S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-64, 1991.
DOI : 10.1038/354056a0

M. S. Dresselhaus, G. Dresselhaus, and P. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications, 1996.

A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, and M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.58-14013, 1998.
DOI : 10.1103/PhysRevB.58.14013

M. Siegal, D. Overmyer, and P. Provencio, Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition Applied physics letters, pp.2171-2174, 2002.

J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, pp.391-59, 1998.

B. Yakobson, G. Samsonidze, and G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon, vol.38, issue.11-12, pp.1675-80, 2000.
DOI : 10.1016/S0008-6223(00)00093-2

B. I. Yakobson, C. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Physical review letters, pp.2511-2515, 1996.

M. B. Nardelli, B. Yakobson, and J. Bernholc, Brittle and ductile behavior in carbon nanotubes. Physical review letters, pp.4656-4665, 1998.

J. Salvetat, G. Briggs, J. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and shear moduli of single-walled carbon nanotube ropes. Physical review letters, pp.944-951, 1999.

J. Salvetat, J. Bonard, N. Thomson, A. Kulik, L. Forro et al., Mechanical properties of carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, pp.255-60, 1999.
DOI : 10.1007/s003390050999

T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, issue.6586, 1996.
DOI : 10.1038/382054a0

D. Pablo, P. Graugnard, E. Walsh, B. Andres, R. Datta et al., A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes Applied physics letters, pp.323-328, 1999.

K. Kaneto, M. Tsuruta, G. Sakai, W. Cho, and Y. Ando, Electrical conductivities of multi-wall carbon nano tubes, Synthetic Metals, vol.103, issue.1-3, pp.2543-2549, 1999.
DOI : 10.1016/S0379-6779(98)00221-5

P. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures, Journal of Nanoscience and Nanotechnology, vol.7, issue.4
DOI : 10.1166/jnn.2007.307

T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai et al., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, pp.405-769, 2000.

E. Minot, Y. Yaish, V. Sazonova, J. Park, M. Brink et al., Tuning carbon nanotube band gaps with strain. Physical review letters, pp.90-156401, 2003.

J. Cao, Q. Wang, and H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Physical review letters, pp.90-157601, 2003.

A. Rochefort, P. Avouris, F. Lesage, and D. Salahub, Electrical and mechanical properties of distorted carbon nanotubes, Physical Review B, vol.60, issue.19, p.13824, 1999.
DOI : 10.1103/PhysRevB.60.13824

K. G. Ong, K. Zeng, and C. Grimes, A wireless, passive carbon nanotube-based gas sensor, Sensors Journal, vol.2, issue.2, pp.82-90, 2002.

W. Cho, S. Moon, Y. Lee, Y. Lee, J. Park et al., Multiwall carbon nanotube gas sensor fabricated using thermomechanical structure. Electron Device Letters, IEEE 2005, issue.7, pp.26-498

P. Kim, L. Shi, A. Majumdar, and P. Mceuen, Thermal transport measurements of individual multiwalled nanotubes. Physical review letters, p.215502, 2001.

T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik et al., An Electrothermal Carbon Nanotube Gas Sensor, Nano Letters, vol.7, issue.12, pp.3686-90, 2007.
DOI : 10.1021/nl071964s

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.408.6881

M. Njuguna, C. Yan, N. Hu, J. Bell, and P. Yarlagadda, S andwiched carbon nanotube film as strain sensor, Composites Part B: Engineering, 2012.

R. Martel, T. Schmidt, H. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors Applied physics letters, p.2447, 1998.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, 1993.
DOI : 10.1038/363603a0

R. Philippe, B. Caussat, A. Falqui, Y. Kihn, P. Kalck et al., An original growth mode of MWCNTs on alumina supported iron catalysts, Journal of Catalysis, vol.263, issue.2, pp.345-58, 2009.
DOI : 10.1016/j.jcat.2009.02.027

M. Jose?yacaman, M. Miki?yoshida, L. Rendon, and J. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure Applied physics letters, pp.202-206, 1993.

K. Choy, Chemical vapour deposition of coatings, Progress in Materials Science, vol.48, issue.2, pp.57-170, 2003.
DOI : 10.1016/S0079-6425(01)00009-3

Y. Hao, Z. Qunfeng, W. Fei, Q. Weizhong, and L. Guohua, Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism, Carbon, vol.41, issue.14, pp.41-2855, 2003.
DOI : 10.1016/S0008-6223(03)00425-1

W. Li, S. Xie, L. X. Qian, C. B. Zou, B. Zhou et al., Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, vol.274, issue.5293, pp.274-1701, 1996.
DOI : 10.1126/science.274.5293.1701

S. Huang, Growing carbon nanotubes on patterned submicron-size SiO2 spheres, Carbon, vol.41, issue.12, pp.2347-52, 2003.
DOI : 10.1016/S0008-6223(03)00275-6

Q. Zhang, J. Huang, M. Zhao, W. Qian, Y. Wang et al., Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres, Carbon, vol.46, issue.8, pp.46-1152, 2008.
DOI : 10.1016/j.carbon.2008.04.017

H. Qian, A. Bismarck, E. S. Greenhalgh, G. Kalinka, and M. Shaffer, Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level, Chemistry of Materials, vol.20, issue.5, pp.1862-1871, 2008.
DOI : 10.1021/cm702782j

