
HAL Id: tel-00997235
https://theses.hal.science/tel-00997235

Submitted on 27 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data management in forecasting systems : optimization
and maintenance

Haitang Feng

To cite this version:
Haitang Feng. Data management in forecasting systems : optimization and maintenance. Other
[cs.OH]. Université Claude Bernard - Lyon I, 2012. English. �NNT : 2012LYO10174�. �tel-00997235�

https://theses.hal.science/tel-00997235
https://hal.archives-ouvertes.fr

Numéro d’ordre : 174-2012 Année 2012

Université Claude Bernard Lyon 1

Laboratoire d’InfoRmatique en Image et Systèmes d’information

École Doctorale Informatique et Mathématiques de Lyon

Thèse de l’Université de Lyon

Présentée en vue d’obtenir le grade de Docteur,
spécialité Informatique

par

Haitang FENG

Data Management in Forecasting Systems:
Optimization and Maintenance

Thèse soutenue le 17 octobre 2012 devant le jury composé de :

Mme. Anne Doucet Professeur à l’Université Paris 6 Rapporteuse
M. François Pinet Chargé de Recherche Rapporteur

à l’IRSTEA de Clermont-Ferrand
M. Jérôme Darmont Professeur à l’Université Lumière Lyon 2 Examinateur
M. Didier Donsez Professeur à l’Université Grenoble 1 Examinateur
M. Mohand-Saïd Hacid Professeur à l’Université Lyon 1 Directeur
M. Nicolas Lumineau Maître de Conférences à l’Université Lyon 1 Co-encadrant
M. Richard Domps Président d’Anticipeo Co-encadrant

Laboratoire d’InfoRmatique en Image et Systèmes d’information
UMR 5205 CNRS - Lyon 1 - Bât. Nautibus

69622 Villeurbanne Cedex - France

Acknowledgment

During the three years of my PhD, I have realized that even the hardest work can be

achieved by discussions, collaborations and support. It is a great pleasure to thank

those who have helped me.

First of all, I wish to express my gratitude to my supervisors. Pr. Mohand-Saïd

Hacid, the chief supervisor, was abundantly helpful and offered invaluable assistance,

support and guidance. His experience on the thesis subject and on the guidance of PhD

students was a treasure to me. Moreover, his passion of work was, is and will be my

long-lasted motivation for work. To me, it was also very fortunate have another research

supervisor, Dr. Nicolas Lumineau. He guided me tightly through three years: from

the analysis, the conception, the implementation, the experimentation up to the final

stage. Our discussions about the research and the life will not be forgotten. I would also

like to deeply thank Mr. Richard Domps, the thesis promoter and also the industrial

supervisor, who has chosen me for this thesis and has always given his confidence to

me. He provides me with the best work condition, which is so appreciated.

I wish to thank Professors Anne Doucet and François Pinet for their interest in my

research work and for their willingness to be the reviewers of this thesis. I also want to

thank Professors Jérôme Darmont and Didier Donsez who have agreed to participate in

the jury board. I look forward to hearing valuable remarks.

A special thank goes to M. Alain Malacchina, my technical manager in Anticipeo.

His industrial and technical point of view helped me keep a balance between academic

research and the real world. His attitude towards work set me an example and gave me

a lot of positive energy.

I would like to thank all the members of database group, for both friendly and

scientific discussions. Of course, I will not forget Ho Lee, who shared the same office

with me and supported and advised me for two long years. His encouragement is an

important part of the success of this thesis. I also thank other members of LIRIS that I

was lucky to know for their encouragement.

I also wish to thank my friends out of the laboratory, in particular, Lina Lu, Marie-

France Eymard, Alain Iametti, Lorène Leonidas, Dominika Grabowska, Nadia Derbas

and Xiaohuli Zhang, for sharing the happiness and sadness of my life.

I owe my deepest gratitude to my parents and my family for their endless love,

iii

support, trust, and presence. I cannot be here without all of you.

Last but not least, I want to thank specially my husband Zhan Zhang for his support

and love. I feel so fortune to be loved by this kind and warmhearted man.

Thank you all!

Haitang Feng

iv

Abstract

In daily life, more and more forecasting systems are used to determine what the future
holds in many areas like climate, weather, traffic, health, finance, and tourism. These
predictive analytics systems support three functionalities: prediction, visualization and
simulation based on modifications. A specific problem for forecasting systems is to
ensure data consistency after data modification and to allow updated data access within
a short latency.

Forecasting systems are usually based on data warehouses for data storage, and
OLAP tools for historical and predictive data visualization. Data that are presented
to and modified by end users are aggregated data. Hence, the research issue can be
described as the propagation of an aggregate-based modification in hierarchies and di-
mensions in a data warehouse environment. This issue corresponds to a view main-
tenance problem in a data warehouse. There exists a great number of research works
on view maintenance problems in data warehouses. However, they only consider up-
dates on source data or evolution of the structure of dimensions and hierarchies. To our
knowledge, the impact of aggregate modifications on raw data was not investigated.
In addition, end users perform the modification interactively. The propagation of the
modification should be efficient in order to provide an acceptable response time.

This “Conventions Industrielles de Formation par la REcherche (CIFRE)” thesis is
supported by the “Association Nationale de la Recherche et de la Technologie (ANRT)”
and the company Anticipeo. The Anticipeo application is a sales forecasting system that
predicts future sales in order to help enterprise decision-makers to draw appropriate
business strategies in advance. By the beginning of the thesis, the customers of Anticipeo
were satisfied by the precision of the prediction results, but there were unidentifiable
performance problems.

During the working period, the work can be divided into two parts. In the first part,
in order to identify the latency provenance, we performed an audit on the existing ap-
plication. The result of audit showed the database may be the main source of latency.
We proposed a methodology relying on different technical approaches to improve the
performance of the application. Our methodology covers several aspects from hardware
to software, from programming to database design. The response time of the application
has been significantly improved. However, there was still a situation which cannot be
solved by these technical solutions. It concerns the propagation of an aggregate-based
modification in a data warehouse. The second part of our work consists in the proposi-

v

tion of a new algorithm (PAM - Propagation of Aggregate-based Modification) with an
extended version (PAM II) to efficiently propagate an aggregate-based modification. The
algorithms identify and update the exact sets of source data and other aggregates im-
pacted by the aggregate modification. The optimized PAM II version achieves better per-
formance compared to PAM when the use of additional semantics (e.g., dependencies)
is possible. The experiments on real data of Anticipeo proved that the PAM algorithm
and its extension bring better performance when treating a backward propagation.

Keywords: OLAP, Data warehousing, Decision support systems, Optimization and
performance, view materialization

vi

Résumé

De nos jours, de plus en plus de systèmes prévisionnels sont utilisés pour fournir des in-
dications sur un phénomène dans le futur, que ce soit dans le domaine météorologique,
des transports, de la santé, des finances, du tourisme... Ces systèmes d’analyse prédic-
tive ont souvent trois fonctionnalités: la prédiction, la visualisation et la simulation par
modification des résultats. Un problème spécifique pour les systèmes prévisionnels est
de maintenir la cohérence des données après leur modification et de permettre un accès
aux données mises à jour avec une latence faible.

Les systèmes prévisionnels reposent généralement sur des architectures de type en-
trepôts de données pour le stockage des données et sur les outils OLAP pour la visu-
alisation de données historiques et prédictives. Les données présentées aux utilisateurs
finaux et modifiées par ces derniers sont des données agrégées. Par conséquent, la
problématique de recherche peut être décrite comme la propagation d’une modification
faite sur un agrégat à travers des hiérarchies et des dimensions dans un environnement
d’entrepôt de données. Cette problématique relève de la maintenance des vues dans
un entrepôt de données. Il existe un grand nombre de travaux de recherche sur les
problèmes de maintenance de vues dans les entrepôts de données. Cependant, ils ne
considèrent que des mises à jour sur les données sources ou l’évolution de la structure
des dimensions et des hiérarchies. A notre connaissance, l’impact de la mise à jour d’un
agrégat sur les données de base n’a pas été exploré. En outre, les utilisateurs finaux
effectuent des modifications de façon interactive à travers une interface. La propagation
de la modification doit être efficace afin de fournir un temps de réponse acceptable.

Cette thèse CIFRE (Conventions Industrielles de Formation par la REcherche) est
soutenue par l’ANRT (Association Nationale de la Recherche et de la Technologie) et
l’entreprise Anticipeo. L’application Anticipeo est un système prévisionnel de ventes,
qui prédit des ventes futures afin d’aider les décideurs d’entreprise à tirer des straté-
gies commerciales appropriées à l’avance. Au début de ce travail de thèse, les clients
d’Anticipeo ont été satisfaits par la précision des résultats de la prédiction, mais il y
avait des problèmes de performance non identifiés.

Ce travail de thèse comporte deux parties. Dans la première partie, afin d’identifier
la provenance de la latence, nous avons effectué un audit sur l’application existante. Le
résultat de l’audit a montré que la base de données pouvait être la source principale de
la latence. Nous avons proposé une méthodologie s’appuyant sur différentes approches
et techniques pour améliorer les performances d’une application. Notre méthodologie

vii

couvre plusieurs aspects allant du matériel au logiciel, de la programmation à la con-
ception de base de données. Le temps de réponse de l’application a été amélioré de
façon significative. Cependant, il y avait encore une situation qui ne pouvait pas être
résolue par ces solutions techniques. Il s’agit de la propagation d’une modification ef-
fectuée sur un agrégat dans un entrepôt de données. La deuxième partie de notre travail
consiste en la proposition d’un nouvel algorithme (PAM - Propagation de modification
basée sur un agrégat) avec une version étendue (PAM II) pour propager efficacement
une modification effectuée sur un agrégat. Les algorithmes identifient et mettent à jour
les ensembles exactes de données sources et d’autres agrégats influencés par la modi-
fication d’agrégat. La version optimisée PAM II réalise une meilleure performance par
rapport à PAM quand l’utilisation d’une sémantique supplémentaire (par exemple, les
dépendances) est possible. Les expériences sur des données réelles d’Anticipeo ont mon-
tré que l’algorithme PAM et son extension apportent de meilleures performances dans
la propagation des mises à jour.

Mots-clefs: OLAP, Entrepôt de données, Systèmes d’aide à la décision, Optimiza-
tion et performance, matérialization des vues

viii

Contents

Acknowledgment iii

Abstract v

Résumé vii

Contents ix

List of figures xiii

List of tables xv

1 Introduction 1

1.1 General context . 1

1.1.1 Forecasting systems . 2

1.1.2 Sales forecasting systems . 4

1.1.3 Applications of sales forecasting systems 4

1.2 Problem statement and motivations . 5

1.3 Contributions . 8

1.4 Organization of the manuscript . 9

2 State of the art 11

2.1 Data generation . 12

2.2 Data storage . 13

2.3 Data visualization . 17

2.3.1 On-Line Analytical Processing (OLAP) 17

2.3.2 View maintenance . 21

2.4 Data simulation . 22

2.5 Synthesis . 24

3 Aggregate-based modification: impact management 25

3.1 Notations and definitions . 26

3.2 Current solution: principles and limitations 28

ix

3.3 Proposed algorithm . 29

3.3.1 PAM Algorithm . 30

3.3.1.1 Description of the algorithm 30

3.3.1.2 Time complexity . 33

3.3.2 PAM II Algorithm . 34

3.3.2.1 Description of the algorithm 34

3.3.2.2 Time complexity . 35

3.3.3 Other aggregate functions . 36

4 Experimental evaluation and validation 39

4.1 Presentation of the experimental environment 40

4.2 Evaluation of different methods with two dimensions 40

4.2.1 Current solution . 41

4.2.2 PAM algorithm . 41

4.2.2.1 Validation . 41

4.2.2.2 Complexity . 42

4.2.3 PAM II algorithm . 46

4.2.3.1 Validation . 46

4.2.3.2 Complexity . 47

4.2.4 Comparison of different methods 49

4.3 Evaluation of different methods with three dimensions 50

5 Context of this work: Anticipeo 55

5.1 Sales forecasting systems . 56

5.2 Presentation of the Anticipeo application 58

5.2.1 Application process . 58

5.2.2 User interface . 59

5.2.3 Data features . 60

5.2.4 Main manipulations . 62

5.2.5 Problem statement . 63

5.3 Optimization guideline . 64

5.3.1 Hardware and application programming analysis 64

5.3.2 Database management system configuration 65

5.3.3 Additional materialized views . 66

5.3.4 Database design . 69

5.4 Implementation and optimization results 72

5.4.1 Observations on current implementation of the application 72

5.4.2 Diagnosis of latency provenance . 73

5.4.3 Database management system configuration 75

5.4.4 Selection of materialized views . 76

5.4.5 Database schema modification . 77

5.5 Overall optimization result . 81

5.6 Recommendations . 82

x

6 Conclusion and future work 85

6.1 Contributions . 86

6.2 Future work . 87

Bibliography 89

Author’s publications 99

xi

xii

List of Figures

1.1 Example of a fact table with different hierarchies of three dimensions
which are used to analyze raw data . 6

2.1 Methodology tree for forecasting [Arm00] 13

2.2 Data Warehousing Architecture [CD97] . 15

3.1 Example of data modification on an aggregated level in a dimension-
hierarchy structure and the impact of the modification 27

3.2 The database schema for meta-table storing dependency information . . . 35

4.1 Comparison of evaluation time using the current solution, the PAM and
PAM II algorithms . 50

4.2 Comparison of evaluation time using the current solution, the PAM and
PAM II algorithms in a three-dimensional schema 53

5.1 The data process of the Anticipeo application 58

5.2 An example of forecasting sales trend presentation 59

5.3 Hierarchy organization for dimension customer and dimension product . 60

5.4 SQL query for the example of an electrical appliance manufacturer 63

5.5 MySQL server architecture and main system variables selected for the
tuning . 65

5.6 Illustration of hierarchy C1 and hierarchies P1, P2 in the notion of query
dependence . 67

5.7 Illustration of lattice constructed by the dependence information of the
hierarchy C1 and the hierarchies P1, P2 . 68

5.8 Star schema for the Anticipeo application 72

5.9 SQL query for the example of an electrical appliance manufacturer on the
star schema . 72

5.10 Illustration of dimension-hierarchies about the database DB1 of the An-
ticipeo application . 76

5.11 Modified star schema for the Anticipeo application 80

5.12 SQL query for the example of an electrical appliance manufacturer on
modified star schema . 80

xiii

xiv

List of Tables

3.1 Algorithm PAM for the update propagation of an aggregate modification 31

3.2 Temporary table ∆X created to store impacted raw tuples 32

3.3 Algorithm PAM II for the update propagation of a modification 36

4.1 Number of raw tuples involved by the aggregate modification on the ap-
propriate level of hierarchies in the two-dimensional schema 41

4.2 Evaluation time of updating the whole schema following an aggregate
modification by using the current solution in a two-dimensional data
warehouse . 41

4.3 Evaluation time of updating the whole schema following an aggregate
modification by using our PAM algorithm in a two-dimensional data
warehouse . 42

4.4 Estimated evaluation time of updating the whole schema following an
aggregate modification by using our PAM algorithm in “DB_twice” of two
dimensions . 43

4.5 Observed evaluation time of updating the whole schema following an
aggregate modification by using our PAM algorithm in “DB_twice” of two
dimensions . 43

4.6 Percent difference between the estimated result and the observed result in
“DB_twice” of two dimensions . 44

4.7 Evaluation time of propagating modifications to all hierarchies using PAM
algorithm under different dimension/hierarchy schemas with two dimen-
sions . 45

4.8 Evaluation time per level of propagating modifications to all hierarchies
using PAM algorithm under different dimension/hierarchy schema with
two dimensions . 45

4.9 Evaluation time of updating the whole schema following an aggregate
modification by using our derived PAM II algorithm in a two-dimensional
data warehouse . 47

4.10 Estimated evaluation time of updating the whole schema following an
aggregate modification by using our PAM II algorithm in “DB_twice” of
two dimensions . 48

xv

4.11 Observed evaluation time of updating the whole schema following an
aggregate modification by using our PAM algorithm in “DB_twice” of two
dimensions . 48

4.12 Percent difference between the estimated result and the observed result in
“DB_twice” of two dimensions . 48

4.13 Evaluation time of propagating modifications to all hierarchies using PAM
II algorithm under different dimension/hierarchy schemas with two di-
mensions . 49

4.14 Evaluation time per level of propagating modifications to all hierarchies
using PAM II algorithm under different dimension/hierarchy schemas
with two dimensions . 49

4.15 Number of raw tuples involved in the modification of each test 51

4.16 Evaluation time of updating the whole schema following an aggregate
modification by using the current solution in a three-dimensional data
warehouse . 52

4.17 Evaluation time of updating the whole schema following an aggregate
modification by using our PAM algorithm in a three-dimensional data
warehouse . 52

4.18 Evaluation time of updating the whole schema following an aggregate
modification by using our PAM II algorithm in a three-dimensional data
warehouse . 53

5.1 Schema for one of the materialized views used for efficient data display . 61

5.2 Cost of every query/view in the example lattice 68

5.3 Benefits of each view in three rounds and possible choices for the materi-
alization at each round . 69

5.4 Schema for the first materialized view: hierarchical information 70

5.5 Schema for the second materialized view: sales information 70

5.6 Experimental databases characteristics and results 73

5.7 Average time distribution on application level and on DBMS level for the
execution of different user manipulations 74

5.8 Performance comparison between different values chosen for each MySQL
system variable . 75

5.9 Result of theoretical gain of implementing Greedy Algorithm 77

5.10 Evaluation of queries on actual schema and on new data schema using
two materialized views (Two MVs schema) 78

5.11 Evaluation of queries on actual schema and on star schema 79

5.12 Evaluation of queries on actual schema, on star schema with time dimen-
sion and on star schema without time dimension 81

xvi

Chapter 1

Introduction

Contents

1.1 General context . 1

1.1.1 Forecasting systems . 2

1.1.2 Sales forecasting systems . 4

1.1.3 Applications of sales forecasting systems 4

1.2 Problem statement and motivations . 5

1.3 Contributions . 8

1.4 Organization of the manuscript . 9

A Forecasting system is a specific application consuming a large number of historical

data to produce predictive data reflecting the future [FSd]. A specific issue facing data

management in forecasting systems is the latency of accessing aggregated data, when

their results may be updated. Latency is critical when data visualization is performed

via on-line applications. This problem motivates this research. The general objective of

this work is to improve the performance of forecasting systems like Anticipeo.

We introduce the context of the thesis on three levels: general forecasting systems,

sales forecasting systems and applications of sales forecasting systems. We then describe

the problems, research issues and show our motivations. We give a sketchy presentation

of our two main contributions, an optimization guideline and a novel algorithm with an

extended version. Finally, we summarize the organization of this manuscript.

1.1 General context

In this section, we introduce general forecasting systems, sales forecasting systems and

the concrete case of a sales forecasting system, the Anticipeo application, and some other

1

2 Chapter 1. Introduction

applications of sales forecasting systems.

1.1.1 Forecasting systems

A forecasting system comprises techniques or tools that are mainly used for analysis of

historical data, for selection of the most appropriate modeling structure for the computa-

tion of forecasts, for model validation, for development of forecasts, and for monitoring

and adjustment of forecasts [FSd].

In daily life, different forecasting systems are used in many areas. They help their

users to achieve their objectives. We introduce some important forecasting systems in

the following paragraphs.

Environmental forecasting is one of the most frequently and earliest used forecasting

application. Many countries and trans-boundary agencies achieve predictions with de-

rived statistical models specific to their domains. For instance, the European Center for

Medium-Range Weather Forecasts [Eur] is an intergovernmental organization supported

by 34 states established in 1975. It provides operational medium- and extended-range

forecasts and a state-of-the-art super-computing facility for scientific research. The Na-

tional Centers for Environmental Prediction [Nat] of the United States is another exam-

ple of environmental forecasting systems. The nine centers provide national and global

weather, water, climate and space weather guidance, forecasts, warnings and analyses

to their partners and external user communities. These products and services are based

on a service-science legacy. Environmental forecasting systems respond to user needs

to protect life and property, enhance the nation’s economy and support the nation’s

growing need for environmental information.

Another well-known forecasting system is used for the traffic estimation and pre-

diction. Singapore is the first country in the world that implemented the practical ap-

plication of congestion pricing in 1975. Thanks to technological advances in electronic

toll collection, detection, and video surveillance, Singapore upgraded its system in 1998

[Min]. In order to improve the pricing mechanism and to introduce real-time variable

pricing, Singapore’s Land Transport Authority, together with IBM, ran a pilot from De-

cember 2006 to April 2007, with a traffic estimation and prediction tool, which uses

historical traffic data and real-time feeds with flow conditions from several sources. The

objective is to be able to predict the levels of congestion over preset durations (from ten

minutes up to an hour) in advance [IBM07]. Traffic forecasting systems help improve

traffic conditions and reduce travel delays by facilitating the utilization of available trans-

portation facilities.

1.1. General context 3

Other forecasting systems appeared more recently to respond to new demands.

Tourism forecasting systems provide forecasts of tourism demand, which are prerequi-

sites to the decision-making process in the organizations of the private or public sector,

involved in the tourism industry, helping decision-makers to plan more effectively and

efficiently [PMN∗03]. Stock forecasting systems [SC09] and sales forecasting systems

are among useful financial forecasting systems for investors and enterprise managers to

reduce logistics cost and to improve the income of enterprises.

The field of forecasting is concerned with approaches to determining what the future

holds. It is also concerned with the proper presentation and use of forecasts. The terms

“forecast”, “prediction”, “projection”, and “prognosis” are typically used interchange-

ably. Often forecasts are of future values of a time-series. For example, the number of

babies that will be born in a year, or the likely demand for compact cars. Alternatively,

forecasts can be of one-off events such as the outcome of a union-management dispute

or the performance of a new recruit. Forecasts can also be of distributions, such as the

locations of terrorist attacks or the occurrence of heart attacks among different age co-

horts. The field of forecasting includes the study and application of judgment as well as

of quantitative (statistical) methods[ACGG04].

The basic functionalities a forecasting system supports are: computation, visualiza-

tion and modification. The first functionality, computation of forecasts, uses specific

methods (typically statistical models) to derive forecasts. The second functionality, vi-

sualization of computed forecasts, uses OLAP (online analytical processing) tools to

visualize data stored in data warehouses. However, the third functionality, modifica-

tion of computed forecasts during visualization, is a specific problem which is not well

investigated in the data warehousing domain. In forecasting systems, source data are

composed of historical data and predictive data. Unlike historical data which represent

achieved facts and do not evolve over time, predictive data can be dynamic and can be

updated. Experts of the domain could make some modifications to adjust computed

forecasts to some specific situations. They could also make some simulations in order

to visualize an objective. These modifications occur on summarized data and should be

propagated to raw data (computed forecasts) and then to other summarized data. This

process implies two directions of modifications. However, the work in the data ware-

house domain focuses only on propagating source data modification to summarized

data, which are usually considered as materialized views.

Our research targets all quantitative-measurement forecasting systems. The actual

research experiments are carried on a sales forecasting system, the Anticipeo application.

4 Chapter 1. Introduction

1.1.2 Sales forecasting systems

A sales forecasting system, also called a business forecasting system is a forecasting sys-

tem that can compute achievable sales revenue, based on historical sales data, analysis

of market surveys and trends, and salespersons’ estimates [SFd].

The goal is to predict the forthcoming stages of sales of any company or organiza-

tion. The sales forecasting is one of the most difficult areas of management, where a

lot of experience and knowledge is required for accurate prediction [eSa]. It is done

through detailed analysis of all the available information regarding the different aspects

of sales. This future prediction will help the company to calculate profits, to make de-

cisions on investments, and to launch new products and services. The implementation

of sales forecasting systems will help the company to improve the methods in targeting

new customers, thereby giving greater sales output, and supreme customer service. It

will also help to attain maximum efficiency through proper scheduling of its various

activities. An effective sales forecast can have a positive impact on: financing and val-

uation, inventory management, order management, sales headcount capacity planning,

sales revenue, visibility into sales activities [Gil06] The sales forecasting process is man-

aged by a point person which can be: a sales or financial analyst; a sales operations

manager; a sales finance manager or similar other positions. The other intended users

of the forecast can be people of other departments than sales or marketing as discussed

above.

Hence the design of a sales forecasting system should consist of four phases: (1)

data collection, (2) sales forecasts generation, (3) result revision, and (4) result presenta-

tion/visualization.

