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Chapter 1

Curling in nature and technology

This work is dedicated to the curling dynamics of surfaces having a spontaneous curva-
ture. It was initially inspired by the axisymmetric curling of a biomembrane on a spherical
geometry observed at a microscopic scale on two different systems that will be described
further: Malaria infected red blood cell membrane and assymmetric polymersomes mem-
brane. Curling is a way to store elastic energy and is used in nature and in engineering for
numerous purpose. This phenomenon occurs for thin objects, for which bending defor-
mations are low cost and when their spontaneous radius of curvature is finite and smaller
than their characteristic dimensions. In the process of curling, several dissipation mech-
anisms are at play and will define the various regime of curling. In this first chapter,
we wish to describe in which conditions and for what systems curling occurs and what
theoretical approaches have been proposed so far to understand curling dynamics of some
specific systems.

1.1 From bending to curling of thin objects

When one dimension of a continuous solid body is small compared with the other geo-
metrical scales, the free energy cost is small for some specific large deformation: bending.
For instance, a metal cylinder with diameter a and height b can resist quite well an axial
compression. However, under the same compressive stress (that is, the same force per
cross-section surface area), when the aspect ratio a/b is low, a sudden little failure of a
structural member can induce a dramatic flexion. Indeed, the critical buckling stress for
a cylindrical column, well known in mechanical engineering, writes σc ∽ (a/b)2 and is
much smaller than the critical stress of rupture. Of course, when a/b ≪ 1, the cylinder
becomes a filament and it loses virtually all resistance to axial compression. In the field
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2 CHAPTER 1. CURLING IN NATURE AND TECHNOLOGY

of mechanics, these kind materials are described by the elasticity theories of thin plates
and rods.

A B C D 

Figure 1.1: A.- Pine cones, closed and open, depending of the humidity in the environment.
B.- The Venus flytrap (Dionaea muscipula) in its open and closed states (images from
[25]). C.- Helical coiling of plant tendrils. D.- Proboscis (p) coiled in the resting position
and a fruit-piercing butterfly, Archaeoprepona demophoon, pushes its proboscis tip into
fruit (images from [37]).

In general, thin objects, because of their low resistance to specific deformation, can
be understood as soft systems. Whatever the molecular organization, their tendency to
be bent easily, allow large displacements at low energetic cost. This specific property has
been exploited by nature in many ways as illustrated in Fig.1.1 and in some cases have
been investigated from a mechanical point of view. For instance, the reversible closure
and opening of mature pine cones [62], the rapid closure of the Venus flytrap based on
a snap-buckling instability [25], the helical coiling of plant tendrils that work as springs
with tunable mechanical responses [26] and the contracting butterfly proboscis governed
by curvature elasticity [37] and analog to the recoiling of the paper tube in a party horn.
In this last example, the natural state of the proboscis (or the paper in the case of the
party horn) corresponds to a coil of defined curvature, and the uncoiling state is reached
thanks to hydraulic forces. When these interactions are suddenly turned off, the system
tries to come back to the resting curled state. Therefore, a curvature wave propagates
down along the material, allowing a systematic bending of the material on itself, the so-
called curling. Curling occurs to release the elastic energy stored in a system which bends
on itself towards a natural radius smaller or much smaller than the material length.

Numerous structures and geometries exhibit curling once they acquire a natural curva-
ture. Examples span disciplines (see Fig.1.2) and scales from the catastrophic disassembly
of microtubules [51] and the rolling up of nanotubes [71] to the observed rolling of tracing
paper placed on a water surface [63] (partially wet paper curls!). Since the materials are
essentially soft, the curling dynamics depends strongly on the dissipation mechanisms.
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Figure 1.2: Curling observed on: A.- microtubule during shrinkage (Cryo-electron mi-
croscopy of unstained, frozen-hydrated from [51]); B.- SEM image of a rolled-up Si tube
(image from [71]); C.- Tracing paper (45 µm thick) on a water bath (from [63]); D.-
Malaria infected red blood cells [1]; and E.- Artificial polymersomes [48]. F.- Volvox algae
colonies [81].

Indeed, viscous dissipations associated with the relative movement of the fluid environ-
ment become more and more important when smaller-scale objects are considered and
can lead to situations where the characteristic lengths of the bending wave front differ
considerably from those natural radii.

1.2 Microscopic systems that motivated our work

The theoretical description of curling dynamics is especially relevant for micro or nanoscale
systems for which the elastic characteristics and specifically the value of the natural radii,
can not be measured. In such a case, the observables of the curling dynamics are good
candidates to indirectly measure mechanical properties of the material.

In the work of Mabrouk and collaborators [49] (see Fig.1.2D), the axisymmetric curling
of polymersomes membranes allow to achieve a rapid exchange of the internal content of
polymersomes with the outside solvent. In this system of asymmetric polymer vesicles,
one of the two leaflets is composed of UV-responsive polymers so that, under remote UV
illumination, an important difference of surface area between the two leaflets is induced.
Therefore, because the natural curvature and density of the leaflets are geometrically
coupled, once a pore is open, the membrane will bend continuously on itself in order to
reach its new resting elastic configuration.

Another example with spherical geometry and similar difficulties in the interpretation
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of the bending modes, is the curling of lipidic membrane observed during the egress of
malarial parasites from red blood cells [1]. The culminating step of the intraerythrocytic
development of Plasmodium falciparum, the causative agent of malaria, is the spectacular
release of multiple invasive merozoites on rupture of the infected erythrocyte membrane.
It has been observed [1] that this release occurs in 3 main steps after osmotic swelling of the
infected erythrocyte: a pore opens in around 100 milliseconds, ejecting 1-2 merozoites,
an outward curling of the erythrocyte membrane, ending with a fast eversion of the
infected erythrocyte membrane, pushing the parasites forward (see Fig.1.2E). In this case,
although it may be realized that during the parasite development the infected erythrocyte
membrane acquires a spontaneous curvature, the origin of the curling is poorly understood.

In both systems, the geometry is axisymmetric and the only observable are the aperture
dynamics parameters (the pore radius). In both studies, a minimal model is proposed
to extract the spontaneous curvature of the nanoscaled membrane and the dissipation.
Both interpretation are in need of a more refine description of the curling dynamics and
more exhaustive account of the various dissipation mechanisms that can be involved at
this scale.

1.3 Macroscopic approaches to curling: the paradigm

of the wet tracing paper

In the preceding examples, a direct measurement of the induced difference of area or
natural curvature (spontaneous curvature) is extremely difficult. In addition, the low
resolution on the membrane during the curling process precludes an adequate experimental
characterization of the bending modes. Several physical models have been proposed to
describe curling at the macro-scale. Among them, the curling of tracing paper [63] consists
in placing the tracing paper at a water surface. The natural curvature is induced by the
partial wetting of the paper: the face in contact with water is swelled creating a difference
in area with the face in contact with air. A curling consequently occurs. Later, when
the whole paper sink and both faces are swollen, the natural curvature goes down to
zero and unwinding is observed. This simple system is of particular interest to study
hygroscopic deformation of plants. Nevertheless, the coupling between water permeation
and mechanical properties is difficult to describe, as well as the specific mode of dissipation
in the contact line.
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1.4 Theoretical approaches with the Elastica paradigm

Two recent works have been developed on curling for elastic lines (Elastica approach).
Firstly Kabaso et al. [39], propose a molecular model of curling in RBCs were the average
spontaneous curvature of the membrane is induced by the diffusion field of anchored poly-
mers (representing the detached cytoskeleton elements in RBCs) coupled to the curvature
of a straight stripe representing the membrane. The dynamics take into consideration
viscous drag around the strip. The membrane profiles are obtained as a function of time
using a thin strip of membrane that is curved only along its length. They indeed report a
curling deformation of the stripe (Figure 1.3A), but the characteristic time associated with
the resultant motion is much larger than the one observed in the axisymmetric curling of
polymersomes and during the egress of malarial parasites.

On the other hand, a recent numerical work based on the Kirchhoff equations describes
the dynamics of a naturally curved Elastica without gravity or friction [9]. The authors
report finds a self-similar growing spiral regime of propagation which reaches a constant
curling velocity at an infinite time (Figure 1.3B) but whose experimental evidence is
lacking.

A 

B 

Figure 1.3: A.- Configurations of a thin strip of membrane obtained from numerical
calculations (from [39]) B.- Direct numerical solutions for the shape of the self-similar
curling of a naturally curved elastica (from [9]).
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1.5 Motivations

As already mentioned, curling deformation is based on the ability of the system to store
energy in the creation (or destruction) of curvature. From this point of view, the driven
potential energy of the process can be expressed with linear expansions of the accessible
bending modes (the relevant “degrees of freedom") which depend strongly on the physical
nature of the material. For example, fluid membranes can be bent while allowing, at the
same time, a redistribution of matter, while internal stresses in a solid shell are controlled
by strong resistances to intrinsic modifications in the arrangement of molecules (Fig. 1.4).

 

 

 
A B C 

Figure 1.4: Sketches for bending models. A.- Representation of the principal local axes in
a thin material. B.- Standard solid material represented by a configuration of springs. C.-
Fluid membrane modeled as a nematic liquid crystal where the director of the individual
molecules coincides with the normal unitary vector n̂ of the surface.

In this work, I have analyzed theoretically the limits of the phenomenological models
of axisymmetric curling of fluid membranes motivated by the recent microscopic observa-
tions of curling in membranes of Malaria infected red blood cells (MIRBC) and artificial
polymersomes. Subsequently, due to the lack of clear experimental images of microscopic
curling, and the complexity of the spherical topology, I studied in a second part, both the-
oretically and experimentally, the curling of macroscopic naturally curved elastic ribbons.
In order to separate the respective roles of flow, elasticity and geometry, the experiments
are performed in different viscous media and elastic conditions to obtain crucial informa-
tion of the inherent elasto-viscous coupling during curling.



Chapter 2

Curling of axisymmetric membranes:

polymersomes and malaria-infected red

blood cells membranes

2.1 Curling in artificial and bio- membranes

2.1.1 Curling in polymersomes: artificially induced spontaneous

curvature

Polymersomes are tough vesicles compared to their lipid analog because of their high lysis
tension three to four times higher [21, 18]. This resistance to tension comes from their
composition made of diblock copolymer amphiphiles and make them good candidates as
drug carriers. However, while previous approaches to design responsive polymersomes
whose degradation upon environmental changes has been used for slow release of active
species, Mabrouk et al. [48] designed new types of sensitive polymersomes capable of fast
release of their internal medium.

The strategy used by the authors has been able to build asymmetric polymersomes
where one leaflet can immediately change its surface area compared to the other under
UV-illumination, due to the presence of modified liquid crystalline diblock copolymers
(Fig. 2.1A,B). The conformational change of the copolymers in one leaflet changes its
surface area and induces a strong local spontaneous curvature in the membrane that can
lead to poration [48]. Mabrouk et al. found that bursting of their structure happens with
a subsequent catastrophic curling in a fraction of a second (see Fig. 2.1C).

7
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W = 2πr

2L

ṙ
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Figure 2.1: (A) Chemical structures of the 2 selected copolymers, PEG-b-PBD and PEG-b-

PMAzo444. (B) Cartoon of a polymersome and cartoon depicting the conformation of both

copolymers within the bilayer for an ePAzo-iPBD vesicle (from [48]). C. Snapshots of an ePBD-

iPAzo polymersome bursting under UV illumination. Scale bar= 5 µm. D. Cartoon of the

assumptions made in the model developed by Mabrouk at al. [48]

2.1.2 Curling in Malaria-infected Red Blood Cells

Malaria is an infectious human disease responsible for a million deaths each year. Its
clinical symptoms occur at the blood stage of a cellular parasite, called a merozoite in this
stage, looking like a tiny and complex ovoid about a micrometer across. In this invasive
form one merozoite actively penetrates a red blood cell (RBC), where it multiplies during
48 hours. The culminating step of the development is then the spectacular release of the
newly formed merozoites in a split second, ready to infect new RBCs passing by in the
microcirculation (Figure 2.2).

Thirty five years after the seminal video microscopy work of Dvorak et al. [22], this fast
process remained only described phenomenologically as an “explosive” event [29, 28, 27].
However, what happened to the membrane during this “explosion” and, in particular, how
parasite displacements could reach several times their body size in such short time, without
any swimming appendices or inertia were questions that had not yet received convincing
answers because of the lack of direct fast observations. Hypothetical mechanisms have
been proposed but not proven, such as the shredding of the membrane because of the
osmotic pressure or a breaching of the infected red blood cell (iRBC) membrane by the
parasite [28]. Using high-speed video-microscopy, recent studies have shown that the
release is indeed the result of an elastic instability of the iRBC membrane [1].

After osmotic swelling over several minutes, the release occurs in 3 main steps [1].
First, a pore opens in around 100 milliseconds, ejecting 1-2 merozoites. Second, the edge
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Ring stage

48 H

Figure 2.2: 48 hours life cycle of the P. falciparum in RBCs.

of the pore curls out and wraps into a toroidal rim whose major radius r grows in time
(Fig. 2.3B and 2.4A,B). This curling process is confirmed by direct observation of the
first turn as presented in Fig. 2.4B., an outward curling of the iRBC membrane is then
observed. In the last step, when r reaches a critical value close to the radius R of the
iRBC, the membrane changes the sign of its curvature (i.e., from concave to convex) and
buckles, liberating and dispersing the remaining merozoites as shown in Fig. 2.3B. These
data strongly suggest that buckling is necessary for efficient release and dispersal of the
merozoites [1].

The striking similarities observed between the destabilization of the iRBC membrane
and the bursting of artificial-sensitive copolymer-based vesicles (Fig. 2.1C), reported
by Mabrouk et al. [48], suggest that a common elastic mechanism is involved in both
systems. Since, healthy RBCs do not present such instability under osmotic stress alone,
Malaria parasites modify and exploit the elasticity of the cell membrane like Mabrouk et
al. with their polymersomes, to enable their egress. However unlike polymersomes, the
actors responsible for such high natural curvature are still unknown for iRBCs and their
determination are under current investigation.
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Figure 2.3: A. Snapshots of the osmotically triggered ejection of the first merozoite using DIC

microscopy. Scale bar, 3 µm. B. Snapshots of the whole release process: pressure driven ejection

of the first parasite (up to 148 ms); curling of the RBC membrane (192-324 ms) and final buckling

of the membrane (324-368 ms) pushing the remaining merozoites forwards, far from their initial

position (from [1]).

Circular Opening Curling

r

r0

R

r0

t0

2L

0 ms
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B

C

Figure 2.4: (A) Sequence of images of PKH26-labeled iRBC using fluorescence microscopy and

showing: the initial iRBCs (0 milliseconds), the circular pore opening (100 ms), the shoulder

type deformation of the RBC membrane (150 ms) followed by the membrane curling (283 ms).

Scale bar, 1 µm. (B) Sequence of images of the first curl after the shoulder-type deformation

(time lapse: 14.3 ms). Scale bar, 1 µm. (C) Kinetics of the pore opening with the radius r of

the pore as a function of time. Two regimes are identified: the circular opening and the curling

taking place at t0. The parameters used for the data analysis are represented both in the inset

and on the curve: the pore radius when curling starts r0 and the cell radius R. At any given

time t, the opening is described by a pore radius r and a rim radius L. The red solid line is a fit

with eqn. 2.2. Error bars represent the error in the determination of the diameter of the pore.

(from [1]).
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2.1.3 Phenomenological approaches used in these two studies and

their limitations

The curling of polymersomes membrane is driven by a molecularly imposed curvature
κ0 of the membrane opposite to and much higher than the initial curvature κ = 1/R of
the polymersome of radius R. According to the model by Mabrouk et al, once a pore
nucleates, it grows because of the outer curling of the membrane releasing bending energy
at a rate Pe. The dynamics of the rim is then controlled solely by the balance between
Pe, and the viscous dissipation Pv because of the movement of the growing rim in the
outer medium.

Abkarian et al. proposed to describe the iRBC bursting with the same approach con-
sidering that at one point during the parasite development the iRBC membrane acquires
a spontaneous curvature κ0 different from a normal RBC and whose origin is yet to be
determined [1]. The time variation of the rim bending energy is related to the variation
in curvature of the spherical membrane elements from a curvature of 1/R to an opposite
higher curvature of 1/L when wrapping on the rim (Fig. 2.1D): Pe ≈ 1

2
κ 1
L22πrṙ, where

L ≪ R is the radius of the rim. For the viscous dissipation, Mabrouk et al. estimated
Pv using the Stokes friction of a cylinder of radius L and length 2πr (perimeter of the
rim), moving at a speed ṙ in a fluid of viscosity η: Pv = 4πη

1/2+ln(2πr/L)
2πrṙ. The balance of

these two terms leads to the following differential equation for r assuming that the slowly
varying logarithmic term at the denominator is a constant ln:

ṙ =
κln
2η

1

4π

1

L2
(2.1)

Assuming a compact curling with a membrane thickness e, mass conservation leads to
L = κ−1

0

√

1 + r/rc, hence a polynomial solution of Eq.2.1 reported in Mabrouk et al. [48]:
r2 + 2rrc = Dt, where D = κln

2eη
and rc =

2π
eκ2

0

. For iRBCs however, the pore nucleation
is immediately followed by the circular opening up to a radius r0, reached at a time t0

(Fig. 2.4C). This brings a correction to the mass balance πe(r2 − r20) = 2πr(πL2 − πκ−2
0 )

proposed in [48] and to L = κ−1
0

√

1 + (r − r20/r)/rc. The solution of Eq.2.1 becomes:

D(t− t0) = (r − r0)(r + r0 + 2rc)− 2r20ln(
r

r0
) (2.2)

As presented in Fig. 2.4C, Abkarian et collaborators measured the variations of r as a
function of time for individual events of iRBC opening and fitted their data using Eq.
2.2 to determine the values of the parameters rc and D (reported in [1], solid curve in
Fig. 2.4C). Knowing the thickness e ≈ 50 nm measured by ultrasensitive force probe
techniques on healthy RBCs [31] and using the fitted value of rc, the authors deduced



12 CHAPTER 2. AXISYMMETRIC CURLING IN MEMBRANES

first the spontaneous curvature κ0 ≈ 21.0 ± 2.4 µm−1 of the membrane for non labelled
RBCs and κ0 ≈ 11.5 ± 2.4 µm−1 for PKH26-labelled RBCs1, corresponding to radii of
curvature of the order of the membrane thickness. They have also measured the maximum
pore radius rmax as well as the rim size Lmax before buckling. Using the values of κ0 and
rc and the expression of L, one can compute L(rmax) ≈ 0.2µm which is close to the
measured values of the order of 0.4µm and comforts again the fact that curling is due to
a spontaneous curvature κ0 acquired by the iRBC membrane. Subsequently, κ0 should be
sensitive to the modification of the iRBC lipid membrane. Indeed, the authors observed
a decrease of κ0 measured for PKH26-labelled cells whose outer leaflet has been enriched
by these extra lipids.

Even though the modified model seem to fit the data and gives a reasonable value
for the spontaneous curvature, it fails to predict the value obtained experimentally for D.
Indeed, using the typical value for the RBC membrane bending modulus κ ≈ 50 kBT [59],
the thickness e ≈ 50 nm and the viscosity of the outer medium which is mainly water
η ≈ 10−3 Pa.s, setting ln ≈ 4, Abkarian et al. find a value D ≈ 8000 µm2/s two orders of
magnitude larger than what reported in [1]. Since D depends mainly on e and η, several
assumptions of the model have to be reconsidered to understand such a discrepancy, which
are basically related to the geometry of the winding and the sources of dissipation in the
problem.

For instance both models of Mabrouk et al. and Abkarian et al. are simply based on
the assumption that curling is compact. This hypothesis can be easily challenged based
on steric and dynamical arguments in the case of iRBCs. Indeed, the compact curling
might be hampered by structures remaining attached to the iRBC membrane after egress
such as the sub-membrane skeleton and the Maurer’s clefts which are structures exported
by the parasite, previously shown to remain attached to the RBC membrane after egress
[3, 16, 46]. What is then the effect of such non compact winding on the dynamics of the
pore ?

