko beam finite element with layer-wise embedded disconti-

nuities in axial displacement for precise failure analysis of reinforced concrete beams and frames, and for

computation of stress-resultant properties, required in analysis with the stress-resultant finite element,

• upgrade the multi-layer Timoshenko beam finite element by applying viscous regularization.
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Besides the introduction, where the motivation, the theoretical background and the objectives are presented, the

dissertation comprises five other chapters. Their outline is as follows.

In chapter 2, a stress-resultant Euler-Bernoulli beam finite element is developed. Standard kinematics is enhanced

by incorporating a strong discontinuity in rotation. Enhanced curvature is defined by an additional parameter

(degree of freedom) and a corresponding discontinuous interpolation function. The shape function is determined in

such a manner, that the finite element is able to describe a stress-free state in case of a fully softened discontinuity.

Equilibrium equations are derived from the virtual work principle, taking into account the contribution of the

additional parameter. This produces an additional equation, describing the local equilibrium between the bulk of

the element and the discontinuity. Due to the local character, it is solved on the element level and the additional

parameter is condensed out of the global system of equations. Constitutive relation between the moment and the

curvature of the bulk is defined by an elastoplastic material law with bilinear hardening and the relation between the

moment and the rotational jump at the discontinuity is described by a plastic linear softening law. Axial response

is assumed linear elastic. An operator split iterative computational procedure is developed, in which the internal

variables and the additional degree of freedom are computed on the element level, and the standard displacements

(degrees of freedom) are computed globally - on the structure level. The derived finite element is tested on several

numerical examples. Finally, concluding remarks are presented.

A multi-layer Euler-Bernoulli beam finite element is considered in chapter 3. A reinforced concrete beam is

divided into a desired number of concrete and steel layers. Axial displacements (and deformations) of a layer

are computed in accordance with Euler-Bernoulli kinematics. Then, each layer is treated separately as a special

“bar” - special in the sense that strain is generally linear in a layer, which can be attributed to interaction between

layers. Layer kinematics is enhanced by introduction of a strong discontinuity in axial displacement. The enhanced

layer strain is determined by an additional parameter (limited to a single layer) and a corresponding discontinuous

shape function. The latter is derived on the layer level in such way, that it does not alter the layer displacements

at the nodes. A different discontinuous shape function is derived for interpolation of virtual enhanced strain,

so as not to collide with the definition of the traction at the discontinuity. Equilibrium equations are derived

from the virtual work principle, taking into account the contributions of the additional parameters. In addition to

standard equilibrium equations of the finite element, an extra equation is acquired for each layer. It represents local

equilibrium between the bulk of the layer and the discontinuity. On account of their local nature, they are solved

on the layer level and the enhanced parameters are condensed out of the global system of equations. Behavior of a

concrete layer is controlled by an elasto-damage hardening law in the bulk (stress vs. strain) and a damage softening

law at the discontinuity (traction vs. displacement jump). Behavior of a reinforcement layer is controlled by an

elastoplastic hardening law in the bulk (stress vs. strain) and a plastic softening law at the discontinuity (traction

vs. displacement jump). An operator split iterative computation procedure is presented. The internal variables

and the enhanced parameters are calculated locally in each finite element, and the standard degrees of freedom

are computed on the global level. Performance of the finite element is tested on several numerical examples. The

chapter ends with concluding remarks.

In chapter 4, a multi-layer Timoshenko beam finite element is derived, following the procedure from chapter 3. A

reinforced concrete is divided into concrete and steel layers. Axial displacements (and deformations) of a layer are

determined according to Timoshenko kinematics. Layers are then treated individually, as bars. Due to Timoshenko

beam theory, strain is constant over the length of each layer. Layer kinematics is enhanced by introducing a strong

discontinuity in axial displacements. Enhanced strain is defined by an additional parameter and an additional

discontinuous interpolation function. Contrary to the Euler-Bernoulli multi-layer beam, virtual enhanced strain is

interpolated with the same shape function as the real strain. Equilibrium equations are derived from the virtual

work principle, taking into account the contributions of enhanced parameters. This provides an additional equation

for each layer, on top of the standard equilibrium equations. The additional equations are strictly local and are

solved on the layer level, allowing for condensation of the additional parameters. They describe local equilibrium

between the bulk of the layer and the discontinuity. Axial response of layers is controlled by identical material
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laws as in chapter 3 - two laws (bulk, discontinuity) are given for a concrete layer, and two for a reinforcement

layer. Additionally, a shear constitutive relation has to be defined for a Timoshenko beam. The shear response is

assumed linear elastic. Equations of the problem are solved by an operator split iterative procedure. The internal

variables and additional degrees of freedom are computed locally in each element. The nodal degrees of freedom

are computed globally. The finite element is tested on several numerical examples. At the end of the chapter,

concluding remarks are given.

In chapter 5, the multi-layer Timoshenko beam element from chapter 4 is upgraded, so as to include viscous regu-

larization of the softening response. This is done by introducing at each discontinuity a viscous force, depending

on the rate of change of the displacement jump and on the additional viscosity parameter. The viscous forces

are added into the virtual work equation, derived in chapter 4, resulting in a modified local equilibrium equation,

describing the relation between the stress in the bulk of the layer and the traction at the discontinuity. The global

equilibrium equations, as well as kinematic and constitutive equations, remain unchanged. New expressions are

derived for the softening multiplier, the traction at the discontinuity and the displacement jump. The modified el-

ement stiffness matrix is defined. Performance of the altered finite element is tested on basic numerical examples.

The chapter is rounded with concluding remarks.

Finally, conclusions of the dissertation are presented in chapter 6.
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2 STRESS RESULTANT EULER-BERNOULLI BEAM FINITE ELEMENT

WITH EMBEDDED DISCONTINUITY IN ROTATION

2.1 Introduction

In this chapter we derive a planar stress-resultant Euler-Bernoulli beam finite element with embedded strong dis-

continuity in rotation, intended for analysis of reinforced concrete beams and frames up to complete failure, with

automatic generation of softening plastic hinges at critical locations of the structure to describe localized failure

in bending. Similar finite elements have been developed by Dujc et al. in [54] and Pham et al. in [52]. Dujc et

al. derived a stress resultant Euler-Bernoulli beam element with embedded discontinuity in rotation for analysis of

metal beams and frames. Pham et al. derived a stress-resultant Timoshenko beam with embedded discontinuity

in rotation for reinforced concrete structures, which can describe only constant moment over the length of the

element. Our finite element combines features of both above mentioned elements - constitutive equations suit-

able for reinforced concrete, and linear description of moment over the element in accordance with the standard

Euler-Bernoulli beam element.

The derived element is based on small deformation kinematics. It features a strong discontinuity in rotation (rota-

tional jump) at a location where a softening plastic hinge forms when carrying capacity of the element is reached.

Behavior of the bulk is described by an elastoplastic material law with bilinear isotropic hardening. Behavior of

the discontinuity is described by a linear softening law.

The chapter is organized as follows: Kinematic, constitutive and equilibrium equations are considered in section

2.2. Finite element discretization and numerical procedure are presented in section 2.3. Performance of the finite

element is illustrated by several numerical examples in section 2.4. Concluding remarks of the chapter are given

in section 2.5.

2.2 Finite element formulation

2.2.1 Kinematics

Let us consider a planar Euler-Bernoulli beam finite element with two nodes, presented in Fig. 2.1. Each node has

three degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane. If

carrying capacity of the beam is reached, a softening plastic hinge forms at a distance xd from the first node. The

hinge is kinematically described by embedded strong discontinuity in rotation α.

Axial displacement u(x) is interpolated between the axial nodal displacements u, using linear interpolation func-

tions Nu (x), shown in Fig. 2.2 (left).

u(x) = Nu (x)u, Nu (x) =
{

1−
x

L
,
x

L

}

, u = {u1,u2}
T

(2.1)

Axial strain ε(x) is computed as the first derivative of axial displacement over coordinate x. Interpolation functions

Bu are the derivatives of Nu and are constant. They are depicted in Fig. 2.2 (right).
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x
xd

L

u1

v1
Θ1 u2

v2
Θ2Α

1 2

Figure 2.1: Finite element with six nodal degrees of freedom and embedded discontinuity in rotation.

Slika 2.1: Končni element s šestimi prostostnimi stopnjami in vgrajeno nezveznostjo v zasuku.

N1
u

N2
u

x

L

1 2

1

1

B1
u

B2
u

x

L

1 2

-
1

L

1

L

Figure 2.2: Interpolation functions for axial displacement (left) and axial strain (right).

Slika 2.2: Interpolacijske funkcije za osni pomik (levo) in osno deformacijo (desno).

ε(x) =
∂u

∂x
= Bu (x)u, Bu (x) =

{

−
1

L
,

1

L

}

(2.2)

Transversal displacement vx is described by the following equation.

v (x,xd) = Nv (x)v+Nθ (x)θ+

vadd
︷ ︸︸ ︷

M̂ (x,xd)α (2.3)

The first two parts of expression (2.3) represent standard transversal displacement, which is interpolated between

transversal nodal displacements v and nodal rotations θ with Hermite interpolation functions Nv (x) and Nθ (x),

depicted in Fig. 2.3 (left). The last term represents the additional displacement vadd (x,xd), due to rotational jump

α. Function M̂ (x,xd) will be considered later. Note that vadd is zero until the carrying capacity is reached.

Nv (x) =

{

2
( x

L

)3

−3
( x

L

)2

+1,−2
( x

L

)3

+3
( x

L

)2
}

, v = {v1,v2}
T

Nθ (x) = L

{( x

L

)3

−2
( x

L

)2

+
x

L
,
( x

L

)3

−
( x

L

)2
}

, θ = {θ1,θ2}
T

(2.4)
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According to Euler-Bernoulli beam theory, the curvature of the beam κ(x,xd) is computed as the second derivative

of the transversal displacement.

κ(x,xd) =
∂2v

∂x2
=

˜̄κ
︷ ︸︸ ︷

Bv (x)v+Bθ (x)θ+

κadd

︷ ︸︸ ︷

G(x,xd)α (2.5)

The first two terms in expression (2.5) represent the regular curvature ˜̄κ. Linear functions Bv and Bθ are second

derivatives of Hermite polynomials Nv and Nθ. They are written in equation (2.6), and drawn in Fig. 2.3 (right).

The last part of expression (2.5) is the additional curvature, caused by the discontinuity in rotation. Function

G(x,xd) is the second derivative of M̂ (x,xd) and will be discussed in the following section.

Bv (x) =

{

−
6

L2

(

1−
2x

L

)

,
6

L2

(

1−
2x

L

)}

, Bθ (x) =

{

−
2

L

(

2−
3x

L

)

,−
2

L

(

1−
3x

L

)}

(2.6)

N1
v

N2
v

N1
Θ

N2
Θ

x

L

1 2

1

1

1

1

B1
v

B2
v

B1
Θ

B2
Θ

x

L

1 2

-
6

L2

6

L2

6

L2
-

6

L2

-
4

L
-

1

L
2

L

-
2

L
1

L

4

L

Figure 2.3: Interpolation functions for transversal displacement (left) and curvature (right).

Slika 2.3: Interpolacijske funkcije za prečni pomik (levo) in ukrivljenost (desno).

It is convenient to collect all degrees of freedom of the finite element in a single vector of generalized nodal

displacements d and rewrite expressions for the axial strain ε and the regular part of the curvature ˜̄κ, defined in

equations (2.2) and (2.5).

ε=
[

Bu 0 0
]

d = B̆εd, ˜̄κ=
[

0 Bv Bθ
]

d = B̆κd, dT =
{

uT ,vT ,θT
}

(2.7)
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2.2.2 Derivation of operator G

Interpolation function M̂ (x,xd), introduced in equation (2.3), describes the additional transversal displacements

of the beam, due to discontinuity in rotation α. Its main feature is a unit jump in the first derivative at the location

of the discontinuity xd. Everywhere else the function is smooth. In order not to affect the nodal displacements

and rotations, the values of M̂ and its first derivative M̂ ′ must be zero at the nodes, see Fig. 2.4 (left). It is not

necessary to know M̂ beyond these requirements, as it does not appear in the computation on its own.

The first derivative M̂ ′ can be composed from a Heaviside function Hxd and a smooth continuous function ϕ(x)

with nodal values ϕ(0) = 0 and ϕ(L) = −1. The Heaviside function and its derivative, the Dirac-delta func-

tion δxd , are defined in equation (2.8) and displayed in Fig. 2.4 (right). Just like M̂ , ϕ is not required for the

computation.

M̂ ′ =Hxd +ϕ(x) , Hxd =

{

0; x < xd

1; x≥ xd

,
∂Hxd

∂x
= δxd =

{

∞; x= xd

0; otherwise
(2.8)

M
`

M
`

’

x

xd

L

1 2

1

1

Hxd

∆xd

x

xd

L

1 2

1

¥

0

Figure 2.4: Interpolation function M̂ and its first derivative M̂ ′ (left). Heaviside and Dirac-delta

functions (right).

Slika 2.4: Interpolacijska funkcija M̂ in njen prvi odvod M̂ ′ (levo). Heaviside-ova in Dirac-delta

funkcija (desno).

Operator G is the second derivative of interpolation function M̂ or the first derivative of M̂ ′. According to (2.8),

we can write:

G=
(
M̂ ′
)′
=
(
Hxd +ϕ(x)

)′
= ¯̄G+ Ḡ, ¯̄G= δxd , Ḡ= ϕ′ (x) (2.9)

We can see that G consists of a discrete part ¯̄G and a continuous part Ḡ. While the former is known, the latter still

has to be determined. This can be done (without knowing M̂ or ϕ) from requirement that the element must be able

to describe a curvature-free state when the moment in the softening plastic hinge drops to zero, see Fig. 2.5. At that
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point, the element should behave as two rigid bodies, connected by a rotation hinge, which implies the following

relations between the nodal degrees of freedom:

v2 = v1 +Lθ1 +(L−xd)α, θ2 = θ1 +α (2.10)

X

Y

u1,v1

u2,v2

Θ 1

Θ 2

Α
x

Figure 2.5: Curvature-free deformation of the beam when the moment in the hinge drops to zero.

Slika 2.5: Deformirana lega brez ukrivljenosti, ko moment v plastičnem členku pade na nič.

Let us now rewrite the expression (2.5) for curvature, taking into account the form of G.

κ(x,xd) =

κ̄
︷ ︸︸ ︷

Bv (x)v+Bθ (x)θ+ Ḡ(x,xd)α+

¯̄κ
︷ ︸︸ ︷

¯̄G(x,xd)α (2.11)

Continuous part of expression (2.11) is designated with κ̄ and represents the curvature of the bulk of the element.

The discrete part ¯̄κ represents the infinite curvature at location of the discontinuity xd. In a situation, depicted

in Fig. 2.5, the bulk curvature is zero. After applying relations (2.10) and equations (2.6) for Bv and Bθ, the

expression for κ̄ is equaled to zero. Solution of obtained equation delivers the expression for Ḡ.

Ḡ(x,xd) =−
1+3

(

1− 2xd
L

)(
1− 2x

L

)

L
(2.12)

2.2.3 Relations between global and local quantities

2.2.3.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig. 2.6. The total number

of the nodes in the mesh is designated with nN . Each node has three degrees of freedom - displacement U parallel

to the global X axis, displacement V parallel to the global Y axis, and rotation Θ about the axis, perpendicular to

the XY plane. The structure has in total nDOF = 3nN degrees of freedom, which are collected in the vector dstr.

dstr =
{
U1,V1,Θ1,U2,V2,Θ2, ... ,UnN ,VnN ,ΘnN

}T
(2.13)
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X

Y
node of FE

n Un

Vn

Qn

Figure 2.6: Degrees of freedom at a node of the finite element mesh.

Slika 2.6: Prostostne stopnje v posameznem vozlišču mreže končnih elementov.

Let us now consider a finite element (e) with end nodes (n1) and (n2). The local x axis is parallel to the axis of

the element, with x increasing from node (n1) towards node (n2), see Fig. 2.7. The element’s degrees of freedom,

defined in the local coordinate system, are collected in the vector d(e). Global degrees of freedom, associated with

the nodes of the element are similarly organized into vector D(e). The two are connected with a transformation

matrix R(e), (2.14). In equation (2.15), zeros are replaced by dots for clarity. φ(e) is the angle between the global

X axis and the local x axis (rotation of the coordinate system around the global Z axis, which is equal to the local

z axis), see Fig. 2.7.

d(e) = R(e)D(e) (2.14)

d(e) =
{

u
(e)
1 ,u

(e)
2 ,v

(e)
1 ,v

(e)
2 ,θ

(e)
1 ,θ

(e)
2

}T
, D(e) =

{

Un1
,Un2

,Vn1
,Vn2

,Θn1
,Θn2

}T

R(e) =













cosφ(e) · sinφ(e) · · ·

· cosφ(e) · sinφ(e) · ·

−sinφ(e) · cosφ(e) · · ·

· −sinφ(e) · cosφ(e) · ·

· · · · 1 ·

· · · · · 1













(2.15)

Vector D(e) contains those components of vector dstr that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(e) of size 6×nDOF with only six non-zero entries.

D(e) = P(e)dstr

P
(e)
1, 3n1−2 = P

(e)
2, 3n2−2 = P

(e)
3, 3n1−1 = P

(e)
4, 3n2−1 = P

(e)
5, 3n1

= P
(e)
6, 3n2

= 1, other P
(e)
i,j = 0

(2.16)

Obeying equations (2.14) and (2.16), we can write the relation between the local degrees of freedom of the finite

element (e) and the global degrees of freedom of the mesh.
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d(e) = R(e)P(e)dstr (2.17)

n1 Un1

Vn1

Qn1

n2 Un2

Vn2

Qn2

HeL

1

u1

v1

Θ1

2

u2

v2

Θ2

HeL

X

Y

x
y

Φ

Figure 2.7: Global (left) and local (right) degrees of freedom, associated with a finite element.

Slika 2.7: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s končnim elementom.

2.2.3.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real displacements. As with the real displace-

ments, they are interpolated between the nodal values with appropriate interpolation functions. The virtual defor-

mation of the mesh is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual nodal displacements of the structure) d̂str, the virtual displacements

of the element d̂(e) and the selection D̂(e) of the global virtual displacements, associated with the element (e), are

defined analogously to the real quantities dstr, d(e) and D(e), defined in equations (2.13) and (2.15).

d̂str =
{
Û1, V̂1, Θ̂1, Û2, V̂2, Θ̂2, ... , ÛnN , V̂nN , Θ̂nN

}T

d̂(e) =
{

û
(e)
1 , û

(e)
2 , v̂

(e)
1 , v̂

(e)
2 , θ̂

(e)
1 , θ̂

(e)
2

}T
, D̂(e) =

{
Ûn1

, Ûn2
, V̂n1

, V̂n2
, Θ̂n1

, Θ̂n2

}T
(2.18)

Relations between them are equivalent to equations (2.14)-(2.17), matrices R(e) and P(e) remain the same.

d̂(e) = R(e)D̂(e), D̂(e) = P(e)d̂str, d̂(e) = R(e)P(e)d̂str (2.19)

2.2.3.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from

the vector dstr is accompanied by a corresponding internal force. Analogously to equation (2.13) we can write:

f int,str =
{

f int
U1
,f int

V1
,f int

Θ1
,f int

U2
,f int

V2
,f int

Θ2
, ... ,f int

UnN
,f int

VnN
,f int

ΘnN

}T
(2.20)
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Vector f int,str has nDOF = 3nN components - for each node a force parallel to global X axis, a force parallel to

Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with f int
U , f int

V and f int
Θ ,

respectively, and depicted in Fig. 2.8.

X

Y
node of FE

n fUn

int

fVn

int

fQn

int

Figure 2.8: Internal forces, corresponding to degrees of freedom at a node of the finite element mesh.

Slika 2.8: Notranje sile, ki ustrezajo prostostnim stopnjam v vozlišču mreže končnih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, meeting in

that node. Let us now take a closer look at a finite element (e). The internal forces of the element are defined

in the local coordinate system and correspond to the local degrees of freedom d(e), see Fig. 2.9 (right). They

are collected in the vector f int,(e). The forces can be transformed by matrix R(e) so as to match the directions

of the global internal forces f int,str. The new, transformed vector is designated with F int,(e), Fig. 2.9 (left). The

transformation matrix R(e) is the same as in equation (2.15).

f int,(e) = R(e)F int,(e) ⇔ F int,(e) = R(e)−1
f int,(e) (2.21)

f int,(e) =
{

f int,(e)
u1

,f int,(e)
u2

,f int,(e)
v1

,f int,(e)
v2

,f
int,(e)
θ1

,f
int,(e)
θ2

}T

F int,(e) =
{

f
int,(e)
Un1

,f
int,(e)
Un2

,f
int,(e)
Vn1

,f
int,(e)
Vn2

,f
int,(e)
Θn1

,f
int,(e)
Θn2

}T
(2.22)

The components of the global vector f int,str are computed by summing the contributions F int,(e) of individual finite

elements. Matrix P(e) is defined in (2.16).

f int,str =
nFE

∑
e=1

P(e)T F int,(e) (2.23)

Transformation (2.21) and summation (2.23) can be joined in a simplified notation A. Operator A represents the

assembly of the internal forces f int,(e) and nFE is the total number of finite elements.

f int,str =
nFE

∑
e=1

P(e)T R(e)−1
f int,(e) =

nFE

A
e=1

[

f int,(e)
]

(2.24)
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n1 fUn1

int,HeL

fVn1

int,HeL

fQn1

int,HeL

n2 fUn2

int,HeL

fVn2

int,HeL

fQn2

int,HeL

HeL

1
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int,HeL

fv1

int,HeL

fΘ1

int,HeL
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fu2

int,HeL
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fΘ2
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HeL

X
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Φ

Figure 2.9: Contribution of a finite element to internal forces of the structure in global (left) and local

(right) coordinate system.

Slika 2.9: Prispevek končnega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

Another useful relation can be observed. For rotation matrix R(e) it holds RT = R−1 or RT R = I, where I is the

identity matrix. By using this property as well as equations (2.19) and (2.21), we can conclude that the scalar

product of virtual displacements and internal forces is equal in local and global coordinate system.

d̂(e)T f int,(e) = D̂(e)T R(e)T R(e) F int,(e) = D̂(e)T F int,(e) (2.25)

2.2.4 Virtual work equation

Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the

virtual work of internal forces G int on any kinematically admissible perturbation of displacements - virtual dis-

placements - must be equal to the work of external forces Gext on the same displacements.

G int −Gext = 0 (2.26)

Since we are dealing with a discretized model, the external loads are defined at the nodes of the mesh. Distributed

loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed

simply as a scalar product of the vector of virtual nodal displacements of the mesh d̂str and the corresponding

vector of generalized external forces f ext,str. Virtual displacements are defined in equation (2.18) and the external

forces are defined analogously to the internal forces in equation (2.20).

Gext = d̂strT f ext,str =
nDOF

∑
j=1

d̂str
j f ext,str

j (2.27)

Here nDOF is the number of the structure’s degrees of freedom. Many components of the sum (2.27) may be zero.

The virtual work of internal forces is composed of contributions from individual finite elements. The total number

of finite elements in the mesh is nFE .
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G int =
nFE

∑
e=1

G int,(e), G int,(e) =
∫

L(e)

(ε̂N + κ̂M)dx (2.28)

For each element, G int,(e) is computed by multiplying the virtual axial deformation and virtual curvature with the

axial force and moment, respectively, and integrating the products over the length of the element. The virtual

quantities ε̂ and κ̂ are interpolated between the virtual nodal displacements in the same way as the real quantities

in equations (2.2) and (2.5). The additional part of virtual curvature κ̂add is only defined in the finite elements that

have already developed a softening plastic hinge.

ε̂= Buû, κ̂= Bv v̂+Bθθ̂+

κ̂add

︷︸︸︷

Gα̂ (2.29)

Expressions (2.29) are inserted into integral (2.28), which is then rearranged to produce the internal forces, corre-

sponding to the virtual degrees of freedom of the finite element d̂(e), as defined in (2.18). Index (e) is omitted until

the last line in equation (2.30).

G int,(e) =
∫

L

(ε̂N + κ̂M)dx=

=
∫

L

BuûNdx+
∫

L

(
Bv v̂+Bθθ̂+Gα̂

)
Mdx=

= ûT
∫

L

BuT

Ndx+ v̂T
∫

L

BvT

Mdx+ θ̂
T
∫

L

BθTMdx+ α̂
∫

L

GMdx=

= d̂(e)T f int,(e)
︸ ︷︷ ︸

G int,reg

+ α̂(e)h(e)
︸ ︷︷ ︸

G int,add

(2.30)

The second term of the last line G int,add is the additional virtual work due to enhanced kinematics. It only exists

in the nα finite elements that have reached the carrying capacity and formed a softening hinge. Virtual work of the

remaining finite elements consists solely of the regular part G int,reg . Virtual nodal displacements of the element

and the internal forces have been defined in (2.18) and (2.22).

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e)T =
{

fu,int,(e)T , fv,int,(e)T , fθ,int,(e)T
}

(2.31)

Components of f int,(e) are computed as follows:

fu,int,(e) =
∫

L

BuT

Ndx, fv,int,(e) =
∫

L

BvTMdx, fθ,int,(e) =
∫

L

BθTMdx (2.32)

A shorter notation (2.33) will also be used.

f int,(e) =
∫

L






Bu

0

0




Ndx+

∫

L






0

Bv

Bθ




Mdx=

∫

L

B̆εTNdx+
∫

L

B̆κT

Mdx (2.33)
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Quantity h(e) corresponds to the virtual rotational jump α̂(e).

h(e) =
∫

L

GMdx=
∫

L

(
Ḡ+ δxd

)
Mdx=

∫

L

ḠMdx+ M |xd =
∫

L

ḠMdx+ t (2.34)

In (2.34), we have used equation (2.9) for G and rule (2.35) for integration of the Dirac-delta function. Quantity

M |xd is the value of function M (x) at coordinate xd. We assign to it a new symbol t and assume it as the moment

at the discontinuity (the moment in the softening hinge).

∫

L

g (x)δxddx= g (xd) (2.35)

The virtual work of external and internal forces in the equilibrium equation (2.26) is replaced by expressions (2.27)

and (2.28), applying also (2.30) and (2.25). Remember, that the additional virtual work G int,add is only included

for the nα finite elements, already in the softening phase. For the sake of simplicity, it is assumed that they are

labeled with consecutive numbers from 1 to nα. Finally, the second of equations (2.19) allows us to express the

weak equilibrium in the manner of global virtual displacement vector d̂str and virtual rotational jumps α̂(e).

0 =
nFE

∑
e=1

G int,(e)−Gext =

=
nFE

∑
e=1

D̂(e)T F int,(e)+
nα

∑
e=1

α̂(e)h(e)− d̂strT f ext,str =

= d̂strT
nFE

∑
e=1

P(e)T F int,(e)+
nα

∑
e=1

α̂(e)h(e)− d̂strT f ext,str =

= d̂strT
(

f int,str − f ext,str
)

+
nα

∑
e=1

α̂(e)h(e)

(2.36)

Equilibrium (2.36) must hold for any kinematically admissible virtual displacements d̂str and virtual rotational

jumps α̂(e). From this requirement we can conclude:

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nα} : h(e) = 0
(2.37)

The first of equations (2.37) represents equilibrium of every individual node of the mesh, or the global equilibrium.

Here f int,str and f ext,str are vectors of internal and external forces on the structural level. They correspond in position

and direction to the degrees of freedom of the structure. Their length is equal to the total number of degrees of

freedom nDOF . The second of equations (2.37) can be better interpreted after inserting expression (2.34) for

h(e). Equation (2.38) represents a weak form (integral form) of Cauchy equilibrium between the moment t at the

discontinuity and the moment M in the bulk of the element.

h(e) = 0 ⇔ t=−
∫

L

ḠMdx (2.38)
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Another verification is required at this place. The principle of embedded discontinuity can be regarded as a method

of incompatible modes. In that view, the additional virtual work G int,add, performed on the virtual rotational jump

α̂, should be zero at least for the case of constant moment in the element.

α̂
∫

L

GMdx= α̂M
︸︷︷︸

6=0

∫

L

Gdx= 0 ⇒
∫

L

Gdx= 0 (2.39)

Taking into account the rule (2.35) for integration of the Dirac-delta function, requirement (2.39) can be reformu-

lated.

∫

L

Gdx=
∫

L

(
Ḡ+ δxd

)
dx=

∫

L

Ḡdx+

=1
︷ ︸︸ ︷
∫

L

δxddx= 0 ⇒
∫

L

Ḡdx=−1 (2.40)

Operator Ḡ, as defined in equation (2.12) satisfies this condition, regardless of the location of the discontinuity xd.

2.2.5 Constitutive models

In this section we describe selected constitutive models. Bending is controlled by two separate laws, one for the

bulk of the element and the other for the softening hinge at the location of the discontinuity.

2.2.5.1 Axial response

The axial response is presumed linear elastic. In equation (2.41), N is the axial force, E is the elastic modulus, A

is the cross-section and ε is the axial strain, computed according to equation (2.2).

N = EAε,
∂N

∂ε
= EA (2.41)

2.2.5.2 Bending response for the bulk of the element

Behavior of the bulk of the element is described by elasto-plastic model with bilinear isotropic hardening. A

typical moment-curvature diagram is shown in Fig. 2.10 (left). Response is linear elastic up to moment Mc, at

which the first cracks in concrete appear, reducing the bending stiffness of the beam. Another drop in stiffness

occurs at moment My , when the reinforcement starts to yield. Unloading lines are parallel to the initial elastic

line. This also holds for the part of the diagram between Mc and My . Although a combined damage-plasticity

model would be more accurate, this simple plasticity model performs well enough for typical reinforced concrete

cross-sections, where the largest part of inelastic deformations comes from tensile reinforcement. The diagrams in

Fig. 2.10 depend on the axial force N . In this chapter, we limit ourselves to beams with symmetrical cross-section,

which implies a symmetrical response for positive and negative bending moment. The bulk material model is

mathematically described by the following equations, which can be derived from the principle of maximum plastic

dissipation, see e.g. [54].

Remark. For beams with a non-symmetrical cross-section, the material parameters, which determine the dia-

grams in Fig. 2.10, would be different for positive and negative moments.
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Figure 2.10: Moment - curvature diagram (left). Bilinear hardening law (right). Only positive parts of

the diagrams are shown. They are valid for constant value of axial force.

Slika 2.10: Diagram moment - ukrivljenost (levo). Bilinearno utrjevanje (desno). Prikazana sta samo

pozitivna dela diagramov. Veljata za konstantno osno silo.

Moment M is related to curvature κ̄ by equation (2.42), which represents the elastic loading path and elastic

unloading/reloading path of the M − κ̄ diagram.

M = EI (κ̄− κ̄p) , κ̄= Bvv+Bθθ+ Ḡα (2.42)

Here E is the elastic modulus, I is the moment of inertia, κ̄p plastic curvature, and κ̄ the bulk curvature, as defined

in equation (2.11). Before the formation of the softening hinge, the rotational jump α is zero. The plastic loading

path of the M − κ̄ diagram is determined indirectly by the remaining equations in this section.

φ̄(M,q̄) = |M |− (Mc− q̄) (2.43)

Yield function φ̄ prescribes the admissible moments. Elasticity limit Mc is the absolute value of the moment, at

which the first plastic deformation occurs. Moment-like hardening variable q̄ controls the yield threshold evolution.

q̄ =

{

−H1ξ̄; ξ̄ ≤ ξ̄∆H

− (My −Mc)−H2

(
ξ̄− ξ̄∆H

)
; ξ̄ > ξ̄∆H

ξ̄∆H =
My −Mc

H1
(2.44)

Equation (2.44) describes the bilinear isotropic hardening of the material, presented in Fig. 2.10 (right). Here

H1 > 0 and H2 > 0 are constant hardening moduli, ξ̄ is a curvature-like hardening variable with the initial value

zero, and ξ̄∆H is the value of ξ̄, at which the slope in the q̄− ξ̄ diagram changes from H1 to H2. Evolution in

pseudo-time of internal hardening variables for plasticity, κ̄p and ξ̄, is prescribed by evolution equations (2.45).

˙̄κp = ˙̄γ sign(M) , ˙̄ξ = ˙̄γ (2.45)
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The dot designates the derivative with respect to pseudo-time and ˙̄γ > 0 is plastic multiplier. The loading/unloading

conditions and consistency condition (2.46) apply as well.

˙̄γ ≥ 0, φ̄≤ 0, ˙̄γ φ̄= 0, ˙̄γ ˙̄φ= 0 (2.46)

Tangent moduli of the M − κ̄ diagram are determined by the above equations. In elastic response, the plastic

multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply

computed by differentiating the expression (2.42) for M with respect to κ̄.

˙̄γ = 0 ⇒ κ̄p = const.,
∂M

∂κ̄
= EI (2.47)

In plastic loading, the plastic curvature κ̄p is not constant. It depends on the plastic multiplier ˙̄γ which depends on

the curvature κ̄. The tangent modulus can be computed from pseudo-time derivatives of moment and curvature. It

follows from the last two equations in (2.46) that φ̄ = 0 and ˙̄φ = 0. We can express M from equation (2.43) and

differentiate it over pseudo-time. Both options for q̄ from equation (2.44) have to be considered. In both cases, M

is expressed as a function of ξ̄, which is differentiated according to the second of evolution equations (2.45).

M = (Mc− q̄) sign(M) , Ṁ =

{

H1 ˙̄γ sign(M) ; ξ̄ ≤ ξ̄∆H

H2 ˙̄γ sign(M) ; ξ̄ > ξ̄∆H

(2.48)

Now we differentiate equation (2.42) over pseudo-time, exploiting expressions (2.48) for Ṁ . The first of evolution

equations (2.45) is utilized in the procedure.

Ṁ = EI ( ˙̄κ− ˙̄κp)

Hi ˙̄γ sign(M) = EI ( ˙̄κ− ˙̄γ sign(M))

EI ˙̄κ= (EI+Hi) ˙̄γ sign(M)

˙̄κ=
EI+Hi

EI
˙̄γ sign(M)

Hi =

{

H1; ξ̄ ≤ ξ̄∆H

H2; ξ̄ > ξ̄∆H

(2.49)

Pseudo-time derivatives Ṁ and ˙̄κ, defined in (2.48) and (2.49), are divided to produce the plastic tangent modulus.

∂M

∂κ̄
=

Ṁ
˙̄κ

=
EIHi

EI+Hi
Hi =

{

H1; ξ̄ ≤ ξ̄∆H

H2; ξ̄ > ξ̄∆H

(2.50)

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic

loading and unloading path, while the second one represents the slopes H̄1 and H̄2 of the plastic loading path in

the M −κ diagram in Fig. 2.10.

∂M

∂κ̄
=







EI; ˙̄γ = 0

EIHi

EI+Hi
; ˙̄γ > 0

Hi =

{

H1; ξ̄ ≤ ξ̄∆H

H2; ξ̄ > ξ̄∆H

(2.51)
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2.2.5.3 Softening plastic hinge in bending

Behavior of the softening plastic hinge is described by a plastic softening law, presented in Fig. 2.11. It associates

the moment in the hinge t to the jump in rotation α. When the hinge forms, the rotational jump is zero and the

moment is equal to the ultimate moment Mu of the cross-section. If the imposed nodal displacements of the finite

element are increased, the carrying capacity of the hinge reduces. The moment t decreases, while the rotational

jump α increases. This is referred to as plastic softening. If the imposed nodal displacements of the finite element

are reduced, the rotational jump remains the same, representing plastic deformation. The moment in the hinge

decreases in such a way to remain in equilibrium with the moment in the bulk, as demanded by equation (2.38).

This process is called elastic unloading. When t reaches the admissible value again (in absolute value), the plastic

softening continues and α changes accordingly to the sign of the moment. The diagram in Fig. 2.11 depends on

the present axial force N , and may be different for positive and negative bending moment, if the cross-section

is not symmetric. In this chapter, we limit ourselves to symmetrical behavior for both load signs. Mathematical

representation of the described behavior is condensed in the following equations, which can be derived by the

principle of maximum plastic dissipation, see e.g. [54].

KS

Αu
Α

Mu

t

Figure 2.11: Moment at the hinge - rotational jump diagram.

Slika 2.11: Diagram moment v členku - skok v zasuku.

¯̄φ(t, ¯̄q) = |t|− (Mu− ¯̄q) (2.52)

Failure function ¯̄φ defines the admissible values of moment t in the hinge. The ultimate moment of the cross-

section Mu is the absolute value of the moment, at which the softening plastic hinge forms. The moment-like

softening variable ¯̄q manages the softening threshold evolution.

¯̄q = min
{

−K ¯̄ξ,Mu

}

(2.53)

The linear softening law is described by equation (2.53), where ¯̄ξ is a rotation-like softening variable with initial

value zero, and K ≤ 0 is a constant softening modulus with units kNm/rad. Evolution in pseudo-time of internal

softening variables α and ¯̄ξ is defined by evolution equations (2.54).
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α̇= ˙̄̄γ sign(t) ,
˙̄̄
ξ = ˙̄̄γ (2.54)

The dot designates the derivative with respect to pseudo-time and ˙̄̄γ > 0 is plastic softening multiplier. The load-

ing/unloading conditions and consistency condition (2.55) also apply.

˙̄̄γ ≥ 0, ¯̄φ≤ 0, ˙̄̄γ ¯̄φ= 0, ˙̄̄γ
˙̄̄
φ= 0 (2.55)

The equation of the plastic softening loading path of t−α diagram is not unique. It depends on the loading history.

If the softening process alternates between both load signs, the loading path is translated sideways (left or right).

The slope, however, is not affected and can be determined from the pseudo-time derivatives of t and α. In softening

process, when ˙̄̄γ > 0, the failure function ¯̄φ = 0. Expression for t is then determined from (2.52) and (2.53). The

derivative is obtained in accordance with evolution equation (2.54) for ¯̄ξ.

t= (Mu− ¯̄q)sign(t) =







(

Mu+K ¯̄ξ
)

sign(t) ; ¯̄q <Mu

0; ¯̄q =Mu

ṫ=

{

K ˙̄̄γsign(t) ; ¯̄q <Mu

0; ¯̄q =Mu

(2.56)

The slope of the plastic softening path, defined as the derivative of t over α, is computed by dividing the pseudo-

time derivatives (2.56) and (2.54) of both quantities.

∂t

∂α
=

ṫ

α̇
=







not defined; ˙̄̄γ = 0

K; ˙̄̄γ > 0, ¯̄q <Mu

0; ˙̄̄γ > 0, ¯̄q =Mu

(2.57)

A third option was added in equation (2.57). It corresponds to elastic unloading path with ˙̄̄γ = 0. It follows from

evolution equations (2.54) that α̇= 0 in that case. And since the failure function ¯̄φ is no longer required to be zero,

the traction t cannot be computed as in (2.56). It changes in accordance with equation (2.38) which represents the

equilibrium between the bulk and the discontinuity. The derivative ∂t/∂α cannot be defined in this case, because

α is constant.

2.3 Computational procedure

Response of a structure, discretized by a mesh of nFE above derived finite elements, is computed at discrete

pseudo-time points τ0, τ1, . . . , τn, τn+1, . . . , T by solving at each pseudo-time point nonlinear equations (2.58)

for current values of nodal displacements/rotations.

f int,str − f ext,str = 0

∀e ∈ {1, 2, ... , nα} : h(e) = 0
(2.58)

Here, nα is the number of elements that have reached the carrying capacity and formed a softening plastic hinge.

At a particular pseudo-time point τn+1, the solution is searched iteratively by the Newton-Raphson method. Each

iteration, denoted by k, consists of two subsequent phases: (A) computation of internal variables, corresponding
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to the current iterative values of nodal displacements/rotations, in order to compute the moments in the bulk and

in the softening plastic hinge according to the chosen material laws; (B) solution of linearized equations (2.58)

in order to update the iterative values of nodal displacements/rotations. When one phase of the computation is

completed, the results are used immediately in the next one.

For a pseudo-time point τn+1, the computational problem related to a generic finite element (e) can be stated as:

given
{

d
(e)
n ; κ̄

(e)
p,n, ξ̄

(e)
n , α

(e)
n , ¯̄ξ

(e)
n

}

find
{

d
(e)
n+1; κ̄

(e)
p,n+1, ξ̄

(e)
n+1, α

(e)
n+1,

¯̄ξ
(e)
n+1

}

Note that superscript (e) was omitted in section 2.2.5 for the above internal variables. The subscript n and n+ 1

denote the values at pseudo-times τn and τn+1, respectively.

2.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for element (e) at pseudo-time

point τn+1 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed at the values

from the previous iteration d
(e),(k−1)
n+1 . Since every internal variable is connected to a single finite element, the

computations are local, i.e. they are performed independently for each element. The condition of the discontinuity

is known by the following flag.

crack(e) =

{

false . . . no discontinuity in element (e)

true . . . discontinuity in element (e)
(2.59)

The algorithm in Fig. 2.12 is applied. If there was no discontinuity in the previous pseudo-time step, we begin with

equations for the hardening phase of material, described in section 2.3.1.2. We must do so even if the previous

iteration of the current step indicated occurrence of the discontinuity, because that was not a converged result. We

check if the carrying capacity is reached. If not, we keep the obtained results, otherwise we discard them and use

equations for the softening phase of material, described in section 2.3.1.3. If the discontinuity already existed in

the previous pseudo-time step, it must also exist in the current step, therefore we follow the procedure from section

2.3.1.3.

The integrals that appear in expressions (2.32), (2.34) and (2.38) for f int,(e), h(e) and t, are evaluated with numerical

integration. A three-point Gauss-Lobatto integration scheme is used with integration points at both ends and at the

center of the finite element. Curvature, moment and hardening internal variables are therefore computed only at

those three locations. Softening internal variables are defined at the location of the discontinuity, which coincides

with one of the integration points (although the two are not connected).

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element.

2.3.1.1 Axial response

Computation of the axial response is straightforward. Axial strain is computed according to equation (2.7) with

the current values of the nodal displacements. Axial force is calculated from (2.41).

ε
(k)
n+1 = B̆εd

(k−1)
n+1 , N

(k)
n+1 = EAε

(k)
n+1,

∂N

∂ε

∣
∣
∣
∣

(k)

n+1

= EA (2.60)
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Start phase A of iteration k

for element e

crackn
HeL= true

use eqs. from sec. 2.3.1.2

carrying capacity

exceeded

crackn+1
HeL
= false,

keep results, computed

with eqs. from

sec. 2.3.1.2

crackn+1
HeL
= true

crackn+1
HeL
= true,

delete results, computed

with eqs. from

sec. 2.3.1.2

use eqs. from sec. 2.3.1.3

End phase A of iteration k

for element e

Yes

Yes

No

No

Figure 2.12: Algorithm for phase (A) of k-th iteration for finite element (e).

Slika 2.12: Algoritem za fazo (A) k-te iteracije za končni element (e).

2.3.1.2 Bending response in the hardening phase

The computational procedure for the hardening phase is described next. There is no discontinuity (hinge) in the

element and the rotation jump is zero. First, we assume elastic behavior, which means that the hardening internal

variables keep the values from the previous step. Moment is computed in accordance with equation (2.42), where

α
(k)
n+1 = 0.

κ̄
(k),trial
p,n+1 = κ̄p,n, ξ̄

(k),trial
n+1 = ξ̄n, M

(k),trial
n+1 = EI

(

κ̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− κ̄
(k),trial
p,n+1

)

(2.61)
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Trial yield function φ̄
(k),trial
n+1 is computed, as defined in (2.43) and (2.44).

φ̄
(k),trial
n+1 =

∣
∣
∣M

(k),trial
n+1

∣
∣
∣−
(

Mc− q̄
(k),trial
n+1

)

q̄
(k),trial
n+1 =

{

−H1ξ̄n; ξ̄n ≤ ξ̄∆H

− (My −Mc)−H2

(
ξ̄n− ξ̄∆H

)
; ξ̄n > ξ̄∆H

(2.62)

The trial solution is accepted if the trial yield function is negative or zero.

φ̄
(k),trial
n+1 ≤ 0 ⇒ κ̄

(k)
p,n+1 = κ̄

(k),trial
p,n+1 , ξ̄

(k)
n+1 = ξ̄

(k),trial
n+1 , M

(k)
n+1 =M

(k),trial
n+1 (2.63)

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of

evolution equations (2.45), where γ̄
(k)
n+1 = ˙̄γ

(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix A that sign

(

M
(k)
n+1

)

=

sign
(

M
(k),trial
n+1

)

.

φ̄
(k),trial
n+1 > 0 ⇒ κ̄

(k)
p,n+1 = κ̄p,n+ γ̄

(k)
n+1sign

(

M
(k),trial
n+1

)

, ξ̄
(k)
n+1 = ξ̄n+ γ̄

(k)
n+1 (2.64)

By exploiting equations (2.64), the moment M
(k)
n+1 can be expressed with the trial moment and the plastic multiplier

γ̄
(k)
n+1.

M
(k)
n+1 =M

(k),trial
n+1 −EI γ̄

(k)
n+1sign

(

M
(k),trial
n+1

)

(2.65)

We do the same for the moment-like hardening variable q̄
(k)
n+1. Since the expression for q̄ depends on the value of

ξ̄, we have to consider three options. The values form previous and current step, ξ̄n and ξ̄n+1, can be either both

smaller than ξ̄∆H , both greater, or one smaller and one greater. Note that ξ̄n+1 is the greater of the two values,

because γ̄
(k)
n+1 is positive.

q̄
(k)
n+1 =







q̄
(k),trial
n+1 −H1γ̄

(k)
n+1; ξ̄n < ξ̄n+1 ≤ ξ̄∆H

q̄
(k),trial
n+1 − (H1 −H2)

(
ξ̄∆H − ξ̄n

)
−H2γ̄

(k)
n+1; ξ̄n ≤ ξ̄∆H , ξ̄n+1 > ξ̄∆H

q̄
(k),trial
n+1 −H2γ̄

(k)
n+1; ξ̄n+1 > ξ̄n > ξ̄∆H

(2.66)

Yield function φ̄
(k)
n+1 is expressed as a function of plastic multiplier γ̄

(k)
n+1 by employing equations (2.65) and

(2.66). Value of the plastic multiplier is computed from requirement φ̄
(k)
n+1 = 0, coming from the loading/unloading

conditions.

φ̄
(k)
n+1 =

∣
∣
∣M

(k)
n+1

∣
∣
∣−
(

Mu− q̄
(k)
n+1

)

= φ̄
(k)
n+1

(

γ̄
(k)
n+1

)

= 0 (2.67)



26 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

Considering the different values of q̄
(k)
n+1, we obtain three expressions for γ̄

(k)
n+1.

γ̄
(k)
n+1 =







φ̄
(k),trial
n+1

EI+H1
; ξ̄n < ξ̄n+1 ≤ ξ̄∆H

φ̄
(k),trial
n+1 − (H1 −H2)

(
ξ̄∆H − ξ̄n

)

EI+H2
; ξ̄n ≤ ξ̄∆H , ξ̄n+1 > ξ̄∆H

φ̄
(k),trial
n+1

EI+H2
; ξ̄n+1 > ξ̄n > ξ̄∆H

(2.68)

Consistent tangent modulus is computed as the derivative of moment over curvature. Moment takes the trial value

from equation (2.61) if plastic multiplier γ̄
(k)
n+1 is zero, and the value from (2.65) if γ̄

(k)
n+1 is positive. In the second

case, equations (2.64), (2.68), (2.62) and (2.61) are used to express the moment as a function of curvature.

∂M

∂κ̄

∣
∣
∣
∣

(k)

n+1

=







EI; γ̄
(k)
n+1 = 0

EIHi

EI+Hi
; γ̄

(k)
n+1 > 0

Hi =

{

H1; ξ̄ ≤ ξ̄∆H

H2; ξ̄ > ξ̄∆H

(2.69)

The hardening internal variables, the moment and the tangent modulus have been calculated under assumption that

the ultimate moment is not exceeded. This still requires verification. If the assumption is confirmed, the above

results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity.

The first step in the verification is to determine the location of the potential discontinuity xd. Since we have

restricted ourselves to symmetric cross-sections, the hinge is simply placed at the location of maximal moment in

absolute value. This can occur at either end of the element because of the linear form of moment. If the moment is

constant, the discontinuity is placed in the middle of the element.

M1 =M2 =M3 ⇒ xd = L/2

|M1|> |M2| ⇒ xd = 0

|M1|< |M2| ⇒ xd = L

where

M1 = M |x=0

M2 = M |x=L

M3 = M |x=L/2

(2.70)

Remark. For beams with a non-symmetrical cross-section, the positioning of the discontinuity would be less

simple because of the different values of ultimate moment Mu for positive and negative moments. Location of

the discontinuity would be determined in a similar way as in a concrete layer of a multi-layer element in section

3.3.1.1 of the next chapter.

With the location of the potential discontinuity determined, we can calculate the potential value of moment at the

discontinuity t
(k),pot
n+1 by equation (2.38). The integral is evaluated numerically with the three-point Gauss-Lobatto

integration scheme.

t
(k),pot
n+1 =−

∫

L

ḠM
(k)
n+1dx (2.71)

Failure function ¯̄φ
(k),pot
n+1 is evaluated with the moment-like softening variable ¯̄q equal to zero, as there has been no

reduction of carrying capacity in previous steps.

¯̄φ
(k),pot
n+1 =

∣
∣
∣t
(k),pot
n+1

∣
∣
∣−
(

Mu− ¯̄q
(k),pot
n+1

)

, ¯̄q
(k),pot
n+1 = 0 (2.72)
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We set the value of the discontinuity flag to true if the failure function is positive, and to false otherwise. The

value is not final, however, until the converged state is reached. It can change in following iterations.

¯̄φ
(k),pot
n+1 ≤ 0 ⇒ crack

(e)
n+1 = false

¯̄φ
(k),pot
n+1 > 0 ⇒ crack

(e)
n+1 = true

(2.73)

If the carrying capacity is exceeded, the above computed values of internal hardening variables and moment in the

bulk of the element are discarded and computed again, as explained in the following section.

2.3.1.3 Bending response in the softening phase

This section describes the computational procedure for an element in the softening phase. It is applied if the current

value of the discontinuity flag crack
(e)
n+1 = true, which happens if the discontinuity already existed in the previous

step, or if the carrying capacity of the element was exceeded in this iteration, see equation (2.73). In any case, the

hardening internal variables take the values from the previous step, which are the last converged results.

κ̄
(k)
p,n+1 = κ̄p,n, ξ̄

(k)
n+1 = ξ̄n (2.74)

We start by assuming a trial solution, keeping the softening internal variables at the values from the previous step.

The moment in the bulk and the moment at the discontinuity are computed according to equations (2.42) and

(2.38), respectively.

α
(k),trial
n+1 = αn,

¯̄ξ
(k),trial
n+1 = ¯̄ξn,

M
(k),trial
n+1 = EI

(

κ̄
(

d
(k−1)
n+1 ,α

(k),trial
n+1

)

− κ̄p,n

)

, t
(k),trial
n+1 =−

∫

L

ḠM
(k),trial
n+1 dx

(2.75)

The integral is computed numerically with the three-point Gauss-Lobatto integration scheme and evaluates to

t
(k),trial
n+1 = M

(k),trial
n+1

∣
∣
∣
xd

for the linear distribution of moment over the bulk of the element.

The trial value of failure function ¯̄φ
(k),trial
n+1 is calculated, respecting equations (2.52) and (2.53).

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

Mu− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−K ¯̄ξ
(k),trial
n+1 ,Mu

}

= ¯̄qn (2.76)

If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

α
(k)
n+1 = α

(k),trial
n+1 , ¯̄ξ

(k)
n+1 =

¯̄ξ
(k),trial
n+1 , M

(k)
n+1 =M

(k),trial
n+1 , t

(k)
n+1 = t

(k),trial
n+1 (2.77)

If ¯̄φ
(k),trial
n+1 > 0, the assumed solution is not admissible. The softening internal variables are updated according to

the incremental form of evolution equations (2.54), where ¯̄γ
(k)
n+1 =

˙̄̄γ
(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix

A that sign
(

t
(k)
n+1

)

= sign
(

t
(k),trial
n+1

)

.

α
(k)
n+1 = αn+ ¯̄γ

(k)
n+1sign

(

t
(k),trial
n+1

)

, ¯̄ξ
(k)
n+1 =

¯̄ξn+ ¯̄γ
(k)
n+1 (2.78)
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By using equations (2.78), the moment at the discontinuity t
(k)
n+1 and the moment-like softening variable ¯̄q

(k)
n+1 are

expressed with their trial values and the softening multiplier ¯̄γ
(k)
n+1.

t
(k)
n+1 = M

(k)
n+1

∣
∣
∣
xd

=
[

EI
(

B̆κd
(k−1)
n+1 + Ḡα

(k)
n+1 − κ̄p,n

)]

x=xd
=

=
[

EI
(

B̆κd
(k−1)
n+1 + Ḡαn− κ̄p,n

)]

x=xd
+
[

EI Ḡ ¯̄γ
(k)
n+1sign

(

t
(k),trial
n+1

)]

x=xd
=

= t
(k),trial
n+1 +EI Ḡ

∣
∣
xd

¯̄γ
(k)
n+1sign

(

t
(k),trial
n+1

)

(2.79)

¯̄q
(k)
n+1 =







¯̄qAn+1 = ¯̄q
(k),trial
n+1 −K ¯̄γ

(k)
n+1; −K

(
¯̄ξn+ ¯̄γA

n+1

)

<Mu

¯̄qBn+1 =Mu; −K
(

¯̄ξn+ ¯̄γA
n+1

)

>Mu

(2.80)

Linear operator Ḡ in expression for t
(k)
n+1 is evaluated at xd. Obtained expressions are inserted in equation ¯̄φ

(k)
n+1 = 0,

coming from loading/unloading conditions (2.55).

¯̄φ
(k)
n+1 =

∣
∣
∣t
(k)
n+1

∣
∣
∣−
(

Mu− ¯̄q
(k)
n+1

)

= 0 ⇔ t
(k)
n+1 =

(

Mu− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

(2.81)

After a short derivation we get two expressions for ¯̄γ
(k)
n+1, depending on the expression, used for ¯̄q

(k)
n+1.

¯̄γ
(k)
n+1 =







¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

− Ḡ
∣
∣
xd
EI+K

; −K
(

¯̄ξn+ ¯̄γA
n+1

)

<Mu

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

− Ḡ
∣
∣
xd
EI

; −K
(

¯̄ξn+ ¯̄γA
n+1

)

>Mu

(2.82)

The tangent modulus is computed as the derivative of moment at the discontinuity t
(k)
n+1 over the rotation jump

α
(k)
n+1. If ¯̄γ

(k)
n+1 > 0, the moment takes the value from (2.81). Equations (2.80) and (2.78) are used to express t

(k)
n+1

as a function of α
(k)
n+1. If ¯̄γ

(k)
n+1 = 0, the rotation jump remains constant, while the moment at the discontinuity

changes to satisfy the local equilibrium (2.38). The tangent modulus cannot be determined, but it is not required

for further computation.

∂t

∂α

∣
∣
∣
∣

(k)

n+1

=







not defined; ¯̄γ
(k)
n+1 = 0

K; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 <Mu

0; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 =Mu

(2.83)

The discontinuity flag is set to crack
(e)
n+1 = true.

2.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of

section 2.3. In this phase, a linearized form of equilibrium equations (2.58) is solved to provide the k-th update of
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the nodal displacements/rotations at pseudo-time point τn+1. The computation is performed with known values of

internal variables κ̄
(e),(k)
p,n+1 , ξ̄

(e),(k)
n+1 , α

(e),(k)
n+1 and ¯̄ξ

(e),(k)
n+1 for each finite element, freshly updated in preceding phase

(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global

equations.

The first of equations (2.58) would be sufficient for calculating the new values of generalized displacements d
(e),(k)
n+1 ,

if all rotational jumps α
(e),(k)
n+1 were fixed at the values, computed in phase (A). To improve convergence, however,

it is useful to update the rotational jumps as well. For that purpose, the second of equations (2.58) are engaged.

Actually, they have once already been satisfied by using expression (2.38) for the moment at the discontinuity, but

that equality held for the displacements from the previous iteration d
(e),(k−1)
n+1 . Updating the displacements would

disrupt the equilibrium between the moment at the discontinuity and the moment in the bulk of the element, unless

the rotational jumps are updated as well. Solving the whole system of equations (2.58) therefore promises a more

accurate solution.

2.3.2.1 Linearization of equilibrium equations

The first of equations (2.58) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized

around the current values of nodal degrees of freedom of the structure d
str,(k−1)
n+1 .

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

︸ ︷︷ ︸

K
str,(k)
n+1

∆d
str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 ,

∂f
ext,str
n+1

∂d
str,(k−1)
n+1

= 0 (2.84)

The derivative on the left side of the equation is designated with K
str,(k)
n+1 and named the tangent stiffness matrix of

the structure. ∆d
str,(k)
n+1 is the sought update of the nodal displacements in this iteration. The vector of external forces

f
ext,str
n+1 represents the loading, which is defined in advance for each pseudo-time point τn+1 and is independent of

the nodal displacements. The vector of internal forces f
int,str,(k)
n+1 is computed from contributions of individual finite

elements, according to equation (2.24). Matrices P(e) and R(e) are constant.

f
int,str,(k)
n+1 =

nFE

∑
e=1

P(e)T R(e)−1

f
int,(e),(k)
n+1

K
str,(k)
n+1 =

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

=
nFE

∑
e=1

P(e)T R(e)−1 ∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

(2.85)

Let us recall the relation (2.17) between the vector of nodal displacements of a finite element d
(e),(k−1)
n+1 and the

vector of nodal displacements of the structure d
str,(k−1)
n+1 . The derivative of one over the other will prove useful.

d
(e),(k−1)
n+1 = R(e)P(e)d

str,(k−1)
n+1 ⇒

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

= R(e)P(e) (2.86)

Internal forces f
int,(e),(k)
n+1 of finite element (e) are defined in equation (2.33). In nα elements, that have developed

a hinge, internal forces are functions of nodal displacements d
(e),(k−1)
n+1 and rotational jumps α

(e),(k)
n+1 , while in the
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remaining elements (without discontinuity) they depend solely on the nodal displacements. For the sake of clarity

it is assumed that the elements with a softening hinge are numbered with consecutive numbers from 1 to nα.

e ∈ {1,2, . . . ,nα} : f
int,(e),(k)
n+1 = f

int,(e),(k)
n+1

(

d
(e),(k−1)
n+1 ,α

(e),(k)
n+1

)

e ∈ {nα+1, . . . ,nFE} : f
int,(e),(k)
n+1 = f

int,(e),(k)
n+1

(

d
(e),(k−1)
n+1

) (2.87)

The derivative ∂f
int,(e),(k)
n+1 /∂d

str,(k−1)
n+1 , which appears in expression (2.85), is examined next. For the finite elements

without discontinuity, the expression is simple.

e ∈ {nα+1, . . . ,nFE} :
∂f

int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=
∂f

int,(e),(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
fd,(e),(k)
n+1

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

︸ ︷︷ ︸

R(e)P(e)

(2.88)

The derivative K
fd,(e),(k)
n+1 can be easily computed and the last term has been defined in (2.86). For the nα elements,

that have already entered the softening phase, the expression is more complicated.

e ∈ {1,2, . . . ,nα} :
∂f

int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=











∂f
int,(e),(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
fd,(e),(k)
n+1

+
∂f

int,(e),(k)
n+1

∂α
(e),(k)
n+1

︸ ︷︷ ︸

K
fα,(e),(k)
n+1

∂α
(e),(k)
n+1

∂d
(e),(k−1)
n+1











∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

︸ ︷︷ ︸

R(e)P(e)

(2.89)

The derivatives, marked with K
fd,(e),(k)
n+1 and K

fα,(e),(k)
n+1 , can be easily computed and the last term has been defined

in (2.86). The term ∂α
(e),(k)
n+1 /∂d

(e),(k−1)
n+1 depends on the type of the loading step. Let us denote the number of

finite elements in plastic softening step ( ¯̄γ
(e),(k)
n+1 > 0) with nPα. For the sake of simplicity we assume that they are

numbered with consecutive numbers from 1 to nPα. The number of finite elements in elastic step of the softening

phase ( ¯̄γ
(e),(k)
n+1 = 0) is marked with nEα = nα−nPα.

For the nEα elements in elastic step of the softening phase, α is constant and the term ∂α
(e),(k)
n+1 /∂d

(e),(k−1)
n+1 is

zero. For the nPα elements in the plastic softening step, the term is not zero and it is determined from the second

of equilibrium equations (2.58), which is linearized and solved locally, i.e. independently for each finite element.

This can be done because h
(e),(k)
n+1 depends on the nodal displacements and rotational jump of a single element.

∂h
(e),(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
hd,(e),(k)
n+1

∆d
(e),(k)
n+1 +

∂h
(e),(k)
n+1

∂α
(e),(k)
n+1

︸ ︷︷ ︸

K
hα,(e),(k)
n+1

∆α
(e),(k)
n+1 =−h

(e),(k)
n+1 = 0 ⇒

⇒ ∆α
(e),(k)
n+1 =−

(

K
hα,(e),(k)
n+1

)−1

K
hd,(e),(k)
n+1

︸ ︷︷ ︸

∂α
(e),(k)
n+1 /∂d

(e),(k−1)
n+1

∆d
(e),(k)
n+1

(2.90)

Note that each h
(e),(k)
n+1 , computed by (2.34), evaluates to zero because the moment at the discontinuity t

(e),(k)
n+1

has been computed by expression (2.38). The derivatives, designated with K
hd,(e),(k)
n+1 and K

hα,(e),(k)
n+1 can be
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easily calculated. Equation (2.90) defines the relation between the increment of nodal displacements ∆d
(e),(k)
n+1

and the increment of rotational jump ∆α
(e),(k)
n+1 . Since we are dealing with linearized equations, the derivative

∂α
(e),(k)
n+1 /∂d

(e),(k−1)
n+1 is equal to the ratio of the increments.

e ∈ {1,2, . . . ,nPα} : ¯̄γ
(e),(k)
n+1 > 0,

∂α
(e),(k)
n+1

∂d
(e),(k−1)
n+1

=−
(

K
hα,(e),(k)
n+1

)−1

K
hd,(e),(k)
n+1

e ∈ {nPα+1, . . . ,nα} : ¯̄γ
(e),(k)
n+1 = 0,

∂α
(e),(k)
n+1

∂d
(e),(k−1)
n+1

= 0

(2.91)

We gather expressions (2.88) and (2.89) for all nFE elements in the structure, applying relations (2.91) to the latter.

e ∈ {1, . . . ,nPα} :
∂f

int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=

K̂
(e),(k)
n+1

︷ ︸︸ ︷
(

K
fd,(e),(k)
n+1 −K

fα,(e),(k)
n+1

(

K
hα,(e),(k)
n+1

)−1

K
hd,(e),(k)
n+1

)

R(e)P(e)

e ∈ {nPα+1, . . . ,nFE} :
∂f

int,(e),(k)
n+1

∂d
str,(k−1)
n+1

= K
fd,(e),(k)
n+1 R(e)P(e)

(2.92)

Here K
fd,(e),(k)
n+1 is the standard stiffness matrix of finite element (e). We observe that it is computed in the same

way for the nFE −nα elements in the hardening phase and for the nEα elements in elastic step of the softening

phase. Stiffness matrix of the nPα finite elements in plastic softening step is designated with K̂
(e),(k)
n+1 . Finally, we

can assemble the tangent stiffness matrix of the structure by inserting (2.92) into (2.85).

K
str,(k)
n+1 =

nPα

∑
e=1

P(e)T R(e)−1

K̂
(e),(k)
n+1 R(e)P(e)+

nFE

∑
e=nPα+1

P(e)T R(e)−1

K
fd,(e),(k)
n+1 R(e)P(e) (2.93)

2.3.2.2 Components of internal forces and stiffness matrix

Internal forces f
int,(e),(k)
n+1 of element (e) are computed according to equations (2.33), where bending moment and

axial force take the values computed in phase (A) of this iteration. In order to determine the components of the

stiffness matrix, h
(e),(k)
n+1 must be written as well. It is computed in accordance with (2.34).

f
int,(e),(k)
n+1 =

∫

L

B̆εTN
(e),(k)
n+1 dx+

∫

L

B̆κT

M
(e),(k)
n+1 dx, h

(e),(k)
n+1 =

∫

L

ḠM
(e),(k)
n+1 dx+ t

(e),(k)
n+1 (2.94)

To obtain the components of the element stiffness matrix, expressions (2.94) are differentiated over nodal degrees

of freedom and over rotational jump.
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K
fd,(e),(k)
n+1 =

∂f
int,(e),(k)
n+1

∂d
(e),(k−1)
n+1

=
∫

L

B̆εT ∂N

∂ε

∣
∣
∣
∣

(e),(k)

n+1

B̆ε
︸︷︷︸

∂ε/∂d

dx+
∫

L

B̆κT ∂M

∂κ̄

∣
∣
∣
∣

(e),(k)

n+1

B̆κ
︸︷︷︸

∂κ̄/∂d

dx

K
fα,(e),(k)
n+1 =

∂f
int,(e),(k)
n+1

∂α
(e),(k)
n+1

=
∫

L

B̆κT ∂M

∂κ̄

∣
∣
∣
∣

(e),(k)

n+1

Ḡ
︸︷︷︸

∂κ̄/∂α

dx

K
hd,(e),(k)
n+1 =

∂h
(e),(k)
n+1

∂d
(e),(k−1)
n+1

=
∫

L

Ḡ
∂M

∂κ̄

∣
∣
∣
∣

(e),(k)

n+1

B̆κ
︸︷︷︸

∂κ̄/∂d

dx

K
hα,(e),(k)
n+1 =

∂h
(e),(k)
n+1

∂α
(e),(k)
n+1

=
∫

L

Ḡ
∂M

∂κ̄

∣
∣
∣
∣

(e),(k)

n+1

Ḡ
︸︷︷︸

∂κ̄/∂α

dx+
∂t

∂α

∣
∣
∣
∣

(e),(k)

n+1

(2.95)

The tangent moduli (∂M/∂κ̄ )
(e),(k)
n+1 and (∂t/∂α )

(e),(k)
n+1 are defined by equations (2.69) and (2.83). The latter

is not defined for ¯̄γ
(k)
n+1 = 0, but we have shown above that K

hα,(e),(k)
n+1 is not required in that case. The tangent

stiffness matrix is symmetrical.