1.1.3 Applications of sales forecasting systems

Many business intelligence (BI) tools provide the possibility to perform simulations

based on their historical data. In the BI tool survey 2012 of Passionned Group 1, 16

most used BI tools are analyzed based on 103 criteria. Those tools are widely used for

reporting, dashboarding and analysis. In the simulation part, they often combine with

what-if analysis including sensitive analysis and goal seeking analysis (definitions can be

found in Section 2.4). However, those tools do not consider the updates/modifications

of a specific result, which is a core functionality of sales forecasting systems.

There are also some proper solutions for forecasting. Besides the forecasting mod-

1Passionned Group is an analyst and consultancy company, based in The Netherlands, specializing in
Business Intelligence and Data Integration. They offer in-depth and vendor independent research and
strategic consulting. Read more, see http://www.businessintelligencetoolbox.com/

1.2. Problem statement and motivations 5

ules included in BI tools, some companies are specialized in this field, for example,

ForecastPro [For], GMDH Shell [GMD], MJC2 [MJC], etc. These solutions focus on the

utilization of different forecasting methods, such as time series analysis, to get accurate

forecasts. They give the possibility to modify variables to adjust projection, but not the

ability of goal simulations.

The Anticipeo application is a concrete case of a sales forecasting system. It performs

sales forecasting monthly for its customer companies or organizations. The customer

companies or organizations provide Anticipeo with their new sales informations. After

data cleansing and formatting, Anticipeo integrates the data into the system as historical

data information. Then sales forecasts are generated using the pattern models prede-

fined by statisticians of Anticipeo and chosen on the fly depending on the characteristics

of the sales data. The result is first presented to the key person of the sales forecasting

process, who revises the forecasting result and makes some corrections if necessary, e.g.,

for some planned promotions. Finally, the sales forecasting result is made accessible

to the users. The presentation and the visualization of the result follows hierarchies

defined by Anticipeo together with customer companies or organizations during the de-

sign phase of the application. For example, the sales can be analyzed by the purchasers’

geographical distribution or by the benefit margin of the products.

The performance problem of this application resides at two levels: the sales genera-

tion and the result presentation. We consider the sales generation as a black box. The

goal of this work is the optimization of the result presentation/visualization.

There are two kinds of visualizations: (1) the visualization of information pre-computed

and stored, which is immediate when requested, and (2) the visualization of information

calculated on the fly. Due to the quantity of manipulated information, the visualization

methods should be optimized to speed up both kinds of visualizations: (1) the methods

to keep the pre-computed and stored information up to date and (2) the methods to

calculate information on the fly.

1.2 Problem statement and motivations

In predictive analytics systems, results are presented in the form of hierarchies to pro-

vide aggregated information at different levels of knowledge. Technically speaking, the

visualization of results uses OLAP tools to visualize data stored in a data warehouse.

However, a specific functionality of predictive analytics systems is the modification of

computed forecasts during the visualization. This problem is not well investigated in

6 Chapter 1. Introduction

the data warehouses. In predictive analytics systems, source data are composed of his-

torical data and predictive data. Unlike historical data which represent achieved facts

and do not evolve over the time, predictive data could be not static and can be up-

dated. These adjustments occur on summarized data and should be propagated to raw

data (computed forecasts) and then to other summarized data. This procedure implies

two directions of modifications. However, the work in data warehouse domain focuses

mainly on propagating source data modification to summarized data.

To clearly define our problem, we first review how dimensions, hierarchies and the

basic data schema are used by visualization tools of OLAP systems [CCS93, Inm05,

KR02].

OLAP systems employ multidimensional data models to structure “raw” data into

multidimensional structures in which each data entry is shaped into a fact with as-

sociated measure(s) and descriptive dimensions that characterize the fact. The values

within a dimension can be further organized in a containment type hierarchy to support

multiple granularities.

In the example shown in Figure 1.1, we present the dimension-hierarchy data model

used in a sales forecasting system. This dimension-hierarchy data model is based on

Figure 1.1: Example of a fact table with different hierarchies of three dimensions which
are used to analyze raw data

one fact table and three different dimensions. The fact table contains four measures:

turnover, quantity, price, and profit. We would like to mention that in the fact table of

a forecasting system, there are not only “facts”, which are achieving results, but also

predictions. The three dimensions refer to customer, product and time. Each dimension

has its hierarchies to describe the organization of data. The customer dimension has

4 hierarchies, the product dimension has 4 hierarchies and the time dimension has 3

hierarchies. For instance, the second hierarchy, “Hierarchy Geography", of customer di-

1.2. Problem statement and motivations 7

mension is a geographical hierarchy for analyzing sales by area of sales. Customers are

grouped by city for level 1, by department for level 2 and by country for level 3. Base

sales are aggregated at each level according to this geographical organization when one

analyzes the sales through this hierarchy.

Regarding the visualization, OLAP systems employ materialized views to store fic-

tive information in order to avoid extra response time. In the example of sales, fictive

customers and fictive products are added to represent elements in superior hierarchy

levels, such as the creation of a fictive customer for the city of Lyon, a second fictive

customer for the Rhône department and a third one for the country France. Thus, the

system has three new entries in the customer dimension and accordingly some aggre-

gated sales in the fact table regarding these newly created fictive customers. Finally, all

the elements of every hierarchy level from every dimension are aggregated and added

to the dimension and fact tables. This pre-calculation guarantees an immediate access

to any direct aggregated information, while users perform visualization demands.

However, the visualization in a forecasting system is not the last operation as in

other OLAP systems. The systems only produce an initial version of the sales forecasts,

which are then reviewed by experienced salespersons. Salespersons check these mathe-

matically generated sales forecasts, take into account some issues not considered by the

system and perform some necessary adjustments. For example, promotional offers can

lead to higher turnover during the concerned period, but can also cause a decrease in

turnover for the next few days because of the carried inventory. Salespersons should

make some modifications for these two periods. In other cases, sales managers can also

perform some modifications in order to simulate a new marketing target. They make an

estimation on a level of one hierarchy and analyze the modification impacts on other lev-

els, e.g., the detailed customer level, to decide whether the target is achievable. The fact

that this update takes place on an aggregated level constitutes the major specific feature

of sales forecasting systems. Compared to traditional OLAP systems in which source

data are considered to be static, data in sales forecasting systems could be modified

many times to obtain a final result.

Hence, sales forecasting systems need to have the ability to quickly react to data

modification on an aggregated level. The problem we need to deal with can be gen-

eralized to how to efficiently update aggregated data through a dimension-hierarchy

structure.

8 Chapter 1. Introduction

1.3 Contributions

At the beginning of this work, we were aware that the problem we were facing to is

concerned with the performance of visualization of a sales forecasting system. However,

we did not have, at our disposal, enough information to point the source of the problem.

The first issue is then how to proceed in order to identify the problem.

To tackle the above mentioned problem, we define the scenario of utilization of this

application. We take one kind of typical users of the application, the sales manager, be-

cause this is the only user type which has access to all functionalities of the application.

We then simulate his routine work. Thus, we define four main usages of the application

in our scenario.

We perform an audit of the existing application: at the hardware level and at the

software level. We collected information about the performance of the hardware using

the system activity report. The last one shows that the hardware is sufficient for the

execution of this application. Regarding the software level, we set time line points in the

application. We calculated the execution time for all functions invoked by the scenario.

We filtered the functions by choosing those functions whose execution time exceeds our

defined threshold. For those functions, more time line points are added to observe the

main latency block(s). As there was an optimization work already carried out on the the

application code, our observation result shows that nearly all the time is spent on the

database part: database access and the query execution. The programming part of the

application is already correctly optimized. The result leads us to a conclusion that the

main latency is from the database and optimization should focus on this part. Thus, we

focused on how to reduce the execution time of database queries.

In view of the system being already operational, we considered solutions which

need less modifications of the actual application. We first introduced materialized views

for the multidimensional visualization. We implemented the basic greedy algorithm to

choose the most valuable views to materialize. The experimentation showed a signif-

icant improvement of the query execution time by using these materialized views. A

deeper understanding of the application led us to acknowledge that the visualization

part of system should be considered as a data warehousing and reporting system. The

adoption of a star schema for this part of the system might be a better choice in terms

of performance. We redesigned the database by changing the actual schema to a star

schema. The modification proves that a star schema is a better solution for the visual-

ization part.

So far, the response time of the application is significantly improved. We defined a

1.4. Organization of the manuscript 9

methodology about how to improve the performance of an application when the cause

is unknown. Our methodology covers several aspects from hardware to software, from

the programming to the database design.

However, there is still a situation that could not be solved by these technical solu-

tions. It concerns the propagation of a summarized sales modification, more generally,

the propagation of the impact of an aggregate modification in a data warehouse. A

modification performed on an aggregate needs to be propagated to raw data and also to

other aggregates computed from the same raw data. In traditional data warehouses, data

are considered to be non-volatile. Data in the data warehouse are rarely over-written or

deleted. Once committed, the data are static, read-only, and retained for future report-

ing. Nevertheless, the backward propagation is widely employed in predictive analytics

systems. We need a solution to efficiently support this requirement which is not well

considered in data warehouses so far.

The system, Anticipeo, already implemented a naïve solution to this problem. When

the value of an aggregate is modified, all the precomputed aggregates are destroyed

and then recomputed from scratch. This solution is expensive because it recomputes

all the aggregates even though they are not impacted by the modification. We propose

an PAM algorithm (Propagation of aggregate-based modification), which identifies the

exact sets of concerned raw data and aggregates to update. The update is performed by

using a temporary table of raw data impacted by the modification. We also propose an

optimized version of PAM that achieves better performance when the use of additional

semantics (e.g., dependencies) is possible. The PAM algorithm and its extension are

proved to bring much better performance when treating a backward propagation. They

significantly reduce the response time of the application when modifications take place.

Our work consists in the proposition of a methodology of different technical ap-

proaches to improve the performance of the application. We also propose an algorithm

with an extended version to efficiently propagate an aggregate-based modification.

1.4 Organization of the manuscript

In this first chapter, we introduced the objective of this work and our contributions. We

first stated the context by referring to three levels: forecasting systems, sales forecast-

ing systems and applications of sales forecasting systems. We described the motiva-

tions and the research issues in this last context. Then, we have shown the two main

10 Chapter 1. Introduction

contributions of this work: (1) the proposition of a methodology of different technical

approaches to improve the performance of the application, and (2) the proposition of an

algorithm together with its extension to efficiently propagate aggregate-based modifica-

tions. Chapter 2 describes the state of the art of technologies related to this work. We

present the prediction methods used in the data generation phase. We survey data ware-

houses, which are used as data storage in forecasting systems. We then discuss OLAP

tools and view maintenance issues for data visualization. We introduce data simulation

methods before relating this work to existing solutions. In Chapter 3, three algorithms

are presented. We first present the current solution by explaining the principles and its

limitations. We describe our proposed algorithm PAM and its extended version PAM II.

We also discuss the time complexity of these two algorithms. Chapter 4 shows the ex-

perimental results performed on real data. We validate the algorithms and the estimated

time complexity under two data schemas: one displaying two dimensions, and the other

one based on three dimensions. We also compare the results of the three algorithms in

the same scenario of tests to show the improvement achieved by our algorithms. In

Chapter 5, we provide more details regarding the context of this work. We describe the

application process, the user interface, the data features, the main manipulations and

we state the performance problem. We propose a general methodology, considered as a

guideline, which includes various technical approaches to improve the performance of

the application. We conclude and present some future work in Chapter 6.

Chapter 2

State of the art

Contents

2.1 Data generation . 12

2.2 Data storage . 13

2.3 Data visualization . 17

2.3.1 On-Line Analytical Processing (OLAP) 17

2.3.2 View maintenance . 21

2.4 Data simulation . 22

2.5 Synthesis . 24

In forecasting systems, historical data are usually stored in relational databases to

compute predictive data, which are also stored in relational databases during the predic-

tion phase. Regarding the presentation phase, data, including raw data and aggregated

data, are stored in data warehouses, i.e., multidimensional databases. The presentation

and the analysis of these data employ OLAP tools. During the simulation, aggregated

data and raw data are updated. View maintenance solutions are considered with OLAP

tools to provide a visualization of updated data within a short latency.

In this state-of-the-art chapter, we present related works in relation with data pro-

cessing in forecasting systems. We first introduce some notions of forecasting systems

and the main methods to generate forecasting data. We present approaches to data stor-

age. Then we introduce the visualization techniques and the optimizations of data vi-

sualization: OLAP and view maintenance issues in relational databases and data cubes.

We describe similar solutions to forecasting systems, such as the simulation in BI, i.e.,

what-if analysis. We point out the differences between the existing approaches and ours

and highlight the features of our work.

11

12 Chapter 2. State of the art

2.1 Data generation

A forecast is a prediction of what might happen in the future. It is based on past infor-

mation and an analysis of expected environment conditions. For example, an earthquake

in the southwest of the United States in the next 15 days is a forecast issue from an envi-

ronmental forecasting system. A saturation of 3 hours for the morning of the July 14th

2012 near Valence in France is a forecast for the traffic.

Forecasting is a collection of methods for generating forecasts. The steps of forecast-

ing can be summarized as: to determine the use of the forecast, to select the items to be

forecasted, to determine the time horizon of the forecast, data collection, data reduction,

to select the forecasting models, to make the forecast and forecast evaluation.

Forecasting is relevant to many activities [Kus99]. Governments need to forecast un-

employment, interest rates, expected revenues from income taxes to formulate policies.

Companies need to forecast demand, sales, consumer preferences in strategic planning.

Banks/investors/financial analysts need to forecast financial returns, risk or volatility,

market timing. University administrators need to forecast enrollments to plan facili-

ties and faculty recruitment. Retail stores need to forecast demand to control inventory

levels, hire employees and provide training. Sport organizations need to project sports

performance, crowd figures, club gear sales, revenues, etc., in the coming season.

There is a number of forecasting methods. Figure 2.1 depicts the methodology tree

for forecasting [Arm00]. It classifies all the possible types of forecasting methods into

categories and shows how they relate to each other. Dotted lines represent possible

relationships. Forecasting methods can be classified as either subjective or objective

[ACGG04] [MWH98b]. Subjective (judgmental) methods include expert opinions, and

the intentions and expectations of customers, for example, the Delphi method [RW99].

They are widely used for important forecasts. They are also used in situations where

there is no history to apply statistical methods. Objective (statistical) methods include

extrapolation (such as moving averages [Mov], linear regression against time, or expo-

nential smoothing [Nat11]) and econometric methods [JD07] (typically using regression

techniques [Hof93] to estimate the effects of causal variables). In [AG05], J.S. Arm-

strong and K.C. Green conclude that in situations where there are sufficient data, we

should use quantitative methods including extrapolation, quantitative analogies, rule-

based forecasting, and causal methods. Otherwise, we should use methods that struc-

ture judgment including surveys of intentions and expectations, judgmental bootstrap-

ping, structured analogies, and simulated interaction. Managers’ domain knowledge

should be incorporated into statistical forecasts. To improve forecasting accuracy, we

2.2. Data storage 13

Figure 2.1: Methodology tree for forecasting [Arm00]

can combine forecasts derived from methods that differ substantially and draw from

different sources of information. When feasible, five or more methods can be used,

including Delphi and prediction markets. The most common approach in business is

judgmentally adjusted statistical forecasting.

2.2 Data storage

Databases and database theory have been around for a long time. Early renditions

of databases centered around a single database serving every purpose known to the

information processing community, from transaction to batch processing to analytical

processing. In most cases, the primary focus of the early database systems was opera-

tional, usually transactional, processing. More and more, people are interested in getting

information from the raw data in order to improve their knowledge (see [Ack89] for the dif-

ferences between data, information, knowledge and wisdom). In recent years, a more

sophisticated notion of the database has emerged. The modern way to build systems

is to separate the operational from the informational or analytical processing and data.

Here arise data warehousing and decision support systems (DSS). Since the 90s, data

warehousing technologies have been successfully deployed in many industries [CD97]:

manufacturing (for order shipment and customer support), retail (for user profiling and

14 Chapter 2. State of the art

inventory management), financial services (for claims analysis, risk analysis, credit card

analysis, and fraud detection), transportation (for fleet management), telecommunica-

tions (for call analysis and fraud detection), utilities (for power usage analysis), and

healthcare (for outcomes analysis).

A data warehouse is defined as: “a data warehouse is a subject-oriented, integrated,

nonvolatile, and time-variant collection of data in support of management’s decisions”

[Inm05]. It can also be defined as follows: “A data warehouse is a copy of transaction

data specifically structured for query and analysis” [KR02]. A data warehouse is not

a decision support system, it is an organized collection of large amounts of structured

data [Pow02]. A data warehouse contains granular corporate data. Data in the data

warehouse can be used for many different purposes. Typically, the data warehouse is

maintained separately from the organization’s operational databases. To successfully

build a data warehouse, some requirements have to be fulfilled: (1) it must make an

organization’s information easily accessible; (2) it must present the organization’s in-

formation consistently; (3) it must be adaptive and resilient to change; (4) it must be a

secure bastion that protects our information assets; (5) it must serve as the foundation

for improved decision making; and (6) the business community must accept the data

warehouse if it is to be deemed successful.

There are four levels of data in the architectural environment: the operational level,

the atomic (or the data warehouse) level, the departmental (or the data mart) level,

and the individual level [Inm05]. These different levels of data are the basis of a larger

architecture called the Corporate Information Factory (CIF) [IIS01]. The operational level

of data holds application-oriented primitive data only and primarily serves the high-

performance transaction-processing community. The data warehouse level of data holds

integrated, historical primitive data that cannot be updated. In addition, some derived

data is found there. The departmental or data mart level of data contains derived data

almost exclusively. The departmental or data mart level of data is shaped by end-user

requirements into a form specifically suited to the needs of the department. Finally, the

individual level of data is where much heuristic analysis is performed.

The typical architecture of a data warehouse [CD97] (shown in Figure 2.2) is designed

by respecting these levels of data. It includes tools for extracting data from multiple

operational databases and external sources; for cleaning, transforming and integrating

this data; for loading data into the data warehouse; and for periodically refreshing

the warehouse to reflect updates at the sources and to purge data from the warehouse

onto slower archival storage. In addition to the main warehouse, there may be several

departmental data marts. Data in the warehouse and data marts are stored and managed

2.2. Data storage 15

Figure 2.2: Data Warehousing Architecture [CD97]

by one or more warehouse servers, which present multidimensional views of data to a

variety of front end tools: query tools, report writers, analysis tools, and data mining

tools. Finally, there is a repository for storing and managing metadata, and tools for

monitoring and administering the warehousing system.

Back End. Data warehousing systems use a variety of data extraction and cleaning tools,

and load and refresh utilities for populating warehouses.

Data Cleansing: Since a data warehouse is used for decision making, it is important that

the data in the warehouse are correct. However, since large volumes of data from multi-

ple sources are involved, there is a high probability of errors and anomalies in the data.

Therefore, it is necessary to detect data anomalies and correct them. Some examples

of data cleansing are: inconsistent field lengths, inconsistent descriptions, inconsistent

value assignments, missing entries and violation of integrity constraints.

Load: After extracting, cleaning and transforming, data must be loaded into the ware-

house. Additional preprocessing may still be required: checking integrity constraints;

sorting; summarization, aggregation and other computation to build the derived tables

stored in the warehouse; building indices and other access paths; and partitioning to

multiple target storage areas. Typically, batch load utilities are used for this purpose. In

addition to populating the warehouse, a load utility must allow the system administra-

tor to monitor status, to cancel, suspend and resume a load, and to restart after failure

with no loss of data integrity.

Refresh: Refreshing a warehouse consists in propagating updates on source data to cor-

16 Chapter 2. State of the art

respondingly update the raw data and derived data stored in the warehouse. There

are two sets of issues to consider: when to refresh, and how to refresh. Usually, the

warehouse is refreshed periodically (e.g., daily or weekly). Only if some OLAP queries

need current data (e.g., up to the minute stock quotes), it is necessary to propagate every

update.

Conceptual Model. A popular conceptual model that influences the front-end tools,

database design, and the query engines for OLAP is the multidimensional view of data

in the warehouse. In a multidimensional data model, there is a set of numeric measures

that are the objects of analysis. Examples of such measures are sales, budget, revenue,

inventory, ROI (return on investment). Each of the numeric measures depends on a

set of dimensions, which provide the context for the measure. For example, the dimen-

sions associated with a sale amount can be the customer name, product name, the date

when the sale was performed and the amount. The dimensions together are assumed

to uniquely determine the measure. Thus, the multidimensional data model consider,

a measure as a value in the multidimensional space of dimensions. Each dimension is

described by a set of attributes. For example, the Product dimension may consist of four

attributes: the category and the industry of the product, the year of its introduction, and

the average profit margin. The attributes of a dimension may be related via a hierarchy

of relationships. In the above example, a product name “LG 47LM7600” is related to

both the category attribute “TV” and the industry attribute “Electronics”.

Different architectural alternatives exist for the implementation of a data warehouse.

Many organizations want to implement an integrated enterprise warehouse that collects

information about all subjects (e.g., customers, products, sales, assets, personnel) span-

ning the whole organization. Building an enterprise warehouse is a long and complex

process, requiring extensive business modeling and may take many years to accomplish.

Some organizations are settling for data marts instead, which are departmental subsets

focused on selected subjects (e.g., a marketing data mart may include customer, product

and sales information). These data marts enable faster roll out, since they do not require

enterprise-wide consensus, but they may lead to complex integration problems in the

long run. Data warehouses and data marts differ in scope only. This means that they

are built using the same methods and procedures, so the process is the same, while only

their intended scope varies.

Front End. Front end tools implement typical analytical operations such as rollup (in-

creasing the level of aggregation) and drill-down (decreasing the level of aggregation

or increasing detail) along one or more dimension hierarchies, slice_and_dice (selection

and projection), and pivot (re-orienting the multidimensional view of data). There are a

2.3. Data visualization 17

variety of data mining tools that are often used as front end tools to data warehouses,

such as Microsoft Excel Spreadsheet [spr] (still the most compelling front-end applica-

tion), MicroStragery [mica], Business Objects [bo], Cognos [cog], SAS [sas], etc.

Designing and rolling out a data warehouse is a complex process. It consists in the

following activities [KR02].

• Define the architecture, do capacity planning, and select the storage servers, database

and OLAP servers, and tools.

• Integrate the servers, storage, and client tools.

• Design the warehouse schema and views.

• Define the physical warehouse organization, data placement, partitioning, and ac-

cess methods.

• Connect the sources using gateways, ODBC drivers, or other wrappers.

• Design and implement scripts for data extraction, cleaning, transformation, load,

and refresh.

• Populate the repository with the schema and view definitions, scripts, and other

metadata.

• Design and implement end-user applications.

• Roll out the warehouse and applications.

2.3 Data visualization

2.3.1 On-Line Analytical Processing (OLAP)

Analytical processing refers to using the computer to produce an analysis for man-

agement decision, usually involving trend analysis, drill-down analysis, demographic

analysis, profiling, and so forth [Pow10].

The Relational Model is a foundation for relational database management system

(DBMS) design, that provides interesting facilities for storage, update and retrieval of

data. However, most notably lacking has been the ability to consolidate, view, and an-

alyze data according to multiple dimensions, in ways that make sense to one or more

specific enterprise analysts at any given point in time. This requirement is called ”multi-

dimensional data analysis“. A more generic name for this type of functionality is OLAP

[CD97], wherein multidimensional data analysis is one of its characteristics.

18 Chapter 2. State of the art

It is important to distinguish the capabilities of a data warehouse from those of an

OLAP system. OLAP is a technology, while the data warehouse is an architectural

infrastructure, and a symbiotic relationship exists between the two [OLA97]. In contrast

to a data warehouse, which is usually based on relational technology, OLAP uses a

multidimensional view of aggregate data to provide quick access to strategic information

for further analysis. In the normal case, the data warehouse serves as a foundation for

the data that will flow into the multidimensional DBMS, feeding selected subsets of the

detailed data into the multidimensional DBMS where it is summarized and otherwise

aggregated.

In [CCS93], Codd et al. describe OLAP characteristics:

Dynamic Data Analysis: Once data has been captured in a database, the analytical process

of synthesizing the data into information can start. Dynamic data analysis can provide

an understanding of the changes occurring within a business enterprise, and may be

used to identify candidate solutions to specific business challenges as they are uncov-

ered, and to facilitate the development of future strategic and tactical formulae.

Four Enterprise Data Models: The used data models fall into four categories: the categor-

ical model, the exegetical model, the contemplative model, and the formulaic model.

