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Emmanuel Bacry (École Polytechnique), Examinateur

Jean-Philippe Bouchaud (Capital Fund Management), Examinateur

Jim Gatheral (Baruch College), Examinateur

Fabrizio Lillo (Scuola Normale Superiore di Pisa), Professeur invité
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aussi aux conditions de travail excellentes offertes par le laboratoire MAS.

J’en remercie chaleureusement toute l’équipe, notamment Annie, Marouane,

Mehdi, Nicolas, Riadh et Sylvie.
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Abstract

Résumé

Cette thèse étudie quelques aspects de la modélisation stochastique des

carnets d’ordres. Nous analysons dans la première partie un modèle dans

lequel les temps d’arrivées des ordres sont Poissoniens indépendants. Nous

démontrons que le carnet d’ordres est stable (au sens des chaines de Markov)

et qu’il converge vers sa distribution stationnaire exponentiellement vite.

Nous en déduisons que le prix engendré dans ce cadre converge vers un

mouvement Brownien aux grandes échelles de temps. Nous illustrons les

résultats numériquement et les comparons aux données de marché en soulig-

nant les succès du modèle et ses limites. Dans une deuxième partie, nous

généralisons les résultats à un cadre où les temps d’arrivés sont régis par

des processus auto et mutuellement existants, moyennant des hypothèses

sur la mémoire de ces processus. La dernière partie est plus appliquée et

traite de l’identification d’un modèle réaliste multivarié à partir des flux

des ordres. Nous détaillons deux approches : la première par maximisation

de la vraisemblance et la seconde à partir de la densité de covariance, et

réussissons à avoir une concordance remarquable avec les données. Nous

appliquons le modèle ainsi estimé à deux problèmes concrets de trading al-

gorithmique, à savoir la mesure de la probabilité d’exécution et le coût d’un

ordre limite.

Abstract

This thesis presents some aspects of stochastic order book modelling.

In the first part, we analyze a model in which order arrivals are indepen-

dent Poisson. We show that the order book is stable (in the sense of Markov

chains) and that it converges to its stationary state exponentially fast. We

deduce that the price generated in this setting converges to a Brownian mo-

tion at large time scales. We illustrate the results numerically and compare
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8 ABSTRACT

them to market data. In the second part, we generalize the results to a setting

in which arrival times are governed by self and mutually existing processes.

The last part is more applied and deals with the identification of a realis-

tic multivariate model from the order flow. We describe two approaches:

the first based on maximum likelihood estimation and the second on the co-

variance density function, and obtain a remarkable agreement with the data.

We apply the estimated model to two specific algorithmic trading problems,

namely the measurement of the execution probability of a limit order and

its cost.
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CHAPTER 1

Introduction et Principaux Résultats

1. Contexte et Motivations

Les économies modernes doivent une partie de leur richesse au bon

fonctionnement de leurs marchés financiers. L’industrie financière a vécu

trois changements majeurs depuis les années 1930 et il est pertinent de les

rappeler ici [KL13].

Le premier a trait à la complexité accrue du système financier lui-même.

Cela est un corollaire de l’évolution économique et démographique ainsi

que la mondialisation des échanges.

Le deuxième développement est l’émergence de la finance quantitative.

Les progrès en économie financière ont été nombreux, pour n’en citer que

quelques-uns : la théorie d’optimisation du portefeuille de Markowitz, le

modèle d’évaluation des actifs financiers (CAPM) de Sharpe, le modèle

multi-facteurs du risque (BARRA) de Rosenberg, la formule de Black, Sc-

holes et Merton pour la valorisation des options et son principe de couver-

ture dynamique, ainsi que la théorie de valorisation par martingales de Har-

rison et Pliska. Ces travaux et d’autres ont fourni le fondement sur lequel

repose un pan de l’industrie financière.

Le troisième bouleversement vient des progrès en technologie informa-

tique, fût-ce au niveau matériel (figure 1), logiciel, collection et stockage

des données, ou encore la connectivité et les réseaux. La puissance de cal-

cul a rendu possible la résolution de problèmes auparavant insolubles—le

problème d’optimisation du portefeuille en est un des premiers exemples.

Les avancées logicielles ont diminué les couts des opérations bancaires, et

la connectivité rendu possible l’ “électronification” des marchés.

Une autre conséquence de la révolution informatique est qu’elle permet

l’enregistrement de toutes les transactions financières, voire tous les ordres

passés, offrant au scientifique une quantité astronomique de données et ren-

dant possible une approche quasi-expérimentale des marchés.
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14 1. INTRODUCTION ET PRINCIPAUX RÉSULTATS
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Figure 1. Comparative evolution of trading activity and

computing power [Eco11]. y-axis is in logarithmic scale.

Data sources: NYSE-Euronext /Wikipedia.

Au centre des transactions électroniques se trouve le carnet d’ordres.

C’est là où l’offre et la demande se rencontrent. Le carnet d’ordres répertorie

à chaque instant tous les ordres d’achat ou de vente non-exécutés sur un

titre, avec priorité selon le prix et le temps de soumission. Cet objet, dont les

règles de fonctionnement sont assez simples, est, regardé de près, très com-

plexe. Le but de cette thèse est d’explorer cet objet sous un angle mathématique.

Plus précisément, notre but est triple:

(1) Proposer quelques fondements théoriques sous des hypothèses sim-

ples.

(2) Étudier quelques propriétés empiriques des carnets d’ordres, sur

des données dites tick by tick.

(3) Montrer le potentiel applicatif de certain modèles de carnet basés

sur une classe de processus ponctuel, les processus de Hawkes, en

en soulignant les succès et les limites.
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2. Contributions

Nous résumons dans cette section les points-clés de cette thèse, chapitre

par chapitre.

Chapitre 2. Le but de ce chapitre est d’explorer les liens entre la de-

scription microscopique de la formation des prix (modélisation multi-agents)

et l’approche par équations différentielles stochastiques utilisée classique-

ment pour décrire l’évolution des prix à des échelles de temps macroscopiques.

Nous présentons une étude mathématique du carnet d’ordres comme

une chaı̂ne de Markov multidimensionnelle en temps continu et prouvons

plusieurs résultats dans le cas de temps d’arrivée poissonniens indépendants.

Nous montrons que la structure des annulations est un facteur impor-

tant pour l’existence d’une distribution stationnaire pour le carnet d’ordres

et la convergence exponentielle envers elle. Nous démontrons aussi, par

l’intermédiaire du théorème central limite fonctionnel, que la limite à grande

échelle du processus de prix est un mouvement Brownien.

Chapitre 3. Nous illustrons l’analyse théorique du deuxième chapitre

par simulation numérique et comparons les résultats aux données de marché.

C’est aussi l’occasion pour nous de décrire les données tick by tick et leur

traitement.

Chapitre 4. Depuis leur introduction dans [Haw71b], les processus de

Hawkes ont été appliqués dans un large éventail de domaines de recherche

allant de de la sismologie (à l’origine), au risque de crédit, la contagion fi-

nancière, et plus récemment la modélisation de la microstructure des marchés.

En microstructure des marchés, et en particulier la modélisation de carnet

d’ordres, la pertinence de ces processus provient au moins de deux pro-

priétés empiriques du flux des ordres à l’échelle microscopique:

(1) Time-clustering: les ordres ont tendance à arriver par grappes.

(2) Dépendance mutuelle: les flux d’ordres présentent des dépendances

croisées non négligeables. Par exemple, les ordres au marché “ex-

citent” les ordres limites et vice versa.

Dans ce chapitre, nous posons un modèle de carnet d’ordres basé sur

le processus de Hawkes dans un cadre markovien, et en utilisant des tech-

niques de la théorie des chaı̂nes de Markov et la stabilité stochastique, mon-

trons que le carnet d’ordres est stable et conduit à un prix diffusif limite à
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de grandes échelles de temps, généralisant ainsi les résultats du deuxième

chapitre.

Chapitre 5. Ce chapitre est axé sur les aspects pratiques de la modélisation

stochastique des carnets d’ordres, à savoir l’estimation d’un modèle réaliste

de carnet basé sur les processus de Hawkes et son utilisation pour l’évaluation

de stratégies de trading algorithmique.

Nous détaillons deux approches d’estimations : la première par maximi-

sation de la vraisemblance et la seconde à partir de la densité de covariance,

et réussissons à obtenir une concordance remarquable avec les données.

Nous appliquons le modèle ainsi estimé à deux problèmes concrets de trad-

ing algorithmique, à savoir la mesure de la probabilité d’exécution et le coût

d’un ordre limite.



CHAPTER 2

Markovian Order Book Models I: Stability and Scaling

Limits

The aim of this chapter is to explore the links between the microscopic

description of price formation (agent-based modeling) and the stochastic

differential equations approach used classically to describe price evolution

at macroscopic time scales. We present a mathematical study of the or-

der book as a multidimensional continuous-time Markov chain and derive

several mathematical results in the case of independent Poissonian arrival

times. In particular, we show that the cancellation structure is an important

factor ensuring the existence of a stationary distribution for the order book

and the exponential convergence towards it. We also prove, by means of

the functional central limit theorem (FCLT), that the large-scale limit of the

price process is a Brownian motion. We illustrate the analysis with numeri-

cal simulation and comparison against market data.

1. Introduction and Background

The emergence of electronic trading as a major means of trading finan-

cial assets makes the study of the order book central to understanding the

mechanisms of price formation. In order-driven markets, buy and sell orders

are matched continuously subject to price and time priority. The order book

is the list of all buy and sell limit orders, with their corresponding price

and size, at a given instant of time. Essentially, three types of orders can be

submitted:

• Limit order: Specify a price (also called “quote”) at which one is

willing to buy or sell a certain number of shares;

• Market order: Immediately buy or sell a certain number of shares

at the best available opposite quote;

• Cancellation order: Cancel an existing limit order.

17



18 2. MARKOVIAN ORDER BOOK MODELS I

In the literature, “agents” who submit exclusively limit orders are referred

to as liquidity providers. Those who submit market orders are referred to as

liquidity takers.

Limit orders are stored in the order book until they are either executed

against an incoming market order or canceled. The ask price PA (or simply

the ask) is the price of the best (i.e. lowest) limit sell order. The bid price

PB is the price of the best (i.e. highest) limit buy order. The gap between the

bid and the ask

S := PA − PB, (1.1)

is always positive and is called the spread. Prices are not continuous, but

rather have a discrete resolution ∆P, the tick, which represents the smallest

quantity by which they can change. We define the mid-price as the average

between the bid and the ask

P :=
PA + PB

2
. (1.2)

The price dynamics is the result of the interplay between the incoming

order flow and the order book [BMP02]. Figure 1 is a schematic illustration

of this process [Fer08]. Note that we chose to represent quantities on the

bid side of the book by non-positive numbers.

Although in reality orders can have any size, we shall assume in most of

the chapter that all orders have a fixed unit size q. This assumption is con-

venient to carry out our analysis and is, for now, of secondary importance

to the problem we are interested in1. Throughout this chapter, we may refer

to three different “times”:

• Physical time (or clock time) in seconds,

• Event time (or tick time): the time counter is incremented by 1

every time an event (i.e. market, limit or cancellation order) occurs,

• Trade time (or transaction time): the time counter is incremented

every trade (i.e. every market order).

1.1. Related Literature. Order book modelling has been an area of

intense research activity in the last decade. The remarkable interest in this

area is due to two factors:

1It will be relaxed in chapter 3 where we resort to numerical simulation.
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Figure 1. Order book schematic illustration: a buy market

order arrives and removes liquidity from the ask side, then

sell limit orders are submitted and liquidity is restored.

• Widespread use of algorithmic trading in which the order book is

the place where offer and demand meet,

• Availability of tick by tick data that record every change in the or-

der book and allow precise analysis of the price formation process

at the microscopic level.

Schematically, two modelling approaches have been successful in cap-

turing key properties of the order book—at least partially. The first ap-

proach, led by economists, models the interactions between rational agents

who act strategically: they choose their trading decisions as solutions to

individual utility maximization problems (See e.g. [PS08] and references

therein).

In the second approach, proposed by econophysicists, agents are as-

sumed to act randomly. This is sometime referred to as zero-intelligence

order book modelling, in the sense that order arrivals and placements are

entirely stochastic. The focus here is more on the “mechanistic” aspects
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of the continuous double auction rather than the strategic interactions be-

tween agents. Despite this apparent limitation, zero-intelligence (or statis-

tical) order book models do capture many salient features of real markets

(See [DFG+03, FPZ05] and references therein). Two notable developments

in this strand of research are [Mas00] who proposed one of the earliest sto-

chastic order book models, and [CS01] who added the possibility to cancel

existing limit orders.

In their seminal paper [SFGK03], Smith et al. develop a dynamical sta-

tistical order book model under the assumption of independent Poissonian

order flows. They provide a thorough analysis of the model using simula-

tion, dimensional analysis and mean field approximation. They study key

characteristics of the model, namely:

(1) Price diffusion.

(2) Liquidity characteristics: average depth profile, bid-ask spread, price

impact and time and probability to fill a limit order.

One of the most important messages of their analysis is that zero-intelligence

order book models are able to produce reasonable market dynamics and liq-

uidity characteristics. Our focus here is on the first point, that is, the con-

vergence of the price process, which is a jump process at the microscopic

level, to a diffusive process2 at macroscopic time scales. The authors in

[SFGK03] suggest that a diffusive regime is reached. Their argument relies

on a mean field approximation. Essentially, this amounts to neglecting the

dependence between order fluctuations at adjacent price levels.

Another important paper of interest to us is [CST10]. Cont et al. propose

to model the order book dynamics from the vantage point of queuing sys-

tems. They remarkably succeed in deriving many conditional probabilities

of practical importance such as the probability of an increase in the mid-

price, of the execution of an order at the bid before the ask quote moves,

and of “making the spread”. To our knowledge, they are the first to clearly

set the problem of stochastic order book modelling in the context of Markov

chains, which is a very powerful and well-studied mathematical concept.

1.2. Outline. In this chapter, we build on the models of [CST10] and

[SFGK03] to present a stylized description of the order book, and derive

2We mean (abusively) by “diffusive process” or simply “diffusion” the mathematical

concept of Brownian motion.
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several mathematical results in the case of independent Poissonian arrival

times. In particular, we show that the cancellation structure is an important

factor ensuring the existence of a stationary distribution for the order book

and the exponential convergence towards it. We also prove, by means of the

functional central limit theorem (FCLT), that the rescaled-centered price

process converges to a Brownian motion, which is a new result.

The remainder of the chapter is organized as follows. In section 2, we

motivate our approach using an elementary example where the spread is

kept constant (“perfect market making”). In sections 3 trough 5, we com-

pute the infinitesimal generator associated with the order book in a general

setting, and link the price dynamics to the instantaneous state of the order

book. In section 6, we prove that the order book is ergodic—in particu-

lar it has a stationary distribution—that it converges to its stationary state

exponentially fast, and that the large-scale limit of the price process is a

Brownian motion. Our proofs rely on the theory of infinitesimal genera-

tors and Foster-Lyapunov stability criteria for Markov chains. We outline

an order book simulation algorithm in section 1 and provide a numerical

illustration. Finally, section 4 summarizes our results and contains critiques

of Markovian order book models.

2. An Elementary Approximation: Perfect Market Making

We start with the simplest agent-based market model:

• The order book starts in a full state: All limits above PA(0) and be-

low PB(0) are filled with one limit order of unit size q. The spread

starts equal to 1 tick;

• The flow of market orders is modeled by two independent Poisson

processes M+(t) (buy orders) and M−(t) (sell orders) with constant

arrival rates (or intensities) λ+ and λ−;

• There is one liquidity provider, who reacts immediately after a mar-

ket order arrives so as to maintain the spread constantly equal to 1

tick. He places a limit order on the same side as the market order

(i.e. a buy limit order after a buy market order and vice versa) with

probability u and on the opposite side with probability 1 − u.

The mid-price dynamics can be written in the following form

dP(t) = ∆P (dM+(t) − dM−(t))Z, (2.1)
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where Z is a Bernoulli random variable

Z = 0 with probability (1 − u), (2.2)

and

Z = 1 with probability u. (2.3)

The infinitesimal generator3 L associated with this dynamics is

L f (P) = u
[
λ+ ( f (P + ∆P) − f ) + λ− ( f (P − ∆P) − f )

]
, (2.5)

where f denotes a test function. It is well known that a continuous limit is

obtained under suitable assumptions on the intensity and tick size. Noting

that (2.5) can be rewritten as

L f (P) =
1

2
u (λ+ + λ−)(∆P)2 f (P + ∆P) − 2 f + f (P − ∆P)

(∆P)2

+ u (λ+ − λ−)∆P
f (P + ∆P) − f (P − ∆P)

2∆P
, (2.6)

and under the following assumptions

u (λ+ + λ−)(∆P)2−→σ2 as ∆P→ 0, (2.7)

and

u (λ+ − λ−)∆P−→µ as ∆P→ 0, (2.8)

the generator converges to the classical diffusion operator

σ2

2

∂2 f

∂P2
+ µ
∂ f

∂P
, (2.9)

corresponding to a Brownian motion with drift. This simple case is worked

out as an example of the type of limit theorems that we will be interested

in in the sequel. One should also note that a more classical approach us-

ing the Functional Central limit Theorem (FCLT) as in [Bil99] or [Whi02]

yields similar results ; For given fixed values of λ+, λ− and ∆P, the rescaled-

centred price process
P(nt) − nµt
√

nσ
(2.10)

3The infinitesimal generator of a time-homogeneous Markov process (X(t))t≥0 is the

operator L, if exists, defined to act on sufficiently regular functions f : Rn → R, by

L f (x) := lim
t↓0

E[ f (X(t))|X(0) = x] − f (x)

t
. (2.4)

It provides an analytical tool to study (X(t)).
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converges as n→ ∞, to a standard Brownian motion (B(t)) where

σ = ∆P
√

(λ+ + λ−)u, (2.11)

and

µ = ∆P(λ+ − λ−)u. (2.12)

Let us also mention that one can easily achieve more complex diffusive

limits such as a local volatility model by imposing that the limit is a function

of P and t

u (λ+ + λ−)(∆P)2 → σ2(P, t), (2.13)

and

u (λ+ − λ−)∆P→ µ(P, t). (2.14)

This is the case if the original intensities are functions of P and t themselves.