E. Thostenson, W. Li, D. Wang, Z. Ren, and T. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites, Journal of Applied Physics, vol.91, issue.9, pp.6034-6041, 2002.
DOI : 10.1063/1.1466880

Q. Zhang, J. Liu, R. Sager, L. Dai, and J. Baur, Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties, Composites Science and Technology, vol.69, issue.5, pp.594-601, 2009.
DOI : 10.1016/j.compscitech.2008.12.002

E. J. Garcia, B. L. Wardle, J. Hart, A. Yamamoto, and N. , Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ, Composites Science and Technology, vol.68, issue.9, pp.2034-2075, 2008.
DOI : 10.1016/j.compscitech.2008.02.028

F. An, C. Lu, J. Guo, S. He, H. Lu et al., Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite, Applied Surface Science, vol.258, issue.3, pp.1069-76, 2011.
DOI : 10.1016/j.apsusc.2011.09.003

A. Dupuis, The catalyst in the CCVD of carbon nanotubes???a review, Progress in Materials Science 2005, pp.929-61
DOI : 10.1016/j.pmatsci.2005.04.003

E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. Park et al., Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide, Advanced Materials, vol.78, issue.4, p.277, 2002.
DOI : 10.1002/1521-4095(20020219)14:4<277::AID-ADMA277>3.0.CO;2-A

Z. Han, Y. B. Kim, S. , and Z. M. , Application of hybrid sphere/carbon nanotube particles in nanofluids, Nanotechnology, vol.18, issue.10, p.105701, 2007.
DOI : 10.1088/0957-4484/18/10/105701

A. J. Hart and A. Slocum, Rapid Growth and Flow-Mediated Nucleation of Millimeter-Scale Aligned Carbon Nanotube Structures from a Thin-Film Catalyst, The Journal of Physical Chemistry B, vol.110, issue.16, pp.8250-8257, 2006.
DOI : 10.1021/jp055498b

J. I. Sohn, S. Lee, Y. Song, S. Choi, K. Cho et al., Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays, Applied Physics Letters, vol.78, issue.7, pp.78-901, 2001.
DOI : 10.1063/1.1335846

B. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang et al., Assembly of Highly Organized Carbon Nanotube Architectures by Chemical Vapor Deposition, Chemistry of Materials, vol.15, issue.8, pp.1598-606, 2003.
DOI : 10.1021/cm0202815

S. Zhu, C. Su, S. Lehoczky, I. Muntele, and I. D. , Carbon nanotube growth on carbon fibers, Diamond and Related Materials, vol.12, issue.10-11, pp.1825-1833, 2003.
DOI : 10.1016/S0925-9635(03)00205-X

H. Liu, Y. Zhang, D. Arato, R. Li, P. Mérel et al., Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer, Surface and Coatings Technology, vol.202, issue.17, pp.202-4114, 2008.
DOI : 10.1016/j.surfcoat.2008.02.025

V. G. De-resende, E. F. Antunes, A. De-oliveira-lobo, D. Oliveira, V. J. Trava-airoldi et al., Growth of carbon nanotube forests on carbon fibers with an amorphous silicon interface, Carbon, vol.48, issue.12, pp.48-3655, 2010.
DOI : 10.1016/j.carbon.2010.06.006

P. Lv, Y. Feng, P. Zhang, H. Chen, N. Zhao et al., Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers, Carbon, vol.49, issue.14, pp.49-4665, 2011.
DOI : 10.1016/j.carbon.2011.06.064

M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo et al., Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites, Advanced Materials, vol.41, issue.14, pp.1654-1662, 2010.
DOI : 10.1002/adma.200901955

L. Ci and J. Bai, Novel Micro/Nanoscale Hybrid Reinforcement: Multiwalled Carbon Nanotubes on SiC Particles, Advanced Materials, vol.48, issue.22, pp.2021-2025, 2004.
DOI : 10.1002/adma.200400379

URL : https://hal.archives-ouvertes.fr/hal-00018912

D. He, M. Bozlar, M. Genestoux, and J. Bai, Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles, Carbon, vol.48, issue.4, pp.1159-70, 2010.
DOI : 10.1016/j.carbon.2009.11.039

D. He, H. Li, and J. Bai, Experimental and numerical investigation of the position-dependent growth of carbon nanotube???alumina microparticle hybrid structures in a horizontal CVD reactor, Carbon, vol.49, issue.15, pp.49-5359, 2011.
DOI : 10.1016/j.carbon.2011.08.003

URL : https://hal.archives-ouvertes.fr/hal-00626579

D. He, H. Li, W. Li, P. Haghi-ashtiani, P. Lejay et al., Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles, Carbon, vol.49, issue.7, pp.2273-86, 2011.
DOI : 10.1016/j.carbon.2011.01.060

URL : https://hal.archives-ouvertes.fr/hal-00577998

C. Zhang, W. W. Tjiu, T. Liu, W. Y. Lui, I. Y. Phang et al., Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube???Two-Dimensional Clay Nanoplatelet Heterostructures, The Journal of Physical Chemistry B, vol.115, issue.13
DOI : 10.1021/jp112284k

E. T. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, issue.13, pp.61-1899, 2001.
DOI : 10.1016/S0266-3538(01)00094-X