2.3.2.3 Solution of global equations

The system of global equilibrium equations (2.84) is rewritten in a clearer form.

K
str,(k)
n+1 ∆d

str,(k)
n+1 = ∆f

str,(k)
n+1 , ∆f

str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 (2.96)

The external forces are an input to the analysis, internal forces are defined by equations (2.85) and (2.94), and

the tangent stiffness matrix of the structure is defined by (2.93), (2.92) and (2.95). Finally, we can compute the

increments and update the nodal displacements of the structure.

∆d
str,(k)
n+1 =

(

K
str,(k)
n+1

)−1

∆f
str,(k)
n+1 , d

str,(k)
n+1 = d

str,(k−1)
n+1 +∆d

str,(k)
n+1 (2.97)

The updates of the rotational jumps could be computed from (2.90), but there is no benefit from that because they

will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time τn+1 are repeated until the tolerance requirements are met.

∥
∥
∥∆f

str,(k)
n+1

∥
∥
∥< tol,

∥
∥
∥∆d

str,(k)
n+1

∥
∥
∥< tol (2.98)

When the converged solution is found, we proceed to the next pseudo-time step.

2.4 Numerical examples

The computer code for the above described finite element was generated by the AceGen program [68] that com-

bines manipulation of symbolic expressions, automatic differentiation and code generation. The obtained code

was introduced into the finite element program AceFEM [69], in which the presented numerical examples were

performed. Both programs have been developed by prof. J. Korelc from University of Ljubljana.
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Before performing analysis with the derived stress-resultant beam finite element, the material parameters have to

be obtained. For the axial response, only axial stiffness is required because the behavior is assumed to be linear

elastic. For the bending response, the three-linear moment-curvature relation from Fig. 2.10 (left) is needed for

each integration point of each finite element. Also, the linear moment versus rotational jump relation from Fig. 2.11

is needed for each element. The curves depend on the material properties of concrete and reinforcement, geometry

of the cross-section and the level of the axial force.

The moment-curvature diagram of the cross-section can be obtained in a standard way from the uniaxial stress-

strain concrete and reinforcement diagrams by enforcing cross-sectional equilibrium. From those diagrams, the

needed stress resultant material parameters can be estimated. Another way to compute the above stress resultant

material parameters is to use a multilayer beam finite element with layer-wise embedded axial discontinuities,

where the response of a material of each layer (including softening) is described either by 1D damage model (for

concrete) or 1D elastoplastic model (for reinforcement). Of course, the required material parameters can also be

obtained directly from experiments.

2.4.1 Failure of a cantilever beam

We consider a cantilever beam of rectangular cross-section for three different load cases, presented in Fig. 2.13.

In the first load case, the beam is loaded with moment at the free end. In order to perform the analysis up to the

total collapse, the load is controlled with imposed rotation of the free end. The following geometrical and material

properties are chosen: length of the beam L = 2.5m, elastic bending stiffness EI = 77650kNm2, elastic axial

stiffness EA = 3727200kN, moment at elasticity limit Mc = 37.9kNm, yield moment My = 268kNm, ultimate

moment Mu = 274kNm, hardening moduli H1 = 29400kNm2 and H2 = 272kNm2, and softening modulus K =

−18000kNm. Response of the structure is computed for meshes of 1, 2, 5 and 10 finite elements.

L

M

L

M N

L

F

Figure 2.13: Cantilever beam under different loads.

Slika 2.13: Konzola pod različnimi obtežbami.

Results for the load case from Fig. 2.13 (left) are presented in Fig. 2.14 (left), which shows the moment versus

imposed rotation diagrams for different meshes. We can see that they are not unique. The elastoplastic parts of the

curves are the same, but the slopes of the softening lines decrease with the increasing number of finite elements

in the mesh. The reason for such behavior is that, due to homogeneous stress state along the cantilever, each

finite element develops its own softening hinge. In finer meshes, multiple discontinuities with smaller values of

the rotational jump occur, as opposed to a single discontinuity with a greater value of the rotational jump in a

single element mesh. Since the moment at the hinge drops with the growing value of the rotational jump, it is

understandable that finer meshes produce a greater moment at the same value of imposed end rotation.

The described problem can be avoided by introducing one weaker element. This is done by slightly raising the

ultimate moment Mu for all but one finite element. Thus, when the weakest element enters the softening phase,

the moment in that element begins to drop and the remaining elements have to unload to satisfy equilibrium. As

a consequence, only one softening hinge appears in the beam and the response is identical for all meshes, see

Fig. 2.14 (right).

Next we consider the same cantilever, loaded by end moment and axial force, see the middle image in Fig. 2.13.
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Figure 2.14: Moment - rotation diagrams for cantilever beam under end moment: all finite elements are

the same (left), one element is slightly weaker (right).

Slika 2.14: Diagram moment - zasuk za konzolo, obteženo z momentom: vsi končni elementi so enaki

(levo), en element je malce šibkejši (desno).

The axial force is applied first and it is kept constant for the rest of the analysis. The bending load is applied by

gradually increasing the imposed rotation of the free end of the beam. Due to the presence of axial force, the

parameters that define the moment-curvature diagram are altered. We choose the following data: N = 100kN,

Mc = 55kNm, My = 395kNm, Mu = 401kNm, H1 = 35000kNm2, H2 = 352kNm2, K =−26000kNm. Bending

responses of the beam, with and without the presence of axial force, are shown in Fig. 2.15. They were computed

with a mesh with one finite element.

Remark. In order to determine the influence of axial force on the material parameters for bending, the geometry of

the cross-section and the material properties of concrete and reinforcement are required. In the load case without

axial force, we defined only the resultant material-geometrical properties of the cross-section, so the modified

parameters cannot be computed. Their values are altered (chosen) in a similar way as computed in [51].

0.02 0.04 0.06 0.08 0.1
Θ @radD

100

200

300

400

M @kNmD

with axial force
no axial force

Figure 2.15: Moment - rotation diagram for cantilever beam under end moment: with and without axial

force.

Slika 2.15: Diagram moment - zasuk za konzolo, obremenjeno z momentom: ob prisotnosti in brez

prisotnosti osne sile.

The third load case is shown in Fig. 2.13 (right). To obtain the response up to the total failure, the loading is

controlled with imposed vertical displacement at the location of the force. The following geometrical and material

properties are chosen: L= 2.5m, EI = 77650kNm2, EA= 3727200kN, Mc = 37.9kNm, My = 268kNm, Mu =

374kNm, H1 = 29400kNm2, H2 = 272kNm2, K = −18000kNm. The beam is modeled with meshes, consisting

of 1, 2, 5 and 10 finite elements. The diagrams, showing the relation of moment at the support versus imposed
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vertical displacement for different meshes, are presented in Fig. 2.16. We can see that a single finite element cannot

adequately describe the beam response. The error arises in hardening plasticity, because three integration points

over the whole structure are not enough to properly describe the propagation of plastic deformations. The error

diminishes rapidly for finer meshes. Contrary to the previous load cases, the stress state along the beam is not

homogeneous, so there is no need for a weakened element to prevent the occurrence of multiple discontinuities.

The only softening hinge forms at the support where the moment is the largest.

0.1 0.2 0.3 0.4
v @mD
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400

M @kNmD

1 FE
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10 FE

Figure 2.16: Moment at support - transversal displacement diagram for cantilever beam under end

transversal force: all finite elements are the same.

Slika 2.16: Diagram moment ob podpori - prečni pomik za konzolo, obremenjeno s prečno silo: vsi

končni elementi so enaki.

2.4.2 Failure of simply supported and clamped beams

We consider the three point bending test of a simply supported reinforced concrete beam of length L= 5m, shown

in Fig. 2.17. The width and the height of the cross-section are b = 0.2m and h = 0.5m. The following material

properties are used: elastic modulus E = 37272MPa, moment at elasticity limit Mc = 37.9kNm, yield moment

My = 282kNm, ultimate moment Mu = 304kNm, hardening moduli H1 = 47314kNm2 and H2 = 171.6kNm2,

and softening modulus K = −85000kNm. Symmetry allows us to model only one half of the beam, which is

divided into 16 identical finite elements. The load is applied by imposing displacement v at the location and in the

direction of force F .

L L�2

2F F

Figure 2.17: Simply supported beam: use of symmetry in computational model.

Slika 2.17: Prostoležeči nosilec: uporaba simetrije v računskem modelu.

Since this is a statically determined structure, we expect the F − v diagram to be similar to the input moment-

curvature diagram, which is confirmed by the results, presented in Fig. 2.19 (left). Rounded transition into the

plastic part of the curve is a consequence of gradual spreading of plasticity from the middle of the beam toward

the supports.
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L L�2
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Figure 2.18: Clamped beam: use of symmetry in computational model.

Slika 2.18: Togo podprti nosilec: uporaba simetrije v računskem modelu.

Next, we analyze the same beam with fixed supports, see Fig. 2.18. The geometrical and material properties are the

same as before, as well as the mesh and the loading procedure. The force versus imposed displacement diagram

is presented in Fig. 2.19 (left). In comparison to the simply supported beam, the clamped beam exhibits greater

stiffness and ultimate load, but the yielding of reinforcement and collapse of the structure happen at significantly

smaller displacements.

The fact, that the ultimate moment is reached at a smaller imposed displacement in the clamped beam is not

surprising, because the fixed support prevents the rotation of the beam at that point. But when the softening plastic

hinge forms near the support and begins to soften, the clamped beam behaves more and more like the simply

supported beam. In a fully softened state (when the moment in the softening plastic hinge drops to zero), one

would expect the imposed displacement to be equal in both beams. This is not so, due to plastic deformations of

the bulk of the element. In the simply supported beam, the plastic curvature was caused only by positive bending

moment, so the half of the beam takes a C shape in the fully softened state. In the clamped beam, however, the

plastic curvature was caused by positive moment in the field and by negative moment near the support, so the half

of the beam takes an S shape.

We verify this by repeating the analysis with an elastic beam. We set the values of the elasticity limit Mc and the

yield moment My to be greater than Mu. The remaining data is the same as before. Results of the analysis are

presented in Fig. 2.19 (right). Just like in the left figure, the ultimate moment is reached at a smaller displacement

v in the clamped beam, but the diagrams drop to zero at the same value of v.
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Figure 2.19: Force - displacement under the force diagrams for simply supported and clamped beams.

Elasto-plastic (left) and elastic (right) behavior in the hardening phase.

Slika 2.19: Diagram sila - pomik pod silo za prostoležeči in togo podprti nosilec. Elasto-plastično (levo)

in elastično (desno) obnašanje v utrjevanju.
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2.4.3 Four point bending test of a simply supported beam

In this example, we examine a four point bending test of a symmetrical, simply supported, reinforced concrete

beam with different positions of the loading force. Experiments on such beams were performed by Lane [70],

as stated in [49]. The beam of length L = 3.82m is loaded with two vertical forces F at distance La from each

support. Making use of the symmetry, we only model one half of the structure, as shown in Fig. 2.20. The values

of La are 0.96m, 1.30m and 1.60m, while the corresponding values of Lb are 0.95m, 0.61m and 0.31m. The

remaining geometrical and material properties are: elastic bending stiffness EI = 20400kNm2, yield moment

My = 210kNm, ultimate moment Mu = 270kNm, hardening modulus H2 = 1543kNm2 and softening modulus

K =−2823kNm. Since the hardening model in [49] is linear, we take Mc =My and the first hardening modulus

H1 is not required. Parameters EI , My and Mu were taken directly from [49]. The hardening modulus was

computed as H2 = H My
2, where H is the linear hardening modulus in [49]. The transformation is caused by

different formulations of the yield function and evolution equations. The softening modulus K was chosen to fit

the results, presented in [49].

La Lb

F

Figure 2.20: Four point bending test of simply supported beam: computational model.

Slika 2.20: Štiritočkovni upogibni preizkus prostoležečega nosilca: računski model.

Responses of the structure for all three load positions are presented in Fig. 2.21. They are compared with ex-

perimental results [70] and with computations by Armero and Ehrlich [49], who used the same parameters for

elasticity and hardening plasticity, but modeled the softening hinge response with quadratic function. Our results

capture well the experimental limit load and the corresponding displacement. The softening parts of the diagrams

differ from those in [49], due to a different material law in the softening plastic hinge. The experimental results

were taken from [49].
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Figure 2.21: Force - displacement at the middle of the beam diagrams for different positions of the

force: La = 0.96m (left), La = 1.30m (middle), La = 1.60m (right).

Slika 2.21: Diagrami sila - pomik na sredini nosilca za različne pozicije sile: La = 0.96m (levo),

La = 1.30m (sredina), La = 1.60m (desno).
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2.4.4 Two story reinforced concrete frame

In this example we consider a two story reinforced concrete frame in Fig. 2.22. The frame was experimentally

tested in [71] and numerically analyzed in [51]. Story height is H = 2m and span is L= 3.5m. The columns and

the beams have the same concrete cross-section b×h = 0.3× 0.4m, but different reinforcement. Details can be

found in [71]. The stress-resultant material properties, required for analysis with our finite element, were estimated

from moment-curvature diagrams, presented by Pham [51]. Material parameters of the beams are: Mc = 30kNm,

My = 150kNm, Mu = 170kNm, H1 = 11190kNm2, H2 = 137kNm2, K = −1310kNm. Material parameters of

the columns are: Mc = 100kNm, My = 245kNm, Mu = 265kNm, H1 = 12450kNm2, H2 = 195kNm2, K =

−2410kNm. Elastic bending stiffness of both columns and beams is EI = 45760kNm2 and elastic axial stiffness

is EA= 3432000kN.
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Figure 2.22: Two story frame: geometry, loading pattern and cross-sections.

Slika 2.22: Dvoetažni okvir: geometrija, obtežba in prečni prerezi.

The properties of beams and columns were verified in the following way. For each of the two cross-sections in

Fig. 2.22, a cantilever beam of length 1m was modeled with a single finite element and loaded with end moment.

The load was applied by imposing rotation θ at the free end of the beam. The diagrams in Fig. 2.23 show the

moment versus the end rotation, divided by the length of the finite element (length of the cantilever beam) for a

beam and a column of the RC frame. Due to the constant moment, the ratio θ/L is identical to curvature κ up to

the ultimate moment, when the softening hinge occurs. The material properties of both structural elements were

chosen in such manner, that the diagrams in Fig. 2.23 match the moment-curvature diagrams, presented in [51].

The columns were divided into 16 finite elements from the ground to the top of the frame, and the beams were

divided into 14 finite elements. At the beginning of the analysis, vertical forces N = 700kN were applied at the

top of each column, and remained constant throughout the computation. Next, the horizontal displacement u at the

top of the frame was gradually increased and reaction F at location and in direction of the imposed displacement

was computed.

Results are presented in Fig. 2.24 (left). First nonlinear behavior occurs at u= 0.002m due to cracking of concrete

in the beams near the columns. Next, the concrete cracking appears in the columns as well, first at the bottom, then

at the top and in the middle. Yielding of the reinforcement first appears at the end of the beams at u = 0.035m.

At u = 0.045m the column reinforcement begins to yield at the supports. Maximal value of force F is reached at

u= 0.073m, when softening hinges appear at the bottom of both columns. Although the resistance of the structure
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Figure 2.23: Moment - rotation divided by length of FE diagrams for beam and column.

Slika 2.23: Diagram moment - zasuk, deljen z dolžino KE za prečko in steber.

begins to drop, the moments in the beams still increase, which improves structure ductility. The softening in the

beams begins at u = 0.1m. Hereafter, internal forces in all structural elements decrease. Total collapse of the

structure happens at u= 0.6m, see the diagram “data Pham” in Fig. 2.25 (left).
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D- yielding of reinf. at the bottom of the columns
E- softening at the bottom of the columns
F- softening at the ends of the beams

0.03 0.06 0.09 0.12 0.15
u @mD0

100

200

300

F @kND

0.03 0.06 0.09 0.12 0.15
u @mD0

100

200

300

F @kND

this FE, data OpenSees

this FE, data Pham

Pham, multi-layer

Pham, stress resultant

experiment HVecchio, EmaraL

Figure 2.24: Response of two story frame and material state at different stages of analysis (left).

Comparison with experiment and results of Pham et al. (right).

Slika 2.24: Odziv dvoetažnega okvirja in stanje materiala v posameznih fazah analize (levo). Primerjava

z eksperimentom in z rezultati Pham et al. (desno).

Fig. 2.24 (right) shows the comparison with the experiment [71] and with results, reported in [51]. Our results

are very similar in the shape of the curve to the experimental results, but do not reach the measured ultimate

capacity. For an additional test, the stress-resultant properties of beams and columns were computed from cross-

section geometry and stress-strain diagrams of steel and concrete, presented in [71], using the computer program

OpenSees [72]. The following data was obtained for columns: Mc = 99kNm, My = 251kNm, Mu = 259kNm,

H1 = 14800kNm2, H2 = 85kNm2. The following data was computed for the beams: Mc = 32kNm, My =

168kNm, Mu = 223kNm, H1 = 11100kNm2, H2 = 248kNm2. The values of softening moduli K were preserved

from before. Results of the analysis with the new data are included in Fig. 2.24 (right).

Another set of material parameters was obtained by multi-layer Timoshenko beam element, presented in chapter

4 of this work. To obtain material properties of a beam of the frame, a cantilever beam of length 0.25m, which

corresponds to the length of finite elements in the RC frame analysis, was modeled with a single multi-layer

element. Rotation θ of the free end of the beam was imposed and the corresponding moment M in the beam was

computed. Stress-resultant properties were determined in such way, that the M−θ diagram, obtained with a stress-

resultant finite element, matches the diagram, obtained with multi-layer element. To obtain material properties of a

column, an identical multi-layer cantilever beam of length 0.25m was analyzed with the presence of a constant axial
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Figure 2.25: Response of two story frame up to total collapse for different material data (left).

Comparison with results of analysis with multi-layer finite element (right).

Slika 2.25: Odziv dvoetažnega okvirja do popolne porušitve za različne materialne podatke (levo).

Primerjava z rezultati analize z večslojnim končnim elementom (desno).

force N = 700kN. The following material properties were calculated for beams: Mc = 31kNm, My = 165kNm,

Mu = 236kNm, H1 = 25800kNm2, H2 = 349kNm2, K = −5250kNm. The computed properties of columns:

Mc = 100kNm, My = 281kNm, Mu = 333kNm, H1 = 33800kNm2, H2 = 216kNm2, K =−4750kNm. Response

of the two-story frame, analyzed with this data, is shown in Fig. 2.25 (left), along with responses, obtained for the

data from OpenSees and data estimated from [51]. We observe that the data, computed with our multi-layer

element, produces a significantly higher ultimate load and a steeper softening line.

Fig. 2.25 (right) shows the response of the frame, computed by the multi-layer finite element from chapter 4. It

is compared to the results of analysis with stress-resultant element, developed in this chapter, and material data,

provided by the former multi-layer element. Both curves reach the same ultimate value of force F , but not at the

same value of imposed displacement u. In comparison to other results, the curves match pretty well.

2.5 Concluding remarks

We have presented a planar stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity in

rotation, which can be used for analysis of reinforced concrete beams and frames up to complete failure. The

formulation is based on small deformation kinematics. Stress resultant elastoplasticity with bilinear isotropic hard-

ening is used to model the bending of the bulk of the element, and rigid plasticity is used for the softening bending

hinge. The element is able to describe the major characteristics of the reinforced concrete beam behavior up to

complete failure. The finite element provides a mesh independent softening response of the modeled structure. The

obtained results compare reasonably well to other results available in the literature and to experimental results.

The geometrical and material properties have to be determined individually for each cross-section and for each

level of the axial force. The moment-curvature and moment-rotational jump diagrams, required as an input for

the analysis, can be determined experimentally or computed with a more complex finite element, such as the

multi-layer beam finite elements, presented in the following chapters.
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3 MULTI-LAYER EULER-BERNOULLI BEAM FINITE ELEMENT WITH

LAYER-WISE EMBEDDED DISCONTINUITIES IN AXIAL DISPLACEMENT

3.1 Introduction

In this chapter we derive a multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-

tinuities in axial displacement. The element is intended for precise analysis of reinforced concrete beams and

structures up to complete failure, as well as for computation of stress-resultant properties of cross-sections, which

are required as input data in analysis with stress-resultant finite element, presented in previous chapter.

The element is composed of several layers of concrete and reinforcement, each with embedded discontinuity in

axial displacement. Axial response of concrete layer is determined by elasto-damage hardening law in the bulk and

damage softening law at the discontinuity. Axial response of reinforcement layer is controlled by elastoplasticity

hardening law in the bulk and plastic softening at the discontinuity. Small deformation kinematics is employed.

The outline of the chapter is the following: Kinematic, constitutive and equilibrium equations are developed in sec-

tion 3.2. Finite element discretization and computational procedure are presented in section 3.3. Several numerical

examples are shown in section 3.4. Finally, concluding remarks are given in section 3.5.

3.2 Finite element formulation

3.2.1 Kinematics

We consider a planar Euler-Bernoulli beam finite element with three nodes, shown in Fig. 3.1. The two end nodes

have regular degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane.

The third node is located in the middle of the element and has one degree of freedom, the axial displacement. Its

purpose is to raise the interpolation order of axial displacements, which ensures compatibility of the axial strain

contributions by bending and axial deformation.

x L

u1

v1
Θ1 u2

v2
Θ2u3

1 3 2

Figure 3.1: Finite element with seven nodal degrees of freedom.

Slika 3.1: Končni element s sedmimi prostostnimi stopnjami.

ũ(x) = Nu (x)u, Nu (x) =

{

1−
3x

L
+

2x2

L2
,−

x

L
+

2x2

L2
,

4x

L
−

4x2

L2

}

, u = {u1,u2,u3}
T

(3.1)

Axial displacement ũ(x) of the middle axis of the beam is interpolated between the three nodal displacements

u, using quadratic shape functions Nu (x) shown in Fig. 3.2 (left). Lateral displacement ṽ (x) is interpolated as

follows.
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ṽ (x) = Nv (x)v+Nθ (x)θ (3.2)

Here v and θ are lateral displacements and rotations of the end nodes, respectively. Nv (x) and Nθ (x) are cubic

Hermite polynomials shown in Fig. 3.2 (right).

Nv (x) =

{

2
( x

L

)3
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T

Nθ (x) = L
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−
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}

, θ = {θ1,θ2}
T

(3.3)
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Figure 3.2: Interpolation functions for axial (left) and transversal displacement (right).

Slika 3.2: Interpolacijske funkcije za osni (levo) in prečni pomik (desno).

In Euler-Bernoulli beam theory, a cross-section is always perpendicular to the beam’s axis and its rotation is

therefore equal to the first derivative of the lateral displacement.

θ̃ (x) =
∂ṽ

∂x
=

∂Nv

∂x
v+

∂Nθ

∂x
θ (3.4)

The beam is divided into a desired number nL of layers by height. For a fine enough division, a constant state can

be assumed through the thickness of the layer. The axial displacement ui (x) of the i-th layer is computed in its

middle axis.

ui
(
x,xi

d

)
=

ũi

︷ ︸︸ ︷

ũ(x)−yiθ̃ (x)+

ui,add

︷ ︸︸ ︷

M i
(
x,xi

d

)
αi (3.5)
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The regular part ũi (x) is composed of the axial displacement in the neutral axis of the beam and of displacement

due to rotation of the cross-section, depending on the distance yi from the neutral axis. If the carrying capac-

ity is exceeded, a discontinuity is introduced into the layer (see Fig. 3.3), which results in an additional axial

displacement ui,add
(
x,xi

d

)
, described by the jump in displacements αi at coordinate xi

d and the shape function

M i
(
x,xi

d

)
.

u� iHxL u1
i u2

iu3
i

L

h
yi i

1 3 2

uiHx,xd
i L u1

i u2
iu3

i

Α i

xd
i

Α i

i

1 3 2

Figure 3.3: Finite element divided into layers, before and after occurrence of discontinuity in i-th layer,

with corresponding axial displacement in the layer.

Slika 3.3: Na sloje razdeljen končni element pred in po nastanku nezveznosti v i-tem sloju ter

pripadajoči osni pomik v sloju.

A layer is then treated as a bar, namely the strain εi
(
x,xi

d

)
is computed as the first derivative of the displacement

ui
(
x,xi

d

)
over the coordinate x.

εi
(
x,xi

d

)
=

∂ui

∂x
=

˜̄εi

︷ ︸︸ ︷

Bu (x)u−yi
(
Bv (x)v+Bθ (x)θ

)
+

εi,add
︷ ︸︸ ︷

Gi
R

(
x,xi

d

)
αi (3.6)

The first three parts of the expression (3.6) represent the regular axial strain ˜̄εi, while the last part represents the

enhanced strain due to embedded discontinuity. The strain interpolation functions for the regular part are shown

in equation (3.7). Since we chose quadratic functions Nu and cubic functions Nv and Nθ, their derivatives Bu,

Bv and Bθ are all linear (see Fig. 3.4). The additional strain εi,add only appears in the layers that have exceeded

their carrying capacity. Operator Gi
R is the first derivative of the shape function M i, but we will discuss it more

precisely later on.
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(3.7)

We will also use a shorter notation for the regular strain, where all degrees of freedom of the finite element are

collected in the vector of generalized nodal displacements d. Interpolation matrix B̆i is composed accordingly to

the arrangement of displacements in d.
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˜̄εi =
[

Bu −yiBv −yiBθ
]

d = B̆id, dT =
{

uT ,vT ,θT
}

(3.8)
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Figure 3.4: Interpolation functions for axial strain due to axial (left) and transversal displacement

(right).

Slika 3.4: Interpolacijske funkcije za osno deformacijo zaradi osnega (levo) in prečnega pomika

(desno).

3.2.2 Relations between global and local quantities

3.2.2.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig. 3.5. The finite

elements are connected only with their end nodes, while the middle node is strictly local. After the meshing

procedure the model has nEN “end nodes” and nMN “middle nodes”. The latter number is equal to the number of

finite elements. Let us label the end nodes with numbers from 1 to nEN and the middle nodes with numbers from

nEN +1 to nEN +nMN .

Each of the end nodes has three degrees of freedom - displacement U parallel to the global X axis, displacement V

parallel to the global Y axis, and rotation Θ about the axis, perpendicular to the XY plane. The middle nodes have

only one degree of freedom - displacement W parallel to the axis of the finite element, see Fig. 3.5. The structure

has in total nDOF = 3nEN +nMN degrees of freedom, which are collected in the vector dstr.
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Figure 3.5: Degrees of freedom at nodes of the finite element mesh.

Slika 3.5: Prostostne stopnje v vozliščih mreže končnih elementov.

dstr =
{

dT
EN ,dT

MN

}T
, dEN =

{
U1,V1,Θ1,U2,V2,Θ2, ... ,UnEN

,VnEN
,ΘnEN

}T
,

dMN =
{
WnEN+1,WnEN+2, ... ,WnEN+nMN

}T
(3.9)

Let us now consider a finite element (e) with end nodes (n1), (n2) and a middle node (n3). The local x axis is

parallel to the axis of the element, with x increasing from node (n1) towards node (n2), see Fig. 3.6. The element’s

degrees of freedom, defined in the local coordinate system, are collected in the vector d(e), in accordance with

equation (3.8). Global degrees of freedom, associated with the nodes of the element can be similarly organized

into vector D(e). The two are connected with a transformation matrix R(e). Zeros are replaced by dots for clarity.

φ(e) is the angle between the global X axis and the local x axis (rotation of the local coordinate system).

d(e) = R(e)D(e) (3.10)

d(e) =
{

u
(e)
1 ,u

(e)
2 ,u

(e)
3 ,v

(e)
1 ,v
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2 ,θ
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1 ,θ
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}T
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Un1
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}T
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cosφ(e) · · sinφ(e) · · ·

· cosφ(e) · · sinφ(e) · ·

· · 1 · · · ·

−sinφ(e) · · cosφ(e) · · ·

· −sinφ(e) · · cosφ(e) · ·

· · · · · 1 ·

· · · · · · 1















(3.11)

Vector D(e) contains those components of vector dstr that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(e) of size 7×nDOF with only seven non-zero components.
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Figure 3.6: Global (left) and local (right) degrees of freedom, associated with a finite element.

Slika 3.6: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s končnim elementom.

D(e) = P(e)dstr

P
(e)
1, 3n1−2 = P

(e)
2, 3n2−2 = P

(e)
3, 3nEN+(n3−nEN )

= P
(e)
4, 3n1−1 = P

(e)
5, 3n2−1 = P

(e)
6, 3n1

= P
(e)
7, 3n2

= 1
(3.12)

Obeying equations (3.10) and (3.12), we can finally write the relation between the local degrees of freedom of the

finite element (e) and the global degrees of freedom of the structure.

d(e) = R(e)P(e)dstr (3.13)

3.2.2.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real displacements. As with the real displace-

ments, they are interpolated between the nodal values with appropriate interpolation functions. The virtual defor-

mation of the structure is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual displacements of the structure) d̂str, the virtual displacements of the

element d̂(e) and the selection D̂(e) of global virtual displacements, associated with the element (e), are defined

analogously to the real quantities dstr, d(e) and D(e), defined in equations (3.9) and (3.11).

d̂str =
{

d̂T
EN , d̂T

MN

}T
,

d̂EN =
{
Û1, V̂1, Θ̂1, ... , ÛnEN

, V̂nEN
, Θ̂nEN

}T
, d̂MN =

{
ŴnEN+1, ... ,ŴnEN+nMN

}T

d̂(e) =
{

û
(e)
1 , û

(e)
2 , û

(e)
3 , v̂

(e)
1 , v̂

(e)
2 , θ̂

(e)
1 , θ̂

(e)
2

}T
, D̂(e) =

{
Ûn1

, Ûn2
,Ŵn3

, V̂n1
, V̂n2

, Θ̂n1
, Θ̂n2

}T

(3.14)

Relations between them are equivalent to equations (3.10)-(3.13), matrices R(e) and P(e) remain the same.

d̂(e) = R(e)D̂(e), D̂(e) = P(e)d̂str, d̂(e) = R(e)P(e)d̂str (3.15)
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3.2.2.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from

the vector dstr is accompanied by a corresponding internal force. Analogously to equation (3.9) we can write:

f int,str =
{

f intT

EN , f intT

MN

}T
, f int

EN =
{

f int
U1
,f int

V1
,f int

Θ1
,f int

U2
,f int

V2
,f int

Θ2
, ... ,f int

UnEN
,f int

VnEN
,f int

ΘnEN

}T

f int
MN =

{

f int
WnEN+1

,f int
WnEN+2

, ... ,f int
WnEN+nMN

}T
(3.16)

Vector f int
EN contains the internal forces of the “end nodes” - for each node a pair of forces, parallel to global X and

Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with f int
U , f int

V and f int
Θ ,

respectively. Vector f int
MN contains the internal forces of the “middle nodes”, which are parallel to the local x axis,

and labeled with f int
W , see Fig. 3.7.

X

Y
middle node of FE

end node of FE

n fUn

int

fVn

int

fQn

int m

fWm

int

Figure 3.7: Internal forces, corresponding to degrees of freedom at nodes of the finite element mesh.

Slika 3.7: Notranje sile, ki ustrezajo prostostnim stopnjam v vozliščih mreže končnih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, joined in that

node. Let us now take a closer look at a finite element (e). The internal forces of the element are defined in the local

coordinate system and correspond to the local degrees of freedom d(e), see Fig. 3.8 (right). They are collected in

the vector f int,(e). The forces can be transformed by matrix R(e) so as to match the directions of the global internal

forces f int,str. The new, transformed vector is designated with F int,(e), Fig. 3.8 (left). The transformation matrix

R(e) is the same as in equation (3.11).

f int,(e) = R(e)F int,(e) ⇔ F int,(e) = R(e)−1

f int,(e) (3.17)

f int,(e) =
{

f int,(e)
u1

,f int,(e)
u2

,f int,(e)
u3

,f int,(e)
v1

,f int,(e)
v2

,f
int,(e)
θ1

,f
int,(e)
θ2

}T

F int,(e) =
{

f
int,(e)
Un1

,f
int,(e)
Un2

,f
int,(e)
Wn3

,f
int,(e)
Vn1

,f
int,(e)
Vn2

,f
int,(e)
Θn1

,f
int,(e)
Θn2

}T
(3.18)



48 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

n1 fUn1

int,HeL

fVn1

int,HeL

fQn1

int,HeL

n2 fUn2

int,HeL

fVn2

int,HeL

fQn2

int,HeL

n3

fWn3

int,HeL

HeL

1

fu1

int,HeL

fv1

int,HeL

fΘ1

int,HeL

2

fu2

int,HeL

fv2

int,HeL

fΘ2

int,HeL

3

fu3

int,HeL

HeL

X

Y

x
y

Φ

Figure 3.8: Contribution of a finite element to internal forces of the structure in global (left) and local

(right) coordinate system.

Slika 3.8: Prispevek končnega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

The components of the global vector f int,str are computed by summing the contributions of individual finite ele-

ments, written in F int,(e). Matrix P(e) is defined in (3.12).

f int,str =
nFE

∑
e=1

P(e)T F int,(e) (3.19)

Transformation (3.17) and summation (3.19) can be joined in a simplified notation. Operator A represents the

assembly of the internal forces and nFE is the total number of finite elements.

f int,str =
nFE

∑
e=1

P(e)T R(e)−1

f int,(e) =
nFE

A
e=1

[

f int,(e)
]

(3.20)

Another useful relation can be observed. For rotation matrix R(e) it holds RT = R−1 or RT R = I, where I is

the identity matrix. By using this property as well as equations (3.15) and (3.17) we can conclude that the scalar

product of virtual displacements and internal forces is equal in local and global coordinate system.

d̂(e)T f int,(e) = D̂(e)T R(e)T R(e)F int,(e) = D̂(e)T F int,(e) (3.21)

3.2.3 Virtual work equation

Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the

virtual work of internal forces Gint on any kinematically admissible perturbation of displacements - virtual dis-

placements - must be equal to the work of external forces Gext on the same displacements.

Gint −Gext = 0 (3.22)
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Since we are dealing with a discretized model, the external loads are defined at the nodes of the structure. Linear

loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed

simply as a scalar product of the vector of virtual nodal displacements of the structure d̂str and the corresponding

vector of generalized external forces f ext,str. Virtual displacements are defined analogously to the real displace-

ments in equation (3.9) and the external forces analogously to the internal forces in equation (3.16).

Gext = d̂strT f ext,str =
nDOF

∑
j=1

d̂str
j f ext,str

j (3.23)

Here nDOF is the number of the structure’s degrees of freedom. Many components of the sum (3.23) may be zero.

The virtual work of internal forces is composed of contributions from individual finite elements.

Gint =
nFE

∑
e=1

Gint,(e), Gint,(e) =
∫

V (e)

ε̂σdV (3.24)

For each element Gint,(e) is computed by multiplying the stress field with the virtual strain field and integrating the

product over the volume of the element. The virtual strain is defined individually for each layer of the beam which

enables virtual discontinuities α̂i to be introduced in each layer. The interpolation is done in the same manner as

for the real strain in equation (3.6), except that operator Gi
R is replaced by Gi

V . Differentiation between the two

operators gives us more freedom to define them according to our needs. The issue will be addressed in the next

section. Note that the additional part of the virtual strain ε̂i,add only exists in the layers that have already developed

a discontinuity (cracked layers). In non-cracked layers, the virtual strain consists only of the regular part ˆ̃ε
i
.

ε̂i
(
x,xi

d

)
=

ˆ̃ε
i

︷ ︸︸ ︷

Bu (x) û−yi
(
Bv (x) v̂+Bθ (x) θ̂

)
+

ε̂i,add
︷ ︸︸ ︷

Gi
V

(
x,xi

d

)
α̂i = B̆id̂+Gi

V α̂
i (3.25)

The volume integral in equation (3.24) is divided into an integral over the length and an integral over the cross-

section of the element. The latter can be replaced by a sum over the layers, since everything is assumed to be

constant over the cross-section of a layer. The virtual strain is replaced by the whole expression (3.25) for n
(e)
CL

cracked layers and by its regular part ˆ̃ε
i

for
(

nL−n
(e)
CL

)

non-cracked layers, where nL is the total number of layers

in the finite element. Obtained expression is rearranged to produce internal forces, corresponding to the virtual

degrees of freedom of the finite element d̂(e), as defined in (3.14). Index (e) is omitted until the last line. For the

sake of simplicity it is assumed that the cracked layers are numbered with 1, 2, . . . , n
(e)
CL.

Gint,(e) =
∫

V

ε̂σdV =
∫

L

∫

A

ε̂σdAdx=
∫

L

∑
i

ε̂iσiAidx=

=
∫

L

Buû
nL

∑
i=1

σiAidx+
∫

L

(
Bv v̂+Bθθ̂

) nL

∑
i=1

(
−yiσiAi

)
dx+

∫

L

nCL

∑
i=1

Gi
V α̂

iσiAidx=

= ûT
∫

L

BuT
nL

∑
i=1

σiAidx+ v̂T
∫

L

BvT
nL

∑
i=1

(
−yiσiAi

)
dx+ θ̂

T
∫

L

BθT
nL

∑
i=1

(
−yiσiAi

)
dx+

+
nCL

∑
i=1

α̂i
∫

L

Gi
V σ

iAidx= d̂(e)T f int,(e)+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

(3.26)
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A condensed form of expressions (3.14) and (3.18) for d̂(e) and f int,(e) can be used.

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e)T =
{

fu,int,(e)T , fv,int,(e)T , fθ,int,(e)T
}

(3.27)

Components of f int,(e) are defined in (3.28). The order of integration and summation can be reversed. Therefore

we can compute the internal forces as a sum of contributions of individual layers, which proves to be very helpful

in the computational procedure. Here nL is the total number of layers in the finite element.

fu,int,(e) =
∫

L

BuT
nL

∑
i=1

σiAidx=
nL

∑
i=1

∫

L

BuT

σiAidx

fv,int,(e) =
∫

L

BvT
nL

∑
i=1

(
−yiσiAi

)
dx=

nL

∑
i=1



−
∫

L

BvT yiσiAidx





fθ,int,(e) =
∫

L

BθT
nL

∑
i=1

(
−yiσiAi

)
dx=

nL

∑
i=1



−
∫

L

BθT yiσiAidx





(3.28)

A shorter notation (3.29) will also be used, where f int,(e),i is contribution of the i-th layer to the vector of internal

forces of the finite element.

f int,(e) =
nL

∑
i=1

Ai
∫

L






BuT

−yiBvT

−yiBθT




σ

idx=
nL

∑
i=1

Ai
∫

L

B̆iT σidx

︸ ︷︷ ︸

f int,(e),i

(3.29)

The last term of the last line in (3.26) is the additional virtual work due to enhanced kinematics. The sum has

n
(e)
CL summands, one for each cracked layer. Quantity h(e),i is an equivalent of internal force, corresponding to the

virtual displacement jump α̂(e),i, and is defined as follows.

h(e),i =
∫

L

Gi
V σ

iAidx, i= 1,2, . . . ,n
(e)
CL (3.30)

The virtual work of external and internal forces in the equilibrium equation (3.22) is replaced by expressions

(3.23) and (3.24), respecting (3.26) and (3.21). Finally, the second of equations (3.15) allows us to express the

weak equilibrium in the manner of global virtual displacement vector d̂str and virtual displacement jumps α̂(e),i.
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0 =
nFE

∑
e=1

Gint,(e)−Gext =

=
nFE

∑
e=1



D̂(e)T F int,(e)+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i



− d̂strT f ext,str =

=
nFE

∑
e=1

d̂strT P(e)T F int,(e)+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i− d̂strT f ext,str =

= d̂strT
nFE

∑
e=1

P(e)T F int,(e)+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i− d̂strT f ext,str =

= d̂strT
(

f int,str − f ext,str
)

+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

(3.31)

Equilibrium (3.31) must hold for any kinematically admissible virtual displacements d̂str and virtual displacement

jumps α̂(e),i. From this requirement we can conclude:

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0
(3.32)

The first equation in (3.32) represents the global equilibrium or equilibrium of every individual node of the struc-

ture. Here f int,str and f ext,str are vectors of internal and external forces on the structural level. They correspond

in position and direction to the degrees of freedom of the structure. Their length is equal to the total number of

degrees of freedom nDOF . The second equation in (3.32) is an additional constraint for the stress in cracked lay-

ers. The number of cracked layers n
(e)
CL is generally different for each element, and can also be zero. It has been

assumed in equation (3.32) that the cracked layers are numbered with consecutive numbers from 1 to n
(e)
CL.

Let us now examine h(e),i, defined in expression (3.30). It will be shown in the next section that the operator Gi
V

consists of a continuous part Ḡi
V and a discrete part δxi

d
, which is a Dirac delta function. Integration of the latter is

performed by the following rule.

Gi
V = Ḡi

V + δxi
d
,
∫

L

g (x)δxi
d
dx= g

(
xi
d

)
(3.33)

Implementation of (3.33) allows a further development of expression (3.30). Here σi
∣
∣
xi
d

is the value of stress

function σi (x), evaluated at local coordinate xi
d. We assign to it a new symbol ti and define it as the traction at the

discontinuity.

h(e),i =
∫

L

(

Ḡi
V + δxi

d

)

σiAidx=Ai
∫

L

Ḡi
V σ

idx+Aiσi
∣
∣
xi
d
=Ai





∫

L

Ḡi
V σ

idx+ ti



 (3.34)

Inserting (3.34) into the second of equilibrium equations (3.32) provides a new aspect to its meaning. Equation

(3.35) can be interpreted as a weak form (integral form) of equilibrium between the traction at the discontinuity ti

and the stress in the bulk σi. Being confined to a single finite element, we can refer to it as local equilibrium.
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h(e),i = 0 ⇔ ti =−
∫

L

Ḡi
V σ

idx (3.35)

3.2.4 Derivation of operators GR and GV

3.2.4.1 Derivation of operator GR for real strain

Interpolation of the axial displacement field ui (x) in the i-th layer is defined in equation (3.5). The regular part

ũi (x) is computed from the axial displacement of the middle axis ũ(x) and rotation θ̃ (x) of the cross-section.

Since they are both quadratic functions of x, ũi (x) is quadratic as well. By the definition it is interpolated between

the nodal displacements u, v and θ of the finite element. However, if we regard the layer as a special type of a

bar with quadratic axial displacement field, then ũi (x) can be interpolated between the nodal displacements ui

of this bar, see Fig. 3.9. If they are positioned at the ends and in the middle of the layer, the interpolation can be

performed with the original interpolation functions Nu (x) for axial displacements, defined in (3.1).

ũi (x) = ũ(x)−yiθ̃ (x) = Nu (x)ui, ui =
{
ui

1,u
i
2,u

i
3

}T
(3.36)

u1
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Θ2
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h
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i u2
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i
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i
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i
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u� iHxL u1
i u2

iu3
i

Figure 3.9: Interpolation of standard axial displacement in i-th layer between nodal displacements of

the finite element (left) and between nodal axial displacements of the layer (right).

Slika 3.9: Interpolacija standardnega osnega pomika v i-tem sloju med prostostne stopnje končnega

elementa (levo) in med vozliščne osne pomike sloja (desno).

The “nodal” displacements ui of the i-th layer can be calculated from ũi (x) by inserting for x the coordinates of

the layer’s “nodes”, which are 0, L and L/2.
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ui =
{

ũi
∣
∣
x=0

, ũi
∣
∣
x=L

, ũi
∣
∣
x=L/2

}T
=

=

{

u1 −yiθ1,u2 −yiθ2,u3 −yi
(

−
3(v1 −v2)

2L
−

θ1 +θ2

4

)}T (3.37)

The regular axial displacement ũi (x) is enriched with the additional part ui,add (x,xd), which represents the

additional axial displacement due to occurrence of a discontinuity in the layer. It is determined by the interpolation

function M i
(
x,xi

d

)
and the displacement jump αi at the discontinuity of the layer.

ui
(
x,xi

d

)
= ũi (x)+M i

(
x,xi

d

)
αi (3.38)

The interpolation function M i must not influence the nodal displacements ui of the layer, which means that it must

have zero values at all nodes of the layer, and it must have a unit jump at the location of the discontinuity xi
d. The

easiest way to meet the requirements is to use a combination of the Heaviside function and the suitable choice of

shape functions Nu.

x

L

xd
i

W

W- W+

i

Hxd
i 0 1

∆xd
i 0

¥

Figure 3.10: Domain and sub-domains of a cracked layer. Heaviside and Dirac-delta functions.

Slika 3.10: Domena in poddomeni razpokanega sloja. Heaviside-ova in Dirac-delta funkcija.

Domain Ω of the cracked layer is divided by the discontinuity into two parts. Ω− is the part before the discontinuity,

with x < xi
d, and Ω+ is the part after the discontinuity, with x ≥ xi

d, see Fig. 3.10. The value of the Heaviside

function is 0 on Ω− and 1 on Ω+. Its derivative is the Dirac delta function δxi
d
, which has an infinite value at xi

d

and zero value elsewhere.

Hxi
d
=

{

0; x < xi
d

1; x≥ xi
d

∂Hxi
d

∂x
= δxi

d
=

{

∞; x= xi
d

0; otherwise
(3.39)
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Heaviside function Hxi
d

satisfies the requirement of a unit jump at the discontinuity. Its value, however, is only zero

on Ω−, and not at all nodes of the layer. This can be fixed by subtracting from it those shape functions Nu
j ∈ Nu,

that correspond to the nodes j, included in Ω+. Since Nu
j are continuous and have zero values at all nodes except

j, they will not affect previously fulfilled demands.

M i =Hxi
d
− ∑

j∈Ω+

Nu
j (3.40)

To avoid complications, let us decide that the discontinuity can occur infinitesimally close to a node, but not at the

node itself. Two options remain for the function M i. If the discontinuity appears in the left half of the layer, Ω+

contains nodes 2 and 3, and if it appears in the right half, Ω+ contains only node 2, see Fig. 3.11.

M i =







Hxi
d
− (Nu

2 +Nu
3 ) ; 0 < xi

d < L/2

Hxi
d
−Nu

2 ; L/2 < xi
d < L

(3.41)
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u
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Figure 3.11: Construction of interpolation function Mi in case of discontinuity between nodes 1 and 3

(left) and in case of discontinuity between nodes 3 and 2 (right).

Slika 3.11: Konstruiranje interpolacijske funkcije Mi v primeru nezveznosti med vozliščema 1 in 3

(levo) in v primeru nezveznosti med vozliščema 3 in 2 (desno).



Jukić, M. 2013. Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu.
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The first derivative of M i over x is designated with Gi
R. Index R refers to the real strain, for interpolation of which

the operator Gi
R is used. The derivatives of Nu

j and Hxi
d

have been defined in (3.7) and (3.39).

Gi
R

(
x,xi

d

)
=

∂

∂x
M i
(
x,xi

d

)
=







δxi
d
− (Bu

2 +Bu
3 ) ; 0 < xi

d < L/2

δxi
d
−Bu

2 ; L/2 < xi
d < L

(3.42)

It is convenient to divide Gi
R into a continuous part Ḡi

R and a discrete part ¯̄Gi
R.

Gi
R

(
x,xi

d

)
= Ḡi

R+ ¯̄Gi
R,

¯̄Gi
R = δxi

d
, Ḡi

R =

{

− (Bu
2 +Bu

3 ) ; 0 < xi
d < L/2

−Bu
2 ; L/2 < xi

d < L
(3.43)

Location of the discontinuity is determined by the stress state in the layer at the moment when ultimate stress is

reached. At that moment the strain still consists solely of the regular part ˜̄εi, defined in equation (3.8). Since this

is a linear function of x, it has extreme values at the ends of the layer. For any monotonically increasing material

law, the extreme values of stress coincide with those of the strain. The discontinuity is placed at one of the extreme

value positions. The choice depends also on the material properties.

The special case of constant layer strain, which arises in pure axial loading or pure bending of a finite element,

requires additional consideration. Linear operator Ḡi
R from (3.43) is not appropriate on such occasion, as the sum

of a constant regular strain ˜̄εi and a linear additional continuous strain Ḡi
Rα

i would be linear. As a consequence,

the finite element would not be in equilibrium. For example, in pure tension of a finite element we would compute

different internal axial forces at the two end nodes. Another argument against the linear Ḡi
R operator in a constant

strain case is that it has two possible values, depending on the location of the discontinuity. A crack just to the

left of the middle node would produce completely different strain/stress state than a crack just to the right of the

middle node.

Intuitively, one would choose for the case of constant layer strain a constant operator Ḡi
R. Such choice is supported

by the following reasoning. In case of constant strain in a layer, which corresponds to linear axial displacements,

the axial displacements of the layer could be interpolated between two “nodal” displacements of the layer, instead

of three, using linear interpolation functions Nu∗. They are presented in Fig. 3.12.

ũi (x) = Nu∗ (x)ui∗, Nu∗ (x) = {Nu∗
1 ,Nu∗

2 }=
{

1−
x

L
,
x

L

}

, ui∗ =
{
ui

1,u
i
2

}T
(3.44)

Function M i is determined by the same procedure as before. The difference is that the subdomain Ω+ only contains

node 2, regardless of xi
d. The first derivative is computed accordingly.

M i =Hxi
d
− ∑

j∈Ω+

Nu∗
j =Hxi

d
−Nu∗

2 =Hxi
d
−

x

L
, Gi

R

(
x,xi

d

)
=

∂M i

∂x
= δxi

d
−

1

L
(3.45)

In a constant strain state, the discontinuity can appear anywhere between the end nodes. Without affecting subse-

quent computation, we can position it at xi
d = L/2 .

Equation (3.46) collects the three possible appearances of the discontinuity in a layer. In case of a constant strain,

the discontinuity is set in the middle of the layer and the operator Ḡi
R is constant. In case of a linear strain, the
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Figure 3.12: Construction of interpolation function Mi in case of constant strain.

Slika 3.12: Konstruiranje interpolacijske funkcije Mi v primeru konstantnih deformacij.

discontinuity is located at either of the two end nodes, accompanied with an appropriate operator Ḡi
R of linear

form. Interpolation functions Bu
j are evaluated according to (3.7). Obtained functions are shown in Fig. 3.13.

Gi
R

(
x,xi

d

)
= Ḡi

R+ ¯̄Gi
R,

¯̄Gi
R = δxi

d
, Ḡi

R =







−
1

L
; xi

d = L/2

−
1

L

(

3−
4x

L

)

; xi
d = 0

1

L

(

1−
4x

L

)

; xi
d = L

(3.46)

3.2.4.2 Derivation of operator GV for virtual strain

Operator Gi
V is a function that describes the influence of the virtual displacement jump α̂i on the virtual strain ε̂i of

the i-th layer. It is commonly taken to be equal to Gi
R but this is not compulsory. Any function, that appropriately

describes a kinematically admissible variation of displacements, can be used. Let us first examine the natural

choice Gi
V =Gi

R.

We have determined in previous sections that strain is linear in a layer of a finite element. For a piecewise linear

material law, such as a combination of linear elasticity and plasticity with linear hardening, stress in the layer is

also linear. The only exception is a partially plastified layer - in that case the stress is bilinear. For a fine enough

mesh, however, stress in such layer does not reach the ultimate values, as indicated in Fig. 3.14. We can therefore

assume a linear form of the stress in the layer at the moment when a discontinuity appears.
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Figure 3.13: Operator ḠR for interpolation of additional real strain.

Slika 3.13: Operator ḠR za interpolacijo dodatnih pravih deformacij.
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Figure 3.14: Linear strain and bilinear stress in a structural element, modeled with five finite elements.

Slika 3.14: Linearne deformacije in bilinearne napetosti v konstrukcijskem elementu, modeliranem s

petimi končnimi elementi.

σi = C1x+C2 (3.47)

Expressions (3.46) for Ḡi
R and (3.47) for σi are inserted into equation (3.35). The traction at the discontinuity tiR

is marked with the index R to note the use of Ḡi
R. In case of a constant strain, constant C1 is zero.

xi
d = L/2 : C1 = 0, σi = C2, tiR =−

L∫

0

Ḡi
Rσidx=−

L∫

0

−
1

L
C2 dx= C2 (3.48)

We can see that the traction at the discontinuity tiR is equal to the stress in the bulk σi, which is consistent with the

definition of tiR as the value of σi (x) at x= xi
d. Next, we consider the linear strain cases with xi

d = 0 and xi
d = L.



58 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

xi
d = 0 : tiR =−

L∫

0

−
1

L

(

3−
4x

L

)

(C1x+C2)dx= C1
L

6
+C2, σi

∣
∣
xi
d
=0

= C2 6= tiR

xi
d = L : tiR =−

L∫

0

1

L

(

1−
4x

L

)

(C1x+C2)dx= C1
5L

6
+C2, σi

∣
∣
xi
d
=L

= C1L+C2 6= tiR

(3.49)

The traction at the discontinuity, computed in (3.49), is incompatible with the definition tiR = σi
(
xi
d

)
, which

suggests inadequacy of the choice Gi
V = Gi

R. An alternative function has to be found for Gi
V , preferably similar

to the original proposal. A slight modification of the continuous part Ḡi
V leads to expressions (3.50). The discrete

part ¯̄Gi
V remains unchanged.

Gi
V

(
x,xi

d

)
= Ḡi

V + ¯̄Gi
V ,

¯̄Gi
V = δxi

d
, Ḡi

V =







−
1

L
; xi

d = L/2

−
2

L

(

2−
3x

L

)

; xi
d = 0

2

L

(

1−
3x

L

)

; xi
d = L

(3.50)
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Figure 3.15: Operator ḠV for interpolation of additional virtual strain.

Slika 3.15: Operator ḠV za interpolacijo dodatnih virtualnih deformacij.

It turns out that function Gi
V , as defined in (3.50) and shown in Fig. 3.15, solves the compatibility issues encoun-

tered before.
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xi
d = 0 : ti =−

L∫

0

−
2

L

(

2−
3x

L

)

(C1x+C2)dx= C2, σi
∣
∣
xi
d
=0

= C2 = ti

xi
d = L : ti =−

L∫

0

2

L

(

1−
3x

L

)

(C1x+C2)dx= C1L+C2, σi
∣
∣
xi
d
=L

= C1L+C2 = ti

(3.51)

Operator Gi
V should also satisfy the patch test which requires the additional virtual work (performed on the virtual

displacement jumps α̂i) to be zero in case of constant stress σi. Thus, the introduction of α̂i does not affect the

energy dissipation at least for the constant stress state. Such state is approached by refining the finite element mesh.

α̂i
∫

L

Gi
V σ

iAidx
σi=const.

= α̂iσiAi
︸ ︷︷ ︸

6=0

∫

L

Gi
V dx= 0 ⇒

∫

L

Gi
V dx= 0 (3.52)

Taking into account the rule (3.33) for integration of Gi
V , requirement (3.52) can be reformulated.

∫

L

Gi
V dx=

∫

L

(

Ḡi
V + δxi

d

)

dx=
∫

L

Ḡi
V dx+

=1
︷ ︸︸ ︷
∫

L

δxi
d
dx= 0 ⇒

∫

L

Ḡi
V dx=−1 (3.53)

It can be easily verified that each of expressions (3.50) for Ḡi
V satisfies (3.53).

3.2.5 Constitutive models

In this section we describe constitutive models which control the behavior of concrete and reinforcement layers.

For each material, there are two separate models, one for the bulk of the layer and one for the discontinuity.

3.2.5.1 Bulk of concrete layer

Behavior of the bulk of the concrete layer is described by 1D elasto-damage model. Response of the material

is linear elastic up to the elasticity limit. Further increase of stress produces micro damage (micro cracking in

tension and micro crushing in compression) continuously over the layer, which results in reduction of the elasticity

modulus. Unloading is linear elastic with the current value of the elasticity modulus, and leads to the origin of the

stress-strain diagram (see Fig. 3.16). These properties of concrete are collected in the following equations, which

can be derived through the principle of maximum damage dissipation, see [73].

Equation (3.54) shows the linear elastic relation between stress and strain. It represents the loading curve/path up

to elasticity limit and the unloading/reloading curve in the σi− ε̄i diagram.

σi = D̄i−1

ε̄i, D̄i ∈
[
E−1

c ,∞
)
, εi = B̆id+Gi

Rα
i =

ε̄i
︷ ︸︸ ︷

B̆id+ Ḡi
Rα

i+ ¯̄Gi
Rα

i (3.54)

Here D̄i is compliance of the bulk material, Ec elastic modulus of intact concrete, and ε̄i the continuous part of

axial strain in the i-th layer, composed of the regular strain and the continuous part of the additional strain. The
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Figure 3.16: Stress - strain diagram for bulk of concrete layer.

Slika 3.16: Diagram napetost - deformacija za sloj betona.

latter is zero until the discontinuity is formed. The non-elastic part of the loading curve in the σi− ε̄i diagram is

defined indirectly by the remaining equations in this section.

φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σd− q̄i

)
, σd =

{

σdc for compression

σdt for tension
(3.55)

Damage function φ̄i prescribes the admissible values of axial stress σi in the i-th layer. Elasticity limit σd > 0

marks the beginning of micro damage and is defined separately for tension and compression. Stress-like hardening

variable q̄i handles the damage threshold evolution.

q̄i =−Hcξ̄
i, Hc =

{

Hcc for compression

Hct for tension
(3.56)

Linear hardening of the material is described by equation (3.56), where ξ̄i is a strain-like hardening variable with

initial value equal to zero, and Hc > 0 is a constant hardening modulus of concrete with separate values for tension

and compression. Evolution in pseudo-time of internal hardening variables D̄i and ξ̄i is defined by evolution

equations (3.57).

˙̄D
i
=

˙̄γisign
(
σi
)

σi
, ˙̄ξ

i
= ˙̄γi

(3.57)
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The dot designates the derivative with respect to pseudo-time and ˙̄γi
is damage multiplier. The loading/unloading

conditions and consistency condition (3.58) also apply.

˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ
i
= 0 (3.58)

Tangent moduli of the σi− ε̄i diagram can be determined from the above equations. The elastic loading/unloading

path corresponds to condition ˙̄γi = 0. It follows from evolution equations (3.57), that compliance D̄i is constant.

The tangent modulus is obtained if expression (3.54) for σi is differentiated with respect to ε̄i.

˙̄γi = 0 ⇒ D̄i = const.,
∂σi

∂ε̄i
= D̄i−1

(3.59)

In case of damage loading, when ˙̄γi > 0, the procedure is more complex. From the third and the fourth of conditions

(3.58) we can conclude that φ̄i = 0 and ˙̄φ
i
= 0. From (3.55) we can write the expression for σi and differentiate it

over pseudo-time. We use the appropriate evolution equation to differentiate ξ̄i.

σi =
(
σd− q̄i

)
sign

(
σi
)
=
(
σd+Hcξ̄

i
)
sign

(
σi
)
, σ̇i =Hc ˙̄γisign

(
σi
)

(3.60)

The stress can be replaced by expression (3.54). The obtained equation is again differentiated over pseudo-time.

Note that compliance D̄i is not constant any more.

D̄i−1

ε̄i =
(
σd+Hcξ̄

i
)
sign

(
σi
)

−D̄i−2 ˙̄D
i
ε̄i+ D̄i−1

˙̄εi =Hc
˙̄ξ
i
sign

(
σi
) /

˙̄D
i
=

˙̄γisign
(
σi
)

σi
, ˙̄ξ

i
= ˙̄γi

−D̄i−2 ˙̄γisign
(
σi
)

σi
ε̄i+ D̄i−1

˙̄εi =Hc ˙̄γisign
(
σi
) / ε̄i

σi
= D̄i

−D̄i−1
˙̄γisign

(
σi
)
+ D̄i−1

˙̄εi =Hc ˙̄γisign
(
σi
)

˙̄εi =
D̄i−1

+Hc

D̄i−1
˙̄γisign

(
σi
)

(3.61)

The tangent modulus is computed by dividing the pseudo-time derivatives σ̇i and ˙̄εi from (3.60) and (3.61).

∂σi

∂ε̄i
=

σ̇i

˙̄εi
=

D̄i−1
Hc

D̄i−1
+Hc

(3.62)

To sum up, the tangent modulus is described by two expressions. The first one covers the elastic behavior -

unloading and reloading, including the first elastic loading with the initial value of compliance D̄i = E−1
c . The

second expression represents the slope of the damage loading curve.

∂σi

∂ε̄i
=







D̄i−1

; ˙̄γi = 0

D̄i−1
Hc

D̄i−1
+Hc

; ˙̄γi > 0
(3.63)
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3.2.5.2 Discontinuity in concrete layer

Energy dissipation at the discontinuity of a concrete layer is described by a softening damage law, which connects

the traction at the discontinuity to the displacement jump. When the discontinuity is introduced, the displacement

jump is zero and the traction is equal to the failure stress of concrete. An increase of the displacement jump (in

absolute value) reduces the carrying capacity and thus produces a lower traction. A subsequent decrease of the

displacement jump (in absolute value) reduces the traction as well, but the carrying capacity remains the same.

Obviously, the problem needs to be controlled by imposed displacements to provide a unique solution. The term

“loading” therefore refers to the increase of displacement jump (in absolute value) and “unloading” refers to the

decrease of displacement jump. The unloading is always linear elastic, but there are two possibilities for loading.

Elastic (re)loading follows the unloading curve, increases the traction, and leaves the internal variables unchanged.

When carrying capacity is reached, damage loading continues. It decreases the traction and changes the internal

variables (see Fig. 3.17). This material law is mathematically described by the following equations, which can be

derived by using the principle of maximum damage dissipation, see [73].

Kct
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Figure 3.17: Traction - displacement jump diagram for discontinuity in concrete layer.

Slika 3.17: Diagram napetost - skok v pomiku za nezveznost v sloju betona.

Equation (3.64) describes the linear elastic relation between the traction at the discontinuity ti and the displacement

jump αi. It represents the unloading/reloading path in the ti−αi diagram.

ti = ¯̄D
i−1

αi, ¯̄D
i
∈ [0,∞) (3.64)

Here ¯̄D
i

is compliance of the discontinuity which increases with progression of the localized failure. The loading

curve of the ti−αi diagram is defined indirectly by the remaining equations in this section.
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¯̄φ
i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfc− ¯̄qi
)

, σfc =

{

σfcc for compression

σfct for tension
(3.65)

Failure function ¯̄φ
i

prescribes the admissible values of traction ti at the discontinuity of a concrete layer. Failure

stress of concrete σfc > 0 indicates the occurrence of the discontinuity and is defined separately for tension and

compression. Stress-like softening variable ¯̄qi handles the damage threshold evolution and is described by an

exponential function.

¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

, Kc =







Kcc =−
σfcc

2Gfcc
for compression

Kct =−
σfct

2Gfct
for tension

(3.66)

Here ¯̄ξ
i

is a displacement-like softening variable with initial value set to zero, and Kc < 0 is a constant softening

modulus of concrete with units m−1 and separate values for compression and tension. These are determined by the

fracture energies per cross-section unit Gfcc and Gfct for concrete in compression and tension, respectively. The

fracture energy has units kJm−2 and is measured in a uniaxial compression/tension test. Fracture energies Gfcc and

Gfct represent the areas between the horizontal axis, and the compressive and tensile softening lines of the t−α

diagram in Fig. 3.17, respectively. Evolution in pseudo-time of internal softening variables ¯̄D
i

and ¯̄ξi is defined by

evolution equations (3.67).

˙̄̄
D

i

=
˙̄̄γ
i
sign

(
ti
)

ti
,

˙̄̄
ξ
i

= ˙̄̄γ
i

(3.67)

The dot designates the derivative with respect to pseudo-time and ˙̄̄γ
i

is damage multiplier. The loading/unloading

conditions and consistency condition (3.68) also apply.

˙̄̄γ
i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0 (3.68)

A closer inspection of equations (3.64)-(3.68) reveals that the damage loading path of ti−αi diagram, correspond-

ing to condition ¯̄φ
i
= 0, is a straight line, see appendix B. The discovery suggests a possibility of simplification,

but more insight is required.

Each point of the damage loading path is determined by its ordinate ti and the slope ¯̄D
i−1

of the unloading line,

which connects the point to the origin. Abscissa αi is computed from equation (3.64). Evolution equations (3.67)

dictate the change of ¯̄D
i

and ¯̄ξ
i
, the latter defining ti through equations (3.65), (3.66) and (3.68). Both ¯̄D

i
and

ti change non-linearly with respect to ¯̄γi = ˙̄̄γ
i
∆τ (∆τ being pseudo-time step), the first one because of non-linear

evolution equation (3.67), and the second due to exponential softening law (3.66). However, the two non-linearities

neutralize each other, yielding a linear relation between ti and αi.

The same damage loading path can be constructed by defining coordinates αi and ti. If they both change linearly

with respect to some new variable, the diagram will be a straight line. We introduce a new displacement-like

variable ¯̄ξ
i∗

and the softening law takes a linear form.

¯̄ξ
i∗
=−

1

Kc

(

1−eKc
¯̄ξ
i
)

, ¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

=−Kcσfc
¯̄ξ
i∗
=−K∗

c
¯̄ξ
i∗

(3.69)
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The expression for ¯̄qi in (3.69) holds for ¯̄ξ
i
< ∞, or equivalently ¯̄ξ

i∗
<−1/Kc . After that ¯̄qi would become greater

than the failure stress of concrete σfc, which is not acceptable. Physically, it means that the carrying capacity

cannot drop below zero.

¯̄qi = min
{

−K∗
c

¯̄ξ
i∗
,σfc

}

, K∗
c =Kcσfc (3.70)

Then, the introduction of a new damage multiplier ¯̄γi∗
allows us to write a new set of linear evolution equations

for αi and ¯̄ξ
i∗

. See appendix B for details.

