
HAL Id: tel-00997437
https://theses.hal.science/tel-00997437

Submitted on 28 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Scale models and computational methods for
aerothermodynamics

Alessandro Munafo

To cite this version:
Alessandro Munafo. Multi-Scale models and computational methods for aerothermodynamics. Other.
Ecole Centrale Paris, 2014. English. �NNT : 2014ECAP0008�. �tel-00997437�

https://theses.hal.science/tel-00997437
https://hal.archives-ouvertes.fr


École Centrale Paris

THÈSE
présentée par

Alessandro Munafò

pour l’obtention du

GRADE de DOCTEUR

Formation doctorale : Énergétique

Laboratoire d’accueil : Laboratoire d’Énergétique Moléculaire
et Macroscopique, Combustion (EM2C)
du CNRS et de l’ECP

Multi-Scale Models and Computational Methods for
Aerothermodynamics

Soutenue le 21 Janvier 2014

Rapporteurs :
M. Bruno D. Chercheur CNR, IMIP
M. Giovangigli V. Dir. de Recherche CRNS, CMAP

Jury :
Mme Bourdon A. Dir. de Recherche CNRS, EM2C UPR 288
Mme Gamba I. M. Professeur, ICES UT Austin
M. Jaffe R. L. Chercheur, NASA ARC
M. Magin T. E. Associate Professor, VKI
M. Massot M. Professeur CNRS, EM2C UPR 288
M. Panesi M. Assistant Professor, UIUC

École Centrale des Arts et Manufactures
Grand Établissement sous tutelle
du Ministère de l’Éducation Nationale
Grande Voie des Vignes
92295 Châtenay-Malabry Cedex
Tél : 33 (1) 41 13 10 00
Télex : 634 991 F EC PARIS

Laboratoire d’Énergétique
Moléculaire et Macroscopique,
Combustion (E.M2.C.)
UPR 288, CNRS et École Centrale Paris
Tél : 33 (1) 41 13 10 31
Fax : 33 (1) 47 02 80 35

2014ECAP0008





Acknowledgements

After the end of my PhD at the von Karman Institute for Fluid Dynamics and
Ecole Centrale Paris, I would like to thank the following people.

First of all, I would like to thank my PhD supervisors, Prof. Thierry Ma-
gin and Dr. Anne Bourdon, for offering me the possibility to do a PhD on
aerothermodynamics and for trusting in my capabilities. Your supervision was
always very clear, constant and helpful. You gave me a lot of good advices and,
more importantly, you were never too busy when it was time to discuss with
me about research related topics. In the long term, this is one of the factors
that can make the difference between a successful and an unsuccesfull research
program.

I would like to thank Prof. Vincent Giovangigli and Dr. Domenico Bruno for
accepting to review my thesis, and Prof. Marco Panesi, Prof. Marc Massot,
Prof. Irene Gamba and Dr. Richard Jaffe, for accepting to be jury members at
my PhD defense.

Thanks to Dr. Rich Jaffe for providing the NASA Ames quantum chemistry
database used in the present thesis, and for introducing me to the fantastic
world of ab-initio calculations.

Thanks to Prof. Marco Panesi for the continuous support, ideas and the useful
discussions we had on state-to-state modeling for non-equilibrium flows. You
really helped me a lot, especially during the first part of my PhD while I was
“digesting” the NASA Ames database. I owe you part of the results of my
thesis.

Thanks to Prof. Irene Gamba and Dr. Jeff Haack for offering me the possibility
to work with them on deterministic Boltzmann solvers. I think that the success
of our joint collaboration clearly indicates that bigger advancements in research
could be achieved if communities that usually work on their own (in our case
engineers and mathematicians) would exchange ideas more often.

Thanks to Dr. Mike Kapper and Dr. Jean-Luc Cambier for providing the two-
dimensional code used in the present thesis and for the useful discussions we
had on Riemann solvers and high-order methods for non-equilibrium flows.



iv

Thanks to Prof. Olivier Chazot. You have been a very good supervisor during
my Short Training Program and Diploma Course at VKI.

Thanks to Prof. Hermann Deconinck. You have been a very good teacher and
introduced me to computational methods during the Diploma Course. If I have
chosen to continue and work on computational methods during my PhD, it is
also because of you.

Thanks to Dr. Domenico “Mimmo” Giordano. I really enjoyed the conversations
we had on quantum chemistry, kinetic theory, statistical mechanics and linear
irreversible thermodynamics.

Thanks to Dr. Kelly Stephani and (again) Prof. Marco Panesi for hosting me
at their place in Austin. I will never forget that month I spent together with
you two during my first visit at UT Austin.

Thanks to all my VKI and ECP friends for all the wonderful moments we spent
together at work and out of work. In particular, I would like to thank my PhD
colleagues and collaborators Erik, JB, Bernd, Alessandro Turchi, Khalil, An-
drea, Damien, Aurélien, Boris, Domingo, Jesus, Tamas, Fabio, François, Benoit,
Aurélie, Bruno and Georgios, and my Diploma Course “italian connection” fel-
lows Dino, Antonino, Manfredi, Francesco Baldani, Francesco Giannattasio and
Alessandro Sanna.

Last, but not least, I want to thank my parents, Diego and Giuliana, and my
sister, Sara, for their continuous support and love. When the night was there,
they always stood by me.

—————————————————

The research presented in this thesis has been financially supported by the
European Research Council Starting Grant #259354.



Abstract

This thesis aimed at developing multi-scale models and computational methods
for aerothermodynamics applications.
The research on multi-scale models has focused on internal energy excitation
and dissociation of molecular gases in atmospheric entry flows. The scope
was two-fold: to gain insight into the dynamics of internal energy excitation
and dissociation in the hydrodynamic regime and to develop reduced models
for Computational Fluid Dynamics applications. The reduced models have
been constructed by coarsening the resolution of a detailed rovibrational colli-
sional model developed based on ab-initio data for the N2(

1Σ+
g )-N(

4Su) system
provided by the Computational Quantum Chemistry Group at NASA Ames
Research Center. Different mechanism reduction techniques have been pro-
posed. Their application led to the formulation of conventional macroscopic
multi-temperature models and vibrational collisional models, and innovative
energy bin models. The accuracy of the reduced models has been assessed by
means of a systematic comparison with the predictions of the detailed rovi-
brational collisional model. Applications considered are inviscid flows behind
normal shock waves, within converging-diverging nozzles and around axisym-
metric bodies, and viscous flows along the stagnation-line of blunt bodies. The
detailed rovibrational collisional model and the reduced models have been cou-
pled to two flow solvers developed from scratch in FORTRAN 90 programming
language (shocking_f90 and solver_fvmcc_f90). The results obtained
have shown that the innovative energy bin models are able to reproduce the
flow dynamics predicted by the detailed rovibrational collisional model with
a noticeable benefit in terms of computing time. The energy bin models are
also more accurate than the conventional multi-temperature and vibrational
collisional models.
The research on computational methods has focused on rarefied flows. The
scope was to formulate a deterministic numerical method for solving the Boltz-
mann equation in the case of multi-component gases with internal energy by ac-
counting for both elastic and inelastic collisions. The numerical method, based
on the weighted convolution structure of the Fourier transformed Boltzmann
equation, is an extension of an existing spectral-Lagrangian method, valid for a
mono-component gas without internal energy. During the development of the
method, particular attention has been devoted to ensure the conservation of
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mass, momentum and energy while evaluating the collision operators. Conser-
vation is enforced through the solution of constrained optimization problems,
formulated in a consistent manner with the collisional invariants.
The extended spectral-Lagrangian method has been implemented in a parallel
computational tool (best; Boltzmann Equation Spectral Solver) written in C

programming language.
Applications considered are the time-evolution of an isochoric gaseous system
initially set in a non-equilibrium state and the steady flow across a normal
shock wave. The accuracy of the proposed numerical method has been assessed
by comparing the moments extracted from the velocity distribution function
with Direct Simulation Monte Carlo (DSMC) method predictions. In all the
cases, an excellent agreement has been found. The computational results ob-
tained for both space homogeneous and space inhomogeneous problems have
also shown that the enforcement of conservation is mandatory for obtaining
accurate numerical solutions.



Résumé

Cette thèse porte sur le développement de modèles multi-échelles et de métho-
des de calcul pour les applications aérothermodynamiques.
Le travail de recherche sur les modèles multi-échelles met l’accent sur l’excitation
énergétique et la dissociation dans des gaz moléculaires pour des écoulements de
rentrée atmosphérique. L’objectif est double : mieux comprendre la dynamique
des processus d’excitation énergétique et de dissociation dans le régime hydro-
dynamique et développer des modèles réduits pour des applications de calcul en
dynamique des fluides (CFD). Les modèles réduits ont été construits en dimi-
nuant la résolution d’un modèle détaillé de collisions rovibrationnelles élaboré
au départ d’une base de données ab-initio pour le système N2(

1Σ+
g )-N(

4Su)
par le groupe de chimie quantique du centre de recherche de NASA Ames.
Différentes techniques de réduction de ce mécanisme ont été proposées. Leur
application a conduit à la formulation de modèles macroscopiques classiques
multi-températures et de type collisions vibrationnelles, et de modèles inno-
vants de paniers d’énergie. La précision des modèles réduits a été évaluée
au moyen d’une comparaison systématique des résultats avec les prédictions
obtenues à l’aide du modèle détaillé des collisions rovibrationnelles. Les ap-
plications envisagées sont les écoulements non-visqueux derrière des ondes de
choc normales, dans des tuyères convergentes-divergentes et autour de corps
de révolution, ainsi que les écoulements visqueux le long de la ligne d’arrêt de
corps émoussés. Le modèle détaillé de collisions rovibrationnelles et les modèles
réduits ont été couplés à deux solveurs d’écoulement développés en langage de
programmation FORTRAN 90 (shocking_f90 et solver_fvmcc_f90). Les
résultats obtenus ont montré que les modèles de paniers d’énergie permettent
de reproduire avec précision la dynamique d’écoulement prédites par le modèle
détaillé de collisions rovibrationnelles tout en exhibant un avantage notable en
termes de temps de calcul. Les modèles de paniers d’énergie sont aussi plus pré-
cis que les modèles classiques multi-température et de collision vibrationnelle.
Le travail de recherche sur les méthodes de calcul a porté sur les écoulements
raréfiés. L’objectif était de formuler une méthode numérique de type déter-
ministe pour résoudre l’équation de Boltzmann dans le cas de gaz à plusieurs
composants y compris l’énergie interne en considérant à la fois pour les colli-
sions élastiques et inélastiques. La méthode numérique, basée sur la structure
de convolution pondérée de la transformée de Fourier de l’équation de Boltz-
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mann, est une extension d’une méthode spectrale existante de type Lagrange,
valable pour un gaz à un composant sans énergie interne. Lors de l’élaboration
de la méthode, une attention particulière a été consacrée à la conservation de
la masse, de la quantité de mouvement et de l’énergie lors de l’évaluation des
opérateurs de collision. La propriété de conservation est assurée en résolvant un
problème d’optimisation sous contraintes, formulées d’une manière compatible
avec les invariants de collision.
La méthode spectrale-Lagrangienne étendue utilise un outil de calcul parallèle
(best ; Boltzmann Equation Spectral Solver) écrit en langage de programma-
tion C.
Les applications considérées sont l’évolution temporelle d’un système gazeux
isochore initialement figé dans un état de déséquilibre et l’écoulement constant
à travers une onde de choc normale. La précision de la méthode numérique
proposée a été évaluée en comparant les moments extraits de la fonction de
distribution de vitesse avec les prédictions de la méthode de simulation directe
Monte Carlo (DSMC). Dans tous les applications étudiées, un excellent accord
a été trouvé. Les résultats des calculs obtenus pour les problèmes spatiaux
hétérogènes et homogènes ont également démontré l’importance d’imposer la
propriété de conservation pour l’obtention de solutions numériques précises.
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Introduction

Motivation

Hypersonic aerothermodynamics finds its chief application in the description
of the flow surrounding a space vehicle during a planetary descent (Anderson
1989; Park 1990; Gnoffo 1999). The computation of such a flow is extremely
challenging and, due to the multi-discipline and multi-physics nature of the
problem, it requires the integration of different subjects such as chemical ki-
netics, quantum and statistical mechanics, electromagnetic theory, material
science, computational methods and high-performance computing techniques.
An accurate modeling of aerothermodynamic flows must account for all the rel-
evant physico-chemical phenomena occurring both in gas and solid phases and
is important for the design of heat-shields of space vehicles and for a correct in-
terpretation of experimental measurements in high-enthalpy wind tunnels. The
achievement of this task is complicated due to the existence of a very broad
spectrum of the physical time-scales involved. Figure 1 provides a graphical
sketch of the relevant physico-chemical phenomena occurring in the surround-
ing of a re-entry vehicle during the peak-heating condition.

Figure 1: Relevant physico-chemical phenomena occurring during a planetary descent
of a space vehicle (credits NASA Ames Research Center).
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The modeling of aerothermodynamic flows must account for non-equilibrium
effects. Non-equilibrium is a consequence of the finite rate nature of the pro-
cesses occurring within the flow. The mathematical model to be adopted for
describing the gas motion depends on the Knudsen number Kn, defined as
the ratio between the molecular mean-free-path (average distance traveled by
molecules between successive collisions) and a characteristic dimension of the
problem under investigation, such as the space-vehicle nose radius (Ferziger
and Kaper 1972; Bird 1994). The Knudsen number is a measure of the degree
of rarefaction of a flow and, depending on its value, different flow regimes can
be distinguished (see fig. 2).

Figure 2: Flow regime classification according to the Knudsen number.

During a planetary entry, all the flow regimes shown in fig. 2 are encountered
and, for each one, the relevant physico-chemical phenomena to be taken into
account differ.
In the early phase of the descent, the vehicle enters the upper layers of the
planetary atmosphere. Due to the extremely low value of the gas density, the
incoming gas particles directly collide with the vehicle surface, where they can
be both reflected or absorbed, without colliding with each other. Flows in this
regime are referred to as free-molecular flows (Bird 1994; Gnoffo 1999). Af-
ter passing this zone, the atmosphere becomes denser. Collisions among the
gas particles can no longer be neglected. The flux of impinging particles ex-
periences collisions with those being re-emitted at the vehicle surface. This
collisional transfer of information creates a compression zone in front of the
vehicle, where the density, pressure and temperature increase smoothly. The
dimensional extent of this region is comparable with the characteristic dimen-
sions of the vehicle. Flows in this regime are referred to as transition flows.
In these conditions, the collisions between the gas particles are not energetic
enough to cause substantial excitation of atom/molecule internal degrees of
freedom (such as rotation and vibration of molecules, and electronic states of
atoms and molecules) or breaking of chemical bonds. This is usually accompa-
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nied by low energy transfer rates to the vehicle surface. 1 A correct description
of free-molecular and transitional flows is important for an accurate determina-
tion of the aerodynamic coefficients and for a correct planning of the planetary
entry path. In the free-molecular and transition regimes, appreciable changes
of flow properties (such as velocity and temperature) occur over the same time-
scales needed for the translational degree of freedom to attain local equilibrium
(Maxwell-Boltzmann velocity distribution function; Bird 1994). In this situa-
tion, one must go beyond a hydrodynamic model based on the Navier-Stokes
equations. If the gas is sufficiently dilute (which is the case for aerothermo-
dynamic flows), a kinetic description based on the Boltzmann equation of the
Kinetic Theory of Gases can be adopted (Ferziger and Kaper 1972). The Boltz-
mann equation is an integro-differential equation describing the evolution in the
phase-space of the one-particle velocity distribution function. Once the veloc-
ity distribution function known, flow properties can be computed by means
of suitable moments. The Boltzmann equation is composed of two parts: the
streaming operator and the collision operator. The streaming operator is a
linear differential operator that accounts for the effects of the molecular mo-
tion between collisions (it can be also interpreted as a material derivative in
the phase-space; Giovangigli 1999). The collision operator is a non-linear inte-
gral operator that accounts for the effects of collisions among the gas particles.
In the case of free-molecular flows, where the collisions in gas-phase can be
neglected, the collision-less Boltzmann equation can be adopted.
Proceeding further with the descent, the atmospheric density increases and the
Knudsen number assumes values of the order of 0.1 or smaller. In view of the
higher collisional rate among the gas particles, the width of the compression
region in front of the vehicle progressively reduces its thickness. However, rar-
efied gas effects still play an important role and cannot be neglected. Examples
are the velocity slip and the temperature jump at the vehicle surface. This flow
regime is referred to as slip-flow regime (Bird 1994). In this situation, a hy-
drodynamic description based on the Navier-Stokes equations is not sufficiently
accurate and gives a poor description of the flow. A possible alternative to the
use of the Boltzmann equation (always valid from the free-molecular to the hy-
drodynamic regime) is represented by extended hydrodynamic models such as
Moment Methods (Struchtrup 2005) or the Navier-Stokes equations with slip
boundary conditions (Gnoffo 1999).
In the last phase of descent, due to a further increase of the atmospheric den-
sity, gas-phase collisions become more frequent and energetic. The compres-
sion region in front of the vehicle becomes a shock wave whose thickness (of
the order of some mean-free-paths) becomes negligible compared to the vehicle
characteristic dimensions. Flows in this regime are referred to as continuum
or hydrodynamic flows (Gnoffo 1999). In the zone immediately behind the
shock wave, collisions between the gas particles lead to the excitation of the

1This is not the case for ballute entry and descent (Gnoffo 1999).
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internal degrees of freedom of atoms and molecules. When collisions are en-
ergetic enough, dissociation reactions can occur. The atoms produced as a
result of the dissociation can recombine in the boundary layer with a conse-
quent release of their energy of formation. This causes a substantial increase
of the wall heat flux (compared to the rarefied flow regime), which becomes,
for this phase of the planetary entry, the main design parameter. The wall
heat flux must be accurately predicted in order to prevent mission failure. If
the re-entry speed is high enough (e.g. 10 km/s for a Lunar return), ionization
may also occur. The gas contained in the region between the shock wave and
the vehicle surface (usually referred to as shock-layer; Gnoffo 1999) becomes
a partially ionized plasma where radiative transitions take place (Mihalas and
Mihalas 1999; Zel’dovich and Raizer 2002). The surface heat flux is now made
of two contributions, convective and radiative, with the latter becoming more
and more important when increasing the entry speed. Heats-shields of modern
reentry vehicles are usually equipped with ablative materials, with the purpose
of reducing heat transfer rates. The gas and solid phase ablation products can
interact with the flow in the boundary layer and the radiation field. Possible
consequences of these interactions are transition to turbulence and radiation
enhancement associated to particle spallation.
In the hydrodynamic regime, rarefied gas effects are limited to regions of steep
gradients where the local Knudsen number is high (such as the interior part of
the shock wave and the base flow). Outside of these zones, the Navier-Stokes
equations hold. In order to provide an accurate description of the flow, the
transport fluxes and the production terms due to collisional processes in the
Navier-Stokes equations should be consistently related to the non-equilibrium
state of the gas. This can be achieved by applying the Chapman-Enskog method
to the Boltzmann equation (Ferziger and Kaper 1972; Giovangigli 1999; Nag-
nibeda and Kustova 2009). The application of the Chapman-Enskog method
enables to obtain explicit relations for the transport fluxes and the production
terms in the Navier-Stokes equations. When charged particles are produced,
electromagnetic fields may arise, and the mutual influence between the flow
and the electromagnetic fields should be taken into account by coupling the
Navier-Stokes and the Maxwell equations (Giordano 2002). In practice, this
is never done and a simplified approach is adopted. This consists in coupling
the Navier-Stokes equations with the Radiative Transfer Equation (Vincenti
and Kruger 1965; Mihalas and Mihalas 1999; Zel’dovich and Raizer 2002). The
Radiative Transfer Equation describes the evolution of the radiation field in-
tensity due to radiation emission, absorption and scattering. In the case of
the occurrence of ablation phenomena, the flow and radiation field governing
equations should be coupled with a mathematical model for the portion of the
vehicle surface undergoing ablation.
The different flow regimes shown in fig. 2 and described in detail for the case of
a planetary descent, are also encountered in high-enthalpy wind tunnel flows.
In this case, a proper accounting of the physico-chemical phenomena is im-
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portant for a correct interpretation of experimental measurements and their
extrapolation to in-flight conditions.

Goals of the Thesis

The previous introductory discussion has summarized the main features of
aerothermodynamic flows and has also shown how complex these flows are
in terms of modeling and computation. Despite the research efforts performed
in the past years and the increasing computational power and resources, the
computation of aerothermodynamic flows still poses problems. This is mainly
due to the lack of accurate physical models (within a wide range of conditions)
for collisional and radiative processes and transport phenomena in gas phase,
and to the lack of unified deterministic computational methods usable from the
rarefied to the hydrodynamic regime. This has motivated the research activity
of the present thesis which has been focused on the following two topics:

• Multi-scale models,
• Computational methods.

Multi-Scale Modeling for Aerothermodynamic Flows The first part of
the thesis has been dedicated to the integration of quantum chemistry databases
in CFD codes. The research has focused on internal energy excitation and dis-
sociation of molecular nitrogen in atmospheric entry flows. Ionization and radi-
ation phenomena have not been considered. The final goal was two-fold: to gain
insight on the dynamics of internal energy excitation and dissociation in the
hydrodynamic regime and to develop reduced models for CFD applications al-
lowing for a more accurate description than the conventional multi-temperature
models (Park 1990). The research has been carried out in collaboration with the
Computational Quantum Chemistry Group at NASA Ames Research Center.

Computational Methods for Rarefied Flows The second part the thesis
has focused on rarefied flows and aimed at the development of a fully deter-
ministic numerical method for the solution of the Boltzmann equation by ex-
tending an existing spectral-Langrangian method (valid for a mono-component
gas without internal energy) to multi-components gases and inelastic collisions.
The final scope was the development of a parallel computational tool for the
calculation of rarefied gas flows and its verification and validation by means
of comparison with the Direct Simulation Monte Carlo (DSMC) method (Bird
1994) and experimental results, respectively. The research has been carried out
in collaboration with the University of Texas at Austin.
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Literature Review

In this section, a review of the work done in the past and of the state of the
art is given for the topics on which the thesis has been focused.

Multi-Scale Modeling for Aerothermodynamic Flows

The modeling of aerothermodynamic flows started receiving attention in the
1950-1960’s, when the space exploration programs of USA and USSR were be-
ing set (Anderson 1989). An accurate modeling of aerothermodynamic flows
must properly account for non-equilibrium effects. As stated in the introduc-
tory discussion, these are due to the finite rate nature of collisional processes.
The physical models developed during the years may be divided in two main
categories: multi-temperature models and collisional models.

Multi-Temperature Models Multi-temperature models have been proposed
starting from the work of Appleton and Bray (1964) as a simplified approach
to overcome all the difficulties related to the modeling of non-equilibrium. In
these models, mainly developed by Park (1989; 1990; 1993; 1994), the inter-
nal energy levels of the gas particles are supposed to be populated according
to Boltzmann distributions at their own temperatures (e.g. rotation, vibra-
tional and electronic temperatures). The conservation equations for the species
mass, the total momentum and the total energy are supplemented with addi-
tional conservation equations for the components of internal energy in thermal
non-equilibrium with translation (Gnoffo et al. 1989; Park 1990; Candler and
MacCormack 1991; Gnoffo 1999). These additional equations have the same
hyperbolic-parabolic structure of the conventional conservation equations of
gas-dynamics (Hirsch 1990) and are supplied with energy transfer source terms.
These are associated to the production/destruction of internal energy due to
collisional processes.
In multi-temperature models, research has been mainly focused on vibrational
non-equilibrium and its effect on chemical reactions (Park 1990). The pres-
ence of vibration-translation (VT) and vibration-vibration (VV) energy transfer
processes is usually described through Landau-Teller (1936) relaxation mod-
els (Park 1990; Candler and MacCormack 1991). The relaxation times are
taken from both theoretical and/or experimental measurements, such as those
of Millikan and White (1963). The formulation of these energy-transfer terms
accounts only for mono-quantum transitions (Park 1990; Capitelli et al. 2000).
This assumption does not hold, as an example, in the flow immediately behind
a normal shock wave (Park 1990). In this situation, due to high-temperature
conditions, collisions can be energetic enough to induce multi-quantum jumps
(Capitelli et al. 2000). The effect of dissociation reactions on the vibra-
tional energy is accounted for through the chemistry-vibration (CV) source
term. The latter accounts for the fact that molecules undergoing dissocia-
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tion/recombination cause a loss/gain of a finite amount of vibrational energy
within the gas (Park 1990). The effects of vibrational non-equilibrium is also
accounted for in the reaction rate coefficients (Park 1990; Park 1993; Park et al.
1994). Different models have been proposed in this field. The first attempt was
the model proposed by Hammerling et al. (1959). In the successive years, many
other models have been proposed. A review of many of them has been given
by Losev (1996). Losev classified the different models into three categories:
a) models based on intuitive premise, b) empirical/semi-empirical models and
c) theoretical models. The underlying idea of almost all the models is that
molecules tend to dissociate/recombine preferentially in high-lying vibrational
states (Capitelli et al. 2000). An example of model belonging to the first cat-
egory is that proposed by Park (1990) for computing non-equilibrium reaction
rate coefficients (probably the most popular model of this kind). In Park’s
model, the rate coefficient for dissociation is computed at a temperature given
by the geometric average of the translational and the vibrational temperatures
(T -Tvib model). Empirical/semi-empirical models have been proposed by Tre-
anor and Marrone (1962; 1963), Knab et al. (1992), Jaffe (1986), and Landrum
and Candler (1992). Among the aforementioned models, those proposed by
Treanor-Marrone and Knab provide a formulation for the CV energy transfer
term. The latter is developed consistently with the assumed functional form of
the non-equilibrium dissociation rate coefficients. Alternative and widely used
semi-empirical models for the CV energy transfer term are those proposed by
Park (1988; 1989) and Candler and MacCormack (1991). In the model of Park
(1988; 1989), it is assumed that the average vibrational energy lost by molecules
in dissociation reactions is a fraction of their dissociation energy. This conclu-
sion was drawn based on heat-bath calculations performed by Sharma et al.
(1992) where the SSH theory (Schwartz, Slawsky, and Herzfeld 1952) was used.
In the model proposed by Candler and MacCormack (1991), it is assumed that
the vibrational energy lost/gained due to molecular dissociation/recombination
is equal to the gas bulk vibrational energy (non-preferential dissociation model).
Examples of theoretical models are those proposed by Hansen (1991), the fam-
ily of Kuznetsov models (1996; 2002a; 2002b) and the impulsive collision model
of Macheret (1993; 1994). More details on these models can be found in the
aforementioned papers.
The investigation of rotational non-equilibrium has received less attention than
vibrational non-equilibrium. This is clearly shown by the current use in CFD
codes of Parkers’ model (1959) for the rotational-translational (RT) energy
transfer mechanism. Rotational non-equilibrium effects, despite the evidence
of their existence for flows behind shock waves (Robben and Talbot 1966a;
Park 1990) and in low density wind tunnels (Robben and Talbot 1966b), are
mostly neglected when computing aerothermodynamic flows (in the hydrody-
namic regime). This is usually justified by referring to experimental data on
rotational relaxation times. These data show that, with the exception of light
molecules such as H2, HD and D2, the RT relaxation times are orders of mag-
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nitude smaller than the VT relaxation times (Chernyi et al. 2002b). The
aforementioned experimental measurements refer, however, to ordinary tem-
peratures. In a recent work, Panesi et al. (2013) have shown that the relaxation
times for the RT and VT mechanisms in N2-N collisions become comparable at
high temperatures.
Multi-temperature models are routinely used in modern CFD codes (Gnoffo
et al. 1989; Candler and MacCormack 1991; Lani 2009). This is due to their
ease of implementation and computational efficiency. However, their use is
often stretched out of the range for which they had been originally conceived.
Multi-temperature models are only valid in the case of small departure from
the local equilibrium. Their formulation is usually accompanied with tuning
parameters (like in the model of Knab et al. 1992) of questionable and unclear
physical meaning. A detailed investigation on the limits of multi-temperature
models has been recently given by Park (2010).

Collisional Models Collisional or state-to-state models (Capitelli et al. 2000;
Chernyi et al. 2002b; Laux 2006; Bultel et al. 2006) have been proposed in
order to overcome the deficiencies of multi-temperature models. The hypothe-
sis of a Boltzmann distribution for the internal degrees of freedom is released.
Each internal energy level is treated as a separate pseudo-species. This ap-
proach provides a more accurate description than multi-temperature models as
the effects of possible non-Boltzmann distributions are automatically accounted
for. The higher accuracy and wider application range come at the price of more
expensive calculations, due to the drastic increase of the number of species to
be taken into account. Moreover, in order to obtain numerical values of cross-
sections and rate coefficients for each elementary process, complex and lengthy
ab-initio quantum-chemistry calculations are usually required. These are based
on a two-step process: a) Generation of the Potential Energy Surface (PES)
from first principles b) Cross-section evaluation based on trajectory calcula-
tions. The second step consists in a repeated study of the collision dynamics
for different values of the collision parameters such as relative kinetic energy,
relative orientation angles and initial quantum states. The cross-section for a
given process is then computed as the ratio between the number of its occur-
rences and the total number of collisional events (Park 1990). Rate coefficients
are obtained by averaging the cross-sections over a Maxwell-Boltzmann veloc-
ity distribution function. In view of the great number (infinite in theory) of
possible combinations for the collision parameters, their numerical values are
selected by means of sampling techniques. This induces stochastic noise in the
generated cross-sections. For processes such as heavy-particle impact internal
energy excitation and dissociation, the collision dynamics can be studied within
the framework of classical mechanics. This is accomplished by solving Hamil-
ton’s equations, where the interaction potential in the Hamiltonian is given by
the PES (Park 1990). The whole procedure is referred to as Quasi-Classical
Trajectory (QCT) method (Park 1990).
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Approximate methods for computing elementary process rate coefficients have
been proposed (Chernyi et al. 2002a) in order to avoid lengthly ab-initio cal-
culations. One of the most popular is the Forced Harmonic Oscillator (FHO)
model. The FHO model is based on the application of the Kerner-Treanor
method (1958; 1965) to the semi-classical approximation of the Schrödinger
equation for a non-rotating molecule. The FHO model has been used by
Adamovich (1995a; 1998) for computing VT and VV rate coefficients for N2-N2,
N2-O2 and O2-O2 interactions.
The development of collisional models has been mainly focused on non-equilibrium
vibrational kinetics (Capitelli 1986; Capitelli et al. 2000). Vibrational colli-
sional models have been developed based on both QCT calculations (Espos-
ito et al. 1999; 2000; 2006) and approximate models (such as the previously
mentioned FHO model). Applications have considered the study of the vi-
brational level dynamics in flows behind shock waves (Cambier and Moreau
1993; Adamovich et al. 1995b; Treanor et al. 1996; Aliat et al. 2003, Panesi
et al. 2009; 2011), within converging-diverging nozzles (Colonna et al. 1999;
Colonna and Capitelli 2001; Babu and Subramaniam 1995), in the stagnation
region of blunt bodies (Armenise et al. 1994; Candler et al. 1997) and in at-
mospheric pressure air plasmas (Gessman et al. 1997; Pierrot et al. 1999; Laux
2006). The results shown in the aforementioned papers indicate that collisional
processes such as dissociation/recombination induce heavy distortions in the vi-
brational level population distributions, thereby demonstrating the inaccuracy
of a multi-temperature description.
The development of rovibrational collisional models has started receiving atten-
tion only recently. The main reason for this delay is the number of rovibrational
energy levels and related transitions which one must take into account (e.g. for
a diatomic molecule such as N2, the number of rovibrational energy levels of
its electronic ground-state is of the order of 10 000) . Examples of rovibrational
collisional models are the NASA Ames database for the N2 molecule (Jaffe et al.
2008; Chaban et al. 2008; Schwenke 2008; Jaffe et al. 2009) used in the present
thesis and those developed by Esposito et al. (1999), and Kim et al. (2009) for
the H2 molecule.
The use of collisional models in multi-dimensional CFD computations has be-
come feasible only recently, thanks to the advances in the computational re-
sources (Kapper and Cambier 2011a; Kapper and Cambier 2011b; Panesi and
Lani 2013).

Computational Methods for Rarefied Flows

Computational methods for (rarefied) aerothermodynamic flows started to be
developed at the same time as physical models for collisional processes. Dur-
ing the years, computational methods of different natures have been proposed.
These can be grouped in two main categories: stochastic methods and deter-
ministic methods.
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Stochastic Methods At the time when researchers started to seek for ef-
ficient numerical methods for rarefied flow problems (around the 1960’s), the
computational power available was very limited. Obtaining numerical solutions
to the full Boltzmann equation was out of discussion. This led to the develop-
ment of the Direct Simulation Monte Carlo (DSMC) method (Bird 1994). The
DSMC method, mainly developed by Bird (1967; 1970) in the initial phase,
is a particle-based technique and aims at obtaining stochastic solutions of the
Boltzmann equation. In the DSMC method, the gas is represented by a set
of gas particles. Each of the gas particle represents a collection of a great
number of molecules (the order can vary between 1010 and 1020, depending on
the problem being investigated). The numerical solution is built by alternat-
ing the transport and collision steps. In the first, particles are let to freely
move in space. In the second, particles are let to collide between each other.
Collision pairs are selected though the use of random numbers. Macroscopic
quantities are found by sampling over time the particle microscopic properties
within each computational cell. The combination of the transport and collision
steps in the DSMC method aims at replicating (stochastically) the molecular
behavior of dilute gases, where, in absence of external fields, molecules mov-
ing along straight-line trajectories are suddenly scattered into new directions
due to collisions. This makes the DSMC method consistent with the theory
underlying the Boltzmann equation.
The original DSMC method of Bird was initially developed for a mono-component
gas without internal energy and applied to solve one-dimensional problems
(Bird 1970). Later, its capabilities were extended to deal with multi-component
gases with internal energy (Boyd 1990; Boyd 1991; Koura 1992; Koura 1994;
Bruno et al. 2002) and chemical reactions (Boyd 1992; Hash and Hassan 1993;
Bird 1994). Applications to multi-dimensional rarefied flows have become feasi-
ble and are routinely performed at the present time, thanks to the achievements
in computational resources (Ivanov and Gimelshein 1998; Ivanov et al. 2006;
Boyd 2008).
The DSMC method has proven to be robust and accurate (Ivanov et al. 2006).
However, it shares the drawbacks of stochastic methods, the main one being
the statistical noise of the numerical results. This issue can deteriorate the
solution accuracy and is particularly felt for low speed and unsteady problems
(Bird 1994). Moreover, for flows in the transitional and in the hydrodynamic
regime, the use of the DSMC method can becomes expensive, due to the need
of an extremely high number of particles.

Deterministic Methods Parallel to the development of the DSMC method,
research efforts have been also spent in the development of deterministic meth-
ods for the numerical solution of the Boltzmann equation in the rarefied regime.
The solution of the Boltzmann equation by means of numerical techniques rep-
resents a computational challenge. This is due to the integro-differential na-
ture of the equation. Another source of difficulty is the high-dimensionality
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of the problem, since numerical solutions must be sought in the phase-space.
The main advantage of a deterministic method over a stochastic one (such
as DSMC) is that numerical solutions are not affected by noise. Determin-
istic methods can also be applied to flow problems in the hydrodynamic and
transition regime, where the use of the DSMC method can become expensive
(Kolobov et al. 2007).
In all the methods that have been proposed, the phase-space is discretized by
keeping separate the discretization of the position and velocity spaces. The
position space and the related discretization of the streaming operator are real-
ized by means of Finite Difference, Finite Volume and Discontinuous-Galerkin
methods (Hirsch 1990; Leveque 2008; Cockburn et al. 2011). The discretiza-
tion of the velocity space and the related algorithm for the evaluation of the
collision operator is what distinguishes, up to a certain extent, one method
from the others. Once a decision made concerning the discretization of the
streaming and collision operators, numerical solutions are found by means of a
time-marching approach. In many cases (though not always), the solution up-
date is performed through operator-splitting methods (Oran and Boris 2000),
due to their ease of implementation and low storage requirements compared to
implicit methods.
The first deterministic methods for rarefied gas flows were proposed at the same
time when the DSMC method was being developed. These methods were based
on model Boltzmann equations (Cercignani 2000). In the latter, the Boltz-
mann collision operator is replaced with simpler phenomenological expressions
(or model collision operators; Cercignani 2000). One of the most popular (if
not the most popular) among this class of models is the Bhatnagar, Gross and
Krook (BGK) model (1954), where the collision operator is replaced with a
Jeans-like relaxation term. Examples of other phenomenological models are
the Ellipsoidal-Statistical model developed independently by Cercignani (1967)
and Holway (1966), the generalized Krook model proposed by Shakhov (1968)
and the polynomial and trimodal gain function models of Seagal and Ferziger
(1970). When using the aforementioned models, the discretization of the ve-
locity space is realized by selecting a set of points contained within a cube of
finite extent in the velocity space. Phenomenological models are still used in
multi-dimensional Boltzmann solvers (Zang and Huang 1995; Mieussens 2000),
as they are computationally cheaper than the DSMC method. The particularly
simple structure of the model collision operators (such as BGK) makes pos-
sible the use of implicit methods (Mieussens 2000; Mieussens and Struchtrup
2004). This is of particular importance if one is interested only in steady-state
solutions, as the time-steps that can be used are usually several orders of mag-
nitude bigger than the maximum allowable time-steps for explicit methods.
These advantages come at the price of higher memory requirements and coding
efforts. The accuracy of phenomenological models deteriorates in flows where
the velocity distribution function experiences a significant departure from the
local equilibrium (Mieussens and Struchtrup 2004), such as across strong shock
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waves. This motivated the research toward methods enabling the numerical
evaluation of the Boltzmann collision operator.
The first deterministic method for the full Boltzmann equation was the Discrete-
Velocity-Method (DVM) proposed by Broadwell (1964). The base idea consists
in representing the state of the gas, in the velocity space, by a finite set of veloc-
ities. In this way, the solution of the Boltzmann equation becomes equivalent to
the solution of a coupled set of differential equations (this is also valid when the
DVM is applied to model Boltzmann equations described before). The work
of Broadwell served as basis for the development of successive variants of his
DVM. Examples are the method of Varghese and coworkers (1994; 2011; 2012)
and the Discrete-Ordinate-Method (DOM) of Tcheremissine (1998; 2001). Both
methods were originally developed for a mono-component gas without internal
energy and have been successfully extended to treat multi-component gases
with internal energy (Tcheremissine 2006; Clarke et al. 2012; Josyula et al.
2011). In the method of Varghese, the internal energy is treated classically,
while in the DOM of Tcheremissine a semi-classical approach is employed. The
DOM has been also applied to compute multi-dimensional rarefied flows (Chen
et al. 2007; Kolobov et al. 2007). In the aforementioned DVMs, the colli-
sion operator is evaluated numerically with the aid of stochastic techniques for
multi-dimensional integrals. Hence, these methods are not fully deterministic
in a strict sense. Other examples of DVMs can be found in the book of Aristov
(2001).
The numerical methods described before have been mainly developed by engi-
neers within the aerospace community. The applied mathematics community
has also given its contribution. In this case, research efforts have been fo-
cused more on the properties of the numerical schemes such as conservation,
positivity, order of accuracy and error estimates. The physical model usually
consists of a mono-component gas without internal energy. In order to make
the analysis more tractable and amenable to formal manipulations, the hard-
sphere or Maxwell cross-section models are usually employed (Cercignani 2000).
The available scientific literature in this field is, as it is for DVMs, quite vast.
Among all the proposed methods, it is worth to cite the family of numerical
kernel methods developed by Sone, Ohwada and Aoki (1989; 1993; 2001), the
spectral methods proposed by Bobylev, Ryasanow and Gamba (1975; 1988;
1999; 2009; 2010; 2012a; 2012b) and those developed by Pareschi, Russo and
Filbet (2000; 2003; 2011).
Since the present thesis focuses on spectral methods for rarefied flows, it is
worth to give a deeper and historical review of them. Deterministic spectral
methods for the Boltzmann equation grew from the work of Bobylev (1975;
1988). In his work, Bobylev showed that the Fourier transformed Boltzmann
equation takes a closed form in the case of Maxwell molecules and integrable
angular cross-section. Numerical approximations using this type of approach
were first proposed by Pareschi and Perthame (1996). Using this representa-
tion, Bobylev and Rjasanow developed methods using the Fourier transform
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in the case of Maxwell molecules (1997) and hard-spheres (1999) to derive a
weighted convolution structure for the collision operator which was approxi-
mated by a numerical quadrature. Later, Pareschi and Russo (2000) applied
this Fourier transformed framework to develop methods for Maxwell molecules,
hard-spheres and variable hard-spheres cases using a collocation method, which
uses orthogonal polynomials to reduce the weighted convolution integral to a
convolution sum of the collocation coefficients. In the case of hard-spheres in
three dimensions, it was shown that the computation of the collision operator
can be reduced to O(N3 logN) operations, whereN is the number of grid points
in one dimension of the velocity space. However, the above techniques could not
be easily extended to arbitrary cross-section models (Bobylev and Ryasanow
1999; Filbet and Russo 2003) and did not allow for the exact conservation of
mass, momentum and energy during collisions (Filbet and Russo 2003). In
order to meet the conservation requirement, Gamba and Tharkabhushanam
(2009; 2010) have proposed a spectral-Lagrangian method which exploits, in
analogy with those mentioned before, the weighted convolution structure of the
Fourier transform Boltzmann equation. The conservation of mass, momentum
and energy during collisions is achieved through the solution of a constrained
optimization problem. Convergence studies for this method and numerical ex-
amples have been shown by Gamba and Tharkabhushanam (2009; 2010) and
analysis has been performed by Alonso et al. (2013) in order to show that
the conservation constraints do not affect the spectral accuracy of the method.
In the work by Haack and Gamba (2012a) the spectral-Lagrangian method
has been further generalized to the more realistic case of angularly dependent
cross-sections. None of the above spectral methods has been so far extended
to the case of multi-component gases with discrete internal energy levels. This
extension is needed if one wishes to study internal energy excitation and relax-
ation behind a shock wave or the flow across a hypersonic boundary layer. In
this situation, conservation becomes a more pressing concern, especially when
taking into account inelastic collisions leading to a net energy transfer between
the translational and the internal degrees of freedom of the gas.
For flows in the transition regime, a possible alternative to deterministic Boltz-
mann solvers is represented by Moment Methods (Struchtrup 2005). Examples
are the regularized 13-moment (R13) method developed by Struchtrup and Tor-
rilhon (2003; 2004), which is based on the 13 moment method of Grad (1949),
or the Gaussian moment closure method developed by Levermore and Morokoff
(1998). In Moment Methods, the set of moment equations can be usually cast
into systems of hyperbolic conservation laws for which robust and efficient nu-
merical methods have been developed (Leveque 2002). This fact explains also
why moment methods are computationally cheaper than deterministic Boltz-
mann solvers. The current formulation of most Moment Methods (such as the
Gaussian moment closure of Levermore) refer to the case of a mono-component
gas without internal energy. Extensions to multi-component gases, though pos-
sible (Martins et al. 2011; Kapper et al. 2011), are not trivial. Moreover, for
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some flow conditions, the system of moment equations may lose hyperbolicity
(Struchtrup and Torrilhon 2003; Kapper et al. 2011), thus making the devel-
opment of numerical schemes and the related implementation more difficult.

Manuscript Structure

The manuscript is structured as follows. Part I deals with the physico-chemical
modeling of non-equilibrium flows. Chapter 1 describes the kinetic approach
which is based on Boltzmann equation of the Kinetic Theory of Gases. In ch. 2
it is shown how to obtain a hydrodynamic description based on the applica-
tion of the Chapman-Enskog method to the Boltzmann equation. The general
notation introduced in chs. 1-2 refers to multi-component gases with discrete
internal energy levels and is used consistently throughout the whole manuscript.
Chapter 3 describes the NASA quantum chemistry database for internal energy
excitation and dissociation and the reduced models that have been developed
based on that.
Part II deals with the integration of the developed reduced models in hydrody-
namic flow solvers. In ch. 4, an Ordinary-Differential-Equation solver developed
by the author is used for the investigation of inviscid flows behind normal shock
waves. Chapter 5 deals with the application of CFD solvers developed by the
author for computing inviscid flows within converging-diverging nozzles, viscous
stagnation-line flows and inviscid axisymmetric flows.
Part III deals with the development of computational methods for rarefied
flows. Chapter 6 describes the proposed extension of an existing spectral-
Lagrangian method for the Boltzmann equation to multi-component gases and
inelastic collisions. Applications of the numerical method (implemented in a
parallel computational tool developed by the author) are shown in ch. 7, where
results are compared with those obtained by means of the DSMC method and
experimental measurements.
Conclusions and perspectives are given at the end of the manuscript. In or-
der to make the manuscript easier to read, the details of some mathematical
developments have been placed in apps. A-K.
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Chapter 1

Kinetic Approach

This chapter describes the kinetic approach for multi-component dilute gases
based on the Boltzmann equation. The Boltzmann equation is the fundamental
equation of the Kinetic Theory of Gases and aims at providing a statistical
description of dilute gaseous systems. This is motivated by the fact that, in
many situations, one is more interested in molecular-averaged quantities than
a detailed representation of the state of the gas at the molecular level.
The present chapter is structured as follows. Section 1.1 introduces the model
assumptions and the definition of the one-particle velocity distribution func-
tion. The Boltzmann equation is introduced and described in detail in sec. 1.2.
The equilibrium solution of the Boltzmann equation (Maxwell-Boltzmann ve-
locity distribution function) and the related gas thermodynamic properties are
discussed in sec. 1.3. Section 1.4 introduces molecular-averaged quantities of
interest outside of equilibrium conditions. Section 1.5 describes the procedure
for obtaining the Maxwell transfer equations. These equations are then used in
sec. 1.6 for obtaining the conservation equations of gasdynamics.

1.1 Assumptions

The gas is made of atoms and molecules. The presence of charged particles
(such as ions and electrons) is not accounted for. Based on a quasi-classical
approach, it is assumed that the chemical components may have only certain
discrete internal energy levels. For atoms, the internal energy levels correspond
to the electronic levels. In the case of molecules, they also account for the
presence of rovibrational levels, due to the relative motion of the particle nuclei.
The chemical components are stored in the set S. The subsets Sa and Sm
store the atomic and molecular components, respectively (where S = Sa ∪Sm).
The chemical elements are stored in the set Se. The number of atoms of the
chemical element l contained within the chemical component s is given by the
entry νls of the stoichiometric matrix ν. The internal energy level i of a chemical
component s is indicated with the notation si. Its degeneracy and internal
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energy (including the formation energy) are indicated with the symbols asi and
Esi , respectively. The internal energy levels of a chemical component s are
sorted by increasing energy and stored in the set Is. The symbols ms and ml

e

are used for the masses of the chemical component s and the chemical element
l, respectively. The related molar masses are Ms = NAms and M l

e = NAm
l
e,

respectively (where NA is Avogadro’s number).
The following assumptions are introduced for the physical model:
1. The gas is dilute and composed of point particles.
2. There are no external forces.
3. The Boltzmann-Grad limit holds.
4. Ionization phenomena are neglected.
5. The interactions between particles are only collisional and comprise:

• Elastic collisions:

si + pj −→←− si + pj , s, p ∈ S, i ∈ Is, j ∈ Ip, (1.1)

• Non reactive inelastic collisions:

si + pj −→←− sk + pl, (pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is, (1.2)

where the inelastic collision set Cinsi for si is defined as Cinsi = {(pj , sk, pl) |
p ∈ S, i 6= k ∨ j 6= l, k ∈ Is, j, l ∈ Ip}. Examples of non reactive
inelastic collisions are:

N2(i)+N(j) −→←− N2(k)+N(l), N2(i)+N2(j) −→←− N2(k)+N2(l),

• Exchange chemical reactions:

si + pj −→←− qk + rl, (pj , qk, rl) ∈ Cexcsi , s ∈ S, i ∈ Is, (1.3)

where the exchange reaction set Cexcsi for si is defined as Cexcsi = {(pj , qk, rl) |
s 6= q ∧ p 6= r, p, q, r ∈ S, j ∈ Ip, k ∈ Iq, l ∈ Ir}.
Examples of exchange chemical reactions are:

N2(i)+O(j) −→←− NO(k)+N(l), O2(i)+N(j) −→←− NO(k)+O(l),

• Three-body dissociation/recombination reactions:

si + pj −→←− qk + rl + zh, (pj , qk, rl, zh) ∈ Cdissi , (1.4)

s ∈ S, i ∈ Is,

where Cdissi is the set of three-body dissociation/recombination reactions
where si is the first reactant. A rigorous definition of the set Cdissi would
be rather complicated and, since it is not used in what follows, it is not
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provided. Notice that for eq. (1.4) to be a dissociation/recombination
reaction, at least one of the chemical components among s and p must be
a molecule. Examples of three-body dissociation recombination reactions
are:

N2(i) + N(j) −→←− N(k) + N(l) + N(h),

N2(i) + N2(j) −→←− N(k) + N(l) + N2(h).

Based on the previous assumptions, it is possible to introduce a one-particle
velocity distribution function fsi = fsi(x, csi , t). The velocity distribution func-
tion plays the role of a phase-space density and can be given the following
interpretation:

fsi(x, csi , t) dx dcsi = expectation value of the number of particles of the

chemical component s occupying the internal energy

level i contained within the volume dx dcsi around

the point (x, csi) of the phase-space at time t.

1.2 The Boltzmann Equation

The evolution in the phase-space of the velocity distribution function is de-
scribed by the Boltzmann equation (Ferziger and Kaper 1972; Giovangigli 1999;
Nagnibeda and Kustova 2009):

Dsifsi = Qel
si +Qin

si +Qre
si , s ∈ S, i ∈ Is, (1.5)

where the streaming operator Dsi( ) is defined as Dsi( ) = ∂( )/∂t+ csi · ∇x( )
in absence of external forces. The streaming operator represents a material
derivative in the phase-space and describes the effects of particle motion in
absence of collisions. The right-hand-side of the Boltzmann equation is given
by the sum of the elastic, inelastic and reactive collision operators (Qel

si , Q
in
si

and Qre
si , respectively) that account for the effects of the collisional processes

listed in sec. 1.1.

1.2.1 The Elastic Collision Operator

The elastic collision operator Qel
si = Qel

si(x, csi , t) accounts for the effects of
elastic collisions (1.1) and reads:

Q el
si =

∑

p∈S
j ∈Ip

Qsipj , s ∈ S, i ∈ Is, (1.6)
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where the partial elastic collision operator Qsipj = Qsipj (x, csi , t) is:

Qsipj =

∫∫

S 2×ℜ3

(

f ′sif
′
pj − fsifpj

)

σsipj g dω
′dcpj , (1.7)

s, p ∈ S, i ∈ Is, j ∈ Ip,

where cpj is the velocity of pj , g = |csi − cpj | is the relative velocity mag-
nitude between the colliding particles, ω′ = |c′si − c′pj |/|csi − cpj | is the unit
vector along the scattering direction and σsipj is the differential cross-section
for elastic scattering. In eq. (1.7), and in what follows, primed variables refer
to post-collisional values. These are related to pre-collisional values through
conservation of mass, momentum and energy. The differential cross-section
σsipj = σsipj (g,ω

′) is related to that for the inverse process σsjpj (g
′,ω) through

the following micro-reversibility relation that can be obtained from Fermi’s
golden rule (Dellacherie 2003; Nagnibeda and Kustova 2009):

σsipj (g,ω
′) g dω′dcsidcpj = σsjpj (g

′,ω) g′dω dc′sidc
′
pj , (1.8)

s, p ∈ S, i ∈ Is, j ∈ Ip.

A relation (not involving differentials) between the direct and inverse process
cross-sections can be obtained as follows. The velocity differential products
dcsidcpj and dc′sidc

′
pj can be written as dG g2dg dω and dG g′ 2dg′dω′, respec-

tively (where G is the center of mass velocity; Ferziger and Kaper 1972; Mitch-
ner and Kruger 1973). The substitution of the previous relations and the use
of g = g′ (valid for an elastic collision) in eq. (1.8), leads to:

σsipj (g,ω
′) = σsipj (g

′,ω), s, p ∈ S, i ∈ Is, j ∈ Ip. (1.9)

1.2.2 The Inelastic Collision Operator

The inelastic collision operator Qin
si = Qin

si(x, csi , t) accounts for the effects of
non reactive inelastic collisions (1.2) and reads:

Qin
si =

∑

(pj ,sk,pl)

∈Cin
si

Qskpl
sipj , s ∈ S, i ∈ Is, (1.10)

where the partial inelastic collision operator Qskpl
sipj = Qskpl

sipj (x, csi , t) is:

Qskpl
sipj =

∫∫

S 2×ℜ3

[(

βskβpl
βsiβpj

)

f ′skf
′
pl
− fsifpj

]

σskplsipj g dω
′dcpj , (1.11)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

Quantity βsi is defined as βsi = h3p/(asim
3
s), where hp is Planck’s constant. The

differential cross-section σskplsipj = σskplsipj (g,ω
′) is related to that for the inverse
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process σ
sipj
skpl(g

′,ω) through following micro-reversibility relation that can be
obtained (as for the elastic case in sec. 1.2.1) from Fermi’s golden rule:

βskβplσ
skpl
sipj (g,ω

′)g dω′dcsidcpj = βsiβpjσ
sipj
skpl(g

′,ω)g′dω dc′skdc
′
pl
, (1.12)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

Equation (1.12) can be manipulated to obtain a relation (not involving differ-
entials) between the direct and inverse process cross-sections. It can be shown
that, also for the case of a non reactive inelastic collision, the velocity differen-
tial products dcsidcpj and dc′pkdc

′
pl

in eq. (1.12) can be written as dG g2dg dω
and dG g′ 2dg′dω′, respectively (Mitchner and Kruger 1973). The substitution
of the previous relations and the use of g dg = g′dg′ (valid for a generic binary
collision) in eq. (1.12), leads to:

σ
sipj
skpl(g

′,ω) = σskplsipj (g,ω
′)

(

βskβpl
βsiβpj

)/(

1− 2∆Eskpl
sipj

g2µsp

)

, (1.13)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is,

where the reduced mass of the chemical components s and p is µsp = msmp/(ms+
mp) and the global internal energy jump ∆Eskpl

sipj is defined as ∆Eskpl
sipj = (Esk +

Epl)−(Esi+Epj ). In obtaining eq. (1.13), the relation g′ 2 = g2(1−2∆Eskpl
sipj /g

2µsp),
which can be obtained from the collision dynamics, has been exploited (Mitch-
ner and Kruger 1973).