The categorical model is employed in static data analysis to describe what has gone

on before by comparing historical values or behaviors which have typically been stored

in the enterprise database. Moving along the continuum, the exegetical model reflects

what has previously occurred to bring about the state which reflected by the categorical

model. The third model, the contemplative model, indicates what outcomes might re-

sult from the introduction of a specific set of parameters or variances across one or more

dimensions of the data model. This type of analysis is significantly more dynamic. The

fourth data model, the formulaic model, is the most dynamic and requires the highest

degree of user interaction and associated variable data consolidation. This data model

indicates which values or behaviors across multiple dimensions must be introduced into

the model to influence a specific outcome.

Common Enterprise Data: The data required for Online Transaction Processing (OLTP)

[OLT] systems is the same data which is required for OLAP. The nature of the transac-

tions differs, as does the need for the data to be strictly up-to-date, but both types of

processing take place against the same data stores.

Synergistic Implementation: During the years, the requirement for OLAP has been real-

ized by relational DBMS and the concomitant end-user tools. Only in the recent years

the requirement for OLAP has become evident and understood. Since the end-user has

become very comfortable with the interface to the spreadsheet, the approach was to add

2.3. Data visualization 19

the function to the spreadsheet product.

OLAP server technology is the key to high performance analytical use of large

databases. Its added intelligence about the structure and organization of the data, as

compared to flat, detailed relational tables, makes an OLAP server more responsive to

end user requests, while also eliminating SQL-style queries. An OLAP server may phys-

ically stage the processed multidimensional information to deliver consistent and rapid

response times to end users, or it may populate its data structures in real-time from

relational or other databases, or it may offer a choice of both. Users of data warehouses

work in a graphical environment and data are usually presented to them as a multi-

dimensional “data cube” whose 2-D, 3-D, or even higher-dimensional sub cubes they

explore trying to discover interesting information [HRU96]. Each cell of the data cube

is a view consisting of an aggregation of interest, like total sales. The values of many

of these cells are dependent on the values of other cells in the data cube. The values in

each cell of this data cube are some “measures” of interest.

The cube data can be divided into three different types - meta-data, detail data and

aggregate data. No matter what storage is used, the meta-data will always be stored on

the OLAP server but storage of the detail data and aggregate data will depend on the

specified storage mode [Ars]. A partition can use one of three basic storage modes: mul-

tidimensional OLAP (MOLAP), relational OLAP (ROLAP) and hybrid OLAP (HOLAP).

The storage mode of a partition affects the query and processing performance, storage

requirements, and storage locations of the partition and its parent measure group and

cube [Micb]. The choice of storage mode also affects processing choices.

MOLAP. The MOLAP storage mode causes the aggregations of the partition and a copy

of its source data to be stored in a multidimensional structure in the OLAP server. After

processing, once the data from the underlying relational database is retrieved, there is

no connection to the relational data stores. So if there are any subsequent changes in the

relational data after processing, then they will not reflect in the cube unless the cube is

reprocessed and hence the MOLAP is called off-line data-set mode. Since both the detail

and aggregate data are stored locally on the OLAP server, the MOLAP storage mode is

very efficient and provides the fastest query performance.

ROLAP. The ROLAP storage mode causes the aggregations of the partition to be stored

in indexed views in the relational database that was specified in the partition’s data

source. In comparison with MOLAP, ROLAP does not pull data from the underlying

relational database source to the OLAP server but rather both cube detail data and

aggregation stay at the relational database source. In order to store the calculated aggre-

gation, the database server creates additional database objects (indexed views). In other

20 Chapter 2. State of the art

words, the ROLAP mode does not copy the detail data to the OLAP server, and when

a query result cannot be obtained from the query cache the created indexed views are

accessed to provide the results.

HOLAP. The HOLAP storage mode combines attributes of both MOLAP and ROLAP.

Like in the case of MOLAP, in HOLAP the aggregations of the partition are stored in

a multidimensional structure in the OLAP server. HOLAP does not store a copy of the

source data. For queries that access only summary data in the aggregations of a parti-

tion, HOLAP is the equivalent of MOLAP. Queries that access source data, for example,

if one wants to drill down to an atomic cube cell for which there is no aggregation data,

data must be retrieved from the relational database and will not be as fast as they would

be if the source data were stored in the MOLAP structure. With HOLAP storage mode,

users will typically experience substantial differences in query times depending upon

whether the query can be resolved from cache or aggregations versus from the source

data itself.

The multidimensional data model described above is implemented directly by MO-

LAP servers. However, when a relational ROLAP server is used, the multidimensional

model and its operations have to be mapped into relations and SQL queries. Entity Re-

lationship (ER) diagrams and normalization techniques are popularly used for database

design in OLTP environments. However, the database designs recommended by ER dia-

grams are inappropriate for decision support systems where efficiency in querying and

in loading data (including incremental loads) are important.

Most data warehouses use a star schema to represent the multidimensional data

model. The database consists of a single fact table and a single table for each dimension.

Each tuple in the fact table consists of a pointer (foreign key - often uses a generated key

for efficiency) to each of the dimensions that provide its multidimensional coordinates,

and stores the numeric measures for those coordinates. Each dimension table consists of

columns that correspond to attributes of the dimension. The hierarchies are contained

in the individual dimension tables. No additional tables are needed to hold hierarchi-

cal information. The traditional ER model has an even and balanced style of entities

and complex relationships among entities, the dimensional model is very asymmetric

[BHS∗98].

Sometimes, the dimension tables have the hierarchies broken out into separate ta-

bles. This is a more normalized structure, but leads to more difficult queries and slower

response times. This structure increases the number of joins and can slow queries.

Since the purpose of an OLAP system is to improve response time of decision querying,

2.3. Data visualization 21

snowflaking is usually not productive. Some people try to normalize the dimension ta-

bles to save space. However, in the overall scheme of the data warehouse, the dimension

tables usually only account for about 1% of the total storage [Utl02]. Therefore, any

space savings from normalizing, or snowflaking, are negligible. In [AV98], Adamson et

al. present concrete solutions for different target business.

2.3.2 View maintenance

Materialized views have been recognized as effective objects in databases to improve

query evaluation. In [GM95], Gupta and Mumick have described materialized views,

their applications, and the problems and techniques for their maintenance. A view is a

derived relation defined in terms of base (stored) relations. A view can be materialized

by storing the answer to the underlying query in the database. Index structures can

be built on the materialized view. A materialized view is thus like a cache - a copy of

the data that can be accessed quickly. Just as a cache gets dirty when the data from

which it is copied is updated, a materialized view gets dirty whenever the underlying

base relations are modified. The process of updating a materialized view in response to

changes to the underlying data is called view maintenance. In most cases it is wasteful to

maintain a view by recomputing it from scratch. Often it is cheaper to use the heuristic

of inertia (only a part of the view changes in response to changes in the base relations)

and thus compute only the changes in the view to update its materialization. Algorithms

that compute changes to a view in response to changes to the base relations are called

incremental view maintenance [LSK01].

Materialized views have different applications. In data warehousing, materialized

views can be used to precompute and store aggregated data such as sum of sales. Ma-

terialized views in these environments are typically referred to as summaries since they

store summarized data. They can also be used to precompute joins with or without

aggregations, such as the number of babies born between 2000 and 2010 by country.

So a materialized view is used to eliminate overhead associated with expensive joins or

aggregations for a large or important class of queries.

The materialized view maintenance problem has been widely discussed in data ware-

housing. Solutions about how to efficiently update materialized views in relational

databases are introduced in this field. The combination of ”materialized view log“ and

”fast refresh“ applied in Oracle [Ora12] shows a good performance in certain contexts.

Approaches to view maintenance in data warehouses are concerned with different di-

rections. In [ZLE07], the authors propose “lazy” maintenance of materialized views. In

22 Chapter 2. State of the art

order to reduce the view maintenance cost, this paper suggests to postpone maintenance

of a view until the system has free cycles or the view is referenced by a query rather than

update materialized views when source data change. [MQM97, LL06] propose solutions

of incremental view maintenance. These solutions create differential files, which keep

the differences of the relevant tuples and calculate new views based on these differen-

tial files instead of calculating complete materialized views. [NLR98, CLR04] discuss

multi-view maintenance and their consistency problems over distributed data sources.

There exist many others (see the research-oriented bibliography on Data Warehouse and

OLAP1 and Jacob Hammer’s web bibliography2). Some approaches dealing with view

maintenance in OLAP were also proposed. Some of them focus on the evolution of

the multidimensional structure [BMBT03, HMV99]. They discuss materialized views re-

computation regarding changes to the axes of analysis, or dimensions. In [Bel02], the

issues related to the evolution and maintenance of data warehousing systems, when

underlying data sources change their schema capabilities were addressed. It considers

the problem of invalidation of views due to schema changes arising on the data sources.

Some approaches adapt materialized views after their redefinition according to user re-

quirement changing over time [GMRR01, MD96]. They identify guidelines for users and

database administrators that can be used to facilitate efficient view adaptation. Other

works focus on the optimization of OLAP operators such as pivot and unpivot [CR05].

They propose rewriting rules, combination rules and propagation rules for such oper-

ators and also design a novel view maintenance framework for applying these rules to

obtain an efficient maintenance plan.

However, the main context of these approaches is the propagation of updates oc-

curring on sources to materialized views. In our context, the updates take place on

summarized data, in other words, directly on materialized views. We need to propagate

the modification to raw data and also to other materialized views. To the best of our

knowledge, the problem of updating summaries and computing the effect on raw data

has not been investigated so far.

2.4 Data simulation

In order to be able to evaluate beforehand the impact of a strategical or tactical move,

decision makers need reliable previsional systems. What-if analysis partially satisfies

this need by enabling users to simulate and inspect the behavior of a complex system

1http://lemire.me/OLAP/
2http://www.cise.ufl.edu/∼jhammer/online-bib.htm

2.4. Data simulation 23

(i.e., the enterprise business or a part of it) under some given hypotheses, called sce-

narios [GRP06]. More pragmatically, what-if analysis measures how changes in a set

of independent variables impact a set of dependent variables with reference to a given

simulation model [Phi88]; such a model is a simplified representation of the business,

tuned according to the historical enterprise data. The Microsoft Excel 2010 Help Docu-

ment defines what-if analysis as a “process of changing the values in cells to see how

those changes affect the outcome of formulas on the worksheet. For example, varying

the interest rate that is used in an amortization table to determine the amount of the

payments” [Win11]. The simplest type of what-if analysis is manually changing a value

in a cell that is used in a formula to see the result. In [PVSV07], Papastefanatos et al.

describe a general mechanism for performing what-if analysis for potential changes of

data source configurations.

Pannell [Pan97] identifies the uses of the what-if analysis in decision making, com-

munication, understanding systems and in model development. Based on his discus-

sion, a model-driven DSS with appropriate analysis should help in 1) testing the ro-

bustness of an optimal solution, 2) identifying critical values, thresholds or break-even

values where the optimal strategy changes, 3) identifying sensitive or important vari-

ables, 4) investigating sub-optimal solutions, 5) developing flexible recommendations

which depend on circumstances, 6) comparing the values of simple and complex deci-

sion strategies, and 7) assessing the “riskiness” of a strategy or scenario.

Some experts use the terms sensitivity analysis and what-if analysis interchangeably

[Pow04], even if in the decision support system literature and in common discourse,

there is no agreement about the difference between what-if analysis and sensitivity anal-

ysis (see [Ale89] for more information about sensitivity analysis). There is an important

difference between what-if analysis and simple forecasting. In fact, while forecasting is

normally carried out by extrapolating trends out of the historical series stored in infor-

mation systems, what-if analysis requires to simulate complex phenomena whose effects

cannot be simply determined as a projection of past data, which in turn requires to build

a simulation model capable of reproducing - with satisfactory approximation - the real

behavior of the business.

As a part of what-if analysis, goal seeking analysis represents the ability to calculate

a formula backward to obtain a desired input [OM10]. It is the process of finding the

correct input when only the output is known [Goa]. For example, goal seeking helps a

manager who wishes to determine what change would have to take place in the value

of a specified variable in a specified time period to achieve a specified value for another

variable.

24 Chapter 2. State of the art

There is a fundamental difference between our issue and what-if analysis. As defined

above, what-if analysis changes variables’ values to inspect the impacts. When variables’

values are changed, a new calculation is required using the simulation model to evaluate

the impact. In our work, decision makers perform changes in the forecasting results

produced by simulation models. Nevertheless, propagating the modification does not

require a new calculation with simulation models. The impact is directly evaluated at

different levels of hierarchies in different dimensions regarding some predefined rules.

As the forecasting results are stocked as materialized views, our issue is rather an issue

of data consistency, in other words, maintenance of materialized views.

2.5 Synthesis

The motivation of our work comes from forecasting systems or, more generally, predic-

tive analytics systems. In these systems, decision makers need to perform some goal

simulations to validate or modify their strategical or tactical moves regarding the fore-

casting results. This work is not related to what-if analysis because the objective is not

to modify values of parameters so as to project new forecasts, but to directly modify the

results so as to inspect the impact in the whole hierarchies and dimensions. Among ex-

isting forecasting and simulation solutions, they rarely provide the possibility to modify

directly the value of a forecast, which shows the needs of simulating aggregate value

modification in a data warehouse environment.

As the underlying environment of predictive analytics systems is usually presented

by data warehousing including OLAP, our research issue is on how to propagate an

aggregate-based modification to all data, including raw data and summarized data in a

data warehouse. Technically, the problem that we deal with can be related to the main-

tenance of materialized views. A lot of works in the data warehousing field are devoted

to this problem. But their common point is that they consider only modifications tak-

ing place in source data. They do not take into account modifications in cells of a data

cube. Moreover, to the best of our knowledge, no work has discussed how to distribute

modifications on aggregated data over raw data.

In our work, we propose incremental view maintenance algorithms. Existing incre-

mental view maintenance solutions often focus on insertion and deletion of tuples on

raw data. Updates are considered as a sequence of a deletion and an insertion. How-

ever, in our specific context, data are only updated by simply changing their values.

The combination of a deletion and an insertion costs too much to manage the physical

storage and to maintain indexes on tables and materialized views.

Chapter 3

Aggregate-based modification: impact

management

Contents

3.1 Notations and definitions . 26

3.2 Current solution: principles and limitations 28

3.3 Proposed algorithm . 29

3.3.1 PAM Algorithm . 30

3.3.1.1 Description of the algorithm 30

3.3.1.2 Time complexity . 33

3.3.2 PAM II Algorithm . 34

3.3.2.1 Description of the algorithm 34

3.3.2.2 Time complexity . 35

3.3.3 Other aggregate functions . 36

In this chapter, we will present three algorithms used to propagate the impact of

aggregate modification to raw tuples and to all other aggregates of all hierarchies of

all dimensions in a data warehouse. Before presenting the algorithms, we introduce

some notations and definitions employed in their description. The first algorithm that

we present is a naïve solution used in the Anticipeo application so far. We discuss

the principles of this algorithm and its limitations. We describe our algorithm, PAM

(Propagation of Aggregate-based Modification) and we show its complexity. We also

present an extended version of the PAM algorithm, which is designed to improve the

performance of the PAM algorithm.

25

26 Chapter 3. Aggregate-based modification: impact management

3.1 Notations and definitions

In the presentation of the algorithms, we use some notations and predicates. In this part,

we first clarify some notions and introduce some definitions used in our context. In the

following sections:

• T stands for all raw tuples

• A stands for all the aggregates in the materialized view

• α is a distributive aggregate function (e.g., SUM)

• A=αT is an aggregate of A that employs the aggregate function α on a set of tuples

T ⊆ T

Definitions:

Definition 3.1 (tuple dependency). Given an aggregate A=αT and a set of raw tuples T’, A

is said to depend on T’ iff T ∩ T′ �= ∅.

Definition 3.2 (tuple dependency predicate). dep(A, T’) returns true if the aggregate A

depends on the set of raw tuples T’, false otherwise.

Definition 3.3 (impacted tuple). A tuple t is said to be impacted by the modification per-

formed on the aggregate A=αT iff A depends on the tuple t.

Definition 3.4 (aggregate dependency). An aggregate A=αT is said to depend on the ag-

gregate A’=αT′ iff A depends on T’.

Definition 3.5 (impacted aggregate). An aggregate A=αT is said to be impacted by the

modification on the aggregate A’=αT′ iff A depends on A’.

Definition 3.6 (aggregate impact predicate). imp(A, A’) returns true iff the aggregate A is

impacted by the modification of the aggregate A’, false otherwise.

Let us show on an example how an aggregation-level modification can impact other

data by using these definitions and predicates (see Figure 3.1).

In this example and for the sake of simplicity, we consider only two hierarchies re-

spectively for the customer dimension and the product dimension. In the fact table, we

3.1. Notations and definitions 27

Figure 3.1: Example of data modification on an aggregated level in a dimension-
hierarchy structure and the impact of the modification

consider only 10 raw tuples: named from a to j. Aggregates at superior hierarchy lev-

els are presented by rectangles including the raw tuples which generate corresponding

aggregates. For instance, the circled rectangle of level 2 of hierarchy 2 in the customer

dimension represents the aggregate α{a,i,j}. This presentation denotes that the aggregate

α{a,i,j} depends on the set of raw tuples {a,i,j}. In the specific case of a sales forecasting

system, the result val(α{a,i,j}) of the aggregate α{a,i,j} is the sum of the base sales a, i

and j. Other aggregates are presented in the same manner. The root rectangles of every

hierarchy stand for all the sales. The results of different root rectangles are the same

because they stand for all the sales.

Figure 3.1 depicts the underlying data structure when the system presents the pre-

diction result to sales managers. Sales managers analyze the sales and then decide to

modify the value of an aggregate, for example the aggregate α{a,i,j} (i.e., to evaluate

beforehand the impact of a strategical or tactical move). As the aggregate α{a,i,j} is gen-

erated from a, i and j, if its value is modified, the results of the three tuples should

be updated afterwards. Meanwhile, these three tuples are also the raw tuples that are

involved in the calculation of other aggregates in hierarchies of all dimensions, e.g., the

aggregate α{a,c,d} of level 1 of hierarchy 1 in the customer dimension and the aggregate

α{b,e,h,j} of level 2 of hierarchy 2 in the product dimension. Hence, all the aggregates

containing any of these three tuples in their composition should be updated as well.

These aggregates impacted by the modification on the aggregate α{a,i,j} in this example

are darkened in Figure 3.1.

28 Chapter 3. Aggregate-based modification: impact management

3.2 Current solution: principles and limitations

A current solution consists in identifying approaches to similar problems and builds

on the implemented solutions. In this system, methods to calculate the aggregates are

already well defined. The current solution uses these methods to calculate new results.

The steps of the current solution which consists in recomputing everything are the fol-

lowing:

1. calculate the raw tuples wrt the modification and the decomposition rules,

2. recompute all the aggregates.

To illustrate this process, consider the example shown in Figure 3.1. We assume the

actual result of the aggregate α{a,i,j} is 500 000 euros. The sales manager has a new mar-

keting plan, estimated to achieve 600 000 euros sales. The result of α{a,i,j} is updated,

and the sales manager needs to evaluate the impact on other aggregates in order to de-

termine whether this new plan is achievable in different angles. This example introduces

two different values of the aggregate α{a,i,j}. We denote by val(α{a,i,j}) the value before

the modification and by val’(α{a,i,j}) the value after the modification. In this example,

val(α{a,i,j}) = 500 000 and val’(α{a,i,j}) = 600 000. Assume that the distribution of sales

on raw tuples a, i and j is 100 000 euros, 200 000 euros and 200 000 euros, respectively.

We then denote by val(t) the value of the attribute considered in the computation for a

tuple. We have, in this example, val(a) = 100 000, val(i) = 200 000 and val(j) = 200 000.

Here, we see that each of the raw tuples does not contribute equally to the result of the

aggregate. We should consider the contribution of each raw tuple while calculating their

new results.

Definition 3.7 (tuple weight). A tuple weight is a measure to evaluate the contribution

of a tuple to the calculation of an aggregate. It does not depend neither on the value

of the raw tuple nor on the value of the aggregate. A tuple weight could be defined as

a constant or as a variable relating to some criteria. In this case, where the result of an

aggregate is the simple sum of raw tuples, the tuple weight is defined as a variable and

it can be determined as follows:

weight(t, A) = val(t)
val(A)

,

where t is a tuple and A is an aggregate depending on t.

By considering our example, we have:

weight(a, α{a,i,j}) =
val(a)

val(α{a,i,j})
= 100 000

500 000 = 0.2

weight(i, α{a,i,j}) =
val(i)

val(α{a,i,j})
= 200 000

500 000 = 0.4

3.3. Proposed algorithm 29

weight(j, α{a,i,j}) =
val(j)

val(α{a,i,j})
= 200 000

500 000 = 0.4

Please notice that the total weight of all the raw tuples composing an aggregate should

be equal to 1. Then, the propagation of the modification using the current solution is

processed as follows:

Step 1: calculation of new values of raw tuples

We aim to compute new values of each raw tuple impacted by the modification of the

aggregate. Then, the formula to calculate the new result for a tuple t is:

∀t ∈ T : val′(t) = val(t) + (val′(αT)− val(αT)) ∗ weight(t, αT)

In our example, the new values for T={a,i,j} are:

val′(a) = 100 000 + (600 000 − 500 000) ∗ 0.2 = 120 000

val′(i) = 200 000 + (600 000 − 500 000) ∗ 0.4 = 240 000

val′(j) = 200 000 + (600 000 − 500 000) ∗ 0.4 = 240 000

Step 2: recalculation of aggregated information

The second step consists in recomputing the aggregates of all levels for all hierarchies

of all dimensions. We follow the same process as when the aggregates were previously

created for the hierarchies, i.e., a new execution of the definition of the materialized

views containing aggregates. For instance, the aggregate α{a,c,d} is an aggregate of the

raw tuples a, c and d; so its new result is calculated by summing the sales of a, c and d

with their updated values.

Following this straightforward solution, we can regenerate all the hierarchies of the

whole schema with updated data.

3.3 Proposed algorithm

The current solution advocates the calculation of all the aggregates of all the hierarchies.

However, this solution performs some useless work. If we look closely at the recomputed

aggregates in Figure 3.1, only the dark ones are concerned with the modification and

need to be updated, that is, 19 aggregates out of 33. Hence, the current solution leads

to the calculation of 14 aggregates in vain. The key idea is thus to be able to identify

and recompute only the concerned elements. By considering the dependencies between

aggregates and raw tuples, we can identify the exact aggregates to modify and hence

30 Chapter 3. Aggregate-based modification: impact management

avoid useless work.

Another drawback of the current solution is its heavy recomputing procedure. Op-

erations of removing and adding aggregates ask for heavy maintenance of index tables

and physical storage. Nevertheless, our approach can keep the aggregates at their logical

and physical location and avoid extra effort.

3.3.1 PAM Algorithm

In this section, we explain how the PAM algorithm (Propagation of Aggregate-based

Modification) [FLHD12] identifies and updates the relevant sets of aggregates. We also

present its utilization in more complex data schema with multiple hierarchies. The time

complexity is also calculated to show its scalability.

3.3.1.1 Description of the algorithm

A coarse-grained description of our algorithm is composed of the following steps:

1. retrieval of participating raw tuples to the modified aggregate;

creation of a temporary table for the raw tuples to be updated;

and calculation of the differences for raw tuples resulting from the old values and

the new ones

2. update of impacted raw tuples

3. identification of impacted aggregates;

and update of impacted aggregates based on previously calculated differences of

raw tuples

In the following, δ of a tuple or an aggregate stands for the difference of the value of

a tuple or the result of an aggregate before and after modification.

The algorithm for the update propagation through a dimension-hierarchy architec-

ture is shown in Table 3.1. The description of this algorithm uses the notations defined

in Section 3.1. Line 1 to line 4 identify the raw tuples involved in the modification and

calculate their differences. Line 5 allows to update these raw tuples. Line 6 to line 10

identify impacted aggregates and perform the update.

Let us take the previous example (Section 3.2) to illustrate the approach. A sales

manager changes the sales of the aggregate α{a,i,j} from 500 000 euros to 600 000 euros.

Once the modification is confirmed, the system will proceed using the algorithm in Ta-

ble 3.1.