E. T. Thostenson, C. Li, and T. Chou, Nanocomposites in context, Composites Science and Technology, vol.65, issue.3-4, pp.491-516, 2005.
DOI : 10.1016/j.compscitech.2004.11.003

R. F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures. Composite structures, pp.2793-810, 2010.

D. Wu, L. Wu, W. Zhou, Y. Sun, and M. Zhang, Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites, Journal of Polymer Science Part B: Polymer Physics, vol.46, issue.4, pp.479-89, 2010.
DOI : 10.1002/polb.21909

D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, vol.76, issue.20, p.2868, 2000.
DOI : 10.1063/1.126500

W. Zhang, R. Picu, and N. Koratkar, The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites, Nanotechnology, vol.19, issue.28, p.285709, 2008.
DOI : 10.1088/0957-4484/19/28/285709

H. Zhang and Z. Zhang, Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European polymer journal, pp.3197-207, 2007.

J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, and A. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer, vol.44, issue.19, pp.44-5893, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang et al., Correlations between percolation threshold, dispersion state, and aspect ratio of carbo n nanotubes, Advanced Functional Materials, issue.16, pp.17-3207, 2007.

I. Tucker and E. Liang, Stiffness predictions for unidirectional short-fiber composites: Review and evaluation, Composites Science and Technology, vol.59, issue.5, pp.655-71, 1999.
DOI : 10.1016/S0266-3538(98)00120-1

P. C. Ma, B. Z. Tang, and J. Kim, Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites, Carbon, vol.46, issue.11, pp.46-1497, 2008.
DOI : 10.1016/j.carbon.2008.06.048

T. V. Kosmidou, A. Vatalis, C. Delides, E. Logakis, P. Pissis et al., Structural, mechanical and electrical characterization of epoxy-amine

F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chemical Physics Letters, vol.370, issue.5-6, pp.820-824, 2003.
DOI : 10.1016/S0009-2614(03)00187-8

C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. Wagner, Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Composites Science and Technology, vol.62, issue.7-8
DOI : 10.1016/S0266-3538(02)00056-8

J. Dai, Q. Wang, W. Li, Z. Wei, and G. Xu, Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites, Materials Letters, vol.61, issue.1, pp.27-36, 2007.
DOI : 10.1016/j.matlet.2006.03.156

X. Xie, Y. Mai, and X. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science and Engineering: R: Reports, vol.49, issue.4, pp.89-112, 2005.
DOI : 10.1016/j.mser.2005.04.002

P. Ma, N. A. Siddiqui, G. Marom, and J. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review, Composites Part A: Applied Science and Manufacturing, vol.41, issue.10, pp.41-1345, 2010.
DOI : 10.1016/j.compositesa.2010.07.003

J. Kim and Y. Mai, Engineered interfaces in fiber reinforced composites, 1998.

E. T. Thostenson and T. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization, Journal of Physics D: Applied Physics, vol.35, issue.16, pp.35-77, 2002.
DOI : 10.1088/0022-3727/35/16/103

R. Sen, B. Zhao, D. Perea, M. E. Itkis, H. Hu et al., Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning, Nano Letters, vol.4, issue.3, pp.459-64, 2004.
DOI : 10.1021/nl035135s

F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye et al., Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns, Advanced Materials, vol.15, issue.14, pp.1161-1166, 2003.
DOI : 10.1002/adma.200304955

H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker et al., Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes, Chemistry of Materials, vol.17, issue.5, pp.967-73, 2005.
DOI : 10.1021/cm0484955

E. Choi, J. Brooks, D. Eaton, M. Haik, M. Hussaini et al., Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing, Journal of Applied Physics, vol.94, issue.9, pp.94-6034, 2003.
DOI : 10.1063/1.1616638

T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani et al., Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field, Advanced Materials, vol.14, issue.19, pp.1380-1383, 2002.
DOI : 10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V

J. M. Russell, S. Oh, I. Larue, O. Zhou, and E. Samulski, Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Films, pp.53-60, 2006.

M. D. Lynch and D. Patrick, Organizing Carbon Nanotubes with Liquid Crystals, Nano Letters, vol.2, issue.11, pp.1197-201, 2002.
DOI : 10.1021/nl025694j

Z. Fan and S. Advani, Characterization of orientation state of carbon nanotubes in shear flow, Polymer, vol.46, issue.14, pp.5232-5272, 2005.
DOI : 10.1016/j.polymer.2005.04.008

A. Xu, M. Yang, Q. Wu, and X. Hu-j-l, Flow field induced steady alignment of oxidized multi-walled carbon nanotubes, Chin Chem Lett, vol.7, p.849, 2005.