1.2.3 The Reactive Collision Operator

The reactive collision operator accounts for the effects of exchange reactions
(1.3) and three body dissociation/recombination reactions (1.4) and reads:

Qre
si = Qexc

si +Qdis
si , s ∈ S, i ∈ Is, (1.14)

where the exchange collision operator Qexc
si = Qexc

si (x, csi , t) accounts for the ef-
fects of exchange reactions, the dissociation collision operator Qdis

si = Qdis
si (x, csi , t)

accounts for the effects of three body dissociation/recombination reactions. The
exchange collision operator is:

Qexc
si =

∑

(pj ,qk,rl)
∈Cexc

si

Qqkrl
sipj , s ∈ S, i ∈ Is, (1.15)

where the partial exchange collision operator Qqkrl
sipj = Qqkrl

sipj (x, csi , t) is:

Qqkrl
sipj =

∫∫

S 2×ℜ3

[(

βqkβrl
βsiβpj

)

f ′qkf
′
rl
− fsifpj

]

σqkrlsipj g dω
′dcpj , (1.16)

(pj , qk, rl) ∈ Cexcsi , s ∈ S, i ∈ Is.
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The differential cross section σqkrlsipj = σqkrlsipj (g,ω
′) is related to that for the inverse

process σ
sipj
qkrl = σ

sipj
qkrl (g

′,ω) through the following micro-reversibility relation
that can be obtained (as for the elastic and inelastic cases in secs. 1.2.1-1.2.2)
from Fermi’s golden rule:

βqkβrlσ
qkrl
sipj (g,ω

′)g dω′dcsidcpj = βsiβpjσ
sipj
qkrl (g

′,ω)g′dω dc′qkdc
′
rl
, (1.17)

(pj , qk, rl) ∈ Cexcsi , s ∈ S, i ∈ Is.

The application of the same procedure used in sec. 1.2.2, allows for writing
a relation (not involving differentials) between the direct and inverse process
cross-sections:

σ
sipj
qkpl(g

′,ω) = σqkrlsipj (g,ω
′)

(

βqkβrl
βsiβpj

)/(

µsp
µqr
− 2∆Eqkrl

sipj

g2µqr

)

, (1.18)

(pj , qk, rl) ∈ Cexcsi , s ∈ S, i ∈ Is.

The dissociation collision operators is:

Qdis
si =

∑

(pj ,qk,rl
zh)∈Cdis

si

Qqkrkzh
sipj , s ∈ S, i ∈ Is, (1.19)

where Qqkrkzh
sipj = Qqkrkzh

sipj (x, csi , t) is the partial dissociation collision operator.
The general expression for the partial dissociation collision operator is rather
complicated and can be found in the book of Giovangigli (1999). Some examples
are given here for dissociation/recombination reactions involving only diatomic
molecules (Luwdig and Heil 1960; Kuščer 1991; Alexeeev et al. 1994).
For a dissociation/recombination reaction si + pj = qk + rl + ph (where the
chemical component s is a diatomic molecule, q and r are its constitutive atoms,
and s 6= p), the partial dissociation collision operator for si is:

Qqkrlph
sipj =

∫∫∫∫

ℜ3×ℜ3×
ℜ3×ℜ3

[(

βqkβrlβph
βsiβpj

)

f ′qrf
′
rl
f ′ph − fsifpj

]

W qkrlph
sipj dcpjdc

′
qk
×

dc′rldc
′
ph
, (pj , qk, rl, ph) ∈ Cdissi , s ∈ S, i ∈ Is. (1.20)

Quantity W qkrlph
sipj is the dissociation probability (Giovangigli 1999) and is re-

lated to the dissociation cross-section by the relation g σqkrlphsipj (g,ω′) dω′ =
W qkrlph

sipj dc′qkdc
′
rl
dc′ph . The dissociation probability W qkrlph

sipj is related to the
recombination probability W

sipj
qkrlph through the following micro-reversibility re-

lation (Giovangigli 1999):

W qkrlph
sipj βqkβrlβph =W

sipj
qkrlphβsiβpj , (1.21)

(pj , qk, rl, ph) ∈ Cdissi , s ∈ S, i ∈ Is.
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For the situation s = p, eq. (1.20) can be used except when i = j = h. In this
case, eq. (1.20) must be replaced with (Giovangigli 1999):

Qqkrlsi
sisi = 2

∫∫∫∫

ℜ3×ℜ3×
ℜ3×ℜ3

[(

βqkβrl
βsi

)

f ′qrf
′
rl
f∗′si − fsif∗si

]

W qkrlsi
sisi dc∗sidc

′
qk
dc′rldc

∗′
si−

∫∫∫∫

ℜ3×ℜ3×
ℜ3×ℜ3

[(

βqkβrl
βsi

)

f ′qrf
′
rl
fsi − f∗sif∗∗si

]

W qkrlsi
sisi dc∗sidc

∗∗
si dc

′
qk
dc′rl ,

(si, qk, rl, si) ∈ Cdissi , s ∈ S, i ∈ Is, (1.22)

where the superscripts ∗ and ∗∗ are used to distinguish between the different
velocity classes of si. The first term on the right-hand-side of eq. (1.22) accounts
for the dissociation of molecules belonging to the velocity class csi . The second
term accounts for the fact that molecules belonging to the same velocity class
may be created as a result of the collision.

1.2.4 Collisional Invariants

During an elastic collision, the number of particles in each internal energy
level, the total momentum and the total energy are conserved. This leads to
the introduction of the elastic collisional invariants (Giovangigli 1999):



















ψ
el pj
si

ψelNs+1
si

ψelNs+2
si

ψelNs+3
si

ψelNs+4
si



















=







ms δsp δij
mscsi

1

2
msc

2
si + Esi






, s, p ∈ S, i ∈ Is, j ∈ Ip, (1.23)

where the number of species is defined as Ns =
∑

s∈S #(Is). The symbol δ
stands for Kronecker’s delta. Quantity c2si = csi · csi is the magnitude-squared
of the vector csi . After introducing the set of indices for the elastic collisional
invariants, Iel = {si,Ns + 1, . . . ,Ns + 4 | s ∈ S, i ∈ Is}, it is possible to write
the relation ψel ν

si + ψel ν
pj = ψel ν ′

si + ψel ν ′
pj in order to express the conservation of

the number of particles in each internal energy level, total momentum and total
energy for the elastic collision si+pj = si+pj . The kernel of the elastic collision
operator Qel

si is spanned by the elastic collisional invariants (Giovangigli 1999):

∑

s∈S
i∈Is

∫

ℜ3

ψel ν
si Q

el
sidcsi = 0, ν ∈ I el. (1.24)

For a non reactive inelastic collision, due to the transitions among the internal
energy levels, the number of particles in each internal energy level is no longer
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conserved. In this situation, the number particles for each chemical component
is conserved, together with the total momentum and total energy. This leads
to the introduction of the inelastic collisional invariants (Giovangigli 1999):














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ψin p
si

ψinNc+1
si

ψinNc+2
si

ψinNc+3
si

ψinNc+4
si

















=







ms δsp
mscsi

1

2
msc

2
si + Esi






, s, p ∈ S, i ∈ Is, (1.25)

where the number of chemical components is defined as Nc = #(S). A
set of indices can be also introduced for the inelastic collisional invariants,
I in = {s,Nc + 1, . . . ,Nc + 4 | s ∈ S}. Based on that and on eq. (1.25), it is
possible to write the relation ψin ν

si +ψin ν
pj = ψin ν ′

sk
+ψin ν ′

pl
in order to express the

conservation of the number of particles for each chemical component, total mo-
mentum and total energy for the non reactive inelastic collision si+pj = sk+pl.
The kernel of the inelastic collision operator Qin

si is spanned by the inelastic col-
lisional invariants (Giovangigli 1999):

∑

s∈S
i∈Is

∫

ℜ3

ψin ν
si Qin

sidcsi = 0, ν ∈ I in. (1.26)

When the collision is reactive, the number of particles for each chemical element
is conserved, together with the total momentum and the total energy. This leads
to the introduction of the reactive collisional invariants (Giovangigli 1999):
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si
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si

















=







νlsm
l
e

mscsi
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2
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2
si + Esi






, l ∈ Se, s ∈ S, i ∈ Is, (1.27)

where the number of chemical elements is defined as Ne = #(Se). A set of
indices can be also introduced for the reactive collisional invariants, I re =
{l,Ne + 1, . . . ,Ne + 4 | l ∈ Se}. Based on that and on eq. (1.27), it is possible
to write the relations ψre ν

si + ψre ν
pj = ψre ν ′

pk
+ ψre ν ′

rl
and ψre ν

si + ψre ν
pj = ψre ν ′

qk
+

ψre ν ′
rl

+ ψre ν ′
zh

in order to express the conservation of the number of particles
for each chemical element, total momentum and total energy for the exchange
reaction si+pj = qk+rl and the three-body dissociation/recombination reaction
si+ pj = qk + rl + zh, respectively. The kernel of the reactive collision operator
Qre

si is spanned by the reactive collisional invariants (Giovangigli 1999):

∑

s∈S
i∈Is

∫

ℜ3

ψre ν
si Qre

sidcsi = 0, ν ∈ I re. (1.28)
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1.2.5 Conserved Macroscopic Properties

The collisional invariants introduced in sec. 1.2.4, allow for the introduction of
the following macroscopic properties as average molecular quantities:

ρsi =
∑

p∈S
j ∈Ip

∫

ℜ3

ψel si
pj fpjdcpj , s ∈ S, i ∈ Is, (1.29)

ρs =
∑

p∈S
j ∈Ip

∫

ℜ3

ψin s
pj fpjdcpj , s ∈ S, (1.30)

ρle =
∑

s∈S
i∈Is

∫

ℜ3

ψre l
si fsidcsi , l ∈ Se, (1.31)

ρv =
∑

s∈S
i∈Is

∫

ℜ3





ψreNe+1
si
ψreNe+2
si
ψreNe+3
si



 fsidcsi , (1.32)

ρE =
∑

s∈S
i∈Is

∫

ℜ3

ψreNe+4
si fsidcsi , (1.33)

where the densities of the energy level si, the chemical component s and the
chemical element l are ρsi = msnsi , ρs = msns and ρle = ml

en
l
e, respectively

(where nsi , ns and nle are the related number densities). The gas density is
ρ =

∑

l∈Se
ρle, or alternatively, ρ =

∑

s∈S ρs with ρs =
∑

i∈Is
ρsi . Quantity v

is the (hydrodynamic) velocity vector, whose Cartesian components along the
x, y an z axes are indicated with u, v and w, respectively. Quantity ρE is the
gas total energy density and is the sum of the translational, internal and kinetic
energy density contributions, ρE = ρetra+ρeint+ρekin. The gas kinetic energy
density is ρekin = (1/2)ρv · v. The sum of the gas translational and internal
energy densities gives the gas thermal energy density, ρe = ρetra + ρeint. The
macroscopic properties defined in eqs. (1.29)-(1.33) are the quantities that are
conserved in a flow in view of the properties satisfied by the elastic, inelastic
and reactive collision operators as stated in eqs. (1.24), (1.26) and (1.28).

1.3 Equilibrium Solution

1.3.1 The Maxwell-Boltzmann Distribution Function

Under equilibrium conditions, the use of Boltzmann’s H-theorem allows to show
that the solution of the Boltzmann equation is given by the Maxwell-Boltzmann
velocity distribution function (Ferziger and Kaper 1972; Giovangigli 1999):

f eqsi =
1

βsi

neqs
Ztra
s (T eq)Z int

s (T eq)
exp

(

−ms|csi − v|2
2kbT eq

− Esi

kbT eq

)

, (1.34)

s ∈ S, i ∈ Is,
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where the superscript eq stands for equilibrium and kb is Boltzmann’s constant.
Quantity T eq is the gas (equilibrium) temperature and quantity neqs is the
(equilibrium) number density of the chemical component s, which is equal to
∑

i∈Is
neqsi . The (equilibrium) translational and internal partition function of

the chemical component s are:

Ztra
s (T eq) =

(

2πmskbT
eq

h2p

)3/2

, Z int
s (T eq) =

∑

i∈Is

asi exp

(

− Esi

kbT eq

)

,(1.35)

s ∈ S.
The integration of eq. (1.34) over the velocity space leads to the Boltzmann
distribution law:

neqsi
neqs

=
asi

Z int
s (T eq)

exp

(

− Esi

kbT eq

)

, s ∈ S, i ∈ Is. (1.36)

Equation (1.36) allows for computing the internal energy level population of
each chemical component in equilibrium conditions. The chemical component
(equilibrium) number densities are related to the (equilibrium) pressure and
temperature through Dalton’s law of partial pressures, peq =

∑

s∈S n
eq
s kbT

eq,
and their values can be determined (for given pressure, temperature and ele-
mental fractions) by solving a system of non linear algebraic equations. This
system is obtained by writing down the expressions for the equilibrium con-
stants of a set of linearly independent chemical reactions and the equations
expressing the conservation of the mass of each chemical element (the details
of the procedure can be found in the books of Anderson 1989 and Vincenti and
Kruger 1965).
In alternative to the use of number densities (as done in eq. (1.36)), the gas
chemical composition can be specified in terms of mole and mass fractions
(indicated with the symbols X and y, respectively):

Xeq
si =

neqsi
neq , yeq

si =
ρeq
si

ρeq , s ∈ S, i ∈ Is, (1.37)

where the gas (equilibrium) number density and density are neq =
∑

s∈S n
eq
s

and ρeq =
∑

s∈S ρ
eq
s , respectively. By definition, mole and mass fractions

satisfy the following constraints:
∑

s∈S
i∈Is

Xeq
si = 1,

∑

s∈S
i∈Is

yeq
si = 1, (1.38)

and are related by the following relation:

Xeq
si = yeq

si

M eq

Ms
, s ∈ S, i ∈ Is, (1.39)

where the (equilibrium) gas molar mass is M eq =
∑

s∈S X
eq
s Ms. It is im-

portant to mention that the definitions for mole and mass fractions given in
eq. (1.37) can be also used outside of equilibrium conditions.
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1.3.2 Thermodynamic Properties

When the velocity distribution function is Maxwell-Boltzmann, the gas trans-
lational and internal energy densities assume the following expressions:

ρetra eq =
∑

s∈S

neqs kbT
eq 2∂ lnZ

tra
s (T eq)

∂T eq
, (1.40)

ρeint eq =
∑

s∈S

neqs kbT
eq 2∂ lnZ

int
s (T eq)

∂T eq
. (1.41)

The gas (equilibrium) enthalpy density is obtained by adding the pressure to
the (equilibrium) thermal energy density, ρheq = ρeeq + peq (where ρeeq =
ρetra eq + ρetra eq).
The gas translational and internal energy densities provided in eqs. (1.40)-
(1.41) can be also written as ρetra eq =

∑

s∈Is
ρeqs etra eqs (T eq) and ρeint eq =

∑

s∈Is
ρeqs eint eqs (T eq), respectively, where the specific translational and internal

energies of the chemical component s are:

etra eqs (T eq) =
kbT

eq 2

ms

∂ lnZtra
s (T eq)

∂T eq
, (1.42)

eint eqs (T eq) =
kbT

eq 2

ms

∂ lnZ int
s (T eq)

∂T eq
, (1.43)

s ∈ S.

The sum of eqs. (1.42)-(1.43) gives the (equilibrium) specific thermal energy of
the chemical components s:

eeqs (T eq) = etra eqs (T eq) + eint eqs (T eq), s ∈ S, (1.44)

and its specific enthalpy is obtained as heqs (T eq) = eeqs (T eq)+kbT
eq/ms. Based

on the previous definitions, the gas (equilibrium) enthalpy density can be also
written as ρheq =

∑

s∈S ρ
eq
s heqs (T eq).

The constant volume and pressure (equilibrium) specific heats of the chemical
component s can be computed by differentiating (with respect to the equilib-
rium temperature) the expressions for its specific energy and enthalpy, respec-
tively:

ceqv s(T
eq) =

deeqs (T eq)

dT eq
, ceqp s(T

eq) = ceqv s(T
eq) +

kb
ms

, (1.45)

ctra eqv s (T eq) =
detra eqs (T eq)

dT eq
, ctra eqp s (T eq) = ctra eqv s (T eq) +

kb
ms

, (1.46)

cint eqv s (T eq) =
deint eqs (T eq)

dT eq
, cint eqp s (T eq) = cint eqv s (T eq), (1.47)

s ∈ S,

where the translational and internal components satisfy the obvious relations
ceqv s(T eq) = ctra eqv s (T eq) + cint eqv s (Teq) and ceqp s(T eq) = ctra eqp s (T eq) + cint eqp s (T eq).
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1.4 Non-Equilibrium Solution

Outside of equilibrium conditions, the solution of the Boltzmann equation
(1.5) is no longer given by the Maxwell-Boltzmann velocity distribution func-
tion. The thermodynamic properties introduced in equilibrium conditions in
sec. 1.3.2 can be generalized, as it is shown in ch. 2. Moreover, additional
macroscopic moments can be introduced. These moments (which can be also
computed in equilibrium conditions) are:
• Diffusion velocities:

vd
si =

ms

ρsi

∫

ℜ3

Csifsidcsi , s ∈ S, i ∈ Is, (1.48)

where the peculiar velocity is Csi = csi − v.
• Translational temperature components:

Tsi α =
ms

nsikb

∫

ℜ3

C2
si αfsidcsi , α ∈ {x, y, z} , s ∈ S, i ∈ Is, (1.49)

• Translational temperatures:

Tsi =
Tsi x + Tsi y + Tsi z

3
, s ∈ S, i ∈ Is, (1.50)

• Translational temperature components (gas):

Tα =
1

n

∑

s∈S
i∈Is

nsiTsi α, α ∈ {x, y, z} , (1.51)

• Translational temperature (gas):

T =
Tx + Ty + Tz

3
, (1.52)

• Viscous stress tensor:

τ = −
∑

s∈S
i∈Is

∫

ℜ3

msCsi ⊗Csifsidcsi + p I, (1.53)

where the symbols ⊗ and I stand for the tensor product and the second-
order identity tensor, respectively. The gas pressure is always computed
based on Dalton’s law of partial pressures, p =

∑

s∈S nskbT .
• Heat flux vector:

q =
∑

s∈S
i∈Is

∫

ℜ3

(

1

2
msC

2
si + Esi

)

Csifsidcsi . (1.54)

Notice that when the velocity distribution function is Maxwell-Boltzmann, the
equilibrium properties defined in sec. 1.3 are retrieved by means of eqs. (1.48)-
(1.54). In this situation, the diffusion velocities, the stress tensor and heat flux
vector are identically zero.
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1.5 Maxwell Transfer Equations

The Boltzmann equation (1.5) can be used for obtaining equations describing
the evolution of average molecular quantities (Maxwell transfer equations). The
procedure consists in taking moments of the Boltzmann equation and goes as
follows. Given a molecular quantity ϕsi = ϕsi(csi), one can define the gas
molecular average quantity ϕ = ϕ(x, t) as:

ϕ =
∑

s∈S
i∈Is

∫

ℜ3

fsiϕsidcsi , s ∈ S, i ∈ Is. (1.55)

The equation describing the evolution of the property ϕ can be obtained by
multiplying both sides the Boltzmann equation (1.5) by ϕsi , integrating over
the velocity space, and then summing over all the energy levels of each chemical
component:

∑

s∈S
i∈Is

∫

ℜ3

Dsifsiϕsidcsi =
∑

s∈S
i∈Is

∫

ℜ3

(

Qel
si +Qin

si +Qre
si

)

ϕsidcsi . (1.56)

The integral on the left-hand-side of eq. (1.56) can be manipulated to give:

∂ϕ

∂t
+∇x ·ϕv+∇x ·

∑

s∈S
i∈Is

∫

ℜ3

Csifsiϕsidcsi =
∑

s∈S
i∈Is

∫

ℜ3

(

Qel
si +Qin

si +Qre
si

)

ϕsidcsi .

(1.57)

The left-hand-side of eq. (1.57) is made of three terms. The first represents
the changes of ϕ due to local effects. The second (convective flux) is due to
the advection of ϕ with the mean flow at the velocity v. The third (transport
or diffusive flux) represents the transport of the molecular quantity ϕsi with
respect to the mean flow. The right-hand-side of eq. (1.57) is the volumetric
production rate of ϕ due to collisions.
The use of the elastic collisional invariants (1.23) as molecular quantity ϕsi

in eq. (1.57), leads to the mass conservation equation for all internal energy
levels of each chemical component, and the conservation equations for global
momentum and energy:

∂ρsi
∂t

+∇x ·
(

ρsiv + ρsiv
d
si

)

= ωsi , s ∈ S, i ∈ Is, (1.58)

∂ρv

∂t
+∇x · (ρv ⊗ v + p I− τ ) = 03, (1.59)

∂ρE

∂t
+∇x · (ρvH − τv + q) = 0, (1.60)

where the gas total enthalpy density is ρH = ρE + p. Due to conservation of
global momentum and energy, the right-hand-side of eqs. (1.59)-(1.60) is zero
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(this can also be shown mathematically by using the collisional invariants). On
the other hand, the mass production terms ωsi are not zero, in the most general
situation, and read:

ωsi = ms

∫

ℜ3

(

Qin
si +Qre

si

)

dcsi , s ∈ S, i ∈ Is. (1.61)

Only the inelastic and reactive collisions contribute to the mass production
terms ωsi . This directly follows from the properties satisfied by the elastic
collisional invariants as stated in eq. (1.24). The mass production terms and
the diffusion fluxes sum up to zero:

∑

s∈S
i∈Is

ωsi = 0,
∑

s∈S
i∈Is

ρsiv
d
si = 03. (1.62)

The first equality in eq. (1.62) follows from the properties of the inelastic and
reactive collisional invariants (eqs. (1.26) and (1.28), respectively). The second
equality comes directly from the definition of the diffusion velocities given in
eq. (1.48). Both results given in eq. (1.62) are a consequence of the law of mass
conservation.
The hydrodynamic equations (1.58)-(1.60) represent the conservation equation
of gasdynamics. Notice that a mass conservation equation is written for all the
internal energy levels of each chemical component of the gas. In this way, the
internal energy levels are treated as if they were separate pseudo-species. This
approach is referred to as state-to-state approach (Capitelli et al. 2000; Nag-
nibeda and Kustova 2009). For this reason, in what follows the word species is
used when referring to the internal energy levels of a given chemical component.
When the molecular quantity ϕsi in eq. (1.57) is set equal to the first Ne

components of the reactive collisional invariants (1.27), one obtains the element
mass conservation (or continuity) equations:

∂ρle
∂t

+∇x ·
(

ρlev + ρlev
d l
e

)

= 0, l ∈ Se, (1.63)

where the diffusion velocity of the chemical element l is:

vd l
e =

ml
e

ρle

∑

s∈S
i∈Is

∫

ℜ3

νlsCsifsidcsi , l ∈ Se. (1.64)

The right-hand-side of eq. (1.27) is zero in view of the properties satisfied by
the reactive collisional invariants as stated in eq. (1.28). The sum of eq. (1.63)
over all the chemical elements gives the global mass (or continuity) conservation
equation:

∂ρ

∂t
+∇x · ρv = 0. (1.65)

Equation (1.65) can be also obtained by summing eq. (1.58) over all the species,
and then using eq. (1.62) in the results obtained.
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1.6 The Conservation Equations of Gasdynamics

The conservation equations (1.58)-(1.60) translate into a mathematical form the
laws of mass, momentum and energy conservation applied to a fluid flow. They
are always valid, as they have been obtained by taking moments of the Boltz-
mann equation (1.5) without making further assumptions than those stated in
sec. 1.1. Since the study of non-equilibrium flows requires, in the most general
situation, to trace of all the gas species (i.e. to use a state-to-state approach),
a hydrodynamic description can be achieved by considering the species, the
global momentum and global energy conservation equations:

∂ρsj
∂t

+∇x ·
(

ρsiv + ρsiv
d
si

)

= ωsi , s ∈ S, i ∈ Is, (1.66)

∂ρv

∂t
+∇x · (ρv ⊗ v + p I− τ ) = 03, (1.67)

∂ρE

∂t
+∇x · (ρvH − τv + q) = 0. (1.68)

Equations (1.66)-(1.68) can be cast in the so called conservation law form:

∂U

∂t
+∇x ·F −∇x ·Fd = S, (1.69)

where U and S are the conservative variable and source term vectors, respec-
tively, and F and F

d are the inviscid and diffusive flux tensors, respectively.
The expressions of the vectors and tensors in eq. (1.69) are:

U =
[

ρsi ρv ρE
]T
, (1.70)

S =
[

ωsi 03 0
]T
, (1.71)

F =
[

ρsiv ρv ⊗ v + p I ρvH
]T
, (1.72)

F
d =

[

−ρsivd
si τ τv − q

]T
, (1.73)

s ∈ S, i ∈ Is,
where the symbol T stands for the transpose operator. Equations (1.66)-(1.68)
are balance equations in open form (Giordano 2002) as they lack of constitutive
relations. The latter express the transport fluxes and the mass production terms
as a function of flow properties and the related gradients (Ferziger and Kaper
1972; Giovangigli 1999; Nagnibeda and Kustova 2009). In ch. 2 it is shown how
these constitutive relations can be obtained based on asymptotic solutions of
the Boltzmann equation. The application of this procedure enables to obtain a
(closed form) hydrodynamic description and determines, at the same time, its
range of applicability.

1.7 Summary

This chapter has provided a detailed description of the Boltzmann equation for
multi-component dilute gases with discrete internal energy levels. A general no-
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tation has been introduced in order to account for the existence of three kinds
of collisional processes: elastic, inelastic and reactive. For each one, the ex-
pressions of the related collision operators and collisional invariants have been
given. The set of collisional invariants have been used to define macroscopic
conserved quantities and derive the conservation equations of gasdynamics (in
open form) based on the Maxwell transfer equations. The closed form of the
hydrodynamic equations is obtained in ch. 2, where it is shown how the ap-
plication of the Chapman-Enskog method (within a context of a state-to-state
approach) enables to explicitly relate the transport fluxes and the mass produc-
tion terms to flow quantities and related gradients. The theoretical contents
of this chapter are also used in ch. 6 for the development of a deterministic
spectral-Lagrangian numerical method for solving the Boltzmann equation for
multi-component gases with discrete internal energy levels.



Chapter 2

Hydrodynamic Approach

This chapter describes how to obtain a hydrodynamic model for multi-component
dilute gases with internal energy based on the the application of the Chapman-
Enskog method to the Boltzmann equation.
The present chapter is structured as follows. Section 2.1 presents the Chapman-
Enskog method for the Boltzmann equation within the context of a state-to-
state approach. The zeroth-order solution for the velocity distribution function
is computed in sec. 2.2. This result is then used in sec. 2.3 for obtaining
the Euler equations and the first-order solution. Finally, the Navier-Stokes
equations are obtained in sec. 2.4. In the same section 2.4, explicit constitutive
relations for the transport fluxes and the mass production terms are established
to complete the open form hydrodynamic equations given at the end of ch. 1.

2.1 State-to-State Chapman-Enskog Method

The Chapman-Enskog (CE) method aims at obtaining asymptotic solutions of
the Boltzmann equation (1.5). Based on a dimensional analysis, the Boltzmann
equation (1.5) can be rescaled to emphasize the different time-scales of the
collisional processes:

Dsifsi =
1

ε
Qel

si + εa
(

Qin
si +Qre

si

)

, s ∈ S, i ∈ Is. (2.1)

The perturbation parameter ε plays the role of a Knudsen number and is as-
sumed to be small enough such that a hydrodynamic description of the system
is possible, ε << 1 (i.e. the gas is collision dominated). The value of the pa-
rameter a depends on the regime under consideration (Giovangigli 1999). The
case a = −1 corresponds to the kinetic equilibrium regime (Ern and Giovangigli
1998). In this situation, inelastic and reactive collisions are as fast as elastic
collisions. The cases a = 0 and a = 1 correspond to the strong reaction regime
and Maxwellian reaction regime, respectively. In the applications on which this
thesis focuses (aerothermodymamic flows), elastic collisions occur over time-
scales which are much shorter than those of inelastic and reactive collisions.
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This justifies the assumption of a Maxwellian regime (a = 1). In view of this,
eq. (2.1) becomes:

Dsifsi =
1

ε
Qel

si + ε
(

Qin
si +Qre

si

)

, s ∈ S, i ∈ Is. (2.2)

The term 1/ε in eq. (2.2) emphasizes the dominant effect of elastic collisions in
driving the velocity distribution function towards the local equilibrium.
Asymptotic solutions of the Boltzmann equation (2.2) are sought by writing
the velocity distribution function as a truncated series of the perturbation pa-
rameter ε (Giovangigli 1999):

fsi = f0si(1 + εφ1si + ε2φ2si) + O(ε2), s ∈ S, i ∈ Is, (2.3)

where quantities φ1si and φ2si are, respectively, the first and second-oder per-
turbation to the zeroth-oder distribution function f0si . According to the CE
method, the gas is described at successive orders of the ε parameter as equiva-
lent to as many time-scales.
The CE method is well established for multi-component gases without inter-
nal energy, where only elastic collisions occur (Chapman and Cowling 1970;
Ferziger and Kaper 1972). When the effects of the internal structure, inelastic
and reactive collisions are added, the application of the CE method becomes
more challenging. This is due to the wide spectrum of time-scales involved in
the problem. Many research efforts have been spent in this field. The first work
was that of Wang-Chang and Uhlenbeck (1951), valid for a mono-component
gas with discrete internal energy levels. The theory developed by Wang-Chang
and Uhlenbeck is rigorous for the case when the time-scales of elastic and inelas-
tic collisions are comparable, while it is only approximate for the more realistic
condition in which elastic collisions are faster than the inelastic ones. The work
of Wang-Chang and Uhlenbeck was later generalized by Mason and Monchick
(1962; 1963) who extended the theory to multi-component gases with discrete
internal energy levels. Deviations from thermo-chemical non-equilibrium in
molecular flows have been studied later, for instance by Pascal and Brun (1993)
and Kustova and Nagnibeda (1998). In strong non-equilibrium flows, the char-
acteristic times for gasdynamics and relaxation processes become comparable,
and therefore, the equations for flow quantities (such as temperature and ve-
locity) should be coupled to the equations for physico-chemical kinetics (Nag-
nibeda and Kustova 2009). A difficulty is to derive a proper scaling for the
Boltzmann equation, that accounts for the different relaxation times. An ele-
gant approach based on a dimensional analysis has been proposed by Petit and
Darrozes (1975) for the translational relaxation processes between the electrons
and heavy particles in a plasma. The resulting scaling affects not only the dif-
ferent terms of the streaming and collision operators of the kinetic equations,
but also the collision operators themselves and the collisional invariants (Graille
et al. 2009). Degond and Lucquin-Desreux (1996) have expanded the collision
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operators in terms of the perturbation parameter driving non-equilibrium phe-
nomena, such as the square root of the electron heavy-particle mass ratio for
plasmas in translational non-equilibrium. When the Knudsen number is small
enough, a multi-scale CE expansion method allows to derive conservation equa-
tions for continuum flows. A similar multi-scale approach with expansion of the
collision operators in the perturbation parameter has also been applied to study
ionization phenomena (Graille et al. 2008).
Magin et al. (2012) have proposed a multi-scale CE method for the treatment
of internal energy relaxation in a mono-component gas with discrete internal
energy levels. The coexistence of fast and slow collisions in the system results in
thermal non-equilibrium between the translational and internal energy modes.
The scaling is derived based on a dimensional analysis, and collisions are di-
vided in two categories, based on the magnitude of the net internal energy jump
(see eq. (1.13)). For fast collisions, this quantity is assumed to be lower than
an energy threshold equal to a fraction of a characteristic thermal energy for
the gas that is controlled by a small parameter. The study of the dynamics of
a fast binary collision, yields the dependence of the particle velocities on the
perturbation parameter. A lemma allows to split the internal energy of all the
levels into perturbed elastic and inelastic contributions for the fast collisions.
A CE expansion allows for a description of the system based on a continuum
approach. The introduction of perturbed energy levels is crucial to separate
the energy collision invariant into fast collisional invariants. As opposed to
conventional perturbations methods (Kustova and Nagnibeda 1998), the fast
collision operator is expanded in the small parameter used to define the thresh-
old for the net energy for fast collisions. The gas particle population is shown
to thermalize to a quasi-equilibrium state described by a Maxwell-Boltzmann
distribution function in thermal non-equilibrium with the translational tem-
perature and the internal temperature. The role of the fast collisions is the
thermalization of the translational and internal energy modes. Euler equations
for the conservation of the mass, momentum, translational energy, and internal
energy are also derived. The observed role of the slow collisions is to contribute
to the thermal relaxation of the translational and internal energy modes.
Another issue which arises when applying the CE method to gases with inter-
nal degrees of freedom is the existence or not of bulk viscosity. In the work of
Wang-Chang and Uhlenbeck (1951) it was shown that the bulk viscosity ap-
peared in the constitutive relations when elastic and inelastic collisions occur
over the same time-scales, while this was not the case when elastic collisions
are faster than the inelastic ones. There has been a lot of debate in the Kinetic
Theory community on this topic (see, for instance, the papers cited above). The
recent works by Bruno, Esposito and Giovangigli (2012; 2013) have investigated
in detail the relation between bulk viscosity and internal energy relaxation.
The conceptual problems encountered in the aforementioned references for the
CE method are due to the difficulty of casting the multi-scale energy level
and reaction dynamics in a multi-temperature model or in a detailed kinetics
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model where a state-to-state approach is used only for some internal energy
modes (such as molecular vibration; Kustova and Nagnibeda 1998).
In the present thesis, an alternative approach is proposed. The CE method for
the Boltzmann equation is extended to gases with internal energy and inelastic
and reactive collisions with the purpose of obtaining a hydrodynamic descrip-
tion which is purely state-to-state (i.e. State-to-State Chapman-Enskog; STS
CE). In this way, there is no need for splitting the inelastic and reactive collision
operators in their fast and slow components. The application of the STS CE
method enables to obtain a closed form set of hydrodynamic equations, where
each internal energy level is treated as a separate pseudo-species. This set of
hydrodynamic equations can be then used for developing macroscopic models,
as shown in ch. 3.
The application of the STS CE method starts by injecting the truncated series
fsi = f0si(1 + εφ1si + ε2φ2si) in eq. (2.2):

Dsif
0
si + εDsiφ

1
sif

0
si + ε2Dsiφ

2
sif

0
si + O(ε2) =

1

ε

∑
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0
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0
pj )+
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j ∈Ip

[
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0
si , φ

1
pjf

0
pj ) +Qsipj (φ

1
sif

0
si , f

0
pj )
]

+

ε
∑

p∈S
j ∈Ip

[

Qsipj (f
0
si , φ

2
pjf

0
pj ) +Qsipj (φ

2
sif

0
si , f

0
pj ) +Qsipj (φ

1
sif

0
si , φ

1
pjf

0
pj )
]

+

ε
(

Qin 0
si +Qre 0

si

)

+ O(ε2), s ∈ S, i ∈ Is, (2.4)

where the notation Qin 0
si and Qre 0

si indicates that the inelastic and reactive
collision operators must be evaluated by using the zeroth-oder velocity distri-
bution function. Solutions to eq. (2.4) are sought by assuming that the latter
is satisfied at the different orders of ε:

ε−1 0 =
∑

p∈S
j ∈Ip

Qsipj (f
0
si , f

0
pj ), (2.5)

ε0 Dsif
0
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1
pjf
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1
sif

0
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pj )
]

, (2.6)

ε1 Dsiφ
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sif

0
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[

Qsipj (f
0
si , φ

2
pjf
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sif
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Qsipj (φ
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sif

0
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1
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Qin 0
si +Qre 0

si

)

, (2.7)

ε2 . . . = . . . ,

s ∈ S, i ∈ Is.
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The uniqueness of the solution of eq. (2.4) (provided it exists) is enforced by
imposing that the conserved macroscopic quantities defined in eqs. (1.29)-(1.33)
can be computed based on the zeroth-order distribution function only:

ρsi =

∫

ℜ3

msf
0
sidcsi , s ∈ S, i ∈ Is, (2.8)

ρv =
∑

s∈S
i∈Is

∫

ℜ3

mscsif
0
sidcsi , (2.9)

ρE =
∑

s∈S
i∈Is

∫

ℜ3

(

1

2
msc

2
si + Esi

)

f0sidcsi . (2.10)

For the sake of convenience, the linearized collision operator Fsi is introduced:

Fsi(φ) = −
∑

p∈S
j ∈Ip

[

Qsipj (f
0
si , φpjf

0
pj ) +Qsipj (φsif

0
si , f

0
pj )
]

= −
∑

p∈S
j ∈Ip

∫∫

S 2×ℜ3

f0si

(

φ′si + φ′pj − φsi − φpj
)

σsipj g dω
′dcpj , (2.11)

s ∈ S, i ∈ Is.
The collisional invariants associated to the linearized collision operator are the
elastic collisional invariants (1.23) (Giovangigli 1999). Hence:

Fsi(ψ
el ν
si ) = 0, ν ∈ I el, s ∈ S, i ∈ Is. (2.12)

The linearized collision operator satisfies the further property:
∑

s∈S
i∈Is

∫

ℜ3

ψel ν
si fsi Fsi(φ) dcsi = 0, ν ∈ I el. (2.13)

2.2 Zeroth-Order Solution

The zeroth-order velocity distribution function is obtained by solving eq. (2.5),
which corresponds to the order ε−1 in the STS CE method:

∑

p∈S
j ∈Ip

Qsipj (f
0
si , f

0
pj ) = 0, s ∈ S, i ∈ Is. (2.14)

The zeroth-order velocity distribution function is found as follows. Multiplying
eq. (2.14) by ln f0si , integrating over the velocity space, and summing the result
obtained over all the species gives:

∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

∫∫∫

S 2×ℜ3×ℜ3

(f0 ′si f
0 ′
pj − f0sif0pj ) ln

(

f0 ′si f
0 ′
pj

f0sif
0
pj

)

σsipj g dω
′dcpjdcsi . (2.15)
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The comparison of eq. (2.15) with eq. (1.24) shows that quantity ln f0si is a
collisional invariant. Hence, it can be written as a linear combination of the
elastic collisional invariants:

ln f0si = msα
1
si +mscsi ·α2

si +

(

1

2
msc

2
si + Esi

)

α3
si s ∈ S, i ∈ Is. (2.16)

The values of the constants α1
si , α2

si and α3
si can be found by imposing the

constraints (2.8)-(2.10). After some algebra, one obtains:

α1
si =

1

ms

[

ln

(

nsi
βsi

1

Ztra
s (T )

)

− 1

kbT

(

1

2
msv · v − Esi

)]

, (2.17)

α2
si =

1

kbT
v, α3

si = −
1

kbT
, (2.18)

s ∈ S, i ∈ Is.

The substitution of eqs. (2.17)-(2.18) in eq. (2.16) gives:

f0si =
1

βsi

nsi
Ztra
s (T )

exp

(

−msC
2
si

2kbT

)

, s ∈ S, i ∈ Is. (2.19)

Equation (2.19) shows that the zeroth-order solution is a Maxwell-Boltzmann
velocity distribution function (only for the translation) at the local translational
temperature T . Notice that, in the present situation, the number density nsi is
no longer given by the Boltzmann distribution law (1.36). Instead, it must be
found as a solution of the hydrodynamic equations that are being derived. In
view of the result stated in eq. (2.19), the gas thermodynamic properties can be
computed based on the equilibrium relations given in sec. 1.3.2, with exception
of those related to the internal degrees of freedom. For instance, to compute
the gas internal energy density, eq. (1.41) can no longer be used. Instead, the
general definition ρeint =

∑

s∈S i∈Is
nsiEsi must be adopted.

2.3 Zeroth-Order Hydrodynamic Equations and First-
Order Solution

The first-order perturbation function φ1si is the solution of eq. (2.6) which cor-
responds to the order ǫ0 in the STS CE method. By exploiting the relation
f0 ′si f

0 ′
pj = f0sif

0
pj , which is satisfied by the zeroth-order solution (2.15), it is

possible to rewrite eq. (2.6) as:

−f0siFsi(φ
1) = Dsf

0
si , s ∈ S, i ∈ Is, (2.20)

where the linearized collision operator defined in eq. (2.11) has been introduced.
Equation (2.20) is a linear, inhomogeneous Fredholm integral equation of second
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kind (Ferziger and Kaper 1972). From the theory of Fredholm integral equa-
tions, it is known that the inhomogeneous equation (2.20) is solvable if quan-
tity Dsf

0
si is orthogonal to the solution of the related homogeneous equation,

Fsi(φ
1) = 0. As shown in eq. (2.13), the homogeneous equation Fsi(φ

1) = 0
is satisfied if φ1 is equal to any of the elastic collisional invariants. Hence, the
solvability condition for eq. (2.20) becomes:

∑

s∈S
i∈Is

∫

ℜ3

ψel ν
si Dsf

0
si = 0, ν ∈ I el. (2.21)

The substitution of the expression for f0si (eq. (2.19)) in eq. (2.21) yields the
zeroth-oder hydrodynamic equations:

∂ρsi
∂t

+∇x · (ρsiv) = 0, s ∈ S, i ∈ Is, (2.22)

∂ρv

∂t
+∇x · (ρv ⊗ v + p I) = 03, (2.23)

∂ρE

∂t
+∇x · (ρvH) = 0. (2.24)

Equations (2.22)-(2.24) are the Euler equations.
In order to solve for φ1si , it is more convenient to rewrite eq. (2.20) as:

Fsi(φ
1) = − 1

fsi
Dsf

0
si , s ∈ S, i ∈ Is, (2.25)

and to re-express the uniqueness constraints (2.8)-(2.10) as:
∑
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i∈Is
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s f0si φ

r
si dcsi = 0, r ∈ {1, 2} , ν ∈ I el. (2.26)

By making use of the expression for f0si and the zeroth-order hydrodynamic
equations (2.22)-(2.24), it is possible to re-express quantity −1/f0siDsif

0
si in

eq. (2.25) as (Ferziger and Kaper 1972):
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where the diffusion driving forces have been introduced and defined as pdsi =

∇xpsi . Quantities Ψη
si , Ψ

Dpj
si and Ψλ′

si are defined as:
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Using eqs. (2.27)-(2.30), eq. (2.25) becomes:

Fsi(φ
1) = −Ψη

si : ∇xv − p
∑

p∈S
j ∈Ip

Ψ
Dpj
si · dpj −Ψλ′

si · ∇x

(

1

kbT

)

, (2.31)

s ∈ S, i ∈ Is.
By linearity and isotropy of the linearized collision operator Fsi (Ferziger and
Kaper 1972), the first-order perturbation function φ1si is expressed in terms of
the velocity vector gradient, diffusion driving forces, and temperature gradient
as:

φ1si = −φη
si
: ∇xv − p

∑

p∈S
j ∈Ip

φ
Dpj
si · dpj − φλ′

si · ∇x
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s ∈ S, i ∈ Is.
where the tensorial functions φη

si
and the vectorial functions φ

Dpj
si and φλ′

si are
unknown and need to be determined. The substitution of eq. (2.32) in eq. (2.31)
yields the following linear, inhomogeneous integral equations which are satisfied
by the functions φη

si
, φ

Dpj
si and φλ′

si :

Fsi(φ
η) = Ψη

si , s ∈ S, i ∈ Is, (2.33)

Fsi(φ
Dpj ) = Ψ

Dpj
si , s, p ∈ S, i ∈ Is, j ∈ Ip, (2.34)

Fsi(φ
λ′

) = Ψλ′

si , s ∈ S, i ∈ Is, (2.35)

where the compact notation φη = (φη
si
)s∈S, i∈Is , φ

Dpj = (φ
Dpj
si )s∈S, i∈Is and

φλ′

= (φλ′
si )s∈S, i∈Is has been introduced. The solution of eqs. (2.33)-(2.35)

must be found by imposing the scalar constraints obtained by replacing φ1si
in eq. (2.26) with the functions φη, φDpj and φλ′

, respectively (Ferziger and
Kaper 1972).

2.4 First-Order Hydrodynamic Equations

The second-order perturbation function φ2si is the solution of eq. (2.7), which
corresponds to the order ǫ1 in the STS CE method:

−f0siFsi(φ
2) = Dsiφ
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sif
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)

,

s ∈ S, i ∈ Is. (2.36)

The solvability condition for eq. (2.36) is obtained, as in sec. 2.3, by impos-
ing the orthogonality of its right-hand-side with the elastic collision invariants
(which satisfy the homogeneous equation Fsi(φ

2) = 0):
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Notice that the contribution of the elastic collision operators disappears in view
of eq. (1.24). Combining eq. (2.37) with eq. (2.21), one obtains the first-order
hydrodynamic equations:

∂ρsj
∂t

+∇x ·
(

ρsiv + ρsiv
d
si

)

= ωsi , s ∈ S, i ∈ Is, (2.38)

∂ρv

∂t
+∇x · (ρv ⊗ v + p I− τ ) = 03, (2.39)

∂ρE

∂t
+∇x · (ρvH − τv + q) = 0. (2.40)

The transport fluxes and the mass production terms are:
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ωsi = ms

∫
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si +Qre 0

si )dcsi , s ∈ S, i ∈ Is. (2.44)

Equations (2.38)-(2.40) are the Navier-Stokes equations. Notice that, due to the
assumed Maxwellian reaction regime, no influence of the first-order perturba-
tion function φ1si appears in the mass production terms as opposed to the work
of Giovangigli (1999), and Nagnibeda and Kustova (2009). In secs. 2.4.1-2.4.2,
the expressions obtained for f0si and φ1si are exploited to obtain constitutive rela-
tions which relate the transport fluxes to macroscopic gradients. In sec. 2.4.3,
the mass production terms are particularized for the case of internal energy
excitation and dissociation processes (studied in detail starting from ch. 3).

2.4.1 Transport Fluxes

The constitutive relations for the transport fluxes are obtained by substituting
the expressions for f0si and φ1si (given in eqs. (2.19) and (2.32), respectively) in
eqs. (2.41)-(2.43). For the sake of convenience, a bracket operator is introduced:

Jξ, ζK =
∑

s∈S
i∈Is

∫

ℜ3

f0siξsi Fsi(ζ) dcsi . (2.45)

The bracket operator Jξ, ζK is symmetric, Jξ, ζK = Jζ, ξK, and positive semi-
definite, Jξ, ξK ≥ 0 (Ferziger and Kaper 1972). After some algebra, the diffusion
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velocities, viscous stress tensor and heat flux vector are found to be:

vd
si = −

∑

p∈S
j ∈Ip

Dsipj dpj − θsi∇x lnT, s ∈ S, i ∈ Is, (2.46)

τ = η

[
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T − 2

3
∇xv I

]

, (2.47)

q =
∑

p∈S
j ∈Ip

ρpjhpjv
d
pj − λ′∇xT − p

∑

p∈S
j ∈Ip

θpj dpj , (2.48)

where the enthalpy of pj reads hpj = (5/2)(kbT/mp) + Epj . Quantities Dsipj

and θsi are the diffusion coefficients and thermal diffusion coefficients, respec-
tively, and quantities η and λ′ are the shear (or dynamic) viscosity and the
partial thermal conductivity, respectively. The aforementioned quantities can
be expressed in a compact notation, by making use of the bracket operator
defined in eq. (2.45):

Dsipj =
p kb T

3
JφDsi ,φDpj K, s, p ∈ S, i ∈ Is, j ∈ Ip, (2.49)

θsi = −
1

3
JφDsi ,φλ′

K, s ∈ S, i ∈ Is, (2.50)

η =
kbT

10
Jφη,φηK, (2.51)

λ′ =
1

3kbT 2
Jφλ′

,φλ′

K. (2.52)

The first term in the diffusion velocities (2.46) yields diffusion effects due to
partial pressure gradients. The second term represents the diffusion arising
from a temperature gradient (Soret effect). The constitutive relation for the
stress tensor (2.47) is referred to as Newton’s law for the stress tensor. Notice
that there is no bulk (or volume) viscosity. This can be explained by the fact
that, in the STS CE method, the gas is viewed as a collection of structureless
particles having different values of formation energy (i.e. Esi). In the expres-
sion of the heat flux (2.48), the first term is the transfer of energy by diffusion
of enthalpy. The second term represents Fourier’s law and the third term cor-
responds to the Dufour effect, that is, heat diffusion due to partial pressure
gradients. The partial thermal conductivity λ′ is not accessible to direct exper-
imental measurements since, in a multi-component gas, a temperature gradient
induces thermal diffusion and partial pressure gradients. So, even in the case
of a stationary process (i.e. the diffusion velocities all vanish if the gas is at
rest), the driving forces dsi will be different from zero, and the heat flow due
to a temperature gradient will be always accompanied by a heat flow due to
partial pressure gradients. In view of this, the following alternative definitions
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for the diffusion velocities and heat flux vector are introduced:

vd
si = −

∑

p∈S
j ∈Ip

Dsipj

(

dpj + χpj∇x lnT
)

, s ∈ S, i ∈ Is, (2.53)
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j ∈Ip

ρpjhpjv
d
pj − λ∇xT + p
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p∈S
j ∈Ip

χpjv
d
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where the thermal diffusion ratios χpj are defined from the relations:
∑

p∈S
j ∈Ip

χpj = 0,
∑

p∈S
j ∈Ip

Dsipjχpj = θsi , s ∈ S, i ∈ Is. (2.55)

The thermal conductivity in eq. (2.54) is defined as λ = λ′−nkb
∑

p∈S, j ∈Ip
χpjθpj .

In order to be able to compute the transport fluxes, the bracketed expressions
for the transport properties in eqs. (2.49)-(2.52) must be evaluated. The pro-
cedure is outlined in sec. 2.4.2.

2.4.2 Linear Transport Systems

The bracketed expressions in eqs. (2.49)-(2.52) are evaluated by solving the in-
tegral equations (2.33)-(2.35) based on a Galerkin method which uses Laguerre-
Sonine polynomials as basis functions (Magin and Degrez 2004). This leads to
linear transport systems which, upon solution, provide the shear viscosity, ther-
mal conductivity, thermal diffusion ratios and diffusion velocities. The trans-
port systems are assembled by assuming that the elastic cross-sections σsipj do
not depend on the internal quantum states (i.e. σsipj = σsp ).

Shear Viscosity The shear viscosity is solution of the following transport
system in the first-order Laguerre-Sonine approximation:

∑

p∈S

Gη
spα

η
p = Xs, s ∈ S, η =

∑

p∈S

αη
pXp, (2.56)

where Gη
sp are the entries of the of the multi-component viscosity transport

(symmetric) matrix:

Gη
sp = XsXp

16

5

√

2msmp

kbT (ms +mp)3

(

Q
(2,2)
sp − 5

3
Q

(1,1)
sp

)

, (2.57)

p 6= s, s, p ∈ S,

Gη
ss =

∑

p 6=s
p∈S

XsXp
16

5

√

2msmp

kbT (ms +mp)3

(

Q
(2,2)
sp

mp

ms
+

5

3
Q

(1,1)
sp

)

+
X2

s

ηs
,(2.58)

s ∈ S,

ηs =
5

16

√
πkbTms

Q
(2,2)
ss

, s ∈ S, (2.59)
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where, obviously, Xs =
∑

i∈Is
Xsi . Quantities Q

(i,j)
sp are reduced collision inte-

grals. Their definitions can be found in the books of Ferziger and Kaper (1972),
and Giovangigli (1999). The reduced collision integrals can be computed based
on the assumed interaction potential among the colliding gas particles.