3.3. Proposed algorithm 31

Table 3.1: Algorithm PAM for the update propagation of an aggregate modification
Algorithm PAM (Propagation of Aggregate-based Modification)
Input: Schema S, aggregate A=αT, the current result CR of T

and the updated result UR of A
Output: An updated schema S’ of all hierarchies
Algorithm:
1: Calculate the modification of the aggregate A:

δ = UR − CR
2: Retrieve participating raw tuples of A :

T = {x1, x2, ..., xn}
3: Create a temporary table ∆X for T containing:

element identifier, keys of the dimensions and delta δi.
4: Calculate the difference for every raw tuple:

∀xi ∈ T: δi = δ ∗ weight(xi)
Add update attribute δi of table ∆X for each tuple xi

5: Update all the impacted raw tuples:
∀bti ∈ T: val′(bti) = val(bti) + δbti

6: For each level of each hierarchy of each dimension
7: Identify impacted aggregates A’ in all aggregates A:

A′ = {Ai ∈ A|imp(A, Ai)}
8: Calculate the difference for every aggregate:

∀Ai ∈ A′: δAi
= ∑xi∈{t∈T|dep(Ai ,t)} (δxi

)

9: Update the impacted aggregates:
∀Ai ∈ A′: val′(Ai) = val(Ai) + δAi

10: End for

Step 1: retrieval of the participating tuples to the aggregate, creation of a tempo-

rary table and calculation of differences

Retrieve the composition of the aggregate α{a,i,j}: sales of the aggregate α{a,i,j} is the sum

of a, i and j. Hence, the composing tuples are a, i and j.

Create a temporary table ∆X for the raw tuples that are identified.

Calculate the δ for the aggregate α{a,i,j}: δ = 600 000 - 500 000 = 100 000.

Calculate the difference for every tuple using the tuple weight.

δa = δ ∗ weight(a) = 100 000 ∗ 100 000
500 000 = 20 000

δi = δ ∗ weight(i) = 100 000 ∗ 200 000
500 000 = 40 000

δj = δ ∗ weight(j) = 100 000 ∗ 200 000
500 000 = 40 000

The resulting differences of raw tuples are added to the temporary table. This table also

contains the dependency information to higher hierarchical levels (shown in Table 3.2).

Step 2: update of raw tuples

Update the raw tuples impacted by the aggregate modification. The new values of these

32 Chapter 3. Aggregate-based modification: impact management

Table 3.2: Temporary table ∆X created to store impacted raw tuples
element customer product

delta δxidentifier key key

a customer_keya product_keya 20 000

i customer_keyi product_keyi 40 000

j customer_keyj product_keyj 40 000

raw tuples are computed by their actual values and the differences calculated in step 1.

val′(t) = val(t) + δt

In this case, a is updated to 100 000 + 20 000 = 120 000, i to 200 000 + 40 000 = 240 000

and j to 200 000 + 40 000 = 240 000.

Step 3: identification of impacted aggregates and update of impacted aggregates

Identify level by level all the aggregates impacted by the modification of the result of

the aggregate α{a,i,j} by using the dependencies between aggregates and registered raw

tuples in the temporary table ∆X. In this case, we identify all the dark rectangles in

Figure 3.1.

Propagate the changes to every impacted aggregate. Let us illustrate this issue with the

customer dimension hierarchy 1. We loop for every level of the hierarchy. For level 1,

two aggregates to be updated are identified: α{a,c,d} and α{i,j} because they have at least

one of the registered raw tuples in their composition. The aggregate α{a,c,d} depends on

a, c and d and among these raw tuples, only one is registered in the table ∆X, namely,

the raw tuple a. Hence, the value of α{a,c,d} is changed only by adding δa (here 20 000).

val′(α{a,c,d}) = val(α{a,c,d}) + δa

val′(α{a,c,d}) = val(α{a,c,d}) + 20 000

The new value of the other aggregate α{i,j} at level 1 is then

val′(α{i,j}) = val(α{i,j}) + δi + δj

val′(α{i,j}) = val(α{i,j}) + 40 000 + 40 000;

The root aggregate α{a,b,c,d,e, f ,g,h,i,j} at level 2 of the same hierarchy can be calculated in

a similar way with only the differences of depending raw tuples which are registered in

∆X, a, i and j:

val′(α, {a, b, c, d, e, f , g, h, i, j})

val′(α{i,j}) = val(α{a,b,c,d,e, f ,g,h,i,j}) + δa + δi + δj

val′(α{i,j}) = val(α{a,b,c,d,e, f ,g,h,i,j}) + 20 000 + 40 000 + 40 000

Doing this way, we update only the aggregates impacted by the modification for hierar-

chy 1 of the customer dimension. The propagation to other hierarchies are processed in

the same manner. Finally, we obtain updated data over the entire schema.

3.3. Proposed algorithm 33

Application of PAM for multiple hierarchies

In the example that illustrates the PAM algorithm, the aggregate, subject to a modifica-

tion, results from only one hierarchy. Meanwhile, a modification can take place on an

aggregate resulting from multiple hierarchies, for example, the sales of the product cate-

gory “office furniture” for the city of “Lyon”. The PAM algorithm can also be applied to

these cases when aggregates resulting from multiple hierarchies are subject to a modifi-

cation. Compared with the cases in which one hierarchy is involved, only the queries in

the identification of raw tuples are different. There are more restrictions when retrieving

participating tuples. With one hierarchy, we select raw tuples whose hierarchical clas-

sification is the modified aggregate regarding the hierarchy. With multiple hierarchies,

we select raw tuples whose every hierarchical classification corresponds to the modified

aggregate. In the example of the sales of the product category “office furniture” for the

city of “Lyon”, the impacted raw tuples are the intersection of raw tuples belonging to

the product category “office furniture” and the ones corresponding to “Lyon”.

3.3.1.2 Time complexity

In order to determine the scaling ability of the PAM algorithm, we evaluate its perfor-

mance by estimating the time complexity.

Let n be the number of raw tuples impacted by the aggregate modification, k the

total number of levels for all hierarchies and m the average number of aggregates to be

updated in a given level. We assume that all tables used in the algorithms are correctly

indexed and the optimization engine of the database management system performs a

hash search. Let ti be the time unit consumed by the actions carried out in line i of the

algorithm given in Table 3.1, then line 1 is considered to consume time t1, line 2 uses

n ∗ t2 and so forth. The total time required to run this algorithm can be estimated as:

T = t1 + n ∗ t2 + n ∗ t3 + n ∗ t4 + n ∗ t5 + k ∗ (n ∗ t7 + n ∗ t8 + m ∗ t9)

T = t1 + n ∗ t2 + n ∗ t3 + n ∗ t4 + n ∗ t5 + k ∗ n ∗ t7 + k ∗ n ∗ t8 + k ∗ m ∗ t9

T = t1 + n ∗ (t2 + t3 + t4 + t5 + k ∗ t7 + k ∗ t8) + k ∗ m ∗ t9

Suppose the unit time tu is the same, then

T = tu + n ∗ (tu + tu + tu + tu + k ∗ tu + k ∗ tu) + k ∗ m ∗ tu

T = (2 ∗ n ∗ k + m ∗ k + 1) ∗ tu

Subsequently the time complexity of the PAM algorithm is estimated. In practical cases,

as the value of n is much larger than m, the time complexity can be approximated by

O(k*n). We see that O(k*n) is polynomial in k and n, hence the PAM algorithm is a

polynomial time algorithm.

34 Chapter 3. Aggregate-based modification: impact management

3.3.2 PAM II Algorithm

In a second stage, we propose the PAM II algorithm, which is an extended version of

PAM algorithm. The PAM II algorithm uses supplementary semantics (e.g., dependen-

cies between raw tuples and aggregates) in order to improve the performance when

propagating the aggregate modification. In the following paragraphs, we will describe

the PAM II algorithm and show the difference between the PAM algorithm and its ex-

tension.

3.3.2.1 Description of the algorithm

In the PAM algorithm, we notice that we perform a loop on each level of each hierarchy

to identify the aggregates to update. It means that we have one SQL query per level

per hierarchy to execute. For the example of hierarchies shown in Figure 1.1, we have

to execute 17 queries for customer dimension, 12 queries for product dimension and 7

queries for time dimension. If these similar queries can be grouped into a single query,

the execution will be accelerated.

The dependencies between aggregates and raw tuples are already fixed when the di-

mensional schema is determined. The idea of this derivative is to provide direct access

from all aggregates to raw tuples by employing meta-tables which contain their depen-

dency information. In addition, the temporary table ∆X (Table 3.2) contains the keys of

the dimensions (one key per dimension). If the identification of aggregates through de-

pendency information by providing raw tuples’ information is possible, we can reduce

the size of this temporary table by not storing the keys of the dimensions.

The meta-tables are persistent tables and are created when the dimension schema

is determined. They need to be maintained up-to-date afterwards when the schema

is modified. One meta-table is created for one materialized view to limit the size of

the meta-table for the sake of future efficient search. There are two attributes in these

tables: keys of aggregate and keys of their depending raw tuples. Figure 3.2 depicts

the database schema of how the meta-table “dependency_info" links materialized views

and the fact table sales in a sales forecasting system.

The general approach of the PAM algorithm II remains the same as the PAM algo-

rithm. We first identify and update involved raw tuples and then identify and update

impacted aggregates by an intermediate temporary table. Nonetheless, the detailed pro-

cessing of the creation of temporary table and the identification of aggregates is not the

same. Since the dependency information already exists in the database, we do not need

to store the keys of the dimensions in the temporary table. The temporary table has now

3.3. Proposed algorithm 35

Figure 3.2: The database schema for meta-table storing dependency information

only two attributes: the element identifier and the delta for this element. The size of this

temporary table is reduced. Regarding the identification of the impacted aggregates,

instead of running through the dimension tables to identify impacted aggregates level

by level, we can identify them directly through the dependency meta-table at one time.

Compared to the original algorithm PAM described in Table 3.1, the changes of the

derived algorithm PAM II mainly target the lines 3, 6 and 10. The instruction given in

line 3 creates a temporary table with less attributes than the one created by the original

algorithm. For the update part of the aggregate, it is not necessary any more to loop

through the dimensions and levels to perform the aggregate updates because we can

identify all the aggregates at one time by dependency information in the meta-table.

Line 6 and line 10 which intended to loop on levels of hierarchies are removed for the

improved algorithm. The PAM II algorithm is shown in Table 3.3.

There are some further advantages with the meta-tables. These tables give direct de-

pendency information between aggregates and raw tuples. This can serve not only the

aggregates, which can be directly deduced from raw tuples via dimension hierarchy

structure, but also the aggregates satisfying some specific conditions, e.g., the sum of

sales for retail stores whose turnover is more than 100 000 euros. Hence, the PAM II

algorithm can be applied more widely to any similar domain that needs to update raw

tuples and other materialized views from an aggregate modification.

3.3.2.2 Time complexity

The performance of the PAM II algorithm is also calculated to determine its scalability.

Consider n to be the number of raw tuples that are impacted by the aggregation

modification, k to be the total number of levels for all hierarchies and m to be the total

number of aggregates that are influenced by the modification in the entire schema. We

use the same method of the PAM algorithm to estimate the time complexity of the PAM

36 Chapter 3. Aggregate-based modification: impact management

Table 3.3: Algorithm PAM II for the update propagation of a modification
Algorithm PAM II (Propagation of Aggregate Modification - II)
Input: Schema S, aggregate A=αT, the current result CR of T,

dependency meta-table D and the updated result UR of A
Output: An updated schema S’ of all hierarchies
Algorithm:
1: Calculate the modification of the aggregate A:

δ = UR − CR
2: Retrieve participating raw tuples of A :

T = {x1, x2, ..., xn}
3: Create a temporary table ∆X for T containing:

element identifier and delta δi.
4: Calculate the difference for every raw tuple:

∀xi ∈ T: δi = δ ∗ weight(xi)
Add update attribute δi of table ∆X for each tuple xi

5: Update all the impacted raw tuples:
∀bti ∈ T: val′(bti) = val(bti) + δbti

6: Identify impacted aggregates A’ in all aggregates A:
A′ = {Ai ∈ A|imp(A, Ai)}

7: Calculate the difference for every aggregate:
∀Ai ∈ A′: δAi

= ∑xi∈{t∈T|dep(Ai ,t)} (δxi
)

8: Update the impacted aggregates:
∀Ai ∈ A′: val′(Ai) = val(Ai) + δAi

II algorithm. The total time required to run this algorithm is:

T = t1 + n ∗ t2 + n ∗ t3 + n ∗ t4 + n ∗ t5 + n ∗ t6 + k ∗ n ∗ t7 + m ∗ t8

In practice, as the value of n is much larger than m, the time complexity can be ap-

proximated by O(k*n). We see that O(k*n) is polynomial in k and n, hence the PAM II

algorithm is a polynomial time algorithm.

3.3.3 Other aggregate functions

Generally, the aggregate functions are divided into three classes [GCB∗97]: distributive,

algebraic and holistic. Distributive aggregate functions can be computed by partitioning

their input into disjoint sets, aggregating each set individually and obtaining the final re-

sult by further aggregating the partial results. Among the aggregate functions, COUNT,

SUM, MIN and MAX found in standard SQL, belong to this category. For example,

COUNT can be computed by summing partial counts. Algebraic aggregate functions

can be expressed as a scalar function of distributive aggregate functions. AVERAGE, for

example, is an algebraic function since it can be expressed as SUM / COUNT. Holis-

tic aggregate functions (e.g., MEDIAN) cannot be computed by dividing the input into

parts.

3.3. Proposed algorithm 37

We have introduced the PAM algorithm and its extension PAM II by using the aggre-

gate function SUM. These algorithms are also applicable with other aggregate functions,

except that in this work, we do not consider the holistic aggregate functions.

COUNT. Actually, the result of COUNT for higher hierarchical levels is the sum

of the partial results corresponding to lower hierarchical levels. The PAM and PAM II

algorithms for the COUNT aggregate function are similar to the algorithms used for

the SUM function. We identify raw tuples involved in the calculation of the modified

aggregate, which is the result of COUNT. We calculate the delta for each of those raw

tuples and update them. Then, we identify aggregates impacted by this modification

and update those aggregates. The only difference is the calculation of the delta δ for

each raw tuple. The numbers used in SUM can be decimal numbers, but the result

of COUNT should only contain natural numbers. We slightly modify the calculation

mechanism in step 1, the calculation of delta, of the PAM and PAM II algorithms by

adding a prune phase to the temporary table ∆X. Once the delta δ of each raw tuple

is calculated by their contribution weight of the result, it will be rounded to integer if

necessary. The rules are the following:

• if δ is an integer, it will be recorded as such.

• if δ is a decimal, the sum of fractional part of all decimal δ is 1, so

– the raw tuple having the biggest fractional part will get 1.

– in the case of equality for fractional part, the raw tuple having the biggest

integer part will get 1.

– in the case of equality for both integer and fractional parts, the first raw tuple

registered in the table ∆X will get 1.

AVG. We assume that if a view contains the AVG aggregate function, the materi-

alized view will contain instead the SUM and COUNT functions. The PAM and PAM

II algorithms for AVG aggregate function are then reduced to the combination of al-

gorithms for SUM and COUNT functions. The only difference is that, for the function

AVG, we lightly modify the structure of the temporary table ∆X. Instead of storing one

column for the delta δ, two columns are created: one for storing the delta δsum of SUM,

and the other one for storing the delta δcount of COUNT. The propagation of the aggre-

gate modification, i.e. update of raw tuples involved and update of impacted aggregates,

38 Chapter 3. Aggregate-based modification: impact management

is processed with the modification of results of SUM and COUNT functions. The algo-

rithms remain globally the same.

MAX and MIN. The above functions, SUM, COUNT, AVG, generate new tuples.

However, the aggregate functions MAX and MIN do not generate new tuples. Their

results correspond to selected raw tuples. When the result of MAX or MIN is modified,

it is the value of the raw tuple (or raw tuples in the case of equality) that is modified.

We do not need to identify raw tuples involved in the modification, because they are

already known. We assume that we store the MAX/MIN raw tuple(s) and their followers

in the materialized views. The PAM and PAM II algorithms only need to identify the

impacted aggregates, whose underlying modified raw tuple(s) are the same as those

of MAX/MIN or as their followers. When the value of a MAX or a MIN raw tuple

is modified, we compare directly the follower with the new value. If the result after

modification is bigger than the follower in the case of MAX or smaller than the follower

in the case of MIN, the aggregate result does not need to be updated. If not, we replace

the MAX/MIN tuple by its follower. The followers’ information needs to be updated

consequently.

Chapter 4

Experimental evaluation and

validation

Contents

4.1 Presentation of the experimental environment 40

4.2 Evaluation of different methods with two dimensions 40

4.2.1 Current solution . 41

4.2.2 PAM algorithm . 41

4.2.2.1 Validation . 41

4.2.2.2 Complexity . 42

4.2.3 PAM II algorithm . 46

4.2.3.1 Validation . 46

4.2.3.2 Complexity . 47

4.2.4 Comparison of different methods 49

4.3 Evaluation of different methods with three dimensions 50

In this chapter, we will discuss the performed experiments in order to evaluate the

proposed algorithms. We first introduce the experimental environment: hardware and

software platforms. Experiments are then divided into two parts. The first part is in a

two-dimensional data schema and the second part is in a three-dimensional data schema.

We describe database and data schema for each schema. We evaluate the current solu-

tion, our proposed algorithms, PAM (Propagation of Aggregate-based Modification) and

PAM II in the two data schemas. We also validate the estimation of the time complexity

of our PAM and PAM II algorithms. Finally, we compare the results of different solutions

and demonstrate the improvements of performance achieved by the PAM algorithm and

its extension PAM II.

39

40 Chapter 4. Experimental evaluation and validation

4.1 Presentation of the experimental environment

The main technical features of the server on which we run the evaluation are: two

Intel Quad core Xeon-based 2.4 GHz, 16 GB RAM and one SAS disk of 500 GB, 15000

rotations per second. The operating system is a 64-bit Linux Debian system using the

EXT3 file system. Our evaluation has been performed on real data (copy of Anticipeo

database) implemented on MySQL. The total size of the database is 50 GB, out of which

50% is used in the computation engine, 45% for result visualization and 5% for the web

framework. The problem we deal with is concerned with the result visualization. Our

test only focuses on the data used by the update: one fact table and dimension tables.

4.2 Evaluation of different methods with two dimensions

In this first data schema, there are only two dimensions: customer and product. The fact

table containing the keys of the dimensions and forecasts measures has about 300 MB,

with 257.8 MB of data and 40.1 MB of indexes. There are 688 419 raw tuples in this

fact table. As we know, materializing all aggregates of a data cube is not applicable in

a real application. In this experiment, we materialized aggregates resulting from one

hierarchy of one dimension, that represents 6 861 aggregates. The customer dimension

table contains 5240 real customers and 1319 fictive customers (6559 in total) and the

product dimension table contains 8256 real products and 404 fictive products (8660 in

total) (ref. see Section 1.2 for the definition of fictive customer and fictive product).

Each of these dimension tables is composed of 4 hierarchies. It presents a similar

structure to the one depicted in Figure 1.1 with different numbers of levels in each hier-

archy (from 2 to 4 levels). Note that the time dimension is investigated within the fact

table for some performance issues [Fen11, FLHD11] (see Section 5.4.5 for more explica-

tions). Hence, only two explicit dimensions are materialized in dimension tables.

In this section, we will show the evaluation results of different methods in a two-

dimensional environment The objective of the evaluation is to show the time of updating

the whole schema using the current solution and our PAM and PAM II algorithms. We

demonstrate the benefits brought by our algorithms. We also validate the estimation of

their complexity. Different tests are performed with respect to the place of modification.

This refers to aggregate modifications which take place on each level of 3 hierarchies,

which have 2, 3 and 4 levels, respectively. In our evaluation, we modify one aggregate

from each level of each of these 3 hierarchies to compare the evaluation time resulting

4.2. Evaluation of different methods with two dimensions 41

from the current solution and from our approaches. The number of raw tuples involved

in the aggregate modification is shown in Table 4.1. In other words, this is the number

of tuples stored in the temporary table for the PAM and PAM II algorithms.

Hierarchy H1 Hierarchy H2 Hierarchy H3

level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Number 64 308 688 419 61 567 61 580 688 419 4 739 50 071 262 771 688 419

Table 4.1: Number of raw tuples involved by the aggregate modification on the appro-
priate level of hierarchies in the two-dimensional schema

4.2.1 Current solution

We first perform tests with the current solution. The result is shown in Table 4.2. In this

table, we see that when the modification occurs at level 1 of the Hierarchy H1, it takes

0.9 second to perform the step 1, to update raw tuples and 179.5 seconds to perform step

2, to delete and reconstruct all the aggregates. The total time spent for the update of the

entire schema caused by this modification is 180.4 seconds. This table shows time spent

for updates of the whole schema when modifications occur at different level of different

hierarchies. We notice that the time devoted to step 2 stays almost the same for different

hierarchies. That is because it is concerned with the destruction and the recomputation

of the whole schema each time. This operation is also the source of the latency of the

current solution.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 0.9 7.9 0.9 1.0 7.5 0.08 0.8 2.9 7.8
Step 2* 179.5 182.1 185.7 181.4 188.4 181.1 179.6 179.9 176.6
Total 180.4 190.0 186.6 182.4 195.9 181.2 180.4 182.8 184.4
* Step 1: updating raw tuples;
* Step 2: deleting outdated aggregates and constructing updated aggregates

Table 4.2: Evaluation time of updating the whole schema following an aggregate modi-
fication by using the current solution in a two-dimensional data warehouse

4.2.2 PAM algorithm

4.2.2.1 Validation

The same tests are performed with our PAM algorithm. The result is shown in Table 4.3.

We take the same modification example introduced within the current solution. When

42 Chapter 4. Experimental evaluation and validation

we modify an aggregate at level 1 of the Hierarchy H1, it takes 0.3 second to perform

stage 1, to create a temporary table containing raw tuples information; 1.0 second to

perform stage 2, to update raw tuples and 4.4 seconds to perform stage 3, to propagate

modifications to all impacted aggregates. In total, we spend 5.8 seconds to update the

entire schema.

If we analyze the results of different levels of one hierarchy, we can see that they

globally correspond to our estimation of first time complexity criterion, i.e., number of

raw tuples involved in a modification. When a modification occurs in a high level, the

number of raw tuples involved in the modification may be large. Then, the execution of

the algorithm takes more time. In contrast, a modification on a low level impacts less

raw tuples and thus less time is required to update the whole schema. That is why in

this table, we note that the time consumed to deal with a higher level is greater than the

time required to deal with lower levels of the same hierarchy.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 0.3 3.0 0.3 0.3 2.6 0.05 0.3 1.4 3.0
Step 2* 1.0 8.1 0.9 0.9 7.9 0.1 0.8 3.3 8.3
Step 3* 4.4 47.2 4.4 4.4 49.4 0.5 3.5 17.9 47.4
Total 5.8 58.3 5.6 5.6 59.8 0.7 4.5 22.6 58.7
* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates

Table 4.3: Evaluation time of updating the whole schema following an aggregate modi-
fication by using our PAM algorithm in a two-dimensional data warehouse

4.2.2.2 Complexity

We estimated that the time complexity of the PAM algorithm is polynomial to the num-

ber of tuples involved in the modification and to the total number of levels of all hier-

archies. In the following paragraphs, we validate our estimation of the time complexity

with some experiments.

Complexity wrt the number of tuples involved

To validate this estimation, we compare the estimated evaluation time and the observed

one on a twice bigger database. In the remaining of the chapter, we will call this twice

bigger database “DB_twice”. The number of raw tuples is twice the number of raw

tuples in the fact table introduced in Section 4.1. The dimension and the hierarchy

structure stays the same. All the aggregates use twice the number of raw tuples. As the

4.2. Evaluation of different methods with two dimensions 43

time complexity is estimated to be polynomial to the number of tuples involved in the

modification, the evaluation time should double when the number of tuples involved is

doubled. The estimation on this twice bigger table is then twice the result in the original

database (shown in Table 4.3). This estimation result is calculated and shown in Table

4.4.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 0.7 6.0 0.6 0.6 5.2 0.1 0.6 2.7 6.0
Step 2* 2.0 16.3 1.8 1.7 15.7 0.2 1.6 6.6 16.6
Step 3* 8.8 94.3 8.8 8.7 98.8 1.0 6.9 35.8 94.8
Total 11.5 116.6 11.2 11.0 119.7 1.3 9.0 45.1 117.4

* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates

Table 4.4: Estimated evaluation time of updating the whole schema following an aggre-
gate modification by using our PAM algorithm in “DB_twice” of two dimensions

We then perform real experiments in “DB_twice”. We modify the same aggregates

as we did in the original database. The modifications of different tests also take place

at each level of each of the three hierarchies. The observed result of real experiments is

shown in Table 4.5.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 0.7 5.8 0.6 0.6 5.7 0.1 0.5 2.3 5.8
Step 2* 1.8 17.1 1.6 1.6 15.3 0.2 1.3 6.2 16.6
Step 3* 9.0 95.1 8.7 8.8 100.1 0.9 7.0 36.5 96.2
Total 11.5 118.0 10.9 11.0 121.1 1.1 8.9 45.0 118.5

* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates

Table 4.5: Observed evaluation time of updating the whole schema following an aggre-
gate modification by using our PAM algorithm in “DB_twice” of two dimensions

To compare the estimated and observed results, we compute their percent difference.