3. Order Book Dynamics

3.1. Model Setup: Poissonian Arrivals, Reference Frame and Bound-

ary Conditions. We now consider the dynamics of a general order book

under the assumption of Poissonian arrival times for market orders, limit

orders and cancellations. We shall assume that each side of the order book

is fully described by a finite number of limits K, ranging from 1 to K ticks

away from the best available opposite quote. We will use the notation4

X(t) := (a(t); b(t)) := (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) , (3.1)

where a := (a1, . . . , aK) designates the ask side of the order book and ai the

number of shares available i ticks away from the best opposite quote, and

b := (b1, . . . , bK) designates the bid side of the book. By doing so, we adopt

the representation described in [CST10] or [SFGK03]5, but depart slightly

from it by adopting a finite moving frame, as we think it is realistic and more

convenient when scaling in tick size will be addressed.

Let us now recall the events that may happen:

• arrival of a new market order;

• arrival of a new limit order;

• cancellation of an already existing limit order.

These events are described by independent Poisson processes:

4In what follows, bold notation indicates vector quantities.
5See also [GO10] for an interesting discussion.
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• M±(t): arrival of new market order, with intensity λM+
I(a , 0) and

λM−
I(b , 0);

• L±i (t): arrival of a limit order at level i, with intensity λL±

i ;

• C±i (t): cancellation of a limit order at level i, with intensity λC+

i ai

and λC−

i |bi|.

q is the size of any new incoming order, and the superscript “+” (respec-

tively “−”) refers to the ask (respectively bid) side of the book. Note that

the intensity of the cancellation process at level i is proportional to the avail-

able quantity at that level. That is to say, each order at level i has a lifetime

drawn from an exponential distribution with intensity λC±

i
. Note also that

buy limit orders L−i (t) arrive below the ask price PA(t), and sell limit orders

L+i (t) arrive above the bid price PB(t).

We impose constant boundary conditions outside the moving frame of

size 2K: Every time the moving frame leaves a price level, the number of

shares at that level is set to a∞ (or b∞ depending on the side of the book).

Our choice of a finite moving frame and constant6 boundary conditions has

three motivations. Firstly, it assures that the order book does not empty and

that PA, PB are always well defined. Secondly, it keeps the spread S and

the increments of PA, PB and P = (PA + PB)/2 bounded—This will be

important when addressing the scaling limit of the price. Thirdly, it makes

the model Markovian as we do not keep track of the price levels that have

been visited (then left) by the moving frame at some prior time. Figure 1 is

a representation of the order book using the above notations.

3.2. Comparison to Previous Results and Models. Before we pro-

ceed, we would like to recall some results already present in the literature

and highlight their differences with respect to our analysis. Smith et al. have

already investigated in [SFGK03] the scaling properties of some liquidity

and price characteristics in a stochastic order book model. These results are

summarized in table 1. In the model of Smith et al. [SFGK03], orders ar-

rive on an infinite price grid (This is consistent as limit orders arrival rate

per price level is finite). Moreover, the arrival rates are independent of the

price level, which has the advantage of enabling the analytical predictions

summarized in table 1.

6Actually, taking for a∞ and |b∞| independent positive random variables would not

change much our analysis. We take constants for simplicity.
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Figure 2. Order book dynamics: in this example, K = 9, q = 1,

a∞ = 4, b∞ = −4. The shape of the order book is such that a(t) =

(0, 0, 0, 0, 1, 3, 5, 4, 2) and b(t) = (0, 0, 0, 0,−1, 0,−4,−5,−3). The

spread S (t) = 5 ticks. Assume that at time t′ > t a sell market

order dM−(t′) arrives, then a(t′) = (0, 0, 0, 0, 0, 0, 1, 3, 5), b(t′) =
(0, 0, 0, 0, 0, 0,−4,−5,−3) and S (t′) = 7. Assume instead that at

t′ > t a buy limit order dL−
1

(t′) arrives one tick away from the

best opposite quote, then a(t′) = (1, 3, 5, 4, 2, 4, 4, 4, 4), b(t′) =
(−1, 0, 0, 0,−1, 0,−4,−5,−3) and S (t′) = 1.

Quantity Scaling relation

Average asymptotic depth λL/λC

Average spread λM/λL f (ǫ,∆P/pc)

Slope of average depth profile (λL)2/λMλCg(ǫ,∆P/pc)

Price “diffusion” parameter at short time scales (λM)2λC/λLǫ−0.5

Price “diffusion” parameter at long time scales (λM)2λC/λLǫ0.5

Table 1. Results of Smith et al. ǫ := q/(λM/2λC) is a “gran-

ularity” parameter that characterizes the effect of discrete-

ness in order sizes, pc := λM/2λL is a characteristic price

interval, and f and g are slowly varying functions.
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We stress that, to our understanding, these results are obtained by mean-

field approximations, which assume that the fluctuations at adjacent price

levels are independent. This allows fruitful simplifications of the complex

dynamics of the order book. In addition, the authors do not characterize the

convergence of the coarse-grained price process in the sense of Stochastic

Process Limits, nor do they show that the limiting process is precisely a

Brownian motion (theorem 4.2).

In the model of Cont el al. [CST10], arrival rates are indexed by the

distance to the best opposite quote, which is more realistic. The order book

is constrained to a finite price grid [1, Pmax] that facilitates the analysis of

the Markov chain. Here, we use a combination of the two models in that the

arrival rates are not uniformly distributed across prices, and the reference

frame is finite but moving. Cont et al. [CST10] have considered the question

of the ergodicity of their order book model. We also address this question

following a different route, and more importantly to our analysis, exhibit

the rate of convergence to the stationary state, which turns out to be the key

of the proof of theorem 4.2.

3.3. Evolution of the Order Book. We can write the following cou-

pled SDEs for the quantities of outstanding limit orders in each side of the

order book:7

dai(t) = −
q −

i−1∑

k=1

ak


+

dM+(t) + qdL+i (t) − qdC+i (t)

+ (JM−(a) − a)idM−(t) +

K∑

i=1

(JL−
i (a) − a)idL−i (t)

+

K∑

i=1

(JC−
i (a) − a)idC−i (t), (3.2)

7Remember that, by convention, the bi’s are non-positive.
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and

dbi(t) =

q −
i−1∑

k=1

|bk|

+

dM−(t) − qdL−i (t) + qdC−i (t)

+ (JM+(b) − b)idM+(t) +

K∑

i=1

(JL+
i (b) − b)idL+i (t)

+

K∑

i=1

(JC+
i (b) − b)idC+i (t), (3.3)

where the J’s are shift operators corresponding to the renumbering of the

ask side following an event affecting the bid side of the book and vice versa.

For instance the shift operator corresponding to the arrival of a sell market

order dM−(t) of size q is8

JM−(a) =

0, 0, . . . , 0︸      ︷︷      ︸
k times

, a1, a2, . . . , aK−k

 , (3.4)

with

k := inf{p :

p∑

j=1

|b j| > q} − inf{p : |bp| > 0}. (3.5)

Similar expressions can be derived for the other events affecting the order

book.

In the next sections, we will study some general properties of the or-

der book, starting with the generator associated with this 2K-dimensional

continuous-time Markov chain.

8For notational simplicity, we write JM− (a) instead of JM− (a; b) etc. for the shift

operators.
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4. Infinitesimal Generator

Let us work out the infinitesimal generator associated with the jump

process described above. We have

L f (a; b) = λM+( f
(
[ai − (q − A(i − 1))+]+; JM+(b)

)
− f )

+

K∑

i=1

λL+

i ( f
(
ai + q; JL+

i (b)
)
− f )

+

K∑

i=1

λC+

i ai( f
(
ai − q; JC+

i (b)
)
− f )

+ λM−
(

f
(
JM−(a); [bi + (q − B(i − 1))+]−

)
− f

)

+

K∑

i=1

λL−

i ( f
(
JL−

i (a); bi − q
)
− f )

+

K∑

i=1

λC−

i |bi|( f
(
JC−

i (a); bi + q
)
− f ), (4.1)

where, to ease the notations, we note f (ai; b) instead of f (a1, . . . , ai, . . . , aK; b)

etc. and

x+ := max(x, 0), x− := min(x, 0), x ∈ R. (4.2)

The operator above, although cumbersome to put in writing, is simple to

decipher: a series of standard difference operators corresponding to the

“deposition-evaporation” of orders at each limit, combined with the shift

operators expressing the moves in the best limits and therefore, in the ori-

gins of the frames for the two sides of the order book. Note the coupling of

the two sides: the shifts on the a’s depend on the b’s, and vice versa. More

precisely the shifts depend on the profile of the order book on the other side,

namely the cumulative depth up to level i defined by

A(i) :=

i∑

k=1

ak, (4.3)

and

B(i) :=

i∑

k=1

|bk|, (4.4)
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and the generalized inverse functions thereof

A−1(q′) := inf{p :

p∑

j=1

a j > q′}, (4.5)

and

B−1(q′) := inf{p :

p∑

j=1

|b j| > q′}, (4.6)

where q′ designates a certain quantity of shares9.

Remark 4.1. The index corresponding to the best opposite quote equals

the spread S in ticks, that is

iA := A−1(0) = inf{p :

p∑

j=1

a j > 0} = S

∆P
:= iS , (4.7)

and

iB := B−1(0) = inf{p :

p∑

j=1

|b j| > 0} = S

∆P
:= iS = iA. (4.8)

5. Price Dynamics

We now focus on the dynamics of the best ask and bid prices, denoted

by PA(t) and PB(t). One can easily see that they satisfy the following SDEs:

dPA(t) = ∆P[(A−1(q) − A−1(0))dM+(t)

−
K∑

i=1

(A−1(0) − i)+dL+i (t) + (A−1(q) − A−1(0))dC+iA(t)], (5.1)

and

dPB(t) = −∆P[(B−1(q) − B−1(0))dM−(t)

−
K∑

i=1

(B−1(0) − i)+dL−i (t) + (B−1(q) − B−1(0))dC−iB
(t)], (5.2)

which describe the various events that affect them: change due to a market

order, change due to limit orders inside the spread, and change due to the

9Note that a more rigorous notation would be

A(i, a(t)) and A−1(q′, a(t))

for the depth and inverse depth functions respectively. We drop the dependence on the last

variable as it is clear from the context.
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cancellation of a limit order at the best price. Equivalently, the respective

dynamics of the mid-price and the spread are:

dP(t) =
∆P

2

[
(A−1(q) − A−1(0))dM+(t) − (B−1(q) − B−1(0))dM−(t)

−
K∑

i=1

(A−1(0) − i)+dL+i (t) +

K∑

i=1

(B−1(0) − i)+dL−i (t)

+ (A−1(q) − A−1(0))dC+iA(t) − (B−1(q) − B−1(0))dC−iB
(t)

]
, (5.3)

dS (t) = ∆P
[
(A−1(q) − A−1(0))dM+(t) + (B−1(q) − B−1(0))dM−(t)

−
K∑

i=1

(A−1(0) − i)+dL+i (t) −
K∑

i=1

(B−1(0) − i)+dL−i (t)

+ (A−1(q) − A−1(0))dC+iA(t) + (B−1(q) − B−1(0))dC−iB
(t)

]
. (5.4)

The equations above are interesting in that they relate in an explicit way the

profile of the order book to the size of an increment of the mid-price or the

spread, therefore linking the price dynamics to the order flow. For instance

the infinitesimal drifts of the mid-price and the spread, conditional on the

shape of the order book at time t, are given by:

E [dP(t)|(a; b)] =
∆P

2

[
(A−1(q) − A−1(0))λM+ − (B−1(q) − B−1(0))λM−

−
K∑

i=1

(A−1(0) − i)+λ
L+

i +

K∑

i=1

(B−1(0) − i)+λ
L−

i

+ (A−1(q) − A−1(0))λC+

iA
aiA − (B−1(q) − B−1(0))λC−

iB
|biB
|
]

dt,

(5.5)

and

E [dS (t)|(a; b)] = ∆P
[
(A−1(q) − A−1(0))λM+ + (B−1(q) − B−1(0))λM−

−
K∑

i=1

(A−1(0) − i)+λ
L+

i −
K∑

i=1

(A−1(0) − i)+λ
L−

i

+ (A−1(q) − A−1(0))λC+

iA
aiA + (B−1(q) − B−1(0))λC−

iB
|biB
|
]

dt.

(5.6)

6. Ergodicty and Diffusive Limit

In this section, our interest lies in the following questions:
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(1) Is the order book model defined above stable?

(2) What is the stochastic-process limit of the price at large time scales?

The notions of “stability” and “large-scale limit” will be made precise be-

low. We first need some useful definitions from the theory of Markov chains

and stochastic stability. Let (Qt)t≥0 be the Markov transition probability

function of the order book at time t, that is

Qt(x, E) := P [X(t) ∈ E|X(0) = x] , t ∈ R+, x ∈ S, E ⊂ S, (6.1)

where S ⊂ Z2K is the state space of the order book. We recall that a (ape-

riodic, irreducible) Markov process is ergodic if an invariant probability

measure π exists and

lim
t→∞
||Qt(x, .) − π(.)|| = 0,∀x ∈ S, (6.2)

where ||.|| designates for a signed measure ν the total variation norm10 de-

fined as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
E∈B(S)

ν(E) − inf
E∈B(S)

ν(E). (6.4)

In (2.32), B(S) is the Borel σ-field generated by S, and for a measurable

function f on S, ν( f ) :=
∫
S f dν.

V-uniform ergodicity. A Markov process is said V-uniformly ergodic if

there exists a coercive11 function V > 1, an invariant distribution π, and

constants 0 < r < 1, and R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), x ∈ S, t ∈ R+. (6.5)

V−uniform ergodicity can be characterized in terms of the infinitesimal gen-

erator of the Markov process. Indeed, it is shown in [MT09, MT93b] that

it is equivalent to the existence of a coercive function V (the “Lyapunov test

function”) such that

LV(x) ≤ −βV(x) + γ, (Geometric drift condition.) (6.6)

10The convergence in total variation norm implies the more familiar pointwise conver-

gence

lim
t→∞
|Qt(x, y) − π(y)| = 0, x, y ∈ S. (6.3)

Note that since the state space S is countable, one can formulate the results without the

need of a “measure-theoretic” framework. We prefer to use this setting as it is more flexible,

and can accommodate possible generalizations of these results.
11That is, a function such that V(x)→ ∞ as |x| → ∞.
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for some positive constants β and γ. (Theorems 6.1 and 7.1 in [MT93b].)

Intuitively, condition (2.34) says that the larger V(X(t)) the stronger X is

pulled back towards the center of the state space S. A similar drift condition

is available for discrete-time Markov processes (Xn)n∈N and reads

DV(x) ≤ −βV(x) + γIC(x), (6.7)

whereD is the drift operator

DV(x) := E[V(Xn+1) − V(Xn)|Xn = x]. (6.8)

and C ⊂ S a finite set. (Theorem 16.0.1 in [MT09].) We refer to [MT09]

for further details.

6.1. Ergodicity of the Order Book and Rate of Convergence to the

Stationary State. Of utmost interest is the behavior of the order book in

its stationary state. We have the following result:

Theorem 6.1. If λC = min1≤i≤K{λC±

i
} > 0, then (X(t))t≥0 = (a(t); b(t))t≥0

is an ergodic Markov process. In particular (X(t)) has a stationary distribu-

tion π. Moreover, the rate of convergence of the order book to its stationary

state is exponential. That is, there exist r < 1 and R < ∞ such that

||Qt(x, .) − π(.)|| ≤ RrtV(x), t ∈ R+, x ∈ S. (6.9)

Proof. Let

V(x) := V(a; b) :=

K∑

i=1

ai +

K∑

i=1

|bi| + q (6.10)

be the total number of shares in the book (+q shares). Using the expression

of the infinitesimal generator (4.1) we have

LV(x) ≤ −(λM+ + λM−)q +

K∑

i=1

(λL+

i + λ
L−

i )q −
K∑

i=1

(λC+

i ai + λ
C−

i |bi|)q

+

K∑

i=1

λL+

i (iS − i)+a∞ +

K∑

i=1

λL+

i (iS − i)+|b∞| (6.11)

≤ −(λM+ + λM−)q + (ΛL− + ΛL+)q − λCqV(x)

+ K(ΛL−a∞ + Λ
L+ |b∞|), (6.12)
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where

ΛL± :=

K∑

i=1

λL±

i and λC := min
1≤i≤K

{λC±

i } > 0. (6.13)

The first three terms in the right hand side of inequality (6.11) correspond

respectively to the arrival of a market, limit or cancellation order—ignoring

the effect of the shift operators. The last two terms are due to shifts occur-

ring after the arrival of a limit order inside the spread. The terms due to

shifts occurring after market or cancellation orders (which we do not put in

the r.h.s. of (6.11)) are negative, hence the inequality. To obtain inequality

(6.12), we used the fact that the spread iS is bounded by K + 1—a con-

sequence of the boundary conditions we impose— and hence (iS − i)+ is

bounded by K.

The drift condition (6.12) can be rewritten as

LV(x) ≤ −βV(x) + γ, (6.14)

for some positive constants β, γ. Inequality (6.14) together with theorem 7.1

in [MT93b] let us assert that (X(t)) is V-uniformly ergodic, hence (6.9). �

Corollary 6.1. The spread S (t) = A−1(0, a(t))∆P = S (X(t)) has a

well-defined stationary distribution—This is expected as by construction the

spread is bounded by K + 1.

6.2. The Embedded Markov Chain. Let (Xn) denote the embedded

Markov chain associated with (X(t)). In event time, the probabilities of each

event are “normalized” by the quantity

Λ(x) := λM+ + λM− + ΛL+ + ΛL− +

K∑

i=1

λC+

i ai +

K∑

i=1

λC−

i |bi|. (6.15)

For instance, the probability of a buy market order when the order book is

in state x, is

P[“Buy market order at time n”|Xn−1 = x] := pM+(x) =
λM+

Λ(x)
. (6.16)

The choice of the test function V(x) =
∑

i ai +
∑

i bi + q does not yield a

geometric drift condition, and more care should be taken to obtain a suitable

test function. Let z > 1 be a fixed real number and consider the function12

V(x) := z
∑

i ai+
∑

i |bi | := zϕ(x). (6.17)

12To save notations, we always use the letter V for the test function.
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We have

Theorem 6.2. (Xn) is V-uniformly ergodic. Hence, there exist r2 < 1 and

R2 < ∞ such that

||Un(x, .) − ν(.)|| ≤ R2rn
2V(x), n ∈ N, , x ∈ S. (6.18)

where (Un)n∈N is the transition probability function of (Xn)n∈N and ν its sta-

tionary distribution.

Proof.