Thermal Conductivity and Thermal Diffusion Ratios The thermal
conductivity is solution of the following transport system in the second-order
Laguerre-Sonine approximation:

∑

p∈S

Gλ
spα

λ
p = Xs, s ∈ S, λ =

∑

p∈S

αλ
pXp, (2.60)

where Gλ
sp are the entries of the multi-component thermal conductivity trans-

port (symmetric) matrix:

Gλ
sp =

1

25kb

XsXp

nDsp

msmp

(ms +mp)2
(

16A⋆
sp + 12B⋆

sp − 55
)

, (2.61)

p 6= s, s, p ∈ S,

Gλ
ss =

1

25kb

∑

p 6=s
p∈S

XsXp

nDsp

(

30m2
s + 25m2

p − 12m2
pB

⋆
sp + 16msmpA

⋆
sp

)

(ms +mp)2
+

4

15kb

X2
sms

ηs
, s ∈ S, (2.62)

A⋆
sp =

Q
(2,2)
sp

Q
(1,1)
sp

, B⋆
sp =

5Q
(1,2)
sp − 4Q

(1,3)
sp

Q
(1,1)
sp

, s, p ∈ S, (2.63)

where the binary diffusion coefficient Dsp is defined as:

Dsp =
1

n

√

2πkbT (ms +mp)

msmp

3

16Q
(1,1)
sp

, s, p ∈ S. (2.64)

The thermal diffusion ratios (χs =
∑

i∈Is
χsi) are:

χs =
5

2

∑

p∈S

Λspα
λ
p , s ∈ S, (2.65)

where Λsp are the entries of the thermal diffusion (symmetric) matrix:

Λsp =
1

25kb

XsXp

nDsp

ms

(ms +mp)

(

12C⋆
sp − 10

)

, p 6= s, s, p ∈ S, (2.66)

Λss = −
1

25kb

∑

p 6=s
p∈S

XsXp

nDsp

mp

(ms +mp)

(

12C⋆
sp − 10

)

, s ∈ S, (2.67)

C⋆
sp =

Q
(1,2)
sp

Q
(1,1)
sp

, s, p ∈ S. (2.68)



Part I - Physico-Chemical Models for Non-Equilibrium Flows 45

Diffusion Velocities The diffusion velocities are solution of the Stefan-Maxwell
equations with the mass conservation constraint (1.62). Under the assumption
vd
si = vd

s , the Stefan-Maxwell equations are:

∑

p∈S

Gd
spv

d
p = −

(

d̂s + χs∇x lnT
)

, s ∈ S, (2.69)

∑

p∈S

ρpv
d
p = 03. (2.70)

The linear independent diffusion driving forces are defined as d̂s = ds −
(ρs/ρ)

∑

p∈S dp (where dp =
∑

i∈Ip
dpi). In the first-order Laguerre-Sonine

approximation, the entries Gd
sp of the Stefan-Maxwell (symmetric) matrix are:

Gd
sp = −

XsXp

Dsp
, p 6= s, s, p ∈ S, (2.71)

Gd
ss =

∑

p 6=s
p∈S

XsXp

Dsp
, s ∈ S. (2.72)

The Stefan-Maxwell matrix is singular. As suggested by Magin and Degrez
(2004), the Stefan-Maxwell matrix can be regularized by incorporating the
mass conservation constraint (1.62) in the definition of its entries:

G̃d
sp = Gd

sp + ãρsρp, s, p ∈ S, (2.73)

where ã is a dimensional factor, for instance equal to 1/[ρ2 max
s,p∈S

(Dsp)]. The
diffusion velocities are then found by solving the non-singular system:

∑

p∈S

G̃d
spv

d
p = −

(

d̂s + χs∇x lnT
)

, s ∈ S. (2.74)

2.4.3 Mass Production Terms for Internal Energy Excitation

and Dissociation

In this section explicit relations are obtained for the mass production terms
in the case of the collisional processes considered in ch. 3: a) internal energy
excitation/de-excitation, si + p = sj + p (with i 6= j), and b) three-body
dissociation/recombination, si + p = p+ p+ p, where s is a diatomic molecule
made of two p atoms (i.e. s = p∪ p) which remain always in the ground-state.
The application of eq. (2.44) and the use of the contents of secs. 1.2.2-1.2.3,
allows to write, after some algebra, the mass production term ωsi as:

ωsi = −(ωdis
si + ωin

si ), s ∈ S, i ∈ Is, (2.75)
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where the partial contributions due to dissociation and inelastic collisional ex-
citation are:

ωdis
si = ms np[nsik

dis
si (T )− n2pkrecsi (T )], (2.76)

ωin
si = ms np

∑

j > i
j ∈Is

[nsik
in
si→sj (T )− nsjkinsj→si(T )]−

ms np
∑

j < i
j ∈Is

[nsjk
in
sj→si(T )− nsikinsi→sj (T )], (2.77)

s ∈ S, i ∈ Is.

The dissociation and excitation rate coefficients (kdissi (T ) and kinsi→sj (T ), with
i < j, respectively) are defined as:

kdissi (T ) =
1

βsβpZtra
s (T )Ztra

p (T )
×

∫∫∫

S 2×ℜ3×ℜ3

exp
[

−(msC
2
si +mpC

2
p)/(2kbT )

]

σpppsip g dω
′dCp dCsi , (2.78)

s ∈ S, i ∈ Is,
kinsi→sj (T ) =

1

βsβpZtra
s (T )Ztra

p (T )
×

∫∫∫

S 2×ℜ3×ℜ3

exp
[

−(msC
2
si +mpC

2
p)/(2kbT )

]

σ
sjp
sip g dω

′dCp dCsi , (2.79)

s ∈ S, i < j, i, j ∈ Is,

where the relation dcsi = dCsi has been used. The recombination and de-
excitation rate coefficients (krecsi (T ) and kinsj→si(T ), with i < j, respectively) are
related to the dissociation and excitation rate coefficients through:

krecsi (T )

kdissi (T )
=

asiZ
tra
s (T )

[

apZtra
p (T )

]2 exp

(

2Ep −Esi

kbT

)

, s ∈ S, i ∈ Is, (2.80)

kinsj→si(T )

kinsi→sj (T )
=
asi
asj

exp

(

Esj − Esi

kbT

)

, s ∈ S, i < j, i, j ∈ Is, (2.81)

where quantity Ep is the formation energy of the p atom. Equations (2.80)-
(2.81) (usually referred to as detailed balance relations) are obtained from the
algebraic manipulation leading to eqs. (2.75)-(2.79) and are direct consequence
of the micro-reversibility relations (1.12) and (1.21).

2.4.4 Conservation Law Form of the Navier-Stokes Equations

For the sake of later use, it is convenient to close this chapter by stating the
conservation law form of the Navier-Stokes equations (2.38)-(2.40) together
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with the constitutive relations obtained from the application of the STS CE
method. The Navier-Stokes equations in conservation law form read:

∂U

∂t
+∇x ·F −∇x ·Fd = S, (2.82)

where the conservative variable and source term vectors, and the inviscid and
diffusive flux tensors are:

U =
[

ρsi ρv ρE
]T
, (2.83)

S =
[

ωsi 03 0
]T
, (2.84)

F =
[

ρsiv ρv ⊗ v + p I ρvH
]T
, (2.85)

F
d =

[

−ρsivd
s τ τv − q

]T
, (2.86)

s ∈ S, i ∈ Is.

The constitutive relations for the stress tensor and heat flux vector are:

τ = η

[

∇xv + (∇xv)
T − 2

3
∇xv I

]

, (2.87)

q =
∑

s∈S

vd
s

∑

i∈Is

ρsihsi − λ∇xT + p
∑

s∈S

χsv
d
s . (2.88)

2.5 Summary

In this chapter a hydrodynamic description for multi-component gases with dis-
crete internal energy levels has been obtained based on the Chapman-Enskog
method for the Boltzmann equation. In order to avoid problems related to hier-
archy of time-scales for inelastic and reactive processes, which must accounted
for when deriving macroscopic models such as multi-temperature, an alternative
state-to-state approach has been proposed (State-to-State Champman-Enskog
method; STS CE). The final goal of the STS CE method was to obtain a set
of hydrodynamic equations where each internal energy level is considered as
a separate pseudo-species. Once this done, reduced models can be developed
based on the state-to-state hydrodynamic equations, as shown in ch. 3. The
proposed approach has the advantage of avoiding the splitting of the inelastic
and reactive collision operators in fast and slow components. The STS CE
method relies on the assumption that elastic collisions occur over much shorter
time-scales, compared to inelastic and reactive ones (a realistic assumption for
aerothermodynamic flows), and that inelastic and reactive encounters can be
treated within the context of a Maxwellian reaction regime. Based on these
assumptions, the Boltzmann equation has been properly rescaled (with the
aid of a dimensional analysis) to look for a truncated series solution. Asymp-
totic zeroth and first-order solutions have been then obtained by injecting the
truncated series solution in the rescaled Boltzmann equation and by applying
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a procedure similar to the conventional CE method. The zeroth-order solu-
tion consisted in a Maxwell-Boltzmann velocity distribution function (only for
translation) at the translational temperature. The zeroth-order solution was
then used for obtaining the first-order perturbation which, in turn, enabled to
obtain the Navier-Stokes equations with explicit constitutive relations for the
transport fluxes and the mass production terms.
The Navier-Stokes equations obtained in this chapter are applicable to multi-
component gases with discrete internal energy levels, where elastic, inelastic
and reactive collisions occur. In ch. 3, the focus is restricted on a narrower set
of processes (internal energy excitation and dissociation), and the governing
equations obtained here are used for developing reduced models for aerother-
modynamics.



Chapter 3

Development of Quantum Based

Chemical Models

This chapter describes a quantum chemistry database of the Computational
Quantum Chemistry Group at NASA Ames Research Center (NASA ARC)
and the reduced (or coarse-grained) models developed in this thesis.
The present chapter is structured as follows. The thermodynamic and kinetic
data of the NASA ARC database are described in sec. 3.1. These are used to
build a rovibrational collisional model. Then, reduced models are proposed by
increasing complexity. Section 3.2 describes a multi-temperature model which
has been developed based on heat-bath calculations (Panesi et al. 2013). After
that, a conventional vibrational collisional model is formulated in sec. 3.3 based
on the assumption of rotational equilibrium (Bourdon et al. 2008; Magin et al.
2009, Munafò at al. 2010; 2012). In sec. 3.4, the Energy Bin model is presented.
This is developed based on an innovative approach which consists in lumping the
energy levels in energy bins, where a distribution of the energy levels is assumed.
Two variants of the Energy Bin model have been proposed, corresponding to a
uniform (Panesi et al. 2010; Magin et al. 2012) and a Boltzmann (Munafò at
al. 2011; 2014) distribution. The chapter is concluded with sec. 3.5, where a
unified notation for the coarse-grained models is presented.

3.1 The NASA Ames Database

The NASA ARC database (Jaffe et al. 2008; Chaban et al. 2008; Schwenke
2008; Jaffe et al. 2009) provides a set of consistent thermodynamic and state-
to-state kinetics data for the rovibrational excitation, dissociation and predis-
sociation of the N2 molecule colliding with an N atom. Both chemical com-
ponents are in their electronic ground-state (i.e. N2(

1Σ+
g ) - N(4Su) system).

The database provides also kinetic data for a small portion of all the possible
rovibrational transitions for the N2(

1Σ+
g )-N2(

1Σ+
g ) system (Panesi et al. 2013).

These have not been taken into account in the present thesis.
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3.1.1 Thermodynamics

The chemical component set introduced in ch. 1 is S = {N,N2}. Since both N
and N2 are in their electronic ground-state, no electronic energy is considered
(unlike in existing electronic specific collisional models; Panesi et al. 2011;
Annaloro and Bultel 2013). Hence, only the rovibrational energy level set of
N2 (IN2) is needed, and quantity EN coincides with the formation energy of N.
The number of rovibrational energy levels N2(v, J) of the electronic ground-
state of N2 is 9390, where the indices v and J stand for the vibrational and
rotational quantum numbers, respectively. The energy of a given (v, J) level
can be written as the sum of the vibrational and rotational contributions:

EvJ = Ẽv +∆Ẽv(J), v ∈ VN2 , J ∈ Jv, (3.1)

where VN2 = {0, . . . , vmax} is the set storing the vibrational quantum numbers
and Jv = {0, . . . , Jmax(v)} is the set storing the rotational quantum numbers
for a given vibrational quantum state. The vibrational energy Ẽv is defined
as the energy of the rotationless level (J = 0) having vibrational quantum
number v. The rotational energy is defined based on the vibrational energy
as ∆Ẽv(J) = EvJ − Ẽv. The energy splitting adopted in eq. (3.1) is arbitrary
defined and other choices are possible (Jaffe 1987). The degeneracy avJ of the
rovibrational energy levels is:

avJ = (2J + 1) aNS
vJ , aNS

vJ =

{

6 even J

3 odd J
, v ∈ VN2 , J ∈ Jv. (3.2)

Quantity aNS
vJ is the nuclear spin degeneracy of N2. Its dependence on the

rotational quantum number J is due to the fact that the total wave function
of N2 must be symmetric with respect to exchanging the nuclei (Bose-Einstein
statistics; Jaffe et al. 2008; Chaban et al. 2008; Schwenke 2008; Jaffe et al.
2009). The number of vibrational energy levels is 61 (vmax = 60) and for the
vibrational ground-state (v = 0) the maximum rotational quantum number is
279. Most of the rovibrational levels (7421) are bound (B). This means that
their energy is lower than the dissociation energy relative to the (v = 0, J = 0)
level, equal to 9.75 eV. The remaining levels are predissociated (P), or quasi-
bound. Thus, their energy is higher than the dissociation energy relative to
the level (v = 0, J = 0), but lower than the J dependent centrifugal barrier
(Jaffe 1987). All the rotationless levels (J = 0) are bound. The numerical
values of the rovibrational energy levels have been obtained by applying the
Wentzel-Kramers-Brillouin (WKB) approximation (Schwenke 1988) using the
potential for N2(

1Σ+
g ) developed by Le Roy et al. (2006).

In some situations (see sec. 3.4), it is more convenient to represent the rovi-
brational energy levels by adopting the storage scheme of the set IN2 (i.e. by
sorting them by increasing energy) and denoting them by means of a global in-
dex i. The correspondence between the i and (v, J) notations can be expressed
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as:

i = i(v, J), v ∈ VN2 , J ∈ Jv, (3.3)

and conversely by the relations:

v = v(i), J = J(i), i ∈ IN2 . (3.4)

When the i notation is used, the degeneracy of the rovibrational energy level i
is written as ai = (2J(i) + 1) aNS

i .
For the sake of later convenience, it is useful to introduce the subsets IBN2

and IPN2
storing, respectively, the bound and the predissociated rovibrational

energy levels of N2, and the subsets J B
v and J P

v storing, respectively, the bound
and predissociated rotational levels of the vibrational level v. These satisfy the
relations IBN2

∪ IPN2
= IN2 , IBN2

∩ IPN2
= ∅, J B

v ∪ J P
v = Jv and J B

v ∩ J P
v = ∅.

Before concluding this section, it is instructive to investigate the thermody-
namic data of the NASA ARC database in more detail. Figure 3.1 shows how
the rotational levels are distributed across the vibrational ladder. The number
of rotational levels per each vibrational state decreases when increasing the
vibrational quantum number.
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Figure 3.1: Rotational structure of the vibrational levels of N2(
1Σ+

g ) (one level over
four is plotted; crosses bound levels, stars predissociated levels).

Figure 3.2 shows the vibrational and rotational spacings, defined as (Ẽv+1 −
Ẽv)/kb and (∆Ẽv(J + 1) − ∆Ẽv(J))/kb, respectively. The decrease of the
vibrational spacing (fig. 3.2(a)) when increasing the vibrational quantum num-
ber is a clear indication of anharmonicity effects starting from the first excited
vibrational level. At low energies, the rotational spacing for the vibrational
ground-state (fig. 3.2(b)) behaves linearly as in the Rigid-Rotor (RR) model
(Pauling and Wilson Jr. 1985). Non-linearities appear for high-lying rotational
levels when approaching the J dependent centrifugal barrier.
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Figure 3.3 shows the equilibrium internal energy and constant volume specific
heat of N2(

1Σ+
g ), obtained based on eqs. (1.43) and (1.47), respectively:

eintN2
(T eq) =

kbT
eq 2

mN2

∂ lnZ int
N2

(T eq)

∂T eq
, cintvN2

(T eq) =
deintN2

(T eq)

dT eq
, (3.5)

where the internal partition function is computed based on eq. (1.35), Z int
N2

(T eq) =
∑

i∈IN2
ai exp(−Ei/kbT

eq).
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(b) Rotational energy spacing (v = 0).

Figure 3.2: Vibrational and rotational energy spacings of N2(
1Σ+

g ).

In fig. 3.3 the internal energy and specific heat values obtained based on the
Rigid-Rotor and Harmonic-Oscillator (RR-HO) models are also shown (Paul-
ing and Wilson Jr. 1985). The comparison confirms that the RR-HO approx-
imation works well at low temperatures, while it becomes inaccurate at high
temperatures (in particular for the specific heat).
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Figure 3.3: Internal energy and specific heat of N2(
1Σ+

g ) (unbroken lines NASA
ARC, dashed lines RR-HO).
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3.1.2 Rate Coefficients

The NASA ARC database for the N2(
1Σ+

g )-N(
4Su) system provides more than

20× 106 rate coefficients for the following processes:
• Collisional dissociation of bound and predissociated levels:

N2(i) + N
kdisi (T )−→←−
kreci (T )

N+N+N, i ∈ IN2 , (3.6)

• Predissociation, or tunneling, of predissociated levels:

N2(i)
kprei (T )−→←−
ki−pre
i (T )

N+N, i ∈ IPN2
, (3.7)

• Inelastic collisional excitation among all levels:

N2(i) + N
kini→j(T )
−→←−

kinj→i(T )
N2(j) + N, i < j, i, j ∈ IN2 . (3.8)

The excitation rate coefficient kini→j(T ) (with i < j) accounts for the contribu-
tion of both inelastic (non-reactive) and exchange processes:

kini→j(T ) = kin−in
i→j (T ) + kin−exc

i→j (T ), i < j, i, j ∈ IN2 . (3.9)

The first term kin−in
i→j (T ) represents the contribution of the inelastic process,

where the kinetic energy is transferred into internal energy during the collision.
The second term kin−exc

i→j (T ) represents the contribution of the exchange process.
In this situation, the transfer between kinetic and internal energies occurs via
substitution of one bounded atom of the molecule with the colliding partner.
The importance of the exchange process has been assessed and studied by
Panesi et al. (2013) based on heat-bath calculations.
The rate coefficients for the exothermic processes (kreci (T ), ki−pre

i (T ) and kinj→i(T ),
with i < j, respectively) are computed based on micro-reversibility:

kreci (T )

kdisi (T )
=

aiZ
tra
N2

(T )
[

aNZ
tra
N (T )

]2 exp

(

2EN −Ei

kbT

)

, i ∈ IN2 , (3.10)

ki−pre
i (T )

kprei (T )
=

aiZ
tra
N2

(T )
[

aNZtra
N (T )

]2 exp

(

2EN −Ei

kbT

)

, i ∈ I P
N2
, (3.11)

kinj→i(T )

kini→j(T )
=
ai
aj

exp

(

Ej − Ei

kbT

)

, i < j, i, j ∈ IN2 . (3.12)

The degeneracy of N is aN = 12 (nuclear and electronic spin contributions). The
translational partition functions of N and N2 are obtained based on eq. (1.35):

Ztra
N (T ) =

(

2πmNkbT

h2p

)3/2

, Ztra
N2

(T ) =

(

2πmN2kbT

h2p

)3/2

. (3.13)
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Figure 3.4: Analytical fit of the N3 PES with the N − N − N angle constrained
to 115◦. Blue regions have low energy and orange/red regions have high energy. The
potential energy minima corresponding to Na+NbNc and NaNb+Nc are shown. These
arrangements are connected by a reaction path for the exchange reaction which has a
barrier and shallow minimum labeled NaNbNc (credits NASA Ames Research Center).

Numerical values for the rate coefficients have been obtained by integrating
over a Maxwell-Boltzmann distribution function (for the translational energy)
the cross-sections computed by applying the following two-step procedure:

• Generation of the N3 Potential Energy Surface (PES) based on first prin-
ciple quantum-chemistry calculations (Jaffe et al. 2008; Schwenke 2008).
The N3 PES provides a representation of the potential energy of three
nitrogen atoms in any arbitrary arrangement and geometry. For ex-
ample, if the N atoms are labeled Na, Nb and Nc (as in fig. 3.4), the
PES describes the NaNb, NaNc and NbNc dinitrogen molecules, sepa-
rated atoms (Na + Nb + Nc) and a possible triatomic complex (NaNbNc

and its permutations). If one considers the collision between NaNb(v, J)
and Nc, the possible outcomes are NaNb(v

′, J ′) + Nc, NaNc(v
′, J ′) + Nb,

NbNc(v
′, J ′) +Na and Na +Nb +Nc. The first is a non reactive inelastic

collision and the last is a dissociation reaction. The other two outcomes
represent an exchange reaction (see eq. (3.9)), where the atoms compris-
ing the final molecule are different from the initial molecule.

• Application of the Quasi-Classical Trajectory (QCT) method (Park 1990)
in order to compute cross-sections.
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Rate coefficients are available at nine values of the gas translational tempera-
ture: 7500, 10 000, 12 500, 15 000, 20 000, 25 000, 30 000, 40 000 and 50 000K.
The total number of possible combinations for the collisional excitation process
(3.7) is around 44× 106. However, due to the stochastic nature of the QCT
method, only 19× 106 excitation rate coefficients are available. An accurate
investigation of the kinetic data revealed that most of the missing rate coef-
ficients refer both to processes that have a small transition probability (i.e.
j >> i in eq. (3.7)) or to processes that are quantum-mechanically forbid-
den (i.e. inelastic collisions for which the rotation quantum number variation
|J(j) − J(i)| is odd). Hence, the missing kinetic data refer to processes that
have a small (or no) effect on the energy level dynamics. It is worth to men-
tion that in the database both endothermic and exothermic rate coefficients
are found. The number of exothermic rate coefficients (13.5× 106) is higher
than the number of endothermic rate coefficients (7.1× 106). For a small num-
ber of processes (1.5× 106), both rate coefficients are available. In order to
use only endothermic rate coefficients in the calculations, exothermic rate co-
efficients are inverted by means of micro-reversibility. For those processes for
which both types of rate coefficients are available, exothermic rate coefficients
are preferentially used (Panesi et al. 2013) and the corresponding endothermic
rate coefficients are found via micro-reversibility.

3.1.3 Rovibrational Collisional Model

In this section the thermodynamic and kinetic data of the NASA ARC database
(described in secs. 3.1.1-3.1.2) are used to develop a rovibrational collisional
(RVC) model for the N2(

1Σ+
g )-N(

4Su) system. The set of master of equations
is written for a homogeneous and isochoric system. This is done because the
proposed reduced models (presented in secs. 3.2-3.4) are based on a kinetic
mechanism reduction which is not dependent on the presence of convective
and/or diffusive fluxes. The RVC model is presented for both the i and (v, J)
notations.

i Notation

Master Equations The master equations for the RVC model are obtained
from the Navier-Stokes equations (2.82) by neglecting the convective and dif-
fusive flux terms, and by setting the flow velocity to zero. The final set of
equations comprises the continuity equations for N and the rovibrational en-
ergy levels of N2, and the global energy conservation equation:

∂

∂t





ρN
ρi
ρe



 =





ωN

ωi

0



 , i ∈ IN2 . (3.14)
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Mass Production Terms The mass production terms for N and the rovi-
brational energy levels of N2 are:

ωN =
∑

i∈IN2

ωdis
i +

∑

i∈IP
N2

ωpre
i , (3.15)

ωi = −
{

(

ωdis
i + ωin

i

)

, i ∈ IBN2
,

(

ωdis
i + ωpre

i + ωin
i

)

, i ∈ IPN2
,

(3.16)

where the partial production terms due to dissociation, predissociation and
inelastic collisional excitation are:

ωdis
i = mN2nN

[

nik
dis
i (T )− n2Nkreci (T )

]

, i ∈ IN2 , (3.17)

ωpre
i = mN2

[

nik
pre
i (T )− n2Nki−pre

i (T )
]

, i ∈ IPN2
, (3.18)

ωin
i = mN2nN

∑

j > i
j ∈IN2

[

nik
in
i→j(T )− njkinj→i(T )

]

−

mN2nN
∑

j < i
j ∈IN2

[

njk
in
j→i(T )− nikini→j(T )

]

, i ∈ IN2 . (3.19)

The rate coefficients in eqs. (3.17)-(3.19) are computed as explained in sec. 3.1.2.

Thermodynamic Properties The gas number density is obtained by sum-
ming the contributions of N and N2, and its pressure follows from the applica-
tion of Dalton’s law of partial pressures:

n = nN + nN2 , p = nNkbT + nN2kbT, (3.20)

where the N2 number density is computed as nN2 =
∑

i∈IN2
ni. The gas ther-

mal energy density is obtained by summing the translational and formation
energy of N, and the translational and internal energy of the rovibrational
energy levels of N2:

ρe =
3

2
nkbT + nNEN +

∑

i∈IN2

niEi. (3.21)

(v, J) Notation

Master Equations The master equations for the (v, J) notation can be ob-
tained based on that for the i notation (3.14) through the use of the correspon-
dence relations given in eq. (3.4):

∂

∂t





ρN
ρvJ
ρe



 =





ωN

ωvJ

0



 , v ∈ VN2 , J ∈ Jv. (3.22)
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Mass Production Terms The mass production terms for N and the rovi-
brational energy levels of N2 are:

ωN =
∑

v ∈VN2
J ∈Jv

ωdis
vJ +

∑

v ∈VN2

J ∈JP
v

ωpre
vJ , (3.23)

ωvJ = −
{

(

ωdis
vJ + ωin

vJ

)

, v ∈ VN2 , J ∈ J B
v ,

(

ωdis
vJ + ωpre

vJ + ωin
vJ

)

, v ∈ VN2 , J ∈ J P
v ,

(3.24)

where the partial production terms for the (v, J) level due to dissociation,
predissociation and inelastic collisional excitation are:

ωdis
vJ = mN2nN

[

nvJk
dis
vJ (T )− n2NkrecvJ (T )

]

, v ∈ VN2 , J ∈ Jv, (3.25)

ωpre
vJ = mN2

[

nvJk
pre
vJ (T )− n2Nki−pre

vJ (T )
]

, v ∈ VN2 , J ∈ J P
v , (3.26)

ωin
vJ = mN2nN

∑

w>v
w∈VN2

∑

Y ∈Jw

[

nvJk
in
vJ→wY (T )− nwY k

in
wY→vJ(T )

]

+

mN2nN
∑

Y >J
Y ∈Jv

[

nvJk
in
vJ→vY (T )− nvY kinvY→vJ(T )

]

−

mN2nN
∑

w<v
w∈VN2

∑

Y ∈Jw

[

nwY k
in
wY→vJ(T )− nvJkinvJ→wY (T )

]

−

mN2nN
∑

Y <J
Y ∈Jv

[

nvY k
in
vY→vJ(T )− nvJkinvJ→vY (T )

]

, (3.27)

v ∈ VN2 , J ∈ Jv.
The rate coefficients in eqs. (3.25)-(3.27) are computed as explained in sec. 3.1.2
(after applying the conversion relations given in eq. (3.4)).

Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20), where the number density of N2 is now writ-
ten as:

nN2 =
∑

v ∈VN2
J ∈Jv

nvJ . (3.28)

When using the (v, J) notation, the gas thermal energy density assumes the
following expression:

ρe =
3

2
nkbT + nNEN +

∑

v ∈VN2
J ∈Jv

nvJ

[

Ẽv +∆Ẽv(J)
]

. (3.29)

The first and second terms in the sum in eq. (3.29) represent, respectively, the
gas vibrational and rotational energy densities according to the energy level
splitting given in eq. (3.1).
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3.2 Multi-Temperature Model

The most intuitive way for developing a multi-temperature (MT) model for
the N2(

1Σ+
g ) − N(4Su) system would be to assume a Boltzmann distribution

(at its own temperature) for the internal energy modes of N2 and take the
zero and first-order moments of the production terms (3.15)-(3.16) and (3.23)-
(3.24). This would reduce the set of master equations (3.14) and (3.22) to the
continuity equations for N and N2, the global energy conservation equation,
and additional energy conservation equations for the internal energy modes of
N2. The macroscopic dissociation rate coefficient would be a function of mul-
tiple temperatures. Instead of using this approach, Panesi et al. (2013) have
developed a MT model for the N2(

1Σ+
g )-N(

4Su) system model based on a differ-
ent procedure. They repeated isochoric and isothermal heat-bath calculations
for different values of the translational temperatures. The calculations were
performed in a dissociating environment (no recombination) and by neglecting
the effects of predissociation. The macroscopic dissociation rate coefficient is
defined as:

k̃disN2
(T ) =

1

nN2

∑

i∈IN2

ni k
dis
i (T ). (3.30)

Since the definition of a rate coefficient requires the existence of a Quasi-Steady
State (QSS) population (Park 1990), its numerical value has been taken as that
given by eq. (3.30) in QSS conditions. The energy transfer terms have been
computed by taking the first-order moments of the production terms:

Ωtra−int
N2

= −
∑

i∈IN2

Ei ω
in
i , Ωdis−int

N2
= −

∑

i∈IN2

Ei ω
dis
i , (3.31)

Ωtra−vib
N2

= −
∑

v ∈VN2
J ∈Jv

Ẽv ω
in
vJ , Ωdis−vib

N2
= −

∑

v ∈VN2
J ∈Jv

Ẽv ω
dis
vJ , (3.32)

Ωtra−rot
N2

= −
∑

v ∈VN2
J ∈Jv

∆Ẽv(J)ω
in
vJ , Ωdis−rot

N2
= −

∑

v ∈VN2
J ∈Jv

∆Ẽv(J)ω
dis
vJ . (3.33)

In order to cast the energy transfer terms defined in eqs. (3.31)-(3.33) into a
form suitable for a multi-temperature description, Panesi et al. (2013) intro-
duced the following implicit definitions for the internal, vibrational and rota-
tional temperatures:
• Internal temperature (Tint):

∑

i∈IN2

niEi − nN2E
int
N2

(Tint) = 0, (3.34)

where the internal energy (per molecule) Eint
N2

(Tint) can be obtained by
multiplying by mN2 the specific internal energy given in eq. (3.5) and by
replacing T with Tint, Eint

N2
(Tint) = mN2e

int
N2

(Tint).
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• Vibrational and rotational temperatures (Tvib and Trot):
∑

v ∈VN2

ñvẼv − nN2E
vib
N2

(Tvib, Trot) = 0, (3.35)

∑

v ∈VN2
J ∈Jv

nvJ∆Ẽv(J)− nN2E
rot
N2

(Tvib, Trot) = 0. (3.36)

The vibrational and rotational energies (per molecule; Evib
N2

(Tvib, Trot)
and Erot

N2
(Tvib, Trot), respectively) are defined as:

Evib
N2

(Tvib, Trot) = kbT
2
vib

∂ lnZ int
N2

(Tvib, Trot),

∂Tvib
, (3.37)

Erot
N2

(Tvib, Trot) = kbT
2
rot

∂ lnZ int
N2

(Tvib, Trot)

∂Trot
, (3.38)

where the two-temperature internal partition function is:

Z int
N2

(Tvib, Trot) =
∑

v ∈VN2
J ∈Jv

avJ exp

[

− Ẽv

kbTvib
− ∆Ẽv(J)

kbTrot

]

. (3.39)

The division of eqs. (3.37)-(3.38) by mN2 gives the specific vibrational
and rotational energies of N2 (Evib

N2
(Tvib, Trot) = mN2e

vib
N2

(Tvib, Trot) and
Erot

N2
(Tvib, Trot) = mN2e

rot
N2

(Tvib, Trot), respectively).

The multi-temperature formulations of the energy transfer terms due to inelas-
tic collisions (Ωtra−int

N2
, Ωtra−vib

N2
and Ωtra−rot

N2
) have been developed by assuming

a Landau-Teller relaxation model:

Ωtra−int
N2

= nN2

Eint
N2

(T )− Eint
N2

(Tint)

τ tra−int
N−N2

(T, pN)
, (3.40)

Ωtra−vib
N2

= nN2

Evib
N2

(T, T )− Evib
N2

(Tvib, Trot)

τ tra−vib
N−N2

(T, pN)
, (3.41)

Ωtra−rot
N2

= nN2

Erot
N2

(T, T )− Erot
N2

(Tvib, Trot)

τ tra−rot
N−N2

(T, pN)
. (3.42)

The relaxation times τ tra−int
N−N2

, τ tra−vib
N−N2

and τ tra−rot
N−N2

in eqs. (3.40)-(3.42) are all
functions of the translational temperature T and of the N partial pressure,
pN = nNkbT . The procedure for their evaluation can be found in the work of
Panesi et al. (2013). The product of the three relaxation times with the N
partial pressure is shown in fig. 3.5. The results show that the rotational and
vibrational relaxation times become comparable at high temperatures.
The energy transfer terms coupling the dissociation and the various components
of the internal energy (Ωdis−int

N2
, Ωdis−vib

N2
and Ωdis−rot

N2
) have been developed by
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assuming that the average energy lost due to dissociation is a temperature
dependent fraction of the dissociation energy:1

Ωdis−int
N2

= −2mNnN2nNC
dis−int
N2

(T ) 2EN k̃
dis
N2

(T ), (3.43)

Ωdis−vib
N2

= −2mNnN2nNC
dis−vib
N2

(T ) 2EN k̃
dis
N2

(T ), (3.44)

Ωdis−rot
N2

= −2mNnN2nNC
dis−rot
N2

(T ) 2EN k̃
dis
N2

(T ). (3.45)
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Figure 3.5: Extracted relaxation times (unbroken line τ tra−int
N−N2

pN, dashed line
τ tra−vib
N−N2

pN, dotted-dashed line τ tra−rot
N−N2

pN).
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Figure 3.6: Chemistry coupling factors (unbroken line Cdis−int
N2

, dashed line Cdis−vib
N2

,
dotted-dashed line Cdis−rot

N2
).

The chemistry coupling factors Cdis−int
N2

, Cdis−vib
N2

and Cdis−rot
N2

are only function
of the translational temperature T . These quantities are shown in fig. 3.6. The

1This model is similar to the one proposed by Park (1990) where the average vibrational
energy lost by a molecule due to dissociation is 30% of its dissociation energy.



Part I - Physico-Chemical Models for Non-Equilibrium Flows 61

average value of the vibrational energy lost due to dissociation decreases when
increasing the translational temperature. An opposite behavior is observed for
the rotational energy.
The fitting expressions for the macroscopic dissociation rate coefficient, relax-
ation times and chemistry coupling factors are provided in app. A.
The internal temperatures and the energy transfer terms defined in eqs. (3.34)-
(3.36) and (3.40)-(3.45), respectively, allow for introducing two variants of the
MT model for the N2(

1Σ+
g )-N(

4Su) system: T -Tint model and T -Tvib-Trot model.

3.2.1 T − Tint Model

Master Equations The master equations for the T -Tint model comprise the
continuity equations for N and N2, the global energy conservation equation and
the internal energy conservation equation:

∂

∂t









ρN
ρN2

ρe
ρN2e

int
N2









=









ωN

ωN2

0

Ωtra−int
N2

+Ωdis−int
N2









. (3.46)

Mass Production and Energy Transfer Terms The mass production
terms for N and N2 are:

ωN = 2mNnN

[

nN2 k̃
dis
N2

(T )− n2Nk̃recN2
(T )
]

, ωN2 = −ωN, (3.47)

where the macroscopic recombination rate coefficient k̃recN2
(T ) is computed based

on micro-reversibility:

k̃recN2
(T )

k̃disN2
(T )

=
Ztra
N2

(T )Z int
N2

(T )
[

aNZ
tra
N (T )

]2 exp

(

2EN

kbT

)

. (3.48)

The energy transfer terms Ωtra−int
N2

and Ωdis−int
N2

are computed based on eqs.
(3.40) and (3.43), respectively.

Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20). In the case of the T -Tint model, the expres-
sion for the gas thermal energy density simplifies to:

ρe =
3

2
nkbT + nNEN + nN2E

int
N2

(Tint). (3.49)

The internal energies per unit mass and molecule (eintN2
(Tint) and Eint

N2
(Tint),

respectively) are obtained based on eq. (3.34).
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3.2.2 T − Tvib − Trot Model

Master Equations The master equations for the T -Tvib-Trot model comprise
the continuity equations for N and N2, the global energy conservation equation
and the vibrational and rotational energy conservation equations:

∂

∂t















ρN
ρN2

ρe
ρN2e

rot
N2

ρN2e
vib
N2















=















ωN

ωN2

0

Ωtra−vib
N2

+Ωdis−vib
N2

Ωtra−rot
N2

+Ωdis−rot
N2















. (3.50)

Mass Production and Energy Transfer Terms The mass production
terms are computed as done for the T -Tint model through eqs. (3.47)-(3.48).
The energy transfer terms Ωtra−vib

N2
, Ωtra−rot

N2
, Ωdis−vib

N2
and Ωdis−rot

N2
are computed

based on eqs. (3.41)-(3.42) and (3.44)-(3.45), respectively.

Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20). In the case of the T -Tvib-Trot model, the ex-
pression for the gas thermal energy density is:

ρe =
3

2
nkbT + nNEN + nN2

[

Evib
N2

(Tvib, Trot) + Erot
N2

(Tvib, Trot)
]

. (3.51)

The vibrational and rotational energies per unit mass and molecule (evibN2
(Tvib, Trot),

erotN2
(Tvib, Trot) and Evib

N2
(Tvib, Trot), Erot

N2
(Tvib, Trot), respectively) are computed

by means of eqs. (3.37)-(3.38).

The MT models presented before are purely macroscopic models. In the present
thesis, alternative reduced models have been developed. These consist in Vibra-
tional Collisional and an Energy Bin models (described in secs. 3.3-3.4). These
reduced models are more accurate than the MT models (as shown in ch. 4) and
are built by coarsening the resolution of the energy level dynamics (from which
the name coarse-grain models). This approach has the benefit of reducing the
number of governing equations to be solved, and is motivated by the fact that,
in CFD applications, one is mainly interested in capturing the correct dynamics
of flow quantities, than resolving the finest details of the internal energy level
dynamics. As for the MT models, predissociation has been neglected due its
negligible effects on flow quantities (as shown in ch. 4).
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3.3 Vibrational Collisional Model

The Vibrational Collisional (VC) model (Bourdon et al. 2008; Magin et al.
2009, Munafò at al. 2010; 2012) has represented the first attempt towards the
development of a coarse-grained model for the N2(

1Σ+
g )-N(

4Su) system. The ro-
tational structure associated to each vibrational vibrational quantum state (see
fig. 3.1) provides indeed a natural way to coarsen the resolution of the energy
level dynamics. In the VC model, this is accomplished by assuming thermal
equilibrium between the translational and the rotational degrees of freedom.
Thus, the rotational levels within each vibrational level follow a Boltzmann
distribution at the local translational temperature T :

nvJ
ñv

=
avJ

Z̃v(T )
exp

[

−∆Ẽv(J)

kbT

]

, v ∈ VN2 , J ∈ Jv, (3.52)

where the number density and the rotational partition function of the vibra-
tional level v are:

ñv =
∑

J ∈Jv

nvJ , Z̃v(T ) =
∑

J ∈Jv

avJ exp

[

−∆Ẽv(J)

kbT

]

, v ∈ VN2 . (3.53)

During the years, different VC models have been proposed. Specific examples
are the VC model developed by Esposito (1999; 2006), and the one recently
developed by Guy et al. (2013) based on the FHO theory. An exhaustive
review of the VC models developed during the 1980-1990’s can be found in the
book of Capitelli et al. (2000)

Master Equations The master equations for the VC model can be obtained
from those for the RVC model (3.22) by summing the equations for the (v, J)
levels over the rotational levels of each vibrational state (stored in the sets Jv)
and by using eq. (3.52):

∂

∂t





ρN
ρ̃v
ρe



 =





ωN

ω̃v

0



 , v ∈ VN2 . (3.54)

The mass production term and the density of the vibrational level v are defined
as ω̃v =

∑

J ∈Jv
ωvJ and ρ̃v = mN2ñv, respectively.

Mass Production Terms After some algebra, the mass production terms
for N and the vibrational levels of N2 in eq. (3.54) can be written as:

ωN =
∑

v ∈VN2

ω̃dis
v , ω̃v = −

(

ω̃dis
v + ω̃in

v

)

, v ∈ VN2 , (3.55)
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where the partial production terms due to vibrational dissociation and inelastic
collisional excitation have the following expressions:

ω̃dis
v = mN2nN

[

ñvk̃
dis
v (T )− n2Nk̃recv (T )

]

, (3.56)

ω̃in
v = mN2nN

∑

w>v
w∈VN2

[

ñvk̃
in
v→w(T )− ñwk̃inw→v(T )

]

−

mN2nN
∑

w<v
w∈VN2

[

ñwk̃
in
w→v(T )− ñvk̃inv→w(T )

]

, (3.57)

v ∈ VN2 .

The rotationally-averaged (endothermic) rate coefficients for vibrational disso-
ciation and inelastic collisional excitation (k̃disv (T ) and k̃inv→w(T ), with v < w,
respectively) are:

k̃disv (T ) =
1

Z̃v(T )

∑

J ∈Jv

avJ k
dis
vJ (T ) exp

[

−∆Ẽv(J)

kbT

]

, (3.58)

k̃inv→w(T ) =
1

Z̃v(T )

∑

J ∈Jv

∑

Y ∈Jw

avJ k
in
vJ→wY (T ) exp

[

−∆Ẽv(J)

kbT

]

, (3.59)

v < w, v, w ∈ VN2 .

From the algebraic manipulation needed to obtain to the VC model, it can be
shown that the (exothermic) rate coefficients for recombination and inelastic
collisional de-excitation (k̃recv (T ) and k̃inw→v(T ), with v < w, respectively) can
be computed by applying micro-reversibility among the vibrational levels:

k̃recv (T )

k̃disv (T )
=
Ztra
N2

(T )Z̃v(T )
[

aNZ
tra
N (T )

]2 exp

(

2EN − Ẽv

kbT

)

, (3.60)

k̃inw→v(T )

k̃inv→w(T )
=
Z̃v(T )

Z̃w(T )
exp

(

Ẽw − Ẽv

kbT

)

, (3.61)

v < w, v, w ∈ VN2 .

The dissociation and excitation VC rate coefficients have been compared with
available literature data. Figure 3.7 shows a comparison with the VC model of
Esposito (1999; 2006) developed at the University of Bari (U Bari). In the VC
model of Esposito, rate coefficients are available within the temperature range
20-10 000K and have been computed by using a different set of energy levels
and PES compared to those of the NASA ARC database (for more details see
the aforementioned papers of Esposito). Both databases are in fair agreement
as far as excitation is concerned. Some differences arise for dissociation when
moving towards high-lying levels. It is worth to mention that fig. 3.7 compares
rate coefficients for the same vibrational levels that do not correspond to the
same energy in the NASA ARC and U Bari databases.
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Figure 3.7: Comparison between the NASA ARC and U Bari databases for the vi-
brational dissociation and inelastic collisional excitation rate coefficients (lines NASA
ARC, lines with symbols U Bari; numbers indicate the vibrational levels involved in
the transitions).

Thermodynamics The gas number density and pressure are computed based
on eq. (3.20), where the number density of N2 is nN2 =

∑

v ∈VN2
ñv. The gas

thermal energy density can be obtained by substituting the assumed Boltzmann
distribution (3.52) for the rotational levels in eq. (3.29):

ρe =
3

2
nkbT + nNEN +

∑

v ∈VN2

ñv

[

Ẽv + kbT
2∂ ln Z̃v(T )

∂T

]

. (3.62)

The temperature dependent term in the sum in eq. (3.62) represents the rota-
tional contribution to the gas internal energy density.
The formulation of the VC model is completed with the introduction of a vi-
brational temperature Tvib. This is extracted from the level population as
post-processing and defined through the following implicit relation:

∑

v ∈VN2
ñvẼv

nN2

=

∑

v ∈VN2
ẼvZ̃v(T ) exp (−Ẽv/kbTvib)

∑

v ∈VN2
Z̃v(T ) exp (−Ẽv/kbTvib)

. (3.63)

3.4 Energy Bin Model

The Energy Bin model is the second coarse-grained model for the N2(
1Σ+

g ) −
N(4Su) system that has been developed in the present thesis (Magin et al. 2010;
Panesi et al. 2010; Magin et al. 2012, Munafò et al. 2011; 2014). This model
is built by sorting the energy levels of N2 by increasing energy and by lumping
them in energy bins. The coarsening of the energy level dynamics is realized
by assuming a distribution of the energy levels with the energy bins. Two
variants of the Energy Bin model have been developed: Uniform Rovibrational
Collisional and Boltzmann Rovibrational Collisional models.
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The procedure used for the generation of the energy bins is common to both
variants and goes as follows. The rovibrational energy levels of N2 are sorted by
increasing energy (i.e. by adopting the storage scheme of the set IN2 introduced
in sec. 3.1.1). The whole internal energy ladder of N2 is first divided in two
parts: one for the bound levels and the other for the predissociated levels.
Secondly, both regions are evenly sub-divided with spacing:

δEB
N2

= 2EN/N
B
N2
, δEP

N2
= (E⋆ − 2EN)/N

P
N2
, (3.64)

where the number of energy bins for the bound and predissociated regions
(N B

N2
and N P

N2
, respectively) are free parameters and satisfy the relation

NN2
= N B

N2
+ N P

N2
(where NN2

is the total number of energy bins). Quantity
E⋆ in eq. (3.64) represents the energy of the last energy level of N2. The next
step consists in the construction of a map between energy bins and energy levels
in order to associate the energy level i with the energy bin k it belongs to:

lev_to_bin(i) =

{

⌊Ei/δE
B
N2
⌋+ 1, i ∈ IBN2

,

⌊(Ei − 2EN)/δE
P
N2
⌋+ N B

N2
+ 1, i ∈ IPN2

,
(3.65)

where the symbol ⌊ ⌋ stands for the floor function. For sake of convenience
it is useful to introduce the sets KB

N2
, KP

N2
and KN2 , storing the indices, re-

spectively, of the energy bins associated to the bound, predissociated and both
the bound and predissociated levels (satisfying the relations KB

N2
∪ KP

N2
= KN2

and KB
N2
∩ KP

N2
= ∅) and the set BkN2

storing the energy levels belonging to the
energy bin k:

BkN2
= {i ∈ IN2 | lev_to_bin(i) = k} , k ∈ KN2 . (3.66)

3.4.1 Uniform Rovibrational Collisional Model

In the Uniform Rovibrational Collisional (URVC) model (Magin et al. 2010;
Panesi et al. 2010; Magin et al. 2012), the population distribution within the
energy bins is assumed to be uniform:

ni
ñk

=
ai
ãk
, k ∈ KN2 , i ∈ IN2 , (3.67)

where the number density and the degeneracy of the energy bin k are defined
as:

ñk =
∑

i∈Bk
N2

ni, ãk =
∑

i∈Bk
N2

ai, k ∈ KN2 . (3.68)

Equation (3.67) does not hold in equilibrium conditions. This means that the
URVC model introduces modifications, compared to the RVC model, in terms
of equilibrium thermodynamic properties. This fact makes the application of
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the URVC model less appealing for flows where equilibrium is imposed in some
parts of the domain (i.e. such as in the reservoir for nozzle flows). This problem
can be partially alleviated by increasing the number of energy bins. It is worth
to mention that, since the energy levels in the URVC model are sorted by
increasing energy, the assumed uniform distribution (3.67) within each bin may
mix together energy levels having different vibrational and rotational quantum
numbers. This means that the use of eq. (3.67) for the sake of mechanism
reduction should not prevent a priori to account for rotational non-equilibrium
effects.
For a given energy bin k, an average energy Ẽk is further introduced:

Ẽk =
1

ãk

∑

i∈Bk
N2

aiEi, k ∈ KN2 . (3.69)

Based on the sub-division into energy bins constructed through eqs. (3.64)-
(3.66), it is possible to write the energy Ei of the level i within the energy bin
k based on its average energy Ẽk as:

Ei = Ẽk +∆Ẽk(i), i ∈ IN2 , k ∈ KN2 . (3.70)

The average bin energy Ẽk and the ∆Ẽk(i) contribution are the equivalent of
the vibrational and rotational energies as defined through eq. (3.1).

Master Equations The master equations for the URVC model can be ob-
tained from those for the RVC model (3.14) by summing the equations for the
i levels over the energy levels contained within each bin (stored in the sets BkN2

)
and by using eq. (3.67):

∂

∂t





ρN
ρ̃k
ρe



 =





ωN

ω̃k

0



 , k ∈ KN2 . (3.71)

The mass production term and the density of the energy bin k are defined as
ω̃k =

∑

i∈Bk
N2

ωi and ρ̃k = mN2ñk, respectively.

Mass Production Terms After some algebra, the mass production terms
for N and the energy bins of N2 in eq. (3.71) can be written as:

ωN =
∑

k∈KN2

ω̃dis
k , ω̃k = −

(

ω̃dis
k + ω̃in

k

)

, k ∈ KN2 , (3.72)
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where the partial production terms due to bin dissociation and inelastic colli-
sional excitation have the following expressions:

ω̃dis
k = mN2nN

[

ñkk̃
dis
k (T )− n2Nk̃reck (T )

]

, (3.73)

ω̃in
k = mN2nN

∑

l > k
l∈KN2

[

ñkk̃
in
k→l(T )− ñlk̃inl→k(T )

]

−

mN2nN
∑

l < k
l∈KN2

[

ñlk̃
in
l→k(T )− ñkk̃ink→l(T )

]

, (3.74)

k ∈ KN2 .

The bin-averaged (endothermic) rate coefficients for dissociation and inelastic
collisional excitation (k̃disk (T ) and k̃ink→l(T ), with k < l, respectively) are:

k̃disk (T ) =
1

ãk

∑

i∈Bk
N2

ai k
dis
i (T ), (3.75)

k̃ink→l(T ) =
1

ãk

∑

i∈Bk
N2

∑

j ∈Bl
N2

j > i

ai k
in
i→j(T ), (3.76)

k < l, k, l ∈ KN2 .

The (exothermic) rate coefficients for recombination and inelastic collisional
de-excitation (k̃reck (T ) and k̃inl→k(T ), with k < l, respectively) are:

k̃reck (T ) =
Ztra
N2

(T )D̃k(T )
[

aNZ
tra
N (T )

]2 exp

(

2EN − Ẽk

kbT

)

, (3.77)

k̃inl→k(T ) =
1

ãl

∑

i∈Bk
N2

∑

j ∈Bl
N2

j > i

ai exp

(

Ej − Ei

kbT

)

kini→j(T ), (3.78)

k < l, k, l ∈ KN2 ,

where quantity D̃k(T ) is defined as:

D̃k(T ) =
∑

i∈Bk
N2

ai k
dis
i (T ) exp

[

−∆Ẽk(i)

kbT

]

, k ∈ KN2 . (3.79)

Equations (3.77)-(3.78) show that the endothermic and exothermic rate coeffi-
cients for the URVC model are not related through a micro-reversibility relation
among the energy bins. This is due to the assumed uniform distribution (3.67)
within the energy bins.
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Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20), where the number density of N2 is written as
nN2 =

∑

k∈KN2
ñk. The gas thermal energy density can be obtained by substi-

tuting the assumed uniform population distribution (3.67) within the energy
bins in eq. (3.21):

ρe =
3

2
nkbT + nNEN +

∑

k∈KN2

ñkẼk. (3.80)

The formulation of the URVC model is completed with the introduction of an
internal temperature Tint. This is extracted from the energy bin population as
post-processing and defined through the following implicit relation:

∑

k∈KN2
ñkẼk

nN2

=

∑

k∈KN2
Ẽkãk exp (−Ẽk/kbTint)

∑

k∈KN2
ãk exp (−Ẽk/kbTint)

. (3.81)

3.4.2 Boltzmann Rovibrational Collisional Model

In the Boltzmann Rovibrational Collisional (BRVC) model (Munafò et al. 2011;
2014), it is assumed that the population of the energy levels within each bin
follows a Boltzmann distribution at the local translational temperature T :

ni
ñk

=
ai

Z̃k(T )
exp

[

−∆Ẽk(i)

kbT

]

, i ∈ IN2 , k ∈ KN2 , (3.82)

where the number density and the partition function of the energy bin k are:

ñk =
∑

i∈Bk
N2

ni, Z̃k(T ) =
∑

i∈Bk
N2

ai exp

[

−∆Ẽk(i)

kbT

]

, k ∈ KN2 . (3.83)

The energy contribution ∆Ẽk(i) is always computed, as for the URVC model,
through Ei = Ẽk +∆Ẽk(i), with the important difference that now Ẽk repre-
sents the energy of the first level within the energy bin k.
The assumption of local equilibrium of the internal levels within each bin is
justified by the large reaction rate coefficients for excitation and de-excitation
which characterize groups of levels with similar internal energy. This assump-
tion was found to work quite well in the conditions of interest to the present
thesis (as it is shown in chs. 4-5). Furthermore, increasing the number of energy
bins can easily extend the range of validity of the BRVC model to the strongest
non-equilibrium conditions. As for the URVC model, the assumed Boltzmann
distribution (3.82) within each bin) may mix together energy levels with dif-
ferent vibrational and rotational quantum numbers. Hence, also for the case
of the BRVC model, the use of eq. (3.82) for the sake of mechanism reduction
should not prevent a priori to account for rotational non-equilibrium effects.
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Equation (3.82) holds true in equilibrium conditions. This implies that the
BRVC model (together with the VC model) does not introduce modifications,
when compared with the RVC model, as far as equilibrium thermodynamic
properties are concerned. This is not the case for the URVC model. In equilib-
rium conditions, the energy bin population follows a Boltzmann distribution:

ñk
nN2

=
Z̃k(T ) exp

(

−Ẽk/kbT
)

∑

k∈KN2
Z̃k(T ) exp

(

−Ẽk/kbT
) , k ∈ KN2 , (3.84)

where the bin partition function plays the role of a degeneracy. Equation (3.84)
can be obtained as follows. In equilibrium conditions, the number density of
the energy level i is related to that of N2 through the Boltzmann distribution
law (1.36):

ni
nN2

=
ai

Z int
N2

(T )
exp

(

− Ei

kbT

)

, i ∈ IN2 . (3.85)

The substitution of the eq. (3.85) in eq. (3.82) and the successive use of the
energy splitting Ei = Ẽk +∆Ẽk(i) in the result obtained gives eq. (3.84).