¯̄γi∗ =−
1

Kc

(

1−eKc ¯̄γi
)

, α̇i = ˙̄̄γ
i∗
sign

(
ti
)
,

˙̄̄
ξ
i∗
= ˙̄̄γ

i∗
(3.71)

The new softening law (3.70) and evolution equations (3.71), due to their linear form, simplify the computa-

tional procedure significantly. But there is another advantage over the original equations. As the original dam-

age multiplier ¯̄γi
approaches infinity, the traction ti approaches zero and the displacement jump αi approaches

−sign
(
ti
)
/Kc . No matter how much we increase the multiplier, αi cannot pass that value. For an individual bar,

such limitation is logical, as the complete loss of carrying capacity implies singularity of the problem and a further

increase of the discontinuity is meaningless. However, if a layer of a beam loses all carrying capacity, the beam

as a whole still possesses stiffness. The broken layer just follows the rest of the beam without resistance. It is

therefore necessary to allow αi to grow past the point of failure. When the new damage multiplier ¯̄γi∗
reaches the

value −1/Kc , the original multiplier is pushed to infinity and the old evolution equations (3.67) get out of scope.

The new evolution equations (3.71), however, withstand further increase of ¯̄γi∗
. As the latter approaches infinity,

so does αi (in absolute value). Once past the failure point the traction ti remains zero. The constitutive law at the

discontinuity is summed up below.

ti =







¯̄D
i−1

αi; ˙̄̄γ
i∗
= 0

σfc sign
(
αi
)
+σfcKcα

i; ˙̄̄γ
i∗
> 0, ¯̄qi < σfc

0; ˙̄̄γ
i∗
> 0, ¯̄qi = σfc

(3.72)

The first expression represents the elastic unloading path, the second one the damage loading path until the traction

drops to zero, and the third one the damage loading path further on. The tangent moduli are obtained by a simple

differentiation of (3.72).

∂ti

∂αi
=







¯̄D
i−1

; ˙̄̄γ
i∗
= 0

K∗
c = σfcKc; ˙̄̄γ

i∗
> 0, ¯̄qi < σfc

0; ˙̄̄γ
i∗
> 0, ¯̄qi = σfc

(3.73)

3.2.5.3 Bulk of reinforcement layer

Behavior of the bulk of a layer of reinforcement is described by 1D elasto-plasticity model with isotropic hardening.

It is symmetrical in tension and compression. Response of the material is linear elastic until yield stress is reached.

If loading increases, plastic deformations occur and grow continuously over the layer. Elasticity limit is raised

as well. Unloading is elastic and follows a line, parallel to the first loading path. When the stress drops to zero,
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plastic deformations remain in the layer (Fig. 3.18). Behavior of steel is mathematically described by the following

equations, which can be derived by using the principle of maximum plastic dissipation [73].

Ε

Σ

Σ fs

Σy

Σ i

Ε iΕ i
p

Es Es

el
as

tic
lo

ad
in

g

el
as

tic
un

lo
ad

in
g�

re
lo

ad
in

g

plastic loading

Figure 3.18: Stress - strain diagram for bulk of reinforcement layer.

Slika 3.18: Diagram napetost - deformacija za sloj armature.

Stress σi is computed from equation (3.74), which represents the elastic loading path and elastic unloading or

reloading path of the σi− ε̄i diagram.

σi = Es

(
ε̄i− ε̄ip

)
, εi = B̆id+Gi

Rα
i =

ε̄i
︷ ︸︸ ︷

B̆id+ Ḡi
Rα

i+ ¯̄Gi
Rα

i (3.74)

Here Es is the elastic modulus of steel, ε̄ip plastic strain, and ε̄i the continuous part of axial strain in the i-th

layer, composed of the regular strain and the continuous part of the additional strain. Before the appearance of the

discontinuity the additional strain is zero. The plastic loading path of the σi− ε̄i diagram is determined indirectly

by the rest of the equations in this section.

φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σy − q̄i

)
(3.75)

Yield function φ̄i prescribes the admissible axial stress in the layer. Yield stress σy > 0 is the absolute value of

the stress, at which the first plastic deformations occur. Stress-like hardening variable q̄i controls yield threshold

evolution.

q̄i =−Hsξ̄
i (3.76)

Equation (3.76) describes the linear isotropic hardening of the material. Here Hs > 0 is a constant hardening
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modulus of steel and ξ̄i is a strain-like hardening variable with the initial value zero. Evolution in pseudo-time of

internal hardening variables for plasticity, ε̄ip and ξ̄i, is prescribed by evolution equations (3.77).

˙̄εip = ˙̄γisign
(
σi
)

, ˙̄ξ
i
= ˙̄γi

(3.77)

The dot designates the derivative with respect to pseudo-time and ˙̄γi
is plastic multiplier. The loading/unloading

conditions and consistency condition (3.78) apply as well.

˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ
i
= 0 (3.78)

Tangent moduli of the σi− ε̄i diagram are determined by the described equations. In elastic response, the plastic

multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply

computed by differentiating the expression (3.74) for σi with respect to ε̄i.

˙̄γi = 0 ⇒ ε̄ip = const.,
∂σi

∂ε̄i
= Es (3.79)

In plastic loading, the plastic strain ε̄ip is not constant. It depends on the plastic multiplier ˙̄γi > 0 and consequently

on the strain ε̄i. The tangent modulus can be computed from pseudo-time derivatives of stress and strain. It

follows from the last two equations in (3.78) that φ̄i = 0 and ˙̄φ
i
= 0. We can express σi from equation (3.75) and

differentiate it over pseudo-time.

σi =
(
σy − q̄i

)
sign

(
σi
)
=
(
σy +Hsξ̄

i
)
sign

(
σi
)
, σ̇i =Hs ˙̄γisign

(
σi
)

(3.80)

We can replace the stress σi with expression (3.74) and differentiate the modified equation over pseudo-time again.

Evolution equations (3.77) are utilized in the procedure.

Es

(
ε̄i− ε̄ip

)
=
(
σy +Hsξ̄

i
)
sign

(
σi
)

Es

(

˙̄εi− ˙̄εip

)

=Hs
˙̄ξ
i
sign

(
σi
) /

˙̄εip = ˙̄γisign
(
σi
)
, ˙̄ξ

i
= ˙̄γi

Es ˙̄εi−Es ˙̄γisign
(
σi
)
=Hs ˙̄γisign

(
σi
)

˙̄εi =
Es+Hs

Es

˙̄γisign
(
σi
)

(3.81)

Pseudo-time derivatives σ̇i and ˙̄εi, defined in (3.80) and (3.81), are divided to produce the plastic tangent modulus.

∂σi

∂ε̄i
=

σ̇i

˙̄εi
=

EsHs

Es+Hs
(3.82)

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic

loading and unloading path, while the second one represents the slope of the plastic loading path in the σi − ε̄i

diagram.

∂σi

∂ε̄i
=







Es; ˙̄γi = 0

EsHs

Es+Hs
; ˙̄γi > 0

(3.83)
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3.2.5.4 Discontinuity in reinforcement layer

Behavior of the discontinuity in a layer of reinforcement is described by a plastic softening law, which connects

the traction at the discontinuity to the displacement jump (Fig. 3.19). At introduction of the discontinuity the

displacement jump is zero and the traction is equal to the failure stress of steel. A further increase of the imposed

displacements of the layer reduces the carrying capacity. The traction at the discontinuity decreases and the dis-

placement jump increases. This is referred to as plastic softening. The displacement jump behaves analogously to

plastic strain in the continuous model, i.e. it stays the same if the loading is decreased. The traction at the discon-

tinuity in the unloading phase changes in accordance with the stress in the bulk, so that the equilibrium (3.35) is

satisfied. When traction (in absolute value) reaches the carrying capacity again, the plastic loading continues and

the displacement jump changes accordingly to the sign of traction. It decreases in compression and increases in

tension, regardless of its own size and sign. The mathematical description of such behavior is condensed in the

following equations, which can be derived by the principle of maximum plastic dissipation, see [73].

Ks
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Σ fs
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g

plastic softening

Figure 3.19: Traction - displacement jump diagram for discontinuity in reinforcement layer.

Slika 3.19: Diagram napetost - skok v pomiku za nezveznost v sloju armature.

¯̄φ
i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfs− ¯̄qi
)

(3.84)

Failure function ¯̄φ
i

defines the admissible values of traction ti at the discontinuity of a reinforcement layer. Failure

stress of steel σfs > 0 is the absolute value of the stress, at which the discontinuity first appears. The stress-like

softening variable ¯̄qi manages the softening threshold evolution.

¯̄qi = min
{

−Ks
¯̄ξ
i
,σfs

}

, Ks =−
σ2
fs

2Gfs
(3.85)



68 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

The linear softening law is described by equation (3.85), where ¯̄ξ
i

is a displacement-like softening variable with

initial value zero, and Ks > 0 is a constant softening modulus of concrete with units kNm−3. Fracture energy per

cross-section unit of steel has units kJm−2 and is determined in a uniaxial tension test. Evolution in pseudo-time

of internal softening variables αi and ¯̄ξ
i

is defined by evolution equations (3.86).

α̇i = ˙̄̄γ
i
sign

(
ti
)

,
˙̄̄
ξ
i

= ˙̄̄γ
i

(3.86)

The dot designates the derivative with respect to pseudo-time and ˙̄̄γ
i

is plastic softening multiplier. The load-

ing/unloading conditions and consistency condition (3.87) also apply.

˙̄̄γ
i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0 (3.87)

The equation of the plastic softening loading path of ti −αi diagram is not unique. It depends on the loading

history. If the softening process alternates between both load signs, the loading path is translated sideways (left or

right). The slope, however, is not affected and can be determined from the pseudo-time derivatives of ti and αi.

In softening process, when ˙̄̄γ
i
> 0, the failure function ¯̄φ

i
= 0. Expression for ti is then determined by (3.84) and

(3.85).

ti =
(

σfs− ¯̄qi
)

sign
(
ti
)
=







(

σfs+Ks
¯̄ξ
i
)

sign
(
ti
)

; ¯̄qi < σfs

0; ¯̄qi = σfs

(3.88)

The derivative is obtained in accordance with evolution equation (3.86) for ¯̄ξ
i
.

ṫi =







Ks
˙̄̄
ξ
i

sign
(
ti
)
=Ks

˙̄̄γ
i
sign

(
ti
)

; ¯̄qi < σfs

0; ¯̄qi = σfs
(3.89)

The slope of the plastic softening loading path, defined as the derivative of ti over αi, is computed by dividing the

pseudo-time derivatives (3.89) and (3.86) of both quantities.

∂ti

∂αi
=

ṫi

α̇i
=







not defined; ˙̄̄γ
i
= 0

Ks; ˙̄̄γ
i
> 0, ¯̄qi < σfs

0; ˙̄̄γ
i
> 0, ¯̄qi = σfs

(3.90)

A third option was added in equation (3.90). It corresponds to elastic unloading path with ˙̄̄γ
i
= 0. It follows from

evolution equations (3.86) that α̇i = 0. And since the failure function ¯̄φ
i

is no longer required to be zero, the

traction ti cannot be computed as in (3.88). It changes in accordance with equation (3.35) which represents the

equilibrium between the bulk and the discontinuity. The fraction in (3.90) is not defined, but it is not required in

the computational procedure anyway.

3.3 Computational procedure

Response of a structure, discretized by a mesh of nFE above derived finite elements, is computed at discrete

pseudo-time points τ0, τ1, . . . , τn, τn+1, . . . , T by solving at each pseudo-time point nonlinear equations (3.91)
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for current values of nodal displacements/rotations.

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0
(3.91)

Here, n
(e)
CL is the number of cracked layers in element (e). At a particular pseudo-time point τn+1, the solution

is searched iteratively by the Newton-Raphson method. Each iteration, denoted by k, consists of two subsequent

phases: (A) computation of internal variables, corresponding to the current iterative values of nodal displace-

ments/rotations, in order to compute the stress in accordance with given material laws; (B) solution of linearized

equations (3.91) in order to update the iterative values of nodal displacements/rotations. When one phase of the

computation is completed, the results are used immediately in the next one.

For a pseudo-time point τn+1, the computational problem related to a generic element (e) and material layer i can

be stated as:

given d(e)
n and

{

D̄(e),i
n , ξ̄(e),in , ¯̄D(e),i

n , ¯̄ξ(e),in

ε̄(e),ip,n , ξ̄(e),in ,α(e),i
n , ¯̄ξ(e),in

find d
(e)
n+1 and







D̄
(e),i
n+1 , ξ̄

(e),i
n+1 ,

¯̄D
(e),i
n+1 ,

¯̄ξ
(e),i
n+1

ε̄
(e),i
p,n+1, ξ̄

(e),i
n+1 ,α

(e),i
n+1 ,

¯̄ξ
(e),i
n+1

Note that superscript (e) was omitted in section 3.2.5 for the above internal variables. The subscript n and n+ 1

denote the values at pseudo-times τn and τn+1, respectively.

3.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for i-th layer of element (e) at

pseudo-time point τn+1 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed

at the values from the previous iteration d
(e),(k−1)
n+1 . Since every internal variable is connected to a single layer of a

single finite element, the computations are local, i.e. they are performed independently for each element and each

layer. The condition of the discontinuity is known by the following flag.

crack(e),i =

{

false . . . no discontinuity in layer i

true . . . discontinuity in layer i
(3.92)

The algorithm in Fig. 3.20 is applied. If there was no discontinuity in the layer in the previous pseudo-time step,

we begin with equations for the hardening phase of material, described in sections 3.3.1.1 for concrete and 3.3.1.3

for steel. We must do so even if the previous iteration of the current step indicated occurrence of the discontinuity,

because that was not a converged result. We check if the carrying capacity of the layer is exceeded. If not, we keep

the obtained results, otherwise we discard them and use equations for the softening phase of material, described in

sections 3.3.1.2 for concrete and 3.3.1.4 for steel. If the discontinuity already existed in the previous pseudo-time

step, it must also exist in the current step, therefore we follow the procedure from sections 3.3.1.2 or 3.3.1.4.

The integrals, that appear in expressions (3.29), (3.30) and (3.35) for f int,(e), h(e),i and ti, are evaluated with

numerical integration. A three-point Gauss-Lobatto integration scheme is used with integration points at both ends

and at the center of the finite element. Strain, stress and hardening internal variables are therefore computed only at

those three locations. Softening internal variables are defined at the location of the discontinuity, which coincides

with one of the integration points (although the two are not connected).

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and

the superscript i, denoting the layer.
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Start phase A of iteration k

for element e and layer i

crackn
HeL,i= true

use eqs. from secs.

3.3.1.1 or 3.3.1.3

carrying capacity

exceeded

crackn+1
HeL,i
= false,

keep results, computed

with eqs. from secs.

3.3.1.1 or 3.3.1.3

crackn+1
HeL,i
= true

crackn+1
HeL,i
= true,

delete results, computed

with eqs. from secs.

3.3.1.1 or 3.3.1.3

use eqs. from secs.

3.3.1.2 or 3.3.1.4

End phase A of iteration k

for element e and layer i

Yes

Yes

No

No

Figure 3.20: Algorithm for phase (A) of k-th iteration for i-th layer of finite element (e).

Slika 3.20: Algoritem za fazo (A) k-te iteracije za i-ti sloj končnega elementa (e).

3.3.1.1 Bulk of concrete layer

This section describes the computational procedure for the hardening phase of a concrete layer. The discontinuity

has not yet occurred and the displacement jump is zero. The computation is started by assuming an elastic step,

which means that hardening internal variables do not change, but keep the values from the previous step. Trial

value of stress is computed according to (3.54), with α
(k)
n+1 = 0.

D̄
(k),trial
n+1 = D̄n, ξ̄

(k),trial
n+1 = ξ̄n, σ

(k),trial
n+1 = D̄

(k),trial−1

n+1 ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

(3.93)

The trial damage function φ̄
(k),trial
n+1 is computed in accordance with equations (3.55) and (3.56).

φ̄
(k),trial
n+1 =

∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−
(

σd− q̄
(k),trial
n+1

)

, q̄
(k),trial
n+1 =−Hcξ̄

(k),trial
n+1 =−Hcξ̄n (3.94)
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The trial solution is accepted if the trial damage function is not positive.

φ̄
(k),trial
n+1 ≤ 0 ⇒ D̄

(k)
n+1 = D̄

(k),trial
n+1 , ξ̄

(k)
n+1 = ξ̄

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 (3.95)

Otherwise, the internal variables have to be corrected and the stress recomputed. Incremental form of evolution

equations (3.57) is applied, where γ̄
(k)
n+1 = ˙̄γ

(k)
n+1 (τn+1 − τn) > 0. The use of sign

(

σ
(k)
n+1

)

= sign
(

σ
(k),trial
n+1

)

is

justified in appendix A.

φ̄
(k),trial
n+1 > 0 ⇒ D̄

(k)
n+1 = D̄n+ γ̄

(k)
n+1

sign
(

σ
(k),trial
n+1

)

σ
(k)
n+1

, ξ̄
(k)
n+1 = ξ̄n+ γ̄

(k)
n+1 (3.96)

By using equations (3.96), the stress σ
(k)
n+1 and the stress-like hardening variable q̄

(k)
n+1 can be expressed with their

trial values and the damage multiplier γ̄
(k)
n+1.

σ
(k)
n+1 = D̄

(k)−1

n+1 ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

D̄
(k)
n+1σ

(k)
n+1 = ε̄

(

d
(k−1)
n+1 ,α

(k)
n+1

)

= D̄
(k),trial
n+1 σ

(k),trial
n+1



D̄n+ γ̄
(k)
n+1

sign
(

σ
(k),trial
n+1

)

σ
(k)
n+1



σ
(k)
n+1 = D̄nσ

(k),trial
n+1

D̄nσ
(k)
n+1 + γ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

= D̄nσ
(k),trial
n+1

σ
(k)
n+1 = σ

(k),trial
n+1 − D̄−1

n γ̄
(k)
n+1sign

(

σ
(k),trial
n+1

)

(3.97)

q̄
(k)
n+1 =−Hcξ̄

(k)
n+1 =−Hc

(

ξ̄n+ γ̄
(k)
n+1

)

= q̄
(k),trial
n+1 −Hcγ̄

(k)
n+1 (3.98)

Equations (3.97) and (3.98) are used to express the damage function φ̄
(k)
n+1 as a function of damage multiplier γ̄

(k)
n+1,

which is then computed from requirement φ̄
(k)
n+1 = 0, coming from loading/unloading conditions (3.58).

φ̄
(k)
n+1 =

∣
∣
∣σ

(k)
n+1

∣
∣
∣−
(

σd− q̄
(k)
n+1

)

=
∣
∣
∣σ

(k),trial
n+1

∣
∣
∣− D̄−1

n γ̄
(k)
n+1 −

(

σd− q̄
(k),trial
n+1

)

−Hcγ̄
(k)
n+1 =

= φ̄
(k),trial
n+1 −

(
D̄−1

n +Hc

)
γ̄
(k)
n+1

φ̄
(k)
n+1 = 0 ⇒ γ̄

(k)
n+1 =

φ̄
(k),trial
n+1

D̄−1
n +Hc

(3.99)

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

(3.93) if damage multiplier γ̄
(k)
n+1 is zero, and the value from (3.97) if γ̄

(k)
n+1 is positive. In the second case, equations

(3.99), (3.94) and (3.93) are used to express the stress as a function of strain.

∂σ

∂ε̄

∣
∣
∣
∣

(k)

n+1

=







D̄−1
n ; γ̄

(k)
n+1 = 0

D̄−1
n Hc

D̄−1
n +Hc

; γ̄
(k)
n+1 > 0

(3.100)
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The hardening internal variables, stress and tangent modulus have been determined under assumption, that carrying

capacity is not exceeded. A control is required to verify that assumption. If indeed the carrying capacity is not

reached, the results are accepted. In the opposite case, the results are discarded and computed again, taking into

account the newly appeared discontinuity.

To perform the control, the location xd of the potential discontinuity must first be determined. It is positioned

according to the stress state in the layer. In case of constant stress, it is placed in the middle of the layer. In case

of a linear stress distribution, the positioning is not so trivial because of different failure stresses of concrete in

tension and compression. Let us consider the situation, when the highest value of stress is at node 1, σ1 > σ2. The

seven possible linear stress states are shown in Fig. 3.21. Criterion σ3 ≥ 0 covers the cases a, b, c and d, where

the greatest tensile stress is greater than or equal to the absolute value of the biggest compressive stress. Since

the ultimate stress is much higher in compression, the failure is only possible in tension and the discontinuity is

placed at the left node. In cases f and g, where σ1 ≤ 0, the whole layer is in compression and the failure can only

occur at node 2. In case e, the location of the discontinuity is determined from the ratio of maximum compressive

stress to maximum tensile stress in the layer, compared to the ratio of ultimate stresses in compression and tension.

Situation σ1 < σ2 would be treated in the same way. Here σ1 = σ|x=0, σ2 = σ|x=L and σ3 = σ|x=L/2 .

σ1 = σ2 = σ3 ⇒ xi
d = L/2

σ1 > σ2 ⇒







σ3 ≥ 0 ⇒ xi
d = 0

σ3 < 0 ⇒







σ1 ≤ 0 ⇒ xi
d = L

σ1 > 0 ⇒

{

|σ2/σ1 | ≤ (σfcc/σfct ) ⇒ xi
d = 0

|σ2/σ1 |> (σfcc/σfct ) ⇒ xi
d = L

σ1 < σ2 ⇒ analogously to σ1 > σ2

(3.101)

a 1 3 2

b 1 3 2

c 1 3

2

d 1 3

2

e 1

3 2

f
1 3 2

g
1 3 2

+

+

+

+
-

-

-

-

Σ1

Σ3

Σ2 Σ1

Σ3

Σ2

Figure 3.21: Seven possible linear stress states in a layer.

Slika 3.21: Sedem možnih linearnih razporedov napetosti v sloju.

When location of the potential discontinuity is known, we can compute the potential value of traction at the

discontinuity t
(k),pot
n+1 according to equation (3.35). Appropriate operator ḠV is chosen from (3.50), depending on
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xd. The integral is evaluated numerically with the three-point Gauss-Lobatto integration scheme.

t
(k),pot
n+1 =−

∫

L

ḠV σ
(k)
n+1dx (3.102)

As we have shown in section 3.2.4.2, the value of t
(k),pot
n+1 is equal to σ

(k)
n+1

∣
∣
∣
xd

for a linear stress distribution. Failure

function ¯̄φ
(k),pot
n+1 is then evaluated with the stress-like softening variable ¯̄q

(k),pot
n+1 equal to zero, because there has

been no reduction of carrying capacity in previous steps.

¯̄φ
(k),pot
n+1 =

∣
∣
∣t
(k),pot
n+1

∣
∣
∣−
(

σfc− ¯̄q
(k),pot
n+1

)

, ¯̄q
(k),pot
n+1 = 0 (3.103)

The discontinuity flag is set to true if the failure function is positive, and to false otherwise. Note that the value

of the flag is not final, until the converged state is reached. It can change in following iterations.

¯̄φ
(k),pot
n+1 ≤ 0 ⇒ crack

(e),i
n+1 = false

¯̄φ
(k),pot
n+1 > 0 ⇒ crack

(e),i
n+1 = true

(3.104)

If the carrying capacity is exceeded ( ¯̄φ
(k),pot
n+1 > 0), the above computed values of internal variables, stress and

tangent modulus are discarded for this iteration and computed anew as described in section 3.3.1.2.

3.3.1.2 Discontinuity in concrete layer

In this section we describe the computational procedure for the softening phase of the concrete layer. The procedure

is used if the current value of discontinuity flag crack
(e),i
n+1 = true. This is a consequence of either an existing

discontinuity in the previous step (crack
(e),i
n = true), or exceeded ultimate stress in this iteration, as written in

equation (3.104). In both cases, the hardening internal variables take the last converged values, i.e. the values from

the last step. The error of such choice is negligible for small enough pseudo-time step.

D̄
(k)
n+1 = D̄n, ξ̄

(k)
n+1 = ξ̄n (3.105)

The computation is started by assuming an elastic step, which implies no change in the softening internal variables

in this iteration. We use the displacement-like softening variable ¯̄ξ
∗
, introduced in equation (3.69).

¯̄D
(k),trial
n+1 = ¯̄Dn,

¯̄ξ
∗(k),trial
n+1 = ¯̄ξ∗n (3.106)

The trial value of traction at the discontinuity is defined by equation (3.107), where operator ḠR is chosen from

expressions (3.46), accordingly to the position of the discontinuity xd, which is known either from the previous

step or from equation (3.101). Linear functions B̆ and ḠR are evaluated at xd and the bulk compliance D̄n at xd is

used. Derivation of the expression is shown in appendix C.

t
(k),trial
n+1 =

[

B̆d
(k−1)
n+1

D̄n− ḠR
¯̄Dn

]

x=xd

(3.107)
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The trial stress in the layer is computed according to expression (3.54), where the trial value of displacement jump

α
(k),trial
n+1 is calculated from equation (3.64).

σ
(k),trial
n+1 = D̄n ε̄

(

d
(k−1)
n+1 ,α

(k),trial
n+1

)

, α
(k),trial
n+1 = ¯̄Dnt

(k),trial
n+1 (3.108)

Next, the trial value of failure function ¯̄φ
(k),trial
n+1 is computed, using expression (3.70) for computation of the

stress-like softening variable ¯̄q
(k),trial
n+1 .

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfc− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−K∗
c

¯̄ξ
∗(k),trial
n+1 ,σfc

}

= ¯̄qn (3.109)

If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

¯̄D
(k)
n+1 =

¯̄D
(k),trial
n+1 , ¯̄ξ

∗(k)
n+1 =

¯̄ξ
∗(k),trial
n+1 , α

(k)
n+1 = α

(k),trial
n+1

t
(k)
n+1 = t

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1

(3.110)

If ¯̄φ
(k),trial
n+1 > 0, the assumed trial values are not admissible. We have to compute the softening damage multi-

plier ¯̄γ
∗(k)
n+1 =

˙̄̄γ
∗(k)
n+1 (τn+1 − τn) > 0 from equation ¯̄φ

(k)
n+1 = 0 in order to compute new values of internal softening

variables, see appendix C. Linear operator ḠR is evaluated at xd and the bulk compliance D̄n at xd is used.

¯̄γ
∗(k)
n+1 =





¯̄φ
(k),trial
n+1

(

D̄n− ḠR
¯̄Dn

)

K∗
c D̄n− ḠR





x=xd

(3.111)

If ¯̄q
(k)
n+1 =−K∗

c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

< σfc, the softening internal variables are updated, following the incremental form of

evolution equations (3.71).

α
(k)
n+1 =

(

αmax
n + ¯̄γ

∗(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, ¯̄ξ
∗(k)
n+1 =

¯̄ξ∗n+ ¯̄γ
∗(k)
n+1,

¯̄D
(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

=
αmax
n + ¯̄γ

∗(k)
n+1

σfc+K∗
c

¯̄ξ
∗(k)
n+1

(3.112)

Here, αmax
n = ¯̄Dnt

max
n = ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

is the maximal elastic value of α for the given carrying capacity that

was reached in the last softening step. Traction at the discontinuity and stress in the layer are computed as follows.

t
(k)
n+1 =

(

σfc− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, σ
(k)
n+1 = D̄n ε̄

(

d
(k−1)
n+1 ,α

(k)
n+1

)

(3.113)

If −K∗
c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

>σfc = ¯̄q
(k)
n+1, material has lost all carrying capacity and traction at the discontinuity becomes

zero.

t
(k)
n+1 = σ

(k)
n+1

∣
∣
∣
xd

=
[

D̄n

(

B̆d
(k−1)
n+1 + ḠRα

(k)
n+1

)]

x=xd
= 0 (3.114)
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From above equation we can compute the displacement jump and the compliance at the discontinuity. Note that

the linear functions B̆ and ḠR are evaluated at xd.

α
(k)
n+1 =

[

−
B̆d

(k−1)
n+1

ḠR

]

x=xd

, ¯̄D
(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

= ∞ (3.115)

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump.

If ¯̄γ
∗(k)
n+1 = 0, their relation is described by equation (3.108). If ¯̄γ

∗(k)
n+1 > 0 and ¯̄q

(k)
n+1 = −K∗

c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

< σfc,

traction takes the value from (3.113). The first of equations (3.112) is used to express the traction as a function of

displacement jump. If ¯̄γ
∗(k)
n+1 > 0 and ¯̄q

(k)
n+1 = σfc, traction is constantly zero.

∂t

∂α

∣
∣
∣
∣

(k)

n+1

=







¯̄D−1
n ; ¯̄γ

∗(k)
n+1 = 0

K∗
c = σfcKc; ¯̄γ

∗(k)
n+1 > 0, ¯̄q

(k)
n+1 < σfc

0; ¯̄γ
∗(k)
n+1 > 0, ¯̄q

(k)
n+1 = σfc

(3.116)

The discontinuity flag is set to crack
(e),i
n+1 = true.

3.3.1.3 Bulk of reinforcement layer

The computational procedure for the hardening phase of the reinforcement layer is described next. There is no

discontinuity in the layer and the displacement jump is zero. First, we assume elastic behavior, meaning that

hardening internal variables keep the values from the previous step. Stress is computed in accordance with equation

(3.74), where α
(k)
n+1 = 0.

ε̄
(k),trial
p,n+1 = ε̄p,n, ξ̄

(k),trial
n+1 = ξ̄n, σ

(k),trial
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄
(k),trial
p,n+1

)

(3.117)

Trial yield function φ̄
(k),trial
n+1 is computed, as defined in (3.75) and (3.76).

φ̄
(k),trial
n+1 =

∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−
(

σy − q̄
(k),trial
n+1

)

, q̄
(k),trial
n+1 =−Hsξ̄

(k),trial
n+1 =−Hsξ̄n (3.118)

The trial solution is accepted if the trial yield function is negative or zero.

φ̄
(k),trial
n+1 ≤ 0 ⇒ ε̄

(k)
p,n+1 = ε̄

(k),trial
p,n+1 , ξ̄

(k)
n+1 = ξ̄

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 (3.119)

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of

evolution equations (3.77), where γ̄
(k)
n+1 = ˙̄γ

(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix A that sign

(

σ
(k)
n+1

)

=

sign
(

σ
(k),trial
n+1

)

.

φ̄
(k),trial
n+1 > 0 ⇒ ε̄

(k)
p,n+1 = ε̄p,n+ γ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

, ξ̄
(k)
n+1 = ξ̄n+ γ̄

(k)
n+1 (3.120)
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By exploiting equations (3.120), the stress σ
(k)
n+1 and the stress-like hardening variable q̄

(k)
n+1 can be expressed with

their trial values and the damage multiplier γ̄
(k)
n+1.

σ
(k)
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄
(k)
p,n+1

)

=

= Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄p,n

)

−Esγ̄
(k)
n+1sign

(

σ
(k),trial
n+1

)

=

= σ
(k),trial
n+1 −Esγ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

(3.121)

q̄
(k)
n+1 =−Hsξ̄

(k)
n+1 =−Hs

(

ξ̄n+ γ̄
(k)
n+1

)

= q̄
(k),trial
n+1 −Hsγ̄

(k)
n+1 (3.122)

Yield function φ̄
(k)
n+1 is expressed as a function of plastic multiplier γ̄

(k)
n+1 by employing equations (3.121) and

(3.122). Value of the plastic multiplier is computed from requirement φ̄
(k)
n+1 = 0.

φ̄
(k)
n+1 =

∣
∣
∣σ

(k)
n+1

∣
∣
∣−
(

σy − q̄
(k)
n+1

)

=
∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−Esγ̄

(k)
n+1 −

(

σy − q̄
(k),trial
n+1

)

−Hsγ̄
(k)
n+1 =

= φ̄
(k),trial
n+1 − (Es+Hs) γ̄

(k)
n+1

φ̄
(k)
n+1 = 0 ⇒ γ̄

(k)
n+1 =

φ̄
(k),trial
n+1

Es+Hs

(3.123)

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

equation (3.117) if plastic multiplier γ̄
(k)
n+1 is zero, and the value from (3.121) if γ̄

(k)
n+1 is positive. In the second

case, equations (3.123), (3.118) and (3.117) are used to express the stress as a function of strain.

∂σ

∂ε̄

∣
∣
∣
∣

(k)

n+1

=







Es; γ̄
(k)
n+1 = 0

EsHs

Es+Hs
; γ̄

(k)
n+1 > 0

(3.124)

The hardening internal variables, stress in the layer and the tangent modulus have been calculated under assumption

that the ultimate stress is not exceeded. This still requires verification. If the assumption is confirmed, the above

results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity.

The first step is to determine the location of the potential discontinuity xd. Since the behavior of steel is sym-

metric in tension and compression, the discontinuity is simply placed at the location of maximal stress in absolute

value. This can occur at either end of the layer because of the linear form of stress. If the stress is constant, the

discontinuity is placed in the middle of the layer.

σ1 = σ2 = σ3 ⇒ xi
d = L/2

|σ1|> |σ2| ⇒ xi
d = 0

|σ1|< |σ2| ⇒ xi
d = L

where

σ1 = σ|x=0

σ2 = σ|x=L

σ3 = σ|x=L/2

(3.125)

With the location of the potential discontinuity determined, we can calculate the potential value of traction at the

discontinuity t
(k),pot
n+1 by equation (3.35). Correct operator ḠV is chosen from (3.50), depending on xd. The integral

is evaluated numerically with the three-point Gauss-Lobatto integration scheme.

t
(k),pot
n+1 =−

∫

L

ḠV σ
(k)
n+1dx (3.126)
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As shown in section 3.2.4.2, the traction t
(k),pot
n+1 equals σ

(k)
n+1

∣
∣
∣
xd

for a linear stress distribution. Failure function

¯̄φ
(k),pot
n+1 is evaluated with the stress-like softening variable equal to zero, as there has been no reduction of carrying

capacity in previous steps.

¯̄φ
(k),pot
n+1 =

∣
∣
∣t
(k),pot
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),pot
n+1

)

, ¯̄q
(k),pot
n+1 = 0 (3.127)

We set the value of the discontinuity flag to true if the failure function is positive, and to false otherwise. The

value is not final, however, until the converged state is reached. It can change in following iterations.

¯̄φ
(k),pot
n+1 ≤ 0 ⇒ crack

(e),i
n+1 = false

¯̄φ
(k),pot
n+1 > 0 ⇒ crack

(e),i
n+1 = true

(3.128)

If the carrying capacity is exceeded, the above computed values of internal hardening variables, stress in the layer

and traction at the discontinuity are discarded and computed again, as explained in the following section.

3.3.1.4 Discontinuity in reinforcement layer

This section describes the computational procedure for the softening phase of the reinforcement layer. It is applied

if the current value of the discontinuity flag crack
(e),i
n+1 = true, which happens if the discontinuity already existed

in the previous step, or if the carrying capacity of the layer was exceeded in this iteration, see equation (3.128).

In any case, the hardening internal variables take the values from the previous step, which are the last converged

results. The error of such choice is negligible for small pseudo-time step.

ε̄
(k)
p,n+1 = ε̄p,n, ξ̄

(k)
n+1 = ξ̄n (3.129)

We start by assuming a trial solution, keeping the softening internal variables at the values from the previous

step. Stress in the layer and traction at the discontinuity are computed according to equations (3.74) and (3.35),

respectively.

α
(k),trial
n+1 = αn,

¯̄ξ
(k),trial
n+1 = ¯̄ξn

σ
(k),trial
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k),trial
n+1

)

− ε̄p,n

)

, t
(k),trial
n+1 =−

∫

L

ḠV σ
(k),trial
n+1 dx

(3.130)

The integral is computed numerically with the three-point Gauss-Lobatto integration scheme and evaluates to

t
(k),trial
n+1 = σ

(k),trial
n+1

∣
∣
∣
xd

for the linear distribution of stress over the layer.

The trial value of failure function ¯̄φ
(k),trial
n+1 is calculated, respecting equations (3.84) and (3.85).

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−Ks
¯̄ξ
(k),trial
n+1 ,σfs

}

= ¯̄qn (3.131)

If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

α
(k)
n+1 = α

(k),trial
n+1 , ¯̄ξ

(k)
n+1 =

¯̄ξ
(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 , t

(k)
n+1 = t

(k),trial
n+1 (3.132)
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If ¯̄φ
(k),trial
n+1 > 0, the assumed solution is not admissible. The softening internal variables are updated according to

the incremental form of evolution equations (3.86), where ¯̄γ
(k)
n+1 =

˙̄̄γ
(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix

A that sign
(

t
(k)
n+1

)

= sign
(

t
(k),trial
n+1

)

.

α
(k)
n+1 = αn+ ¯̄γ

(k)
n+1sign

(

t
(k),trial
n+1

)

, ¯̄ξ
(k)
n+1 =

¯̄ξn+ ¯̄γ
(k)
n+1 (3.133)

By using equations (3.133), the traction at the discontinuity t
(k)
n+1 and the stress-like softening variable ¯̄q

(k)
n+1 are

expressed with their trial values and the softening multiplier ¯̄γ
(k)
n+1.

t
(k)
n+1 = σ

(k)
n+1

∣
∣
∣
xd

=
[

Es

(

B̆d
(k−1)
n+1 + ḠRα

(k)
n+1 − ε̄p,n

)]

x=xd
=

=
[

Es

(

B̆d
(k−1)
n+1 + ḠRαn− ε̄p,n

)]

x=xd
+
[

EsḠR ¯̄γ
(k)
n+1sign

(

t
(k),trial
n+1

)]

x=xd
=

= t
(k),trial
n+1 +Es ḠR

∣
∣
xd

¯̄γ
(k)
n+1sign

(

t
(k),trial
n+1

)

(3.134)

¯̄q
(k)
n+1 =







¯̄qAn+1 = ¯̄q
(k),trial
n+1 −Ks ¯̄γ

(k)
n+1; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄qBn+1 = σfs; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

> σfs
(3.135)

Linear operator ḠR in expression for t
(k)
n+1 is evaluated at xd. Obtained expressions are inserted in equation ¯̄φ

(k)
n+1 =

0, coming from loading/unloading conditions (3.87).

¯̄φ
(k)
n+1 =

∣
∣
∣t
(k)
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k)
n+1

)

= 0 ⇔ t
(k)
n+1 =

(

σfs− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

(3.136)

After a short derivation we get two expressions for ¯̄γ
(k)
n+1, depending on the expression, used for ¯̄q

(k)
n+1.

¯̄γ
(k)
n+1 =







¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

− ḠR

∣
∣
xd
Es+Ks

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

− ḠR

∣
∣
xd
Es

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

> σfs

(3.137)

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump. If

¯̄γ
(k)
n+1 > 0, traction takes the value from (3.136). Equations (3.135) and (3.133) are used to express the traction as

a function of displacement jump. If ¯̄γ
(k)
n+1 = 0, the displacement jump remains constant, while the traction changes

to satisfy the local equilibrium with stress in the layer. The tangent modulus cannot be determined, but it is not

required for further computation.

∂t

∂α

∣
∣
∣
∣

(k)

n+1

=







not defined; ¯̄γ
(k)
n+1 = 0

Ks; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 < σfs

0; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 = σfs

(3.138)

The discontinuity flag is set to crack
(e),i
n+1 = true.
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3.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of

section 3.3. In this phase, a linearized form of equilibrium equations (3.91) is solved to provide the k-th update

of the nodal displacements/rotations at pseudo-time point τn+1. The computation is performed with known values

of internal variables for each layer of each finite element - D̄
(e),i,(k)
n+1 , ξ̄

(e),i,(k)
n+1 , ¯̄D

(e),i,(k)
n+1 , ¯̄ξ

(e),i,(k)
n+1 for a concrete

layer, and ε̄
(e),i,(k)
p,n+1 , ξ̄

(e),i,(k)
n+1 , α

(e),i,(k)
n+1 , ¯̄ξ

(e),i,(k)
n+1 for a layer of reinforcement - freshly updated in preceding phase

(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global

equations.

The first of equations (3.91) would be sufficient for calculating the new values of generalized displacements d
(e),(k)
n+1 ,

if all displacement jumps α
(e),i,(k)
n+1 were fixed at the values, computed in phase (A). To improve convergence, how-

ever, it is useful to update the displacement jumps as well. For that purpose, the second of equations (3.91)

are engaged. Actually, they have once already been satisfied by using expression (3.35) for the traction at the

discontinuity, but that equality held for the displacements from the previous iteration d
(e),(k−1)
n+1 . Updating the dis-

placements would disrupt the equilibrium between the traction at the discontinuity and the stress in the layer, unless

the displacement jumps are updated as well. Solving the whole system of equations (3.91) therefore promises a

more accurate solution.

3.3.2.1 Linearization of equilibrium equations

The first of equations (3.91) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized

around the current values of nodal degrees of freedom of the structure d
str,(k−1)
n+1 .

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

︸ ︷︷ ︸

K
str,(k)
n+1

∆d
str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 ,

∂f
ext,str
n+1

∂d
str,(k−1)
n+1

= 0 (3.139)

The derivative on the left side of the equation is designated with K
str,(k)
n+1 and named the tangent stiffness matrix of

the structure. ∆d
str,(k)
n+1 is the sought update of the nodal displacements in this iteration. The vector of external forces

f
ext,str
n+1 represents the loading, which is defined in advance for each pseudo-time point τn+1 and is independent of

the nodal displacements. The vector of internal forces f
int,str,(k)
n+1 is computed from contributions of individual finite

elements, according to equation (3.20). Matrices P(e) and R(e) are constant.

f
int,str,(k)
n+1 =

nFE

∑
e=1

P(e)T R(e)−1

f
int,(e),(k)
n+1

K
str,(k)
n+1 =

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

=
nFE

∑
e=1

P(e)T R(e)−1 ∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

(3.140)

Let us recall the relation (3.13) between the vector of nodal displacements of a finite element d
(e),(k−1)
n+1 and the

vector of nodal displacements of the structure d
str,(k−1)
n+1 . The derivative of one over the other will prove useful.

d
(e),(k−1)
n+1 = R(e)P(e)d

str,(k−1)
n+1 ⇒

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

= R(e)P(e) (3.141)
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Internal forces f
int,(e),(k)
n+1 of finite element (e) are defined in equation (3.29) as a sum of contributions of nL

layers. Contributions f
int,(e),i,(k)
n+1 of the n

(e)
CL cracked layers are functions of nodal displacements d

(e),(k−1)
n+1 and

displacement jumps α
(e),i,(k)
n+1 , while the contributions of the remaining (non-cracked) layers depend solely on the

nodal displacements. For the sake of clarity it is assumed that the cracked layers are numbered with consecutive

numbers from 1 to n
(e)
CL.

f
int,(e),(k)
n+1 =

nL

∑
i=1

f
int,(e),i,(k)
n+1 =

n
(e)
CL

∑
i=1

f
int,(e),i,(k)
n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1

)

+
nL

∑
i=n

(e)
CL

+1

f
int,(e),i,(k)
n+1

(

d
(e),(k−1)
n+1

)

(3.142)

The derivative of f
int,(e),(k)
n+1 over d

str,(k−1)
n+1 , which appears in expression (3.140), can be developed as follows.

∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=

n
(e)
CL

∑
i=1











∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
fd,(e),i,(k)
n+1

+
∂f

int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

K
fα,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1











R(e)P(e)

︷ ︸︸ ︷

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1

︷ ︸︸ ︷

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

R(e)P(e)

︷ ︸︸ ︷

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

(3.143)

The derivatives of f
int,(e),i,(k)
n+1 , marked with K

fd,(e),i,(k)
n+1 and K

fα,(e),i,(k)
n+1 , can be computed and the last term of both

sums has been defined in (3.141). The only unknown term ∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1 is determined by the second of

equilibrium equations (3.91), which is linearized and solved locally, i.e. independently for each finite element and

layer. This can be done because h
(e),i,(k)
n+1 depends on the nodal displacements of a single finite element and on the

displacement jump of a single layer.

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
hd,(e),i,(k)
n+1

∆d
(e),(k)
n+1 +

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

K
hα,(e),i,(k)
n+1

∆α
(e),i,(k)
n+1 =−h

(e),i,(k)
n+1 = 0 ⇒

⇒ ∆α
(e),i,(k)
n+1 =−

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

︸ ︷︷ ︸

∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1

∆d
(e),(k)
n+1

(3.144)

Note that each h
(e),i,(k)
n+1 , computed by (3.34), evaluates to zero because the traction at the discontinuity t

(e),i,(k)
n+1

has been computed by expression (3.35). The derivatives, designated with K
hd,(e),i,(k)
n+1 and K

hα,(e),i,(k)
n+1 can be

easily calculated. Equation (3.144) defines the relation between the increment of nodal displacements ∆d
(e),(k)
n+1

and the increment of displacement jump ∆α
(e),i,(k)
n+1 in the i-th layer of the finite element. Since we are dealing with

linearized equations, the derivative ∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1 must be equal to the ratio of the increments.

∂α
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=−
(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1 (3.145)
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We can rewrite expression (3.143), now being able to compute all its components.

∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=

n
(e)
CL

∑
i=1

(

K
fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

)

︸ ︷︷ ︸

K̂
(e),i,(k)
n+1

R(e)P(e)+

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1 R(e)P(e)

(3.146)

The expression in parenthesis, marked with K̂
(e),i,(k)
n+1 , is the contribution of a cracked layer to the tangent stiffness

matrix of finite element (e), and K
fd,(e),i,(k)
n+1 is the contribution of an non-cracked layer. Finally, we can assemble

the tangent stiffness matrix of the structure by inserting (3.146) into (3.140).

K
str,(k)
n+1 =

nFE

∑
e=1

P(e)T R(e)−1






n
(e)
CL

∑
i=1

K̂
(e),i,(k)
n+1 +

nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1






︸ ︷︷ ︸

K
(e),(k)
n+1

R(e)P(e) (3.147)

Here K
(e),(k)
n+1 is the tangent stiffness matrix of finite element (e).

3.3.2.2 Components of internal forces and stiffness matrix

Contribution f
int,(e),i,(k)
n+1 of i-th layer to internal forces of element (e) is computed according to equation (3.29),

where stress takes the values computed in phase (A) of this iteration. In order to determine the components of the

stiffness matrix, h
(e),i,(k)
n+1 must be written as well. It is computed in accordance with (3.34).

f
int,(e),i,(k)
n+1 =Ai

∫

L

B̆iT σ
(e),i,(k)
n+1 dx, h

(e),i,(k)
n+1 =Ai





∫

L

Ḡi
V σ

(e),i,(k)
n+1 dx+ t

(e),i,(k)
n+1



 (3.148)

To obtain layer components of the element stiffness matrix, expressions (3.148) are differentiated over nodal de-

grees of freedom and over displacement jumps.

K
fd,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=Ai
∫

L

B̆iT ∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

B̆i
︸︷︷︸

∂ε̄/∂d

dx

K
fα,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=Ai
∫

L

B̆iT ∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

Ḡi
R

︸︷︷︸

∂ε̄/∂α

dx

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=Ai





∫

L

Ḡi
V

∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

B̆i
︸︷︷︸

∂ε̄/∂d

dx





K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=Ai






∫

L

Ḡi
V

∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

Ḡi
R

︸︷︷︸

∂ε̄/∂α

dx+
∂t

∂α

∣
∣
∣
∣

(e),i,(k)

n+1






(3.149)
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The tangent moduli (∂σ/∂ε̄ )
(e),i,(k)
n+1 and (∂t/∂α )

(e),i,(k)
n+1 are defined by equations (3.100) and (3.116) for concrete,

and by equations (3.124) and (3.138) for reinforcement. Note that in case of an elastic step in a cracked layer of

reinforcement, when ¯̄γ
(k)
n+1 = 0, the second expression is infinite.

∂t

∂α

∣
∣
∣
∣

(e),i,(k)

n+1

= ∞ ⇒ K
hα,(e),i,(k)
n+1 = ∞,

(

K
hα,(e),i,(k)
n+1

)−1

= 0 (3.150)

Since the inverse value of component K
hα,(e),i,(k)
n+1 is consequently zero, the contribution of the i-th layer to the

element tangent stiffness matrix is computed in the same way as for the non-cracked layer.

K̂
(e),i,(k)
n+1 = K

fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1 = K

fd,(e),i,(k)
n+1 (3.151)

3.3.2.3 Solution of global equations

The system of global equilibrium equations (3.139) is rewritten in a clearer form.

K
str,(k)
n+1 ∆d

str,(k)
n+1 = ∆f

str,(k)
n+1 , ∆f

str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 (3.152)

The external forces are an input to the analysis, internal forces are defined by equations (3.140), (3.142) and

(3.148), and the tangent stiffness matrix of the structure is defined by (3.147) and (3.149). Finally, we can compute

the increments and update the nodal displacements of the structure.

∆d
str,(k)
n+1 =

(

K
str,(k)
n+1

)−1

∆f
str,(k)
n+1 , d

str,(k)
n+1 = d

str,(k−1)
n+1 +∆d

str,(k)
n+1 (3.153)

The updates of the displacement jumps could be computed from (3.144), but there is no benefit from that because

they will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time τn+1 are repeated until the tolerance requirements are met.

∥
∥
∥∆f

str,(k)
n+1

∥
∥
∥< tol,

∥
∥
∥∆d

str,(k)
n+1

∥
∥
∥< tol (3.154)

When the converged solution is found, we proceed to the next pseudo-time step.

3.4 Numerical examples

In this section we show some numerical examples to examine the performance of the derived finite element. The

element is tested on several beam and frame examples, carried out in the finite element program AceFEM [69].

3.4.1 One element tension and compression tests

We analyze a beam in Fig. 3.22, clamped at one end. At the other end, axial displacement u is imposed and

corresponding reaction F is computed. The test is performed for concrete, steel and reinforced concrete beams, in

order to verify the correct implementation of material models for tension and compression.
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Figure 3.22: Beam in pure tension/compression: geometry.

Slika 3.22: Nosilec v čistem nategu/tlaku: geometrija.

3.4.1.1 Concrete beam

Concrete beam of rectangular cross-section is modeled with one element with two layers. The imposed axial

displacement produces either tension or compression. In unloading we do not switch from tension to compression

or vice versa. The geometry and the material data are: beam length is L = 2.5m, cross-section width is b =

0.2m, cross-section height is h= 0.5m, elastic modulus is Ec = 4×107kNm−2, elasticity limit in compression is

σdc = 40820kNm−2, limit strength in compression is σfcc = 44902kNm−2, hardening modulus in compression is

Hcc = 2× 106kNm−2, softening modulus in compression is K∗
cc = −5.2× 106kNm−3, limit strength in tension

is σfct = 4000kNm−2, and softening modulus in tension is K∗
ct = −8× 106kNm−3. By setting σdt > σfct we

assume no damage of the bulk in tension before crack formation. The diagrams in Fig. 3.23 show computed elasto-

damage relations between the end force F and the end displacement u and suggest that the implementation of the

elasto-damage model of concrete was correct.
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Figure 3.23: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure

compression (right).

Slika 3.23: Diagram osna sila - pomik za betonski nosilec v čistem nategu (levo) in čistem tlaku (desno).

3.4.1.2 Steel beam

Steel beam is modeled with one element with two layers. The following data is used: beam length is L =

2.5m, cross-sections of both layers are As,1 = As,2 = 0.001m2, distances of layer axes from the beam axis are

h/2− as,1 = h/2− as,2 = 0.21m (as,1 = as,2 = 0.04m), elastic modulus is Es = 2×108kNm−2, elasticity limit is

σy = 4×105kNm−2, failure strength is σfs = 5×105kNm−2, hardening modulus is Hs = 107kNm−2, and soften-

ing modulus is Ks =−5×107kNm−3. Diagram in Fig. 3.24 shows elasto-plastic relation between the end force F

and the end displacement u in tension. Response of the beam in compression is identical. The diagram in Fig. 3.24

suggests that the implementation of the elasto-plastic model of steel was correct.



84 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

0.01 0.02 0.03 0.04 0.05
u @mD0

200

400

600

800

1000

F @kND

Figure 3.24: Axial force - displacement diagram for steel beam (layer) in pure tension.

Slika 3.24: Diagram osna sila - pomik za jekleni nosilec (sloj) v čistem nategu.

3.4.1.3 Reinforced concrete beam

Reinforced concrete beam is composed from the two previously presented beams, see Fig. 3.22. Geometry and

material properties are listed in sections 3.4.1.1 and 3.4.1.2. The beam is modeled with one finite element with

ten concrete layers and two layers of reinforcement. Diagrams in Fig. 3.25 display the responses of the beam

under tensile and compressive load. In tension (left image), the first peak represents the point where concrete starts

cracking and the force F begins to drop. When it starts rising again, the concrete is completely broken and the

whole load is taken by the two reinforcement layers. Hereafter, the response should be equal to the response of

the steel beam, modeled in section 3.4.1.2, because in our model there is no shear interaction between concrete

and steel layers. However, a comparison of Fig. 3.24 and Fig. 3.25 (left) shows a different situation. Although the

yielding and the softening of the material begin at the same values of force F , both processes start at significantly

smaller displacements u in the reinforced concrete beam. There is no yield plateau, typical for steel, and the

softening slope is not as steep.

The diagram in Fig. 3.25 (right) shows the response of the beam in compression. After the initial elastic part, the

stiffness of the beam drops twice, due to micro-cracking of concrete and yielding of reinforcement, respectively.

The peak of the diagram marks the moment when concrete begins to soften. Afterwards, the response is different

from the expectations. The stress in concrete layers should drop to zero at u≈ 0.0086m and then the curve should

match the diagram in Fig. 3.24. Up to u≈ 0.03m, the beam should offer significant resistance, but F becomes zero

at one third of that displacement. Obviously, the finite element is not working properly in this case.
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Figure 3.25: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)

and pure compression (right).

Slika 3.25: Diagram osna sila - pomik za armiranobetonski nosilec v čistem nategu (levo) in čistem

tlaku (desno).
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It turns out that the incorrect responses, presented in Fig. 3.25, are a consequence of the linear form of operator

ḠR, defined in equation (3.46). Although the stress is constant over each layer when the failure stress is reached,

the discontinuity is placed at one of the end nodes, rather than in the middle of the element, due to numerical error.

Consequently, a linear operator ḠR is chosen instead of the constant one. While such choice still gives correct

results for an element, composed of equal layers (such as in sections 3.4.1.1 and 3.4.1.2), it cannot work for a

composition of layers with different material properties. Explanation is given in appendix D. In short, the stress

is linear over the length of each layer, which means that the contributions of the layer to the internal forces in the

two end nodes are not equal f
int,(e),i
u1 6= −f

int,(e),i
u2 , see Fig. 3.26. Each layer by itself is not in balance, but the

equilibrium of the finite element as a whole is satisfied by finding the exact value of u3, at which the imbalance

of internal forces in steel and the imbalance of the internal forces in concrete neutralize each other, see Fig. 3.27,

where f
int,(e)
u1 =−f

int,(e)
u2 .

Remark. Fig. 3.26 and Fig. 3.27 only show the contributions of the i-th layer to the axial internal forces at the

end nodes. Contributions to the axial internal force at the middle node and contributions to transversal forces and

moments exist also, but their resultants are zero on the element level.

Σ i

i
- fu1

int,HeL,i fu2

int,HeL,i

Figure 3.26: Linear stress in i-th layer (left) and resulting unequal contributions of the layer to axial

internal forces of the finite element at the two nodes (right).

Slika 3.26: Linearen potek napetosti v i-tem sloju (levo) in rezultirajoča različna prispevka k osnim

notranjim silam končnega elementa v obeh vozliščih (desno).

- fu1

int,HeL fu2

int,HeL

Figure 3.27: Individual layers out of balance (left) and finite element in balance (right).

Slika 3.27: Neuravnoteženi posamezni sloji (levo) in končni element v ravnotežju (desno).

3.4.1.4 Reinforced concrete beam, imposed location of discontinuity at L/2

The concrete, steel and reinforced concrete beams from the previous sections are analyzed again, now with the

location of the discontinuity manually imposed at the middle of the finite element. Responses of the single-

material beams are an exact match to those from sections 3.4.1.1 and 3.4.1.2, so they are not discussed any further.

Responses of the reinforced concrete beam in tension and compression are shown in Fig. 3.28. They are a simple

superposition of the diagram in Fig. 3.24 for steel and the appropriate of the diagrams in Fig. 3.23 for concrete.

The curves from the previous section are included for comparison.

The tensile response in Fig. 3.28 (left) is linear elastic at first. After the first peak the concrete cracks rapidly

and only the reinforcement contributes to carrying capacity. The unloading line is parallel to the loading line,
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Figure 3.28: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)

and pure compression (right) with imposed location of discontinuity at L/2.

Slika 3.28: Diagram osna sila - pomik za armiranobetonski nosilec v čistem nategu (levo) in čistem

tlaku (desno) ob vsiljeni nezveznosti pri L/2.

immediately after the concrete is gone. In compression, Fig. 3.28 (right), the elastic part is followed by two

subsequent drops in stiffness of the element, as concrete and steel enter the hardening phase. At u≈ 0.0086m the

concrete layers crush very quickly and only the reinforcement remains. The slope of the unloading curve decreases

up to that point. Later on it stays the same and only the plastic deformations still increase. In the last part of the

diagram steel begins to soften as well, and the force in the beam drops to zero.

Remark. Although the plateau from u ≈ 0.01m to u ≈ 0.03m in Fig. 3.28 (right) is computationally correct, it

is not very realistic. With the concrete completely crushed, the reinforcement layers would encounter buckling

problems. The resistance would probably drop to zero instantly, but that is out of scope of our work.

x L

v

Figure 3.29: Locations and sizes of discontinuities in layers of the beam in pure tension, when

transversal displacement of the free end of the beam v2 is non-zero.

Slika 3.29: Lokacije in velikosti nezveznosti po slojih pri nosilcu v čistem nategu, ko je prečni pomik

prostega konca nosilca v2 različen od nič.

3.4.1.5 Reinforced concrete beam, non-zero transversal displacement

Another problem may arise in case of automatic determination of the location of the discontinuity. Surprisingly,

equilibrium is possible in pure tension or pure compression, even if transversal displacement at the free end of the

beam is not zero. This happens in a beam with symmetrical cross-section, if the bottom half of the layers (with

yi < 0) have a discontinuity at x = 0 , and the other half (with yi > 0) at x = L, or vice versa, see Fig. 3.29.

The sizes of the discontinuities grow proportionally with the distance of the layer from the middle axis. For a

non-zero transversal displacement v and zero rotation θ at the free end of the beam, the contributions of individual
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layers to the nodal shear forces and to the nodal moments neutralize each other, see Fig. 3.31 and Fig. 3.32. The

axial force F is the only remaining internal force. Such phenomenon is possible because the equilibrium is only

required on the finite element level, and not for each individual layer. A detailed explanation is given in appendix

D. As a result, the response of the beam is wrong from the appearance of the first discontinuity, see Fig. 3.30. The

transversal displacement affects the computation of the axial force, which even starts growing instead of dropping

to zero in softening.
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Figure 3.30: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)

and pure compression (right): the case of non-zero transversal displacement.

Slika 3.30: Diagram osna sila - pomik za armiranobetonski nosilec v čistem nategu (levo) in čistem

tlaku (desno): primer, ko je prečni pomik različen od nič.
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Figure 3.31: Transversal displacement (left) and rotation (right) at the free end of RC beam in tension.

Slika 3.31: Prečni pomik (levo) in zasuk (desno) na prostem koncu AB nosilca v nategu.
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Figure 3.32: Shear force (left) and moment (right) at the support of RC beam in tension.

Slika 3.32: Prečna sila (levo) in moment (desno) ob podpori AB nosilca v nategu.
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3.4.2 Cantilever beam under end moment

We analyze a reinforced concrete cantilever beam with rectangular cross-section under end moment, shown in

Fig. 3.33. The load is applied by imposing the rotation at the free end of the beam. The length of the beam is

L = 1m, the width and height of the cross-section are b = 0.3m and h = 0.4m. Bottom and top reinforcements

are As,1 = As,2 = 0.001256m2 and they are positioned at a1 = a2 = 0.05m from the edges of the concrete cross-

section. Material properties of concrete are: elasticity modulus Ec = 3.3 × 107kNm−2, elasticity limit σdc =

15200kNm−2, ultimate stress in compression σfcc = 38000kNm−2, ultimate stress in tension σfct = 1815kNm−2,

hardening modulus in compression Hcc = 3.32 × 107kNm−2, softening modulus in compression K∗
cc = −5 ×

106kNm−3 and softening modulus in tension K∗
ct = −106kNm−3. Material properties of steel are: elasticity

modulus Es = 2× 108kNm−2, yield stress σy = 4× 105kNm−2, ultimate stress σfs = 5× 105kNm−2, hardening

modulus Hs = 2.665×106kNm−2 and softening modulus Ks =−5×107kNm−3.
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Figure 3.33: Cantilever beam under end moment: geometry.

Slika 3.33: Konzola, obremenjena z momentom: geometrija.

3.4.2.1 Mesh of equal finite elements

The beam is modeled with a mesh of identical finite elements, each consisting of 10 concrete layers and 2 layers

of reinforcement. Location of the discontinuity is determined automatically, like in section 3.4.1.3. Fig. 3.34 (left)

displays the moment M versus rotation θ at the end of the beam for meshes of 1, 2, 5 and 10 finite elements.

The results are different from expectations. After the initial steep part of the curve, the response should exhibit a

plateau, caused by yielding of the reinforcement. Instead, the moment begins to drop immediately. This behavior

is caused by automatic positioning of the discontinuities. Explanation is given in appendix D.
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Figure 3.34: Moment - rotation diagrams for cantilever beam under end moment: original softening

moduli (left), softening moduli modified according to length of FE (right).

Slika 3.34: Diagram moment - zasuk za konzolo, obteženo z momentom: originalni moduli mehčanja

(levo), moduli mehčanja prirejeni glede na dolžino KE (desno).
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We observe that response of the beam depends on the mesh. The slope of the softening part of the curve decreases

with increasing number of finite elements. This is caused by simultaneous appearance of multiple smaller discon-

tinuities in finer meshes, as opposed to one big discontinuity in a single FE mesh. The traction at the discontinuity

decreases with the increase of its size. It is therefore understandable that, at the same value of imposed end rota-

tion θ, a coarser mesh produces a lower moment M . If the softening moduli of steel and concrete are modified

according to the length of FE (i.e. multiplied with the number of FE in the mesh), the results are no longer mesh de-

pendent, Fig. 3.34 (right). However, this is not a proper solution of the problem because it changes the constitutive

law at the discontinuity, which is a material property and should not be affected by the choice of a mesh.

3.4.2.2 Weaker reinforcement in one of the finite elements

The correct approach to the aforementioned problem is to prevent the multiple cracks from occurring. This is

achieved by slightly weakening one of the finite elements in the mesh, thus simulating a material imperfection.

Since the softening of the beam as a whole happens due to softening of the tensile reinforcement layer, it is

sufficient to weaken the reinforcement. Rather than decreasing the ultimate stress σfs in the weak finite element,

we slightly increase it in the remaining elements. When the ultimate moment is reached, the reinforcement in the

weak element begins to soften and the moment decreases. The moment in the other elements must follow to ensure

equilibrium. We can see in Fig. 3.35 that results for different meshes match well. Mesh dependency is avoided,

but the results are still wrong due to the erroneous automatic positioning of the discontinuities, see appendix D for

a detailed explanation.
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Figure 3.35: Moment - rotation diagram for cantilever beam under end moment: weaker reinforcement

in one of the finite elements.

Slika 3.35: Diagram moment - zasuk za konzolo, obteženo z momentom: malce šibkejša armatura v

enem od končnih elementov.

3.4.2.3 Mesh of equal finite elements, imposed location of discontinuity at L/2

Analysis from section 3.4.2.1 is repeated, with the only difference that the discontinuity is manually placed in

the middle of the finite element xd = L/2 and the constant operator ḠR is employed. The moment-rotation

diagram in Fig. 3.36 takes the expected form. In the first part of the curve the beam is elastic, except for some

layers of concrete which soften in tension. When the tensile reinforcement yields, the stiffness of the beam drops

substantially. The moment in the beam keeps growing until the tensile reinforcement enters the softening phase.

After that point, carrying capacity of the cross-section decreases. Comparison of the curves for xd = L/2 and

xd = L from Fig. 3.36 and Fig. 3.34 is very similar to comparison in Fig. 3.28 (left) for a beam in pure tension.

As in section 3.4.2.1, the moment drops slower for finer meshes, due to formation of multiple discontinuities.
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Again, modified softening moduli provide mesh-independent response, see Fig. 3.36 (right), but this is not the

proper solution.
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Figure 3.36: Moment - rotation diagrams for cantilever beam under end moment: imposed location of

discontinuity at L/2. Original softening moduli (left), modified softening moduli (right).

Slika 3.36: Diagram moment - zasuk za konzolo, obteženo z momentom: vsiljena nezveznost pri L/2.

Originalni moduli mehčanja (levo), moduli mehčanja prirejeni glede na dolžino KE (desno).

3.4.2.4 Weaker reinforcement in one of the elements, imposed location of discontinuity at L/2

The beam is analyzed once more, with ultimate stress of reinforcement σfs slightly raised in all but one finite

element, simulating a material imperfection. The discontinuity is manually positioned at the middle of the el-

ement. When the weak element reaches the carrying capacity, the moment in the beam begins to decrease and

reinforcement in other elements cannot enter the softening phase. This eliminates mesh dependency in the last

part of the response, in which the softening of the tensile reinforcement causes the beam to lose carrying capacity,

see Fig. 3.37. The difference between the diagrams in the plateau remains, however. It is caused by simultaneous

cracking of concrete in tension in all finite elements. A greater number of finite elements causes a slower growth of

each individual discontinuity and a slightly higher value of the rotation, at which the tensile reinforcement yields.