In addition other dissipative processes described by an effective viscosity ηeff 2 orders
of magnitude larger than η would account for such a discrepancy. For example, another
possible source of extra-viscous dissipation could come from the 2-dimensional (2D) mem-
brane flow produced by the curling deformation. However it is not clear how to correctly
calculate such a complex flow with a simple term in the energy balance described ear-
lier. One crude approach to estimate such a 2D dissipation has been suggested in the
supplementary files of Mabrouk et al. [48]. The authors considered that the viscous dis-
sipation around the curling membrane edge could be represented by the same term as for
a circular pore opening [65]: πr2ηS( ṙr )

2. It is easy to show that D is simply renormalized

1PKH-26 is a commercially available fluorescent lipid
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as Dnew = D
1+ ln

8π
ηS/ηr0

(supplementary files of [1]), where ηS is the surface viscosity of
the membrane. Viscosity measurements have been done on lipid membranes using many
different techniques such as labeled molecular probe diffusion in bilayers [57], falling ball
viscosimetry [19], phase-separated lipid domain diffusion [15], and pore-opening measure-
ment techniques [7], establishing that ηS is ranging from 10−9 N.s/m to 3.10−7 N.s/m.
Consequently, D can vary by a factor 100, depending on the type of membrane flow.
Better estimate of the surface flow are necessary in such geometry.

Moreover, other aspects of the problem have been neglected. First, the role played by
the eventual presence of the cytoskeleton in the case of iRBC membrane both on pore
nucleation but also on its dynamics. Finally, both models in both systems have neglected
the role of line-tension and of the spherical geometry.

Recently, we published a preliminary work on the role of spherical geometry [10].
But in this chapter, we present a more general and extended phenomenological model
based on the sequence of pore opening we described in the earlier paragraph both for
iRBCs and polymersomes, where basically we consider that the only difference between
these two structures is the presence of a shear modulus in the membrane of iRBCs. In
the first part, we study theoretically pore opening and curling destabilization due to
the presence of a uniform spontaneous curvature in an 3D axisymmetric bio-membrane.
We model axisymmetric curling with the revolution of a decentered Archimedean spiral
leading to prescribed toroidal-like wrapping of the membrane. In this configuration, we
look at the stability of an open pore depending both on line-tension and shear elasticity.
Moreover, we explore in a second part the role surface dissipation resulting from the
surface redistribution and discuss what role it plays on the dynamics over the outer fluid
viscous dissipation.

2.2 General mechanical properties of lipid and diblock

copolymer membranes

2.2.1 Bending in Fluid Membranes

Fluid membranes as chiefly studied in this manuscript consist of a bilayer of amphiphile
molecules that are are lipids or diblock copolymers. When introduced into an aqueous en-
vironment, these amphiphilic molecules aggregate spontaneously into two mono-molecular
layers held together by hydrophobic forces [18, 67]. This bilayer system can be modeled as
a nematic liquid crystal where the director of the individual molecules coincides with the
normal unitary vector n̂ of the surface (see Fig.1.4). In this context, the classical concept
of strain has no sense. What is relevant is not the infinitesimal separation of matter but
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the infinitesimal variation of the directors of the molecules (indeed, the model assumes
that always the densities in each monolayer adjust optimally to the local shape). Then,
in analogy with the strain dr′i−dri

dri
along the direction êi for solids, the deformation, along

the same direction, in the liquid cristal system is quatified by the parameter Ψi =
dn′

i−dni

dri
,

where dn′
i and dni are the infinitesimal variations (after an before bending) of the normal

vector n̂ in the direction êi. Considering naturally flat membranes and ê3 parallel to the
local normal vector, we get Ψ3 = 0 and, Ψ1 and Ψ2 become exactly the local curvatures
along ê1 and ê2. Therefore, two arbitrary perpendicular curvatures, should completely
define the local modes of deformation in the membrane. In addition, the state of curva-
tures around any point of a surface, is given by the two fundamental invariants 1

2
(κ1+κ2)

and κ1κ2, which are the Mean and Gaussian curvature respectively (κ1 and κ2 are the
principal curvatures [74]). In the classical curvature model for symmetric membranes,
the local elastic energy FLC (energy per unit surface) is written as an expansion of the
invariants. Then, similar to Eq.3.2, to lowest order one obtains [67]

FB(r) =
1

2
KB (κ1 + κ2)

2 +KG (κ1κ2) (2.3)

, where the two elastic constant KB and KG both have the dimension of an energy. They
are called bending rigidity and Gaussian rigidity. The Eq.2.3 is usually known as Helfrich
energy in reference to who popularized the expression in 1973 and has been specially
successful for the theoretical modeling of the configurations and shape transformations of
vesicles and red blood cells [5].

2.2.2 Mechanical Properties of infected Red Blood Cells

Structure of a healthy RBC membrane

The red blood cell membrane (RBC) is one of the most thoroughly researched structures
in biology. The membrane material is a composite design based on a fluid lipid bilayer
supported by a scaffolding of interconnected proteins and studded by a superficial forest
of peptidoglycans [31] (Figure 2.5). Beyond the 4 nm thick lipid bilayer, the exterior
glycocalyx extends the bilayer foundation of the membrane to the order of 10 nm as de-
duced from electron microscopy and studies of electrophoretic mobility [31]. Representing
the foundation for nodes of the spectrin network, the junctional complexes separate the
network from the lipid interface by 10 nm. Finally, with values of contour length and
network topology known to characterize the spectrin cytoskeleton, simulations of spectrin
networks with different numbers of segments per chain [5] have indicated that the chains
extend 20–30 nm from the junctional complexes into the cytoplasm. Hence, from these
estimates of compact molecular dimensions and simulations of polymer networks, a red
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cell membrane is expected to span 40–50 nm in thickness and, if squeezed, to exhibit a
structural hardness of 20–25 nm.

Figure 2.5: Schematic drawing of the membrane-cytoskeleton interactions and coupling.

Mature human RBCs lack nuclei and transcellular filaments, so the deformability of
a RBC is a result of three factors: the ratio of membrane surface area to cell volume,
the viscosity of the cytoplasm, and the deformability of the membrane. Membrane de-
formability may be characterized by three elastic parameters: the area expansion (bulk)
modulus, K; the shear modulus G; and the bending stiffness B [56]. The lipid bilayer
strongly resists changes in area and therefore dominates the behavior of the membrane
in both isotropic expansion and bending [56]. The resistance of the red cell membrane to
shear deformations is primarily attributable to the elasticity of the underlying skeleton.
Both the shear modulus of the skeleton, and the area expansion modulus of the skeleton,
K, affect the over all shear modulus of the membrane, G as measured by micropipette
aspiration [56].

Bending energy of fluid membranes with a spontaneous curvature

Typically, the density of bending energy for a membrane bearing a spontaneous curvature
can be simply expressed by means of the Helfrich bending energy of the Eq.2.3 in the
following manner

FB(r) =
1

2
KB (κ1 + κ2 − κ0)

2 +KG (κ1κ2) (2.4)
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Where κ0 is the so-called spontaneous curvature and is supposed to reflect a possi-
ble asymmetry between the membrane leaflets or a difference of area. This parameter is
crucial to explain curling: the energy in Eq.2.4 decreases when the membrane bend on
itself so that, the mean curvature would tend to the spontaneous one. The physical origin
of the spontaneous curvature could be either a different chemical environment on both
sides of the membrane, or a different chemical composition of the two monolayers. The
accepted bending rigidity of the membrane has been established around KB = 2.0×10−19

N.m [38]. Although this value of KB is fairly reliable, sparse experimental measurements
are available for KG [70, 68, 69, 35], but all seem to give values −KG/KB ranging from
−0.31 to −0.84 for bilayers of lipid mixtures for instance (e.g. DOPC:SM:Chol). Accord-
ing to the Gauss-Bonnet theorem of differential geometry, the total surface integral of the
right-hand side of Eq.2.4 depends only on the topological genus of the membrane and of
the presence of a boundary (e.g. a pore) and therefore should play a role in our case.
However, we will demonstrate later that for large enough pore this term can be neglected.

Shear elasticity of the membrane

The shear resistance of RBCs membrane is only related to the underlying spectrin net-
work. It is clear from observations of large extensions of intact RBCs and large expansions
of detergent-extracted cytoskeletons that the spectrin network is hyperelastic [56]. En-
ergetically, a hyperelastic membrane network can be represented by an elastic density
energy (energy per unit area) given by the relation [24]:

FG =
G

2

(

λ21 + λ22 − 2
)

(2.5)

, where λ1 and λ2 are the principal stretch ratios for surface deformation of a material
element.(Starting with a square element L0 × L0, λ1 = L1/L0 and λ2 = L2/L0 when the
element is stretched into a rectangle L1 × L2.) The elastic coefficient G is analogous to
the shear modulus in a solid shell and the experimental value obtained for healthy RBCs
is approximately 2.5− 5× 10−6 N/m [33].

Structure and shear elasticity of the iRBCs membrane

During the intra-erythrocytic development, the malaria parasite Plasmodium falciparum

causes structural, biochemical, and mechanical changes to their host. Major structural
changes include the formation of parasitophorous vacuoles that surround the growing par-
asite in their host RBCs, loss of cell volume, the appearance of small nanoscale electron-
dense protrusions named knobs on the membrane surface and consisting of parasite pro-
teins exported to the red cell membrane and sub-membrane skeleton [50] (see Figure
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2.6B). More recent studies have revealed that the parasite might export several hundreds
of proteins, as well as membrane compartments, to the red cell and divert enzymatic and
structural host proteins to make the erythrocyte a suitable environment for its growth.
Other membrane structures transposed by the parasite in the cytoplasm of its host cell,
referred to as Maurer’s clefts (see Figure 2.6B), and proposed to generate from the par-
asitophorous vacuole membrane, are central to the transport of parasite proteins to the
RBC membrane. They tightly interact with the membrane even upon merozoite release.
From the biochemical standpoint, a considerable amount of hemoglobin is digested by the
parasites during development and converted into insoluble polymerized forms of heme,
known as hemozoin. Hemozoin appears as brown crystals in the vacuole of parasite in
later maturation stages (see Figure 2.6A).

Several studies indicate that malaria parasites induce modifications to the plasma
membrane and its underlying spectrin cortex before egress. First, work on another
malaria-causing parasite, P. knowlesi, revealed that merozoites alter the phospholipid
asymmetry of the membrane bilayer of infected RBCs, inducing a relative enrichment of
cone-shaped lipids, such as phosphatidylethanolamine, in the outer leaflet [30]. Second,
recent studies have shown that parasite-secreted proteases modify and degrade the spec-
trin cytoskeleton before egress [4, 64, 17, 45] and that treatment with protease inhibitors
prevents egress [12]. Also, hijacking of the host protease calpain-1 by P. falciparum mero-
zoites is essential to their egress from infected RBCs [11].

Two major mechanical modifications that are induced by this remodeling are an in-
creased cytoadherence of the invaded RBC membrane to vascular endothelium and other
RBCs, important for its sequestration in microvasculature, and a loss of RBC deformabil-
ity. The associated shear modulus increases of more than 100% for the later developmental
stages [55] (see Figure 2.6C).

Taken together, these studies and the observed membrane curling during parasite
egress [1] suggest the following exit strategy: parasites induce a spontaneous curvature in
the RBC membrane, opposite in sign to its mean curvature before their egress; to minimize
the mismatch between the spontaneous curvature and the membrane curvature, a pore
opens in the membrane, followed by outward membrane curling, and finally eversion.

Pore opening and the importance of line tension

Under moderate tensions of 10−6 N/m, membranes may expand under tension thanks to
the reservoir of membrane area stored in wrinkles due to thermal fluctuations [23]. At
sufficiently high stress of 10−3 N/m however, the membrane can support only few % of
expansion before rupturing. The amphiphilic molecules rearrange themselves to minimize
exposure of their hydrocarbon regions to water. The reorganization of the molecules
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rasite growth, new permeatio

A

B C

Healthy Ring Trophozoite Schizont

Figure 2.6: A-Different developmental stage of the parasite into a RBC: healthy RBC,
early ring stage, trophozoite stage, and schizont stage before egress (from [55]). B-
Schematic drawing of the modified structure of an iRBC (from [50]). C- Mechanical
measurement of the shear modulus of the membrane using Diffraction Phase Microscopy
(DPM) of an iRBC at the different stages represented in (A) (from [54]).
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implicates an energy cost for the formation of edges. This is expressed by a line tension
γ, which is an energy per unit length along the edge. This has been measured to values of
the order of γ ∼ 10 pN in case of lipid vesicles [40]. We will use this value in the following
sections. Therefore, the energy associated with the formation of a pore of radius l in the
plasma membrane, is written simply by:

Uγ = 2πlγ (2.6)

, where the energy cost of the presence of an edge is simply proportional to the perimeter
of the pore.

2.3 Potential Energies for the membrane dynamics

An obvious condition for the curling of a thin material, is the presence of an edge. This
edge in axisymmetric geometry is represented by a hole. The nucleation of the pore at
the onset of curling is attributed to the high surface tension induced by osmotic inflation
just before egress in the case of iRBCs [29, 1] and UV-shining in the case of polymersomes
[49]. Here, as in the case of polymersomes, we suppose that, since the radius of nucleation
of the pore, r∗, is large enough, the rapid leaking of the internal content [65] produces a
fast relaxation of the surface tension of the membrane (for iRBCs for instance, the radius
r0 of the circular pore before curling is measured to be a fraction of the size of the cell,
see Figure 2.4). Consequently, once the pore is formed, we neglect energy terms coming
from the tension and we suppose that the dynamics of bursting is solely governed by the
Helfrich bending energy of the bilayer, the shear energy of the spectrin and line tension
energy of the edge of the pore.

2.3.1 Bending Energy

For axially symmetric membranes, such as that displayed in Fig.2.7, the shape can be
described by the function r(ψ), where r is the distance from the symmetry axis to the
surface, ψ(s) is the angle between the normal vector and the symmetry axis and s is the
arclength position. The principal curvatures are respectively, κ1 = dψ

ds
and κ2 =

sinψ
r

[74]
and Eq.2.4 gives

FB =
KB

2

(

dψ

ds
+

sinψ

r
− κ0

)2

+KG

(

sinψ

r

dψ

ds

)

(2.7)

During curling, the membrane is described as a spherical cap of radius R and opening
angle θ attached to a quasi-toroidal rim (axisymmetric curled sector) where the local
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Figure 2.7: Schematic of a spherical shell in a early stage of curling with axial symmetry.

radius of curvature will be equivalent to a slow-varying function a(ψ) > 0 so that, in the
rim, we write dψ

ds
= −1/a. Denoting the natural radius of curvature by a0 = −1/κ0 > 0,

we see that the local decrease of bending energy density in the rim is

(△FB)rim = −1

2

KB

a20

[

(

1 + 2
a0
R0

)2

−
(

1− a0
a

+
a0
r
sinψ

)2
]

− KG

a20

[

a20
a

sinψ

r
+

(

a0
R0

)2
]

(2.8)
, where R0 is the radius of the membrane immediately after the pore is formed. We must
distinguish the cap radius, R = R(θ), of the initial one, R0 = R(θ0), to account the
possibility of a dynamic variation due to surface flow. The decrease of bending energy
density in the cap is given by the instantaneous value of its radius R, then:

(△FB)cap =
1

2

KB

a20

[

(

1 + 2
a0
R

)2

−
(

1 + 2
a0
R0

)2
]

+
KG

a20

[

(a0
R

)2

−
(

a0
R0

)2
]

(2.9)

The total bending energy released, UB, for an arbitrary opening angle θ, corresponds
to the integration of (△FB)rim and (△FB)cap in the rim and cap surfaces, therefore

UB
2πR2

0

= {1− cos [ψ0(sc)]} (△FB)cap +

∫ π−θ0

ψ0(sc)

(△FB)rim × sinψ0 · dψ0 (2.10)

, where ψ0 is the angle between the normal vector and the axis of symmetry of an arbitrary
point, p, just after the nucleation of the pore (in contrast with the angle ψ of the same
point p during curling, see Fig.2.7). Accordingly, ψ0 (sc) is the angle ψ0 associated with



2.3. POTENTIAL ENERGIES FOR THE MEMBRANE DYNAMICS 21

the first boundary of the curling region at s = sc, so ψ0 (sc) = ψ (sc) = π − θ only
when R = R0. Since the initial polar distance of any point after poration is expressed by
r0 = R0 sinψ0, the angle ψ0 (s) constitutes the initial local configuration of the membrane.

The general value of ψ0 (sc) for R 6= R0 can be calculated easily through the conser-
vation of the global area:

2πR2
0 (1 + cos θ0)− 2πR2 (1 + cos θ) = 2πR2

0

∫ π−θ0

ψ0(sc)

sinψ0 · dψ0

and therefore,

cos [ψ0 (sc)] = 1−
(

R

R0

)2

(1 + cos θ) (2.11)

This formula is very important for the subsequent calculations because it allows us to
define the limits for the surface integrals of the different density energies in the problem.

In consideration to the slow variation of a(ψ), we proceed with the limit of very small
dispersion of the curvature center position of the curling profile. Thus, the average point
(denoted by c in the Fig.2.7) will be used as a reference for the geometrical description.
For instance, if b is the distance from the surface at s = sc to the center point c, the polar
length r in the rim can be expressed by

r = (R + b) sin θ − a sinψ (2.12)

In the rim, the relationship between the angles ψ and ψ0 can be obtained from the
local conservation of surface area: radψ = −r0R0dψ0, where the negative sign reflects the
change of sign of the Gaussian curvature. Therefore,

(

dψ

dψ0

)

rim

=
−R0

a
sinψ0

( R
R0

+ b
R0

) sin θ − a
R0

sinψ
(2.13)

, where the subindex, rim, implies that the derivative is taken in some place on the rim.
Using the condition a

R0
. b

R0
≪ 1, we have that, for large nucleation pore (so θ is never

close to zero), the Eq.2.13 can be approximated by

(

dψ

dψ0

)

rim

= −
(

R0

a

)(

R0

R

)

sinψ0

sin θ
(2.14)

Returning to the estimation of the bending energy (given by Eq.2.10), we see that for
very large spontaneous curvature and large radius of nucleation of the pore, the term in
KG can be neglected. Actually, for a0

R
≪ 1 the Eq.2.12 gives a0

r
sinψ ≈ sinψ

sin θ

(

a0
R

)

≪ 1 and
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the densities of energies (Eq.2.8 and Eq.2.9) are related by

(△FB)cap ≪ (△FB)rim ≈ −1

2

KB

a20

[

1−
(

1− a0
a

)2
]

. Therefore, using Eq.2.10, at lead order, the released bending energy writes

UB = −πKB

(

R0

a0

)2
{

cos θ0 + 1−
(

R

R0

)2

(1 + cos θ)− I (θ)

}

(2.15)

Where I(θ) represents the integral

I (θ) =

∫ π−θ0

ψ0(sc)

(

1− a0
a

)2

sinψ0 · dψ0 (2.16)

In the limit of R = R0 and infinitely compact curling (a → a0 in all the rim), the
function I(θ) is neglected and UB becomes analogous to the bending potential energy
used in the model of curling of polymersomes [49].

In order to estimate the bending energy of a more realistic mode of curling, we consider
the first order variation of the function a(ψ), then

da

dψ
=
hc
2π

(2.17)

Where hc is a constant that can be interpreted as an effective thickness of the mem-
brane (thicker than its absolute thickness h, see inset Fig.2.8). Now, combining Eq.2.17
with Eq.2.14 we get

sinψ0 · dψ0 = −
(

2πR sin θ

hcR2
0

)

a · da (2.18)

and therefore, the Eq.2.16 gives

I (θ) = 2

(

R

R0

)

sin θ

β

[

1

2

(

b

a0
− 1

)(

b

a0
− 3

)

+ ln

(

b

a0

)]

(2.19)

Where β = hcR0

πa2
0

is a geometric parameter that characterizes curling geometry. The
integration limits for a has been considered from b to a0 (which is compatible with the
condition of zero moment at the free edge). Also, after the integration of the Eq.2.18, the
relationship between b and θ is obtained:

b

a0
=

√

1 +
β

sin θ

[

R0

R
(1 + cos θ0)−

R

R0

(1 + cos θ)

]

(2.20)

. Replacing Eq.2.20 into Eq.2.19 we can verify that the function I (θ) satisfies the
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property of compact curling:
lim
β→0

I (θ) = 0
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Figure 2.8: The released rim bending energy, UB, as a function of the pore opening angle
θ for different β. UB is plotted in units of KBR

2
0/a

2
0. Solid lines are the resultant values

from the combination of Eq.2.20, Eq.2.19 and Eq.2.15 (analytical approximation of the
model); while the dashed lines are the respective numerical results obtained from the
evaluation of Eq.2.8 after solving numerically Eq.2.13 coupled to Eq.2.17.

Combining Eq.2.20, Eq.2.19 and Eq.2.15, we obtain an approximation UB = UB(θ, R, θ0, β)

which is analytical but valid only for large nucleation pores and a ≪ R0. In Figure 2.8,
we show both such analytical approximation of UB with the opening angle θ (solid lines)
together with its full value (dashed lines) obtained directly from Eq.2.8 (with KG = 0

and a0 = R0/100) after solving numerically Eq.2.13 coupled to Eq.2.17. The curves are
shown for different values of β, at an identical angle of poration θ0 = π/10 and for a fixed
cap radius R = R0. Interestingly, there is a minimum in the energy which is a direct
consequence of the three-dimensional non-compact curling: since UB is proportional to
the rim radius, l = R sin(θ), curling will slow down and then stop as l decreases, since
less and less elastic energy is released into the rim.