Master Equations The master equations for the BRVC model are obtained
based on the same procedure used for the URVC model given in sec. 3.4.1.

∂

∂t





ρN
ρ̃k
ρe



 =





ωN

ω̃k

0



 , k ∈ KN2 . (3.86)

The mass production term and the density of the energy bin k are always
defined as ω̃k =

∑

i∈Bk
N2

ωi and ρ̃k = mN2ñk, respectively.

Mass Production Terms After some algebra, the mass production terms
for N and the energy bins of the N2 in eq. (3.86) can be written as:

ωN =
∑

k∈KN2

ω̃dis
k , ω̃k = −

(

ω̃dis
k + ω̃in

k

)

, k ∈ KN2 , (3.87)

where the partial production terms due to bin dissociation and inelastic colli-
sional excitation have the following expressions:

ω̃dis
k = mN2nN

[

ñkk̃
dis
k (T )− n2Nk̃reck (T )

]

, (3.88)

ω̃in
k = mN2nN

∑

l > k
l∈KN2

[

ñkk̃
in
k→l(T )− ñlk̃inl→k(T )

]

−

mN2nN
∑

l < k
l∈KN2

[

ñlk̃
in
l→k(T )− ñkk̃ink→l(T )

]

, (3.89)

k ∈ KN2 .
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The bin-averaged (endothermic) rate coefficients for dissociation and inelastic
collisional excitation (k̃disk (T ) and k̃ink→l(T ), with k < l, respectively) are:

k̃disk (T ) =
1

Z̃k(T )

∑

i∈Bk
N2

ai k
dis
i (T ) exp

[

−∆Ẽk(i)

kbT

]

, (3.90)

k̃ink→l(T ) =
1

Z̃k(T )

∑

i∈Bk
N2

∑

j ∈Bl
N2

j > i

ai k
in
i→j(T ) exp

[

−∆Ẽk(i)

kbT

]

, (3.91)

k < l, k, l ∈ KN2 .

From the algebraic manipulation needed to obtain the BRVC model, it can be
shown that the (exothermic) rate coefficients for recombination and inelastic
collisional de-excitation (k̃reck (T ) and k̃inl→k(T ), with k < l, respectively) can be
computed by applying micro-reversibility among the energy bins:

k̃reck (T )

k̃disk (T )
=
Ztra
N2

(T )Z̃k(T )
[

aNZ
tra
N (T )

]2 exp

(

2EN − Ẽk

kbT

)

, (3.92)

k̃inl→k(T )

k̃ink→l(T )
=
Z̃k(T )

Z̃l(T )
exp

(

Ẽl − Ẽk

kbT

)

, (3.93)

k < l, k, l ∈ KN2 .

Equations (3.92)-(3.93) are a direct consequence of the assumed Boltzmann
distribution (3.82) within the energy bins.

Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20), where the number density of N2 is written as
nN2 =

∑

k∈KN2
ñk. For the BRVC model, the gas thermal energy density can

be obtained by substituting the assumed population distribution within the
energy bins (eq. (3.82)) in eq. (3.21). After some algebra, one has:

ρe =
3

2
nkbT + nNEN +

∑

k∈KN2

ñk

[

Ẽk + kbT
2 ∂ ln Z̃k(T )

∂T

]

. (3.94)

The formulation of the BRVC model is completed with the introduction of an
internal temperature Tint. This is extracted from the energy bin population as
post-processing and defined through the following implicit relation:

∑

k∈KN2
ñkẼk

nN2

=

∑

k∈KN2
ẼkZ̃k(T ) exp (−Ẽk/kbTint)

∑

k∈KN2
Z̃k(T ) exp (−Ẽk/kbTint)

. (3.95)
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3.5 Unified Notation

The RVC and coarse-grained models (VC, BRVC and URVC) presented in
secs. 3.3-3.4 can be cast into a unified notation. This is convenient when one
has to compare the different models as done in chs. 4-5.
The internal states of N2 considered by a particular model (vibrational, rovi-
brational and bins) can be indicated by means a generalized index ǫ and stored
in the set EN2 defined as:

EN2 =











VN2 , VC,

KN2 , BRVC-URVC,

IN2 , RVC.

(3.96)

As already done before, the generalized set EN2 can be split into its bound and
predissociated subsets (EBN2

and EPN2
, respectively). These satisfy the relations

EBN2
∪ EPN2

= EN2 and EBN2
∩ EPN2

= ∅. In what follows, physical quantities that
are related to a generalized internal state of N2 are indicated with a ˜ over-
script. The number of generalized internal energy states of N2 is indicated with
NN2 .

Master Equations The use of eq. (3.96) allows to write the master equations
for the RVC, VC, BRVC and URVC models as:

∂

∂t





ρN
ρ̃ǫ
ρe



 =





ωN

ω̃ǫ

0



 , ǫ ∈ EN2 . (3.97)

Mass Production Terms The mass production terms for N and the gener-
alized internal states of N2 are:

ωN =
∑

ǫ∈EN2

ω̃dis
ǫ +

∑

ǫ∈EP
N2

ω̃pre
ǫ , (3.98)

ω̃ǫ = −
{

(

ω̃dis
ǫ + ω̃in

ǫ

)

, ǫ ∈ EBN2
,

(

ω̃dis
ǫ + ω̃pre

ǫ + ω̃in
ǫ

)

, ǫ ∈ EPN2
,

(3.99)

where the partial production terms due to dissociation, predissociation and
inelastic collisional excitation are:

ω̃dis
ǫ = mN2nN

[

ñǫk̃
dis
ǫ (T )− n2Nk̃recǫ (T )

]

, ǫ ∈ EN2 , (3.100)

ω̃pre
ǫ = mN2

[

ñǫk̃
pre
ǫ (T )− n2Nk̃i−pre

ǫ (T )
]

, ǫ ∈ EPN2
, (3.101)

ω̃in
ǫ = mN2nN

∑

ǫ′ >ǫ
ǫ′ ∈EN2

[

ñǫk̃
in
ǫ→ǫ′(T )− ñǫ′ k̃inǫ′→ǫ(T )

]

−

mN2nN
∑

ǫ′ <ǫ
ǫ′ ∈EN2

[

ñǫ′ k̃
in
ǫ′→ǫ(T )− ñǫk̃inǫ→ǫ′(T )

]

, ǫ ∈ EN2 . (3.102)
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Obviously, the production terms related to predissociation in eqs. (3.98)-(3.102)
are only non-zero for the RVC model.

Thermodynamic Properties The gas number density and pressure are
computed based on eq. (3.20), where the number density of N2 is written as
nN2 =

∑

ǫ∈EN2
ñǫ. The generalized expression for the gas thermal energy density

is:

ρe =
3

2
nkbT +nNEN+

∑

ǫ∈EN2

ñǫẼǫ+















0, RVC-URVC,
∑

ǫ∈EN2

ñǫkbT
2 ∂ ln Z̃ǫ(T )

∂T
, VC-BRVC.

(3.103)

With the use of the generalized notation introduced here, the thermodynamic
properties of N and N2 (energy, enthalpy and specific heats per unit mass; see
eqs. (1.45)-(1.47)) assume the following expressions:

eN(T ) =
3

2

kb
mN

T +
EN

mN
, (3.104)

ẽǫ(T ) =
3

2

kb
mN2

T +
Ẽǫ

mN2

+











0, RVC-URVC,
kbT

2

mN2

∂ ln Z̃ǫ(T )

∂T
, VC-BRVC,

(3.105)

ǫ ∈ EN2 ,

hN(T ) = eN(T ) +
kb
mN

T, h̃ǫ(T ) = ẽǫ(T ) +
kb
mN2

T, ǫ ∈ EN2 , (3.106)

cvN(T ) =
3

2

kb
mN

, (3.107)

c̃v ǫ(T ) =
3

2

kb
mN2

+











0, RVC-URVC,

∂

∂T

[

kbT
2

mN2

∂ ln Z̃ǫ(T )

∂T

]

, VC-BRVC,
(3.108)

ǫ ∈ EN2 ,

cpN(T ) = cvN(T ) +
kb
mN

, c̃p ǫ(T ) = c̃v ǫ(T ) +
kb
mN2

, ǫ ∈ EN2 . (3.109)

Transport Properties Transport phenomena have not been taken into ac-
count while developing the coarse-grained models. However, in view of appli-
cations to viscous flows (shown in ch. 5), few words need to be said on how to
evaluate transport properties and fluxes.
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Based on the contents of sec. 2.4.2, the shear viscosity and the translational
thermal conductivity are:

η = αη
NXN + αη

N2
XN2 , (3.110)

λtra = αλtra

N XN + αλtra

N2
XN2 , (3.111)

where XN2 =
∑

ǫ∈EN2
X̃ǫ. The α coefficients are found by solving the following

two-by-two linear (symmetric) transport systems:
(

Gη
NN Gη

NN2

Gη
N2N

Gη
N2N2

)(

αη
N

αη
N2

)

=

(

XN

XN2

)

, (3.112)

(

Gλtra

NN Gλtra

NN2

Gλtra

N2N
Gλtra

N2N2

)(

αλtra

N

αλtra

N2

)

=

(

XN

XN2

)

. (3.113)

The total thermal conductivity is computed by summing the translational and
internal contributions, λ = λtra+λint. The internal contribution appears due to
the assumed Boltzmann distributions at the translational temperature T in the
BRVC and VC models. The internal thermal conductivity is computed based
on the generalized Eucken’s correction (Magin and Degrez 2004):

λint =

∑

ǫ∈EN2
ρ̃ǫ [(3/2)(kb/mN2)− c̃v ǫ(T⋆)]

XN/DN2N +XN2/DN2N2

, (3.114)

where the temperature T⋆ is extracted from:
∑

ǫ∈EN2
ñǫẼǫ

nN2

=

∑

ǫ∈EN2
ẼǫZ̃ǫ(T ) exp (−Ẽǫ/kbT⋆)

∑

ǫ∈EN2
Z̃ǫ(T ) exp (−Ẽǫ/kbT⋆)

. (3.115)

Notice that internal thermal conductivity is zero for the RVC and URVC mod-
els. This is consistent with the STS CE method developed in ch. 2.
Thermal diffusion is neglected. The diffusion velocities of N and N2 are found
by solving the Stefan-Maxwell equations (2.74), which, based on the assumption
vd
N2

= ṽd
ǫ (introduced in sec. 2.4.2), reduce to:

(

G̃d
NN G̃d

NN2

G̃d
N2N

G̃d
N2N2

)(

vd
N

vd
N2

)

= −
(

∇xXN

∇xXN2

)

. (3.116)

The constitutive relations for the stress tensor and the heat flux vector are
always given by eqs. (2.87)-(2.88) (with no thermal diffusion effects):

τ = η

[

∇xv + (∇xv)
T − 2

3
∇xv I

]

, (3.117)

q = ρNv
d
NhN +

∑

ǫ∈EN2

ρ̃ǫṽ
d
ǫ h̃ǫ − λ∇xT. (3.118)

The reduced collision integrals Q
(i,j)
NN , Q

(i,j)
NN2

andQ
(i,j)
N2N2

needed for the evaluation
of the transport properties and fluxes are computed by using the curve fits of
Gupta et al. (1991).
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3.6 Intermediate Conclusions

In this chapter a quantum-chemistry database for the N2(
1Σ+

g )-N(
4Su) sys-

tem, developed at NASA Ames Research Center, has been presented in detail
(sec. 3.1). The state-to-state kinetics and thermodynamic data contained in
the database have been used for developing a RVC model. The developed RVC
model is extremely accurate, as no simplifying assumptions are introduced.
However, its use can lead to expensive calculations, due to the fact that almost
10 000 coupled differential equations must be solved simultaneously. For this
reason, reduced models have been proposed by increasing complexity (MT, VC,
URVC and BRVC). The MT model (sec. 3.2) is a purely macroscopic model,
where the continuity equations for N and N2 are coupled to the rotational and
vibrational (or internal only) energy conservation equations. The MT model is
the cheapest one, among the reduced models. The VC model (sec. 3.3) has been
developed by assuming rotational equilibrium. This hypothesis (which does not
hold true for flows behind strong normal shock waves; see ch. 4) allows for an
important reduction of the number of equations, as only the vibrational levels
of N2 (61) must be tracked. The URVC and BRVC models are two variants of
the Energy Bin model (sec. 3.4). This model has been developed by lumping
the energy levels of N2 in energy bins, where a distribution of the energy levels
is assumed. In the URVC model (sec. 3.4.1), the distribution is uniform. In
the BRVC model (sec. 3.4.2), a Boltzmann distribution at the local transla-
tional temperature is assumed. The mathematical formulation of the BRVC
and URVC models is similar, with the important difference that the URVC
model does not allow for retrieving equilibrium. The computational cost of the
Energy bin model depends on the number of energy bins in use.
The RVC and reduced models have been integrated in hydrodynamic flow
solvers developed by the author. Applications to inviscid and viscous flows
are treated in chs. 4-5.
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Chapter 4

ODE Solver for Flows Behind

Normal Shock Waves

This chapter illustrates the coupling of the RVC and reduced models developed
in ch. 3 with in an Ordinary Differential Equation (ODE) solver for computing
inviscid flows behind normal shock waves. The scope is two-fold: to gain insight
on the dynamics of internal energy excitation and dissociation and to compare
all the models in terms of accuracy and computational cost. Since the discussion
is focused on the kinetics of the considered collisional processes, simplifying
assumptions are introduced to make the flow problem more tractable.
The present chapter is structured as follows. In sec. 4.1 the time-dependent and
multi-dimensional flow governing equations are reduced to a system of ODEs
after the introduction of simplifying assumptions. In the same section, the nu-
merical method is briefly outlined. Applications are first shown for the RVC
model in sec. 4.2, where a detailed analysis is performed on both flow quan-
tities and energy level dynamics. After that, the results obtained by means
of the reduced models (MT, VC, BRVC and URVC) are introduced and pre-
sented by increasing complexity of the reduced models in sec. 4.3. Intermediate
conclusions are given in sec. 4.4.

4.1 Governing Equations and Numerical Method

The non-equilibrium flow behind a normal shock wave is computed under the
following assumptions:

1. The flow is steady and one-dimensional,
2. The flow is inviscid,
3. The shock wave moves at constant speed.

The flow problem is conveniently studied in the shock reference frame. The
shock front is treated as a mathematical discontinuity, where the flow prop-
erties experience a sudden jump from their free-stream values. The governing
equations for the problem under investigation are the steady, one-dimensional
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Euler equations (obtained by applying the adopted simplifying assumptions to
eq. (2.82)):

∂

∂x









ρNu
ρ̃ǫu

p+ ρu2

ρuH









=









ωN

ω̃ǫ

0
0









, ǫ ∈ EN2 . (4.1)

The mass production terms and the thermodynamic properties in eq. (4.1) are
computed based on the contents of secs. 3.2-3.5. The mathematical problem to
be solved is an Initial Value Problem (IVP) for a system of ODEs (Gear 1971).
The solution initial value is provided by the jump conditions at the shock
location. These are computed based on the Rankine-Hugoniot jump relations
(Rankine 1870, Hugoniot 1887; 1889) by assuming frozen flow conditions within
the shock (no dissociation and no excitation acting).
In order to numerically solve eq. (4.1), it is convenient to perform a transforma-
tion from a conservative to a non-conservative canonical form (Thivet 1992):

∂

∂x









yN
ỹǫ
u
T









=









sN
s̃ǫ
su
sT









, ǫ ∈ EN2 , (4.2)

where the mass fractions of N and the generalized internal state ǫ of N2 are
yN = ρN/ρ and ỹǫ = ρ̃ǫ/ρ, respectively. The expressions of the components
of the right-hand-side vector in eq. (4.2) can be obtained from the algebraic
manipulation needed to pass from eq. (4.1) to (4.2), and are given in app. B.
The IVP represented by eq. (4.2) and its initial condition is usually stiff, due
to the wide spectrum of time-scales involved. In view of this, eq. (4.2) is
numerically solved by means of the family of Backward Differentiation Formula
(BDF) implicit methods (Gear 1971) as implemented in the lsode FORTRAN

library (Radhakrishnan and Hindmarsh 1993).

4.2 Application of the RVC Model

The inviscid flow behind a normal shock wave has been computed by using
the free-stream conditions given in tab. 4.1, where the reported free-stream
pressure values correspond to 6.67Pa, 13.33Pa and 44.4Pa, respectively. The
free-stream flow has been seeded with 2.8% of N, since only only N2-N colli-
sions are considered. Preliminary computations performed by means of multi-
temperature models (for u∞ = 9, 10 km/s; Magin et al. 2009; Munafò et al.
2010) have shown that the solution obtained by adopting the present free-
stream conditions did not experience an important departure from the results
obtained without seeding the free-stream flow and by accounting for N2-N2 and
N2-e− collisions.
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The use of a RVC model in CFD simulations allows for obtaining a great
quantity of information concerning flow properties and energy level dynam-
ics. Before analyzing the population distributions, a parametric study on the
free-stream conditions/kinetic processes has been initially performed. This has
been done for two reasons: to understand the important flow features that must
be captured by an accurate reduced model and to select the most appropriate
conditions under which testing the reduced models.

p∞ [torr] 0.05, 0.1 and 0.33
u∞ [m/s] 6, 7, 8, 9, 10 and 11
T∞ [K] 300

Table 4.1: Free-stream conditions for normal shock wave studies.

4.2.1 Influence of the Free-Stream Pressure

Figure 4.1 shows the temperature evolution behind the shock wave for different
values of the free-stream pressure (both moderate and high-speed conditions
are considered). When increasing the free-stream pressure, the flow reaches
the post-shock equilibrium conditions faster as a consequence of the enhanced
collisional rate between the gas particles.
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Figure 4.1: RVC model. Temperature evolution behind the shock wave for different
values of the free-stream pressure (unbroken lines T , dashed lines Tint, dotted-dashed
lines Tvib, dotted lines Trot).

The internal, vibrational and rotational temperatures shown in fig. 4.1 have
been computed based on their definitions given in eqs. (3.34) and (3.35)-(3.38),
respectively. It is interesting to notice that the rotational and vibrational tem-
peratures show a very similar behavior. In particular, the vibrational tempera-
ture rises faster in the region immediately behind the shock front. The internal
temperature always lies between the vibrational and rotational temperatures.
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The results obtained indicate that assuming that rotational relaxation proceeds
much faster than vibrational relaxation is questionable. The aforementioned
approximation is often employed in the aerothermodynamic community (Park
1990), and is usually justified in view of the results obtained when using Parker’s
model for rotational relaxation (Parker 1959) and in view of experimental data
on rotational relaxation times. However, experimental data are mainly avail-
able within the temperature range 300-1000K, which is much lower than that
reported in fig. 4.1. Recently, Panesi et al. (2013) have computed rotational
relaxation times based on heat-bath calculations by using the same RVC model
employed in this thesis. Their results (recalled also in sec. 3.2) show that,
at high-temperatures, the rotational and vibrational relaxation times become
comparable. This is consistent with the temperature evolution shown in fig. 4.1.
The free-stream pressure effect can be also appreciated from the N mole fraction
evolution given in fig. 4.2. As expected, increasing the free-stream pressure
leads to a faster dissociation due to the enhanced collisional rate among the
gas particles.
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Figure 4.2: RVC model. N mole fraction evolution behind the shock wave for different
values of the free-stream pressure (u∞ = 10 km/s; unbroken lines p∞ = 0.33 torr,
dashed lines p∞ = 0.1 torr, dotted-dashed lines p∞ = 0.05 torr).

4.2.2 Influence of the Free-Stream Velocity

Figure 4.3 shows the temperature and N mole fraction evolution behind the
shock wave for different values of the free-stream velocity (the free-stream pres-
sure is 0.1 torr). The increasing of the free-stream velocity has the effect of
increasing the amount of translational thermal energy available to the flow in
the region immediately behind the shock front. As a consequence, the post-
shock values of the gas pressure and translational temperature are increased
compared to low-speed conditions (see fig. 4.3(a)). The combined effects of in-
creased pressure and temperature lead to more energetic and frequent collisions,
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thereby enhancing the amount of dissociation within the flow (see fig. 4.3(b)).
Notice that at low-speed conditions, the distance needed in order to reach the
post-shock equilibrium state is higher than that needed for high-speed condi-
tions. This is due to the lowering of the post-shock pressure when decreasing
the free-stream velocity.
Some words of caution are needed when analyzing the low-speed results shown
in fig. 4.3. Indeed, in view of the limited amount of dissociation (especially for
the case u∞ = 6 km/s), neglecting the effects of N2-N2 collisions may constitute
a less realistic approximation compared to high-speed conditions.
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(a) Translational temperature.
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Figure 4.3: RVC model. Translational temperature and N mole fraction evolution
behind the shock wave for different values of the free-stream velocity (p∞ = 0.1 torr;
unbroken lines u∞ = 11 km/s, dashed lines u∞ = 10 km/s, dotted-dashed lines u∞ =
9 km/s, lines with circles u∞ = 8 km/s, lines with squares u∞ = 7 km/s, lines with
triangles u∞ = 6 km/s).

4.2.3 Influence of Exchange Processes and Predissociation

After studying the effects induced by changing the free-stream pressure and
velocity in secs. 4.2.1-4.2.2, a similar study has been performed by includ-
ing/excluding exchange processes and predissociation. For sake of brevity, only
the results obtained by adopting the values of 0.1 torr and 10 km/s for the
free-stream pressure and velocity, respectively, are discussed.
Figure 4.4 shows the influence of exchange processes on the temperatures and
N mole fraction. The distance at which thermal equilibrium is reached is
roughly doubled when exchange processes are not taken into account, as shown
in fig. 4.4(a). Neglecting the exchange processes has therefore the effect of low-
ering the excitation rate of the internal energy of N2 which, in turn, slows-down
the dissociation.
Figure 4.5 shows the influence of predissociation on the temperatures and N
mole fraction. Predissociation has the effect of speeding up the dissociation of
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N2. However, the differences observed between the cases with/without predisso-
ciation are negligible compared to those associated with the inclusion/exclusion
of exchange processes. The same conclusion holds also for other flow quantities,
such as velocity, which are not shown in fig. 4.5.
The findings deduced from figs. 4.4-4.5 apply, in general, to all the cases of
tab. 4.1 and confirm the results of Panesi et al. (2013).
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Figure 4.4: RVC model. Temperature and N mole fraction evolution behind the shock
wave with/without exchange processes (p∞ = 0.1 torr and u∞ = 10 km/s; in (a) unbro-
ken line T with exchange, dashed line Tint with exchange, dotted-dashed line T without
exchange, dotted line Tint without exchange; in (b) unbroken line with exchange, dashed
line without exchange).
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Figure 4.5: RVC model. Temperature and N mole fraction evolution behind the shock
wave with/without predissociation (p∞ = 0.1 torr and u∞ = 10 km/s; in (a) unbroken
line T with predissociation, dashed line Tint with predissociation, dotted-dashed line T
without predissociation, dotted line Tint without predissociation; in (b) unbroken line
with predissociation, dashed line without predissociation).
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4.2.4 Findings from the Flowfield Analysis

Before moving to the detailed analysis of the rovibrational energy population
distribution (shown in sec. 4.2.5), it is better to summarize the most important
observations deduced from the flowfield analysis performed in secs. 4.2.1-4.2.3.

• Flow quantities. The temperature evolution in fig. 4.1 suggests that
the rates of rotational and vibrational energy relaxation become compa-
rable when the post-shock translational temperature is sufficiently high.
This conclusion is consistent with the results obtained by Panesi et al.
(2013) for heath-bath calculations. However, the vibrational and ro-
tational temperatures in fig. 4.1 have been obtained as post-processing
based on eqs. (3.35)-(3.38). For this reason, the existence and the extent
of rotational non-equilibrium effects are further investigated in sec. 4.2.5
by analyzing in detail the evolution of the internal energy population
distribution.

• Kinetic processes. The results given in fig. 4.4 have shown that ex-
change processes have an important impact on the flowfield. The oppo-
site conclusion has been found for predissociation (see fig. 4.5), which
can be therefore neglected in the development of the reduced models (a
conclusion that was already anticipated in sec. 3.2).

• Free-stream conditions for testing the reduced models. The para-
metric study on the free-stream conditions has suggested not to use low
values for the free-stream velocity (such as 6 km/s), due to the limited
amount of dissociation and the importance of N2-N2 collisions for those
conditions. In what follows, the free-stream pressure and velocity are
kept fixed at 0.1 torr and 10 km/s, respectively.

4.2.5 Energy Level Dynamics

The energy level population distributions have been extracted at eight locations
listed in tab. 4.2 (where the corresponding values for the N mole fraction and
temperatures are also given).

# x [m] XN T [K] Tint [K] Tvib [K] Trot [K]

1 2.5× 10−5 2.8× 10−2 62 486 473 947 375
2 2.5× 10−4 2.9× 10−2 61 926 1595 2269 1059
3 2.3× 10−3 7.5× 10−2 53 205 11 232 11 964 10 367
4 3.2× 10−3 2.3× 10−1 40 637 19 953 19 275 20 771
5 3.4× 10−3 3.2× 10−1 36 297 22 291 21 210 23 565
6 3.6× 10−3 4.1× 10−1 32 481 23 748 22 506 25 185
7 3.9× 10−3 5.4× 10−1 27 794 23 891 22 850 25 092
8 5.1× 10−3 8.1× 10−1 18 987 18 016 17 696 18 408

Table 4.2: RVC model. Position, N mole fraction and temperatures for the locations
at which the population distributions are extracted.
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Figure 4.6: RVC model. Comparative evolution of the N mole fraction and rovi-
brational energy level distribution behind the shock wave (p∞ = 0.1 torr and u∞ =
10 km/s; the symbols in (a) highlight the locations at which the population distribu-
tions, plotted in (b), are extracted).
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Figure 4.7: RVC model. Evolution behind the shock wave of the population of the
rovibrational energy levels lying close to the ground-state (p∞ = 0.1 torr and u∞ =
10 km/s; the locations at which the distributions are plotted are the same as those of
fig. 4.6).

Figure 4.6 provides a visual correspondence between the evolution of the N
mole fraction and the population distribution behind the shock wave. In the
region immediately behind the shock front (locations 1 and 2 of tab. 4.2),
the distribution is heavily distorted and experiences strong departures from
a Boltzmann distribution. In this zone, the dissociation has not started yet
and the medium and high-lying energy levels are poorly populated. Their
population progressively increases due to the occurrence of inelastic collisions
between N and N2 (location 3 of tab. 4.2). Moving further downstream, the
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inelastic collisions continue to occur and the population distribution assumes a
more regular shape. Distortions are more and more localized around the ground
state (see fig. 4.7), while the distribution of medium and high-lying energy
levels is almost Boltzmann. Once a sufficient degree of excitation reached,
the dissociation process starts and, in its initial phase (locations from 2 to 6
of tab. 4.2), occurs through sequences of non-Boltzmann distributions. This
feature is still noticeable when more than 40% of N2 has already undergone
dissociation. The rest of the dissociation (locations 7 and 8 of tab. 4.2), occurs
under thermal equilibrium conditions.
Rotational non-equilibrium effects have been investigated by comparing the
distributions of the rotational levels (of selected vibrational states) with the
Boltzmann distributions at the state-specific rotational temperatures T v

rot. The
rotational temperatures T v

rot have been extracted through the following relation:

∑

J ∈Jv
∆Ẽv(J)nvJ

ñv
=

∑

J ∈Jv
∆Ẽv(J) avJ exp

[

−∆Ẽv(J)/kbT
v
rot

]

Z̃v(T
v
rot)

, (4.3)

v ∈ VN2 ,

where the number density and the rotational partition function of the vibra-
tional level v (ñv and Z̃v, respectively) are computed based on eq. (3.53). Figure
4.8 shows the results of this comparison for the location 6 of tab. 4.2.
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Figure 4.8: RVC model. Rotational energy level distribution for the ground and
the first three excited vibrational states at x = 3.6× 10−3 m (p∞ = 0.1 torr and
u∞ = 10 km/s; in (a) the unbroken lines represent the Boltzmann distributions at
the rotational temperatures T v

rot).

The numerical values obtained for the rotational temperatures (reported in
fig. 4.8(a)) confirm the existence of thermal non-equilibrium between transla-
tion and rotation. The reported values further indicate that rotational non-
equilibrium effects are more pronounced for low-lying vibrational states. This
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is due to the fact that rotational excitation proceeds faster for higher vibra-
tional states as confirmed by fig. 4.8(b) which focuses on the distribution of the
rotational levels close to the ground-state. Deviations from a Boltzmann dis-
tribution can be observed for low-lying rotational levels of all vibrational states
and become more and more pronounced when moving towards the vibrational
ground-state. It is interesting to notice that the rotational levels having odd
and even rotational quantum number (J) split in two distinct groups. This
feature is observed for all vibrational states shown in fig. 4.8(b) and is more
evident for the vibrational ground-state.
The assessment of rotational non-equilibrium effects has been completed by
tracking the evolution behind the shock wave of the state-specific rotational
temperatures T v

rot and by comparing them with the global rotational temper-
ature Trot (see fig. 4.9). All the rotational temperatures, despite the differ-
ent behaviors, reach the thermal equilibrium condition within the locations
x ≃ 3.5 − 4× 10−3 m. This justifies the use of the global rotational temper-
ature Trot as macroscopic indicator of rotational non-equilibrium effects. The
rotational temperature of the vibrational ground-state T 0

rot shows the same
trend as Trot, though it rises slower. This is not the case for the rotational
temperatures of the excited vibrational states. In the region immediately be-
hind the shock (not shown in fig. 4.9), they quickly rise to values which are
much higher than those of Trot and T 0

rot and, at the same time, sensibly lower
than the translational temperature. This is consistent with the shape of the
rotational level distributions shown in fig. 4.8 and further confirms that rota-
tional excitation proceeds faster for higher vibrational states. The differences
between the various rotational temperatures becomes smaller and smaller when
the dissociation becomes significant.
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Figure 4.9: RVC model. Translational and rotational temperature evolution behind
the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s; unbroken line T , dashed line Trot,
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After completing the study of rotational non-equilibrium effects, the energy
level dynamics has been further analyzed by looking at the vibrational and ro-
tational specific population distributions (see fig. 4.10). The rotational specific
population, plotted in fig. 4.10(b), is defined as:

ñJ =
∑

v ∈VN2

nvJ , ẼJ = E0J , J ∈ {0, . . . , 279} . (4.4)

The distributions shown in fig. 4.10 share the same features of that of the
rovibrational energy levels (fig. 4.6). There is an initial phase in which the
medium and high-lying energy levels are being populated through inelastic
collisions. This is followed by the onset of dissociation that occurs once the
high-lying energy levels are sufficiently populated. The distributions are non-
Boltzmann when dissociation starts. This feature disappears after that half
of N2 has undergone dissociation. Notice that, the rotational levels (shown in
fig. 4.10(b)) split according to odd and even rotational quantum numbers, as
already observed in fig. 4.8(b).
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Figure 4.10: RVC model. Evolution of the vibrational and rotational specific popula-
tion distributions behind the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s; in (a) line
with circles x = 2.5× 10−5 m, line with squares x = 2.5× 10−4 m, line with triangles
x = 2.3× 10−3 m, line with diamonds x = 3.2× 10−3 m, dotted line x = 3.4× 10−3 m,
dotted-dashed line x = 3.6× 10−3 m, dashed line x = 3.9× 10−3 m, unbroken line
x = 5.1× 10−3 m; in (b) circles x = 2.5× 10−5 m, squares x = 2.5× 10−4 m, trian-
gles x = 2.3× 10−3 m, diamonds x = 3.2× 10−3 m, unbroken line x = 3.9× 10−3 m,
dashed line x = 5.1× 10−3 m).
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4.3 Application of the Reduced Models (MT, VC,
BRVC and URVC)

After completing the analysis of the RVC model solution, the flow behind a
normal shock wave has been computed by means of the reduced models (MT,
VC, BRVC and URVC) by adopting the free-stream conditions given in tab. 4.1.
The results obtained have been then compared with those provided by the
RVC model. For reasons that become apparent while analyzing the results, the
comparison is shown by increasing complexity of the reduced models.

4.3.1 RVC vs MT

Figure 4.11 compares the RVC and MT model solutions for the temperatures
and the N mole fraction behind the shock wave. The two variants of the MT
model (T -Tint and T -Tvib-Trot) give practically the same result in terms of chem-
ical composition and translational temperature (in fig. 4.11(a) these quantities
are shown only for the T -Tvib-Trot variant of the MT model).
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Figure 4.11: RVC and MT model comparison. Temperature and N mole fraction
evolution behind the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s; in (a) unbroken
line T RVC, dashed line Tint RVC, dotted-dashed line Tvib RVC, dotted line Trot RVC,
line with circles T MT, line with squares Tint MT, line with triangles Tvib MT, line
with diamonds Trot MT; in (b) unbroken line RVC, dashed line MT).

The MT model leads to a faster dissociation. This is a general behavior that has
been observed for all the cases of tab. 4.1. In order to understand the possible
sources for this systematic difference, the mass production and energy transfer
terms have been extracted for both the RVC and MT solutions (see fig. 4.12).
The results suggest that the MT fails in predicting the correct flow behavior due
an overestimation of the macroscopic dissociation rate. On the other hand, the
energy transfer seems to be described correctly. This aspect has been further
investigated by repeating the calculations without dissociation. Figure 4.13
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shows a comparison between the MT and RVC models for the temperatures.
The agreement is good, though the MT leads to slightly faster excitation of
vibrational and rotational energies. The same conclusion was found for the
T -Tint variant of the MT model (not shown in fig. 4.13). The results shown
in fig. 4.13 confirm that the disagreement observed in figs. 4.11-4.12 is due to
an inaccurate estimation of the macroscopic dissociation rate coefficient in the
MT model.
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Figure 4.12: RVC and MT model comparison. Mass production and energy trans-
fer term evolution behind the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s; in (a)
unbroken line RVC, dashed line MT; in (b) unbroken line Ωdis−vib
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Figure 4.13: RVC and MT model comparison. Temperature evolution behind the
shock wave switching off dissociation (p∞ = 0.1 torr and u∞ = 10 km/s; unbroken line
T RVC, dashed line Tvib RVC, dotted-dashed line Trot RVC, line with circles T MT,
line with squares Tvib MT, line with triangles Trot MT).



92 Chapter 4 - ODE Solver for Flows Behind Normal Shock Waves

The MT macroscopic dissociation rate coefficient has been computed by Panesi
et al. (2013) based on isothermal heat-bath calculations. As it was recalled in
sec. 3.2, the one-temperature macroscopic dissociation rate coefficient was de-
termined by taking the QSS value of the following quantity (see also eq. (3.30)):

k̃disN2
(T ) =

1

nN2

∑

i∈IN2

ni k
dis
i (T ). (4.5)

Figure 4.14 is taken form the work of Panesi et al. (2013) and shows the
quantity defined in eq. (4.5) as a function of time for different translational
temperatures. The QSS period is identified by the existence of a plateau region.
The results in fig. 4.14 indicate that the duration of the QSS period decreases
when increasing the translational temperature. At T = 40 000K, the extent of
the plateau region is so narrow that the existence of QSS becomes questionable.
In view of this, one can conclude that the lack of agreement observed between
the RVC and MT results is due to the use of a macroscopic dissociation rate
coefficient outside of QSS conditions (i.e. outside of the range where it is
possible to define a macroscopic rate coefficient; Park 1990).

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

t [s]

k̃
d
is

N
2
(T

)
[c

m
3
/s
]

Figure 4.14: RVC model. Time evolution of the macroscopic dissociation rate co-
efficient (unbroken line T = 10 000K, dashed line T = 15 000K, dotted-dashed line
T = 20 000K, line with circles T = 30 000K, line with squares T = 40 000K).

4.3.2 RVC vs VC, URVC, BRVC and MTP

After assessing the inaccuracy of the MT model, it was decided to test the
coarse-grained models (VC, BRVC and URVC) described in secs. 3.3-3.4. For
the BRVC and URVC models, the computations have been performed by using
different numbers of energy bins (see tab. 4.3). The number of energy bins
assigned to the bound region of the internal energy ladder of N2 (N B

N2
) has

been set, whenever possible, to 75-80% of the total number of energy bins
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(NN2
). This choice was motivated by the fact that about 80% of the internal

energy levels of N2 in the NASA ARC database are bound (see sec. 3.1.1).

# NN2
N B

N2
N P

N2

1 2 1 1
2 5 4 1
3 10 8 2
4 20 16 4
5 30 24 6
6 40 32 8
7 50 40 10
8 75 60 15
9 100 80 20
10 500 325 175

Table 4.3: Number of energy bins used for the BRVC and URVC models.

For the sake of completeness, the comparison between the RVC and coarse-
grained model solutions has been performed by including also the results ob-
tained by means of the MT model developed by Panesi et al. (2013) and the
multi-temperature model developed by Park (MTP; Park 1993). The MTP
model has been considered as, at the present time, it represents the model
which is most commonly used in aerothermodynamic flow solvers (Gnoffo et al.
1989; Candler and MacCormack 1991; Lani 2009). The MTP model accounts
for two distinct temperatures (translational and vibrational; T -Tvib model). In
this model, the Ωtra−vib

N2
and Ωdis−vib

N2
energy transfer terms are described by us-

ing the Landau-Teller model (1936) and the non-preferential dissociation model
of Candler and MacCormack (1991), respectively.
Figure 4.15 compares the RVC and reduced model solutions in terms of trans-
lational temperature and N mole fraction. The BRVC(50) model (where 50
indicates the number of energy bins) leads to the best agreement with the
RVC model solution, as the dissociation is only slightly overestimated. The
URVC(50) model solution is also very close to that of the BRVC(50) model.
For this reason, it is not shown in fig. 4.15. The MTP model leads to the fastest
dissociation. The MT and VC models give very similar results and they both
lead to a too fast dissociation. The too fast dissociation of the MT model is due
(as shown in sec. 4.3.1) to the lack of QSS conditions. In case of the VC model,
the too fast dissociation is instead due to the assumed rotational equilibrium
the model is based on. As clearly shown in sec. 4.2.5, the assumption of ro-
tational equilibrium does not hold true for the adopted free-stream conditions
(see fig. 4.9). On the other hand, the results obtained for the BRVC(50) and
URVC(50) models indicate that these coarse-grained models can account for
rotational non-equilibrium effects. Hence, their use should be preferred to the
MT and VC models for dissociating flows behind shock waves.
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Figure 4.15: RVC, BRVC(50), VC, MT and MTP model comparison. Translational
temperature and N mole fraction evolution behind the shock wave (p∞ = 0.1 torr and
u∞ = 10 km/s; unbroken lines RVC, dashed lines BRVC(50), dotted-dashed lines VC,
lines with circles MT, lines with squares MTP).

The sources of the slight discrepancy between the BRVC(50) and RVC models
observed in fig. 4.15 have been further investigated by comparing the evolu-
tion behind the shock wave of the mass production and energy transfer terms
(see fig. 4.16). The results show that the internal energy excitation is perfectly
captured by the BRVC(50) model, while the dissociation rate is a bit overesti-
mated. These results are consistent with the N2 mole fraction evolution shown
in fig. 4.15(b).
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Figure 4.16: RVC and BRVC(50) model comparison. Mass production and energy
transfer term evolution behind the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s; in (a)
unbroken line RVC, dashed line BRVC(50); in (b) unbroken line Ωtra−int

N2
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N2

BRVC(50)).



Part II - Integration of Coarse-Grained Models in Hydrodynamic

Flows
95

4.3.3 Bin Number Sensitivity Analysis for the BRVC and URVC

Models

The comparison among the reduced models performed in sec. 4.3.2 has demon-
strated that the BRVC and URVC models are the most accurate. However, the
results shown in figs. 4.15-4.16 refer to a fixed number of energy bins (50). In
order to assess the influence of the number of energy bins used on flow quanti-
ties, the solutions obtained for the number of energy bins given in tab. 4.3 have
been compared with each other.
Figure 4.17 shows the temperatures and N mole fraction evolution behind the
shock wave for different numbers of energy bins in the case of the BRVC model.
Notice that the post-shock translational temperature depends on the number
of energy bins. This is due to the non-linear temperature dependent term in
the expression for the gas thermal energy density (see eq. (3.94)). In all the
cases, both the translational and internal temperature approach the post-shock
equilibrium value. The solutions obtained when using 2 and 5 energy bins tend
to overestimate the dissociation rate, implying that a larger number should be
used. This behavior could be partly due to the lower value of the post-shock
translational temperature. The use of a larger number of energy bins does not
introduce appreciable changes as can be seen from the small differences between
the 20 and 100 energy bin solutions.
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Figure 4.17: BRVC model. Bin number convergence study on the temperatures and
the N mole fraction for the flow behind a normal shock wave (p∞ = 0.1 torr and
u∞ = 10 km/s; unbroken lines BRVC(2), dashed lines BRVC(5), dotted-dashed lines
BRVC(10), dotted lines BVRC(20), lines with circles BRVC(50), lines with squares
BRVC(100)).

In the case of the URVC model, the sensitivity of the N mole fraction and trans-
lational temperature to the number of energy bins is similar to that observed
for the BRVC model (with the difference that the post-shock translational tem-
perature is no-longer bin number dependent). The situation for the internal
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temperature is different, as shown in fig. 4.18. When using only 5 energy bins,
the value obtained for the URVC model does not converge to the correct post-
shock equilibrium value (11 420K), as opposed to the case of the BVRC model.
A higher number of energy bins is needed for obtaining a more physical evo-
lution of the internal temperature. These results are due to the fact that (as
shown in sec. 3.4.1) the URVC model does not allow to retrieve the equilibrium
state (i.e. chemical composition and energy distribution). The present obser-
vations lead to the conclusion that the BRVC model should be preferred to the
URVC model. This is especially true for computations that require to impose
equilibrium conditions in some parts of the computational domain (such as in
nozzle flows, shown in ch. 5).
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Figure 4.18: BRVC and URVC models. Internal temperature evolution behind the
shock wave for different numbers of energy bins (p∞ = 0.1 torr and u∞ = 10 km/s;
unbroken line BRVC(5), dashed line BRVC(50), dotted-dashed line URVC(5), dotted
line URVC(50)).

4.4 Intermediate conclusions

This chapter has described the application of the RVC and reduced models
(MT, VC, BRVC and URVC) to study non-equilibrium inviscid flows behind
normal shock waves.
The numerical solutions obtained by means of the RVC model (sec. 4.2) have
highlighted the importance of rotational non-equilibrium effects. In particular,
it was found that the rates of vibrational and rotational excitation behind the
shock wave become comparable for high-speed conditions. These results are
consistent with those of Panesi et al. (2013) who used the RVC model in
heath-bath calculations. The results obtained by means of the RVC model
have also shown that exchange processes play an important role and cannot be
neglected. The opposite behavior was found for predissociation, demostrating
that this process could be neglected for the development of the reduced models.
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Rotational non-equilibrium effects have been investigated more in detail by
analyzing the rovibrational energy level population distributions at different
locations behind the shock (sec. 4.2.5). The extracted state-specific rotational
temperatures have confirmed the lack of thermal equilibrium between the N2

translational and rotational degrees of freedom. A careful inspection of the
behavior of the rotational levels close to the ground-state has revealed the
existence of a splitting according to odd and even rotational quantum numbers.
The splitting was systematically observed for all low-lying vibrational states and
was more pronounced for the vibrational ground-state (which experienced the
biggest departure from rotational equilibrium).
The RVC model solution has been then compared with those obtained by means
of the reduced models (MT, VC, BRVC and URVC). The comparison between
the RVC and MT results (sec. 4.3.1) has shown that the MT model leads to a
too fast dissociation. This behavior was due to the lack of QSS for the adopted
free-stream conditions. After assessing the deficiencies of the MT model, the
results obtained by means of the coarse-grained models (VC, BRVC and URVC)
have been introduced (sec. 4.3.2). The VC model led to a too fast dissociation,
due to the assumed rotational equilibrium. The BRVC and URVC models were
in much better agreement with the RVC model, meaning that these coarse-
grained models could automatically account for rotational non-equilibrium ef-
fects. A sensitivity analysis to the number of energy bins has shown that a
correct description of flow quantities could be achieved by using only 20 energy
bins. This led to the conclusion that the BRVC and URVC models should be
preferred to the VC model for high-speed conditions. The differences between
the BRVC and URVC models have been further investigated by looking at the
internal temperature evolution (sec. 4.3.3). In the case of the BRVC model,
the internal temperature approached the correct post-shock equilibrium value
independently on the number of bins in used. A high number (50) was needed
for the URVC model. The observed behavior is a direct consequence of the
fact the BRVC model allows to retrieve equilibrium, as opposed to the URVC
model. The use of the BRVC model should be preferred to the URVC model.
The conclusions regarding the performances of the reduced models (MT, VC,
BRVC and URVC) have been drawn based on the results obtained in a purely
dissociating environment. In view of this, the application domain is enlarged
in ch. 5, where the RVC and reduced models are applied to other benchmarks,
such as nozzle and stagnation-line flows. This is also done with scope of having
a deeper and more accurate understanding of the performances offered by the
developed reduced models.





Chapter 5

CFD Solvers for

Aerothermodynamic Flows

This chapter illustrates the application of the RVC and reduced models de-
veloped in ch. 3 to CFD solvers for aerothermodynamic flows. The scope of
the analysis is: to gain insight on the dynamics of internal energy excitation
and dissociation and to compare all the models in terms of accuracy and com-
putational cost. The benchmarks considered here constitute a more realistic
representation of actual aerothermodynamic flows compared to ch. 4.
The present chapter is structured as follows. Section 5.1 introduces the flow
governing equations in conservation law form. The numerical methods are ex-
plained in sec. 5.2. After that, computational results are discussed. Section 5.3
focuses on quasi-one-dimensional nozzle flows. In sec. 5.4 the viscous flow along
the stagnation line of blunt bodies is analyzed. Multi-dimensional applications
are considered in sec. 5.5. Intermediate conclusions are given in sec. 5.6.

5.1 Governing Equations in Conservation Law Form

As shown in ch. 2, a hydrodynamic description of non-equilibrium flows is
provided by the time-dependent, three-dimensional Navier-Stokes equations:

∂U

∂t
+∇x ·F −∇x ·Fd = S. (5.1)

When adopting the unified notation of sec. 3.5, the conservative variable and
source term vectors, and the inviscid and diffusive flux tensors are:

U =
[

ρN ρ̃ǫ ρv ρE
]T
, (5.2)

S =
[

ωN ωǫ 03 0
]T
, (5.3)

F =
[

ρNv ρ̃ǫv ρv ⊗ v + p I ρvH
]T
, (5.4)

F
d =

[

−ρNvd
N −ρ̃ǫvd

ǫ τ τv − q
]T
, (5.5)

ǫ ∈ EN2 .
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In the Navier-Stokes equations (5.1), the constitutive relations for the stress
tensor τ and the heat flux vector q are given by Newton’s and Fourier’s laws
(3.117)-(3.118), respectively. The diffusion velocities are found by solving the
Stefan-Maxwell equations (3.116). The thermodynamic properties, mass pro-
duction terms and transport properties in eqs. (5.2)-(5.5) can be computed
based on the contents of ch. 3.
In the present chapter, the following benchmarks are considered:

• Quasi-one-dimensional flows within converging-diverging nozzles (sec. 5.3),
• Flows along the stagnation line of blunt bodies (sec. 5.4),
• Inviscid axisymmetric flows (sec. 5.5).

Each case in the previous list is studied by applying ad-hoc simplifying as-
sumptions to eq. (5.1). When this is done, a simpler form of the flow governing
equations (5.1) is obtained. Sections 5.1.1-5.1.3 provide the conservation law
form of the simplified governing equations.

5.1.1 Inviscid Quasi-One-Dimensional Nozzle Flows

The governing equations for an inviscid and quasi-one-dimensional flow within
a nozzle of cross-sectional area distribution A = A(x) (where x is the posi-
tion along the nozzle axis), can be obtained based on the Navier-Stokes equa-
tions (5.1) by neglecting the transport fluxes and applying the hypothesis of
quasi-one-dimensional gas motion. The set of equations obtained by using this
procedure can be written in conservation law form as (Hirsch 1990):

∂U

∂t
+
∂F

∂x
= S, (5.6)

where the vector F is the inviscid flux vector. The source term vector is the
sum of two distinct contributions:

S = Sc + Sk. (5.7)

The convective source term vector Sc accounts for the nozzle cross-sectional
area variation. The vector Sk accounts for the kinetic processes within the
flow (internal energy excitation and dissociation). The conservative variable,
inviscid flux and source term vectors in eqs. (5.6)-(5.7) are:

U =
[

ρN ρ̃ǫ ρu ρE
]T
, (5.8)

F =
[

ρNu ρ̃ǫu p+ ρu2 ρuH
]T
, (5.9)

Sc = −∂ lnA
∂x

[

ρNu ρ̃ǫu ρu2 ρuH
]T
, (5.10)

Sk =
[

ωN ω̃ǫ 0 0
]T
, (5.11)

ǫ ∈ EN2 .
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5.1.2 Stagnation-Line Flows

The flow along the stagnation-line of blunt bodies can be studied by using the
quasi-one-dimensional Navier-Stokes equations derived by Klomfass and Müller
(1997). The derivation starts by writing eqs. (5.1) in spherical (or cylindrical)
coordinates and by assuming a functional dependence for the flow variables:

ρN = ρN(r), ρ̃ǫ = ρ̃ǫ(r), ǫ ∈ EN2 , (5.12)

u = u(r) cos θ, v = v(r) sin θ, T = T (r), p− p∞ = p(r) cos2 θ,(5.13)

where quantities u and v are the axial and radial velocity components, respec-
tively, and quantity r is the distance from the stagnation-point. The θ angle
is measured with respect to the stagnation-line. The stagnation-line equations
are obtained by substituting eqs. (5.12)-(5.13) in eq. (5.1), and taking then
the limit θ → 0. The obtained set of one-dimensional equations can be writ-
ten as system of time-dependent hyperbolic-parabolic conservation laws (see
below). This is particularly advantageous, as it allows for the use of shock-
capturing methods in conjunction with a time-marching approach for reaching
steady-state conditions (Hirsch 1990). Depending on the coordinate system in
use, two formulations can be obtained: spherical and cylindrical. In this the-
sis, the spherical formulation has been adopted as it provides a more realistic
representation of the flow around the stagnation-point of re-entry vehicles.
Alternative formulations to that of Klomfass and Müller (1997) exist, such
as viscous shock-layers (Thivet 1992; Gupta and Lee 1995). In viscous shock
layers, the governing equations cannot be cast in a conservative form. This
obliges to resort to shock-fitting procedures for computing the jumps in flow
variables at the shock location. These reasons explain why the formulation of
Klomfass and Müller (1997) was preferred to viscous shock-layers.
The stagnation-line equations obtained by Klomfass and Müller (1997) are:

∂U

∂t
+
∂F

∂r
− ∂Fd

∂r
= S. (5.14)

The conservative variable, inviscid flux and diffusive flux vectors are:

U =
[

ρN ρ̃ǫ ρu ρv ρE
]T
, (5.15)

F =
[

ρNu ρ̃ǫu p+ ρu2 ρuv ρuH
]T
, (5.16)

Fd =
[

−ρNudN −ρ̃ǫũdǫ τrr τrθ τrru− q
]T
, (5.17)

ǫ ∈ EN2 ,

where the overbar symbol has been omitted for the sake of clarity. It is im-
portant to mention that only the axial velocity component u (u in eq. (5.12))
contributes to the gas specific kinetic energy (i.e. ekin = u2/2). This pecu-
liarity results from the procedure leading to the stagnation-line equations and
must be taken into account when deriving the eigensystem associated to the
hyperbolic part of eq. (5.14) (see app. C for more details).
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The source term vector in eq. (5.14) is the sum of three distinct contributions:

S = Sc + Sd + Sk. (5.18)

As it was in sec. 5.1.1, the kinetic source term vector Sk accounts for the kinetic
processes within the flow. The convective and diffusive source term vectors (Sc

and Sd, respectively) are additional source terms resulting from the procedure
leading to the stagnation-line equations:

Sc = −1

r

[

2ρN(u+ v) 2ρ̃ǫ(u+ v) 2ρu(u+ v)

3ρv(u+ v)− 2(p− p∞) 2ρ(u+ v)H
]T
, (5.19)

Sd = −1

r

[

2ρNu
d
N 2ρ̃ǫũ

d
ǫ −2(τrr + τrθ − τθθ) −(3τrθ − τθθ)

−2(τrru+ τrθu+ τθθv − q)
]T
, (5.20)

Sk =
[

ωN ω̃ǫ 0 0 0
]T
, (5.21)

ǫ ∈ EN2 .