Since the major part of the cross-section is still elastic, the yield moment increases considerably. Unlike in rein-

forcement, this problem cannot be solved by weakening one of the elements, because the cross-section as a whole

is still gaining strength after the concrete breaks in tension.
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Figure 3.37: Moment - rotation diagram for cantilever beam under end moment: imposed location of

discontinuity at L/2. Weaker reinforcement in one of the finite elements.

Slika 3.37: Diagram moment - zasuk za konzolo, obteženo z momentom: vsiljena nezveznost pri L/2.

Malce šibkejša armatura v enem od končnih elementov.
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3.4.3 Cantilever beam under end transversal force

A cantilever beam is subjected to prescribed lateral displacement at the free end, see Fig. 3.38. The length of the

beam is L= 2.5m, the width and the height of the cross-section b= 0.2m and h= 0.5m. The tensile and compres-

sive reinforcement are As,1 =As,2 = 0.001m2 and the distances from the center of the reinforcement layers to the

edges of the concrete cross-section are a1 = a2 = 0.04m. Material properties of concrete are: elasticity modulus

Ec = 4× 107kNm−2, elasticity limit σdc = 40820kNm−2, ultimate stress in compression σfcc = 44902kNm−2,

ultimate stress in tension σfct = 4000kNm−2, hardening modulus in compression Hcc = 2×106kNm−2, softening

modulus in compression K∗
cc =−5.2×105kNm−3 and softening modulus in tension K∗

ct =−8×105kNm−3. Ma-

terial properties of steel are: elasticity modulus Es = 2× 108kNm−2, yield stress σy = 4× 105kNm−2, ultimate

stress σfs = 5×105kNm−2, hardening modulus Hs = 107kNm−2 and softening modulus Ks =−3×107kNm−3.
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Figure 3.38: Cantilever beam under end transversal force: geometry.

Slika 3.38: Konzola, obremenjena s prečno silo: geometrija.

Moment at the support versus imposed lateral displacement diagrams are presented in Fig. 3.39. The curves match

pretty well. There are no great deviations in the softening part because the moment is linear over the length of the

beam and only the finite element at the support can reach the ultimate moment. There is no need for artificially

created material imperfection. The influence of the mesh on the softening of concrete in tension cannot be avoided

because the cross-section is still gaining strength when the concrete breaks, like in section 3.4.2.4.
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Figure 3.39: Moment at support - transversal displacement diagram for cantilever beam under end

transversal force: all finite elements are the same.

Slika 3.39: Diagram moment ob podpori - prečni pomik za konzolo, obremenjeno s prečno silo: vsi

končni elementi so enaki.

It is difficult to assess the results solely from the diagrams in Fig. 3.39, but inspection of the stress state reveals an

error. Let us examine the beam, modeled with a single FE, just before the occurrence of the first discontinuity, when

all layers are still elastic. The values of stress are anti-symmetric in the cross-section (negative below and positive

above the middle axis), their absolute values grow from the middle axis toward the edges. In each layer, they reduce



92 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

linearly from the support toward the free end, where they are zero. Such distribution of stress is also assumed in

the trial state of the first iteration of the next increment. However, the tensile strength is exceeded at the supported

end of the topmost layer. The trial value of stress σi,trial = D̄i−1
B̆id is replaced by σi = D̄i−1(

B̆id+ Ḡi
Rα

i
)
. The

additional part D̄i−1
Ḡi
R (x)αi has a negative value at the supported end, where the discontinuity is located, and a

positive value at the free end. Thus, after the first iteration, the stress in the top layer is no longer zero at the free

end of the beam. Of course, this is not the equilibrium state, but even in the following iterations the stress at the

free end does not vanish. Instead, it becomes non-zero also in the remaining layers. Only the resultant axial force

and moment at the free end are zero, as required by the equilibrium equations.

This issue arises from completely independent consideration of discontinuities in separate layers. In the stress

resultant finite element, the operator Ḡ is defined for the whole finite element and it contains information, how

the cracked element should deform, in order to preserve equilibrium. It imposes an imbalance that is annulled

by appropriate nodal displacements. In a multi-layer element, the operator Ḡi
R is defined for a single layer and

contains information, how the cracked layer should deform to preserve “equilibrium of the layer”. However,

the layer cannot deform freely. Modification of the nodal displacements also affects the remaining layers. The

imbalance, introduced by Ḡi
R into the cracked layer (and through summation into the finite element), is balanced

out by (additional) deformation of all layers in the element, so the final strain/stress in the cracked layer is not the

same, as if it would stand alone. The operator Ḡi
R, as defined here, cannot perform its original function, which is

to provide physically appropriate strain/stress in the cracked layer.

Since the occurrence of a discontinuity in one of the layers actually affects the whole finite element, the operator

Ḡi
R should be defined on the element level. This is not easily done, though. The influence of the discontinuity

would depend on the type of the load (e.g. pure tension or pure bending), which prevents unique definition of Ḡi
R.
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Figure 3.40: Two story frame: geometry, loading pattern and cross-sections.

Slika 3.40: Dvoetažni okvir: geometrija, obtežba in prečni prerezi.

3.4.4 Two story reinforced concrete frame

Two-story reinforced concrete frame has been experimentally tested in [71] and numerically analyzed in [51, 74]

with stress-resultant Timoshenko and Euler-Bernoulli finite elements with embedded strong discontinuity in rota-

tion. Analysis with multi-layer Timoshenko element with layer-wise embedded discontinuities in axial displace-

ment and elasto-plastic models for concrete and reinforcement has been done in [51, 52]. Story height of the
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frame is H = 2m, span is L = 3.5m, see Fig. 3.40. Beam cross-section data is: width is b = 0.3m, height is

h = 0.4m, bottom and top reinforcements are As,1 = As,2 = 0.0012m2, distances of reinforcement axes from the

edges are a1 = a2 = 0.04m. Column cross-section data is the same, except for a1 = a2 = 0.03m. The steel

data is accommodated from data reported in [71], see Fig. 3.41 (left): elasticity modulus Es = 192500MPa,

yield stress σy = 418MPa, ultimate stress σfs = 596MPa, hardening modulus Hs = 2790MPa, softening modulus

Ks = −4× 107kNm−3. The concrete data in compression is also accommodated from data reported in [71], see

Fig. 3.41 (right): elasticity modulus Ec = 28600MPa, elasticity limit σdc = 8.5MPa, ultimate stress σfcc = 30MPa,

hardening modulus Hcc = 49000MPa, softening modulus K∗
cc = −2× 106kNm−3. The concrete data in tension

is [71]: ultimate stress σfct = 1.8MPa, softening modulus K∗
ct =−107kNm−3.
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Figure 3.41: Constitutive diagrams for steel (left) and concrete in compression (right): comparison

with experimental curves.

Slika 3.41: Konstitutivna zakona za jeklo (levo) in beton v tlaku (desno): primerjava z

eksperimentalnimi krivuljami.

Comparison of experimental results and results of our analysis are shown in Fig. 3.42. The relation between the

two curves resembles the comparison in Fig. 3.28 (left) or comparison of Fig. 3.35 and Fig. 3.37. The response

of the structure is too stiff, the carrying capacity too high, and there is virtually no yield plateau. The problems,

encountered in the previous numerical examples are transferred to the more complex structure. Since the issues

have been discussed on simpler and clearer cases, there is no need to get into details here.
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Figure 3.42: Response of two story frame: comparison with experiment.

Slika 3.42: Odziv dvoetažnega okvirja: primerjava z eksperimentom.
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3.5 Concluding remarks

We have presented a planar multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discon-

tinuities in axial displacement. Small displacement kinematics is applied on the element level and translated to

individual layers by obeying the perpendicularity of cross-section to the beam axis. A jump in axial displacements

is introduced separately for each layer. The stress state of the layer is determined by two constitutive relations,

one for the bulk of the layer and the other for the discontinuity. In concrete layer, the bulk is controlled by a

damage-elasticity hardening law and the discontinuity by damage softening law. In reinforcement layer, the bulk

is controlled by elastoplasticity hardening law and the discontinuity by plastic softening law. Internal forces of the

element are computed as a sum of contributions of individual layers.

The finite element was intended for precise analysis of reinforced concrete beams and frames up to complete

failure, with a detailed description of material state over the cross-section, as well as for computation of stress-

resultant properties of different cross-sections, which are required as an input data in analysis with the stress-

resultant beam finite element, presented in previous chapter. However, the multi-layer element does not perform

as expected. Several issues have been identified.

Operator Ḡi
R has been derived on an isolated layer of the multi-layer element. It contains information, how the

cracked layer should deform due to occurrence of the discontinuity. The proper deformation should be enforced

by the imbalance, produced by the additional strain. However, the layer cannot deform freely because it is bound

to other layers through common nodal displacements and the additional stress in the layer does not redistribute

correctly. The stress σi is controlled only at the location of the discontinuity, where it has to be equal to the

traction ti and has to drop with increasing displacement jump. Elsewhere in the layer, the stress may grow even

above the ultimate stress. Additional discontinuities cannot occur beacuse each layer is allowed to develop only

one discontinuity.

Another problem is that equilibrium is only required on the element level, and not for each independent layer. We

have seen the example of a finite element in pure tension, where the stress over the length of each layer was linear.

If we computed the internal forces only for one layer, they would not be in equilibrium, but for the finite element

as a whole the imbalances of individual layers neutralize each other.

Also, the displacement jumps αi of individual layers are independent of each other. In a specific case of a cantilever

beam in pure tension, the layers below the middle axis developed a discontinuity at one end of the beam, while

the layers above the middle axis developed a discontinuity at the other end. The displacement jumps in all layers

were proportional with the distance of the layer from the middle axis, resulting in a non-zero lateral displacement

of the free end of the beam, without disrupting the equilibrium (the internal shear forces and internal moments of

the finite element were zero). One way to look at the unconnected αi is that there is no shear connection between

the neighboring layers.

Another issue in kinematics is that there is no discontinuity on the element level. Deformation of the beam axis is

always interpolated in the same way as for a regular Euler-Bernoulli beam. Even when the element is completely

broken (carrying capacity of each layer has dropped to zero), the middle axis is a smooth curve. The bulk of each

layer slides along a path, parallel to the middle axis. This may not be problematic if we use a fine mesh. Since the

stiffness of the critical (broken) finite element is considerably reduced in comparison to neighboring (not broken)

elements, the broken element exhibits a greater curvature, which can be interpreted as a discontinuity in rotation,

smeared over the whole finite element. Still, the global kinematics is not completely accurate.

Finally, we have to mention the mesh dependency problem, which is most obvious in the case of cantilever beam

under end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously

in all finite elements of the mesh. At the same value of imposed rotation of the free end of the beam, fine meshes

produce great number of small discontinuities and coarse meshes produce small number of great discontinuities.
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According to the softening material law, the traction at the discontinuity drops with its increasing size. Therefore,

different meshes lead to different values of moment in the beam. The greatest deviations appear in the last part

of the response when the beam as a whole enters the softening phase, which usually happens due to softening

of tensile reinforcement. This can be cured by slightly weakening reinforcement in one of the finite elements.

When the weak element begins to soften, the remaining elements unload and cannot develop a discontinuity in

reinforcement. If softening of the element happens due to crushing of concrete in compression, the problem

cannot be solved so effectively because there are multiple critical layers, as opposed to a single critical layer in

case of tensile reinforcement. Also, the mesh dependency due to cracking of concrete in tension, when moment

in the beam is increasing, cannot be avoided. Even if one of the elements is weaker, the concrete in the remaining

elements will crack sooner or later, because the moment is still rising.

Considering all the deficiencies, the above derived multi-layer Euler-Bernoulli beam finite element cannot be

recommended for general use. The only viable application is in case of constant strain/stress state over the length

of the beam, which can occur either in pure tension/compression or in pure bending. In case of bending, the mesh

dependency cannot be completely avoided.
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4 MULTI-LAYER TIMOSHENKO BEAM FINITE ELEMENT WITH LAYER-WISE

EMBEDDED DISCONTINUITIES IN AXIAL DISPLACEMENT

4.1 Introduction

In this chapter, a multi-layer Timoshenko beam finite element with layer-wise embedded discontinuities in axial

displacement is derived. It is intended for detailed failure analysis of reinforced concrete beams and frames, and

for computation of stress resultant material properties of reinforced concrete beams, modeled with stress resultant

finite elements like the one described in chapter 2. Due to layer-wise constant stress state along its length, this

finite element is expected to overcome some of the issues, encountered in the previous chapter when deriving the

multi-layer Euler-Bernoulli beam finite element.

The element is composed of several layers of concrete and reinforcement, each with embedded discontinuity in

axial displacement. Axial response of concrete layer is described by elasto-damage model with hardening for the

bulk and rigid damage softening model for the discontinuity. Axial response of reinforcement layer is governed

by elastoplastic model with hardening for the bulk and rigid plastic softening model for the discontinuity. Small

deformation kinematics is used.

The chapter is organized as follows: Kinematics, constitutive and equilibrium equations are developed in section

4.2. Finite element discretization and computational procedure are presented in section 4.3. Performance of the

finite element is tested on several numerical examples in section 4.4. Concluding remarks are given in section 4.5.

4.2 Finite element formulation

4.2.1 Kinematics

We consider a planar Timoshenko beam finite element with two nodes, shown in Fig. 4.1. Each node has three

degrees of freedom, two in-plane displacements and rotation about the axis, perpendicular to the plane.

x L

u1

v1
Θ1 u2

v2
Θ2

1 2

Figure 4.1: Finite element with six nodal degrees of freedom.

Slika 4.1: Končni element s šestimi prostostnimi stopnjami.

Axial displacement ũ(x) and rotation of the cross-section θ̃ (x) in the middle axis of the beam are interpolated lin-

early between the nodal displacements u and the nodal rotations θ, respectively. The linear interpolation functions

N(x) are shown in Fig. 4.2 (left).

ũ(x) = N(x)u, N(x) = {N1,N2}=
{

1−
x

L
,
x

L

}

, u = {u1,u2}
T

(4.1)
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Doktorska disertacija. Ljubljana, UL, FGG.

97

θ̃ (x) = N(x)θ, θ = {θ1,θ2}
T

(4.2)

Linear interpolation of transversal displacement ṽ (x) of the middle axis would result in shear locking of the finite

element. The problem is avoided by raising the order of interpolation of ṽ (x) with a quadratic bubble function

N3 (x), see Fig. 4.2 (left). Parameter v3 is determined so as to allow the finite element to describe a shear-free

stress state in case of constant moment.

ṽ (x) = N(x)v+N3 (x)v3, v = {v1,v2}
T , N3 (x) =

4(L−x)x

L2
, v3 =

L

8
(θ1 −θ2) (4.3)

In Timoshenko beam theory, the cross-section is not necessarily perpendicular to the beam axis and the shear strain

γ (x) is computed as the difference between the derivative of the transversal displacement and the rotation of the

cross-section.

γ =
∂ṽ

∂x
− θ̃ = Bv+B∗θ, B = {B1,B2}=

{

−
1

L
,

1

L

}

, B∗ = {B∗,B∗}=

{

−
1

2
,−

1

2

}

(4.4)

For the interpolations of transversal displacement and rotation, chosen in equations (4.2) and (4.3), the shear strain

is constant. Components of the strain interpolation functions B and B∗ are shown in Fig. 4.2 (right). A simple

verification confirms that the shear strain is zero in case of constant moment/curvature (v1 = v2, θ1 =−θ2).

N1

N2

N3

x

L

1 2

1

1

1

B1

B2

B*

x

L

1 2

-
1

L

1

L

-
1

2

Figure 4.2: Interpolation functions for displacements (left) and strain (right).

Slika 4.2: Interpolacijske funkcije za pomike (levo) in deformacije (desno).

The beam is treated as a composition of nL layers of concrete and steel. Constant state is assumed over the

thickness of each layer and its displacements ui (x) are computed in its middle axis. Embedded discontinuity

concept is used to model the material failure of each layer.

ui
(
x,xi

d

)
=

ũi

︷ ︸︸ ︷

ũ(x)−yiθ̃ (x)+

ui,add

︷ ︸︸ ︷

M i
(
x,xi

d

)
αi (4.5)
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The standard part of axial displacement ũi (x) is composed of the axial displacement of the middle axis of the beam

and of displacement due to rotation of the cross-section, depending on the distance yi from the middle axis. When

the carrying capacity is exceeded, a strong discontinuity in axial displacement is introduced into the layer (see

Fig. 4.3), which results in an additional axial displacement ui,add
(
x,xi

d

)
, described by the jump in displacements

αi at coordinate xi
d and the shape function M i

(
x,xi

d

)
.

u� iHxL u1
i

u2
i

L

h
yi i

1 2

uiHx,xd
i L u1

i
u2

i
Α i

xd
i

Α i

i

1 2

Figure 4.3: Finite element divided into layers, before and after occurrence of discontinuity in i-th layer,

with corresponding axial displacement in the layer.

Slika 4.3: Na sloje razdeljen končni element pred in po nastanku nezveznosti v i-tem sloju ter

pripadajoči osni pomik v sloju.

Equations (4.1) and (4.2) are inserted into (4.5). Then, the displacement ui
(
x,xi

d

)
is differentiated over the coor-

dinate x to obtain the axial strain εi
(
x,xi

d

)
in the layer.

εi
(
x,xi

d

)
=

∂ui

∂x
=

˜̄εi

︷ ︸︸ ︷

Bu−yiBθ+

εi,add
︷ ︸︸ ︷

Gi
(
x,xi

d

)
αi (4.6)

The first two parts of expression (4.6) represent the standard axial strain ˜̄εi, while the last part represents the

enhanced strain due to embedded discontinuity. Derivatives B of the interpolation functions N(x) are written in

equation (4.4) and depicted in Fig. 4.2 (right). The additional strain εi,add only appears in the layers that have

exceeded their carrying capacity. Operator Gi is the first derivative of the shape function M i, which will be

examined in the following section.

All degrees of freedom of the finite element are collected in the vector of generalized nodal displacements d, which

allows for a shorter notation for the regular axial strain ˜̄εi and shear strain γ. Interpolation matrices B̃i and B̃∗ are

composed accordingly to the arrangement of displacements in d. The first matrix is different for each layer, while

the second one is constant for the whole element.

˜̄εi =
[

B 0 −yiB
]

d = B̆id, γ =
[

0 B B∗
]

d = B̆∗d, dT =
{

uT ,vT ,θT
}

(4.7)

4.2.2 Derivation of operator G

Interpolation of the axial displacement field ui (x) in the i-th layer is defined in equation (4.5). The regular part

ũi (x) is computed from the axial displacement of the middle axis ũ(x) and rotation θ̃ (x) of the cross-section.
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Since they are both linear functions of x, ũi (x) is linear as well. This allows us to interpolate it between the axial

displacements of the end points of the layer, designated with ui, using the linear interpolation functions N(x) from

equation (4.1), see Fig. 4.4.

ũi (x) = ũ(x)−yiθ̃ (x) = N(x)ui, ui =
{
ui

1,u
i
2

}T
(4.8)

u1

v1

Θ1

u2

v2

Θ2

L

h
yi

u�HxL u1
u2

-yi Θ
�
HxL
-yiΘ1 -yiΘ2

u� iHxL u1
i

u2
i

u1
i

u2
i

u1
i N1HxL u1

i

u2
i N2HxL

u2
i

u� iHxL u1
i

u2
i

Figure 4.4: Interpolation of standard axial displacement in i-th layer between nodal displacements of

the finite element (left) and between nodal axial displacements of the layer (right).

Slika 4.4: Interpolacija standardnega osnega pomika v i-tem sloju med prostostne stopnje končnega

elementa (levo) in med vozliščne osne pomike sloja (desno).

The “nodal” displacements ui of the i-th layer can be calculated from ũi (x) by inserting for x the coordinates of

the layer’s “nodes”.

ui =
{
ũi
∣
∣
x=0

, ũi
∣
∣
x=L

}T
=
{
u1 −yiθ1, u2 −yiθ2

}T
(4.9)

The standard axial displacement ũi (x) is enriched with the additional part ui,add (x,xd), which represents the

additional axial displacement due to occurrence of a discontinuity in the layer. It is determined by the interpolation

function M i
(
x,xi

d

)
and the displacement jump αi at the discontinuity of the layer.

ui
(
x,xi

d

)
= ũi (x)+M i

(
x,xi

d

)
αi (4.10)

The interpolation function M i must not affect the nodal displacements ui of the layer, which means that it must

have zero values at the nodes, and it must have a unit jump at the location of the discontinuity xi
d. The easiest

way to meet these requirements is to use a combination of the Heaviside function and the appropriate of the shape

functions N.
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W- W+
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N2

M i

1
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1

Figure 4.5: Domain and sub-domains of a cracked layer, Heaviside and Dirac-delta functions (left).

Construction of interpolation function Mi (right).

Slika 4.5: Domena in poddomeni razpokanega sloja, Heaviside-ova in Dirac-delta funkcija (levo).

Konstruiranje interpolacijske funkcije Mi (desno).

Domain Ω of the cracked layer is divided by the discontinuity into two parts. Ω− is the part before the discontinuity,

with x < xi
d, and Ω+ is the part after the discontinuity, with x≥ xi

d, see Fig. 4.5 (left). The value of the Heaviside

function is 0 on Ω− and 1 on Ω+. Its derivative is the Dirac delta function δxi
d
, which has an infinite value at xi

d

and zero value elsewhere.

Hxi
d
=

{

0; x < xi
d

1; x≥ xi
d

∂Hxi
d

∂x
= δxi

d
=

{

∞; x= xi
d

0; otherwise
(4.11)

Heaviside function Hxi
d

satisfies the requirement of a unit jump at the discontinuity. Its value, however, is only

zero on Ω−, and not at all nodes of the layer. This can be fixed by subtracting from it those shape functions Nj ∈N,

that correspond to the nodes j, included in Ω+. Since Nj are continuous and have zero values at all nodes except

j, they will not affect previously fulfilled demands. As we are dealing with a simple two-node finite element, we

have to subtract the shape function N2, regardless of the location of the discontinuity, see Fig. 4.5 (right).

M i
(
x,xi

d

)
αi =Hxi

d

(
x,xi

d

)
−N2 (x) (4.12)

The first derivative of M i over x is designated with Gi and is composed of a continuous part Ḡi and a discrete part
¯̄G
i
. The derivative of N2 is B2, defined in (4.4), and the derivative of Hxi

d
is defined in (4.11).

Gi
(
x,xi

d

)
=

∂

∂x
M i
(
x,xi

d

)
= Ḡi+ ¯̄Gi, ¯̄Gi = δxi

d
, Ḡi =−B2 =−

1

L
(4.13)
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Considering the constant strain state in a layer, see equation (4.7), the discontinuity could appear anywhere between

the end nodes. Without loss of generality, we can place it at xi
d = L/2 .

4.2.3 Relations between global and local quantities

4.2.3.1 Real degrees of freedom

A structure is modeled with a mesh of finite elements. A part of such mesh is depicted in Fig. 4.6. The total number

of the nodes in the structure is designated with nN . Each node has three degrees of freedom - displacement

U parallel to the global X axis, displacement V parallel to the global Y axis, and rotation Θ about the axis,

perpendicular to the XY plane. The structure has in total nDOF = 3nN degrees of freedom, which are collected

in the vector dstr.

dstr =
{
U1,V1,Θ1,U2,V2,Θ2, . . . ,UnN ,VnN ,ΘnN

}T
(4.14)

X

Y
node of FE

n Un

Vn

Qn

Figure 4.6: Degrees of freedom at a node of the finite element mesh.

Slika 4.6: Prostostne stopnje v posameznem vozlišču mreže končnih elementov.

Let us now consider a finite element (e) with end nodes (n1) and (n2). The local x axis is parallel to the axis of

the element, with x increasing from (n1) towards (n2), see Fig. 4.7. The element’s degrees of freedom, defined

in the local coordinate system, are collected in the vector d(e), in accordance with equation (4.7). Global degrees

of freedom, associated with the nodes of the element can be similarly organized into vector D(e). The two are

connected with a transformation matrix R(e). Zeros are replaced by dots for clarity. φ(e) is the angle between the

global X axis and the local x axis (rotation of the local coordinate system).

d(e) = R(e)D(e) (4.15)
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d(e) =
{

u
(e)
1 ,u

(e)
2 ,v

(e)
1 ,v

(e)
2 ,θ

(e)
1 ,θ

(e)
2

}T
, D(e) =

{

Un1
,Un2

,Vn1
,Vn2

,Θn1
,Θn2

}T

R(e) =













cosφ(e) · sinφ(e) · · ·

· cosφ(e) · sinφ(e) · ·

−sinφ(e) · cosφ(e) · · ·

· −sinφ(e) · cosφ(e) · ·

· · · · 1 ·

· · · · · 1













(4.16)

n1 Un1

Vn1

Qn1

n2 Un2

Vn2

Qn2

HeL

1

u1

v1

Θ1

2

u2

v2

Θ2

HeL

X

Y

x
y

Φ

Figure 4.7: Global (left) and local (right) degrees of freedom, associated with a finite element.

Slika 4.7: Globalne (levo) in lokalne (desno) prostostne stopnje, povezane s končnim elementom.

Vector D(e) contains those components of vector dstr that correspond to the nodes of the finite element. The

selection of appropriate components is done by matrix P(e) of size 6×nDOF with only six non-zero components.

D(e) = P(e)dstr

P
(e)
1, 3n1−2 = P

(e)
2, 3n2−2 = P

(e)
3, 3n1−1 = P

(e)
4, 3n2−1 = P

(e)
5, 3n1

= P
(e)
6, 3n2

= 1, other P
(e)
i,j = 0

(4.17)

Obeying equations (4.15) and (4.17), we can write the relation between the local degrees of freedom of the finite

element (e) and the global degrees of freedom of the structure.

d(e) = R(e)P(e)dstr (4.18)

4.2.3.2 Virtual degrees of freedom

Virtual displacements are a kinematically admissible variation of real generalized displacements. As with the real

displacements, they are interpolated between the nodal values with appropriate interpolation functions. The virtual

deformation of the mesh is therefore defined by the virtual displacements of its nodes.

The global virtual degrees of freedom (virtual nodal displacements of the mesh) d̂str, the virtual nodal displace-

ments of the element d̂(e) and the selection D̂(e) of global virtual displacements, associated with the element (e),
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are defined analogously to the real quantities dstr, d(e) and D(e), defined in equations (4.14) and (4.16).

d̂str =
{
Û1, V̂1, Θ̂1, Û2, V̂2, Θ̂2, . . . , ÛnN , V̂nN , Θ̂nN

}T

d̂(e) =
{

û
(e)
1 , û

(e)
2 , v̂

(e)
1 , v̂

(e)
2 , θ̂

(e)
1 , θ̂

(e)
2

}T
, D̂(e) =

{
Ûn1

, Ûn2
, V̂n1

, V̂n2
, Θ̂n1

, Θ̂n2

}T
(4.19)

Relations between them are equivalent to equations (4.15)-(4.18), matrices R(e) and P(e) remain the same.

d̂(e) = R(e)D̂(e), D̂(e) = P(e)d̂str, d̂(e) = R(e)P(e)d̂str (4.20)

4.2.3.3 Internal forces

Internal forces can be organized in the same way as the generalized displacements. Each degree of freedom from

the vector dstr is accompanied by a corresponding internal force. Analogously to equation (4.14) we can write:

f int,str =
{

f int
U1
,f int

V1
,f int

Θ1
,f int

U2
,f int

V2
,f int

Θ2
, . . . ,f int

UnN
,f int

VnN
,f int

ΘnN

}T
(4.21)

Vector f int,str has nDOF = 3nN components - for each node a force parallel to global X axis, a force parallel to

Y axis, and a moment around the axis, perpendicular to the XY plane. They are labeled with f int
U , f int

V and f int
Θ ,

respectively, and depicted in Fig. 4.8.

X

Y
node of FE

n fUn

int

fVn

int

fQn

int

Figure 4.8: Internal forces, corresponding to degrees of freedom at a node of the finite element mesh.

Slika 4.8: Notranje sile, ki ustrezajo prostostnim stopnjam v vozlišču mreže končnih elementov.

Internal forces at a certain node of the structure are composed of contributions from all the elements, joined in

that node. Let us now take a closer look at a finite element (e). The internal nodal forces of the element are

defined in the local coordinate system and correspond to the local degrees of freedom d(e), see Fig. 4.9 (right).

They are collected in the vector f int,(e). The forces can be transformed by matrix R(e) so as to match the directions
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of the global internal forces f int,str. The new, transformed vector is designated with F int,(e), Fig. 4.9 (left). The

transformation matrix R(e) is the same as in equation (4.16).

f int,(e) = R(e)F int,(e) ⇔ F int,(e) = R(e)−1
f int,(e) (4.22)

f int,(e) =
{

f int,(e)
u1

,f int,(e)
u2

,f int,(e)
v1

,f int,(e)
v2

,f
int,(e)
θ1

,f
int,(e)
θ2

}T

F int,(e) =
{

f
int,(e)
Un1

,f
int,(e)
Un2

,f
int,(e)
Vn1

,f
int,(e)
Vn2

,f
int,(e)
Θn1

,f
int,(e)
Θn2

}T
(4.23)

n1 fUn1

int,HeL

fVn1

int,HeL

fQn1

int,HeL

n2 fUn2

int,HeL

fVn2

int,HeL

fQn2

int,HeL

HeL

1

fu1

int,HeL

fv1

int,HeL

fΘ1

int,HeL

2

fu2

int,HeL

fv2

int,HeL

fΘ2

int,HeL

HeL

X

Y

x
y

Φ

Figure 4.9: Contribution of a finite element to internal forces of the structure in global (left) and local

(right) coordinate system.

Slika 4.9: Prispevek končnega elementa k notranjim silam konstrukcije v globalnem (levo) in lokalnem

(desno) koordinatnem sistemu.

The components of the global vector f int,str are computed by summing the contributions F int,(e) of individual finite

elements. Matrix P(e) is defined in (4.17).

f int,str =
nFE

∑
e=1

P(e)T F int,(e) (4.24)

Transformation (4.22) and summation (4.24) can be joined in a simplified notation. Operator A represents the

assembly of the internal forces and nFE is the total number of finite elements.

f int,str =
nFE

∑
e=1

P(e)T R(e)−1
f int,(e) =

nFE

A
e=1

[

f int,(e)
]

(4.25)

Another useful relation can be observed. For rotation matrix R(e) it holds RT = R−1 or RT R = I, where I is

the identity matrix. By using this property as well as equations (4.20) and (4.22) we can conclude that the scalar

product of virtual displacements and internal forces is equal in local and global coordinate system.

d̂(e)T f int,(e) = D̂(e)T R(e)T R(e) F int,(e) = D̂(e)T F int,(e) (4.26)
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4.2.4 Virtual work equation

Equilibrium of a structure can be described in a weak from, by the virtual work principle, which states that the

virtual work of internal forces G int on any kinematically admissible perturbation of generalized displacements -

virtual displacements - must be equal to the work of external forces Gext on the same virtual displacements.

Gint −Gext = 0 (4.27)

Since we are dealing with a discretized model, the external loads are defined at the nodes of the structure. Linear

loads have to be transferred to the nodes appropriately. The virtual work of external forces is therefore computed

simply as a scalar product of the vector of virtual nodal displacements of the structure d̂str and the corresponding

vector of generalized external forces f ext,str. Virtual displacements are defined in equation (4.19) and the external

forces analogously to the internal forces in equation (4.21).

Gext = d̂strT f ext,str =
nDOF

∑
j=1

d̂str
j f ext,str

j (4.28)

Here nDOF is the number of the structure’s degrees of freedom. Many components of the sum (4.28) may be zero.

The virtual work of internal forces is composed of contributions from individual finite elements.

Gint =
nFE

∑
e=1

Gint,(e), Gint,(e) =
∫

V (e)

(ε̂σ+ γ̂τ)dV (4.29)

For each element, Gint,(e) is computed by multiplying the corresponding components of the stress field and the

virtual strain field and integrating the product over the volume of the element. Virtual shear strain γ̂ is interpolated

between the virtual nodal displacements in the same way as the real strain in equation (4.4) and is constant all over

the finite element. Virtual axial strain ε̂ is defined individually for each layer and interpolated in the same manner

as the real strain in equation (4.6). Note that the additional part of the virtual strain ε̂i,add only exists in the cracked

layers. In non-cracked layers, the virtual strain consists only of the regular part ˆ̃ε
i
.

γ̂ = Bv̂+B∗θ̂ = B̆∗d̂, ε̂i =

ˆ̃ε
i

︷ ︸︸ ︷

Bû−yiBθ̂+

ε̂i,add
︷ ︸︸ ︷

Giα̂i = B̆id̂+Giα̂i (4.30)

The volume integral in equation (4.29) is divided into an integral over the length and an integral over the cross-

section of the element. The latter can be replaced by a sum over the layers, since everything is assumed to be

constant over the cross-section Ai of a layer. The virtual axial strain is replaced by the whole expression (4.30) for

n
(e)
CL cracked layers and by its regular part ˆ̃ε

i
for
(

nL−n
(e)
CL

)

non-cracked layers, where nL is the total number of

layers in the finite element. Shear strain γ̂ is constant over the whole element and is replaced by (4.30) for all nL

layers. Shear stress τ i depends on the material law and is different for concrete and steel. Obtained expression is

rearranged to produce internal forces, corresponding to the virtual degrees of freedom of the finite element d̂(e),

defined in (4.19). Index (e) is omitted until the last line. For the sake of simplicity it is assumed that the cracked

layers are numbered with 1, 2, . . . , n
(e)
CL.
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Gint,(e) =
∫

V

(ε̂σ+ γ̂τ)dV =
∫

L

∫

A

(ε̂σ+ γ̂τ)dAdx=
∫

L

∑
i

(
ε̂iσi+ γ̂τ i

)
Aidx=

=
∫

L

nL

∑
i=1

BûσiAidx+
∫

L

nL

∑
i=1

Bθ̂
(
−yiσiAi

)
dx+

∫

L

nCL

∑
i=1

Giα̂iσiAidx+

+
∫

L

nL

∑
i=1

Bv̂τ iAidx+
∫

L

nL

∑
i=1

B∗θ̂ τ iAidx=

= ûT
∫

L

nL

∑
i=1

BTσiAidx+ v̂T
∫

L

nL

∑
i=1

BTτ iAidx+ θ̂
T
∫

L

nL

∑
i=1

(

−yiBTσi+B∗Tτ i
)

Aidx+

+
nCL

∑
i=1

α̂i
∫

L

GiσiAidx= d̂(e)T f int,(e)+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

(4.31)

A condensed form of expressions (4.19) and (4.23) for d̂(e) and f int,(e) is used.

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e)T =
{

fu,int,(e)T , fv,int,(e)T , fθ,int,(e)T
}

(4.32)

Components of f int,(e) are defined in (4.33). Since all present quantities are constant over the length of the finite

element, the integrals are easily evaluated. The internal forces are calculated as a sum of contributions of individual

layers, which proves to be helpful in the computational procedure.

fu,int,(e) =
∫

L

nL

∑
i=1

BTσiAidx=
nL

∑
i=1

BTσiAiL

fv,int,(e) =
∫

L

nL

∑
i=1

BTτ iAidx=
nL

∑
i=1

BTτ iAiL

fθ,int,(e) =
∫

L

nL

∑
i=1

(

−yi BTσi+B∗Tτ i
)

Aidx=
nL

∑
i=1

(

−yi BTσi+B∗Tτ i
)

AiL

(4.33)

A shorter notation (4.34) will also be used. Here, f int,(e),i is contribution of the i-th layer to the vector of nodal

internal forces of the finite element.

f int,(e) =
nL

∑
i=1











BT

0

−yiBT




σ

iAiL+






0

BT

B∗T




τ

iAiL




=

nL

∑
i=1

(

B̆iTσi+ B̆∗Tτ i
)

AiL
︸ ︷︷ ︸

f int,(e),i

(4.34)

The second term of the last line in (4.31) is the additional virtual work due to enhanced kinematics. The sum has

n
(e)
CL summands, one for each cracked layer. Quantity h(e),i corresponds to the virtual displacement jump α̂(e),i,

and is defined as follows:

h(e),i =
∫

L

GiσiAidx, i= 1,2, . . . ,n
(e)
CL (4.35)
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The virtual work of external and internal forces in the equilibrium equation (4.27) is replaced by expressions

(4.28) and (4.29), respecting (4.31) and (4.26). Finally, the second of equations (4.20) allows us to express the

weak equilibrium in the manner of global virtual displacement vector d̂str and virtual displacement jumps α̂(e),i.

0 =
nFE

∑
e=1

Gint,(e)−Gext =

=
nFE

∑
e=1



D̂(e)T F int,(e)+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i



− d̂strT f ext,str =

=
nFE

∑
e=1

d̂strT P(e)T F int,(e)+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i− d̂strT f ext,str =

= d̂strT
nFE

∑
e=1

P(e)T F int,(e)+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i− d̂strT f ext,str =

= d̂strT
(

f int,str − f ext,str
)

+
nFE

∑
e=1

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

(4.36)

Equilibrium (4.36) must hold for any kinematically admissible virtual displacements d̂str and virtual displacement

jumps α̂(e),i. From this requirement we can conclude:

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0
(4.37)

The first equation in (4.37) represents the global equilibrium of every individual node of the mesh. Here f int,str and

f ext,str are vectors of internal and external nodal forces on the structural mesh. They correspond in position and

direction to the degrees of freedom of the mesh. Their length is equal to the total number of degrees of freedom

nDOF . The second equation in (4.37) is an additional constraint for the stress in cracked layers. The number of

cracked layers n
(e)
CL is generally different for each element, and can also be zero. It has been assumed in equation

(4.37) that the cracked layers are numbered with consecutive numbers from 1 to n
(e)
CL.

Let us now examine h(e),i, defined in expression (4.35). Operator Gi, defined by equation (4.13), consists of a

continuous part Ḡi and the Dirac delta function δxi
d
. Integration of the latter is performed by the following rule:

Gi = Ḡi+ δxi
d
,
∫

L

g (x)δxi
d
dx= g

(
xi
d

)
(4.38)

Implementation of (4.38) allows a further development of expression (4.35). We introduce σi
∣
∣
xi
d

as the value of

stress function σi (x), evaluated at local coordinate xi
d. We assign to it a new symbol ti and define it as the traction

at the discontinuity.

h(e),i =
∫

L

(

Ḡi+ δxi
d

)

σiAidx=Ai
∫

L

Ḡiσidx+Aiσi
∣
∣
xi
d
=Ai





∫

L

Ḡiσidx+ ti



 (4.39)

Inserting (4.39) into the second of equilibrium equations (4.37) provides a new aspect to its meaning. Equation

(4.40) represents equilibrium between the traction at the discontinuity ti and the stress in the bulk σi. Being
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confined to a single finite element, we can refer to it as local equilibrium. Relation Ḡi = −1/L from equation

(4.13) is used as well.

h(e),i = 0 ⇔ ti =−
∫

L

Ḡiσidx= σi (4.40)

In the spirit of the method of incompatible modes, the operator Gi should also meet the requirement, that the

additional virtual work (performed on the virtual displacement jumps α̂i) be zero in case of constant stress σi.

Thus, the introduction of α̂i does not affect the internal virtual work. Since the stress is always constant in our

finite element, this test is trivial (fulfilled already by equilibrium equation (4.40)).

α̂i
∫

L

GiσiAidx= α̂iσiAi
︸ ︷︷ ︸

6=0

∫

L

Gi dx= 0 ⇒
∫

L

Gi dx= 0 (4.41)

Taking into account the rule (4.38) for integration of Gi, requirement (4.41) can be reformulated.

∫

L

Gi dx=
∫

L

(

Ḡi+ δxi
d

)

dx=
∫

L

Ḡi dx+

=1
︷ ︸︸ ︷
∫

L

δxi
d
dx= 0 ⇒

∫

L

Ḡi dx=−1 (4.42)

Equality Ḡi =−1/L satisfies the condition (4.42).

4.2.5 Constitutive models

In this section we describe constitutive models which control the axial and shear response of concrete and steel-

reinforcement layers. Axial response of each material is described by two models, one for the bulk of the layer

and one for the discontinuity. Shear model is only required for the bulk of the layer, as there are no discontinuities

involved.

4.2.5.1 Shear stress model

The transverse response is assumed to be elastic. While the shear strain is constant all over the finite element, the

shear stress is different in concrete and steel layers, due to different material parameters. In equation (4.43), µc

and µs are the shear moduli of concrete and steel, respectively, and c is the shear correction factor for rectangular

cross-section. Shear strain γ is computed according to equation (4.4).

τ i = cµiγ, c= 5/6, µi =

{

µc for concrete

µs for steel
,

∂ τ i

∂ γ
= cµi (4.43)

The shear moduli µc and µs are computed from the elastic moduli Ec and Es, and Poisson’s ratios νc and νs of

concrete and steel. The usual values are used for νc and νs.

µc =
Ec

2(1+νc)
, µs =

Es

2(1+νs)
, νc = 0.2, νs = 0.3 (4.44)
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4.2.5.2 Bulk of concrete layer

Behavior of the bulk of the concrete layer is described by 1D elasto-damage model. Response of the material

is linear elastic up to the elasticity limit. Further increase of stress produces micro damage (micro cracking in

tension and micro crushing in compression) continuously over the layer, which results in reduction of the elasticity

modulus. Unloading is linear elastic with the current value of the elasticity modulus, and leads to the origin of the

stress-strain diagram (see Fig. 4.10). These properties of concrete are collected in the following equations, which

can be derived through the principle of maximum damage dissipation [73].

Ε

Σ

Σ fct

Σdt

Σ i

-Σdc

-Σ fcc

Ε i Ec

D
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el
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damage loading

Figure 4.10: Stress - strain diagram for bulk of concrete layer.

Slika 4.10: Diagram napetost - deformacija za sloj betona.

Equation (4.45) shows the linear elastic relation between the stress and the strain. It represents the loading

curve/path up to elasticity limit and the unloading/reloading curve in the σi− ε̄i diagram.

σi = D̄i−1

ε̄i, D̄i ∈
[
E−1

c ,∞
)
, εi = B̆id+Giαi =

ε̄i
︷ ︸︸ ︷

B̆id+ Ḡiαi+ ¯̄Giαi (4.45)

Here D̄i is the compliance of the bulk material, Ec the elastic modulus of intact concrete, and ε̄i the continuous

part of axial strain in the i-th layer, composed of the regular strain and the continuous part of the additional strain.

The latter is zero until the discontinuity is formed. The non-elastic part of the loading curve in the σi− ε̄i diagram

is defined indirectly by the remaining equations in this section.
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φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σd− q̄i

)
, σd =

{

σdc for compression

σdt for tension
(4.46)

Damage function φ̄i prescribes the admissible values of axial stress σi in the i-th layer. Elasticity limit σd > 0

marks the beginning of micro damage and is defined separately for tension and compression. Stress-like hardening

variable q̄i handles the damage threshold evolution.

q̄i =−Hcξ̄
i, Hc =

{

Hcc for compression

Hct for tension
(4.47)

Linear hardening of the material is described by equation (4.47), where ξ̄i is a strain-like hardening variable with

initial value equal to zero, and Hc > 0 is a constant hardening modulus of concrete with separate values for tension

and compression. Evolution in pseudo-time of internal hardening variables D̄i and ξ̄i is defined by evolution

equations (4.48).

˙̄D
i
=

˙̄γisign
(
σi
)

σi
, ˙̄ξ

i
= ˙̄γi

(4.48)

The dot designates the derivative with respect to pseudo-time and ˙̄γi
is damage multiplier. The loading/unloading

conditions and consistency condition (4.49) also apply.

˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ
i
= 0 (4.49)

Tangent moduli of the σi− ε̄i diagram can be determined from the above equations. The elastic loading/unloading

path corresponds to condition ˙̄γi = 0. It follows from evolution equations (4.48), that compliance D̄i is constant.

The tangent modulus is obtained if expression (4.45) for σi is differentiated with respect to ε̄i.

˙̄γi = 0 ⇒ D̄i = const.,
∂σi

∂ε̄i
= D̄i−1

(4.50)

In case of damage loading, when ˙̄γi > 0, the procedure is more complex. From the third and the fourth of conditions

(4.49) we can conclude that φ̄i = 0 and ˙̄φ
i
= 0. From (4.46) we can write the expression for σi and differentiate it

over pseudo-time. We use the appropriate evolution equation to differentiate ξ̄i within.

σi =
(
σd− q̄i

)
sign

(
σi
)
=
(
σd+Hcξ̄

i
)
sign

(
σi
)
, σ̇i =Hc ˙̄γisign

(
σi
)

(4.51)

The stress can be replaced by expression (4.45). The obtained equation is again differentiated over pseudo-time.

Note that compliance D̄i is not constant any more.
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D̄i−1

ε̄i =
(
σd+Hcξ̄

i
)
sign

(
σi
)

−D̄i−2 ˙̄D
i
ε̄i+ D̄i−1

˙̄εi =Hc
˙̄ξ
i
sign

(
σi
) /

˙̄D
i
=

˙̄γisign
(
σi
)

σi
, ˙̄ξ

i
= ˙̄γi

−D̄i−2 ˙̄γisign
(
σi
)

σi
ε̄i+ D̄i−1

˙̄εi =Hc ˙̄γisign
(
σi
) / ε̄i

σi
= D̄i

−D̄i−1
˙̄γisign

(
σi
)
+ D̄i−1

˙̄εi =Hc ˙̄γisign
(
σi
)

˙̄εi =
D̄i−1

+Hc

D̄i−1
˙̄γisign

(
σi
)

(4.52)

The tangent modulus is computed by dividing the pseudo-time derivatives σ̇i and ˙̄εi from (4.51) and (4.52).

∂σi

∂ε̄i
=

σ̇i

˙̄εi
=

D̄i−1
Hc

D̄i−1
+Hc

(4.53)

To sum up, the tangent modulus is described by two expressions. The first one covers the elastic behavior -

unloading and reloading, including the first elastic loading with the initial value of compliance D̄i = E−1
c . The

second expression represents the slope of the damage loading curve.

∂σi

∂ε̄i
=







D̄i−1

; ˙̄γi = 0

D̄i−1
Hc

D̄i−1
+Hc

; ˙̄γi > 0
(4.54)

4.2.5.3 Discontinuity in concrete layer

Energy dissipation at the discontinuity of a concrete layer is described by a softening damage law, which connects

the traction at the discontinuity to the displacement jump. When the discontinuity is introduced, the displacement

jump is zero and the traction is equal to the failure stress of concrete. An increase of the displacement jump (in

absolute value) reduces the carrying capacity and thus produces a lower traction. A subsequent decrease of the

displacement jump (in absolute value) reduces the traction as well, but the carrying capacity remains the same.

Obviously, the problem needs to be controlled by imposed displacements to provide a unique solution. The term

“loading” therefore refers to the increase of displacement jump (in absolute value) and “unloading” refers to the

decrease of displacement jump. The unloading is always linear elastic, but there are two possibilities for loading.

Elastic (re)loading follows the unloading curve, increases the traction, and leaves the internal variables unchanged.

When carrying capacity is reached, damage loading continues. It decreases the traction and changes the internal

variables (see Fig. 4.11). This material law is mathematically described by the following equations, which can be

derived by using the principle of maximum damage dissipation [73].

Equation (4.55) describes the linear elastic relation between the traction at the discontinuity ti and the displacement

jump αi. It represents the unloading/reloading path in the ti−αi diagram.

ti = ¯̄D
i−1

αi, ¯̄D
i
∈ [0,∞) (4.55)

Here ¯̄D
i

is compliance of the discontinuity which increases with progression of the localized failure. The loading

curve of the ti−αi diagram is defined indirectly by the remaining equations in this section.
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Figure 4.11: Traction - displacement jump diagram for discontinuity in concrete layer.

Slika 4.11: Diagram napetost - skok v pomiku za nezveznost v sloju betona.

¯̄φ
i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfc− ¯̄qi
)

, σfc =

{

σfcc for compression

σfct for tension
(4.56)

Failure function ¯̄φ
i

prescribes the admissible values of traction ti at the discontinuity of a concrete layer. Failure

stress of concrete σfc > 0 indicates the occurrence of the discontinuity and is defined separately for tension and

compression. Stress-like softening variable ¯̄qi handles the damage threshold evolution and is described by an

exponential function.

¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

, Kc =







Kcc =−
σfcc

2Gfcc
for compression

Kct =−
σfct

2Gfct
for tension

(4.57)

Here ¯̄ξi is a displacement-like softening variable with initial value set to zero, and Kc < 0 is a constant softening

modulus of concrete with units m−1 and separate values for compression and tension. These are determined by the

fracture energies per cross-section unit Gfcc and Gfct for concrete in compression and tension, respectively. The

fracture energy has units kJm−2 and can be determined by different tests. Evolution in pseudo-time of internal

softening variables ¯̄D
i

and ¯̄ξi is defined by evolution equations (4.58).
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˙̄̄
D

i

=
˙̄̄γ
i
sign

(
ti
)

ti
,

˙̄̄
ξ
i

= ˙̄̄γ
i

(4.58)

The dot designates the derivative with respect to pseudo-time and ˙̄̄γ
i

is damage multiplier. The loading/unloading

conditions and consistency condition (4.59) also apply.

˙̄̄γ
i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0 (4.59)

A closer inspection of equations (4.55)-(4.59) reveals that the damage loading path of ti−αi diagram, correspond-

ing to condition ¯̄φ
i
= 0, is a straight line, see appendix B. This suggests a possibility of simplifying the equations.

Each point of the damage loading path is determined by its ordinate ti and the slope ¯̄D
i−1

of the unloading line,

which connects the point to the origin. Abscissa αi is computed from equation (4.55). Evolution equations (4.58)

dictate the change of ¯̄D
i

and ¯̄ξi, the latter defining ti through equations (4.56), (4.57) and (4.59). Both ¯̄D
i

and

ti change non-linearly with respect to ¯̄γi = ˙̄̄γ
i
∆t (∆t being pseudo-time step), the first one because of non-linear

evolution equation (4.58), and the second due to exponential softening law (4.57). However, it is shown in appendix

B that the two non-linearities neutralize each other, yielding a linear relation between ti and αi.

The damage loading path can also be constructed by defining coordinates αi and ti. If they both change linearly

with respect to some new variable, the diagram will be a straight line. We introduce a new displacement-like

variable ¯̄ξ
i∗

and the softening law takes a linear form.

¯̄ξ
i∗
=−

1

Kc

(

1−eKc
¯̄ξ
i
)

, ¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

=−Kcσfc
¯̄ξ
i∗
=−K∗

c
¯̄ξ
i∗

(4.60)

The expression for ¯̄qi in (4.60) holds for ¯̄ξi < ∞, or equivalently ¯̄ξ
i∗
<−1/Kc . After that ¯̄qi would become greater

than the failure stress of concrete σfc, which is not acceptable. Physically, it means that the carrying capacity

cannot drop below zero.

¯̄qi = min
{

−K∗
c

¯̄ξ
i∗
,σfc

}

, K∗
c =Kcσfc (4.61)

Then, the introduction of a new damage multiplier ¯̄γi∗
allows us to write a new set of linear evolution equations

for αi and ¯̄ξ
i∗

. See appendix B for details.

¯̄γi∗ =−
1

Kc

(

1−eKc ¯̄γi
)

, α̇i = ˙̄̄γ
i∗
sign

(
ti
)
,

˙̄̄
ξ
i∗
= ˙̄̄γ

i∗
(4.62)

The new softening law (4.61) and evolution equations (4.62), due to their linear form, simplify the computa-

tional procedure significantly. But there is another advantage over the original equations. As the original dam-

age multiplier ¯̄γi
approaches infinity, the traction ti approaches zero and the displacement jump αi approaches

−sign
(
ti
)
/Kc . No matter how much we increase the multiplier, αi cannot pass that value. For an individual bar,

such limitation is logical, as the complete loss of carrying capacity implies singularity of the problem and a further

increase of the discontinuity is meaningless. However, if a layer of a beam loses all carrying capacity, the beam

as a whole still possesses stiffness. The broken layer just follows the rest of the beam without resistance. It is
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therefore necessary to allow αi to grow past the point of failure. When the new damage multiplier ¯̄γi∗
reaches the

value −1/Kc , the original multiplier is pushed to infinity and the old evolution equations (4.58) get out of scope.

The new evolution equations (4.62), however, withstand further increase of ¯̄γi∗
. As the latter approaches infinity,

so does αi (in absolute value). Once past the failure point the traction ti remains zero. The relation t−α at the

discontinuity is described by equation (4.63).

ti =







¯̄D
i−1

αi; ˙̄̄γ
i∗
= 0

σfc sign
(
αi
)
+σfcKcα

i; ˙̄̄γ
i∗
> 0, ¯̄qi < σfc

0; ˙̄̄γ
i∗
> 0, ¯̄qi = σfc

(4.63)

The first expression represents the elastic unloading path, the second one the damage loading path until the traction

drops to zero, and the third one the damage loading path further on. The tangent moduli are obtained by a simple

differentiation of (4.63).

∂ti

∂αi
=







¯̄D
i−1

; ˙̄̄γ
i∗
= 0

K∗
c = σfcKc; ˙̄̄γ

i∗
> 0, ¯̄qi < σfc

0; ˙̄̄γ
i∗
> 0, ¯̄qi = σfc

(4.64)

4.2.5.4 Bulk of reinforcement layer

Behavior of the bulk of a layer of reinforcement is described by 1D elasto-plasticity model with isotropic hardening.

It is symmetrical in tension and compression. Response of the material is linear elastic until yield stress is reached.

If loading increases, plastic deformations occur and grow continuously over the layer. Elasticity limit is raised

as well. Unloading is elastic and follows a line, parallel to the first loading path. When the stress drops to zero,

plastic deformations remain in the layer (Fig. 4.12). Behavior of steel is mathematically described by the following

equations, which can be derived by using the principle of maximum plastic dissipation [73].

Stress σi is computed from equation (4.65), which represents the elastic loading path and elastic unloading or

reloading path of the σi− ε̄i diagram.

σi = Es

(
ε̄i− ε̄ip

)
, εi = B̆id+Giαi =

ε̄i
︷ ︸︸ ︷

B̆id+ Ḡiαi+ ¯̄Giαi (4.65)

Here Es is the elastic modulus of steel, ε̄ip plastic strain, and ε̄i the continuous part of axial strain in the i-th

layer, composed of the regular strain and the continuous part of the additional strain. Before the appearance of the

discontinuity the additional strain is zero. The plastic loading path of the σi− ε̄i diagram is determined indirectly

by the rest of the equations in this section.

φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σy − q̄i

)
(4.66)

Yield function φ̄i prescribes the admissible axial stress in the layer. Yield stress σy > 0 is the absolute value of

the stress, at which the first plastic deformation occurs. Stress-like hardening variable q̄i controls yield threshold

evolution.



Jukić, M. 2013. Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu.
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Figure 4.12: Stress - strain diagram for bulk of reinforcement layer.

Slika 4.12: Diagram napetost - deformacija za sloj armature.

q̄i =−Hsξ̄
i (4.67)

Equation (4.67) describes the linear isotropic hardening of the material. Here Hs > 0 is a constant hardening

modulus of steel and ξ̄i is a strain-like hardening variable with the initial value zero. Evolution in pseudo-time of

internal hardening variables for plasticity, ε̄ip and ξ̄i, is prescribed by evolution equations (4.68).

˙̄εip = ˙̄γisign
(
σi
)

, ˙̄ξ
i
= ˙̄γi

(4.68)

The dot designates the derivative with respect to pseudo-time and ˙̄γi
is plastic multiplier. The loading/unloading

conditions and consistency condition (4.69) apply as well.

˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ
i
= 0 (4.69)

Tangent moduli of the σi− ε̄i diagram are determined by the described equations. In elastic response, the plastic

multiplier is equal to zero. As a consequence, internal variables are constant and the tangent modulus is simply

computed by differentiating the expression (4.65) for σi with respect to ε̄i.

˙̄γi = 0 ⇒ ε̄ip = const.,
∂σi

∂ε̄i
= Es (4.70)

In plastic loading, the plastic strain ε̄ip is not constant. It depends on the plastic multiplier ˙̄γi > 0 and consequently

on the strain ε̄i. The tangent modulus can be computed from pseudo-time derivatives of stress and strain. It
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follows from the last two equations in (4.69) that φ̄i = 0 and ˙̄φ
i
= 0. We can express σi from equation (4.66) and

differentiate it over pseudo-time.

σi =
(
σy − q̄i

)
sign

(
σi
)
=
(
σy +Hsξ̄

i
)
sign

(
σi
)
, σ̇i =Hs ˙̄γisign

(
σi
)

(4.71)

We can replace the stress σi with expression (4.65) and differentiate the modified equation over pseudo-time again.

Evolution equations (4.68) are utilized in the procedure.

Es

(
ε̄i− ε̄ip

)
=
(
σy +Hsξ̄

i
)
sign

(
σi
)

Es

(

˙̄εi− ˙̄εip

)

=Hs
˙̄ξ
i
sign

(
σi
) /

˙̄εip = ˙̄γisign
(
σi
)
, ˙̄ξ

i
= ˙̄γi

Es ˙̄εi−Es ˙̄γisign
(
σi
)
=Hs ˙̄γisign

(
σi
)

˙̄εi =
Es+Hs

Es

˙̄γisign
(
σi
)

(4.72)

Pseudo-time derivatives σ̇i and ˙̄εi, defined in (4.71) and (4.72), are divided to produce the plastic tangent modulus.

∂σi

∂ε̄i
=

σ̇i

˙̄εi
=

EsHs

Es+Hs
(4.73)

The elastic and plastic tangent moduli are gathered below. The first expression represents the slope of the elastic

loading and unloading path, while the second one represents the slope of the plastic loading path in the σi − ε̄i

diagram.

∂σi

∂ε̄i
=







Es; ˙̄γi = 0

EsHs

Es+Hs
; ˙̄γi > 0

(4.74)

4.2.5.5 Discontinuity in reinforcement layer

Behavior of the discontinuity in a layer of reinforcement is described by a plastic softening law, which connects

the traction at the discontinuity to the displacement jump (Fig. 4.13). At introduction of the discontinuity the

displacement jump is zero and the traction is equal to the failure stress of steel. A further increase of the imposed

displacements of the layer reduces the carrying capacity. The traction at the discontinuity decreases and the dis-

placement jump increases. This is referred to as plastic softening. The displacement jump behaves analogously to

plastic strain in the continuous model, i.e. it stays the same if the loading is decreased. The traction at the discon-

tinuity in the unloading phase changes in accordance with the stress in the bulk, so that the equilibrium (4.40) is

satisfied. When traction (in absolute value) reaches the carrying capacity again, the plastic loading continues and

the displacement jump changes accordingly to the sign of traction. It decreases in compression and increases in

tension, regardless of its own size and sign. The mathematical description of such behavior is condensed in the

following equations, which can be derived by the principle of maximum plastic dissipation [73].

¯̄φ
i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfs− ¯̄qi
)

(4.75)
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Figure 4.13: Traction - displacement jump diagram for discontinuity in reinforcement layer.

Slika 4.13: Diagram napetost - skok v pomiku za nezveznost v sloju armature.

Failure function ¯̄φ
i

defines the admissible values of traction ti at the discontinuity of a reinforcement layer. Failure

stress of steel σfs > 0 is the absolute value of the stress, at which the discontinuity first appears. The stress-like

softening variable ¯̄qi manages the softening threshold evolution.

¯̄qi = min
{

−Ks
¯̄ξ
i
,σfs

}

, Ks =−
σ2
fs

2Gfs
(4.76)

The linear softening law is described by equation (4.76), where ¯̄ξi is a displacement-like softening variable with

initial value zero, and Ks > 0 is a constant softening modulus of concrete with units kNm−3. Fracture energy per

cross-section unit of steel Gfs represents the area between the horizontal axis and the softening line in the t−α

diagram. It has units kJm−2 and can be determined from a uniaxial tension test. Evolution in pseudo-time of

internal softening variables αi and ¯̄ξi is defined by evolution equations (4.77).

α̇i = ˙̄̄γ
i
sign

(
ti
)

,
˙̄̄
ξ
i

= ˙̄̄γ
i

(4.77)

The dot designates the derivative with respect to pseudo-time and ˙̄̄γ
i

is plastic softening multiplier. The load-

ing/unloading conditions and consistency condition (4.78) also apply.

˙̄̄γ
i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0 (4.78)

The equation of the plastic softening loading path of ti −αi diagram is not unique. It depends on the loading

history. If the softening process alternates between both load signs, the loading path is translated sideways (left or
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right). The slope, however, is not affected and can be determined from the pseudo-time derivatives of ti and αi.

In softening process, when ˙̄̄γ
i
> 0, the failure function ¯̄φ

i
= 0. Expression for ti is then determined by (4.75) and

(4.76).

ti =
(

σfs− ¯̄qi
)

sign
(
ti
)
=







(

σfs+Ks
¯̄ξ
i
)

sign
(
ti
)

; ¯̄qi < σfs

0; ¯̄qi = σfs

(4.79)

The derivative is obtained in accordance with evolution equation (4.77) for ¯̄ξi.

ṫi =







Ks
˙̄̄
ξ
i

sign
(
ti
)
=Ks

˙̄̄γ
i
sign

(
ti
)

; ¯̄qi < σfs

0; ¯̄qi = σfs
(4.80)

The slope of the plastic softening loading path, defined as the derivative of ti over αi, is computed by dividing the

pseudo-time derivatives (4.80) and (4.77) of both quantities.

∂ti

∂αi
=

ṫi

α̇i
=







not defined; ˙̄̄γ
i
= 0

Ks; ˙̄̄γ
i
> 0, ¯̄qi < σfs

0; ˙̄̄γ
i
> 0, ¯̄qi = σfs

(4.81)

A third option was added in equation (4.81). It corresponds to elastic unloading path with ˙̄̄γ
i
= 0. It follows

from evolution equations (4.77) that α̇i = 0 in such case. And since the failure function ¯̄φ
i

is no longer required

to be zero, the traction ti cannot be computed as in (4.79). It changes in accordance with equation (4.40) which

represents the equilibrium between the bulk and the discontinuity. The fraction in (4.81) is not defined, but it is not

required in the computational procedure anyway.

4.3 Computational procedure

Response of a structure, discretized by a mesh of nFE above derived finite elements, is computed at discrete

pseudo-time points τ0, τ1, . . . , τn, τn+1, . . . , T by solving at each pseudo-time point nonlinear equations (4.82)

for current values of nodal displacements/rotations.

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0
(4.82)

Here, n
(e)
CL is the number of cracked layers in element (e). At a particular pseudo-time point τn+1, the solution

is searched iteratively by the Newton-Raphson method. Each iteration, denoted by k, consists of two subsequent

phases: (A) computation of internal variables, corresponding to the current iterative values of nodal displace-

ments/rotations, in order to compute the stress in accordance with given material laws; (B) solution of linearized

equations (4.82) in order to update the iterative values of nodal displacements/rotations. When one phase of the

computation is completed, the results are used immediately in the next one.
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For a pseudo-time point τn+1, the computational problem related to a generic element (e) and material layer i can

be stated as:

given d(e)
n and

{

D̄(e),i
n , ξ̄(e),in , ¯̄D(e),i

n , ¯̄ξ(e),in

ε̄(e),ip,n , ξ̄(e),in ,α(e),i
n , ¯̄ξ(e),in

find d
(e)
n+1 and







D̄
(e),i
n+1 , ξ̄

(e),i
n+1 ,

¯̄D
(e),i
n+1 ,

¯̄ξ
(e),i
n+1

ε̄
(e),i
p,n+1, ξ̄

(e),i
n+1 ,α

(e),i
n+1 ,

¯̄ξ
(e),i
n+1

Note that superscript (e) was omitted in section 4.2.5 for the above internal variables. The subscript n and n+ 1

denote the values at pseudo-times τn and τn+1, respectively.

Start phase A of iteration k

for element e and layer i

crackn
HeL,i= true

use eqs. from secs.

4.3.1.2 or 4.3.1.4

carrying capacity

exceeded

crackn+1
HeL,i
= false,

keep results, computed

with eqs. from secs.

4.3.1.2 or 4.3.1.4

crackn+1
HeL,i
= true

crackn+1
HeL,i
= true,

delete results, computed

with eqs. from secs.

4.3.1.2 or 4.3.1.4

use eqs. from secs.

4.3.1.3 or 4.3.1.5

End phase A of iteration k

for element e and layer i

Yes

Yes

No

No

Figure 4.14: Algorithm for phase (A) of k-th iteration for i-th layer of finite element (e).

Slika 4.14: Algoritem za fazo (A) k-te iteracije za i-ti sloj končnega elementa (e).

4.3.1 Computation of internal variables

In this section we will present computations of phase (A). The internal variables for i-th layer of element (e) at

pseudo-time point τn+1 will be computed for the k-th iteration, while the nodal displacements/rotations are fixed

at the values from the previous iteration d
(e),(k−1)
n+1 . Since every internal variable is connected to a single layer of a
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single finite element, the computations are local, i.e. they are performed independently for each element and each

layer. The condition of the discontinuity is known by the following flag.

crack(e),i =

{

false . . . no discontinuity in layer i

true . . . discontinuity in layer i
(4.83)

The algorithm in Fig. 4.14 is applied. If there was no discontinuity in the layer in the previous pseudo-time step,

we begin with equations for the hardening phase of material, described in sections 4.3.1.2 for concrete and 4.3.1.4

for steel. We must do so even if the previous iteration of the current step indicated occurrence of the discontinuity,

because that was not a converged result. We check if the carrying capacity of the layer is exceeded. If not, we keep

the obtained results, otherwise we discard them and use equations for the softening phase of material, described in

sections 4.3.1.3 for concrete and 4.3.1.5 for steel. If the discontinuity already existed in the previous pseudo-time

step, it must also exist in the current step, therefore we follow the procedure from sections 4.3.1.3 or 4.3.1.5.

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and

the superscript i, denoting the layer.

4.3.1.1 Shear response

Computation of the shear response is straightforward. Shear strain is computed according to equation (4.7) with

the current values of the nodal displacements. Shear stress is then calculated from (4.43).