This result is a key point that could play an important role in curling dynamics. In-
deed, previous works [48, 1] are simply based on the assumption of compact curling of
initially flat membranes, which implies in our approach β ∼ 0.1, where no minima in
the bending energy are present. However, this value of β is quite unrealistic either for
iRBCs or for polymersomes. For instance, for iRBCs compact curling might be ham-
pered by structures remaining attached to the iRBC membrane, after egress, such as the
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sub-membrane skeleton and/or the Maurer’s clefts which are structures exported by the
parasite, previously shown to remain attached to the RBC membrane [3, 16, 46]. More-
over, viscous effects, that we will explore later in this manuscript prevent contact and a
consequent volume of liquid can be trapped in the toroidal rim increasing artificially hc

to values much higher than h. In this case, large values of β should be considered in the
problem. For instance, if hc ∼ 20h, β ∼ 4, showing that the dynamics of curling will
be influenced early on by the spherical geometry of the problem. Curling will slow down
close to the equator of the membrane. This is consistent with the work reported in [1]
(Fig. 2.3B) where the membrane curling slows down after passing the equator and where
the membrane buckles.

2.3.2 Shear energy of the spectrin

The shear elastic energy due to the spectrin is taken under the hypothesis that its resting
state coincides with the initial configuration after the formation of the pore (this idea
is sustained with the concept of large nucleation pore, where, because of the leak-out of
internal liquid, the tensions in the membrane are rapidly relaxed). Therefore, the stretch
ratios in the rim are defined as λ1 = a

R0

dψ
dψ0

and λ2 = r/r0, and, by the local surface area
conservation: λ1 = 1/λ2 = λrim. With Eq.2.5 we find directly that the amount of density
of shear energy in the rim is

(FG)rim =
G

2

(

λ2rim +
1

λ2rim
− 2

)

(2.21)

Also, from Eq.2.14, we see that

λrim ≈ −R0

R

sin θ

sinψ0

(2.22)

In the cap, the density of shear energy depends on R/R0 (in the resting state of the
spectrin R/R0 = 1 and the shear must be equal to zero). By local conservation of area in
the cap, we have

(

dψ

dψ0

)

cap

=

(

R0

R

)2
sinψ0

sinψ
(2.23)

After an integration by parts of Eq.2.23, we get

sinψ =

(

R0

R

)

√

2 (1− cosψ0)−
(

R0

R

)2

(1− cosψ0)
2

, therefore
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λcap =

√

(1 + cosψ0)

2−
(

R0

R

)2
(1− cosψ0)

(2.24)

, where λcap = R
R0

(

dψ
dψ0

)

cap
is the tangential stretch ratio in the cap. Then, the amount

of density of shear energy in the cap, in analogy to Eq.2.21, is

(FG)cap =
G

2

(

λ2cap +
1

λ2cap
− 2

)

(2.25)

The total shear energy, UG, correspond to the sum of the surface integrals of (FG)cap
and (FG)rim on the cap and rim respectively. Therefore,

UG
πR2

0G
= Acap (θ, R) + Arim (θ, R) (2.26)

where,

Acap (θ, R) =
2

G

∫ ψ0(sc)

0

(FG)cap × sinψ0 · dψ0

and

Arim (θ, R) =
2

G

∫ π−θ0

ψ0(sc)

(FG)rim × sinψ0 · dψ0

The analytical expressions for these functions (valid for λcap and λrim established in
Eq.2.24 and Eq.2.22 ) are

Arim(θ, R) =
sin2 θ

2

(

R0

R

)2

ln

{

(1 + cos θ0) (1 + cos [ψ0(sc)])

(1− cos θ0) (1− cos [ψ0(sc)])

}

+

+
1

sin2 θ

(

R

R0

)2 {

cos θ0 + cos [ψ0(sc)]−
1

3

(

cos3 [ψ0(sc)] + cos3 θ0
)

}

−2 (cos [ψ0(sc)] + cos θ0)

and

Acap(θ, R) = 2

(

R

R0

)4
[

1−
(

R0

R

)2
]

ln

{

1− 1

2

(

R0

R

)2

+
1

2

(

R0

R

)2

cos [ψ0(sc)]

}

+

−2

[

1−
(

R0

R

)2
]

ln

{

1

2
+

1

2
cos [ψ(sc)]

}

+

[

(

R0

R

)2

+

(

R

R0

)2

− 2

]

{1− cos [ψ0(sc)]}
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Using Eq.2.6, the increase of energy associated with the line tension in the edge of the
pore is

Uγ = 2πR0γ

(

r (sf )

R0

− sin θ0

)

(2.27)

, where r (sf ) is the polar distance of the free edge. Since r(sf )

R0
≈

(

R
R0

)

sin θ, we make the
approximation

Uγ = 2πγR0

[(

R

R0

)

sin θ − sin θ0

]

(2.28)

. For R = R0, the cap is in its resting state and the ratio between the shear energy
and the line tension energy is therefore

UG
Uγ

=
1

2

R0G

γ

Arim
sin θ − sin θ0

(2.29)
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Figure 2.9: Geometric prefactor Arim (θ, R = R0) of the spectrin shear energy over the
normalized radius of the pore sin θ. Each curve has a different θ0 (intersecting points with
the horizontal axis), from left to rigth: θ0 = 0.05π; 0.1π; 0.2π; 0.3π; 0.4π.

In Eq. 2.29, γ/G defines a characteristic radius where shear dominates. As shown in
Fig.2.9, the function Arim/ sin θ is small on a large interval of θ (it is much bigger than
the unity only when θ & 0.9π). In particular for θ0 ≈ π/10 (which is the typical value
for the parasite egress), Arim/ sin θ reaches rapidly a plateau with a value close to one.
Thus, shearing of the spectrin network can be considered relevant (for θ < 0.9π) only
when R0 > 10γ/G. Since in a healthy RBCs γ/G ≈ 4 µm, Fig. 2.9 shows that during
the egress, the spectrin cortex (with G ∼ 10 µN/m) should not play an important role.
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2.3.3 Curling nucleation: role of shear resistance versus line ten-

sion

Even if G is very large, we can not expect shear resistances in an early stage of curling to
be important, since the initial configuration of the membrane coincides with the resting
state of spectrin. Therefore, soon after the nucleation of the pore, the necessary condition
for curling is that the negative variation of the bending energy with respect to θ is larger
than the associated increment in the energy associated to the line tension, otherwise the
pore will close. Thus, in the critical situation:

[

∂UB
∂θ

]

θ=θ0

+

[

∂Uγ
∂θ

]

θ=θ0

= 0

, and therefore, for a = a0 and R = R0 we have

R0

a∗0
=

√

2γR0

KB tan θ0
(2.30)

, where R0/a
∗
0 is the normalized critical natural curvature for curling to occur (at least in

a first stage). The formula above shows that the critical spontaneous curvature increases
dramatically for small initial angles (it tends to infinity when θ0 → 0).

In order to calculate the conditions of curling to proceed, we calculate the total po-
tential energy of the curling denoted by

U = UB + Uγ + UG (2.31)

, where each term is given by there respective analytical approximations given in Eq.2.15,
Eq.2.28 and Eq.2.26. In Fig.2.10 the total potential energy, for R = R0 and R0/a0 = 35 >

R0/a
∗
0 = 33, is shown as a function of θ. Following the same method of the numerical

computation of the energies in Fig.2.8, both the analytical approximation (red color line)
and numerical approach (black color line) have been plotted (the numerical approach
is based in the evaluation and integration of the respective energy densities after solving
Eq.2.13 coupled to Eq.2.17). The comparison of the principal curves shows that, due to the
simplifications, the analytical approach looses the resolution of the oscillations inherent
to the cycloidal nature of axisymmetric curling. This can imply an important conflict
wit models forgetting the axisymmetric nature of the problem, because when R0/a0 is not
large enough, a local minimum appears very close to the initial angle θ0 (see zoom-inset of
Fig.2.10), which could eventually prevent a further propagation of the curling. The energy
barrier centered around θ = 0.15π can not be overcome with thermal activation because
0.02 × KBR

2
0/a

2
0 ≈ 2 × 103 kBT . In this situation, although 1/a0 > 1/a∗0, the curling is

rapidly blocked after poration, so the critical curvature for a relevant curling dynamics
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must be larger than the one proposed in Eq.2.30. For instance, when R0/a0 ≈ 43, under
the same remaining conditions of the plotting, the local minimum disappears (grey line in
the zoom-inset of Fig.2.10). In Fig.2.10, we can also see that the contribution of the shear
resistance to the total potential energy is relevant only for high opening angles (the dashed
lines are the respective U -functions for G = 0). That is in accordance with what has been
established before: during curling with high spontaneous curvature, the shear resistance
is dominant only when the radius of the cell is much larger than the characteristic length
γ/G (for healthy RBCs, γ/G ≈ 4 µm ).
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Figure 2.10: Total potential energy for curling as a function of θ for R = R0 (the energy
appears in units of KBR

2
0/a

2
0 ≈ 105 kBT ). Red lines are the trends associated with the

analytical approximation of the model (dashed line is when the spectrin cortex is not
considered). Black lines are the trends associated with the numerical solutions of the
energies (dashed line is when the spectrin cortex is not considered). The parameters used
in the curves are a0 = R0/35 (for the grey line in the zoom-inset a0 = R0/43), R0 = 3
µm, hc = 10h = 50 nm, γ = 10 pN, G = 2.5× 10−6 N/m.

Returning to the analysis of curling nucleation, one might expect that the energy
barrier shown in the zoom-inset of the Fig.2.10 can be overcome if the material flows from
the cup to the rim (feeding), meaning that, it allows to increase the surface area with
smaller density energy. However, as it can be observed in Fig.2.11, although the total
energy effectively decreases when R decreases, the local minimum moves progressively to
smaller angles, which would cause the curling to move back to close the pore instead of
progressing. In this sense, if the feeding is a plausible mechanism, the static equilibrium
of a pore can not be reached in absence of a huge shear resistance. In a standard giant
pore picture, the surface area of the cap is still much larger than the projected area of
the pore, so a sealing would not modify appreciably the cap radius neither the bending
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energy; therefore, if the curling is early blocked, the system can always reach (with feeding)
the lowest level of energy (without pores). This analysis seems in contradiction with a
more refined theoretical treatment of opening-up vesicles with single and two holes [77],
which indicates that for low line tension, and without shear resistance, stable holes in
spherical vesicles can be obtained. However the numerical method used in [77] is based
in a boundary condition in the cup that prevent feeding.
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Figure 2.11: Numerical prediction of the total potential energy for curling as a function of
θ for a0 = R0/35 and θ0 = 0.1π, but and different values of R/R0. Dashed lines represents
the numerical predictions without considering spectrin cortex. The parameters used in
the curves are, R0 = 3 µm, hc = h = 5 nm, γ = 10 pN, G = 2.5 × 10−6 N/m. The inset
shape profiles are the configurations associated with each local minimum of energy.

From these results one can conclude that the only way to get curling is by means
of an increment of the spontaneous curvature. Using the numerical approach for the
computation of the energies, we can localize the real critical normalized curvature R/a∗0
for the curling nucleation. In Fig.2.12, the results, for the specific situation of θ0 = π/10,
are presented as a function of the dimensionless parameter γR0/KB; it shows that for
typical values of RBCs (γR0/KB ≈ 200) the critical curvature is, between 20 and 30
percent, larger than the predicted by Eq.2.30.

2.4 Axisymmetric curling dynamics

In the geometry of curling described in the previous sections, we have been considering
implicitly two independent dynamical modes of deformation: i) pure curling, where the
angle θ changes for a constant radius R of the cup and, ii) a feeding mechanism, where
R changes with a constant θ. In this last part, we will calculate the dynamics of curling
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Figure 2.12: Phase diagram for curling nucleation considering θ0 = 0.1π. Solid lines gives
the critical parameter for real curling, while dashed line represents the critical parameters
for the fast closing of the pore (Eq.2.30).

based on a balance of energies present in the system together with the two possible sources
of viscous dissipation, based respectively on the large scale flow around the curling rim
and the membrane surface dissipation due to matter redistribution. Because of feeding,
the time evolution of θ then couples to R. In the following, we put ourselves in the regime
where curling can occur, i.e. where 1/a0 > 1/a∗0.

2.4.1 Surface and bulk viscous dissipations

The viscous power dissipated in the system contains two contributions: a bulk term, Φb,
due to the movement of the membrane with respect to the background solvent, and a
surface term, Φs, due to axisymmetric lipid flow in the plane of the membrane.

We consider that the surface term is mainly due to axisymmetric lipid flow (or reorgani-
zation) neglecting interlayer dissipation. Generally, viscous dissipation in fluid dynamics,
is given by the volume integration of the square of the components of the gradient of the
velocity field, V (see Eq.3.18 in the section 3.2.2 for a general expression of the density
of viscous power dissipated in a liquid flow). In the case of lipid membranes, since the
thickness is constant, and that we consider no interlayer dissipation, only the surface
gradients of the velocity field will appear. In virtue of the axisymmetric geometry and
the small inertia of the system, the velocity field can be represented only by the local
meridian component, Vs = d(s − s0)/dt, of the flow. Then, the gradient of the speed is
equivalent to the time derivative of the tangential stretching ratio λ = ds/ds0. Thus,
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denoting the membrane surface viscosity by ηs, the power dissipated per unit surface due
to the redistribution of lipids is expressed by φ = 2ηsλ̇

2, where the overdot denotes a time
derivative.

Considering the Eq.2.22 and Eq.2.24 we write in the rim

λ̇ = λ̇rim =
R0

R

(

Ṙ

R

sin θ

sinψ0

− θ̇
cos θ

sinψ0

)

, and in the cap

λ̇ = λ̇cap =

(

R0

R

)2
Ṙ

R

(1− cosψ0)
√
1 + cosψ0

[

2−
(

R0

R

)2
(1− cosψ0)

]3/2

, and the total power dissipated during the redistribution of lipid becomes

Φs = 4πηsR
2
0

{

∫ π−θ0

ψ0(sc)

λ̇2rim sinψ0 · dψ0 +

∫ ψ0(sc)

0

λ̇2cap sinψ0 · dψ0

}

(2.32)

Moreover, the bulk term is approximated here by the Stokes friction due to motion
of the rim with respect to the fixed cup. The rim is modeled by a cylinder of length
W = 2πR sin θ and radius b moving at a speed v = Rθ̇. The drag force on such a cylinder
moving perpendicularly to its axis is [43]

fD =
4π2η0Wv

ln
(

3.7
Re

) (2.33)

, where η0 is the viscosity of the medium and Re = bvρ0/η0 is the Reynolds number
with ρ0, the density of the medium (the Re number is more appropriately introduced
in the section 3.2.1). Because the curling occurs in an interval of around 250 ms, the
characteristic value of v is 3 µm/250 ms ≈ 10−5 m/s and then, with b ∼ a0 ≈ R0/45 we
have Re ∼ 10−6 in water. Therefore, since 2.33 varies slowly with Re, the bulk power
dissipated, Φb |R= vfD, is taken

Φb |R≈ 0.3π2η0R
3θ̇2 sin θ (2.34)

. Here, the subscript R means that the function is taken for Ṙ = 0 describing the pure
curling mode. From the Eq.2.32 we have also

Φs |R= 2πR2
0ηsC(θ, R)θ̇2

, where
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C(θ, R) =
(

R0

R

)2











cos2 θ · ln







2(1 + cos θ0)−
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R
R0

)2

(1 + cos θ)(1 + cos θ0)
(

R
R0

)2

(1 + cos θ)(1− cos θ0)

















In the case of the feeding dynamics, modifications on the cap radius induces a leak-
out of the internal liquid. This leak-out will be considered the dominant contribution to
Φb |θ, where the subscript θ means that the function is taken for θ̇ = 0. This term can be
estimated as follows. First, the volume of liquid in the cap is 2

3
πR3

(

1− 1
2
cos θ

)

(1+cos θ)2,
then, the conservation of matter allows us to link the time derivative of the cap volume
with the characteristic speed of leak-out 〈υ〉:

2π

(

1− 1

2
cos θ

)

(1 + cos θ)2R2Ṙ = πR2 sin2 θ 〈υ〉 (2.35)

, where the right side of the equations is the flow through the hole of radius l = R sin θ.

Second, the power dissipated can be established taking into account that the dominant
gradient of the velocity field inside the cap is ∼ 〈υ〉 /l. Therefore, using Eq.3.18 we
construct

Φb |θ≈ 2η

(〈υ〉
l

)2
2

3
πR3

(

1− 1

2
cos θ

)

(1 + cos θ)2

and replacing the value of 〈υ〉, obtained from the volume conservation (Eq.2.35), we
get

Φb |θ≈
2π

3

(2− cos θ)3 (1 + cos θ)6

sin6 θ
ηRṘ2 (2.36)

Noteworthy, due to the geometric complexity of the problem, this dissipative terms is
approximate, and an accurate geometric coefficient can be absorbed into the definition of
the viscosity η. We also note that the viscosity of the fluid inside the cap, η, is different
than the solvent viscosity, η0. We assume that the solvent and the merozoites that are
pushed forward behave as a colloidal suspension with a viscosity that may be as much as
10-100 times η0, depending on the volume fraction of merozoites [78].

Directly from the Eq.2.32 we have

Φs |θ= 2πηs [Drim(θ, R) +Dcap(θ, R)] Ṙ
2

Where
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Figure 2.13: Characteristic lengths during the dynamics of the membrane: Cap depth,H,
and pore radius l.

Drim(θ, R) =

(

R0

R

)4











sin2 θ · ln







2(1 + cos θ0)−
(

R
R0

)2

(1 + cos θ)(1 + cos θ0)
(

R
R0

)2

(1 + cos θ)(1− cos θ0)

















and

Dcap(θ, R) = 2







ln

[

1

2
− cos θ

2

]

+
2 + 2

[

(

R0

R

)2 − 2
]

cos θ

(1− cos θ)2
+

1

2

(

R0

R
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− 3
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2.4.2 Dynamical equations

The dynamical equations of motion of the rim can then be simply obtained by writing
the balance of energy in the two modes of deformation.

For pure curling, one obtains

θ̇
∂U

∂θ
+ Φb |R +Φs |R= 0 (2.37)

Then, directly from Eq.2.37, we obtain the first dynamical equation in the problem,
relating the angular speed variation to R:

θ̇ = f (θ, R) =
−∂U

∂θ

2πR2
0η0

[

1
2
R

(

R
R0

)2

sin θ + ηs
η0
C
] (2.38)

Similarly, in the case of the feeding dynamics, we have
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Ṙ
∂U

∂R
+ Φb |θ +Φs |θ= 0 (2.39)

Thanks to Eq.2.39, the time derivative of the cap radius can be expressed as a function
of the angle by

Ṙ = g (θ, R) =
−∂U
∂R

2πη
{

(2−cos θ)3(1+cos θ)6

3 sin6 θ
R + ηs

η
(Drim +Dcap)

} (2.40)

This coupled dynamical system of equations ( Eq.2.38 and Eq.2.40) represent a second
order non-linear differential equation that can be solved with standard techniques [72].

2.4.3 Results

The figure 2.14 illustrates the solutions θ(t) and R(t) we obtain between θ = θ0 = 0.1π

and θ = 0.7π. It reveals in particular that feeding allows to a dynamical change in
the cap radius which is quite sensitive to the surface viscosity. Indeed, the cap radius
decreases with time until it reaches a minimum for relatively high θ; after that, the
angle θ continues to increase and R grows, causing a relative flattening of the cap. The
time scale of the process depends strongly on ηs. In fact, if one neglects the surface
viscosity, the characteristic time associated with the dynamics is less than a millisecond for
a spontaneus curvature, 1/a0 = 45/R0, relatively close to the critical curvature of curling
(see first trend from the left in Fig.2.14). This time is too small to explain the curling
dynamics observed in Abkarian et al. [1] where the full curling process takes aproximately
two hundred milliseconds. Moreover, comparison of our model with membrane dynamics
during parasite egress from RBCs suggests that membrane viscous stresses may be the
dominant dissipative mode. Indeed, fitting our experimental data for the cap depth,
H = R(1+cos θ) (see Fig.2.13), with our model, we obtain 1/a0 = 45/R0 and ηs/η0 = 650

µm (see Fig.2.15). The value of the spontaneus curvature is consistent with measurements
[1]. We have taken hc = 50 nm = 10h as the standard thickness compressibility of a red cell
membrane in situ [32]. Where h is the only the lipid membrane thickness. In addition, in
obtaining our fit parameters, we have taken η ≈ 10η0. This choice reflects the contribution
of the merozoites to the bulk viscous dissipation during leak-out. Nonetheless, the values
of a0/R and ηs/η0 are largely insensitive to η: a 50% change in η results in changes in
a0/R and ηs/η0 of < 1 %. Finally, to avoid the proliferation of too many fit parameters,
we have fixed those, such as KB, hc, and γ, that are reasonably well known, and have
only kept as trial parameters those related to the RBC membrane that are susceptible to
modification by the parasites, i.e., a0/R and ηs/η0.