In the stagnation-line formulation of Klomfass and Müller (1997), the consti-
tutive relations for the stress tensor and the heat flux vector reduce to:

τrr =
4

3
η

(

∂u

∂r
− u+ v

r

)

, (5.22)

τrθ = η

(

∂v

∂r
− u+ v

r

)

, (5.23)

τθθ = −
1

2
τrr, (5.24)

q = ρNu
d
NhN +

∑

ǫ∈EN2

ρ̃ǫũ
d
ǫ h̃ǫ − λ

∂T

∂r
. (5.25)

5.1.3 Inviscid Axisymmetric Flows

The governing equations for inviscid axisymmetric flows can be obtained based
on the Navier-Stokes equations (5.1) by neglecting the transport fluxes and by
assuming that the flow is axisymmetric. After some algebraic manipulation,
the conservation law form of the governing equations is obtained:

∂yU

∂t
+
∂yF

∂x
+
∂yG

∂y
= S, (5.26)

where quantities x and y are the axial and radial coordinates, respectively. The
conservative variable and inviscid flux vectors are:

U =
[

ρN ρ̃ǫ ρu ρv ρE
]T
, (5.27)

F =
[

ρNu ρ̃ǫu p+ ρu2 ρuv ρuH
]T
, (5.28)

G =
[

ρNv ρ̃ǫv ρuv p+ ρv2 ρvH
]T
, (5.29)

ǫ ∈ EN2 ,
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where u and v are the axial and radial velocity components, respectively. The
source term vector in eq. (5.26) is made of two distinct contributions:

S = Sc + ySk. (5.30)

As it was in secs. 5.1.1-5.1.2, the kinetic source term vector Sk accounts for the
kinetic processes within the flow. The convective (or axisymmetric) source term
vector Sc is an additional source term resulting from the procedure leading to
the axisymmetric equations (5.26):

Sc =
[

0 0̃ǫ 0 p 0
]T
, (5.31)

Sk =
[

ωN ω̃ǫ 0 0 0
]T
, (5.32)

ǫ ∈ EN2 ,

where the symbol 0̃ǫ indicates the component ǫ of the null vector 0NN2
.

5.2 Numerical Methods

5.2.1 1D Flows

The conservation law form of the governing equations (5.6) and (5.14) for
quasi-one-dimensional nozzle and stagnation-line flows, respectively, are for-
mally identical except for the presence of diffusive terms (flux and source) in
the stagnation-line case. This means that the discretization procedure for the
quasi-one-dimensional nozzle flow governing equations can be obtained based
on that for the stagnation-line case by neglecting the diffusive terms, and by
replacing the r coordinate with the x coordinate.
The numerical procedure used for solving eq. (5.14) is based on the application
of the method-of-lines (MOL). The latter consists in separating the spatial and
temporal discretization (Hirsch 1990).

Spatial Discretization

The spatial discretization of eq. (5.14) is performed by means of the Finite
Volume (FV) method (Hirsch 1990). Its application leads to the following
ODE describing the time evolution of the conservative variable vector of the
cell i:

∂Ui

∂t
∆ri + F̃

i+ 1
2

− F̃
i− 1

2

−
(

Fd
i+ 1

2

− Fd
i− 1

2

)

=
(

Sc
i + Sd

i + Sk
i

)

∆ri, (5.33)

with the cell volume (length) ∆ri = ri+1/2 − ri−1/2. The numerical inviscid
flux F̃i+1/2 is computed by means of Roe’s approximate Riemann solver (Roe
1981):

F̃
i+ 1

2

=
1

2
[F(Ui+1) + F(Ui)]−

1

2
|A(Û)| (Ui+1 −Ui) . (5.34)
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The dissipation matrix |A(Û)| is defined as |A(Û)| = R(Û)|Λ(Û)|L(Û), where
Λ, R and L are, respectively, the eigenvalue, right eigenvector and left eigen-
vector matrices associated to the inviscid flux Jacobian matrix A = ∂F/∂U =
RΛL (Gnoffo et al. 1989; Hirsch 1990; Candler and MacCormack 1991). The
expressions for the matrices Λ, R and L (i.e. the eigensystem associated to the
Jacobian A) are provided in app. C. The hat symbol in eq. (5.34) indicates that
the conservative variable vector must be evaluated at Roe’s averaged state. In
the present thesis, Roe’s averaged state is computed based on the linearization
proposed by Prabhu (1994). The entropy fix of Harten and Hyman (Hirsch
1990) is used in order to prevent the occurrence of expansion shocks.
The diffusive flux and source term (Fd

i+1/2 and Sd
i , respectively) are both eval-

uated in terms of primitive variables:

P =
[

ρN ρ̃ǫ u v T
]T
, ǫ ∈ EN2 . (5.35)

In the computation of the diffusive flux Fd
i+1/2, the value and the gradient of the

generic primitive variable p at the interface i+ 1/2 are computed according to
a weighted average and a central finite difference approximation, respectively:

pi+ 1
2
=

pi+1∆ri+1 + pi∆ri
∆ri+1 +∆ri

,

(

∂p

∂r

)

i+ 1
2

= 2

(

pi+1 − pi
∆ri+1 +∆ri

)

. (5.36)

In the computation of the diffusive source term Sd
i , the gradient of the generic

primitive variable p at the centroid location of the cell i is computed according
to a two point central finite-difference approximation:

(

∂p

∂r

)

i

= 2

(

pi+1 − pi−1

∆ri+1 + 2∆ri +∆ri−1

)

. (5.37)

Boundary Conditions and Reconstruction

Boundary conditions are implemented through ghost cells (Hirsch 1990) and
are imposed in terms of primitive variables (5.35).
Second order accuracy in space is achieved through an upwind variable recon-
struction at cell interface. For the sake of robustness, the reconstruction is
performed on primitive variables (Candler and MacCormack 1991). The recon-
structed values of the generic primitive variable p at the left (L) and right (R)
sides of the interface i+1/2 are computed by means of the Monotone Upstream
Centered Schemes for Conservation Laws (MUSCL) method of van Leer (1979):

pLi+1/2 = pi +
1

2
φ(rLi ) (pi − pi−1) , (5.38)

pRi+1/2 = pi+1 −
1

2
φ(1/rRi+1) (pi+2 − pi+1) , (5.39)

where φ = φ(r) is a slope limiter function (van Leer 1979; Hirsch 1990). The
left and right ratios of consecutive differences are computed as:

rLi =
pi+1 − pi
pi − pi−1

, rRi+1 =
pi+2 − pi+1

pi+1 − pi
. (5.40)
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In the present thesis, the slope limiter of van Albada et al. (1982) has been used.
After applying eqs. (5.38)-(5.40), the reconstructed left and right conservative
variables (UL

i+1/2 and UR
i+1/2, respectively) are found, and the second-order

numerical flux is then computed as F̃i+1/2 = F̃i+1/2(U
L
i+1/2,U

R
i+1/2).

Temporal Discretization

Equation (5.33) is integrated in time by means of the implicit Backward-Euler
(BE) method (Gear 1971; Hirsch 1990):

δUn
i

∆ti
∆ri+F̃n+1

i+ 1
2

−F̃n+1
i− 1

2

−
(

Fdn+1
i+ 1

2

− Fdn+1
i− 1

2

)

=
(

Scn+1
i + Sdn+1

i + Skn+1
i

)

∆ri,

(5.41)

with δUn
i = Un+1

i − Un
i . The local time-step ∆ti is computed based on the

Courant-Friedrichs-Lewy (CFL) number according to (Blazek 2006):

∆ti =
CFL∆ri

[

|u|+ c+
1

∆r
max

(

4

3

η

ρ
,
λ

Cv

)]

i

, (5.42)

where the quantities c and Cv are the gas frozen speed of sound and the gas
volumetric specific heat at constant volume, respectively (their expressions are
given in app. C). The viscous contribution to the time-step (given by the second
term at the denominator of eq. (5.42)) is needed in order prevent numerical in-
stabilities in zones such as boundary layers, where the diffusive part of eq. (5.14)
becomes dominant. Equation (5.42) has been derived based on heuristic consid-
erations and alternative formulation can be found in the literature (Hirsch 1990;
Plectcher et al. 2011). In order to advance the solution from the time-level n
to the time-level n + 1, the flux and source terms in eq. (5.41) are linearized
around the solution at the time-level n by means of a Taylor-series expansion.
For the sake of robustness, the effects of the reconstruction are not considered
while performing the linearization. Depending on the terms that are retained in
the linearization process, two time-integration methods result: a) fully implicit
method and b) point-implicit method.

Fully Implicit Method The numerical inviscid flux is linearized according
to the formulation of Liou and van Leer (1988):

F̃n+1
i+ 1

2

≃ F̃n
i+ 1

2
+A+n

i δUn
i +A−n

i+1δU
n
i+1, (5.43)

where the positive-negative split Jacobians are A± = RΛ±L (Liou and van
Leer 1988; Hirsch 1990) and their expressions are given in app. D. A popu-
lar alternative to eq. (5.43) is the approximation proposed by Jameson and
Yoon (1987) where the matrices A± are replaced with the simpler expression
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1/2 [A± (|u|+ c)I], where I is the identity matrix. However, calculations of
both nozzle and stagnation-line flows have shown that eq. (5.43) enables to
obtain a significant convergence speed-up compared to the approximation of
Jameson and Yoon (1987).
The linearization of the convective and kinetic source terms is straightforward:

Scn+1
i ≃ Scn

i +
∂Scn

i

∂Ui
δUn

i , (5.44)

Skn+1
i ≃ Skn

i +
∂Skn

i

∂Ui
δUn

i . (5.45)

The Jacobian matrices ∂Sc /∂U and ∂Sk /∂U are evaluated analytically in
order to enhance stability. Their expressions are given in app. E.
The linearization of the diffusive flux and source term is more delicate and is
performed in two steps. The first step consists in writing the diffusive flux and
source term as the sum of a first term, which depends linearly on the gradient
of conservative variables, and a second non-linear term as:

Fdn
i+ 1

2

= Adn
i+ 1

2

(

∂U

∂r

)n

i+ 1
2

+Bdn
i+ 1

2

, (5.46)

Sdn
i = Adn

s i

(

∂U

∂r

)n

i

+Bdn
s i . (5.47)

To facilitate the linearization procedure, the matrices Ad and Ad
s are computed

by assuming a Fickian diffusion model based on self-consistent effective diffusion
coefficients (Ramshaw and Chang 1996). The expressions for the matrices
Ad and Ad

s and the vectors Bd and Bd
s are given in app. F. The gradients

of the conservative variables in eqs. (5.46)-(5.47) are computed according to
eqs. (5.36)-(5.37). The expressions obtained are then linearized around the
time-level n as follows:

Fdn+1
i+ 1

2

≃ Fdn
i+ 1

2
+ 2Adn

i+ 1
2

(

δUn
i+1 − δUn

i

∆ri+1 +∆ri

)

+
∂Bdn

i+1/2

∂Un
i

δUn
i +

∂Bdn
i+1/2

∂Un
i+1

δUn
i+1,

(5.48)

Sdn+1
i ≃ Sdn

i + 2Adn
s i

(

δUn
i+1 − δUn

i−1

∆ri+1 + 2∆ri +∆ri−1

)

+
∂Bdn

s i

∂Un
i

δUn
i . (5.49)

Notice that the matrices Ad and Ad
s are kept frozen while performing the

linearization. In eq. (5.48), the last two terms on the right-hand-side are further
approximated to:

∂Bdn
i+1/2

∂Un
i

≃ ∂Bdn
i

∂Un
i

,
∂Bdn

i+1/2

∂Un
i+1

≃ ∂Bdn
i+1

∂Un
i+1

. (5.50)

The substitution of eqs. (5.43)-(5.50) in eq. (5.41) leads to a block-tridiagonal
linear algebraic system to be solved at each time-step:

Mn
L i δU

n
i−1 +Mn

C i δU
n
i +Mn

R i δU
n
i+1 = −R̃n

i , (5.51)
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where the left, center and right block matrices, and the right-hand-side residual
have the following expressions:

ML i =
2∆riA

d
s i

(∆ri+1 + 2∆ri +∆ri−1)
−

2Ad
i−1/2

(∆ri +∆ri−1)
+
∂Bd

i−1

∂Ui−1
−A+

i−1,

(5.52)

MC i =

[

I

∆ti
−
(

∂Sk
i

∂Ui
+
∂Sc

i

∂Ui
+
∂Bd

s i

∂Ui

)]

∆ri + |Ai|+ (5.53)

2Ad
i+1/2

(∆ri+1 +∆ri)
+

2Ad
i−1/2

(∆ri +∆ri−1)
,

MR i = −
2∆riA

d
s i

(∆ri+1 + 2∆ri +∆ri−1)
−

2Ad
i+1/2

(∆ri+1 +∆ri)
− ∂Bd

i+1

∂Ui+1
+A−

i+1,

(5.54)

R̃i = F̃
i+ 1

2

− F̃
i− 1

2

−
(

Fd
i+ 1

2

− Fd
i− 1

2

)

−
(

Sc
i + Sd

i + Sk
i

)

∆ri. (5.55)

The folding of the boundary conditions in the block matrices ML i, MC i and
MR i is performed as suggested by Candler and MacCormack (1991). The
block-tridiagonal system in eq. (5.51) is solved by means of Thomas’ algorithm
(Hirsch 1990) and the solution updated at the time-level n+ 1:

Un+1
i = Un

i + δUn
i . (5.56)

This process is continued until steady-state is not reached.

Point-Implicit Method In the case of a point-implicit method, only the
Jacobian matrices associated to the cell i are retained while performing the
linearization. This is equivalent to set to zero the matrices ML i and MR i in
eq. (5.51). In this way, at each time-step, the solution variation δUi can be
computed independently for each cell according to:

Mn
C i δU

n
i = −R̃n

i . (5.57)

Once eq. (5.57) applied for each cell, the solution update readily follows from
eq. (5.56). The advantage of a point-implicit method lies in its low memory
requirements compared to a fully implicit method. This property is used for
applications of the RVC model to expanding flows in sec. 5.3.1. Moreover, a
point-implicit method is also less demanding in terms of programming efforts,
compared to a fully implicit method. This is due to the fact the solution
update in a point-implicit method does not involve the solution of a linear
algebraic system (i.e. only a local matrix inversion is required). These positive
aspects are counterbalanced by more stringent stability limits which become
quite severe for viscous flows. Indeed, the CFL number cannot exceed, in
general, values of the order of 1-2 and 0.1-0.5 for inviscid and viscous flows,
respectively.
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5.2.2 2D Flows

Numerical solutions of eq. (5.26) are obtained by means of a 2D structured,
multi-block and parallel inviscid FV solver developed by Kapper (2009). Even
in this case, the MOL is used. Only the main characteristics of the solver are
given in this section. For more details the reader is referred to the PhD thesis
of Kapper (2009) and to the papers of Kapper and Cambier (2011a; 2011b).

Spatial Discretization

The computational domain is discretized by using structured grids. Figure 5.1
provides the node and cell ordering convention.

Figure 5.1: Node and cell ordering convention in the 2D structured grid code in use.

The spatial discretization of eq. (5.26) is performed by applying the FV method
to each i, j cell of the domain. This leads to the following ODE for the time
evolution of the conservative variable vector of the cell i, j:

∂Ui,j

∂t
Ai,j = −R̃i,j , (5.58)

with Ai,j being the cell volume (area). The right-hand-side residual can be split
as R̃i,j = R̃c i,j + R̃s i,j , where the convective and source term contributions are:

R̃c i,j =
(

lyF̃n

)

i+ 1
2
,j
+
(

lyF̃n

)

i− 1
2
,j
+
(

lyF̃n

)

i,j+ 1
2

+
(

lyF̃n

)

i,j− 1
2

, (5.59)

R̃s i,j = −Si,jAi,j , Si,j =
(

Sc + ySk
)

i,j
, (5.60)

where the symbol l is used to indicate the cell face area (length). The numerical
inviscid flux F̃n i+1/2,j is computed by means of Roe’s approximate Riemann
solver (Roe 1981):

F̃n i+ 1
2
,j =

1

2
[Fn (Ui+1,j) + Fn (Ui,j)]−

1

2
|An(Û)| (Ui+1,j −Ui,j) . (5.61)

The normal inviscid flux is given by Fn = Fnx+Gny , where nx and ny are the x
and y components of the outward unit normal vector n of the interface i+1/2, j,
respectively. The dissipation matrix is |An(Û)| = Rn(Û)|Λn(Û)|Ln(Û), where
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Λn, Rn and Ln are, respectively, the eigenvalue, right eigenvector and left eigen-
vector matrices of the projected inviscid flux Jacobian matrix An = ∂Fn/∂U =
RnΛnLn. The Roe averaged state is computed, as in sec. 5.2.1, based on the
linearization of Prabhu (1994). Multi-dimensional applications of Roe’s ap-
proximate Riemann solver can potentially lead to undesired effects, such as
the carbuncle phenomenon and odd-even decoupling (Quirk 1994). These may
be cured by ad-hoc fixes. In the present work, a different approach has been
used. As recognized by Quirk (1994), the previous shortcomings can be avoided
trough a targeted application of the Harten-Lax-van Leer-Einfeldt (HLLE) ap-
proximate Riemann solver (Einfeldt et al. 1991):

F̃n i+ 1
2
,j =

b+Fn (Ui+1,j)− b−Fn (Ui,j)

b+ − b− +
b+b−

b+ − b− (Ui+1,j −Ui,j) . (5.62)

The upwind wave speeds are defined as:

b+ = max
[

0, (Vn + c)i+1,j , V̂n + ĉ
]

, (5.63)

b− = min
[

0, (Vn − c)i,j , V̂n − ĉ
]

, (5.64)

where the normal velocity is Vn = unx + v ny. The use of the HLLE numer-
ical flux is activated when the interface non-dimensional pressure difference
|pi+1,j − pi,j |/min(pi+1,j , pi,j) is greater than a threshold critical value (Quirk
1994). For a more detailed discussion, the reader is referred to the paper of
Quirk (1994) and the PhD thesis of Kapper (2009).

Boundary Conditions and Reconstruction

Boundary conditions are implemented through ghost cells (Hirsch 1990) and
are imposed in terms of primitive variables.
High-order spatial resolution is achieved by evaluating the inviscid flux at a
reconstructed state at cell interface. The reconstruction is performed on char-
acteristic variables W = LU through a parabolic interpolation (Suresh and
Huynh 1997). Referring to the a one-dimensional and uniform mesh example,
the reconstructed characteristic variables at the interfaces i±1/2 are found via:

Wi− 1
2
=

1

6
(2Wi−1 + 5Wi −Wi+1), (5.65)

Wi+ 1
2
=

1

6
(2Wi+1 + 5Wi −Wi−1). (5.66)

The use of eqs. (5.65)-(5.66) makes the scheme third-order accurate in space. In
order to prevent the occurrence of instabilities, a limiting procedure is required
and the reconstructed characteristic variables are modified according to:

Wi− 1
2
← median(Wi− 1

2
, Wi, W

MP
i ), (5.67)

Wi+ 1
2
← median(Wi+ 1

2
, Wi+1, W

MP
i+1). (5.68)
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The monotonicity-preserving (MP) limits of the interfaces i± 1/2 are:

WMP
i = Wi + minmod[Wi+1 −Wi, α(Wi −Wi−1)], (5.69)

WMP
i+1 = Wi+1 + minmod[Wi+2 −Wi+1, α(Wi+1 −Wi)], (5.70)

with minmod(a, b) = 1
2(sgn(a) + sgn(b))min(abs(a), abs(b)). In the present

thesis, the parameter α has been set to 2. Once eqs. (5.67)-(5.68) applied,
the reconstructed conservative variables are found through U = L−1W. Then
the numerical inviscid fluxes F̃i±1/2 are then evaluated as F̃i±1/2 = F(Ui±1/2).
Details regarding the multi-dimensional version of the reconstruction procedure
on non-uniform/uniform meshes can be found in the PhD thesis of Kapper
(2009).

Temporal Discretization

The temporal discretization is realized as follows. Given the numerical solution
at the time-level n, the update at the time-level n+ 1 is computed as:

Un+1
i,j = Un

i,j + δcU
n
i,j + δsU

n
i,j . (5.71)

The convective and source contributions to the solution update (δcU and δsU,
respectively) are computed independently as explained below.
During the convective step, the presence of source terms is neglected and the
solution update is computed explicitly according to:

δcU
n
i,j = −

∆t c i,j
Ai,j

R̃n
c i,j . (5.72)

The convective time-step ∆t c is computed based on the CFL criterion for 2D
structured grids (see for instance Hirsch 1990; Blazek 2006).
The source step is performed by neglecting the flux contributions. In this case
the solution update is performed in an implicit manner:

δsU
n
i,j =

(

I

∆t s i,j
−
∂Sn

i,j

∂Ui,j

)−1

Sn
i,j . (5.73)

For the purpose of enhancing stability and reducing the computational time, the
Jacobian matrices involved in the computation of ∂S/∂U are evaluated analyt-
ically (their expressions are given in app. E). The source time-step ∆t s should
be computed based on a stability analysis of the ODE system ∂U/∂t = S, and
not based on the CFL number. However, it was found that the assumption
∆t c = ∆t s did not lead to severe convergence problems.
The approach used here for the temporal discretization is known as opera-
tor splitting. The use of operator splitting can be be advantageous in multi-
dimensional applications, at it avoids the solution of large linear systems which
arise for implicit methods (Hirsch 1990). This nice feature comes at the price
of a narrower stability domain. A possible improvement in this aspect can be
obtained with the use of multi-stage time-stepping schemes (such as the second
order two-stage Adams-Bashforth method; Kapper 2009).



Part II - Integration of Coarse-Grained Models in Hydrodynamic

Flows
111

5.3 Quasi-One-Dimensional Nozzle Flows

This section investigates non-equilibrium recombination in quasi-one-dimensional
flows within realistic nozzle geometries. In the case of the RVC model, steady-
state solutions of the nozzle flow governing equations (5.6) have been obtained
by means of the point-implicit method described in sec. 5.2.1. For the other
models, the fully implicit method described in the same section has been used.

5.3.1 Application of the RVC Model to the Flow within the

Nozzle of the EAST Facility

The study of non-equilibrium recombination within nozzles has considered, as
first application, the flow within the nozzle of the Electric Arc Shock Tube
(EAST) facility at NASA ARC. Figure 5.2 shows the normalized area distribu-
tion of the EAST facility nozzle. For the RVC model, predissociation has not
been accounted for (due to its limited impact on flow quantities as observed
in sec. 4.2.3 for flows behind shock waves). The nozzle has been truncated at
the location x = 5× 10−2 m in order to avoid numerical problems due to the
low-temperature extrapolation of the elementary rate coefficients. This issue
was not faced in the case of the VC and BRVC models and can be explained
by the fact that the rate coefficients for these coarse-grained models are com-
puted through weighted averages over the energy levels (eqs. (3.58)-(3.61) and
eqs. (3.90)-(3.93)). This operation tends to smooth and attenuate an eventual
irregular behavior of the elementary rate coefficients at low temperatures.
The nozzle flowfield has been computed by assuming Local Thermodynamic
Equilibrium (LTE) at the nozzle inlet. The inlet static pressure and tempera-
ture have been set to 101 325Pa and 10 000K, respectively. The corresponding
mole fractions of N and N2 are 0.993 and 0.07, respectively. These conditions
have been selected, so that N2-N collisions are the dominant mechanism in the
flow.
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Figure 5.2: Normalized area distribution of the EAST facility nozzle (inlet x =
−0.025m, throat x = 0m, outlet x = 0.083m).
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Flowfield Analysis

Figure 5.3 shows the evolution along the nozzle axis of the N2 mole fraction
and the temperatures. The temperature evolution shows that rotational non-
equilibrium effects are quite limited. This is not the case for the vibrational
energy mode, whose temperature is sensibly higher than the translational and
rotational temperatures at the nozzle outlet. The internal temperature always
lies in between the rotational and vibrational ones (as observed in sec. 4.2.1 for
flows behind shock waves). The results shown in fig. 5.3 suggest that, for the
expanding case, a VC model should lead to an accurate description. This is
indeed confirmed by the results shown later.

-0.02 0 0.02 0.04
7.0×10

-3

7.5×10
-3

8.0×10
-3

8.5×10
-3

9.0×10
-3

x [m]

X
N

2

(a) N2 mole fraction.

-0.02 0 0.02 0.04

2000

4000

6000

8000

10000

x [m]

T
,
T
in
t,
T
v
ib
,
T
ro
t
[K

]

(b) Temperatures.

Figure 5.3: RVC Model. N2 mole fraction and temperature evolution along the axis
of the EAST facility nozzle (in (b) unbroken line T , dashed line Tint, dotted line Tvib,
dotted-dashed line Trot).

Energy Level Dynamics

The internal energy level population distributions have been extracted at 7
locations listed in tab. 5.1.

# x [m] XN2 T [K] Tint [K] Tvib [K] Trot [K]

1 −2.5× 10−2 7.09× 10−3 10 000 10 000 10 000 10 000
2 1.1× 10−4 8.67× 10−3 7794 7848 7879 7815
3 1× 10−2 9.07× 10−3 5846 6032 6173 5884
4 2× 10−2 9.19× 10−3 4232 4767 5237 4285
5 3× 10−2 9.22× 10−3 3052 4036 4945 3116
6 4× 10−2 9.24× 10−3 2322 3578 4763 2391
7 5× 10−2 9.25× 10−3 1809 3166 4468 1885

Table 5.1: RVC model. Position, N2 mole fraction and temperatures for the locations
at which the population distributions are extracted.
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Figure 5.4 provides a visual correspondence between the evolution of the N2

mole fraction and the population distribution along the nozzle axis. At the noz-
zle inlet the energy level population distribution is Boltzmann, due to assumed
LTE conditions. Moving along the nozzle axis, recombination starts to occur.
This leads to a progressive overpopulation in the high-energy regions of the
population distribution, due to the preferential recombination in high-lying en-
ergy levels. It is interesting to notice that, in the zone close to the dissociation
limit (≃ 9.735 eV), a local overpopulation peak is formed.
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(b) Population distribution.

Figure 5.4: RVC model. Comparative evolution of the N2 mole fraction and the
rovibrational energy level distribution along the axis of the EAST facility nozzle (the
symbols in (a) highlight the locations at which the population distributions, plotted in
(b), are extracted).

0 0.5 1 1.5 2
10

13

10
14

10
15

10
16

10
17

Ei [eV]

n
i/
a
i
[m

−
3
]

Figure 5.5: RVC model. Evolution along the axis of the EAST facility nozzle of
the population of the rovibrational energy levels lying close to the ground-state (the
locations at which the distributions are plotted are the same as those of fig. 5.4).
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The extension of the overpopulation peak becomes bigger and bigger while
approaching the nozzle outlet. This result shows that the dynamical behavior of
the energy levels lying close to the dissociation limit is quite different from that
of the others. In particular, it seems to suggest the existence of a preferential
channel for recombination.
When the temperature decreases (due to the expansion process), the popula-
tion distribution separates into distinct straight lines in the region close to the
ground-state (see fig. 5.5). These correspond to the rotational levels of the
ground and the first excited vibrational states as shown in fig. 5.6 for the loca-
tion 7 of tab. 5.1. The fact that the rotational levels close to the ground-state
lie along a straight line, indicates that they are in thermal equilibrium at their
own temperature. Numerical values for this temperature for each vibrational
level shown in fig. 5.6 have been extracted based on eq. (4.3) and are reported
in fig. 5.6(a). The values obtained are very close to that of the translational
temperature and confirm that the rotational energy mode is in thermal equilib-
rium with translation (as anticipated before). A more detailed investigation of
the rotational level distribution in fig. 5.6(b) reveals the existence of a splitting
between energy levels having odd and even rotational quantum numbers (J).
This feature was already observed before when studying flows behind shock
waves (sec. 4.2.5; see fig. 4.8(b)). However, for a recombining nozzle expansion,
the splitting is barely noticeable for the ground and the first excited vibra-
tional states, while it becomes more and more evident when moving towards
higher vibrational states. This result shows that the assumption of rotational
equilibrium is less appropriate for these states.
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Figure 5.6: RVC model. Rotational energy level distribution for the ground and the
first five excited vibrational states at the location x = 5× 10−2 m along the axis of the
EAST facility nozzle (the unbroken lines in (a) represent the Boltzmann distributions
at the rotational temperatures T v

rot).
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(a) Vibrational specific distribution.
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(b) Rotational specific distribution.

Figure 5.7: RVC model. Evolution of the vibrational and rotational specific popu-
lation distributions along the axis of the EAST facility nozzle (in (a) unbroken line
x = −2.5× 10−2 m, dashed line x = 1.1× 10−4 m, dotted-dashed line x = 1× 10−2 m,
dotted line x = 2× 10−2 m, line with circles x = 3× 10−2 m, line with squares
x = 4× 10−2 m, line with triangles x = 5× 10−2 m; in (b) circles x = −2.5× 10−2 m,
crosses x = 1.1× 10−4 m, squares x = 1× 10−2 m, plus x = 2× 10−2 m, triangles
x = 3× 10−2 m, stars x = 4× 10−2 m, diamonds x = 5× 10−2 m).

The energy level dynamics can also be studied by looking at vibrational and ro-
tational specific population distributions (fig. 5.7). The observed over-population
illustrates again the existence of a preferential recombination in high-lying en-
ergy levels. In the region where the distribution deviates from a Boltzmann-like
shape, the rotational levels split according to odd and even rotational quantum
numbers (as observed in fig. 5.5).

Comparison with the VC, BRVC and MTP Models

After a detailed investigation of the RVC model solution, the nozzle flowfield has
been computed by means of the BRVC(50), VC and MTP models. Figure 5.8
compares all the models in terms of the N2 mole fraction. The BRVC(50) and
VC model solutions are very close to that obtained by means of the RVC model.
On the other hand, the MTP leads to an excessive amount of recombination.

Model XN2 T [K] u [m/s]
RVC 9.25× 10−3 1809 5041
BRVC(50) 9.69× 10−3 1822 5045
VC 9.42× 10−3 1808 5042
MTP 1.35× 10−2 1896 5072

Table 5.2: RVC, BRVC(50), VC and MTP model comparison. Outlet values for the
N2 mole fraction, translational temperature and velocity (EAST facility nozzle).
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Figure 5.8: RVC, BRVC(50), VC and MTP model comparison. N2 mole fraction
evolution along the axis of the EAST facility nozzle (unbroken line RVC, dashed line
BRVC(50), dotted-dashed line VC, dotted line MTP).

Due to the limited amount of recombination, flow quantities such as temper-
ature and velocity do not experience noticeable variations among the models.
This can be seen from tab. 5.2 reporting the outlet values of the N2 mole
fraction, translational temperature and velocity. The translational tempera-
ture and velocity values obtained in the case of the MTP are slightly higher
than those obtained by means of the RVC, BRVC(50) and VC models. This is
consistent with the higher values for the N2 mole fraction observed in fig. 5.8.
The relative errors on the outlet values of the N2 mole fraction for the BRVC(50),
VC and MTP are 4.76percent, 1.84percent and 45.95%, respectively. In the
present situation, the VC model performs slightly better than the BRVC model
(as opposed to what observed in sec. 4.3.2 for flows behind shock waves). The
better agreement observed in the case of the VC model is probably due to the
fact that the assumed rotational equilibrium distribution (3.52) is naturally
suggested by the observed energy level dynamics. The analysis of the rovibra-
tional distributions given in figs. 5.4(b)-5.7 has shown that the assumption of
rotational equilibrium is indeed appropriate for the low-lying rotational levels
of the vibrational ground-state and the first excited vibrational states.
Figures 5.9 and 5.10 show the evolution along the nozzle axis of the mass pro-
duction and energy transfer terms, respectively. The VC model solution is the
one leading to the better agreement with the RVC model. This result is con-
sistent with the N2 mole fraction evolution given in fig. 5.8. The differences
observed between the BRVC(50) and RVC model solutions put in evidence that
the BRVC model slightly overestimates not only the dissociation rate, but also
the rate at which the translational-internal energy transfer occurs. This result is
in contrast with those obtained in sec. 4.3.2 while investigating non-equilibrium
effects behind shock waves (see fig. 4.16). The disagreement observed in the
rate of translational-internal energy transfer is probably an indication that the
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BRVC model is most suited for high-temperature conditions. However, it is
worth to recall that, even in the present low-temperature conditions, the de-
parture from the VC model solution is quite limited.
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Figure 5.9: RVC, BRVC(50), VC and MTP model comparison. N2 mass production
term evolution along the axis of the EAST facility nozzle (unbroken line RVC, dashed
line BRVC(50), dotted-dashed line VC, dotted line MTP).
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Figure 5.10: RVC, BRVC(50), VC and MTP model comparison. Energy transfer
term evolution along the axis of the EAST facility nozzle (in (a) unbroken line Ωdis−int
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The small discrepancy observed between the RVC and VC model solutions have
been investigated more in detail by looking at the vibrational specific population
distributions along the nozzle axis. Figure 5.11 compares the vibrational specific
population distributions for the two models at the locations 2-7 of tab. 5.1.
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Figure 5.11: RVC and VC model comparison. Vibrational specific population distri-
butions along the axis of the EAST facility nozzle (lines with circles RVC, lines with
squares VC; the reported values for the N2 mole fraction, translational and vibrational
temperatures refer to the RVC model solution).
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For both models, the recombination (which occurs around the nozzle throat as
shown in fig. 5.8) leads to an overpopulation of high-lying vibrational states.
The agreement between the RVC and VC model solutions is very good at the
nozzle throat (location 2; fig. 5.11(a)). Moving further downstream, some dif-
ferences start to arise in the high-energy portion of the distribution (locations
3-4; figs. 5.11(b)-5.11(c)). These differences become more and more enhanced
towards the nozzle exit (location 7; fig. 5.11(f)) where the agreement between
the RVC and VC solutions is good only for the vibrational ground-state and
the first four excited vibrational states. For higher vibrational states, the pop-
ulation predicted by the RVC model is lower that of the VC model. This result
is consistent with the rotational level distributions at location 7 which have
been investigated before (fig. 5.6). The previous analysis of the rotational dis-
tributions has highlighted the existence of an odd-even splitting of rotational
levels (with the consequent lack of rotational non-equilibrium) starting from
the fourth excited vibrational state. From this analysis, one can conclude that
the observed differences between the RVC and VC model solutions are due to
the lack of rotational equilibrium throughout the whole rovibrational ladder
(see figs. 5.4(b)-5.7).

5.3.2 Application of the BRVC Model to the Flow within the

F4 and Scirocco Nozzles

The performances of the BRVC model have been further tested by computing
the non-equilibrium flow within the following realistic geometries:

• F4 (ONERA; France),
• Scirocco (CIRA; Italy).

Figure 5.12 provides their normalized area distributions.
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Figure 5.12: Normalized area distributions of the F4 and Scirocco nozzles (in (a)
inlet x = −0.5m, throat x = 0m, outlet x = 3m; in (b) inlet x = −0.28m, throat
x = 0m, outlet x = 5m).
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The nozzle geometries considered in this section have been chosen as, due to
the high outlet/throat area ratio, they lead to a more significant expansion
compared to the EAST facility nozzle. Computations have been performed by
using the same inlet conditions as in sec. 5.3.1.

Comparison with the VC and MTP Models

Figure 5.13 shows the N2 mole fraction, velocity and temperature evolution
along the axis of the F4 and Scirocco nozzles for the BRVC(50), VC and MTP
models. The corresponding outlet values are provided in tab. 5.3.

F4 Scirocco
Model XN2 T [K] u [m/s] XN2 T [K] u [m/s]
BRVC(50) 1.40× 10−2 21.3 5520 1.74× 10−2 781 5556
VC 1.34× 10−2 21.03 5509 1.67× 10−2 762 5543
MTP 2.11× 10−2 25.7 5599 3.37× 10−2 133 5718

Table 5.3: BRVC(50), VC and MTP model comparison. Outlet values for the N2

mole fraction, translational temperature and velocity (F4 and Scirocco nozzles).

The spatial evolution of the flow quantities shown in fig. 5.13 confirms that
the expansion in the F4 and Scirocco nozzles is much more severe compared
to the case of the EAST facility nozzle (as anticipated before). In particular,
the outlet values of the translational temperature are decreased by almost two
orders of magnitude. Despite this, the outlet values of the N2 mole fraction
are only roughly doubled. This is due to the freezing of recombination which
occurs around the throat location (figs. 5.13(a)-5.13(b)).
For both nozzle geometries, the evolution of the N2 mole fraction (figs. 5.13(a)-
5.13(b)) shows that the use of the VC model leads to a slightly lower recombi-
nation than the BRVC(50) model. This trend is consistent with the results ob-
tained for the EAST facility nozzle (see fig. 5.8). As demonstrated in sec. 5.3.1,
the VC model solution can be considered as the exact solution of the problem
under investigation (as far as the flow properties are concerned) due to the
limited influence of rotational non-equilibrium effects. In this case, the relative
errors on the outlet value of the N2 mole fraction when using the BRVC(50)
model are 4.48% and 4.19% for the F4 and Scirocco nozzles, respectively.
The approximation introduced by the use of the BRVC(50) model is therefore
contained within acceptable limits. In the case of the MTP model, the recom-
bination is overestimated and the relative error on the outlet values of the N2

mole fraction are much higher (more than 100% for the Scirocco nozzle). Due
to the higher recombination in the adopted nozzles, the differences in terms
of velocity and translational temperature between the VC (or BRVC(50)) and
MTP models are more pronounced compared to the case of the EAST facility
nozzle (see tab. 5.2).
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Figure 5.13: BRVC(50), VC and MTP model comparison. N2 mole fraction, veloc-
ity and temperature evolution along the axis of the F4 and Scirocco nozzles (in (a)-(d)
unbroken lines BRVC(50), dashed lines VC, dotted-dashed lines MTP; in (e)-(f) lines
with circles T BRVC(50), lines with squares T VC, lines with triangles T MTP, un-
broken lines Tint BRVC(50), dashed lines Tvib VC, dotted-dashed lines Tvib MTP).
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Energy Bin Dynamics

The energy bin population distributions have been extracted at 9 nine locations
along the axis of the Scirocco nozzle (with the corresponding values for position,
N2 mole fraction and temperatures provided in tab. 5.4).

# x [m] XN2 T [K] Tint [K]

1 −3× 10−1 7.09× 10−3 10 000 10 000
2 −4.03× 10−2 1.14× 10−2 8969 8977
3 3.46× 10−2 1.59× 10−2 6719 6736
4 8.46× 10−2 1.69× 10−2 5051 5072
5 1.35× 10−1 1.73× 10−2 3803 3829
6 2.85× 10−1 1.74× 10−2 2082 2118
7 3.5× 10−1 1.74× 10−2 1721 1763
8 5.29× 10−1 1.74× 10−2 1160 1229
9 6.94× 10−1 1.74× 10−2 852 977

Table 5.4: BRVC(50) model. Position, N2 mole fraction and temperatures for the
locations at which the energy bin population distributions are extracted (Scirocco noz-
zle).

Figure 5.14 provides a visual correspondence between the evolution of the N2

mole fraction and the energy bin population distribution along the nozzle axis.
The population is Boltzmann at the nozzle inlet, as a result of the LTE assump-
tion. Deviations from a Boltzmann distribution start occurring in the throat
region, due to preferential recombination in high-lying energy bins. Moving
towards the nozzle outlet, the distribution is highly distorted putting forward
differences in the dynamics of bound and predissociated energy bins.
Figure 5.15 focuses on the population distribution at the locations 6 and 9 of
tab. 5.4. Three regions can be identified. The first comprises the energy bins
close to ground-state. The second includes the medium and high-lying bound
energy bins, while the third region contains all the predissociated energy bins.
Boltzmann distributions at the internal and translational temperature are su-
perimposed on the first and third regions, respectively. The good agreement
observed between the actual and the Boltzmann distributions indicates that the
bound energy bins close to the ground-state are in partial equilibrium at the
internal temperature, while the predissociated energy bins are in partial equi-
librium at the translational temperature (i.e. they are in chemical equilibrium
with the free state). The observed behavior of the energy bins is analogous
to that of the electronic states of atoms and molecules in recombining plas-
mas. In that situation the electronic levels close to the ground-state are partial
equilibrium at the free-electron temperature while those close to the ionization
limit are in chemical (Saha) equilibrium with the free state (Panesi et al. 2011;
Munafò et al. 2013). The energy bin population distributions along the axis of
the F4 nozzle (not shown) share the same features observed in fig. 5.15.
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(b) Population distribution.

Figure 5.14: BRVC(50) model. Comparative evolution of the N2 mole fraction
and the energy bin population distribution along the axis of the Scirocco nozzle (the
symbols in (a) highlight the locations where the population distributions, plotted in
(b), are extracted; in (b) line with circles x = −3× 10−1 m, line with squares
x = −4.03× 10−3 m, line with triangles x = 3.46× 10−2 m, line with diamonds x =
8.46× 10−2 m, line with stars x = 1.35× 10−1 m, unbroken line x = 2.85× 10−1 m,
dashed line x = 3.5× 10−1 m, dotted-dashed line x = 5.29× 10−1 m, dotted line
x = 6.94× 10−1 m).
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(a) x = 2.85× 10−1 m.
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Figure 5.15: BRVC(50) model. Energy bin population distributions at the locations
x = 2.85× 10−1 m and x = 6.94× 10−1 m along the axis of the Scirocco nozzle (the
dashed and the dotted-dashed lines indicate the Boltzmann distributions at the trans-
lational and internal temperature, respectively).

Bin Number Sensitivity Analysis

The computational results obtained by means of the BRVC model have con-
sidered so far only a fixed number of energy bins (50). In order to assess the
sensitivity of the solution to the number of energy bins, the same strategy
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adopted in sec. 4.3.3 for flows behind shock waves has been used. Hence, the
computation of the non-equilibrium flows within the F4 and Scirocco nozzles
has been repeated by using different numbers of energy bins (listed in tab. 4.3).
Figure 5.16 shows the N2 mole fraction evolution along the axis of the F4 and
Scirocco nozzles for different numbers of energy bins. For sake of completeness,
the solution obtained by means of the VC and MTP models are also reported.
As expected, the solution accuracy improves by increasing the number of energy
bins. It is interesting to notice that, even in the case of 2-5 energy bins, the
BRVC solution is quite close to that of the VC model. The computational cost
of the numerical solutions obtained by using 2-5 energy bins is of the same order
as that of the MTP model. This means that, in a comparison with conventional
multi-temperature models, the BRVC model allows for a more accurate descrip-
tion of the recombination dynamics without incurring in an excessive increase
of the computational cost. This fact becomes particularly important in view
of possible multi-dimensional CFD applications of the proposed coarse-grain
models.
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Figure 5.16: BRVC model. Influence of the number of energy bins on the N2

mole fraction evolution along the axis of the F4 and Scirocco nozzles (unbroken
lines BRVC(2), dotted-broken lines BRVC(10), dashed lines BRVC(50), dotted lines
BRVC(500), lines with circles VC, lines with squares MTP).

Table 5.5 provides the outlet values of the N2 mole fraction for different numbers
of energy bins. In the same Table, the relative errors on the N2 fraction are
also given. This is estimated by considering the VC model solution as the
exact solution of the problem under investigation. The numerical error on the
outlet value of the N2 fraction is already quite contained (between 5percent
and 7%) when using only 10-20 energy bins. The increase of the number of
energy bins leads only to a slight improvement of the solution accuracy at the
price of a much higher computational cost. These results are consistent with
those obtained in sec. 4.3.3 for flows behind shock waves.
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F4 Scirocco
NN2

XN2 err.XN2 % XN2 err.XN2 %

2 1.87× 10−2 11.98 1.47× 10−1 9.701
5 1.85× 10−2 10.78 1.45× 10−1 8.209
10 1.79× 10−2 7.19 1.42× 10−1 5.97
20 1.76× 10−3 5.39 1.405× 10−1 4.85
50 1.74× 10−2 4.19 1.395× 10−1 4.104
100 1.74× 10−2 4.19 1.39× 10−1 3.73
500 1.72× 10−2 2.99 1.36× 10−1 1.49

Table 5.5: BRVC model. Outlet values of the N2 mole fraction and related relative
error for different number of energy bins (the relative error on the N2 mole fraction is
estimated by taking the VC model solution as the exact solution).

The influence of the number of energy bins can also be observed at the mi-
croscopic level. This is done in fig. 5.17 showing the energy bin population
distribution at the location 6 of tab. 5.4 for the Scirocco nozzle. The analysis
of fig. 5.17 shows that a minimum number of 10-20 energy bins is needed in
order to obtain a proper resolution of the main features of the distribution.
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Figure 5.17: BRVC model. Energy bin population distribution at the location x =
2.85× 10−1 m along the axis of the Scirocco nozzle for different numbers of energy bins
(unbroken line BRVC(5), dashed line BRVC(10), dotted line BRVC(20), dotted-dashed
line BVVC(50), circles BRVC(100), triangles BRVC(500); the reported values for the
N2 mole fraction, translational and internal temperatures refer to the BRVC(50) model
solution).
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5.4 Stagnation-Line Flows

This section presents the results on non-equilibrium stagnation-line flows. The
steady-state solutions to the stagnation-line governing equations (5.14) have
been obtained by means of the fully implicit method described in sec. 5.2.1.
Computations have been performed by means of the BRVC model. This was
motivated by the higher flexibility and lower computational cost of the BRVC
model compared to the VC model, as obtained from the investigation of flows
behind normal shock waves (sec. 4.3) and within nozzles (sec. 5.3).
The nose radius has been set to r = 0.4m. The free-stream pressure and
temperature have been set to the same values used in secs. 4.2-4.3 for studying
inviscid flows behind shock waves (p∞ = 0.05 torr, 0.1 torr, 0.33 torr and T∞ =
300K, respectively). The free-stream velocity has been kept fixed at 10 km/s.
As done in secs. 4.2-4.3, the free-stream flow is seeded with 2.8% of N since
only N2-N collisions are considered. At the wall a no-slip boundary condition
is applied. The wall has been considered non-catalytic and its temperature set
to 2000K.

5.4.1 Flowfield analysis

Figure 5.18 shows the temperature and N mole fraction along the stagnation-
line for different values of the free-stream pressure. The results shown have
been obtained by means of the BRVC(20) model. In the high-pressure case
(p∞ = 0.33 torr), three regions can be identified in the flowfield: a) The shock
wave, b) an intermediate post-shock area where the flow reaches local equilib-
rium conditions and c) the boundary layer. When the free-stream pressure is
decreased, regions b) and c) mix together leading to the formation of a so called
merged-layer flow (Gnoffo 1999).
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Figure 5.18: BRVC(20) model. Temperature and N mole fraction evolution along the
stagnation-line for different values of the free-stream pressure (unbroken lines p∞ =
0.05 torr, dashed lines p∞ = 0.1 torr, dotted-dashed lines p∞ = 0.33 torr).
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Moreover, the thickness of the shock wave and the boundary layer regions in-
crease and decrease, respectively. This is due to the lowering of the collision
rate among the gas particles which also affects the recombination and the tem-
perature gradients at the wall. Notice that for the lowest free-stream pressure
value (p∞ = 0.05 torr), the flow is still undergoing dissociation when it suddenly
hits the wall. This is the reason why the wall value of the N mole fraction is
lower compared to the case p∞ = 0.1 torr.
Figure 5.19 shows the heat flux evolution along the stagnation-line. The corre-
sponding wall values are reported in tab. 5.6 (together with pressure, N mole
fraction and internal temperature). Increasing the free-stream pressure induces
higher wall heat flux values, which is consistent with the results shown fig. 5.18
on temperature and chemical composition.
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Figure 5.19: BRVC(20) model. Heat flux evolution along the stagnation-line for
different values of the free-stream pressure (unbroken line p∞ = 0.05 torr, dashed line
p∞ = 0.1 torr, dotted-dashed line p∞ = 0.33 torr).

The reported values for the internal temperature at the wall (given in tab. 5.20)
are higher than the imposed translational temperature value (2000K) and in-
dicate the existence of thermal non-equilibrium between the translational and
the internal energy mode in the boundary layer.

p∞ [torr] p [torr] XN qr [MW/m2] Tint [K]

0.05 52.643 0.985 0.96 2118.901
0.1 105.75 0.991 1.23 2372.34
0.33 350.98 0.941 2.38 2181.57

Table 5.6: BRVC(20) model. Wall pressure, N mole fraction, heat flux and internal
temperature for different values of the free-stream pressure.

This aspect has been investigated more in detail by looking at the temperature
profiles within the boundary layer as done in fig. 5.20. The results show that,
during recombination, the internal temperature is systematically higher than
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the translational one. This is analogous to what observed in sec. 5.3 for recom-
bining nozzle flows. In the present situation, however, the differences observed
between the two temperatures are quite small compared to the nozzle case.
This is due to the fact that, in a boundary layer, the gas pressure is constant,
while in a nozzle expansion it may decrease of several orders of magnitude along
the nozzle axis.
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Figure 5.20: BRVC(20) model. Translational and internal temperature profiles
within the boundary layer for different values of the free-stream pressure (unbroken
lines T , dashed lines Tint).

The observed lack of thermal equilibrium in the boundary layer is consistent
with the results obtained by Armenise et al. (1994) who studied boundary
layer flows by means of vibrational collisional models. It is worth to recall that,
in multi-dimensional CFD codes employing conventional multi-temperature
models (such as that of Park 1993), the possible existence of thermal non-
equilibrium effects at the wall is usually neglected. This choice is often mo-
tivated by the lack of theoretical information concerning the non-equilibrium
state of the gas at the wall. On the other hand, the use of detailed collisional
models (as done this section) allows to circumvent this problem as the internal
temperature at the wall does not need to be specified and is obtained as a result
of the calculation.

5.4.2 Energy Bin Dynamics

The computation of stagnation-line non-equilibrium flows allows to study, in
the same testcase, the detailed dynamics of both dissociation and recombina-
tion which have been so far investigated separately in inviscid flows behind
shock waves and within nozzles (sects. 4.2-4.3 and 5.3, respectively). This as-
pect reveals the completeness, in terms of physical description, of the testcase
considered in this section.
Figures 5.21-5.23 shows a comparative evolution between the N mole frac-
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tion and the energy bin population distributions across the three flowfield re-
gions outlined before: a) shock-wave (fig. 5.21), b) post-shock equilibrium area
(fig. 5.22) and c) boundary layer (fig. 5.23).
The dynamics of dissociation in fig. 5.21 proceeds as observed in sec. 4.2.5.
There is an initial phase where inelastic collisions lead to an increase of the
population of high-lying energy bins. This induces strong distortions in the pop-
ulation distribution which considerably deviates from a Boltzmann-like shape.
Once a sufficient degree of excitation reached, N2 begins to dissociate. The
dissociation initially occurs through sequences of non-Boltzmann distributions
with evident distortions around the ground-state. These progressively disap-
pear and the final part of the dissociation occurs in thermal equilibrium condi-
tions. After that, the flow enters the post-shock relaxation area (fig. 5.22). The
population distribution remains Boltzmann with slope given by the post-shock
equilibrium temperature. In this region of the flowfield, the population of the
energy bins increases due to the rise of the gas pressure while approaching the
wall. The recombination in the boundary layer occurs in a similar manner to
that observed in sec. 5.3.2 for nozzle flows. Initially, the distribution is Boltz-
mann and changes its slope due to the cooling of the flow. Distortions are then
progressively induced by preferential recombination in high-lying energy bins.
At the wall and in the points immediately upstream, the population distribu-
tions splits into three distinct regions as already observed in sec. 5.3.2 (fig. 5.15)
for the non-equilibrium flow within the Scirocco nozzle.
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Figure 5.21: BRVC(20) model. Comparative evolution of the N mole fraction and
the energy bin population distribution across the shock wave. The circles in fig. 5.21(a)
indicate the locations at which the population distributions, plotted in fig. 5.21(b), are
extracted (in fig. 5.21(b) line with circles r = 0.425m, line with squares r = 0.4245m,
line with diamonds r = 0.4242m, line with triangles r = 0.424m, unbroken line r =
0.4237m , dashed line r = 0.4235m , dotted-dashed line r = 0.423m, dotted line
r = 0.4225m).
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Figure 5.22: BRVC(20) model. Comparative evolution of the N mole fraction and
the energy bin population distribution in the post-shock equilibrium area. The circles
in (a) indicate the locations at which the population distributions, plotted in (b), are
extracted (in (b) line with circles r = 0.421m, unbroken line r = 0.416m , dashed line
r = 0.413m , dotted-dashed line r = 0.411m, dotted line r = 0.406m).
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Figure 5.23: BRVC(20) model. Comparative evolution of the N mole fraction and
the energy bin population distribution in the boundary layer. The circles in (a) indicate
the locations at which the population distributions, plotted in (b), are extracted (in (b)
line with circles r = 0.404m, line with squares r = 0.402m, unbroken line r = 0.401m,
dashed line r = 0.4005m, dotted-dashed line r = 0.4002m , dotted line r = 0.4m)

Figure 5.24 focuses on the energy bin population distribution at the locations
r = 0.4m (wall) and r = 0.402m. The results confirm that the bound energy
bins close to the ground-state and the predissociated bins are in Boltzmann
equilibrium at the internal and translational temperature, respectively.
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(a) r = 0.4m (wall).
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Figure 5.24: BRVC(20) model. Energy bin population distributions at the locations
r = 0.4m (wall) and r = 0.402m in the boundary layer (the dashed and the dotted-
dashed lines indicate the Boltzmann distributions at the translational and internal
temperature, respectively).