γ
(k)
n+1 = B̆∗d

(k−1)
n+1 , τ

i,(k)
n+1 = cµiγ

(k)
n+1,

∂ τ i

∂ γ

∣
∣
∣
∣

(k)

n+1

= cµi (4.84)

4.3.1.2 Bulk of concrete layer

This section describes the computational procedure for the hardening phase of a concrete layer. The discontinuity

has not yet occurred and the displacement jump is zero. The computation is started by assuming an elastic step,

which means that hardening internal variables do not change, but keep the values from the previous step. Trial

value of stress is computed according to (4.45), with α
(k)
n+1 = 0.

D̄
(k),trial
n+1 = D̄n, ξ̄

(k),trial
n+1 = ξ̄n, σ

(k),trial
n+1 = D̄

(k),trial−1

n+1 ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

(4.85)

The trial damage function φ̄
(k),trial
n+1 is computed in accordance with equations (4.46) and (4.47).

φ̄
(k),trial
n+1 =

∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−
(

σd− q̄
(k),trial
n+1

)

, q̄
(k),trial
n+1 =−Hcξ̄

(k),trial
n+1 =−Hcξ̄n (4.86)

The trial solution is accepted if the trial damage function is not positive.

φ̄
(k),trial
n+1 ≤ 0 ⇒ D̄

(k)
n+1 = D̄

(k),trial
n+1 , ξ̄

(k)
n+1 = ξ̄

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 (4.87)
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Otherwise, the internal variables have to be corrected and the stress recomputed. Incremental form of evolution

equations (4.48) is applied, where γ̄
(k)
n+1 = ˙̄γ

(k)
n+1 (τn+1 − τn) > 0. The use of sign

(

σ
(k)
n+1

)

= sign
(

σ
(k),trial
n+1

)

is

justified in appendix A.

φ̄
(k),trial
n+1 > 0 ⇒ D̄

(k)
n+1 = D̄n+ γ̄

(k)
n+1

sign
(

σ
(k),trial
n+1

)

σ
(k)
n+1

, ξ̄
(k)
n+1 = ξ̄n+ γ̄

(k)
n+1 (4.88)

By using equations (4.88), the stress σ
(k)
n+1 and the stress-like hardening variable q̄

(k)
n+1 can be expressed with their

trial values and the damage multiplier γ̄
(k)
n+1.

σ
(k)
n+1 = D̄

(k)−1

n+1 ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

D̄
(k)
n+1σ

(k)
n+1 = ε̄

(

d
(k−1)
n+1 ,α

(k)
n+1

)

= D̄
(k),trial
n+1 σ

(k),trial
n+1



D̄n+ γ̄
(k)
n+1

sign
(

σ
(k),trial
n+1

)

σ
(k)
n+1



σ
(k)
n+1 = D̄nσ

(k),trial
n+1

D̄nσ
(k)
n+1 + γ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

= D̄nσ
(k),trial
n+1

σ
(k)
n+1 = σ

(k),trial
n+1 − D̄−1

n γ̄
(k)
n+1sign

(

σ
(k),trial
n+1

)

(4.89)

q̄
(k)
n+1 =−Hcξ̄

(k)
n+1 =−Hc

(

ξ̄n+ γ̄
(k)
n+1

)

= q̄
(k),trial
n+1 −Hcγ̄

(k)
n+1 (4.90)

Equations (4.89) and (4.90) are used to express the damage function φ̄
(k)
n+1 as a function of damage multiplier γ̄

(k)
n+1,

which is then computed from requirement φ̄
(k)
n+1 = 0, coming from loading/unloading conditions (4.49).

φ̄
(k)
n+1 =

∣
∣
∣σ

(k)
n+1

∣
∣
∣−
(

σd− q̄
(k)
n+1

)

=
∣
∣
∣σ

(k),trial
n+1

∣
∣
∣− D̄−1

n γ̄
(k)
n+1 −

(

σd− q̄
(k),trial
n+1

)

−Hcγ̄
(k)
n+1 =

= φ̄
(k),trial
n+1 −

(
D̄−1

n +Hc

)
γ̄
(k)
n+1

φ̄
(k)
n+1 = 0 ⇒ γ̄

(k)
n+1 =

φ̄
(k),trial
n+1

D̄−1
n +Hc

(4.91)

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

(4.85) if damage multiplier γ̄
(k)
n+1 is zero, and the value from (4.89) if γ̄

(k)
n+1 is positive. In the second case, equations

(4.91), (4.86) and (4.85) are used to express the stress as a function of strain.

∂σ

∂ε̄

∣
∣
∣
∣

(k)

n+1

=







D̄−1
n ; γ̄

(k)
n+1 = 0

D̄−1
n Hc

D̄−1
n +Hc

; γ̄
(k)
n+1 > 0

(4.92)

The hardening internal variables, stress and tangent modulus have been determined under assumption, that the

carrying capacity is not exceeded, which remains to be verified. If indeed the carrying capacity is not reached, the

results are accepted. In the opposite case, the results are discarded and computed again, taking into account the

newly appeared discontinuity.



122 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

First, the potential value of traction at the discontinuity t
(k),pot
n+1 is computed according to equation (4.40). Failure

function ¯̄φ
(k),pot
n+1 is then evaluated with the stress-like softening variable ¯̄q

(k),pot
n+1 equal to zero, because there has

been no reduction of carrying capacity in previous steps.

t
(k),pot
n+1 =−

∫

L

Ḡσ
(k)
n+1dx= σ

(k)
n+1,

¯̄φ
(k),pot
n+1 =

∣
∣
∣t
(k),pot
n+1

∣
∣
∣−
(

σfc− ¯̄q
(k),pot
n+1

)

, ¯̄q
(k),pot
n+1 = 0 (4.93)

The discontinuity flag is set to true if the failure function is positive, and to false otherwise. Note that the value

of the flag is not final, until the converged state is reached. It can change in following iterations.

¯̄φ
(k),pot
n+1 ≤ 0 ⇒ crack

(e),i
n+1 = false

¯̄φ
(k),pot
n+1 > 0 ⇒ crack

(e),i
n+1 = true

(4.94)

If the carrying capacity is exceeded ( ¯̄φ
(k),pot
n+1 > 0), the above computed values of internal variables, stress and

tangent modulus are discarded for this iteration and computed anew as described in section 4.3.1.3.

4.3.1.3 Discontinuity in concrete layer

Here we describe the computational procedure for the softening phase of the concrete layer. The procedure is used

if the current value of discontinuity flag crack
(e),i
n+1 = true. This is a consequence of either an existing discontinuity

in the previous step (crack
(e),i
n = true), or exceeded ultimate stress in this iteration, as written in equation (4.94).

In both cases, the hardening internal variables take the last converged values, i.e. the values from the last step.

D̄
(k)
n+1 = D̄n, ξ̄

(k)
n+1 = ξ̄n (4.95)

The computation is started by assuming an elastic step, which implies no change in the softening internal variables

in this iteration. We use the displacement-like softening variable ¯̄ξ
∗
, introduced in equation (4.60).

¯̄D
(k),trial
n+1 = ¯̄Dn,

¯̄ξ
∗(k),trial
n+1 = ¯̄ξ∗n (4.96)

The trial value of traction at the discontinuity is defined by equation (4.97). Derivation of the expression is shown

in appendix C. According to equation (4.40) it is equal to the trial stress. The trial value of displacement jump is

computed from equation (4.55).

t
(k),trial
n+1 = σ

(k),trial
n+1 =

B̆d
(k−1)
n+1

D̄n− Ḡ ¯̄Dn

, α
(k),trial
n+1 = ¯̄Dnt

(k),trial
n+1 (4.97)

Next, the trial value of failure function ¯̄φ
(k),trial
n+1 is computed, using expression (4.61) for the stress-like softening

variable ¯̄q
(k),trial
n+1 .

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfc− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−K∗
c

¯̄ξ
∗(k),trial
n+1 ,σfc

}

= ¯̄qn (4.98)
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If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

¯̄D
(k)
n+1 =

¯̄D
(k),trial
n+1 , ¯̄ξ

∗(k)
n+1 =

¯̄ξ
∗(k),trial
n+1 , α

(k)
n+1 = α

(k),trial
n+1

t
(k)
n+1 = t

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1

(4.99)

If ¯̄φ
(k),trial
n+1 > 0, the assumed trial values are not admissible. We have to compute the softening damage multi-

plier ¯̄γ
∗(k)
n+1 =

˙̄̄γ
∗(k)
n+1 (τn+1 − τn) > 0 from equation ¯̄φ

(k)
n+1 = 0 in order to compute new values of internal softening

variables, see appendix C.

¯̄γ
∗(k)
n+1 =

¯̄φ
(k),trial
n+1

(

D̄n− Ḡ ¯̄Dn

)

K∗
c D̄n− Ḡ

(4.100)

If ¯̄q
(k)
n+1 =−K∗

c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

< σfc, the softening internal variables are updated, following the incremental form of

evolution equations (4.62).

α
(k)
n+1 =

(

αmax
n + ¯̄γ

∗(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, ¯̄ξ
∗(k)
n+1 =

¯̄ξ∗n+ ¯̄γ
∗(k)
n+1,

¯̄D
(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

=
αmax
n + ¯̄γ

∗(k)
n+1

σfc+K∗
c

¯̄ξ
∗(k)
n+1

(4.101)

Here, αmax
n = ¯̄Dnt

max
n = ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

is the maximal elastic value of α for the given carrying capacity tmax
n

from the last softening step. Traction at the discontinuity and stress in the layer are computed as follows:

t
(k)
n+1 =

(

σfc− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, σ
(k)
n+1 = D̄−1

n ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

(4.102)

If −K∗
c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

>σfc = ¯̄q
(k)
n+1, material has lost all carrying capacity and traction at the discontinuity becomes

zero.

t
(k)
n+1 = σ

(k)
n+1 = D̄−1

n

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1

)

= 0 (4.103)

From above equation we can compute the displacement jump and the compliance at the discontinuity.

α
(k)
n+1 =−

B̆d
(k−1)
n+1

Ḡ
, ¯̄D

(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

= ∞ (4.104)

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump.

If ¯̄γ
∗(k)
n+1 = 0, their relation is described by equation (4.97). If ¯̄γ

∗(k)
n+1 > 0 and ¯̄q

(k)
n+1 = −K∗

c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

< σfc,

traction takes the value from (4.102). The first of equations (4.101) is used to express the traction as a function of

displacement jump. If ¯̄γ
∗(k)
n+1 > 0 and ¯̄q

(k)
n+1 = σfc, traction is constantly zero.

∂t

∂α

∣
∣
∣
∣

(k)

n+1

=







¯̄D−1
n ; ¯̄γ

∗(k)
n+1 = 0

K∗
c = σfcKc; ¯̄γ

∗(k)
n+1 > 0, ¯̄q

(k)
n+1 < σfc

0; ¯̄γ
∗(k)
n+1 > 0, ¯̄q

(k)
n+1 = σfc

(4.105)
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Figure 4.15: Stress in the bulk (left) and traction at the discontinuity (right) of a concrete layer: value

from the previous step (n), and trial and final values from the current step (n+1).

Slika 4.15: Napetost v sloju (levo) in v nezveznosti sloja betona (desno): vrednost iz prejšnjega koraka

(n) ter testna in končna vrednost iz trenutnega koraka (n+1).

The discontinuity flag is set to crack
(e),i
n+1 = true.

4.3.1.4 Bulk of reinforcement layer

The computational procedure for the hardening phase of the reinforcement layer is described next. There is no

discontinuity in the layer and the displacement jump is zero. First, we assume elastic behavior, meaning that

hardening internal variables keep the values from the previous step. Stress is computed in accordance with equation

(4.65), where α
(k)
n+1 = 0.

ε̄
(k),trial
p,n+1 = ε̄p,n, ξ̄

(k),trial
n+1 = ξ̄n, σ

(k),trial
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄
(k),trial
p,n+1

)

(4.106)

Trial yield function φ̄
(k),trial
n+1 is computed, as defined in (4.66) and (4.67).

φ̄
(k),trial
n+1 =

∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−
(

σy − q̄
(k),trial
n+1

)

, q̄
(k),trial
n+1 =−Hsξ̄

(k),trial
n+1 =−Hsξ̄n (4.107)

The trial solution is accepted if the trial yield function is negative or zero.

φ̄
(k),trial
n+1 ≤ 0 ⇒ ε̄

(k)
p,n+1 = ε̄

(k),trial
p,n+1 , ξ̄

(k)
n+1 = ξ̄

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 (4.108)

If the trial yield function is positive, the internal variables must be corrected, according to incremental form of

evolution equations (4.68), where γ̄
(k)
n+1 = ˙̄γ

(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix A that sign

(

σ
(k)
n+1

)

=
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sign
(

σ
(k),trial
n+1

)

.

φ̄
(k),trial
n+1 > 0 ⇒ ε̄

(k)
p,n+1 = ε̄p,n+ γ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

, ξ̄
(k)
n+1 = ξ̄n+ γ̄

(k)
n+1 (4.109)

By exploiting equations (4.109), the stress σ
(k)
n+1 and the stress-like hardening variable q̄

(k)
n+1 can be expressed with

their trial values and the damage multiplier γ̄
(k)
n+1.

σ
(k)
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄
(k)
p,n+1

)

=

= Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄p,n

)

−Esγ̄
(k)
n+1sign

(

σ
(k),trial
n+1

)

=

= σ
(k),trial
n+1 −Esγ̄

(k)
n+1sign

(

σ
(k),trial
n+1

)

(4.110)

q̄
(k)
n+1 =−Hsξ̄

(k)
n+1 =−Hs

(

ξ̄n+ γ̄
(k)
n+1

)

= q̄
(k),trial
n+1 −Hsγ̄

(k)
n+1 (4.111)

Yield function φ̄
(k)
n+1 is expressed as a function of plastic multiplier γ̄

(k)
n+1 by employing equations (4.110) and

(4.111). Value of the plastic multiplier is computed from requirement φ̄
(k)
n+1 = 0.

φ̄
(k)
n+1 =

∣
∣
∣σ

(k)
n+1

∣
∣
∣−
(

σy − q̄
(k)
n+1

)

=
∣
∣
∣σ

(k),trial
n+1

∣
∣
∣−Esγ̄

(k)
n+1 −

(

σy − q̄
(k),trial
n+1

)

−Hsγ̄
(k)
n+1 =

= φ̄
(k),trial
n+1 − (Es+Hs) γ̄

(k)
n+1

φ̄
(k)
n+1 = 0 ⇒ γ̄

(k)
n+1 =

φ̄
(k),trial
n+1

Es+Hs

(4.112)

Consistent tangent modulus is computed as the derivative of stress over strain. Stress takes the trial value from

equation (4.106) if plastic multiplier γ̄
(k)
n+1 is zero, and the value from (4.110) if γ̄

(k)
n+1 is positive. In the second

case, equations (4.112), (4.107) and (4.106) are used to express the stress as a function of strain.

∂σ

∂ε̄

∣
∣
∣
∣

(k)

n+1

=







Es; γ̄
(k)
n+1 = 0

EsHs

Es+Hs
; γ̄

(k)
n+1 > 0

(4.113)

The hardening internal variables, stress in the layer and the tangent modulus have been calculated under assumption

that the ultimate stress is not exceeded. This still requires verification. If the assumption is confirmed, the above

results are accepted. Otherwise, they are discarded and recomputed with the presence of the discontinuity, see

Fig. 4.14.

Potential value of traction at the discontinuity t
(k),pot
n+1 is computed from equation (4.40). Then the failure function

¯̄φ
(k),pot
n+1 is evaluated with the stress-like softening variable equal to zero, as there has been no reduction of carrying

capacity in previous steps.

t
(k),pot
n+1 =−

∫

L

Ḡσ
(k)
n+1dx,

¯̄φ
(k),pot
n+1 =

∣
∣
∣t
(k),pot
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),pot
n+1

)

, ¯̄q
(k),pot
n+1 = 0 (4.114)
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We set the value of the discontinuity flag to true if the failure function is positive, and to false otherwise. The

value is not final, however, until the converged state is reached. It can change in following iterations.

¯̄φ
(k),pot
n+1 ≤ 0 ⇒ crack

(e),i
n+1 = false

¯̄φ
(k),pot
n+1 > 0 ⇒ crack

(e),i
n+1 = true

(4.115)

If the carrying capacity is exceeded, the above computed values of internal hardening variables, stress in the layer

and traction at the discontinuity are discarded and computed again, as explained in the following section.

4.3.1.5 Discontinuity in reinforcement layer

This section describes the computational procedure for the softening phase of the reinforcement layer. It is applied

if the current value of the discontinuity flag crack
(e),i
n+1 = true, which happens if the discontinuity already existed

in the previous step, or if the carrying capacity of the layer was exceeded in this iteration, see equation (4.115) and

Fig. 4.14. In any case, the hardening internal variables take the values from the previous step, which are the last

converged results. The error of such choice is negligible for small pseudo-time step.

ε̄
(k)
p,n+1 = ε̄p,n, ξ̄

(k)
n+1 = ξ̄n (4.116)

We start by assuming a trial solution, keeping the softening internal variables at the values from the previous

step. Stress in the layer and traction at the discontinuity are computed according to equations (4.65) and (4.40),

respectively.

α
(k),trial
n+1 = αn,

¯̄ξ
(k),trial
n+1 = ¯̄ξn

σ
(k),trial
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k),trial
n+1

)

− ε̄p,n

)

, t
(k),trial
n+1 = σ

(k),trial
n+1

(4.117)

The trial value of failure function ¯̄φ
(k),trial
n+1 is calculated, respecting equations (4.75) and (4.76).

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−Ks
¯̄ξ
(k),trial
n+1 ,σfs

}

= ¯̄qn (4.118)

If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

α
(k)
n+1 = α

(k),trial
n+1 , ¯̄ξ

(k)
n+1 =

¯̄ξ
(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 , t

(k)
n+1 = t

(k),trial
n+1 (4.119)

If ¯̄φ
(k),trial
n+1 > 0, the assumed solution is not admissible. The softening internal variables are updated according to

the incremental form of evolution equations (4.77), where ¯̄γ
(k)
n+1 =

˙̄̄γ
(k)
n+1 (τn+1 − τn) > 0. It is shown in appendix

A that sign
(

t
(k)
n+1

)

= sign
(

t
(k),trial
n+1

)

.

α
(k)
n+1 = αn+ ¯̄γ

(k)
n+1sign

(

t
(k),trial
n+1

)

, ¯̄ξ
(k)
n+1 =

¯̄ξn+ ¯̄γ
(k)
n+1 (4.120)
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By using equations (4.120), the traction at the discontinuity t
(k)
n+1 and the stress-like softening variable ¯̄q

(k)
n+1 are

expressed with their trial values and the softening multiplier ¯̄γ
(k)
n+1.

t
(k)
n+1 = σ

(k)
n+1 = Es

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1 − ε̄p,n

)

=

= Es

(

B̆d
(k−1)
n+1 + Ḡαn− ε̄p,n

)

+EsḠ ¯̄γ
(k)
n+1sign

(

t
(k),trial
n+1

)

=

= t
(k),trial
n+1 +EsḠ ¯̄γ

(k)
n+1sign

(

t
(k),trial
n+1

)

(4.121)

¯̄q
(k)
n+1 =







¯̄qAn+1 = ¯̄q
(k),trial
n+1 −Ks ¯̄γ

(k)
n+1; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄qBn+1 = σfs; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

> σfs
(4.122)

Obtained expressions are inserted in equation ¯̄φ
(k)
n+1 = 0, coming from loading/unloading conditions (4.78).

¯̄φ
(k)
n+1 =

∣
∣
∣t
(k)
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k)
n+1

)

= 0 ⇔ t
(k)
n+1 =

(

σfs− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

(4.123)

After a short derivation we get two expressions for ¯̄γ
(k)
n+1, depending on the expression, used for ¯̄q

(k)
n+1.

¯̄γ
(k)
n+1 =







¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

−ḠEs+Ks
; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

−ḠEs
; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

≥ σfs

(4.124)

The tangent modulus is computed as the derivative of traction at the discontinuity over the displacement jump. If

¯̄γ
(k)
n+1 > 0, traction takes the value from (4.123). Equations (4.122) and (4.120) are used to express the traction as

a function of displacement jump. If ¯̄γ
(k)
n+1 = 0, the displacement jump remains constant, while the traction changes

to satisfy the local equilibrium with stress in the layer. The tangent modulus cannot be determined, but it is not

required in further computation.

∂t

∂α

∣
∣
∣
∣

(k)

n+1

=







not defined; ¯̄γ
(k)
n+1 = 0

Ks; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 < σfs

0; ¯̄γ
(k)
n+1 > 0, ¯̄q

(k)
n+1 = σfs

(4.125)

The discontinuity flag is set to crack
(e),i
n+1 = true.

4.3.2 Computation of nodal degrees of freedom

In this section we will describe the computations of phase (B) of k-th iteration, mentioned in the introduction of

section 4.3. In this phase, a linearized form of equilibrium equations (4.82) is solved to provide the k-th update

of the nodal displacements/rotations at pseudo-time point τn+1. The computation is performed with known values

of internal variables for each layer of each finite element - D̄
(e),i,(k)
n+1 , ξ̄

(e),i,(k)
n+1 , ¯̄D

(e),i,(k)
n+1 , ¯̄ξ

(e),i,(k)
n+1 for a concrete
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layer, and ε̄
(e),i,(k)
p,n+1 , ξ̄

(e),i,(k)
n+1 , α

(e),i,(k)
n+1 , ¯̄ξ

(e),i,(k)
n+1 for a layer of reinforcement - freshly updated in preceding phase

(A) of the same iteration. Since the nodal degrees of freedom are generally common to several finite elements,

the equations of phase (B) must be handled on structural (global) level. Hence, they are also referred to as global

equations.

The first of equations (4.82) would be sufficient for calculating the new values of generalized displacements d
(e),(k)
n+1 ,

if all displacement jumps α
(e),i,(k)
n+1 were fixed at the values, computed in phase (A). To improve convergence, how-

ever, it is useful to update the displacement jumps as well. For that purpose, the second of equations (4.82)

are engaged. Actually, they have once already been satisfied by using expression (4.40) for the traction at the

discontinuity, but that equality held for the displacements from the previous iteration d
(e),(k−1)
n+1 . Updating the dis-

placements would disrupt the equilibrium between the traction at the discontinuity and the stress in the layer, unless

the displacement jumps are updated as well. Solving the whole system of equations (4.82) therefore promises a

more accurate solution.

4.3.2.1 Linearization of equilibrium equations

The first of equations (4.82) ensures the equilibrium of the structure, i.e. of its each and every node. It is linearized

around the current values of nodal degrees of freedom of the structure d
str,(k−1)
n+1 .

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

︸ ︷︷ ︸

K
str,(k)
n+1

∆d
str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 ,

∂f
ext,str
n+1

∂d
str,(k−1)
n+1

= 0 (4.126)

The derivative on the left side of the equation is designated with K
str,(k)
n+1 and named the tangent stiffness matrix of

the structure. ∆d
str,(k)
n+1 is the sought update of the nodal displacements in this iteration. The vector of external forces

f
ext,str
n+1 represents the loading, which is defined in advance for each pseudo-time point τn+1 and is independent of

the nodal displacements. The vector of internal forces f
int,str,(k)
n+1 is computed from contributions of individual finite

elements, according to equation (4.25). Matrices P(e) and R(e) are constant.

f
int,str,(k)
n+1 =

nFE

∑
e=1

P(e)T R(e)−1

f
int,(e),(k)
n+1

K
str,(k)
n+1 =

∂f
int,str,(k)
n+1

∂d
str,(k−1)
n+1

=
nFE

∑
e=1

P(e)T R(e)−1 ∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

(4.127)

Let us recall the relation (4.18) between the vector of nodal displacements of a finite element d
(e),(k−1)
n+1 and the

vector of nodal displacements of the structure d
str,(k−1)
n+1 . The derivative of one over the other will prove useful.

d
(e),(k−1)
n+1 = R(e)P(e)d

str,(k−1)
n+1 ⇒

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

= R(e)P(e) (4.128)

Internal forces f
int,(e),(k)
n+1 of finite element (e) are defined in equation (4.34) as a sum of contributions of nL

layers. Contributions f
int,(e),i,(k)
n+1 of the n

(e)
CL cracked layers are functions of nodal displacements d

(e),(k−1)
n+1 and

displacement jumps α
(e),i,(k)
n+1 , while the contributions of the remaining (non-cracked) layers depend solely on the



Jukić, M. 2013. Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu.
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nodal displacements. For the sake of clarity it is assumed that the cracked layers are numbered with consecutive

numbers from 1 to n
(e)
CL.

f
int,(e),(k)
n+1 =

nL

∑
i=1

f
int,(e),i,(k)
n+1 =

n
(e)
CL

∑
i=1

f
int,(e),i,(k)
n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1

)

+
nL

∑
i=n

(e)
CL

+1

f
int,(e),i,(k)
n+1

(

d
(e),(k−1)
n+1

)

(4.129)

The derivative of f
int,(e),(k)
n+1 over d

str,(k−1)
n+1 , which appears in expression (4.127), is developed as follows:

∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=

n
(e)
CL

∑
i=1











∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
fd,(e),i,(k)
n+1

+
∂f

int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

K
fα,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1











R(e)P(e)

︷ ︸︸ ︷

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1

︷ ︸︸ ︷

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

R(e)P(e)

︷ ︸︸ ︷

∂d
(e),(k−1)
n+1

∂d
str,(k−1)
n+1

(4.130)

The derivatives of f
int,(e),i,(k)
n+1 , marked with K

fd,(e),i,(k)
n+1 and K

fα,(e),i,(k)
n+1 , can be computed and the last term of both

sums has been defined in (4.128). The only unknown term ∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1 is determined by the second of

equilibrium equations (4.82), which is linearized and solved locally, i.e. independently for each finite element and

layer. This can be done because h
(e),i,(k)
n+1 depends on the nodal displacements of a single finite element and on the

displacement jump of a single layer.

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

K
hd,(e),i,(k)
n+1

∆d
(e),(k)
n+1 +

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

K
hα,(e),i,(k)
n+1

∆α
(e),i,(k)
n+1 =−h

(e),i,(k)
n+1 = 0 ⇒

⇒ ∆α
(e),i,(k)
n+1 =−

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

︸ ︷︷ ︸

∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1

∆d
(e),(k)
n+1

(4.131)

Note that each h
(e),i,(k)
n+1 , computed by (4.39), evaluates to zero because the traction at the discontinuity t

(e),i,(k)
n+1

has been computed by expression (4.40). The derivatives, designated with K
hd,(e),i,(k)
n+1 and K

hα,(e),i,(k)
n+1 can be

easily calculated. Equation (4.131) defines the relation between the increment of nodal displacements ∆d
(e),(k)
n+1

and the increment of displacement jump ∆α
(e),i,(k)
n+1 in the i-th layer of the finite element. Since we are dealing with

linearized equations, the derivative ∂α
(e),i,(k)
n+1 /∂d

(e),(k−1)
n+1 is equal to the ratio of the increments.

∂α
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=−
(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1 (4.132)
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We can rewrite expression (4.130), now being able to compute all its components.

∂f
int,(e),(k)
n+1

∂d
str,(k−1)
n+1

=

n
(e)
CL

∑
i=1

(

K
fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

)

︸ ︷︷ ︸

K̂
(e),i,(k)
n+1

R(e)P(e)+

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1 R(e)P(e)

(4.133)

The expression in parenthesis, marked with K̂
(e),i,(k)
n+1 , is the contribution of a cracked layer to the tangent stiffness

matrix of finite element K
fd,(e),i,(k)
n+1 is the contribution of an non-cracked layer. Finally, we can assemble the

tangent stiffness matrix of the structure by inserting (4.133) into (4.127).

K
str,(k)
n+1 =

nFE

∑
e=1

P(e)T R(e)−1






n
(e)
CL

∑
i=1

K̂
(e),i,(k)
n+1 +

nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1






︸ ︷︷ ︸

K
(e),(k)
n+1

R(e)P(e) (4.134)

Here K
(e),(k)
n+1 is the (symmetric) tangent stiffness matrix of finite element (e).

4.3.2.2 Components of internal forces and stiffness matrix

Contribution f
int,(e),i,(k)
n+1 of i-th layer to internal forces of element (e) is computed according to equation (4.34),

where stress takes the values computed in phase (A) of this iteration. In order to determine the components of the

stiffness matrix, h
(e),i,(k)
n+1 must be written as well. It is computed in accordance with (4.39) and (4.40).

f
int,(e),i,(k)
n+1 =

(

B̆iTσ
(e),i,(k)
n+1 + B̆∗Tτ

(e),i,(k)
n+1

)

AiL, h
(e),i,(k)
n+1 =Ai

(

−σ
(e),i,(k)
n+1 + t

(e),i,(k)
n+1

)

(4.135)

To obtain layer components of the element stiffness matrix, expressions (4.135) are differentiated over nodal de-

grees of freedom and over displacement jumps.

K
fd,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=



B̆iT ∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

B̆i
︸︷︷︸

∂ε̄/∂d

+ B̆∗T ∂τ

∂γ

∣
∣
∣
∣

(e),i,(k)

n+1

B̆∗
︸︷︷︸

∂γ/∂d



AiL

K
fα,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=



B̆iT ∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

Ḡi
︸︷︷︸

∂ε̄/∂α



AiL

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=



−
∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

B̆i
︸︷︷︸

∂ε̄/∂d



Ai

K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=



−
∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

Ḡi
︸︷︷︸

∂ε̄/∂α

+
∂t

∂α

∣
∣
∣
∣

(e),i,(k)

n+1



Ai

(4.136)
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The tangent modulus (∂τ/∂γ )
(e),i,(k)
n+1 for shear is defined by equation (4.84). The tangent moduli (∂σ/∂ε̄ )

(e),i,(k)
n+1

and (∂t/∂α )
(e),i,(k)
n+1 are defined by equations (4.92) and (4.105) for concrete, and by equations (4.113) and (4.125)

for reinforcement.

The only exception is the elastic step in a cracked layer of reinforcement (when ¯̄γ
(k)
n+1 = 0). The derivative

(∂t/∂α )
(e),i,(k)
n+1 is not defined in that case, neither is it required. Although α

(e),i,(k)
n+1 appears in the expression

for internal forces, it appears as a constant, and f
int,(e),i,(k)
n+1 is function of nodal displacements d

str,(k−1)
n+1 alone. The

component K
fα,(e),i,(k)
n+1 from equation (4.130) is therefore zero for that layer, and the contribution of the layer to

the element tangent stiffness matrix consists solely of the part K
fd,(e),i,(k)
n+1 , the same as for a non-cracked layer.

α
(e),i,(k)
n+1 = const. ⇒ f

int,(e),i,(k)
n+1 = f

int,(e),i,(k)
n+1

(

d
str,(k−1)
n+1

)

⇒







K
fα,(e),i,(k)
n+1 = 0

K̂
(e),i,(k)
n+1 = K

fd,(e),i,(k)
n+1

(4.137)

4.3.2.3 Solution of global equations

The system of global equilibrium equations (4.126) is rewritten in a clearer form.

K
str,(k)
n+1 ∆d

str,(k)
n+1 = ∆f

str,(k)
n+1 , ∆f

str,(k)
n+1 = f

ext,str
n+1 − f

int,str,(k)
n+1 (4.138)

The external forces are an input to the analysis, internal forces are defined by equations (4.127), (4.129) and

(4.135), and the tangent stiffness matrix of the structure is defined by (4.134) and (4.136). Finally, we can compute

the increments and update the nodal displacements of the structure.

∆d
str,(k)
n+1 =

(

K
str,(k)
n+1

)−1

∆f
str,(k)
n+1 , d

str,(k)
n+1 = d

str,(k−1)
n+1 +∆d

str,(k)
n+1 (4.139)

The updates of the displacement jumps could be computed from (4.131), but there is no benefit from that because

they will be recomputed anyway in phase (A) of the next iteration.

The iterations at pseudo-time τn+1 are repeated until the tolerance requirements are met.

∥
∥
∥∆f

str,(k)
n+1

∥
∥
∥< tol,

∥
∥
∥∆d

str,(k)
n+1

∥
∥
∥< tol (4.140)

When the converged solution is found, we proceed to the next pseudo-time step.

4.4 Numerical examples

In this section we present a set of numerical examples to assess the ability of the derived element to simulate failure

of reinforced concrete beams and frames. The element has been programmed in AceGen [68] implemented into

the finite element program AceFEM [69].

4.4.1 One element tension and compression tests

We analyze a beam in Fig. 4.16, clamped at one end and subjected to prescribed axial displacement u at the other

end. Corresponding reaction F is computed. With this test, we check response of concrete, steel and reinforced
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beams in tension and compression. The chosen values of some material parameters may be unrealistic, but they

were chosen in order to clearly present the behavior of models used for concrete and steel.

x
L

F

CONCRETE

b

h

STEEL

AS,2

AS,1

REINF. CONC.

aS,1

aS,2

Figure 4.16: Beam in pure tension/compression: geometry.

Slika 4.16: Nosilec v čistem nategu/tlaku: geometrija.

4.4.1.1 Concrete beam

Concrete beam of rectangular cross-section is modeled with one element with two layers. The imposed axial dis-

placement produces either tension or compression. The geometry and the material data are: beam length is L =

2.5m, cross-section width is b = 0.2m, cross-section height is h = 0.5m, elastic modulus is Ec = 4×107kNm−2,

elasticity limit in compression is σdc = 40820kNm−2, limit strength in compression is σfcc = 44902kNm−2, hard-

ening modulus in compression is Hcc = 2 × 106kNm−2, softening modulus in compression is K∗
cc = −5.2 ×

106kNm−3, limit strength in tension is σfct = 4000kNm−2, and softening modulus in tension is K∗
ct = −8 ×

106kNm−3. By setting σdt > σfct we assume no damage of the bulk in tension before crack formation.

The diagrams in Fig. 4.17 show computed elasto-damage relations between the end force F and the end displace-

ment u when the beam is either in tension or compression. The left image represents the tensile response, which is

linear elastic, followed by linear softening. Unloading lines return toward the origin, which is typical for a damage

model. The right image shows the response in compression. Initial elastic part is followed by damage hardening,

which is not linear (although not far from it for this particular data). The softening line is linear. Unloading, both

from hardening and softening, returns linearly toward the origin.
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Figure 4.17: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure

compression (right).

Slika 4.17: Diagram osna sila - pomik za betonski nosilec v čistem nategu (levo) in čistem tlaku (desno).

Response is characterized by the following facts: (i) single strain-like internal variable ¯̄ξic controls softening both in

tension and compression, (ii) current values of compliance moduli (D̄i and ¯̄D
i
) are transferred from compression
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to tension and vice versa, (iii) once softening is activated, the hardening variables D̄i and ξ̄ic remain unchanged. Of

course, the elasto-damage concrete material model can be carefully designed to comply with specific experimental

results, however, this is beyond the scope of this work. The results in Fig. 4.18 and Fig. 4.19 illustrate that the

present elasto-damage material model is able to describe well enough the common cases of alternating load sign,

although it has not been designed for cyclic loading.

u

F

u

F

Figure 4.18: Axially loaded concrete beam: switching from softening in tension to compression (left)

and back to tension (right).

Slika 4.18: Osno obremenjen betonski nosilec: prehod iz mehčanja v nategu v tlak (levo) in nazaj v

nateg (desno).

u

F

u

F

u

F

Figure 4.19: Axially loaded concrete beam: switching from hardening in compression to tension (left)

and back to compression (middle). Switching from softening in compression to tension (right).

Slika 4.19: Osno obremenjen betonski nosilec: prehod iz utrjevanja v tlaku v nateg (levo) in nazaj v tlak

(sredina). Prehod iz mehčanja v tlaku v nateg (desno).

Behavior of implemented model for a beam switching from tension to compression (or from compression to

tension) is shown in Fig. 4.18 and Fig. 4.19. On these figures, the light-gray line represents F − u curves for

monotonically increasing tensile and compressive forces. The used data is the same as the above, except for

σfct = 2×104kNm−2. Fig. 4.18 (left) shows transition from softening in tension to softening in compression. This

situation is very uncommon in non-cyclic loading. It may happen that a layer that was in tension softening becomes

compressed (e.g. when the neutral axis of the element shifts), however, the compressive stress would normally be

far away from the compressive strength. The case, shown in Fig. 4.18 (right), is far more common. Fig. 4.19 shows

transition from compression to tension. For example, Fig. 4.19 (right) presents path from compression softening

to tension: since σfct is much lower than σfcc, the carrying capacity in tension is lost due to ¯̄ξic accumulated in

compression.
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4.4.1.2 Steel beam

Steel beam is modeled with one element with two layers. The following data is used: beam length is L =

2.5m, cross-sections of both layers are As,1 = As,2 = 0.001m2, distances of layer axes from the beam axis are

h/2− as,1 = h/2− as,2 = 0.21m (as,1 = as,2 = 0.04m), elastic modulus is Es = 2×108kNm−2, elasticity limit is

σy = 4×105kNm−2, failure strength is σfs = 5×105kNm−2, hardening modulus is Hs = 107kNm−2, and softening

modulus is Ks =−5×107kNm−3.

Diagram in Fig. 4.20 shows elasto-plastic relation between the end force F and the end displacement u in tension.

The initial linear elastic response is followed by linear plastic hardening and linear plastic softening with unloading

lines, parallel to the initial loading line. Response of the beam in compression is identical.

0.01 0.02 0.03 0.04
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400
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800

1000

F @kND

Figure 4.20: Axial force - displacement diagram for steel beam (layer) in pure tension.

Slika 4.20: Diagram osna sila - pomik za jekleni nosilec (sloj) v čistem nategu.

The diagrams in Fig. 4.21 show response of the beam when loading switches from tension to compression. The

light grey lines represent the response of a monotonically loaded beam. The left image is characteristic for isotropic

hardening - material yields in compression at the same (absolute) value of F , at which unloading started in tension.

If loading is still increased in compression, as shown in the middle image of Fig. 4.21, softening occurs at the same

force F as in monotonic loading, but at a smaller displacement u, due to accumulation of plastic deformations in

both tension and compression. Change of load sign in softening, Fig. 4.21 (right), produces an equivalent response

- unloading is parallel to the elastic loading, and softening in compression begins at the same (absolute) value of

F , at which unloading started in tension.

u

F

u

F

u

F

Figure 4.21: Axially loaded steel beam: switching from hardening in tension to compression (left) and

back to tension (middle). Switching from softening in tension to compression (right).

Slika 4.21: Osno obremenjen jekleni nosilec: prehod iz utrjevanja v nategu v tlak (levo) in nazaj v nateg

(sredina). Prehod iz mehčanja v nategu v tlak (desno).
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4.4.1.3 Reinforced concrete beam

Reinforced concrete beam is composed from the two previously presented beams, see Fig. 4.16. Geometry and

material properties are listed in sections 4.4.1.1 and 4.4.1.2. The beam is modeled with one finite element with ten

concrete layers and two layers of reinforcement. Diagrams in Fig. 4.22 display the responses of the beam under

tensile and compressive load. In tension (left image), the first peak represents the point when concrete enters the

softening phase and the force F begins to drop. When the concrete breaks completely, the whole load is taken by

the two reinforcement layers, which are still elastic. Force F starts rising again. Hereafter, the diagram is equal to

the response of the steel beam in Fig. 4.20.

The diagram in Fig. 4.22 (right) shows the response of the beam in compression. After the initial elastic part, the

stiffness of the beam drops around F = 4500kN due to micro-cracking of concrete, and again at approximately

F = 5000kN due to yielding of reinforcement. The peak of the diagram marks the moment when concrete begins

to soften. Force F drops suddenly, until concrete loses all carrying capacity and only the reinforcement remains to

take the load. From now on, the diagram is the same as in Fig. 4.20. The unloading lines return toward the origin,

until reinforcement enters hardening phase and first plastic deformations occur. The slope of the unloading lines

(axial stiffness of the element) keeps decreasing until the stress in concrete drops to zero. Afterwards it remains

constant and only plastic deformations increase. Like in tension, the diagram is a superposition of diagrams of

concrete (Fig. 4.17) and steel (Fig. 4.20).
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Figure 4.22: Axial force - displacement diagrams for reinforced concrete beam in pure tension (left)

and pure compression (right).

Slika 4.22: Diagram osna sila - pomik za armiranobetonski nosilec v čistem nategu (levo) in čistem

tlaku (desno).

4.4.2 Cantilever beam under end moment

We analyze a reinforced concrete cantilever beam with rectangular cross-section under end moment, shown in

Fig. 4.23. The load is applied by imposing the rotation at the free end of the beam. The length of the beam is

L= 1m, the width and the height of the cross-section are b= 0.3m and h= 0.4m. Bottom and top reinforcements

are As,1 = As,2 = 0.001256m2 and they are positioned at a1 = a2 = 0.05m from the edges of the concrete cross-

section. Material properties of concrete are: elasticity modulus Ec = 3.3 × 107kNm−2, elasticity limit σdc =

15200kNm−2, ultimate stress in compression σfcc = 38000kNm−2, ultimate stress in tension σfct = 1815kNm−2,

hardening modulus in compression Hcc = 3.32 × 107kNm−2, softening modulus in compression K∗
cc = −5 ×

106kNm−3 and softening modulus in tension K∗
ct = −106kNm−3. Material properties of steel are: elasticity

modulus Es = 2× 108kNm−2, yield stress σy = 4× 105kNm−2, ultimate stress σfs = 5× 105kNm−2, hardening

modulus Hs = 2.665×106kNm−2 and softening modulus Ks =−5×107kNm−3.
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Figure 4.23: Cantilever beam under end moment: geometry.

Slika 4.23: Konzola, obremenjena z momentom: geometrija.

4.4.2.1 Mesh of equal finite elements

The beam is modeled with a mesh of identical finite elements, each consisting of 10 concrete layers and 2 layers

of reinforcement. Fig. 4.24 (left) displays the relation of moment M versus rotation θ at the end of the beam for

different meshes. The diagram can be divided into three parts. In part 1, most of the beam is still elastic, except for

some concrete layers that crack in tension, slightly decreasing the stiffness of the element. Part 2 is characterized

by yielding of tensile reinforcement, which causes a plateau in the response curve. More concrete layers break

in tension and micro-cracking occurs in concrete in compression. The resistance of the beam increases until the

tensile reinforcement begins to soften, which marks the beginning of part 3 of the response curve. Hereafter, the

moment drops toward zero. Softening of concrete in compression does not occur at all.
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Figure 4.24: Moment - rotation diagrams for cantilever beam under end moment: original softening

moduli (left), softening moduli modified according to length of FE (right).

Slika 4.24: Diagram moment - zasuk za konzolo, obteženo z momentom: originalni moduli mehčanja

(levo), moduli mehčanja prirejeni glede na dolžino KE (desno).

Fig. 4.24 (left) shows that part 3 of the diagram depends on the mesh. The slope of the softening line decreases with

increasing number of finite elements. This is caused by simultaneous appearance of multiple smaller discontinuities

in finer meshes, as opposed to one big discontinuity in a mesh with a single FE. The traction at the discontinuity

decreases with the increase of its size. It is therefore understandable that, at the same value of imposed end rotation

θ, a coarser mesh produces a lower moment M . The mesh dependency is also present in the first two parts of the

diagram, where the concrete layers crack in tension. In part 1, the slower decrease of traction at the discontinuity

in finer meshes manifests in a higher yield moment. In part 2, the effect is more evident because the force in

plastified tensile reinforcement changes very slowly, and the different tractions in tensile concrete layers have a

greater influence.

If the softening moduli of steel and concrete are modified according to the length of FE (i.e. multiplied with the

number of FE in the mesh), the results are the same for all meshes, Fig. 4.24 (right). However, this is not a proper
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solution of the problem because it interferes with the constitutive law at the discontinuity, which is a material

property and should not be affected by the choice of a mesh.

4.4.2.2 Weaker reinforcement in one of the finite elements

The mesh dependency problem, described above, resembles the situation, encountered with the stress resultant

Euler-Bernoulli element with embedded discontinuity in rotation in chapter 2. There, the problem is solved by

weakening one element of the mesh. When the weak element starts to soften, the other elements have to unload

to satisfy the equilibrium and can never reach their failure moments. We will apply the same principle to the

multi-layer element.

Since the softening of the beam in part 3 of the M − θ diagram is caused by failure of tensile reinforcement, it is

enough to create a weakness in reinforcement. Ultimate stress σfs is slightly increased in all but one finite element

of the mesh to preserve the original value in the weak element. When the ultimate stress is reached in the weakest

reinforcement layer, the moment in that element begins to decrease. The remaining elements in the mesh have to

unload to preserve equilibrium and reinforcement in those elements cannot reach the (increased) ultimate stress.

This leads to mesh independent part 3 of the diagrams in Fig. 4.25 (left). Such solution is only possible, if failure

of the cross-section is caused by softening of reinforcement.
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Figure 4.25: Moment - rotation diagrams for cantilever beam under end moment: weaker reinforcement

in one of the finite elements (left), weaker concrete and reinforcement in one of the elements (right).

Slika 4.25: Diagram moment - zasuk za konzolo, obteženo z momentom: malce šibkejša armatura v

enem od končnih elementov (levo), šibkejša armatura in beton v enem od elementov (desno).

Mesh dependency in the first two parts of the response cannot be avoided in this manner, because it is created

by simultaneous occurrence of multiple discontinuities in concrete in tension. One would assume that weakening

concrete in one of the elements would solve the problem, but it turns out differently. Concrete layer in the weak

element enters the softening phase sooner than in the remaining elements, but the moment in that element con-

tinues to grow along with the force in tensile reinforcement. The moment in the rest of the finite elements grows

accordingly, and just a little later the concrete begins to soften there as well.

Fig. 4.25 (right) shows M − θ diagrams of a beam, modeled with two finite elements, one of them weaker. In

the strong element, failure stresses of steel σfs and concrete in tension σfct are increased by different factors. The

diagrams are compared to response of a beam, where weakness is only created in reinforcement. The factor is

irrelevant in case of steel - the increased σfs in the strong element will not be reached, whether it is 1% or 100%

higher than original. Situation is different in concrete. If σfct is increased by 1% or 10%, the intervention has little

effect on the response. Concrete layers of the strong element hold on a little longer in tension, but fail soon after

the weak ones. If value of σfct is doubled, the tensile concrete layers become too strong and increase the stiffness

of the element considerably.
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4.4.3 Cantilever beam under end transversal force

A cantilever beam is subjected to prescribed lateral displacement at the free end, see Fig. 4.26. The length of the

beam is L= 2.5m, the width and the height of the cross-section b= 0.2m and h= 0.5m. The tensile and compres-

sive reinforcement are As,1 =As,2 = 0.001m2 and the distances from the center of the reinforcement layers to the

edges of the concrete cross-section are a1 = a2 = 0.04m. Material properties of concrete are: elasticity modulus

Ec = 4× 107kNm−2, elasticity limit σdc = 40820kNm−2, ultimate stress in compression σfcc = 44902kNm−2,

ultimate stress in tension σfct = 4000kNm−2, hardening modulus in compression Hcc = 2×106kNm−2, softening

modulus in compression K∗
cc =−5.2×105kNm−3 and softening modulus in tension K∗

ct =−8×105kNm−3. Ma-

terial properties of steel are: elasticity modulus Es = 2× 108kNm−2, yield stress σy = 4× 105kNm−2, ultimate

stress σfs = 5×105kNm−2, hardening modulus Hs = 107kNm−2 and softening modulus Ks =−3×107kNm−3.

The beam is modeled with different meshes of identical finite elements with ten layers of concrete and two layers

of reinforcement.

x
L

F

b

h

AS,2

AS,1

aS,1

aS,2

Figure 4.26: Cantilever beam under end transversal force: geometry.

Slika 4.26: Konzola, obremenjena s prečno silo: geometrija.

Moment at the support versus imposed lateral displacement diagrams are presented in Fig. 4.27 (left). The diagram

for a single element mesh deviates substantially, because the derived Timoshenko beam element is only able to

describe constant stress along the length of each layer. A finer mesh is required for a better approximation of linear

stress distribution in the tested beam. Meshes of two or more elements give approximately the same value of the

moment at which the tensile reinforcement yields, but the length of the yield plateau only stabilizes for meshes of

ten or more elements.
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Figure 4.27: Moment at support - transversal displacement diagrams for cantilever beam under end

transversal force: original softening moduli (left), moduli modified according to length of FE (right).

Slika 4.27: Diagram moment ob podpori - prečni pomik za konzolo, obremenjeno s prečno silo:

originalni moduli mehčanja (levo), moduli mehčanja prirejeni glede na dolžino KE (desno).
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The same beam is analyzed again under a different load. Instead of the force, a moment is applied at the free

end, producing a constant moment over the length. This allows us to model the beam with a single finite element

and avoid the influence of mesh refinement on the results. Results for the one element mesh are presented as

diagram of moment at the support versus lateral displacement at the free end - the black dashed line in Fig. 4.27.

Although we cannot expect the curves of different load cases to match, the reinforcement should yield at the same

moment. However, comparison in Fig. 4.27 (left) shows that the beam under end force withstands substantially

higher moment than the beam under end moment, before yielding.

Analysis of the beam under end force is repeated with a modified set of softening moduli - original values are

scaled according to the length of the finite elements (multiplied with the number of FE in the mesh). Results are

presented in Fig. 4.27 (right). In these diagrams, the “yield moment” decreases for finer meshes, and for a mesh

of ten elements gets very close to the value from the “constant moment” diagram. The ultimate moment is still a

little higher. Another change is evident in the right image - the softening parts of the diagrams are more parallel

than before and even grow steeper for finer meshes.

Let us take a closer look at what happens inside the finite element. The stress σi is constant over the length of each

layer. The resulting moment M , computed from equation (4.141), is constant as well.

M = ∑
i

−yiσiAi (4.141)

The internal forces fθ,int, defined by equation (4.33), are different from M , however. After inserting expressions

(4.4) for B and B∗, and defining shear force Q= ∑
i
τ iAi, we obtain the following expressions for nodal moments:

f int
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= ∑
i
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1
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2
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(4.142)

We can see that the two moments have a different absolute value. The difference L(e)Q, where L(e) is the length

of the finite element, derives from the shear stress, and it enables the finite element to deal with linear moment

in the analyzed structure. Based on equation (4.142), we can characterize M as the average moment in the finite

element.

We say that an element yields when the stress in tensile reinforcement reaches the yield value. The matching yield

moment My is computed from equation (4.141). But when M reaches the yield moment, the corresponding nodal

moments fθ,int take the values from (4.142), which can differ significantly from My , especially in a coarse mesh.

The most evident example is the mesh, composed of a single finite element. Since the moment is zero at the free

end, the moment at the support is twice as big as the average moment M . When the tensile reinforcement yields,

the moment at the support has twice the value of My . This is confirmed by comparing the “1FE” and “const. M”

diagrams in Fig. 4.27. The yield plateau in the first curve is twice as high as in the second. In the constant moment

case, the shear stress is zero and the nodal moments fθ,int are equal to the average moment M , which activates

plastification. The problems, arising from the described property of Timoshenko beam element, are avoided by

using a fine enough mesh, so the nodal moments f int
θ1

and f int
θ2

are almost equal.

Refining of the finite element mesh brings about another problem, however. As we have seen in section 4.4.2,

shortening the finite elements causes them to soften more slowly. Let us imagine a short section of the tested

cantilever beam next to the support, with the tensile reinforcement on the verge of yielding. Concrete in tension
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is already in the softening phase by then. If the section is modeled with two finite elements, instead of one, two

narrow cracks form in concrete, instead of one wide crack. Since the traction at the discontinuity drops with the

growth of the crack, the stress is greater in the short layers. Consequently, the yield moment My rises for a finer

mesh. This explains why the diagrams in Fig. 4.27 (left) never reach the “const. M” diagram, despite the ever finer

mesh.

This phenomenon is confirmed by the diagrams in Fig. 4.27 (right), where the softening moduli are modified

according to the length of the finite element. At the same size of the discontinuity, a short layer (of a short element)

produces a lower traction than a long one. In the situation, described above, two short layers with two narrow

cracks produce the same traction as the long layer with one wide crack. Therefore, the yield moment My is not

affected by the size of the finite elements. The yield plateau of the diagrams in Fig. 4.27 (right) is too high for

coarse meshes because of the linear moments in the beam, but for the mesh of ten elements the yielding begins at

almost the same moment, as in the constant moment case.

4.4.4 Simply supported beam

Simply supported beam, loaded by vertical force in the middle of the span, was analyzed in [51]. The length of

the beam is L = 5m, width and height of the cross-section are b = 0.2m and h = 0.5m, tensile reinforcement is

As,1 = 0.00161m2, compressive reinforcement isAs,2 = 0.0001m2, distances of axes of tensile and compressive

reinforcements from the edges are a1 = 0.044m, and a2 = 0.032m. Material properties of concrete are: elastic

modulus Ec = 37272000kNm−2, elasticity limit in compression σdc = 30600kNm−2, failure stress in compres-

sion σfcc = 38300kNm−2, hardening modulus in compression Hcc = 9.09× 106kNm−2, softening modulus in

compression K∗
cc = −18.165 × 106kNm−3, failure stress in tension σfct = 3727kNm−2, softening modulus in

tension K∗
ct = −3× 107kNm−3. Material properties of steel are: elastic modulus Es = 2× 108kNm−2, yield

stress σy = 4× 105kNm−2. The above data is the same as in [51]. Since failure stress σfs, hardening modulus

Hs and softening modulus Ks are not given in [51], we choose: σfs = 5× 105kNm−2, Hs = 3.3× 106kNm−2,

Ks = −4×107kNm−3. By taking σdt > σfct, we assume that concrete is elastic until the failure stress is reached

and a discontinuity appears. Due to the symmetry, only one half of the beam is modeled by using appropriate

boundary conditions, see Fig. 4.28. Analysis is performed for meshes of 5, 8, 10 and 16 FE. Each element consists

of 20 layers of concrete and 2 layers of reinforcement. Vertical displacement at the position of force F is prescribed

and reaction in the same place is computed.

L L�2

2F F

Figure 4.28: Simply supported beam: use of symmetry in computational model.

Slika 4.28: Prostoležeči nosilec: uporaba simetrije v računskem modelu.

Results are presented in Fig. 4.29. They depend only slightly on the number of the elements in the mesh. Com-

parison with results from [51] reveals that the force-displacement diagrams are similar, except for the shorter yield

plateau of present element. Label “stress result.” in Fig. 4.29 (right) refers to the stress resultant Timoshenko beam

element with embedded strong discontinuity in rotation from [51], while “multi-layer” denotes multi-layer Timo-

shenko beam element with layer-wise embedded discontinuities in axial displacement and elasto-plastic material

models for both concrete and reinforcement from [51].
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Figure 4.29: Force - displacement under the force diagrams for simply supported beam: results for

different meshes (left), comparison of results for 8 FE with results of Pham (right).

Slika 4.29: Diagram sila - pomik pod silo za prostoležeči nosilec: rezultati za različne mreže končnih

elementov (levo), primerjava rezultatov za 8 KE s Phamovimi rezultati (desno).

According to Fig. 4.30 (left), which shows dependence of the results on the number of concrete layers, already ten

layers are enough for a proper description of the stress distribution over the height of the beam. Further refinement

is not necessary in this case. Fig. 4.30 (right) displays dependence of the results on the hardening modulus of

steel. We can see that lower values of Hs lengthen the plateau, while higher values increase the ultimate force F ,

which is not surprising. The softening modulus Ks does not affect the computation, since the beam collapses due

to crushing of concrete in compression, and the reinforcement does not enter the softening phase.
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Figure 4.30: Force - displacement under the force diagrams for simply supported beam: different

number of concrete layers in 5 FE mesh (left), different hardening modulus of steel in 8 FE mesh (right).

Slika 4.30: Diagram sila - pomik pod silo za prostoležeči nosilec: različno število slojev betona v mreži

s 5 KE (levo), različen modul utrjevanja jekla v mreži z 8 KE (desno).

Fig. 4.31 shows material state at some characteristic stages in the analysis, marked with red dots in the F − v

diagram. Results are shown for a mesh of 8 finite elements with 20 concrete layers. It can be seen that the beam

collapses due to concrete failure in the middle of the span. The stresses in reinforcements have not yet reached the

failure strength. Growth of the discontinuities (cracks) in concrete is shown in Fig. 4.32. The size of the cracks is

increased by factor 50. The red color represents the zone of crushing of concrete in compression.
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Figure 4.31: Simply supported beam: material state at different stages of analysis (marked with dots).

Slika 4.31: Prostoležeči nosilec: stanje materiala v posameznih fazah analize (označene s pikami).
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Figure 4.32: Simply supported beam: discontinuities (cracks) at different stages of analysis.

Slika 4.32: Prostoležeči nosilec: nezveznosti (razpoke) v posameznih fazah analize.
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4.4.5 Reinforced concrete portal frame

A two-hinge pinned single story frame in Fig. 4.33 was experimentally tested in [75] and numerically analyzed

in [76]. The height of the frame is H = 1.93m, span is L= 2.64m, width and height of rectangular cross-sections

of beam and columns are b= 0.1016m and h= 0.1524m, distances of axes of bottom and top reinforcements from

the edges of the cross-section are a1 = a2 = 0.014m. Bottom and top reinforcements of column and beam are given

in Fig. 4.33 (right). The material data for steel is: elastic modulus Es = 200000MPa, yield stress σy = 293MPa,

ultimate stress σfs = 310MPa, hardening modulus Hs = 2020MPa, softening modulus Ks = −2.5× 107kNm−3.

The material data for concrete is: elastic modulus Ec = 31500MPa, elasticity limit in compression σdc = 0.4σfcc =

14.6MPa, ultimate stress in compressionσfcc = 36.5MPa, hardening modulus in compression Hcc = 29000MPa,

softening modulus in compression K∗
cc = −4× 107kNm−3, ultimate stress in tension σfct = 0.95MPa, softening

modulus in tension K∗
ct = −1.1× 107kNm−3. By taking σdt > σfct, we assume that concrete is elastic until the

failure stress is reached and a discontinuity appears. All the above data, except for the softening moduli Ks,

K∗
cc, K∗

ct and hardening modulus Hcc, is adopted from [76]. The frame is loaded symmetrically, with two vertical

forces at distance lP = 1.09m from the axis of each column. Thus, we model one half of the frame with appropriate

boundary conditions. In analysis, the vertical displacement at location of the force P was imposed. Analysis was

performed for different meshes, ranging from 8 to 64 FE for a column, and from 5 to 40 FE for one half of the

beam.

L

H

P P

lP

w
P

0.55 m

As=2.85 cm2

As=1.43 cm2

Figure 4.33: Pinned portal frame: geometry, loading pattern and reinforcement.

Slika 4.33: Vrtljivo podprt portalni okvir: geometrija, obtežba in armatura.

Results are presented in Fig. 4.34, where relation between the force P and the vertical displacement in the middle

of the frame w is shown. The left image shows the results for the case, in which the material (not geometrical)

properties of all finite elements are the same. We can see that the results do not converge, which is caused by the

constant moment in the middle section of the span (between the forces P ). With refinement of the mesh, more

and more discontinuities occur in this part of the beam. This can be solved in a similar way as in section 4.4.2,

namely by creating a weaker element. In order to preserve the original material properties in the critical element,

we slightly increase the ultimate stress of steel σfs in all finite elements in the middle section of the span, except

for the one adjacent to the force P . Results of the analysis with a weak element are presented in Fig. 4.34 (right).

Comparison of the P −w diagram with experimental results [75] and results, reported in [76] is shown in Fig. 4.35.

The moments at the joint of the column and the beam and in the middle of the span are presented in Fig. 4.36.
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Figure 4.34: P −w diagram: results for different meshes of finite elements if all elements to the right

of force P are the same (left) and if reinforcement is weakened in one of them (right).

Slika 4.34: Diagram P −w: rezultati za različne mreže končnih elementov, če so vsi elementi desno od

sile P enaki (levo) in če je v enem od njih armatura oslabljena (desno).
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Figure 4.35: P −w diagram: comparison to experiment and results of Saje et al.

Slika 4.35: Diagram P −w: primerjava z eksperimentom in z rezultati Saje et al.
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Figure 4.36: Moments at the joint of the beam and the column (left) and in the middle of the span

(right): comparison to experiment and results of Saje et al.

Slika 4.36: Moment na stiku stebra in prečke (levo) ter na sredini razpona (desno): primerjava z

eksperimentom in z rezultati Saje et al.

Progression of damage, yielding and softening of material is shown in Fig. 4.37, where material state is presented

element-wise and layer-wise for different stages of the analysis, performed on the mesh of 32 FE in the column and

20 FE in the half-beam. If we examine the elements near the inflection point of the beam, where the moments are

close to zero, we can see transition of some layers from compression to tension and vice versa. This happens due
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Figure 4.37: Portal frame: material state at different stages of analysis (marked with dots).

Slika 4.37: Portalni okvir: stanje materiala v posameznih fazah analize (označene s pikami).
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Figure 4.38: Portal frame: discontinuities (cracks) at different stages of analysis (marked with dots).

Slika 4.38: Portalni okvir: nezveznosti (razpoke) v posameznih fazah analize (označene s pikami).
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to shifting of the neutral axis and corresponds to the situation in Fig. 4.18 (left). The cyan color designates a layer

that has developed a discontinuity in tension and was then loaded in compression. In this case, the compressive

stress values are well below σfcc.

Fig. 4.38 shows the discontinuities in concrete, increased by factor 50, for the phases of the analysis, marked with

the red dots. We can see that the greatest part of damage occurs in the middle and at the end of the beam. In the

three rightmost elements (to the right of the load P ) the cracks grow equally at first. But when the ultimate stress

is reached in the tensile reinforcement of the weaker element, the cracks in the remaining elements stop growing.

They do not close because of the plastic deformations in steel.

4.4.6 Two story reinforced concrete frame

Two-story reinforced concrete frame in Fig. 4.39 has been experimentally tested in [71]. Numerical analyses were

done by Pham et al. [52] and Jukić et al. [74], using stress-resultant Timoshenko and Euler-Bernoulli beam finite

elements, respectively, with embedded strong discontinuity in rotation. Analysis with multi-layered Timoshenko

beam element with layer-wise embedded discontinuities in axial displacement and elasto-plastic material models

for both concrete and reinforcement was also done in [52]. Story height of the frame is H = 2m, span is L= 3.5m.

Beam cross-section data is: width b = 0.3m, height h = 0.4m, bottom and top reinforcements As,1 = As,2 =

0.0012m2, distances of reinforcement axes from the edges a1 = a2 = 0.04m. Column cross-section data is the

same, except for a1 = a2 = 0.03m. Material properties of steel are accommodated from data reported in [71]:

elasticity modulus Es = 192500MPa, yield stress σy = 418MPa and ultimate stress σfs = 596MPa are taken directly

from [71], while the hardening modulus Hs = 2790MPa is computed in such way that the ultimate stress is reached

at the same strain as in [71], see Fig. 4.40 (left). The softening modulus is not provided in [71]. We choose

Ks =−4×107kNm−3. Material properties of concrete are also accommodated from data reported in [71]: ultimate

stress in compression σfcc = 30MPa is taken directly from [71], elasticity modulus Ec = 28600MPa and ultimate

stress of concrete in tension σfct = 1.8MPa are taken from Fig. 2 in [71]. Elasticity limit σdc = 8.5MPa and

hardening modulus Hcc = 49000MPa are computed in such way that the ultimate compressive stress is reached at

the same strain as in Fig. 6(a) in [71], see Fig. 4.40 (right). Softening moduli are not provided in [71]. We choose

K∗
cc =−2×106kNm−3 for compression and K∗

ct =−107kNm−3 for tension.
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Figure 4.39: Two story frame: geometry, loading pattern and cross-sections.

Slika 4.39: Dvoetažni okvir: geometrija, obtežba in prečni prerezi.
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Figure 4.40: Stress - strain diagrams for steel (left) and concrete in compression (right) used by

Vecchio and Emara, compared to diagrams used in present analysis.

Slika 4.40: Diagrama napetost - deformacija za jeklo (levo) in beton v tlaku (desno), ki sta ju uporabila

Vecchio in Emara, v primerjavi z diagramoma, uporabljenima v tej analizi.

Remark. The diagrams in Fig. 4.40 were obtained by modeling steel and concrete beams with one finite element

of length 2.5m and loading them in pure tension and pure compression, respectively. They show the stress σ in the

(steel or concrete) beam, depending on the displacement of the free end of the beam, divided by the length of the

beam u/L. Up to the ultimate stress, the diagrams are identical to σ−ε diagrams of steel and concrete.

The frame is modeled with different meshes of finite elements with ten layers of concrete and two layers of

reinforcement. Constant vertical force of 700kN is applied on top of each column, before the frame is pushed

horizontally at the top of the second story. Reaction F is computed at location and in direction of the imposed

displacement u.
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Figure 4.41: Response of two story frame: results for different meshes (left), comparison of results for

16 FE in a column and 14 FE in a beam with experiment and results of Pham (right).

Slika 4.41: Odziv dvoetažnega okvirja: rezultati za različne mreže končnih elementov (levo),

primerjava rezultatov za 16 KE v stebru in 14 KE v prečki s Phamovimi rezultati (desno).

Fig. 4.41 (left) shows the results of the analysis, depending on the finite element mesh. The number of the elements

ranges from 4 to 64 in columns (from the ground to the top of the frame) and from 3 to 56 in the beam, as indicated

in the legend. The greatest deviation occurs for the coarsest mesh because our FE can only describe constant

moments over its length. Therefore we need a mesh, fine enough to capture the linear moments in the structural

elements. Results for finer meshes match pretty well in the first phase but differ significantly in the softening range.