From Fig.2.15, it is apparent that agreement between our theoretical model and the
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Figure 2.14: Curling dynamics during parasite egress. The pore openong angle, θ, and
normalized cap radius, R/R0, versus t. They are shown for different values of the ratio of
surface to bulk viscosities, ηs/η0. From lef to rigth: ηs/η0 = 0 µm; 50 µm and 650 µm.
The fixed parameters are: R0/a0 = 45, R0 = 3 µm, hc = 10h, η = 10η0, γ = 12.6 pN and
KB = 2.0× 10−19 Nm.

experimental values of the cap depth and cap radius breaks down at long times, at which
they rapidly passes through zero and changes sign. In fact, Abkarian and co-workers [1]
have shown that the final step of parasite egress from RBCs involves an eversion of the
membrane cap, leading to dispersal of the last parasites. Similar eversion behavior was
also observed in the last stages of polymersome bursting [49].

2.5 Discussion

An unresolved problem in the study of malaria infection is the mechanism by which para-
sites exit red blood cells, thereby transmitting the disease in the bloodstream. Motivated
by recent work on the transmission mechanism, and inspired by modeling of bursting
polymersomes, we have developed a theoretical description of the membrane energetics
and dynamics that enable parasite egress from infected RBCs. Starting from the exper-
imental observation that parasites induce a spontaneous curvature in the RBC plasma
membrane before egress, driving pore formation and outward curling of the membrane,
our model makes qualitative and quantitative predictions for the membrane dynamics
leading to egress.

The main theoretical finding of our work is that the RBC membrane dynamics during
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parasite can be considered as the superposition of two types of membrane movement:
1), Pure curling, where the membrane bend on itsef, varing θ, but keeping the radius of
the cup constant; and 2), Feeding, where the radius of the cap changes with θ constant.
These two coupled modes of deformation stem from the axisymmetric character of the
RBC membrane, implying a non monotonic dependence of the rim elastic energy on the
pore opening angle. In order to explain the membrane dynamics involved in parasite
egress from RBCs, observed experimentally, the surface dissipation must dominates bulk
dissipation. By fitting our model to experimental data, we found that R0/a0 ≈ 45, in
agreement with earlier findings [1]. In addition, we found that the length scale below
which surface dissipation dominates bulk dissipation, ηs/η0, is on the order of 1 mm.
Interestingly, this value is much larger than one would expect by naively assuming a
value of ηs = 10−9 Pa·s·m (yielding ηs/η0 = 1 µm for η0 = 10−3 Pa·s), typical for a
lipid membrane [20]. The membrane viscosity of malaria-infected RBCs is not known;
however, our fit value is comparable to viscoelastic relaxation measurements on healthy
RBCs, yielding ηs = 10−6 Pa·s·m [34]. The dynamical approach developed here is based on
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Figure 2.15: Model fitting to experimental results. The normalized cap depth , H/2R0,
versus t during parasite egress from RBCs. Data from Abkarian et al.[1] (�) is fitted
with the model developed in this work (red lines). Deviation between the data and the
model is expected for small h. Inset: Normalized cap radius,R/R0, versus t for the same
experiment. The fit parameters are: ηs/η0 = 650 µm and R0/a0 = 45. The other fixed
parameters are: R0 = 3 µm, hc = 10h, η = 10η0, γ = 12.6 pN and KB = 2.0× 10−19 Nm.
The grey dashed lines, are for hc = 20h (upper line) and hc = h.

the wide separation of two length scales: the RBC radius, R0, and the inverse spontaneous
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curvature, 1/a0. The inequality a0/R0 ≪ 1 allows to an analytical approximation for the
potential energies which are used to express the gradients ∂U

∂θ
and ∂U

∂R
in the dynamical

equations ( Eq.2.38 and Eq.2.40). However, with the approximations, the cycloidal nature
of the curling movement is neglected, and it cannot predict the critical curvature of curling,
1/a∗0, accurately. Also, for large hc, the analytical approximation shows an important
deviation with respect to the different numerical computations of the energies in the
problem (without approximations), that can reach even a 30% of difference. An alternative
approach for the performed numerical solution of the second order nonlinear differential
equation (represented by Eq.2.38 and Eq.2.40), would be to attempt to use, for the energy
gradient computations, numerical trends of the potential energies (instead of the analytical
approximation), but the solving numerical method of the resultant system, would require
a significant change that could not be completed at the last stage of the thesis.

It is important to note that the parameter hc = 10h used for the fitting of the model
is, in some sense, arbitrary and represented a minimum value. This choice does not
consider any contribution due other steric elements that are present on an iRBC membrane
or/and any hydrodynamic forces that can be large. Actually, for the later, if we take in
consideration the lubrication flow between successive layers in the rim, using Eq.3.22,
the minimum time for the squeezing of the layers is estimated to be 107 × η0h3

KB
≈ 100

ms. This suggests that the liquid trapped between the layers in the rim, can not escape
during the time of curling, therefore hc must be larger than the thickness compressibility.
In Fig.2.15, the grey dashed lines are the theoretical predictions when the parameter hc is
modified. For hc = h the trend does not vary a lot respect to the principal one (of the fit),
while for hc = 20h (upper dashed line), the characteristic time of curve is significantly
increased (the fit with hc = 20h gives a reduction of the value of ηs in approximately 30%
respect to the fit obtained with hc = 10h). Thus, a reliable measurement of η through the
fitting of the proposed model, can be done only if hc is properly estimated in the context
of the fluid-dynamics. Some important elements of fluid dynamics coupled to curling
are clarified in the next chapters, where the curling dynamics in macroscopic ribbons is
studied experimentally.

2.6 Conclusions

As a result of the three-dimensional axisymmetric nature of the problem, the membrane
dynamics can be separated in two independent modes of elastic-energy release: 1), at short
times after pore opening, the free edge of the membrane curls into a toroidal rim attached
to a membrane cap of roughly fixed radius; and 2), at longer times, the rim is fixed, and
lipids in the cap flow into the rim. The model is compared with the experimental data of
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Abkarian and co-workers [1] and an estimate of the induced spontaneous curvature and
the membrane viscosity, which control the timescale of parasite release, are obtained.

Our model integrate different aspect of membrane dynamics and propose a fitting
procedure to extract κ0 from dynamical parameters. Importantly, the measurement of
spontaneous curvature which is biologically relevant in the case of Malaria is a real ex-
perimental challenge and there are actually no direct and simple experimental techniques
allowing the extraction of κ0. Therefore, the development of realistic models capable to
capture the dynamics of pore opening during curling are highly valuable to understand
the biological origin of curling.



Chapter 3

Mechanics of naturally curved ribbons

In this chapter, we introduce some basic mechanical and elaso-viscous ingredients nec-
essary to understand the following two chapters about the curling dynamics of ribbons
at varying Reynolds number in media as different as air, water and viscous Silicon oils.
Moreover, we discuss the specific mechanical behaviors of ribbons bearing a unidirectional
spontaneous (natural) curvature along with their geometric and mechanical characteristics
relevant for the experiments we perform later.

3.1 Introduction to bending elasticity of ribbons

3.1.1 Bending of thin solid materials

In a solid system, small deformations around an arbitrary point r of the body, are quan-
tified by the local strains (ε1, ε2, ε3) along the local principal axes (ê1, ê2, ê3) which are,
before and after deformation, mutually perpendicular. When the material is thin enough,
the local unitary vector n̂, normal to the surface, is always parallel to one of the princi-
pal axes (see Fig.1.4A). By convention we will write ê3 = n̂. A general strain εi can be
interpreted as the normalized linear stretching of an infinitesimal spring placed parallel
to the direction êi; then εi = (dr′i − dri)/dri, where dri is the infinitesimal distance along
the êi axis in the resting state (or natural length of the spring) and dr′i is the infinitesimal
distance after deformation (or stretched length of the spring). Actually, the essence of
the solid response of a system can be always captured by an arrangement of springs as
shown in Fig.1.4B.

The degrees of freedom of the intrinsic configuration of matter leads to identify two
independent linear modes of local deformation: a pure homogeneous dilation (or pure

39
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compression) where ε1 = ε2 = ε3 and a pure inhomogeneous dilation (or pure shear)
where ε1 + ε2 + ε3 = 0 (without varying the infinitesimal amount of volume). The pure
compression and pure shear part of an arbitrary deformation are characterized respectively
by the relative variation of volume ε1 + ε2 + ε3 and ε21 + ε22 + ε23 − 1

3
(ε1 + ε2 + ε3)

2, which
reflects the contribution of the inhomogeneous dilation mode, in the increment of surface
area in the infinitesimal enclosed volume (see appendix A.1). A linear expansion of these
two quantities allow us to write the elastic energy density (energy per unit volume) [44]:

F(r) =
1

2
K (ε1 + ε2 + ε3)

2 +G

[

ε21 + ε22 + ε23 −
1

3
(ε1 + ε2 + ε3)

2

]

(3.1)

, where G and K are the shear and compression modulus of the material. When the
system is very thin, it avoids any tensile stresses normal to the surface, then the strain ε3
in the normal direction, is simply determined by minimization of F . Thus, introducing
the Young modulus E = 9KG

3K+G
and the Poisson’s ratio ν = 1

2
(3K−2G)
(3K+G)

, we obtain ∂F
∂ε3

=

0 ⇔ ε3 = − ν
1−ν (ε1 + ε2) and the elastic energy density rewrites

F(r) =
E

2(1 + ν2)

{

(ε1 + ε2)
2 − 2(1− ν)ε1ε2

}

(3.2)

The general relation between the elastic energy and an arbitrary curvature configura-
tion in the body, can be obtained from Eq.3.2 using a variational approach with respect to
the strains of the centre surface of the material; the result is condensed in a set of partial
differential equations known as Föppl-von Kármán equations [47]. These equations are
highly nonlinear and complex. The preponderant complications, lie in the fact that the
curvature variation usually involves a nontrivial modification in the metric of the surfaces.
A special case appears when the bending deformation is characterized by a zero Gaussian
curvature before and after deformation (planar bending). In this case, the metric does
not change [74], one of the strains is always zero and the others become proportional
to the principal curvature κ of the bending. Then, the elastic energy per unit surface
is basically 1

2
Bκ2, where B ∼ Eh3 is the bending stiffness of the material and h is the

thickness qualifying straight ribbons as elastic beams.

3.1.2 Curvature-Strain coupling for elastic Beams

The resistance to bending of beams, comes from the simple fact that two parallel lines
in the material cannot be curved simultaneously without altering their initial lengths.
This idea has been illustrated in the Fig.3.1, where a specific infinitesimal portion of the
longitudinal profile of a rectangular beam (of thickness h), is considered before and after
an arbitrary flexion. The centerline of the profile (red dashed line in Fig.3.1) is used
as a reference to write the position of any point in the material. Thus, each point in
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Figure 3.1: Resting state (left) and bending state associated with an infinitesimal portion
of the profile of a rectangular beam of thickness h.

the bending plane, is represented by a couple of numbers (rt, rn), where rt is the arc
length position of the centerline (locally, rt grows along the tangent t̂ direction) and rn

is the distance, from the centerline, to any point in the local normal direction n̂. Since
the tangential and normal directions are always perpendicular, the principal strain axes
in any point of the body, coincides with the Frenet frame (t̂, n̂, b̂), where b̂ = t̂ × n̂ is
the unitary binormal vector. The strain εt along the tangential direction depends on the
position rn and can be expressed as a simple proportion between the radius of curvature
R and the angular variation dθ of the flexion:

εt =
dr′t − drt
drt

=
(R− rn)dθ −Rdθ

Rdθ
= κrn (3.3)

, where κ = 1/R is the local curvature and the centerline is supposed “free of strain".
For slender beams, the width W is comparable with the thickness. Then, as well as

in the normal direction, the tensile stresses along the binormal direction are negligible.
Therefore, εb is defined by simple minimization of Eq.3.2 (with ε1 → εt and ε2 → εb):

∂FS

∂εb
= 0 ⇔ εb = −νεt (3.4)

The total bending energy UB of a rectangular beam of width W , thickness h and length
L is given by the integral of the density function FS(r) on the whole volume. Therefore,

UB
W

=
1

2
B

∫ L

0

κ2drt (3.5)

, where B = Eh3

12
is the bending stiffness. One could think that this relation is inde-

pendent on the width W ; however, when W is very large, the tensions along the binormal
directions cannot be ignored. For instance, whether W/h≫ 1 and, with some indulgence,
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Eq.3.3 and Eq.3.4 are still correct, we should expect a parabolic like deformation of the
cross-section characterized by a curvature κ⊥ = −νκ. Nevertheless, a curved cross-section
would induce an increment of the projected thickness of the profile in the order of ∼ κ⊥W

2

which is easily larger than the natural thickness. Then, the effective bending stiffness,
should increase dramatically and, a hypothetical “free of strain" line, located in the centre
surface of the beam, would not be possible. In this scenario εb = 0 is energetically much
more favorable than the previous εb = −νεt. Thus, a pure bending deformation (where
the strain elements are proportional to κrn) in a wide enough beam, has sense only when
the Gaussian curvature is zero.

The restriction εb = 0 in beams, has the effect to increase the amount of energy density
in a factor 1

1−ν2 with respect to the result of Eq.3.5. Then, when W/h≫ 1 the total elastic
energy can be written in the same way than before (Eq.3.5) but with B = Eh3

12(1−ν2) which
is the typical bending stiffness of a solid sheet.

Until now, the planar bending deformations have been treated for materials whose
resting state coincides with a flat configuration (where κ = 0). However, in the curling
dynamics of ribbons studied in the following chapters, the resting state corresponds to a
cylindrical shape with a specific curvature. For the general situation of planar bending
of naturally curved materials (with natural curvature κ0), the strain of the Eq.3.3 must
be written εt = (κ − κ0)rn, and therefore, all the elastic equations can be used with the
simple transformation κ→ (κ− κ0).

3.1.3 Dynamics of flexural beams

Regardless of the aspect ratio of the cross-section of the rectangular beam, the local tan-
gential stress due to bending σ = ∂FS

∂εt
(along the tangential direction) is always an odd

function of rn; hence, the pure bending force in an arbitrary cross-section
∫W/2

−W/2
∫ h/2

−h/2 σdrndrb

is patently zero. However, the resultant torque M(rt) is not. Actually,

M(rt)

W
= (n̂× t̂)

∫ h/2

−h/2
σrndrn = (n̂× t̂)Bκ (3.6)

The mechanical equilibrium of the beam portion between two cross-sections separated
by an infinitesimal distance ds (as is shown in the sketch in Fig.3.2) can be obtained by
using the hypothesis that the state of stress of any cross-section can be characterized by a
resultant elastic force F(rt) and the resultant elastic torque M(rt). We suppose no tortion
in the system, so the configuration of the beam is completly defined in the plane where
the centerline resides.

If the vectorial position of the considered portion is denoted by r, the equilibrium of
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Figure 3.2: Sketch of the relevant forces and torques in the mechanical equilibrium of any
infinitesimal portion of a beam.

forces gives
∂F

∂s
+ K = ̺r̈ (3.7)

, where K is an arbitrary external force per unit length, ̺r̈ is the inertial force per unit
length of the infinitesimal portion (the overdots represent time derivatives and ̺ is the
linear mass density) and the coordinate rn is denoted explicity by the arc length symbol
s. Moreover, the torque equilibrium gives

∂M

∂s
+ t̂× F = (n̂× t̂)

̺h2

12
ω̇ (3.8)

, where ω is the local angular speed, so the rigth side of the equation is exactly the time
derivative of the angular momemtum (per unit length) of the infinitesimal portion.

By definition, the curvature represents a spatial derivative of the normal or tangential
unitary vectors:

κ = t̂ · dn̂
ds

= −n̂ · dt̂
ds

. Similarly, the angular speed is linked with the time derivative of the same unitary
vectors.

ω = t̂ · ˙̂n = −n̂ · ˙̂t

. In consequence, the angular speed is related with the curvature in the way

dω

ds
= κ̇ (3.9)

, and taking advantage of t̂ = dr
ds

, the coupling between the acceleration and the curvature
can be obtained through

dr̈

ds
= ¨̂t = −(t̂ω2 + n̂ω̇) (3.10)

Thanks to these kinematic relations (Eq.3.9 and Eq.3.10), the equilibrium equations
(Eq.3.7 and Eq.3.8) can be expressed only in terms of partial derivatives or integrals of the
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curvature. In the limit of small deflections, the mathematical description is much simpler.
Actually, in absence of external forces, the combination of the different equations gives
(see appendix A.2)

BW
∂4κ

∂s4
− ̺κ̈ =

̺h

12

∂2κ̈

∂s2
(3.11)

, which is the famous Kirchhoff equation for small deflexion. It has solutions in the form
κ(s, t) = f(ζ), where the self-similarity variable is ζ ∼ s/

√
t [6, 2]. This reflects the

despersive nature of Eq.3.11, where a progresive wave with constant velocity, s ∼ t, is
incompatible, but instead a self similar solution s ∼

√
t appears.

3.2 Introduction to Elasto-Viscous Interactions

The dynamic of curling (or elastic bending) of a specific material are, in general, accom-
panied by dissipative processes due to the inherent viscocity in the external medium or
in the material itself. These processes give rise to dissipative forces that can even control
the bending modes.

3.2.1 Planar Bending coupled to Drag

In curling dynamics the material is transported in a well defined curled body of charac-
teristic frontal size D, the movement produces a large scale fluid stream, which exerts
a resultant force against the curling propagation. The force Fd on the body along the
stream axis is called drag and is defined in term of the drag coefficient Cd:

Cd =
Fd

1
2
ρfV 2A

(3.12)

, where A is the characteristic area of the body (frontal area for thick bodies such as
cylinders, or planform area for flat bodies), V is the relative free-stream velocity (or
velocity of the body with respect to the fluid, at rest, at infinity) and ρf is the density of
the fluid. In consideration to a hypothetical external work FdX necessary to maintain,
along a distance X, a constant travelling speed V of the body (or equivalently constant
stream of the fluid), the power dissipated by the drag is simply computed by Fd dXdt = FdV .
The ratio between kinetic energy in the fluid and the dissipated energy associated with
the drag is the Reynolds number Re and is based upon the velocity V , the characteristic
length D of the body and the dynamic viscocity η0.

Re =
ρfV D

η0
(3.13)
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There is at the present no satisfactory theory for the forces on an arbitrary geometry
immersed in a stream flowing at an arbitrary Re [82]. However, there exist two aspects
that seem to be general. First, for the same body, the experimental values of Cd are
approximately constant in an extensive range of high Re (Rayleigh drag), for instance,
when 102 < Re < 105, the two-dimensional flow past a cylinder shows Cd ≈ 1 (for higher
Re the surfaces roughness of the body induces turbulence and a strong reduction in the
observable Cd). Second, for low Reynolds number Re . 10−1, the inertia of the fluid is
neglected, the hydrodynamic equations are simplified and Cd ∽ 1/Re can be obtained
analytically (Stokes’s law) with a good experimental agreement [80].

 

 

Figure 3.3: Scheme of the bending response of an embedded rod, under the drag associated
with a passing flow with velocity V.

The bending response of the material under such drag forces, can be studied as
sketched in Fig.3.3 where an embedded sheet is deformed by a stream of fluid. The ef-
fective length of deflection D is estimated after comparing the elastic torque of the beam
∼ BW

D
(see Eq.3.6) with the drag torque ∼ FdD = CdρfV

2WD2. Then, for high Reynolds
number (in the range where Cd is approximately constant), we have D ∼ Ld, where

Ld =
(

B
ρfV 2

)1/3

is a mechanical parameter (with unit of length) that gives the magnitude

of the elastic deformation due to drag. Actually D/Ld ∼ C
1/3
y , where Cy = ρfV

2D3/B is
the Cauchy number, the dimensionless ratio of aerodynamic Rayleigh force ρfV 2WD to
bending force BW/D2 [8].