5.4.3 Comparison with the MTP Model

The results obtained by means of the BRVC(20) model have been compared
with the MTP model solution. Figure 5.25 compares the two models in terms of
temperature and N mole fraction for the adopted values of free-stream pressure.
In all the cases, it is observed that the shock stand-off distance is slightly under-
predicted by the MTP model. The evolution of the N mole fraction along the
stagnation-line clearly shows that the MTP model leads to a faster dissociation
across the shock wave and to a higher recombination in the boundary layer.
These results are consistent with those obtained in sects. 4.3.2 and 5.3.2 for
inviscid shock and nozzle flows, respectively.
The differences between the two models, in terms of recombination in the
boundary layer, become more and more enhanced when increasing the free-
stream pressure. This can also be seen from tab. 5.7, reporting the wall values
for the heat flux and the N mole fraction, and from fig. 5.26 showing the heat
flux evolution along the stagnation-line. Notice that for the high pressure case
(p∞ = 0.33 torr), the wall heat flux predicted by the MTP model is almost
twice the value predicted by the BRVC(20) model. The observed discrepancy
is quite high and underlines the importance of accounting for non-Boltzmann
distribution effects in the computation of stagnation-line, and more in general,
aerothermodynamic flows. One may object that a more realistic heat flux com-
parison should also account for N2-N2 collisions. However, it should be recalled
that the comparison between the BRVC(20) and the MTP models is performed
consistently, by excluding in both cases N2-N2 and other types of collisions.
Hence, the heat flux overestimation obtained in the case of the MTP model
can be considered as a valid proof of its lack of accuracy.
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Figure 5.25: BRVC(20) and MTP model comparison. Temperature and N mole frac-
tion evolution along the stagnation-line for different values of the free-stream pressure
((a)-(b) p∞ = 0.05 torr, (c)-(d) p∞ = 0.1 torr, (e)-(f) p∞ = 0.33 torr; in (a), (c) and
(e) unbroken lines T BRVC(20), dashed lines Tint BRVC(20), dotted-dashed lines T
MTP, dotted lines Tvib MTP; in (b), (d) and (f) unbroken lines BRVC(20), dashed
lines MTP).
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p∞ 0.05 torr 0.1 torr 0.33 torr
Model qr[MW/m2] XN qr[MW/m2] XN qr[MW/m2] XN

BRVC(20) 0.958 0.985 1.23 0.991 2.38 0.941
MTP 0.948 0.975 1.47 0.933 4.13 0.714

Table 5.7: BRVC(20) and MTP model. Wall heat flux and N mole fraction values.

0.4 0.4025 0.405

0

1

2

3

4

r [m]

q r
[M

W
/m

2
]

Figure 5.26: BRVC(20) and MTP model comparison. Heat flux evolution along
the stagnation-line for different values of the free-stream pressure (unbroken line
BRVC(20) p∞ = 0.05 torr, dashed line BRVC(20) p∞ = 0.1 torr, dotted-dashed line
BRVC(20) p∞ = 0.33 torr, line with circles MTP p∞ = 0.05 torr, line with squares
MTP p∞ = 0.1 torr, line with diamonds MTP p∞ = 0.33 torr).

5.4.4 Bin number Sensitivity Analysis

The sensitivity analysis performed in sects. 4.3.3 and 5.3.2 for inviscid flows
behind shock waves and within nozzles indicated that, for the BRVC model, 20
energy bins guaranteed an accurate resolution of dissociation and recombina-
tion. This conclusion has been further investigated in the case of stagnation-line
flows by repeating the calculations of sec. 5.4.1 with 10 and 100 energy bins.
Figure 5.27 compares the BRVC(10), BRVC(20) and BRVC(100) model solu-
tions in terms of translational temperature and N mole fraction. The dissocia-
tion and recombination within the shock and the boundary layer, respectively,
are already well captured with only 10 energy bins. Using a higher number
does not lead to appreciable changes in flowfield and it only allows for a better
resolution of the temperature profile across the shock wave. This is further
confirmed by the wall heat flux values reported in tab. 5.8. It is interesting
to notice that the differences between the three solutions are much less pro-
nounced than what observed in sec. 4.3.3 for inviscid flows behind shock waves
(see fig. 4.17). This is due to dissipation phenomena which lead to a smooth
temperature rise across the shock wave with a consequent lower sensitivity of
the post-shock conditions to the number of energy bins.
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Figure 5.27: BRVC model. Translational temperature and N mole fraction evolution
along the stagnation-line for different numbers of energy bins ((a)-(b) p∞ = 0.05 torr
, (c)-(d) p∞ = 0.1 torr, (e)-(f) p∞ = 0.33 torr; unbroken lines BRVC(10), dotted lines
BRVC(20), dashed lines BRVC(100)).
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p∞ 0.05 torr 0.1 torr 0.33 torr
NN2

qr[MW/m2] XN qr[MW/m2] XN qr[MW/m2] XN

10 −0.954 0.985 −1.23 0.9902 −2.42 0.934
20 −0.958 0.985 −1.23 0.991 −2.38 0.941
100 −0.961 0.985 −1.23 0.991 −2.35 0.944

Table 5.8: BRVC model. Wall heat flux and N mole fraction for different numbers
of energy bins.

5.5 Inviscid Axisymmetric Flows

The coarse-grained models developed in ch. 3 have been applied to inviscid
axisymmetric flows by solving the flow governing equations (5.26) as explained
in sec. 5.2.2. The aim of the investigation was two-fold: to illustrate the feasi-
bility of multi-dimensional simulations by means of collisional models, and to
validate the models through comparison with experiments.
A comparison with experiments would require accounting for N2-N2 collisions.
Since the NASA ARC database provides kinetic data only for a limited set of
all the N2-N2 rovibrational transitions (Panesi et al. 2013), the simulations
have been performed by means of an enriched VC model accounting for the
following N2-N and N2-N2 interactions (Munafò et al. 2012):
• Atomic impact dissociation/recombination (da and ra):

N2(v) + N
k̃dav−→←−
k̃rav

N+N+N, v ∈ VN2 , (5.74)

• Molecular impact dissociation/recombination (dm and rm):

N2(v) + N2

k̃dmv−→←−
k̃rmv

N+N+N2, v ∈ VN2 , (5.75)

• Atomic impact vibrational-translational energy transfer (vta):

N2(v) + N
k̃vtav→w−→←−
k̃vtaw→v

N2(w) + N, v < w, v, w ∈ VN2 , (5.76)

• Molecular impact vibrational-translational energy transfer (vtm):

N2(v) + N2

k̃vtmv→v−1−→←−
k̃vtmv−1→v

N2(v − 1) + N2, v ∈ VN2 , (5.77)

• Vibrational-vibrational energy transfer (vv):

N2(v) + N2(w− 1)
k̃w−1→w
v→v−1−→←−

k̃w→w−1
v−1→v

N2(v − 1) +N2(w), v, w ∈ VN2 . (5.78)
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The direct rate coefficients for the da and vta processes (k̃dav and k̃vtav→w, re-
spectively) have been taken from the VC model developed in sec. 3.3 (see
eqs. (3.58)-(3.59)). The direct rate coefficients for the dm, vtm and vv processes
(k̃dmv , k̃vtmv→v−1 and k̃w−1→w

v→v−1 , respectively) have been taken from the available lit-
erature (Armenise et al. 1994; Capitelli et al. 2000; Colonna et al. 2006). The
inverse process rate coefficients are computed by means of micro-reversibility.
The enriched VC model given by eqs. (5.74)-(5.78) has been also applied to
quasi-one-dimensional nozzle flows by Munafò et al. (2012). In the same refer-
ence, a comparison has been performed with the results obtained by using the
da and vta rate coefficients computed by Esposito (1999; 2006).

5.5.1 Flow within the Nozzle of the EAST Facility

The enriched VC model has been applied to compute the inviscid axisymmetric
flow within the nozzle of the EAST facility (whose area distribution is given in
fig. 5.2). The throat area value has been taken from Sharma et al. (1993).
The flow is supposed to be in LTE conditions at the nozzle inlet. The re-
lated values for total pressure and temperature have been set to 10 132 500Pa
and 5600K, respectively. These values have chosen been because: a) they cor-
respond to actual operative conditions of the EAST facility and b) for these
conditions, Sharma et al. (1993) have measured the population of vibrational
levels by means of Raman spectroscopy. The inlet N and N2 mole fractions (as
obtained from the simulation) are 0.005 and 0.9995, respectively.
Calculations have been run by using a 4-block structured mesh where each
block consisted of a 50× 50 grid (see fig. 5.28). A grid convergence study has
been performed by computing the nozzle flowfield on a finer grid obtained by
doubling the number of nodes in both the radial and axial directions. The
numerical solution obtained on the refined mesh did not show appreciable dif-
ferences compared to that obtained on the initial one. Hence, the numerical
solution obtained on the 50× 50 grid could be considered grid-converged.
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Figure 5.28: VC model. Mesh used for the EAST facility nozzle (4 blocks, 200× 50
cells; one node over two is plotted along both the axial and radial directions).
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Figure 5.29 shows the density and velocity magnitude fields. Figure 5.30 focuses
on the temperature and mole fraction evolution along the axis. Due to the low
temperature conditions at the nozzle inlet, the recombination of N is extremely
limited (though its effects are noticeable when looking at the vibrational level
populations as shown later in this section). The flow remains in thermal equi-
librium for all the converging portion of the nozzle. Once the nozzle throat
is past, the expansion becomes significant and non-equilibrium effects appear.
These are caused by the combination of: a) decrease of the flow macroscopic
time-scale (due to the velocity increase) and b) increase of the kinetic time-scale
(due to the temperature decrease). In the diverging portion of the nozzle, the
translational and vibrational temperatures deviate from each other, with the
latter becoming frozen around the location x ≃ 4× 10−2 m. Moving further
downstream, the flow continues to expand as if the recombination and inelastic
vta, vtm and vv collisional processes were not occurring.
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(b) Evolution along the nozzle axis.
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(d) Evolution along the nozzle axis.

Figure 5.29: VC model. Density and velocity distributions within the EAST facility
nozzle.
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Figure 5.30: VC model. Temperature and mole fraction evolution along the axis of
the EAST facility nozzle (in (a) unbroken line T , dashed line Tvib; in (b) unbroken
line N, dashed line N2).

Figure 5.31 shows the evolution of the population distribution along the nozzle
axis. At the nozzle inlet, the distribution is Boltzmann due to assumed LTE
conditions. When the flow expands, the shape of the distribution remains ini-
tially the same. Only its slope changes as an effect of the cooling. The recom-
bination causes an overpopulation in high-lying energy levels which becomes
more and more pronounced moving along the nozzle axis. At the nozzle outlet,
the ground-state and low-lying levels lie along a straight line (whose slope is
given by the vibrational temperature previously shown) while high-lying energy
levels are overpopulated.
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ñ
v
[m

−
3
]

Figure 5.31: VC model. Evolution of the vibrational population distribution along
the axis of the EAST facility nozzle (unbroken line x = −2.5× 10−2 m, dashed line
x = −6× 10−3 m, dotted-dashed line x = 0m, line with circles x = 2.4× 10−2 m, line
with squares x = 5.4× 10−2 m, line with triangles x = 8.3× 10−2 m).
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The computed population distributions have been compared with the experi-
mental data of Sharma et al. (1993) who performed Raman spectroscopy mea-
surements at the locations x = −6× 10−3 m, 2.4× 10−2 m and 5.4× 10−2 m.
Figure 5.32 compares the computed and experimental normalized population
distributions for the first 10 vibrational levels. The agreement is excellent at
the first location, where the flow is close to equilibrium. At the second and
third locations, some discrepancies appear for higher vibrational states. In this
zone (where measurement errors are more significant), the simulation predicts a
Boltzmann distribution at the vibrational temperature, while an overpopulation
appears in the experimental data. The latter could be due to non-equilibrium
at the nozzle inlet. This possibility has been neglected in the computations,
due to assumed LTE conditions at the nozzle inlet. Moreover, the actual flow
in the facility is unsteady and viscous. None of these features has been taken
into account. In view of this, the comparison between computational and ex-
perimental results can be considered satisfactory.
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(c) Location 3 (x = 5.4× 10−2 m).

Figure 5.32: VC model. Comparison between the computed and experimental nor-
malized vibrational population distributions for the EAST facility nozzle (unbroken
lines calculations, circles experiments).
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5.5.2 Flow over a Sphere

The second application of the enriched VC model described before has consid-
ered the inviscid and axisymmetric flow over a sphere with radius r = 0.5m.
The free-stream pressure, temperature and velocity have been set to 0.1 torr,
300K and 9 km/s, respectively. Since N2-N2 collisions are now taken into ac-
count, there was no need for seeding the free-stream with some small amount
of N. Calculations have been run by using a 12-block structured mesh, where
each block consisted of a 90 × 30 grid (see fig. 5.33). As done in sec. 5.5.1 for
the EAST facility nozzle flow, a grid convergence study has been performed by
computing the flowfield around the sphere on a finer grid obtained by doubling
the number of nodes in both radial and axial directions. The numerical solution
obtained on the refined mesh did not show appreciable differences compared to
that obtained on the initial one. Hence, the numerical solution obtained on the
90× 30 grid could be considered grid-converged.
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Figure 5.33: VC model. Mesh used for the flow over a sphere (12 blocks, 90 × 360
cells; one node over three is plotted along both the axial and radial directions).

Figure 5.34 shows the temperature N mole fraction distributions around the
sphere, while the related evolutions along the stagnation-line are given in fig. 5.35.
At the shock location, the vibrational temperature is frozen and maintains its
free-stream value. Behind the shock, excitation initially occurs through vtm
processes. This leads to a steep rise of the vibrational temperature (obtained
based on eq. (3.63)) behind the shock. Once molecules are excited, they start
to dissociate and, as soon as some N is formed, vta processes start to occur
as well. In this phase, dissociation occurs at the expense of vibrational energy
causing a decrease of the vibrational temperature. Since the flow is inviscid,
no boundary layer is formed at the wall. At the wall, the gas temperature
assumes the value corresponding to the post-shock equilibrium conditions. It
is worth to notice that, as opposed to what observed when using conventional
multi-temperature models (Park 1990), the vibrational temperature behind the
shock is always lower than the translational one.



Part II - Integration of Coarse-Grained Models in Hydrodynamic

Flows
141

 0

 5000

 10000

 15000

 20000

 25000

 30000

(a) T .

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

(b) Tvib.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(c) XN.

Figure 5.34: VC model. Temperature and N mole fraction distributions around the
sphere.
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Figure 5.35: VC model. Temperature and N mole fraction evolution along the
stagnation-line (in (a) unbroken line T , dashed line Tvib; in (b) unbroken line N,
dashed line N2).

The dynamics of the dissociation and internal energy excitation can also be
studied at the microscopic level. This is done in fig. 5.36 showing the evolution
along the stagnation-line of the mole fractions of the first 10 vibrational states of
N2 (fig. 5.36(a)) and the vibrational level population distribution (fig. 5.36(b)).
The results indicates that macroscopic dissociation proceeds through an initial
stage of excitation followed by a second phase where dissociation from all vibra-
tional levels occurs. The evolution of the population distribution in fig. 5.36(b)
shares the same features observed in sects. 4.2.5 and 5.4.2 for inviscid flows
behind shock waves and viscous stagnation-line flows, respectively. When the
flow crosses the shock, the free-stream Boltzmann distribution is progressively
distorted due to collisional excitation processes that populate high-lying energy
levels. Then, the dissociation of N2 starts and, in its final phase, it occurs under
thermal equilibrium conditions.
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(b) Population distribution.

Figure 5.36: VC model. Evolution of the N2(v) mole fractions and the vibrational
population distribution along the stagnation-line (in (a) unbroken line N2(0), dashed
line N2(1), dotted-dashed line N2(2), dotted line N2(3), line with circles N2(4), line with
squares N2(5), line with triangles N2(6), crosses N2(7), plus N2(8), stars N2(9); in (b)
unbroken line x = −0.55m, dashed line x = −0.53m, dotted-dashed line x = −0.525m,
dotted line x = −0.52m, line with circles x = −0.515m, line with squares x = −0.5m).

5.6 Intermediate Conclusions

This chapter has described the integration of the RVC, BRVC and VC mod-
els in CFD solvers for aerothermodynamic flows. Applications have consid-
ered inviscid quasi-one-dimensional flows within converging-diverging nozzles
(sec. 5.3), viscous stagnation-line flows (sec. 5.4), and inviscid axisymmetric
flows (sec. 5.5). In all the cases, with the exception of sec. 5.5, the computa-
tional results have been also compared with those obtained by means of the
MTP model.

5.6.1 Nozzle Flows

The RVC model has been applied to investigate the non-equilibrium flow within
the nozzle of the EAST facility in sec. 5.3.1. The results obtained have shown
that rotational non-equilibrium effects have a small influence on flow quantities.
This was confirmed by the good agreement between the RVC and VC model
solutions. A comparison of the vibrational specific distributions obtained by
means of the RVC and VC models has shown that the VC model tends to over-
estimate the population of high-lying vibrational states (due to the assumption
of rotational equilibrium). However, these high-lying states contribute to a
negligible extent to the bulk vibrational energy.
The analysis of the rovibrational energy level population distributions for the
EAST facility nozzle, has shown that the rotational levels of the ground and
the low-lying vibrational states are in thermal equilibrium with translation.
This is not the case for higher states. A careful investigation of the rotational
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level distributions has revealed the presence of an odd-even rotational quantum
number splitting for those levels close to the ground-state. This feature (already
observed in sec. 4.2.5 for flows behind shock waves) was more noticeable for
higher vibrational states, which experienced a bigger departure from the local
thermal equilibrium.
Both the BRVC and VC models have shown to be in good agreement with
the RVC model. The VC model was slightly more accurate, as opposed to
what observed in sec. 4.3.2 for flows behind shock waves. This result could be
explained by the fact that the adoption of a VC model is naturally suggested
by the observed rotational equilibrium for the low-lying vibrational states.
The BRVC model has been then applied to investigate the non-equilibrium flow
within the F4 and Scirocco nozzles in sec. 5.3.2. These simulations were also
performed for a further investigation of the discrepancies observed between the
BRVC and VC model solutions in sec. 5.3.1. The results obtained have shown
that, even with 10-20 energy bins, the numerical solutions are very close to
those obtained by means of the VC model. For both nozzle geometries, the
relative error on the outlet values of the N2 mole fraction have been estimated
by assuming the VC model as the exact solution. The error was lower than
5% when using 20 energy bins. Moreover, for the case of 2-5 energy bins,
the results did not show an excessive departure from the VC model solution
and provided also a much more accurate description than the MTP model.
This facts make the BRVC model more appealing for multi-dimensional CFD
applications. This is the reason why the investigation of viscous stagnation-line
flows (sec. 5.4) has been performed by considering only the BRVC model among
all the coarse-grained models developed in the present thesis.

5.6.2 Stagnation-line Flows

Based on the conclusions drawn from the investigation of nozzle flows, the
analysis of viscous stagnation-line flows (sec. 5.4) has been carried out by means
of the BRVC model. This test-case revealed to be particularly rich, in terms
of physico-chemical modeling, as it allowed to account for both recombination
and dissociation in the same benchmark.
The detailed analysis of the energy bin dynamics (sec. 5.4.2) has shown that
the recombination in the boundary layer occurs through sequences of non-
Boltzmann distributions. The comparison between the BRVC and MTP model
solutions (sec. 5.4.3) has shown that the MTP model overestimates the wall
heat flux, due to an inaccurate description of recombination within the bound-
ary layer. The sensitivity study on the number of energy bins (sec. 5.4.4) has
shown that, when dissipation phenomena are considered, the flowfield solution
is less dependent on the number of energy bins, compared to what observed
for the inviscid flow results discussed in sects. 4.3.3 and 5.3.2. Indeed, for the
adopted free-stream conditions, even 10 energy bins could be used for achieving
an accurate flow description.



144 Chapter 5 - CFD Solvers for Aerothermodynamic Flows

5.6.3 Inviscid Axisymmetric Flows

Multi-dimensional applications to inviscid and axisymmetric non-equilibrium
flows (sec. 5.5) have been performed in order to show their feasibility and to
validate the models developed in the present thesis. In order to accomplish
validation, the numerical simulations have been performed by means of an en-
riched VC model, accounting for both N2-N and N2-N2 interactions. The rate
coefficients for N2-N2 interactions have been taken from the available literature.
The use of the BRVC model has not been considered, due to the limited set of
rovibrational kinetic data for N2-N2 interactions in the NASA ARC database.
The enriched VC model has been applied to compute the steady flows within
the nozzle of the EAST facility (sec. 5.5.1) and around a sphere (sec. 5.5.2).
In the case of the flow within the nozzle of the EAST facility, the computed
vibrational population distributions have been compared with the Raman spec-
troscopy measurements of Sharma et al. (1993). A fair agreement has been
observed, allowing for a partial validation of the enriched VC model used in
the simulations.
For the sake of completeness, it should be said that the promising multi-
dimensional results obtained in this chapter are preliminary, due to the lack
of “2D effects” caused by the neglecting of the transport fluxes in the flow
governing equations.
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Chapter 6

Extension of a Conservative

Spectral-Lagrangian Method to

Multi-Component Gases and

Inelastic Collisions

This chapter describes a spectral-Lagrangian method for solving the Boltz-
mann equation for multi-component gases with internal energy (Munafò et al.
2014). Reactive collisions, such as dissociation, are not accounted for. The
spectral-Lagrangian method is an extension of that developed by Gamba and
Tharkabhushanam (2009) for a mono-component gas without internal energy.
The present chapter is structured as follows. Section 6.1 introduces the weak
form of the partial collision operators. The development of the numerical
method starts in sec. 6.2 with the derivation of the weighted convolution struc-
ture of the Fourier transformed Boltzmann equation. The computational pro-
cedure for the discrete evaluation of the collision operators is given in sec. 6.3,
where the discretization of the phase-space is also detailed.

6.1 The Weak Form of The Partial Collision Opera-
tors

In the case of a multi-component gas with internal energy (where the effects of
reactive collisions are neglected), the Boltzmann equation (1.5) reduces to:

Dsifsi = Qel
si +Qin

si , s ∈ S, i ∈ Is, (6.1)

where the elastic and inelastic collision operators are:

Qel
si =

∑

p∈S
j ∈Ip

Qsipj , Qin
si =

∑

(pj ,sk,pl)

∈Cin
si

Qskpl
sipj , s ∈ S, i ∈ Is. (6.2)
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The expressions for the partial elastic and inelastic collision operators (given
in eqs. (1.7) and (1.11), respectively) are repeated here for the sake of clarity:

Qsipj =

∫∫

S 2×ℜ3

(

f ′sif
′
pj − fsifpj

)

σsipj g dω
′dcpj , (6.3)

s, p ∈ S, i ∈ Is, j ∈ Ip,

Qskpl
sipj =

∫∫

S 2×ℜ3

[(

βskβpl
βsiβpj

)

f ′skf
′
pl
− fsifpj

]

σskplsipj g dω
′dcpj , (6.4)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

The weak form of the partial collision operators can be obtained through mul-
tiplication of eqs. (6.3)-(6.4) by a smooth test function ϕsi = ϕsi(csi) and
integration over the velocity space:

∫

ℜ3

Qsipj ϕsidcsi =

∫∫∫

S 2×ℜ3×ℜ3

(

ϕ′
si − ϕsi

)

fsifpjσsipj g dω
′dcpjdcsi , (6.5)

s, p ∈ S, i ∈ Is, j ∈ Ip,
∫

ℜ3

Qskpl
sipj ϕsidcsi =

∫∫∫

S 2×ℜ3×ℜ3

ϕsif
′
sk
f ′pl σ

sipj
skpl g

′dω dc′skdc
′
pl
−

∫∫∫

S 2×ℜ3×ℜ3

ϕsifsifpjσ
skpl
sipj g dω

′dcsidcpj , (6.6)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is,

where ϕ′
si = ϕsi(c

′
si). In obtaining eqs. (6.5)-(6.6) the micro-reversibility re-

lations (1.8) and (1.12) for elastic and inelastic collisions, respectively, have
been used. For the partial elastic collision operator the weak form is obtained
by applying the usual technique of swapping between primed and unprimed
variables in the integral and by exploiting micro-reversibility (eq. (1.8)). Since
in elastic collisions there are no transitions between the internal energy levels,
swapping between primed and unprimed variables has no effect on the species
index. This allows for casting the weak form into a unique integral involving
the species velocity distribution function in the pre-collisional state. The same
result cannot be obtained in the case of inelastic collisions (swapping between
primed and unprimed variables is associated to a species index change). The
weak form of the partial inelastic collision operator is obtained by applying
micro-reversibility (eq. (1.12)) to the gain part of the operator, while the loss
part is left unchanged. As discussed by Dellacherie (2003), alternative expres-
sions to that given in eq. (6.6) can be obtained. However, the one given in
eq. (6.6) is the most suited for the work presented in this thesis.
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6.2 The Fourier Transform of the Partial Collision
Operators

The numerical method proposed in sec. 6.3 makes use of the Fourier transform
of the partial collision operators. This can be obtained by using a Fourier
velocity mode (2π)−3/2 exp(−ı ζ · csi) as test function in the weak form given
in eqs. (6.5)-(6.6) (Bobylev 1988; Gamba and Tharkabhushanam 2009).
The Fourier transform of the partial collision operators satisfy the following
properties (Munafò et al. 2014).
Proposition 6.2.1. The Fourier transform of the partial elastic and inelastic
collision operators can be written as weighted convolutions in Fourier space:

Q̂sipj (ζ) =

∫

ℜ3

f̂si(ζ − ξ) f̂pj (ξ) Ŵsipj (ζ, ξ) dξ, (6.7)

s, p ∈ S, i ∈ Is, j ∈ Ip,
Q̂skpl

sipj (ζ) =

∫

ℜ3

f̂sk (ζ − ξ) f̂pl(ξ) Ĝ
skpl
sipj (ζ, ξ) dξ−

∫

ℜ3

f̂si(ζ − ξ) f̂pj(ξ) L̂
skpl
sipj (ξ) dξ, (6.8)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

Quantities f̂si , f̂sk , f̂pj and f̂pl are the Fourier transform of the velocity dis-
tribution function of the species si, sk, pj and pl, respectively. The functions
Ŵsipj (ζ, ξ), Ĝ

skpl
sipj (ζ, ξ) and L̂skpl

sipj (ζ, ξ) are convolution weights defined as:

Ŵsipj (ζ, ξ) =
1

(2π)3/2

∫∫

S 2×ℜ3

g σsipj

{

exp

[

−ı µsp
ms

(

g′ − g
)

· ζ
]

− 1

}

×

exp (−ıg · ξ) dω′dg, s, p ∈ S, i ∈ Is, j ∈ Ip, (6.9)

Ĝskpl
sipj (ζ, ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g′ σ
sipj
skpl exp

[

−ı µsp
ms

(

g − g′
)

· ζ
]

×

exp
(

−ıg′ · ξ
)

dω dg′, (6.10)

L̂skpl
sipj (ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g σskplsipj exp (−ıg · ξ) dω′dg, (6.11)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is,

where the pre and post-collisional relative velocity vectors are g = gω and
g′ = g′ω′, respectively.

Proof. The direct substitution of ϕsi(csi) = (2π)−3/2 exp(−ı ζ ·csi) in eqs. (6.5)-
(6.6) gives, after some algebra, the thesis. The mathematical details of the proof
can be found in app. G.
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From Proposition 6.2.1, the following observations can be made:
1. The convolution weights depend only on the differential cross-section.

No dependence on the velocity distribution function occurs. This finding
can be exploited to develop a computational method that uses eqs. (6.7)-
(6.8) for the discrete evaluation of the collision operators (i.e. the
weights associated to each interaction can be pre-computed).

2. The convolution weights Ĝskpl
sipj (ζ, ξ) and L̂skpl

sipj (ζ, ξ) are associated, re-
spectively, to the gain and loss part of the partial inelastic collision
operator and cannot be directly summed to give a unique convolution
weight. This is possible only for elastic collisions, for which case it can
be shown that Ŵsipj (ζ, ξ) = Ĝ

sipj
sipj (ζ, ξ) − L̂

sipj
sipj (ζ, ξ)

3. Since no assumption is introduced on the cross-section, anisotropic in-
teractions can naturally be taken into account.

Proposition 6.2.2. The expressions for the convolution weights reduce to one-
dimensional integrals on the pre and post-collisional relative velocity magnitudes
in the case of isotropic interactions (differential cross-section depending only on
the relative velocity magnitude):

Ŵsipj (ζ, ξ) = 4
√
2π

+∞
∫

0

σsipj

[

j0

(

µsp
ms

g ζ

)

j0

(

g

∣

∣

∣

∣

ξ − ζ
µsp
ms

∣

∣

∣

∣

)

− j0 (g ξ)
]

×

g3dg, s, p ∈ S, i ∈ Is, j ∈ Ip, (6.12)

Ĝskpl
sipj (ζ, ξ) = 4

√
2π

+∞
∫

G
′ sipj
skpl

σ
sipj
skpl j0

(

µsp
ms

√

g′ 2 + 2
∆Eskpl

sipj

µsp
ζ

)

×

j0

(

g′
∣

∣

∣

∣

ξ − ζ
µsp
ms

∣

∣

∣

∣

)

g′ 3dg′, (6.13)

L̂skpl
sipj (ξ) = 4

√
2π

+∞
∫

G
skpl
sipj

σskplsipj j0 (g ξ) g
3dg, (6.14)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is,
where the lower relative velocity limits G ′ sipj

skpl and Gskplsipj in the integrals defining
the gain and loss inelastic isotropic convolution weights are:

G ′ sipj
skpl =











√

−2∆Eskpl
sipj

µsp
if ∆Eskpl

sipj < 0,

0 if ∆Eskpl
sipj ≥ 0,

(6.15)

Gskplsipj =











√

2∆Eskpl
sipj

µsp
if ∆Eskpl

sipj > 0,

0 if ∆Eskpl
sipj ≤ 0,

(6.16)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.
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The function j0(x) = sin(x)/x is the zeroth-order spherical Bessel function
of first kind (or, in alternative, un-normalized sinc function; Abramovitz and
Stegun 1972). Quantities ζ and ξ are the magnitudes of the vectors ζ and ξ,
respectively.

Proof. The use of a spherical coordinate system in the integrals over g, g′, ω and
ω′ in eqs. (6.9)-(6.11) gives, after some algebra, the thesis. As an example, the
integral over ω′ in eq. (6.9) can be computed by adopting a spherical coordinate
system for the vector ω′ with the pole aligned along the direction of the vector
ζ. A similar procedure can be used for the other integrals. The mathematical
details of the proof can be found in app. H.

6.3 Numerical Method

The numerical method proposed for solving the Boltzmann equation (6.1) ex-
ploits the particularly simple structure assumed by the Fourier transform of the
partial elastic and inelastic collision operators (weighted convolution in Fourier
space; eqs. (6.7)-(6.8)). The velocity space is always kept three-dimensional
and only zero/one-dimensional flow problems are considered. This is justified
in view of the fact that the main purpose of the thesis work was the development
of a conservative algorithm for the evaluation of the collision operators in the
case of multi-component gases with discrete internal energy levels. The exten-
sion of the proposed method to multi-dimensional flows is trivial, as the afore-
mentioned algorithm remains the same whether the flow is multi-dimensional
or not.
When the flow is one-dimensional and its direction is aligned with the x axis of
a Cartesian reference frame (O;x, y, z), the Boltzmann equation (6.1) becomes:

∂fsi
∂t

+ csi x
∂fsi
∂x

= Qel
si +Qin

si , s ∈ S, i ∈ Is. (6.17)

In order obtain numerical solutions to eq. (6.17), the following steps have to be
taken:

1. Discretization of the phase-space,
2. Discretization of the streaming and collision operators (in both time and

position domains),
3. Development of a computational algorithm for an efficient evaluation

of the elastic and inelastic collision operators allowing to satisfy the
conservation requirements stated in eqs. (1.24) and (1.26):

∑

s∈S
i∈Is

∫

ℜ3

ψel ν
si Q

el
sidcsi = 0, ν ∈ I el,

∑

s∈S
i∈Is

∫

ℜ3

ψin ν
si Qin

sidcsi = 0, ν ∈ I in.

(6.18)

All the items of the previous list are described in secs. 6.3.1-6.3.2
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6.3.1 Discretization of the Phase-Space

A Cartesian reference frame (O; cx, cy, cz) is introduced for the velocity space
of all species. The former is discretized by considering points falling inside a
cube, having side semi-length equal to Lc and centered at the origin O:

Vc =
{

c = (cx, cy, cz) ∈ ℜ3 | cα ∈ [−Lc, Lc), α ∈ {x, y, z}
}

. (6.19)

The individual discrete velocity nodes belonging to the set Vc are obtained as
follows. Let ∆c be the velocity mesh spacing, defined as:

∆c =
2Lc

Nc
, (6.20)

where Nc is the number of velocity nodes along the cx, cy and cz directions, let
h = (hx, hy, hz) be the vector of indices associated to the discrete velocity node
ch = (chx

, chy
, chz

) and let H be the set H = {0, . . . , Nc − 1}. The discrete
velocity node ch belonging to the set Vc is computed as follows:

ch = −Lc

(

icx + icy + icz
)

+ h∆c, h = (hx, hy, hz) ∈ H3. (6.21)

The vectors icx , icy and icz are, respectively, the unit vectors of the cx, cy and
cz axes of the Cartesian frame (O; cx, cy, cz), and the set H3 is defined as H×
H×H. A vector of integration weights wh = (whx

, why
, whz

) is introduced and
associated to each discrete velocity node ch. In the present work, trapezoidal-
rule weights are used:

whα =

{

1/2 if hα = 0, Nc − 1,

1 otherwise,
α ∈ {x, y, z} . (6.22)

The global integration weight associated to the discrete velocity node ch is
computed as wh = whx

why
whz

.
As anticipated before in this section, the algorithm proposed for the evaluation
of the collision operators (described in sec. 6.3.2) is based on their Fourier trans-
form. This is the reason why a Fourier velocity space (associated to the velocity
space described above) is introduced and discretized as follows. A Cartesian
reference frame (O; ζx, ζy, ζz) in the Fourier velocity space is introduced and
the points falling inside a cube, having semi-length equal to Lζ and centered
at the origin O, are considered:

Vζ =
{

ζ = (ζx, ζy, ζz) ∈ ℜ3 | ζα ∈ [−Lζ , Lζ), α ∈ {x, y, z}
}

. (6.23)

The coordinates of the discrete Fourier velocity nodes, belonging to the set Vζ ,
are obtained in the same manner as done for the physical velocity nodes in
eq. (6.21). Thus:

ζη = −Lζ

(

iζx + iζy + iζz
)

+ η∆ζ, η = (ηx, ηy, ηz) ∈ H3, (6.24)
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where the vectors iζx , iζy and iζz are, respectively, the unit vectors of the ζx,
ζy and ζz axes of the Cartesian frame (O; ζx, ζy, ζz). A vector of trapezoidal-
rule weights is also associated to each discrete Fourier velocity node, wη =
(wηx , wηy , wηz) (with the related global weight being wη = wηxwηywηz). The
mesh size in the Fourier velocity space is computed as:

∆ζ =
2Lζ

Nc
. (6.25)

In the proposed numerical method, the semi-length Lc and the number of nodes
Nc along each direction of the velocity space are input parameters. The velocity
mesh spacing ∆c is then computed through eq. (6.20). The semi-length Lζ and
the mesh spacing ∆ζ of the Fourier velocity space are found by imposing in
eq. (6.25) the condition:

∆ζ∆c =
2π

Nc
. (6.26)

The substitution of the expressions for ∆c and ∆ζ (given in eqs. (6.20) and
(6.25), respectively) in eq. (6.26) allows to obtain a relation for Lζ depending
only on the input parameters (Nc and Lc):

Lζ =
πNc

2Lc
. (6.27)

Once Lζ computed, the Fourier velocity mesh spacing ∆ζ is then found from
eq. (6.25). The choice of a uniform mesh along each direction of the velocity
spaces (physical and Fourier) and of the condition given in eq. (6.26) are due
to the use of the Fast-Fourier-Transform (FFT) algorithm for the evaluation of
the Fourier and the inverse Fourier transforms (Gamba and Tharkabhushanam
2009; 2010).
The position space is discretized by considering points belonging to the follow-
ing subset X of the x axis:

X =
{

(x, 0, 0) ∈ ℜ | x ∈ [−L−
x , L

+
x ]
}

, (6.28)

where quantities L−
x and L+

x are both positive. A finite volume grid can be
defined based on eq. (6.28). Let Nx be the number of nodes in the position
space, j the index corresponding to a generic cell in the discretized position
space, xj−1/2 and xj+1/2 the coordinates of the related left and right nodes,
respectively, and J the set J = {0, . . . , Nx − 2}. The centroid location xj and
the volume (length) ∆xj of the cell j are computed as:

xj =
1

2
(xj+1/2 + xj−1/2), ∆xj = xj+1/2 − xj−1/2, j ∈ J . (6.29)

The time domain is discretized as follows. Let Nt be the number time-steps,
∆tn the time-step value associated to the time-level tn and N the set N =
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{0, . . . , Nt}. The set of nodes of the discretized time-domain is then:

T =







tn =
∑

m≤n

∆tm ∈ ℜ | n,m ∈ N







. (6.30)

For the sake of later convenience, it is useful to introduce the compact notation
fnsi h j = fsi(xj , ch, t

n) to indicate the value of the velocity distribution function
of the species si at the point (xj , ch) of the discretized phase-space at the
discrete time-level tn.

6.3.2 Numerical Integration of the Boltzmann Equation

Numerical solutions to the Boltzmann equation (6.17) are obtained by means of
the MOL. A second-order FV method is firstly applied in order to perform the
discretization in the position space. Secondly, the semi-discrete set of equations
obtained is integrated in time. In the present work, explicit time-integration
methods are considered due their ease of implementation and low memory
requirements compared to implicit methods (Mieussens 2000; Mieussens and
Struchtrup 2004).

Spatial Discretization

The application of the FV method to the Boltzmann equation (6.17) (written
for the discrete velocity node ch) leads to the following semi-discrete equation
for the cell j:

∆xj

(

∂fsi
∂t

)

h j

+Φsi h j+ 1
2
− Φsi h j− 1

2
= ∆xj Qsi h j , (6.31)

s ∈ S, j ∈ Is, j ∈ J , h ∈ H3,

where Φsi h j−1/2 and Φsi h j+1/2 are, respectively, the numerical fluxes at the
interfaces j− 1/2 and j+1/2 of the cell j, respectively, while Qsi h j represents
the sum of the elastic and inelastic collision operators for the species si evalu-
ated at the node (xj, ch) of the discretized phase-space (the algorithm for its
evaluation is described later in this section). The numerical flux is computed
by means of a second order slope-limited upwind scheme (Hirsch 1990):

Φsi h j+ 1
2
= c+

h
fLsi h j + c−

h
fRsi h j+1, (6.32)

s ∈ S, i ∈ Is, j ∈ J , h ∈ H3,

where the upwind wave speeds are c±
h

= (chx
± |chx

|)/2. In analogy with
what done for the CFD solvers described in ch. 5 (see eqs. (5.38)-(5.40)), the
reconstructed values of the distribution function at the left and right sides of
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the interface j + 1/2 are obtained based on a limited MUSCL reconstruction:

fLsi h j = fsi h j +
1

2
φ(rLj )

(

fsi h j − fsi h j−1

)

, (6.33)

fRsi h j+1 = fsi h j+1 −
1

2
φ(1/rRj+1)

(

fsi h j+2 − fsi h j+1

)

, (6.34)

s ∈ S, i ∈ Is, j ∈ J , h ∈ H3,

where φ = φ(r) is a slope limiter function (van Leer 1979; Hirsch 1990). The
left and right ratios of consecutive differences are computed as:

rLj =
fsi h j+1 − fsi h j

fsi h j − fsi h j−1

, (6.35)

rRj+1 =
fsi h j+2 − fsi h j+1

fsi h j+1 − fsi h j

, (6.36)

s ∈ S, i ∈ Is, j ∈ J , h ∈ H3.

Temporal Discretization

Equation (6.31) is integrated in time by means of the Forward-Euler (FE)
method (Hirsch 1990):

fn+1
si h j = fnsi h j −

∆tj
∆xj

[(

Φn
si h j+ 1

2
− Φn

si h j− 1
2

)

−∆xj Q
n
si h j

]

, (6.37)

s ∈ S, i ∈ Is, j ∈ J , h ∈ H3, n ∈ N .

The time-step is computed according to (Mieussens 2000):

∆tj =
CFL

1

∆tc
+

Lc

∆xj

, j ∈ J , (6.38)

where ∆tc is the collision time-step. Equation (6.38) has been derived based
on a model Boltzmann equation with a BGK collision operator (Mieussens
2000). However, its use did not lead to particular problems while performing
the calculations presented in ch. 7.
As alternative to the FE method, multi-stage time-stepping schemes (such as
Runge-Kutta methods; Hirsch 1990) could be considered. Similarly, one might
use high-order FV schemes for the streaming operator (as done by Filbet and
Russo 2003) which would give the advantage of requiring less cells in the po-
sition space at which to evaluate the collision operators. However, the main
focus of this thesis was the development of a computational algorithm for the
discrete evaluation of the elastic and inelastic collision operators. For this rea-
son, it was chosen to use a simple slope-limited MUSCL scheme in conjunction
with the FE method outlined above. Boundary conditions are applied through
ghost cells (Hirsch 1990).
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Conservative Discrete Evaluation of the Collision Operators

The elastic and inelastic collision operators are evaluated (on the discrete ve-
locity nodes given by eq. (6.21)) by means of the following algorithms.
For the elastic collision si + pj = si + pj , the related partial collision operator
is computed as:

Algorithm 6.3.1 Evaluation of the partial elastic collision operator Qsipj

for all η ∈ H3 do
compute f̂si(ζη), f̂pj (ζη);

end for
for all η ∈ H3 do

compute Q̂si pj (ζη) through eq. (6.7);
end for
for all h ∈ H3 do

compute Q̃si pj (ch) by inverting the Fourier transform Q̂si pj ;
end for
for all h ∈ H3 do

Enforce conservation through the solution of a constrained optimization
problem: Qsi pj (ch) = Opt(Q̃si pj (ch));

end for

For the inelastic collision si+pj = sk+pl, the related partial collision operator
is computed as:

Algorithm 6.3.2 Evaluation of the partial inelastic collision operator Qskpl
sipj

for all η ∈ H3 do
compute f̂si(ζη), f̂sk(ζη), f̂pj (ζη), f̂pl(ζη)

end for
for all η ∈ H3 do

compute Q̂sk pl
si pj (ζη) through eq. (6.8);

end for
for all h ∈ H3 do

compute Q̃sk pl
si pj (ch) by inverting the Fourier transform Q̂sk pl

si pj ;
end for
for all h ∈ H3 do

Enforce conservation through the solution of a constrained optimization
problem: Qsk pl

si pj (ch) = Opt(Q̃sk pl
si pj (ch));

end for

The details related to numerical approximation of the Fourier transform and the
weighted convolution are provided in app. I. The global cost of the algorithms
6.3.1-6.3.2 is O(N6

c ) and the last step is performed in order to ensure conser-
vation of mass, momentum and energy during collisions as stated in eq. (6.18).
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This approach was originally proposed and formulated by Gamba and Tharkab-
hushanam (2009; 2010) for the case of a mono-component gas without internal
energy. In this thesis, an extension of the original method to multi-component
gases with discrete internal energy levels is proposed. Due to the existence of
separate sets of collisional invariants (elastic and inelastic), the conservation of
mass, momentum and energy during collisions is enforced through two separate
constrained optimization problems (Munafò et al. 2014).
Elastic collisions:

Pel =















min









∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

∣

∣

∣Q̃sipj −Qsipj

∣

∣

∣

2









,
∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Qsipj = 0Ns+4















.

(6.39)

Inelastic collisions:

Pin =



















min











∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

∣

∣

∣Q̃skpl
sipj −Qskpl

sipj

∣

∣

∣

2











,
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψel
si Q

skpl
sipj = 0Nc+4



















.

(6.40)

The vectors Qsipj , Q̃sipj , Q
skpl
sipj and Q̃skpl

sipj store the values of the partial collision
operators Qsipj and Qskpl

sipj , respectively, on the discrete velocity nodes given
by eq. (6.21), where the tilde symbol is used to indicate the values obtained
after the inversion of the Fourier transform that do not satisfy conservation.
The constraints imposed represent the conservation requirements (as stated in
eq. (6.18)) that the collision operators must satisfy. In view of the discretization
introduced for the velocity space, this operation is realized at discrete level
through multiplication with the elastic and inelastic integration matrices (Ψel

si
and Ψin

si , respectively). The columns of these matrices are precisely given by the
elastic and inelastic collisional invariants (eqs. (1.23) and (1.25), respectively)
evaluated at the discrete velocity nodes given by eq. (6.21). Hence, for the
columns associated to the discrete velocity node ch one has:

(Ψel
si)h = ∆c3wh

[

ms δsi ms ch
1

2
ms c

2
h + Esi

]T

, (6.41)

(Ψin
si)h = ∆c3wh

[

ms δs ms ch
1

2
ms c

2
h + Esi

]T

, (6.42)

s ∈ S, i ∈ Is, ch ∈ Vc, h ∈ H3,

where c2h = ch · ch. The vector δsi has Ns components and that relative to the
internal energy level j of the chemical component p is δsp δij . The vector δs has
Nc components and that relative to the chemical component p is δsp.
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Proposition 6.3.1. The solution of the constrained optimization problem Pel

for elastic collisions is:

Qsipj = Q̃sipj − (Ψel
si)

T(Ψ̃el)−1Q̃el, s, p ∈ S, i ∈ Is, j ∈ Ip, (6.43)

where the matrix Ψ̃el and the vector Q̃el are defined as:

Ψ̃el = Ns

∑

s∈S
i∈Is

Ψel
si(Ψ

el
si)

T, (6.44)

Q̃el =
∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Q̃sipj . (6.45)

Proof. The solution is found by writing down the Lagrangian associated to the
problem Pel and then looking for its stationary points. The mathematical
details of the proof can be found in app. J.

Equation (6.43) reduces to the original result obtained by Gamba and Tharkab-
hushanam (2009; 2010) for the case of a mono-component gas without internal
energy:

Q = Q̃−ΨT(ΨΨT)−1ΨQ̃, (6.46)

where the (elastic) integration matrix is obtained from eq. (6.41) when Ns =
Nc = 1:

(Ψ)h = ∆c3wh

[

m m ch
1

2
mc2h

]T

, ch ∈ Vc, h ∈ H3. (6.47)

Proposition 6.3.2. The solution of the constrained optimization problem Pin

for inelastic collisions is:

Qskpl
sipj = Q̃skpl

sipj − (Ψin
si)

T(Ψ̃in)−1Q̃in, (6.48)

s ∈ S, i ∈ Is, (pj , sk, pl) ∈ Cinsi ,
where the matrix Ψ̃in

si and the vector Q̃in are defined as:

Ψ̃in =
∑

s∈S
i∈Is

N
in
si Ψin

si(Ψ
in
si)

T, (6.49)

Q̃in =
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q̃

skpl
sipj . (6.50)

Quantity N in
si is equal to #(Cinsi ). In the case of a mono-component gas (Nc =

1) where all the possible inelastic transitions si+sj = sk+sl are accounted for,
quantity N in

si reduces to Ns (N
2
s − 1).

Proof. The solution is found by writing down the Lagrangian associated to the
problem Pin and then looking for its stationary points. The mathematical
details of the proof can be found in app. J.



Part III - Development of a Deterministic Kinetic Flow Solver 159

6.4 Intermediate Conclusions

In this chapter, an existing spectral-Lagrangian method for the Boltzmann
equation for a mono-component gas without internal energy has been extended
to multi-component gases with discrete internal energy levels. Both elastic and
inelastic collisions have been taken into account, while reactive collisions have
been neglected.
The numerical integration of the Boltzmann equation is realized through the
MOL, where the streaming operator is discretized by means of a second-order
upwind FV scheme in conjunction with an explicit time-integrator. The pro-
cedure in use for computing the collision operators is based on the convolution
structure of the Fourier transformed Boltzmann equation. The latter shows
that the Fourier transform of the partial elastic and inelastic collision opera-
tors can be written as weighted convolutions in Fourier space. Based on these
results, an algorithm has been developed for evaluating the collision operators
on a discretized phase-space. The conservation of mass, momentum and en-
ergy during collisions is enforced through two separate constrained optimization
problems (one for elastic collisions and the other for inelastic collisions). The
two constrained optimization problems are formulated in a consistent manner
with the elastic and inelastic collisional invariants. Applications to zero/one-
dimensional problems are shown in ch. 7.





Chapter 7

Applications of the best code

This chapter shows applications of the conservative spectral-Lagrangian method
presented in ch. 6. The numerical method has been implemented in a paral-
lel code (best; Boltzmann Equation Spectral-Lagrangian Solver) written in C

programming language. Parallelization has been performed by means of the
OpenMP library (Chapman et al. 2008). The Fastest-Fourier-Transform in
the West (fftw) (2005; 2012) and the GNU-Scientific Library (gsl) (2013)
packages have been used for the evaluation of FFTs and vector/matrix manip-
ulation, respectively.
The present chapter is structured as follows. Section 7.1 assesses the accu-
racy of the original formulation of the numerical method. Then, the extended
formulation is tested on both space homogeneous/inhomogeneous benchmarks
involving multi-component gases (sec. 7.2) and inelastic collisions (sec. 7.3).
In all the cases, the macroscopic moments are compared with the DSMC re-
sults obtained by Torres (2012). The numerical approximation of the integrals
defining the macroscopic moments are given in app. K.

7.1 Gas without Internal Energy: Flow across a Nor-
mal Shock Wave in Ar

In the work of Gamba and Tharkabhushanam (2009; 2010), research efforts
were mostly devoted towards the analysis of the properties of the spectral-
Lagrangian method, such as conservation and numerical error on macroscopic
moments. Computational results were never compared with the DSMC predic-
tions. Moreover, the calculations were performed by considering only Maxwell
or hard-sphere (HS) cross-section models. These models provide an unrealistic
description of collisions in dilute gases (Bird 1994). In view of these aspects, it
was decided to assess the accuracy of the original spectral-Lagrangian method
by comparing the results for the flow across a normal shock wave in Ar with
those obtained by means of the DSMC method provided by Torres (2012).
In order to both show the method flexibility and perform a validation through
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comparison with experiments, the calculations have been run by using the more
realistic variable-hard-sphere (VHS) cross-section model (Bird 1994).
The gas is made of Ar (with mass 6.63× 10−26 kg). The excited electronic states
of Ar are neglected and only elastic collisions are accounted for. Collisions
are described by means of the VHS cross-section model. The former can be
formulated as a HS cross-section model where the diameter d is a function of
the relative velocity magnitude g:

σ =
d 2(g)

4
, d 2(g) =

15

8

[

(πmkb)
1/2(4kb/m)ω−1/2Tω

ref

Γ(9/2− ω)π η ref

]

g1−2ω, (7.1)

where the symbol Γ stands for the Gamma function. Quantities Tref and η ref are
the reference values for the temperature and the shear viscosity, respectively,
and quantity ω is the exponent of the assumed viscosity law:

η = η ref

(

T

Tref

)ω

. (7.2)

The flow across the shock wave is computed by solving the Boltzmann equa-
tion (6.1) in the shock frame. The free-stream (∞) density and temperature
are 1× 10−4 kg/m3 and 300K, respectively. Four different values for the free-
stream Mach number have been considered. These are provided in tab. 7.1
which reports also the post-shock (ps) conditions (computed based on the
Rankine-Hugoniot jump relations) and the VHS model parameters.

# M∞ ρ ps [kg/m3] ups [m/s] Tps [K] Tref [K] η ref [Pa s] ω

1 1.55 1.78× 10−4 281.01 464.32 380 2.75× 10−5 0.791
2 3.38 3.17× 10−4 344.17 1328.61 820 4.84× 10−5 0.716
3 6.5 3.74× 10−4 561.43 4222.11 2300 9.72× 10−5 0.685
4 9 3.86× 10−4 752.71 7855.56 4100 1.44× 10−4 0.683

Table 7.1: Flow across a normal shock wave in Ar. Post-shock conditions and VHS
model parameters.

The values of the VHS model parameters have been determined as follows.
The reference temperature has been set to the arithmetic average between the
free-stream and post-shock values. The shear viscosity reference value and the
viscosity law exponent have been obtained by fitting the viscosity data for Ar
(taken from Svehla 1995) with eq. (7.2).
Table 7.2 provides the simulation parameters. The position space is discretized
by using a uniform FV grid. The gas flow is directed along the positive direction
of the x axis. At the boundaries x = −L−

x and x = L+
x , the pre and post-shock

Maxwell-Boltzmann velocity distribution functions are imposed, respectively.
These velocity distribution functions are also used for initializing the numerical
solution in the intervals −L−

x ≤ x ≤ 0 and 0 < x ≤ L+
x , respectively. The time-

marching method described in sec. 6.3.2 is then applied until the steady-state
is reached.
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# Nc Lc [m/s] Nx L−
x [m] L+

x [m] ∆tc [s] CFL Limiter
1 24 2200 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada
2 32 3700 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada
3 40 6200 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada
4 46 6800 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada

Table 7.2: Flow across a normal shock wave in Ar. Simulation parameters.

Macroscopic Moments: best vs DSMC

In order to perform a meaningful comparison with the DSMC results, a common
origin has to be determined for the numerical solutions. This has been taken at
the location where the normalized density (ρ− ρ∞)/(ρ ps − ρ∞) is equal to 0.5
(Bird 1994). This procedure is also applied to the shock wave results shown in
secs. 7.2-7.3.
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Figure 7.1: Flow across a normal shock wave in Ar. Density evolution for different
values of the free-stream Mach number (lines best, symbols DSMC(Torres)).
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Figures 7.1-7.2 show, respectively, the density and temperature evolution across
the shock wave for the adopted free-stream conditions. The parallel tempera-
ture (Tx) experiences an overshoot, reaches a local maximum and then relaxes
towards the value corresponding to the post-shock conditions. This flowfield
feature (observed for the first time in DSMC simulations; Bird 1994) is more
and more enhanced when increasing the free-stream Mach number and is di-
rectly related to the distortion (along the cx velocity axis) that the velocity
distribution function experiences while the flow crosses the shock wave (see
later in this section). On the other hand, the kinetic and transverse tempera-
tures (T and Ty, respectively), show a monotone increase from the pre-shock
till the post-shock value. For all the cases shown in figs. 7.1-7.2 the agreement
with the DSMC results is excellent. The same conclusion holds also when look-
ing at higher order moments such as heat flux and normal viscous stress shown
in figs. 7.3-7.4, respectively.
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Figure 7.2: Flow across a normal shock wave in Ar. Temperature evolution for
different values of the free-stream Mach number (unbroken lines T best, dashed lines
Tx best, dotted-dashed lines Ty best, symbols DSMC(Torres)).
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Figure 7.3: Flow across a normal shock wave in Ar. Heat flux evolution for different
values of the free-stream Mach number (lines best, symbols DSMC(Torres)).
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Figure 7.4: Flow across a normal shock wave in Ar. Normal viscous stress evo-
lution for different values of the free-stream Mach number (lines best, symbols
DSMC(Torres)).