In all cases, the ultimate moment exceeds the experimental results for at least 20%. If no hardening is used for

steel, the results are closer to the experiment, although the stiffness remains too big in the first part of the response,
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see Fig. 4.41 (right). A case of unloading of the frame is shown in Fig. 4.42. Analysis was performed on a mesh

with 16 FE in columns (8 FE in each story) and 14 FE in beams. Apart from the exceeded ultimate moment,

a difference occurs in the unloading curves which are straight and a little steeper than experimental. Also, the

re-loading follows almost exactly the unloading line.
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100

200

300

400

F @kND

Figure 4.42: Response of two story frame: loading and unloading for a mesh of 16 FE in a column and

14 FE in a beam. Comparison to experiment.

Slika 4.42: Odziv dvoetažnega okvirja: obremenjevanje in razbremenjevanje za mrežo s 16 KE v stebru

in s 14 KE v prečki. Primerjava z eksperimentom.

Images in Fig. 4.44 show progression of damage and plasticity in the material at several stages of the frame

analysis, performed on a mesh with 16 FE in columns and 14 FE in beams. The stages are marked with red dots

in the response of the frame in Fig. 4.43. The legend for Fig. 4.44 is included in Fig. 4.43. Fig. 4.45 shows the

discontinuities in concrete, corresponding to the same stages of the analysis. Their sizes are increased by factor

50. The red color represents a discontinuity in compression, (zone of crushing of concrete in compression).

0.05 0.1 0.15 0.2
u @mD

100

200

300

400

F @kND
ELASTIC

HARDENING IN COMPRESSION

SOFTENING IN COMPRESSION

SOFTENING IN TENSION

COMPRESSION AFTER SOFT. IN TENS.

CONCRETE

ELASTIC

HARDENING IN TENSION

HARDENING IN COMPRESSION

SOFTENING IN TENSION

SOFTENING IN COMPRESSION

REINFORCEMENT

Figure 4.43: Two story frame: stages of analysis, corresponding to images in Figs. 4.44 and 4.45.

Slika 4.43: Dvoetažni okvir: faze analize, ki ustrezajo stanjem materiala na slikah 4.44 in 4.45.

4.5 Concluding remarks

We have presented a planar multi-layer Timoshenko beam finite element, composed of several concrete and steel

reinforcement layers. Small deformations are assumed in the beam kinematics. Deformation of an individual layer

is computed from axial deformation of the middle axis of the beam and rotation of the cross-section. Contribution

of the rotation depends on the distance from the middle axis. A discontinuity in axial displacement is introduced

individually into each layer. Axial response of a concrete layer is described with a damage hardening model for

the bulk and a damage softening law at the discontinuity. Axial response of a steel layer is described with isotropic
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Figure 4.44: Two story frame: material state at different stages of analysis, marked in Fig. 4.43.

Slika 4.44: Dvoetažni okvir: stanje materiala v fazah analize, označenih na sliki 4.43.



Jukić, M. 2013. Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu.
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Figure 4.45: Two story frame: discontinuities at different stages of analysis, marked in Fig. 4.43.

Slika 4.45: Dvoetažni okvir: nezveznosti v fazah analize, označenih na sliki 4.43.
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hardening plasticity model for the bulk and plastic softening cohesive model at the discontinuity. Shear response

is assumed elastic.

The finite element has been derived for analysis of reinforced concrete beams and frames up to complete failure,

providing a detailed description of material state over the cross-section. It can also be used for computation of

stress-resultant properties of different cross-sections, which are required as an input data in analysis with stress-

resultant beam finite elements, such as the one presented in chapter 2. The derived multi-layer element is not

intended for cyclic loading. Nevertheless, it can handle minor changes of the load sign, which can occur in some

layers due to shifting of the neutral axis even in monotonic loading.

Mesh dependency is observed in the case of cantilever beam under end moment if all finite elements are the same.

The reason lies in simultaneous occurrence of multiple discontinuities along the beam. In a fine mesh a large num-

ber of small discontinuities are formed, while coarse mesh creates a small number of large discontinuities. Since

traction at the discontinuity decreases with its growth, different meshes produce different moment in the beam.

The differences are greatest in the last part of the response, when the moment in the beam begins to drop due to

softening of tensile reinforcement. This can be solved by slightly weakening reinforcement in one of the elements

in the mesh, preventing occurrence of multiple discontinuities in steel along the cantilever beam. If softening of

the beam happens due to crushing of concrete in compression, the problem cannot be solved so effectively, since

there are multiple critical layers of concrete, as opposed to a single critical layer of tensile reinforcement. Minor

deviations appear in the hardening part of the beam response due to cracking of concrete in tension. This cannot be

avoided by weakening one of the elements in the mesh because the moment in the beam is still rising and, sooner

or later, concrete will crack in the remaining elements as well.

Mesh dependency due to cracking of concrete in tension is more evident in the case of cantilever beam under

end transversal force. Since the developed Timoshenko beam finite element can only describe constant state

over its length, a fine mesh is required for adequate description of linear moment along the beam. However,

shortening of the finite elements increases the number and reduces the size of discontinuities in concrete in tension,

resulting in higher traction at the discontinuity and considerably overestimated yield moment of the beam. The

same phenomenon is observed in the cantilever beam under end moment, but to a lesser extent.

Another kinematics issue should be addressed. There is no discontinuity (in rotation or axial displacement) on the

element level, since the embedded discontinuities in axial displacement are defined locally in each layer. Defor-

mation of the beam axis is always interpolated in the same way as for a regular Timoshenko beam. Even when

the element is completely broken, the middle axis is a smooth curve. The bulk of each layer slides along a path,

parallel to the middle axis. In a fine mesh, however, this may not be problematic. The critical finite element ex-

hibits a significantly decreased stiffness and greater curvature than neighboring elements, which can be interpreted

as a jump in rotation, smeared over the length of the critical element. Still, the global kinematics is not completely

accurate.

Several numerical examples and experiments from literature have been modeled with our finite element. Significant

deviation is observed in stiffness and ultimate load of the two-story RC frame. However, the shape of the loading

and unloading diagram is appropriate. Results of the simply supported beam model and the portal frame model

match well the results from the literature. Despite some deficiencies, the finite element allows for quite adequate

modeling of reinforced concrete beams and frames, based on axial responses of concrete and steel, which are easily

obtained from experiments and are independent of the cross-section geometry.
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5 VISCOUS REGULARIZATION OF SOFTENING RESPONSE FOR MULTI-LAYER

TIMOSHENKO BEAM FINITE ELEMENT

5.1 Introduction

In this chapter, we upgrade the multi-layer Timoshenko beam finite element, presented in chapter 4, by implement-

ing viscous regularization of the softening response [77]. This method can be used to prevent certain computational

problems, such as alternating between equivalent solutions [78]. In present work, we introduce viscous forces at

discontinuities to help control their development and prevent (physically) erroneous occurrence of multiple dis-

continuities in homogeneous stress field.

When several equivalent finite elements develop a discontinuity simultaneously, the viscous regularization favors

one of them. The preferred element continues to soften, while the others unload. The selection is based on the rate,

at which the discontinuities develop in different elements. The faster a discontinuity grows, the more its growth

is encouraged. Eventually, only the “fastest” element develops a discontinuity and the others unload to satisfy the

equilibrium.

Introduction of viscous regularization into the finite element slightly modifies the equilibrium equations, while the

kinematic and the constitutive equations remain unchanged. This leads to alteration of some expressions, used in

the computational procedure. In this chapter, we only derive the equations that differ from the ones in chapter 4.

The outline of the chapter is as follows. In section 5.2, we introduce the viscous forces into the virtual work

equation, derived in the previous chapter, which produces modified equilibrium equations. In section 5.3, the

modifications to the computation of internal variables are presented. Section 5.4 presents the differences in the

global computation of the nodal degrees of freedom. In section 5.5, the newly developed finite element is tested

on several numerical examples. Conclusions are given in section 5.6.

5.2 Virtual work equation

We have computed the virtual work of internal forces Gint,(e) of the finite element (e) in the previous chapter, see

equation (4.31), and we have obtained expression (5.1).

Gint,(e) =
∫

V

(ε̂σ+ γ̂τ)dV = d̂(e)T f int,(e)+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i (5.1)

Here, d̂(e) and f int,(e) are virtual nodal displacements and corresponding internal forces of element (e), α̂(e),i is the

virtual displacement jump in the i-th layer, and h(e),i is the equivalent of internal force, corresponding to α̂(e),i.

The number of cracked layers is denoted with n
(e)
CL. We enrich the standard virtual work of internal forces Gint,(e)

by adding in each discontinuity a viscous term, which depends on the rate of change of the displacement jump

α̇(e),i and on viscosity parameter ηi.
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G
int,(e)
reg =Gint,(e)+

n
(e)
CL

∑
i=1

α̂(e),i ηiα̇(e),iAi

︸ ︷︷ ︸

viscous force

= d̂(e)T f int,(e)+

n
(e)
CL

∑
i=1

α̂(e),i
(

h(e),i+ηiα̇(e),iAi
)

︸ ︷︷ ︸

h
(e),i
reg

(5.2)

ηi =

{

ηc for concrete

ηs for steel
ηc =

{

ηcc for compression

ηct for tension
(5.3)

We refer to the modified expression G
int,(e)
reg as the regularized virtual work of internal forces. Expression ηiα̇(e),iAi

represents the additional viscous force at the discontinuity in the i-th layer. For the sake of clarity, index (e) is

omitted in notations for the viscosity parameter ηi and the cross-section area of the layer Ai. Expression in the

parenthesis is further developed by applying equation (4.39) for h(e),i.

h
(e),i
reg =Ai





∫

L

Ḡiσidx+ ti



+ ηiα̇iAi =Ai





∫

L

Ḡiσidx+ ti+ηiα̇i



 (5.4)

Here, Ḡi = −1/L is the continuous part of the interpolation function for enhanced strain, σi is the stress in the

bulk, and ti is the traction at the discontinuity in the i-th layer. Index (e) is omitted in α̇i as well.

Equation (5.5) represents the weak equilibrium of the whole structure. Regularized virtual work of internal forces

is computed as a sum of contributions from all finite elements, while the virtual work of external forces is calculated

as a scalar product of the vector of virtual nodal displacements of the structure d̂str and the corresponding vector

of external forces f ext,str. The total number of finite elements in the structure is marked with nFE

Gint
reg −Gext = 0, Gint

reg =
nFE

∑
e=1

G
int,(e)
reg , Gext = d̂strT f ext,str (5.5)

We rearrange equation (5.5) by taking into account the relations between the displacements of the element d(e)

and the displacements of the structure dstr, described in section 4.2.3 of the previous chapter. This brings us to the

following system of global equations.

f int,str − f ext,str = 0

∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h
(e),i
reg = 0

(5.6)

The first equation in (5.6) represents the global equilibrium (equilibrium of each node in the structure) and it is

exactly the same as before, see equation (4.37). The second equation keeps the previous form, only the expression

h(e),i is replaced by h
(e),i
reg . If expression (5.4) is inserted, the equation can be interpreted as the local equilibrium

between the stress in the bulk σi and the traction at the discontinuity ti.

h
(e),i
reg = 0 ⇔ ti =−

∫

L

Ḡiσidx−ηiα̇i = σi−ηiα̇i (5.7)

We notice that σi and ti are no longer equal. They differ for the viscous term ηiα̇i. In this aspect, the viscous

regularization can be described as a slight alteration of the considered problem by imposing a small imbalance at

the discontinuity.
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5.3 Computation of internal variables

Introduction of viscosity into the finite element changes some equations in the computational procedure as well.

Let us first consider the local phase of the operator-split procedure, in which the internal variables of element (e)

are computed for the k-th iteration at the pseudo-time point τn+1, while the nodal displacements are fixed at the

values from the previous iteration d
(e),(k−1)
n+1 . Since each internal variable is associated with a single layer of a

single element, the computation is performed separately for each layer i.

For the sake of clarity we will omit in the rest of this section the superscript (e), denoting the finite element, and

the superscript i, denoting the layer.

Computations, described in sections 4.3.1.1, 4.3.1.2 and 4.3.1.4 of the previous chapter remain the same as before.

They concern the shear response and the hardening axial responses of the bulks of concrete and reinforcement

layers, which are described by the original rate independent models. On the other hand, the computations associ-

ated with the discontinuities alter. The approach remains the same as in the element without viscosity, but some

quantities are evaluated by different expressions.

5.3.1 Discontinuity in concrete layer

Here we describe the computational procedure for the softening phase of the concrete layer. The computation is

started by assuming an elastic step, which implies that the softening internal variables ¯̄D and ¯̄ξ∗n take the values

from the previous step. The same is true for the hardening internal variables D̄ and ξ̄.

D̄
(k)
n+1 = D̄n, ξ̄

(k)
n+1 = ξ̄n,

¯̄D
(k),trial
n+1 = ¯̄Dn,

¯̄ξ
∗(k),trial
n+1 = ¯̄ξ∗n (5.8)

The trial value of traction at the discontinuity is defined by expression (5.9), derived in appendix E. The viscous

term is expressed in the incremental form by introducing the pseudo-time increase ∆τn+1 = τn+1 − τn from the

previous to the current step. The trial value of displacement jump is evaluated according to equation (4.55).

t
(k),trial
n+1 =

B̆d
(k−1)
n+1 + D̄n

ηc
∆τn+1

αn

D̄n− Ḡ ¯̄Dn+ D̄n
ηc

∆τn+1

¯̄Dn

, α
(k),trial
n+1 = ¯̄Dnt

(k),trial
n+1 (5.9)

The local equilibrium (5.7) determines the trial value of the stress in the bulk. The rate of change of the displace-

ment jump α̇
(k),trial
n+1 is written in the incremental form, see appendix E for details.

σ
(k),trial
n+1 = t

(k),trial
n+1 +

ηc
∆τn+1

(

α
(k),trial
n+1 −αn

)

(5.10)

The trial value of the failure function ¯̄φ
(k),trial
n+1 is computed in the same way as in the previous chapter.

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfc− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−K∗
c

¯̄ξ
∗(k),trial
n+1 ,σfc

}

= ¯̄qn (5.11)
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If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

¯̄D
(k)
n+1 =

¯̄D
(k),trial
n+1 , ¯̄ξ

∗(k)
n+1 =

¯̄ξ
∗(k),trial
n+1 , α

(k)
n+1 = α

(k),trial
n+1

t
(k)
n+1 = t

(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1

(5.12)

If ¯̄φ
(k),trial
n+1 > 0, the assumed trial values are inadmissible. We have to compute the softening damage multiplier

¯̄γ
∗(k)
n+1 from equation ¯̄φ

(k)
n+1 = 0 in order to compute the new values of internal softening variables, see appendix E.

¯̄γ
∗(k)
n+1 =

¯̄φ
(k),trial
n+1

(

D̄n− Ḡ ¯̄Dn+ D̄n
ηc

∆τn+1

¯̄Dn

)

K∗
c D̄n− Ḡ+ D̄n

ηc
∆τn+1

(5.13)

If ¯̄q
(k)
n+1 = −K∗

c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

< σfc, the softening internal variables are updated, using the same equations as in

chapter 4, except that ¯̄γ
∗(k)
n+1 has a different value.

α
(k)
n+1 =

(

αmax
n + ¯̄γ

∗(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, ¯̄ξ
∗(k)
n+1 =

¯̄ξ∗n+ ¯̄γ
∗(k)
n+1,

¯̄D
(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

=
αmax
n + ¯̄γ

∗(k)
n+1

σfc+K∗
c

¯̄ξ
∗(k)
n+1

(5.14)

Here, αmax
n = ¯̄Dnt

max
n = ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

is the maximal elastic value of α for the given carrying capacity that

was reached in the last softening step. Traction at the discontinuity and stress in the layer are computed as follows.

t
(k)
n+1 =

(

σfc− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

, σ
(k)
n+1 = D̄−1

n ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

(5.15)

If −K∗
c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

)

>σfc = ¯̄q
(k)
n+1, material has lost all carrying capacity and traction at the discontinuity becomes

zero. Note that, due to viscosity, the stress in the bulk is not zero.

t
(k)
n+1 = σ

(k)
n+1 −

ηc
∆τn+1

(

α
(k)
n+1 −αn

)

= 0 (5.16)

From equation (5.16) the displacement jump is computed, see appendix E. The compliance at the discontinuity

becomes infinite because the traction has dropped to zero.

α
(k)
n+1 =−

B̆d
(k−1)
n+1 + D̄−1

n
ηc

∆τn+1
αn

Ḡ− D̄−1
n

ηc
∆τn+1

, ¯̄D
(k)
n+1 =

α
(k)
n+1

t
(k)
n+1

= ∞ (5.17)

Since the introduction of viscosity does not modify the constitutive relation at the discontinuity, the values of the

tangent modulus (∂t/∂α )
(k)
n+1 remain the same as in the previous chapter.

5.3.2 Discontinuity in reinforcement layer

In this section we describe the computational procedure for the softening phase of the reinforcement layer. We

start by assuming an elastic trial solution, keeping the softening internal variables α and ¯̄ξ at the values from the

previous step. The hardening internal variables ε̄p and ξ̄ take the values from the last step as well.
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ε̄
(k)
p,n+1 = ε̄p,n, ξ̄

(k)
n+1 = ξ̄n, α

(k),trial
n+1 = αn,

¯̄ξ
(k),trial
n+1 = ¯̄ξn (5.18)

Stress in the layer and traction at the discontinuity are computed according to equations (4.65) and (5.7), respec-

tively.

σ
(k),trial
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k),trial
n+1

)

− ε̄p,n

)

t
(k),trial
n+1 = σ

(k),trial
n+1 −

ηs
∆τn+1

(

α
(k),trial
n+1 −αn

)

︸ ︷︷ ︸

=0

= σ
(k),trial
n+1

(5.19)

The viscous term ηα̇ is written in the incremental form, as defined in appendix E. The difference in the parenthesis

is zero because the displacement jump α is fixed in the trial step (5.18). Next, the trial value of failure function
¯̄φ
(k),trial
n+1 is computed in the same way as in the previous chapter.

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),trial
n+1

)

, ¯̄q
(k),trial
n+1 = min

{

−Ks
¯̄ξ
(k),trial
n+1 ,σfs

}

= ¯̄qn (5.20)

If ¯̄φ
(k),trial
n+1 ≤ 0, the trial solution is accepted.

α
(k)
n+1 = α

(k),trial
n+1 , ¯̄ξ

(k)
n+1 =

¯̄ξ
(k),trial
n+1 , σ

(k)
n+1 = σ

(k),trial
n+1 , t

(k)
n+1 = t

(k),trial
n+1 (5.21)

If ¯̄φ
(k),trial
n+1 > 0, the assumed solution is inadmissible. The plastic softening multiplier ¯̄γ

(k)
n+1 must be computed

from ¯̄φ
(k)
n+1 = 0, in order to update the softening internal variables. The procedure is shown in appendix E.

¯̄γ
(k)
n+1 =







¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

−ḠEs+Ks+
ηs

∆τn+1

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

−ḠEs+
ηs

∆τn+1

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

> σfs

(5.22)

The internal variables are updated in the same way as before, except that ¯̄γ
(k)
n+1 takes a different value.

α
(k)
n+1 = αn+ ¯̄γ

(k)
n+1sign

(

t
(k),trial
n+1

)

, ¯̄ξ
(k)
n+1 =

¯̄ξn+ ¯̄γ
(k)
n+1 (5.23)

The stress in the bulk and the traction at the discontinuity can finally be calculated.

σ
(k)
n+1 = Es

(

ε̄
(

d
(k−1)
n+1 ,α

(k)
n+1

)

− ε̄p,n

)

, t
(k)
n+1 =

(

σfs− ¯̄q
(k)
n+1

)

sign
(

t
(k),trial
n+1

)

(5.24)

Since the introduction of viscosity does not modify the constitutive relation at the discontinuity, the values of the

tangent modulus (∂t/∂α )
(k)
n+1 remain the same as in the previous chapter.
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5.4 Computation of nodal degrees of freedom

Let us now consider the global phase of the operator-split procedure. Here, the linearized form of global equilib-

rium equations (5.6) is solved to provide the update of the nodal displacements in the k-th iteration at pseudo-time

point τn+1, while the internal variables are fixed at the values, calculated in the local phase of the same iteration.

Introduction of the viscous regularization hardly affects the global phase of the computation. The equilibrium

equations are linearized in exactly the same way as in section 4.3.2.1 of the previous chapter. The only difference

is that the quantity h
(e),i,(k)
n+1 is replaced by h

(e),i,(k)
reg,n+1 , which depends on α̇

(e),i,(k)
n+1 as well.

h
(e),i,(k)
reg,n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1 , α̇

(e),i,(k)
n+1

)

= h
(e),i,(k)
n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1

)

+ηiα̇
(e),i,(k)
n+1 Ai (5.25)

The pseudo-time derivative α̇
(e),i,(k)
n+1 is expressed in the incremental form as a function of displacement jump

α
(e),i,(k)
n+1 , as defined in appendix E.

α̇
(e),i,(k)
n+1 =

α
(e),i,(k)
n+1 −α

(e),i
n

∆τn+1
,

∂α̇
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=
1

∆τn+1
(5.26)

The stiffness matrix K
(e),(k)
n+1 of finite element (e), defined in equation (4.134), is computed by the same expression.

The term K̂
(e),i,(k)
n+1 is defined in equation (4.133).

K
(e),(k)
n+1 =

n
(e)
CL

∑
i=1

(

K
fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

)

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1 (5.27)

However, the components must be computed in accordance with the modified equilibrium equations (5.6). The dif-

ference arises with the components K
hd,(e),i,(k)
n+1 and K

hα,(e),i,(k)
n+1 , which are now defined as derivatives of h

(e),i,(k)
reg,n+1

over the nodal displacements of the element d
(e),(k−1)
n+1 and the displacement jump in the i-th layer α

(e),i,(k)
n+1 , re-

spectively.

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂d
(e),(k−1)
n+1

=
∂h

(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

+
∂α̇

(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

=0

ηiAi =
∂h

(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

(5.28)

The additional viscous term in (5.25) does not depend on the nodal displacements, so K
hd,(e),i,(k)
n+1 is computed in

exactly the same way as in chapter 4. The only modified term of the stiffness matrix is therefore K
hα,(e),i,(k)
n+1 .

K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂α
(e),i,(k)
n+1

=
∂h

(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

+
∂α̇

(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

=1/∆τn+1

ηiAi =
∂h

(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

+
ηi

∆τn+1
Ai (5.29)

Let us rewrite the components of the element stiffness matrix, defined in equation (4.136), taking into account the

corrected term (5.29).
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K
fd,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

=



B̆iT ∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

B̆i
︸︷︷︸

∂ε̄/∂d

+ B̆∗T ∂τ

∂γ

∣
∣
∣
∣

(e),i,(k)

n+1

B̆∗
︸︷︷︸

∂γ/∂d



AiL

K
fα,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=
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∣
∣
∣
∣
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Ḡi
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−
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∣
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Ai

K
hα,(e),i,(k)
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∂h
(e),i,(k)
reg,n+1

∂α
(e),i,(k)
n+1

=



−
∂σ

∂ε̄

∣
∣
∣
∣

(e),i,(k)

n+1

Ḡi
︸︷︷︸

∂ε̄/∂α

+
∂t

∂α

∣
∣
∣
∣

(e),i,(k)

n+1



Ai+
ηi

∆τn+1
Ai

(5.30)

As we have already mentioned in previous sections, introduction of viscosity does not affect the constitutive equa-

tions, so the tangent moduli in equations (5.30) stay unchanged. The remaining operations of the global computa-

tion are performed identically to the previous chapter.

Remark. Even though the internal forces of the finite element are computed by exactly the same equations, they

evaluate to a (slightly) different value than in the case without viscosity. This is due to the modified computation

of stress in the local phase of the operator-split procedure.

5.5 Numerical examples

Performance of the modified multi-layer Timoshenko beam element is tested on basic numerical examples – pure

tension/compression and pure bending. The computer code of the element has been implemented in the finite

element program AceFEM [69].

5.5.1 One element tension and compression tests

In this section we consider a beam clamped at one end. At the free end, axial displacement is imposed to produce

either pure tension or pure compression. The beam is modeled with a single finite element, therefore no benefits of

viscous regularization are expected. The purpose of this test is to examine the influence of viscosity on the results.

5.5.1.1 Concrete beam

We consider the concrete beam of rectangular cross-section, described in section 4.4.1.1 of the previous chap-

ter. We model it with one finite element with two layers. The geometry and the material data are: beam

length is L = 2.5m, cross-section width is b = 0.2m, cross-section height is h = 0.5m, elastic modulus is Ec =

4× 107kNm−2, elasticity limit in compression is σdc = 40820kNm−2, limit strength in compression is σfcc =

44902kNm−2, hardening modulus in compression is Hcc = 2×106kNm−2, softening modulus in compression is

K∗
cc = −5.2× 106kNm−3, limit strength in tension is σfct = 4000kNm−2, and softening modulus in tension is

K∗
ct = −8× 106kNm−3. By setting σdt > σfct we assume no damage of the bulk in tension before crack forma-

tion. The additional viscosity parameters for concrete in compression and tension are marked with ηcc and ηct,

respectively. They have units
[
kNm−3s

]
.

We impose the axial displacement u at the free end of the beam and compute the resulting axial force F for

different values of the viscosity parameters ηcc and ηct. Since the model is rate dependent, the loading speed must

be prescribed. We impose a unit displacement in a unit of pseudo-time (meter/second).
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Remark. The chosen loading speed 1m/s is not realistic, but that is not important, because we are dealing with

pseudo-time. Here, viscosity is not used as a material model, but as a computational aid. In this view, it could be

called pseudo-viscosity. Identical results would be computed if the loading speed was changed e.g. to 1m/h and

the units (only units, not the numbers) of the viscosity parameters were changed from kNm−3s to kNm−3h.
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Figure 5.1: Axial force - displacement diagrams for concrete beam in pure tension (left) and pure

compression (right) for different values of viscosity parameter.

Slika 5.1: Diagram osna sila - pomik za betonski nosilec v čistem nategu (levo) in čistem tlaku (desno)

za različne vrednosti viskoznega parametra.

The results are presented in Fig. 5.1. If values of the viscosity parameters are zero, the diagrams are identical to

those in figure 4.17. With increasing values of ηcc and ηct, the results begin to deviate from the original (correct)

response. The deviation occurs in the softening range, caused by the imbalance between the stress in the bulk

σ and the traction at the discontinuity t. For great values of η, the computed response exceeds considerably the

original ultimate force, the softening line is shifted to the right, and the stress in the bulk is non-zero, even when

the discontinuity fails completely. Of course, such values of viscosity parameter are too big for realistic analysis,

and are applied here for illustration purpose only. For sufficiently small η, the error is negligible.

5.5.1.2 Steel beam

We analyze the steel beam, presented in section 4.4.1.2 of the previous chapter. We model it with one element with

two layers. The material and the geometrical data is: beam length is L = 2.5m, cross-sections of both layers are

As,1 = As,2 = 0.001m2, distances of layer axes from the beam middle axis are h/2− as,1 = h/2− as,2 = 0.21m

(as,1 = as,2 = 0.04m), elastic modulus is Es = 2× 108kNm−2, elasticity limit is σy = 4× 105kNm−2, failure

strength is σfs = 5× 105kNm−2, hardening modulus is Hs = 107kNm−2, and softening modulus is Ks = −5×

107kNm−3. The additional viscosity parameter with units
[
kNm−3s

]
is marked with ηs.

We impose the axial displacement u at the free end of the beam and compute the resulting axial force F for different

values of ηs. We impose a unit displacement in a unit of pseudo-time (meter/second).

Results of the analysis are presented in Fig. 5.2. We observe a similar behavior as in concrete in compression, see

Fig. 5.1 (right). The elasto-plastic hardening response is not affected, since the viscosity only takes effect when a

discontinuity appears. In the softening range the force F rises above the original ultimate force, it drops at higher

value of the imposed displacement u, and finishes at a permanent non-zero value. When the value of ηs approaches

zero, these effects vanish and the diagram eventually matches the one in figure 4.20.
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Figure 5.2: Axial force - displacement diagram for steel beam (layer) in pure tension for different

values of viscosity parameter.

Slika 5.2: Diagram osna sila - pomik za jekleni nosilec (sloj) v čistem nategu za različne vrednosti

viskoznega parametra.

5.5.2 Tension and compression tests on a mesh of several elements

We repeat the above described uniaxial tests, now modeling the beams with several identical finite elements. We

demonstrate the mesh dependency of original results (without viscosity) and examine how they are affected by

introduction of viscosity.

5.5.2.1 Concrete beam in compression

In this example we analyze a concrete beam in pure compression. The geometrical and the material properties are

listed in section 5.5.1.1. The beam is modeled with different number of identical finite elements, each consisting

of two concrete layers. The axial displacement u of the free end of the beam is imposed at a rate of one meter per

one pseudo-second, and the axial force F is computed. At first, the viscous regularization is excluded by setting

the parameter ηcc to zero. Results for this case are shown in Fig. 5.3. We observe the typical mesh dependent

response in the softening phase, caused by simultaneous occurrence of multiple discontinuities in the beam. The

mesh dependency can be cured by slightly weakening one of the finite elements, as presented in previous chapters.

Thus only the weak element softens and the response diagrams match the “1FE” curve for all meshes.
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Figure 5.3: Axial force - displacement diagram for concrete beam in pure compression for different

meshes of finite elements - without viscosity.

Slika 5.3: Diagram osna sila - pomik za betonski nosilec v čistem tlaku za različne mreže končnih

elementov - brez viskoznosti.
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In this analysis, however, we keep all finite elements the same, and introduce viscous regularization. We perform

the analysis on a mesh of 5 identical elements. The results for different values of viscosity parameter ηcc are

presented in Fig. 5.4. For values of the parameter up to ηcc ≈ 130kNm−3s, the computed response matches the

“5FE” curve from Fig. 5.3. With further increase of ηcc, the results approach the correct response, Fig. 5.4 (left).

The best results are obtained for ηcc ≈ 260kNm−3s. If the viscosity parameter is still increased, the results worsen

again, Fig. 5.4 (right), and we already observe the unwanted side effects, namely the exceeded ultimate force and

non-zero force after the complete failure of the beam. Signs of the side effects can be seen in the left image, as

well. The softening line of the curve ηcc = 260kNm−3s is not as steep as the correct “1FE” curve in Fig. 5.3. It

resembles the curve ηcc = 300kNm−3s in Fig. 5.1 (right).
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Figure 5.4: Axial force - displacement diagram for concrete beam in pure compression for different

values of viscosity parameter (5 FE mesh).

Slika 5.4: Diagram osna sila - pomik za betonski nosilec v čistem tlaku za različne vrednosti

viskoznega parametra (mreža s 5 KE).

In the softening phase, the regularized diagram follows the original curve for a while, until the slope changes

suddenly and the force F decreases rapidly. This sudden change of slope coincides with the moment when viscosity

causes one of the finite elements to become “preferred”. Only the “preferred” element continues to soften, while

the others unload elastically. The mechanism of this phenomenon briefly described next.

Let us consider two finite elements from the mesh, and denote them with A and B. If, due to numerical error,

one of them develops a displacement jump α at a slightly faster rate than the other α̇A > α̇B , this results in a

slightly higher value of the viscous stress ηα̇A > ηα̇B . Since the bulk stress σ has to be the same in all elements to

preserve equilibrium σA = σB , it follows that tA < tB , which further increases αA and α̇A. Of course, numerical

errors affect the equality σA = σB as well, but the general idea still holds. Fast advancement of a discontinuity

further stimulates its growth, while slow advancement inhibits its development. When enough of these micro

errors accumulate, one of the elements breaks out, i.e. increases the displacement jump so fast that the others

cannot follow. The remaining elements must unload elastically to preserve equilibrium.

5.5.2.2 Steel beam

We consider a steel beam in pure tension. The material and the geometrical properties are listed in section 5.5.1.2.

The axial displacement u of the free end of the beam is imposed at a rate of one meter per one pseudo-second and

the resulting axial force F is computed. Fig. 5.5 shows the results for different finite element meshes, if no viscous

regularization is used. This is achieved by setting the viscosity parameter ηs to zero. We can see the typical mesh

dependent response, caused by simultaneous softening of all finite elements. If one of the elements were slightly

weakened, the results of all meshes would match the correct “1FE” curve.
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Figure 5.5: Axial force - displacement diagram for steel beam (layer) in pure tension for different

meshes of finite elements - without viscosity.

Slika 5.5: Diagram osna sila - pomik za jekleni nosilec (sloj) v čistem nategu za različne mreže končnih

elementov - brez viskoznosti.

The influence of viscous regularization is tested on the mesh of 5 identical elements. Results of the analysis

for different values of the viscosity parameter are shown in Fig. 5.6. Some resemblance to Fig. 5.4 is observed,

namely the computed response approaches the correct curve “1FE” from Fig. 5.5, when ηs is increased up to

ηs ≈ 13000kNm−3s. If the parameter is still increased, the results worsen again. The correct curve is never quite

reached. Nevertheless the diagram computed with ηs = 13000kNm−3s is much better than the non-regularized

diagram “5FE” in Fig. 5.5.
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Figure 5.6: Axial force - displacement diagram for steel beam (layer) in pure tension for different

values of viscosity parameter (5 FE mesh).

Slika 5.6: Diagram osna sila - pomik za jekleni nosilec v čistem nategu za različne vrednosti viskoznega

parametra (mreža s 5 KE).

5.5.3 Cantilever beam under end moment

In this example we consider a cantilever beam of rectangular cross-section, already analyzed in section 4.4.2 of the

previous chapter. The length of the beam is L= 1m, the width and height of the cross-section are b= 0.3m and h=

0.4m. Bottom and top reinforcements are As,1 =As,2 = 0.001256m2 and they are positioned at a1 = a2 = 0.05m

from the edges of the concrete cross-section. Material properties of concrete are: elasticity modulus Ec = 3.3×

107kNm−2, elasticity limit σdc = 15200kNm−2, ultimate stress in compression σfcc = 38000kNm−2, ultimate stress

in tension σfct = 1815kNm−2, hardening modulus in compression Hcc = 3.32×107kNm−2, softening modulus in

compression K∗
cc = −5× 106kNm−3 and softening modulus in tension K∗

ct = −106kNm−3. Material properties

of steel are: elasticity modulus Es = 2× 108kNm−2, yield stress σy = 4× 105kNm−2, ultimate stress σfs = 5×

105kNm−2, hardening modulus Hs = 2.665×106kNm−2 and softening modulus Ks =−5×107kNm−3.
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We impose the rotation θ at the free end of the beam at a rate of one radian per one pseudo-second and calculate the

corresponding moment M . The beam is modeled with different number of equal finite elements, each consisting

of ten concrete layers and two reinforcement layers. Fig. 5.7 shows the results of the analysis for different meshes,

if no viscous regularization is applied. This is achieved by assigning zero value to viscosity parameters ηs, ηcc and

ηct. As observed already in the previous chapter, the model exhibits mesh dependent response, most evident in the

last phase of the analysis, when the beam as a whole begins to soften, due to softening of tensile reinforcement.

In chapter 4 the problem was treated by slightly weakening the reinforcement in one of the finite elements. The

intervention cured the major mesh dependency in the last part of the diagram, but the lesser deviations in the yield

plateau, caused by softening of concrete in tension, remain unsolved.
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Figure 5.7: Moment - rotation diagram for cantilever beam under end moment for different meshes of

finite elements - without viscosity.

Slika 5.7: Diagram moment - zasuk za konzolo, obteženo z momentom, za različne mreže končnih

elementov - brez viskoznosti.

Here, we deal with the mesh dependency problem in a different way. The finite elements are kept identical, but the

viscous regularization of the softening response is introduced. The influence of viscosity is examined on the 5 FE

mesh. The results of the analysis for different values of viscosity parameter of steel ηs are presented in Fig. 5.8.

The viscosity parameters of concrete ηcc and ηct were zero in this computation. Similarly to examples in section

5.5.2, the results improve while the viscosity parameter increases up to ηs ≈ 5000kNm−3s. If the parameter is

further increased, the beneficial effect of viscosity fades and the unwanted side effects occur.
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Figure 5.8: Moment - rotation diagram for cantilever beam under end moment for different values of

viscosity parameter (5 FE mesh).

Slika 5.8: Diagram moment - zasuk za konzolo, obteženo z momentom, za različne vrednosti

viskoznega parametra (mreža s 5 KE).
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Doktorska disertacija. Ljubljana, UL, FGG.

165

The major mesh dependency in the softening part of the M − θ diagram in Fig. 5.7 can be prevented by viscous

regularization of the softening response of steel. However, the minor mesh dependency in the yield plateau of

the beam cannot be cured. Even if viscosity is introduced into tensile softening of concrete and one of the tensile

concrete layers becomes “preferred”, the others cannot elastically unload. Their deformation is dictated by the rest

of the cross-section, which is still gaining strength as a whole.

5.6 Concluding remarks

We have presented in this chapter an upgrade for the multi-layer Timoshenko beam finite element with layer-wise

embedded discontinuities in axial displacement, so as to include viscous regularization of the softening response.

This is achieved by introducing at each discontinuity a viscous force, depending on the rate of change of the

displacement jump and on the additional viscosity parameter η.

The viscosity is implemented by adding the viscous force in the virtual work equation, which results in a modified

local equilibrium between the stress in the bulk of the layer and the traction at the discontinuity. The two quantities

are no longer equal, but differ for the value of the viscous force (stress). The global equilibrium equations remain

the same. Kinematic and constitutive equations are not affected either. The computational procedure is only

slightly modified. New expressions for softening multiplier, traction at the discontinuity and displacement jump,

which are required in the local computation of internal variables, are provided. The global computation of the nodal

degrees of freedom remains unchanged, except for an additional viscous term in the element stiffness matrix. Due

to the rate dependent nature of the regularization method, specification of the loading speed is required in the

analysis.

Influence of viscosity is examined on single element tension/compression tests of concrete and steel beams. Large

values of the viscosity parameter substantially increase the ultimate load, shift the softening line to the right, and

enforce non-zero axial force in a fully softened beam. These undesired effects are a consequence of an excessive

imbalance between the bulk stress and the traction at the discontinuity. The effects are negligible for sufficiently

small values of η.

Tension/compression tests of concrete and steel beams, modeled with several identical finite elements, show that

applying viscous regularization can prevent mesh dependency in the softening response of the beam. Effectiveness

of the method depends on the value of viscosity parameter η. Results approach the correct diagram, if η is increased

up to a certain value. A further increase reduces the beneficial effects of viscosity and amplifies the unwanted side

effects. The optimal value of the parameter is not unique. It depends e.g. on the chosen load (time) increment

(without changing the loading speed).

The last numerical example considers pure bending of a reinforced concrete beam, modeled with a mesh of equal

finite elements. It exhibits major mesh dependency in the softening range, caused by softening of tensile rein-

forcement, and minor mesh dependency in the yield plateau, caused by softening of concrete in tension. The

former can be prevented by viscous regularization, similarly to the uniaxial tests. The latter, however, cannot be

avoided, because the tensile concrete layers cannot deform freely. Their deformation is dictated by the rest of the

cross-section, which is still gaining strength in that moment.

The viscous regularization requires only minor changes of the existing multi-layer Timoshenko beam finite element

and is therefore fairly simple to implement. The method can prevent mesh dependency in the softening response of

a structural element, but its efficiency depends on the viscosity parameter. For the considered numerical examples,

the same can be achieved by weakening one of the elements, which is simpler and independent of any parameter.



166 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

6 CONCLUSIONS

The aim of the dissertation was to develop finite elements capable of modeling localized failure in reinforced

concrete, for numerical analysis of reinforced concrete beams and frames up to complete collapse. The localized

failure was modeled in accordance with the embedded strong discontinuity approach, in which a discontinuity

in displacement (or rotation) is incorporated into the finite element, resulting in discontinuous displacement (or

rotation) field.

We have derived a stress-resultant Euler-Bernoulli beam finite element with embedded discontinuity in rotation,

based on small deformation kinematics, elastoplastic model with bilinear hardening for the bulk of the element,

and rigid plastic linear softening model for the discontinuity.

• Despite its simplicity, the finite element is capable of describing the major phenomena in reinforced concrete

beam behavior - reduction of stiffness due to cracking of concrete, yielding of reinforcement and localized

failure of the beam.

• The finite element allows for analysis of reinforced concrete beams and frames up to complete failure, which

provides information not only about the ultimate load, but also about ductility and post-peak response of the

structure.

• The obtained results compare reasonably well to other results available in literature and to experimental

results.

• The finite element provides mesh independent softening response of the modeled structure.

• Moment vs. curvature diagram for the bulk and moment vs. rotational jump diagram for the discontinuity

are required as an input for the analysis. They can be determined from an experiment or computed with a

more refined finite element.

• The finite element could be further upgraded by implementing a coupled damage-plasticity model for the

bulk or by including a discontinuity in axial displacements, but for the common reinforced concrete struc-

tures, improvement of the results should not be substantial.

We have derived a multi-layer Euler-Bernoulli beam finite element with layer-wise embedded discontinuities in

axial displacement, based on small deformation kinematics. The reinforced concrete beam is divided into concrete

and reinforcement layers, and a jump in axial displacement is introduced separately into each of them. Behavior of

a concrete layer is controlled by an elasto-damage hardening law in the bulk and by a rigid damage softening law

at the discontinuity. Behavior of a steel layer is controlled by an elastoplastic hardening law in the bulk and by a

rigid plastic softening law at the discontinuity.

• The finite element was intended for detailed analysis of reinforced concrete beams and frames, and for

computation of stress-resultant properties, required as an input in the stress-resultant analysis. However, the

element does not perform as expected. Several issues have been identified.

• The interpolation function for enhanced layer strain has been derived on an isolated layer, under assumption

that it can deform freely. This is not true because the layer is bound to other layers through common

nodal displacements. Consequently, the additional stress caused by enhanced kinematics cannot redistribute

correctly. The stress is only controlled at the discontinuity, where it has to be equal to the traction at the

discontinuity and therefore has to decrease with increasing displacement jump. Elsewhere in the layer, the

stress may even grow above the ultimate stress.
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• Equilibrium is only required on the finite element level, but not for each individual layer. We have seen an

example of a beam in pure tension, where stress was linear (not constant) over the length of each layer. If a

layer were singled out, it would not be in equilibrium, but the finite element as a whole is in balance because

the imbalances of individual layers neutralize each other.

• The displacement jumps of individual layers are independent of each other. In a specific case of a can-

tilever beam in pure tension, the values of displacement jumps changed linearly over the height of the beam

(negative on the bottom edge, positive on the top edge and zero in the middle), resulting in a non-zero lat-

eral displacement of the free end of the beam, without disrupting equilibrium (the internal shear forces and

internal moments were zero).

• There is no discontinuity (in rotation) on the element level. The middle axis of the beam always deforms

according to standard Euler-Bernoulli kinematics and is therefore smooth, even if the beam is completely

broken. The bulk of each layer slides along a path, parallel to the middle axis. This may not be problematic

if a fine mesh is used, since the broken finite element exhibits a greater curvature than the neighboring

elements, which can be interpreted as a discontinuity smeared over the whole element.

• Mesh dependency has been observed in numerical tests, most clearly in the case of a cantilever beam under

end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously

in all finite elements of the mesh. At the same imposed rotation of the free end of the beam, a fine mesh

produces a great number of small discontinuities and a coarse mesh produces a small number of great

discontinuities. According to the softening material law, the traction at the discontinuity drops with its

increasing size. Therefore, the fine mesh produces a greater moment then the coarse mesh at the same value

of imposed rotation. The greatest deviations appear when the beam as a whole enters the softening phase,

which usually happens due to softening of tensile reinforcement. This can be cured by slightly weakening

reinforcement in one of the finite elements and thus preventing multiple discontinuities. If the beam fails

due to crushing of concrete in compression, the problem cannot be solved so effectively. Also, the (lesser)

mesh dependency due to cracking of concrete in tension cannot be avoided.

• Considering all the deficiencies, the considered multi-layer Euler-Bernoulli beam finite element cannot be

recommended for general use. The only viable application is in case of constant strain/stress state over

the length of the beam, which can occur either in pure tension/compression or in pure bending. In case of

bending, mesh dependency cannot be completely avoided.

We have derived a multi-layer Timoshenko beam finite element with layer-wise embedded discontinuities in axial

displacement, based on small deformation kinematics. The reinforced concrete beam is divided into concrete and

reinforcement layers, and a jump in axial displacement is introduced separately into each of them. Behavior of a

concrete layer is controlled by an elasto-damage hardening law in the bulk and by a rigid damage softening law

at the discontinuity. Behavior of a steel layer is controlled by an elastoplastic hardening law in the bulk and by a

rigid plastic softening law at the discontinuity. Shear response is assumed elastic.

• The finite element allows for detailed analysis of reinforced concrete beams and frames up to complete

failure, which provides information not only about the ultimate load, but also about ductility and post-peak

response of the structure. A detailed description of material state (progression of damage, plasticity and

localized failures) is provided at any stage of the analysis.

• The finite element is not intended for cyclic loading. Nevertheless, it can handle minor changes of the load

sign, which can occur due to shifting of the neutral axis even in monotonic loading.

• Two material laws are required for each material - stress vs. strain for the bulk of the layer and traction

vs. displacement jump for the discontinuity. They can be determined from tension/compression tests. This

makes the finite element appropriate for computation of stress-resultant (material-geometrical) properties

of beams, required as an input in the analysis with a stress-resultant finite element.
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• Mesh dependency has been observed in numerical tests, most clearly in the case of a cantilever beam under

end moment. Due to constant stress state over the length of the beam, discontinuities appear simultaneously

in all finite elements of the mesh. At the same imposed rotation of the free end of the beam, a fine mesh

produces a great number of small discontinuities and a coarse mesh produces a small number of great

discontinuities. According to the softening material law, the traction at the discontinuity drops with its

increasing size. Therefore, the fine mesh produces a greater moment then the coarse mesh at the same value

of imposed rotation. The greatest deviations appear when the beam as a whole enters the softening phase,

which usually happens due to softening of tensile reinforcement. This can be cured by slightly weakening

reinforcement in one of the finite elements and thus preventing multiple discontinuities. If the beam fails

due to crushing of concrete in compression, the problem cannot be solved so effectively. Also, the mesh

dependency due to cracking of concrete in tension cannot be avoided.

• Mesh dependency due to cracking of concrete in tension is more evident in the case of a cantilever beam

under end transversal force. Since the finite element can only describe constant state over the length, a fine

mesh is required for adequate description of the linear moment. However, shortening of the finite elements

increases the number and reduces the size of discontinuities, resulting in a higher traction in tensile concrete

and considerably overestimated yield moment of the beam.

• There is no discontinuity (in rotation) on the element level. The middle axis of the beam always deforms

according to standard Euler-Bernoulli kinematics and is therefore smooth, even if the beam is completely

broken. The bulk of each layer slides along a path, parallel to the middle axis. This may not be problematic

if a fine mesh is used, since the broken finite element exhibits a greater curvature than the neighboring

elements, which can be interpreted as a discontinuity smeared over the whole element.

• Performance of the finite element has been tested on several numerical examples. In some cases, the com-

puted results compare well to other results available in literature and to experimental results. In some cases,

however, the difference was considerable.

• Before the finite element is put to general use, the mesh dependency, caused by softening of concrete in

tension, should be examined carefully. In the specific case of a cantilever under end force, the influence was

substantial. However, in some more complex structures, the mesh dependency was less noticeable.

• The finite element could be modified so as to allow cyclic loading. For that purpose, separate sets of

softening internal variables should be introduced. However, softening responses in tension and compression

are not independent, neither is their relation trivial to describe.

We have upgraded the multi-layer Timoshenko beam finite element, so as to include viscous regularization of the

softening response. This is performed by introducing at each discontinuity a viscous force, depending on the rate

of change of the displacement jump and an additional viscosity parameter. The viscous forces are added in the

virtual work equation, resulting in slightly modified equilibrium equations and consequent minor alterations of the

computational procedure.

• Viscous regularization is relatively simple to implement, as it only requires minor changes of the existing

multi-layer Timoshenko beam finite element.

• Great values of the viscosity parameter can corrupt the results of the analysis by increasing the ultimate

load, shifting the softening line (delaying the softening) and producing a non-zero stress state in a beam

with a fully softened discontinuity. The effects are negligible for sufficiently small values of the parameter.

• Viscous regularization can prevent mesh dependent softening response of a beam, caused by physically

erroneous occurrence of multiple discontinuities in a homogeneous stress field. However, effectiveness of

the regularization depends on the value of the viscosity parameter. The optimal value is not unique, as it

depends e.g. on the chosen load (time) increment.
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• Mesh dependency, caused by softening of concrete in tension when the beam as a whole is still gaining

strength, cannot be prevented by this method because the softening concrete layers cannot deform freely.

Their deformation is dictated by the rest of the cross-section.
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RAZŠIRJENI POVZETEK

V gradbeništvu se uporablja mnogo materialov, ki ob določeni obremenitvi lokalno odpovejo. Za lokalizirano

porušitev je značilno, da je večji del deformacij zgoščenih na relativno majhnih območjih v okolici kritičnih mest

konstrukcije. Z njihovim naraščanjem se napetosti v materialu zmanjšujejo, čemur pravimo mehčanje materiala.

Pravilen opis tega pojava je bistvenega pomena v porušni analizi konstrukcij.

V disertaciji se osredotočimo na armiranobetonske nosilce in okvirje, ki so ena prevladujočih konstrukcijskih oblik

pri nas in po svetu. V armiranem betonu se lokalizirana porušitev pojavi kot posledica pokanja betona v nategu

in krušenja v tlaku, tečenja armature, medsebojnega zdrsa obeh komponent in njune lokalne odpovedi. Te lo-

kalizirane poškodbe materiala, ki jih opazimo npr. na vrhu in na dnu stebrov stavb, poškodovanih v potresih,

običajno opišemo s plastičnim členkom. V klasični analizi mejne nosilnosti moment v posameznem členku ohra-

nja isto vrednost, medtem ko se z naraščanjem obremenitve oblikujejo novi členki drugod po konstrukciji. Tak

pristop omejuje natančnost določene mejne nosilnosti ter preprečuje analizo duktilnosti konstrukcije in njenega

post-kritičnega obnašanja. V statično nedoločenih konstrukcijah porušitev posameznega kritičnega elementa še ne

ogrozi celotne konstrukcije, zato je za njeno natančno analizo potrebno poznati tudi odziv elementa v mehčanju.

V zadnjem času smo priča znatnemu napredku na področju modeliranja mehčanja v numerični analizi konstruk-

cij, vendar precej problemov še vedno ostaja odprtih. Pregled zgodovinskega razvoja in trenutnega stanja na tem

področju najdemo npr. v [12–14]. V prvih modelih je bilo mehčanje materiala opisano lokalno, s padajočo kri-

vuljo v diagramu napetost-deformacija. Pristop je sicer enostaven, vendar ga pestijo številne težave, ki jih lahko

opredelimo kot matematične, fizikalne in numerične. Z matematičnega vidika postanejo parcialne diferencialne

enačbe robnega problema slabo pogojene zaradi negativnega elastičnega modula v območju mehčanja [12,15,16].

V konstrukcijskem elementu, diskretiziranem z mrežo končnih elementov, odpove le kritični element. Ker je sipa-

nje energije vezano na prostornino materiala, kjer poteka mehčanje, se količina disipirane energije z zgoščevanjem

mreže končnih elementov približuje vrednosti nič. V limitni situaciji to pomeni porušitev brez disipacije energije,

kar fizikalno ni sprejemljivo. Z vidika numeričnega modeliranja tak pristop očitno vodi do izrazite odvisnosti

rezultatov od izbrane diskretizacije [17, 18].

Za rešitev opisanih težav je bilo predlaganih več pristopov. Nekaj zgodnejših je predstavljenih v [19]. Zelo eno-

stavni so t.i. “crack-band” modeli [20–22], v katerih je lokalizirana porušitev razmazana na celoten končni element

in porušitev brez disipacije energije preprečena z omejitvijo minimalne velikosti elementov. Ker je volumen, v ka-

terem se material mehča, še vedno odvisen od diskretizacije, je potrebno vrednost modula mehčanja prilagoditi

izbrani mreži. Sorodno rešitev predstavljajo modeli, pri katerih je znotraj elementa predpisan pas fiksne širine

(materialna karakteristika), v katerem se material mehča [23, 24]. Omenjene metode ne rešijo matematične plati

problema.

Kot alternativa je bilo predstavljenih več ne-lokalnih metod [19,25–27], pri katerih je napetost v neki točki funkcija

povprečne (ne-lokalne) deformacije v nekem končnem volumnu okoli te točke. Bolj splošno je napetost v posame-

zni točki funkcija celotnega deformacijskega polja, pri čemer je vplivno območje določeno z utežnimi funkcijami.

Z matematičnega vidika ne-lokalne metode popolnoma regularizirajo obravnavani problem [12]. Zelo sorodna je

gradientna metoda [28, 29], pri kateri za opis napetosti v neki točki poleg vrednosti deformacij uporabimo tudi

njihov gradient v tisti točki. Uporabimo lahko tudi gradiente višjega reda [30].

Predlaganih je bilo še več pristopov, kot sta na primer model Cosseratovega kontinuuma [31, 32], ki poleg tran-

slatornega pomika upošteva tudi lokalno rotacijo posameznega delca (točke) materiala, in viskoplastična regulari-

zacija [33], ki obravnava problem kot časovno odvisen. Skupno vsem naštetim metodam je, da se lotevajo opisa

lokalizirane porušitve in mehčanja na nivoju materiala. Končni elementi so zasnovani tako, da čim natančneje
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opišejo obnašanje materiala na mikro nivoju, vključno s samodejnim generiranjem nezveznosti na kritičnih me-

stih, in tako zagotovijo primeren odziv konstrukcijskega elementa na makro nivoju.

Pri razvoju končnih elementov za uporabo v potresnem inženirstvu se pogosto uporablja popolnoma drugačen

pristop. Numerična analiza velikih konstrukcij pod kompleksno obtežbo, lahko kaj hitro postane računsko pre-

zahtevna in časovno potratna, zato so končni elementi zasnovani na najenostavnejši način, ki še zagotavlja pri-

meren makro-odziv konstrukcijskega elementa. Obnašanje armiranobetonskih stebrov, ki izkazujejo lokalizirane

poškodbe na dnu in na vrhu, lahko zadovoljivo opišemo z zelo enostavnim “lumped plasticity” modelom [34, 35],

pri katerem so vse neelastične deformacije združene v plastičnih členkih ničelne dolžine na obeh koncih elementa,

medtem ko se vmesni del obnaša elastično. To seveda ne ustreza dejanskemu stanju materiala, kljub temu pa model

zajame vse bistvene lastnosti odziva stebra.

Diskretni pristop, uporabljen v “lumped plasticity” in sorodnih modelih je alternativa predhodno predstavljenim

zveznim modelom. Obe strani imata svoje prednosti in slabosti. Glavna prednost modelov razmazane nezveznosti

je, da so razviti na mikro nivoju, zato so sposobni opisati katerikoli košček materiala, ne glede na velikost in položaj

v konstrukciji, nezveznost pa generirajo samodejno. Slaba stran je ta, da zahtevajo precej gosto mrežo končnih

elementov v območju nezveznosti, kar je lahko problematično pri analizi večjih konstrukcij [12, 36]. Nekateri

imajo tudi težave z blokiranjem [13, 36]. Pomembna prednost diskretnega pristopa je, da se izogne težavam z

velikostjo območja mehčanja, tako da ga skrči v točko in vpelje lokalni disipativni mehanizem. Poleg tega so

elementi sposobni opisati nezveznosti v pomikih in zasukih, kar omogoča opis konstrukcije z dokaj grobo mrežo

končnih elementov. Glavna slabost je ta, da se nezveznosti lahko pojavijo le na predhodno določenih lokacijah.

V zadnjem času se je v modeliranju lokalizirane porušitve uveljavil nov pristop, katerega glavna značilnost je

vključitev nezveznih deformacij ali pomikov v standardne končne elemente. Skoke v deformacijskem polju ime-

nujemo tudi šibke nezveznosti, skoke v polju pomikov pa močne nezveznosti. V skladu z metodo vgrajene močne

nezveznosti, ki jo uporabimo tudi v tej disertaciji, je bilo razvitih mnogo različnih modelov, npr. [39–48]. Za nas

je posebej zanimiva aplikacija metode na linijske končne elemente [49–54]. Vsem modelom je skupno, da končni

volumen lokaliziranih deformacij, ki je predstavljal območje disipiranja energije pri modelih razmazane nezve-

znosti, nadomestijo z nezveznostjo v pomikih in s pripadajočim lokalnim disipativnim mehanizmom. To dosežejo

z vpeljavo dodatnih, nezveznih interpolacijskih funkcij. Vsaka oblikovna funkcija je povezana z dodatnim para-

metrom, ki predstavlja velikost nezveznosti. Z vpeljavo kohezivnega materialnega zakona mehčanja, ki skok v

pomiku poveže s konjugirano silo v nezveznosti, se oblikuje lokalni disipativni mehanizem. Dodatne enačbe za

nove parametre so zapisane v obliki lokalnega ravnotežja med napetostmi po elementu in silo (ali napetostjo) v

nezveznosti [1, 14].

Metoda vgrajene močne nezveznosti združuje dobre lastnosti tako diskretnih, kot zveznih metod. Disipacija ener-

gije ob porušitvi je vezana na nezveznost, ki nima volumna, zato zgoščevanje mreže končnih elementov ne vpliva

na velikost območja mehčanja in na količino disipirane energije. S tem sta preprečeni odvisnost rezultatov od dis-

kretizacije in fizikalno nerealna porušitev brez disipacije energije. Tudi z matematičnega vidika je problem mejnih

vrednosti dobro pogojen, kar pomeni, da pristop uspešno reši na začetku predstavljene fizikalne, numerične in

matematične težave. Izboljšana kinematika omogoča korekten opis nezveznega polja pomikov v bližini nezve-

znosti, kar omogoča razvoj končnih elementov, ki nimajo težav z blokiranjem. Dodatne interpolacijske oblike so

namreč zasnovane tako, da omogočajo opis breznapetostnega stanja v elementu v primeru popolnoma zmehčane

nezveznosti [14]. Poleg tega vgraditev lokalne kinematike, ki opisuje porušitev materiala na mikro nivoju, v ma-

terialni makro-model popolnoma ustreza več-nivojski naravi obravnavnega fizikalnega problema [1, 12, 14, 36, 40]

in omogoča modeliranje nezveznosti z relativno grobo mrežo končnih elementov. Ker je vsak posamezen element

sposoben opisa nezveznosti, ni potrebe po vnaprejšnjem določanju njene lokacije. Nastane samodejno in napreduje

po konstrukciji brez spreminjanja osnovne mreže končnih elementov. Zaradi naštetih lastnosti je metoda primerna

tudi za analizo večjih konstrukcij.
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Glede na način implementacije nezveznosti ločimo dva glavna pristopa – extended finite element method (X-

FEM) [39,40,42,57–59] in embedded discontinuity finite element method (ED-FEM) [41,60–63]. Pri X-FEM me-

todah so dodatni parametri, ki se nanašajo na nezvezne interpolacijske funkcije, vezani na vozlišča mreže končnih

elementov in se jih obravnava kot globalne neznanke. Pri ED-FEM metodah pa so dodatni parametri na posamezen

končni element in se jih obravnava kot lokalne (elementu lastne) neznanke. Prednosti in slabosti obeh pristopov so

predstavljene v več študijah [14, 64]. Glavna prednost ED-FEM je v tem, da lahko dodatne neznanke izločimo iz

globalnih enačb s statično kondenzacijo na nivoju elementa, medtem ko pri X-FEM vsaka nova nezveznost razširi

globalni sistem enačb. V disertaciji sledimo ED-FEM pristopu.

Naloga temelji predvsem na predhodnem delu naše raziskovalne skupine, zlasti na linijskih končnih elementih, ki

so jih razvili Dujc et al. [54] in Pham et al. [52]. V prvem članku je predstavljen končni element na nivoju rezultant

napetosti za Euler-Bernoullijev nosilec, ki ima vgrajeni nezveznosti v zasuku in v osnem pomiku in je namenjen

analizi metalnih nosilcev in okvirjev. V drugem članku je opisan končni element na nivoju rezultant napetosti za

Timošenkov nosilec, ki ima vgrajeno nezveznost v zasuku in je namenjen analizi armiranobetonskih konstrukcij.

Prvi cilj disertacije je združiti oba koncepta in razviti podoben končni element, ki temelji na Euler-Bernoullijevi

kinematiki in uporablja materialne zakone, primerne za modeliranje armiranega betona. Naslednji cilj je razširiti

ta koncept na večslojni model nosilca, podobno kot v [51]. Bolj konkretno lahko naše cilje opredelimo kot:

• razviti raven končni element na nivoju rezultant napetosti za ravninski Euler-Bernoullijev nosilec z vgra-

jeno nezveznostjo v zasuku, namenjen enostavni robustni in učinkoviti porušni analizi armiranobetonskih

nosilcev in okvirjev,

• razviti raven večslojni končni element za ravninski Euler-Bernoullijev nosilec, ki ima po slojih vgrajene

nezveznosti v osnem pomiku, namenjen detajlni porušni analizi armiranobetonskih nosilcev in okvirjev

ter računu rezultantnih (materialno-geometrijskih) lastnosti prerezov, potrebnih pri analizi z rezultantnimi

končnimi elementi,

• razviti raven večslojni končni element za ravninski Timošenkov nosilec, ki ima po slojih vgrajene nezvezno-

sti v osnem pomiku, namenjen detajlni porušni analizi armiranobetonskih nosilcev in okvirjev ter računu

rezultantnih (materialno-geometrijskih) lastnosti prerezov, potrebnih pri analizi z rezultantnimi končnimi

elementi,

• nadgraditi večslojni element za Timošenkov nosilec z viskozno regularizacijo odziva v mehčanju.

KONČNI ELEMENT NA NIVOJU REZULTANT NAPETOSTI ZA EULER-BERNOULLIJEV

NOSILEC Z VGRAJENO NEZVEZNOSTJO V ZASUKU

V poglavju 2 razvijemo končni element na nivoju rezultant napetosti z vgrajeno nezveznostjo v zasuku za rav-

ninski Euler-Bernoullijev nosilec. Element je namenjen za enostavno, robustno in učinkovito numerično analizo

armiranobetonskih nosilcev in okvirjev do popolne porušitve. Element omogoča samodejno generiranje plastičnih

členkov z mehčanjem, ki predstavljajo lokalizirano porušitev materiala na kritičnih mestih v konstrukciji. Element

temelji na dveh podobnih končnih elementih, predstavljenih v [54] in [52]. V prvem članku je izpeljan končni

element za Euler-Bernoullijev nosilec z vgrajenima nezveznostma v zasuku in osnem pomiku za analizo metalnih

nosilcev in okvirjev. V drugem članku je predstavljen element za Timošenkov nosilec z vgrajeno nezveznostjo v

zasuku, v katerem je uporabljen konstitutivni zakon z bilinearnim utrjevanjem, ki omogoča natančnejši opis ne-

linearnega obnašanja nosilca zaradi razpokanja betona in tečenja armature. Element je zato primeren za analizo

armiranobetonskih konstrukcij, vendar zaradi izbrane kinematike omogoča le opis konstantnega momenta. Tu raz-

vijemo končni element, ki združuje lastnosti obeh navedenih elementov - konstitutivni zakon, primeren za armirani

beton, in kinematiko, ki omogoča opis linearnih momentov vzdolž elementa.
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Končni element temelji na teoriji majhnih deformacij. Vsebuje vgrajeno nezveznost v zasuku (skok v zasuku),

ki se pojavi na kritičnem mestu v elementu, ko je presežena mejna nosilnost. Obnašanje materiala je opisano z

elastoplastičnim materialnim zakonom z bilinearnim izotropnim utrjevanjem, obnašanje nezveznosti (plastičnega

členka) pa z materialnim zakonom linearnega mehčanja.

Kinematika

Ravninski Euler-Bernoullijev nosilec modeliramo z ravnim dvovozliščnim končnim elementom. Vsako vozlišče

ime tri prostostne stopnje, dva pomika in zasuk. V primeru prekoračene nosilnosti se pojavi nezveznost v zasukih

pri koordinati xd in aktivira se dodatna (lokalna) prostostna stopnja - skok v zasuku α. Osni pomik u(x) interpo-

liramo med vozliščne osne pomike u s standardnimi linearnimi oblikovnimi funkcijami Nu (x). Osno deformacijo

ε(x) izračunamo kot odvod osnega pomika.

u(x) = Nu (x)u, ε(x) =
∂u

∂x
= Bu (x)u

Prečni pomik v (x) interpoliramo med vozliščne prečne pomike v in zasuke θ s Hermitovimi polinomi Nv (x)

in Nθ (x). Standardni interpolaciji dodamo člen vadd (x,xd), ki opisuje dodatne pomike zaradi skoka v zasuku.

Odvod interpolacijske funkcije M̂ (x,xd) ima enotski skok pri xd, vozliščne vrednosti funkcije in njenega odvoda

pa so enake nič.

v (x,xd) = Nv (x)v+Nθ (x)θ+

vadd
︷ ︸︸ ︷

M̂ (x,xd)α

Ukrivljenost κ(x,xd) izračunamo kot drugi odvod prečnega pomika.

κ(x,xd) =
∂2v

∂x2
=

˜̄κ
︷ ︸︸ ︷

Bv (x)v+Bθ (x)θ+

κadd

︷ ︸︸ ︷

G(x,xd)α

Operator G(x,xd) je drugi odvod interpolacijske funkcije M̂ (x,xd). Zaradi nezveznosti prvega odvoda M̂ ′ je G

sestavljen iz zveznega dela Ḡ in Dirac-delta funkcije, ki ima neskončno vrednost na mestu nezveznosti in vrednost

nič drugje. Izraz za Ḡ izpeljemo iz zahteve, da mora biti v primeru popolne izgube nosilnosti končni element

sposoben opisati breznapetostno stanje v nosilcu. V tem primeru se element deformira kot kinematična veriga

dveh togih teles.