DV(x) ≤ λM+

Λ(x)
(z

∑
i ai−q+

∑
i |bi | − V(x))

+
∑

j

λL+

j

Λ(x)
(z

∑
i ai+q+

∑
i |bi |+K|b∞ | − V(x))

+
∑

j

λC+

j
a j

Λ(x)
(z

∑
i ai−q+

∑
i |bi | − V(x))

+
λM−

Λ(x)
(z

∑
i ai+

∑
i |bi |−q − V(x))

+
∑

j

λL−

j

Λ(x)
(z

∑
i ai+Ka∞+

∑
i |bi |+q − V(x))

+
∑

j

λC−

j
|b j|

Λ(x)
(z

∑
i ai+

∑
i |bi |−q − V(x)). (6.19)

If we factor out V(x) = z
∑

ai+
∑

bi in the r.h.s of (6.19), we get

DV(x)

V(x)
≤ λM+ + λM−

Λ(x)
(z−q − 1)

+
ΛL− + ΛL−

Λ(x)
(zq+Kd∞ − 1)

+

∑
j λ

C+

j
a j +

∑
j λ

C−

j
|b j|

Λ(x)
(z−q − 1), (6.20)

where

d∞ := max{a∞, |b∞|}. (6.21)
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Then

DV(x)

V(x)
≤ λM+ + λM−

λM+ + λM− + ΛL+ + ΛL− + λCϕ(x)
(z−q − 1)

+
ΛL+ + ΛL−

λM+ + λM− + ΛL+ + ΛL− + λCϕ(x)
(zq+Kd∞ − 1)

+
λCϕ(x)

λM+ + λM− + ΛL+ + ΛL− + λCϕ(x)
(z−q − 1), (6.22)

with the usual notations

λC := min λC±

i and λC := max λC±

i . (6.23)

Denote the r.h.s of (6.22) B(x). Clearly

lim
ϕ(x)→∞

B(x) =
λC(z−q − 1)

λC
< 0, (6.24)

hence there exists A > 0 such that for x ∈ S and ϕ(x) > A

DV(x)

V(x)
≤
λC(z−q − 1)

2λC
:= −β < 0. (6.25)

Let C denote the finite set

C = {x ∈ S : ϕ(x) =
∑

i

ai +
∑

i

bi ≤ A}. (6.26)

We have

DV(x) ≤ −βV(x) + γIC(x), (6.27)

with

γ := max
x∈C
DV(x). (6.28)

Therefore (Xn)n≥0 is V-uniformly ergodic, by theorem 16.0.1 in [MT09].

�

6.3. The Case of Constant Cancellation Rates. The proof above can

be applied to the case where the cancellation rates do not depend on the state

of the order book X′(t)—We shall denote the order book X′(t) in order to

highlight that the assumption of proportional cancellation rates is relaxed.

The probability of a cancellation dC±i (t) in [t, t + δt] is now

P[C±i (t + δt) −C±i (t) = 1|X′(t) = x′] = λC±

i δt + o(δt), (6.29)

instead of

P[C+i (t + δt) −C+i (t) = 1|X′(t) = x′] = λC+

i ai(t)δt + o(δt), (6.30)
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where limδt→0 o(δt)/δt = 0. Since Λ = λM+ + λM− + ΛL+ + ΛL− +
∑K

i=1 λ
C+

i
+∑K

i=1 λ
C−

i
does not depend on x′, the analysis of the stability of the continuous-

time process (X′(t)) and its discrete-time counterpart (X′n) are essentially the

same.

We have the following result:

Theorem 6.3. Set

ΛC± :=

K∑

i=1

λC±

i and ΛL± :=

K∑

i=1

λL±

i . (6.31)

Under the condition

λM+ + λM− + ΛC+ + ΛC− > (ΛL+ + ΛL−)(1 + Kd∞), (6.32)

(X′n) is V-uniformly ergodic. There exist r3 < 1 and R3 < ∞ such that

||U′n(x, .) − ν′(.)|| ≤ R3rn
3V(x), n ∈ N, x ∈ S. (6.33)

The same is true for (X′(t)).

Proof. Let us prove the result for (X′n). Inequality (6.20) is still valid by

the same arguments, but this time the arrival rates are independent of x′

DV(x′)

V(x′)
≤ λM+ + λM−

Λ
(z−q − 1)

+
ΛL+ + ΛL−

Λ
(zq+Kd∞ − 1)

+
ΛC+ + ΛC−

Λ
(z−q − 1). (6.34)

Set

z =: 1 + ǫ > 1. (6.35)

A Taylor expansion in ǫ gives

Λ
DV(x)

V(x)
≤ (λM+ + λM−)(−qǫ)

+ (ΛL+ + ΛL−)(q + Kd∞)ǫ

+ (ΛC+ + ΛC−)(−qǫ) + o(ǫ). (6.36)

For ǫ > 0 small enough, the sign of (6.36) is determined by the quantity

− (λM+ + λM−) + (ΛL+ + ΛL−)(1 + Kd∞) − (ΛC+ + ΛC−). (6.37)
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Hence, if (6.32) holds

DV(x) ≤ −βV(x) for some β > 0, (6.38)

and a geometric drift condition is obtained for X′. �

If for concreteness we set q = 1 share, and all the arrival rates are sym-

metric and do not depend on i, then condition (6.32) can be rewritten as

λM + KλC > KλL(1 + Kd∞). (6.39)

where K is the size of the order book and d∞ is the depth far away from

the mid-price. Note that the above is a sufficient condition for (V-uniform)

stability.

6.4. Large-scale Limit of the Price Process. We are now able to an-

swer the main question of this chapter. Let us define the process

e(t) ∈ {1, . . . , 2(2K + 1)}

which indicates the last event

{M±, L±i ,C
±
i }i∈{1,...,K},

that has occurred before time t.

Lemma 6.1. If we append e(t) to the order book (X(t)), we get a Markov

process

Y(t) := (X(t), e(t)) (6.40)

which still satisfies the drift condition (2.34).

Proof. Since e(t) takes its values in a finite set, the arguments of the

previous sections are valid with minor modifications, and with the test func-

tions

V(y) := q +
∑

ai +
∑
|bi| + e, (continuous-time setting) (6.41)

V(y) := e
∑

ai+
∑ |bi |+e. (discrete-time setting) (6.42)

The V-uniform ergodicity of (Y(t)) and (Yn) follows.

�
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Given the state Xn−1 of the order book at time n − 1 and the event en,

the price increment at time n can be determined. (See equation (5.3).) We

define the sequence of random variables

ηn := Ψ(Xn−1, en) := Φ(Yn,Yn−1), (6.43)

as the price increment at time n.Ψ is a deterministic function giving the ele-

mentary “price-impact” of event en on the order book at state Xn−1. Let µ be

the stationary distribution of (Yn), and M its transition probability function.

We are interested in the random sums

Pn :=

n∑

k=1

ηn =

n∑

k=1

Φ(Yk,Yk−1), (6.44)

where

ηk := ηk − Eµ[ηk] = Φk = Φk − Eµ[Φk], (6.45)

and the asymptotic behavior of the rescaled-centered price process

P̃(n)(t) :=
P⌊nt⌋√

n
, (6.46)

as n goes to infinity.

Theorem 6.4. The series

σ2 = Eµ[η
2
0] + 2

∞∑

n=1

Eµ[η0ηn] (6.47)

converges absolutely, and the rescaled-centered price process is a Brownian

motion in the limit of n going to infinity. That is

P̃(n)(t)
n→∞−→ σB(t), (6.48)

where (B(t)) is a standard Brownian motion.

Proof. The idea is to apply the functional central limit theorem for (sta-

tionary and ergodic) sequences of weakly dependent random variables with

finite variance. Firstly, we note that the variance of the price increments ηn

is finite since it is bounded by K + 1. Secondly, the V-uniform ergodicity of

(Yn) is equivalent to

||Mn(x, .) − µ(.)|| ≤ RρnV(x), n ∈ N, (6.49)
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for some R < ∞ and ρ < 1. This implies thanks to theorem 16.1.5 in

[MT09]13 that for any g2, h2 ≤ V , k, n ∈ N, and any initial condition y

|Ey[g(Yk)h(Yk+n)] − Ey[g(Yk)]Ey[h(Yk+n)]| ≤ Rρn[1 + ρkV(y)], (6.50)

where Ey[.] means E[.|Y0 = y]. This in turn implies

|Ey[h(Yk)g(Yk+n)]| ≤ R1ρ
n[1 + ρkV(y)] (6.51)

for some R1 < ∞, where h = h − Eµ[h], g = g − Eµ[g]. By taking the

expectation over µ on both sides of (4.17) and noting that Eµ[V(Y0)] is

finite by theorem 14.3.7 in [MT09], we get

|Eµ[h(Yk)g(Yk+n)]| ≤ R2ρ
n =: ρ(n), k, n ∈ N. (6.52)

Hence the stationary version of (Yn) satisfies a geometric mixing condition,

and in particular ∑

n

ρ(n) < ∞. (6.53)

Theorems 19.2 and 19.3 in [Bil99] on functions of mixing processes14 let

us conclude that

σ2 := Eµ[η
2
0] + 2

∞∑

n=1

Eµ[η0ηn] (6.54)

is well-defined—the series in (4.20) converges absolutely—and coincides

with the asymptotic variance

lim
n→∞

1

n
Eµ


n∑

k=1

(ηk)
2

 = σ2. (6.55)

Moreover

P̃(n)(t)
n→∞−→ σB(t), (6.56)

where (B(t)) is a standard Brownian motion. The convergence in (4.22) hap-

pens in D[0,∞), the space of R-valued càdlàg functions, equipped with the

Skorohod topology. �

Remark 6.1. In the large-scale limit, the mid-price P, the ask price PA =

P + S
2
, and the bid price PB = P − S

2
converge to the same process (σB(t)).

13We refer to §16.1.2 “V-geometric mixing and V-uniform ergodicity” in [MT09] for

more details.
14See also theorem 4.4.1 in [Whi02] and discussion therein.
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Remark 6.2. Theorem 4.2 is also true with constant cancellation rates

under condition (6.32). In this case the result holds both in event time and

physical time. Indeed, let (N(t))t∈R+ denote a Poisson process with intensity

Λ = λM± +ΛL± +
∑K

i=1 λ
C±

i
. The price process in physical time (Pc(t))t∈R+ can

be linked to the price in event time (Pn)n∈N by

Pc(t) = PN(t). (6.57)

Then

P⌊kt⌋√
k

k→∞−→ σB(t) as in theorem 4.2, (6.58)

and since
N(u)

Λu

u→∞−→ 1 a.s.,

Pc(kt)
√

k
=

PN(kt)√
k

k→∞∼ →P⌊Λkt⌋√
k

k→∞−→
√
ΛσB(t). (6.59)

Remark 6.3. Yet another specification of the cancellation process. An-

other interesting specification of the cancellation process (Ci(t)) is to as-

sume that the arrival rate is constant (for each i) but the canceled volume

is proportional to the queue size |Xi|. In this case, the treatments of the con-

tinuous time chain and its embedded discrete-time counterpart are equiva-

lent, and theorems 6.1–4.2 can be obtained in an analogous manner to the

proofs in this section.



CHAPTER 3

Markovian Order Book Models II: Numerical Example

1. Numerical Example

In order to gain a better intuitive understanding of the “mechanics” of

the model, we sketch in Algorithm 1 below the simulation procedure in

pseudo-code (See also [GO10] for a similar description.) For simplicity,

we take a symmetric order book model. We also let (usual notations):

λL :=
(
λL

1 , . . . , λ
L
K

)
, (1.1)

ΛL :=

K∑

i=1

λL
i , (1.2)

λC(a) :=
(
λC

1 a1, . . . , λ
C
KaK

)
, (1.3)

ΛC(a) :=

K∑

i=1

λC
i ai, (1.4)

λC(b) :=
(
λC

1 |b1|, . . . , λC
K |bK |

)
, (1.5)

ΛC(b) :=

K∑

i=1

λC
i |bi|, (1.6)

Λ(a,b) := 2(λM + ΛL) + ΛC(a) + ΛC(b). (1.7)

In order to put the simulation results and the data on the same footing, we

relax the assumption of constant order sizes; we draw the order volumes

from lognormal distributions.

The parameters of the model are estimated from tick by tick data as de-

tailed in section 2. For concreteness1, we use the parameters of the stock

SCHN.PA (Schneider Electric) in March 2011 for the plots. They are sum-

marized in tables 3 and 4.

1The results are qualitatively similar for all CAC 40 stocks.

41
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Algorithm 1 Order book simulation.

Require: Model parameters— Arrival rates: λM , {λL
i
}i∈{1,...K}, {λC

i
}i∈{1,...K}, order book size:

K, reservoirs: a∞, b∞, volume distribution parameters: (vM , sM), (vL, sL), (vC , sC).

Simulation Parameters— Number of time steps: N.

Initialization— t ← 0, X(0)← Xinit.

1: for time step n = 1, . . . ,N, do

2: Compute the best bid pB and best ask pA.

3: Compute ΛC(b) =

K∑

i=1

λC
i |bi|, i.e. the weighted sum of shares at price levels from

pA − K to pA − 1.

4: Compute ΛC(a) =

K∑

i=1

λC
i ai.

5: Draw the waiting time τ for the next event from an exponential distribution with

parameter

Λ(a,b) = 2(λM + ΛL) + ΛC(a) + ΛC(b).

6: Draw a new event according to the probability vector
(
λM , λM ,ΛL,ΛL,ΛC(a),ΛC(b)

)
/Λ(a,b).

These probabilities correspond respectively to a buy market order, a sell market

order, a buy limit order, a sell limit order, a cancellation of an existing sell order

and a cancellation of an existing buy order.

7: Depending on the event type, draw the order volume from a lognormal distribution

with parameters (vM , sM), (vL, sL) or (vC , sC).

8: If the selected event is a limit order, select the relative price level from {1, 2, . . . ,K}
according to the probability vector

(
λL

1 , . . . , λ
L
K

)
/ΛL.

9: If the selected event is a cancellation, select the relative price level at which to

cancel an order from {1, 2, . . . ,K} according to the probability vector
(
λC

1 a1, . . . , λ
C
KaK

)
/ΛC(a).

(or λC(b)/ΛC(b) for the bid side.)

10: Update the order book state according to the selected event.

11: Enforce the boundary conditions:

ai = a∞, i ≥ K + 1,

bi = b∞, i ≥ K + 1.

12: Increment the event time n by 1 and the physical time t by τ.

13: end for

Remark 1.1. For the practical implementation, it is easier to work with an “absolute”

price frame ∆p × {1 . . . L} where L ≫ K.
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Figure 1 represents the average depth profile, that is, the average num-

ber of outstanding shares at a distance of i ticks from the best opposite

price. The agreement between the simulation and the data is fairly good

(See panel (a) of figure 10 for a cross-sectional view on CAC 40 stocks.)

We also plot the distribution of the spread in figure 2. Note that the sim-

ulated distribution is tighter than the actual one (this is systematic and is

documented in panel (b) of figure 10.) Figure 3 shows the fast decay of the

autocorrelation function of the price increments. Note the high negative au-

tocorrelation of simulated trade prices relatively to the data. In accordance

with the theoretical analysis, figures 4–6 illustrate the asymptotic normality

of price increments.

The signature plot of the price time series is defined as the variance of

price increments at lag h normalized by the lag, that is

σ2
h :=
V [P(t + h) − P(t)]

h
. (1.8)

This function measures the variance of price increments per time unit. It

is interesting in that it shows the transition from the variance at small time

scales where micro-structure effects dominate, to the long-term variance.

By theorem 4.22

lim
h→∞
σ2

h = σ
2, for some fixed value σ. (1.9)

We verify this numerically in figure 7. Two remarks are in order regarding

the signature plot:

Long-term variance— The simulated long-term variance is systemati-

cally lower than the variance computed from the data (This is documented

in panel (c) of figure 10.) Intuitively, the depth of the order book is expected

to increase from the best price towards the center of the book. In the absence

of autocorrelation in trade signs, this would cause prices to wander less of-

ten far away from the current best as they hit a higher “resistance”. We

also suspect that actual prices exhibit locally more “drifting phases” than

in a (symmetric) Markovian model where the expected price drift is null at

all times. An interesting analysis of a simple order book model that allows

time-varying arrival rates can be found in [CS03].

Short-term variance— The signature plot predicted by the model is too

high at short time scales relative to the asymptotic variance, especially for

2Strictly spreaking, we proved the result in event-time.
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traded prices. This is classically known to be due to bid-ask bounce. It is

however remarkable that the signature plot of actual trade prices looks much

flatter compared to the simulation (See figure 7.) This was discovered and

discussed in detail by Bouchaud et al. in [BGPW04], and Lillo and Farmer

in [LF04] (See also [FGLM06] and [BFL09].) They note that actual order

signs exhibit positive long-ranged correlations. They also note that actual

prices are diffusive—the signature plot is flat—even at small time scales.

They solve this apparent paradox by showing that diffusivity results from

two opposite effects: autocorrelation in trade signs induces persistence in

the prices, just at the exact amount to counterbalance the mean reversion

induced by the liquidity stored in the order book. This subtle equilibrium

between liquidity takers and liquidity providers which guarantees price dif-

fusivity at short lags, is not accounted for by the bare Markovian order book

model we study, and one can speak about anomalous diffusion at short time

scales for Markovian order book models [SFGK03]. Because of the ab-

sence of positive autocorrelation in trade signs in the model, this effect is

magnified when one looks at trades. The next paragraph elaborates on this

point.

1.1. Anomalous Diffusion at Short Time Scales. A qualitative under-

standing of the discrepancy between the model and the data signature plots

at short time scales can be gleaned with the following heuristic argument.