The percent difference is a mathematical measure generally used to compare two dif-

ferent values of the same property. The percent difference between two numbers is the

difference between them expressed as a percent change with respect to the numbers.

The formula to calculate the percent difference between two values is given below [Per]:

PercentDi f f = [(|Value 1 − Value 2|)/Value 2] ∗ 100,

where Value 1 refers to observed value and Value 2 refers to accepted value.

44 Chapter 4. Experimental evaluation and validation

In this case, the estimated result in Table 4.4 is considered as accepted values (Value

2) and the observed values in Table 4.5 are considered as observed values (Value 1). We

calculate the percent difference between these values and the result is shown in Table

4.6.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Estimated

result 11.5 116.6 11.2 11.0 119.7 1.3 9.0 45.1 117.4
Observed

result 11.5 118.0 10.9 11.0 121.1 1.1 8.9 45.0 118.5
Percent

difference 0.2% 1.2% 2.9% 0.4% 1.2% 13.1% 1.6% 0.3% 1.0%

Table 4.6: Percent difference between the estimated result and the observed result in
“DB_twice” of two dimensions

According to the calculation, we find that the percent difference is between 0.2%

and 2.9%, except the case of a modification on level 1 of hierarchy H3. This exception

makes a percent difference of 13.1%. This exception can be explained by the too short

evaluation time of this modification. As this aggregate update leads only to a small

modification, the estimated evaluation time is only 1.3 second and the observed evalu-

ation time is only 1.1 second. These values are so small that other factors could have a

more significant influence on the evaluation time, like CPU process/thread priority or

memory and disk activities. To be general, we do not take this exception into consider-

ation. For all other cases, the two results are very close. The fact that the algorithm is

polynomial to the number of tuples involved in the modification of the PAM algorithm

is shown by using “DB_twice”.

Complexity wrt the total number of levels of all hierarchies

The second criterion influencing the time complexity is the total number of levels for

all hierarchies. We estimate that the evaluation time is polynomial to this number. To

validate this estimation, we perform different experiments in the original database copy.

Every time we fix the raw tuples and the aggregate, subject to modification, and we

redefine the dimensions and the hierarchies to generate different schemas. Different

dimension/hierarchy schemas give different numbers of levels for all hierarchies. For

example, we consider a new dimension/hierarchy schema with two customer hierar-

chies and one product hierarchy. We have in total 8 levels for the three hierarchies. In

another example, we consider a schema with three customer hierarchies and two prod-

uct hierarchies which creates 16 levels in total for the five hierarchies. As the number

4.2. Evaluation of different methods with two dimensions 45

of raw tuples involved in the modification does not change, the time spent in Step 1,

the creation of temporary table and in Step 2, the update of raw tuples do not change

(see Table 4.3 for the explanations of the three Steps). We compare only the Step 3, the

propagation of updates to all hierarchies. The actual Anticipeo’s dimension/hierarchy

schema has 22 levels for all hierarchies. The experiments are performed on different

schemas with 8, 12, 16, 20 and 22 levels respectively. The evaluation of the modification

on each level of each hierarchy in different dimension/hierarchy schemas is shown in

Table 4.7.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

8 levels 1.6 16.1 1.9 1.9 19.3 0.2 1.3 6.2 16.3
12 levels 2.5 25.5 2.6 2.6 27.6 0.3 1.8 9.7 26.0
16 levels 3.2 33.6 3.3 3.3 36.9 0.4 2.5 12.9 33.8
20 levels 4.2 43.5 4.0 4.0 44.4 0.5 3.2 16.7 43.8
22 levels 4.4 47.2 4.4 4.4 49.4 0.5 3.5 17.9 47.4

Table 4.7: Evaluation time of propagating modifications to all hierarchies using PAM
algorithm under different dimension/hierarchy schemas with two dimensions

To confirm the fact that the algorithm is polynomial to the total number of levels of

all hierarchies, we calculate the evaluation time per level for different cases. We divide

the evaluation time by the corresponding number of levels of hierarchies. The evaluation

time per level is shown in Table 4.8.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

8 levels 0.197 2.008 0.234 0.232 2.407 0.022 0.163 0.770 2.034

12 levels 0.211 2.128 0.214 0.217 2.301 0.024 0.153 0.808 2.170

16 levels 0.199 2.102 0.203 0.209 2.306 0.023 0.156 0.805 2.113

20 levels 0.208 2.177 0.202 0.198 2.218 0.027 0.158 0.837 2.191

22 levels 0.200 2.144 0.201 0.198 2.245 0.024 0.157 0.813 2.155

Variance 3.7 ∗ 10−5 4.1 ∗ 10−3 2.0 ∗ 10−4 2.0 ∗ 10−4 5.3 ∗ 10−3 3.5 ∗ 10−6 1.3 ∗ 10−5 5.8 ∗ 10−4 3.9 ∗ 10−3

Standard

deviation 6.0 ∗ 10−3 6.4 ∗ 10−2 1.4 ∗ 10−2 7.3 ∗ 10−2 1.9 ∗ 10−3 3.6 ∗ 10−3 2.4 ∗ 10−2 2.4 ∗ 10−2 6.2 ∗ 10−2

Table 4.8: Evaluation time per level of propagating modifications to all hierarchies using
PAM algorithm under different dimension/hierarchy schema with two dimensions

In addition to the calculated evaluation time per level, we compute the variance [var]

and the standard deviation [std] on the result. The (population) variance of a random

variable is a non-negative number which gives an idea of how widely spread the values

of the random variable are likely to be; the larger the variance, the more scattered the

observations on average. The standard deviation is a measure of the spread or dispersion

of a set of data. The variance and the standard deviation are widely used measures of

46 Chapter 4. Experimental evaluation and validation

variability or diversity used in statistics and probability theory. The standard deviation

is the (positive) square root of the variance. These measures show how much variation

or “dispersion” exists from the average (mean, or expected value). They have some

common properties [Sci12]. They are proportional to the scatter of the data (small when

the data are clustered together, and large when the data are widely scattered). They

are independent of the number of values in the data set (otherwise, simply by taking

more measurements, the value would increase even if the scatter of the measurements

was not increasing). In addition, they are independent of the mean (since now we are

only interested in the spread of the data, not its central tendency). A low variance or a

low standard deviation indicates that the data points tend to be very close to the mean,

whereas a high variance or a high standard deviation indicates that the data points are

spread out over a large range of values.

The variance and the standard deviation in Table 4.8 are very low. They demonstrate

that the values of the evaluation time per level under different dimension/hierarchy

schemas are very concentrated to their mean. We prove that the algorithm is polynomial

to the total number of levels for all hierarchies of the PAM algorithm.

4.2.3 PAM II algorithm

4.2.3.1 Validation

To validate the PAM II algorithm, we perform the same tests described at the beginning

of Section 4.2 with the PAM II algorithm as we did with the current solution and the

PAM algorithm. The result is shown in Table 4.9. We take the same modification exam-

ple introduced within the current solution and the PAM algorithm. When we modify

an aggregate at level 1 of the Hierarchy H1, it takes 0.3 second to perform stage 1, to

create a temporary table containing raw tuples information; 1.0 second to perform stage

2, to update raw tuples and 5.9 seconds to perform stage 3, to propagate modifications

to all impacted aggregates. In total, we spent 7.2 seconds to update the entire schema.

Compared to 5.8 seconds using the PAM algorithm, this extended version does not show

much effect of performance improvement for low level modifications. High level modifi-

cations show that the PAM II algorithm is better when compared to the other solutions.

For example, only 35.7 seconds are needed to propagate a modification occurring on

level 2 of the hierarchy H1. Using the PAM algorithm, we should spend 58.3 seconds

for the same operation.

The results of different levels of one hierarchy also confirm our estimation of first

time complexity criterion, i.e., number of raw tuples involved in a modification. High

4.2. Evaluation of different methods with two dimensions 47

level modification takes more time as the number of raw tuples involved in the modifi-

cation might be large. In contrast, a modification on a low level impacts less raw tuples

and requires less time to update the whole schema. That is why in this table, we note the

time consumed on a higher level is more important than the time required for a lower

level of the same hierarchy.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Stage 1* 0.3 2.7 0.3 0.3 2.5 0.05 0.3 1.2 2.7
Stage 2* 1.0 3.9 0.9 0.9 3.5 0.1 0.7 2.6 3.5
Stage 3* 5.9 29.2 3.3 3.4 28.8 0.3 2.4 11.2 29.6
Total 7.2 35.7 4.5 4.6 34.8 0.4 3.4 15.1 35.9
* Stage 1: creating a temporary table of two attributes;
* Stage 2: updating raw tuples;
* Stage 3: propagating modifications to impacted aggregates

Table 4.9: Evaluation time of updating the whole schema following an aggregate modi-
fication by using our derived PAM II algorithm in a two-dimensional data warehouse

4.2.3.2 Complexity

We estimated the time complexity of the PAM II algorithm to be polynomial to the

number of tuples involved in the modification and to the total number of levels of all

hierarchies. In the following, we validate our estimation of the time complexity by con-

ducting some experiments.

Complexity wrt the number of tuples involved

To validate this estimation, we compare the estimated evaluation time and the observed

one in “DB_twice”. Section 4.2.2.2 describes “DB_twice”. Experiments are performed in

this database.

The estimation evaluation time is the result in the original database (shown in Table

4.9) multiplied by 2. This estimation result is calculated and shown in Table 4.10.

We then perform real experiments in “DB_twice”. The observed result is shown in

Table 4.11.

To compare the estimated and observed results, we compute their percent difference

shown in Table 4.12.

The percent difference shows that the two results are very close for all cases. The fact

that the algorithm is polynomial to the number of tuples involved in the modification of

the PAM II algorithm is shown by using “DB_twice”.

48 Chapter 4. Experimental evaluation and validation

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Stage 1* 0.7 5.3 0.6 0.6 5.0 0.1 0.6 2.4 5.5
Stage 2* 2.0 7.8 1.8 1.8 7.1 0.2 1.4 5.3 7.1
Stage 3* 11.8 58.4 6.6 6.7 57.5 0.6 4.8 22.5 59.3
Total 14.5 71.5 9.0 9.1 69.5 0.9 6.8 30.1 71.8

* Stage 1: creating a temporary table of four attributes;
* Stage 2: updating raw tuples;
* Stage 3: propagating modifications to impacted aggregates

Table 4.10: Estimated evaluation time of updating the whole schema following an ag-
gregate modification by using our PAM II algorithm in “DB_twice” of two dimensions

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Stage 1* 0.7 5.5 0.6 0.6 4.7 0.1 0.5 2.1 5.3
Stage 2* 1.8 7.3 1.5 1.5 7.6 0.2 1.1 5.7 7.0
Stage 3* 12.4 60.5 6.2 6.3 58.6 0.6 4.4 23.6 59.5
Total 14.9 73.4 8.8 8.8 70.9 0.9 6.7 31.3 71.8

* Stage 1: creating a temporary table of four attributes;
* Stage 2: updating raw tuples;
* Stage 3: propagating modifications to impacted aggregates

Table 4.11: Observed evaluation time of updating the whole schema following an aggre-
gate modification by using our PAM algorithm in “DB_twice” of two dimensions

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Estimated

result 14.5 71.5 9.0 9.1 69.5 0.9 6.8 30.1 71.8
Observed

result 14.9 73.4 8.8 8.8 70.9 0.9 6.7 31.3 71.8
Percent

difference 2.6% 2.6% 1.8% 3.3% 1.9% 0.4% 1.6% 3.8% 0.1%

Table 4.12: Percent difference between the estimated result and the observed result in
“DB_twice” of two dimensions

Complexity wrt the total number of levels for all hierarchies

The second criterion influencing the time complexity is the total number of levels for

all hierarchies. We estimate that the evaluation time is polynomial to this number. To

validate this estimation, the experiments in the original database copy are performed

on different schemas with 8, 12, 16, 20 and 22 levels respectively. The evaluation of the

modification on each level of each hierarchy in different dimension/hierarchy schemas

is shown in Table 4.13.

To confirm that the algorithm is polynomial to the total number of levels of all hi-

4.2. Evaluation of different methods with two dimensions 49

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

8 levels 4.9 16.0 2.2 2.3 15.8 0.2 1.6 6.8 16.3
12 levels 5.3 19.9 2.5 2.6 20.0 0.2 1.8 8.0 20.3
16 levels 5.5 23.6 2.9 2.9 23.1 0.3 2.2 9.6 24.2
20 levels 6.0 27.3 3.2 3.2 27.4 0.3 2.2 10.6 27.5
22 levels 4.4 47.2 4.4 4.4 49.4 0.5 3.5 17.9 47.4

Table 4.13: Evaluation time of propagating modifications to all hierarchies using PAM II
algorithm under different dimension/hierarchy schemas with two dimensions

erarchies, we calculate the evaluation time per level for different cases. We divide the

evaluation time by the corresponding number of levels of hierarchies. The evaluation

time per level is shown in Table 4.14.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

8 levels 0.617 1.995 0.277 0.282 1.978 0.024 0.205 0.847 2.042

12 levels 0.440 1.657 0.205 0.217 1.665 0.018 0.152 0.668 1.693

16 levels 0.343 1.475 0.181 0.183 1.443 0.017 0.135 0.597 1.512

20 levels 0.299 1.363 0.160 0.160 1.369 0.015 0.111 0.531 1.375

22 levels 0.268 1.327 0.153 0.150 1.307 0.014 0.110 0.510 1.347

Variance 2.0 ∗ 10−2 7.5 ∗ 10−2 2.5 ∗ 10−3 2.8 ∗ 10−3 7.5 ∗ 10−2 1.7 ∗ 10−5 1.5 ∗ 10−3 1.8 ∗ 10−2 8.2 ∗ 10−2

Standard

deviation 1.4 ∗ 10−1 2.7 ∗ 10−1 5.0 ∗ 10−2 5.3 ∗ 10−2 2.7 ∗ 10−1 4.1 ∗ 10−3 3.9 ∗ 10−2 1.4 ∗ 10−1 2.9 ∗ 10−1

Table 4.14: Evaluation time per level of propagating modifications to all hierarchies using
PAM II algorithm under different dimension/hierarchy schemas with two dimensions

The variance and the standard deviation in Table 4.14 are very low. They demonstrate

that the values of the evaluation time per level under different dimension/hierarchy

schemas are very concentrated to their mean. We prove that the algorithm is polynomial

to the total number of levels for all hierarchies of the PAM II algorithm.

4.2.4 Comparison of different methods

We compare the total evaluation time using the three solutions in one chart shown in

Figure 4.1.

Roughly speaking, the new algorithms display much better performance than the

current solution. In most cases, the evaluation time is significantly reduced. For ex-

ample, for the modification at level 1 of hierarchy H3, the propagation time is only 0.7

second using the PAM algorithm and 0.4 second using the PAM II algorithm. Compared

to 181.2 seconds spent by the current solution, the gain of performance reaches 25786%

and 45200% respectively. Even in the worst case where the root aggregate (the single

aggregate at top level of every hierarchy) is subject to modifications, we get a nearly

50 Chapter 4. Experimental evaluation and validation

Figure 4.1: Comparison of evaluation time using the current solution, the PAM and PAM
II algorithms

220% and 437% better performance using the PAM and PAM II algorithms. The result

confirms that, instead of recalculating all the aggregates as the current solution does,

our solutions are more efficient by identifying and updating the exact set of aggregates

impacted by the modification.

Regarding the comparison between our algorithms, PAM and PAM II, PAM II shows

an average of 40% better performance. In particular, higher levels benefit more from the

existence of the meta-tables by avoiding complex joins. Nevertheless, we have sacrificed

physical space. In this test, one meta-table is created to contain dependencies between

raw tuples and hierarchical aggregates. There are 688 419 raw tuples and 6 861 aggre-

gates in this test database. Even if the number of tuples in the meta-table is not the

Cartesian product of raw tuples and aggregates, more precisely 688 419 * 6 861, there

are still 17 711 504 tuples created in this meta-table. This represents 630 MB of data and

627 MB of indexes in terms of physical storage. For a database of 50 GB, the meta-table

of 1.23 GB is relatively large. In addition, if other materialized views need to be updated

in the same way, additional meta-tables should be created. Hence, when the physical

storage is not a constraint, we recommend the PAM II algorithm. Otherwise, the PAM

algorithm is a good candidate.

4.3 Evaluation of different methods with three dimensions

In the second data schema, we investigate the performance with three dimensions: cus-

tomer, product and time. In Section 4.3, we introduce the fact that the time dimension of

4.3. Evaluation of different methods with three dimensions 51

this application is merged into the fact table. In this section, we make the time dimen-

sion explicit to create an environment of three dimensions with real data. The customer

dimension table and the product dimension table are the same as the ones used in

the schema with two dimensions. The time dimension table has 60 basic lines for 60

months and 13 fictive lines for corresponding different hierarchical years. The customer

dimension and the product dimension are both composed of 4 hierarchies and the time

dimension is composed of 2 hierarchies. The fact table containing the keys of the dimen-

sions and forecasts measures has about 985.5 MB with 453 MB of data and 532.5 MB of

indexes. There are 6 995 465 raw tuples in this fact table. Like in the experiment with

two dimensions, we only materialized aggregates resulting from one hierarchy of one

dimension, which represents 6 897 aggregates.

In this section, we will show the evaluation results of different methods in a three-

dimensional environment. We also perform tests on each level of 3 hierarchies which

have 2, 3 and 4 levels, respectively. In our evaluation, we modify one aggregate from

each level of each of these 3 hierarchies to compare the evaluation time resulting from

the current solution and from our approaches. The number of raw tuples involved in

the modification is shown in Table 4.15.

Hierarchy H1 Hierarchy H2 Hierarchy H3

level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Number 1 245 321 6 995 465 825 955 826 106 6 995 465 98 190 498 173 2 647 289 6 995 465

Table 4.15: Number of raw tuples involved in the modification of each test

Current solution

We first perform tests with the current solution. The result is shown in Table 4.16. As

the second step of the solution consists in removing and constructing all aggregates, the

time for each test stays almost the same. For the level 1 of the hierarchy H1, it takes a

total of 220.1 seconds, corresponding to 12.5 seconds to update raw tuples involved in

the modification and 207.7 seconds to reconstruct all aggregates in every hierarchy of

every dimension.

PAM algorithm

The same tests are performed with our PAM algorithm. The result is shown in Table

4.17. We take the same modification example introduced within the current solution.

When we modify an aggregate at level 1 of the Hierarchy H1, it takes 6.3 seconds to per-

52 Chapter 4. Experimental evaluation and validation

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 12.5 51.3 7.9 7.9 51.6 0.9 4.9 24.9 52.9
Step 2* 207.7 206.8 206.5 207.0 205.4 206.9 207.8 209.2 209.3
Total 220.1 258.1 214.4 214.9 257.0 207.8 212.7 234.1 262.3
* Step 1: updating raw tuples;
* Step 2: deleting outdated aggregates and constructing updated aggregates

Table 4.16: Evaluation time of updating the whole schema following an aggregate mod-
ification by using the current solution in a three-dimensional data warehouse

form step 1, to create a temporary table containing raw tuples information; 11.3 seconds

to perform step 2, to update raw tuples and 38.8 seconds to perform step 3, to propagate

modifications to all impacted aggregates. In total, we spend 56.4 seconds to update the

entire schema.

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 6.3 37.7 4.0 4.0 39.2 0.5 2.7 14.0 40.1
Step 2* 11.3 46.5 6.9 6.9 44.9 0.7 4.1 22.7 45.4
Step 3* 38.8 218.3 25.6 25.7 218.9 3.1 15.6 81.6 219.3
Total 56.4 302.5 36.5 36.7 303.1 4.2 22.3 118.3 304.8
* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates

Table 4.17: Evaluation time of updating the whole schema following an aggregate mod-
ification by using our PAM algorithm in a three-dimensional data warehouse

PAM II algorithm

The same tests are also performed with the extended PAM II algorithm. The result is

shown in Table 4.18. We take the same modification example introduced within the cur-

rent solution. When we modify an aggregate at level 1 of the Hierarchy H1, it takes 4.0

seconds to perform step 1, to create a temporary table containing raw tuples informa-

tion; 10.9 seconds to perform step 2, to update raw tuples and 15.4 seconds to perform

step 3, to propagate modifications to all impacted aggregates. In total, we spend 30.4

seconds to update the entire schema.

Comparison of the different methods

We compare the total evaluation time using the three solutions in a three-dimensional

environment in one chart shown in Figure 4.2.

4.3. Evaluation of different methods with three dimensions 53

Hierarchy H1 Hierarchy H2 Hierarchy H3

(seconds) level 1 level 2 level 1 level 2 level 3 level 1 level 2 level 3 level 4

Step 1* 4.0 24.7 2.9 4.2 24.8 0.3 1.5 9.5 24.5
Step 2* 10.9 45.5 7.1 7.1 46.1 0.7 4.1 24.1 45.3
Step 3* 15.4 67.2 8.8 10.1 69.8 1.1 7.5 44.0 65.6
Total 30.4 137.4 20.1 20.2 140.7 1.8 13.1 77.5 135.4
* Step 1: creating a temporary table of four attributes;
* Step 2: updating raw tuples;
* Step 3: propagating modifications to impacted aggregates

Table 4.18: Evaluation time of updating the whole schema following an aggregate mod-
ification by using our PAM II algorithm in a three-dimensional data warehouse

Figure 4.2: Comparison of evaluation time using the current solution, the PAM and PAM
II algorithms in a three-dimensional schema

In most cases, proposed algorithms present a better performance than the current

solution. We take the example of the level 1 of hierarchy H1, time spending to update

the whole schema is reduced from 220.1 seconds using current solution to 56.4 seconds

using PAM algorithm and 30.4 seconds using PAM II algorithm, which is a gain of 290%

and 625% respectively for PAM and PAM II. In the case of modifying an aggregate,

which impacts less raw tuples, the gain of PAM and PAM II is more important. As for

the example of the level 1 of hierarchy H3, the gain of performance reaches 4827% and

11203% respectively.

However, we notice that in the worst case where the root aggregate (the single ag-

gregate at top level of every hierarchy) is subject to modifications, the current solution

of reconstructing all the aggregates is more efficient than the PAM algorithm. Applying

the PAM algorithm on this data is not always optimal. Hence, when implementing the

54 Chapter 4. Experimental evaluation and validation

PAM algorithm in the real application, we propose an alternative. As we mentioned

previously, the PAM algorithm is linear to the number of raw tuples involved in an

aggregate modification. We can compute the average time spent on a single raw tuple

by dividing the total time by the number of raw tuples involved. In the case where

the PAM algorithm is less efficient in time than the current solution, we switch to the

current solution. The threshold is easy to determine. The execution time of the current

solution is known, the average time spent on a single raw tuple by PAM is also known.

Their division is the threshold under which PAM is more efficient. Therefore, when

propagating an aggregate modification to the whole schema, we estimate the number of

raw tuples that should be updated and make the decision of which solution to adopt.

In this schema, the meta-table of PAM II, which contains the dependencies between

aggregates and raw tuples has 191 279 805 tuples. This represents 15 GB including

9.7 GB of data and 5.3 GB of indexes. In the case where the physical storage is not a

constraint, the PAM II is the optimal solution.

Chapter 5

Context of this work: Anticipeo

Contents

5.1 Sales forecasting systems . 56

5.2 Presentation of the Anticipeo application 58

5.2.1 Application process . 58

5.2.2 User interface . 59

5.2.3 Data features . 60

5.2.4 Main manipulations . 62

5.2.5 Problem statement . 63

5.3 Optimization guideline . 64

5.3.1 Hardware and application programming analysis 64

5.3.2 Database management system configuration 65

5.3.3 Additional materialized views . 66

5.3.4 Database design . 69

5.4 Implementation and optimization results 72

5.4.1 Observations on current implementation of the application . . . 72

5.4.2 Diagnosis of latency provenance 73

5.4.3 Database management system configuration 75

5.4.4 Selection of materialized views . 76

5.4.5 Database schema modification . 77

5.5 Overall optimization result . 81

5.6 Recommendations . 82

55

56 Chapter 5. Context of this work: Anticipeo

This CIFRE thesis is initiated by the Anticipeo company. The objective of this collab-

oration is to improve the performance of the main software, also called as the Anticipeo

application. The Anticipeo application is a sales forecasting system that predicts future

sales in order to help enterprise decision-makers to make appropriate business strategies

in advance. This application provides a reliable result1, but for some users’ requests, the

response time is not satisfactory. Hence, our work focuses on analysis of the perfor-

mances problems and investigations of novel solutions to achieve the objective.