For low Re, the situation is different. Since Cd ∼ 1/Re, the drag torque is Fd ∼
V Dη0W , then D ∼ Lv =

√

B
V η0

which is the elasto-viscous length.
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3.2.2 Planar Bending coupled to lubrication dynamics

Because curling represents a continuous bending of the material on itself, it induces the
presence of a fluid film whose draining will dissipate energy (squeezing) that, depending
on the Re, can be dominant (chapter 5). In this situation, the dissipated energy (and
forces associated) arise on much smaller scale than the typical length of drag studied
before, and they can be approached in the context of lubrication dynamics.

 

 

 

 

Figure 3.4: Diagram for the generic description of thin film flows.

In order to see how the theoretical treatment of lubrication in soft interfaces arises,
let’s consider the flow of a liquid film confined between a solid sheet and a solid substrate
as is shown in Fig.3.4. The local thickness of the fluid film in any position (r1, r2) i-with
respect to the surface of the substrate (in Fig.3.4, r2 changes in the direction normal to the
paper) is characterized by the function Z(r1, r2). When Z(r1, r2) is small compared with
any other scale, the flow is basically parallel to the local tangential plane of the substrate,
then the velocity field V = V(r1, r2, r3, t) of the fluid can be written V = V1ê1 + V2ê2,
where V1 = V1(r1, r2, r3, t) and V2 = V2(r1, r2, r3, t) are the scalar components of the field
along the two perpendicular directions (ê1, ê2). The flow of matter per unit width (volume
transported per unit time divided by the cross length of the flow) in the directions ê1 and
ê2 are respectively Q1(r1, r2) = 〈V1〉Z(r1, r2) and Q2(r1, r2) = 〈V2〉Z(r1, r2), where 〈V1〉
and 〈V2〉 are the averages values of the components of the field in the local thickness
Z(r1, r2) of the fluid.

From the mass balance

∂

∂t
Z(r1, r2) +

∂

∂r1
Q1(r1, r2) +

∂

∂r2
Q2(r1, r2) = 0 (3.14)

The velocity field of an incompressible Newtonian fluid is related with the field of
pressure P by means of the Stokes equations,

▽ P = η0 ▽2 V (3.15)



3.2. INTRODUCTION TO ELASTO-VISCOUS INTERACTIONS 47

, where η0 is the dynamic viscosity. Since Z is small and the fluid is confined with solid
boundaries, the r3-derivatives dominate in the description of the flow. Then ▽2V =

ê1
∂2V1
∂r2

3

+ ê2
∂2V2
∂r2

3

and Eq.3.15 gives the three scalar equations: ∂P
∂r1

= η0
∂2V1
∂r2

3

, ∂P
∂r2

= η0
∂2V2
∂r2

3

and ∂P
∂r3

= 0. From the last term, one can deduce that P = P (r1, r2) and from the other
terms:

V1 =
1

2η0

(

∂P

∂r1

)

(

r23 − Zr3
)

+
ur3
Z

⇒ 〈V1〉 = − Z2

12η0

(

∂P

∂r1

)

+
1

2
u (3.16)

V2 =
1

2η0

(

∂P

∂r2

)

(

r23 − Zr3
)

+
vr3
Z

⇒ 〈V2〉 = − Z2

12η0

(

∂P

∂r2

)

+
1

2
v (3.17)

, where u = V1(r3 = Z) and v = V2(r3 = Z) are the relative horizontal components
of the instantaneous velocity of the solid sheet respectively to the substrate. Note that
the averages of the velocities have a term proportional to the variation of the pressure
in the direction of the flow, this term is equivalent to a Darcy’s flow with permeability
Z2/12. The other term, is the drag flow caused by the horizontal displacement of the
sheet respectively to the substrate. Moreover, the power dissipated φ per unit volume
is proportional to the square of the spatial derivatives of the components of the velocity
field, more precisely [43]:

φ = 2η0
∑

i,k

(

∂Vi
∂rk

)2

(3.18)

Since during lubrication the r3-derivatives dominate, these terms also dominate in the
dissipation, therefore

φ = 2η0

[

(

∂V1
∂r3

)2

+

(

∂V2
∂r3

)2
]

(3.19)

Combining Eq.3.16 and Eq.3.17 with Eq.3.14, the lubrication equation is obtained

1

12η0

[

∂

∂r1

(

Z3 ∂P

∂r1

)

+
∂

∂r2

(

Z3 ∂P

∂r2

)]

=
∂Z

∂t
+

1

2

[

∂

∂r1
(Zu) +

∂

∂r2
(Zv)

]

(3.20)

For planar bending deformations and Z = Z(r1), the local elastic pressure on the fluid
film can be written B ∂4Z

∂r4
1

(see appendix A.3). By virtue of the action-reaction principle,

we get P = P (r1) = B ∂4Z
∂r4

1

and the flow is only in the direction ê1. Now, without relative
horizontal displacement between the sheet and the substrate, the lubrication equation
(Eq.3.20) gives
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B

12η0

∂

∂r1

(

Z3∂
5Z

∂r51

)

=
∂Z

∂t
(3.21)

If the characteristic horizontal length at which Z varies is defined by L, the dynamic
of a given point will be roughly described by

∂Z

∂t
≈

B

12η0

Z4

L6

Because Z must be much smaller than any other scale in the geometry of the fluid film,
we write L/Z > 10, so that the characteristic time τ required to decrease Z in a quantity
equivalent to the thickness h of the elastic sheet is expressed by h

τ
. 10−5 × B

η0L2 . Also,
with L/h > 10 the linear elasticity approach is guaranteed and the characteristic time
gives

τ > 107 × η0h
3

B
(3.22)

Typically, for strong materials like stainless steel (B/h3 ∼ 1011 N/m2), the lower
bound for the characteristic time in glycerol (η0 ∼ 100 N · s/m2) is in the order of 10−4 s,
while for soft materials like rubber (B/h3 ∼ 106 N/m2) is in the order of seconds, which
is large considering that h can be easily much smaller than Z.

3.3 Naturally curved Ribbons and Geometrical impli-

cations

3.3.1 Localized folding and rod-ribbon transition

If a rod with rectangular cross-section is subjected to external torques and forces, the
final state exhibits a continuous evolution of curvature along the material as predicted by
the Euler-Elastica theory of large deflections presented in the section 3.1. However, when
one bends a naturally curved ribbon, the planar bending deformation often is localized
in a fold (see Fig. 3.5A) similar to the hinge-like deformation observed when a tapespring
is sufficiently curved [66].

In general, this localization phenomenon is the result of a buckling instability. It
separates two distinct regions with parabolic and rectangular cross-sections. When the
ribbon is longitudinally straightened, the cross-section adopts an arch shape without
changing the natural metric of the ribbon (middle part of the picture in Fig. 3.5B).
The final state is determined by the classical strain relationship for rods εb = −νεt (see
section 3.1 for details), where ν is the Poisson’s ratio of the material and (εt, εb) are the
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Figure 3.5: (A) Diagram showing two different deformation scenarios with a PVC200
ribbon with the same a0 = 0.75 cm: (left) W = 0.2 cm, (right) W = 1.0 cm. (B) An
uncoiled ribbon of natural radius a0 and width W . (C) Experimental measurements of
the lengths ξ and Γ normalized by h and

√
ha0 respectively. Γ is defined by two times

the distance between the point α and the point at which the effective thickness of the
cross-section is equal to ξ/2 (the ribbons used were made with PP90 and different widths
W = [1.9cm; 2.3cm; 3.0cm; 3.5cm; 3.8cm; 4.8cm] associated with the natural radii a0 =
[0.7cm; 0.73cm; 0.9cm; 0.81cm; 0.75cm; 0.75cm]).

strain elements along the tangential t̂ and the binormal b̂ directions (see Fig.3.6A). Thus,
for this specific situation, the radius R⊥ of the cross-section (see Fig. 3.5B) is related
with the natural radius a0 through the formula R⊥ = a0/ν. In addition, the density of
elastic energy (energy per unit surface of the ribbon) stored in such straightened state
is Fs = Eh3

24a2
0

, where E is the Young modulus and h is the ribbon thickness. On the
other hand, when the material is longitudinally curved, a parabolic cross-section is not
compatible with an isometric deformation. Therefore, for a relatively low longitudinal
curvature, the cross-section buckles and becomes rectangular (εb → 0). The density of
elastic energy in this region is Ff = Eh3

24a2
0

(1−κ)2
1−ν2 , where κ is the dimensionless curvature

along the longitudinal direction (in this article, all dimensionless lengths or curvatures
are constructed with respect to the natural radius a0 or the natural curvature 1/a0). The
minimum κ admitted by a localized fold can be easily obtained by minimization of the
elastic energy of the system: taking the right-side picture of Fig. 3.5A as a reference for
the calculus, by virtue of the pure torque configuration, κ is constant in the fold region
which has a length lf ≈ (2π − ϕ)/(a0κ). Then, considering that the energy stored in
the transition area between the distinct modes of deformation (see definition of Γ in Fig.
3.5B) is independent of the shape of the fold, the dimensionless curvature compatible with
the minimum of the total energy is obtained from

∂

∂κ
(lfFf )− Fs

∂lf
∂κ

= 0 ⇔ κ = ν

The result is independent of the angle ϕ, implying that, when an arbitrary bend-
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ing planar deformation is produced, ν represents the minimum κ accessible by the rib-
bon. Noteworthy, ν is also the dimensionless curvature of the curved cross-section in
the straightened state. This is analogous to the problem of the deployment dynamics
of tapesprings [66]: once the fold is formed, the curvature becomes independent of ex-
ternal torques and it is given with a good approximation by the initial curvature of the
cross-section.

Certainly, this analysis is valid for ribbons with sufficiently large widths W , otherwise
the system can not be distinguished from a simple rod and localized folds should not form.
In Fig. 3.5, we show that few millimeters in the width can make the difference between
rod-like and ribbon-like behaviors. In order to quantify the critical W for this rod-ribbon
transition, we draw attention at the necessary geometrical conditions for buckling to occur
and, therefore, the existence of a localized fold. We characterize the deformation of a rod
by means of κ and the dimensionless curvature κ⊥ associated with the center line C of
the cross-section (see Fig. 3.6A). Then, we find the value of W at which, for κ ≥ ν, a
planar deformation (where εb → 0 and κ⊥ = 0) minimizes the elastic energy. In fact, as
we will see in the next paragraph, with a variational argument and using a small coupling
between κ⊥ and the strain elements, we extend the classic strain relationship to get a
criterium that reflects the rod-ribbon transition.
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Figure 3.6: (A) Sketch of a bent rod of natural radius a0 and rectangular cross-section
(thickness h and width W ). The drawing describes the deformation of the cross-section
through the perpendicular center line C (xb). (B) Plot of Eq.3.23 evaluated for κ = ν and
for three different Poisson’s ratios in the range of classical materials (from the light-grey
curve to the black one: ν=[0.3; 0.4; 0.5]). The vertical dashed lines indicate the limit of
behavior between a perfect rod and a ribbon.

In the sketch of a bent rod in Fig. 3.6A, we define (xn, xb) the dimensionless coor-
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dinates of any point of the cross-section with respect to the directions n̂ and b̂ of the
neutral line. The center line of the cross-section C (xb) is approximated by the parabola
1
2
κ⊥x

2
b . Considering only the first order displacements in the cross-section, the strain in

the t̂ direction is written εt = (1 − κ)(xn + C) and the strain in the b̂ direction is taken
as a simple bending εb = −κ⊥xn. The general density of elastic energy (energy per unit
volume) for small deformation in thin materials can be written [42]:

F =
E

2 (1− ν2)

{

(εt + εb)
2 − 2 (1− ν) εtεb

}

Minimizing the total energy of the cross-section with respect to κ⊥, we obtain

− 1

ν

〈εb〉
〈εt〉

=
1

1 + 3
80
(1− κ)2

(

W 2

ha0

)2 (3.23)

,where 〈εb〉 = −κ⊥xn and 〈εt〉 = (1− κ)xn are the average values of the strains along W .
In Fig. 3.6B, we show the strain ratio − 1

ν
〈εb〉
〈εt〉 evaluated at κ = ν as a function of W 2/ha0.

This parameter which we call the “Tape Spring Number" (TSN), also controls important
aspects of curling dynamics as we will see later. When W 2

ha0
& 102, εb → 0 and the ribbon

should be able to localize planar deformations. When W 2

ha0
. 100 however, the classical rod

relationship is recovered. For a more intuitive interpretation of the TSN, we can argue
that a curved cross-section generates an effective thickness ξ ∼ W 2/R⊥ ∼ W 2/a0 (see Fig.
3.5B), much larger than h, resulting in a larger effective bending stiffness, so under flexion,
a smaller length with rectangular cross-section (ξ = h) and bigger longitudinal curvature
is energetically more favorable than a lower and homogeneous longitudinal curvature with
ξ ≫ h and explains in a more qualitative manner the observed localization. The ratio
ξ/h is, indeed, proportional to W 2

ha0
.

3.3.2 The characteristic length Γ

When a ribbon is completely straightened, its shape is defined by κ = 0 and κ⊥ = ν (Fig.
3.5). During a typical curling deformation, the curled region propagates where κ ≥ ν and
κ⊥ = 0 (the fold region). These two zones are separated by the length Γ which depends
strongly on the width and where the Gaussian curvature does not cancel out. In this
region, both stretching and bending energies vary with the same power law in W [84].
The stretching deformation can be estimated through the characteristic elongation rate of

the side border of the ribbon: ∆ =
−Γ+

√
Γ2+ 1

4
ξ2

Γ
≈ 1

8

(

ξ
Γ

)2
. Thus, the stretching energy is

UΓS
∼ Eh∆2WΓ ∼ Eh ξ

4

Γ3W . Also, the associated bending energy, can be taken directly
as a scale of the energy required to keep rectangular the cross-section along the distance
Γ: UΓB

∼ Eh3WΓ
a2
0

. Imposing the condition UΓB

UΓS

∼ W 0 , and because ξ ∼ W 2

a0
, the scaling
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law we find writes as: Γ ∼ W 2

a
1/2
0

h1/2
and Γ√

ha0
∼ TSN. In Fig. 3.5C, we plot Γ√

ha0
as well

as ξ/h versus the TSNs and the curves show indeed the expected good linear trends.

3.4 Mechanical properties of the Ribbons used in the

experiments

For the experiment we used long ribbons more than 1 meter long. They are cut with
different widths W ranging from 0.5 cm to 12 cm, from sheets of different materials and
mechanical properties reported in Table 3.1. The natural radius a0 is induced by cooking
the ribbons over night winded up around metallic cylinders at 60oC in the case of plastic
materials or using a flame and fast quenching in cold water for stainless steel. a0 ranges
typically from 0.5 cm to 6 cm much larger than the thickness h to insure linear elasticity
approximation.

Table 3.1: Ribbons properties used in the experiments (B, the Bending Stiffness; σ,
surface density; ν, Poisson’s ratio; h, ribbon thickness)
Material Name B σ ν h

mN.m Kg/m2 µm
PolyVinylChloride PVC100 0.34± 0.03 0.143 0.38 100
PolyVinylChloride PVC200 2.1± 0.1 0.265 0.38 200
PolyPropylene PP90 0.15± 0.02 0.085 0.31 90
Stainless Steel SS100 1.1± 0.2 0.3 0.3 100

Bending stiffnesses B are obtained by a simple cantilever experiment. Briefly, one end
of a flat ribbon of dimensions 3.5 cm × 20 cm, is immobilized vertically on the sharp edge
of a table to form a cantilever system. At the other end, different weights N (between
3 and 25 grams) are hung and the ribbon takes the shape of an arch. The distance d
between the vertically clamped edge and the hanging one gives the bending stiffness of
the material through de formula [42] d =

√

4BW/N . We obtain the value of the Poisson’s
ratio ν of the materials directly by the measure of the perpendicular radius R⊥ = a0/ν.
In brief, a coiled ribbon of natural radius a0 = 0.5 cm and dimensions 3.5 cm × 20 cm, is
straightened on a table keeping flat its two extremities. We project a laser sheet over the
transverse direction of the strip to obtain the profile of the curved cross-section that we
fit by a circle of radius R⊥. The measure is repeated for the different radii a0 we use in
the experiment.
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3.4.1 Viscoelastic characterization

Some materials can exhibit both elastic and viscous characteristics when undergoing de-
formation. The simplest way to consider the bending response of such materials is by
means of the Kelvin-Voigt model, which supposes that the infinitesimal tensile stress in
any point of the material can be written:

σ = Eε+ η
d

dt
ε (3.24)

, whereE is the young modulus of the material (it is measured in quasi-static experiments),
ε is the local tensile strain and η is the inner viscosity of the solid material. The equation
expresses the stress, σ, with a linear combination of the a pure Hookean elastic term and
a newtonian viscous stress.

For bending deformation, the principal strain is proportional to the local curvature
(see Eq.3.3). Therefore, in consideration to the Eq.3.6, the resultant torque in the cross-
section of a rectangular beam is

M(rt)

W
= (n̂× t̂)

[

Bκ+
ηh3

12a0
κ̇

]

(3.25)

, where κ̇ is the time derivative of the normalized local curvature.

PVC and PP are intuitively thought to behave as purely elastic materials. Their
viscoelastic characteristics can nevertheless be well illustrated and measured by means
of a cantilever experiment (see Fig. 3.7): a piece of a naturally straight ribbon is bent
and released on one end while the other is maintained straight and immobile. Unlike SS
ribbons, PVC and PP ribbons exhibit a damped oscillation around a bent geometrical
configuration, different than the natural straight position. This state relaxes to the un-
strained state in a time scale much larger than the period of one oscillation. This peculiar
behavior can be described at short time scales (. 10 oscillations), by a Kelvin-Voigt solid
model of viscosity ηs and of the residual stress ratio φ, which is the fraction between
the stress associated with the centre line of the oscillation and the initial stress in the
cantilever. Thus, using these two viscoelastic parameters, with Eq.3.25 we write the local
flexural torque of the naturally curved ribbon

|M| = B

a0
(1− φ− κ)− ηsh

3

12a0
κ̇ (3.26)

. From the cantilever experiment, we have extracted ηs . 106 [Pa. s] for all materials
as well as φ = 0.20 ± 0.03 and φ = 0.11 ± 0.03 for PP and PVC ribbons respectively (it
was confirmed that SS ribbons behave in a purely elastic way with φ = 0.00± 0.03).

With the cantilever setup, the ribbons deform plastically when stressed with a fixed
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Figure 3.7: Oscillating cantilever experiment (with embedded point p) of a flat piece of
PVC200. (A) Superposition of 5 pictures during the first oscillation in the experiment, the
different times are: t1 ≈ 2.5 ms; t1 ≈ 5.0; t1 ≈ 7.5 ms; t1 ≈ 10.0 ms. For relatively small
bending, the tangential angle θ(t) of the free end, defines the global state of deformation.
(B) Tangential angle θ normalized by its initial value θ(0) as a function of time for the
three first oscillations in the experiment. Since θ is linear with the strain and the strain is
linear with the stress, the center of the normalized oscillation φ can be interpreted as the
ratio between a residual stress in the material and the initial imposed stress. (C) θ/θ(0)
v/s time for the full experiment.
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load on long time scales of several tens of minutes (creeping test). This effect can be
measured easily. One needs only to keep a constant angle θ during a given time and
observe, after releasing the load, how much the initial natural curvature of the ribbons
have changed. This simple protocol shows that PP and PVC ribbons start to exhibit
important plastic deformations (the natural curvature changes more than 5 %) when
large deflections (strains of the order of 0.01) are applied on the cantilever during more
than 5 min. This remark is especially important in the chapter 4 where the full process of
curling in viscous oils of large viscosity (100000 cSt) could take easily more than 30 min.
Thus, in order to be sure that the dynamics is not contaminated by plastic deformations,
we worked with lower viscous oils (12500 cSt) in order to maintain the experimental
curling times smaller than 3 min.

3.5 Experimental Setup for curling

Ribbon 

Laser 

Grid 

Fluid medium 
  , 

  , ,  

( ) 

( ) 

 

Sheet 

Figure 3.8: Scheme of the general setup used during curling experiments.