In what follows, we reason in trade time t. Denote by PTr(t) the price of the

trade at time t, and α(t) its sign:

α(t) = 1, for a buyer initiated trade, i.e. a buy market order, (1.10)

and,

α(t) = −1, for a seller initiated trade, i.e. a sell market order. (1.11)

We assume that the two signs are equally probable (symmetric model). But

to make the argument valid for both the model (for which successive trade

signs are independent) and the data (for which trade signs exhibit long mem-

ory) we do not assume independence of successive trade signs. Let also for

a quantity Z

∆Z(t) := Z(t + 1) − Z(t). (1.12)

We have by definition

PTr(t) = P(t−) +
1

2
α(t)S (t−), (1.13)
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Figure 1. Average depth profile. Simulation parameters are

summarized in tables 3 and 4.

where P(t−) and S (t−) are respectively the prevailing mid-price and spread

just before the trade. From equation (1.13)

σTr
1

2
:= V[∆PTr(t)]

= E

[(
∆PTr(t)

)2
]

= E

[(
∆P(t−)

)2
]

+ E
[
∆P(t−)∆(α(t)S (t−))

]

+
1

4
E

[(
∆(α(t)S (t−))

)2
]
. (1.14)

The first term in the r.h.s. is the variance of mid-price increments σ2
1
. The

second term represents the covariance of mid-price increments and the trade

sign (weighted by the spread) and we assume it is negligible3. Let us focus

3This amounts to neglecting the correlation between trade signs and mid-quote move-

ments, which is justified by the dominance of cancellations and limit orders in comparison

to market orders in order book data.
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Figure 2. Probability distribution of the spread. Note that

the model (dark gray) predicts a tighter spread than the data.

on the third term:

∆(α(t)S (t−)) = α(t + 1)∆S (t−) + S (t−)∆α(t). (1.15)

Then

E

[(
∆(α(t)S (t−))

)2
]
= E

[
(∆α(t))2

]
E

[
S (t−)2

]

+ 2E
[
α(t + 1)∆S (t−)S (t−)∆α(t)

]

+ E
[
α(t + 1)2

]
E

[
(∆S (t−))2

]
. (1.16)

Again, we neglect the cross term4 in the r.h.s. and we are left with

E

[(
∆(α(t)S (t−))

)2
]
≈ E

[
(∆α(t))2

]
E

[
S (t−)2

]

+ E
[
(∆S (t−))2

]
. (1.17)

4This time, we are neglecting the correlation between trade signs and spread

movements.
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Figure 3. Autocorrelation of price increments. This figure

shows the fast decay of the autocorrelation function, and the

large negative autocorrelation of trades at the first lag.

But

E

[
(∆α(t))2

]
= E

[
α(t + 1)2

]
+ E

[
α(t)2

]
− 2E [α(t)α(t + 1)]

= 2 (1 − ρ1(α)) , (1.18)

where ρ1(α) is the autocorrelation of trade signs at the first lag.

Finally5:

σTr
1

2 ≈ σ1
2 +

1

2
(1 − ρ1(α))E

[
S (t−)2

]
+

1

4
E

[
(∆S (t−))2

]
. (1.20)

Two effects are clear from equation (1.20):

5More generally, after n trades:

σTr
n

2 ≈ σn
2 +

1

2n
(1 − ρn(α))E

[
S (t−)2

]
. (1.19)
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Figure 4. Price sample path. At large time scales, the price

process is a Brownian motion.

(1) The trade price variance at short time scales is larger than the mid-

price variance,

(2) Autocorrelation in trade signs dampens this discrepancy. This par-

tially explains6 why the trades signature plot obtained from the

data is flatter than the model predictions: ρ1(α)model = 0, while

ρ1(α)data ≈ 0.6.

From a modeling perspective, a possible solution to recover the diffusiv-

ity even at very short time scales, is to incorporate long-ranged correlation

in the order flow. Toth et al. [TLD+11] have investigated numerically this

route using a “ǫ-intelligence” order book model. In this model, market or-

ders signs are long-ranged correlated, that is, in trade time

ρn(α) = E [α(t + n)α(t)] ∝ n−γ, γ ∈]0, 1[. (1.21)

6Interestingly, although the arguments that led to (1.20) are rather qualitative, a back

of the envelope calculation with E
[
S 2

]
∈ [1, 9], gives a difference σTr2 − σ2 in the range

[0.5, 4.5]; which has the same order of magnitude of the values obtained by simulation.
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Figure 5. Q-Q plot of mid-price increments. h is the time

lag in seconds. This figure illustrates the aggregational nor-

mality of price increments.

And the size of incoming market orders is a fraction f of the volume dis-

played at the best opposite quote, with f drawn from the distribution

Pξ( f ) = ξ(1 − f )ξ−1, (1.22)

They show that, by fine tuning the additional parameters γ and ξ, one can

ensure the diffusive behavior of the price both at mesoscopic (≈ a few

trades) and macroscopic (≈ hundred trades) time scales7.

7Note that Toth. el al. [TLD+11] model the “latent order book”, not the actual observ-

able order book. The former represents the intended volume at each price level p, that is,

the volume that would be revealed should the price come close to p. So that the interpreta-

tion of their parameters, in particular the expected lifetime τlife of an order, does not strictly

match ours.
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lag h = 1000 events.

2. Model Parameters Estimation

2.1. Description of the Data. For reproducibility, we summarize in

tables 3 and 4 the parameters used to obtain figures 1–7. These correspond

to estimating the model for the stock SCHN.PA (Schneider Electric). Our

dataset consists of TRTH8 data for the CAC 40 index constituents in March

2011 (23 trading days). We have tick by tick order book data up to 10 price

levels, and trades. A snapshot of these files is given in tables 1 and 2. In

order to avoid the diurnal seasonality in trading activity (and the impact of

the US market open on European stocks), we somehow arbitrarily restrict

our attention to the time window [9 : 30–14 : 00] CET.

2.2. Trades and Tick by Tick Data Processing. As one cannot dis-

tinguish market orders from cancellations in tick by tick data, and since the

timestamps of the trades and tick by tick data files are asynchronous, we use

8Thomson Reuters Tick History.
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(b) Calendar time.

Figure 7. Signature plot: σ2
h := V [P(t + h) − P(t)]/h. y axis

unit is tick2 per trade for panel (a) and tick2.second−1 for

panel (b).We used a 1,000,000 event simulation run for the

model signature plots. Data signature plots are computed

separately for each trading day [9 : 30–14 : 00] then aver-

aged across 23 days. For calendar time signature plots, prices

are sampled every second using the last tick rule. The inset

is a zoom-in.
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Timestamp Side Level Price Quantity

33480.158 B 1 121.1 480

33480.476 B 2 121.05 1636

33481.517 B 5 120.9 1318

33483.218 B 1 121.1 420

33484.254 B 1 121.1 556

33486.832 A 1 121.15 187

33489.014 B 2 121.05 1397

33490.473 B 1 121.1 342

33490.473 B 1 121.1 304

33490.473 B 1 121.1 256

33490.473 A 1 121.15 237

Table 1. Tick by tick data file sample. Note that the field

“Level” does not necessarily correspond to the distance in

ticks from the best opposite quote as there might be gaps in

the book. Lines corresponding to the trades in table 2 are

highlighted in italics.

Timestamp Last Last quantity

33483.097 121.1 60

33490.380 121.1 214

33490.380 121.1 38

33490.380 121.1 48

Table 2. Trades data file sample.

a matching procedure to reconstruct the order book events. In a nutshell, we

proceed as follows for each stock and each trading day:

(1) Parse the tick by tick data file to compute order book state varia-

tions:

• If the variation is positive (volume at one or more price levels

has increased), then label the event as a limit order.

• If the variation is negative (volume at one or more price levels

has decreased), then label the event as a “likely market order”.
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• If no variation—this happens when there is just a renumbering

in the field “Level” that does not affect the state of the book—

do not count an event.

(2) Parse the trades file and for each trade:

(a) Compare the trade price and volume to likely market orders

whose timestamps are in [tTr − ∆t, tTr + ∆t], where tTr is the

trade timestamp and ∆t is a predefined time window9.

(b) Match the trade to the first likely market order with the same

price and volume and label the corresponding event as a mar-

ket order—making sure the change in order book state hap-

pens at the best price limits.

(c) Remaining negative variations are labeled as cancellations.

Doing so, we have an average matching rate of around 85% for CAC 40

stocks. As a byproduct, one gets the sign of each matched trade, that is,

whether it is buyer or seller initiated.

2.3. Parameters Estimation. If T be the trading duration of interest

each day (T = 4.5 hours—[9 : 30–14 : 00]—in our case.) Then

λ̂M :=
#trades

2T
, (2.1)

and

λ̂L
i

:=
1

2T
.

(#buy limit orders arriving i tick away from the best opposite quote

+ #sell lim. orders etc.) . (2.2)

For cancellations, we need to normalize the count by the average number of

shares 〈Xi〉 at distance i from the best opposite quote:

λ̂C
i

:=
1

〈Xi〉
1

2T
.

(#cancellation orders in the bid side arriving i tick away from the best opposite quote

+ #cancellation orders in the ask side etc.) , (2.3)

9We set ∆t = 3 s for CAC 40 stocks. We found that the median reporting delay for

trades is −900 ms: on average, trades are reported 900 milliseconds before the change is

recorded in tick by tick data.
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K 30

a∞ 250

b∞ 250

(vM, sM) (4.00, 1.19)

(vL, sL) (4.47, 0.83)

(vC, sC) (4.48, 0.82)

λM± 0.1237

Table 3. Model parameters for the stock SCHN.PA (Schnei-

der Electric) in March 2011 (23 trading days). Figures 8 and

9 are graphical representation of these parameters.

We then average λ̂M, λ̂L
i

and λ̂L
i

across 23 trading days to get the final esti-

mates. As for the volumes, we estimate by maximum likelihood the param-

eters (̂v, ŝ) of a lognormal distribution separately for each order type. We

depict the parameters in figures 8 and 9.

2.4. A Typical Parmaters Set.

λM = 0.1, (order / second)

λL = 1, (order / second / tick)

λC = 0.2, (order / second / tick)

K = 10, (ticks)

q = 1, (share)

a∞ = b∞ = 5. (shares) (2.4)

3. Results for CAC 40 Stocks

In order to get a cross-sectional view of the performance of the model on

all CAC 40 stocks, we estimate the parameters separately for each stock and

run a 100, 000 event simulation for each parameter set. We then compare in

figure 10 the average depth, average spread and the long-term “volatility”

measured directly from the data, to those obtained from the simulations.

Dashed line is the identity function—It would correspond to a perfect match

between model predictions and the data. Solid line is a linear regression

zdata = b1 + b2 zmodel for each quantity of interest z.
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i (ticks) 〈Xi〉 (shares) λL±

i 103.λC±

i

1 276 0.2842 0.8636

2 1129 0.5255 0.4635

3 1896 0.2971 0.1487

4 1924 0.2307 0.1096

5 1951 0.0826 0.0402

6 1966 0.0682 0.0341

7 1873 0.0631 0.0311

8 1786 0.0481 0.0237

9 1752 0.0462 0.0233

10 1691 0.0321 0.0178

11 1558 0.0178 0.0127

12 1435 0.0015 0.0012

13 1338 0.0001 0.0001

14 1238 0.0 0.0

15 1122
...

...

16 1036

17 943

18 850

19 796

20 716

21 667

22 621

23 560

24 490

25 443

26 400

27 357

28 317

29 285
...

...

30 249 0.0 0.0

Table 4. Model parameters for the stock SCHN.PA (Schnei-

der Electric) in March 2011 (23 trading days). Figures 8 and

9 are graphical representation of these parameters.
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Figure 8. Model parameters: arrival rates and average depth

profile (parameters as in table 4). Error bars indicate vari-

ability across different trading days.
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Figure 9. Model parameters: volume distribution. Panels

(a), (b) and (c) correspond respectively to market, limit and

cancellation orders volumes. Dashed lines are lognormal fits

(parameters as in table 3).
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b1 b2 R2

Log 〈A〉 (5) −0.42 (±0.11) 1.13 (±0.04) 0.99

Log 〈S 〉 0.20 (±0.06) 1.16 (±0.07) 0.97

σ∞ −0.012 (±0.05) 1.35 (±0.11) 0.94

Table 5. CAC 40 stocks regression results.

Note that despite the good agreement between the average depth profiles

(panel (a)), and although the model successfully predicts the relative magni-

tudes of the long-term variance σ2
∞ and the average spread 〈S 〉 for different

stocks, it tends to systematically underestimate σ2
∞ and 〈S 〉. This may be

related to the absence of autocorrelation in order signs in the model and the

presence of more drifting phases in actual prices than in those obtained by

simulation.

4. Conclusions

In the previous two chapters, we analyzed a simple Markovian order

book model, in which elementary changes in the price and spread processes

are explicitly linked to the instantaneous shape of the order book and the

order flow parameters.

Two basic properties were investigated: the ergodicity of the order book

and the large-scale limit of the price process. The first property, which we

answered positively, is desirable in that it assures the stability of the order

book in the long run, and gives a theoretical underpinning to statistical mea-

surements on order book data. The scaling limit of the price process is, as

anticipated, a Brownian motion. A key ingredient in this result is the conver-

gence of the order book to its stationary state at an exponential rate, a prop-

erty equivalent to a geometric mixing condition satisfied by the stationary

version of the order book. This short memory effect, plus a constraint on the

variance of price increments guarantee a diffusive limit at large time scales.

Our assumptions are independent Poissonian order flows, proportional can-

cellation rates, and the presence of two reservoirs of liquidity K ticks away

from the best quotes to guarantee that the spread does not diverge.10

10We believe this assumption can be relaxed under a balance condition on the arrival

rates. One has however to consider an order book model with finite but unbounded support,

and control not only the stability of the spread but also of all the gaps in the book.
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Figure 10. A cross-sectional comparison of liquidity and

price diffusion characteristics between the model and data

for CAC 40 stocks (March 2011).
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We believe the results hold for a wide class of Markovian order book

models: In general, one can state that price increments in a stable Markovian

order book model are aggregationally Gaussian11.

In a sense, this could offer a mathematical justification to the Bachelier

model of asset prices, from a market microstructure perspective. In real-

ity, the picture is however more subtle: even if the price process is asymp-

totically diffusive, at short time scales, the model produces stronger anti-

correlation in traded prices than what is actually observed in the data. At

those time scales, price diffusivity is arguably the result of a balance be-

tween persistent liquidity taking and anti-persistent liquidity providing.

We believe however that the approach presented here is interesting for

clearly identifying conditions under which the asymptotic normality of price

increments holds; and more importantly, for introducing a set of mathemat-

ical tools for further investigating the price dynamics in more sophisticated

stochastic order book models. Indeed, using the same techniques, we are

studying extensions of our results to the case of mutually exciting—and

therefore dependent—order flows (point 1 below). This will be published

elsewhere.

Our work can naturally be extended in several ways. In the following

lines, we suggest some possible avenues to explore.

Firstly, actual order flows exhibit non-negligible cross dependences. As

documented in [MT11b], market orders excite limit orders and vice versa.

A possible solution for endogenously incorporating these dependences is

the use of mutually exciting processes:

λM(t) = λM(0) +

∫ t

0

ϕMM(t − s)dNM(s)

+

∫ t

0

ϕLM(t − s)dNL(s), (4.1)

and,

λL(t) = λL(0) +

∫ t

0

ϕLL(t − s)dNL(s)

+

∫ t

0

ϕML(t − s)dNM(s), (4.2)

11Rigorously, the convergence to the stationary state has to happen fast enough. That

is, with an integrable convergence rate ρ(n) as in (4.19).
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This model has the additional advantage of capturing clustering in order ar-

rivals (due to the self-excitation terms ϕMM and ϕLL), and for exponentially

decaying kernels12 can be cast into a Markovian setting.

Besides, long-ranged correlation in order signs is a very important fea-

ture of the data, as discussed in section 1. Analyzing this mathematically is

more difficult since the model is no longer Markovian.

Moreover, it is natural to add another source of randomness on the rates

themselves, for instance

dλ(t) = θ(λ(t) − λ(t))dt + ν
√
λ(t)dW(t), (4.3)

where λ is a (deterministic) background intensity to account for the U-

shaped daily trading activity and θ, ν are the parameters of a CIR process.

Such stochastic arrival rates would lead to stochastic volatility in the prices.

Although we argued that the simple Markovian order book model we

study is stable and asymptotically diffusive, markets do show signs of fragility

quite often and large jumps do occur in actual prices. Understanding how

these macroscopic jumps (or departure from equilibrium) arise from events

at the order book level, for instance via sudden evaporation of liquidity in

one side of the book is much needed.

Finally, richer price dynamics (e.g. fat-tailed return distributions) can be

obtained using feedback loops between the arrival rates and the price (or its

volatility) as in [PGPS06].

These extensions may, however, render the model less amenable to math-

ematical analysis, and we leave the investigation of such interesting (but

sometime difficult) questions for future research.

12ϕ(u) = αe−βu.





CHAPTER 4

On the Stability and Price Scaling Limit of a Hawkes

Process-Based Order Book Model

1. Introduction

Since their introduction in [Haw71b], Hawkes processes have been ap-

plied in a wide range of research areas from seismology (originally), to

credit risk [EGG10], financial contagion [ASCDL13] and more recently

market microstructure modelling [BDHM13a, BDHM13b, BM13, Bow07,

Lar07, MT11b, MTP12, ZRA13].

In market microstructure, and particularly order book modelling, the

relevance of these processes comes at least from two empirical properties

of (market, limit and cancellation) order flows at the microscopic level:

(1) Time clustering: order arrivals are highly clustered in time.

(2) Mutual dependence: order flow exhibit non-negligible cross de-

pendences. For instance, as documented in [MT11b], market or-

ders excite limit orders and vice versa.

At the microscopic level, point process-based microstructure models

capture by construction the intrinsic discreteness of prices and volumes. A

question of interest in this context is the microscopic to macroscopic tran-

sition in the price dynamics. This strand of research has attracted a lot of

interest of late [AJ13, BDHM13a, BDHM13b, BM13, CdL13, CdL12,

HP13, ZRA13].

In this chapter, we cast a Hawkes process-based order book model into a

Markovian setting, and using techniques from the theory of Markov chains

and stochastic stability [MT09], show that the order book is stable and leads

to a diffusive price limit at large time scales.

1.1. Outline. Section 2 is a distillation of some mathematical results

about Hawkes processes and Markov chains stochastic stability. Section 3

63
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contains three auxiliary stability results which, apart from their own interest,

are useful to prove the stability of the order book. Section 4 is an application

to a particular order book model and is the main contribution of the chapter.

1.2. Notations. The following notations appear frequently throughout

this chapter, and we recall them here for reference:

• (Xn): discrete-time process,

• (X(t)): continuous-time process,

• |x| = ∑p

i=1
|xi|,

• ~1, p� = {1, 2, . . . p}.

2. Preliminary Remarks

We collect in this section several definitions and results that are useful

for the rest of this chapter. The presentation is rather informal.

2.1. Point Processes.

Definition 2.1 (Point process). A point process is an increasing se-

quence (Tn)n∈N of positive random variables defined on a measurable space

(Ω,F ,P).

We will restrict our attention to processes that are nonexplosive, that is,

for which limn→∞ Tn = ∞. To each realization (Tn) corresponds a counting

function (N(t))t∈R+ defined by

N(t) = n if t ∈ [Tn,Tn+1[, n ≥ 0. (2.1)

(N(t)) is a right continuous step function with jumps of size 1 and carries

the same information as the sequence (Tn), so that (N(t)) is also called a

point process.

Definition 2.2 (Multivariate point process). A multivariate point pro-

cess (or marked point process) is a point process (Tn) for which a random

variable Xn is associated to each Tn. The variables Xn take their values in a

measurable space (E,E).