In this chapter, we introduce, first of all, sales forecasting systems. Then, we present

the Anticipeo application with the process flow, the user interface, different functions,

database information and its existing problems. We conduct an audit to diagnose this

application. In compliance with the audit result, we propose an optimization guideline

with a list of steps to follow. We show the results achieved by each optimization step as

well as overall optimization results obtained when integrating all the proposals. Finally,

some recommendations are given for the Anticipeo company to fulfill their needs in

terms of performance.

5.1 Sales forecasting systems

Sales forecasting involves predicting the amount people will purchase, given the product

features and the conditions of the sale. Sales forecasts help investors make decisions

about investments in new ventures. It is essential for managing a business of any size.

It runs a month-by-month prediction of the level of sales that are expected to achieve.

Most businesses draw up a sales forecast once a year.

Sales forecasting is a self-assessment tool for a company [Vir09]. It allows to analyze

the pulse of the business via reports composed of summaries and/or graphs. Imple-

menting accurate sales forecasting systems could entail important benefits such as:

• Enhanced cash flow

• Knowing when and how much to buy

• In-depth knowledge of customers and the products they order

• The ability to plan for production and capacity

• The ability to identify the pattern or trend of sales

1Here, reliable stands for acceptable quality and acceptable approximation with results in the confidence
interval.

5.1. Sales forecasting systems 57

• Determine the value of a business above the value of its current assets

• Ability to determine the expected return on investment

Profitability depends on (1) having a relatively accurate forecast of sales and costs; (2)

assessing the confidence one can place in the forecast; and (3) properly using the forecast

in the plan. There has been a long history in the field of sales forecasts computation

research [App65]. The most popular theory is Reilly’s law of retail gravitation [Rei31].

Many works were devoted to the improvement of this theory [GBGB05, GR06, LBYD08].

Other data models and methods were also proposed [Cha00, Hyn08, MWH98a]. Besides

these studies concentrating on the techniques used in the computation of forecasts, other

works focus on the systems or managerial approaches that are used [MK97, MMSG98].

Some other works consider qualitative factors as well as non-quantitative factors. The

research work [KWW02] utilizes fuzzy logic which is capable of learning to learn the

experts’ knowledge regarding the effect of promotion on the sales.

Compared to other information systems, the design of sales forecasting systems, as

other forecasting systems, should comply with some requirements:

• Limited life duration:

Forecasting calculation is periodically triggered. Once the period passed, the fore-

casts are no longer exploitable. For example, the weather forecasts predicted for

yesterday are not necessarily useful today.

• Non-reusable:

The forecasting is a global calculation and it is almost impossible to reuse the

former results to reduce future forecasting calculation. This means partial recom-

putation of precomputed results is not easy.

• Updates on built predictions:

As forecasting information results from a computation process, there is often no

need for updates. However, in some cases, the system needs some corrections for

some unpredictable situations, e.g., the impact of a car crash for a traffic forecasting

system.

• Timeliness:

Forecasting systems should provide just in time responses for users. Decision

makers devise corresponding plans of purchasing, manufacturing, logistics, etc.,

according to sales forecasting. The delay between achieved data entering and new

data forecasting should be as short as possible.

58 Chapter 5. Context of this work: Anticipeo

5.2 Presentation of the Anticipeo application

The Anticipeo application is a sales forecasting system. It helps decision makers or

executives to foresee the trends of the future market and adapt their business plan in

time. It also provides them with the possibility to simulate future situations in order

to achieve some desired objectives. In the following, we will present this application in

detail.

5.2.1 Application process

The forecasting work is usually performed periodically. The interval of forecasting de-

pends on the nature of application. In compliance with the normal business process, the

Anticipeo application performs a monthly forecasting. The process flow of the Anticipeo

application is shown in Figure 5.1.

Figure 5.1: The data process of the Anticipeo application

Every month, customers provide Anticipeo with their new achieved sales in form

of flat files, e.g., CSV (Comma-Separated Values) files or MS Excel [spr]. A CSV file

contains the values in a table as a series of ASCII text lines organized so that each col-

umn value is separated by a comma from the next column’s value and each raw starts a

new line [csv]. Anticipeo integrates the data into the main database of the system. The

computation engine then calculates sales forecasts based on the features of the historical

data with appropriate statistical models. Once new forecasts are established, they are

stored into the main database. Before presenting the result to the customer, the appli-

cation prepares some information for analysis, which accelerates some time-consuming

consultations. Now customers can navigate via a secured web service to the forecasting

sales. They can also perform some modifications on the forecasts. In this case, the visu-

alization generator will be launched to adjust the information for analysis. According to

5.2. Presentation of the Anticipeo application 59

final results, decision makers make their decision of strategic plans for next month(s).

Our work mainly focuses on the users’ interaction part, i.e., the visualization of

historical and forecasting data and the modification of forecasting data.

5.2.2 User interface

Figure 5.2 is the interface of a demonstration website of Anticipeo. It presents the results

generated at the end of May 2011 for a selected category of product “Appareillages

(APPA)”.

Figure 5.2: An example of forecasting sales trend presentation

The interface is composed of four blocks: a bar chart, a table of consultation, a table

of modification (displayed when demanded) and a navigation table of the composing

information for this selected category of product. Block 1 and block 2 show the sales

information for a total of 3 years including sales history for the last 29 months and its

trend for the next 7 months in the form of a bar chart and a table. In the bar chart,

different colors and forms are used to express different information. Dark green bars

represent historical sales; light yellow bars represent future predictive sales estimated

by salespersons and sales managers while small light green circles represent forecasting

sales computed by the Anticipeo application. By default, predictive sales estimated by

salespersons are set to be equal to the computed forecasting sales. They can be modified

60 Chapter 5. Context of this work: Anticipeo

by salespersons afterwards. Block 3 provides the possibility of making these possible

modifications. This block is not displayed by default. Block 4 gives more information

about the composition of the sales of this selected category of product. It also allows to

navigate these composing elements for more information.

5.2.3 Data features

Regarding the exploration part, results are displayed in hierarchies. In this application,

three dimensions are defined: customer dimension, product dimension and time dimen-

sion. Since the sales are grouped by month, the time dimension is implicit. Only two

dimensions are explored: customer dimension and product dimension. Each dimension

is composed of several hierarchies. Figure 5.3 shows an example of sales hierarchy. In

this example, we have four hierarchies shown in Figure 5.3(a) for the customer dimen-

sion: C1, C2, C3 and C4 and three hierarchies shown in Figure 5.3(b) for the product

dimension: P1, P2 and P3. For instance, let the hierarchy C2 be a 3-level geographical

distribution hierarchy. Customers are then analyzed by city for level 1, state for level 2

and country for level 3.

(a) Customer hierarchies (b) Product hierarchies

Figure 5.3: Hierarchy organization for dimension customer and dimension product

To show the sales trend, we need to store both 36-month historical data and 24-month

predictive data. In addition, we need some meta-data to understand/interpret the dis-

played aggregated data. Hence, the latency to request all the information needed by

an interface is too long to be accepted. To guarantee a quick access, materialized views

are created, which contain all the information about customers, products, hierarchies,

purchase dates and sales volumes. Actually, we have three materialized views (called

MVexample in the rest of this thesis) for three metrics: turnover, quantity and price. The

main schema of MVexample is shown in Table 5.1.

5.2. Presentation of the Anticipeo application 61

Attribute Name Attribute Type

sales_key bigint(20) unsigned
customer_key bigint(20) unsigned
product_key bigint(20) unsigned
customer_name varchar(25)
product_name varchar(25)
hierarchy_key bigint(20) unsigned
parent_hierarchy_key bigint(20) unsigned
dimension char(2)
hierarchy_number tinyint(3)
hierarchy_level tinyint(3)
hierarchy_name varchar(25)
achieved_sale_35 decimal(18,8)
... (other achieved sales) decimal(18,8)
achieved_sale_0 decimal(18,8)
forecasting_sale_1 decimal(18,8)
... (other forecasting sales) decimal(18,8)
forecasting_sale_24 decimal(18,8)
fiscal_year_sales_cumulation_1 decimal(18,8)
... (other fiscal year sales cumulations) decimal(18,8)
fiscal_year_sales_cumulation_4 decimal(18,8)
... (other sales cumulations) ...

Table 5.1: Schema for one of the materialized views used for efficient data display

The materialized view is composed of five elements: identification for a sale (cus-

tomer and product information), the sales volume during the last 36 months, the fore-

casting sales for the next 24 months, the hierarchy information, and some other aggre-

gated sales information. We notice that the concept of time is expressed by the sales

volume of each month and the sales cumulation in every fiscal year.

The size of a tuple in MVexample can be easily estimated. We know that in MySQL2 a

decimal of 18 digits requires 9 bytes, a bigint 8 bytes and a tinyint 1 byte. So the total size

of one tuple is 695 bytes if we take 25 bytes for the varchar(25). Then, we can estimate

the size of the materialized view MVexample if we know the volume of manipulated sales.

For a user who achieves approximately 670000 sales per month, we get 465 650 000

bytes, which is about 445 MB. In reality, this view is much larger because organizations

usually have some cumulations other than fiscal year cumulation, and there are also

indexes employed to accelerate different queries.

2MySQL is the database management system used by Anticipeo to implement and manage forecasting
data.

62 Chapter 5. Context of this work: Anticipeo

5.2.4 Main manipulations

We gather and analyze the workload of users to capture the main user manipulations of

the application. According to the analyses, we notice four categories of typical queries,

namely: (i) simple data retrieval (ii) updates on sales level (updates on raw data) (iii)

calculation of aggregates for one level of one hierarchy (iv) data retrieval from multiple

hierarchies.

Most of the time, users require information on sales at different levels on a single hi-

erarchy. The data demanded have been precomputed and stored in materialized views,

such as MVexample, so that the response to queries is fast. The first category of queries

consists of simple data retrieval from materialized views.

During the salespersons’ estimation of future sales, users need to modify forecasting

results. The modification can occur on any level of any given hierarchy. When it hap-

pens, the system distributes the modification over the base sales level. The forecasting

values of certain base sales are then modified. As other precomputed hierarchies are

calculated by the same sales data, the system needs to recompute all the superior levels

of hierarchies. These two manipulations constitute the second and the third categories

of typical queries. Hence, the second and third categories of typical queries presented

here are updates on sales level and construction of a certain level of a certain hierarchy

on the fly, respectively.

The last manipulations through the interface consist in retrieving data across hier-

archies of dimension. Unfortunately, it is almost impossible to build all the aggregates

across hierarchies because of the tremendously high number of combinations. Even if,

in this case, we consider only two hierarchies from two different dimensions at a time,

this number is very important. Hence, the fourth category of queries consists in the

computation of across-hierarchy information on the fly.

Example: an electrical appliance manufacturer needs sales information about a super-

market whose customer_key is equal to 500 and (s)he wants to display it in P2 hierarchy

pattern (see figure 5.3(b)) in the turnover measure. The result will be displayed at level

2 of P2. The corresponding query for this demand is shown in figure 5.4. This query

needs a projection that involves 64 sums, which consist of 36 sums for the historical sales

(line 2), 24 sums for the forecasting sales (line 3) and 4 sums for the fiscal year sales cu-

mulation (line 4). We need to do several self-join on the materialized view MVexample to

reach the level 2 of P2 (from line 6 to line 19).

5.2. Presentation of the Anticipeo application 63

Figure 5.4: SQL query for the example of an electrical appliance manufacturer

5.2.5 Problem statement

There were performance problems with the Anticipeo application, an online user in-

teractive application. For the main manipulations introduced in Section 5.2.4, only the

execution time of the first category about simple retrieval of information is guaranteed

with a quick access by using materialized views. The response time of other manipula-

tions is difficult to be accepted by users. For example, across-hierarchical consultations

(the fourth category of manipulations) on a database of 55 GB may take from 3 to 15

seconds depending on the hierarchical level from where users request information. An-

other example with an unacceptable latency is on the modification part. The time of a

modification is mainly spent on the update of base sales and the update of the displaying

hierarchical level. The evaluation on the same database of 55 GB takes approximately 35

seconds (4.3 seconds for base sales update and 31.4 seconds for the level construction)

in the case of a modification at the level 2 of the hierarchy P2 (see Figure 5.3(b) for hier-

archy information). The process of these manipulations should be optimized. However,

at the beginning of our work, we did not know the source of the problems and thus

how to solve the problems and improve the performance was not clear. In the following,

we discuss different tracks that we took for the optimization and we show the achieved

results.

64 Chapter 5. Context of this work: Anticipeo

5.3 Optimization guideline

The problem we face is a performance problem with respect to the exploration of a

multidimensional database using a relational database. Bock and Schrage [BS02] have

indicated that a number of factors affecting system response time are related to i) inef-

fective use of database management system tuning, ii) insufficient hardware platforms,

iii) poor application programming techniques and iv) poor conceptual and physical

database design.

In this section, we propose a guideline of optimization to diagnose the performance

problem regarding these issues and to eventually provide better performance. Since

the Anticipeo application is already operational, we should consider first solutions that

require less effort for their implementation.

5.3.1 Hardware and application programming analysis

The first question we consider is whether the application is working in the appropriate

environment. The execution environment refers to two levels: the hardware platform

and the operating system supporting the utilization of the integrality of the hardware.

The main technical characteristics of the server in use are: two Intel Quad core Xeon-

based 2.4 GHz, 16 GB RAM and one SAS disk of 600 GB and 15000 rotations per minute.

The operating system is a 64-bit Linux Debian system using EXT3 file system. Our focus

in the audit is to inspect the hardware for three criteria: CPU, memory and disk I/O.

Regarding the application programming, we need to analyze whether the techniques

of the application programming are efficient. An analytical result of time distribution

(generalized and detailed) on different parts of the application is the objective of our

audit. For the time distribution, we consider a separation of the execution time on the

code itself and on the database including its access and the execution of queries. Espe-

cially, for queries that execute more than a given time threshold, we analyze their query

execution plans. A query execution plan [Fri09] is the result of the query optimizer’s

attempt to calculate the most efficient way to implement the request represented by the

query. Execution plans can tell how a query will be executed, or how a query was

executed. They are, therefore, primary means of troubleshooting a poorly performing

query. We can use the execution plan to identify the exact piece of SQL code that is

causing the problem. For example, it may scan an entire table-worth of data while, with

the proper index, it could simply backpack out only the rows needed. The scan method

is displayed in the execution plan together with additional useful information.

5.3. Optimization guideline 65

5.3.2 Database management system configuration

We would like to know if the Data Base Management System (DBMS) is well tuned

to support the workload of the application. In this context, Anticipeo uses MySQL to

implement and manage forecasting data.

Figure 5.5 [Ora10] depicts the MySQL server architecture. With regard to the features

of the Anticipeo application, the main MySQL system variables [Ora11] selected for the

tuning are innodb_buffer_pool_size, innodb_log_file_size, query_cache_size, innodb_flush_log_at

_trx_commit, key_buffer_size, etc.

Figure 5.5: MySQL server architecture and main system variables selected for the tuning

• innodb_buffer_pool_size: memory buffer InnoDB to cache both data and indexes.

The bigger the value is, the less disk I/O is needed.

• innodb_log_file_size: size of each log file in a log group. By default, a log group has

two log files. The larger the value is, the less checkpoint flush activity is needed in

the buffer pool which saves disk I/O.

• query_cache_size: cache for storing query results. The larger the value is, the more

possibility to get the results directly from the cache without executing.

• innodb_flush_log_at_trx_commit: synchronization mode for transactions. 0 writes

and synchronizes once per second. 1 forces synchronization to disk after every

commit (ACID compliance). 2 writes to disk every commit but only synchronizes

once per second.

• key_buffer_size: cache for storing indices. Increasing its value can get better index

handling.

66 Chapter 5. Context of this work: Anticipeo

Some “blind” tuning has been done based on existing experimental results on differ-

ent web services [Zai07]. The actual configuration is 8 GB, 800 MB, 64 MB, 0 (zero), and

512 MB, respectively for the five system variables mentioned above. Additional bench-

marking will be discussed in the following sections to determine whether the adopted

configuration is efficient.

5.3.3 Additional materialized views

The fourth category of user manipulations presented in Section 5.2.4 is concerned with

the visualization of achieved and forecasting results by considering different hierarchies

from different dimensions. It is a typical data warehouse and OLAP problem (using

relational databases). In this domain, one of the most used solutions is to select useful

intermediate results and store them as materialized views. Many approaches have been

proposed for the selection of materialized views.

The main idea is to use the greedy approaches [Gup97, HRU96, SDN98]. These solu-

tions pre-process the most beneficial intermediate results in a limited-space hypothesis

to avoid complex computations so as to enhance data access. Extensions of these solu-

tions also consider the maintenance cost [BPT97] or large scale databases [GM99, KR99],

or make the set of materialized views dynamic according to the workload [BKV06]. They

have already been proved to bring significant improvements to data access.

In our case, we implement the classic greedy algorithm [HRU96]. This algorithm

refers to the dependence relation in queries. We say Q1
 Q2 if Q1 can be answered

using only the results of Q2. We then say that Q1 is dependent on Q2. A lattice framework

is used to express dependencies among queries (or views in this context). For elements

a, b of the lattice, b is an ancestor of a, if and only if a
 b. Once the lattice is built, a space

cost is associated to each element of the lattice. The cost is equal to the space occupied

by the view from which the query is answered, which can also be expressed by the total

number of tuples answers to the view. Without additional materialized views, only the

raw data is stored in the database. All the views are evaluated on this table. The initial

total cost of evaluating all the views is

Cost = n ∗ m − 1,

where n is the number of views in the lattice and m is the number of tuples for the

raw data. We do not count the view that contains only one tuple about the total result

of all raw data.

We then compute the benefit of each view by considering how it can improve the

total cost of evaluating views, including itself. Finally, the greedy algorithm selects the

5.3. Optimization guideline 67

most beneficial views to materialize with respect to the space limitation.

We describe this algorithm with an example. Consider the hierarchies illustrated in

Figure 5.3. We take only the hierarchy C1 from the customer dimension and the hier-

archies P1, P2 from the product dimension in this example. The hierarchies to explore

are shown in Figure 5.6. Each element in this figure represents the condition by which

the query performs the grouping operation. Hence, level 3 represents the sales of every

single customer or every single product. Levels 1 and 2 represent the result of sales

aggregated by the respective hierarchy level. Level 0 represents the aggregated result

of all customers or all the products, which is also the coarsest level in the hierarchy.

According to the dependency definition, we have (None)
 (C11)
 (C12)
 (All_C),

(None)
 (P11)
 (All_P) and (None)
 (P21)
 (P22)
 (All_P).

Figure 5.6: Illustration of hierarchy C1 and hierarchies P1, P2 in the notion of query
dependence

We build the lattice by taking one element, which represents a grouping condition,

from each dimension. The customer dimension has 4 elements and the product dimen-

sion has 5 elements. We then have 4 * 5 = 20 elements in the lattice shown Figure 5.7. In

this lattice, we still can see the sketch of the hierarchies C1, P1 and P2. Blocs of different

colors demonstrate the hierarchy C1. Inside every bloc, the hierarchies P1 and P2 are

presented. We then evaluate the cost of every query which is presented by an element

in the lattice. The cost is equal to the number of tuples returned by the query, in other

words, the space occupied by the query if it is materialized.

Table 5.2 shows the cost of every view. Among these 20 views, the node All_C -

All_P represents the sales information. This view should always be materialized. The

view “None” is the sum of all the sales. There is only one tuple in this view and no view

can be calculated from this view. We do not take this view into consideration when we

search for the most beneficial views to materialize. We then compute the benefits of

68 Chapter 5. Context of this work: Anticipeo

Figure 5.7: Illustration of lattice constructed by the dependence information of the hier-
archy C1 and the hierarchies P1, P2

Node Name Cost Node Name Cost

All_C - All_P 688419 C11 - All_P 18304

All_C - P11 55136 C11 - P11 4233

All_C - P22 60090 C11 - P22 679

All_C - P21 22193 C11 - P21 216

All_C 3519 C11 26

C12 - All_P 186935 All_P 4979

C12 - P11 4233 P11 42

C12 - P22 5629 P22 107

C12 - P21 1601 P21 25

C12 123 None 1

Table 5.2: Cost of every query/view in the example lattice

each of the remaining 18 views if they are subject to materialization. In this example, we

will choose three views to materialize. The computation of benefits is then proceeded in

three rounds. The benefits of views and the choice at the end of each round are depicted

in Table 5.3.

According to the result of the computed benefits, we choose C12-All_P at the end of

the first round; All_C-P11 after the second round and All_C-P22 after the third round.

Compared to the initial evaluation based on the raw data containing 688 419 tuples for

the 19 views, the total cost for evaluating all the views is reduced from 688 419*19=13

079 961 to 2 115 896 (the total cost of evaluating all the 19 views by 4 materialized

views: raw data table and 3 selected views). This example shows that implementing a

greedy algorithm could be a very interesting improvement for the user manipulation of

5.3. Optimization guideline 69

Node Number Node Name Choice 1 Choice 2 Choice 3

1 All_C - P11 5 066 264 2 057 360

2 All_C - P22 5 026 632 2 017 728 2 017 728

3 All_C - P21 2 664 904 1 160 452 1 160 452

4 All_C 2 739 600 1 235 148 206 468

5 C12 - All_P 7 522 260

6 C12 - P11 4 105 116 1 096 212 305 418

7 C12 - P22 4 096 740 1 087 836 1 087 836

8 C12 - P21 2 060 454 556 002 556 002

9 C12 2 064 888 560 436 165 039

10 C11 - All_P 6 701 150 1 686 310 1 159 114

11 C11 - P11 2 736 744 730 808 203 612

12 C11 - P22 2 750 960 745 024 745 024

13 C11 - P21 1 376 406 373 438 373 438

14 C11 1 376 786 373 818 110 220

15 All_P 6 834 400 1 819 560 1 292 364

16 P11 2 753 508 747 572 220 376

17 P22 2 753 248 747 312 747 312

18 P21 1 376 788 373 820 373 820

Table 5.3: Benefits of each view in three rounds and possible choices for the materializa-
tion at each round

across-hierarchy consultation.

We implemented the classic greedy algorithm on top of the Anticipeo application.

5.3.4 Database design

This application works on a large materialized view for results visualization. The ad-

vantage of merging all information in a same materialized view is obvious: we can omit

time-consuming joins over tables containing millions of rows. However, it creates other

problems, e.g., heavy work for queries which make several joins on the same material-

ized view to derive high-level aggregations. Our idea is to find a medium solution that

can both avoid costly joins on different tables and reduce the time of self join of this view

as well, which constitute the main source of time-consuming queries in the workload.

Two solutions are proposed to improve the database design. The first one can be

quickly implemented, which does not require many modifications of the existing solu-

tion. The second one requires a lot of changes of the database design, but it brings a

better performance compared to the first solution.

The first solution

The first solution is a naïve solution which modifies as minimum as possible the data

design. The idea is to reduce the size of the materialized view which is involved in the

70 Chapter 5. Context of this work: Anticipeo

join operations. To do this, we break down the materialized view MVexample into two.

More precisely, we create a small view that contains the hierarchical information and a

larger one that contains all the remaining attributes. Thus, the time-consuming self join

is based only on the first small view, which can significantly reduce the amount of data

involved in join operations. Table 5.4 and Table 5.5 describe the data schema of the two

materialized views.

Attribute Name Attribute Type

sales_key bigint(20) unsigned
customer_key bigint(20) unsigned
product_key bigint(20) unsigned
customer_name varchar(25)
product_name varchar(25)
hierarchy_key bigint(20) unsigned
parent_hierarchy_key bigint(20) unsigned
dimension char(2)
hierarchy_number tinyint(3)
hierarchy_level tinyint(3)
hierarchy_name varchar(25)

Table 5.4: Schema for the first materialized view: hierarchical information

Attribute Name Attribute Type

sales_key bigint(20) unsigned
achieved_sale_35 decimal(18,8)
... (other achieved sales) decimal(18,8)
achieved_sale_0 decimal(18,8)
forecasting_sale_1 decimal(18,8)
... (other forecasting sales) decimal(18,8)
forecasting_sale_24 decimal(18,8)
fiscal_year_sales_cumulation_1 decimal(18,8)
... (other fiscal year sales cumulations) decimal(18,8)
fiscal_year_sales_cumulation_4 decimal(18,8)
... (other sales cumulations) ...