In a typical curling experiment, we release one end of a ribbon initially held straight on
a horizontal grid by clamping its two extremities flat and we capture its movement with
a high speed camera (Phantom V7, Vision research) or a simple shooting Nikkon camera
with 18mm objective. A grid (dot line in Fig.3.8) is used as a platform for curling motion
(instead of a substrate) to disregard any possible viscous addition in the contacts. The
grid platform is placed inside of an aquarium of length L ≈ 1 m, which is the container
of the different liquids used in the experiments. When the curling is performed in very
viscous oil, a laser sheet is used to visualize the profile of the ribbon.
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Chapter 4

Curling of naturally curved ribbons at

high Reynolds number

Here, using plastic and metallic ribbons, we tune separately the curvature, the width and
the thickness, to study curling dynamics in air and in water, concentrating on the high
Reynolds number regime. Our work separates the role of elasticity, gravity and hydro-
dynamics from inertia and geometry, emphasizing the fundamental differences between
the curling of naturally curved ribbons and rods. Since ribbons are an intermediate class
of objects between plates and rods, they allow us to explore the effect of non planar
deformations and the role of Poisson’s ratio on curling in the simplest possible manner.

4.1 Experimental results for curling and rolling

4.1.1 Curling deformation

The first salient observation in our experiments is the presence of a regime of curling
deformation different than the numerical self-similar solution obtained for an Elastica
[10], when the TSNs& 100. Compared to the low TSN case with the same a0 (Fig. 4.1A),
the ribbon buckles on a dimensionless length Sbuck after a time tbuck (Inset Fig. 4.1B),
and begins curling up into a spiral shape, but rapidly forms a compact cylinder of a fixed
radius R ≈ 2a0 that rolls without sliding with constant velocity Vr (Fig. 4.1B).

The dimensionless longitudinal curvature κ is inferred from the profile analysis just
before self-contact, and corresponding to a curved length xα. κ is reported as a function
of the dimensionless arc-length position S for two different ribbons in Fig. 4.1C. S goes
from 0 at the point α (it marks the origin of the curling front, or in a more general

57
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way, the starting point of planar bending in the ribbon), to xα at the free end β. The
boundary condition at the free end imposes κ = 1 locally. The boundary condition at α
is imposed by the localized fold criteria and thus depends on TSN. The curvature of the
lowest TSN ribbon, increases monotonously from 0 (imposed by the substrate) towards 1,
as expected. In contrast, for the high TSN ribbon κ starts from a value of 0.4 close to the
Poisson’s ratio ν (the minimum κ admitted in a localized fold that has been previously
calculated), then, a plateau appears close to a0/R = e (the dimensionless curvature of
rolling), followed successively by a local maximum and a minimum in the curvature and
a final rapid increase towards 1 at the free end.

4.1.2 Full kinematics diagram

The second important observation of our experiments is the existence of different regimes
in the propagation speed of the curling front. In Fig. 4.2 the full kinematics diagram
of curling is shown: different trends of positions (xα − Sbuck) as a function of the time
(t − tbuck)/t0 are represented for ribbons with approximately the same a0 but different
TSNs. We use, as a renormalization time t0, which represents the characteristic time for
a flexural wave of wavelength a0 to propagate down the material [10]: t0 = a20 (σ/B)1/2,
where B = Eh3

12(1−ν2) is the bending stiffness and σ is the surface density of the ribbon.
At shorter time scales (t− tbuck)/t0 . 1, and after buckling, the curling front accelerates
continuously for large TSNs, while it decelerates otherwise (lower inset in Fig. 4.2). This is
represented by the fact that experimentally (xα−Sbuck) ∼ (t−tbuck)ζ , where ζ ranges from
0.5 for TSNs. 1 to 2 when TSNs& 104 (Fig. 4.2). At long time scales (t− tbuck)/t0 & 10,
all the ribbons reach a constant rolling velocity independent of the TSN (Upper inset in
Fig. 4.2), but which varies with the elastic properties and the gravitational interaction
(see red symbol Fig. 4.2).

Indeed, for a given material and ribbon geometry, when a0 is greater than a critical
value a∗0, gravity dominates and curling is prevented. For a0 < a∗0, we observe that the
roll normalized curvature e decreases with the ratio a∗0/a0, as represented in Fig. 4.3,
from values larger than 1 to a limiting average value of 0.48 ± 0.2, where gravity can be
neglected (values of a∗0 are given in the legend of Fig. 4.3).

Finally, in Fig. 4.4, we show the variation of Vr obtained from Fig. 4.2 at long time
scales, for three different materials as a function of a∗0/a0. When a∗0/a0 ≫ 1, the speed
changes linearly with the natural curvature and gravity is negligible. When a∗0/a0 is close
to 1, the variation is non-linear and gravity plays a large role in the speed selection.
Additionally, the velocity of transition Vr(a0 = a∗0) is finite and different than zero.
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Figure 4.1: (A) Curling sequence (time lapse=10ms) for a ribbon with TSN= 7.5
(PVC200, a0 = 0.6cm , W = 0.3 cm). Inset: Picture shows the typical burst of flex-
ural waves associated with a curling experiment performed without subtrate interaction
and small TSN (TSN= 7.5, PVC200, a0 = 0.6 cm, W = 0.3 cm). (B) Curling sequence
(time lapse=10ms) for a ribbon with TSN= 2100 (PVC200, a0 = 0.6cm,W=5 cm). Inset:
Sequence of picture of the buckling instability observed before curling. (C) Dimension-
less curvature κ as a function of the dimensionless arc-length S: �, for the profile of a
ribbon with TSN= 7.5 at xα ≈ 22; •, for a ribbon with TSN= 2.1 × 103 at xα ≈ 22; (-
- -) analytical solitary deformation front solution from an elasticity-inertia balance (the
curvature associated with each point of the experimental profiles are obtained from the
local fitting of a circle). Inset pictures: experimental profile before self-contact and shape
of the solitary front solution, corresponding to the κ versus S curves. In the bottom
inset, α and β are defined as the boundaries of the curved part of the ribbon of length
xα, corresponding respectively to the initial point of the curling front (when Γ → 0 it
coincides with the substrate contact point) and the free end.
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Figure 4.2: Experimental diagram of kinematics: (xα−Sbuck) as a function of (t−tbuck)/t0
for PVC200 ribbons with the same a0 = 11 mm ≈ 0.15a∗0 (see text to clarify the meaning
of a∗0) and t0 = 1.1 ms, except ◭, which is for a PVC100 ribbon with a0 = 38 mm ≈ a∗0
and t0 = 0.4 ms. Symbols represent different widths that produce the different TSNs:
◦, 4.5; �, 13; ⊳ and ◭, 73; ⊲, 112; ∗, 611; ♦, 1210; △, 1800; ▽, 6100. We can resolve
experimentally the buckling parameters (Sbuck, tbuck) only when TSN& 100 (the different
buckling length are Sbuck ≈ 0.5; 1.0; 1.5; 2; 4; for ⊲, ∗, ♦, △, ▽ respectively). Lower
right corner: evolution at short time scale for (◦) and (♦). Upper inset: limit value of
the normalized curling speed Vrt0/a0 for all curves. Numerical solutions of Eq.4.3 using
CD = 1.1, φ = 0.11 (see text) and the approximation ẋ3α ≈ d(xαẋ

2
α)/dt: (—) W → 0 (TSN

≪ 1) and Lg → ∞; (- - -) with parameters of the ribbon in ◭; (- · -) same parameters
as in (▽).
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Figure 4.3: Dimensionless curvature of rolling e = a0/R as a function of a∗0/a0 (TSN
= 300) for the three different materials: (∗) PVC200 with a∗0 = 5.7± 0.2 cm, (♦) PVC100
with a∗0 = 3.8 ± 0.2 cm and (�) PP90 with a∗0 = 3.7 ± 0.2 cm. The experimental
data represent the averages of ten identical experiments (the magnitude of the error bars
correspond to three times the associated standard deviations). Inset: curling propagation
for PVC100 ribbons at a∗0/a0 = 1.1 (time lapse=0.1s) and a∗0/a0 = 4.2 (time lapse=0.5s).
Dashed circles represent the natural profiles of the ribbons.

4.1.3 Curling front and Rolling as a propagating instability

The condition in α (imposed by the substrate for small TSN and by the localized fold
criteria for TSN> 100) selects a single propagating front instead of the typical burst of
flexural dispersive waves of positive and negative curvatures we observe in the air (inset
Fig. 4.1A) and calculated for straight rods by Audoly et al.[2] and first predicted by
Boussinesq [6]. In fact, the rolling regime is independent of the presence of a substrate.
Since the tip of the Γ-region displays a much smaller effective bending stiffness than the
resting ribbon with circular cross-section, the deformation remains localized and propa-
gates progressively. This is indeed one of the mechanical criterion for a general class of
instabilities in mechanics called "propagating instabilities" [41, 66], where a dynamical
region of transition separates two deformation states, respectively the roll and the rest-
ing part of the ribbon. Propagating instabilities are capable of spreading over the entire
material and hence are often described both as critical phenomena to understand in the
viewpoint of damage control [41, 58, 36], but also as beneficial in the design of efficient
and fast deployment systems in structural engineering [66, 13].
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4.1.4 Effect of gravity of curling and rolling

Elastogravitational Length and The Critical curling radius

The comparison between Fig. 4.1A and 4.1B, shows that the “compact rolling" regime we
observe is not due to gravity since, for these specific experiments, the ribbons have the
same weight per unit width, and the observed inertial acceleration V 2

r /R ≈ 700 m/s2 is
much larger than the gravitational one. In fact, when gravity is not negligible, it stabilizes
more the rolling behavior by further pulling down the curled part and, therefore, assures
self-contact.
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Figure 4.4: Experimental measurements of rolling speed for three different materials with
TSN ≈ 300. The speed Vr corresponds to the slope of the kinematics trend a0xα versus
time for xα ≥ 20. Each experimental point represents the average of ten identical ex-
periments (the observed standart deviation is smaller than 0.04 m/s and the maximum
deviation is always in the order of 0.1 m/s). The error bars are contained in the size of
the symbols.

The usual parameter used to quantify the gravitational force acting on ribbons com-
pared to the bending one is the elasto-gravitational length Lg = (Eh

3

gσ
)1/3, g being the

gravitational acceleration [61] (the values of Lg of the different materials in Table 3.1 are
respectively: 13.6 cm for PVC100; 20.3 cm for PVC200; 12.5 cm for PP90 and 16.0 cm for
SS100). When a0 is comparable with Lg, the weight of the curled part prevents curling
progression. Quickly after the initial release, the ribbon stops around a static configu-
ration without self-contact. Using a heavy Elastica approach, we calculate the smallest
natural radius compatible with such static equilibrium to be 0.28Lg, consistent with the
experimental values of a∗0 (see Appendix B).
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The critical natural radius a∗0 varies slowly with ν. In the range, 0.3 < ν < 0.5, a∗0
varies less than 1%. Thus, curling occurs, in general, only when a0 . 0.28Lg = a∗0. For
PVC and PP ribbons, we find a∗0 equal to 3.9± 0.1 cm and 3.8± 0.2 cm respectively, in
good agreement with our observations.

4.2 Energy variation during rolling

Based on the experimental evidence of the rolling regime, we rationalize in the following
both the scaling laws we observe experimentally as well as the dimensionless curvature of
rolling e and the velocity Vr, using a balance of energy for the roll movement, coupled to
a more refined analysis of the balance of forces and torques of the curled material.

In the following model, we consider that most part of the curling front is located, at
any time, very close to a roll of constant dimensionless curvature e. Accordingly, the
variation of elastic energy dUE/dxα is basically given by the energy density in the roll
Ff (κ = e) minus the energy density Fs of the straightened state. Therefore,

UE = −BW
2

(

λ

a0

)2

xα (4.1)

, where λ2 = 2e− e2 − ν2.

The kinetic energy can be expressed by the integral UKC
= 1

2
σWa30

∫ xα
0

(ṙc + ṙ)2 dS,
where “dot" denotes time derivative, rc is the dimensionless position for the average of
the curvature-center in the curling front and r is the dimensionless position of any point
measured from rc (Fig. 4.5). The vector rc can be seen as the position of the center of
rotation, then ṙ ≈ ω

e
t̂, where ω is the angular speed and t̂ = dr

dS
is the tangential direction

of any point of the ribbon. Also the time variation of the center of rotation can be
approximated with the rolling criterium ṙc = x̂ẋα, where x̂ is the horizontal unitary vector.
The non-sliding condition leads to ω = eẋα, then UKC

= σWa30ẋ
2
α

[

xα +
∫ xα
0

(x̂ · t̂)dS
]

.
Consistent with our approximations, the dimensionless vertical position of the center of
mass with respect to the center of rotation is: − 1

xα

∫ xα
0

(ŷ · r)dS = − 1
exα

∫ xα
0

(ŷ · n̂)dS ≈
− 1
exα

∫ exα
0

(cos θ)dθ
e
= − sin(exα)

e2xα
(see Fig. 4.5 for a visualization of the normal unitary vector

n̂ and the vertical unitary vector ŷ). Therefore, since ŷ · n̂ = x̂ · t̂, the kinetic energy can
be written in the simplified way UKC

= He(xα)ea
3
0σWxαẋ

2
α, where He(xα) =

1
e
− sin(exα)

e2xα
is

the dimensionless height of the center of mass relative to the level of the boundary point
α.

Finally, the gravitational energy Ug corresponds to the total weight of the curled ribbon
multiplied by the height of the center of mass, therefore Ug = He(xα)a

2
0σWxαg.
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4.2.1 Supplementary kinetic energy of the Γ-region

To these energies, one has to account for the inertial effect due to the presence of the
Γ-region, which has to continuously unfold while the curling front propagates.

 

  

 

 

 

 

 

 
  

 

Figure 4.5: Sketch of the displacements in the cross-sections in the Γ-region and references
for the description of the curling dynamics.

In order to approximate the kinetic energy of the transient displacement in the cross-
sections, we define the horizontal distance χ from the boundary point α to an arbitrary
position associated with a specific cross-section in the Γ-region (see Fig. 4.3); the cross-
sections are characterized by two circular pieces of dimensionless length x⊥ which increases
until it reaches a maximum 1

2
W
a0

when χ → Γ. Considering the linear dependence x⊥ ≈
1
2
W
a0

χ
Γ

and approximating the curved pieces with arcs of radius R⊥ = a0/ν, the infinitesimal
contribution to the kinetic energy δUKΓ

of an arbitrary cross-section can be written by
analogy to the previous result for the kinetic energy of the curled material:

δUKΓ
= 2Hν(x⊥)νa

3
0σx⊥ẋ

2
⊥δχ.

The characteristic time of the transient deformation in the cross-section is W/(a0ẋ⊥),
but this quantity is equivalent to the time during which the curling front advances a
distance 2Γ, so ẋ⊥ = 1

2
W
Γ
ẋα. Writing the energy in terms of χ and ẋα, we get the total

energy UKΓ
by simple integration:

UKΓ
=
σa20
4

(

W

Γ

)3

ẋ2α

∫ Γ

0



1−
sin

(

νWχ
2a0Γ

)

(

νWχ
2a0Γ

)



χdχ

= Ca20σWΓẋ2α
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, where

C =
1

8

(

W

Γ

)2 [

1− 16a20
W 2ν2

sin2

(

Wν

4a0

)]

4.2.2 Asymptotic behaviors and experiments

Without dissipation, the sum of the kinetic energies and the variation of the potential
energies of the problem must be zero at any moment in time, which implies a differential
equation for xα that can be integrated numerically. Three asymptotic behaviors can be
deduced in agreement with the experimental data shown in Fig. 4.4. For short time scales,
xα ≪ 1, He(xα) ∼ x2α and UKC

∼ x3αẋ
2
α, the gravitational potential Ug ∼ x3α is negligible

compared to the elastic energy UE ∼ xα; so, when Γ = 0, the balance of energies can be
written UKC

∼ UE and, therefore, ẋα ∼ 1/xα ⇔ xα ∼
√
t. When xα ≪ 1 and Γ ≫ a0,

UKΓ
∼ ẋ2α is dominant and the energy balance is expressed by UKΓ

∼ UE, which leads to
ẋα ∼ √

xα ⇔ xα ∼ t2. These results highlight the important role played by the initial
inertia of the system.

4.2.3 Rolling Speed and Λ-Function

For long time scales, since xα ≫ 1 and He(xα) = 1/e, then UKΓ
≪ UKC

∼ xαẋ
2
α,

Ug ∼ UE ∼ xα and the speed ẋα becomes constant with a value equal to

Vr/a0 = Λ/t0 (4.2)

, where Λ2 = 1
2
λ2− (1−ν2)

4e
(a∗0/a0)

−3 and a∗0 = 0.28Lg. When inertia dominates Λ2 → λ2/2,
the ratio e = a0/R tends to a constant value and the scaling Vr ∼ 1/a0 prevails (in
agreement with the experimental measurements of Fig. 4.4); on the other hand, for
a∗0/a0 ≈ 1, Vr deviates from a power law. In Fig. 4.6 we present the experimental rolling
velocity Vr (for PVC100), normalized by the theoretical prediction Λa0/t0, as a function
of a∗0/a0 (the experimental values of e shown in Fig. 4.3 are used). We observe that the
model overestimates the magnitude of the speed of at least 15% for high a∗0/a0 and almost
40% for a∗0/a0 ≈ 1. We interpreted this discrepancy as an evidence of dissipative processes.
The most plausible sources of dissipation in the system should be related with the inner
viscosity of the material (viscoelasticity) and the viscosity of the outer environment (air
drag), in the following, we will discuss the implications of both effects.
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Figure 4.6: Vrt0/a0Λ as a function of a∗0/a0 for PVC100 ribbons. V r correspond to
experimental values of rolling speed in air (•, N, � ) and water (♦). The function Λ is
computed for different situations: (•) without dissipative processes (φ = 0 andD = 0),(N)
with only viscoelastic dissipation (φ = 0.11 ± 0.03 and D = 0), (�) with both air drag
and viscoelastic interaction (φ = 0.11 ± 0.03 and D . 0.32), (♦) rolling in water with
viscoelastic and viscous dissipation (φ = 0.11± 0.03 and D . 356). Upper inset: rolling
in air, of three different materials considering air drag and viscoelasticity; (�) PP90,
(∗) PVC200 and (H) SS100. Lower insets: Curling sequences in water for (a) (time
lapse=0.35s) and (b) (time lapse=0.01s).
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4.3 Dissipation sources

In order to estimate qualitatively the rolling speed, we consider in the following the two
different sources of dissipation in the experiment induced by drag forces and disco-elastic
effects.

4.3.1 Effective torque

In the section 3.4.1 has been shown, by means of a cantilever experiment, that the flexural
torque of PP and PVC ribbons can be written in the the following visco-elastic manner
(Eq.3.26):

|M| = B

a0
(1− φ− κ)− ηsh

3

12a0
κ̇

, where ηs ∼ 106 Pa.s and φ = 0.20± 0.03 or φ = 0.11± 0.03 for PP and PVC ribbons
respectively.

During curling, since κ̇ ∼ 1/t0, the pure viscous torque ηh3

12a0
κ̇ ∼ 1

12
ηh3

a0t0
can be neglected

compared to the residual one ∼ Bφ
a0

. Therefore, viscoelasticity produces an effective elastic
torque but a negligible viscous dissipation. Including this effect by means of an effective
natural curvature (1 − φ)/a0, we rewrite λ2 = λ20 − λ2φ in UE, where λ20 = 2e − e2 − ν2

represents the pure elastic part of the energy and λ2φ = 2φe− 2φν2e2 + φ2ν2 the residual
one. The viscoelastic correction for Vr is obtained by replacing λ in Eq.4.2.

This viscoelastic correction improves the prediction of the rolling speed significantly
as shown in Fig. 4.6 (for PVC100) especially for values of a∗0/a0 > 4. However, this
correction is not satisfactory: there is still a small difference on the speed for high values
of a∗0/a0 and more than 10% of difference for the larger radii. In order to find the origin
of this deviation, we proceed with the analysis of the air drag during rolling.

4.3.2 Effect of air drag: vanishing Cauchy numbers

We consider, as a first approximation, that the resultant drag force is roughly associated
with the one of the flow passing around a solid cylinder: FD = CDρfWRẋ2α, where
CD ≈ 1.1 is the drag coefficient [80] and ρf is the fluid density. We modify the energy
balance writing the dissipated power as FDẋα = DσWẋ3α, where D =

CDρfa0
eσ

, leading to:

DσWẋ3α =
d

dt
(UE + UKC

+ UKΓ
+ Ug) (4.3)

At long time scales, using ẍα = 0, this equation leads to the rewriting of the rolling speed
with a new function Λ, which satisfies 2(1+D)Λ2 = λ20−λ2φ− (1−ν2)

2e
(a∗0/a0)

−3. Noteworthy,
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the Cauchy number CY appears in Λ since it is the ratio between the characteristic drag
force ∼ DσV 2

r ∼ D
1+D

B
a2
0

and the characteristic elastic force ∼ B
a2
0

and therefore CY = D
1+D

.