T. Fornes, J. Baur, Y. Sabba, and E. Thomas, Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes, Polymer, vol.47, issue.5, pp.1704-1718, 2006.
DOI : 10.1016/j.polymer.2006.01.003

R. Haggenmueller, H. Gommans, A. Rinzler, J. E. Fischer, and K. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chemical Physics Letters, vol.330, issue.3-4, pp.219-244, 2000.
DOI : 10.1016/S0009-2614(00)01013-7

S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. Jhon, Synthesis and Dispersion Characteristics of Multi-Walled Carbon Nanotube Composites with Poly(methyl methacrylate) Prepared by In-Situ Bulk Polymerization, Macromolecular Rapid Communications, vol.24, issue.18, pp.24-1070, 2003.
DOI : 10.1002/marc.200300089

L. Jin, C. Bower, and O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching Applied physics letters, p.1197, 1998.

Q. Wang, J. Dai, W. Li, Z. Wei, and J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites, Composites Science and Technology, vol.68, issue.7-8, pp.1644-1652, 2008.
DOI : 10.1016/j.compscitech.2008.02.024

F. Nanni, B. Mayoral, F. Madau, G. Montesperelli, and T. Mcnally, Effect of MWCNT alignment on mechanical and self-monitoring properties of extruded PET???MWCNT nanocomposites, Composites Science and Technology, vol.72, issue.10, 2012.
DOI : 10.1016/j.compscitech.2012.03.015

A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angewandte Chemie International Edition, vol.41, issue.11, pp.41-1853, 2002.
DOI : 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

A. A. Koval-'chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina et al., Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites, Macromolecules, issue.20, pp.41-7536, 2008.

S. Yuen, C. Ma, Y. Lin, and H. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite, Composites Science and Technology, vol.67, issue.11-12, pp.67-2564, 2007.
DOI : 10.1016/j.compscitech.2006.12.006

K. H. Kim and W. Jo, Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate), Composites Science and Technology, vol.68, issue.9, pp.68-2120, 2008.
DOI : 10.1016/j.compscitech.2008.03.008

N. G. Sahoo, Y. C. Jung, H. J. Yoo, and J. Cho, Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromolecular chemistry and physics, pp.1773-80, 2006.

P. C. Ma, J. Kim, and B. Tang, Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites, Composites Science and Technology, vol.67, issue.14, pp.2965-72, 2007.
DOI : 10.1016/j.compscitech.2007.05.006

A. Buldum and J. Lu, Contact resistance between carbon nanotubes, Physical Review B, vol.63, issue.16, p.161403, 2001.
DOI : 10.1103/PhysRevB.63.161403

M. Stadermann, S. Papadakis, M. Falvo, J. Novak, E. Snow et al., Nanoscale study of conduction through carbon nanotube networks, Physical Review B, vol.69, issue.20, 2004.
DOI : 10.1103/PhysRevB.69.201402

H. Huang, C. Liu, Y. Wu, and S. Fan, Aligned Carbon Nanotube Composite Films for Thermal Management, Advanced Materials, vol.4, issue.13, pp.1652-1658, 2005.
DOI : 10.1002/adma.200500467

V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and advances in nanocomposite processing techniques, Materials Science and Engineering: R: Reports, vol.54, issue.5-6, pp.121-285, 2006.
DOI : 10.1016/j.mser.2006.11.002

H. Meng, G. Sui, P. Fang, and R. Yang, Effects of acid- and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6, Polymer, vol.49, issue.2, pp.610-630, 2008.
DOI : 10.1016/j.polymer.2007.12.001

E. T. Thostenson and T. Chou, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites, Carbon, vol.44, issue.14, pp.44-3022, 2006.
DOI : 10.1016/j.carbon.2006.05.014

T. Chou, L. Gao, E. T. Thostenson, Z. Zhang, and J. Byun, An assessment of the science and technology of carbon nanotube-based fibers and composites, Composites Science and Technology, vol.70, issue.1, pp.1-19, 2010.
DOI : 10.1016/j.compscitech.2009.10.004

A. Koshio, M. Yudasaka, M. Zhang, and S. Iijima, A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication, Nano Letters, vol.1, issue.7, pp.361-364, 2001.
DOI : 10.1021/nl0155431

M. Paiva, B. Zhou, K. Fernando, Y. Lin, J. Kennedy et al., Mechanical and morphological characterization of polymer???carbon nanocomposites from functionalized carbon nanotubes, Carbon, vol.42, issue.14, pp.42-2849, 2004.
DOI : 10.1016/j.carbon.2004.06.031

X. Zhang, T. Liu, T. Sreekumar, S. Kumar, V. C. Moore et al., Poly(vinyl alcohol)/SWNT Composite Film, Nano Letters, vol.3, issue.9, pp.1285-1293, 2003.
DOI : 10.1021/nl034336t

C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Dispersion of Functionalized Carbon Nanotubes in Polystyrene, Macromolecules, vol.35, issue.23, pp.8825-8855, 2002.
DOI : 10.1021/ma020890y

M. S. Shaffer and A. Windle, Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites, Advanced Materials, vol.11, issue.11, pp.937-978, 1999.
DOI : 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9

L. Schadler, S. Giannaris, and P. Ajayan, Load transfer in carbon nanotube epoxy composites Applied physics letters, p.3842, 1998.

J. N. Coleman, U. Khan, and Y. Gun-'ko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Advanced Materials, vol.36, issue.6, pp.689-706, 2006.
DOI : 10.1002/adma.200501851

Z. Dang, J. Yuan, J. Zha, T. Zhou, S. Li et al., Fundamentals, processes and applications of high-permittivity polymer???matrix composites, Progress in Materials Science, vol.57, issue.4, pp.660-723
DOI : 10.1016/j.pmatsci.2011.08.001

URL : https://hal.archives-ouvertes.fr/hal-00778424

Z. M. Dang, L. Wang, Y. Yin, and Q. Zhang, Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites, Advanced Materials, vol.13, issue.6, pp.852-859, 2007.
DOI : 10.1002/adma.200600703

L. Wang and Z. Dang, Carbon nanotube composites with high dielectric constant at low percolation threshold Applied physics letters, pp.42903-42906, 2005.