Table 5.5: Schema for the second materialized view: sales information

Table 5.4 contains the customer and product information and their hierarchical infor-

mation, while Table 5.5 contains the last 36 sales, the next 24 sales and the cumulations

by year. After the fragmentation, the two materialized views have both the same num-

ber of tuples as MVexample, meanwhile the tuple size of the view shown in Table 5.4 is

reduced. The tuple size of this view can be estimated in the same manner as the one

introduced in Section 5.2.3 for the MVexample (whose tuple size is estimated to 695 bytes).

5.3. Optimization guideline 71

The size of one tuple is 119 bytes if we take 25 bytes for the varchar(25). We see the tuple

size of the view involved in join operations is reduced from 695 bytes to 119 bytes.

We implemented this solution to see how much benefit we get by breaking down the

materialized view into two.

The second solution

The second solution is to resort to the use of a star schema. The star schema and

snowflake schema [VS99] (normalized version of a star schema) are widely used in the

exploration of multidimensional data by OLAP tools. According to the literature, the

star schema is more efficient than the snow schema in most of cases. The analyses of the

data features and the manipulations of the Anticipeo application indicate that the star

schema could be applied to our case to bring better performance.

Within the principles of the star schema, there are two types of tables: dimension

tables and fact tables. In this case, we have three dimensions: Customer dimension,

Product dimension and Time dimension. Three tables are created for each of the three

dimensions respectively. Star schema employs denormalized tables for dimension tables,

in which all the levels of every hierarchy are stored in its appropriate dimension table.

One fact table is also created. This table contains foreign keys to each dimension and

different measures: turnover, quantity and price. Figure 5.8 shows the star schema for

the Anticipeo application.

Let us consider the query previously presented in Figure 5.4. This query is based

on the large materialized views as MVexample. It returns the sales information about a

supermarket whose customer_key is equal to 500 and displays the result at level 2 in

product hierarchy 2 pattern in the measure of turnover. The equivalent query on the

star schema is shown in Figure 5.9. Line 1 and line 2 perform a projection of some

descriptive information and a sum of all sales. Line 3 to line 6 show the tables involved

in this query and their relations. Line 7 gives the criteria of classification. We can see that

the query is simplified. It targets three tables: fact_table, dim_product and dim_time. As

the hierarchical information is already in the dim_product table, we do not need extra

joins to get to level 2 of the hierarchy 2. The information at level 2 is directly reached

by the attribute hierarchy2_level2 of the product dimension table. We have less tables

involved and less join operations compared to the actual schema.

In order to evaluate this solution, we modify the data schema of the Anticipeo appli-

cation to the one shown in Figure 5.8.

72 Chapter 5. Context of this work: Anticipeo

Figure 5.8: Star schema for the Anticipeo application

Figure 5.9: SQL query for the example of an electrical appliance manufacturer on the
star schema

5.4 Implementation and optimization results

Previous discussions target some main existing possibilities to improve the performance.

In the following section, we present the experimental result of these solutions. Due to

some specificities of sales forecasting systems, there may be some unexpected results

after implementing these solutions. We then propose some suggestions for these situa-

tions. First of all, let us show some referential observations of the actual application on

the experimental system described in Sections 5.3.1 and 5.3.2.

5.4.1 Observations on current implementation of the application

Experiments on different-size databases have been conducted to observe the behavior

of the application implemented in the actual environment. We take the example of an

5.4. Implementation and optimization results 73

across-hierarchy visualization, which is described as the fourth category of user manip-

ulation in Section 5.2.4. The corresponding query for this example is given in Figure

5.4. The descriptive information of different databases and the execution time of the

visualization query are shown in Table 5.6.

Across-hierarchy

Database Sales MVexample visualization AVRT/SN

size (GB) number size (GB) response time (s) (ms)

(SN) (AVRT)

DB1 55.8 679823 1.18 18.28 0.027

DB2 61.7 995211 2.42 21.89 0.021

DB3 68.9 1404267 3.27 43.31 0.031

DB4 81.7 2120115 4.92 41.65 0.020

Table 5.6: Experimental databases characteristics and results

The result shows that the query evaluation time is linear to the number of sales.

This observation helps us to estimate the execution on a new database if we know the

number of sales. These results also show one brake of the enterprise: in the case of a

55-GB database, it takes more than 18 seconds to answer an online user query. If the

application considers larger databases, the response time can hardly be acceptable by

the user.

5.4.2 Diagnosis of latency provenance

Two diagnoses are performed in this part to determine the latency provenance.

• Program level:

We first conduct an analysis of the distribution of time in order to identify the

latency provenance. The distribution is shown in Table 5.7.

For the black box, the mathematical calculation of forecasting, the time spent on the

execution of the application represents 30% of the total time, while the remaining

70% is used to access the database. Regarding the focus of our research, different

kinds of visualizations and modifications (user interactive manipulations) during

the navigation, the part of the time spent on the application represents less than

10% of the total time. The remaining time is due to the access to the database, the

evaluation of queries, eventual updates of data and the return of query results. We

can conclude here that the performance issues of the database might be the source

of the performance problem.

74 Chapter 5. Context of this work: Anticipeo

User manipulation Evaluation Time spent on Time spent on

time application DBMS

level level

Sales forecasts

Calculation > 2 hours < 30% > 70%
Simple data

retrieval < 10 ms negligible
Across-hierarchy

visualization > 60 sec < 10% > 90%
Modification of

forecasts > 50 sec < 10% > 90%

Table 5.7: Average time distribution on application level and on DBMS level for the
execution of different user manipulations

We then extract slow queries captured by the database management system to

determine whether these queries are well structured. We analyze the query exe-

cution plan for each query. The main purpose is to find whether the queries use

indexes and if so, whether they use appropriate ones. Even if we noticed that for

certain tables, there exist some unnecessary indexes, generally speaking, the query

execution plan shows the slow queries are correctly optimized.

• Hardware level:

In a second stage, we are interested in better knowing the system behavior.

We use SAR (System Activity Report 3), one of Linux performance monitoring

tools to collect and analyze system activity information. The following paragraphs

depict the observation on the actual system:

– CPU

CPU is idle during on average 89.42% of time.

When the CPU works, it spends 7.38% of time to work on user processes,

0.31% of time on system processes and for 2.89% of time, it is idle during

which there is an outstanding disk I/O request.

– Memory

Memory remains at a normal status without swapping activities.

The measures of swap in and swap out in the report are both 0% during all the

process time.

– Disk

Disk I/O also shows a normal activity.

3The SAR command collects, reports, or saves system activity information [God].

5.4. Implementation and optimization results 75

The average number of sectors read from the device is 2357 per second and

the average number of sectors written to the device is 25668 per second dur-

ing 5 hours of experimentation of simulating user’s actions. 80% of users

operations acting simple consultation demands about 3000 sectors read from

the device per second (which represents about 1.5 MB/s data) and writes less

than 100 sectors per second (about 0.04 MB/s). For the rest 20% usage, which

refers to update or insert of data, we observe only 1% of time that we get

more than 50000 sectors per second (24 MB/s), and never reach more than

100000 sectors (50 MB/s).

While according to the benchmarks [Sch07] performed on similar SAS disks,

the minimum transfer rates of a SAS disk never fall below 68 MB/s, the pre-

vious result reveals that there are rare occurrences of device saturation.

The diagnosis leads us to the conclusion that the application performs well with the

actual infrastructure for the program level as well as the hardware level. The latency

observed on the application is not due to hardware issues, neither to program level

issues. It is clearly due to the performance issues of the database.

5.4.3 Database management system configuration

According to the DBMS configuration recommendations [SZTZ08, Zai07], we determine

some of the most important tuning variables in the case of the Anticipeo application.

We set values above and below the current settings of these variables to see whether the

current ones are optimized. The summarized results are shown in Table 5.8.

innodb_buffer_pool_size Value 2 GB 4 GB 8 GB 12 GB
Ratio 98.83% 100.22% 100.00% 97.60%

innodb_log_file_size Value 128 MB 256 MB 800 MB 1 GB
Ratio 99.86% 101.81% 100.00% 99.23%

innodb_flush_log_at_trx_commit Value 0 1 2 Not
Ratio 100.00% 101.32% 105.73% relevant

query_cache_size Value 32 MB 64 MB 128 MB 256 MB
Ratio 102.94% 100.00% 111.76% 107.03%

key_buffer_size Value 32 MB 128 MB 512 MB 1 GB
Ratio 103.08% 103.82% 100.00% 100.01%

tmp_table_size Value 32 MB 64 MB 128 MB 256 MB
(max_heap_table_size) Ratio 109.87% 100.00% 102.21% 100.48%

Table 5.8: Performance comparison between different values chosen for each MySQL
system variable

To evaluate the values of each variable, we give the ratio of the average execution

76 Chapter 5. Context of this work: Anticipeo

time4 in comparison to current settings. The current setting of each variable is thus

represented by 100%. We see that for most of the variables, the current value is al-

ready optimal. There are two variables innodb_buffer_pool_size and innodb_log_file_size

that could improve the actual performance if they were defined with the setting of 12

GB and 1 GB, respectively.

We run an integral test with these new DBMS settings on the whole system and we

obtain a result of 42% worse than the current setting. The reason is the excessively high

value of innodb_buffer_pool_size for a machine that serves at the same time as a database

and a web server. We reset this variable to 8 GB and then we run an integral test again.

This time, we get a better performance of 7.32%.

The conclusion is that the system is running with an almost optimal configuration

and by the DBMS configuration approach, we get 7.32% better performance.

5.4.4 Selection of materialized views

We implemented the classical greedy algorithm introduced in Section 5.3.3 on top of the

database DB1 (information about DB1 is shown in Table 5.6). The dimension-hierarchies

information about the database DB1 is illustrated in Figure 5.10.

Figure 5.10: Illustration of dimension-hierarchies about the database DB1 of the An-
ticipeo application

The database DB1 has 2 dimensions: customer dimension and product dimension.

Each dimension is composed of 4 hierarchies respectively. The customer dimension has

a total of 10 elements and the product dimension has 8 elements. So the resulting lattice

has a total of 10 * 8= 80 nodes. Among these 80 nodes, 79 views could be materialized to

accelerate the across-hierarchy manipulations because the node presenting raw data is

4Here, the average execution time results from five executions of the same test. The objective is to get
an average and more realistic estimation time.

5.4. Implementation and optimization results 77

already stored physically. We evaluate each view cost and search for the most beneficial

views regarding their benefits. The gain can be calculated for different numbers of views

allowed to be materialized (see Table 5.9).

Number of tuples Total Gain

materialized evaluating cost

no view materialized 0 53 706 017

1 view materialized 59 561 35 718 419 33.49%
3 views materialized 141 115 16 396 767 69.47%
5 views materialized 240 841 8 037 913 85.03%
7 views materialized 433 146 6 495 694 87.91%

Table 5.9: Result of theoretical gain of implementing Greedy Algorithm

In this table, we see that when one additional view is allowed to be materialized, the

view containing 59 561 tuples is chosen. The materialization of this view reduces the

total cost of evaluating all the views from 53 706 017 to 35 718 419, which represents a

gain of 33.49%. In the case that 3 views are allowed to be materialized, we reach a gain of

69.47%, nearly 70%. In terms of additional data, 141 115 tuples need to be materialized.

Compared to the table of raw data containing 679 823 tuples, we need to materialize

20% more data. This is an interesting result for the Anticipeo application to improve the

response time of the across-hierarchy manipulations.

Unfortunately, MySQL, the DBMS Anticipeo uses to manage data, supports neither

materialized views nor automatic query rewriting by materialized views. We mention

query rewriting because when we need to replace the raw data table by a materialized

view to answer a query faster, a query rewriting process should be performed. Our

results show the possibility of performance improvement if we had used another DBMS

that supports automatic query rewriting. We could cite the Oracle relational database

system.

5.4.5 Database schema modification

Evaluations described in Section 5.3.4 have been conducted on the same hardware envi-

ronment and the actual DBMS configuration of the enterprise.

We instantiate the user manipulations presented in Section 5.2.4. Then we select

the most important query of queries associated to each type of user manipulations to

evaluate on both the actual data schema and the new data schema.

The first category of user manipulations is simple retrieval of precomputed aggre-

gated sales. The execution time of these queries is only several milliseconds, which is

78 Chapter 5. Context of this work: Anticipeo

so small that we do not perform any evaluation on this first category. The second cat-

egory is update of base sales. Query of type 1 is the query that performs this update

on raw data. The third category consists of recomputation of aggregations requested.

Query of type 2 is the query that computes the aggregated information displayed on the

requested level of requested hierarchy after the update. Regarding the fourth category

of user manipulations, we have initiated two queries of across-hierarchy consultation.

Query of type 3 consists of a query which explores one customer hierarchy with the

filter of a fixed product information while query of type 4 is a query which explores

one product hierarchy with the filter of a fixed customer hierarchy. Every evaluation is

performed several times to get an average result in order to reduce the impact of param-

eters that we cannot control.

Creating two separate materialized views

Table 5.10 shows the results performed using the actual schema and two separate ma-

terialized views. With the schema using two materialized views, an improvement of an

average gain of 8.08%, 4.03%, 17.13% and 12.09%, respectively, is reached for the four

query types.

Query Schema Average Gain

evaluation time

(in seconds)

Query type 1 Actual schema 4.33

Two MVs schema 3.98 8.08%
Query type 2 Actual schema 15.70

Two MVs schema 15.07 4.03%
Query type 3 Actual schema 3.95

Two MVs schema 3.28 17.13%
Query type 4 Actual schema 3.25

Two MVs schema 2.86 12.09%

Table 5.10: Evaluation of queries on actual schema and on new data schema using two
materialized views (Two MVs schema)

Using star schema

In a second stage, we make some more important changes to the data schema. We create

three dimension tables, one fact table and then we integrate data in the fact table and

dimension tables. In this case, there are three dimensions: Customer, Product and Time.

The fact table stores foreign keys to dimension tables and sales measures, i.e., turnover,

quantity and price.

5.4. Implementation and optimization results 79

Evaluations have been conducted on the actual schema and the star schema. We have

obtained results shown in Table 5.11. The table reveals some unexpected results. Only

Query Schema Average Gain

evaluation time

(in seconds)

Query type 1 Actual schema 4.33

Star schema 0.55 87.25%
Query type 2 Actual schema 15.70

Star schema 22.03 -40.30%
Query type 3 Actual schema 3.95

Star schema 4.45 -12.44%
Query type 4 Actual schema 3.25

Star schema 7.70 -136.80%

Table 5.11: Evaluation of queries on actual schema and on star schema

the query type 1 has some significant improvements. All other queries are less efficient

using the star schema than using the actual schema. This result is due to the particularity

of sales forecasting applications. In the forecasting applications, time is always requested

by block, e.g., sales are displayed in months to show the sales trend from the past

to the future in the Anticipeo application. In this case, the time dimension is rather

an aggregation criterion than a condition of selection as in classical multidimensional

queries. The fact of being an aggregation criterion, more precisely having year and

month in GROUP BY in this query type, makes queries take more time to execute. Here,

we need to design the star schema with adaptation to this particularity. We propose

to “merge” the time dimension into the fact table. Then we have only two explicit

dimension tables and the time dimension becomes implicit, which is hidden in the fact

table.

Figure 5.11 depicts the modified star schema. In this schema, we do not have the

time dimension anymore. In the fact table, we have 36 attributes for each measure of

the 36 historical sales and 24 attributes for each measure of the next 24 sales. As there

are three measures in this example, i.e., turnover, quantity and price, we have 36*3=108

attributes for historical sales and 24*3=72 attributes for predicting sales. In addition,

cumulations by year are also added as attributes in this fact table. This pre-processing

of grouping the sales in months and in years accelerates request response time.

The query example is shown in Figure 5.12 which performs the same tasks as the

query shown in Figure 5.4 on the actual schema and the query shown in Figure 5.9

on the original star schema. Line 1 to line 4 perform a projection of some descriptive

information, 36 sums on historical sales, 24 sums on forecasting sales and 4 sums on

80 Chapter 5. Context of this work: Anticipeo

Figure 5.11: Modified star schema for the Anticipeo application

Figure 5.12: SQL query for the example of an electrical appliance manufacturer on mod-
ified star schema

the annual cumulations. Line 5 to line 7 show the tables involved in this query and

their relations. Line 7 gives the criteria of classification. This query returns the sales

information about a supermarket whose customer_key is equal to 500 and displays the

result at level 2 in product hierarchy 2 pattern in the measure of turnover. Compared

to the query on the original star schema (Figure 5.9), it involves less tables, so naturally

5.5. Overall optimization result 81

less join operations and more important, less criteria in the group by operation.

We then compare the evaluation time of the 4 queries on this star schema without

the time dimension, on the actual schema and on the original star schema. The results

are shown in Table 5.12. This result reveals that the star schema without the explicit time

dimension improves the response time of all the types of queries. Besides, it balances

the inadequate utilization of the original star schema in this case by preprocessing the

grouping by time (month and year).

Query Schema Average Gain

(in seconds) evaluation time

Actual schema 4.33

Query type 1 Without time DIM 2.32 46.44%
With time DIM 0.55 87.25%
Actual schema 15.70

Query type 2 Without time DIM 9.90 36.94%
With time DIM 22.03 -40.30%
Actual schema 3.95

Query type 3 Without time DIM 1.30 67.20%
With time DIM 4.45 -12.44%
Actual schema 3.25

Query type 4 Without time DIM 1.32 59.36%
With time DIM 7.70 -136.80%

Table 5.12: Evaluation of queries on actual schema, on star schema with time dimension
and on star schema without time dimension

5.5 Overall optimization result

Facing with an operational application that has performance problems, we proposed a

guideline with different optimization issues. We search for optimization tracks from

the hardware, the DBMS tuning, the application programming and the conceptual and

physical database design.

The observations on the activities of the hardware show that the application is well

supported by the actual hardware platform. With an effort to the DBMS tuning, we get

an improvement of approximately 7%. The diagnoses of the latency provenance reveal

that the programs of the application are already correctly optimized. Among these op-

timization tracks, an adequate database design to a specific application seems crucial. It

can significantly improve the performance. Based on the actual schema, we propose a

solution of additional materialized views using the traditional greedy algorithm. This

solution is shown to bring 70% better performance for one time-consuming type of user

82 Chapter 5. Context of this work: Anticipeo

manipulations when only 20% more information compared to the raw data is material-

ized. Despite the fact that this solution is not applicable on the MySQL DBMS, it stays

an interesting suggestion for future database design of Anticipeo and for users of other

DBMSs. The most significant improvement is the adoption of the star schema for this

application. With this new data schema adapted to features of sales forecasting sys-

tems, which is a star schema without explicit time dimension, the visualization issues of

the Anticipeo application are well supported. The visualization of a single hierarchy is

almost immediate thanks to precomputed and stored aggregates at all levels of all hier-

archies. The visualization of several hierarchies is now possible in less than 1.3 second

on a database of 50 GB.

However, the specific operations of predictive data modifications on sales forecasting

applications remain to be optimized. In order to display an interface of navigation like

the one shown in Figure 5.2, two levels of aggregates should be recomputed. The first

one is the aggregate involved in the modification (block 1, block 2 and block 3 of Figure

5.2). The second one is the level below (block 4 of Figure 5.2). At this level, the aggregate

components of the modified aggregate should be recomputed. We need to execute one

time the query type 1 in order to update raw data and two times the query type 2 in

order to recompute the two levels of aggregates (see query type description in Section

5.4.5). On the example database of 50 GB, the evaluation of each query type on the

new star schema without time dimension is shown in Table 5.12. A predictive data

modification takes more than 22.12 (= 2.32 + 9.90 + 9.90) seconds. This response time

is not acceptable for interactive utilization of the application. That is why we launched

a research work to this specific feature of sales forecasting systems and proposed our

PAM and PAM II algorithms.

5.6 Recommendations

With respect to observations, benchmarking and experiments of our proposals, we pro-

pose some recommendations to improve the performance of the Anticipeo application.

The actual infrastructure of the hardware platform is suitable for existing customer

databases of Anticipeo. There is no need to switch to more powerful hardwares except

for future eventually large scale customer databases. The database management system

and application programs are correctly configured and optimized. Obviously, it seems

interesting to change the actual data schema to a star schema without time dimension,

which is our strong suggestion in this case. The change of data schema could lead to a

series of modifications on actual programs. The schema in the first solution of data de-

5.6. Recommendations 83

sign with two separate materialized views could be applied as the transit schema before

the system toggles to a completely new schema. Finally, to improve the performance

of aggregate modification propagations, new programs should be developed using the

PAM algorithm I or II. PAM II is recommended if there are enough physical spaces for

additional data materialization. Otherwise, PAM I is an alternative.

84 Chapter 5. Context of this work: Anticipeo

Chapter 6

Conclusion and future work

This work is based on a real world and operational application tat displays some perfor-

mance problems. Anticipeo, a sales forecasting application, provides its customers with

satisfying sales forecasts precision, but the performance problem prevents the company

from further collaborations with customers working on large databases. Improving the

performance of the application is the main objective of the CIFRE thesis. An audit had

been conducted on the application to diagnose the latency provenance. It covered differ-

ent angles of possible latency provenance such as hardware platform, database manage-

ment system tuning, application programming and database physical and conceptual

design. Once having identified the latency, which is mainly related to the database,

we proposed some underlying solutions: database management system better tuning,

adding materialized views and revising the database design. These technical solutions

helped the application to achieve a better performance. However, the problem of effi-

ciently propagating an aggregate modification through a dimension-hierarchy structure

still remains. Existing research work did not investigate this problem. We propose an

algorithm named PAM to manipulate and solve this issue. The PAM algorithm identifies

the raw tuples to update, calculates the delta of each raw tuple, then identifies and up-

dates aggregates by raw tuples and the calculated delta. Moreover, an extended version

of the algorithm is proposed to bring better performance by using additional semantics

(i.e. dependencies). The efficiency of the PAM algorithm and its extension is proved by

experiments on the data of the Anticipeo application.

At the end of the thesis, the performance of the Anticipeo application has been signif-

icantly improved. Most of the interactive user manipulations became almost immediate

instead of seconds/minutes of waiting. There is some work to be completed afterwards.

The new database conceptual design will be applied to the whole presentation layer of

85

86 Chapter 6. Conclusion and future work

the application. Programs related to the presentation layer need to be updated. New

algorithms defined on this data schema will be implemented and will replace former

solutions.

6.1 Contributions

The scientific contributions of this work can be summarized as follows:

1. The first contribution is the proposal of a guideline of optimizations for applica-

tions suffering from performance troubles. This is a general guideline considering

four main performance issues. We have shown the process of the guideline in the

case of the Anticipeo application. First, diagnosis on hardware platform, program-

ming and SQL query execution are carried out. Second, database management

system tuning takes place. Once identifying the bottleneck of the system, mod-

ifications on this part are implemented to remove the bottleneck. There can be

several modifications to accomplish different purposes. Finally, measurement is

performed again to validate the modifications.

2. The second contribution is the proposal of an algorithm which handles the prob-

lem of efficiently propagating an aggregate modification through a dimension-

hierarchy structure. This algorithm is capable of identifying raw tuples, which are

impacted by the modification of the aggregate. It calculates the delta of each raw

tuple involved regarding the predefined decomposition rules. Other aggregates

impacted by the modification are identified and they are updated according to the

delta of raw tuples. The algorithm is shown to be more efficient than the current

solution (which destroys and reconstructs all the aggregates from scratch) in most

cases. The PAM algorithm can be applied to most distributive and algebraic ag-

gregate functions, such as SUM, COUNT and AVG, although the MIN and MAX

functions need some additional materialization information.

3. The third contribution is the proposal of an extension of the PAM algorithm. The

dimension structure of the data warehouse is determined from the beginning of the

database design. The relationship between aggregates and raw tuples is known.

In the extension of the algorithm, this relationship, so called dependency of ag-

gregates on raw tuples, is materialized. This provides a direct access from both

sides: from an aggregate to its composing raw tuples and from a raw tuple to its

contributing aggregates. Hence, the direct access enables a better performance of

the extension.

6.2. Future work 87

Like the original algorithm, the extension is also applicable to most distributive

and algebraic aggregate functions. In term of efficiency, the extension is shown to

perform better compared to the current solution and the original PAM algorithm.