We will restrict our attention to the case where E = {1, . . . ,M}, M ∈ N∗.
For each m ∈ {1, . . . ,M}, we can define the counting processes

Nm(t) =
∑

n≥1

I(Tn ≤ t)I(Xn = i). (2.2)
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We also call the process

N(t) = (N1(t), . . . ,NM(t))

a multivariate point process.

Definition 2.3 (Intensity of a point process). A point process (N(t))t∈R+

can be completely characterized by its (conditional) intensity function, λ(t),

defined as

λ(t) = lim
u→0

P [N(t + u) − N(u) = 1|Ft]

u
, (2.3)

where Ft is the history of the process up to time t, that is, the specification

of all points in [0, t]. Intuitively

P [N(t + u) − N(u) = 1|Ft] = λ(t) u + o(u), (2.4)

P [N(t + u) − N(u) = 0|Ft] = 1 − λ(t)u + o(u), (2.5)

P [N(t + u) − N(u) > 1|Ft] = o(u). (2.6)

This is naturally extended to the multivariate case by setting for each m ∈
{1, . . . ,M}

λm(t) = lim
u→0

P [Nm(t + u) − Nm(u) = 1|Ft]

u
. (2.7)

2.2. Hawkes Processes.

2.2.1. Hawkes Process.

Definition 2.4. A Hawkes process (N(t))t∈R+ is a point process whose

intensity is specified by

λ(t) = µ + α

∫ t

0

e−β(t−s)dN(s) = µ + α
∑

0≤si≤t

e−β(t−si), (2.8)

for a triplet (µ, α, β) of positive real numbers1.

The process thus defined is self-excited: it has a base intensity µ, plus ex-

ponentially decaying shocks due to previous jumps. The parameter α char-

acterizes the scale of the excitation and β its decay in time.

Proposition 2.1. The process X(t) = (N(t), λ(t)) is Markov.

1A more general definition would have

λ(t) = µ +

∫ t

0

ϕ(t − s)ds, (2.9)

with an unspecified kernel ϕ > 0. But we only consider exponentially decaying kernels in

this chapter.
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Proof. From a straightforward calculation, we have for any t2 > t1

λ(t2) = µ + α

∫ t2

0

e−β(t2−s)dN(s)

= µ + α

∫ t1

0

e−β(t2−s)dN(s) + α

∫ t2

t1

e−β(t2−s)dN(s)

= µ + e−β(t2−t1)(λ(t1) − µ) +
∫ t2

t1

e−β(t2−s)dN(s). (2.10)

So that in order to compute λ(t2), we only need to know λ(t1) and {N(t) : t1 ≤ t ≤ t2}—
the information contained in {N(t), λ(t) : 0 ≤ t < t1} is irrelevant. Hence

P [(N(t2), λ(t2)) ∈ A|{N(t), λ(t) : t ∈ [0, t1]}] = P [(N(t2), λ(t2)) ∈ A|N(t1), λ(t1)] ,

(2.11)

for any measurable set A ⊂ N × R+, and X is Markov. �

2.2.2. Multivariate Hawkes Process.

Definition 2.5. We say that N = (N1, . . . ,NM) is a multivariate Hawkes

process when

λm(t) = µm +

M∑

j=1

αm j

∫ t

0

e−βm j(t−s)dN j(s). (2.12)

Proposition 2.2. Let Y i j(t) = αi j

∫ t

0
e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ M, and

Y(t) = {Y i j(t)}1≤i, j≤M. The process X(t) = (N(t),Y(t)) is Markov.

Proof. Let t2 > t1. Since

Ym j(t2) = e−βm j(t2−t1)Ym j(t1) +

∫ t2

t1

e−βm j(t2−s)dN j(s), (2.13)

and

λm(t2) = µm +

M∑

j=1

Ym j(t2), (2.14)

the law of (N(t2),Y(t2)) conditional on {(N(t),Y(t)) : 0 ≤ t ≤ t1} is the same

as when conditionning on (N(t1),Y(t1)) only—the information contained in

{(N(t),Y(t)) : 0 ≤ t < t1} is irrelevant, and X is Markov. �
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2.2.3. Stationarity.

Definition 2.6. A point process is stationary when for every r ∈ N∗ and

all bounded Borel subsets A1, . . . , Ar of the real line, the joint distribution

of

{N(A1 + t), . . . ,N(Ar + t)}
does not depend on t.

In [HO74], Hawkes and Oakes show that:

Proposition 2.3. If
α

β
< 1 (2.15)

then there exists a (unique) stationary point process (N(t)), whose intensity

is specified as in definition 2.4.

Brémaud and Massoulié generalize this to the multivariate case in [BM96]:

Proposition 2.4. Let the matrix A be defined by

Ai j =
αi j

βi j

, 1 ≤ i, j ≤ M. (2.16)

If

ρ(A) < 1

then there exists a (unique) stationary multivariate point process N(t) =

(N1(t), . . . ,Nm(t)) whose intensity is specified as in definition 2.5.

ρ(A) is the spectral radius of the matrix A, that is, its largest eigenvalue.

2.3. The Embedded Discrete-time Hawkes Process. Throughout this

chapter, we will mostly work with processes sampled in discrete time. We

show in this section how to construct a discrete-time version (Xn)n∈N out of

a multivariate Hawkes process X(t) = (N(t),Y(t))t∈R+ , where Y is defined by

Y i j(t) = αi j

∫ t

0

e−βi j(t−s)dN j(s), 1 ≤ i, j ≤ M, (2.17)

as in proposition 2.2.

First denote (Tn)n≥1 the jump times of the process (and set T0 = 0), and

Xn = X(Tn) = (N(Tn),Y(Tn)). (2.18)
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We define En = E(Tn) ∈ {1, . . . ,M} as the mark of the process. The value

of En indicates which component of N(t) has jumped at time Tn. We also

define the waiting times (τn)n≥1 between two successive jumps as

τn = Tn+1 − Tn. (2.19)

Given that (Nn,Yn) = (ξ, y), (Nn+1,Yn+1) is generated as follows: Set

τn+1 = min(τ1
n+1, . . . , τ

M
n+1), (2.20)

where conditional on (Nn,Yn) = (ξ, y), the distribution of τ1
n+1
, . . . , τM

n+1
is

that of independent positive random variables whose marginal distributions

are determined by hazard rates

hm(t) := µm +

M∑

j=1

ym je
−βi jt, t ≥ 0, 1 ≤ m ≤ M. (2.21)

Then set

En+1 = argmin1≤m≤Mτ
m
n+1, (2.22)

Nn+1 = (ξ1, . . . , ξEn
+ 1, . . . , ξM), (2.23)

and

Y
m j

n+1
= ym je

−βm jτn+1 + αm jI(En+1 = j). (2.24)

2.4. Drift of a Discrte-time Markov Process.

Definition 2.7. The drift operator D is defined to act on any nonnega-

tive measurable function V by

DV(x) = E[V(Xn+1) − V(Xn)|Xn = x]. (2.25)

We will also use the notation

PV(x) = E[V(Xn+1)|Xn = x], (2.26)

hence

DV(x) = PV(x) − V(x). (2.27)

As will be clear in the next section, the importance of this operator stems

from the existence of criteria based on the drift to establish properties of the

process. It can be interpreted as the analogous for a process to the derivative

for a function2.

2Cf. Dynkyn’s formula or its discrete-time formulation.
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2.5. A Digression on Stochastic Stability. Let (Xn)n∈N be a Markov

process on a sate space S and (Qn)n∈N∗ its transition probability function,

that is

Qn(x, A) = P [Xn ∈ A|X0 = x] , (2.28)

for x ∈ S and A a measurable subset of S.

2.5.1. Ergodicity of a Markov process. Ergodicity is a strong form of

“stability”: To rephrase [MT09], it means that “there is an invariant regime

described by a measure π such that if the process starts in this regime (that

is, if X0 has distribution π) then it remains in the regime. And moreover

if the process starts in some other regime, then it converges in a strong

probabilistic sense with π as a limiting distribution.”

Formally, a (aperiodic, irreducible) Markov process is ergodic if an in-

variant3 probability measure π exists and

lim
n→∞
||Qn(x, .) − π(.)|| = 0,∀x ∈ S, (2.30)

where ||.|| designates for a signed measure ν the total variation norm4 defined

as

||ν|| := sup
f :| f |<1

|ν( f )| = sup
A∈B(S)

ν(A) − inf
A∈B(S)

ν(A). (2.32)

In (2.32), B(S) is the Borel σ-field generated by S, and for a measurable

function f on S, ν( f ) :=
∫
S f dν.

2.5.2. V-uniform ergodicity. We say that a Markov process is V-uniformly

ergodic if there exists a coercive5 function V > 1, an invariant distribution

π, and constants 0 < r < 1, and R < ∞ such that

||Qn(x, .) − π(.)|| ≤ RrnV(x), x ∈ S. (2.33)

3That is, satisfying the invariance equations

π(A) =

∫

S
π(dx)Q(x, A), A ∈ B(S). (2.29)

4If the state space S is countable (this is not the case for (X(t),Y(t)) of proposition

2.2.), the convergence in total variation norm implies the more familiar pointwise conver-

gence

lim
n→∞
|Qn(x, y) − π(y)| = 0,∀x, y ∈ S. (2.31)

5That is, a function such that V(x)→ ∞ as |x| → ∞. The condition V > 1 is of course

arbitrary and 1 can be replaced by any positive constant.
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This is a strong form of ergodicity (note the geometric rate of conver-

gence), and it can be characterized in terms of the drift operatorD. Indeed,

it is shown in [MT09, MT92] that it is equivalent to the existence of a co-

ercive function V (the “Lyapunov test function”) such that

DV(x) ≤ −K1V(x) + K2IC(x) (Geometric drift condition.) (2.34)

for some positive constants K1 and K2, and C ⊂ S a compact set. (Theorem

16.0.1 in [MT09].) Condition (2.34) is equivalent to

PV(x) ≤ θV(x) + K3IC(x) (2.35)

for some 0 < θ < 1. Intuitively, it says that the larger V(Xn) the stronger X

is pulled back towards the center of the state space S.

Interestingly, it is possible to develop central limit theorems for func-

tionals of V-uniformly ergodic Markov processes. This will be used to show

that the price process in a stable Hawkes process-based order book model

is asymptotically diffusive. Before that, we need the following auxiliary re-

sults.

3. Auxiliary Results

3.1. V−uniform Ergodicity of the Intensity of a Hawkes Process.

Let (N(t), λ(t))t∈R+ be a Hawkes process with parameters (µ, α, β), and (Nn, λn)n∈N
its embedded discrete-time process as constructed in section 2.3.

Proposition 3.1. If α < β, then the process (λn)n∈N is V−uniformly er-

godic, with

V(λ) = eγλ, (3.1)

and γ a suitably chosen positive number.

Proof. If τn = Tn+1 − Tn be the waiting time between two successive

jumps of (X(t)). There holds for t′ ∈ [Tn,Tn+1[,

λ(t′) = λn + (λn − µ)e−β(t
′−Tn). (3.2)

The hazard rate associated to τn, conditional on λn = λ ∈ R+, is

h(t) := µ + (λ − µ)e−βt, (3.3)

and the p.d.f. of τn is

f (t) = h(t)e−
∫ t

0
h(s)ds =

(
µ + (λ − µ)e−βt

)
e−µt−

λ−µ
β

(1−e−βt). (3.4)
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Let

V(λ) := eγλ (3.5)

be a Lyapunov test function with γ > 0 an arbitrary parameter. Then

E [V (λn+1) |λn = λ] =

∫ ∞

0

V(λ(t+)) f (t)dt

=

∫ ∞

0

V
(
µ + (λ − µ)e−βt + α

)

×
(
µ + (λ − µ)e−βt

)
e−µt−

λ−µ
β

(1−e−βt)dt

=

∫ ∞

0

eγ(µ+(λ−µ)e−βt+α)

×
(
µ + (λ − µ)e−βt

)
e−µt−

λ−µ
β

(1−e−βt)dt (3.6)

Hence

PV(λ)

V(λ)
= e−γλ E [V (λn+1) |λn = λ]

=

∫ ∞

0

e−γ(λ−µ)(1−e−βt)+γα
(
µ + (λ − µ)e−βt

)
e−µt−

λ−µ
β

(1−e−βt)dt

= eγαµ

∫ ∞

0

e−γ(1+
1
β

)(λ−µ)(1−e−βt)−µtdt

+ eγα(λ − µ)
∫ ∞

0

e−γ(1+
1
β

)(λ−µ)(1−e−βt)−(β+µ)tdt. (3.7)

Using lemma 5.1, we get

PV(λ)

V(λ)
= eγαµ I

(
(γ +

1

β
)(λ − µ), β, µ

)

+ eγα(λ − µ) I
(
(γ +

1

β
)(λ − µ), β, β + µ

)
, (3.8)

where

I(a, b, c) :=

∫ ∞

0

e−a(1−e−bt)−ctdt. (3.9)

Then

lim
λ→∞

PV(λ)

V(λ)
= 0 +

eγα

β(γ + 1
β
)

=
eγα

1 + γβ
. (3.10)
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And

lim
λ→∞

DV(λ)

V(λ)
= lim

λ→∞

PV(λ)

V(λ)
− 1

=
eγα

1 + γβ
− 1

=
eγα − 1 − γβ

1 + γβ
. (3.11)

A Taylor expansion in γ around 0 yields

lim
λ→∞

DV(λ)

V(λ)
= γ(α − β) + o(γ), (3.12)

which has the sign of α−β. Finally, if α < β, one can choose γ > 0, λ0 ∈ R∗+
and κ > 0 such that ∀λ > λ0

DV(λ) ≤ −κV(λ), (3.13)

and the V-uniform ergodicity of (λn) follows. �

3.2. V−uniform Ergodicity of the Intensity of a Multivariate Hawkes

Process. Consider now a multivariate setting. Let X(t) = (N(t),Y(t)) be a

M-variate Hawkes process with parameters

µ = (µ1, . . . , µM)t, (3.14)

α = (αi j)1≤i, j≤M, (3.15)

and

β = (βi j)1≤i, j≤M. (3.16)

Define also

αmax = max{αi j}1≤i, j≤M ∈ R+, (3.17)

and

βmin = min{βi j}1≤i, j≤M ∈ R∗+, βmax = max{βi j}1≤i, j≤M ∈ R
∗
+. (3.18)

We recall that Y(t) = (Y i j)1≤i, j≤M is defined by

Y i j(t) = αi j

∫ t

0

e−βi j sdN(s). (3.19)

As in the univariate case, let (Nn) and (Yn) be the discrete time processes

Nn = N(T+n ),

and Yn = Y(T+n ), (3.20)
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sampled at the jump times (Tn) of (X). We have the following stability result

for (Yn).

Proposition 3.2. If

Mαmax

βmin

e1− Mαmax
βmax < 1, (3.21)

then the intensity of a multivariate Hawkes process is V-uniformly ergodic,

with

V(y) = eγ
∑

1≤k,l≤M ykl

, (3.22)

and γ a suitably chosen positive number.

Proof. As in the univariate case, let

V(y) = eγ
∑

1≤k,l≤M ykl

. (3.23)

Define the hazard rates

hi(t) = µi +

M∑

j=1

e−βi jtyi j, 1 ≤ i ≤ M, (3.24)

and

h(t) =

M∑

i=1

hi(t). (3.25)

We first note that, conditional on τn+1 = t, the probability that the next jump

is on N i, i ∈ {1, . . . ,M}, is

P
[
En+1 = i|Yn = y, τn+1 = t

]
=

hi(t)

h(t)
. (3.26)

We have then

E
[
V(Yn+1)|Yn = y

]
=

∫ ∞

0

M∑

i=1

eγ
∑

1≤k,l≤M(e
−βk,l tykl+I(l=i)αk,l) hi(t)

h(t)
× h(t)e−

∫ t

0
h(s)dsdt

=

∫ ∞

0

M∑

i=1

eγ
∑M

k=1 αki+γ
∑

1≤k,l≤M e
−βk,l tykl

×
µi +

M∑

j=1

yi je
−βi jt

 e
−∑M

k=1 µkt−∑1≤k,l≤M(1−e−βklt)
ykl
βkl dt.

(3.27)
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Dividing by V(y) and rearranging the terms we get

PV(y)

V(y)
=

∫ ∞

0

M∑

i=1

eγ
∑M

k=1 αkie
∑

1≤k,l≤M(γ+ 1
βkl

)(1−e
1−βk,l t)ykl

µi +

M∑

j=1

yi je
−βi jt

 dt

=

M∑

i=1

eγ
∑M

k=1 αkiµiIM2


(
(γ +

1

βkl

)ykl

)

1≤k,l≤M

; (βkl)1≤k,l≤M ;

M∑

k=1

µk



+

M∑

i=1

eγ
∑M

k=1 αki

M∑

j=1

yi jIM2


(
(γ +

1

βkl

)ykl

)

1≤k,l≤n

;
(
βkl

)
1≤k,l≤M

;

n∑

k=1

µk + βi j

 ,

(3.28)

where

Ip(a1, . . . , ap; b1, . . . , bp; c) :=

∫ ∞

0

e−a1(1−e−b1t)−···−ap(1−e−bpt)−ctdt (3.29)

is defined in lemma 5.2. The first term in the r.h.s of (3.28) vanishes when

|y| → ∞ by lemma 5.2. Again using lemma 5.2, as |y| → ∞, ∀1 ≤ i, j ≤ M,

IM2


(
(γ +

1

βkl

)ykl

)

1≤k,l≤M

; (βkl)1≤k,l≤M ;

M∑

k=1

µk + βi j

 ≤
1

βmin

∑
1≤k,l≤M(γ + 1

βkl
)ykl

≤ 1

βmin(γ + 1
βmax

)
∑

1≤k,l≤M ykl

.

(3.30)

Hence, the second term in the r.h.s of (3.28) is bounded by
∑M

i=1 eγ
∑M

k=1 α
ki |y|

βmin(γ + 1
βmax

)|y|
≤ eMαmaxγ

βmin(γ + 1
βmax

)
.

And for large |y| we have

PV(y)

V(y)
≤ eMαmaxγ

βmin(γ + 1
βmax

)
. (3.31)

In order to conclude the proof, it is enough to show that there exists a suit-

ably chosen γ > 0 such that

h(γ) =
eMαmaxγ

βmin(γ + 1
βmax

)
< 1. (3.32)

Minimizing h with respect to γ, the minimum is reached at

γ∗ =
1

Mαmax

− 1

βmax

> 0. (3.33)
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and is equal to

h(γ∗) =
Mαmax

βmin
e1− Mαmax

βmax . (3.34)

Note that for γ∗ to be positive (and V to be coercive) we need

αmax ≤
βmax

M
, (3.35)

which we assume. Finally if

Mαmax

βmin
e1− Mαmax

βmax < 1, (3.36)

then (Yn)n∈N is V−uniformly ergodic. �

Remark 3.1. Note that for M = 1 the condition is

α

β
e1− α

β < 1, (3.37)

which is satisfied i.i.f.
α

β
< 1. (3.38)

(x 7→ x(1 − ex) is strictly increasing from 0 to 1 on [0, 1]). We get the result

in the univariate case.