C. Paul and W. Kuangáhsu, A low resistance boron-doped carbon nanotube?polystyrene composite, Journal of Materials Chemistry, vol.11, issue.10, pp.2482-2490, 2001.

B. Safadi, R. Andrews, and E. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films, Journal of Applied Polymer Science, vol.14, issue.14, pp.2660-2669, 2002.
DOI : 10.1002/app.10436

M. Cadek, J. Coleman, V. Barron, K. Hedicke, and W. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites Applied physics letters, pp.81-5123, 2002.

K. S. Park and J. Youn, Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites, Carbon, vol.50, issue.6, pp.2322-2352
DOI : 10.1016/j.carbon.2012.01.052

B. P. Grady, F. Pompeo, R. L. Shambaugh, and D. Resasco, Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.106, issue.23, pp.5852-5860, 2002.
DOI : 10.1021/jp014622y

F. Du, J. E. Fischer, and K. Winey, Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability, Journal of Polymer Science Part B: Polymer Physics, vol.121, issue.24, pp.41-3333, 2003.
DOI : 10.1002/polb.10701

A. Oliva-avilés, F. Avilés, and V. Sosa, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field, Carbon, vol.49, issue.9, pp.2989-97, 2011.
DOI : 10.1016/j.carbon.2011.03.017

Z. Dang, W. Li, and H. Xu, Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofillled polymer composites, Journal of Applied Physics, vol.106, issue.2, pp.24913-24918, 2009.
DOI : 10.1063/1.3182818

J. Zha, W. Li, R. Liao, J. Bai, and Z. Dang, High performance hybrid carbon fillers/binary???polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance, J. Mater. Chem. A, vol.40, issue.3, pp.843-51
DOI : 10.1039/C2TA00429A

URL : https://hal.archives-ouvertes.fr/hal-00765083

H. Xu, Z. Dang, M. Jiang, S. Yao, and J. Bai, Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black, J. Mater. Chem., vol.41, issue.4, pp.229-263, 2008.
DOI : 10.1039/B713857A

URL : https://hal.archives-ouvertes.fr/hal-00268205

J. Yuan, S. Yao, Z. Dang, A. Sylvestre, M. Genestoux et al., Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction, The Journal of Physical Chemistry C, vol.115, issue.13, pp.115-5515, 2011.
DOI : 10.1021/jp1117163

URL : https://hal.archives-ouvertes.fr/hal-00589862

M. Manchado, L. Valentini, J. Biagiotti, and J. Kenny, Thermal and mechanical properties of single-walled carbon nanotubes???polypropylene composites prepared by melt processing, Carbon, vol.43, issue.7
DOI : 10.1016/j.carbon.2005.01.031

G. T. Pham, Y. Park, Z. Liang, C. Zhang, and B. Wang, Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing, Composites Part B: Engineering, vol.39, issue.1, pp.209-225, 2008.
DOI : 10.1016/j.compositesb.2007.02.024

W. Feng, X. Bai, Y. Lian, J. Liang, X. Wang et al., Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization, Carbon, vol.41, issue.8, pp.41-1551, 2003.
DOI : 10.1016/S0008-6223(03)00078-2

N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor, Acta Materialia, vol.56, issue.13, pp.56-2929, 2008.
DOI : 10.1016/j.actamat.2008.02.030

P. C. Ma, S. Q. Wang, J. Kim, and B. Tang, <I>In-Situ</I> Amino Functionalization of Carbon Nanotubes Using Ball Milling, Journal of Nanoscience and Nanotechnology, vol.9, issue.2, pp.749-53, 2009.
DOI : 10.1166/jnn.2009.C017

M. Moniruzzaman, F. Du, N. Romero, and K. Winey, Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method, Polymer, vol.47, issue.1, pp.293-301, 2006.
DOI : 10.1016/j.polymer.2005.11.011

A. Isayev, R. Kumar, and T. Lewis, Ultrasound assisted twin screw extrusion of polymer???nanocomposites containing carbon nanotubes, Polymer, vol.50, issue.1, pp.250-60, 2009.
DOI : 10.1016/j.polymer.2008.10.052

J. Baur and E. Silverman, Challenges and Opportunities in Multifunctional Nanocomposite Structures for Aerospace Applications, MRS Bulletin, vol.38, issue.04, pp.328-362, 2007.
DOI : 10.1002/app.1606

C. Li, E. T. Thostenson, and T. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review, Composites Science and Technology, vol.68, issue.6, pp.1227-1276, 2008.
DOI : 10.1016/j.compscitech.2008.01.006

N. Tai, M. Yeh, and T. Peng, Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites, Composites Part B: Engineering, vol.39, issue.6, pp.926-958, 2008.
DOI : 10.1016/j.compositesb.2008.01.003

C. S. Grimmer and C. Dharan, High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites, Journal of Materials Science, vol.42, issue.6, pp.43-4487, 2008.
DOI : 10.1007/s10853-008-2651-9

N. A. Koratkar, J. Suhr, A. Joshi, R. S. Kane, L. S. Schadler et al., Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites Applied physics letters, pp.63102-63105, 2005.