Analysis of the Velocity Distribution Function

Figure 7.5 shows a visual correspondence between the density and the cx axis
component of the velocity distribution function across the shock wave when
M∞ = 6.5. Due to the smooth compression in the front region of the shock,
the velocity distribution function initially evolves by deviating little from the
pre-shock Maxwellian. When the gas compression becomes significant, dis-
tortions start to appear and become more and more pronounced. These are
particularly evident in the mid region of the shock wave where the velocity
distribution function assumes a bimodal shape. Once this portion of the shock
passed, the rate of compression decreases and the distortions in the veloc-
ity distribution function progressively disappear while the gas approaches the
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post-shock equilibrium state. The evolution of the velocity distribution can
also be appreciated in fig. 7.6 showing its projection on the (cx, cy) plane (i.e.
f(cx, cy, 0)) at different locations across the shock wave.
The same features observed in figs. 7.5-7.6 are also found for the cases M∞ =
3.38 and 9 (not shown), with the difference that the observed distortions are,
respectively, less and more pronounced compared to the case M∞ = 6.5. On
the other hand, the results obtained when M∞ = 1.55 (not shown) show that
the velocity distribution function evolves smoothly with no appreciable shape
distortions.
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Figure 7.5: Flow across a normal shock wave in Ar. Comparative evolution of the
density and the cx axis component of the velocity distribution function (M∞ = 6.5;
the symbols in (a) and (c) highlight the locations at which the velocity distribution
function, plotted in (b) and (d), is extracted; in (b) unbroken line x = −2× 10−2 m,
dashed line x = −4× 10−3 m, dotted-dashed line x = −2× 10−3 m, line with circles
x = −1× 10−3 m, line with squares x = 0m, line with triangles x = 1× 10−3 m; in
(d) unbroken line x = 1.6× 10−3 m, dashed line x = 2× 10−3 m, dotted-dashed line
x = 3× 10−3 m, line with circles x = 4× 10−3 m, line with squares x = 6× 10−3 m,
line with triangles x = 2× 10−2 m).
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Figure 7.6: Flow across a normal shock wave in Ar. Evolution of the projection on
the (cx, cy) plane of the velocity distribution function (M∞ = 6.5).
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Comparison with Experimental Density Profiles

The computed density profiles have been compared with those determined ex-
perimentally by Alsmeyer (1976) (see fig. 7.7). The normalized density profiles
are plotted as a function of the non-dimensional distance x/λ∞, where the free-
stream mean free path λ∞ has been set to the value indicated in the paper of
Alsmeyer (λ∞ = 1.098× 10−3 m).
The agreement between the computed and experimental density profiles is fairly
good, though some discrepancies arise. In all the cases, these are found in the
initial part of the shock front (and also in the post-shock region for the case
M∞ = 1.55). In that zone, due to moderate values of the thermal speed
(caused by low temperatures), collisions between the gas particles are strongly
affected by medium-range attractive forces (Hirschfelder et al. 1964). The
effects of medium-range attractive forces are completed neglected by the VHS
cross-section model, which is purely repulsive, and this could then explain the
systematic disagreement observed.
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Figure 7.7: Flow across a normal shock wave in Ar. Comparison between the com-
puted and experimental density profiles for different values of the free-stream Mach
number (unbroken lines best, symbols experiments).
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This aspect has been investigated more in detail. The case M∞ = 3.38 has
been recomputed by using cross-section models based on interaction potentials
accounting for both repulsive and attractive forces. In this situation one should
normally account for the anisotropic character of the cross-section (which can be
done with the numerical method in use; see sec. 6.2). Despite that, a simplified
approach has been considered. The cross-section is always written as a HS cross-
section with a velocity dependent diameter. For a given interaction potential,
the velocity dependent diameter is determined from the total viscosity cross
section ση = (2/3)πd 2, which is computed from the classical elastic scattering
theory (Hirschfelder et al. 1964; Ferziger and Kaper 1972). More details can be
found in Munafò et al. (2013). In the present work, the viscosity cross-sections
computed by using a Lennard-Jones (LJ) interaction potential (Hirschfelder
et al. 1964; Ferziger and Kaper 1972) and that provided by Phelps et al.
(2000) (PL), who applied the WKB theory to the elastic Ar-Ar scattering, have
been considered. Figure 7.8 shows the comparison between the experimental
density profiles and those computed by means of the LJ, VHS and PL cross-
section models. The LJ and PL results are in slightly better agreement with
the experiments in the front part of the shock, though the differences between
all the models are quite small.
It is worth to recall that the VHS cross-section model parameters (ω, η ref

and Tref) have to be computed for each value of the free-stream Mach number
by some appropriate tuning approach (as explained before), if a reasonable
agreement with experiments is wished. This is not needed when using cross-
sections based on realistic interaction potentials (such as LJ and PL).
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Figure 7.8: Flow across a normal shock wave in Ar. Comparison between the com-
puted and experimental density profiles for different cross-section models (M∞ = 3.38;
unbroken line VHS, dashed line LJ, dotted-dashed line PL, symbols experiments).
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Comparison with the Navier-Stokes Solution

Before moving to applications of the extended spectral-Lagrangian method,
it was decided to complete the accuracy assessment of the original numerical
method by comparing the computed density profiles with those obtained by
solving the Navier-Stokes equations in the case of the VHS model (see fig. 7.9).
This has been also done in order to have an estimation of the approximation
introduced when using a hydrodynamic description beyond its range of ap-
plicability. For the sake of consistency, in obtaining the Navier-Stokes (NS)
solution, the transport properties have been evaluated by using the VHS model
parameters given in tab. 7.2. The density profiles in fig. 7.9 show that the
Navier-Stokes solution is qualitatively correct and not too far from the Boltz-
mann equation solution. However, the accuracy of the Navier-Stokes solution
progressively deteriorates when increasing the free-stream Mach number. In
particular, the shock thickness is systematically underestimated (Bird 1994).
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Figure 7.9: Flow across a normal shock wave in Ar. Comparison of the density
profiles obtained by solving the Boltzmann and the Navier-Stokes equations for different
values of the free-stream Mach number (unbroken lines best, dashed lines NS).
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7.2 Multi-Component Gas without Internal Energy

After assessing the accuracy of the spectral-Lagrangian method of Gamba and
Tharkabhushanam (2009; 2010), its extension to multi-component gases with-
out internal energy has been tested on space homogeneous and inhomogeneous
problems. The former consists in studying the time-evolution of a isochoric
gaseous system initially set in a non-equilibrium state, while the latter consists
in computing the steady flow across a normal shock wave.
The multi-component gas considered here is made of Ne and Ar (whose relative
amounts are case dependent). The electronic energy of the atoms is assumed to
be negligible. Only elastic collisions are accounted for. The HS collision model
is used for the differential cross-section:

σsp =
(ds + dp)

2

16
, s, p ∈ {Ne, Ar} . (7.3)

The numerical values for the Ne and Ar diameters have been taken from Bird
(1994) and are reported in tab. 7.3.

s ms [kg] ds [m]

Ne 3.35× 10−26 2.77× 10−10

Ar 6.63× 10−26 4.17× 10−10

Table 7.3: Masses and diameters of Ne and Ar.

7.2.1 Isochoric Equilibrium Relaxation of a Ne-Ar gas

The gas is composed of 83% and of Ne and 17% of Ar. The correspond-
ing mass fractions are 0.71 and 0.29, respectively. The gas has a density of
7× 10−3 kg/m3 and is set in an initial non-equilibrium state where Ne and Ar
follow a Maxwell-Boltzmann velocity distribution function at 300K and 500K,
respectively. The latter corresponds to a gas temperature of 333.63K.
The velocity space is discretized by adopting 24 velocity nodes and by setting
its semi-length to 3000m/s (Nc = 24 and Lc = 3000m/s, respectively). The
collision time-step ∆tc is set to 1× 10−9 s in order to have a value lower than
the mean collision time. The number of partial elastic collision operators to be
evaluated at each time-step is equal to 4. The simulation was stopped after 300
time-steps. The CPU time required was approximately 3 minutes when using
4 OpenMP threads.

Macroscopic Moments: best vs DSMC

Once the simulation is started, collisions bring the system from its initial non-
equilibrium condition to the final equilibrium state. Since the system is iso-
choric and no external mass, momentum and energy sources are present, the
following statements hold:
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• The density of each species is constant and maintains its initial value.
The same holds true for the gas density.

• The species and gas hydrodynamic velocities are constant and maintains
their initial values (zero).

• The gas temperature is constant and maintains its initial value. On the
other hand, the temperature of each species experiences variation and
approaches the equilibrium temperature value.

The above statements follow directly from the laws of mass, momentum and
energy conservation and should be obtained as a result if the numerical method
used is conservative. This has been assessed by monitoring the time-evolution
of the species and gas densities, and temperatures (see fig. 7.10). The species
and the gas densities retain their initial value and do not show any variation.
The same holds true for the gas temperature and velocity (not shown), while the
species temperatures evolve towards the correct equilibrium value. The results
confirm that the extension of the original spectral-Lagrangian method to multi-
component gases without internal energy is conservative. The agreement with
the DSMC results is excellent.
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Figure 7.10: Isochoric equilibrium relaxation of a Ne-Ar gas. Time-evolution of
the species and gas density and temperature (unbroken line gas best, dashed line Ne
best, dotted-dashed line Ar best, symbols DSMC(Torres)).

Analysis of the Species Velocity Distribution Functions

Figure 7.11 shows the time-evolution of the cx axis component of the species
velocity distribution functions (the cy and cz axis components are not shown
because they are practically identical to the cx component). The results ob-
tained show that the evolution towards the equilibrium state occurs through
sequences of Maxwell-Boltzmann velocity distribution functions.
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Figure 7.11: Isochoric equilibrium relaxation of a Ne-Ar gas. Time-evolution of
the cx axis component of the species velocity distribution functions (unbroken lines
t = 5× 10−9 s, dashed lines t = 1.4× 10−8 s, dotted-dashed lines t = 2.4× 10−8 s,
lines with circles t = 5.0× 10−8 s, lines with squares t = 1.5× 10−7 s).

Sensitivity Study: Number of Velocity Nodes and Conservation Con-
straint

In order to asses the influence of the number of velocity nodes Nc and the
enforcement of conservation on the solution, the benchmark presented in this
section has been re-run by adopting the number of nodes reported in tab. 7.4
with and without enforcing conservation. In tab. 7.4, the L1 and L2 norms of
the error on the gas temperature are also provided (see also fig. 7.12).

# Nc E 1 (with cons.) E 2 (with cons.) E 1 (w/o cons.) E 2 (w/o cons.)
1 8 0.84× 102 0.49× 101 0.61× 103 0.402× 102

2 10 0.12× 102 0.71 0.19× 103 0.12× 102

3 12 0.12× 101 0.67× 10−1 0.12× 103 0.82× 101

4 14 0.68× 10−1 0.39× 10−2 0.27× 102 0.18× 101

5 16 0.52× 10−2 0.31× 10−3 0.73× 101 0.507
6 18 0.12× 10−2 0.77× 10−4 0.15× 101 0.106
7 20 0.31× 10−3 0.21× 10−4 0.304 0.208× 10−1

8 22 0.63× 10−4 0.43× 10−5 0.68× 10−1 0.44× 10−2

9 24 0.104× 10−4 0.72× 10−6 0.17× 10−1 0.108× 10−2

Table 7.4: Isochoric equilibrium relaxation of a Ne-Ar gas. Number of velocity nodes
and related L1 and L2 norms of the error on the gas temperature (Nt = 300).

The error norms have been computed according to:

Ep =

(

Nt
∑

n=0

∣

∣

∣

∣

Tn − T
T

∣

∣

∣

∣

p
)1/p

, p ∈ {1, 2} , (7.4)
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where the number of time-steps is Nt = 300 and the gas temperature is T =
333.63K (see before). The error values reported in tab. 7.4 and shown in
fig. 7.13 demonstrate the importance of the conservation constraint on the
quality of the numerical solution.
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Figure 7.12: Isochoric equilibrium relaxation of a Ne-Ar gas. L1 and L2 norms of the
error on the gas temperature with and without conservation constraint (unbroken line
E1 with conservation, dashed line E2 with conservation, dotted-dashed line E1 without
conservation, dotted line E2 without conservation; circles are added to highlight the
number of velocity nodes used).
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Figure 7.13: Isochoric equilibrium relaxation of a Ne-Ar gas. Time-evolution of
the gas temperature with and without conservation constraint (Nc = 16 ; unbroken line
with conservation, dashed line without conservation).

The numerical errors obtained when applying the conservation constraint are
orders of magnitude lower than those obtained when conservation is not en-
forced. The differences are less pronounced when using a low number of veloc-
ity nodes (e.g. 8, 10). This can be explained by the fact that 8 or 10 velocity
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nodes are not enough to obtain an accurate estimate of second-order moments
(such as the gas temperature) of the initial velocity distribution function. When
the number of velocity nodes is increased, the error in the solution obtained
by enforcing conservation becomes substantially the sum over all time-steps of
the quadrature rule error when evaluating the gas initial temperature. This
is not the case when conservation is not enforced. In this situation, the er-
ror is dominated by the lack of conservation. An evidence of this is given in
fig. 7.13 showing the time-evolution of the gas temperature with and without
conservation constraint for 16 velocity nodes.

7.2.2 Flow Across a Normal Shock Wave in a Ne-Ar gas

The steady-state flow across a normal shock wave in a Ne-Ar gas has been
studied, as done in sec. 7.1, in the shock wave reference frame. A peculiar
aspect of the present benchmark is the species separation occurring within the
shock. The separation is due to the mass difference between the two species
with the lighter species experiencing the compression sooner than the heavier
one (Center 1967; Bird 1994).
The gas is composed of 50% of Ne and 50% of Ar. The corresponding mass
fractions are 0.34 and 0.66, respectively. The gas free-stream density, temper-
ature and velocity are 1× 10−4 kg/m3, 300K and 744m/s, respectively. The
latter correspond to a free-stream Mach number equal to 2. Post-shock values
for the gas density, velocity and temperature (computed based on the Rankine-
Hugoniot jump relations) are 2.29× 10−4 kg/m3, 623.44K and 325.45m/s, re-
spectively.
The simulation parameters are provided in tab. 7.5. As already done in sec. 7.1,
the position is discretized by means of a uniform FV grid. At the boundaries
x = −L−

x and x = L+
x , a Maxwell-Boltzmann velocity distribution function

corresponding, respectively, to the pre and post-shock conditions are imposed
for the two species. The steady-state flow across the shock wave has been
computed by using the same procedure as of sec. 7.1. The memory required for
this test-case is the same as that of sec. 7.2.1

Nc Lc [m/s] Nx L−
x [m] L+

x [m] ∆tc [s] CFL Limiter
22 3200 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada

Table 7.5: Flow across a normal shock wave in a Ne-Ar gas. Simulation parameters.

Macroscopic Moments: best vs DSMC

Figure 7.14 shows the evolution across the shock wave of the species hydro-
dynamic velocity and parallel temperature. The results confirm, as expected,
that the Ne experiences the compression before the Ar. This effect progressively
disappears while the flow approaches the post-shock equilibrium state (where
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no species separation exists). In analogy with what observed in sec. 7.1, the
parallel temperature of both species reaches a maximum, and then approaches
the post-shock equilibrium value. This is again due the distortion experienced
by the velocity distribution function while the flow crosses the shock wave. No-
tice that the peak is more pronounced for the heavier component (Ar). The
comparison with the DSMC results is again excellent. This is further confirmed
by fig. 7.15 showing the evolution across the shock wave of the gas density and
temperature (and the related parallel and transverse components).
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Figure 7.14: Flow across a normal shock wave in a Ne-Ar gas. Evolution of the
species hydrodynamic velocity and parallel temperature (M∞ = 2; unbroken lines Ne
best, dashed line Ar best, symbols DSMC(Torres)).
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Figure 7.15: Flow across a normal shock wave in a Ne-Ar gas. Evolution of the gas
density, temperature and related parallel and transverse components(M∞ = 2; lines
best, symbols DMSC(Torres); in (b) unbroken line T , dashed line Tx, dotted-dashed
line Ty).
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Analysis of the Species Velocity Distribution Functions

Figure 7.16 shows a visual correspondence between the density and the cx axis
component of the velocity distribution function of Ne and Ar across the shock
wave. Due to the low value of the free-stream Mach number, small deviations
from a Maxwellian shape are observed. This justifies, in turn, the moderate
maxima reached by the species parallel temperature in fig. 7.14(b). The evo-
lution across the shock wave of the cy and cz axis components of the species
velocity distribution functions (not shown here) occurs through a sequence of
Maxwell-Boltzmann velocity distribution functions.
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Figure 7.16: Flow across a normal shock wave in a Ne-Ar gas. Comparative evolution
of the density and the cx axis component of the velocity distribution functions of Ne
and Ar (M∞ = 2; the symbols in (a) and (c) highlight the locations at which the
species velocity distribution functions, plotted in (b) and (d), are extracted; in (b)
and (d) unbroken lines x = −1× 10−2 m, dashed lines x = −1.1× 10−3 m, dotted-
dashed lines x = −1× 10−4 m, lines with circles x = 9× 10−4 m, lines with squares
x = 1.9× 10−3 m, lines with triangles x = 1× 10−2 m).
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7.3 Gas with Internal Energy

The extension of the spectral-Lagrangian method of Gamba and Tharkab-
hushanam (2009; 2010) to multi-component gases with discrete internal energy
levels has been tested on the same kind of benchmarks considered in sec. 7.2.
Despite the generality of the formulation described in ch. 6, the results shown
in this section refer to a gaseous system made of one component (Ar) with
discrete internal energy levels. For this reason, the chemical component index
is dropped in what follows.
The value of the Ar mass m is the same as that used in secs. 7.1-7.2, while its
diameter d is set equal to 3× 10−10 m. The number of internal energy levels
taken into account (and the related values of degeneracy and energy) are case
dependent. Both elastic and inelastic collisions are allowed to occur:

i+ j = k + l, i, j, k, l ∈ I, (7.5)

where the set I stores the internal energy levels. For the evaluation of the
differential cross-section for the collision i + j = k + l, the model proposed
by Anderson et al. (1986) has been considered. According to this model,
the differential cross-section is written as a product between a HS differential
cross-section d 2/4 and a transition probability Iklij , that is, σklij = (d 2/4)Iklij .
The transition probability only depends on the pre-collisional relative velocity
magnitude g and has the following expression:

Iklij =
max (µg2 −∆Ekl

ij , 0)
∑

m,n ∈I max (µg2 −∆Emn
ij , 0)

, i, j, k, l ∈ I, (7.6)

where the reduced mass of the colliding particles µ is equal to m/2. Notice
that eq. (7.6) comprises also the case of elastic collisions (i = k and j = l).
An internal temperature Tint is extracted from the level population (in analogy
with what done in chs. 4-5 through the use of eq. (3.34)) by solving the following
non-linear equation:

∑

i∈I niEi

n
=

∑

i∈I aiEi exp (−Ei/kbTint)
∑

i∈I ai exp (−Ei/kbTint)
, (7.7)

where the gas number density is n =
∑

i∈I ni.

7.3.1 Isochoric Equilibrium Relaxation

The isochoric equilibrium relaxation of a multi-energy level gas has been studied
by considering 5 internal energy levels. The related values of degeneracy and
energy (taken from Anderson et al. 1986) are reported in tab. 7.6.
The initial state of the system corresponds to a partial equilibrium condition.
The velocity distribution functions of all levels (species) is a two temperature
(translational T and internal Tint) Maxwell-Boltzmann velocity distribution
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function with zero bulk velocity, obtained by assuming that the population of
the internal energy levels is Boltzmann at Tint (see eq. (1.36)).
The gas has a density of 1 kg/m3. The initial values of the gas translational and
internal temperatures are 1000K and 100K, respectively. The initial condition
of the system approximates the state of the gas immediately behind a normal
shock wave when this is treated as a discontinuity (as done in ch. 4).

i ai Ei [J]
1 1 0
2 1 8.30× 10−21

3 1 1.66× 10−20

4 1 2.50× 10−20

5 1 3.30× 10−20

Table 7.6: Isochoric equilibrium relaxation of a multi-energy level gas. Level degen-
eracies and energies.

The velocity space is discretized by adopting 16 velocity nodes and by setting
its semi-length to 3000m/s (Nc = 16 and Lc = 3000m/s, respectively). The
collision time-step ∆tc is set to 1× 10−12 s in order to have a value lower than
the mean collision time (based on a HS collision model). The number of partial
collision operators to be evaluated at each time-step is equal to 625 (25 elastic
and 600 inelastic). The simulation was stopped after 2500 time-steps. The
CPU time required was approximately 2 hours when using 12 threads. The
memory required was approximately 88 GB. This high value is due to the fact
that 625 convolution weights must be stored.

Macroscopic Moments: best vs DSMC

As for the case studied in sec. 7.2.1, when the simulation is started, collisions
bring the system to equilibrium. However, due to the presence of inelastic
collisions, some differences arise:

• The gas density is constant and maintains its initial value. On the other
hand, the density of each level changes in time and evolves from the initial
non-equilibrium state to its final equilibrium value.

• The level and gas hydrodynamic velocities are constant and maintain
their initial values (zero).

• The gas temperature changes in time and evolves from the initial non-
equilibrium state to its final equilibrium value.

The value of the temperature at equilibrium can be computed from the energy
balance between the initial and the final (equilibrium) states. For the present
simulation, the value of 723.5K is obtained. Once the equilibrium temperature
determined, it is possible to compute the equilibrium values of the level densities
by means of the Boltzmann distribution law (1.36).
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In order to assess the conservation properties of the proposed spectral-Lagrangian
method for the case of a multi-energy level gas, the time-evolution of the den-
sity of each level and the translational and internal temperatures have been
monitored (see fig. 7.17). The results given in fig. 7.17 confirm the previous
considerations regarding the behavior of the system. In particular, the popula-
tion of the ground-state decreases while those of the upper states increase. The
translational temperature decreases till the equilibrium value is reached. The
opposite behavior is observed for the internal temperature. This demonstrates
the existence of a net macroscopic energy transfer from the translational to
the internal degree of freedom of the gas. The level and gas hydrodynamic
velocities retain their initial values (zero) and are not shown in fig. 7.17. The
agreement with the DSMC solution is again excellent.
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Figure 7.17: Isochoric equilibrium relaxation of a multi-energy level gas. Time-
evolution of the level densities and temperatures (lines best, symbols DSMC(Torres);
in (a) unbroken line ρ1, short dashed line ρ2, long dashed line ρ3, dotted-dashed dashed
line ρ4, dotted line ρ5; in (b) unbroken line T , dashed line Tint).

Table 7.7 compares the final values of the temperature and the level densities
as obtained from the simulation with those determined by means of equilibrium
calculations. The agreement between the two data sets is very good. This fur-
ther confirms the conservation properties of the extended spectral-Lagrangian
method when both elastic and inelastic collisions are taken into account.

T [K] ρ1 [kg/m3] ρ2 [kg/m3] ρ3 [kg/m3] ρ4 [kg/m3] ρ5 [kg/m3]

best 723.4029 0.573 0.245 0.1088 0.0474 0.020 69
Eq. 723.543 0.573 0.245 0.1089 0.0474 0.020 64

Table 7.7: Isochoric equilibrium relaxation of a multi-energy level gas. Final values
of temperature and level densities (comparison between simulation and equilibrium
calculations).
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7.3.2 Flow Across a Normal Shock Wave

The steady-state flow across a normal shock wave of a multi-energy level gas
has been studied by accounting for 2 internal energy levels. The related values
of degeneracy and energy (taken from Josyula et al. 2011) are given in tab. 7.8.
In this situation, the total number of partial collision operators to be evaluated
reduces to 16 (4 elastic and 12 inelastic).

i ai Ei [J]
1 1 0
2 1 4.14× 10−21

Table 7.8: Flow across a normal shock wave in a multi-energy level gas. Level
degeneracies and energies.

The free-stream values of the gas density, temperature and velocity are set
to 1.068× 10−4 kg/m3, 300K and 945.33m/s, respectively. The latter cor-
respond to a free-stream Mach number equal to 3. Post-shock conditions
have been obtained by means of the technique suggested by Anderson (1989).1

The values obtained for the post-shock density, temperature and velocity are
3.25× 10−4 kg/m3, 1046.2K and 311.07m/s, respectively.
The simulation parameters are provided in tab. 7.9. As already done in sects.
7.1 and 7.2.2, the position space is discretized by means of a uniform FV grid.
At the boundaries x = −L−

x and x = L+
x , a Maxwell-Boltzmann velocity dis-

tribution function corresponding, respectively, to the pre and post-shock con-
ditions, is imposed for each level. The steady-state flow across the shock wave
has been computed by means of the same procedure used in sects. 7.1 and
7.2.2. The memory required for this test-case was approximately 30 GB.

Nc Lc [m/s] Nx L−
x [m] L+

x [m] ∆tc [s] CFL Limiter
30 3400 201 2× 10−2 2× 10−2 1× 10−8 0.5 van Albada

Table 7.9: Flow across a normal shock wave in a multi-energy level gas. Simulation
parameters.

Macroscopic Moments: best vs DMSC

Figure 7.18 shows the evolution across the shock wave of the level mass frac-
tions, diffusion velocities, velocities and temperatures. The population of the
energy levels changes due to the occurrence of inelastic collisions. This creates
spatial gradients of the chemical composition that, in turn, lead to a mass dif-
fusion flux for both levels. Species separation occurs within the shock, as it
can also be seen from the velocity and temperature evolution. However, in a

1The Rankine-Hugoniot jump relations cannot be applied in this case, as they are valid
only for a calorically perfect gas (Rankine 1870, Hugoniot 1887; 1889)
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comparison with sec. 7.2.2, some differences arise. In the present situation, the
separation is the result of chemical composition gradients caused by inelastic
collisions. In the case of sec. 7.2.2, the separation is due to the mass disparity
between the two species that leads to accumulation of the atoms of the lighter
species in the initial part of the shock front.
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Figure 7.18: Flow across a normal shock wave in a multi-energy level gas. Evolution
of the level mass fractions, diffusion velocities, velocities and temperatures (M∞ = 3;
unbroken lines level 1 best, dashed lines level 2 best, symbols DSMC(Torres)).

The comparison with the DSMC results is again excellent. The same conclusion
can be drawn when looking at gas quantities (i.e. pressure and temperatures) as
done in fig. 7.19. Notice that the internal temperature lags very little behind the
translational temperature (as opposed to what observed ch. 4). This behavior,
though physically correct, is due both to the use of a very simple gas model (i.e.
one excited internal energy level lying close to the ground-state) and to the use
of the Anderson model, which tends to overestimate the probability of inelastic
transitions (as shown by Torres and Magin 2012). This does not represent a
problem, as the purpose of the thesis work was to assess the accuracy and the
conservation properties of the extended spectral-Lagrangian method.
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Figure 7.19: Flow across a normal shock wave in a multi-energy level gas. Evolution
of the gas density, pressure, velocity, translational temperature and related parallel
and transverse components, internal temperature, normal viscous stress and heat flux
(M∞ = 3; lines best, symbols DSMC(Torres); in (d) unbroken line T , dashed line
Tx, dotted-dashed line Ty, dotted line Tint).
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Analysis of the Level Velocity Distribution Functions

Figure 7.20 shows a visual correspondence between the evolution of the level
densities and the related cx axis component of the velocity distribution func-
tions. The distortions around the location x = 0m are the responsible for the
observed maximum in the gas parallel temperature in fig. 7.19(d). The evolu-
tion across the shock wave of the cy and cz axis components (not shown) occurs
through a sequence of Maxwell-Boltzmann velocity distribution functions.
The evolution of the level velocity distributions can also be appreciated in
figs. 7.21-7.22 showing their projections on the (cx, cy) plane at the same loca-
tions as of fig. 7.20.
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Figure 7.20: Flow across a normal shock wave in a multi-energy level gas. Compar-
ative evolution of the level densities and the related cx axis component of the velocity
distribution functions (M∞ = 3; the symbols in (a) and (c) highlight the locations at
which the level velocity distribution functions, plotted in (b) and (d), are extracted;
in (b) and (d) unbroken lines x = −2× 10−2 m, dashed lines x = −2.5× 10−3 m,
dotted-dashed lines x = −1× 10−3 m, dotted lines x = −1× 10−4 m, lines with
circles x = 3× 10−4 m, lines with squares x = 9× 10−4 m, lines with triangles
x = 1.9× 10−3 m, lines with diamonds x = 2× 10−2 m).
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Figure 7.21: Flow across a normal shock wave in a multi-energy level gas. Evolution
of the projection on the (cx, cy) plane of the velocity distribution function of level 1
(M∞ = 3).
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Figure 7.22: Flow across a normal shock wave in a multi-energy level gas. Evolution
of the projection on the (cx, cy) plane of the velocity distribution function of level 2
(M∞ = 3).
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7.4 Intermediate Conclusions

In this chapter applications of the extended spectral-Lagrangian method de-
scribed in ch. 6 have been shown.
At the beginning (sec. 7.1), the accuracy of the original formulation (valid for a
mono-component gas without internal energy) has been assessed by comparing
with DMSC the results for the flow across a normal shock wave in Ar. An
excellent agreement has been observed. The calculations have been run by
using a tunable VHS cross-section model in order to perform a comparison
with experimental density profiles. The good agreement obtained allowed for
a first-step validation of the computational tool developed (best).
After that, the extended formulation of the spectral-Lagrangian method has
been tested on benchmarks involving multi-component gases (sec. 7.2) and in-
elastic collisions (sec. 7.2). In both situations, two cases have been studied in
detail: a) isochoric equilibrium relaxation (space homogeneous) and b) steady
flow across a normal shock wave (space inhomogeneous). The space homo-
geneous testcases were chosen as, due to the absence of convective transport,
they allowed for testing alone the procedure for the discrete evaluation of the
collision operators (i.e. the conservation properties of the numerical method).
The results obtained in sects. 7.2.1 and 7.3.1 proved that the proposed exten-
sion of the spectral-Lagrangian method is indeed conservative. For the case of
a multi-component gas without internal energy, the importance of the appli-
cation of the conservation constraint has been also studied (sec. 7.2.1). The
results clearly indicated that, if conservation is not enforced, the solution is
unphysical and numerical errors remain high even when using a high number of
velocity nodes. The accuracy of the solutions has been assessed by comparing
macroscopic moments with the DSMC method results. As for the original for-
mulation, the comparison led to an excellent agreement. The same conclusion
was found when analyzing the results obtained for flows across normal shock
waves in sects. 7.2.2 and 7.3.2. In these two sections, the evolution of the
species velocity distribution functions across the shock wave have been also
analyzed.





Conclusions

The present chapter draws general conclusions based on the results presented
in this thesis.

Multi-Scale Models

The work on multi-scale models has focused on the N2(
1Σ+

g )-N(
4Su) system by

using the ab-initio database developed by the Computational Quantum Chem-
istry Group at NASA Ames Research Center. The set of state-to-state kinetics
and thermodynamic data provided in this database have been used for building
a RVC model and a suite of reduced models for CFD applications: MT, VC,
BRVC and URVC.
Applications of the RVC model to flows behind shock waves and within converging-
diverging nozzles have allowed for a detailed investigation of the energy level
dynamics, and related assessment of rotational non-equilibrium effects, usually
not taken into account in conventional CFD solvers. For flows behind shock
waves, the results indicated that the assumption of rotational non-equilibrium
becomes questionable at high speed conditions. On the other hand, in re-
combining nozzle flows, the gas expansion occurs under rotational equilibrium
conditions, as non-Boltzmann distributions are appreciable only for rotational
levels of high-lying vibrational states. The analysis of the rovibrational distri-
butions has revealed the existence of a splitting of rotational levels according
to even and odd rotational quantum numbers. In dissociating flows behind
shock waves, this feature of the distribution is more and more significant from
the high-lying vibrational states to the ground-state, due to the faster rota-
tional excitation of high-lying vibrational states. For nozzle flows, the observed
behavior was completely opposite.
The predictions of the RVC model have been compared with those obtained
by means of the reduced models. For the sake of completeness, in the com-
parison, the conventional multi-temperature Park (MTP) model has been also
considered, as it represents the standard model used in CFD solvers.
The results obtained for flows behind shock waves indicated that the BRVC and
URVC models could reproduce the correct dynamical evolution of flow quanti-
ties (such as temperature and chemical composition) with only 20 energy bins.
The MT and VC models led to a faster dissociation, due to the lack of QSS
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conditions and assumed rotational equilibrium, respectively. The MTP model
provided the less accurate description, thereby illustrating the inadequacy of
the physico-chemical models currently used in CFD solvers. A sensitivity anal-
ysis to the number of energy bins indicated that the BRVC model should be
preferred to the URVC model, due to the impossibility of retrieving the post-
shock equilibrium conditions with the URVC model (unless a high number of
energy bins is used).
For nozzle flows, both the VC and BRVC models were in good agreement with
the RVC model predictions. The VC model led to a slightly more accurate
description. This is not surprising, as the assumption of rotational equilibrium,
on which the VC is built, was found to hold true for expanding flows. The
departure between the BRVC and VC model results has been further investi-
gated by performing a sensitivity analysis to the number of energy bins. The
analysis revealed that, for the same computational cost of the MTP model (i.e.
2-5 energy bins), the BRVC model solution was already quite close to the VC
model prediction. Indeed, the relative error on the outlet value of the N2 mole
fraction was around 10%, while it was more than 100% for the MTP model.
These results suggested that, for CFD applications, the BRVC model should
be preferred to the VC model, due to the possibility of achieving an accurate
flowfield description at a much lower computational cost.
The BRVC and MTP models have been further compared in the computation
of the viscous flow along the stagnation-line of blunt bodies. As observed for
nozzle flows, the MTP model overestimated the recombination in the boundary
layer, thereby leading to higher wall heat flux values. The sensitivity analysis
to the number of energy bins (for the BRVC model) revealed that 10 energy
bins were enough to obtain an accurate evolution of the flow quantities and the
transport fluxes at the wall.

Computational Methods

The research on computational methods for rarefied flows has led to the ex-
tension of an existing spectral-Lagrangian method for the Boltzmann equation
(valid for a mono-component gas without internal energy) to multi-component
gases and inelastic collisions. The proposed numerical method is based on the
convolution structure of the Fourier transformed Boltzmann equation, which
shows that the Fourier transform of the partial collision operators (elastic and
inelastic) can be written as weighted convolutions in Fourier space. The con-
volution weights only depend on the cross-section model. Hence, they can be
pre-computed to reduce the computational cost. This fact has been exploited in
the algorithms developed for the discrete evaluation of the collision operators.
The conservation of mass, momentum and energy during collisions has been
enforced though the solution of two constrained optimization problems (one for
elastic collisions and the other for inelastic collisions). The constrained opti-
mization problems have been formulated in a consistent manner with the elastic
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and inelastic collisional invariants.
The extended spectral-Lagrangian method has been implemented in a par-
allel computational tool. Applications have considered both space homoge-
neous/inhomogeneous problems. Initially, the accuracy of the original spectral-
Lagrangian method has been assessed by comparing the results for the flow
across a normal shock wave in Ar with the DSMC predictions. An excellent
agreement has been observed. For this benchmark, a comparison with experi-
mental density profiles (which led to a fair agreement) has been also performed
for the sake of validation. Later, the extended formulation of the method has
been tested on isochoric relaxation and normal shock wave flow benchmarks.
Even in these cases, an excellent agreement with the DSMC results has been
observed. The conservation properties of the proposed numerical method have
been studied in detail for the isochoric relaxation benchmarks. The result ob-
tained have shown that conservation enforcement was mandatory to obtain
accurate and physically correct solutions.





Perspectives

This chapter suggests possible further developments of the research work pre-
sented in this thesis.

Multi-Scale Models

The applications to inviscid and viscous flows of the proposed reduced mod-
els have shown that the BRVC model enables to obtain an accurate flow
description, with a computational cost of the same order as that of conven-
tional multi-temperature models. However, the results obtained were limited
to the N2(

1Σ+
g )-N(

4Su) system. Moreover, phenomena such as ionization and
radiation have not been taken into account. The next natural step of the
work presented here would be to include, in the BRVC mechanism reduction,
the most important rovibrational transitions of the N2(

1Σ+
g )-N2(

1Σ+
g ) system

and collisional processes involving electrons (such as electron impact dissocia-
tion/ionization and associative ionization). The additional set of N2-N2 rovi-
brational rate coefficients could be also added to the current RVC model. This
would allow for a more accurate assessment of rotational non-equilibrium ef-
fects behind shock waves, as the flowfield could be computed in more realistic
conditions (i.e. without seeding the free-stream flow with a small amount of
N). Preliminary results of the application of the N2-N2 system state-to-state
kinetics data have been recently presented by Panesi et al. (2013). Other
possible topics for future work are multi-dimensional viscous flow applications
and accuracy improvement of the BRVC model. Indeed, the results obtained
seem to suggest that a higher accuracy could be achieved by reducing the num-
ber of energy bins and, at the same time, by assuming that the distribution
of the energy levels within a bin is Boltzmann at its own (or global) internal
temperature (i.e. multi-temperature formulation of the BRVC model). This
approach has been successfully employed by Guy et al. (2013) for develop-
ing multi-internal-temperature models based on FHO vibrational state-to-state
rate coefficients. Due to the importance of radiation phenomena for high-speed
entry conditions, future research efforts should be also spent on including ra-
diative transitions and electronically excited states of atoms and molecules in
the developed physical models. Further possible developments are the formula-
tion of a more rigorous treatment of transport phenomena (to properly account
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for the effects of excited states on the transport fluxes) and the possible re-
derivation of the reduced models presented in this thesis based on the Kinetic
Theory of Gases and Linear Irreversible Thermodynamics.

Computational Methods

The applications of the extended spectral-Lagrangian method to space homo-
geneous/inhomogeneous problems involving multi-component gases and inelas-
tic collisions have led to an excellent agreement with the DSMC predictions.
Moreover, the results obtained indicated that the proposed numerical method
is conservative. The current formulation of the spectral-Lagrangian method
does not account for reactive collisions and uses a unique velocity grid for all
the species. In order to account for reactive collisions, such as three-body
dissociation/recombination, the weighted convolution structure of the reactive
collision operator must be established. The use alternative phase-space rep-
resentations (such as momentum and energy spaces) could be considered in
order to deal with collisions between particles having very disparate masses
(such atom-electron or molecule-electron collisions). Other possible topics for
future work are the use of more accurate cross-section models (based on re-
alistic interaction potentials), multi-dimensional applications and reduction of
the computational cost. The latter could be achieved by exploiting eventual
symmetries (in the velocity space) of the velocity distribution function.



Appendix A

Fitting Expressions for MT

Models

Macroscopic Dissociation Rate Coefficient

k̃disN2
(T ) = a0 T

a1 exp
(

−a2
T

)

, [cm3/s], (A.1)

with a0 = 1.6017× 10−5 cm3/s, a1 = −0.8467 and a2 = 1.134× 105 K.

Relaxation Times

τ tra−int
N−N2

pN = exp [b0(T
−1/3 − b1)] + exp [b2(T

−1/3 − b3)], [s atm], (A.2)

τ tra−vib
N−N2

pN = exp [b0(T
−1/3 − b1)] + exp [b2(T

−1/3 − b3)], [s atm], (A.3)

τ tra−rot
N−N2

pN = exp [b0(T
−1/3 + b1)]− exp [b2(T

−1/3 + b3)], [s atm]. (A.4)

b0 b1 b2 b3
τ tra−int
N−N2

23.354 0.809 88 225.692 0.1335

τ tra−vib
N−N2

246.747 0.119 30 46.9888 0.417 14

τ tra−rot
N−N2

−60.202 0.262 45 −138.875 0.105 01

Table A.1: Relaxation time fitting parameters.
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Chemistry Coupling Factors

Cdis−int
N2

= c0 T
c1 , (A.5)

Cdis−vib
N2

= c0 T
c1 , (A.6)

Cdis−rot
N2

= c0 + c1 ln(T ). (A.7)

c0 c1
Cdis−int
N2

1.1334 −0.024 714
Cdis−vib
N2

5.867 −0.233 41
Cdis−rot
N2

−0.991 38 0.130 29

Table A.2: Chemistry coupling factor fitting parameters.
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ODE sets in Canonical Form

In this appendix, and also in those that follow, the temperature dependence of
thermodynamic properties is made implicit for the sake of brevity.

B.1 RVC, VC, BRVC and URVC models

The ODE set to be solved is:

∂

∂x









yN
ỹǫ
u
T









=









sN
s̃ǫ
su
sT









, ǫ ∈ EN2 . (B.1)

After introducing the (constant) mass flux ṁ = ρu and the two-component
vector b, defined as:

b = − 1

ṁ

[

kb
mN2

ωN T

u
ωN hN +

∑

ǫ∈EN2
ω̃ǫ h̃ǫ

]T

, (B.2)

it is possible to express the right-hand-side vector of eq. (B.1) as:








sN
s̃ǫ
su
sT









=









ωN/ṁ
ω̃ǫ/ṁ
det(A1)/det(A)
det(A2)/det(A)









, ǫ ∈ EN2 . (B.3)

Quantity A is a two-by-two matrix, defined as:

A =









1− kb
mN2

(1 + yN)T

u2
kb
mN2

(1 + yN) ,

u

u yN cpN +
∑

ǫ∈EN2

ỹǫ c̃p ǫ









. (B.4)

In eq. (B.3), the notation Ai indicates the matrix formed by replacing the i-th
column of the matrix A by the vector b.
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B.2 MT models

B.2.1 T -Tint Model

The ODE set to be solved is:

∂

∂x













yN
yN2

u
T
Tint













=













sN
sN2

su
sT
sTint













. (B.5)

By applying the same procedure as of sec. B.1, the right-hand-side vector of
eq. (B.5) becomes:













sN
sN2

su
sT
sTint













=













ωN/ṁ
ωN2/ṁ
det(A1)/det(A)
det(A2)/det(A)
(

Ωtra−int
N2

+Ωdis−int
N2

− eintN2
ωN2

)

/
(

ṁ yN2 c
int
vN2

)













. (B.6)

The determinants needed to form the components su and sT are computed by
means of the same procedure as of sec. B.1 by replacing the matrix A and the
vector b with the following expressions:

A =





1− kb
mN2

(1 + yN)T

u2
kb
mN2

(1 + yN)

u
u ctrapN2

(1 + yN)



 , (B.7)

b = − 1

ṁ

[

kb
mN2

ωNT

u
ωN

(

hN − htraN2

)

+Ωtra−int
N2

+Ωdis−int
N2

]T

. (B.8)

B.2.2 T -Tvib-Trot Model

The ODE set to be solved is:

∂

∂x

















yN
yN2

u
T
Tvib
Trot

















=

















sN
sN2

su
sT
sTvib

sTrot

















. (B.9)
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By applying the same procedure as of sec. B.1, and after introducing the two-
by-two matrix B and the two-component vector d, defined as:

B =











∂evibN2

∂Tvib

∂evibN2

∂Trot

∂erotN2

∂Tvib

∂erotN2

∂Trot











, (B.10)

d =

[

Ωtra−vib
N2

+Ωdis−vib
N2

− evibN2
ωN2

ṁ yN2

Ωtra−rot
N2

+Ωdis−rot
N2

− erotN2
ωN2

ṁ yN2

]T

,

(B.11)

the right-hand-side vector of eq. (B.9) becomes:

















sN
sN2

su
sT
sTvib

sTrot

















=

















ωN/ṁ
ωN2/ṁ
det(A1)/det(A)
det(A2)/det(A)
det(B1)/det(B)
det(B2)/det(B)

















. (B.12)

The notation Bi indicates the matrix formed by replacing the i-th column of the
matrix B by the vector d. The determinants needed to form the components
su and sT are computed by means of the same procedure as of sec. B.1 by
replacing the matrix A and the vector b with the following expressions:

A =





1− kb
mN2

(1 + yN)T

u2
kb
mN2

(1 + yN)

u
u ctrapN2

(1 + yN)



 , (B.13)

b = − 1

ṁ

[

kb
mN2

ωNT

u
ωN (hN − hN2) + yN2 (δvib sTvib

+ δrot sTrot)

]T

,

(B.14)

where quantities δvib and δrot are:

δvib =
∂evibN2

∂Tvib
+
∂erotN2

∂Tvib
, (B.15)

δrot =
∂evibN2

∂Trot
+
∂erotN2

∂Trot
. (B.16)
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Eigensystems

C.1 Two-Dimensional Flows

The eigensystem of the two-dimensional equations (5.26) is made of the eigen-
value, right eigenvector and left eigenvector matrices (indicated with Λn, Rn

and Ln, respectively) of the Jacobian An = Anx +Bny. The Jacobians A and
B are defined as A = ∂F/∂U and B = ∂G/∂U, where the expressions for the
inviscid flux vectors F and G are given in eqs. (5.28)-(5.29).
The derivation of the eigensystem starts with the computation of the pressure
derivatives:

∂p

∂ρN
= ΦN,

∂p

∂ρ̃ǫ
= Φ̃ǫ, ǫ ∈ EN2 , (C.1)

∂p

∂ρu
= − (γ − 1)u,

∂p

∂ρv
= − (γ − 1) v, (C.2)

∂p

∂ρE
= (γ − 1). (C.3)

Quantities ΦN and Φ̃ǫ are defined as:

ΦN =
kb
mN

T + (γ − 1)
(

ekin − eN
)

, (C.4)

Φ̃ǫ =
kb
mN2

T + (γ − 1)
(

ekin − ẽǫ
)

, ǫ ∈ EN2 , (C.5)

where the kinetic energy per unit mass is ekin = (u2 + v2)/2. The frozen
specific heat ratio γ is given by the ratio of the volumetric constant pressure
and constant volume frozen specific heats (γ = Cp/Cv), which are defined as:

Cv = ρN cvN +
∑

ǫ∈EN2

ρ̃ǫ c̃v ǫ, (C.6)

Cp = ρN cpN +
∑

ǫ∈EN2

ρ̃ǫ c̃p ǫ. (C.7)
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Using the pressure derivatives (C.1)-(C.3), it is possible to compute the Jaco-
bian matrices A = ∂F/∂U and B = ∂G/∂U:

A =













(1− yN)u −yNu yN 0 0
−ỹǫu (δǫǫ′ − ỹǫ)u ỹǫ 0 0

ΦN − u2 Φ̃ǫ′ − u2 (3− γ)u −γv γ
−uv −uv v u 0

(ΦN −H)u (Φ̃ǫ′ −H)u H − γu2 −γuv γu













, (C.8)

B =













(1− yN)v −yNv 0 yN 0
−ỹǫv (δǫǫ′ − ỹǫ)v 0 ỹǫ 0
−uv −uv v u 0

ΦN − v2 Φ̃ǫ′ − v2 −γu (3− γ)v γ

(ΦN −H)v (Φ̃ǫ′ −H)v −γuv H − γv2 γv













, (C.9)

ǫ, ǫ′ ∈ EN2 ,

where the contracted notation γ = γ − 1 has been introduced for the sake of
later convenience. From eqs. (C.8)-(C.9) the Jacobian An = Anx + Bny can
be formed:

An =












(1− yN)Vn −yNVn yNnx yNny 0
−ỹǫVn (δǫǫ′ − ỹǫ)Vn ỹǫnx ỹǫny 0

ΦNnx − uVn Φ̃ǫ′nx − uVn Vn + (2− γ)unx uny − γvnx γnx
ΦNny − vVn Φ̃ǫ′ny − vVn vnx − γuny Vn + (2− γ)vny γny
(ΦN −H)Vn (Φ̃ǫ′ −H)Vn Hnx − γuVn Hny − γvVn γVn













,

ǫ, ǫ′ ∈ EN2 , (C.10)

where the normal velocity is Vn = unx + vny. To facilitate the diagonalization
of An the natural variables V are introduced (Candler and MacCormack 1991):

V =
[

ρN ρ̃ǫ u v p
]T
, ǫ ∈ EN2 . (C.11)

The natural variables V are related to the conservative variables U via the
transformation matrices M = ∂U/∂V and N = ∂V/∂U. Using the chain rule,
the Jacobian An can be re-expressed as:

An =
∂U

∂V

∂V

∂U

∂Fn

∂V

∂V

∂U
= MAv

nN, (C.12)

where the matrix Av
n is defined as Av

n = NÃn (with Ãn = ∂Fn/∂V). The
matrices An and Av

n have the same eigenvalues, as they are related through a
similarity transformation. Moreover, the left and right eigenvector matrices of
Av

n and An satisfy the relations Rn = MRv
n and Ln = Lv

nN.
Based on eq. (C.12), one can derive the eigensystem of An as follows. First, the
transformation matrices (M and N) are evaluated. Then, after computing the
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Jacobian Ãn, the matrix Av
n is formed via Av

n = NÃn. As it is shown below,
the matrix Av

n can be easily diagonalized to obtain the related eigensystem
(the matrices Λn, Rv

n and Lv
n). Once this done, the conservative eigenvector

matrices are obtained by means of Rn = MRv
n and Ln = Lv

nN.
The transformation matrices M and N are:

M =

















1 0 0 0 0
0 δǫǫ′ 0 0 0
u u ρ 0 0
v v 0 ρ 0

ΘN Θ̃ǫ′ ρu ρv
1

γ

















, (C.13)

N =





















1 0 0 0 0
0 δǫǫ′ 0 0 0

−u
ρ
−u
ρ

1

ρ
0 0

−v
ρ
−v
ρ

0
1

ρ
0

ΦN Φ̃ǫ′ −γu −γv γ





















, (C.14)

ǫ, ǫ′ ∈ EN2 ,

where quantities ΘN and Θ̃ǫ are defined as:

ΘN = eN + ekin − kb
mN

T

γ
, (C.15)

Θ̃ǫ = ẽǫ + ekin − kb
mN2

T

γ
, ǫ ∈ EN2 . (C.16)

The Jacobian matrix Ãn is defined as Ãn = Ãnx + B̃ny, where Ã = ∂F/∂V
and B̃ = ∂G/∂V. The Jacobians Ã and B̃ are:

Ã =















u 0 ρN 0 0
0 δǫǫ′u ρ̃ǫ 0 0
u2 u2 2ρu 0 1
uv uv ρv ρu 0

ΘNu Θ̃ǫ′u ρ(H + u2) ρuv
γu

γ















, (C.17)

B̃ =















v 0 0 ρN 0
0 δǫǫ′v 0 ρ̃ǫ 0
uv uv ρv ρu 0
v2 v2 0 2ρv 1

ΘNv Θ̃ǫ′v ρuv ρ(H + v2)
γv

γ















, (C.18)

ǫ, ǫ′ ∈ EN2 ,
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from which the matrix Ãn = Ãnx + B̃ny readily follows:

Ã =

















Vn 0 ρNnx ρNny 0
0 δǫǫ′Vn ρ̃ǫnx ρ̃ǫny 0
uVn uVn ρ(unx + Vn) ρuny nx
vVn vVn ρvnx ρ(vny + Vn) ny

ΘNVn Θ̃ǫ′Vn ρ(Hnx + uVn) ρ(Hny + vVn)
γVn
γ

















, (C.19)

ǫ, ǫ′ ∈ EN2 .

The evaluation of the product NÃn gives the matrix Av
n:

Av
n =



















Vn 0 ρNnx ρNny 0
0 δǫǫ′Vn ρ̃ǫnx ρ̃ǫny 0

0 0 Vn 0
nx
ρ

0 0 0 Vn
ny
ρ

0 0 ρc2nx ρc2ny Vn



















, ǫ, ǫ′ ∈ EN2 , (C.20)

where the frozen speed of sound is c =
√

γp/ρ. As anticipated before, the
matrix Av

n has a much simpler structure compared to that of the conservative
Jacobian (C.10). A straightforward calculation shows that the eigenvalues of
Av

n are the solution of the secular equation:

(Vn − λ)NN2
+2
[

(Vn − λ)2 − c2
]

= 0. (C.21)

The solution of the secular equation (C.21) is:

λ =











Vn NN2 + 2 times,

Vn − c,
Vn + c.

(C.22)

The eigenvalues Vn ± c are the acoustic waves, while the eigenvalue Vn (with
multiplicity equal to NN2+2, i.e. the number of species plus one) represent the
effect of entropy and shear waves (Hirsch 1990; Leveque 2008). The eigenvalues
(C.22) are stored in the eigenvalue matrix Λn:

Λn =













Vn 0 0 0 0
0 δǫǫ′Vn 0 0 0
0 0 Vn − c 0 0
0 0 0 Vn 0
0 0 0 0 Vn + c













, ǫ, ǫ′ ∈ EN2 . (C.23)

The right and left eigenvector matrices associated to Av
n can be found based

on their definitions:

Av
nR

v
n = Rv

nΛn, Lv
nA

v
n = ΛnL

v
n. (C.24)
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After some algebra one can obtain the expressions for Rv
n and Lv

n:

Rv
n =





















1 0 yN 0 yN
0 δǫǫ′ ỹǫ 0 ỹǫ

0 0 −c nx
ρ

tx
c nx
ρ

0 0 −c ny
ρ

ty
c ny
ρ

0 0 c2 0 c2





















, (C.25)

Lv
n =

























1 0 0 0 − yN
2c2

0 δǫǫ′ 0 0 − ỹǫ
2c2

0 0 −ρnx
2c

−ρny
2c

1

2c2

0 0 tx ty 0

0 0
ρnx
2c

ρny
2c

1

2c2

























, (C.26)

ǫ, ǫ′ ∈ EN2 .