Remark 3.2. A sufficient condition is

αmax <
βmin

M
. (3.39)

Remark 3.3. Stability condition (3.36) is not sharp: It is too stringent

on the parameters αi, j and βi, j, and we suspect the stationarity condition of

proposition 2.4 to be sufficient for V-uniform ergodicty.

3.3. V-uniform Ergodicity of a “Birth-death” Hawkes Process. Let

(N1(t),N2(t)) be a bivariate Hawkes process with intensities:

λ1(t) = µ1 + α11

∫ t

0

e−β11 sdN1(s) + α12

∫ t

0

e−β12 sdN2(s), (3.40)

λ2(t) = µ2 + α21

∫ t

0

e−β21 sdN1(s) + α22

∫ t

0

e−β22 sdN2(s), (3.41)

and define the queue (X(t)) by

• X(t) → X(t) + 1 when N1(t) jumps. This happens with (infinitesi-

mal) probability λ1(t)dt.

• X(t)→ X(t)−1 when N2(t) jumps and X(t) , 0. This happens with

probability λ2(t)dt.
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• X(t) → X(t) − 1 with probability λ3X(t)dt for a constant λ3 > 0.

This corresponds to a proportional death rate, or in the context of

order book modelling, to a proportional cancellation rate.

We also denote by N3(t) a counting process with intensity λ3X(t) that jumps

by 1 when X(t) jumps by -1 due to a “cancellation”.

The queue X(t), albeit peculiar, is the building block of the order book

model we present in the next section: N1 represents the flow of limit orders,

N2 that of market orders and N3 cancellations.

The following result is the key to the proof of the stability of the order

book.

Proposition 3.3. Provided βmin is large (specified precisely below), (Xn,Yn)

is V-uniformly ergodic, where

V(x, y) = eωx+γ
∑

1≤k,l≤2 ykl , (3.42)

and ω > 0 and γ > 0.

Proof. As usual we write

PV(x, y)

V(x, y)
= eω+γ(α11+α12)

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt
(µ1 + y11e−β11t + y12e−β12t)dt

+ e−ω+γ(α21+α22)

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt
(µ2 + y21e−β21t + y22e−β22t)dt

+ e−ω
∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt
λ3x dt

= (eω+γ(α11+α12)µ1 + eω+γ(α21+α22)µ2 + e−ωλ3x)

×
∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt
dt

+ eω+γ(α11+α21)y11

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β11t
dt

+ eω+γ(α11+α21)y12

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β12t
dt

+ e−ω+γ(α12+α22)y21

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β21t
dt

+ e−ω+γ(α12+α22)y22

∫ ∞

0

e
−∑

1≤k,l≤2(γ+ 1
βkl

)(1−e−βklt)ykl−(µ1+µ2)t−λ3 xt−β22t
dt. (3.43)
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As |x| + |y| → ∞,

PV(x, y)

V(x, y)
≤ e−ω +

2

βmin(γ + 1
βmax

)
(eω+γ(α11+α21) + e−ω+γ(α12+α22)). (3.44)

This quantity can be made smaller than 1 if βmin is large enough, hence the

stated result. �

Remark 3.4. Intuitively, a large β corresponds to a short memory for

the process (Xn,Yn).

4. Application in Order Book Modelling

4.1. Model Setup. We present a stylized order book model whose dy-

namics is governed by Hawkes processes. We have already discussed at

length a similar Poissonian order book model in [AJ13], so the description

provided here is brief.

We shall assume that each side of the order book is fully described by

a finite number of limits K, ranging from 1 to K ticks away from the best

available opposite quote. We use the notation

X(t) = (a(t); b(t)) = (a1(t), . . . , aK(t); b1(t), . . . , bK(t)) , (4.1)

where a = (a1, . . . , aK) designates the ask side of the order book and ai the

number of shares available i ticks away from the best opposite quote, and

b = (b1, . . . , bK) designates the bid side of the book.

3 types of events can happen:

• arrival of a new limit order;

• arrival of a new market order;

• cancellation of an already existing limit order.

Arrival of limit and market orders are described by 4 self and mutually

exciting Hawkes processes:

• L±(t): arrival of a limit order, with intensity λL±(t);

• M±(t): arrival of new market order, with intensity λM±(t).

Cancellations are modelled by a (doubly stochastic) Poisson process whose

intensity is proportional to the number of shares at each side of the order

book, that is

λC± |x±|. (4.2)
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We denote by q the size of any new incoming order, and the superscript “+”

(respectively “−”) refers to the ask (respectively bid) side of the book. Buy

limit orders L−(t) arrive below the ask price PA(t), and sell limit orders L+(t)

arrive above the bid price PB(t).

Once a limit order arrives, its position is chosen randomly from 1 to

K. Similarly once a cancellation order arrives, the order to be cancelled is

chosen randomly among the outstanding orders.

Furthermore, we impose constant boundary conditions outside the mov-

ing frame of size 2K: Every time the moving frame leaves a price level, the

number of shares at that level is set to a∞ (or b∞ depending on the side of

the book). a∞ and b∞ represent two “reservoirs of liquidity”.

Our choice of a finite moving frame and constant boundary conditions

has three motivations: Firstly, it assures that the order book does not empty

and that PA, PB are always well defined. Secondly, it keeps the spread S =

PA − PB and the increments of PA, PB and P = (PA + PB)/2 bounded—This

will be important when addressing the scaling limit of the price. Thirdly, it

makes the model Markovian as we do not keep track of the price levels that

have been visited (then left) by the moving frame at some prior time.

Figure 1 is a schematic representation of the order book.

4.2. Stability of the Order Book. We first specify the notations for the

4-variate Hawkes process. We set

λi(t) = µi +

4∑

j=1

αi je
−βi j sdN j(s), i ∈ ~1, 4�, (4.3)

and by convention the index 1 corresponds to L+, 2 to M+, 3 to L− and 4 to

M−.

Proposition 4.1. Provided βmin is large (specified precisely below), the

order book (Xn,Yn) is V-uniformly ergodic, where

V(x, y) = eω
∑K

i=1 x±
i
+γ

∑
1≤k,l≤4 ykl , (4.4)

and ω > 0 and γ > 0.

Proof. We follow the same pattern as the proof of proposition 3.3, and

only modify it to account for the fact that the order book is formed from
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Figure 1. Order book dynamics: in this example, K = 9, q = 1,

a∞ = 4, b∞ = −4. The shape of the order book is such that a(t) =

(0, 0, 0, 0, 1, 3, 5, 4, 2) and b(t) = (0, 0, 0, 0,−1, 0,−4,−5,−3). The

spread S (t) = 5 ticks. Assume that at time t′ > t a sell market

order dM−(t′) arrives, then a(t′) = (0, 0, 0, 0, 0, 0, 1, 3, 5), b(t′) =
(0, 0, 0, 0, 0, 0,−4,−5,−3) and S (t′) = 7. Assume instead that at

t′ > t a buy limit order dL−
1

(t′) arrives one tick away from the

best opposite quote, then a(t′) = (1, 3, 5, 4, 2, 4, 4, 4, 4), b(t′) =
(−1, 0, 0, 0,−1, 0,−4,−5,−3) and S (t′) = 1.

multiple queues, and the role of the boundary conditions a∞ and b∞:

PV(x, y)

V(x, y)
≤ eωq+ωa∞+γ

∑4
k=1 αk1

∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t

×
µ1 +

4∑

j=1

y1 je
−β1 jt

 dt

+ e−ωq+γ
∑4

k=1 αk2

∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t

×
µ2 +

4∑

j=1

y2 je
−β2 jt

 dt

+ e−ωq

∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t

λC+
K∑

k=1

x+k

 dt

+ similar terms for the bid side of the book (4.5)
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PV(x, y)

V(x, y)
≤

eωq+ωa∞+γ
∑4

k=1 αk1µ1 + e−ωq+ωa∞+γ
∑4

k=1 αk2µ2 + e−ωqλC+
K∑

k=1

x+k



×
∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t
dt

+ eωq+ωa∞+γ
∑4

k=1 αk1

4∑

j=1

y1 j

∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t−β1 jdt

+ e−ωq+γ
∑4

k=1 αk2

4∑

j=1

y2 j

∫ ∞

0

e
−∑

1≤k,l≤4(γ+ 1
βkl

)(1−e−βklt)ykl−
∑4

k=1 µkt−λC+ ∑K
k=1 x+

k
t−β2 jdt

+ similar terms for the bid side of the book. (4.6)

Again, as |x| + |y| → ∞,

PV(x, y)

V(x, y)
≤ e−wq

+
4

βmin(γ + 1
βmax

)

×
(
eωq+ωa∞+γ

∑4
k=1 αk1 + e−ωq+γ

∑4
k=1 αk2 + eωq+ωb∞+γ

∑4
k=1 αk3 + e−ωq+γ

∑4
k=1 αk4

)
.

(4.7)

This quantity can be made smaller than 1 if βmin is large enough, and this

concludes the proof of the proposition. �

4.3. Large-scale Limit of the Price Process. Given the state (Xn−1,Yn−1)

of the order book at time n− 1 and the event En, the price increment at time

n can be determined. We define the sequence of random variables

ηn = Ψ(Xn−1,Yn−1, En),= Φ(Zn,Zn−1), (4.8)

as the price increment at time n, where

Zn = (Xn,Yn). (4.9)

Ψ is a deterministic function giving the elementary “price-impact” of event

En on the order book at state Xn−1. Let µ be the stationary distribution of

(Zn), and M its transition probability function. We are interested in the ran-

dom sums

Pn :=

n∑

k=1

ηk =

n∑

k=1

Φ(Zk,Zk−1), (4.10)

where

ηk := ηk − Eµ[ηk] = Φk = Φk − Eµ[Φk], (4.11)
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and the asymptotic behavior of the rescaled-centered price process

P̃(n)(t) :=
P⌊nt⌋√

n
, (4.12)

as n goes to infinity.

Proposition 4.2. In event time, the large-scale limit of the price process

is a Brownian motion. Formally, the series

σ2 = Eµ[η
2
0] + 2

∞∑

n=1

Eµ[η0ηn] (4.13)

converges absolutely, and

P̃(n)(t)
n→∞−→ σB(t), (4.14)

where (B(t)) is a standard Brownian motion.

Proof. This is an application of the functional central limit theorem for

(stationary and ergodic) sequences of weakly dependent random variables

with finite variance, and is identical to the proof of theorem 6.1 in [AJ13].

Firstly, we note that the variance of the price increments ηn is finite since it is

bounded by K + 1. Secondly, the V-uniform ergodicity of (Zn) is equivalent

to

||Mn(z, .) − µ(.)|| ≤ RρnV(z), n ∈ N, (4.15)

for some R < ∞ and ρ < 1. This implies thanks to theorem 16.1.5 in

[MT09]6 that for any g2, h2 ≤ V , k, n ∈ N, and any initial condition z

|Ez[g(Zk)h(Zn+k)] − Ez[g(Zk)]Ez[h(Zk)]| ≤ Rρn[1 + ρkV(z)], (4.16)

where Ez[.] means E[.|Z0 = z]. This in turn implies

|Ez[h(Zk)g(Zk+n)]| ≤ R1ρ
n[1 + ρkV(z)] (4.17)

for some R1 < ∞, where h = h − Eµ[h], g = g − Eµ[g]. By taking the

expectation over µ on both sides of (4.17) and noting that Eµ[V(Z0)] is finite

by theorem 14.3.7 in [MT09], we get

|Eµ[h(Zk)g(Zk+n)]| ≤ R2ρ
n = ρ(n), k, n ∈ N. (4.18)

Hence the stationary version of (Zn) satisfies a geometric mixing condition,

and in particular ∑

n

ρ(n) < ∞. (4.19)

6We refer to §16.1.2 “V-geometric mixing and V-uniform ergodicity” in [MT09] for

more details.
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Theorems 19.2 and 19.3 in [Bil99] on functions of mixing processes let us

conclude that

σ2 := Eµ[η
2
0] + 2

∞∑

n=1

Eµ[η0ηn] (4.20)

is well-defined—the series in (4.20) converges absolutely—and coincides

with the asymptotic variance

lim
n→∞

1

n
Eµ


n∑

k=1

(ηk)
2

 = σ2. (4.21)

Moreover

P̃(n)(t)
n→∞−→ σB(t), (4.22)

where (B(t)) is a standard Brownian motion. The convergence in (4.22) hap-

pens in D[0,∞), the space of R-valued càdlàg functions, equipped with the

Skorohod topology. �

5. Technical Lemmas

Lemma 5.1. Let a, b, c > 0 be three positive real numbers. Then

I(a, b, c) =

∫ ∞

0

e−a(1−e−bt)−ctdt

=
(−a)−c/b

b
e−a

(
Γ(

c

b
) − Γ( c

b
,−a)

)
, (5.1)

(5.2)

where the Gamma function is defined for all complex numbers p such that

R[p] > 0 as

Γ(p) =

∫ ∞

0

tp−1e−tdt, (5.3)

and the incomplete Gamma function is defined for all p ∈ C, R[p] > 0 and

all z ∈ C as

Γ(p, z) =

∫ ∞

z

tp−1e−tdt. (5.4)

In particular, for all b > 0, c > 0

lim
a→∞
I(a, b, c) = 0, (5.5)

and

lim
a→∞

a I(a, b, c) =
1

b
. (5.6)
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Proof. This representation and the limits can be obtained with a sym-

bolic computation system such as Mathematica. �

Lemma 5.2. More generally, if

Ip(a1, . . . , ap; b1, . . . , bp; c) =

∫ ∞

0

e−a1(1−e−b1t)−···−ap(1−e−bpt)−ctdt, (5.7)

with ai > 0, bi > 0 ∀i ∈ ~1, p�, and c > 0. Let

bmin = min{bi}1≤i≤p. (5.8)

Then

Ip(a1, . . . , ap; b1, . . . , bp; c) ≤
∫ ∞

0

e−
∑p

i=1
ai (1−e−bmint)−ct

= I(|a|, bmin, c), (5.9)

whith

|a| =
p∑

i=1

ai. (5.10)

Hence

Ip(a; b; c) ≤ 1

bmin|a|
, as |a| → ∞. (5.11)





CHAPTER 5

Numerical Results and Applications

This chapter is geared towards practical aspects of stochastic order book

modelling, namely the identification of a realistic point process-based order

book model and its use as a workbench for algorithmic trading strategies

assessment.

1. Introduction

1.1. Notations. We note for the intensity of multivariate Hawkes pro-

cesses,

λi(t) = µi +

∫ t

0

M∑

j=1

ϕi j(t − s)dN j(s), 1 ≤ i ≤ M. (1.1)

or in vector form,

λ(t) = µ +

∫ t

0

ϕ(t − s)dN(s), (1.2)

and for exponentially decaying kernels,

ϕi j(t) =

P∑

p=1

α
p

i j
e
−βp

i j
t
, P ≥ 1, (1.3)

λi(t) = µi +

∫ t

0

M∑

j=1

P∑

p=1

α
p

i j
e
−βp

i j
(t−s)

dN j(s), 1 ≤ i ≤ M. (1.4)

1.2. Classic Results. Firstly, the stationarity condition for Hawkes pro-

cesses is

ρ

(∫ ∞

0

ϕ(t)dt

)
< 1, (1.5)

where ρ designates the spectral radius of a matrix, that is, the maximum of

the absolute values of its eigenvalues. A proof of this result can be found in

[BM96]. Stationarity was defined in chapter 4 (def. 2.6).

85
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Secondly, taking the expectation of (1.2) and inverting, yields the fol-

lowing expression for the average intensity

λ = E [λ(t)] =

(
I −

∫ ∞

0

ϕ(t)dt

)−1

µ. (1.6)

2. Maximum Likelihood Estimation of Multivariate Hawkes Processes

The standard method for estimating the parameters of Hawkes processes

is via the maximization of the likelihood function [Oza79]. We describe the

method in this section and apply it to order book data.

First recall that the likelihood of a (regular univariate) point process, for

an observation 0 < t1, · · · < tn ≤ T , reads (A proof can be found in [SM91]

or [Rub72].)

L(t1, . . . , tn) = e−
∫ T

0
λ(s)ds

n∏

i=1

λ(ti). (2.1)

L(t1, . . . , tn) is the joint probability density of observing n jumps exactly

at times t1, . . . , tn. The product
∏n

i=1 λ(ti) represents the probability of the

process jumping at instants t1, . . . , tn, while the term e−
∫ T

0
λ(s)ds corresponds

to the probability of the process staying idle at any other instant in ]0,T ].

The log-likelihood is therefore

lnL(t1, . . . , tn) = −
∫ T

0

λ(s)ds +

n∑

i=1

ln λ(ti)

= −
∫ T

0

λ(s)ds +

∫ T

0

ln λ(s)dN(s). (2.2)

2.1. Likelihood of Univariate Hawkes Processes. Consider now the

specific case of a univariate Hawkes process. The intensity reads

λ(t) = µ +

∫ t

−∞

P∑

p=1

αpe−β
p(t−s)dN(s). (2.3)

We are considering decay kernels of the form

ϕ(t) =

P∑

p=1

αpe−β
pt. (2.4)
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Although this may seem restrictive at first, we shall show that this para-

metric form is rich enough to virtually approximate any kernel ϕ of interest

(section 6.2).

The computations involved in equation (2.2) can be carried out explic-

itly. First set P = 1 (Thanks to the linearity of integration, the general case

follows readily.)