A. Moisala, Q. Li, I. Kinloch, and A. Windle, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Composites Science and Technology, vol.66, issue.10, pp.66-1285, 2006.
DOI : 10.1016/j.compscitech.2005.10.016

C. Li, E. T. Thostenson, and T. Chou, Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites, Composites Science and Technology, vol.68, issue.6, pp.1445-52, 2008.
DOI : 10.1016/j.compscitech.2007.10.056

M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate, Carbon, vol.49, issue.11, pp.49-3430, 2011.
DOI : 10.1016/j.carbon.2011.04.039

J. Yuan, W. Li, S. Yao, Y. Lin, A. Sylvestre et al., High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid Applied physics letters, pp.98-032901, 2011.

S. Vemuru, R. Wahi, S. Nagarajaiah, and P. Ajayan, Strain sensing using a multiwalled carbon nanotube film. The Journal of Strain Analysis for Engineering Design, pp.555-62, 2009.

W. Zhang, J. Suhr, and N. Koratkar, Carbon Nanotube/Polycarbonate Composites as Multifunctional Strain Sensors, Journal of Nanoscience and Nanotechnology, vol.6, issue.4, pp.960-964, 2006.
DOI : 10.1166/jnn.2006.171

E. Bilotti, R. Zhang, H. Deng, M. Baxendale, and T. Peijs, Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres, Journal of Materials Chemistry, vol.39, issue.4, pp.9449-55, 2010.
DOI : 10.1039/c0jm01827a

M. Film, Sensors and Actuators A: Physical, pp.135-175, 2010.

. De, A. Vega, I. Kinloch, R. Young, W. Bauhofer et al., Simultaneous global and local strain sensing in SWCNT?epoxy composites by Raman and impedance spectroscopy

S. V. Anand and D. Mahapatra, Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films, Smart Materials and Structures, vol.18, issue.4, p.45013, 2009.
DOI : 10.1088/0964-1726/18/4/045013

M. H. Wichmann, S. T. Buschhorn, L. Böger, R. Adelung, and K. Schulte, Direction sensitive bending sensors based on multi-wall carbon nanotube

Z. Dang, M. Jiang, D. Xie, S. Yao, L. Zhang et al., Supersensitive linear piezoresistive property in carbon nanotubes???silicone rubber nanocomposites, Journal of Applied Physics, vol.104, issue.2, pp.24114-24120, 2008.
DOI : 10.1063/1.2956605

URL : https://hal.archives-ouvertes.fr/hal-00321865

K. Shehzad, A. Ul-haq, S. Ahmad, M. Mumtaz, T. Hussain et al., All-organic PANI???DBSA/PVDF dielectric composites with unique electrical properties, Journal of Materials Science, vol.87, issue.10, pp.1-8
DOI : 10.1007/s10853-013-7172-5

L. G. Tang and J. Kardos, A review of methods for improving the inter facial adhesion between carbon fiber and polymer matrix. Polymer composites, pp.100-113, 1997.

J. Hughes, The carbon fibre/epoxy interface???A review, Composites Science and Technology, vol.41, issue.1, pp.13-45, 1991.
DOI : 10.1016/0266-3538(91)90050-Y

A. Mouritz, M. Bannister, P. Falzon, and K. Leong, Review of applications for advanced three-dimensional fibre textile composites. Composites Part A: applied science and manufacturing, pp.1445-61, 1999.

A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez et al., Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes, Composites Science and Technology, vol.70, issue.9, pp.1346-52, 2010.
DOI : 10.1016/j.compscitech.2010.04.010

D. Vlasveld, W. Daud, H. Bersee, and S. Picken, Continuous fibre composites with a nanocomposite matrix: Improvement of flexural and compressive strength at elevated temperatures, Composites Part A: Applied Science and Manufacturing, vol.38, issue.3, pp.730-738, 2007.
DOI : 10.1016/j.compositesa.2006.09.010

T. Yokozeki, Y. Iwahori, S. Ishiwata, and K. Enomoto, Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy, Composites Part A: Applied Science and Manufacturing, vol.38, issue.10, pp.2121-2151, 2007.
DOI : 10.1016/j.compositesa.2007.07.002

T. Yokozeki, Y. Iwahori, M. Ishibashi, T. Yanagisawa, K. Imai et al., Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes, Composites Science and Technology, vol.69, issue.14
DOI : 10.1016/j.compscitech.2008.12.017

E. T. Thostenson, J. J. Gangloff, C. Li, and J. Byun, Electrical anisotropy in multiscale nanotube/fiber hybrid composites Applied physics letters, pp.95-073111, 2009.