This energy balance predicts quantitatively Vr in air when CY ≪ 1 without any
adjustable parameters for the four materials used (see Fig. 4.6). Also, exploiting the fact
that the product xαẋαẍα is always a small quantity independent of TSN, we can use the
aproximation ẋ3α ≈ d

dt
(xαẋ

2
α) and solve the Eq.4.3 with a simple numerical integration

(after the respective separiation of variables). In Fig. 4.2, three of these solutions have
been plotted for three different situations of curling and they are in good quantitative
agreement with the experiments.

4.3.3 Effect of drag in water: Cauchy numbers close to unity

In water however, where CY ≈ 1, the model fails to predict Λ accurately (see Fig. 4.6).
In the range 1 < a∗0/a0 . 2.5, while we observe a rolling regime with e ≈ 1 due to a
reduced rolling velocity, Vr is 30% overestimated, despite the fact that the expression of
the drag force remains the same in the range of Reynolds numbers we are considering
(103 − 104) [80]. Another source of dissipation could be missing such as inertial corner
flow in the self-contacting propagating region, whose consideration is out of the scope
of the paper. Moreover, when a∗0/a0 > 2.5, the discrepancy worsen for increasing values
of a∗0/a0 (Fig. 4.6). In this case, we observe orthogonal oscillations (inset Fig. 4.6) of
frequency f ≈ 0.13 Vr

2a0
or equivalently a Strouhal number Stcurling ≈ 0.13, close to the

value found in the literature of 0.2 for static cylinders in this range of Reynolds numbers,
where vortex shedding induced oscillations dissipate energy in a more complex manner
[83].

4.3.4 Force and torque balance: rolling as a solitary curvature

wave

While the energy balance predicts a first relationship between the speed Vr and e, what
fixes the value of e in the inertial case remains to be elucidated. To solve the problem,
we use the equilibrium of forces and torques in the curled length during rolling, not
considering for simplicity gravity nor drag but taking into account the residual stress.

The balance of forces and torques is expressed with the two coupled differential equa-
tions:

F′/a0 + P = 0 (4.4)

M′/a0 + t̂× F = 0 (4.5)
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, F is then the resultant elastic force in the cross-section. P = (eΛ/t0)
2 σa0r is the

centrifugal density force, where r is again the dimensionless position vector measured
from the center of rotation of the roll. Moreover, M = B

a0
(1 − φ − κ)(n̂ × t̂) is the

local elastic torque in the material, (n̂,t̂) are the normal and tangent unitary vectors
and prime denotes differentiation with respect to the dimensionless arc-length S. Writing
F = n̂·Fn+t̂·Ft, Eq.4.4 can be expressed by the two scalar equations κFt+F ′

n = −a0(n̂·P)

and −κFn + F ′
t = −a0(t̂ · P). After eliminating F ′

t in the second equation using the
derivative of the first one and combining with Eq. 4.5, we get:

− 1

(eΛ)2
∂

∂s

(

1

2
κ2 +

κ′′

κ

)

= 2(t̂ · r) + κ′

κ2
(n̂ · r) (4.6)

The rolling regime can be described by a solitary curvature wave: both the curvature
profile and the speed of propagation are independent of the position xα. For negligible
self-contact forces, the curvature must change continuously from the initial value ν to
the rolling curvature e. We are interested in solutions compatible with the experimental
observation: spirals with slow spatial variation of curvature and with a small dispersion
of the curvature center positions, i.e., solutions in which the approximation r ≈ −n̂/κ is
valid. Using this idea, we neglect the first term of the right hand side of Eq.4.6. After
two integrations, we can express the problem as a first order flow κ′2 = G(κ, e), with G =
1
2
(e2+Λ2)(κ2− e2)− 1

4
(κ4− e4)−Λ2e2 ln(κ/e) (physical solutions are restricted for G ≥ 0

and integration constants are obtained from the roll geometry: (κ′) |κ=e= (κ′′) |κ=e= 0).
In a phase diagram representation, the coordinate κ = e acts as a fixed point [73] whose
stability depends on its magnitude. More precisely, the system has two fixed points, when
e is large enough, one fixed point is stable but the principal one, in κ = e, is not connected
with a physical solution (see Fig. 4.7). When e is small, the fixed points become stable
and half-stable (in κ = e) respectively. The solution we are looking for has only one
stable roll region and appears under the condition (∂G

∂κ
) |κ=e= (∂

2G
∂κ2

) |κ=e= 0, when the
fixed points coalesce into a single stable point. In this case, the rolling curvature is given
by

e =
1

3
(1− φ)

(

1 +
√
1− 3ν2

)

(4.7)

which also corresponds to the bifurcation point of this first order system. The formula
above predicts e = 0.52 for PVC and e = 0.49 for PP ribbons in agreement with the
experimental limiting value measured from a∗0/a0 & 4 in Fig. 4.2 (where the air drag and
the weight are not the dominant interactions). The subsequent curvature solutions κ(s)
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and shape profiles can be easily obtained by numerical integration of
√
G (in Fig. 4.1C

we plot the solution associated with PVC ribbons using a Runge-Kutta method).

Noteworthy, a recent numerical approach of naturally curved Elastica [10] finds a self-
similar spiral shape which reaches a constant curling velocity at an infinite time. The
associated infinite spiral, concentrates a compact region close to the free end, reminiscent
to a roll, tough a closer look to the figure shows many self-intersecting points not taken
into accounts in the numerics (see Fig. 3c of [10]). Using the same equations for the
equilibrium of forces and torques (Eq. 4.4-4.5), the authors predicted numerically that
the dimensionless curvature of such long time scale roll must be 0.564244 in contrast with
the value e = 2/3 we obtain from our model in Eq. 4.7 for φ = 0 and ν = 0 (without
fold localization). This apparent conflict comes from the different ingredients of these two
approaches. In the numerical approach of the Elastica, the authors solve the equations
with a shooting algorithm using the mentioned “conservation of the angular momentum
flux" M/a0+ r×F = 0 as a constraint, but this formula is a simple combination between
Eq. 4.4, Eq. 4.5 and the boundary conditions at the free end. Thus, this constraint by
itself, cannot ensure the unicity of the roll solution. On the other hand, in our analytical
approach, the local value of the solitary curvature wave cannot be larger than e and
the free boundary is irrelevant at infinity. This idea is sustained in the experimentally
observed self-contacting solutions, where the bending waves can not travel beyond the
solid contact area, shielding the eventual effect of the free end and leading to a different
solution than the one proposed in [10].
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Figure 4.7: Phase diagram (G = κ′2 and ν = 0.38) close to the roll region for three
different rolling solutions of Eq. 4.6. Each curve has a different roll curvature e = 0.45;
0.52 and 0.58 respectively.
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4.4 Conclusions

In conclusion, for sufficiently high values of the TSN, curling deformation leads to a rolling
regime. This behavior originates from the strain localization due to the lateral extension
of ribbons. The relationship we observe experimentally between the rolling speed and
its radius is well predicted by a balance of energies. By solving the Elastica on the
curling piece, considering the centrifugal force due to rotation, we obtain a solution which
represents a solitary traveling curvature wave reminiscent to propagating instabilities in
mechanics.

An extension of this work, in progress in our laboratory, is to investigate the role of
another source of dissipation such as local lubrication forces at low Reynolds numbers,
which are important for the behavior of some of the microscopic systems cited in the
introduction. Finally, the effect of non developable geometries like spherical surfaces
presenting a local natural curvature could be explored in the future. In this case, large
stretching deformations should generate several localized elastic defects such as d-cones
and ridges which should interact and dominate curling dynamics. For large enough natural
curvatures, cracks could be coupled to the curling front [79].

Beyond the fundamental aspects of this study, we think our work will contribute to
a better understanding of curling, which currently provides a simple but powerful mean
to build complex artificial nanotubes and microhelices for new applications in nanotech-
nologies [60, 14].
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Chapter 5

Curling of naturally curved ribbons at

low Reynolds number

In this chapter, we extend the study of curling ribbons to the low Reynolds number
regime using Silicone oils as the outer fluid. This regime of movement mimics the same
elasto-viscous conditions happening at the scale of iRBCs or polymersomes, helping to
discriminate in the former model we developed in chapter 2 the effect of the geometry
change of the pore size from that of viscous dissipation.

5.1 Some remarks on the experimental method

For the experiments described here, all the ribbons considered were made with PVC 100
µm thick and produced with a0 ≈ 0.85 cm (a0 can not be much smaller if we still want to
work with the approximation of constant natural curvature along the stripe). The outer
medium corresponds to silicone oil of kinematic viscosity 12500 cSt (or dynamic viscosity
η0 = 12.125 Kg/s m). Because of the buoyancy force, the gravitational interactions are
notoriously reduced. Actually, the effective elasto-gravitational length of the problem is

Lg =
[

Eh3

g(σ−ρ0h)

]1/3

≈ 21 cm ≫ a0. In addition, we have performed curling experiments
both, horizontally and vertically, without getting appreciable differences in the curling
dynamics (see Fig.5.1). Because of simplicity in the manipulation, the rest of the experi-
ments have been done only in a vertical version of the setup described in Fig.3.8 (see inset
Fig.5.1).

For low Reynolds number, the speed of curling drops to the order of mm/s; then,
depending on the viscosity of the outer medium and the natural radius, the complete
curling of the ribbon can take more than 30 min. However, as has been mentioned in
the chapter 3, a stressed ribbon (made with PP and PVC), due to creeping, starts to
accumulate a considerable plastic deformation after 5 min. Therefore, in order to make

73
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Figure 5.1: Position v/s time of curling experiments performed vertically and horizontally
(the used ribbon was made with PVC100, a0 = 0.85 cm and W = 4 cm). Inset: Schematic
of the setup for vertical curling (the curling progresses against gravity).

experiments without relevant plastic effects, the values of a0 and η0 have been selected to
have a full curling movement in less than 3 min but with a Reynolds number no larger
than 10−2.

5.2 Experimental results

In Fig.5.2, the principal experimental results obtained from the observation of curling
at low Reynolds number are presented. We have described the dynamics of curling by
means of the frontal diameter, D (see Fig.5.2A), the maximum height, H, and the curled
position xα.

The first important experimental result is that the geometry of the curled material
cannot be described with a compact cylinder as in the inertial case of chapter 4, and
instead, the curling progresses forming a spiral whose size depends on time and on the
width W of the ribbon. Since, at short time scale, the time associated with the position
has large uncertainty (due mainly to fluid disturbances during the release of the ribbon),
the dynamical evolution has been shown as a function of the position, xα, instead of time.
This allows to compare the implications of the width with better resolution.

From Fig.5.2B, we see that, before one turn (xα/a0 . 10), the dynamics does not
depend on W ; however, when the curling propagates further, the size of the spiral starts
to be sensitive to the width. D reaches higher values for larger W and the respective rates
of growing decrease with xα. Moreover, the distance H −D does not depend on W and
remains approximately constant (H −D ≈ 0.8a0).
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In Fig.5.2C, the instantaneous speed of curling, v = ẋα, associated with the positions
xα of the curves in Fig.5.2B, are presented as a ratio of the characteristic speed, v0 =
B
η0a20

≈ 0.42 m/s (which expresses the scaling of the balance between the stokes force,
∼ vWη0, and the driven force, ∼ BW

a2
0

). The speed decreases with the position with a well
defined width dependent power law. The movement is faster for smaller W . The observed
power law for the speed, varies from v ∼ x−0.40

α (when W ≈ 2 cm) to v ∼ x−0.70
α (when

W ≈ 6 cm). That means that the positions can be expressed as a power law in time:
xα ∼ t0.71 (when W ≈ 2 cm) and xα ∼ t0.59 (when W ≈ 6 cm).
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Figure 5.2: A.- Curling sequence (time lapse= 30s) for a ribbon (PVC100, a0 = 0.85cm,
W = 6 cm) in Silicone oil (η0 = 12500 cSt). The curled position, xα, the frontal diameter,
D, the height, H and the speed of propagation, v, have been schematized. The experiment
has been performed vertically (for simplicity, the picture is shown horizontally). B.-
Normalized frontal diameter versus the normalized curling position for ribbons (PVC100
and a0 ≈ 0.85cm) with different W (the arrow indicates the direction of increasing W ,
from up to down: W = 2cm; W = 3cm; W = 4cm; W = 5cm; W = 6cm) in Silicone oil
(η0 = 12500 cSt). The inset shows the respective values of the distance (H −D)/a0. C.-
Normalized curling speed versus the normalized curling position in Log plot for for the
experiments of (B). Inset: Same data in linear representation.
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5.3 Analysis of the viscous Dynamics

5.3.1 Stokes Drag

The set of experimental results described in the previous section give place to a curling
process that is notoriously different than the winding process observed in bilayer ribbons
in a viscous fluid [76]. In the bilayer winding, the speed of propagation decreases in very
long distances because of the continuous growing of size of the roll. This corresponds
to a geometrical effect of having a finite solid thickness, h, in the material: Since self-
intersection is forbidden, the rate of released elastic energy in a compact winding changes
slowly with the number of turns, n; therefore, the effects on the speed appear when the
distance, nh, starts to be comparable with the spontaneous radius of the problem. In our
case, the experiments has been performed always in a regime where nh ≪ a0, however,
the hydrodynamic interaction generates an interlayer film of liquid which prevents the
compact curling, and induces a premature fast growing of the spiral. One could think that,
in analogy to the speed variation of the bilayer ribbon, the variation of the curling speed
observed in our experiments, can be explained with a balance between the Stokes drag
dissipation of the movement and the rate of elastic energy released (which is decreasing
because the spiral is growing); however this approach underestimates the total power
dissipated. In order to understand how this remark arises, first we take 2/D as the
dominant curvature for the elastic energy variation, ∂UE

∂xα
; then, similar to the Eq. 4.1, we

have

∂UE
∂xα

= −BWλ2

2a20

, where λ2 = 4a0
D

− 4
(

a0
D

)2 − ν2. Now we approximate the drag force using the flow
generated by a cylinder (of diameter D) rolling on a wall located to a distance H − D.
The drag force is then [52].

Fd = 2πWη0v

√

D

H −D

Therefore, through the balance of powers, vFd + ∂UE

∂xα
ẋα = 0, we get

v

v0
=
λ2

4π

√

H −D

D
(5.1)

In the inset of Fig.5.4, the quantity λ2

4π

√

H−D
D

has been plotted using the experimental
data of the ribbon withW = 6cm of the Fig.5.2. The average of the trend is approximately
one order of magnitude larger than the experimental ratios of the speed, v/v0, and it shows
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a clear underestimation of the viscous dissipation.

In Eq.5.1, the dissipation generated by the interlayer fluid film dynamics is missing.
Actually, the local interlayer thickness decreases in time, giving a clear evidence of squeez-
ing of liquid that has not been taken into account in this first approach. Since the spiral
is smooth, the elastic pressure does not change strongly along the arc-length coordinate
(the characteristic length of variation is 2πa0). Also, because W ≪ xα, the natural hy-
drodynamic resistance for the flow of liquid in the ê2 direction (see inset in Fig.5.3) is
much smaller than in any other direction; thus, the squeezing must be interpreted as a
side flow leaving the ribbon from its side.

5.3.2 Dissipation due to interlayer liquid flow

We describe the interlayer liquid dynamics using the intrinsic frame (ê1, ê2, ê3), which has
been sketched in the inset of Fig.5.3. The coordinates in the intrinsic frame are denoted
respectively by (r1, r2, r3), where r1 = s is the arc-length and r2 is the position along the
width measured from the center. In principle, for planar deformation we have ∂hc

∂r2
= 0

and, therefore, the elastic bending pressure depend only on r1. In this context, one could
think that the derivative of the fluid pressure, ∂P

∂r2
, is zero; but this is correct only when

a planar deformation takes place in a ribbon with no resistance to Gaussian curvature
modifications (which can be interpreted as resistance to shear). Thanks to this Gaussian
curvature stiffness, during curling, a solid ribbon is able to resist big gradients of pressure
(along the width) without perpendicular bending modes developing. As mentioned before,
the squeezing dynamics of smooth spirals must be reflected by a side flow of liquid, so the
r2-derivatives terms of the lubrication equation (Eq.3.20) are the dominant one, and the
temporal derivative ḣc gives

ḣc =
1

12η0

[

∂

∂r2

(

h3c
∂P

∂r2

)]

Then,

∂P

∂r2
= 12η0

ḣc
h3c
r2 ≫

∂P

∂r1

Combining Eq.3.17 and Eq.3.19 we express the density of power dissipated in terms
of the gradient of pressure and, after integration in the thickness and the width, we have

dΦS = 2η0W
3 ḣc

2

h3c
ds (5.2)

, which is the local squeezing power dissipated in the infinitesimal arc-length ds. Thus,
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the total power dissipated corresponds to the integral of this relation along the liquid film,
which has a length close to xα − 2πa0. Since the derivative ḣc can be written ẋαh

′
c (the

apostrophe denotes a derivative respectively to s), the total power dissipated is

ΦS = 2πη0Wv2I (5.3)

, where

I =
W 2

π

∫ (xα−2πa0)

0

h′2c
h3c
ds

, is a dimensionless function which contains the geometry of the spiral.
The new balance of powers is then given by Fdv + ΦS + v ∂UE

∂xα
= 0, and the curling

speed becomes

v

v0
=

1

4π

λ2
√

D
H−D + I

(5.4)

5.3.3 Phenomenological prediction of the speed

In order to compute the Eq.5.4 we must know some informations about how hc changes
with s and in time. We have extracted this information from image analysis of the
thickness of the film layer in a typical movie of the experiments.

In Fig.5.3, experimental values of hc as a function of s/a0 have been plotted for different
positions, xα, during curling. For large xα, hc evolves from H −D at s = 0 (in the point
α) to a value ≈ 0.2(H − D) when s ≈ xα − 2πa0 (we neglect the final part of the
liquid film where hc goes rapidly to zero due to the self-contact produced in the point
β). Surprisingly, the different curves of the plot can be described approximately with the
same trend. Based in this observation, hc can be represented as an ad hoc function of s
and xα (the problem is therefore not intrinsically dependent on time).

In order to estimate the contribution of the squeezing dissipation, we have fitted the
data of Fig.5.3 with a unique Gaussian curve, y = hc

H−D = a + be−γ(s−s0)
2

(dashed line in
Fig.5.3), which is supposed to be compatible with the boundary conditions of the problem:
y = 1 when s = 0 and y → a 6= 0 when s goes to infinity. Because the expression for the
dissipation (Eq.5.2) diverges when hc → 0, the last condition (y → a 6= 0) is indispensable
to guarantee the curling movement at very long time scale. Noteworthy, the Gaussian
curve, y, is not able to feet the data for small values of xα; on the other hand, the
lubrication theory starts to be more suitable only when the spiral has, at least, two turns.
Thus, we should not expect a good prediction of our model (Eq.5.4) when xα . 13a0.

Using the fitted function, y, we have computed numerically the values of I associated
with the experimental data (xα, D, H). The results indicate that I is dominant in front
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of the drag term, D
H−D , in the denominator of Eq.5.4. Actually, in Fig.5.4, the expected

speed ratios (given by Eq.5.4) has been plotted together with the respective experimental
curve of the curling speed and we see that the asymptotic value of the speed is well
predicted by the model, while if I = 0, we recover the result of Eq.5.1, where the speed
ratio appears overestimated by a factor 10 (see inset Fig.5.4).
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Figure 5.3: Normalized interlayer thickness hc/(H − D) as function of the arc-length
coordinate for differents curling positions xα (the different curves correspond to xα/a0 ≈
18; 26; 34; 42). The data come from the analysis of an experiment made with a ribbon of
PVC100, a0 = 0.85cm andW = 6 cm. The dashed line represents the curve: hc/(H−D) =
0.185 + 3.15 exp {−0.0032(s/a0 + 20.05)2}.

5.4 Discussion

The good agreement between the asymptotic value of the experimental measurement of
the speed and the one predicted by the phenomenological model, is a clear evidence that
the interlayer lubrication forces are the dominant non conservative interactions during
curling at low Reynolds number.

This result has a very important implications in the axisymmetric curling studied in
chapter 2, where, using a model without interlayer viscous friction, the surface viscosity, ηs,
has been established with a high value. In the axisymmetric case, although an interlayer
liquid can not escape from the rim (spiral of revolution) with a lateral flow, the progressing
of the curling, itself, forces a lateral redistribution of liquid (otherwise the conservation
of interlayer volume can not be satisfied). Therefore, the same principles used in the
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Figure 5.4: Curling speed ratio vs xα/a0: (◦) reproduction of the experimental data
in Fig.5.2C for W = 6 cm and (�) numerical estimation of Eq.5.4. Inset: numerical
estimation of Eq.5.1.

approach for the squeezing in ribbons could be applied in the model for axisymmetric
curling. The consequences of such argument are currently under investigation.