λ(s) = µ +
∑

tk<s

αe−β(s−tk). (2.5)

We start with the first integral in (2.2). Assuming tn = T (This can always

be made, as in practice we are only given an observation t1, . . . , tn and T is

not specified [Oza79].),

∫ T

0

λ(s)ds = µt1 +

n∑

i=2

∫ ti

ti−1

λ(s)ds. (2.6)

∫ ti

ti−1

λ(s)ds = µ(ti − ti−1) + α

∫ ti

ti−1

∑

tk<s

e−β(s−tk)ds. (2.7)

∫ ti

ti−1

∑

tk<s

e−β(s−tk)ds =

∫ ti

ti−1

∑

tk≤ti−1

e−β(s−tk)ds

=
∑

tk≤ti−1

∫ ti

ti−1

e−β(s−tk)ds

=
1

β

∑

tk≤ti−1

[
e−β(ti−1−tk) − e−β(ti−tk)

]
. (2.8)

Then

n∑

i=2

∫ ti

ti−1

λ(s)ds = µ(tn − t1) +

n∑

i=2

α

β

∑

tk≤ti−1

[
e−β(ti−1−tk) − e−β(ti−tk)

]
. (2.9)

A careful look at the summand shows that the sum in the r.h.s. of (2.9) is

telescopic. After simplification, it remains

n∑

i=2

∫ ti

ti−1

λ(s)ds = µ(tn − t1) +
α

β


n∑

i=2

1 −
n−1∑

k=1

e−β(tn−tk)



= µ(tn − t1) +

n−1∑

k=1

α

β

(
1 − e−β(tn−tk)

)
, (2.10)
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whence
∫ T

0

λ(s)ds = µtn +

n−1∑

k=1

α

β

(
1 − e−β(tn−tk)

)

= µtn +

n∑

k=1

α

β

(
1 − e−β(tn−tk)

)
. (2.11)

Finally

lnL(t1, . . . , tn) = −µtn +

n∑

k=1

α

β

(
e−β(tn−tk) − 1

)
+

n∑

i=1

ln (µ + αA(i)) .(2.12)

with

A(i) =
∑

tk<ti

e−β(ti−tk), for i ≥ 2, (2.13)

and

A(1) = 0. (2.14)

More generally for P ≥ 1, it holds,

Proposition 2.1 (Log-likelihood of a univariate Hawkes process).

lnL(t1, . . . , tn) = −µtn +

n∑

k=1

P∑

p=1

αp

βp

(
e−β

p(tn−tk) − 1
)
+

n∑

i=1

ln

µ +
P∑

p=1

αpAp(i)

 ,

(2.15)

where for all p ∈ ~1, P�,
Ap(i) =

∑

tk<ti

e−β
p(ti−tk), i ≥ 2, (2.16)

and

Ap(1) = 0. (2.17)

2.2. Likelihood of Multivariate Hawkes Processes. Consider now the

case of a M-variate Hawkes process, M ≥ 1. The intensity vector λ =

(λ1, . . . , λM)⊤ is specified by

λm(t) = µm +

M∑

j=1

∫ t

−∞

P∑

p=1

α
p

m j
e
−βp

m j
(t−s)

dN j(s)

= µm +

M∑

j=1

∑

t
j

k
<s

P∑

p=1

α
p

m j
e
−βp

m j
(t−t

j

k
)
, m ∈ ~1,M�, (2.18)

where t
j

k
is the k-th jump in the process (N j(t)), j ∈ ~1,M�.
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We will denote the jump times of the multivariate process either as

{t j

k
}1≤k≤n j,1≤ j≤M,

t
j

k
being the k-th jump in the process (N j(t)). Or equivalently as

{ti}1≤i≤n,

in which case the marks {zi}1≤i≤n ∈ ~1,M�, indicating which component has

jumped at time ti, must also be given.

The log-likelihood of a multivariate Hawkes process is the sum of the

log-likelihoods of each component

lnL ({ti, zi}1≤i≤n) =

M∑

m=1

lnLm ({ti, zi}1≤i≤n) , (2.19)

where

lnLm ({ti, zi}1≤i≤n) = −
∫ T

0

λm(s)ds +

∫ T

0

ln λm(s)dNm(s). (2.20)

As in the univariate case, the difficult term to compute is the first integral.

We proceed similarly. We write (P = 1 to simplify notations)

∫ T

0

λm(s)ds = µmt1 +

n∑

i=2

∫ ti

ti−1

λm(s)ds. (2.21)

∫ ti

ti−1

λm(s)ds = µm(ti − ti−1) +

M∑

j=1

∫ ti

ti−1

∑

t
j

k
<s

αm je
−βm j(s−t

j

k
)ds

= µm(ti − ti−1) +

M∑

j=1

∑

t
j

k
≤ti−1

αm j

βm j

[
e−βm j(ti−1−t

j

k
) − e−βm j(ti−t

j

k
)

]
.

(2.22)

Hence

∫ T

0

λm(s)ds = µmtn +

M∑

j=1

n∑

i=2

∑

t
j

k
≤ti−1

αm j

βm j

[
e−βm j(ti−1−t

j

k
) − e−βm j(ti−t

j

k
)

]
.(2.23)

The sum
n∑

i=2

∑

t
j

k
≤ti−1

αm j

βm j

[
e−βm j(ti−1−t

j

k
) − e−βm j(ti−t

j

k
)

]
(2.24)
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is telescopic and equals after simplification

∑

t
j

k

αm j

βm j

(
1 − e−βm j(tn−t

j

k
)

)
. (2.25)

Therefore,

∫ T

0

λm(s)ds = µmtn +

M∑

j=1

∑

t
j

k

αm j

βm j

(
1 − e−βm j(tn−t

j

k
)

)
. (2.26)

More generally for P ≥ 1, we state,

Proposition 2.2 (Log-likelihood of a multivariate Hawkes process).

lnLm ({ti, zi}1≤i≤n) = −µmtn +

M∑

j=1

∑

t
j

k

P∑

p=1

α
p

m j

β
p

m j

(
e
−βp

m j
(tn−t

j

k
) − 1

)

+
∑

tm
k

ln

µm +

M∑

j=1

P∑

p=1

α
p

m j
A

p

m j
(k)

 , (2.27)

where

A
p

m j
(k) =

∑

t
j

l
<tm

k

e
−βp

m j
(tm

k
−t

j

l
)
, i ≥ 2, (2.28)

and

A
p

m j
(1) = 0. (2.29)

Formula (2.27) is the backbone of maximum likelihood estimation of

linear Hawkes processes with exponential kernels.

Remark 2.1. (Recursive expression of A(k) [MT11a, Oga81]) In order

to accelerate the computation of the likelihood, it is custom to use the fol-

lowing recursive relanship:

A
p

m j
(k) = e

−βp

m j
(tm

k
−tm

k−1
)
A

p

m j
(k − 1) +

∑

tm
k−1
≤t

j

l
<tm

k

e
−βp

m j
(tm

k
−t

j

l
)
, k ≥ 2, (2.30)

with the initial condition

A
p

m j
(1) = 0. (2.31)

In a univariate setting, this simply reads

Ap(k) = e−β
p(tk−tk−1) (Ap(k − 1) + 1) . (2.32)
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Given a data set t1, . . . , tn and z1, . . . , zn, the maximum likelihood esti-

mation method (MLE) consists in maximizing L({ti}, {zi}), or equivalently

its logarithm lnL({ti}, {zi}), with respect to the model parameters µ, α, and

β.

The rationale is that one maximizes the probability of observing the

actual sample t1, . . . , tn, z1, . . . , zn. Formal foundations of the method for the

identification of Hawkes processes (albeit in the univariate case only) can

be found in [Oga78] (theorems 2 and 5). There, it is shown (under technical

conditions) that the MLE estimator is consistent, that is tends to the actual

parameters values, and asymptotically normal (around the parameters) as

the sample size tends to infinity.

Separability of the log-likelihood of multivariate Hawkes processes.

We note that for each m ∈ ~1,M�, the partial log-likelihood lnLm (formula

(2.27)), depends on µm, (α
p

m j
)1≤ j≤M,1≤p≤P and (β

p

m j
)1≤ j≤M,1≤p≤P only. There is

no dependence on (µm′)m′,m, (α
p

m′ j)m′,m,1≤ j≤M,1≤p≤P

nor (β
p

m′ j)m′,m,1≤ j≤M,1≤p≤P.

Thus in order to maximize lnL (a function of M + 2M2P variables),

one only needs to maximize the partial log-likelihood lnLm (a function of

1+2MP variables) separately for each m ∈ ~1,M�. This substantially re-

duces the complexity of the maximization.

2.3. Illustration. Figure 1.

3. Goodness of Fit Assessment

Equally important to the identification of a point process is the assess-

ment of the model’s ability to mimic the data. We propose three approaches.

3.1. A Pragmatic Assessment. The first approach is the easiest to im-

plement. First estimate the parameters by MLE. Then simulate the process

with the obtained parameters (details about the simulation can be found in

section). Finally Q-Q-plot the inter-arrival times of the simulated sample

against those of the data. If the obtained plot follows the 45◦ line y = x,

then the fit is satisfactory. Incidentally, this method takes into account the

noise inherent to the simulation.
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Figure 1. Negative of the partial log-likelihood, − lnL1, for

a 10000 points simulated sample as a function of (α11, α12).

The parameters values are M = 2, P = 1, µ = (0.1, 0.2)⊤,

α =

(
1.0 2.0

3.0 4.0

)
, β =

(
10.0 20.0

30.0 40.0

)
. There is clearly a mini-

mum at
(
α∗

11
, α∗

12

)
= (1.0, 2.0).
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3.2. A Theoretically Sounder Assessment: the Time-rescaling The-

orem. We first state the underlying theorem.

Proposition 1 (Time-rescaling). Let N(t) = (N1(t), . . . ,NM(t)) be a M-

variate Hawkes process. Fix m ∈ ~1,M� and define the sequence (τm
k

)2≤k≤nm

of random variables by

τm
k =

∫ tm
k

tm
k−1

λm(s)ds. (3.1)

Then (τm
k

)2≤k≤nm are i.i.d. exponential random variables with parameter 1.

Proof. Can be found in [BBVK01] (univariate) or [Bow07] (multivari-

ate setting). �

The principle of the method is to estimate the parameters by MLE, com-

pute the quantities (τm
k

), then Q-Q-plot them against a standard exponential

random variable. To compute the (τm
k

) in practice, we made use of equation

(2.22)

∫ ti

ti−1

λm(s)ds = µm(ti − ti−1) +

M∑

j=1

∑

t
j

k
≤ti−1

αm j

βm j

[
e−βm j(ti−1−t

j

k
) − e−βm j(ti−t

j

k
)

]

derived earlier for the integrated intensity, and the additivity of integration.

3.3. An Even Sharper Assessment. If we transform the (τm
k

) to

ξm
k = 1 − e−τ

m
k , (3.2)

then (ξm
k

)2≤k≤nm are independent uniform random variables on the interval

]0, 1[. It is known that the k-th order statistic ξm
(k)

of a uniform random vari-

able follows a Beta distribution with parameters k and nm − k + 1

f (ξ | k, nm−k+1) =
nm!

(nm − k)!(k − 1)!
ξk−1(1−ξ)nm−k, 0 < ξ < 1. (3.3)

In (3.3), we stress that the notation nm designates the total number of jumps

in the porcess (Nm(t))—the m is not for exponentiation.

We can set 95% confidence bounds on ξm
(k)

using the 2.5% and 97.5%

quantiles of the Beta distribution (These are available in most statistical

software packages.) Alternatively, as noted in [BBVK01], for medium to

large sized samples, we can use the Gaussian approximation of the Binomial
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distribution in equation (3.3). The 95% confidence intervals thus obtained

are

ξm
(k) ± 1.96

√
ξm

(k)
(1 − ξm

(k)
)

nm
. (3.4)

The idea is then, for each m ∈ ~1,M�, to compute (τm
k

)2≤k≤nm as in sec-

tion 3.2, transform them into (ξm
k

), order the latter into (ξm
(k)

), and plot the

result against the CDF of the uniform distribution bk =
k− 1

2

nm , with (local)

confidence bounds defined by equation (3.4).

Detailed examples of goodness of fit assessment are given in section 4.

A fourth diagnosis method relying on the covariance function is thoroughly

discussed in section 5.

4. Application to Tick By Tick Order Book Data

We refer to chapter 3, section 2 for the description of the tick by tick

data we use and its processing. We estimate a 4-variate Hawkes process to

the flow of:

(1) buy market orders M+(t),

(2) sell market orders M−(t),

(3) sell limit orders L+(t),

(4) buy limit orders L−(t).

In figures 2 and 3 the resulting goodness of fit plots are displayed, and in

figure 4 the estimated decay kernel.

The following practical remarks are in order:

• To achieve the fit accuracy of figures 2 and 3, we set the number

of exponentials to P = 4.

• Since the time resolution of the data is 1 millisecond, we add a

random ∆t = 10−3U second, with U ∼ Uniform ]0, 1[ to points

with the same time stamp (around 15% of the points for liquid

CAC 40 stocks.)

• We consider limit orders arriving 5 ticks away from the best oppo-

site quote, lumping together limit orders at each side of the book

in one order flow. More sophisticated models could have a point

process attached to each limit.
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• We illustrate with the particular stock TOTF.PA (TOTAL), but the

quality of the fit is similar across all CAC 40 stocks.

• We do not consider cancellations. Apart from reducing the dimen-

sionality of the model from 6 to 4 order flows, this is motivated

by the theoretical analysis of chapters 2 and 4, where it is shown

that proportional cancellation rates are important for the stability

of the order book.

• We use warm-start optimization strategies to accelerate the esti-

mation. We first optimize over a subset (30 min) of the data then

use the result as a starting point for the optimization over the full

dataset (2 hours).

5. Non-parametric Estimation of Multivariate Hawkes Processes

Although the results obtained by MLE are (very) satisfactory, we digress

on a different estimation method recently proposed by Bacry and Muzy in

[BM13]. We do this for the power of the method (when applicable) and the

elegance of its underlying principle. While MLE exploits the structure of

inter-event durations, the proposed method relies on the properties of counts

of events, and is in a sense complementary to MLE. The idea dates back

to the original papers [Haw71a, Haw71b] and is based on the covariance

density matrix.

5.1. The Covariance Density Matrix. With usual notations, let N(t) =

(N1(t), . . . ,NM(t))⊤ be a M-variate regular1 point process.

Definition 5.1 (Covariance density matrix). The covariance density ma-

trix of (N(t)) is the M × M matrix-valued function defined, for all x ∈ R∗,
by

Ci j(x) = E

[
dNi(t + x)

dx

dN j(t)

dt

]
− E

[
dNi(t + x)

dx

]
E

[
dN j(t)

dt

]

= E

[
dNi(t + x)

dx

dN j(t)

dt

]
− λiλ j, 1 ≤ i, j ≤ M, (5.1)

1That is, the probability of multiple jumps occuring at the same time is null,

Prob [dNi(t) > 1] = o(dt), 1 ≤ i ≤ M.
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Figure 2. Joint maximum likelihood estimation of 4 order

flows (TOTF.PA, June 2011.) Continued in figure 3.
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Figure 3. Joint maximum likelihood estimation of 4 order

flows (TOTF.PA, June 2011.) Continuation of figure 2.
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Figure 4. Maximum likelihood estimated kernel (TOTF.PA,

June 2011.) This 4 × 4 matrix represents the decay kernels

{ϕi j(t)}1≤i, j≤4. x axis is time in seconds.

or equivalently,

C(x) = E

[
dN(t + x)

dx

dN
⊤(t)

dt

]
− E

[
dN(t + x)

dx

]
E

[
dN

⊤(t)

dt

]

= E

[
dN(t + x)

dx

dN
⊤(t)

dt

]
− λ λ⊤, (5.2)

where

λ = E [λ(t)]

= (λ1, . . . , λM)⊤, (5.3)

is the mean intensity of the point process.

In definition 5.1, dx and dt are better thought of as small (indeed, in-

finitesimal) time increments. The quantity dNi(t) is the number of jumps of
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(Ni) occurring in the interval [t, t + dt[. For small time intervals, the process

being regular, this quantity is either 0 or 1.

Since

E

[
(dNi(t))

2
]
= [dNi(t)] = λidt, (5.4)

the diagonal terms Cii(x), 1 ≤ i ≤ M, are singular at x = 0. It is convenient

to isolate the singularity, defining the complete covariance density for all

x ∈ R as

C
(c)(x) = Dδ(x) + C(x), (5.5)

whith

D = diag(λ). (5.6)

δ(x) is Dirac’s delta function, and C(x) continuous at the origin. The upper

script (c) stands for “complete”. Note that for all x ∈ R

Ci j(−x) = C ji(x), 1 ≤ i, j ≤ M, (5.7)

or in more compact notation

C(−x) = C
⊤(x). (5.8)

Thus, knowing C on R+ is enough to identify it.

Example 5.1 (Univariate Poisson process with constant intensity µ).

Clearly in this case, for all x ∈ R,

C(c)(x) = µδ(x),

C(x) = 0. (5.9)

5.2. The Hawkes-Wiener-Hopf Integral Equation. The following lemma

will be used.

Lemma 1. If H(t) = σ(N(s), s ≤ t) denotes the history of the point

process N up to time t, and X aH(t)-measurable random variable, then

E

[
dN(t)

dt
X

]
= E [λ(t)X] . (5.10)

Proof. By definition of λ

E
[
dN(t)|Ht

]
= λ(t)dt. (5.11)
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E [λ(t)X] = E

[
E

[
dN(t)

dt
|Ht

]
X

]

= E

[
E

[
dN(t)

dt
X|Ht

]]

= E

[
dN(t)

dt
X

]
. (5.12)

�

We now particularize to the case of (multivariate) Hawkes processes.

We write for x > 0

C(x) = E

[
dN(t + x)

dx

dN
⊤(t)

dt

]
− λ λ⊤. (5.13)

E

[
dN(t + x)

dx

dN
⊤(t)

dt

]
= E

[
λ(t + x)

dN
⊤(t)

dt

]

= E

[(
µ +

∫ t+x

−∞
ϕ(t + x − u)dN(u)

)
dN

⊤(t)

dt

]

= µλ
⊤
+ E

[∫ t+x

−∞
ϕ(t + x − u)dN(u)

dN
⊤(t)

dt

]
.

(5.14)

E

[∫ t+x

−∞
ϕ(t + x − u)dN(u)

dN
⊤(t)

dt

]
= E

[∫ x

−∞
ϕ(x − v)dN(t + v)

dN
⊤(t)

dt

]

=

∫ x

−∞
ϕ(x − v)E

[
dN(t + v)

dv

dN
⊤(t)

dt

]
dv

=

∫ x

−∞
ϕ(x − v)

(
C

(c)(v) − λ λ⊤
)

dv

= ϕ(x)D +

∫ x

−∞
ϕ(x − v)C(v)dv

−
∫ x

−∞
ϕ(x − v)dv λ λ

⊤
. (5.15)

C(x) =

(
µ −

∫ x

−∞
ϕ(x − v)dv λ − λ

)
λ
⊤
+ ϕ(x)D +

∫ x

−∞
ϕ(x − v)C(v)dv.