X. He, F. Zhang, R. Wang, and W. Liu, Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers, Carbon, vol.45, issue.13, pp.45-2559, 2007.
DOI : 10.1016/j.carbon.2007.08.018

A. Laachachi, A. Vivet, G. Nouet, B. Doudou, B. Poilâne et al., A chemical method to graft carbon nanotubes onto a carbon fiber, Materials Letters, vol.62, issue.3, pp.394-401, 2008.
DOI : 10.1016/j.matlet.2007.05.044

URL : https://hal.archives-ouvertes.fr/hal-00268230

L. Gao, T. Chou, E. T. Thostenson, A. Godara, Z. Zhang et al., Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes, Carbon, vol.48, issue.9, pp.2649-51, 2010.
DOI : 10.1016/j.carbon.2010.03.027

A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi et al., The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix, Composites Part A: Applied Science and Manufacturing, vol.41, issue.4, pp.532-540, 2010.
DOI : 10.1016/j.compositesa.2010.01.001

L. Gao, T. Chou, E. T. Thostenson, and Z. Zhang, A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes, Carbon, vol.48, issue.13, pp.48-3788, 2010.
DOI : 10.1016/j.carbon.2010.06.041

J. D. Schaefer, A. J. Rodriguez, M. E. Guzman, C. Lim, and B. Minaie, Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix, Carbon, vol.49, issue.8, pp.49-2750, 2011.
DOI : 10.1016/j.carbon.2011.02.070

E. Bekyarova, E. Thostenson, A. Yu, H. Kim, J. Gao et al., Multiscale Carbon Nanotube???Carbon Fiber Reinforcement for Advanced Epoxy Composites, Langmuir, vol.23, issue.7, pp.3970-3974, 2007.
DOI : 10.1021/la062743p

H. Qian, A. Bismarck, E. S. Greenhalgh, and M. Shaffer, Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation, Composites Part A: Applied Science and Manufacturing, vol.41, issue.9, pp.1107-1121, 2010.
DOI : 10.1016/j.compositesa.2010.04.004

H. Qian, E. S. Greenhalgh, M. S. Shaffer, and A. Bismarck, Carbon nanotube-based hierarchical composites: a review, Journal of Materials Chemistry, vol.14, issue.23, pp.4751-62
DOI : 10.1016/j.compositesa.2010.04.004

R. Sager, P. Klein, D. Lagoudas, Q. Zhang, J. Liu et al., Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix, Composites Science and Technology, vol.69, issue.7-8
DOI : 10.1016/j.compscitech.2008.12.021

K. Lee, J. Cho, and S. W. , Control of growth orientation for carbon nanotubes, Applied Physics Letters, vol.82, issue.3
DOI : 10.1063/1.1535269

E. J. Garcia, B. L. Wardle, J. Hart, and A. , Joining prepreg composite interfaces with aligned carbon nanotubes, Composites Part A: Applied Science and Manufacturing, vol.39, issue.6, pp.1065-70, 2008.
DOI : 10.1016/j.compositesa.2008.03.011

V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano et al., Multifunctional composites using reinforced laminae with carbon-nanotube forests, Nature Materials, vol.92, issue.6, pp.457-62, 2006.
DOI : 10.1038/nmat1650

K. Schulte and C. Baron, Load and failure analyses of CFRP laminates by means of electrical resistivity measurements, Composites Science and Technology, vol.36, issue.1, pp.63-76, 1989.
DOI : 10.1016/0266-3538(89)90016-X

I. Weber and P. Schwartz, Monitoring bending fatigue in carbon-fibre/epoxy composite strands: a comparison between mechanical and resistance techniques, Composites Science and Technology, vol.61, issue.6, pp.61-849, 2001.
DOI : 10.1016/S0266-3538(01)00028-8

M. Kupke, K. Schulte, and R. Schüler, Non-destructive testing of FRP by dc and ac electrical methods, Composites Science and Technology, issue.6, pp.61-837, 2001.

R. Schueler, S. P. Joshi, and K. Schulte, Damage detection in CFRP by electrical conductivity mapping, Composites Science and Technology, vol.61, issue.6, pp.61-921, 2001.
DOI : 10.1016/S0266-3538(00)00178-0

N. Muto, Y. Arai, S. Shin, H. Matsubara, H. Yanagida et al., Hybrid composites with self-diagnosing function for preventing fatal fracture, Composites Science and Technology, vol.61, issue.6, pp.61-875, 2001.
DOI : 10.1016/S0266-3538(00)00165-2

F. B. Gojny-f-h, B. W. Wichmann-m-h, and S. K. , Can carbon nanotubes be used to sense damage in composites? in Annales de chimie, 2004.

E. T. Thostenson and T. Chou, Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing, Advanced Materials, vol.47, issue.21, pp.2837-2878, 2006.
DOI : 10.1002/adma.200600977

E. T. Thostenson and T. Chou, sensing of damage evolution in advanced fiber composites using carbon nanotube networks, Nanotechnology, vol.19, issue.21, p.215713, 2008.
DOI : 10.1088/0957-4484/19/21/215713

M. Nofar, S. Hoa, and M. Pugh, Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks, Composites Science and Technology, vol.69, issue.10
DOI : 10.1016/j.compscitech.2009.03.010

L. Gao, E. T. Thostenson, Z. Zhang, and T. Chou, Sensing of Damage Mechanisms in Fiber?Reinforced Composites under Cyclic Loading using Carbon Nanotubes. Advanced Reference -173 - Functional Materials, pp.123-153, 2009.