G= M̂ ′′ = Ḡ+ ¯̄G, Ḡ=−
1+3

(

1− 2xd
L

)(
1− 2x

L

)

L
, ¯̄G= δxd =

{

∞; x= xd

0; sicer

Interpolacijo osne deformacije in standardnega dela ukrivljenosti lahko zapišemo tudi krajše.

ε=
[

Bu 0 0
]

d = B̆εd, ˜̄κ=
[

0 Bv Bθ
]

d = B̆κd, dT =
{

uT ,vT ,θT
}



174 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

Princip virtualnega dela

Virtualno osno deformacijo ε̂ in virtualno ukrivljenost κ̂ interpoliramo na enak način kot pravi količini, med virtu-

alne vozliščne pomike û, v̂ in θ̂ ter virtualni skok v zasuku α̂. To pripelje do dodatnega člena v izrazu za virtualno

delo notranjih sil Gint,(e) elementa (e).

ε̂= Buû, κ̂= Bv v̂+Bθθ̂+ Gα̂
︸︷︷︸

κ̂add

, G int,(e) =
∫

L

(ε̂N + κ̂M)dx= d̂(e)T f int,(e)
︸ ︷︷ ︸

standardno

+ α̂(e)h(e)
︸ ︷︷ ︸

dodatno

Vektor posplošenih virtualnih pomikov d̂(e) združuje vse virtualne prostostne stopnje elementa (e), vektor f int,(e)

pa ustrezno urejene notranje sile. Količina h(e) ustreza virtualnemu skoku v zasuku α̂(e).

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e) =
∫

L

B̆εTNdx+
∫

L

B̆κT

Mdx, h(e) =
∫

L

GMdx

Z upoštevanjem prej izpeljanega izraza za operator G in pravila za integriranje Dirac-delta funkcije razvijemo

izraz za h(e). Moment M (x) je funkcija koordinate x. Njeno vrednost na mestu nezveznosti M |xd označimo s t

in definiramo kot moment v nezveznosti, ki je konjugirana količina skoku v zasuku α.

∫

L

g (x)δxddx= g (xd) , h(e) =
∫

L

(
Ḡ+ δxd

)
Mdx=

∫

L

ḠMdx+ M |xd =
∫

L

ḠMdx+ t

Iz principa virtualnega dela Gint−Gext = 0 izpeljemo ravnotežne enačbe konstrukcije. Poleg klasičnega globalnega

ravnotežja zunanjih in notranjih sil dobimo dodatno ravnotežno enačbo za vsak element, v katerem je bila nosilnost

prekoračena in se je oblikovala nezveznost v zasukih.

nFE

A
e=1

[

f int,(e)− f ext,(e)
]

= 0, ∀e ∈ {1,2, . . . ,nα} : h(e) = 0

Tu je A tako imenovani “assembly” operator, nFE število končnih elementov v celotni konstrukciji, nα pa število

končnih elementov z aktivirano nezveznostjo. Pomen dodatne enačbe se razjasni, če vanjo vstavimo izpeljani izraz

za h(e). Ugotovimo, da predstavlja ravnotežje med momentom v nezveznosti t in momenti po elementu M v šibki

(integralski) obliki. Ker se nanaša le na posamezen končni element, ji pravimo tudi enačba lokalnega ravnotežja.

h(e) = 0 ⇔ t=−
∫

L

ḠMdx

Materialni modeli

Predpostavimo, da je osna sila ves čas elastična N = EAε. Za upogibni odziv nosilca uporabimo elastoplastični

model z bilinearnim utrjevanjem. Po doseženi meji elastičnosti togost nekoliko pade zaradi poškodb v betonu,

bistven padec togosti pa se zgodi zaradi tečenja natezne armature. Krivulja razbremenjevanja ima elastični naklon.

Osnovne enačbe materialnega modela so izpeljane iz termodinamike (princip maksimalne plastične disipacije),

glej npr. [73]. Moment izračunamo iz elastične ukrivljenosti, ki je razlika med skupno ukrivljenostjo κ̄ in plastično

ukrivljenostjo κ̄p. V izrazu za skupno ukrivljenost nastopa tudi prispevek zaradi skoka v zasuku α.
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M = EI (κ̄− κ̄p) , κ̄= Bvv+Bθθ+ Ḡα

Funkcija tečenja φ̄ nadzira prehod iz elastičnega v plastično obnašanje in obratno. Konstanta Mc > 0 predstavlja

absolutno vrednost momenta, pri katerem se prvič pojavijo neelastične deformacije. Momentu podobna količina

q̄ ≤ 0 predstavlja spremembo meje elastičnosti zaradi utrjevanja materiala in je bilinearna funkcija ukrivljenosti

podobne spremenljivke ξ̄.

φ̄(M,q̄) = |M |− (Mc− q̄) , q̄ = q̄
(
ξ̄
)

Potrebujemo še evolucijski enačbi za notranji spremenljivki κ̄p in ξ̄ ter Kuhn-Tuckerjeve pogoje obremenjevanja

in razbremenjevanja. Tu je ˙̄γ plastični množitelj, ki izhaja iz izpeljave enačb s principom maksimalne plastične

disipacije.

˙̄κp = ˙̄γ sign(M) , ˙̄ξ = ˙̄γ, ˙̄γ ≥ 0, φ̄≤ 0, ˙̄γ φ̄= 0, ˙̄γ ˙̄φ= 0

Podobne enačbe določajo togo-plastičen materialni model, ki povezuje moment v nezveznosti t in skok v zasuku

α. Po doseženi meji nosilnosti Mu > 0 se začne moment t linearno zmanjševati z naraščanjem α, dokler ne pade

na nič (ob tem mu morajo slediti tudi momenti po elementu M ). V primeru razbremenjevanja vrednost α miruje.

¯̄φ(t, ¯̄q) = |t|− (Mu− ¯̄q) , ¯̄q = ¯̄q
(

¯̄ξ
)

Funkcija ¯̄φ nadzira prehod iz elastičnega obnašanja v mehčanje in obratno. Momentu podobna količina ¯̄q ∈ [0,Mu]

predstavlja zmanjšanje nosilnosti zaradi mehčanja materiala in je linearna funkcija zasuku podobne spremenljivke
¯̄ξ. Materialni model zaokrožimo z evolucijskima enačbama za notranji spremenljivki α in ¯̄ξ ter s pogoji obre-

menjevanja in razbremenjevanja, kjer je ˙̄̄γ plastični množitelj mehčanja, ki izhaja iz izpeljave enačb s principom

maksimalne plastične disipacije.

α̇= ˙̄̄γ sign(t) ,
˙̄̄
ξ = ˙̄̄γ, ˙̄̄γ ≥ 0, ¯̄φ≤ 0, ˙̄̄γ ¯̄φ= 0, ˙̄̄γ

˙̄̄
φ= 0

Računski postopek

Odziv konstrukcije izračunamo tako, da pri posameznih psevdo-časih, ki predstavljajo postopno nanašanje obtežbe,

rešimo sistem ravnotežnih enačb, pri čemer moramo zadostiti tudi kinematičnim in konstitutivnim enačbam. Ker

so enačbe izrazito nelinearne, jih v vsakem psevdo-časovnem koraku n+ 1 lineariziramo in rešujemo iterativno.

Vsaka Newtonova iteracija k sestoji iz faze (A), v kateri zamrznemo trenutne vrednosti vozliščnih pomikov in po-

sodobimo vrednosti notranjih spremenljivk, in faze (B), v kateri zamrznemo pravkar izračunane vrednosti notranjih

spremenljivk in izračunamo nove prirastke vozliščnih pomikov.

Pri znanih
{

d
(e)
n ; κ̄

(e)
p,n, ξ̄

(e)
n , α

(e)
n , ¯̄ξ

(e)
n

}

iščemo
{

d
(e)
n+1; κ̄

(e)
p,n+1, ξ̄

(e)
n+1, α

(e)
n+1,

¯̄ξ
(e)
n+1

}

.
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Faza (A) je lokalnega značaja, in jo izvajamo na nivoju končnega elementa. Pri zamrznjenih vrednostih pomikov

d
(e),(k−1)
n+1 iz prejšnje iteracije iščemo pripadajoče iterativne vrednosti notranjih spremenljivk in momentov, ki jih

potrebujemo za račun v fazi (B). Dokler element ne doseže meje nosilnosti, sta notranji spremenljivki mehčanja

α in ¯̄ξ enaki nič in iščemo samo notranji spremenljivki utrjevanja κ̄ in ξ̄. Ko se nezveznost enkrat aktivira, se

κ̄ in ξ̄ ne spreminjata več, računamo pa α in ¯̄ξ. V vsakem primeru je postopek enak. Najprej predpostavimo

elastičen testni korak, kar pomeni, da notranje spremenljivke obdržijo vrednosti iz prejšnjega koraka. Izračunamo

testni vrednosti momenta in funkcije tečenja. Če je le-ta negativna, je bila predpostavka pravilna in obdržimo

testne rezultate. V nasprotnem primeru notranje spremenljivke posodobimo skladno z evolucijskimi enačbami in

pogoji obremenjevanja in razbremenjevanja. Izračunamo končno vrednost momenta, ki ga potrebujemo za izračun

notranjih sil končnega elementa.

K
str,(k)
n+1 ∆d

str,(k)
n+1 = ∆f

str,(k)
n+1 , K

str,(k)
n+1 =

nFE

A
e=1

[

K
(e),(k)
n+1

]

, ∆f
str,(k)
n+1 =

nFE

A
e=1

[

f
ext,(e)
n+1 − f

int,(e),(k)
n+1

]

V fazi (B) rešimo zgornji linearizirani sistem ravnotežnih enačb, v katerem iščemo prirastke pomikov konstrukcije

∆d
str,(k)
n+1 . Operator A sestavi prispevke posameznih elementov v togostno matriko K

str,(k)
n+1 in rezidual ∆f

str,(k)
n+1

celotne konstrukcije. Togostne matrike posameznih elementov izračunamo z naslednjima izrazoma.

e ∈ {1,2, . . . ,nPα} : K
(e),(k)
n+1 = K

fd,(e),(k)
n+1 −K

fα,(e),(k)
n+1

(

K
hα,(e),(k)
n+1

)−1

K
hd,(e),(k)
n+1

e ∈ {nPα+1, . . . ,nFE} : K
(e),(k)
n+1 = K

fd,(e),(k)
n+1

Tu je nFE število vseh končnih elementov v konstrukciji, nPα pa število elementov, ki so že prekoračili nosilnost

in so trenutno v plastičnem koraku mehčanja. Pri elementih, ki so že vstopili v mehčanje opazimo dodaten člen,

ki nastopi zaradi izločitve spremenljivk α
(e),(k)
n+1 iz globalnega sistema enačb s kondenzacijo lokalnih ravnotežnih

enačb h
(e),(k)
n+1 = 0. Pri elementih, ki so že aktivirali nezveznost, vendar se trenutno elastično razbremenjujejo

(∆α= 0), je dodatni člen enak nič. Posamezni členi togostne matrike končnega elementa so definirani s spodnjimi

enačbami.

K
fd,(e),(k)
n+1 =

∂f
int,(e),(k)
n+1

∂d
(e),(k−1)
n+1

, K
fα,(e),(k)
n+1 =

∂f
int,(e),(k)
n+1

∂α
(e),(k)
n+1

K
hd,(e),(k)
n+1 =

∂h
(e),(k)
n+1

∂d
(e),(k−1)
n+1

, K
hα,(e),(k)
n+1 =

∂h
(e),(k)
n+1

∂α
(e),(k)
n+1

Ko izračunamo prirastke pomikov in posodobimo vrednosti prostostnih stopenj, vstopimo v naslednjo iteracijo.

∆d
str,(k)
n+1 =

(

K
str,(k)
n+1

)−1

∆f
str,(k)
n+1 , d

str,(k)
n+1 = d

str,(k−1)
n+1 +∆d

str,(k)
n+1

Iteriranje ponavljamo, dokler ne dosežemo zahtevane konvergence

∥
∥
∥∆f

str,(k)
n+1

∥
∥
∥< tol,

∥
∥
∥∆d

str,(k)
n+1

∥
∥
∥< tol, nato stopimo

v naslednji psevdo-časovni korak.

VEČSLOJNI KONČNI ELEMENT ZA EULER-BERNOULLIJEV NOSILEC S PO SLOJIH

VGRAJENIMI NEZVEZNOSTMI V OSNEM POMIKU

V poglavju 3 razvijemo večslojni končni element za Euler-Bernoullijev nosilec, ki ima vgrajene nezveznosti v

osnem pomiku po posameznih slojih. Element je namenjen za detajlno analizo armiranobetonskih okvirjev in
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nosilcev do popolne izgube nosilnosti. Poleg samodejnega pozicioniranja območij lokaliziranih deformacij (pla-

stičnih členkov) večslojna zasnova končnega elementa ponuja vpogled v širjenje poškodb materiala in napredo-

vanje razpok po višini elementa. Za razliko od rezultantnega končnega elementa, predstavljenega v poglavju 2,

so materialne karakteristike elementa ločene od geometrijskih. Z znanimi materialnimi lastnostmi (napetost - de-

formacije), lahko za poljuben prerez izračunamo upogibni odziv (moment - ukrivljenost), ki ga potrebujemo kot

vhodni podatek pri analizi z rezultantnim končnim elementom.

Večslojni končni element je zasnovan na teoriji majhnih deformacij. Razdeljen je na več slojev betona in armature,

ki jih obravnavamo ločeno, kot posebno vrsto palic (z linearnim potekom napetosti po dolžini). Vsak sloj ima

vgrajeno nezveznost v osnem pomiku, ki se razvija neodvisno od drugih slojev. Osni odziv betonskega sloja je

opisan z modelom poškodovanosti z utrjevanjem zvezno po sloju in z modelom poškodovanosti v mehčanju za

nezveznost. Osni odziv sloja armature je opisan z elastoplastičnim modelom z utrjevanjem materiala zvezno po

sloju in s plastičnim modelom mehčanja na mestu nezveznosti.

Kinematika

Obravnavamo raven končni element s tremi vozlišči za ravninski Euler-Bernoullijev nosilec. Končni vozlišči

imata po tri prostostne stopnje - dva pomika in zasuk. Dodatno vozlišče na sredini elementa ima le eno prostostno

stopnjo - osni pomik, katerega namen je dvigniti red interpolacije osnega pomika in s tem zagotoviti kompatibilnost

prispevkov upogibnega in osnega odziva k osnim deformacijam. Osni pomik ũ(x) srednje osi nosilca interpoliramo

med vozliščne osne pomike u s kvadratičnimi interpolacijskimi funkcijami Nu (x).

ũ(x) = Nu (x)u, Nu (x) =

{

1−
3x

L
+

2x2

L2
,−

x

L
+

2x2

L2
,

4x

L
−

4x2

L2

}

, u = {u1,u2,u3}
T

Prečni pomik ṽ (x) srednje osi interpoliramo med vozliščne prečne pomike v in zasuke θ s Hermitovimi polinomi

Nv (x) in Nθ (x), zasuk θ̃ (x) pa izračunamo kot odvod prečnega pomika.

ṽ (x) = Nv (x)v+Nθ (x)θ, θ̃ (x) =
∂ṽ

∂x
=

∂Nv

∂x
v+

∂Nθ

∂x
θ

Nosilec razdelimo po višini na poljubno število slojev. Za dovolj fino razdelitev lahko predpostavimo konstantno

napetostno stanje po debelini sloja. Osni pomik ui (x) i-tega sloja izračunamo v njegovi srednji osi, oddaljeni za

yi od srednje osi nosilca.

ui
(
x,xi

d

)
=

ũi

︷ ︸︸ ︷

ũ(x)−yiθ̃ (x)+

ui,add

︷ ︸︸ ︷

M i
(
x,xi

d

)
αi

Sprva pomik opišemo le s standardnim delom ũi (x), ki ga sestavljata prispevka zaradi osnega pomika in zaradi

zasuka srednje osi nosilca. Ko napetosti v sloju presežejo mejo nosilnosti, se na kritičnem mestu (pri koordinati xi
d)

oblikuje nezveznost v osnem pomiku. Dodatni osni pomik ui,add
(
x,xi

d

)
zaradi nezveznosti je opisan z velikostjo

skoka v pomiku αi in z oblikovno funkcijo M i
(
x,xi

d

)
. Osno deformacijo sloja εi

(
x,xi

d

)
izračunamo kot prvi

odvod osnega pomika.

εi
(
x,xi

d

)
=

∂ui

∂x
=

˜̄εi

︷ ︸︸ ︷

Bu (x)u−yi
(
Bv (x)v+Bθ (x)θ

)
+

εi,add
︷ ︸︸ ︷

Gi
R

(
x,xi

d

)
αi
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Zaradi dodatnega vozlišča na sredini elementa in kvadratične interpolacije osnega pomika so vsi členi v standar-

dnem delu osne deformacije ˜̄εi linearno odvisni od x. Interpolacijske funkcije Bu so namreč prvi odvod kva-

dratičnih funkcij Nu, funkcije Bv in Bθ pa drugi odvod kubičnih Hermitovih polinomov Nv in Nθ. Operator Gi
R

je odvod interpolacijske funkcije M i in ga bomo opisali v nadaljevanju. Indeks R se nanaša na prave (oz. realne)

deformacije. Dodatni del εi,add se aktivira le v slojih, kjer je bila presežena nosilnost in se je oblikovala razpoka.

Bu (x) =
∂Nu (x)

∂x
, Bv (x) =

∂2Nv (x)

∂x2
, Bθ (x) =

∂2Nθ (x)

∂x2

Standardni del osne deformacije i-tega sloja lahko zapišemo tudi krajše.

˜̄εi =
[

Bu −yiBv −yiBθ
]

d = B̆id, dT =
{

uT ,vT ,θT
}

Za pomoč pri določanju oblikovne funkcije M i
(
x,xi

d

)
, ki opisuje dodatne osne pomike zaradi pojava nezveznosti

v sloju, definiramo “vozliščne pomike sloja” ui =
{
ui

1,u
i
2,u

i
3

}T
kot vrednosti standardnega pomika ũi (x) na

mestih vozlišč končnega elementa.

ui =
{

ũi
∣
∣
x=0

, ũi
∣
∣
x=L

, ũi
∣
∣
x=L/2

}T
=

{

u1 −yiθ1,u2 −yiθ2,u3 −yi
(

−
3(v1 −v2)

2L
−

θ1 +θ2

4

)}T

Ker je pomik ũi kvadratičen, lahko njegovo interpolacijo opišemo s kvadratičnimi interpolacijskimi funkcijami Nu

za osne pomike in z vozliščnimi pomiki sloja. Nato mu prištejemo dodatni pomik zaradi nastanka nezveznosti.

ũi (x) = ũ(x)−yiθ̃ (x) = Nu (x)ui, ui
(
x,xi

d

)
= ũi (x)+M i

(
x,xi

d

)
αi

Da bi celotni pomik sloja ui ohranil vozliščne vrednosti ui, mora imeti funkcija M i v vozliščih (pri x = 0, L

in L/2 ) vrednost nič, za opis nezveznosti pa potrebuje enotski skok pri koordinati xi
d. Tem pogojem najlaže

zadostimo tako, da za M i uporabimo Heaviside-ovo funkcijo Hxi
d
, od katere odštejemo interpolacijske funkcije

Nu
j tistih vozlišč j, pri katerih je x > xi

d.

Hxi
d
=

{

0; x < xi
d

1; x≥ xi
d

M i =







Hxi
d
− (Nu

2 +Nu
3 ) ; 0 < xi

d < L/2

Hxi
d
−Nu

2 ; L/2 < xi
d < L

Če upoštevamo, da je odvod Heaviside-ove funkcije Dirac-delta, lahko zapišemo izraz za operator Gi
R.

∂Hxi
d

∂x
= δxi

d
=

{

∞; x= xi
d

0; sicer
Gi
R =

∂M i

∂x
=







δxi
d
− (Bu

2 +Bu
3 ) ; 0 < xi

d < L/2

δxi
d
−Bu

2 ; L/2 < xi
d < L

V primeru konstantnih deformacij vzdolž sloja (v primeru čistega upogiba ali čistega natega/tlaka) zgornji izraz

za Gi
R ni primeren, saj je linearen. Za ta primer izpeljemo M i in Gi

R z naslednjim razmislekom. Konstantne

deformacije ustrezajo linearnemu poteku pomikov, ki jih lahko interpoliramo med dva vozliščna pomika (namesto

treh) z linearnimi oblikovnimi funkcijami Nu∗.
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Doktorska disertacija. Ljubljana, UL, FGG.

179

ũi (x) = Nu∗ (x)ui∗, Nu∗ (x) = {Nu∗
1 ,Nu∗

2 }=
{

1−
x

L
,
x

L

}

, ui∗ =
{
ui

1,u
i
2

}T

Oblikovni funkciji M i in Gi
R dobimo na enak način kot prej.

M i =Hxi
d
−Nu∗

2 =Hxi
d
−

x

L
, Gi

R =
∂M i

∂x
= δxi

d
−

1

L

Glede na linearen potek osnih deformacij po posameznem sloju se nezveznost lahko pojavi v enem od končnih

vozlišč. V posebnem primeru, ko so deformacije sloja konstantne po dolžini nezveznost postavimo v sredino

elementa. Zgornje izraze za operator Gi
R torej lahko združimo v naslednjem zapisu.

Gi
R

(
x,xi

d

)
= Ḡi

R+ ¯̄Gi
R,

¯̄Gi
R = δxi

d
, Ḡi

R =







−
1

L
; xi

d = L/2

−
1

L

(

3−
4x

L

)

; xi
d = 0

1

L

(

1−
4x

L

)

; xi
d = L

Lokacijo nezveznosti določimo glede na vrednosti napetosti v sloju v trenutku, ko je dosežena meja nosilnosti. V

sloju armature jo postavimo na mesto največje napetosti po absolutni vrednosti, saj je obnašanje jekla simetrično

v tlaku in nategu. V primeru konstantnega napetostnega stanja nezveznost postavimo v sredino sloja.

σ1 = σ2 = σ3 ⇒ xi
d = L/2

|σ1|> |σ2| ⇒ xi
d = 0

|σ1|< |σ2| ⇒ xi
d = L

kjer je

σ1 = σ|x=0

σ2 = σ|x=L

σ3 = σ|x=L/2

Pri betonu je lociranje razpoke manj enostavno, saj moramo upoštevati različni nosilnosti betona v tlaku σfcc in

nategu σfct. Če je več kot polovica sloja v nategu σ3 ≥ 0, se pojavi nezveznost v nategu na bolj tegnjenem koncu

sloja. Če je ves sloj v tlaku, se pojavi tlačna nezveznost na bolj tlačenem koncu. V vmesni situaciji primerjamo

nosilnosti betona v tlaku in nategu, da ugotovimo, katera obremenitev je bolj kritična.

σ1 = σ2 = σ3 ⇒ xi
d = L/2

σ1 > σ2 ⇒







σ3 ≥ 0 ⇒ xi
d = 0

σ3 < 0 ⇒







σ1 ≤ 0 ⇒ xi
d = L

σ1 > 0 ⇒

{

|σ2/σ1 | ≤ (σfcc/σfct ) ⇒ xi
d = 0

|σ2/σ1 |> (σfcc/σfct ) ⇒ xi
d = L

σ1 < σ2 ⇒ analogno kot pri σ1 > σ2

Princip virtualnega dela

Virtualno osno deformacijo ε̂i v i-tem sloju interpoliramo na enak način kot pravo deformacijo, le da operator

Gi
R zamenjamo z operatorjem Gi

V , kar nam omogoča prilagodljivo interpolacijo virtualne količine. Tako kot pri
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pravi deformaciji, dodatni del ε̂i,add nastopa le v n
(e)
CL slojih, ki so presegli mejo nosilnosti in aktivirali nezveznost.

Izboljšana interpolacija virtualne deformacije prinese dodaten člen v virtualno delo notranjih sil Gint,(e).

ε̂i = B̆id̂+Gi
V α̂

i

︸ ︷︷ ︸

ε̂i,add

, Gint,(e) =
∫

V

ε̂σdV =
∫

L

∑
i

ε̂iσiAidx= d̂(e)T f int,(e)
︸ ︷︷ ︸

standardno

+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

︸ ︷︷ ︸

dodatno

Vektor posplošenih virtualnih pomikov d̂(e) združuje vse virtualne prostostne stopnje elementa (e), vektor f int,(e)

pa ustrezno urejene notranje sile. Izračunamo jih kot vsoto prispevkov posameznih slojev f int,(e),i. Količina h(e),i

je ekvivalent notranje sile, ki ustreza virtualnemu skoku v osnem pomiku α̂(e),i.

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e) =
nL

∑
i=1

Ai
∫

L

B̆iTσidx

︸ ︷︷ ︸

f int,(e),i

, h(e),i =
∫

L

Gi
V σ

iAidx

Za operator Gi
V obdržimo obliko operatorja Gi

R. Zapišemo ga kot vsoto zveznega dela Ḡi
V in Dirac-delta funkcije.

Gi
V = Ḡi

V + δxi
d
,
∫

L

g (x)δxi
d
dx= g

(
xi
d

)

Z upoštevanjem pravila za integriranje Dirac-delta funkcije razvijemo izraz za h(e),i. Napetost v sloju σi je funkcija

koordinate x. Njeno vrednost na mestu nezveznosti σi
∣
∣
xi
d

označimo s ti in definiramo kot napetost v nezveznosti,

ki je konjugirana količina skoka v osnem pomiku αi.

h(e),i =
∫

L

(

Ḡi
V + δxi

d

)

σiAidx=Ai
∫

L

Ḡi
V σ

idx+Aiσi
∣
∣
xi
d
=Ai





∫

L

Ḡi
V σ

idx+ ti





Iz principa virtualnega dela Gint −Gext = 0 izpeljemo ravnotežne enačbe konstrukcije. Poleg standardne enačbe

globalnega ravnotežja zunanjih in notranjih sil dobimo dodatno ravnotežno enačbo za vsak sloj vsakega elementa,

v katerem je bila presežena meja nosilnosti in se je v njem pojavila nezveznost.

nFE

A
e=1

[

f int,(e)− f ext,(e)
]

= 0, ∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0

Tu je A “assembly” operator, nFE število končnih elementov v konstrukciji, n
(e)
CL pa število slojev z aktivirano

nezveznostjo v končnem elementu (e). Če v dodatno enačbo vstavimo zgoraj izpeljani izraz za h(e),i, jo lahko

jasneje interpretiramo. Predstavlja ravnotežje med napetostmi po sloju σi in napetostjo v nezveznosti ti posame-

znega sloja v šibki (integralski) obliki. Ker se nanaša le na posamezen sloj, jo imenujemo tudi enačba lokalnega

ravnotežja.

h(e),i = 0 ⇔ ti =−
∫

L

Ḡi
V σ

idx
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Zvezni del operatorja Gi
V , označen z Ḡi

V , izpeljemo na tak način, da ohranimo fizikalni pomen napetosti v ne-

zveznosti, ki smo jo definirali kot ti = σi
∣
∣
xi
d
. Če se držimo spodnje enačbe, zgornji izraz za ti vedno zavzame

vrednost funkcije σi
(
x= xi

d

)
za poljubno linearno funkcijo σi.

Gi
V

(
x,xi

d

)
= Ḡi

V + ¯̄Gi
V ,

¯̄Gi
V = δxi

d
, Ḡi

V =







−
1

L
; xi

d = L/2

−
2

L

(

2−
3x

L

)

; xi
d = 0

2

L

(

1−
3x

L

)

; xi
d = L

Če bi namesto tega uporabili kar izraze, ki smo jih izpeljali za Ḡi
R, bi npr. v primeru xi

d = 0 za ti dobili vrednost

ti = σi
∣
∣
L/6

6= σi
∣
∣
xi
d
=0

.

Materialni modeli

Lastnosti materiala opišemo s po dvema konstitutivnima zakonoma za vsak sloj. Prvi opisuje zvezo med napetostjo

in deformacijo po sloju, drugi pa zvezo med napetostjo v nezveznosti in skokom v osnem pomiku. Za betonski

sloj uporabimo model poškodovanosti z utrjevanjem. Osni odziv je sprva linearno elastičen. Ko dosežemo mejo

elastičnosti, se začnejo zvezno po materialu pojavljati mikro poškodbe, kar se odraža v zmanjšani togosti. Ob

razbremenjevanju se deformacije zmanjšujejo premo sorazmerno z napetostjo - črta razbremenjevanja se vrača

proti izhodišču diagrama. Osnovne enačbe modela so izpeljane iz zakonov termodinamike, glej npr. [73].

σi = D̄i−1

ε̄i, D̄i ∈
[
E−1

c ,∞
)
, ε̄i = B̆id+ Ḡi

Rα
i

Tu je D̄i podajnost sloja, ki je na začetku enaka inverzni vrednosti elastičnega modula Ec in narašča s pojavom

mikro poškodb. Funkcija poškodovanosti φ̄i nadzira prehajanje iz elastičnega obnašanja v poškodovanost in obra-

tno. Konstanta σd > 0 predstavlja absolutno vrednost napetosti, pri kateri se prvič pojavijo mikro razpoke v nategu

oz. mikro drobljenje materiala v tlaku. Napetosti podobna količina q̄i ≤ 0 predstavlja povečanje meje elastičnosti

zaradi utrjevanja materiala. Odvisna je od deformaciji podobne spremenljivke ξ̄i in modula utrjevanja Hc > 0.

Vrednosti konstant σd in Hc določimo posebej za tlak in nateg.

φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σd− q̄i

)
, q̄i =−Hcξ̄

i

Materialni model obsega še evolucijski enačbi za notranji spremenljivki D̄i in ξ̄i ter pogoje obremenjevanja in

razbremenjevanja. Tu je ˙̄γi
Lagrangev množitelj, ki izhaja iz izpeljave enačb po principu maksimalne disipacije

energije.

˙̄D
i
=

˙̄γisign
(
σi
)

σi
, ˙̄ξ

i
= ˙̄γi, ˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ

i
= 0

Obnašanje nezveznosti v betonskem sloju opišemo z modelom mehčanja, ki povezuje spremenljivki ti in αi. Skok

v osnem pomiku je enak nič, dokler ne dosežemo meje nosilnosti. Od tu dalje se ti zmanjšuje z naraščanjem

αi, dokler ne pade na vrednost nič (zaradi enačbe lokalnega ravnotežja mu sledijo tudi napetosti v sloju σi).
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Ob razbremenjevanju skok v pomiku αi linearno pada proti nič (razpoka se zapira), kar ustreza značaju betona.

Materialni model nezveznosti je definiran z naslednjim kompletom enačb.

ti = ¯̄D
i−1

αi, ¯̄D
i
∈ [0,∞) , ¯̄φ

i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfc− ¯̄qi
)

, ¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

Tu je ¯̄D
i

podajnost nezveznosti, ¯̄φ
i

je funkcija mehčanja, ki nadzoruje prehod iz elastičnega obnašanja v mehčanje

in obratno, σfc > 0 je absolutna vrednost napetosti, pri kateri se aktivira nezveznost, ¯̄qi ∈ [0,σfc) je napetosti

podobna spremenljivka, ki opisuje zmanjšanje nosilnosti zaradi mehčanja materiala, in je odvisna od pomiku

podobne spremenljivke ¯̄ξ
i

in modula mehčanja Kc < 0. Vrednosti konstant σfc in Kc sta različni za tlak in nateg.

Opis modela zaključimo z evolucijskima enačbama za notranji spremenljivki ¯̄D
i

in ¯̄ξ
i

ter s pogoji obremenjevanja

in razbremenjevanja, v katerih je ˙̄̄γ
i

Lagrangev množitelj, ki izvira iz termodinamične izpeljave enačb.

˙̄̄
D

i

=
˙̄̄γ
i
sign

(
ti
)

ti
,

˙̄̄
ξ
i

= ˙̄̄γ
i
, ˙̄̄γ

i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0

Za izbrani zakon mehčanja (enačba za ¯̄qi) se izkaže, da je zveza med ti in αi linearna. Reševanje enačb lahko

poenostavimo tako, da vpeljemo novo spremenljivko ¯̄ξ
i∗

. Enačba za ¯̄qi tako dobi linearno obliko.

¯̄ξ
i∗
=−

1

Kc

(

1−eKc
¯̄ξ
i
)

, ¯̄qi = σfc

(

1−eKc
¯̄ξ
i
)

=−Kcσfc
¯̄ξ
i∗
=−K∗

c
¯̄ξ
i∗

V izvirnem zapisu se je količina ¯̄qi asimptotično približevala vrednosti σfc, ko je ¯̄ξ
i

naraščal prek vseh meja.

Posledično betonski sloj nikoli ni mogel popolnoma izgubiti nosilnosti , velikost nezveznosti αi pa je bila navzgor

omejena. V novem, linearnem zapisu ¯̄qi doseže vrednost σfc pri neki končni vrednosti nadomestne spremenljivke

¯̄ξ
i∗

. Ob njenem nadaljnjem naraščanju količina ¯̄qi ohranja isto vrednost (nosilnost sloja je enaka nič).

¯̄qi = min
{

−K∗
c

¯̄ξ
i∗
,σfc

}

, K∗
c =Kcσfc

Ustrezno prilagodimo tudi evolucijski enačbi, ki ju izrazimo z nadomestnim Lagrangevim množiteljem ˙̄̄γ
i∗

. To

omogoča, da skok v pomiku αi narašča tudi po tem, ko je sloj popolnoma izgubil nosilnost. Za obravnavo samo-

stojnega betonskega sloja to sicer ne bi imelo pomena, saj bi ob popolni izgubi nosilnosti postal nestabilen. Za

sloj, ki predstavlja le del nosilca, pa je zmožnost prostega spreminjanja αi potrebna, zato da porušeni sloj ne ovira

deformiranja preostalih slojev.

¯̄γi∗ =−
1

Kc

(

1−eKc ¯̄γi
)

, α̇i = ˙̄̄γ
i∗
sign

(
ti
)
,

˙̄̄
ξ
i∗
= ˙̄̄γ

i∗

Obnašanje sloja armature opišemo z elastoplastičnim materialnim modelom z linearnim izotropnim utrjevanjem,

katerega osnovne enačbe so izpeljane iz zakonov termodinamike [73]. Napetost v sloju izračunamo iz elastične

deformacije, ki je razlika med skupno deformacijo ε̄i in plastično deformacijo ε̄ip.

σi = Es

(
ε̄i− ε̄ip

)
, ε̄i = B̆id+ Ḡi

Rα
i
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Funkcija tečenja φ̄i kontrolira prehod iz elastičnega v plastično obnašanje in obratno. Tu je σy > 0 napetost na meji

tečenja, q̄i < 0 pa napetosti podobna količina, ki predstavlja povišanje meje elastičnosti zaradi utrjevanja materiala.

Odvisna je od modula utrjevanja Hs > 0 in oddeformaciji podobne spremenljivke ξ̄i.

φ̄i
(
σi, q̄i

)
=
∣
∣σi
∣
∣−
(
σy − q̄i

)
, q̄i =−Hsξ̄

i

Potrebujemo še evolucijski enačbi za notranji spremenljivki utrjevanja ε̄ip in ξ̄i ter pogoje obremenjevanja in razbre-

menjevanja. Tu je ˙̄γi
plastični množitelj, ki izhaja iz izpeljave enačb s principom maksimalne plastične disipacije.

˙̄εip = ˙̄γisign
(
σi
)

, ˙̄ξ
i
= ˙̄γi, ˙̄γi ≥ 0, φ̄i ≤ 0, ˙̄γiφ̄i = 0, ˙̄γi ˙̄φ

i
= 0

Obnašanje nezveznosti v sloju armature opišemo s togo-plastičnim modelom mehčanja. Do prekoračitve meje

nosilnosti σfs je skok v osnem pomiku αi enak nič. Nato se ob povečevanju αi napetost v nezveznosti ti linearno

zmanjšuje, dokler ne doseže vrednosti nič. V primeru razbremenjevanja se vrednost αi ne spreminja.

¯̄φ
i
(

ti, ¯̄qi
)

=
∣
∣ti
∣
∣−
(

σfs− ¯̄qi
)

, ¯̄qi = min
{

−Ks
¯̄ξ
i
,σfs

}

Funkcija ¯̄φ
i

nadzira prehajanje med elastičnim obnašanjem in mehčanjem. Napetosti podobna količina ¯̄qi ∈ [0,σfs]

predstavlja zmanjšanje nosilnosti zaradi mehčanja materiala. Odvisna je od pomiku podobne spremenljivke ¯̄ξ
i

in

modula mehčanja Ks < 0. Potrebujemo še evolucijski enačbi za notranji spremenljivki mehčanja αi in ¯̄ξ
i

ter

pogoje obremenjevanja in razbremenjevanja. Tu je ˙̄̄γ
i

plastični množitelj, ki izhaja iz izpeljave enačb po principu

maksimalne disipacije energije.

α̇i = ˙̄̄γ
i
sign

(
ti
)

,
˙̄̄
ξ
i

= ˙̄̄γ
i
, ˙̄̄γ

i
≥ 0, ¯̄φ

i
≤ 0, ˙̄̄γ

i ¯̄φ
i
= 0, ˙̄̄γ

i ˙̄̄
φ
i

= 0

Računski postopek

Konstrukcijo obremenjujemo v psevdo-časovnih korakih. V vsakem koraku rešimo sistem ravnotežnih enačb, pri

čemer mora biti zadoščeno tudi kinematičnim in konstitutivnim enačbam. Ker so enačbe nelinearne, jih linea-

riziramo in rešujemo iterativno po Newtonovi metodi. Vsaka iteracija k je sestavljena iz dveh faz. V fazi (A)

zamrznemo trenutne vrednosti vozliščnih pomikov in posodobimo vrednosti notranjih spremenljivk, v fazi (B) pa

zamrznemo izračunane vrednosti notranjih spremenljivk in izračunamo nove vozliščne pomike.

Pri znanih d(e)
n in

{

D̄(e),i
n , ξ̄(e),in , ¯̄D(e),i

n , ¯̄ξ(e),in

ε̄(e),ip,n , ξ̄(e),in ,α(e),i
n , ¯̄ξ(e),in

iščemo d
(e)
n+1 in







D̄
(e),i
n+1 , ξ̄

(e),i
n+1 ,

¯̄D
(e),i
n+1 ,

¯̄ξ
(e),i
n+1

ε̄
(e),i
p,n+1, ξ̄

(e),i
n+1 ,α

(e),i
n+1 ,

¯̄ξ
(e),i
n+1

.

Fazo (A) izvajamo na nivoju posameznega sloja končnega elementa. Pri fiksiranih vrednostih pomikov d
(e),(k−1)
n+1

iz prejšnje iteracije iščemo pripadajoče vrednosti notranjih spremenljivk in napetosti po sloju, ki jih potrebujemo

za račun v fazi (B). Dokler sloj ne preseže meje nosilnosti, sta notranji spremenljivki mehčanja ( ¯̄D
i

in ¯̄ξ
i

za beton

oz. αi in ¯̄ξ
i

za jeklo) enaki nič in računamo samo vrednosti spremenljivk utrjevanja (D̄i in ξ̄i za beton oz. ε̄ip in ξ̄i

za jeklo). Ko se nezveznost aktivira, se spremenljivke utrjevanja ne spreminjajo več in iščemo samo spremenljivke
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mehčanja. V vsakem primeru je postopek enak. Predpostavimo elastičen testni korak, kar pomeni, da notranje

spremenljivke ohranijo vrednosti iz prejšnjega koraka, nato izračunamo testni vrednosti napetosti v sloju funkcije

tečenja. Če je slednja negativna, je bila predpostavka pravilna in obdržimo testno rešitev. V nasprotnem primeru

posodobimo notranje spremenljivke skladno z evolucijskimi enačbami, pri čemer moramo zadostiti tudi pogo-

jem obremenjevanja in razbremenjevanja. Izračunamo končno vrednost napetosti, ki jo potrebujemo za izračun

notranjih sil končnega elementa (prispevek tega sloja).

K
str,(k)
n+1 ∆d

str,(k)
n+1 = ∆f

str,(k)
n+1 , K

str,(k)
n+1 =

nFE

A
e=1

[

K
(e),(k)
n+1

]

, ∆f
str,(k)
n+1 =

nFE

A
e=1

[

f
ext,(e)
n+1 − f

int,(e),(k)
n+1

]

V fazi (B) rešimo linearizirani sistem ravnotežnih enačb, v katerem so neznanke prirastki pomikov konstrukcije

∆d
str,(k)
n+1 . Operator A sestavi prispevke posameznih elementov v togostno matriko K

str,(k)
n+1 in rezidual ∆f

str,(k)
n+1

celotne konstrukcije. Togostne matrike in notranje sile posameznih elementov izračunamo kot vsoto prispevkov

posameznih slojev.

K
(e),(k)
n+1 = ∑

i

K
(e),i,(k)
n+1 , f

int,(e),(k)
n+1 = ∑

i

f
int,(e),i,(k)
n+1

Prispevke K
(e),i,(k)
n+1 posameznih slojev k togostni matriki elementa izračunamo z naslednjima izrazoma.

i ∈
{

1,2, . . . ,n
(e)
CL

}

: K
(e),i,(k)
n+1 = K

fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

i ∈
{

n
(e)
CL+1, . . . ,nL

}

: K
(e),i,(k)
n+1 = K

fd,(e),i,(k)
n+1

Tu je nL število slojev v končnih elementih, n
(e)
CL število slojev v elementu (e), ki so prekoračili mejo nosilnost.

Dodatni člen v prvem izrazu je posledica izločitve neznank α
(e),i,(k)
n+1 iz globalnega sistema enačb s kondenzacijo

lokalnih ravnotežnih enačb h
(e),i,(k)
n+1 = 0. Opomba: v slojih armature, ki so že aktivirali nezveznost, vendar se

trenutno elastično razbremenjujejo (∆αi = 0), je dodatni člen zaradi kondenzacije enak nič.

K
fd,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

, K
fα,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

, K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

V zgornjih enačbah so definirane vse komponente, potrebne za izračun K
(e),i,(k)
n+1 . Ko izračunamo nove vrednosti

vozliščnih pomikov konstrukcije, jih zamrznemo in vstopimo v fazo (A) naslednje iteracije.

∆d
str,(k)
n+1 =

(

K
str,(k)
n+1

)−1

∆f
str,(k)
n+1 , d

str,(k)
n+1 = d

str,(k−1)
n+1 +∆d

str,(k)
n+1

Z iteriranjem nadaljujemo, dokler ne dosežemo zahtevane konvergence

∥
∥
∥∆f

str,(k)
n+1

∥
∥
∥< tol,

∥
∥
∥∆d

str,(k)
n+1

∥
∥
∥< tol, potem

stopimo v naslednji psevdo-časovni korak.
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Doktorska disertacija. Ljubljana, UL, FGG.

185

VEČSLOJNI KONČNI ELEMENT ZA TIMOŠENKOV NOSILEC S PO SLOJIH VGRAJENIMI

NEZVEZNOSTMI V OSNEM POMIKU

V poglavju 4 izpeljemo večslojni končni element za Timošenkov nosilec, ki ima vgrajene nezveznosti v osnem

pomiku po posameznih slojih. Element omogoča detajlno porušno analizo armiranobetonskih nosilcev in okvirjev

s samodejno identifikacijo kritičnih mest v konstrukciji, na katerih pride do lokaliziranih deformacij (plastičnih

členkov). Večslojna zasnova elementa omogoča pregled nad nastankom in razvojem poškodb materiala v posa-

meznih slojih ter nad napredovanjem nezveznosti (razpok) po višini nosilca. Materialne karakteristike elementa

so definirane ločeno od geometrijskih in jih je moč določiti z enostavnimi tlačnimi ali nateznimi testi betona in

jekla. Večslojni element lahko zato uporabimo za izračun rezultantnih materialno-geometrijskih lastnosti (diagram

moment-ukrivljenost), ki so značilne za posamezen prerez in jih potrebujemo kot vhodni podatek pri analizi z

enostavnejšimi, rezultantnimi končnimi elementi. V primerjavi z večslojnim elementom za Euler-Bernoullijev no-

silec, je tu izpeljani element enostavnejši, saj je napetostno stanje konstantno po njegovi dolžini. To se odraža v

preprostejši aplikaciji in odsotnosti nekaterih težav, ki spremljajo element iz prejšnjega poglavja.

Večslojni končni element je zasnovan na teoriji majhnih deformacij. Razdeljen je na več slojev betona in armature,

ki jih obravnavamo ločeno, kot palice. Vsak sloj ima vgrajeno nezveznost v osnem pomiku, ki se razvija neodvisno

od drugih slojev. Osni odziv betonskega sloja je opisan z modelom poškodovanosti z utrjevanjem zvezno po sloju

in z modelom poškodovanosti v mehčanju za nezveznost. Osni odziv sloja armature je opisan z elastoplastičnim

modelom z utrjevanjem materiala zvezno po sloju in s plastičnim modelom mehčanja na mestu nezveznosti. Pred-

postavimo linearno elastičen strižni odziv.

Kinematika

Obravnavamo raven dvovozliščni končni element za ravninski Timošenkov nosilec. Vsako vozlišče ima tri prosto-

stne stopnje - dva pomika in zasuk. Osni pomik ũ(x) srednje osi nosilca interpoliramo med vozliščna osna pomika

u z linearnimi interpolacijskimi funkcijami N(x). Enako interpoliramo zasuk θ̃ (x) med vozliščna zasuka θ.

ũ(x) = N(x)u, θ̃ (x) = N(x)θ, N(x) = {N1,N2}=
{

1−
x

L
,
x

L

}

Linearna interpolacija prečnega pomika ṽ (x) srednje osi nosilca bi privedla do strižnega blokiranja končnega

elementa, čemur se izognemo z dodatno kvadratično interpolacijsko funkcijo N3 (x). Parameter v3 določimo tako,

da je končni element sposoben opisati napetostno stanje brez strižnih napetosti v primeru konstantnega momenta.

ṽ (x) = N(x)v+N3 (x)v3, N3 (x) =
4(L−x)x

L2
, v3 =

L

8
(θ1 −θ2)

Strižno deformacijo γ izračunamo s spodnjo enačbo. Opazimo, da je konstantna tako po dolžini, kot tudi po višini

končnega elementa.

γ =
∂ṽ

∂x
− θ̃ = Bv+B∗θ, B = {B1,B2}=

{

−
1

L
,

1

L

}

, B∗ = {B∗,B∗}=

{

−
1

2
,−

1

2

}

Nosilec razdelimo na poljubno število slojev po višini. Za dovolj fino razdelitev lahko predpostavimo konstantno

napetostno stanje po debelini posameznega sloja. Osni pomik ui (x) i-tega sloja izračunamo v njegovi srednji osi,

ki je za yi oddaljena od srednje osi nosilca.
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ui
(
x,xi

d

)
=

ũi

︷ ︸︸ ︷

ũ(x)−yiθ̃ (x)+

ui,add

︷ ︸︸ ︷

M i
(
x,xi

d

)
αi

Na začetku pomik opišemo le s standardnim delom ũi (x) zaradi osnega pomika in zasuka srednje osi nosilca.

Ko napetost v sloju prekorači mejo nosilnosti, se v sloju (pri koordinati xi
d) pojavi nezveznost v osnem pomiku.

Dodatni osni pomik ui,add
(
x,xi

d

)
zaradi nezveznosti opišemo z interpolacijsko funkcijo M i

(
x,xi

d

)
in z velikostjo

skoka v pomiku αi. Osno deformacijo i-tega sloja izračunamo kot odvod osnega pomika.

εi
(
x,xi

d

)
=

∂ui

∂x
=

˜̄εi

︷ ︸︸ ︷

Bu−yiBθ+

εi,add
︷ ︸︸ ︷

Gi
(
x,xi

d

)
αi

Standardni del osne deformacije ˜̄εi je konstanten po posameznem sloju. Operator Gi je odvod oblikovne funkcije

M i in ga bomo opisali v nadaljevanju. Standardno osno deformacijo ˜̄εi in strižno deformacijo γ lahko zapišemo

tudi krajše.

˜̄εi =
[

B 0 −yiB
]

d = B̆id, γ =
[

0 B B∗
]

d = B̆∗d, dT =
{

uT ,vT ,θT
}

Za pomoč pri izpeljavi funkcije M i definiramo “vozliščne pomike sloja” ui =
{
ui

1,u
i
2

}T
kot vrednosti standar-

dnega pomika sloja ũi (x) v vozliščih končnega elementa.

ui =
{
ũi
∣
∣
x=0

, ũi
∣
∣
x=L

}T
=
{
u1 −yiθ1, u2 −yiθ2

}T

Ker je pomik ũi linearen, lahko njegovo interpolacijo zapišemo tudi drugače - z linearnimi interpolacijskimi funk-

cijami N(x) in vozliščnimi pomiki sloja. Prištejemo mu dodatni pomik zaradi nezveznosti ui,add.

ũi (x) = ũ(x)−yiθ̃ (x) = N(x)ui, ui
(
x,xi

d

)
= ũi (x)+M i

(
x,xi

d

)
αi

Da bi celotni pomik sloja ui ohranil vozliščne vrednosti ui, mora imeti funkcija M i v vozliščih (pri x = 0 in L)

vrednost nič, za opis nezveznosti pa potrebuje enotski skok pri koordinati xi
d. Pogojem najlaže zadostimo tako, da

za M i uporabimo Heaviside-ovo funkcijo Hxi
d
, od katere odštejemo interpolacijsko funkcijo N2.

M i
(
x,xi

d

)
αi =Hxi

d

(
x,xi

d

)
−N2 (x)

Upoštevamo, da je odvod Heaviside-ove funkcije Dirac-delta (obe funkciji sta definirani v prejšnjem razdelku), in

zapišemo izraz za operator Gi.

Gi
(
x,xi

d

)
=

∂

∂x
M i
(
x,xi

d

)
= Ḡi+ ¯̄Gi, ¯̄Gi = δxi

d
, Ḡi =−B2 =−

1

L

Glede na konstantno napetostno stanje vzdolž sloja, se lahko nezveznost pojavi kjerkoli. Brez izgube splošnosti jo

lahko postavimo v sredino sloja xi
d = L/2 .
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Princip virtualnega dela

Virtualno osno deformacijo ε̂i i-tega sloja in virtualno strižno deformacijo γ̂ interpoliramo na enak način kot pravi

količini. Dodatni del virtualne deformacije ε̂i,add nastopa le v slojih, kjer je napetost presegla mejo nosilnosti in

se je oblikovala nezveznost v pomiku. Izboljšana interpolacija prinese dodaten člen v virtualnem delu notranjih sil

Gint,(e) elementa (e).

ε̂i = B̆id̂+Giα̂i
︸ ︷︷ ︸

ε̂i,add

, γ̂ = B̆∗d̂, Gint,(e) =
∫

V

(ε̂σ+ γ̂τ)dV = d̂(e)T f int,(e)
︸ ︷︷ ︸

standardno

+

n
(e)
CL

∑
i=1

α̂(e),ih(e),i

︸ ︷︷ ︸

dodatno

Vektor d̂(e) združuje vse virtualne prostostne stopnje elementa (e), vektor f int,(e) pa ustrezno urejene notranje sile.

Izračunamo jih kot vsoto prispevkov posameznih slojev f int,(e),i. Količina h(e),i je ekvivalent notranje sile, ki

ustreza virtualnemu skoku v osnem pomiku α̂(e),i.

d̂(e)T =
{

ûT , v̂T , θ̂
T
}

, f int,(e) =
nL

∑
i=1

(

B̆iTσi+ B̆∗Tτ i
)

AiL
︸ ︷︷ ︸

f int,(e),i

, h(e),i =
∫

L

GiσiAidx

Z upoštevanjem prej izpeljanega izraza za operator Gi in pravila za integriranje Dirac-delta funkcije (zapisano v

prejšnjem razdelku) razvijemo izraz za h(e),i. Vrednost napetosti na mestu nezveznosti σi
∣
∣
xi
d

označimo s ti in

definiramo kot napetost v nezveznosti, ki je konjugirana količina skoka v osnem pomiku αi.

h(e),i =
∫

L

(

Ḡi+ δxi
d

)

σiAidx=Ai
∫

L

Ḡiσidx+Aiσi
∣
∣
xi
d
=Ai





∫

L

Ḡiσidx+ ti





Princip virtualnega dela Gint−Gext = 0 nas pripelje do ravnotežnih enačb konstrukcije. Poleg standardnega global-

nega ravnotežja notranjih in zunanjih sil dobimo dodatno ravnotežno enačbo za vsak sloj posameznega elementa,

v katerem je bila prekoračena meja nosilnosti in se je v njem pojavila nezveznost.

nFE

A
e=1

[

f int,(e)− f ext,(e)
]

= 0, ∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h(e),i = 0

Tu je A “assembly” operator, nFE število končnih elementov v konstrukciji, n
(e)
CL pa število slojev z aktivirano

nezveznostjo v končnem elementu (e). Dodatno enačbo lahko jasneje interpretiramo, če vanjo vstavimo prej

izpeljana izraza za h(e),i in Ḡi. Vidimo, da zahteva enakost napetosti v sloju σi in napetosti v nezveznosti ti. Ker

se nanaša le na posamezen sloj, jo imenujemo enačba lokalnega ravnotežja.

h(e),i = 0 ⇔ ti =−
∫

L

Ḡiσidx= σi

Materialni modeli

Predpostavimo linearno elastičen strižni odziv, ki ga opišemo s spodnjo enačbo, v kateri je c strižni korekcijski

faktor za pravokotni prerez, µi pa strižni modul betonskega ali jeklenega sloja, ki ga izračunamo iz ustreznega
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elastičnega modula in Poissonovega količnika.

τ i = cµiγ, c= 5/6, µi =
Ei

2(1+νi)

Osni odziv sloja opišemo popolnoma enako kot pri večslojnem elementu za Euler-Bernoullijev nosilec v prejšnjem

razdelku, torej z dvema materialnima zakonoma za betonski sloj in z dvema za sloj armature.

Računski postopek

Računski algoritem je enak tistemu pri Euler-Bernoullijevem nosilcu v prejšnjem razdelku, le da se za račun

notranjih spremenljivk, napetosti, notranjih sil itd. uporabljajo malce drugačni (enostavnejši) izrazi. Poleg tega se

pri Timošenkovem nosilcu ni potrebno ukvarjati z določanjem lokacije nezveznosti.

NADGRADNJA VEČSLOJNEGA KONČNEGA ELEMENTA ZA TIMOŠENKOV NOSILEC

Z VISKOZNO REGULARIZACIJO ODZIVA V MEHČANJU

V poglavju 5 nadgradimo večslojni končni element za Timošenkov nosilec iz prejšnjega poglavja z viskozno re-

gularizacijo odziva v mehčanju. Pri tej metodi vpeljemo dodatno viskozno silo v nezveznosti, katere namen je

preprečiti hkraten pojav več nezveznosti v homogenem napetostnem polju. Če se nezveznost pojavi v več končnih

elementih hkrati, viskozna regularizacija da prednost enemu izmed njih. Izbrani element se mehča naprej, ostali pa

se elastično razbremenjujejo. Izbira prednostnega elementa se izvede na podlagi hitrosti napredovanja nezveznosti.

Hitreje kot nezveznost raste, bolj se njena rast vzpodbuja, tako da v končni fazi samo “najhitrejši” element razvije

nezveznost. Z vpeljavo viskozne sile malenkostno spremenimo ravnotežne enačbe, medtem ko kinematične in

konstitutivne enačbe ostanejo nespremenjene. Posledično se rahlo spremenijo določeni izrazi, ki jih uporabljamo

v računskem postopku.

Princip virtualnega dela

V večslojnem elementu vpeljemo viskozne sile v vsak sloj posebej in jih upoštevamo pri računu virtualnega dela

notranjih sil elementa (e). Izrazu Gint,(e), ki smo ga izpeljali v poglavju 4, prištejemo dodaten člen zaradi viskoznih

sil, ki delujejo na virtualnih skokih v pomiku α̂(e),i in katerih velikost je odvisna od hitrosti naraščanja (pravega)

skoka v pomiku α̇(e),i in od viskoznega parametra ηi posameznega sloja.

G
int,(e)
reg =Gint,(e)+

n
(e)
CL

∑
i=1

α̂(e),i ηiα̇(e),iAi

︸ ︷︷ ︸

viskozna sila

= d̂(e)T f int,(e)+

n
(e)
CL

∑
i=1

α̂(e),i
(

h(e),i+ηiα̇(e),iAi
)

︸ ︷︷ ︸

h
(e),i
reg

Dobljeni izraz G
int,(e)
reg imenujemo regularizirano virtualno delo notranjih sil. Spremenjeni izraz ob virtualnem

skoku v osnem pomiku α̂(e),i označimo s h
(e),i
reg . Dodatno ga lahko razvijemo, če upoštevamo znani izraz za h(e),i.

h
(e),i
reg =Ai





∫

L

Ḡiσidx+ ti



+ ηiα̇iAi =Ai





∫

L

Ḡiσidx+ ti+ηiα̇i
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Tu je Ḡi = −1/L oblikovna funkcija za interpoliranje dodatnih napetosti zaradi nezveznosti, σi je napetost v

sloju, ti napetost v nezveznosti in Ai prerez i-tega sloja. Iz principa virtualnega dela Gint
reg −Gext = 0 izpeljemo

ravnotežne enačbe konstrukcije.

nFE

A
e=1

[

f int,(e)− f ext,(e)
]

= 0, ∀e ∈ {1,2, . . . ,nFE} , ∀i ∈
{

1,2, . . . ,n
(e)
CL

}

: h
(e),i
reg = 0

Enačbe globalnega ravnotežja konstrukcije so popolnoma enake kot pri elementu brez viskozne regularizacije,

enačbe lokalnega ravnotežja pa obdržijo isto obliko, le izraz h(e),i je nadomeščen s h
(e),i
reg . Če razvijemo lokalno

ravnotežno enačbo i-tega sloja, opazimo, da σi in ti nista več enaka. Z vpeljavo viskozne sile torej v sloj vnesemo

(majhno) neravnotežje med napetostmi v sloju in v nezveznosti.

h
(e),i
reg = 0 ⇔ ti =−

∫

L

Ḡiσidx−ηiα̇i = σi−ηiα̇i

Račun notranjih spremenljivk

Vsiljeno neravnotežje v sloju se odraža v nekoliko spremenjenih izrazih, ki jih uporabljamo pri računu notranjih

spremenljivk v fazi (A) posamezne iteracije. V betonskem sloju se izraz za testno vrednost napetosti v nezveznosti

t
(k),trial
n+1 spremeni na naslednji način.

t
(k),trial
n+1 =

B̆d
(k−1)
n+1

D̄n− Ḡ ¯̄Dn

→ t
(k),trial
n+1 =

B̆d
(k−1)
n+1 + D̄n

η
∆τn+1

αn

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

Tu je ∆τn+1 = τn+1−τn prirastek psevdo-časa, ki izhaja iz zapisa psevdo-časovnega odvoda α̇(e),i v inkrementalni

obliki. Podobno se spremenita izraz za ¯̄γ
∗(k)
n+1, s katerim posodobimo vrednosti notranjih spremenljivk v primeru

prekoračene nosilnosti (ko je ¯̄φ
(k),trial
n+1 > 0), in izraz za skok v pomiku v primeru popolne izgube nosilnosti (ko je

t
(k)
n+1 = 0).

¯̄γ
∗(k)
n+1 =

¯̄φ
(k),trial
n+1

(

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

)

K∗
c D̄n− Ḡ+ D̄n

η
∆τn+1

, α
(k)
n+1 =−

B̆d
(k−1)
n+1 + D̄−1

n
η

∆τn+1
αn

Ḡ− D̄−1
n

η
∆τn+1

V sloju armature dobita izraza za ¯̄γ
(k)
n+1, s katerima posodobimo vrednosti notranjih spremenljivk (v primeru, da je

¯̄φ
(k),trial
n+1 > 0), naslednjo obliko.

¯̄γ
(k)
n+1 =







¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

−ḠEs+Ks+
η

∆τn+1

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

< σfs

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

−ḠEs+
η

∆τn+1

; −Ks

(
¯̄ξn+ ¯̄γA

n+1

)

> σfs

Vsi navedeni izrazi prevzamejo prvotno obliko (kot v končnem elementu brez viskoznosti), če vanje vstavimo

vrednost viskoznega parametra η = 0. Opomba: v izrazih sta opuščena indeksa (e) in i.
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Račun vozliščnih pomikov

Pri reševanju ravnotežnih enačb moramo upoštevati, da je h
(e),i
reg odvisen ne le od vozliščnih pomikov elementa d(e)

in skoka v osnem pomiku i-tega sloja α(e),i, temveč tudi od njegovega psevdo-časovnega odvoda α̇(e),i.

h
(e),i,(k)
reg,n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1 , α̇

(e),i,(k)
n+1

)

= h
(e),i,(k)
n+1

(

d
(e),(k−1)
n+1 ,α

(e),i,(k)
n+1

)

+ηiα̇
(e),i,(k)
n+1 Ai

Odvod α̇(e),i zapišemo v inkrementalni obliki, kjer je α
(e),i,(k)
n+1 trenutna vrednost skoka, α

(e),i
n vrednost iz prejšnje-

ga koraka in ∆τn+1 = τn+1 − τn prirastek psevdo-časa od prejšnjega do trenutnega koraka. Izračunamo lahko tudi

odvod ∂α̇
(e),i,(k)
n+1 /∂α

(e),i,(k)
n+1 , ki ga potrebujemo pri računu togostne matrike elementa.

α̇
(e),i,(k)
n+1 =

α
(e),i,(k)
n+1 −α

(e),i
n

∆τn+1
,

∂α̇
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

=
1

∆τn+1

Togostna matrika elementa je določena z enakim izrazom kot prej, le pri računu posameznih komponent moramo

upoštevati odvisnost izrazov od α̇(e),i.

K
(e),(k)
n+1 =

n
(e)
CL

∑
i=1

(

K
fd,(e),i,(k)
n+1 −K

fα,(e),i,(k)
n+1

(

K
hα,(e),i,(k)
n+1

)−1

K
hd,(e),i,(k)
n+1

)

+
nL

∑
i=n

(e)
CL

+1

K
fd,(e),i,(k)
n+1

Komponenti K
fd,(e),i,(k)
n+1 in K

fα,(e),i,(k)
n+1 ostaneta nespremenjeni, saj so izrazi za notranje sile f

int,(e),i,(k)
n+1 enaki kot

pri elementu brez viskoznosti. Komponenti K
hd,(e),i,(k)
n+1 in K

hα,(e),i,(k)
n+1 pa sta sedaj definirani kot odvoda h

(e),i
reg ,

namesto h(e),i.

K
fd,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

, K
fα,(e),i,(k)
n+1 =

∂f
int,(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂d
(e),(k−1)
n+1

, K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂α
(e),i,(k)
n+1

Izkaže se, da je tudi komponenta K
hd,(e),i,(k)
n+1 enaka kot prej, saj psevdo-časovni odvod α̇(e),i ni funkcija vozliščnih

pomikov d(e).

K
hd,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂d
(e),(k−1)
n+1

=

od prej
︷ ︸︸ ︷

∂h
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

+

dodatno
︷ ︸︸ ︷

∂α̇
(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

︸ ︷︷ ︸

=0

ηiAi =
∂h

(e),i,(k)
n+1

∂d
(e),(k−1)
n+1

Spremeni se torej samo komponenta K
hα,(e),i,(k)
n+1 .
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K
hα,(e),i,(k)
n+1 =

∂h
(e),i,(k)
reg,n+1

∂α
(e),i,(k)
n+1

=

od prej
︷ ︸︸ ︷

∂h
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

+

dodatno
︷ ︸︸ ︷

∂α̇
(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

︸ ︷︷ ︸

=1/∆τn+1

ηiAi =
∂h

(e),i,(k)
n+1

∂α
(e),i,(k)
n+1

+
ηi

∆τn+1
Ai

Združevanje togostnih matrik in rezidualov posameznih elementov v togostno matriko in rezidual celotne kon-

strukcije izvedemo enako kot prej. Nato izračunamo prirastke vozliščnih pomikov in stopimo v naslednjo iteracijo.

Ko dosežemo zahtevano konvergenco rezultatov, nadaljujemo z analizo pri naslednjem psevdo-časovnem koraku.

ZAKLJUČKI

Cilj doktorske naloge je bil razviti končne elemente, sposobne verodostojnega modeliranja lokaliziranih porušitev

v armiranem betonu, za numerično analizo armiranobetonskih nosilcev in okvirjev do popolne porušitve. Za mo-

deliranje lokalizirane porušitve smo uporabili metodo vgrajene nezveznosti, pri kateri se interpolacijo pomikov v

standardnem končnem elementu nadgradi z nezvezno funkcijo, ki omogoča opis skoka v pomiku znotraj elementa.

Izpeljali smo končni element na nivoju rezultant napetosti z vgrajeno nezveznostjo v zasuku za ravninski Euler-

Bernoullijev nosilec. Element temelji na teoriji majhnih deformacij, elastoplastičnem materialnem modelu z bili-

nearnim utrjevanjem in zakonu linearnega plastičnega mehčanja v nezveznosti.

• Kljub enostavnosti je končni element sposoben opisati vse bistvene značilnosti odziva armiranobetonskih

nosilcev - razpokanje betona, tečenje armature in lokalizirano porušitev nosilca.

• Končni element omogoča analizo konstrukcij do popolne izgube nosilnosti, zato lahko poleg mejne nosil-

nosti analiziramo tudi duktilnost in post-kritično obnašanje konstrukcije.

• Rezultati numeričnih primerov se razmeroma dobro ujemajo z drugimi rezultati, dostopnimi v literaturi, in

z eksperimentalnimi rezultati.

• Končni element zagotavlja odziv v mehčanju, neodvisen od mreže končnih elementov.

• Kot vhodni podatek potrebujemo diagram moment - ukrivljenost in diagram moment v nezveznosti - skok

v zasuku. Lahko ju določimo z eksperimentom ali izračunamo z natančnejšim končnim elementom.