Quantities tx and ty represent the components along the x and y axes, re-
spectively, of the tangential unit vector t =

[

tx ty
]T

which is, by definition,
orthogonal to the unit normal vector n (i.e. t ·n = 0, |t×n| = 1). The tangen-
tial unit vector t is introduced to ensure the linear independence of the right
and left eigenvectors (Gnoffo et al. 1989). The evaluation of the matrix prod-
ucts MRv

n and Lv
nN gives the conservative right and left eigenvector matrices:

Rn =













1 0 yN 0 yN
0 δǫǫ′ ỹǫ 0 ỹǫ
u u u− c nx ρtx u+ c nx
v v v − c ny ρty v + c ny
ΘN Θ̃ǫ′ H − cVn ρVt H + cVn













, (C.27)

Ln =

































1− yNΦN

2c2
−yNΦǫ′

2c2
yNγu

2c2
yNγv

2c2
−yNγ

2c2

− ỹǫΦN

2c2
δǫǫ′ −

ỹǫΦǫ′

2c2
ỹǫγu

2c2
ỹǫγv

2c2
− ỹǫγ
2c2

ΦN + cVn
2c2

Φ̃ǫ′ + cVn
2c2

−c nx + γu

2c2
−c ny + γv

2c2
γ

2c2

−Vt
ρ

−Vt
ρ

tx
ρ

ty
ρ

0

ΦN − cVn
2c2

Φ̃ǫ′ − cVn
2c2

c nx − γu
2c2

c ny − γv
2c2

γ

2c2

































,

ǫ, ǫ′ ∈ EN2 , (C.28)

where the tangential velocity is Vt = utx + vty.
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C.2 One-Dimensional Flows

The eigensystem for the one-dimensional equations (5.6) can be obtained by
neglecting specific terms in the two-dimensional expressions (C.23) and (C.27)-
(C.28). In alternative, one may proceed by repeating the straightforward (but
lengthly) algebraic procedure detailed in sec. C.1.
In the one-dimensional case, the pressure derivatives (C.1)-(C.3) reduce to:

∂p

∂ρN
= ΦN,

∂p

∂ρ̃ǫ
= Φ̃ǫ, ǫ ∈ EN2 , (C.29)

∂p

∂ρu
= −γu, (C.30)

∂p

∂ρE
= γ, (C.31)

and the Jacobian A = ∂F/∂U (where F is given by eq. (5.9)) is:

A =









(1− yN)u −yNu yN 0
−ỹǫu (δǫǫ′ − ỹǫ)u ỹǫ 0

ΦN − u2 Φ̃ǫ′ − u2 (3− γ)u γ

(ΦN −H)u (Φ̃ǫ′ −H)u H − γu2 γu









, ǫ, ǫ′ ∈ EN2 . (C.32)

The expressions for quantities ΦN and Φ̃ǫ, ΘN and Θ̃ǫ are obtained based on
eqs. (C.4)-(C.5) and (C.15)-(C.16), respectively, where the kinetic energy per
unit mass must be replaced with ekin = u2/2.
The eigensystem associated to A can be obtained by neglecting the rows and
the columns related to the y-direction momentum in eqs. (C.23) and (C.27)-
(C.28) and by setting nx = 1:

Λ =









u 0 0 0
0 δǫǫ′u 0 0
0 0 u− c 0
0 0 0 u+ c









, (C.33)

R =









1 0 yN yN
0 δǫǫ′ ỹǫ ỹǫ
u u u− c u+ c

ΘN Θ̃ǫ′ H − cu H + cu









, (C.34)

L =

























1− yNΦN

2c2
−yNΦ̃ǫ′

2c2
yNγu

2c2
−yNγ

2c2

− ỹǫΦN

2c2
δǫǫ′ −

ỹǫΦ̃ǫ′

2c2
ỹǫγu

2c2
− ỹǫγ
2c2

ΦN + cu

2c2
Φ̃ǫ′ + cu

2c2
−c+ γu

2c2
γ

2c2

ΦN − cu
2c2

Φ̃ǫ′ − cu
2c2

c− γu
2c2

γ

2c2

























, (C.35)

ǫ, ǫ′ ∈ EN2 .
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C.3 Stagnation-line Flows

The eigensystem for the stagnation-line equations (5.14) cannot be deduced
from the two-dimensional case. The reason is the modification of the pressure
derivatives, due to the fact that ekin = u2/2. In this situation, one has:

∂p

∂ρN
= ΦN,

∂p

∂ρ̃ǫ
= Φ̃ǫ, ǫ ∈ EN2 , (C.36)

∂p

∂ρu
= −γu, ∂p

∂ρv
= 0, (C.37)

∂p

∂ρE
= γ. (C.38)

Using eqs. (C.36)-(C.38), the Jacobian A = ∂F/∂U (where F is given by
eq. (5.16)) reads:

A =













(1− yN)u −yNu yN 0 0
−ỹǫu (δǫǫ′ − ỹǫ)u ỹǫ 0 0

ΦN − u2 Φ̃ǫ′ − u2 (3− γ)u 0 γ
−uv −uv v u 0

(ΦN −H)u (Φ̃ǫ′ −H)u H − γu2 0 γu













, (C.39)

ǫ, ǫ′ ∈ EN2 .

The use of the procedure of sec. C.1 gives the eigensystem associated to A:

Λ =













u 0 0 0 0
0 δǫǫ′u 0 0 0
0 0 u− c 0 0
0 0 0 u 0
0 0 0 0 u+ c













, (C.40)

R =













1 0 yN 0 yN
0 δǫǫ′ ỹǫ 0 ỹǫ
u u u− c 0 u+ c
v v v ρ v

ΘN Θ̃ǫ′ H − cu 0 H + cu













, (C.41)

L =

































1− yNΦN

2c2
−yNΦǫ′

2c2
yNγu

2c2
yNγv

2c2
−yNγ

2c2

− ỹǫΦN

2c2
δǫǫ′ −

ỹǫΦǫ′

2c2
ỹǫγu

2c2
ỹǫγv

2c2
− ỹǫγ
2c2

ΦN + cu

2c2
Φ̃ǫ′ + cu

2c2
−c+ γu

2c2
−c+ γv

2c2
γ

2c2

−v
ρ

−v
ρ

0
1

ρ
0

ΦN − cu
2c2

Φ̃ǫ′ − cu
2c2

c− γu
2c2

0
γ

2c2

































,

ǫ, ǫ′ ∈ EN2 , (C.42)
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where, again, the expressions for quantities ΦN and Φ̃ǫ, ΘN and Θ̃ǫ are obtained
based on eqs. (C.4)-(C.5) and (C.15)-(C.16), respectively, where the kinetic
energy per unit mass must be replaced with ekin = u2/2.



Appendix D

Positive-Negative Split

Jacobians

In order to facilitate the evaluation of the positive-negative split Jacobians
(A± = RΛ±L), the eigenvalues (C.22) are denoted as:

λ1 = u, λ2 = u− c, λ3 = u+ c. (D.1)

Based on eq. (D.1), the positive-negative split eigenvalues can be defined:

λ±1 =
λ1 ± |λ1|

2
, λ±2 =

λ2 ± |λ2|
2

, λ±3 =
λ3 ± |λ3|

2
, (D.2)

and the following quantities are further introduced:

λ±a = λ±1 −
λ±2 + λ±3

2
, λ±b =

λ±3 + λ±2
2

, λ±c =
λ±3 − λ±3

2
. (D.3)

D.1 One-Dimensional Flows

Based on the definitions given in eqs. (D.1)-(D.2), the positive-negative split of
the eigenvalue matrix for one-dimensional flows is:

Λ± =









λ±1 0 0 0
0 δǫǫ′λ

±
1 0 0

0 0 λ±2 0
0 0 0 λ±3









, ǫ, ǫ′ ∈ EN2 . (D.4)

By evaluating the product RΛ±L (where R and L are given by eqs. (C.34)-
(C.35)) one obtains the positive-negative split Jacobians A± (see eq. (D.5)).

D.2 Stagnation-Line Flows

By applying the procedure used for one-dimensional flows to the stagnation-
line eigensystem (C.39)-(C.42), the positive-negative split Jacobians A± for
stagnation-line flows are obtained (see eq. (D.6)).
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±

=
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λ
± 1
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y
N c

(
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± a
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N
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± c
u

)

−
y
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ỹ
ǫ
γ

c
2

λ
± a
u

(

Φ
N

c
2

−
1

)

+
λ
± c

(

Φ
N

−
u
2

c

)

λ
± a
u

(

Φ̃
ǫ
′

c
2

−
1

)

+
λ
± c

(

Φ̃
ǫ
′
−

u
2

c

)

λ
± b

+
u c

(

λ
± a
γ
u

c
−

λ
± c
γ

)

λ
± c

−
λ
± a

γ
u c

u
λ
± 1

+
λ
± a

(

H
Φ

N

c
2

−
u
2

)

+
λ
± c

u c
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Appendix E

Source Term Jacobians

E.1 Kinetic Process Source Term

E.1.1 Two-Dimensional Flows

For the two-dimensional equations (5.26), the Jacobian of the kinetic process
source term (5.32) can be formally written as:

∂Sk

∂U
=





















∂ωN

∂ρN

∂ωN

∂ρ̃ǫ′

∂ωN

∂ρu

∂ωN

∂ρv

∂ωN

∂ρE
∂ω̃ǫ

∂ρN

∂ω̃ǫ

∂ρ̃ǫ′

∂ω̃ǫ

∂ρu

∂ω̃ǫ

∂ρv

∂ω̃ǫ

∂ρE

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





















, ǫ, ǫ′ ∈ EN2 . (E.1)

As shown in eqs. (3.100)-(3.102), the mass production terms ωN and ω̃ǫ are
naturally expressed in terms of primitive variables:

P =
[

ρN ρ̃ǫ u v T
]T
, ǫ ∈ EN2 . (E.2)

To facilitate the evaluation of the Jacobian ∂Sk/∂U, the chain rule for matrix
Jacobians is exploited:

∂Sk

∂U
=
∂Sk

∂P

∂P

∂U
. (E.3)

The transformation matrix ∂P/∂U is:

∂P

∂U
=

























1 0 0 0 0
0 δǫǫ′ 0 0 0

−u
ρ
−u
ρ

1

ρ
0 0

−v
ρ
−v
ρ

0
1

ρ
0

ΥN Υ̃ǫ′ −
u

Cv
− v

Cv

1

Cv

























, ǫ, ǫ′ ∈ EN2 , (E.4)
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where quantities ΥN and Υ̃ǫ are defined as:

ΥN =
ekin − eN

Cv
, Υ̃ǫ =

ekin − ẽǫ
Cv

, ǫ ∈ EN2 . (E.5)

Substituting eq. (E.4) in eq. (E.3), it is possible to express the kinetic process
source term Jacobian ∂Sk/∂U as:

∂Sk

∂U
=





















∂ωN

∂ρN
+
∂ωN

∂T
ΥN

∂ωN

∂ρ̃ǫ′
+
∂ωN

∂T
Υ̃ǫ′ −

∂ωN

∂T

u

Cv
−∂ωN

∂T

v

Cv

∂ωN

∂T

1

Cv

∂ω̃ǫ

∂ρN
+
∂ω̃ǫ

∂T
ΥN

∂ω̃ǫ

∂ρ̃ǫ′
+
∂ω̃ǫ

∂T
Υ̃ǫ′ −∂ω̃ǫ

∂T

u

Cv
−∂ω̃ǫ

∂T

v

Cv

∂ω̃ǫ

∂T

1

Cv

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





















,

ǫ, ǫ′ ∈ EN2 . (E.6)

In obtaining eq. (E.6), the fact that the mass production terms ωN and ω̃ǫ do
not depend on the velocity components u and v has been used. The derivatives
of the mass production terms ωN and ω̃ǫ with respect to the species densities
and temperature can be obtained by means of a term-by-term differentiation
of eqs. (3.100)-(3.102). Notice that the derivatives with respect to the species
densities in eq. (E.6) are formally different from those appearing in eq. (E.1).
This is due to the use of two different sets of variables (conservative and primi-
tive) for the Jacobian evaluation. To give an example, the derivative ∂ωN/∂ρN
in eqs. (E.1) and (E.6) should be interpreted as:

∂ωN

∂ρN
=



















∂ωN

∂ρN

∣

∣

∣

∣

ρ̃ǫ, ρu, ρv, ρE=const.

in eq. (E.1),

∂ωN

∂ρN

∣

∣

∣

∣

ρ̃ǫ, u, v, T=const.

in eq. (E.6),
(E.7)

ǫ ∈ EN2 .

Similar considerations apply to the other derivatives.

E.1.2 One-Dimensional Flows

For the one-dimensional equations (5.6), the Jacobian of the kinetic process
source term (5.11) can be obtained based on eq. (E.6) by neglecting the rows
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and the columns relative to the y-direction momentum:

∂Sk

∂U
=





















∂ωN

∂ρN
+
∂ωN

∂T
ΥN

∂ωN

∂ρ̃ǫ′
+
∂ωN

∂T
Υ̃ǫ′ −

∂ωN

∂T

u

Cv

∂ωN

∂T

1

Cv

∂ω̃ǫ

∂ρN
+
∂ω̃ǫ

∂T
ΥN

∂ω̃ǫ

∂ρ̃ǫ′
+
∂ω̃ǫ

∂T
Υ̃ǫ′ −∂ω̃ǫ

∂T

u

Cv

∂ω̃ǫ

∂T

1

Cv

0 0 0 0
0 0 0 0
0 0 0 0





















,

ǫ, ǫ′ ∈ EN2 . (E.8)

Quantities Υ̃N and Υǫ are computed based on eq. (E.5), where the kinetic
energy must be replaced with ekin = u2/2.

E.1.3 Stagnation-Line Flows

For the stagnation-line equations (5.6), the Jacobian of the kinetic process
source term (5.21) cannot be deduced from the two-dimensional case. As it
was for the eigensystem (see sec. C.3), this is again due to the fact that only
the velocity component u contributes to the kinetic energy. When this is taken
into account, the transformation matrix ∂P/∂U in eq. (E.4) modifies according
to:

∂P

∂U
=

























1 0 0 0 0
0 δǫǫ′ 0 0 0

−u
ρ
−u
ρ

1

ρ
0 0

−v
ρ
−v
ρ

0
1

ρ
0

ΥN Υ̃ǫ′ −
u

Cv
0

1

Cv

























, ǫ, ǫ′ ∈ EN2 . (E.9)

The application of the chain rule (E.3) leads to:

∂Sk

∂U
=





















∂ωN

∂ρN
+
∂ωN

∂T
ΥN

∂ωN

∂ρ̃ǫ′
+
∂ωN

∂T
Υ̃ǫ′ −

∂ωN

∂T

u

Cv
0

∂ωN

∂T

1

Cv

∂ω̃ǫ

∂ρN
+
∂ω̃ǫ

∂T
ΥN

∂ω̃ǫ

∂ρ̃ǫ′
+
∂ω̃ǫ

∂T
Υ̃ǫ′ −∂ω̃ǫ

∂T

u

Cv
0

∂ω̃ǫ

∂T

1

Cv

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





















,

ǫ, ǫ′ ∈ EN2 . (E.10)

Quantities Υ̃N and Υǫ are always computed based on eq. (E.5), where the
kinetic energy must be replaced with ekin = u2/2.
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E.2 Convective Source Term

E.2.1 Two-Dimensional Flows

For the two-dimensional equations (5.26), the Jacobian of the convective source
term (5.31) is:

∂Sc

∂U
=













0 0̃ǫ′ 0 0 0

0̃ǫ 0̃ǫǫ′ 0 0 0
0 0 0 0 0

ΦN Φ̃ǫ −γu −γv −γ
0 0 0 0 0













, ǫ, ǫ′ ∈ EN2 . (E.11)

E.2.2 One-Dimensional Flows

For the one-dimensional equations (5.6), the Jacobian of the convective source
term (5.10) is:

∂Sc

∂U
= −∂ lnA

∂x









(1− yN)u −yNu yN 0
−ỹǫu (δǫǫ′ − ỹǫ)u ỹǫ 0
−u2 −u2 2u 0

(ΦN −H)u (Φ̃ǫ′ −H)u H − γu2 γu









, (E.12)

ǫ, ǫ′ ∈ EN2 .

E.2.3 Stagnation-Line Flows

For the stagnation-line equations (5.14), the Jacobian of the convective source
term (5.19) is:

∂Sc

∂U
= −1

r
×













2(1− yN)uv −2yNuv 2yN 2yN 0
−2ỹǫuv 2(δǫǫ′ − ỹǫ)uv 2ỹǫ 2ỹǫ 0
−2uuv −2uuv 2(uv + u) 2u 0

−3vuv − 2ΦN −3vuv − 2Φ̃ǫ′ 3v + 2γu 3(uv + v) −2γ
2(ΦN −H)uv 2(Φ̃ǫ′ −H)uv 2(H − γu)uv 2H 2γuv













,

ǫ, ǫ′ ∈ EN2 , (E.13)

where the contracted notation uv = u+ v has been introduced.
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Diffusive Jacobians for

Stagnation-Line Flows

When solving the stagnation-line equations (5.14) by means of the fully implicit
method, the linearization of the diffusive flux (5.17) and source term (5.20) is
performed by using the model proposed by Ramshaw and Chang (1996) for
the diffusion velocities. According to this model, the diffusion velocities are
computed based on self-consistent effective diffusion coefficients as:

udN = Dsc
NN

∂XN

∂r
+
∑

ǫ∈EN2

D̃sc
Nǫ

∂X̃ǫ

∂r
, (F.1)

ũdǫ = D̃sc
ǫN

∂XN

∂r
+
∑

ǫ′ ∈EN2

D̃sc
ǫǫ′
∂X̃ǫ′

∂r
, ǫ ∈ EN2 . (F.2)

The self-consistent (sc) effective diffusion coefficients are defined as:

Dsc
NN = (1− yN)

< DN >

XN
, (F.3)

D̃sc
Nǫ = −ỹǫ

< D̃ǫ >

X̃ǫ

, ǫ ∈ EN2 , (F.4)

D̃sc
ǫN = −yN

< DN >

XN
, ǫ ∈ EN2 , (F.5)

D̃sc
ǫǫ′ = δǫǫ′

< D̃ǫ >

Xǫ
− ỹǫ′

< D̃ǫ′ >

X̃ǫ

, ǫ, ǫ′ ∈ EN2 , (F.6)

where the average diffusion coefficients are given by the following expressions:

< DN > =
1− yN

XN2/DNN2

, (F.7)

< D̃ǫ > =
1− ỹǫ

(XN2 − X̃ǫ)/DN2N2 +XN/DNN2

, ǫ ∈ EN2 . (F.8)
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Since the solution update is performed on conservative variables, the mole frac-
tion gradients in eqs. (F.1)-(F.2) must be expressed in terms of the partial
densities. After some algebra, the mass diffusion fluxes read:

ρNu
d
N = −adNN

∂ρN
∂r
−
∑

ǫ∈EN2

ãdNǫ

∂ρ̃ǫ
∂r

, (F.9)

ρ̃ǫũ
d
ǫ = −ãdǫN

∂ρN
∂r
−
∑

ǫ′ ∈EN2

ãdǫǫ′
∂ρ̃ǫ′

∂r
, ǫ ∈ EN2 , (F.10)

where:

adNN = XN



(1−XN)D
sc
NN −

∑

ǫ∈EN2

D̃sc
NǫX̃ǫ



 , (F.11)

ãdNǫ = yN
XN2

yN2





∑

ǫ′ ∈EN2

(

δǫǫ′ − X̃ǫ′

)

D̃sc
Nǫ′ −XND̃

sc
NN



 , ǫ ∈ EN2 , (F.12)

ãdǫN = ỹǫ
XN

yN



(1−XN)D̃
sc
ǫN −

∑

ǫ′ ∈EN2

D̃sc
ǫǫ′X̃ǫ′



 , ǫ ∈ EN2 , (F.13)

ãdǫǫ′ = ỹǫ
XN2

yN2





∑

ǫ′′ ∈EN2

D̃sc
ǫǫ′′

(

δǫ′ǫ′′ − X̃ǫ′′

)

−XND̃
sc
ǫN



 , ǫ, ǫ′ ∈ EN2 .(F.14)

Based on the results of app. E, the velocity and temperature gradients can be
expressed in terms of those conservative of variables:

∂u

∂r
= −u

ρ

∂ρN
∂r
− u

ρ

∑

ǫ∈EN2

∂ρ̃ǫ
∂r

+
1

ρ

∂ρu

∂r
, (F.15)

∂v

∂r
= −v

ρ

∂ρN
∂r
− v

ρ

∑

ǫ∈EN2

∂ρ̃ǫ
∂r

+
1

ρ

∂ρv

∂r
, (F.16)

∂T

∂r
= ΥN

∂ρN
∂r

+
∑

ǫ∈EN2

Υ̃ǫ
∂ρ̃ǫ
∂r
− u

Cv

∂ρu

∂r
+

1

Cv

∂ρE

∂r
. (F.17)

The substitution of eqs. (F.9)-(F.17) in eqs. (5.17) and (5.20), allows to write
the diffusive flux and source term as in eqs. (5.46)-(5.47):

Fd = Ad

(

∂U

∂r

)

+Bd, (F.18)

Sd = Ad
s

(

∂U

∂r

)

+Bd
s . (F.19)

The expressions for the matrices Ad and Ad
s , and the vectors Bd and Bd

s are
given in secs. F.1-F.2.
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F.1 Diffusive Flux

After some algebra, the matrix Ad and vector Bd are found to be:

Ad =

























adNN ãdNǫ′ 0 0 0

ãdǫN ãdǫǫ′ 0 0 0

−4

3

η

ρ
u −4

3

η

ρ
u

4

3

η

ρ
0 0

−η
ρ
v −η

ρ
v 0

η

ρ
0

bdN −
4

3

η

ρ
u2 b̃dǫ′ −

4

3

η

ρ
u2 bd 0

λ

Cv

























, (F.20)

ǫ, ǫ′ ∈ EN2 .

Bd = −η
r

[

0 0̃ǫ
4

3
uv uv

4

3
uuv

]T

, (F.21)

ǫ ∈ EN2 ,

where, as in app. E, uv = u+ v. Quantities bdN, b̃dǫ′ and bd are defined as:

bdN = λΥN + adNNhN +
∑

ǫ∈EN2

ãdǫNh̃ǫ, (F.22)

b̃dǫ = λΥ̃ǫ + ãdNǫhN +
∑

ǫ′ ∈EN2

ãdǫ′ǫh̃ǫ′ , ǫ ∈ EN2 , (F.23)

bd =

(

4

3

η

ρ
− λ

Cv

)

u. (F.24)

The Jacobian of the vector Bd is:

∂Bd

∂U
=

1

r

η

ρ





















0 0̃ǫ′ 0 0 0

0̃ǫ 0̃ǫǫ′ 0 0 0

4

3
uv

4

3
uv −4

3
−4

3
0

uv uv −1 −1 0
8

3
uuv

8

3
uuv −4

3
(u+ uv) −4

3
u 0





















, ǫ, ǫ′ ∈ EN2 .

(F.25)

The eigenvalues of the matrix determined by considering only the rows and
columns corresponding to the momentum and global energy equations in the
matrix Ad are:

λ1 =
4

3

η

ρ
, λ2 =

η

ρ
, λ3 =

λ

Cv
. (F.26)

Quantity max[(4/3)(η/ρ), λ/Cv] can be used for estimating the spectral radius
of the matrix Ad (Blazek 2006) and it is used in eq. (5.42) for the evaluation
of the local time-step in viscous flow calculations.
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F.2 Diffusive Source Term

After some algebra, the matrix Ad
s and vector Bd

s are found to be:

Ad
s =

1

r

























2adNN 2ãdNǫ′ 0 0 0

2ãdǫN 2ãdǫǫ′ 0 0 0

−2η
ρ
(uv + u) −2η

ρ
(uv + u) 4

η

ρ
2
η

ρ
0

−1

3

η

ρ
(uv + 7v) −1

3

η

ρ
(uv + 7v)

2

3

η

ρ
3
η

ρ
0

2cdN 2c̃dǫ′ cd 0 2
λ

Cv

























, (F.27)

ǫ, ǫ′ ∈ EN2 .

Bd
s =

η

r2

[

0 0̃ǫ −6uv −11

3
uv −2

3
uv ⋆

]T

, (F.28)

ǫ ∈ EN2 ,

where uv ⋆ = 7u2 + 5uv − 2v2. Quantities cdN, c̃dǫ and cd are defined as:

cdN = bdN −
1

3

η

ρ
u(uv + 3u) (F.29)

c̃dǫ = b̃dǫ −
1

3

η

ρ
u(uv + 3u), ǫ ∈ EN2 , (F.30)

cd =
4

3

η

ρ
(2u− v)− λ

Cv
u. (F.31)

The Jacobian of the vector Bd
s is:

∂Bd
s

∂U
=

1

r2
η

ρ





















0 0̃ǫ′ 0 0 0

0̃ǫ 0̃ǫǫ′ 0 0 0

6uv 6uv −6 −6 0

11

3
uv

11

3
uv −11

3
−11

3
0

4

3
uv ⋆ 4

3
uv ⋆ 2

3
(15u− 5v)

2

3
(4v − 5u) 0





















,

ǫ, ǫ′ ∈ EN2 . (F.32)



Appendix G

Fourier Transform of the Partial

Collision Operators

G.1 Partial Elastic Collision Operator

According to the weak form (6.5), the Fourier transform of the partial elastic
collision operator for the collision si + pj = si + pj is:

Q̂sipj (ζ) =
1

(2π)3/2

∫∫∫

S 2×ℜ3×ℜ3

[

exp(−ı c′si · ζ)− exp(−ı csi · ζ)
]

fsifpjσsipj×

g dω′dcpjdcsi , s, p ∈ S, i ∈ Is, j ∈ Ip. (G.1)

The post-collisional velocity c′si can be expressed as:

c′si = csi +
µsp
ms

(g′ − g), s, p ∈ S, i ∈ Is. (G.2)

The use of eq. (G.2) allows to write the difference between the exponentials in
eq. (G.1) as follows:

exp(−ı c′si ·ζ)−exp(−ı csi ·ζ) = exp (−ı csi · ζ)
{

exp

[

−ı µsp
ms

(g′ − g) · ζ
]

− 1

}

.

(G.3)

The substitution of eq. (G.3) and the use of the relation dcpjdcsi = dg dcsi
1

in eq. (G.1) gives:

Q̂sipj (ζ) =

∫∫

S 2×ℜ3

1

(2π)3/2

[ ∫

ℜ3

fsi (csi) fpj (csi − g) exp(−ı csi · ζ)dcsi
]

×

{

exp

[

−ı µsp
ms

(g′ − g) · ζ
]

− 1

}

σsipj g dω
′dg, (G.4)

s, p ∈ S, i ∈ Is, j ∈ Ip.
1A direct calculation shows that the Jacobian of the transformation (csi , cpj ) → (csi ,g)

is unit (i.e. |∂(csi , cpj )/∂(csi ,g)| = 1).
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The inner integral in eq. (G.4) represents the Fourier transform of the func-
tion product fsi (csi) fpj (csi − g). In view of the convolution theorem and
the translation property of the Fourier transform, the Fourier transform of the
function product fsi (csi) fpj (csi − g) can be written as:

1

(2π)3/2

∫

ℜ3

fsi (csi) fpj (csi − g) exp(−ı csi · ζ)dcsi =

1

(2π)3/2

∫

ℜ3

f̂si (ζ − ξ) f̂pj (ξ) exp(−ıg · ξ)dξ, (G.5)

s, p ∈ S, i ∈ Is, j ∈ Ip.

The substitution of eq. (G.5) in eq. (G.4) gives the thesis of Proposition 6.2.1
stated in eq. (6.7):

Q̂sipj (ζ) =

∫

ℜ3

f̂si (ζ − ξ) f̂pj (ξ) Ŵsipj (ζ, ξ)dξ, (G.6)

s, p ∈ S, i ∈ Is, j ∈ Ip,

where the elastic convolution weight for the collision si + pj = si + pj is:

Ŵsipj (ζ, ξ) =
1

(2π)3/2

∫∫

S 2×ℜ3

g σsipj

{

exp

[

−ı µsp
ms

(

g′ − g
)

· ζ
]

− 1

}

×

exp (−ıg · ξ) dω′dg, s, p ∈ S, i ∈ Is, j ∈ Ip. (G.7)

G.2 Partial Inelastic Collision Operator

The computation of the Fourier transform of the partial inelastic collision op-
erator proceeds in a manner similar to the elastic case.
According to the weak form (6.6), the Fourier transform of the partial inelastic
collision operator for the collision si + pj = sk + pl is:

Q̂skpl
sipj (ζ) =

1

(2π)3/2

∫∫∫

S 2×ℜ3×ℜ3

exp(−ı csi · ζ) f ′skf
′
pl
σ
sipj
skpl g

′ dω dc′skdc
′
pl
−

1

(2π)3/2

∫∫∫

S 2×ℜ3×ℜ3

exp(−ı csi · ζ) fsifpjσskplsipj g dω
′dcsidcpj , (G.8)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

The velocity csi in the exponential contained in the gain part of the Fourier
transform can be expressed as:

csi = c′sk +
µsp
ms

(g − g′), s, p ∈ S, i, k ∈ Is. (G.9)
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The substitution of eq. (G.9) and the use of the relations dcpjdcsi = dg dcsi
and dc′pldc

′
sk

= dg′ dc′sk
2 in eq. (G.8) gives:

Q̂skpl
sipj (ζ) =

∫∫

S 2×ℜ3

1

(2π)3/2

[ ∫

ℜ3

fsk
(

c′sk
)

fpl
(

c′sk − g′
)

exp(−ı c′sk · ζ)dc
′
sk

]

×

exp

[

−ı µsp
ms

(g − g′) · ζ
]

σ
sipj
skpl g

′dω dg′−
∫∫

S 2×ℜ3

1

(2π)3/2

[ ∫

ℜ3

fsi (csi) fpj (csi − g) exp(−ı csi · ζ)dcsi
]

×

σskplsipj g dω
′dg, (G.10)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.
As done for the elastic case, the use of the convolution theorem and the trans-
lation property of the Fourier transform allows to write the Fourier transform
of the function product fsk

(

c′sk
)

fpl
(

c′sk − g′
)

in eq. (G.10) as:

1

(2π)3/2

∫

ℜ3

fsk
(

c′sk
)

fpl
(

c′sk − g′
)

exp(−ı c′sk · ζ)dc
′
sk

=

1

(2π)3/2

∫

ℜ3

f̂sk (ζ − ξ) f̂pl (ξ) exp(−ıg′ · ξ)dξ, (G.11)

s, p ∈ S, k ∈ Is, l ∈ Ip.
The substitution of eqs. (G.5) and (G.11) in eq. (G.10) gives the thesis of
Proposition 6.2.1 stated in eq. (6.8):

Q̂skpl
sipj (ζ) =

∫

ℜ3

f̂sk (ζ − ξ) f̂pl(ξ) Ĝ
skpl
sipj (ζ, ξ) dξ−

∫

ℜ3

f̂si(ζ − ξ) f̂pj(ξ) L̂
skpl
sipj (ξ) dξ, (G.12)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is,
where the inelastic gain and loss convolution weights for the collision si + pj =
sk + pl are:

Ĝskpl
sipj (ζ, ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g′ σ
sipj
skpl exp

[

−ı µsp
ms

(

g − g′
)

· ζ
]

×

exp
(

−ıg′ · ξ
)

dω dg′, (G.13)

L̂skpl
sipj (ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g σskplsipj exp (−ıg · ξ) dω′dg, (G.14)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.
2A direct calculation shows that the Jacobian of the transformation (c′sk , c

′
pl
) → (c′sk ,g

′)
is unit (i.e. |∂(c′sk , c

′
pl
)/∂(c′sk ,g

′)| = 1).
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Isotropic Convolution Weights

H.1 Elastic Collisions

The elastic convolution weight for the collision si + pj = si + pj is:

Ŵsipj (ζ, ξ) =
1

(2π)3/2

∫∫

S 2×ℜ3

g σsipj

{

exp

[

−ıµsp
ms

(

g′ − g
)

· ζ
]

− 1

}

×

exp (−ıg · ξ) dω′dg, s, p ∈ S, i ∈ Is, j ∈ Ip. (H.1)

In the case of isotropic interactions, the differential cross-section can be taken
out of the integral over ω′ and eq. (H.1) can be rearranged as:

Ŵsipj (ζ, ξ) =
1

(2π)3/2

∫

ℜ3

g σsipj exp (−ıg · ξ)×

[

exp

(

ı
µsp
ms

g · ζ
) ∫

S 2

exp

(

−ıµsp
ms

gω′ · ζ
)

dω′ −
∫

S 2

dω′

]

dg,

s, p ∈ S, i ∈ Is, j ∈ Ip. (H.2)

The integral
∫

S 2 dω
′ can be readily evaluated and gives 4π. The remaining

integral over ω′ can be computed by introducing a spherical coordinate system
(θω′ , φω′) for the vector ω′ with the pole aligned along the direction of the
vector ζ. In this way one has:

∫

S 2

exp

(

−ıµsp
ms

gω′ · ζ
)

dω′ =

2π
∫

0

π
∫

0

exp

(

−ıµsp
ms

g ζ cos θω′

)

sin θω′dθω′dφω′

=

2π
∫

0

dφω′

π
∫

0

exp

(

−ıµsp
ms

g ζ cos θω′

)

sin θω′dθω′

= 4π j0

(

µsp
ms

g ζ

)

, s, p ∈ S, (H.3)
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where the zeroth-order spherical Bessel function of first kind j0(x) is (Abramovitz
and Stegun 1972):

j0(x) =
1

2

π
∫

0

exp (−ı x cos θ) sin θ dθ = sinx

x
, x ∈ ℜ. (H.4)

The substitution of eq. (H.3) in eq. (H.2) gives:

Ŵsipj (ζ, ξ) =

√

2

π

∫

ℜ3

g σsipj j0

(

µsp
ms

g ζ

)

exp

[

−ıg ·
(

ξ − ζ
µsp
ms

)]

dg−

√

2

π

∫

ℜ3

g σsipj exp (−ıg · ξ) dg, (H.5)

s, p ∈ S, i ∈ Is, j ∈ Ip.

Since the differential cross-section only depends on g, the first and second in-
tegrals over g can be computed by adopting a spherical coordinate system
(θg, φg) for the vector g with the pole aligned along the direction of the vec-
tors ξ − ζµsp/ms and ξ, respectively. In this situation the velocity differential
dg becomes g2 sin θg dθg dφg dg. The substitution of the previous relation in
eq. (H.5) gives (after a manipulation similar to that of eq. (H.3)):

∫

ℜ3

g σsipjj0

(

µsp
ms

g ζ

)

exp

[

−ıg ·
(

ξ − ζ
µsp
ms

)]

dg =

4π

∞
∫

0

σsipj j0

(

µsp
ms

g ζ

)

j0

(

g

∣

∣

∣

∣

ξ − ζ
µsp
ms

∣

∣

∣

∣

)

g3 dg, (H.6)

∫

ℜ3

g σsipj exp (−ıg · ξ) dg = 4π

∞
∫

0

σsipj j0(g ξ) g
3 dg, (H.7)

s, p ∈ S, i ∈ Is, j ∈ Ip.

The substitution of eqs. (H.6)-(H.7) in eq. (H.5) gives the thesis of Proposition
6.2.2 stated in eq. (6.12):

Ŵsipj (ζ, ξ) = 4
√
2π

+∞
∫

0

σsipj

[

j0

(

µsp
ms

g ζ

)

j0

(

g

∣

∣

∣

∣

ξ − ζ
µsp
ms

∣

∣

∣

∣

)

− j0 (g ξ)
]

×

g3dg, s, p ∈ S, i ∈ Is, j ∈ Ip. (H.8)
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H.2 Inelastic Collisions

The inelastic gain and loss convolution weights for the collision si+pj = sk+pl
are:

Ĝskpl
sipj (ζ, ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g′ σ
sipj
skpl exp

[

−ıµsp
ms

(

g − g′
)

· ζ
]

×

exp
(

−ıg′ · ξ
)

dω dg′, (H.9)

L̂skpl
sipj (ξ) =

1

(2π)3/2

∫∫

S 2×ℜ3

g σskplsipj exp (−ıg · ξ) dω′dg, (H.10)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

In analogy with the case of an elastic collision, when the interaction is isotropic
it is possible to rearrange eqs. (H.9)-(H.10) as:

Ĝskpl
sipj (ζ, ξ) =

1

(2π)3/2

∫

ℜ3

g′ σ
sipj
skpl exp

[

−ıg′ ·
(

ξ − µsp
ms

ζ

)]

×

[ ∫

S 2

exp

(

−ıµsp
ms

gω · ζ
)

dω

]

dg′, (H.11)

L̂skpl
sipj (ξ) =

1

(2π)3/2

∫

ℜ3

g σskplsipj exp (−ıg · ξ)
[ ∫

S 2

dω′

]

dg, (H.12)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

The integral
∫

S 2 dω
′ is equal to 4π while that over ω in eq. (H.11) can be

evaluated by adopting a spherical coordinate system (θω, φω) for the vector ω

with the pole aligned along the direction of the vector ζ. The application of
this procedure leads to:

∫

S 2

exp

(

−ıµsp
ms

gω · ζ
)

dω = 4πj0

(

µsp
ms

g ζ

)

, s, p ∈ S. (H.13)

The pre-collisional relative velocity magnitude g can be related to its post-
collisional value g through the energy balance for the collision:

1

2
µsp g

2 =
1

2
µsp g

′ 2 +∆Eskpl
sipj , s ∈ S, i ∈ Is, (pj , sk, pl) ∈ Cinsi . (H.14)

Solving eq. (H.14) for g′ and substituting the result obtained in eq. (H.13) one
has:

∫

S 2

exp

(

−ıµsp
ms

gω · ζ
)

dω = 4πj0

(

µsp
ms

√

g′ 2 + 2
∆Eskpl

sipj

µsp
ζ

)

, (H.15)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.
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The substitution of eq. (H.15) in eq. (H.11) and the use of the equality
∫

S 2 dω
′ =

4π in eq. (H.12) allows to write:

Ĝskpl
sipj (ζ, ξ) =

√

2

π

∫

ℜ3

g′ σ
sipj
skplj0

(

µsp
ms

√

g′ 2 + 2
∆Eskpl

sipj

µsp
ζ

)

×

exp

[

−ıg′ ·
(

ξ − µsp
ms

ζ

)]

dg′, (H.16)

L̂skpl
sipj (ξ) =

√

2

π

∫

ℜ3

g σskplsipj exp (−ıg · ξ) dg, (H.17)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

The integrals over g and g′ can be computed, as in the elastic case (see
eqs. (H.6)-(H.7)), by using again spherical coordinates. The application of
this procedure to eqs. (H.16)-(H.17) allows to obtain the thesis of Proposition
6.2.2 stated in eqs. (6.13)-(6.14):

Ĝskpl
sipj (ζ, ξ) = 4

√
2π

+∞
∫

G
′ sipj
skpl

σ
sipj
skpl j0

(

µsp
ms

√

g′ 2 + 2
∆Eskpl

sipj

µsp
ζ

)

×

j0

(

g′
∣

∣

∣

∣

ξ − ζ
µsp
ms

∣

∣

∣

∣

)

g′ 3dg′, (H.18)

L̂skpl
sipj (ξ) = 4

√
2π

+∞
∫

G
skpl
sipj

σskplsipj j0 (g ξ) g
3dg, (H.19)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.

The lower limits on the relative velocity Gskplsipj and G ′ sipj
skpl account for the ex-

istence, in the most general situation, of a threshold value below which the
inelastic collision si+pj = sk+pl and its inverse sk+pl = si+pj do not occur,
respectively. These threshold values can be obtained from the energy balance
for the collision (H.14) and are:

G ′ sipj
skpl =











√

−2∆Eskpl
sipj

µsp
if ∆Eskpl

sipj < 0,

0 if ∆Eskpl
sipj ≥ 0,

(H.20)

Gskplsipj =











√

2∆Eskpl
sipj

µsp
if ∆Eskpl

sipj > 0,

0 if ∆Eskpl
sipj ≤ 0,

(H.21)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.



Appendix I

Discrete Fourier Transforms and

Weighted Convolutions

I.1 Fourier and inverse Fourier Transform

Let f = f(c) be a function of the velocity c and let f̂ = f̂(ζ) be its Fourier
transform. According to the definitions introduced in sec. 6.2, the Fourier
transform of the function f and the inverse Fourier transform of the function
f̂ are:

f̂(ζ) =
1

(2π)3/2

∫

ℜ3

exp (−ı ζ · c) f(c) dc, ζ ∈ ℜ3, (I.1)

f(c) =
1

(2π)3/2

∫

ℜ3

exp (ı ζ · c) f̂(ζ) dζ, c ∈ ℜ3. (I.2)

The integrals in eqs. (I.1)-(I.2) must be replaced with discrete sums because of
the discretization of the velocity space introduced in sec. 6.3.1. The substitution
of eqs. (6.21) and (6.24) for ch and ζη, respectively, in eqs. (I.1)-(I.2) and the
replacement of the continuous integrals with discrete sums, leads to:

f̂(ζη) =
∆c3

(2π)3/2

∑

h∈H3

wh exp (−ı ζη · ch) f(ch), ζη ∈ Vζ , (I.3)

f(ch) =
∆ζ3

(2π)3/2

∑

η ∈H3

wη exp (ı ζη · ch) f̂(ζη), ch ∈ Vc. (I.4)

The expansion of the dot product ζη · ch gives:

ζη · ch = (−Lc + hx∆c)(−Lζ + ηx∆ζ) + (−Lc + hx∆c)(−Lζ + ηy∆ζ)+

(−Lc + hz∆c)(−Lζ + ηz∆ζ), h,η ∈ H3. (I.5)
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After some re-arrangement and the use of the relation (6.26) (∆c∆ζ = 2π/Nc),
eq. (I.5) can be rewritten as:

ζη · ch = 3LcLζ − Lc∆ζ (ηx + ηy + ηz)− Lζ∆c (hx + hy + hz) +
2π

Nc
h · η,

h,η ∈ H3. (I.6)

The substitution of eq. (I.6) in eqs. (I.3)-(I.4) gives:

f̂(ζη) =
∆c3 exp [−ı δ(η)]

(2π)3/2

∑

h∈H3

f∗(ch) exp

(

−ı 2π
Nc

h · η
)

, ζη ∈ Vζ , (I.7)

f(ch) =
∆ζ3 exp [ı γ(h)]

(2π)3/2

∑

η ∈H3

f̂∗(ζη) exp

(

ı
2π

Nc
h · η

)

, ch ∈ Vc. (I.8)

Quantities δ(η) and γ(h) in the exponentials in front of the sums are:

δ(η) = Lc [3Lζ −∆ζ (ηx + ηy + ηz)] , η ∈ H3, (I.9)

γ(h) = Lζ [3Lc −∆c (hx + hy + hz)] , h ∈ H3, (I.10)

while the functions f∗(ch) and f̂∗(ζη) have the following expressions:

f∗(ch) = wh f(ch) exp [ı Lζ∆c (hx + hy + hz)] , ch ∈ Vc, (I.11)

f̂∗(ζη) = wη f̂(ζη) exp [−ı Lc∆ζ (ηx + ηy + ηz)] , ζη ∈ Vζ . (I.12)

The sums in eqs. (I.7)-(I.8) correspond, respectively, to the FFT and inverse
FFT of the functions f∗ and f̂∗ (with no scaling):

FFT(f∗)(η) =
∑

h∈H3

f∗(ch) exp

(

−ı 2π
Nc

h · η
)

, η ∈ H3, (I.13)

FFT−1(f̂∗)(h) =
∑

η ∈H3

f̂∗(ζη) exp

(

ı
2π

Nc
h · η

)

, h ∈ H3. (I.14)

In view of eqs. (I.13)-(I.14), the discrete approximation of the Fourier transform
of the function f and the inverse Fourier transform of the function f̂ become:

f̂(ζη) =
∆c3 exp [−ı δ(η)]

(2π)3/2
FFT(f∗)(η), ζη ∈ Vζ , η ∈ H3, (I.15)

f(ch) =
∆ζ3 exp [ı γ(h)]

(2π)3/2
FFT−1(f̂∗)(h), ch ∈ Vc, h ∈ H3. (I.16)

Based on eqs. (I.15)-(I.16), the following algorithms are proposed for a fast
evaluation of the Fourier and the inverse Fourier transform.
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Algorithm I.1.1 Evaluation of the Fourier transform of f = f(c)

for all h, η ∈ H3 do
compute δ(η) through eq. (I.9);
compute f∗(ch) through eq. (I.11);

end for
Compute the FFT of f∗;
for all η ∈ H3 do

Compute f̂(ζη) through eq. (I.15);
end for

Algorithm I.1.2 Evaluation of the inverse Fourier transform of f̂ = f̂(ζ)

for all h, η ∈ H3 do
compute γ(ch) through eq. (I.10);
compute f̂∗(ζη) through eq. (I.12);

end for
Compute the FFT−1 of f̂∗;
for all h ∈ H3 do

Compute f(ch) through eq. (I.16);
end for

I.2 Weighted Convolution

The continuous integrals defining the weighted convolutions in eqs. (6.7)-(6.8)
are approximated as follows. Let κ = (κx, κy, κz) and wκ = (wκx , wκy , wκz)
be, respectively, the vector of indices and the vector of integration weights
associated to the discrete Fourier velocity node ξκ. In view of this, the Fourier
transform of the partial collision operators for the elastic collision si + pj =
si + pj and the inelastic collision si + pj = sk + pl become:

Q̂sipj (ζη) =
∆ζ3

(2π)3/2

∑

κ∈H3
η

wκ f̂si (ζη − ξκ) f̂pj (ξκ) Ŵsipj (ζη, ξκ) , (I.17)

s, p ∈ S, i ∈ Is, j ∈ Ip, ζη ∈ Vζ , η ∈ H3,

Q̂skpl
sipj (ζη) =

∆ζ3

(2π)3/2

∑

κ∈H3
η

wκ f̂sk (ζη − ξκ) f̂pl(ξκ) Ĝ
skpl
sipj (ζη, ξκ)−

∆ζ3

(2π)3/2

∑

κ∈H3
η

wκ f̂si (ζη − ξκ) f̂pj (ξκ) L̂
skpl
sipj (ξκ) , (I.18)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is, ζη ∈ Vζ , η ∈ H3,
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where the global integration weight of the discrete Fourier velocity node ξκ is
wκ = wκxwκywκz . The set H3

η
is defined as:

H3
η
=
{

(κ−x , κ
+
x )× (κ−y , κ

+
y )× (κ−z , κ

+
z )
}

⊂ H3, η ∈ H3, (I.19)

where the upper (+) and lower (−) limits of the indices κx, κy and κz are
computed based on the following relations:

κ−α =

{

0 if ηα < Nc/2,

ηα −Nc/2 + 1 if ηα ≥ Nc/2,
(I.20)

κ+α =

{

ηα +Nc/2− 1 if ηα < Nc/2,

Nc if ηα ≥ Nc/2,
(I.21)

α ∈ {x, y, z} .

The introduction of the above limits is equivalent to set to zero the functions
f̂sk and f̂si (in eqs. (I.17)-(I.18)) when their argument (ζη − ξκ) goes beyond
the limits of the discretized Fourier velocity space.
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Solution of the Constrained

Optimization Problems

J.1 Elastic Collisions

The Lagrangian associated to the constrained optimization problem Pel of
Proposition 6.3.1 is:

Lel =
∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

∣

∣

∣Q̃sipj −Qsipj

∣

∣

∣

2
+ (Λel)T

∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Qsipj , (J.1)

where the vector of Lagrange multipliers Λel has Ns + 4 components. The
solution of the problem Pel is given by stationary points of the Lagrangian
Lel. These are found by imposing:

∂Lel

∂Qsipj

= 0Ns+4, s, p ∈ S, i ∈ Is, j ∈ Ip, (J.2)

∂Lel

∂Λel
= 0Ns+4. (J.3)

The application of eqs. (J.2)-(J.3) gives:

Qsipj = Q̃sipj − (Ψel
si)

TΛel, s, p ∈ S, i ∈ Is, j ∈ Ip, (J.4)

0Ns+4 =
∑

p∈S
j ∈Ip

Ψel
si Qsipj . (J.5)

The left multiplication of eq. (J.4) by the matrix Ψel
si and the sum of the result

obtained over all the elastic collisions gives:

∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Qsipj =

∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Q̃sipj −Ns

∑

s∈S
i∈Is

Ψel
si(Ψ

el
si)

TΛel. (J.6)
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The left-hand-side of eq. (J.6) is zero in view of the imposed constraint (J.5).
Hence, eq. (J.6) can be solved for the Lagrange multiplier vector to give:

Λel = (Ψ̃el)−1Q̃el, (J.7)

where the matrix Ψ̃el and the vector Q̃el are defined as:

Ψ̃el = Ns

∑

s∈S
i∈Is

Ψel
si(Ψ

el
si)

T, (J.8)

Q̃el =
∑

s∈S
i∈Is

∑

p∈S
j ∈Ip

Ψel
si Q̃sipj . (J.9)

The substitution of eq. (J.7) in eq. (J.4) gives the thesis of Proposition 6.3.1
stated in eq. (6.43):

Qsipj = Q̃sipj − (Ψel
si)

T(Ψ̃el)−1Q̃el, s, p ∈ S, i ∈ Is, j ∈ Ip. (J.10)

J.2 Inelastic Collisions

The Lagrangian associated to the constrained optimization problem Pin of
Proposition 6.3.2 is:

Lel =
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

∣

∣

∣
Q̃skpl

sipj −Qskpl
sipj

∣

∣

∣

2
+ (Λin)T

∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q

skpl
sipj , (J.11)

where the vector of Lagrange multipliers Λin has Nc + 4 components. The
solution of the problem Pin is given by stationary points of the Lagrangian
Lin. These are found by imposing:

∂Lin

∂Qskpl
sipj

= 0Nc+4, (pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is, (J.12)

∂Lin

∂Λin
= 0Nc+4. (J.13)

The application of eqs. (J.12)-(J.13) gives:

Qskpl
sipj = Q̃skpl

sipj − (Ψin
si)

TΛin, (pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is, (J.14)

0Nc+4 =
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q

skpl
sipj . (J.15)
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The left multiplication of eq. (J.14) by the matrix Ψin
si and the sum of the result

obtained over all the inelastic collisions gives:
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q

skpl
sipj =

∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q̃

skpl
sipj−

∑

s∈S
i∈Is

Ψin
si(Ψ

in
si)

T#(Cinsi )Λin. (J.16)

The left-hand-side of eq. (J.16) is zero in view of the imposed constraint (J.15).
In view of this, eq. (J.16) can be solved for the Lagrange multiplier vector to
give:

Λin = (Ψ̃in)−1Q̃in, (J.17)

where the matrix Ψ̃in and the vector Q̃in are defined as:

Ψ̃in =
∑

s∈S
i∈Is

N
in
si Ψin

si(Ψ
in
si)

T, (J.18)

Q̃in =
∑

s∈S
i∈Is

∑

(pj ,sk,pl)

∈Cin
si

Ψin
si Q̃

skpl
sipj . (J.19)

Quantity N in
si is equal to #(Cinsi ). The substitution of eq. (J.17) in eq. (J.14)

gives the thesis of Proposition 6.3.2 stated in eq. (6.48):

Qskpl
sipj = Q̃skpl

sipj − (Ψin
si)

T(Ψ̃in)−1Q̃in, (J.20)

(pj , sk, pl) ∈ Cinsi , s ∈ S, i ∈ Is.





Appendix K

Discrete Macroscopic Moments

The macroscopic moments introduced in secs. 1.3-1.4 are approximated as fol-
lows:
• Partial densities:

ρsi = ms∆c
3
∑

h∈H3

wh fsi(ch), s ∈ S, i ∈ Is, (K.1)

• Hydrodynamic velocity:

v =
∆c3

ρ

∑

s∈S
i∈Is

∑

h∈H3

whmsch fsi(ch), (K.2)

• Diffusion velocities:

vd
si =

∆c3

ρsi

∑

h∈H3

whms(ch − v)fsi(ch), s ∈ S, i ∈ Is, (K.3)

• Translational temperature components:

Tsi α =
ms∆c

3

nsikb

∑

h∈H3

wh [vα − chα]
2 fsi(ch), (K.4)

s ∈ S, i ∈ Is, α ∈ {x, y, z} ,

• Viscous stress tensor:

τ = −∆c3
∑

s∈S
i∈Is

∑

h∈H3

whms (ch − v)⊗ (ch − v) fsi(ch) + p I, (K.5)

• Heat flux vector:

q = ∆c3
∑

s∈S
i∈Is

∑

h∈H3

wh (ch − v)

(

1

2
ms |ch − v| 2 + Esi

)

fsi(ch). (K.6)
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