K. J. Kim, W. Yu, J. S. Lee, L. Gao, E. T. Thostenson et al., Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing, Composites Part A: Applied Science and Manufacturing, vol.41, issue.10, pp.41-1531, 2010.
DOI : 10.1016/j.compositesa.2010.06.016

S. Gao, R. C. Zhuang, J. Zhang, J. W. Liu, and E. Mäder, Glass Fibers with Carbon Nanotube Networks as Multifunctional Sensors, Advanced Functional Materials, vol.8, issue.12, pp.1885-93, 2010.
DOI : 10.1002/adfm.201000283

P. Sureeyatanapas and R. J. Young, SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites, Composites Science and Technology, vol.69, issue.10, pp.69-1547, 2009.
DOI : 10.1016/j.compscitech.2008.08.002

N. Alexopoulos, C. Bartholome, P. Poulin, and Z. Marioli-riga, Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers, Composites Science and Technology, vol.70, issue.2
DOI : 10.1016/j.compscitech.2009.10.017

URL : https://hal.archives-ouvertes.fr/hal-00601221

J. N. Coleman, U. Khan, W. J. Blau, and Y. Gun-'ko, Small but strong: A review of the mechanical properties of carbon nanotube???polymer composites, Carbon, vol.44, issue.9, pp.1624-52, 2006.
DOI : 10.1016/j.carbon.2006.02.038

L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, Journal of Materials Chemistry, vol.9, issue.9, pp.974-982, 2005.
DOI : 10.1039/b413029d

X. Zhao, Q. Zhang, D. Chen, and P. Lu, Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites, Macromolecules, vol.43, issue.5, pp.2357-63, 2010.
DOI : 10.1021/ma902862u

S. Yang, W. Lin, Y. Huang, H. Tien, J. Wang et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, vol.49, issue.3, pp.49-793, 2011.
DOI : 10.1016/j.carbon.2010.10.014

N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan et al., Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor, Carbon, vol.48, issue.3, pp.680-687, 2010.
DOI : 10.1016/j.carbon.2009.10.012

R. Zhang, M. Baxendale, and T. Peijs, Universal resistivity???strain dependence of carbon nanotube/polymer composites, Physical Review B, vol.76, issue.19, pp.76-195433, 2007.
DOI : 10.1103/PhysRevB.76.195433

A. Dichiara, J. Yuan, S. Yao, A. Sylvestre, and J. Bai, Chemical Vapor Deposition Synthesis of Carbon Nanotube-Graphene Nanosheet Hybrids and Their Application in Polymer Composites, Journal of Nanoscience and Nanotechnology, vol.12, issue.9, pp.6935-6975
DOI : 10.1166/jnn.2012.6573

M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu et al., Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, vol.3, issue.12, pp.3884-90, 2009.
DOI : 10.1021/nn9010472

Y. Wu, Q. Jia, D. Yu, and L. Zhang, Modeling Young???s modulus of rubber???clay nanocomposites using composite theories, Polymer Testing, vol.23, issue.8, pp.903-912, 2004.
DOI : 10.1016/j.polymertesting.2004.05.004

A. Das, G. R. Kasaliwal, R. Jurk, R. Boldt, D. Fischer et al., Rubber composites based on graphene nano platelets, expanded graphite, carbon nanotubes and their combination: A comparative study, Composites Science and Technology, 2012.

Y. S. Song and J. Youn, Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, vol.43, issue.7, pp.1378-85, 2005.
DOI : 10.1016/j.carbon.2005.01.007

M. Park, H. Kim, and J. Youngblood, Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films, Nanotechnology, vol.19, issue.5, p.55705, 2008.
DOI : 10.1088/0957-4484/19/05/055705

W. Li, J. Yuan, A. Dichiara, Y. Lin, and J. Bai, The use of vertically aligned carbon nanotubes grown on SiC for in situ sensing of elastic and plastic deformation in electrically percolative epoxy composites, Carbon, vol.50, issue.11, 2012.
DOI : 10.1016/j.carbon.2012.05.011

URL : https://hal.archives-ouvertes.fr/hal-00709641

S. Lim, A. Dasari, G. Wang, Z. Yu, Y. Mai et al., Impact fracture behaviour of nylon 6-based ternary nanocomposites, Composites Part B: Engineering, vol.41, issue.1, pp.41-67, 2010.
DOI : 10.1016/j.compositesb.2009.03.006

J. Almeida and S. Monteiro, The effect of the resin/hardener ratio on the compressive behavior of an epoxy system, pp.329-368, 1996.

R. Bagheri, B. Marouf, and R. Pearson, Rubber-Toughened Epoxies: A Critical Review, Polymer Reviews, vol.36, issue.3
DOI : 10.1002/app.1995.070580221

G. Li, P. Li, C. Zhang, Y. Yu, H. Liu et al., Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation, Composites Science and Technology, vol.68, issue.3-4, pp.68-987, 2008.
DOI : 10.1016/j.compscitech.2007.07.010

W. Li, A. Dichiara, and J. Bai, Carbon nanotube???graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites, Composites Science and Technology, vol.74, 2012.
DOI : 10.1016/j.compscitech.2012.11.015

URL : https://hal.archives-ouvertes.fr/hal-00768859

M. Hussain, A. Nakahira, and K. Niihara, Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion, Materials Letters, vol.26, issue.3, pp.185-91, 1996.
DOI : 10.1016/0167-577X(95)00224-3

Ö. Soykasap, Analysis of plain-weave composites. Mechanics of Composite Materials, pp.161-76, 2011.

S. Hussain, B. Reddy, and V. Reddy, Prediction of elactic properties of FRP composite lamina for longitudinal loading, Journal of Engineering and Applied Sciences, issue.6, p.3, 2008.