Compared to models of the cylindrical curling of straight ribbons as the one developed
in [48, 1], the temporal slowing down deduced from their model can be attributed to the
linear increase in size of the curled ribbon due to the finite thickness of the material and
the assumption of compact curling. However, in our observations, the spiral size D of the
curling ribbon increases in time in a non linear fashion, because of the continuous draining
of fluids laterally, due to the elastic strangulation of the ribbon, and which dominates the
dynamics over large scale friction.

5.5 Conclusions

In conclusions, in this chapter, we showed that, curling at low Reynolds number is con-
trolled by two viscous dissipations in the case of ribbons: the large scale drag, due to
the displacement of the fluid when the ribbon curls on itself and the local viscous friction
generated by the bending forces that squeeze out laterally the interstitial fluid, by an
elastic "strangulation".

While our basic approach gives the good approximation of the curling speed, several
points still remain unclear and worth development. For instance, what determines the
longitudinal variation of hc(s) along the spiral ? Why the law is independent in time and
most intriguingly, what controls the final power laws we observe for v/v0 as a function of
W? In order to answer these questions, a more complete treatment of the elasto-viscous
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interaction is necessary but which could not be treated during the time course of the
thesis.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

In this thesis, theoretical approaches and macroscopic experiments on elastic ribbons have
been coupled to decipher the dynamics of curling associated to opened bio-membranes.
The principal conclusions are separated in 3 different points:

6.1.1 Geometric implications of axisymmetric curling in biomem-

branes

When a spontaneous curvature is present in the membrane, the stability of a pore depends
strongly on its size. In particular, the line tension γ of the free edge always dominates when
the opening angle is sufficiently small. The critical spontaneous curvature for curling is not
well defined through a mechanical equilibrium in the initial configuration of the pore (after
nucleation): because of the cycloidal nature of curling deformation, an energy barrier could
appear in an early stage of the dynamics, and then, block the curling progressing. The
existence of an energy barrier for curling, allows the possibility of a static equilibrium of
the pore. A critical spontaneous curvature must be defined as the curvature at which the
energy barrier associated to the intrinsic cycloidal motion of the curling is crossed.

Since a biomembrane is essentially a two-dimensional fluid, when an axisymmetric
curling propagates down the spherical body, it involves an important redistribution of
surface. This redistribution (or in plane flow) represents an important source of dissipation
that had not been considered in previous works. Also, under the approximation of very
high spontaneous curvature, any shear resistance G of the membrane becomes dominant
only when the curling dynamics occurs on a spherical object (vesicle or cell) with radius
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R0 much bigger than the length γ/G.

6.1.2 Geometric implications of curling in naturally curved rib-

bons

The Poisson’s ratio of a naturally curved ribbon generates a tendency to localize the planar
bending deformations. This has a strong effect in the selection of the bending modes
during curling. The localization phenomenon is out of the Euler Elastica description,
therefore, by definition, it can not be defined for a pure unidimensional rod. Actually, the
mechanical conditions of such localizations have been used to find a rod-ribbon transition:
ribbons behave like perfect rods only when W 2

ha0
. 1 (W is the width of the ribbon,

h is the thickness and a0 the natural radius). For high Reynolds number and small
Cauchy number, curling deformation for W 2

ha0
& 200, leads to a rolling regime, where the

speed of propagation is constant. The relationship we observe experimentally between
the rolling speed and its radius is well predicted by a balance of energies. By solving the
Elastica on the curling piece, considering the centrifugal force due to rotation, we obtain
a solution which represents a solitary traveling curvature wave reminiscent to propagating
instabilities in mechanics.

6.1.3 Drag and interlayer fluid friction coupled to curling

From experiments on naturally curved ribbons in viscous oil and at low Reynolds number,
we showed that the interlayer fluid friction dominates the shape of the observed spiral
and the power dissipated during curling. This counterintuitive result, should have very
significant implications in the modeling of curling in axisymmetric membranes ignored up
to now.

6.2 Perspectives

Since the interlayer fluid interactions can not be neglected during curling at low Reynolds
number, the models of curling in biomembranes must be revised in the future. In ax-
isymmetric geometry, although an interlayer liquid can not escape from the rim (spiral of
revolution) with a lateral flow as observed for ribbons, curling propagation should force a
lateral redistribution of liquid due to the conservation of interlayer volume. Therefore, the
same principles used for ribbons could be applied in the model for axisymmetric curling.
Also the dynamic solution of axisymmetric curling can be improved by using the numerical
computations of the potential energies instead of the analytical approximations.
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In all the works of curling dynamics of biomembranes (including this thesis), the driven
potential energy has been written using a pure spontaneous curvature model, where the
spontaneous curvature is supposed to reflect the asymmetry in the membrane. However, a
coupling between curvature and density of the leaflets of the membranes could generate an
extra elastic term. Actually, the so-called Area-difference-Elasticity model has been used
to explain successfully typical phenomena observed in shapes transformations of vesicles
and RBC [53, 75]. A further study about the consequences on the application of this
model to the curling dynamics is pending.

Finally, in the context of the curling of naturally curved ribbons at low Reynolds
number, the performed approach gives the good approximation of the curling speed, but
several points still remain unclear and worth development.

For instance, how can we predict the general geometry of the spiral? Why the exper-
imental law of the spiral shape is independent in time and what controls the final power
laws we observed for v/v0 as a function of W? In order to answer these questions, a more
complete treatment of the elasto-viscous interaction is necessary.
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Appendix A

Geometry and elasticity

A.1 Infinitesimal variation of volume and surface

The local relative variation of volume due to an arbitrary small deformation is

dr′1dr
′
2dr

′
3 − dr1dr2dr3

dr1dr2dr3
= ε2 + ε1 + ε3

Furthermore,

ε1ε2 =

(

dr′1 − dr1
dr1

)(

dr′2 − dr2
dr2

)

= −ε1 − ε2 + EA3
(A.1)

Where EA3
=

dr′
1
dr′

2

dr1dr2
− 1 is the relative surface expansion of the infinitesimal planes

that are perpendicular to the axis ê3. Then, generalizing the notation of equation A.1,
the relative variation of the total surface area dA of the infinitesimal enclosed volume is

EA =
dr′1dr

′
2 + dr′1dr

′
3 + dr′2dr

′
3

dr1dr2 + dr1dr3 + dr2dr3
− 1 =

EA1
dr2dr3 + EA2

dr1dr3 + EA3
dr1dr2

dr1dr2 + dr1dr3 + dr2dr3

, however, each infinitesimal surface dr1dr2, dr1dr3 and dr2dr3, represents 1/6 of the total
surface dA of the enclosed volume, therefore EA(ε) = 1

3
(EA1

+ EA2
+ EA3

). Finally,

EA =
1

6

[

(ε1 + ε2 + ε3)
2 − (ε21 + ε22 + ε23) + 4(ε1 + ε2 + ε3)

]

(A.2)

The relative variation of surface area of a pure compression (where ε1 = ε2 = ε3) is
EA = 1

6

[

2
3
(ε1 + ε2 + ε3)

2 + 4(ε1 + ε2 + ε3)
]

. Therefore the contribution, of an inhomoge-
neous dilation, in the increment of enclosed surface area, is obtained by substracting the
previous expression, with Eq.A.2. The result is

−1

6

[

ε21 + ε22 + ε23 −
1

3
(ε1 + ε2 + ε3)

2

]
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A.2 Kirchhoff Equation for small deflections

In absence of external forces the Eq.3.7 gives

∂F

∂s
≈ ̺(r̈ · n̂)n̂

Also,

∂

∂s
(t̂× F) ≈ t̂× ∂F

∂s
= ̺(r̈ · n̂)(t̂× n̂)

, and the derivative of Eq.3.8 leads to

BW
∂2κ

∂s2
− ̺(r̈ · n̂) = ̺h

12
κ̈

, but from Eq.3.9 and Eq.3.10

∂2

∂s2
(r̈ · n̂) ≈ n̂

∂2r̈

∂s2
≈ −κ̈

Therefore,

BW
∂4κ

∂s4
− ̺κ̈ =

̺h

12

∂2κ̈

∂s2

A.3 Planar Bending Pressure for small deflections

Considering an external pressure P on the surface of a beam, the external force per unit
length is K = PWn̂, where W is the width of the beam and n̂ is the unitary normal
vector. In absence of inertia the Eq.3.7 gives

∂F

∂s
= PWn̂

Also, for small deflections

∂

∂s
(t̂× F) ≈ t̂× ∂F

∂s
= (t̂× n̂)PW

, and the derivative of Eq.3.8 leads to

B
∂2κ

∂s2
= P

, but for small deflections the curvature is approximately the second derivative of the
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height Z of the deflection respect to the horizontal coordinate r1, therefore,

B
∂4Z

∂r41
= P
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Appendix B

Static equilibrium in curling and

calculus of the critical a∗
0

B.1 The critical natural radius a∗0

B.1.1 The Heavy Elastica Equation

We are interested to find the differential equation that describes the shape of a ribbon
that bends with planar deformations under its own weight. In Fig.B.1, a schematic of the
problem is presented: one end of the ribbon is immobilized by fixing its local tangential
vector and the other extremity is left free. We define the natural radius of curvature a0,
the tangential angle θ and the arc length position S, which runs from zero to the full
length Sβ of the material.

For static equilibrium, the equations of force and torque are given by:

∂SF + K = 0 (B.1)

and
∂SM + t × F = 0 (B.2)

where K is the external force per unit of area; F is the internal force resultant on the
cross-section and M is the torque resultant per unit length. For planar deformations,
the torques are connected with the curvature by: M = −B (κ0 − κ) e3, where B is the
bending stiffness, κ0 = 1/a0 is the natural curvature and κ = ∂Sθ = θ

′

is the local
curvature.

Solving Eq.B.1 for the gravitational interaction K = −gσe2 (g is the gravitational
aceleration and σ the surface density) we get F = gσ (S − Sβ) e2, and then, by Eq.B.2,
the general equation for static equilibrium is found:
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Figure B.1: Scheme of the static configuration of a ribbon of natural radius a0 that is
deformed by its own weight.

θ
′′

+
gσ

B
(S − Sβ) cos θ = 0 (B.3)

To non dimensionalize, we introduce the parameter χ = S/Sβ, then eq.B.3 becomes

d2θ (χ)

dχ2
− (1− χ)

b
cos θ (χ) = 0 (B.4)

where b = B
σgS3

β
. Because of the origin of the problem, this equation must be subjected to

the boundary conditions: θ (0) = θ0 and dθ
dχ

(1) =
Sβ

a0
.

B.1.2 Numerical solution

When the angle θ (χ) and its derivative dθ(χ)
dχ

in χ = 0 are imposed, using finite differences
method we can easily solve the Eq.B.4 numerically. First we aproximate the second
derivative,

d2θ

dχ2
≈ θ (χ+∆χ)− 2θ (χ) + θ (χ−∆χ)

∆χ2

and discretize the domain of the solution: χ → χn = n∆χ. Now, considering θ (χ) →
θn = θ (χn) and ∆χ = 1/N (where N is the number of intervals of the domain), we get
the following recursive formula

θn+1 =
1

b

(

1

N2
− n

N3

)

cos θn + 2θn − θn−1 (B.5)

where n = 1, 2, 3, ..., N−1. In order to find the complete numerical solution, we start with
the initial values, θ0 and θ1, that are given by the boundary conditions of the problem.

For the problem of the equilibrium shape of the frustrated curling, the boundary
conditions for rods are θ (0) = θ0 = 0 and dθ(0)

dχ
= 0 ⇒ θ1 = 0. Thus, with the recursive
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formula, for each number b, we have access to the entire angular variation of the rod,
especially at the free boundary, the curvature is dθ(1)

dχ
=

Sβ

a0
(which is also the dimensionless

natural curvature). In Fig.B.2 we have plotted the numerical solutions for the parameter
1/b associated with the normalized curvature Sβ/a0, the graph shows that 1/b can not
be higher than 45.63, otherwise Sβ/a0 becomes negative and the solution is not more
compatible with the conditions of the problem.

For ribbons, the problem is more subtle because the curvature at χ = 0 is given by
dθ(0)
dχ

= ν
Sβ

a0
that must be also compatible with the boundary condition at the free end,

which implies that θ1, θN−1 and θN are explicitly connected:

θ1 = (θN − θN−1) ν

Knowing ν, we run the iterative formula of Eq.B.5, performing a searching loop where,
for a specific b, the initial estimate of θ1 will be given by the dimensionless natural
curvature of the associated rod solution. Then, writing the curvature at the free end
as κN (b, θ1), the first iterative solution will be written θ

(1)
1 = ν

N
κN (b, θ1 = 0). Using

this same idea we can produce a better estimate θ(2)1 = ν
N
κN

(

b, θ
(1)
1

)

. Thus, θ(i)1 can be
improved for any required accuracy using the algorithm:

θ
(i+1)
1 =

ν

N
κN

(

b, θ
(i)
1

)

For a ribbon of ν = 0.38, the Fig.B.3 also shows the relation between 1/b and Sβ/a0

obtained by means of the numerical solution.
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Figure B.2: Numerical Solution (with finite differences method) of the relation between the
heavy-elastica constant 1/b and its associated boundary condition Sβ/a0 for the problem
of the gravitational barrier for curling. The red line is associated with a ribbon with
ν = 0.38.
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B.1.3 The limit for static equilibrium

When a0 is lower than the critical value a∗0, the stored elastic energy of the ribbon is
higher than its gravitational potential energy and curling starts. However, when a0 & a∗0,
the ribbon adopts a static configuration that we characterize by two variables: the height
Yβ of the free end β of the ribbon, and the curvilinear length Sβ between the contact with
the substrate, α, and β (see picture in Fig.B.3B).
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Figure B.3: (A) Image of an unwound ribbon of natural radius a0. (B) Image of a
ribbon in static equilibrium with gravity (PVC film 100 µm thick, a0 = 4.0± 0.1 cm and
W = 3.5 cm). Upper inset: Numerical solutions for static equilibrium shapes obtained
using Eq.B.4. Positions are normalized by Sβ. Lower inset: Equilibrium diagram Yβ/Sβ
versus Lg/a0 (a0 > 0.28Lg). Two solutions are represented one stable, one unstable
(dashed line) for each Lg/a0 (red line obtained for a ribbon with ν = 0.4). On the plot,
letters indicate the shape obtained by the numerical solution.

To deduce the value of a∗0 from the parameters of the static problem, we used Eq.B.4.

For an initially horizontal ribbon, using Yβ/Sβ =
∫ 1

0
sin(θ)dχ, a first integration of

Eq.B.4 leads to Yβ/Sβ = b
2
[(Sβ/a0)

2 − θ′(0)2]. Because of the Γ-region, the longitudinal
curvature at the point α is given by a0/ν and θ′(0) = νSβ/a0. The height of the free
border is then given simply by Yβ = L3

g/24a
2
0, where we define the elasto-gravitational

length Lg = (Eh
3

gσ
)1/3. Yβ increases with the square of the natural curvature until the

critical situation at which the curling proceeds.

We report in the upper inset of Fig.B.3, different shapes we obtain from the numerical
solution of Eq.B.4. We report also in the lower inset of Fig.B.3, the stability diagram,
where Yβ/Sβ = b

2
(1 − ν2)θ′(1)2 and Lg

a0
= [12b(1 − ν2)]

1

3 θ′(1) are written in terms of the
parameters (b, Sβ/a0) plotted in Fig.B.3. For each value of Yβ/Sβ, two solutions are found
for two different Lg/a0: one stable (upper solid line) and one unstable (lower dashed line).
No more static solutions are found when Lg/a∗0 & 3.57.

The critical natural radius a∗0 varies slowly with ν. In the range, 0.3 < ν < 0.5, a∗0
varies less than 1%. Thus, curling occurs, in general, only when a0 . 0.28Lg = a∗0. For
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PVC and PP ribbons, we find a∗0 equal to 3.9± 0.1 cm and 3.8± 0.2 cm respectively, in
good agreement with our observations.
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Résumé :

La déformation de matériaux élastiques dont l’une au moins des dimensions est petite apparaît dans un grand nombre
de structures naturelles ou artificielles pour lesquelles une courbure spontanée est présente. Dans ces travaux de thèse,
nous couplons plusieurs approches théoriques à des expériences macroscopiques sur des rubans élastiques afin de compren-
dre la dynamique d’enroulement de biomembranes ouvertes d’un trou. La motivation est issue d’observations récentes
d’enroulements obtenues au cours de la sortie de parasites de la Malaria de globules rouges infectés (MIRBCs), et de
l’explosion de polymersomes.

Dans une première partie, nous étudions théoriquement la stabilité d’un pore et la propagation de l’enroulement sur
une biomembrane sphérique ouverte. Nous modélisons de façon géométrique l’enroulement toroïdal de la membrane par
une spirale d’Archimède de révolution et décentrée. Avec cette hypothèse, nous montrons que la stabilité du pore vis-à-vis
de l’enroulement dépend fortement de la tension de ligne et du cisaillement et nous discutons ces résultats dans le cadre de
l’enroulement de membranes MIRBCs. De plus, en prenant en compte les différentes sources de dissipation, nous obtenons
un très bon accord entre les données expérimentales obtenues pour les MIRBCs et la dynamique d’enroulement obtenue par
le calcul. Notre approche montre en particulier que la dissipation dans la membrane due à la redistribution de la matière
durant l’enroulement domine sur la dissipation visqueuse dans le milieu.

Cependant, la complexité de la géométrie sphérique, ainsi que le nombre limité d’observations microscopiques à l’échelle
de la membrane sont une entrave au développement de modèles plus détaillés qui permettraient de décrire complètement le
couplage entre écoulement et déformation. Nous avons donc étudié dans une seconde partie la déformation d’enroulement
dans le cas de rubans élastiques ayant une courbure spontanée dans différents milieux visqueux et pour différentes conditions
élastiques. A grands nombres de Reynolds, en raison de la localisation de la courbure pour les rubans au cours de la
propagation du front d’enroulement le long du matériau, nous montrons que l’enroulement atteint rapidement une vitesse
de propagation constante. Dans ce régime, le ruban s’enroule sur lui-même de façon compacte, sur un cylindre dont la taille
est prévue à partir d’une solution d’onde solitaire pour l’Elastica. A faible nombre de Reynolds, cependant, se rapprochant
des conditions d’enroulement d’une membrane microscopique, nous mettons en évidence l’influence des forces de lubrification
sur la nature non-compacte de l’enroulement. La taille globale de la spirale de ruban augmente dans le temps conduisant à
une diminution de la puissance élastique libérée et donc à une diminution de la vitesse. Nous discutons dans quelle mesure
ces résultats peuvent faire avancer la modélisation de l’enroulement dans les MIRBCs et les polymersomes.

Mots clés : enroulement, ruban, membrane, paludisme, courbure spontanée.

Abstract :

Curling deformation of thin elastic surfaces appears in numerous natural and man-made structures where a spontaneous
curvature is present. In this thesis, we couple theoretical approaches and macroscopic experiments on elastic ribbons to
decipher the dynamics of curling associated to opened bio-membranes, motivated by recent microscopic observations of
curling in membranes of Malaria infected red blood cells (MIRBC) and artificial polymersomes.

In a first part, we study theoretically pore opening and curling destabilization due to the presence of a uniform
spontaneous curvature in a bio-membrane. We model axisymmetric curling with the revolution of a decentered Archimedean
spiral leading to prescribed toroidal-like wrapping of the membrane. In this configuration, we show that the stability of an
open pore depends strongly on both line-tension and shear elasticity. Moreover, because of the spherical geometry of the
problem, we demonstrate that the inner dissipation resulting from the surface redistribution, dominates the dynamics over
the outer fluid viscous dissipation, in quantitative agreement with experimental data obtained on MIRBC.

Subsequently, due to the lack of clear experimental images of microscopic curling, and the complexity of the spherical
topology, we study in a second part the curling of macroscopic naturally curved elastic ribbons. In order to separate
the respective roles of flow, elasticity and geometry, the experiments are performed in different viscous media and elastic
conditions. We show that, because of the tendency of ribbons to localize bending deformations, when a curling front at high
Reynolds numbers travels down the material, it reaches a constant velocity rapidly. In this regime, the ribbon wraps itself
into a compact roll whose size is predicted through the solitary wave solution of the associated elastica. At low Reynolds
numbers, however, due to strong lubrication forces, curling is no more compact. The overall size of the spiraling ribbon
increases in time with a power law and leading to a temporal decrease of elastic power and to a consequent decrease in
velocity. We discuss how such discovery sheds a new light on the modeling of curling in MIRBCs and polymersomes.

Key words : curling, ribbon, membrane, malaria, spontaneous curvature.