• Element bi lahko nadgradili z mešanim materialnim modelom, ki bi poleg plastičnih deformacij znal opi-

sati tudi zmanjšano togost betonskega prereza zaradi mikro-razpok, ali z vpeljavo skoka v osnem pomiku,

vendar za običajne armiranobetonske nosilce ni pričakovati bistveno drugačni rezultatov.

Izpeljali smo večslojni končni element za Euler-Bernoullijev nosilec, ki ima po slojih vgrajene nezveznosti v

osnem pomiku. Zasnovan je na teoriji majhnih deformacij. Nosilec razdelimo na več slojev betona in armature.

Obnašanje betonskega sloja je opisano z modelom poškodovanosti z utrjevanjem zvezno po sloju in z modelom

mehčanja v nezveznosti. Sloj armature je opisan z elastoplastičnim modelom z linearnim utrjevanjem zvezno po

sloju in z modelom plastičnega linearnega mehčanja v nezveznosti.

• Končni element je bil namenjen za natančno analizo armiranobetonskih okvirjev in nosilcev ter za račun

rezultantnih (materialno-geometrijskih) karakteristik poljubnih armiranobetonskih prerezov, potrebnih pri

analizi z rezultantnimi končnim elementi, vendar element ne deluje, kot je bilo zamišljeno. Našli smo več

nepravilnosti.
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• Interpolacijsko funkcijo za dodatne napetosti zaradi nezveznosti smo izpeljali na izoliranem sloju ob pred-

postavki, da se lahko prosto deformira. To ne drži, saj je sloj povezan z ostalimi sloji preko vozliščnih

pomikov. Posledično se dodatne napetosti, ki so posledica nezveznosti, ne morejo pravilno razporediti. Na-

petost v sloju nadziramo samo na mestu nezveznosti, kjer mora biti enaka napetosti v razpoki, torej pada z

rastjo nezveznosti. Drugod po sloju lahko napetosti celo presežejo mejo nosilnosti.

• Ravnotežje se zagotavlja samo na nivoju končnega elementa, ne pa tudi na nivoju posameznega sloja. V

disertaciji smo predstavili numerični primer armiranobetonskega nosilca v čistem nategu, v katerem se je

napetost spreminjala linearno (!) po dolžini posameznega sloja. Če bi posamezen sloj osamili, ne bi bil v

ravnotežju, nosilec kot celota pa je, saj se neravnotežja posameznih slojev medsebojno izničijo.

• Skoki v osnem pomiku v posameznih slojih so popolnoma neodvisni med seboj. V enem od numeričnih

primerov nosilca (s simetričnim prerezom) v čistem nategu smo opazili linearno spreminjanje velikosti

nezveznosti po višini nosilca (negativna na spodnjem robu, pozitivna na zgornjem robu in nič v sredini).

Kot posledica se je pojavil prečni pomik prostega konca nosilca brez kakršne koli prečne obtežbe.

• V kinematiki na nivoju elementa ni nezveznosti (v zasuku). Srednja os elementa se vedno deformira skladno

s standardno Euler-Bernoullijevo kinematiko, torej je gladka, tudi če nosilec izgubi vso nosilnost. Vsak

sloj zdrsne po tirnici, ki je vzporedna s srednjo osjo elementa. To ne bi smelo povzročati večjih težav,

če uporabimo dovolj fino mrežo končnih elementov. Poškodovani končni element ima namreč povečano

ukrivljenost v primerjavi s sosednjimi elementi, kar lahko interpretiramo kot skok v zasuku, razmazan na

celoten element.

• Opazili smo odvisnost rezultatov od mreže končnih elementov, ki je bila najlepše vidna v primeru konzole

v čistem upogibu. Zaradi konstantnega napetostnega stanja vzdolž nosilca se nezveznosti pojavijo hkrati v

vseh končnih elementih. Ob isti vrednosti vsiljenega zasuka na prostem koncu konzole v fini mreži nastane

večje število manjših nezveznosti, v grobi mreži pa manjše število večjih nezveznosti. Skladno z zakonom

mehčanja, napetost v nezveznosti pada z naraščanjem njene velikosti. Ob istem vsiljenem zasuku torej s

fino mrežo izračunamo večji moment kot z grobo. Do največjih odstopanj pride v zadnjem delu odziva,

ko se element kot celota začne mehčati, običajno zaradi odpovedi natezne armature. Težavo rešimo tako,

da malce oslabimo armaturo v enem od končnih elementov, s čimer preprečimo hkratno odpove armature

v vseh elementih. Če konzola odpove zaradi drobljenja betona v tlaku, problema ne moremo rešiti tako

elegantno. Poleg tega se ne moremo izogniti (manjši) odvisnosti od diskretizacije zaradi mehčanja betona v

nategu, preden element kot celota doseže mejno nosilnost.

• Glede na naštete pomanjkljivosti obravnavanega večslojnega elementa za Euler-Bernoullijev nosilec ne mo-

remo priporočiti za splošno uporabo. Edina sprejemljiva aplikacija elementa je za primere s konstantnim

napetostnim stanjem vzdolž nosilca (čisti upogib ali čisti tlak/nateg). Ob tem je treba poskrbeti za pra-

vilno lociranje nezveznosti znotraj elementa. V primeru čistega upogiba se ne moremo popolnoma izogniti

odvisnosti od diskretizacije.

Izpeljali smo večslojni končni element za Timošenkov nosilec, ki ima po slojih vgrajene nezveznosti v osnem

pomiku. Zasnovan je na teoriji majhnih deformacij. Nosilec razdelimo na več slojev betona in armature. Obnašanje

betonskega sloja je opisano z modelom poškodovanosti z utrjevanjem zvezno po sloju in z modelom mehčanja v

nezveznosti. Sloj armature je opisan z elastoplastičnim modelom z linearnim utrjevanjem zvezno po sloju in z

modelom plastičnega linearnega mehčanja v nezveznosti.

• Končni element omogoča detajlno analizo armiranobetonskih nosilcev in okvirjev do popolne porušitve, za-

radi česar lahko poleg določitve mejne nosilnosti konstrukcije določimo tudi njeno duktilnost in analiziramo

njeno post-kritično obnašanje. V vsaki fazi analize je na voljo podroben opis stanja materiala v konstrukciji

(širjenje poškodovanosti betona, plastificiranja jekla in lokalizirane odpovedi obeh materialov).
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• Končni element ni namenjen cikličnemu obremenjevanju, vendar kljub temu prenese manjše spremembe

predznaka napetosti, ki se v nekaterih slojih lahko pojavi zaradi premika nevtralne osi tudi pri monotonem

obremenjevanju.

• Potrebujemo dva materialna zakona za vsak material - zvezo med napetostmi in deformacijami po sloju ter

zvezo med napetostjo in skokom v pomiku v nezveznosti. Lahko jih določimo z nateznim/tlačnim preiz-

kusom. Zaradi tega je element primeren za računanje rezultantnih (materialno-geometrijskih) karakteristik

poljubnih armiranobetonskih prerezov, potrebnih pri analizi z rezultantnimi končnim elementi.

• Pri numeričnih primerih smo opazili odvisnost rezultatov od mreže končnih elementov, ki je bila najlepše

vidna pri konzoli v čistem upogibu. Zaradi konstantnega napetostnega stanja vzdolž konzole se nezveznosti

pojavijo v vseh končnih elementih hkrati. Ob isti vrednosti vsiljenega zasuka na prostem koncu konzole

v fini mreži nastane večje število manjših nezveznosti, v grobi mreži pa manjše število večjih nezveznosti.

Skladno z zakonom mehčanja, napetost v nezveznosti pada z naraščanjem njene velikosti. Ob istem vsi-

ljenem zasuku torej s fino mrežo izračunamo večji moment kot z grobo. Do največjih odstopanj pride v

zadnjem delu odziva, ko se element kot celota začne mehčati, običajno zaradi odpovedi natezne armature.

Težavo rešimo tako, da malce oslabimo armaturo v enem od končnih elementov, s čimer preprečimo hkra-

tno odpove armature v vseh elementih. Če konzola odpove zaradi drobljenja betona v tlaku, problema ne

moremo rešiti tako elegantno. Poleg tega se ne moremo izogniti (manjši) odvisnosti od diskretizacije zaradi

mehčanja betona v nategu, preden element kot celota doseže mejno nosilnost.

• Odvisnost rezultatov od diskretizacije zaradi mehčanja betona v nategu je bila bolj očitna v primeru konzole

s prečno silo na prostem koncu. Ker je element sposoben opisati samo konstantno napetostno stanje po

svoji dolžini, je za zadovoljiv opis linearnega momenta potrebna precej fina mreža končnih elementov.

Drobljenje mreže poveča število in zmanjša velikost razpok ter tako povzroči večje napetosti v tegnjenem

betonu. Posledica tega je občutno precenjena vrednost momenta na meji tečenja.

• V kinematiki na nivoju elementa ni nezveznosti (v zasuku). Srednja os elementa se vedno deformira skladno

s standardno Euler-Bernoullijevo kinematiko, torej je gladka, tudi če nosilec izgubi vso nosilnost. Vsak

sloj zdrsne po tirnici, ki je vzporedna s srednjo osjo elementa. To ne bi smelo povzročati večjih težav,

če uporabimo dovolj fino mrežo končnih elementov. Poškodovani končni element ima namreč povečano

ukrivljenost v primerjavi s sosednjimi elementi, kar lahko interpretiramo kot skok v zasuku, razmazan na

celoten element.

• Končni element smo testirali na več numeričnih primerih. V nekaterih primerih so se rezultati analize dobro

ujemali z drugimi rezultati, dostopnimi v literaturi, in z rezultati eksperimentov. V nekaterih primerih pa je

prišlo do večjih odstopanj.

• Preden lahko element priporočimo za splošno rabo, je treba natančno preučiti težave z odvisnostjo rezultatov

od mreže končnih elementov, ki jo povzroči mehčanje betona v nategu. V primeru konzole z linearnim

potekom momentov je bil vpliv pojava občuten, medtem ko v nekaterih kompleksnejših primerih odstopanje

ni bilo tako opazno. Morda je vredno razmisliti o drugačnem materialnem modelu za beton v nategu (npr.

princip razmazane nezveznosti, zanemarjena nosilnost betona v nategu, ipd.).

• Končni element bi lahko nadgradili, tako da bi dovoljeval ciklično nanašanje obtežbe. V ta namen bi morali

vpeljati ločena kompleta notranjih spremenljivk za beton v tlaku in nategu, vendar to ni enostavna naloga.

Tlačni in natezni odziv betona namreč nista neodvisna, njuna povezava pa ni čisto preprosta.

Večslojni končni element za Timošenkov nosilec smo nadgradili, tako da vključuje viskozno regularizacijo od-

ziva v mehčanju. V nezveznost vsakega posameznega sloja smo vpeljali dodatno viskozno silo, odvisno hitrosti

povečevanja nezveznosti in dodatnega viskoznega parametra. Dodatne sile smo upoštevali v zapisu virtualnega

dela, kar je pripeljalo do rahlo spremenjenega sistema ravnotežnih enačb in posledično do manjših sprememb v

računskem postopku.
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• Vpeljava viskozne regularizacije je dokaj enostavna, saj zahteva le manjše spremembe obstoječega večsloj-

nega elementa za Timošenkov nosilec.

• Velike vrednosti viskoznega parametra lahko vplivajo na pravilnost rezultatov. Povečajo lahko mejno no-

silnost, zamaknejo krivuljo mehčanja (zakasnitev mehčanja) in povzročijo neničelno napetostno stanje v

elementu, tudi ko napetost v razpoki pade na vrednost nič. Za majhne vrednosti viskoznega parametra so ti

vplivi zanemarljivi.

• Viskozna regularizacija lahko prepreči odvisnost rezultatov od mreže končnih elementov, ki jo povzroči (fi-

zikalno nepravilen) hkraten pojav več nezveznosti v homogenem napetostnem polju, vendar je učinkovitost

metode odvisna od vrednosti viskoznega parametra. Optimalna vrednost parametra ni enolična, saj je npr.

odvisna od izbrane velikosti obtežnega (časovnega) koraka.

• Z viskozno regularizacijo ne moremo preprečiti odvisnosti rezultatov od mreže končnih elementov, ki jo

povzroči mehčanje betona v nategu, ko element kot celota še pridobiva nosilnost. Sloji betona se namreč ne

morejo prosto deformirati, ker preostali del prereza diktira njihovo obnašanje.
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Jukić, M. 2013. Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu.
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APPENDIX A: EQUAL SIGNS OF TRIAL AND FINAL VALUES OF VARIABLES

We show in this appendix that the signs of trial and final values of certain variables, appearing in computational

procedure, are equal. We demonstrate this equality for the moment in the bulk of the element M and the moment

at the softening hinge t of the stress resultant finite element, and for the stress in the bulk of the layer σ and the

traction at the discontinuity t of the multi-layer finite elements.

STRESS RESULTANT FINITE ELEMENT

Moment in the bulk of the element

Here we show that sign
(
M trial

n+1

)
= sign(Mn+1). Index k, referring to the Newton iteration, is omitted. Behavior

of the bulk of the element is described by plasticity model with bilinear isotropic hardening, for which the following

equations hold.

M trial
n+1 = EI (κ̄n+1 − κ̄p,n) , φ̄trial

n+1 =
∣
∣M trial

n+1

∣
∣− (Mc− q̄n) (A.1)

If trial value of yield function φ̄trial
n+1 is positive, internal variables are corrected to satisfy φ̄n+1 = 0. We can also

write the updated value of the moment Mn+1 and connect it to the trial value M trial
n+1 .

κ̄p,n+1 = κ̄p,n+ γ̄n+1sign(Mn+1) , ξ̄n+1 = ξ̄n+ γ̄n+1

Mn+1 = EI (κ̄n+1 − κ̄p,n+1) = EI (κ̄n+1 − κ̄p,n− γ̄n+1sign(Mn+1)) =

=M trial
n+1 −EIγ̄n+1sign(Mn+1)

(A.2)

Above expressions are inserted into equation φ̄n+1 = 0. We consider both options for the hardening variable q̄.

q̄n+1 =

{

−H1ξ̄n+1; ξ̄n+1 ≤ ξ̄∆H

− (My −Mc)−H2

(
ξ̄n+1 − ξ̄∆H

)
; ξ̄n+1 > ξ̄∆H

(A.3)

When ξ̄n+1 ≤ ξ̄∆H , we obtain:

φ̄n+1 = |Mn+1|− (Mc− q̄n+1) =

=
(
M trial

n+1 −EIγ̄n+1sign(Mn+1)
)
sign(Mn+1)−

(
Mc+H1ξ̄n+1

)
=

=M trial
n+1 sign(Mn+1)−EIγ̄n+1 −

(
Mc+H1ξ̄n+1

)
= 0

(A.4)

It follows that:

M trial
n+1 sign(Mn+1) = EIγ̄n+1

︸ ︷︷ ︸

>0

+ Mc
︸︷︷︸

>0

+H1ξ̄n+1
︸ ︷︷ ︸

>0

> 0 ⇒ sign
(
M trial

n+1

)
= sign(Mn+1) (A.5)



A2 Jukić, M. 2013. Finite elements for modeling of localized failure in reinforced concrete.

Doctoral thesis. Cachan, ENSC, LMT.

When ξ̄n+1 > ξ̄∆H , we get:

φ̄n+1 = |Mn+1|− (Mc− q̄n+1) =

=
(
M trial

n+1 −EIγ̄n+1sign(Mn+1)
)
sign(Mn+1)−

(
Mc+(My −Mc)+H2

(
ξ̄n+1 − ξ̄∆H

))
=

=M trial
n+1 sign(Mn+1)−EIγ̄n+1 −

(
My +H2

(
ξ̄n+1 − ξ̄∆H

))
= 0

(A.6)

Again, it follows that:

M trial
n+1 sign(Mn+1) =EIγ̄n+1

︸ ︷︷ ︸

>0

+ My
︸︷︷︸

>0

+H2

(
ξ̄n+1 − ξ̄∆H

)

︸ ︷︷ ︸

>0

> 0 ⇒ sign
(
M trial

n+1

)
= sign(Mn+1) (A.7)

Moment in the softening hinge

Similarly, we can show that sign
(
ttrialn+1

)
= sign(tn+1). For the softening hinge it holds:

ttrialn+1 = M trial
n+1

∣
∣
xd

=
[
EIκ̄n+1 + Ḡαn− κ̄p,n

]

x=xd
, ¯̄φtrial

n+1 =
∣
∣ttrialn+1

∣
∣− (Mu− ¯̄qn) (A.8)

If ¯̄φtrial
n+1 is positive, internal variables are corrected. Let us write the expression for the traction at the discontinuity

tn+1 and express it with the trial value ttrialn+1 .

αn+1 = αn+ ¯̄γn+1sign(tn+1) ,
¯̄ξn+1 =

¯̄ξn+ ¯̄γn+1

tn+1 = Mn+1|xd = EI
[
κ̄n+1 + Ḡαn+1 − κ̄p,n

]

x=xd
= ttrialn+1 +EI Ḡ

∣
∣
xd

¯̄γn+1sign(tn+1)
(A.9)

Above expressions are inserted into equation ¯̄φn+1 = 0.

¯̄φn+1 = |tn+1|− (Mu− ¯̄qn+1) =

=
(

ttrialn+1 +EI Ḡ
∣
∣
xd

¯̄γn+1sign(tn+1)
)

sign(tn+1)− (Mu− ¯̄qn+1) =

= ttrialn+1 sign(tn+1)+EI Ḡ
∣
∣
xd

¯̄γn+1 − (Mu− ¯̄qn+1) = 0

(A.10)

It follows that:

ttrialn+1 sign(tn+1) =−EI Ḡ
∣
∣
xd

¯̄γn+1
︸ ︷︷ ︸

>0

+(Mu− ¯̄qn+1)
︸ ︷︷ ︸

≥0

> 0 ⇒ sign
(
ttrialn+1

)
= sign(tn+1) (A.11)

MULTI-LAYER FINITE ELEMENTS

Stress in the bulk of a reinforcement layer

We show in this section that sign
(
σtrial
n+1

)
= sign(σn+1). Indices i and k, referring to a certain layer and the

Newton iteration, are omitted. The bulk of a reinforcement layer is described by plasticity model with isotropic

hardening, for which the following equations hold.
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σtrial
n+1 = Es (ε̄n+1 − ε̄p,n) , φ̄trial

n+1 =
∣
∣σtrial

n+1

∣
∣− (σy − q̄n) (A.12)

If trial value of yield function φ̄trial
n+1 is positive, internal variables are corrected to satisfy φ̄n+1 = 0. We write the

expression for the final value of stress σn+1 and connect it to the trial value σtrial
n+1 .

ε̄p,n+1 = ε̄p,n+ γ̄n+1sign(σn+1) , ξ̄n+1 = ξ̄n+ γ̄n+1

σn+1 = Es (ε̄n+1 − ε̄p,n+1) = Es (ε̄n+1 − ε̄p,n− γ̄n+1sign(σn+1)) =

= σtrial
n+1 −Esγ̄n+1sign(σn+1)

(A.13)

Above expressions are inserted into equation φ̄n+1 = 0.

φ̄n+1 = |σn+1|− (σy − q̄n+1) =

=
(
σtrial
n+1 −Esγ̄n+1sign(σn+1)

)
sign(σn+1)−

(
σy +Hsξ̄n+1

)
=

= σtrial
n+1 sign(σn+1)−Esγ̄n+1 −

(
σy +Hsξ̄n+1

)
= 0

(A.14)

It follows that:

σtrial
n+1 sign(σn+1) = Esγ̄n+1

︸ ︷︷ ︸

>0

+ σy
︸︷︷︸

>0

+Hsξ̄n+1
︸ ︷︷ ︸

>0

> 0 ⇒ sign
(
σtrial
n+1

)
= sign(σn+1) (A.15)

Stress in the bulk of a concrete layer

We use a similar procedure for the bulk of a concrete layer. First, we write expressions for the trial values of stress

and damage function.

σtrial
n+1 = D̄−1

n ε̄n+1 ⇔ D̄nσ
trial
n+1 = ε̄n+1, φ̄trial

n+1 =
∣
∣σtrial

n+1

∣
∣− (σd− q̄n) (A.16)

Just like before, internal variables are corrected if the trial value of yield function φ̄trial
n+1 is positive. We express the

final stress σn+1 with the trial value σtrial
n+1 and insert it into equation φ̄n+1 = 0.

σn+1 = D̄−1
n+1ε̄n+1 = D̄−1

n+1D̄nσ
trial
n+1

φ̄n+1 = |σn+1|− (σd− q̄n+1) = D̄−1
n+1D̄nσ

trial
n+1 sign(σn+1)−

(
σd+Hcξ̄n+1

)
= 0

(A.17)

From here, we can conclude:

σtrial
n+1 sign(σn+1) = D̄n+1

︸ ︷︷ ︸

>0

D̄−1
n

︸︷︷︸

>0

(
σd+Hcξ̄n+1

)

︸ ︷︷ ︸

>0

> 0 ⇒ sign
(
σtrial
n+1

)
= sign(σn+1) (A.18)
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Traction at the discontinuity of a reinforcement layer

This section refers to the Timoshenko beam element. The only difference in the procedure for the Euler-Bernoulli

beam element is that the traction at the discontinuity is equal to the stress evaluated at the location of the disconti-

nuity t= σ|xd , instead of just t= σ. As a consequence, certain quantities are evaluated at xd, in the same way as

for the stress resultant element above. This does not affect the procedure, nor the results.

We show in this section that sign
(
ttrialn+1

)
= sign(tn+1). For the discontinuity in a layer of reinforcement it holds:

ttrialn+1 = σtrial
n+1 = Es

(
˜̄εn+1 + Ḡαn− ε̄p,n

)
, ¯̄φtrial

n+1 =
∣
∣ttrialn+1

∣
∣− (σfs− ¯̄qn) (A.19)

If ¯̄φtrial
n+1 is positive, internal variables are corrected. We express the final value of traction at the discontinuity tn+1

with the trial value ttrialn+1 .

αn+1 = αn+ ¯̄γn+1sign(tn+1) ,
¯̄ξn+1 =

¯̄ξn+ ¯̄γn+1

tn+1 = σn+1 = Es

(
˜̄εn+1 + Ḡαn+1 − ε̄p,n

)
= ttrialn+1 +EsḠ ¯̄γn+1sign(tn+1)

(A.20)

Above expressions are inserted into equation ¯̄φn+1 = 0.

¯̄φn+1 = |tn+1|− (σfs− ¯̄qn+1) =

=
(
ttrialn+1 +EsḠ ¯̄γn+1sign(tn+1)

)
sign(tn+1)− (σfs− ¯̄qn+1) =

= ttrialn+1 sign(tn+1)+EsḠ ¯̄γn+1 − (σfs− ¯̄qn+1) = 0

(A.21)

It follows that:

ttrialn+1 sign(tn+1) =−EsḠ ¯̄γn+1
︸ ︷︷ ︸

>0

+(σfs− ¯̄qn+1)
︸ ︷︷ ︸

≥0

> 0 ⇒ sign
(
ttrialn+1

)
= sign(tn+1) (A.22)

Traction at the discontinuity of a concrete layer

This section refers to the Timoshenko beam element. The only difference in the procedure for the Euler-Bernoulli

beam element is that the traction at the discontinuity is equal to the stress evaluated at the location of the disconti-

nuity t= σ|xd , instead of just t= σ. As a consequence, certain quantities are evaluated at xd, in the same way as

for the stress resultant element above. This does not affect the procedure, nor the results.

First, we write the expression for the trial value of traction at the discontinuity ttrialn+1 . In this expression appears

the displacement jump αtrial
n+1 , which is directly dependent on ttrialn+1 . Therefore, we have to rearrange the equation

to express the trial value of traction with known quantities.

ttrialn+1 = σtrial
n+1 = D̄−1

n

(
˜̄εn+1 + Ḡαtrial

n+1

)
, αtrial

n+1 = ¯̄Dnt
trial
n+1 (A.23)
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ttrialn+1 = D̄−1
n

(

˜̄εn+1 + Ḡ ¯̄Dnt
trial
n+1

)

D̄nt
trial
n+1 = ˜̄εn+1 + Ḡ ¯̄Dnt

trial
n+1

ttrialn+1

(

D̄n− Ḡ ¯̄Dn

)

= ˜̄εn+1

(A.24)

From here we can conclude:

ttrialn+1 =
(

D̄n− Ḡ ¯̄Dn

)

︸ ︷︷ ︸

>0

−1
˜̄εn+1 ⇒ sign

(
ttrialn+1

)
= sign( ˜̄εn+1) (A.25)

Exactly the same operation is performed on tn+1, only αtrial
n+1 and ¯̄Dn are replaced by αn+1 and ¯̄Dn+1.

tn+1 = σn+1 = D̄−1
n

(
˜̄εn+1 + Ḡαn+1

)
, αn+1 =

¯̄Dn+1tn+1 (A.26)

We come to an equivalent conclusion:

tn+1 =
(

D̄n− Ḡ ¯̄Dn+1

)

︸ ︷︷ ︸

>0

−1
˜̄εn+1 ⇒ sign(tn+1) = sign( ˜̄εn+1) (A.27)

From (A.25) and (A.27) it is obvious that:

sign
(
ttrialn+1

)
= sign(tn+1) (A.28)

Since ¯̄Dn+1 is positive, we can also conclude from the second of equations (A.26):

sign(αn+1) = sign(tn+1) (A.29)
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APPENDIX B: LINEAR RELATION BETWEEN t AND α IN CONCRETE LAYER

In this appendix we take a closer look at the relation between the traction ti and the displacement jump αi at the

discontinuity of the i-th concrete layer. Index i is omitted in the following equations.

We are interested in the case when the layer is in softening and still possesses some carrying capacity, that is when

¯̄q < σfc. The following equations then hold.

¯̄q = σfc

(

1−eKc
¯̄ξ
)

, ˙̄̄q =−Kcσfc e
Kc

¯̄ξ ˙̄̄
ξ =−Kcσfc e

Kc
¯̄ξ ˙̄̄γ (B.1)

The first of the following evolution equations was already used in the above expression.

˙̄̄
ξ = ˙̄̄γ,

˙̄̄
D =

˙̄̄γ

t
sign(t) (B.2)

Displacement jump α and its pseudo-time derivative are computed as follows.

α= ¯̄Dt, α̇=
˙̄̄
Dt+ ¯̄Dṫ (B.3)

Since we are considering a softening step, rather than elastic unloading, the failure function ¯̄φ must be zero. We

use this requirement to write the expressions for traction t and its pseudo-time derivative.

¯̄φ= |t|− (σfc− ¯̄q) = 0 ⇒ t= (σfc− ¯̄q)sign(t) , ṫ=− ˙̄̄q sign(t) (B.4)

We can now further develop the pseudo-time derivative α̇ by utilizing expressions (B.2), (B.4) and (B.1).

α̇= t
˙̄̄γ

t
sign(t)− ¯̄D ˙̄̄q sign(t) = ˙̄̄γ sign(t)+ ¯̄DKcσfc e

Kc
¯̄ξ ˙̄̄γ sign(t)

α̇sign(t) = ˙̄̄γ
(

1+ ¯̄DKcσfc e
Kc

¯̄ξ
) (B.5)

We introduce a new variable A.

A=
α̇sign(t)

˙̄̄q
=

˙̄̄γ
(

1+ ¯̄DKcσfc e
Kc

¯̄ξ
)

−Kcσfc eKc
¯̄ξ ˙̄̄γ

=−
1

σfc

(
1

Kc
e−Kc

¯̄ξ +σfc
¯̄D

)

(B.6)

Pseudo-time derivative Ȧ is computed by utilizing the evolution equations (B.2). Expressions for ¯̄q and t from (B.1)

and (B.4) are also used.
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Ȧ=−
1

σfc

(

−Kc
˙̄̄
ξ

Kc
e−Kc

¯̄ξ +σfc
˙̄̄γ

t
sign(t)

)

=
˙̄̄γ

σfc

(

e−Kc
¯̄ξ −

σfc
t sign(t)

)

=

=
˙̄̄γ

σfc

(

e−Kc
¯̄ξ −

σfc
σfc− ¯̄q

)

=
˙̄̄γ

σfc



e−Kc
¯̄ξ −

σfc

σfc−σfc

(

1−eKc
¯̄ξ
)



=

=
˙̄̄γ

σfc

(

e−Kc
¯̄ξ −e−Kc

¯̄ξ
)

= 0

(B.7)

We observe that A is constant in pseudo-time, since its derivative Ȧ is equal to zero. The value of A can be

determined at any particular point in pseudo-time but the obvious choice is the moment when softening begins

(denoted with index 0). Then, the values of certain variables are known: ¯̄ξ0 = 0, ¯̄D0 = 0, and consequently α0 = 0,

¯̄q0 = 0. Time derivatives ˙̄̄q and α̇ evaluate to:

˙̄̄q0 =−Kcσfc ˙̄̄γ, α̇0 = ˙̄̄γ sign(t) (B.8)

∆α

∆ ¯̄q
=

∂α

∂ ¯̄q
=

α̇
˙̄̄q
=

α̇0

˙̄̄q0

=−
sign(t)

Kcσfc
(B.9)

For evolution equations (B.2) and the chosen exponential softening law (B.1), the increments ∆α and ∆ ¯̄q are

linearly dependent.

Exactly the same behavior would be obtained by employing another set of evolution equations and softening law.

˙̄̄
ξ∗ = ˙̄̄γ∗, α̇= ˙̄̄γ∗sign(t) , ¯̄q =−K∗

c
¯̄ξ∗, K∗

c =Kcσfc (B.10)

Variables ¯̄ξ∗ and ¯̄γ∗ are denoted with ∗ to be distinguished from the original variables.

∆α

∆ ¯̄q
=

∂α

∂ ¯̄q
=

α̇
˙̄̄q
=

˙̄̄γ∗sign(t)

−K∗
c

˙̄̄γ∗
=−

sign(t)

K∗
c

(B.11)

By taking into account the initial conditions (αi = 0, ti = σfc sign
(
αi
)
), we can finally write ti as a function of αi

ti = σfc sign
(
αi
)
+σfcKcα

i (B.12)

Remark. (B.10) are not actual evolution equations and softening law. This is merely an aid which allows for con-

siderable simplification of the computational procedure. Due to linear form of all equations, an explicit analytical

expression can be easily obtained for ¯̄γ∗, as opposed to ¯̄γ. Indeed, the calculated value of ¯̄γ∗ in a certain step is

different than the value of ¯̄γ, but the corresponding values of α and ¯̄q are correct. Of course, this procedure is only

applicable in case of the particular softening law, chosen in (B.1).
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C1

APPENDIX C: EXPRESSIONS FOR ttrial
n+1 AND ¯̄γ ∗

n+1 IN CONCRETE LAYER

In this appendix we derive the expressions for the trial value of traction ttrialn+1 at the discontinuity of a concrete layer

and for the damage softening multiplier ¯̄γ∗n+1. Both variables are used in the computational procedure, described

in section 4.3.1.3 of chapter 4 and in section 3.3.1.2 of chapter 3.

MULTI-LAYER TIMOSHENKO BEAM FINITE ELEMENT

Trial value of traction at the discontinuity of concrete layer

Once a discontinuity occurs in a concrete layer, the hardening internal variables are frozen. From then on, we

always use D̄n for the bulk compliance. In a trial step, the behavior of the discontinuity is assumed to be elastic,

which means that the discontinuity compliance ¯̄D and displacement-like variable ¯̄ξ∗ that controls the reduction

of carrying capacity, keep the values from the previous step. The size of the discontinuity is proportional to the

traction at the discontinuity.

¯̄Dtrial
n+1 = ¯̄Dn,

¯̄ξ∗,trialn+1 = ¯̄ξ∗n, αtrial
n+1 = ¯̄Dnt

trial
n+1 (C.1)

The trial value of stress in the bulk is defined by equation (4.45).

σtrial
n+1 = D̄−1

n

(
B̆dn+1 + Ḡαtrial

n+1

)
(C.2)

We multiply equation (C.2) by D̄n and then use the expression (C.1) for αtrial
n+1 . We also take into account the

equality of traction at the discontinuity and stress in the bulk (4.40).

D̄nσ
trial
n+1 = B̆dn+1 + Ḡ ¯̄Dnt

trial
n+1 = B̆dn+1 + Ḡ ¯̄Dnσ

trial
n+1 (C.3)

The trial values of traction at the discontinuity and stress in the bulk can easily be obtained from (C.3).

ttrialn+1 = σtrial
n+1 =

B̆dn+1

D̄n− Ḡ ¯̄Dn

(C.4)

Damage softening multiplier for concrete layer

The trial failure function is computed from (4.56), where ¯̄q
(

¯̄ξ∗,trialn+1

)

is defined by (4.61).

¯̄φtrial
n+1 =

∣
∣ttrialn+1

∣
∣−
(

σfc+K∗
c

¯̄ξ∗,trialn+1

)

(C.5)
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If ¯̄φtrial
n+1 < 0, the assumption about elastic behavior was correct and the trial values are confirmed as final. Oth-

erwise the internal variables have to be corrected. The incremental form of evolution equations in (4.62) reads as

follows.

αn+1 =
(
αmax
n + ¯̄γ∗n+1

)
sign(tn+1) ,

¯̄ξ∗n+1 =
¯̄ξ∗n+ ¯̄γ∗n+1 (C.6)

Here αmax
n = ¯̄Dnt

max
n = ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

is the maximal elastic value of α for the given carrying capacity, that

was reached in the last softening step, see figure 4.15. If |α| < αmax
n or equivalently |t| < tmax

n , behavior of the

discontinuity is elastic. The failure function from (C.5) can now be rewritten, using the updated values of internal

variables (C.6).

¯̄φn+1 = |tn+1|−
(

σfc+K∗
c

¯̄ξ∗n+1

)

, tn+1 = σn+1 = D̄−1
n

(
B̆dn+1 + Ḡαn+1

)
(C.7)

We express all unknown variables with the softening multiplier ¯̄γ∗n+1, which remains the only unknown, and equal

the obtained expression for ¯̄φn+1 to zero as required by loading/unloading conditions (4.59).

¯̄φn+1 = D̄−1
n

(
B̆dn+1 + Ḡαn+1

)
sign(tn+1)−

(

σfc+K∗
c

¯̄ξ∗n+1

)

=

= D̄−1
n







B̆dn+1 + Ḡ
(

¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

+ ¯̄γ∗n+1

)

sign(tn+1)
︸ ︷︷ ︸

αn+1






sign(tn+1)−

(

σfc+K∗
c

(
¯̄ξ∗n+ ¯̄γ∗n+1

))

=

= D̄−1
n

(

B̆dn+1sign(tn+1)+ Ḡ ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

+ Ḡ ¯̄γ∗n+1

)

−
(

σfc+K∗
c

¯̄ξ∗n

)

−K∗
c

¯̄γ∗n+1 = 0

(C.8)

The two parts of the equation, containing ¯̄γ∗n+1, are put to the right side of the equation, which is then multiplied

by D̄n and divided by
(

D̄n− Ḡ ¯̄Dn

)

:

D̄−1
n

(

B̆dn+1sign(tn+1)+ Ḡ ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

))

−
(

σfc+K∗
c

¯̄ξ∗n

)

=K∗
c

¯̄γ∗n+1 − D̄−1
n Ḡ ¯̄γ∗n+1

B̆dn+1sign(tn+1)+ Ḡ ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

− D̄n

(

σfc+K∗
c

¯̄ξ∗n

)

=
(
K∗

c D̄n− Ḡ
)

¯̄γ∗n+1

B̆dn+1sign(tn+1)+
(

Ḡ ¯̄Dn− D̄n

)(

σfc+K∗
c

¯̄ξ∗n

)

=
(
K∗

c D̄n− Ḡ
)

¯̄γ∗n+1

B̆dn+1

D̄n− Ḡ ¯̄Dn
︸ ︷︷ ︸

ttrialn+1

sign(tn+1)−
(

σfc+K∗
c

¯̄ξ∗n

)

︸ ︷︷ ︸
¯̄φtrial
n+1

=
K∗

c D̄n− Ḡ

D̄n− Ḡ ¯̄Dn

¯̄γ∗n+1

(C.9)

Finally, we can write the expression for ¯̄γ∗n+1.

¯̄γ∗n+1 =

¯̄φtrial
n+1

(

D̄n− Ḡ ¯̄Dn

)

K∗
c D̄n− Ḡ

(C.10)
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MULTI-LAYER EULER-BERNOULLI BEAM FINITE ELEMENT

Derivation of expressions for ttrialn+1 and ¯̄γ∗n+1 for the Euler-Bernoulli beam is performed in the same way as for the

Timoshenko beam element.The only difference is that stress in no longer constant over the layer and the traction at

the discontinuity is equal to the stress, evaluated at the location of the discontinuity t= σ|xd , instead of just t= σ.

Some other non-constant quantities are evaluated at xd as well, which reflects in the resulting expressions.

ttrialn+1 =

[
B̆dn+1

D̄n− ḠR
¯̄Dn

]

x=xd

, ¯̄γ∗n+1 =





¯̄φtrial
n+1

(

D̄n− ḠR
¯̄Dn

)

K∗
c D̄n− ḠR





x=xd

(C.11)
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Doktorska disertacija. Ljubljana, UL, FGG.

D1

APPENDIX D: INFLUENCE OF xi

d
ON COMPUTATION OF INTERNAL FORCES

In this appendix we demonstrate how the location of the discontinuity xi
d in a layer affects the computation in case

of constant strain/stress, resulting in incorrect response of the finite element. The problem was encountered in pure

tension/compression numerical examples in section 3.4.1 and pure bending numerical examples in section 3.4.2.

Pure tension or pure compression

Here, we examine the reasons for the incorrect response of the reinforced concrete beam, computed in section

3.4.1.3. According to section 3.2.4.1, in case of constant stress the discontinuity is placed in the middle of the

layer and the constant operator Ḡi
R is chosen from (3.46). The strain in the bulk is computed, as shown in equation

(3.54). Interpolation functions B̆i are defined by (3.7) and (3.8).

ε̄i = B̆id+ Ḡi
Rαi = C1x+C2, C1,C2 = const. (D.1)

If the strain is to remain constant over the layer, which is required for the equilibrium, the linear part of expression

(D.1) must be zero. Since Ḡi
R is constant, it makes no contribution to the constant C1. For a single-layer finite

element, the coordinate yi is zero and we can conclude

C1 =
4

L2
(u1 +u2 −2u3) = 0 ⇒ u3 =

u1 +u2

2
(D.2)

Expression (D.2) for u3 is inserted in (D.1) to obtain

ε̄i =
1

L

(
u2 −u1 −αi

)
(D.3)

The jump in displacements can be computed from equation (3.35), which reduces to ti = σi for the constant Ḡi
V .

In case of monotonic softening, αi = ¯̄ξ∗i. For concrete one gets

ti =
(

σfc+K∗
c

¯̄ξ∗i
)

sign
(
ti
)
, σi = D̄i−1

ε̄i ⇒ αi =
u2 −u1 − D̄iLσfc sign

(
ti
)

1+ D̄iLK∗
c sign(t

i)
(D.4)

For a steel layer, the only difference would be in the constitutive equation for σi, leading to a slightly different

expression for αi. These equations have been developed for a single-layer finite element and a constant operator

Ḡi
R, but they also hold for each layer of a multi-layer element if the transversal displacements v and rotations θ of

the nodes are zero, as in pure tension/compression. Such tests were modeled in section 3.4.1.4. Since expression

for αi depends on material parameters, the displacement jumps are different in concrete and reinforcement.

A different scenario unfolds in sections 3.4.1.1, 3.4.1.2 and 3.4.1.3, however. Despite the linear stress in a layer,

the algorithm detects even the smallest difference between the values at both ends of the finite element, arising

from the numerical procedure. The discontinuity is positioned at the “critical” node and one of the linear operators
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Ḡi
R is chosen from (3.46). The constant C1 from (D.1) is now affected by Ḡi

R, but it still has to be zero to provide

constant strain over the layer.

C1 =
4

L2

(
u1 +u2 −2u3 −αi

)
= 0 ⇒ u3 =

u1 +u2 −αi

2
(D.5)

Inserting expression (D.5) for u3 into (D.1) returns exactly the equation (D.3). The strain is therefore computed

in the same manner as in the case with constant Ḡi
R. However, the displacement u3 is no longer independent of

αi, which means that the middle node has to move out of the middle of the element to preserve the equilibrium.

By itself, this is not problematic. In a single-layer finite element or an element composed of equal layers, like the

beams in sections 3.4.1.1 and 3.4.1.2, all displacement jumps αi are equal and require the same u3 to “balance”

them. An issue arises in a finite element, composed of different layers, like the reinforced concrete beam in section

3.4.1.3. Since the displacement jumps are different in steel and concrete, they would each require a different

middle node displacement u3 (computed from (D.5)), which is not possible. A constant strain state is therefore not

possible in such case!

Nevertheless, equilibrium is achievable. For any u3, different from the value in (D.5), stress is linear over the

length of the layer. Contributions of the layer to the internal forces are computed as integrals of the stress, and the

components are different at both ends of the layer f
int,(e),i
u1 6=−f

int,(e),i
u2 , see Fig. 3.26. The layer by itself is out of

balance, but equilibrium of the finite element is satisfied by finding the exact value of u3, at which the imbalance

of internal forces in steel and the imbalance of the internal forces in concrete neutralize each other, see Fig. 3.27,

where f
int,(e)
u1 = −f

int,(e)
u2 . This is possible, because the equilibrium is only required on the element level, and not

on the layer level. Of course, this solution is incorrect, see the comparison in Fig. 3.28.

f int,(e),i
u1

6=−f int,(e),i
u2

→ ∑
i

f int,(e),i
u1

︸ ︷︷ ︸

f
int,(e)
u1

=−∑
i

f int,(e),i
u2

︸ ︷︷ ︸

f
int,(e)
u2

(D.6)

Remark. Fig. 3.26 and Fig. 3.27 only show the contributions of the i-th layer to the axial internal forces at the

end nodes. Contributions to the axial internal force at the middle node and contributions to transversal forces and

moments exist also, but their resultants are zero on the element level.

Pure tension or pure compression, non-zero transversal displacement

Another incorrect solution of equilibrium equations exists. So far, we have assumed that the transversal displace-

ments v and rotations θ of the nodes are zero, but this is never explicitly requested. The degrees of freedom change

so as to satisfy the equilibrium equations and it turns out that equilibrium is also possible in pure tension or pure

compression if transversal displacement at the free end of the beam is different from zero. Such situation arises

in a beam with symmetrical cross-section, if the layer discontinuities are positioned at x= 0 in the bottom half of

the beam (yi < 0) and at x= L in the top half of the beam (yi > 0), or vice versa. In the particular example from

section 3.4.1.5, the only difference from section 3.4.1.3 was the reversed orientation of the local axis x, which

sufficed for a slightly different numerical evaluations of stress in the layers and different positioning of the discon-

tinuities. Results in Fig. 3.31 and Fig. 3.32 state that the transversal displacement at the end of the beam increases

with the loading (imposed axial displacement), while the rotation, shear force and moment remain zero. Although

physically not sensible, these results are mathematically possible which is easily verified.

Let us inspect two symmetrically positioned concrete layers of a beam in pure tension. We will show that their

contributions to internal shear forces and moments neutralize each other. Quantities, related to the layer above
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the neutral axis, are denoted with +, and the quantities, related to the layer below the neutral axis, with −. The

elasticity limit is defined higher than the failure stress so there is no damage in the bulk of the layer (D̄i = E−1
c ).

Strain and stress in the layers are computed according to equation (3.54), with zero values for nodal rotations θ.

The operator Ḡi
R takes the appropriate value from (3.46), depending on the location of the discontinuity. We choose

xd = 0 for yi−< 0, and xd = L for yi+> 0.

σi = Ec ε̄
i, ε̄i+ = B̆id+ Ḡi+

R αi+, ε̄i− = B̆id+ Ḡi−
R αi− (D.7)

Contributions of the two layers to shear force f
int,(e)
v1 in node 1 are defined in equation (3.28). Symmetry of the

layers is taken into account: −yi− = yi+ = yi and Ai− =Ai+ =Ai.

f int,(e),i+
v1

=−
∫

L

Bv
1 y

i+σi+Ai+dx=−
∫

L

Bv
1 y

iσi+Aidx

f int,(e),i−
v1

=−
∫

L

Bv
1 y

i−σi−Ai−dx=
∫

L

Bv
1 y

iσi−Aidx
(D.8)

After some straightforward manipulation we obtain the expression for their sum. Procedure is repeated for the

remaining shear force f
int,(e)
v2 and moments f

int,(e)
θ1

and f
int,(e)
θ2

.

f int,(e),i+
v1

+f int,(e),i−
v1

=
4AiEc y

i
(
6yi (v1 −v2)+L

(
αi−+αi+

))

L3

f int,(e),i+
v2

+f int,(e),i−
v2

=−
4AiEc y

i
(
6yi (v1 −v2)+L

(
αi−+αi+

))

L3

f
int,(e),i+
θ1

+f
int,(e),i−
θ1

=
AiEc y

i
(
12yi (v1 −v2)+L

(
3αi−+αi+

))

L2

f
int,(e),i+
θ2

+f
int,(e),i−
θ2

=
AiEc y

i
(
12yi (v1 −v2)+L

(
αi−+3αi+

))

L2

(D.9)

If the displacement jumps αi− and αi+ take the value from (D.10), all four expressions in (D.9) are zero. Since the

beam has a symmetrical cross-section, all layers can be arranged into symmetrical pairs and their contributions to

internal shear forces and moments neutralize each other.

αi−= αi+ =−
3(v1 −v2)y

i

L
⇒ f int,(e)

v1
= f int,(e)

v2
= f

int,(e)
θ1

= f
int,(e)
θ2

= 0 (D.10)

Therefore, the results from section 3.4.1.5 do not contradict the equations, used in our finite element. Equilibrium

of a beam in “pure tension” (with imposed axial displacement) is indeed possible, even if transversal displacement

at the free end is not zero. The solution is incorrect, but mathematically possible. One of the reasons for existence

of such solution is the absence of any regulation to correlate the displacement jumps in different layers. Each αi

is free to follow equation (D.10). Since the expression depends on the distance of the layer from the middle axis,

the sizes of the discontinuities grow linearly from the middle toward the edge of the beam, which is not physically

reasonable.

Pure bending

Here, we examine the effect of incorrect automatic positioning of the discontinuity in case of pure bending, when

only one layer of concrete exceeds the ultimate tensile stress. Such situation was encountered in sections 3.4.2.1
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and 3.4.2.2. The first discontinuity appears in the bottom layer of concrete in tension. The rest of the element is

still elastic at that point. Even though the stress is constant over the layer when the ultimate stress is reached, the

discontinuity is placed at either of the two end nodes, rather than in the middle of the element, due to numerical

error. One of the linear functions from (3.46) is chosen for operator Ḡi
R. We can see from Fig. 3.13 that the

additional strain in the bulk Ḡi
Rα

i is negative at the discontinuity and positive at the other end of the layer, which

means that the stress is decreased at xi
d and increased at the opposite end. Of course, this is not the converged

state, but even when equilibrium is reached, the stress in the layer is not physically logical. At the discontinuity,

the value of σi is equal to the traction ti and smaller than the ultimate tensile stress σfct, which is correct. On the

other end, however, the value of σi is higher than σfct. This happens because Ḡi
R was derived on an isolated layer.

If the layer was a self standing three-node bar, as assumed for the derivation, it would deform in such way that the

stress in it would be constant and equal to ti. In truth, the layer is bound to the remaining layers through common

nodal displacements and cannot deform freely. The imbalance, produced by additional strain, is not neutralized

within the cracked layer, but on the level of the finite element. The cracked layer makes only a part of the “required

deformation” and the stress at the non-cracked end of the layer remains too high. Eventually, the traction at the

discontinuity ti and the value of stress σi at the discontinuity xi
d would drop to zero, but at the opposite end of the

layer the stress would stay positive. The layer would contribute to internal forces, computed as an integral of σi

over the length of the element, even when it is supposed to be completely broken.

Almost constant strain/stress state in a layer

In all previous cases, described in this appendix, the stress in the layer was constant at the moment when the

carrying capacity was reached. The algorithm wrongly positioned the discontinuity at one of the end nodes, due to

numerical error. However, the problem was avoided by manually imposing the location of the discontinuity at the

middle of the element.

This trick cannot be used if the stress state in the layer is linear. In that case, the discontinuity must be placed at the

location of highest stress. If the stress is almost constant (but not quite), for instance in a cantilever beam, loaded

with a great axial force and very small transversal force at the free end, the situation is virtually identical to the one

described above, only without the remedy. Incorrect computation cannot be avoided here. We conclude that, for a

general stress state, the operator Ḡi
R, derived in section 3.2.4.1, is inappropriate.
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APPENDIX E: EXPRESSIONS FOR ttrial
n+1 , ¯̄γ ∗

n+1, αn+1 AND ¯̄γn+1 IN VISCOSITY

In this appendix we derive expressions, required for the computation of softening internal variables in multi-layer

Timoshenko beam finite element with viscous regularization of softening response, presented in chapter 5. Ex-

pressions for the trial value of traction at the discontinuity ttrialn+1 , the damage softening multiplier ¯̄γ ∗
n+1 and the

displacement jump αn+1 are required in the computation of internal variables of a concrete layer, while the expres-

sions for plastic softening multiplier ¯̄γn+1 is required in the computation of internal variables of a reinforcement

layer.

Discontinuity in concrete layer when ¯̄q < σfc

Here, we derive the expressions for the trial value of traction at the discontinuity t
(k),trial
n+1 and the damage soften-

ing multiplier ¯̄γ
∗(k)
n+1, which are used in the computation of internal variables in a concrete layer in section 5.3.1.

The following derivation is valid while ¯̄q < σfc, i.e. until the traction at the discontinuity drops to zero and the

discontinuity compliance ¯̄D becomes infinite.

Once a discontinuity occurs in the layer, the bulk internal variables are frozen. Therefore, the value D̄n is used as

the bulk compliance. In the trial step, the behavior of the discontinuity is assumed to be elastic, which means that

the discontinuity compliance ¯̄D and displacement-like softening variable ¯̄ξ∗ that controls the reduction of carrying

capacity, keep the values from the previous step. The size of the discontinuity is computed in accordance with

equation (4.55).

¯̄D
(k),trial
n+1 = ¯̄Dn,

¯̄ξ
∗(k),trial
n+1 = ¯̄ξ∗n, α

(k),trial
n+1 = ¯̄Dn t

(k),trial
n+1 (E.1)

The trial value of stress in the bulk is defined by equation (4.45).

σ
(k),trial
n+1 = D̄−1

n

(

B̆d
(k−1)
n+1 + Ḡα

(k),trial
n+1

)

(E.2)

Relation between ttrialn+1 and σtrial
n+1 is described in equation (5.7). It depends on the pseudo-time derivative α̇,

which is here defined in incremental form, as the difference between the current value of α and the value from the

previous step, divided by the corresponding increase of time ∆τn+1 = τn+1 − τn.

α̇
(k)
n+1 =

α
(k)
n+1 −αn

∆τn+1
, α̇

(k),trial
n+1 =

α
(k),trial
n+1 −αn

∆τn+1
(E.3)

Equation (5.7) can now be rewritten.

t
(k),trial
n+1 = σ

(k),trial
n+1 −

η

∆τn+1

(

α
(k),trial
n+1 −αn

)

(E.4)

After using the expression (E.1) for α
(k),trial
n+1 in equation (E.4) we can express σ

(k),trial
n+1 with t

(k),trial
n+1 .
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σ
(k),trial
n+1 = t

(k),trial
n+1 +

η

∆τn+1

(

α
(k),trial
n+1 −αn

)

= t
(k),trial
n+1 +

η

∆τn+1

¯̄Dn t
(k),trial
n+1 −

η

∆τn+1
αn (E.5)

We multiply equation (E.2) with D̄n and substitute σ
(k),trial
n+1 with (E.5) and α

(k),trial
n+1 with (E.1).

D̄n

(

t
(k),trial
n+1 +

η

∆τn+1

¯̄Dn t
(k),trial
n+1 −

η

∆τn+1
αn

)

= B̆d
(k−1)
n+1 + Ḡ ¯̄Dn t

(k),trial
n+1 (E.6)

After some straightforward manipulation, the trial value of traction at the discontinuity is obtained from (E.6).

t
(k),trial
n+1 =

B̆d
(k−1)
n+1 + D̄n

η
∆τn+1

αn

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

(E.7)

Next, the trial value of failure function is computed from (4.56), where ¯̄q
(

¯̄ξ
∗(k),trial
n+1

)

is defined by (4.61).

¯̄φ
(k),trial
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfc+K∗
c

¯̄ξ
∗(k),trial
n+1

)

(E.8)

If ¯̄φ
(k),trial
n+1 < 0, the assumption about elastic behavior was correct and the trial values are confirmed as final.

Otherwise the internal variables have to be corrected. The incremental form of evolution equations (4.62) reads as

follows.

α
(k)
n+1 =

(

αmax
n + ¯̄γ

∗(k)
n+1

)

sign
(

t
(k)
n+1

)

, ¯̄ξ
∗(k)
n+1 =

¯̄ξ∗n+ ¯̄γ
∗(k)
n+1 (E.9)

where αmax
n = ¯̄Dnt

max
n = ¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

is the maximal elastic value of α for the given carrying capacity, that

was reached in the last softening step. If |α| < αmax
n , or equivalently |t| < tmax

n , behavior of the discontinuity is

elastic. The failure function is now written, using the updated values of internal variables (E.9).

¯̄φ
(k)
n+1 =

∣
∣
∣t
(k)
n+1

∣
∣
∣−
(

σfc+K∗
c

¯̄ξ
∗(k)
n+1

)

t
(k)
n+1 = σ

(k)
n+1 −

η

∆τn+1

(

α
(k)
n+1 −αn

)

, σ
(k)
n+1 = D̄−1

n

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1

) (E.10)

We express all unknown variables with the softening multiplier ¯̄γ
∗(k)
n+1, which remains the only unknown, and equal

the obtained expression for ¯̄φ
(k)
n+1 to zero as required by loading/unloading conditions (4.59).

¯̄φ
(k)
n+1=

(

D̄−1
n

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1

)

−
η

∆τn+1

(

α
(k)
n+1 −αn

))

sign
(

t
(k)
n+1

)

−
(

σfc+K∗
c

¯̄ξ
∗(k)
n+1

)

=

=D̄−1
n

(

B̆d
(k−1)
n+1 +

(

Ḡ− D̄n
η

∆τn+1

)

α
(k)
n+1 + D̄n

η

∆τn+1
αn

)

sign
(

t
(k)
n+1

)

−
(

σfc+K∗
c

¯̄ξ
∗(k)
n+1

)

=

=D̄−1
n









B̆d
(k−1)
n+1 +

(

Ḡ−D̄n
η

∆τn+1

)(
¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

+ ¯̄γ
∗(k)
n+1

)

sign
(

t
(k)
n+1

)

︸ ︷︷ ︸

α
(k)
n+1

+D̄n
η

∆τn+1
αn









sign
(

t
(k)
n+1

)

−
(

σfc+K∗
c

(
¯̄ξ∗n+ ¯̄γ

∗(k)
n+1

))

=

=D̄−1
n

((

B̆d
(k−1)
n+1 +D̄n

η

∆τn+1
αn

)

sign
(

t
(k)
n+1

)

+

(

Ḡ−D̄n
η

∆τn+1

)

¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

+

(

Ḡ−D̄n
η

∆τn+1

)

¯̄γ
∗(k)
n+1

)

−
(

σfc+K∗
c

¯̄ξ∗n

)

−K∗
c

¯̄γ
∗(k)
n+1 = 0

(E.11)
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The two parts of the equation, which contain ¯̄γ
∗(k)
n+1, are put to the right side of the equation, which is then multiplied

by D̄n and divided by
(

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

)

:

D̄−1
n

((

B̆d
(k−1)
n+1 +D̄n

η

∆τn+1
αn

)

sign
(

t
(k)
n+1

)

+

(

Ḡ−D̄n
η

∆τn+1

)

¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

))

−
(

σfc+K∗
c

¯̄ξ∗n

)

=K∗
c

¯̄γ
∗(k)
n+1 −D̄−1

n

(

Ḡ−D̄n
η

∆τn+1

)

¯̄γ
∗(k)
n+1

(

B̆d
(k−1)
n+1 +D̄n

η

∆τn+1
αn

)

sign
(

t
(k)
n+1

)

+

(

Ḡ−D̄n
η

∆τn+1

)

¯̄Dn

(

σfc+K∗
c

¯̄ξ∗n

)

−D̄n

(

σfc+K∗
c

¯̄ξ∗n

)

=K∗
c D̄n ¯̄γ

∗(k)
n+1−

(

Ḡ−D̄n
η

∆τn+1

)

¯̄γ
∗(k)
n+1

(

B̆d
(k−1)
n+1 +D̄n

η

∆τn+1
αn

)

sign
(

t
(k)
n+1

)

+

((

Ḡ−D̄n
η

∆τn+1

)

¯̄Dn−D̄n

)(

σfc+K∗
c

¯̄ξ∗n

)

=

(

K∗
c D̄n− Ḡ+D̄n

η

∆τn+1

)

¯̄γ
∗(k)
n+1

B̆d
(k−1)
n+1 + D̄n

η
∆τn+1

αn

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn
︸ ︷︷ ︸

t
(k),trial
n+1

sign
(

t
(k)
n+1

)

−
(

σfc+K∗
c

¯̄ξ∗n

)

︸ ︷︷ ︸

¯̄φ
(k),trial
n+1

=
K∗

c D̄n− Ḡ+ D̄n
η

∆τn+1

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

¯̄γ
∗(k)
n+1

(E.12)

Finally, we can write the expression for ¯̄γ
∗(k)
n+1.

¯̄γ
∗(k)
n+1 =

¯̄φ
(k),trial
n+1

(

D̄n− Ḡ ¯̄Dn+ D̄n
η

∆τn+1

¯̄Dn

)

KcD̄n− Ḡ+ D̄n
η

∆τn+1

(E.13)

Discontinuity in concrete layer when ¯̄q = σfc

Here we consider the situation, when the concrete layer loses all carrying capacity. When the stress-like softening

variable reaches the value ¯̄q= σfc, the traction at the discontinuity t drops to zero (at a non-zero displacement jump

α) and the discontinuity compliance ¯̄D becomes infinite, so the above derivation does not apply any more. Instead,

the displacement jump α
(k)
n+1 is computed from equation t

(k)
n+1 = 0.

We start by inserting expressions (5.15) for σ
(k)
n+1 and (E.3) for α̇

(k)
n+1 into equation (5.7).

t
(k)
n+1 = σ

(k)
n+1 −η α̇

(k)
n+1 = D̄−1

n

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1

)

−
η

∆τn+1

(

α
(k)
n+1 −αn

)

(E.14)

The obtained expression for t
(k)
n+1 is equaled to zero. The equation is then multiplied with D̄n and rearranged to

collect the terms containing α
(k)
n+1.

D̄−1
n

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1

)

−
η

∆τn+1

(

α
(k)
n+1 −αn

)

= 0

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1 − D̄n

η

∆τn+1
α
(k)
n+1 + D̄n

η

∆τn+1
αn = 0

(

Ḡ− D̄n
η

∆τn+1

)

α
(k)
n+1 =−

(

B̆d
(k−1)
n+1 + D̄n

η

∆τn+1
αn

)

(E.15)

We can now write the expression for the displacement jump α
(k)
n+1.

α
(k)
n+1 =−

B̆d
(k−1)
n+1 + D̄n

η
∆τn+1

αn

Ḡ− D̄n
η

∆τn+1

(E.16)
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Discontinuity in reinforcement layer when ¯̄q < σfs

In this section we derive the expression for the plastic softening multiplier ¯̄γ
(k)
n+1, required for the computation of

internal variables in the reinforcement layer in section 5.3.2 of chapter 5, in case that the layer still possesses some

carrying capacity, i.e. ¯̄q < σfs.

We begin by expressing the traction at the discontinuity t
(k)
n+1 with its trial value t

(k),trial
n+1 . To achieve this, we insert

expressions (5.24) for σ
(k)
n+1 and (E.3) for α̇

(k)
n+1 into equation (5.7).

t
(k)
n+1 = σ

(k)
n+1 −η α̇

(k)
n+1 = Es

(

B̆d
(k−1)
n+1 + Ḡα

(k)
n+1 − ε̄p,n

)

−
η

∆τn+1

(

α
(k)
n+1 −αn

)

(E.17)

The displacement jump is expressed with the softening multiplier by using the evolution equation (5.23). The

applied equality sign
(

t
(k)
n+1

)

=sign
(

t
(k),trial
n+1

)

is justified in appendix A.

t
(k)
n+1 = Es

(

B̆d
(k−1)
n+1 + Ḡ

(

αn+ ¯̄γ
(k)
n+1 sign

(

t
(k)
n+1

))

− ε̄p,n

)

−
η

∆τn+1

(

αn+ ¯̄γ
(k)
n+1sign

(

t
(k)
n+1

)

−αn

)

=

= Es

(

B̆d
(k−1)
n+1 + Ḡαn− ε̄p,n

)

︸ ︷︷ ︸

=σ
(k),trial
n+1 =t

(k),trial
n+1

+EsḠ ¯̄γ
(k)
n+1 sign

(

t
(k)
n+1

)

−
η

∆τn+1

¯̄γ
(k)
n+1 sign

(

t
(k)
n+1

)

=

= t
(k),trial
n+1 +

(

EsḠ−
η

∆τn+1

)

¯̄γ
(k)
n+1 sign

(

t
(k)
n+1

)

(E.18)

Equation (5.19) has been applied as well, stating that the trial values of traction at the discontinuity and the stress

in the bulk are equal. The stress-like softening variable ¯̄q is determined by equation (4.76). We are considering the

case when ¯̄q < σfs. This value is designated with ¯̄qAn+1.

¯̄q
(k)
n+1 =−Ks

¯̄ξ
(k)
n+1 =−Ks

(
¯̄ξn+ ¯̄γ

(k)
n+1

)

= ¯̄q
(k),trial
n+1 −Ks ¯̄γ

(k)
n+1 → ¯̄qAn+1 (E.19)

Expressions (E.18) and (E.19) are inserted in the failure function ¯̄φ
(k)
n+1, determined by equation (4.75). The

obtained expression has to be zero to fulfill the loading/unloading conditions (4.78).

¯̄φ
(k)
n+1 =

∣
∣
∣t
(k)
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k)
n+1

)

= 0 (E.20)

(

t
(k),trial
n+1 +

(

EsḠ−
η

∆τn+1

)

¯̄γ
(k)
n+1sign

(

t
(k)
n+1

))

sign
(

t
(k)
n+1

)

−
(

σfs− ¯̄q
(k),trial
n+1 +Ks ¯̄γ

(k)
n+1

)

= 0

t
(k),trial
n+1 sign

(

t
(k)
n+1

)

+

(

EsḠ−
η

∆τn+1

)

¯̄γ
(k)
n+1 −

(

σfs− ¯̄q
(k),trial
n+1

)

−Ks ¯̄γ
(k)
n+1 = 0

∣
∣
∣t
(k),trial
n+1

∣
∣
∣−
(

σfs− ¯̄q
(k),trial
n+1

)

︸ ︷︷ ︸

¯̄φ
(k),trial
n+1

−

(

Ks−EsḠ+
η

∆τn+1

)

¯̄γ
(k)
n+1 = 0

(E.21)

From (E.21), the expression for the plastic softening multiplier ¯̄γ
(k)
n+1 is obtained. It is denoted with ¯̄γA

n+1 to

associate it with the stress-like softening variable ¯̄qAn+1< σfs.
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¯̄γA
n+1 =

¯̄φ
(k),trial
n+1

−ḠEs+Ks+
η

∆τn+1

(E.22)

We have derived expression (E.22) under assumption that ¯̄q < σfs, which has to be verified. ¯̄qAn+1 has to be

computed from equation (E.19), using expression (E.22) for ¯̄γ
(k)
n+1. If the calculated value is indeed smaller than

σfs, the assumption was correct. Otherwise, the carrying capacity at the discontinuity has dropped to zero and

¯̄q = σfs.

Discontinuity in reinforcement layer when ¯̄q = σfs

In this section we derive the expression for the plastic softening multiplier ¯̄γ
(k)
n+1 for the case when the layer has

lost all carrying capacity at the discontinuity (the stress in the bulk may be different from zero). The stress-like

softening variable is denoted with ¯̄qBn+1= σfs in order to be distinguished from ¯̄qAn+1< σfs above.

By inserting ¯̄qBn+1 in equation (E.20), we conclude that t
(k)
n+1 = 0. Expression (E.18) for the traction at the discon-

tinuity is equaled to zero. The equality sign
(

t
(k)
n+1

)

=sign
(

t
(k),trial
n+1

)

is applied again.

t
(k),trial
n+1 +

(

EsḠ−
η

∆τn+1

)

¯̄γ
(k)
n+1sign

(

t
(k)
n+1

)

= 0

t
(k),trial
n+1 sign

(

t
(k),trial
n+1

)

+

(

EsḠ−
η

∆τn+1

)

¯̄γ
(k)
n+1 = 0

(E.23)

Expression for ¯̄γ
(k)
n+1 is acquired from (E.23). It is marked with ¯̄γB

n+1 to be associated with ¯̄qBn+1 = σfs.

¯̄γB
n+1 =

∣
∣
∣t
(k),trial
n+1

∣
∣
∣

−ḠEs+
η

∆τn+1

(E.24)

During the computational procedure in section 5.3.2, ¯̄γ
(k)
n+1 is first evaluated according to equation (E.22), then the

stress-like variable is computed according to (E.19): ¯̄qAn+1 =−Ks

(
¯̄ξn+ ¯̄γA

n+1

)

. If the value is indeed ¯̄qAn+1 < σfs,

the value ¯̄γA
n+1 is stored. Otherwise the value ¯̄γB

n+1 from (E.24) is taken.
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