(5.16)
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Since

µ −
∫ ∞

0

ϕ(t)dt λ − λ = 0, (5.17)

we get, x > 0,

C(x) = ϕ(x)D +

∫ x

−∞
ϕ(x − v)C(v)dv. (5.18)

This is an integral equation linking C and ϕ. We shall rewrite it in a classical

integral equation form. Firstly

ϕ(x) = C(x)D
−1 −

∫ x

−∞
ϕ(x − v)C(v)D

−1dv.

If we define

G(x) = C(x)D
−1, (5.19)

ϕ(x) = G(x) −
∫ x

−∞
ϕ(x − v)G(v)dv. (5.20)

Let the transposes of G and ϕ be

K(x) = G
⊤(x). (5.21)

φ(x) = ϕ⊤(x). (5.22)

Then

φ(x) = K(x) −
∫ x

−∞
K(v)φ(x − v)dv. (5.23)

A last change of variables in the integral yields the desired result.

Proposition 5.1 ([Haw71a, Haw71b]). With the above notations, it holds

for all x > 0,

φ(x) = K(x) −
∫ ∞

0

K(x − t)φ(t)dt. (5.24)

We call this the Hawkes-Wiener-Hopf integral equation (HWH). It is

a Fredholm integral equation of the second kind (actually a linear system

thereof2). As such, it lends itself to a variety of solution methods [DM85,

PTVF07]. We choose the simplest: Nyström’s.

In order to get a practical sense of the functions at play, we illustrate,

before we proceed, with the following example.

2Note that both K and φ are M by M matrices. In particular, the product inside the

integral is not commutative.
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Example 5.2. Consider the univariate exponential case

K(x) = Ae−B|x|. (5.25)

φ(x) = K(x) −
∫ ∞

0

K(x − t)φ(t)dt. (5.26)

With slightly more general notation

φ(x) = F(x) + κ

∫ ∞

0

K(x − t)φ(t)dt. (5.27)

κ = −1, F(x) = K(x). (5.28)

This is close to the Lalesco-Picard integral equation. We rewrite

φ(x) = F(x) + κAe−Bx

∫ x

0

eBtφ(t)dt + κAeBx

∫ ∞

x

e−Btφ(t)dt. (5.29)

Differentiation twice with respect to x yields

φ′(x) = F′(x) − κABe−Bx

∫ x

0

eBtφ(t)dt + κAeBx

∫ ∞

x

e−Btφ(t)dt.(5.30)

φ′′(x) = F′′(x) − B2F(x) + B(−2κA + B)φ(x). (5.31)

With κ = −1 and F(x) = K(x) = Ae−Bx, x > 0

φ′′(x) = B(2A + B)φ(x). (5.32)

Which with the boundary condition

lim
x→∞
φ(x) = 0, (5.33)

admits the solution

φ(x) = αe−βx, (5.34)

β =
√

B2 + 2AB. (5.35)

Now using equation (5.26) at 0

α = φ(0) = F(0) + Aα

∫ ∞

0

e−(B+β)t, (5.36)

we get

α =
A(B + β)

A + B + β
. (5.37)

We can therefore state.
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Proposition 5.2. Suppose the covariance density of a univariate Hawkes

process writes

C(x) = λ Ae−B|x|, x ∈ R, A ≥ 0, B > 0. (5.38)

λ being the empirical mean intensity. Then, the process’s kernel is

ϕ(x) = αe−βx, x ≥ 0, (5.39)

ϕ(x) = 0, x < 0, (5.40)

with

β =
√

B2 + 2AB (5.41)

α =
A(B +

√
B2 + 2AB)

A + B +
√

B2 + 2AB
=

A(B + β)

A + B + β
. (5.42)

These are the inverse of equation (16) in [Haw71b]. When appropriate,

that is, when the empirical covariance is well fit by one exponential3, for-

mulae (5.39)–(5.42) make the identification of a univariate Hawkes process4

immediate. As an aside, they could serve as a benchmark for numerical so-

lutions of equation (5.24).

5.3. Nyström’s Method. Consider the system of integral equations (5.24),

x > 0,

φ(x) = F(x) + κ

∫ ∞

0

K(x − t)φ(t)dt. (5.48)

3This is rarely the case in financial datasets. Typical covariances are power-law tailed.
4It is easy to check that the stability condition

α < β, (5.43)

is always met for the Hawkes process thus defined. Ideed

A(B + β)

A + B + β
< β, (5.44)

is equivalent to

β2 + Bβ − AB > 0. (5.45)

Since

β ≥ B, (5.46)

β2 + Bβ − AB ≥ β2 + B2 − AB

= 2B2 + AB

> 0. (5.47)
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φ is the unknown, a M by M matrix-valued function. Both K and F are

given M by M matrix-valued functions. φ is defined on R+ (By causality of

the kernel, it is null outside.) F is defined on R+ and K on R. κ is a constant.

Let {tm}0≤m≤N and {wm}0≤m≤N be the nodes and weights of a certain quad-

rature rule on [0,∞[. For all 0 ≤ m ≤ N,

φ(tm) = F(tm) + κ

∫ ∞

0

K(tm − t)φ(t)dt. (5.49)

Discretize the integral,

φ(tm) = F(tm) + κ

N∑

n=0

wnK(tm − tn)φ(tn). (5.50)

Rearrange,

N∑

n=1

[Iδmn − κwnK(tm − tn)]φ(tn) = F(tm), 0 ≤ m ≤ N. (5.51)

Or, in matrix notation



I − κw0K(0) −κw1K(t0 − t1) · · · −κwN K(t0 − tN)

−κw0K(t1 − t0) I − κw1K(0) · · · −κwN K(t1 − tN)
...

...
. . .

...

−κw0K(0) −κw1K(tN − t1) · · · I − κwN K(0)





φ(t0)

φ(t1)
...

φ(tN)


=



F(t0)

F(t1)
...

F(tN)


.

(5.52)

This is a M(N + 1) by M(N + 1) matrix equation in



φ(t0)

φ(t1)
...

φ(tN)


,

and can be readily solved by standard techniques.

In particular, using the trapezoı̈dal rule with step size h > 0 as the quad-

rature rule, and the original notations of the HWH equation (5.24)

F(x) = K(x), (5.53)

κ = −1, (5.54)
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the linear system reads


I + h
2
K(0) hK(t0 − t1) · · · h

2
K(t0 − tN)

h
2
K(t1 − t0) I + hK(0) · · · h

2
K(t1 − tN)

...
...

. . .
...

h
2
K(tN − t0) hK(tN − t1) · · · I + h

2
K(0)





φ(t0)

φ(t1)
...

φ(tN)


=



K(t0)

K(t1)
...

K(tN)


. (5.55)

Note that, to evaluate K for negative t, we can use property (5.8)

K(−x) = K
⊤(x).

The value of tN , which determines the domain of integration, should be

chosen large enough for the approximation of the integral to be precise. In

practise, we choose it such that the integral of the empirical density (or its

rescaled transpose K) reaches a plateau before tN .

Because of the unbounded integration domain, and the fact that we are

dealing with a system of integral equations, existence and uniqueness of

solutions to the HWH equation are a priori not guaranteed. Nor are the

stabiliy and convergence of the proposed numerical method, obvious. In

practice, the method is successful on a wide range of datasets, but fails for

some “difficult” cases (more on this below.) A systematic study of the prop-

erties of equation (5.24) and its numerical solution is therefore warranted5.

These considerations are, however, beyond the scope of this thesis.

5.4. Empirical Covariance Density. Estimating the empirical covari-

ance density matrix is quite straightforward. One chooses a small sampling

interval ∆ > 0, then sets

Ĉi j(x) =
1

∆2
Cov

[
Ni(t + x + ∆) − Ni(t + x),N j(t + ∆) − N j(t)

]
, (5.56)

Cov being the sample’s empirical covariance. Our experimentation with

market data shows that this estimate is stable, and for reasonably small ∆,

independent of the sampling interval. We note that the Fast Fourier Trans-

form [PTVF07] can be used to speed up the evaluation of equations (5.56).

5.5. Estimating the Base Rate µ. Once ϕ has been estimated as the

(numerical) solution to equation (5.24), we make use of the identity

µ =

(
I −

∫ ∞

0

ϕ(t)dt

)
λ̂, (5.57)

5Functional transforms might be the right path to this end [Haw71a].
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to find µ.

5.6. Principle of the Non-parametric Kernel Estimation Method.

(1) Estimate the empirical mean intensity

λ̂i =
# Jumps in Ni in [0,T ]

T
, i ∈ ~1,M�. (5.58)

(2) Estimate the empirical covariance density Ĉ.

(3) Rescale it to K = Ĉ Diag(̂λ)−1.

(4) Solve the HWH equation for φ = ϕ⊤.

(5) Set

µ =

(
I −

∫ ∞

0

ϕ(t)dt

)
λ̂. (5.59)

5.7. Illustration. Figure 6.

6. Simulation via Markovian Projection

In this section, a (new) technique for the fast simulation of multivariate

Hawkes processes with arbitrary decay kernels is presented.

6.1. Ogata’s Thinning Simulation Method. The standard method for

the simulation of multivariate Hawkes processes is Ogata’s modified thin-

ning algorithm [Oga81] (See also Lewis and Schedler [LS79].) The idea

is to simulate a non-homogeneous univariate Poisson process {t∗n} whose

intensity λ∗(t) dominates the total intensity

λsum(t) =

M∑

i=1

λi(t), (6.1)

that is,

λ∗(t) ≥ λsum(t), forall t, (6.2)

and attach a mark j0 ∈ ~1,M+1� to each point according to the probabilities
(
λ1

λ∗
,
λ2

λ∗
, . . . ,

λM

λ∗
,
λ∗ − λsum

λ∗

)
. (6.3)

If the mark j0 equals M + 1, the point is rejected. By proposition 1 in

[Oga81], the remaining points form a point-process that has the desired

intensity λ(t).



6. SIMULATION VIA MARKOVIAN PROJECTION 107

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

τ (seconds)

ϕ

 

 
True kernel

Estimated kernel

Figure 5. Non-parametric kernel estimation. Artificial data,

10000 points sample, is generated with the parameters

M = 2, P = 1, µ = (0.1, 0.2)⊤, α =

(
5.0 10.0

1.0 2.0

)
,

β =

(
20.0 15.0

3.0 10.0

)
. The covariance density matrix is then

estimated, and the Hawkes-Wiener-Hopf equation solved

by Nystöm’s method. The number of integration nodes is

N = 3000 and tN = 60 seconds. The estimated base intensity

is µ̂ = (0.0967, 0.1932)⊤.

For Hawkes processes, since the kernel ϕ(t) is decreasing (and therefore

λsum(t) after a jump), a natural choice for the dominant intensity λ∗(t) is

the value of λsum immediately after a jump. One therefore gets a piecewise

constant λ∗ between jumps (figure 8).

We implement this idea in algorithm 2. Note that we heavily exploit the

Markovian structure of the point process (chapter 4, proposition 2.2). We

comment on this below.

Recall that

α =
(
α

p

i j

)
1≤i, j≤M,1≤p≤P

, (6.4)
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Figure 6. Non-parametric kernel estimation (Buy and sell

market orders, TOTF.PA, June 2011.)

β =
(
β

p

i j

)
1≤i, j≤M,1≤p≤P

, (6.5)

are three dimensional matrices. i, j, p are respectively the row, column and

page index. The three dimensional matrix defined as

Y
p

i j
(t) =

∫ t

0

e
−βp

i j
(t−s)

dN j(s), 1 ≤ i, j ≤ M, 1 ≤ p ≤ P. (6.6)

is the workhorse of the algorithm.

Y jumps by 1 with each jump of the process. More precisely, if zn ∈
~1,M� is the mark of the jump,

Y
p

izn
(tn+1) = Y

p

izn
(tn+1) + 1, 1 ≤ i ≤ M, 1 ≤ p ≤ P. (6.7)

Only a “slice” of Y jumps by 1, it corresponds the plan j = zn (figure 9).

Betwen tn and tn+1, Y decays as6

Y(tn+1) = e−β(tn+1−tn)
Y(tn+1). (6.8)

These are the key recursive relationships we use in the simulation.

6The exponential and multiplication are meant element by element.
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sell market orders, TOTF.PA, June 2011.)
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6.2. General Kernel. Suppose now we are given a general decay ker-

nel ϕ, a power-law,

ϕi j(t) =
ai j

(bi j + t)ci j
, ai j, bi j, ci j > 0, (6.9)

say. The problem at hand is not Markovian. But it can be very well approx-

imated by one. The family of functions
{
αe−βt

}
(6.10)

is rich enough to virtually approximate any kernel of interest (on a finite

but arbitrarily large interval [0,T ] and with arbitrary accuracy). The idea is

therefore to project the kernel ϕ on the “basis functions”,
{
αe−βt

}
(6.11)

for instance by least squares fitting, then use algorithm 2 to simulate the

process.
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Algorithm 2 Multivariate Hawkes process simulation.

Require: N,M, P, µ, α, β

1: n← 1

2: Y ← 0

3: λ∗ ← ∑M
i=1 µi

4: while n ≤ N, do

5: Generate the inter-event time according to an exponential r.v. with

mean λ∗ τ ∼ Exp(1/λ∗)

6: newT ← newT + τ

7: Y ← e−βτY {eq. 6.8}
8: for i = 2 to M do

9: λi = µi +
∑

1≤ j≤M,1≤p≤P

α
p

i j
Y

p

i j

10: end for

11: λsum =
∑

1≤i≤M

λi

12: Choose randomly the event type j0 in ~1,M + 1� according to the

probability vector

(λ1, λ2, . . . , λM, λ
∗ − λsum) /λ∗

13: if j0 ≤ M then

14: {Keep the point}
15: tn ← newT

16: zn ← j0

17: Y(:, j0, :)← Y(:, j0, :)+ 1 {This is a shorthand notation of eq.

(6.7).}
18: λ∗ ←

∑

1≤i≤M

µi +
∑

1≤i, j≤M,1≤p≤P

α
p

i j
Y

p

i j

19: n← n + 1

20: else

21: {Reject the point}
22: λ∗ ← λsum

23: end if

24: end while

Interestingly, in the case of power-law decaying kernels, this has a nice

financial interpretation. In econophysics, power-law behaviour is known to

emerge from the aggregation of heterogeneous agents with different time
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a b c

ϕ11 1.1678 2.0049 3.1901

ϕ12 1.1014 2.0511 3.1021

ϕ21 1.1591 2.0395 3.1803

ϕ22 1.0822 2.0690 3.0730

Table 1. Power-law kernel parameters. Each triplet (a, b, c)

was randomly generated by (1, 2, 3) + 0.2(U1,U2,U3), with

Ui ∼ Uniform]0, 1[.

horizons. Each term in the exponential sum

a

(b + t)c
≈

P∑

p=1

αpe−βpt, (6.12)

represents an agent (or group of agents) with a characteristic time of 1
βp

.

In a sense, Markovian projection identifies the most important groups. Re-

markably, at least from a computing perspective, you only need about log T

exponentials to approximate a power-law over the range [0,T ]. This is the

key insight behind the algorithm.

Note that although we restricted the parameters to be positive, we can

imagine them taking complex values (for fancier shaped kernels), exploit

the Markovian structure to simulate, then return to the real line.

The speedup, from O(N2) to O(N log N), is dramatic (figure 12).

7. Applications

In the previous sections, it was shown how to estimate and efficiently

simulate a stochastic order book model based on Hawkes processes. We

now turn to the measurement of two quantities of practical importance using

the estimated model. The flexibility of the order book model allows the

assessment of a wide range of algorithmic trading strategies, and this section

is a proof-of-concept for the possibilities such models may offer.

7.1. Probability of Fill of a Limit Order. The first quantity of interest

is the probability of fill of a limit order. Its estimation from market data

can be challenging (See e.g. [LMZ02]) and we propose an indirect (and
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original) approach for its estimation. To do this, we simulate an order book

model with 7 order flows:

(1) M+(t): buy market orders,

(2) M−(t): sell market orders,

(3) L+(t): sell limit orders,

(4) L−(t): buy limit orders,

(5) L+A(t): An additional agent’s sell limit orders,

(6) C+(t): cancellation of a sell limit order,

(7) C−(t): cancellation of a buy limit order.
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The first 5 order flows form a Hawkes process whose decay kernel matrix

reads

ϕ =



ϕ11 ϕ12 ϕ13 ϕ14 ϕ13

ϕ21 ϕ22 ϕ23 ϕ24 ϕ23

ϕ31 ϕ32 ϕ33 ϕ34 ϕ33

ϕ41 ϕ42 ϕ43 ϕ44 ϕ43

0 0 0 0 0



. (7.1)

Note that we account for the effect of the agent’s trading on the order flow

(underlined terms). This would be impossible when merely replaying mar-

ket data. The agent is submitting sell limit orders at a constant Poissonian

rate, and affecting the order flow similarly to any other sell limit order. The

result of the simulation is displayed in figure 13.

7.2. Execution Shortfall of a Limit Order. The second quantity is

related to the cost of executing a limit order [NKPS05]. Consider the so-

called “submit and leave” strategy: A agent submits a limit order at price P

with a certain volume v, waits T seconds for it to be (partially) executed,

and finally submits a market order with the remaining shares. A question of

interest is the determination of the optimal price and waiting time for such

a simple strategy.

If we define the (algebraic) shortfall of this strategy (started at t0) as7

S = Execution Price − Prevailing mid-price at t0, (7.3)

expressed in ticks. Then estimates of the average shortfall 〈S 〉 and its vari-

ance are valuable indicators for the optimal choice. We run this strategy on

simulated data and display the result in figure 14. For instance, it is clear,

for figure 14’s parameter set, that it is not optimal to place the order deep in

the book.

7It is also possible to normalize by the mid-price

S =
Execution Price − Prevailing mid-price at t0

Prevailing mid-price at t0
, (7.2)

to get the “return” of the strategy.
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Figure 13. Probability of fill of a sell limit order of size

v = 50 shares. In panel (B), the legend indicates the price

in ticks relative to the best offer. For instance, 0 means that

the limit order is placed with its price set to the best ask, 1 at

ask+1 tick etc. Model parameters are estimated for the stock

TOTF.PA, June 2011.



7. APPLICATIONS 117

0 20 40 60 80 100 120 140 160 180
−2.5

−2

−1.5

−1

T (seconds)

〈S
〉
(t
ic
k
s)

 

 
0

1

2

(a)

0 20 40 60 80 100 120 140 160 180
1.5

2

2.5

3

3.5

4

4.5

5

5.5

T (seconds)

S
td
.
S

(t
ic
k
s)

 

 

0

1

2

(b)

Figure 14. Execution shortfall (A) and its standard devia-

tion (B) for a limit order of size v = 1000 shares. Model

paramters are estimated for the stock TOTF.PA, June 2011.
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