Its scalability is also better than the original algorithm in spite of the fact that a

remarkable amount of physical storage is required to ensure the efficiency.

6.2 Future work

For further work, we have identified some tracks:

1. We will take into consideration the scalability of the PAM algorithm and its deriva-

tive. We have shown in this work that the algorithms are polynomial in time. We

are facing performance issues when databases reach a certain size. Our idea is

essentially to decrease the number of raw tuples, which is the main criterion of

time complexity. In order to do this, we will classify raw tuples into groups. Our

algorithms will then handle groups of tuples instead of raw tuples. In this case,

the time complexity will depend on the number of groups (which we expect to

be less than the current one). For our algorithms, we need to identify dependen-

cies between aggregates and groups and then adapt our algorithms to be able to

manipulate groups instead of raw tuples.

The research issue in this perspective is how to build significant groups. A group

should consist of tuples that appear frequently in the same aggregates, which

would allow us to calculate and store differential values for these groups of tuples.

The concept of maximal rectangles in formal concept analysis [GW99, CR04, Wil09]

seems to be possible directions. We will consider the raw tuples as the set of objects

and the aggregates as the set of attributes. The maximal rectangles refer to our

group of tuples.

2. Nevertheless, central databases have their limits. When dealing with very large

databases, we should consider distributed solutions. Our algorithms should be

revised to be applied to distributed databases [OV11, CFK∗99]. These algorithms

can be implemented on single machines, which represent the atomic units of a

distributed database. Solutions for aggregating results from different machines

should be provided to compute the final results.

3. The third perspective is to evaluate the performance of the propagation of the

aggregate-based modification in a column-oriented database [SAB∗05, OOCR09].

88 Chapter 6. Conclusion and future work

In a column-oriented database, tables are stored as sections of columns of data

rather than as rows of data, as in most relational database management systems.

Column-oriented databases show their efficiency when new values of a column

are supplied for all the rows at once, because that column data can be written

efficiently and replace old column data without touching any other columns for

the rows. This sounds to be a possible infrastructure for forecasting systems. When

modifying the result of an aggregate, only the values in the column need to be

updated. Storing data in columns seems to be more appropriate in this case. Our

objective is to evaluate this forecasting system on a column-oriented system and

eventually to reveal new research issues when column-oriented systems face this

update intended application.

Bibliography

[ACGG04] Armstrong S., Collopy F., Graefe A., Green K. C.: An-
swers to frequently asked questions (FAQ) in forecasting, 2004.
http://repository.upenn.edu/marketing_papers/156/. Last updated 24

November 2004. 3, 12

[Ack89] Ackoff R. L.: From data to wisdom. Journal Of Applied Systems Analysis 16,
1 (1989), 3–9. 13

[AG05] Armstrong J. S., Green K. C.: Demand Forecasting: Evidence-based Meth-

ods. Monash Econometrics and Business Statistics Working Papers 24/05,
Monash University, Department of Econometrics and Business Statistics,
2005. 12

[Ale89] Alexander E. R.: Sensitivity analysis in complex decision models. Journal

of the American Planning Association 55, 3 (1989), 323–333. 23

[App65] Applebaum W.: Can store location research be a science? Economic Geogra-

phy 41, 3 (July 1965), 234–237. 57

[Arm00] Armstrong J. S.: Principles of Forecasting: A Handbook for Researchers and

Practitioners. International Series in Operations Research & Management
Science. Kluwer Academic, 2000. xiii, 12, 13

[Ars] Arshad A.: Storage modes in ssas (molap, rolap and holap).
http://www.sql-server-performance.com/2009/ssas-storage-modes/. 19

[AV98] Adamson C., Venerable M.: Data warehouse design solutions. Wiley Com-
puter Publishing. Wiley, 1998. 21

[Bel02] Bellahsene Z.: Schema evolution in data warehouses. Knowledge and Infor-

mation Systems 4, 3 (2002), 283–304. 22

[BHS∗98] Ballard C., Herreman D., Schau D., Bell R., Kim E., Valencic A.: Data

Modeling Techniques for Data Warehousing. IBM Corp., 1998. 20

89

90 Bibliography

[BKV06] Biren S., Karthik R., Vijay R.: A hybrid approach for data warehouse
view selection. International Journal of Data Warehousing and Mining 2 (2006),
1–37. 66

[BMBT03] Body M., Miquel M., Bedard Y., Tchounikine A.: Handling Evolutions in
Multidimensional Structures. In International Conference on Data Engineering

(ICDE) (2003), pp. 581–591. 22

[bo] Business Objects. Http://www.sap.com/sapbusinessobjects/. 17

[BPT97] Baralis E., Paraboschi S., Teniente E.: Materialized views selection in a
multidimensional database. In Very Large Data Bases (VLDB) (1997), pp. 156–
165. 66

[BS02] Bock D. B., Schrage J. F.: Denormalization guidelines for base and trans-
action tables. SIGCSE Bulletin 34, 4 (Dec. 2002), 129–133. 64

[CCS93] Codd E. F., Codd S. B., Salley C. T.: Providing OLAP (On-Line Analytical

Processing) to User-Analysis: An IT Mandate, vol. 32. Codd & Date, Inc., 1993.
6, 18

[CD97] Chaudhuri S., Dayal U.: An overview of data warehousing and olap
technology. SIGMOD Record 26, 1 (Mar. 1997), 65–74. xiii, 13, 14, 15, 17

[CFK∗99] Chervenak A., Foster I., Kesselman C., Salisbury C., Tuecke S.: The data
grid: Towards an architecture for the distributed management and analysis
of large scientific datasets. Journal of network and computer applications 23

(1999), 187–200. 87

[Cha00] Chaman J. L.: Which forecasting model should we use? Journal of Business

Forecasting Methods & Systems 19, 3 (2000), 2. 57

[CLR04] Chen S., Liu B., Rundensteiner E. A.: Multiversion-based view mainte-
nance over distributed data sources. ACM Transactions on Database Systems

29, 4 (2004), 675–709. 22

[cog] Cognos. Http://www-01.ibm.com/software/analytics/cognos/. 17

[CR04] Carpineto C., Romano G.: Concept Data Analysis: Theory and Applications.
Wiley, 2004. 87

[CR05] Chen S., Rundensteiner E. A.: Gpivot: Efficient incremental mainte-
nance of complex rolap views. In International Conference on Data Engineering

(ICDE) (2005), pp. 552–563. 22

[csv] Definition of CSV. Http://searchsqlserver.techtarget.com/definition/comma-
separated-values-file. 58

Bibliography 91

[eSa] eSalesTrack: Sales forecasting. http://www.esalestrack.com/Article/sales-
forecasting.html. Accessed on 13 August 2011. 4

[Eur] European Centre for Medium-Range Weather Forecasts:.
http://www.ecmwf.int/. Accessed on 18 January 2012. 2

[Fen11] Feng H.: Performance problems of forecasting systems. In Advances in

Databases and Information Systems (ADBIS) (2) (2011), pp. 254–261. 40

[FLHD11] Feng H., Lumineau N., Hacid M.-S., Domps R.: Data management in
forecasting systems: Case study - performance problems and preliminary
results. In Bases de données Avancées (BDA) (2011). 40

[FLHD12] Feng H., Lumineau N., Hacid M.-S., Domps R.: Hierarchy-based update
propagation in decision support systems. In Database Systems for Advanced

Applications (DASFAA) (2) (2012), pp. 261–271. 30

[For] ForecastPro:. http://www.forecastpro.com/. 5

[Fri09] Fritchey G.: SQL Server Execution Plans. Simple Talk Publishing, 2009. 64

[FSd] Definition of Forecasting System. Http://www.businessdictionary.com
/definition/forecasting-system.html. Accessed on 24 August 2011. 1, 2

[GBGB05] Gonzalez-Benito O., Gonzalez-Benito J.: The role of geo-demographic
segmentation in retail location strategy. International Journal of Market Re-

search 47 (2005), 295–305. 57

[GCB∗97] Gray J., Chaudhuri S., Bosworth A., Layman A., Reichart D., Venka-
trao M., Pellow F., Pirahesh H.: Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub totals. Data Mining and

Knowledge Discovery 1, 1 (1997), 29–53. 36

[Gil06] Gilmore Lewis LLC.: How to Develop an Effective Sales Forecast.
White paper, Gilmore Lewis LLC., July 2006. Available online (9 pages),
http://www.gilmorelewis.com/storage/salesforecast.pdf. 4

[GM95] Gupta A., Mumick I. S.: Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Engineering Bulletin 18, 2 (1995),
3–18. 21

[GM99] Gupta H., Mumick I. S.: Selection of views to materialize under a mainte-
nance cost constraint. In International Conference on Database Theory (ICDT)

(1999), pp. 453–470. 66

[GMD] GMDH Shell:. http://www.gmdhshell.com/. 5

92 Bibliography

[GMRR01] Gupta A., Mumick I. S., Rao J., Ross K. A.: Adapting materialized views
after redefinitions: techniques and a performance study. Information Systems

26, 5 (2001), 323–362. 22

[Goa] Definition of goal seeking. Http://www.answers.com/topic/goal-
seeking#ixzz1z0eLY5U7. Accessed on 20 June 2012. 23

[God] Godard S.: sar(1) - linux man page. http://linux.die.net/man/1/sar. Ac-
cessed on 15 December 2010. 74

[GR06] Greistorfer P., Rego C.: A simple filter-and-fan approach to the facility
location problem. Computers & Operations Research 33 (2006), 2590–2601. 57

[GRP06] Golfarelli M., Rizzi S., Proli A.: Designing what-if analysis: towards
a methodology. In International Workshop on Data Warehousing and OLAP

(DOLAP) (2006), pp. 51–58. 23

[Gup97] Gupta H.: Selection of views to materialize in a data warehouse. In Inter-

national Conference on Database Theory (ICDT) (1997), pp. 98–112. 66

[GW99] Ganter B., Wille R.: Formal concept analysis: mathematical foundations.
Springer, 1999. 87

[HMV99] Hurtado C. A., Mendelzon A. O., Vaisman A. A.: Maintaining data cubes
under dimension updates. In International Conference on Data Engineering

(ICDE) (1999), pp. 346–355. 22

[Hof93] Hoffman M. S.: The world almanac and book of facts 1993. Pharos Books; 125

Annv edition, 1993. 12

[HRU96] Harinarayan V., Rajaraman A., Ullman J. D.: Implementing data cubes
efficiently. In Special Interest Group on Management Of Data (SIGMOD) (1996),
pp. 205–216. 19, 66

[Hyn08] Hyndman R.: Forecasting with exponential smoothing: the state space approach.
Springer series in statistics. Springer, 2008. 57

[IBM07] IBM Press release: IBM and Singapore’s Land Transport Author-
ity Pilot Innovative Traffic Prediction Tool, August 2007. http://www-
03.ibm.com/press/us/en/pressrelease/21971.wss. Accessed on 18 January
2012. 2

[IIS01] Inmon W., Imhoff C., Sousa R.: Corporate Information Factory. Wiley Com-
puter Publishing. John Wiley & Sons, 2001. 14

[Inm05] Inmon W. H.: Building the Data Warehouse (3rd Edition). John Wiley & Sons,
Inc., New York, NY, USA, 2005. 6, 14

Bibliography 93

[JD07] Johnston J., Dinardo J. E.: Econometric Methodes (4th Edition). McGraw-
Hill, New York, NY, USA, 2007. 12

[KR99] Kotidis Y., Roussopoulos N.: Dynamat: A dynamic view management
system for data warehouses. In Special Interest Group on Management Of Data

(SIGMOD) (1999), pp. 371–382. 66

[KR02] Kimball R., Ross M.: The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling (Second Edition). John Wiley & Sons, Inc., 2002. 6, 14,
17

[Kus99] Kusters B.: The forecasting report: A comparative survey of commercial
forecasting systems. IT Research (November 1999). 12

[KWW02] Kuo R. J., Wu P., Wang C. P.: An intelligent sales forecasting system through
integration of artificial neural networks and fuzzy neural networks with
fuzzy weight elimination. Neural Network 15, 7 (Sept. 2002), 909–925. 57

[LBYD08] Lv H., Bai X., Yin W., Dong J.: Simulation based sales forecasting on retail
small stores. In Winter Simulation Conference (WSC) (2008), pp. 1711–1716.
57

[LL06] Leung C. K.-S., Lee W.: Efficient update of data warehouse views with gen-
eralised referential integrity differential files. In British National Conference

on Databases (BNCOD) (2006), pp. 199–211. 22

[LSK01] Lee K. Y., Son J. H., Kim M. H.: Efficient incremental view maintenance
in data warehouses. In International Conference on Information and Knowledge

Management (CIKM) (2001), pp. 349–356. 21

[MD96] Mohania M., Dong G.: Algorithms for adapting materialised views in data
warehouses. In International Symposium on Cooperative Database Systems for

Advanced Applications (CODAS) (1996), pp. 309–316. 22

[mica] MicroStrategy. Http://www.microstrategy.com/. 17

[Micb] Microsoft: Partition storage modes and processing. SQL
Server Books Online (BOL) / MSDN. http://msdn.microsoft.com/en-
us/library/ms174915.aspx. 19

[Min] Ministry of Transport, Singapore Government: Electronic road pric-
ing. http://app.mot.gov.sg/Land_Transport/Managing_Road_Use /Elec-
tronic_Road_Pricing.aspx. Accessed on 18 January 2012. 2

[MJC] MJC2:. http://www.mjc2.com/demand-forecasting-software.htm. 5

[MK97] Mentzer J. T., Kahn K. B.: State of sales forecasting systems in corporate
america. Journal of Business Forecasting (1997), 6–13. 57

94 Bibliography

[MMSG98] Moon M. A., Mentzer J. T., Smith C. D., Garver M. S.: Seven keys to
better forecasting. Business Horizons (1998), 44–52. 57

[Mov] Definition of Moving Average. http://www.businessdictionary.com
/definition/moving-average.html. Accessed on 06 June 2012. 12

[MQM97] Mumick I. S., Quass D., Mumick B. S.: Maintenance of data cubes and
summary tables in a warehouse. In Special Interest Group on Management Of

Data (SIGMOD) (1997), pp. 100–111. 22

[MWH98a] Makridakis S. G., Wheelwright S., Hyndman R.: Forecasting: methods and

applications. Wiley series in management. Wiley, 1998. 57

[MWH98b] Makridakis S. G., Wheelwright S. C., Hyndman R. J.: Forecasting: Methods

And Applications, 3rd edition. Wiley series in management. Wiley, 1998. 12

[Nat] National Oceanic and Atmospheric Administration, US
Government: National Centers for Environmental Prediction.
http://www.ncep.noaa.gov/. Accessed on 18 January 2012. 2

[Nat11] National Institute of Standards and Technology (NIST)
of America: Engineering Statistics Handbook, 2011.
http://www.itl.nist.gov/div898/handbook/index.htm. Last updated 1

April 2011. 12

[NLR98] Nica A., Lee A. J., Rundensteiner E. A.: The cvs algorithm for view syn-
chronization in evolvable large-scale information systems. In International

Conference on Extending Database Technology (EDBT) (1998), pp. 359–373. 22

[OLA97] OLAP Council: OLAP Council White Paper, 1997.
http://www.olapcouncil.org/research/whtpaply.htm. 18

[OLT] Definition of OLTP. Http://www.businessdictionary.com/definition/online-
transaction-processing-OLTP.html. Accessed on 11 May 2012. 18

[OM10] O’Brien J., Marakas G.: Management Information Systems. McGraw-Hill
Companies,Incorporated, 2010. 23

[OOCR09] O’Neil P., O’Neil E., Chen X., Revilak S.: Performance evaluation and
benchmarking. Springer-Verlag, Berlin, Heidelberg, 2009, ch. The Star
Schema Benchmark and Augmented Fact Table Indexing, pp. 237–252. 87

[Ora10] Oracle: MySQL performance tuning: top 5 tips. MySQL Webinar, April
2010. 65

[Ora11] Oracle: Server system variables, February 2011. http://dev.mysql.com
/doc/refman/5.0/en/server-system-variables.html. 65

Bibliography 95

[Ora12] Oracle: Materialized view concepts and architecture, 2012.
http://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm.
Accessed on 01 June 2012. 21

[OV11] Ozsu M. T., Valduriez P.: Principles of Distributed Database Systems. Springer,
2011. 87

[Pan97] Pannell D. J.: Sensitivity analysis of normative economic models: theoret-
ical framework and practical strategies. Agricultural Economics 16, 2 (May
1997), 139–152. 23

[Per] Calculate Percent Difference. Http://www.buzzle.com/articles/calculate-
percent-difference.html. Accessed on 15 June 2012. 43

[Phi88] Philippakis A. S.: Structured what if analysis in dss models. In Annual

Hawaii International Conference on Decision Support and Knowledge Based Sys-

tems Track (Los Alamitos, CA, USA, 1988), IEEE Computer Society Press,
pp. 366–370. 23

[PMN∗03] Petropoulos C., Metaxiotis K., Nikolopoulos K., Assimakopoulos V.,
Patelis A.: Sftis: a decision support system for tourism demand forecast-
ing. Journal of Computer Information Systems 44, 1 (2003), 21–32. 3

[Pow02] Power D. J.: Is a Data Warehouse a DSS? What is a star schema? How does
a snowflake schema differ from a star schema? DSS News 3, 4 (2002). 14

[Pow04] Power D. J.: Decision Support Systems: Frequently Asked Questions. iUniverse,
2004. 23

[Pow10] Power D. J.: What is analytical processing?, February 2010.
http://dssresources.com/faq/index.php?action=artikel&id=201. Accessed
06 June 2012. 17

[PVSV07] Papastefanatos G., Vassiliadis P., Simitsis A., Vassiliou Y.: What-if anal-
ysis for data warehouse evolution. In Data Warehousing and Knowledge Dis-

covery (DaWaK) (2007), pp. 23–33. 23

[Rei31] Reilly W. J.: The law of retail gravitation. New York: published by the author

(1931). 57

[RW99] Rowe G., Wright G.: The Delphi technique as a forecasting tool: issues
and analysis. International journal of forecasting 15 (October 1999), 353–375.
12

[SAB∗05] Stonebraker M., Abadi D. J., Batkin A., Chen X., Cherniack M., Fer-
reira M., Lau E., Lin A., Madden S., O’Neil E., O’Neil P., Rasin A., Tran

N., Zdonik S.: C-store: a column-oriented dbms. In Very Large Data Bases

(VLDB) (2005), VLDB Endowment, pp. 553–564. 87

96 Bibliography

[sas] SAS. Http://www.sas.com/. 17

[SC09] Schumaker R. P., Chen H.: A quantitative stock prediction system based
on financial news. Information Processing & Management 45 (Sept. 2009), 571–
583. 3

[Sch07] Schmid P.: Seagate Savvio 15k.1: 15,000 RPM, October 2007.
http://www.tomshardware.com/reviews/sas-hard-drives,1702-4.html. Ac-
cessed on 28 February 2011. 75

[Sci12] Science Buddies: Variance & standard deviation, 2012.
http://www.sciencebuddies.org/science-fair-projects/project_data _analy-
sis_ variance_std_deviation.shtml. Accessed on 03 April 2012. 46

[SDN98] Shukla A., Deshpande P., Naughton J. F.: Materialized view selection for
multidimensional datasets. In Very Large Data Bases (VLDB) (1998), pp. 488–
499. 66

[SFd] Definition of Sales forecast. Http://www.businessdictionary.com/definition
/sales-forecast.html. Accessed on 15 August 2011. 4

[spr] SpreadSheet. Http://office.microsoft.com/en-us/excel/. 17, 58

[std] Definition of Standard deviation. Http://www.stats.gla.ac.uk/steps /glos-
sary/presenting_data.html#standev. 45

[SZTZ08] Schwartz B., Zaitsev P., Tkachenko V., Zawodny J. D.: High Performance

MySQL, Second Edition. O’Reilly Media, 2008. 75

[Utl02] Utley C.: Designing the star schema database. Data Warehousing Resources

(2002), 1–13. 21

[var] Definition of Variance. Http://www.stats.gla.ac.uk/steps/glossary /prob-
ability_distributions.html#variance. 45

[Vir09] Virtual Advisor, Inc.: Conduct a sales forecast, 2009. http://www.va-
interactive.com/inbusiness/editorial/sales/ibt/sales_fo.html. Accessed on
25 January 2012. 56

[VS99] Vassiliadis P., Sellis T. K.: A survey of logical models for olap databases.
SIGMOD Record 28, 4 (1999), 64–69. 71

[Wil09] Wille R.: Restructuring lattice theory: An approach based on hierarchies
of concepts. In International Conference on Formal Concept Analysis (ICFCA)

(2009), Springer-Verlag, pp. 314–339. 87

[Win11] Winston W.: Microsoft Excel 2010: Data Analysis and Business Modeling.
Microsoft Press Series. Microsoft Press, 2011. 23

Bibliography 97

[Zai07] Zaitsev P.: Innodb performance optimization basics, Novem-
ber 2007. http://www.mysqlperformanceblog.com/2007/11/01/innodb-
performance-optimization-basics. 66, 75

[ZLE07] Zhou J., Larson P.-Å., Elmongui H. G.: Lazy maintenance of materialized
views. In Very Large Data Bases (VLDB) (2007), pp. 231–242. 21

98 Bibliography

Publications

International conferences with reviewing committee

• Feng H., Lumineau N., Hacid M.-S., Domps R.: Hierarchy-Based Update Propa-

gation in Decision Support Systems. In Database Systems for Advanced Applications

(DASFAA) (2), pp. 261-271, 2012.

• Feng H.: Performance problems of forecasting systems. In East-European Conference

on Advances in Databases and Information Systems (ADBIS) (II), pp. 254-261, 2011.

National conference with reviewing committee

• Feng H., Lumineau N., Hacid M.-S., Domps R.: Data management in forecasting

systems: Case study - performance problems and preliminary results. In proceed-

ings of Bases de Données Avancées (BDA), 2011.

99

100 Author’s publications

Title: Data Management in Forecasting Systems: Optimization and Update Issues

Abstract: In daily life, more and more forecasting systems are used to determine what the

future holds in many areas like climate, weather, traffic, health, finance, and tourism. These pre-

dictive analytics systems support three functionalities: prediction, visualization and simulation

based on modifications. A specific problem for forecasting systems is to ensure data consistency

after data modification and to allow updated data access within a short latency.

Forecasting systems are usually based on data warehouses for data storage, and OLAP tools

for historical and predictive data visualization. Data that are presented to and modified by end

users are aggregated data. Hence, the research issue can be described as the propagation of an

aggregate-based modification in hierarchies and dimensions in a data warehouse environment.

This issue corresponds to a view maintenance problem in a data warehouse. There exists a great

number of research works on view maintenance problems in data warehouses. However, they

only consider updates on source data or evolution of the structure of dimensions and hierarchies.

To our knowledge, the impact of aggregate modifications on raw data was not investigated. In

addition, end users perform the modification interactively. The propagation of the modification

should be efficient in order to provide an acceptable response time.

This “Conventions Industrielles de Formation par la REcherche (CIFRE)” thesis is supported

by the “Association Nationale de la Recherche et de la Technologie (ANRT)” and the company

Anticipeo. The Anticipeo application is a sales forecasting system that predicts future sales in

order to help enterprise decision-makers to draw appropriate business strategies in advance. By

the beginning of the thesis, the customers of Anticipeo were satisfied by the precision of the

prediction results, but there were unidentifiable performance problems.

During the working period, the work can be divided into two parts. In the first part, in

order to identify the latency provenance, we performed an audit on the existing application.

The result of audit showed the database may be the main source of latency. We proposed a

methodology relying on different technical approaches to improve the performance of the appli-

cation. Our methodology covers several aspects from hardware to software, from programming

to database design. The response time of the application has been significantly improved. How-

ever, there was still a situation which cannot be solved by these technical solutions. It concerns

the propagation of an aggregate-based modification in a data warehouse. The second part of

our work consists in the proposition of a new algorithm (PAM - Propagation of Aggregate-based

Modification) with an extended version (PAM II) to efficiently propagate an aggregate-based

modification. The algorithms identify and update the exact sets of source data and other ag-

gregates impacted by the aggregate modification. The optimized PAM II version achieves better

performance compared to PAM when the use of additional semantics (e.g., dependencies) is

possible. The experiments on real data of Anticipeo proved that the PAM algorithm and its

extension bring better performance when treating a backward propagation.

Keywords: OLAP, Data warehousing, Decision support systems, Optimization and performance,

view materialization.

